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Abstract  

 

 

Age estimation is very useful in forensic sciences for identification purposes. In 

recent years, DNA methylation (DNAm) has arisen as a promising tool for age prediction. 

In consequence, age prediction models (APMs) have been developed using many age-

correlated genes, different methodologies and several biological samples. 

The main aim of this study was to develop APMs based on previously known age-

associated genes, including ELOVL2, EDARADD, FHL2, PDE4C, C1orf132, KLF14 and 

TRIM59, using different tissues with forensic interest. In addition, we investigated 

putative differences in DNAm between blood from living and deceased individuals and 

according to increasing age, sex, ancestry and postmortem interval (PMI).  

DNAm levels were evaluated in 267 biological samples (including blood, teeth, 

bones and buccal swabs) from living and deceased Portuguese individuals through 

bisulfite polymerase chain reaction (PCR) Sanger sequencing and multiplex SNaPshot 

methodologies. Additionally, nine skeletonized individuals were tested for DNAm 

analysis. Linear regression models were used to analyze relationships between DNAm 

and chronological age.  

Promising results were obtained in our study. Using SNaPshot, the most accurate 

APM built in 56 blood samples from living individuals included three CpGs (in genes 

ELOVL2, FHL2 and C1orf132), showing a Mean Absolute Deviation (MAD) between 

predicted and chronological ages of 4.25 years; in 59 deceased individuals the most 

accurate APM was built with four CpGs (in genes ELOVL2, FHL2, C1orf132 and 

TRIM59) with a MAD of 5.36 years. The Sanger sequencing allowed to build accurate 

APMs in 53 blood samples from living individuals (MAD = 5.35 years), with the best 
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CpGs at ELOVL2, FHL2, EDARADD and PDE4C, and in 47 blood samples from 

deceased individuals (MAD = 6.08 years), with the best CpGs at ELOVL2, FHL2, 

C1orf132, EDARADD and PDE4C. In the combined set of blood samples from living and 

deceased individuals, the best APMs were built with CpGs at ELOVL2, FHL2, C1orf132 

and TRIM59 (MAD = 4.97 years) using SNaPshot, and with CpGs at genes ELOVL2, 

FHL2, EDARADD and PDE4C (MAD = 6.21 years) through Sanger sequencing. 

 Moreover, our study highlighted the most promising APM in 29 bones from 

autopsies, using Sanger sequencing, built with six CpGs at ELOVL2, EDARADD and 

C1orf132, and revealing a MAD of 2.56 years. Through SNaPshot, the most accurate 

APM (MAD = 7.18 years) in 31 bones from autopsies was built with two CpGs in genes 

FHL2 and KLF14.  

Potential useful APMs were developed in the other tissues, including: in 21 bones 

from Bodies Donated to Science with two CpGs in genes FHL2 and PDE4C  (MAD = 

4.67 years) using Sanger sequencing; in buccal swabs with TRIM59 CpG using SNaPshot 

in 35 samples (MAD = 6.73 years) and with two CpGs at ELOVL2 using Sanger 

sequencing in 23 samples (MAD = 8.32 years); in teeth with two CpGs at ELOVL2 and 

KLF14 (MAD = 7.07 years) in 23 samples using SNaPshot.  

Additionally, we developed several multi-tissue APMs, obtaining the best 

accuracy (MAD = 6.49 years) in a group with bones from autopsies and blood and teeth 

from living and deceased individuals using SNaPshot (with CpGs at ELOVL2, KLF14 

and C1orf132). In this same group, Sanger sequencing allowed the development of an 

APM with nine CpGs at genes ELOVL2, EDARADD, PDE4C and FHL2 and a similar 

value of MAD (6.42 years).  

Ours results revealed that the model accuracy depends on the chronological age 

of individuals, in concordance with previous studies, and that there is no influence of sex 
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and PMI in DNAm levels. The possibility that age markers might be population specific 

and that postmortem changes can alter the methylation status among specific loci was also 

suggested by our data. DNAm changes were observed due to treatment of the body after 

death. In regards to bones from skeletonized individuals, the amount of extracted DNA 

was not sufficient for a subsequent successful DNAm age estimation. 

Moreover, it has been observed that the APMs developed in blood from living 

individuals cannot be applied to deceased individuals with a similar MAD value. 

However, the APMs developed in blood from deceased individuals when applied to living 

individuals revealed a similar MAD. This can be a relevant issue in future application of 

the developed APMs in forensic contexts.  

In conclusion, our study is a relevant contribution for DNAm age research, 

showing the usefulness of both bisulfite PCR sequencing and multiplex SNaPshot 

methodologies for forensic analysis in several tissue types. The herein developed APMs 

seem to be informative and could have potential applications in different forensic 

contexts. Despite of this, our study could be improved with the use of larger sample sets, 

with higher statistical power, and being more representative of age range and different 

tissue types. 

 

Key words 

Forensic Sciences, Age estimation, DNA methylation (DNAm), Age prediction models 

(APMs), Sanger sequencing, SNaPshot 
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Resumo 

 

 

A estimativa da idade é  muito útil em Ciências Forenses para fins de identificação. 

Nos últimos anos, a metilação de DNA (DNAm) surgiu como uma ferramenta promissora 

para predição da idade. Em consequência, vários modelos de predição de idade (APMs) 

têm sido desenvolvidos, recorrendo a genes correlacionados com a idade, diferentes 

metodologias e várias amostras biológicas. 

O principal objetivo deste estudo foi desenvolver APMs usando genes 

previamente associados com a idade, incluindo ELOVL2, EDARADD, FHL2, PDE4C, 

C1orf132, KLF14 e TRIM59, e diferentes tecidos biológicos com interesse forense. Além 

disso, investigámos possíveis diferenças nos níveis de DNAm entre sangue de indivíduos 

vivos e mortos, e de acordo com as categorias etárias, sexo, ancestralidade e intervalo 

postmortem (PMI). 

Os níveis de DNAm foram avaliados em 267 amostras biológicas (incluindo   

sangue, dentes, ossos e esfregaços bucais) de indivíduos Portugueses, vivos e mortos, 

através das metodologias de sequenciação de Sanger e SNaPshot, após conversão do 

DNA por bissulfito. Foram ainda testados 9 indivíduos esqueletizados para análise de 

DNAm. A associação entre os níveis de DNAm e a idade cronológica foi analisada com 

modelos de regressão linear. 

Foram obtidos alguns resultados promissores, entre os quais se destacam os 

melhores APMs, obtidos por SNaPshot, em 56 amostras de sangue de indivíduos vivos e 

que incluiu 3 CpGs dos genes ELOVL2, FHL2 e C1orf132, com uma média de desvio 

absoluto (MAD) entre as idades prevista e cronológica de 4,25 anos, e o melhor APM em 

59 amostras de sangue de indivíduos mortos, construído com 4 CpGs dos genes ELOVL2, 
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FHL2, C1orf132 e TRIM59 e uma MAD de 5,36 anos. Por sua vez, por sequenciação, os 

melhores APMs foram obtidos em 53 amostras de sangue de indivíduos vivos com o 

melhor CpG de cada um dos genes ELOVL2, FHL2, EDARADD e PDE4C (MAD = 5,35 

anos), e em 47 amostras de sangue de indivíduos mortos com o melhor CpG de cada um 

dos genes ELOVL2, FHL2, C1orf132, EDARADD e PDE4C (MAD = 6,08 anos). No 

conjunto de sangue de vivos e mortos, os melhores APMs foram obtidos com os CpGs 

dos genes ELOVL2, FHL2, C1orf132 e TRIM59 (MAD = 4,97 anos) por SNaPShot, e 

com 4 CpGs dos genes ELOVL2, FHL2, EDARADD e PDE4C (MAD = 6,21 anos) por 

sequenciação. 

O nosso estudo destacou um dos APMs mais promissores em 29 ossos de 

autópsias usando sequenciação, construído com 6 CpGs dos genes ELOVL2, EDARADD 

e C1orf132, e uma MAD de 2,56 anos. Através de SNaPshot, o melhor APM foi 

construído em 31 ossos de autópsias com 2 CpGs dos genes FHL2 e KLF14 (MAD = 7,18 

anos).  

Outros APMs foram desenvolvidos nos restantes tecidos, incluindo: em 21 ossos 

dos Corpos Doados à Ciência, com 2 CpGs dos genes FHL2 e PDE4C (MAD = 4,67 

anos), através da sequenciação; em esfregaços bucais, com o CpG do gene TRIM59 

(MAD = 6,73 anos) em 53 amostras por SNAPshot, e com 2 CpGs do gene ELOVL2 

(MAD = 8,32 anos) em 23 amostras por sequenciação; em dentes, com 2 CpGs dos genes 

ELOVL2 e KLF14 (MAD = 7,07 anos) em 23 amostras, por SNaPshot. 

Também desenvolvemos APMs em conjuntos de vários tecidos, tendo-se obtido 

a melhor precisão (MAD = 6,49 anos) para o APM construído no grupo com ossos de 

autópsias e sangue e dentes de indivíduos vivos e mortos, por SNaPshot (com 3 CpGs dos 

genes ELOVL2, KLF14 e C1orf132). No mesmo grupo, por sequenciação, desenvolveu-
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se um APM com 9 CpGs dos genes ELOVL2, EDARADD, PDE4C e FHL2 e uma MAD 

de 6,42 anos.  

Os nossos resultados revelaram que a precisão dos APMs depende da idade 

cronológica dos indivíduos, em concordância com estudos prévios, e que não há 

influência do sexo e do PMI nos níveis de DNAm. A possibilidade dos marcadores de 

idade serem específicos para as populações e de modificações postmortem poderem 

alterar o estado de metilação de certos genes foi também sugerida pelos nossos dados. 

Foram ainda observadas alterações nos níveis de DNAm devido ao tratamento do corpo 

após a morte. Em relação aos ossos de indivíduos esqueletizados, a quantidade de DNA 

extraído não foi suficiente para estimar a idade através de DNAm.  

Foi ainda observado que os APMs desenvolvidos em sangue de vivos não podem 

ser aplicados a mortos com valores de MAD semelhantes. Mas, por sua vez, os APMs 

desenvolvidos em indivíduos mortos quando aplicados a vivos revelaram um valor de 

MAD similar. Isto pode ser importante na futura aplicação dos APMs em contextos 

forenses.  

Em conclusão, o nosso estudo é uma contribuição relevante para a investigação 

da estimativa da idade através de DNAm, mostrando que as duas metodologias, 

sequenciação Sanger e SNaPShot, podem ser úteis para análises forenses em vários 

tecidos. Os APMs desenvolvidos parecem ser informativos e podem ter potencial 

aplicação em diferentes contextos forenses. Apesar disso, o nosso estudo poderia ser 

melhorado com o uso de um maior número de amostras, com maior poder estatístico, e 

maior representatividade quer de categorias etárias quer de diferentes tecidos.  
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Chapter 1. General introduction  

 

 

1. Forensic anthropology and forensic genetics 

   

Forensic sciences, as Forensic Anthropology (FA) and Forensic Genetics (FG), 

have experienced an adaptation to the constant progress of the forensic field along the 

years. Despite FA has arisen as a subfield of Biological Anthropology, in these days FA 

is an independent discipline of forensic sciences that applies and adapts some methods of 

Biological Anthropology in forensic cases (Cunha and Ferreira, 2021). FA focuses on the 

study of skeletons, bodies in advanced state of decomposition, bone fragments and burnt 

bones but, at the same time, have an important role in the examination of the living, 

specifically in age estimation of the living (Cunha and Ferreira, 2021). The two main aims 

of FA are identification of human remains and assist to the forensic pathologist in the 

discussion of the cause and circumstance of death (Pinheiro et al., 2015; Cunha and 

Ferreira, 2021). However, nowadays, Forensic anthropologists have a larger range of 

action, contributing to:  

i) differentiation between antemortem, perimortem and postmortem trauma 

(Cunha, 2019);  

ii) differentiation between the different types of trauma (sharp trauma, blunt 

trauma or gunshot trauma) (Blau, 2016; Love and Wiersema, 2016);  

iii) evaluation of the time since death (Postmortem interval) through an holistic 

approach combining other scientific sciences as entomology and botany (Cunha, 2019);  



Chapter 1. General introduction 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 4 

iv) having an important role in scenarios of disaster victim identification and 

human rights violations, working in multidisciplinary teams (de Boer et al. 2019; 

Ubelaker et al., 2019a; Cunha and Ferreira, 2021).  

Indeed, FA has changed through the years, being recognized as a robust and 

scientific discipline (Blue, 2018). Moreover, several advances in technology and 

mathematical approaches, as the use of imaging techniques (Garvin and Stock, 2016), and 

the development of powerful statistical programs, have improved several fields of FA 

(Ubelaker and Khosrowshahi, 2019; Navega and Cunha, 2020).  

Despite having a crucial role in human identification through the establishment of 

biological profile, FA has been considered as a secondary identifier. The Interpol 

(International Criminal Police Organization) guidelines consider fingerprints, DNA 

analysis, and odontology as the primary identifiers. However, with the current use of FA 

in several forensic contexts, it has been defended by the board members of the Forensic 

Anthropology Society of Europe (FASE) that it can be used as a “means of personal 

identification, particularly in situations with limited availability of traditional 

identification methods (i.e. dactyloscopy, odontology, and molecular genetic analysis)” 

(de Boer et al., 2020, pp. 1).  

FG is a field of forensic sciences that focuses in “the application of genetics (in 

the sense of a science with the purpose of studying inherited characteristics for the 

analysis of inter- and intraspecific variations in populations) to the resolution of legal 

conflicts” (Carracedo, 2013, pp. 19). The growth of genetics in forensic contexts cannot 

be explained by the increase of the number of forensic DNA laboratories or by the 

superficial improvement of basic techniques and equipment; essentially, the increase was 

related with the creation of new methodologies and techniques that suppress pre-existing 

problems (Cabo, 2012).  Technical advances and the concern with quality assurance have 
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led to the evolution of the discipline, being accepted as a robust and reliable forensic tool 

nowadays. DNA analysis can provide a relevant source of information for forensic 

purposes. For example, analysis of STR (short tandem repeats) is considered the gold 

standard procedure for human identification process (Marano and Fridman, 2019). DNA 

analysis through a comparative process between samples recovered from crime scenes 

with suspects and possibly victims leads to positive identification. Also, other relevant 

features can be assessed by DNA analysis helping in forensic investigations as externally 

visible characteristics of the individual (such as color of skin and hair), ancestry (assessed 

by biogeographic markers) (Kayser, 2015; Marano and Fridman, 2019; Samuel and 

Prainsack, 2019) and age estimation (assessed by epigenetic features) (Zolotarenko et al., 

2019).  

 

2. Age estimation in forensic contexts  

 

Age estimation is a paramount issue in forensic science. Essentially, age 

estimation is required for identification of dead individuals; however, due to the large 

amount of recent humanitarian crises, it is increasingly essential to estimate age in living 

individuals (Schmeling et al., 2011; Franklin et al., 2015). The estimation of age can have 

different objectives: at the one hand, for dead bodies including human skeletonized 

remains, the main objective of age estimation is to assist in the identification through the 

establishment of the biological profile (sex estimates, ancestry inference, age-at-death 

estimation and stature estimated). Age-at-death, by itself, can lead to an exclusion. On 

the other hand, aging the living can be essential to solve judicial, criminal or civil 

problems, such as immigration cases (where the identity and age of individuals are 

unclear), cases of minor (regarding questions of adoption, imputability, pedo-
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pornography), for determination of criminal responsibility, or even in civil cases of 

pensionable age (for old adults lacking documents) (Cunha et al., 2009; Franklin et al., 

2015; Parson, 2018; Nuzzolese and Di Vella, 2019). 

One of the big challenges for age estimation research is the establishment of “a 

standard method” that could be applied to several contexts. However, there is not one 

unique standardized method that can be applied for living and deceased individuals and/or 

to all age categories with the same accuracy (Cunha et al., 2009; Baccino et al., 2013). 

Therefore, the multidisciplinary approach to age estimation is a crucial issue.  

For forensic anthropological research, based on published data from 2016 to 2019, 

age-at-death estimation is the most investigated issue (with a total of 201 articles) 

considering four forensic journals: Journal of Forensic Sciences, International Journal of 

Legal Medicine, Forensic Science International and Forensic Sciences Research, 

(Ubelaker et al., 2020). In the past years, several areas have been focused in age 

estimation research, leading to the development of specific methods in distinct fields such 

as anthropology, odontology, chemistry, genetics and epigenetics, among others 

(Adserias-Garriga et al., 2018; Adserias-Garriga, 2019a). Recently, it has been defended 

that the use of combined approaches based on several areas of research allowed for a more 

accurate age assessment. A study proposed by Shi et al. (2018) revealed that the 

combination of anthropological and epigenetic methods leads to an increase of age 

estimation accuracy. Likewise, the use of molecular approaches as the quantification of 

T-cell specific DNA rearrangements (sjTREC) combined with the evaluation of DNAm 

levels can lead to an improvement of age prediction accuracy, being mainly notorious in 

older age ranges (Cho et al., 2017). Moreover, Becker et al. (2019) revealed that 

combining molecular approaches (racemization of D-aspartic acid combined with the 
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accumulation of pentosidine) in different tissues allow to obtain a high accuracy in age 

estimation.  

Furthermore, it must be considered that any age estimation approach leads to 

estimate the biological age of an individual and not the chronological age. Chronological 

age refers to the time since birth, while biological age is related to alterations in the 

organism with lifespan, being associated with clinical conditions or age-related diseases 

(Horvath and Raj, 2018; Field et al., 2018). Due to genetic, epigenetic and environmental 

influences (as lifestyle choices and diseases), biological age can differ substantially from 

chronological age (Field et al., 2018, Figure 1.1). Hence, with the continuous growth of 

an individual or exposure to different environments, the difference between the biological 

and chronological ages increases (Baccino et al., 2013).  

 

Figure 1.1: Chronological and biological ages from two different individuals 

(represented by blue and orange colors) who were born on the same day (individuals with 

the same chronological age). In early stage of development, individuals share the same 

biological age, which is consistent with the real age or chronological age. During their 

lifespan, they may have different predispositions to several conditions (as diseases) and 

may die at different periods. This will be reflected in their biological age. Adapted from 

Field et al. (2018). 

 

Finally, it should be noted that when choosing a scientific method to estimate age, 

it is necessary to account for many aspects such as the cost of the method, the time spent 
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in obtaining results, whether the method is invasive or noninvasive or whether the 

obtained results are reliable for forensic purposes. Any method that involves DNA 

analysis turns out to be more expensive, but it also tends to be more reliable. However, it 

will be a destructive method for the forensic sample. Even more, if the sample is older or 

degraded, the fidelity of the results can be affected by the difficulty in obtaining suitable 

DNA for forensic analysis. Anthropological methods, based in skeletal or dental 

indicators, can overcome the sample destruction limitation for instance, but they are more 

subjective and may depend of the inter-observer error (Baccino et al., 1999; Cunha et al., 

2009; Franklin, 2010; Nakhaeizadeh et al., 2014).  

 

2.1. Anthropological age estimation methods 

Forensic anthropology has always played a key role in age estimation, namely 

age-at-death. However, in recent years, aging the living has become more and more 

relevant in forensic contexts as in cases related to imputability, refugees, illegal 

immigrants, and pensionable situations, which require the expertise of FA. 

According to the recommendations of The Study Group on Forensic Age 

Diagnostics (Schmeling et al., 2011) and current guidelines of INMLCF (Azevedo et al., 

2019), age estimation in living non-adults should be based on: 

i) physical or clinical evaluation;   

ii) evaluation of bone development (radiographic examination of the left hand and 

wrist; the examination of the degree of fusion of the cartilage in an x-ray on the hand-

wrist area is the selected method in ages under 18 years;  

iii) examination of dental development (orthopantomography).  

For age estimation in living adults, there are no recommended guidelines until 

now. Despite this, currently, an evaluation of hormone dosage after menopause (Cattaneo 
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et al., 2008) and dental approaches as pulp chamber methods (Cameriere et al., 2007, 

2012) should be done.  

For age assessment in dead individuals, the macroscopic examination is the crucial 

step. Bodies in an advanced stage of decomposition require the evaluation of bones or 

teeth for the application of age estimation methodologies. Moreover, the potential 

applicability of each method depends on the type of sample and its state of preservation 

and whether dealing with adult human remains or not (Cunha et al., 2009; Baccino et al., 

2013). Age estimation for non-adults and adults is based on different age indicators 

(Adserias-Garriga and Wilson-Taylor, 2019; Cunningham, 2019). Age estimation in non-

adults focuses on stages of growth and development of the skeleton and stages of the 

development and eruption of teeth, while in adults age estimation is based on macroscopic 

degenerative changes of bones and teeth. Age estimation in non-adults is more reliable 

than in adults. 

In non-adults, dental age is more accurate than skeletal age because it is not so 

affected by environmental factors as nutrition or social conditions (Cunha et al., 2009; 

Elamin and Liversidge, 2013; Cunningham, 2019). For dental age estimation in subadults 

(0–20 years) it is recommended to select schemas as the AlQahtani atlas based on tooth 

development (AlQahtani et al., 2010). Moreover, we should note that the development of 

the teeth is better than the eruption. Meanwhile, for age estimation, it is essential to cross 

the dental and skeletal ages. Skeletal age indicators for subadults as skull bones 

ossification, fontanelles, bone growth (length of long bone diaphysis), and epiphyseal 

appearance and fusion should be checked (Cunningham et al., 2016). The transition to 

adulthood can be marked, among others, by the fusion of spheno-occipital synchondrosis. 

Moreover, the appearance of thoracic and lumbar vertebral rings, and the development 

and eruption of the third molar, when present, can help. In the transition phase (21–30 
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years), some skeletal age indicators are crucial as the examination of the medial end of 

the clavicle, which full ossification occurs until 30 years, and the epiphyses of the iliac 

crest (Risser method), which fusion occurs between 14 to 23 years (Schaefer et al., 2009; 

Cunha et al., 2009; Cunha, 2012; Cunningham et al., 2016). These are among the last 

skeletal ossifications. With increasing age, skeletal age indicators are more unpredictable, 

being more difficult to make age estimation (Cunha, 2012).  

For adults age estimation (young and mature adult: 30–55 years or elderly >55 

years), methods based on macroscopic degenerative changes of some skeletal regions as 

pubic symphyses (Brooks and Suchey, 1990), sternal rib end (Işcan et al., 1984, 1984a, 

1985; Işcan and Loth, 1986), auricular surface (Lovejoy et al., 1985; Buckberry and 

Chamberlain, 2002) and acetabular surface (San-Millán et al., 2017) are usually used as 

conventional methods (Garvin and Passalacqua, 2012; Priya, 2017; Adserias-Garriga and 

Wilson-Taylor, 2019). As based essentially on the degenerative process of skeletal 

indicators, age estimation in adults remains one of the most difficult tasks for forensic 

anthropologists (Cunha et al., 2009; Cunha, 2012; Priya, 2017; Adserias-Garriga and 

Wilson-Taylor, 2019). Age estimation of adults can also be performed with dental 

methods such as the case of Lamendin method based on root transparency (Lamendin, 

1973, Lamendin et al. 1993) or deposition of secondary dentin (Cameriere et al., 2007, 

2012), among others (Singh and Singal, 2017; Odzhakov and Apostolov, 2019).  

The combination of two or more methods can be a good alternative as it is the case 

of TSP (two step-procedure), which consists in the application of the Suchey-Brooks 

method in the first step, and if the morphology of the pubic symphysis shows older aspect, 

in the second step we applied the Lamendin method. The combination of both methods 

allows a more accurate age estimation (Cunha, 2012; Baccino et al., 2013). This is due to 

the fact of each method works better between specif age ranges. While the Suchey-Brooks 
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method is more accurate between 20 and 40 years, the Lamendin method works better 

between 40 and 60 years, and the Iscan method was more advantageous in individuals 

older than 60 years (Cunha et al., 2009).  For age assessment in older age ranges, it is also 

recommended to observe secondary indicators such as acetabular degenerations, the 

translucency of cranial bones, degenerative pathologies, and osteoporosis (Teixeira and 

Cunha, 2021).  

It is argued that combined anthropological indicators that reflect or capture more 

age-related aspects allow more accurate age estimations than the use of single methods 

(Baccino et al., 1999; Martrille et al., 2007; Priya, 2017). Despite that, we should note 

that combining methods based on different age indicators is also a difficult task. Each 

method was developed considering a specific reference sample with particular features 

(that can vary in population origin or ancestry, number of samples included, age of the 

individuals, among other factors). For instance, the Suchey-Brooks method is based on 

1225 individuals (14-99 years old), of which only 273 are female with birth certificates 

and used in the method (Brooks and Suchey, 1990). Moreover, in regards to the age 

distribution of individuals, as essentially younger individuals (male and female) are 

included in the model, age estimation of older age categories can be affected.  

Consequently, the selection of the most suitable methods for anthropological age 

estimation in adults remains a challenge.  

In conclusion, despite having several methods for forensic age estimation in living 

and dead people, it is more and more recommended the use of a multidisciplinary 

approach because there is not a unique age indicator that provides a perfect coincidence 

between biological age and chronological age, which is the age of interest in the forensic 

field (Adserias-Garriga and Wilson-Taylor, 2019). 
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2.2. Molecular and biochemical age estimation methods 

Age estimations based on molecular methods, including shortening of telomeres, 

deletions of mitochondrial DNA (mtDNA) or signal joint T-cell receptor excision circles 

(sjTREC), or biochemical methods, including accumulation of D-aspartic acid and 

advanced glycation end products (AGEs), are being currently explored in forensic science 

community (Meissner and Ritz-Timme, 2010; Albert and Wright, 2015; Adserias-Garriga 

and Zapico 2018; Zapico et al., 2019). These methods, based on the gradual alterations 

of biomolecules due the aging process, have been accepted as promising tools for age 

estimation. However, the lack of accuracy and other technical problems have limited the 

use of such methods in forensic casework (Meissner and Ritz-Timme, 2010; Albert and 

Wright, 2015; Zolotarenko et al., 2019). 

A brief review about some of these methods is detailed in Table 1.1.  
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Table 1.1: Molecular and biochemical methods used in age predictions. 

Method Relationship with age, applicability and advantages Accuracy and forensic problems 

Telomere 

length 

Investigated in several samples as blood and skin 

(Butler et al., 1998); blood (Tsuji et al., 2002; Karlsson 

et al., 2008; Ren et al., 2009; Zubakov et al., 2016) and 

tooth samples (Takasaki et al., 2003; Márquez-Ruiz et 

al., 2018, 2020), revealing a decrease of telomere length 

with the increase of age.  

Small quantity of DNA or when it is degraded could affect the mean 

telomere length (Meissner and Ritz-Timme, 2010).  

High error of the estimate: Tsuji et al. (2002) observed in 60 blood 

samples and stains an age correlation coefficient of -0.832 and a 

standard error of 7.04 years; Takasaki et al. (2003), in dental pulp of 

100 individuals, observed a correlation coefficient of -0.749 and a 

standard error of 7.52 years; Zubakov et al. (2016) observed a R2 = 

0.141 in 305 blood samples and an accuracy of 12.28 years; Márquez-

Ruiz et al. (2018) investigating 91 teeth obtained a mean prediction 

error between predicted and chronological ages of 9.85 years and 

defended that this method should be used as a complementary 

approach to age estimations in forensic contexts. Moreover, they 

observed that the shortening can be affected by the type of teeth but 

not by the gender. More recently, Márquez-Ruiz et al. (2020) using 

65 teeth obtained a significant correlation between age and telomere 
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length of -0.549 and observed a MAE (mean absolute error) of 6.89 

years.  

The evaluation of telomere length seems to be influenced by several 

factors as cause of death and postmortem interval (Takasaki et al., 

2003), life choices and other environmental factors (Karlsson et al., 

2008). Moreover, it is associated with several diseases as obesity and 

cancer, being more advantageous in medicine than in forensics 

(Zolotarenko et al., 2019). 

 

 

Mitochondrial 

DNA 

(mtDNA) 

mutations 

 

Alterations in mtDNA (duplications, deletions and 

point mutations) can occurred during aging. In forensic 

filed, mutations in mtDNA including deletions and 

point mutations can be used for age assessment (Zapico 

and Ubelaker, 2013). The mtDNA 4977 bp deletion, the 

most common studied deletion in age prediction, has 

been tested in many different tissues revealing an 

increase of deletions with the increase of age (Meissner 

and Ritz-Timme, 2010).  The transition of adenine to 

guanine at the position 189 (A189G) is other mtDNA 

mutation that has been associated with age (Lacan et al., 

2011). 

Mutations in mtDNA can vary between individuals and can be 

affected by several factors, such as UV radiation, diseases and other 

external factors (Zolotarenko et al., 2019). It is not possible to 

estimate age with the high accuracy required for forensic contexts 

(Zolotarenko et al., 2019).  

It is observed different frequencies of the mtDNA 4977 bp deletion 

in different tissues (Cortopassi et al., 1992; Meissner et al., 2008) and 

this deletion is not always present in all the aged individuals (Lee et 

al., 1994; Diba et al., 2015).  



Chapter 1. General introduction 

DNA methylation as an age predictor in living and deceased individuals 

 

Page | 15 

Aspartic acid 

Racemization 

(AAR) 

Racemization (reaction that transforms L-amino acids 

to D-amino acids) occurs in all the amino acids, 

however aspartic acid racemization (AAR) is one of the 

fastest process. The D-aspartic acid content increases 

with increasing of age. It has been investigated in 

several tissues as dentin, cementum and bone, reveling 

high age correlation (Meissner and Ritz-Timme, 2010; 

Adserias-Garriga et al., 2018). It is essentially good in 

dentin due to the accuracy, simplicity of the 

methodology and time required, compared with other 

dental tissues (Adserias-Garriga et al., 2018). 

Necessary the establishment of calibration curves for each tissue or 

protein analyzed (Meissner and Ritz-Timme, 2010). Often, 

destructive to bones and teeth.  

Not applicable to bodies exposed to high temperature (Ritz et al., 

1993). 

Ohtani and Yamamoto (2010) revealed an accuracy of ±3 years in 5 

cases reports. Wochna et al. (2018) reported an accuracy of 2.95-4.84 

years in root dentin samples. 

Signal joint 

T-cell 

receptor 

excision 

circles 

(sjTREC) 

With the increase of age, the number of sjTREC 

decrease (Zubakov et al., 2010; Ou et al., 2011; Cho et 

al., 2014; Zubakov et al., 2016).  

Suitable for aged bloodstains (Zubakov et al., 2010). 

Detected by PCR, available in forensic labs. 

Low accuracy in several studies: Zubakov et al. (2010) using blood 

observed a R2 = 0.835 and a standard error of the estimate of ±8.9 

years. Ou et al. (2011) using 245 blood samples from healthy 

individuals observed a correlation value of -0.818 and a standard 

error of ±10.47 years. Cho et al. (2014) using 172 individuals 

observed and r = - 0.807 and a standard error of 8.49 years. Zubakov 

et al. (2016) observed a little significant effect of sex in age 

predictions through the evaluation of sjTREC using 306 blood 

samples, revealing a R2 = 0.578 and an accuracy of 9.39 years. 
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3. Epigenetic age estimation 

 

3.1 Evolution of epigenetics 

The term “epigenetics” is not recent in scientific community and it has been 

redefined multiple times (Cavalli1 and Heard, 2019). Conrad Waddington was the first 

author to introduce it in the decade of 1940, as “the branch of biology that studies the 

casual interactions between genes and their products which bring the phenotype into 

being” (Wadington, 1942). After that, several authors have clarified the term 

“epigenetics” (Deans and Maggert, 2015). Nowadays, epigenetics represents a wide area 

of research that focuses on the mechanisms of gene control affecting gene expression 

without changing the DNA sequence. For example, Cavalli and Heard (2019) define 

epigenetics as “the study of molecules and mechanisms that can perpetuate alternative 

gene activity states in the context of the same DNA sequence” (pp. 489). Some epigenetic 

features are unique and specific for each individual, allowing the identification of several 

individual characteristics (Vidaki and Kayser, 2017, 2018; Williams, 2018).  

The most investigated epigenetic mechanisms that are included in the epigenetic 

machinery are histone modifications, regulation by non-coding RNAs and DNA 

methylation (DNAm) (Roberti et al., 2019). The study of alterations in these epigenetic 

features can bring relevant implications in clinical conditions and diseases, including 

cancer (Roberti et al., 2019) and Alzheimer’s disease (Liu et al., 2018).  Moreover, some 

of these epigenetic features have been associated to the aging process (Lardenoije et al., 

2015).  
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3.2. DNA methylation (DNAm) 

In eukaryotes, DNAm predominantly occurs in cytosine (C) residues, being an 

essential biochemical process characterized by the addition of a methyl group (CH3) to 

the fifth carbon (5C) position of a C, resulting in 5mC (5-methylcytosine) or methylated 

cytosine (Cm) (Figure 1.2) (Schübeler, 2015; Jiang and Guo, 2020). Cytosine methylation 

is catalyzed by the action of three DNA methyltransferases (DNMT1, DNMT3A, 

DNMT3B), which establish and maintain DNAm in genome. DNMT1 keeps DNAm 

during cell division, and DNMT3A and DNMT3B are related with de novo methylation 

(Lyko, 2018). 

In mammals, DNAm occurs commonly in dinucleotides CpG (5´-CpG-3´ 

cytosine-phosphate-guanine). However, a smaller amount of DNAm can occur in non-

CpG sites (CpH: H = A, C, T), being observed for instance in embryonic stem cells and 

neurons (He and Ecker, 2015). 

 

Figure 1.2: DNAm. A) The addition of CH3 group transforms unmethylated cytosine in 

Cm. B) Unmethylated and methylated CpG dinucleotides affect the gene expression. 

Methylated CpGs induce gene repression and unmethylated CpGs lead to gene 

transcription. Figure adapted from Gillespie et al. (2019).  
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The human genome contains about 28 million of CpG dinucleotides, not 

uniformly distributed along the genome, which may be methylated or non-methylated. 

Most of the genome are methylated, however 20-40% of CpG sites are non-methylated 

(Deaton and Bird, 2011; Schübeler, 2015; Ciccarone et al., 2018; Field et al., 2018). 

Frequently, unmethylated CpG dinucleotides are located at clusters with high frequency 

of CpGs (CpG-rich regions) defined as CpG islands (CGIs) (for reviews, see Vidaki et 

al., 2013; Kader and Ghai, 2015). Originally defined by Gardiner-Garden and Frommer 

in 1987, CGIs are considered as ≥200 bp long, having ≥50% of GC content and Obs 

CpG/Exp CpG ≥0.60 (Sarda and Hannenhelli, 2018). CGIs can be located in promoter 

regions, intragenic or intergenic regions (Illingworth et al., 2010). About 60% of the CGIs 

are present in gene promoters and are frequently unmethylated being associated to gene 

expression of many genes (Larsen et al., 1992; Freire-Aradas et al., 2017). The remaining 

40% are located at “orphan CpG islands”, along the intergenic and intragenic regions 

(Illingworth et al., 2010; Zampieri et al., 2015; Freire-Aradas et al., 2017; Sarda and 

Hannenhelli, 2018; Ciccarone et al., 2018). Some orphan CGIs (methylated or non-

methylated, despite during the development of an organism are essentially methylated) 

may probably have a role as alternative promoters, being associated to tissue-specific 

gene expression (Illingworth et al., 2010; Sarda and Hannenhelli, 2018). 

Occurring commonly in CGIs, DNAm has been currently associated with gene 

expression and gene silencing. Through the influence of gene transcription, DNAm 

patterns are relevant for several process in organism such as development and 

differentiation, imprinting and X-chromosome inactivation, among others (Deaton and 

Bird, 2011; Moore et al., 2013; Freire-Aradas et al., 2017; Sarda and Hannenhelli, 2018). 

Moreover, environmental factors, as chemical exposures, nutritional status and lifestyle 
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choices (as tobacco consumption) can influence DNAm levels across the genome (Kader 

and Ghai, 2015; Martin and Fry, 2018; Prince et al., 2019). 

Changes in DNAm levels can be associated to many diseases or clinical 

conditions, including obesity and diabetes (Loh et al., 2019) or cancer (Conway et al., 

2017). In forensic field, the evaluation of changes in DNAm levels has been explored in   

many investigations, including identification of biological fluids/tissues, sex 

determination, differentiation between monozygotic twins and ancestry determination 

(GrŠković et al., 2013; Vidaki et al., 2013; Kader and Ghai, 2015; Vidaki and Kayser, 

2017, 2018; Williams, 2018). In particular, recent years have shown that DNAm is the 

epigenetic modification with most promising potential in developing methods for forensic 

age prediction (Horvath, 2013; Weidner et al., 2014; Huang et al., 2015; Kader and Ghai, 

2015; Lee at al., 2016; Zubakov et al., 2016; Jylhävä et al., 2017; Freire-Aradas et al., 

2017; Parson, 2018; Vidaki and Kayser, 2018; Williams, 2018; Zolotarenko et al., 2019).  

 

3.2.1. DNAm changes with age 

Age-related changes in DNAm levels occur during life since the conception. With 

aging, there is a change in DNAm patterns in the genome: CpGs islands often associated 

with gene promoters (frequently unmethylated) acquire DNAm and the remaining CpGs 

across most of the genome (with high DNAm) lose methylation, reflecting a global 

genome hypomethylation (Heyn et al., 2012; Florath et al., 2014; Weidner et al., 2014; 

Zampieri et al., 2015; Jones et al., 2015; Xiao et al., 2016). 

 The basis of changes in DNAm with aging may be related with two opposing 

phenomena: epigenetic drift, caused by stochastic factors, and epigenetic clock, caused 

by nonstochastic events (Jones et al., 2015) (Figure 1.3). The epigenetic clock is a 

directional phenomenon in which DNAm levels regularly change with age. It refers to 
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consistent alterations in DNAm levels of specific sites of the human genome across 

different and not related individuals or tissue types (Jones et al., 2015; Pal and Tyler, 

2016). Consequently, these CpG sites associated with epigenetic clocks can be used to 

predict chronological age (Jones et al., 2015; Horvath and Raj, 2018). In contrast, the 

concept of epigenetic drift is related with environmental and stochastic factors that change 

DNAm levels and lead to a DNAm divergence across individuals (Fraga et al., 2005; 

Jones et al., 2015; Tan et al., 2016). The increase of DNAm divergence between 

monozygotic twins with aging has been explained by the epigenetic drift contribution 

(Fraga et al., 2005). The basis of the epigenetic drift is not yet clear however, these 

associated DNAm changes can be the result of individual lifestyles (as smoking habits, 

alcohol consumption or physical activity) (Freire-Aradas et al., 2017). 
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Figure 1.3: Epigenetic drift and epigenetic clock. Figure adapted from Jones et al. (2015).  

 

Changes in the DNAm levels (due to the epigenetic drift and the epigenetic clock 

contributions) can be used to estimate the age of an individual. This estimated age through 

the measurement of DNAm changes is known as epigenetic age or DNAm age (Horvath 

and Raj, 2018).  

In recent years, age estimation based on DNAm has been widely investigated for 

forensic purposes. It has been observed that several CpGs located at different genes, such 

as ELOVL2, FHL2, NPTX2, EDARADD, ASPA, GRIA2, ITGA2B, PDE4C, PENK, 

CCDC102B, C1orf132, TRIM59 and KLF14, are strongly associated with chronological 
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age (Freire-Aradas et al., 2017; Goel et al., 2017; Zolotarenko et al., 2019). Consequently, 

a number of age prediction models (APMs) based on methylation information of these 

sites have been developed allowing to accurate age predictions. These APMs capture 

chronological age, but are also the reflection of the biological age (Chen et al., 2016; 

Zhang et al., 2017a; Field et al., 2018; Horvath and Raj, 2018; Nwanaji-Enwerem et al., 

2018). Truly, differences between chronological and biological ages are influenced by 

age-related conditions as frailty (Breitling et al., 2016) and age-related diseases, such as 

cancer (Horvath, 2013; Ambatipudi et al., 2017; Dugué et al., 2018) and Parkinson's 

disease (Horvath and Ritz, 2015).  

 

3.2.2. Approaches used for the development of APMs based on 

DNAm 

In general, most studies focusing on DNAm age take similar approaches to 

develop APMs, based on the following steps (Goel et al., 2017): i) the evaluation of 

DNAm levels of a number of CpGs from specific tissue types; ii) the estimation of 

correlation coefficient values between each CpG site and chronological age, allowing the 

selection of the highly age-correlated CpGs from the investigated tissues; and iii) the use 

of multivariate regression analyses through different statistical approaches, to build the 

most accurate APMs (Figure 1.4).  
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Figure 1.4: Approach proposed to the development of APMs based on DNAm levels. 

Figure adapted from Goel et al. (2017). 

 

In recent years, several APMs have been developed differing in CpGs they 

contain, tissue types in which they were developed, statistical analyses or DNAm 

technologies (for review Goel et al., 2017; Freire-Aradas et al., 2017, 2020; Horvath and 

Raj, 2018; Liu et al., 2019; Bergsma and Rogaeva, 2020).  

From the several technologies addressing DNAm levels in the last decade, 

pyrosequencing was mainly used (Weidner et al., 2014; Bekaert et al., 2015a, 2015b; 

Zbieć-Piekarska et al., 2015a, 2015b; Eipel et al., 2016; Park et al., 2016; Cho et al., 

2017; Thong et al., 2017; Spólnicka et al., 2017; Daunay et al., 2019; Pfeifer et al., 2020). 

Meanwhile, other methodologies also enabled DNAm profiling, including EpiTyper mass 

spectrometry (Garagnani et al., 2012; Xu et al., 2015; Giuliani et al., 2016; Freire-Aradas 

et al., 2016, 2018), massively parallel sequencing (MPS) (Vidaki et al., 2017; Naue et al., 

2017, 2018; Aliferi et al., 2018), SNaPshot (Lee et al, 2015; Hong et al., 2017, 2019; 

Jung et al., 2019), methylation-sensitive high resolution melting (MS-HRM) (Hamano et 

al., 2016, 2017) and microarray hybridization technology (Bocklandt et al., 2011; 

Hannum et al., 2013; Horvath, 2013; Florath et al., 2014). Most of these methods employ 

Evaluation of DNAm levels of human 

samples

Estimation of correlations for each CpG site and 

selection of the highly age-correlated CpGs

Using different statistical approaches to 

develop APMs

DNAm age or epigenetic age
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sodium bisulfite conversion, which mediates the deamination of unmethylated cytosine 

bases to uracil and leaves 5-methylcytosine. The technique of bisulfite sequencing is 

considered to be the “gold standard” method for DNAm analysis being a qualitative, 

quantifiable and effective method (Li and Tollefsbol, 2011; Patterson et al., 2011). Very 

often, for forensics analysis it is accepted as the method of election (Vidaki et al., 2013).  

Most developed APMs are based on a limited number of CpGs associated with 

age, widely distributed throughout the genome, mainly identified and selected from 

DNAm array technology. These APMs have been developed based in blood samples 

(mainly from living individuals) (Bekaert et al., 2015a; Zbieć-Piekarska et al., 2015a, 

2015b; Huang et al., 2015; Park et al., 2016; Hamano et al., 2016; Cho et al., 2017; Naue 

et al., 2017, 2018; Spólnicka et al., 2017; Thong et al., 2017; Alghanim et al., 2017; Jung 

et al., 2019; Daunay et al., 2019; Pfeifer et al., 2020), but other tissues and body fluids 

have also been explored, including saliva (Alghanim et al., 2017; Hong et al., 2017, 2019; 

Jung et al., 2019), buccal swabs (Bekaert et al., 2015b; Eipel et al., 2016; Naue et al., 

2018; Jung et al., 2019; Pfeifer et al., 2020), semen (Lee et al., 2015, 2018), teeth (Bekaert 

et al., 2015a; Giuliani et al., 2016; Márquez-Ruiz et al., 2020), and bone (Naue et al., 

2018; Gopalan et al., 2019; Lee et al., 2020). Moreover, few studies have investigated the 

stability of DNAm levels in bloodstains (Zbieć-Piekarska et al., 2015a; Huang et al., 

2015; Thong et al., 2017).  

Nevertheless, the selection of universal age markers can be changeling for the 

development of accurate APMs due to the inter-tissue variability of DNAm patterns or 

tissue specificity of age-related DNAm changes (Freire-Aradas et al., 2017; Jung et al., 

2017; Naue et al., 2018; Slieker et al., 2018; Jung et al., 2019). The proposed age-

associated CpGs in each tissue cannot be applied for age predictions in other tissue types, 

without being previously tested in those tissues. But at the same time, some markers can 



Chapter 1. General introduction 

DNA methylation as an age predictor in living and deceased individuals 

 

Page | 25 

be promising for age predictions across different tissue types, and DNAm changes of 

several age-dependent markers have been used in recent years to develop multi-tissue 

APMs (Horvath, 2013; Alsaleh et al., 2017; Jung et al., 2019). In any case, the 

identification of universal age biomarkers that could retain high correlation values with 

chronological age across different tissues, with similar accuracy in APMs, not being 

influenced by other conditions, could be a challenge task (Koch and Wagner, 2011; 

Horvath, 2013).  

 

3.2.3. A brief review on DNAm age prediction models (APMs) 

In last years, studies of DNAm analysis for forensic age prediction have grown in 

number, using a range of partially overlapping genes, different tissues and different 

technologies. A detailed review of the literature was carried out encompassing some of 

the most relevant scientific works to date. An overview of some of these developed APMs 

is presented in Table 1.2. 
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Table 1.2: Review of studies based on DNAm age estimation. 

 

Study Tissues Age range CpGs or genes Technique 

Accuracy of 

APM 

(training set) 

Bocklandt et al. 

(2011) 
60 saliva Aged 18-70 years NPTX2, EDARADD, TOM1L1 

Illumina 

Infinium 27K 

5.2 years  

(2 CpGs) 

Hannum et al. 

(2013) 

656 blood 

(training: 482; 

validation: 174) 

Aged 19-101 years 

71 markers located at several 

genes, including ELOVL2, 

KLF14, TRIM59, C1orf132, 

among others 

Illumina 

Infinium 450K 
3.88 years 

Horvath (2013) 

about 8000 

samples, several 

tissues and cell 

types 

Aged 0-101 years 
353 CpGs 

Multi-tissue  

Illumina 

Infinium 27K; 

Illumina 

Infinium 450K 

2.9 years 

Weidner et al. 

(2014) 

151 blood 

(training: 82; 

validation: 69) 

Aged 20-75 years ITGA2B, ASPA, PDE4C Pyrosequencing 5.4 years 

Zbieć-Piekarska 

et al. (2015a) 
303 blood Aged 2-75 years 7 CpGs ELOVL2 Pyrosequencing 

5.03 years  

(2 CpGs) 

Zbieć-Piekarska 

et al. (2015b) 
300 blood Aged 2-75 years 

ELOVL2, Clorf132, TRIM59, 

KLF14, FHL2 
Pyrosequencing 3.4 years 

Huang et al. 

(2015) 
89 blood Aged 9-75 years ASPA, ITGA2B, NPTX2 Pyrosequencing 7.87 years 

Lee et al. (2015) 68 semen Aged 20-73 years 

cg06304190 (TTC7B), 

cg12837463, cg06979108 

(NOX4) 

SNaPshot 4.7 years 
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Bekaert et al. 

(2015a) 

 

 

 

 

 

206 blood (living: 

37; deceased: 169) 

 

 

29 dentin (living) 

 

 

Aged 0-91 years 

 

 

 

Aged 19-70 years 

 

4 CpGs at ASPA, ELOVL2, 

PDE4C, EDARADD 

 

 

7 CpGs at PDE4C, ELOVL2, 

EDARADD 

 

Pyrosequencing 

 

3.75 years 

 

 

 

4.86 years 

Bekaert et al. 

(2015b) 
50 buccal swabs Aged 0-73 years 

ASPA, ELOVL2, PDE4C, 

EDARADD 
Pyrosequencing 3.32 years 

Giuliani et al. 

(2016) 

 

21 teeth  

(cementum, dentin 

and dental pulp) 

Aged 17-77 years ELOVL2, FHL2, PENK 
Maldi-Tof mass 

spectrometry 

2.25 years 

(pulp) 

2.45 years 

(cementum) 

7.07 years 

(dentin) 

Eipel et al. (2016) 55 buccal swabs Aged 1-85 years 

cg17861230 (PDE4C), 

cg02228185 (ASPA), 

cg25809905 (ITGA2B) 

 

Applied the Weidner model: 

“3-CpG-blood-model” 

 

“3-CpG-swab-model” 

 

“1-CpG-swab-model” 

Pyrosequencing 

 

 

 

 

14.6 years 

 

4.3 years 

 

5.2 years 

Zubakov et al. 

(2016) 
216 blood Aged 4-82 years 

43 CpGs, including CpGs 

from FHL2, ELOVL2 
EpiTYPER 

4.23 years 

(43 CpGs) 

5.09 years  

(8 CpGs) 
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Freire-Aradas et 

al. (2016) 
725 blood Aged 18-104 years 177 CpG sites 

Illumina 

Infinium 450K, 

EpiTYPER 

3.07 years  

(7 genes) 

Hamano et al. 

(2016) 

74 blood (living, 

22; deceased, 52) 
Aged 0-95 years ELOVL2, FHL2 MS-HRM 7.44 years 

Cho et al. (2017) 100 blood Aged 20-74 years 

32 CpGs located at ELOVL2, 

FHL2, C1orf132, TRIM59, 

KLF14 

 

 

Applied the predictive 

equation by Zbieć-Piekarska 

et al. (2015b) 

 

APM with best-selected sites 

in Koreans: ELOVL2 

(Chr6:11044628), C1orf132 

(Chr1:207823681), TRIM59 

(Chr3:160450189), KLF14 

(Chr7:130734355), FHL2 

(Chr2:105399282) 

Pyrosequencing 

 

 

4.18 years 

 

 

 

 

3.34 years 

Thong et al. 

(2017) 
145 blood Aged 3-80 years 

ELOVL2, FHL2, C1orf132, 

TRIM59, KLF14 

 

APM with ELOVL2 (Chr6: 

11044642), TRIM59 

(Chr3:160450189), KLF14 

(Chr7:130734357) 

Pyrosequencing 

 

 

 

 

3.3 years 
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Hong et al. (2017) 

 

 

 

 

 

 

226 saliva 

(training: 113) 
Aged 18-65 years 

APM with 7 CpGs: 

cg18384097 (PTPN7), 

cg00481951 (SST), 

cg19671120 (CNGA3), 

cg14361627 (KLF14), 

cg08928145(TSSK6), 

cg12757011 (TBR1), 

cg07547549 (SLC12A5) 

 

APM with 6 CpGs located at 

SST, CNGA3, KLF14, TSSK6, 

TBR1 and SLC12A5 (without 

cg18384097 located at 

PTPN7) 

SNaPshot 

3.13 years 

 

 

 

 

 

 

 

4.1 years 

Lee et al. (2018) 

12 semen 

 

 

19 forensic samples 

Aged 24-57 years 

 

 

Aged 17-48 years 

cg06304190 (TTC7B), 

cg12837463 and cg06979108 

(NOX4); validation of the 

model by Lee et al. (2015) 

SNaPshot 

4.8 years 

 

 

5.2 years 

Horvath et al. 

(2018) 

Several tissues, 

including buccal 

swabs, saliva, 

blood, endothelial 

cells, skin among 

others 

Aged 0-112 years 
391 CpGs 

“skin & blood clock” 

Illumina 

Infinium 450K 

and Infinium 

EPIC (or 850K) 

2.9 years 

(blood) 

2.5 years and 

3 years 

(saliva) 

Freire-Aradas et 

al. (2018) 
180 blood Aged 2-18 years 

CpGs at KCNAB3; 

EDARADD; ELOVL2; 

CCDC102B; MIR29B2CHG 

genes and position 

CR_23_CpG3 (no gene) 

EpiTYPER 0.94 years 
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144 samples from 

29 deceased 

individuals (bone, 

blood….) 

Aged 0-87 years 

13 blood age-correlated loci 

used in a previous study 

(Naue et al., 2017): DDO, 

ELOVL2, F5, GRM2, 

HOXC4, KLF14, LDB2, 

MEIS1-AS3, NKIRAS2, RPA2, 

SAMD10, TRIM59, ZYG11A. 

MPS - 

Shi et al. (2018) 

 

124 blood (48 

blood by epigenetic 

approach) 

Aged 6-15 years 

Dental age and skeletal age + 

DNAm age (combined 

approach) 

 

Total of 485.577 CpG sites 

investigated; selection of 

CpGs located at DDO, 

PRPH2, DHX8, ITGA2B and 

at one unknown gene with the 

Illumina ID number of 

22398226 

Illumina 

Infinium 450K 

0.47 years 

(boys) 

 

0.33 years 

(girls) 

 

Jung et al. (2019) 

448 samples from 

blood, saliva and 

buccal swabs 

(training: 300, 

validation: 148)  

Aged 18-74 years 
ELOVL2, FHL2, KLF14, 

C1orf132, TRIM59 
SNaPshot  3.55 years 

Gopalan et al. 

(2019) 

32 bones 

(preserved: 19, 

forensic: 13) 

 

133 bones 

Aged 18-97 years 

 

 

 

Aged 49-112 years 

Forensic samples excluded. 

 “37 bone clock CpGs” with 

CpGs located, among other 

genes, at TRIM59, ELOVL2 

and KLF14 

Illumina 

Infinium 450K 

and Illumina 

EPIC 

 

7.1 years 

(preserved)  

 

4.9 years (all 

samples) 
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Márquez-Ruiz et 

al. (2020) 
65 teeth  Aged 15-85 years 

CpGs located at ELOVL2, 

ASPA and PDE4C 
Pyrosequencing 

5.08 years 

(ELOVL2, 

PDE4C) 

 

 

Lee et al. (2020) 

 

 

66 bones 

 

 

Aged 31-96 years 

ELOVL2, FHL2, TRIM59, 

KLF14, C1orf132 genes 

proposed by Jung et al. (2019) 

 

Applied the “skin & blood 

clock” 

 

SNaPshot  

 

 

Infinium EPIC 

array 

 

_ 

 

 

6.4 years 

 

 

 

 

 

 

 

Pfeifer et al. 

(2020) 

151 blood 

(deceased)  

 

 

 

 

 

 

 

149 buccal swabs 

(living) 

Aged 1-95 years 

 

 

 

 

 

 

 

Aged 13 days-95 

years 

Applied the predictive 

equation by 

Bekaert et al. (2015a) 

 

New model (ASPA, ELOVL2, 

PDE4C, EDARADD) 

 

 

 

Applied the predictive 

equation by Bekaert et al. 

(2015b) 

 

New model (ASPA, ELOVL2, 

PDE4C and EDARADD) 

 

 

 

 

 

 

 

Pyrosequencing 

 

 

 

 

9.84 years 

 

 

5.55 years 

 

 

 

 

8.68 years 

 

 

 

4.65 years 
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To the best of our knowledge, the first study of DNAm age estimation was 

performed by Bocklandt et al. (2011), testing DNAm levels of NPTX2, EDARADD and 

TOM1L1 genes in 60 saliva samples (aged 18-70 years old) using the Illumina 

HumanMethylation27 microarray. An APM was built with only two sites, explaining 

73% of the variation in age, with an average accuracy of 5.2 years. Later, Garagnani et 

al. (2012), using 501 blood samples (aged 9-99 years old), tested the DNAm of ELOVL2, 

FHL2 and PENK loci using the Sequenom’s EpiTYPER assay, showing the highest age 

correlation value 0.92 for ELOVL2 gene. In 2013, Hannum et al. (2013) examined DNAm 

levels of more than 450.000 CpGs, captured from blood of 656 individuals (aged 19-101 

years old), using the Illumina Infinium HumanMethylation450 BeadChip. Their final 

APM comprising 71 markers located at several genes, including ELOVL2, KLF14, 

TRIM59, and C1orf132, revealed a correlation value between predicted and chronological 

ages of  0.963 and high accuracy, with a root mean squared error (RMSE) of 3.88 years. 

Moreover, Hannum et al. (2013) evaluated the DNAm differences between different 

tissues (breast, kidney, lung, and skin samples) and built specific APMs for each tissue, 

observing that CpGs selected in each tissue were different between specific models. 

Meanwhile, all the models included CpGs from the ELOVL2 gene. Thus, this gene 

showed to be a stable age marker displaying a similar and high degree of age-dependence 

across the different tissues. Also in this year, Horvath (2013), using the Illumina´s 

Beadchip array, developed the first multi-tissue APM using about 8000 samples. The 

model with 353 CpGs showed a high correlation value between predicted and 

chronological ages of 0.97, and a prediction accuracy of 2.9 years in the training set. In 

2015, Horvath et al. (2015) tested this model in 48 trabecular bone samples (aged 49-104 

years old), obtaining a correlation value of 0.88 between predicted and chronological 

ages. 
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In 2014, Weidner et al. (2014) evaluated DNAm levels of only three CpGs from 

the ITGA2B, ASPA and PDE4C genes in 151 blood samples (training set: 82 samples and 

test set: 69 samples), using the bisulfite pyrosequencing methodology. A high accurate 

APM was developed with a Mean Absolute Deviation (MAD) between predicted and 

chronological ages of 5.4 years in the training set.  

One year later, Zbieć-Piekarska et al. (2015a) studied seven CpGs from the 

ELOVL2 locus, also by pyrosequencing using 303 blood samples (aged 2-75 years old). 

The developed final model with the two best CpGs, explained 85.9% of the variation in 

age, revealing a MAD from chronological age of 5.03 years. Moreover, investigating 

DNAm levels in 45 bloodstains, Zbieć-Piekarska and collaborators have shown that the 

DNAm of ELOVL2 did not changed after one-month storage as bloodstains. This first 

study was updated later with the analysis of five genes (ELOVL2, Clorf132, TRIM59, 

KLF14 and FHL2) using a training set of 300 blood samples of Polish individuals (aged 

2-75 years old) (Zbieć-Piekarska et al., 2015b). The developed APM revealed a high 

correlation value between DNAm levels and age (R = 0.971) with a MAD from 

chronological age of 3.4 years. The authors developed an age prediction calculator 

available online (www.agecalculator.ies.krakow.pl). Another contribution in that year 

was made by Huang et al. (2015) evaluating DNAm levels from ASPA, ITGA2B and 

NPTX2 genes in 89 blood samples (aged 9-75 years old) and 20 bloodstains from Chinese 

people using pyrosequencing, obtaining a MAD from chronological age of 7.87 years. 

Moreover, it has been shown a stable prediction in old bloodstains for 4-month storage 

(Huang et al., 2015). Therefore, both reports of Huang et al. (2015) and Zbieć-Piekarska 

et al. (2015a) corroborate the DNAm stability in bloodstains.  

The first study comprising blood samples from deceased individuals was made in 

2015 by Bekaert et al. (2015a). Using pyrosequencing in 206 blood samples from living 

http://www.agecalculator.ies.krakow.pl/
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and deceased individuals (aged 0-91 years old), they evaluated DNAm levels of ASPA, 

ELOVL2, PDE4C and EDARADD genes obtaining a predictive model accuracy of 3.75 

years. They suggested similar distributions of DNAm changes when comparing blood 

samples from living and deceased individuals. Also, Bekaert et al. (2015a) evaluating 

DNAm of the same markers in 29 dentin samples from living individuals (19-70 years 

old), reported a model with seven CpGs located at PDE4C, ELOVL2 and EDARADD 

genes, explaining 74% of the variation in age (corrected  R2 of 0.74), and a MAD of 4.86 

years. This study is also the first report made in tooth samples. Furthermore, the same 

group evaluated DNAm of the ASPA, ELOVL2, PDE4C and EDARADD genes in 50 

buccal swabs from living individuals (aged 0-73 years old), obtaining a MAD of 3.32 

years (Bekaert et al. 2015b). In the same year, Lee and collaborators reported a semen-

based APM developed in 68 samples with cg06304190 (TTC7B), cg12837463 and 

cg06979108 (NOX4) markers revealing a MAD from chronological age of 4.7 years (Lee 

et al., 2015).  

In the following year, it was proposed a specific APM for different teeth layers 

(cementum, dentin and dental pulp) by Giuliani et al. (2016). They investigated 

methylation data at ELOVL2, FHL2 and PENK loci by Maldi-Tof mass spectrometry in 

DNA collected from  21  tooth samples (aged 17-77 years old) and obtained the highest 

accuracy for pulp with a median absolute difference between the estimated and 

chronological ages of 2.25 years, following by cementum (2.45 years) and dentin (7.07 

years). These differences in the accuracy obtained in the teeth layers can be relevant for 

forensics, allowing the discovery of the best layers for development of more accurate 

APMs.  

In the same year, Eipel et al. (2016) tested in 55 buccal swabs from healthy 

individuals (aged 1-85 years old) the predictive equation previously developed by  
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Weidner et al. (2014) built in 82 blood samples with methylation information of 

cg17861230 (PDE4C), cg02228185 (ASPA) and cg25809905 (ITGA2B), referred as the 

“3-CpG-blood-model”. Eipel et al. (2016) obtained a high correlation between predicted 

and chronological ages (R2 = 0.91) however, a higher value of MAD was obtained in 

buccal swabs (14.6 years), comparing to the value obtained by Weidner in blood (MAD 

= 5.4 years). Therefore, Eipel et al. (2016) using the methylation information of the same 

CpG sites developed a specific predictive equation in the training set of 55 buccal swabs 

(referred as “3-CpG-swab-model”), achieving a MAD of 4.3 years and explaining 92% 

of the variation in age. Moreover, the evaluation of age correlation values of the three 

CpGs, revealed for CpG located at PDE4C a higher age correlation in buccal swabs and 

saliva compared to blood samples. The remaining sites located at ASPA and ITGA2B 

genes revealed higher age correlation values in blood. A simple linear regression model 

developed with the PDE4C marker explained 91% of the variation in age and allowed to 

obtain a MAD of 5.2 years. This value is similar to the obtained in the “3-CpG-swab-

model”, suggesting that the use of only one CpG at PDE4C gene can be reliable for age 

prediction in buccal swabs. These results confirmed the tissue specificity of DNAm age-

related markers, revealing that some CpGs are more suitable on certain sample types 

comparing with others. 

Still in 2016, Freire-Aradas et al. (2016) investigating a total of 22 candidate 

genomic regions addressing 177 CpG sites, developed an APM in 725 blood samples 

(aged 18-104 years old) with an accuracy of 3.07 years using the seven highest age-

correlated markers: ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, C1orf132 and 

Chr16:85395429. An online age prediction tool considering the methylation data of the 

seven CpGs was freely available in: http://mathgene.usc.es/cgi-

bin/snps/processmethylation.cgi. 

http://mathgene.usc.es/cgi-bin/snps/processmethylation.cgi
http://mathgene.usc.es/cgi-bin/snps/processmethylation.cgi
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Zubakov et al. (2016) evaluating biomolecular and epigenetic approaches 

observed that DNAm levels allowed a higher accuracy in comparison with the other 

methods, as telomere length, mRNA and sjTREC. In their study, the best epigenetic 

model included eight DNAm markers, with five CpGs from the ELOVL2 gene. The model 

developed with methylation information captured in 216 blood samples from individuals 

aged 4-82 years old (103 females; 113 males) allowed to obtain a MAD of 5.089 years. 

Another contribution in that year was proposed by Hamano et al. (2016) investigating 

methylation changes of ELOVL2 and FHL2 loci in 22 blood samples from living 

individuals and 52 blood samples from deceased individuals (aged 0-95 years old) using 

the methylation-sensitive high resolution melting (MS-HRM) method. In the training set 

of 74 samples, the developed model explained 83% of the variation in age (corrected R2 

= 0.83) with a MAD of 7.44 years. Moreover, this study also reports similar distributions 

of DNAm patterns between blood samples from living and deceased individuals. 

 In 2017, Cho et al. (2017) and Thong et al. (2017) replicated the study of Zbieć-

Piekarska et al. (2015b) in blood samples from two different populations. Cho et al. 

(2017) evaluating DNAm levels of 32 CpGs located at ELOVL2, FHL2, C1orf132, 

TRIM59 and KLF14 genes observed age-correlated values higher than 0.455 in all the 

CpGs in 100 blood samples from Korean individuals (aged 20-74 years old) by 

pyrosequencing. The strongest age correlation value was observed for ELOVL2 

(Chr6:11044628) (0.921) which was not investigated by Zbieć-Piekarska et al. (2015b). 

For the remaining genes, in both Polish and Korean populations, the strongest age 

correlation sites per locus were the same: C1orf132 (Chr1:207823681), TRIM59 

(Chr3:160450189), KLF14 (Chr7:130734355), and FHL2 (Chr2:105399282). In their 

study, Cho and collaborators (2017) applied to a Korean population sample the available 

predictive equation proposed by Zbieć-Piekarska et al. (2015b), with ELOVL2 
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(Chr6:11044634), C1orf132 (Chr1:207823681), TRIM59 (Chr3:160450199), KLF14 

(Chr7:130734355) and FHL2 (Chr2:105399288), obtaining a very strong correlation 

value between chronological and predicted ages (0.940), with a MAD of 4.18 years. This 

value is similar to the reported by Zbieć-Piekarska et al. (2015b) (MAD = 3.4 years). 

Additionally, Cho et al. (2017), with the best-selected sites in Korean dataset for ELOVL2 

(Chr6:11044628), C1orf132 (Chr1:207823681), TRIM59 (Chr3:160450189), KLF14 

(Chr7:130734355) and FHL2 (Chr2:105399282) genes, built an APM with a MAD of 

3.34 years. This MAD value is lower comparing with the MAD obtained when applying 

the online equation of Zbieć-Piekarska et al. (2015b), showing that the selection of 

specific sites for each population can lead to an improvement in the model accuracy. 

Moreover, Cho et al. (2017) tested the association of DNAm with another type of age 

biomarker (sjTRECs) showing the potential of multidisciplinary approaches to decrease 

the age prediction error in the older individuals.  

Thong et al. (2017) evaluated DNAm levels of several CpGs located at ELOVL2, 

FHL2, C1orf132, TRIM59 and KLF14 genes in 145 blood samples from Singapore 

population (aged 3-80 years old) by pyrosequencing methodology. Strong age correlation 

values were observed in all 32 CpG sites (R >0.706), and the highest age correlation value 

was obtained in the position C5 (Chr6:11044642) located at ELOVL2 (R = 0.957; 

corrected R2 = 0.915). The developed APM with ELOVL2 (Chr6:11044642), TRIM59 

(Chr3:160450189) and KLF14 (Chr7:130734357) revealed an accuracy of 3.3 years, 

explaining 95.5% of the variation in age. Thong et al. (2017) applied their model to 

bloodstains extracted immediately (day 0) and extracted after 21 days (day 21) observing 

no significant differences between the obtained MAD values, demonstrating the stability 

of DNAm levels in bloodstains, in concordance with previous reports made by Zbieć-

Piekarska et al. (2015a) and Huang et al. (2015). In addition, Thong and collaborators 



Chapter 1. General introduction 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 38 

(2017) validated their APM with ELOVL2, TRIM59 and KLF14 in an independent set of 

blood samples and tested/applied the available predictive equation of Zbieć-Piekarska et 

al. (2015b) in the same independent validation set obtaining MAD values of 5.0 years 

and 4.8 years, respectively. Both MAD values were similar, however the two APMs 

selected different CpGs from the same locus and included different number of CpGs: five 

CpGs in Zbieć-Piekarska et al. (2015b) vs. three CpGs in Thong et al. (2017). 

Considering Cho et al. (2017), Zbieć-Piekarska et al. (2015b) and Thong et al. (2017) 

studies, the best CpG in each population set was always located at ELOVL2 gene. In 

addition, for the C1orf132, KLF14 and FHL2 genes it was always the same CpG position 

showing the highest age correlation value. However, few little differences were observed 

in age correlation values for each CpG, possible reflecting population-specific 

differences.  

Spólnicka et al. (2017) tested DNAm of ELOVL2, C1orf132, FHL2, TRIM59 and 

KLF14 genes using the pyrosequencing method in 190 blood samples (aged 12-76 years 

old) from three groups of individuals with medical conditions (Graves’s disease and early 

or late onset Alzheimer’s disease), and compared DNAm information with healthy 

controls (425 samples, aged 2-75 years old). ELOVL2 and C1orf132 markers revealed 

unchanged age prediction accuracy in all the groups of individuals with medical 

conditions and consequently they seem promising age-correlated genes to be applied for 

age predictions in forensic fields.  

Also, during 2017, Hong et al. (2017) evaluated the methylation values of seven 

CpG sites - cg18384097, cg00481951, cg19671120, cg14361627, cg08928145, 

cg12757011, and cg07547549 located at PTPN7, SST, CNGA3, KLF14, TSSK6, TBR1, 

and SLC12A5 genes, respectively, in 226 saliva samples (aged 18-65 years old) by 

SNaPshot methodology. A high age correlation value between chronological and 
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predicted ages (0.945) was obtained in the training set of 113 samples, with a MAD from 

chronological age of 3.13 years. Another APM developed by Hong et al. (2017) with six 

CpGs located at SST, CNGA3, KLF14, TSSK6, TBR1 and SLC12A5 (without cg18384097 

located at PTPN7 locus, which is a cell type-specific CpG), revealed a MAD of 4.1 years. 

Comparing both models (APM with seven CpGs and six CpGs), it is observed that the 

addition of cg18384097 allowed an improvement of the age prediction.  

More recently, Lee et al. (2018) applied their previously developed APM in semen 

samples (Lee et al., 2015) to 12 independent semen samples (aged 24-57 years old) and 

19 different forensic samples containing semen (aged 17-48 years old), revealing the 

usefulness of their model in forensic samples. Using the 12 samples, they obtained a high 

age correlation value between chronological and predicted ages (0.970) with MAD of 4.8 

years. Applying their APM to 19 forensic samples, a strong correlation value between 

chronological and predicted ages was achieved (0.773), with a MAD from chronological 

age of 5.2 years (Lee et al., 2018).  

Also in 2018, Horvath et al. (2018) developed the “skin & blood clock” model 

focused on 391 CpGs, which were analyzed in several tissues, including buccal swabs, 

saliva, blood, endothelial cells and skin. The “skin & blood clock” model demonstrated 

highly correlation value between predicted and chronological ages in blood (R = 0.98) 

with a median absolute deviation between predicted and chronological ages of 2.5 years. 

Moreover, when applied to trabecular bone samples, previously collected and used in 

Horvath et al. (2015), this model revealed a correlation value between predicted and 

chronological ages of 0.82. Of note, this model revealed the influence of lifestyle choices 

and other environmental conditions for age predictions based on DNAm (Horvath et al., 

2018). 
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In the same year, Naue et al. (2018) through the massive parallel sequencing 

(MPS) methodology, evaluated DNAm in 144 different biological samples from 29 

deceased individuals using 13 loci previously tested in 324 blood samples from living 

individuals (Naue et al., 2017), including ELOVL2, TRIM59 and KLF14 markers. Strong 

age correlation values were obtained for: ELOVL2 cg16867657 (Chr6:11044644) in 

blood, brain, buccal swabs and muscle (R ≥0.76); TRIM59 cg07553761 

(Chr3:160450189) in blood, brain and buccal swabs (R ≥0.81); and for the position 

located at KLF14 (Chr7:130734357) in brain and buccal swabs (R ≥0.70). For bone 

samples, these markers reveled moderate age correlation values (0.51≤ R ≤0.61). This 

study showed how DNAm specific-tissue variability is important for the selection of age 

markers suitable for each tissue type and consequently for the development of accurate 

tissue-specific APMs. 

Freire-Aradas et al. (2018) tested DNAm levels by EpiTyper analysis in blood 

samples from 180 young Europeans (aged 2-18 years old) developing a model for children 

with CpGs located at KCNAB3, EDARADD, ELOVL2, CCDC102B, C1orf132 genes and 

position CR_23_CpG3 (no gene), with a median absolute error of 0.94 years and 77.8% 

of correct predictions. 

To the best of our knowledge, Shi et al. (2018) made a first study combining 

anthropological and epigenetic approaches. They evaluated 124 Chinese children (aged 

6-15 years old) through anthropological methods (skeletal and dental ages) of which 48 

children were also evaluated by epigenetic methods (based on DNAm markers). 

Evaluating a total of 485.577 CpGs using the Illumina Human Methylation 450 Bead 

Chip, they validated by droplet digital PCR five age-correlated markers (DDO, PRPH2, 

DHX8, ITGA2B and one unknown gene with the Illumina ID number of 22398226) that 

were used to build APMs with high accuracy of age prediction in boys and girls, with 
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values of MAE (mean absolute error) = 0.47 years and MAE = 0.33 years, respectively. 

This study also put on top the use of the multidisciplinary approach for age assessment. 

Jung et al. (2019) evaluated  DNAm of only five CpGs located at ELOVL2, FHL2, 

KLF14, C1orf132, and TRIM59 genes using a SNaPshot assay in 448 samples (aged 18-

74 years old), including blood, saliva and buccal swabs. The promising multi-tissue APM 

developed in 300 samples showed a very strong correlation value between predicted and 

chronological ages (R = 0.950) and a MAD from chronological age of 3.553 years. The 

authors defended that some markers (as TRIM59 and ELOVL2) could functioning as 

multi-tissue markers, showing a strong age correlation either in blood, saliva and buccal 

swabs; other genes were more tissue-specific (as FHL2 and C1orf132), emphasizing the 

need to test markers in each tissue type. 

Also in this year, Gopalan et al. (2019) developed, for the first time, a specific 

APM for bone samples: a “37 bone clock CpGs” based on methylation information of 

CpGs located, among other genes, at TRIM59, ELOVL2 and KLF14. They used 

methylation data from bone samples from living individuals previously published from 

Illumina Human Methylation 450K array and data collected for their study from deceased 

individuals from Illumina Human Methylation EPIC array methodology. This study 

reveals a RMSE of 4.9 years in all the samples analyzed and supports the idea that 

ELOVL2 is a powerful gene to be applied for age prediction in bones.  

Most recently, Lee et al. (2020) used 66 femoral bone samples (aged 31-96 years 

old) for DNAm analysis. They evaluated through the SNaPshot of Jung et al. (2019), 34 

samples (23 males and 7 females; and 4 samples for a preliminary test) and the remaining 

32 bone samples (28 males and 4 females) through Infinium HumanMethylation EPIC 

BeadChip array, using the “skin & blood clock” previously developed by Horvath et al. 

(2018). For the 30 bone samples using the SNaPshot assay of Jung et al. (2019), the 
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obtained age correlation values for TRIM59 (cg07553761; Chr3:160450189) and 

ELOVL2 (Chr6:11044628) were R = 0.434 and R = 0.415, respectively. From the 32 bone 

samples, only 12 with high-quality data were analyzed using the “skin & blood clock”. 

Between the 391 CpGs examined, 38 CpGs (including cg06639320 and cg22454769 from 

FHL2; cg09809672 from EDARADD; cg21572722 and cg16867657 from ELOVL2; 

cg20426994 from KLF14 and cg07553761 from TRIM59 genes) revealed a strong age 

correlation value in bone samples (R >0.70). Predicting age using the 12 bones (11 males; 

1 female) allowed to obtain a correlation value between predicted and chronological ages 

R = 0.964, with a MAD from chronological age of 6.4 years.  

A recent study proposed by Márquez-Ruiz et al. (2020) tested DNAm levels of 

specific CpGs located at ELOVL2, ASPA and PDE4C genes by bisulfite pyrosequencing 

using 65 tooth samples from individuals aged 15-85 years old. They observed a positive 

and moderate age-correlated value for ELOVL2 CpG9 (Chr6:11044642) (R = 0.595) and 

a positive age correlation value near to moderate for PDE4C CpG1 (Chr19:18343916) (R 

= 0.465). The developed APM with CpGs from these two loci presented a MAE of 5.08 

years. 

Finally, Koop et al. (2020) evaluated by pyrosequencing DNAm changes of one 

CpG from PDE4C gene in 215 buccal swabs from living and deceased individuals. The 

developed one-CpG APM in 71 living individuals revealed higher age correlation value 

(r2 = 0.87). The validation of this APM in an independent set of 71 swab samples of living 

individuals revealed moderate accuracy with a MAD of 7.8 years. The application of this 

predictive equation to 52 swab samples of deceased individuals allowed to obtain a 

moderate accuracy with a MAD = 9.1 years. In addition, no differences in age estimation 

was observed for deceased samples with different stages of body decomposition.  
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Additionally, in recent years, some studies have defended the construction of 

DNAm biological clocks, distinct from the previous chronological clocks (Field et al., 

2018; Horvath and Raj 2018). To date, as the best of our knowledge, only six studies have 

tried the development of biological clocks using DNAm features linked to many factors 

as risk of mortality, diseases and other age-clinical conditions (Yang et al., 2016; Zhang 

et al., 2017b; Levine et al., 2018; Youn and Wang, 2018; Lu et al., 2019a; Lu et al., 

2019b). These biological clocks focus on inter-individual divergence, being more related 

with the epigenetic drift (Field et al., 2018; Horvath and Raj 2018). Consequently, these 

clocks can be more advantageous in clinical research than in forensic investigations, in 

which the estimation of individual´s chronological age is the paramount issue (Field et 

al., 2018). 

In summary, in the last decade, many investigations in forensic age prediction 

have been reported using different methodological approaches to assess DNAm levels 

that are considered the most promising age prediction biomarker. Several APMs were 

developed in several specific tissue types, essentially in blood samples from living 

individuals, and others were suggested across multiple tissues. Similar age predictions 

accuracies were consistently obtained based on these different methodological 

approaches using several markers, different tissue types or different statistical methods. 

The ELOVL2 gene has been widely investigated, showing to be the most powerful age 

prediction marker to date. Using many different sources of DNA, such as saliva, blood, 

teeth, buccal cells, liver, brain, bone and old bloodstains, ELOVL2 CpGs demonstrate the 

higher rates of age association. Meanwhile, the development of multi-tissue APMs has 

arisen. However, it is necessary to clarify what are the best multi-tissue or tissue-specific 

age markers. It is important to discovery and select the specific markers that can show 

similar accuracy in several types of samples using the same methodology for development 



Chapter 1. General introduction 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 44 

of APMs applied to forensic casework. After that, DNAm levels can become an accurate 

and reliable method to be applied for many contexts in forensic age estimations.  

 

4. Challenges for application of DNAm age estimation in forensic 

contexts 

 

For the application of DNAm age at forensic contexts, several aspects should be 

considered: 

i) the fact that common forensic samples contain a small amount of DNA, low 

quality of DNA or degraded DNA; this can be a big challenge for forensic casework when 

we deal with DNAm analysis requiring, for instance, bisulfite conversion (in which 

occurs DNA loss);  

ii) the APMs that have already been developed for each specific tissue type present 

in the forensic case and the selection of the most accurate APM;  

iii)  the simplicity, cost and practicality of each method, including the necessity of 

specific and available equipment, and time consuming in solving forensic questions (Jung 

et al., 2017); 

iv) the restriction of the number of CpGs to 10 or less, in order to be practicable 

for forensic casework (Alsaleh et al., 2017); however, it is known that the development 

of multi-tissue APMs requires the inclusion of a larger number of CpG sites.  

Additionally, DNAm levels can be affected by intrinsic influences (as gender, 

aging or ancestry) or by several environmental factors (including lifestyle, disease, 

alcohol consumption or social environments) (Kader and Ghai, 2015). A recent study by 

Fiorito et al. (2019) revealed the impact of several socioeconomic factors (as education) 



Chapter 1. General introduction 

DNA methylation as an age predictor in living and deceased individuals 

 

Page | 45 

and lifestyle choices (as tobacco and alcohol consumption) in DNAm clocks, as the 

Hannum clock and the Horvath clock (Fiorito et al., 2019).  

 

Some of the most important factors that should be considered when using DNAm 

age for forensic purposes are addressed below. 

 

4.1. Differences between predicted and chronological ages with aging  

According to literature, younger individuals show lower values of MAD between 

predicted and chronological ages, reflecting a high accuracy in the APMs, comparing to 

older ages (Horvath, 2013; Zbieć-Piekarska et al., 2015b; Bekaert et al., 2015a; Hamano 

et al., 2016; Thong et al., 2017; Naue et al., 2017; Pfeifer et al., 2020). 

The observed lower accuracy of the APMs with aging can reflect the higher 

differences between biological and chronological ages of individuals with the increase of 

age. This can be related to the accumulation of specific alterations in DNAm patterns of 

each individual with aging due the stochastic or environmental factors, being accepted as 

the epigenetic drift contribution (Jones et al., 2015; Tan et al., 2016; Freire-Aradas et al., 

2017).  

 

4.2. Specificity of each age-correlated marker to diseases 

DNAm patterns of some genes can be affected by some diseases, and 

consequently the accuracy of the epigenetic clocks can be influenced. Spólnicka et al. 

(2017) suggested that some genes can keep their power as age predictors regardless of the 

presence of diseases, but other markers seem to be influenced by some diseases. This 

supports the idea that each marker can reveal a specificity and/or sensibility to each 

disease, being more or less accurate for measurement of chronological age (Bacalini et 
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al., 2017; Spólnicka et al., 2017). Thus, for development of APMs highly accurate in 

forensic casework the influence of certain common diseases in DNAm of specific markers 

should be considered. In addition, Bell et al. (2019) proposed the construction of disease-

specific APMs based on DNAm evaluation as future direction in forensic field.   

 

4.3. Tissue specificity  

In recent years, many tissue-specific APMs have been developed for blood, saliva, 

buccal swabs, bone and teeth. Moreover, few researchers built multi-tissue APMs that 

can be applied to several combined types of samples as made by Horvath (2013) with 

high prediction accuracy. However, Horvath (2013) included 353 CpGs to capture age-

related changes across different tissue types. The inclusion of a larger number of markers 

improves the prediction accuracy but can be a disadvantage in forensic casework. 

Moreover, it has been observed that there are tissues, in which age estimation leads to a 

high error of estimate. This can be explained by tissue specificity of each age-correlated 

marker. Also, Eipel et al. (2016) demonstrated that the specific predictive equation 

developed by Weidner et al. (2014) for blood samples cannot be applied to buccal swabs 

with the same accuracy in age predictions. In any case, it seems that there are some 

markers with the ability to predict age across several tissues (and could be assigned as 

multi-tissue markers), as the ELOVL2 locus (Hannum et al., 2013; Jung et al., 2019), 

while others are more tissue-specific, such as FHL2 and C1orf132 genes (Jung et al., 

2019). Consequently, studies to test individual age-correlated markers in specific tissues 

and to adapt specific APMs (developed for a specific tissue type) to other tissue types are 

needed. 

 

 



Chapter 1. General introduction 

DNA methylation as an age predictor in living and deceased individuals 

 

Page | 47 

4.4. Specificity of population groups  

Population-specific patterns of DNAm can occur in several CpGs over the 

genome. Fraser et al. (2012) using a 27.000 CpG site microarray platform observed 

differences between African and European populations. Heyn et al. (2013) investigated 

around 450.000 CpGs in three populations (Caucasian-American, African-American, and 

Han Chinese-American) observing DNAm differences in several CpGs. They suggested 

that these differences allowed the separation of populations and could explain some 

patterns of the human variation.  

For highly accurate age estimation, it is necessary to test the predictive equations 

that have already been developed for specific-population groups in other populations to 

address potential differences in DNAm levels at the same CpG positions. This has been 

done by few groups as Cho et al. (2017) in Koreans and Thong et al. (2017) in 

Singaporean individuals applying the APM of Zbieć-Piekarska et al. (2015b) developed 

in Polish (MAD = 3.4 years). The model accuracy remains similar when applying the 

predictive equation developed in Polish individuals (Zbieć-Piekarska et al., 2015b) to 

Korean individuals (MAD = 4.18 years) (Cho et al., 2017) and to Singaporean individuals 

(MAD = 4.8 years) (Thong et al., 2017). Nevertheless, Cho et al. (2017) observed an 

improvement of the accuracy when developed specific APMs for Koreans.  

Additionally, a study by Fleckhaus et al. (2017) applied the two previous 

predictive equations proposed in German people by Eipel et al. (2016) and in Polish by 

Zbieć-Piekarska et al. (2015b) to three independent population groups from Middle East, 

West Africa and Central Europe. They reported the same strength of change in DNAm 

levels across the different CpGs for the three populations, but observed a slight high 

accuracy in Middle East population comparing with the two other populations. These 
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results suggest that APMs may have to be adjusted for different populations, which leads 

to the increase of the accuracy. 

 

4.5. Sex differences  

Another factor that could influence age estimation based on DNAm levels is the 

putative effect of the sex, but no consistent results were obtained to date. Boks et al. 

(2009) evaluating 1.505 CpGs from more than 800 genes by Illumina GoldenGate 

Methylation assay demonstrated that the sex could be a factor for DNAm changes at 

specific loci across the genome. When testing DNAm changes of specific age-related 

CpGs considering sex as a possible influencer, some authors observed few differences 

between males and females (Weidner et al., 2014; Zbieć-Piekarska et al., 2015b; Daunay 

et al., 2019), despite not being relevant in the accuracy of age predictions. DNAm levels 

of ELOVL2 and PDE4C genes seem to be affected by sex in few studies (Weidner et al., 

2014; Zbieć-Piekarska et al., 2015b), but no statistically significant sex differences were 

observed in other studies for the two loci (Bekaert et al., 2015a; Freire-Aradas et al., 

2016, 2018; Márquez-Ruiz et al., 2020). Accordingly, some studies observed no 

significant sex influence in DNAm levels of other age-correlated markers (Koch and 

Wagner, 2011; Huang et al., 2015; Bekaert et al., 2015a; Freire-Aradas et al., 2016, 2018; 

Márquez-Ruiz et al., 2020). In any case, considering these reports, the possible influence 

of sex in DNAm of age-related markers should be explored whenever possible in each 

developed APM. 
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Chapter 2. Objectives  

 

 

Although many CpG markers have been identified showing high correlations with 

chronological age in previous studies, validation of methodologies and markers should 

be made to develop accurate APMs, potential useful in forensic analysis. Because of the 

highly tissue-specific nature of DNAm, the development of APMs for particular types of 

tissues should also be tested. In addition, it is possible that few markers could reveal high 

accuracies across different tissue types allowing the development of multi-tissue APMs. 

 

Most forensic APMs have been developed based on blood DNA samples of 

healthy individuals, but other tissues are now also being explored. For example, four 

studies focused on the possible DNAm changes in blood samples from deceased 

individuals, which can be a relevant source of DNA for forensic age estimation models 

(Bekaert et al., 2015a; Hamano et al., 2016; Naue et al., 2018; Pfeifer et al., 2020). In the 

same way, a number of studies used tooth samples (Bekaert et al., 2015a; Giuliani et al., 

2016; Márquez-Ruiz et al., 2020) or bone samples (Horvath et al., 2015, 2018; Naue et 

al., 2018; Gopalan et al., 2019; Lee et al., 2020) for DNAm age prediction. Bones and 

teeth are valuable sources of DNA being, very often, the last evidence of an individual in 

cases of forensic identification.  

 

Considering the aforementioned review addressing the highly age-correlated 

genes for the development of APMs based on DNAm levels in several tissue types, a 

number of genes were selected for the present study: the seven previously known and 
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validated age-associated genes ELOVL2, EDARADD, FHL2, PDE4C, C1orf132/ 

MIR29B2CHG, KLF14 and TRIM59.   

In the top of this list, being one of the most investigated age predictors markers, 

is the ELOVL2 (ELOVL Fatty Acid Elongase 2) gene, located on the chromosome 6p24.2. 

CpG sites from the ELOVL2 gene has been continually included in several APMs using 

different tissue types as blood, buccal swabs, saliva, bones and tooth samples (Garagnani 

et al., 2012; Bekaert et al., 2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; Giuliani 

et al., 2016; Park et al., 2016; Freire-Aradas et al., 2016; Hamano et al., 2016, 2017; Cho 

et al., 2017; Thong et al., 2017; Spólnicka et al., 2017; Bacalini et al., 2017: Naue et al., 

2017, 2018; Jung et al., 2019; Gopalan et al., 2019; Daunay et al., 2019; Márquez-Ruiz 

et al., 2020; Lee et al., 2020; Pfeifer et al., 2020).  

The remaining genes, including FHL2 (Four And A Half LIM Domains 2), located 

on chromosome 2q12.2, EDARADD (EDAR Associated Death Domain), located on 

chromosome 1q42.3, PDE4C (phosphodiesterase 4C, cAMP specific), located on 

chromosome 19p13.11, C1orf132 (chromosome 1 open reading frame 132), located on 

chromosome 1q32.2, TRIM59 (Tripartite motif containing 59), located on chromosome 

3q25.33, and KLF14 (Kruppel-like factor 14), located on chromosome 7q32.3, are other 

promising age-correlated genes that have been also investigated in several studies using 

different biological samples including blood, buccal swabs and saliva (Garagnani et al., 

2012; Florath et al., 2014; Zbieć-Piekarska et al., 2015b; Hamano et al., 2016; Giuliani 

et al., 2016; Freire-Aradas et al., 2016; Cho et al., 2017; Thong et al., 2017; Spólnicka et 

al., 2017; Bacalini et al., 2017; Jung et al., 2019; Daunay et al., 2019; Pfeifer et al., 2020; 

Koop et al., 2020). In particular, FHL2, EDARADD and PDE4C genes were included in 

several studies for DNAm age prediction using tooth samples (Bekaert et al., 2015a; 

Giuliani et al., 2016; Márquez-Ruiz et al., 2020) and TRIM59, KLF14, C1orf132 and 



Chapter 2. Objectives 

DNA methylation as an age predictor in living and deceased individuals 

Page | 53 

FHL2 genes revealed its valuable utility for DNAm age estimation in bones (Naue et al., 

2018; Gopalan et al., 2019; Lee et al., 2020). 

 

For measurement of DNAm levels among selected CpG sites from the chosen 

candidate genes, we used two different methodologies: the bisulfite polymerase chain 

reaction (PCR) Sanger sequencing and the SNaPshot multiplex system. Both methods 

used herein provide a semi-quantitative measure of DNAm levels at CpG sites, but have 

shown to be efficient and economical alternative tools to other widely used 

methodologies. For example, the bisulfite Sanger sequencing was shown to have similar 

linearity and accuracy than pyrosequencing analysis (Jiang et al., 2010; Parrish et al., 

2012), which is one of the most currently used methods for DNAm age estimation. The 

multiplex methylation SNaPshot is a simple, efficient and cost-effective way to determine 

simultaneously DNAm levels of different individual target CpG sites and has been 

currently used in forensic DNAm analysis.  

 

That said, the main aim of this study was to develop several APMs based on the 

previously known and validated age-associated genes ELOVL2, EDARADD, FHL2, 

PDE4C, C1orf132/MIR29B2CHG, KLF14 and TRIM59 by evaluating the correlation 

between DNAm levels and chronological age in several types of biological samples from 

Portuguese individuals and using two different methodologies: bisulfite sequencing, 

addressing methylation levels in genes ELOVL2, FHL2, EDARADD, PDE4C and 

C1orf132, and the SNaPshot assay of Jung et al. (2019) to address five CpGs located in 

genes ELOVL2, FHL2, KLF14, C1orf132 and TRIM59. 
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From this main goal, several specific objectives were considered: 

1. to develop simple and multiple APMs for blood samples from both living and 

deceased individuals (collected during autopsies and collected from identified 

Bodies Donated to Science, BDS), teeth from living and deceased individuals 

(collected from BDS), bones (collected during autopsies and from BDS) and 

buccal swabs from living individuals.  

2. to examine possible differences in methylation patterns between blood samples 

from living and deceased individuals; 

3. to investigate methylation differences according to aging, sex, ancestry groups 

and PMI (postmortem interval); 

4. to evaluate the accuracy of bisulfite Sanger sequencing and SNaPshot 

methodologies by comparing methylation data obtained with the two 

methodologies;  

5. to develop multi-tissue APMs using different combination sets of biological 

samples;  

6. to evaluate DNAm patterns and to estimate age in dry bones from The 21st Century 

Identified Skeletal Collection (ISC/XXI) or Coleção de Esqueletos Identificados 

do Século XXI (CEI/XXI). 

 

 

 

 

 

 



 

DNA methylation as an age predictor in living and deceased individuals 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Sample and design research 

 

 

 

 

 

 

 

 

 

 

 





Chapter 3. Sample and design research 

DNA methylation as an age predictor in living and deceased individuals 

Page | 57 

Chapter 3. Sample and design research 

 

 

1. Types of samples, collection, handling and storage 

 

Several types of biological material from living and deceased individuals were 

collected (blood, bone, tooth and buccal swabs). Sample collection procedures and stored 

conditions were according to each tissue type. Store conditions were chosen to avoid 

DNA degradation (normally using low temperatures and humidity). Improper handling 

of a sample can lead to contamination, sample degradation or even misinterpretation of 

the results. 

 

1.1. Blood samples  

A total of 144 blood samples was collected from living and deceased individuals: 

i) peripheral blood samples from 71 healthy living individuals of Portuguese 

ancestry (45 females, 26 males; aged 1-95 years old) were collected from users of 

Biobanco - Hospital Pediátrico de Coimbra and other hospitals. Data from each 

individual (age, sex, clinical conditions) were collected in the written consent form; 

ii) blood samples from 73 deceased individuals (15 females, 58 males; aged  24-

91 years old) were collected during routine autopsy (12 females, 52 males), after 

consulting RENNDA (Registo Nacional de Não Dadores) in Serviço de Patologia 

Forense da Delegação do Centro do Instituto Nacional de Medicina Legal e Ciências 

Forenses (INMLCF), and from Bodies Donated to Science (BDS) (3 females, 6 males), 

before the embalming method with Thiel (Eisma et al., 2013) in Departamento de 

Anatomia da Faculdade de Medicina da Universidade do Porto (Annex I, BDS form 
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example). BDS have an indispensable role in advancing of Medical Science in general. 

They are essential for anatomical studies in medical schools, as well as in scientific and 

technical research that leads to the progress of medical and surgical treatments, according 

to the Portuguese legislation that regulates the dissection of cadavers (Decreto-Lei n.º 

274/99, de 22 de Julho). A table with the biological features and the type of biological 

sample collected from each BDS was present in Annex II. Data from each individual (age-

at-death, sex, cause of death, diseases indicators) were assessed in medical reports 

provided by the legist doctor (autopsies) or by the Departamento de Anatomia da 

Faculdade de Medicina da Universidade do Porto (BDS). 

All blood samples from dead bodies were collected within five days after death. 

The available antemortem data indicate no evidence of cancer, which could affect the 

methylation status (Hannum et al., 2013).   

All blood samples from living and deceased individuals were collected using a 

syringe, transferred to a clean sterile storage tube that contains anticoagulant (EDTA) and 

were frozen at -20ºC in vertical position, until DNA extraction (Figure 3.1). The 

processing of blood samples occurred in Laboratório de Genética Humana (LGH) from 

CIAS (Centro de Investigação em Antropologia e Saúde). 

 

 

 

 

 
 

 

 

 

Figure 3.1: Blood samples from deceased individuals collected during autopsies in 

INMLCF. 
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1.2. Bone samples 

A total of 62 bone samples was collected for this study:  

i) a set of 31 bone samples from deceased individuals collected after consulting 

RENNDA, during autopsy in Serviço de Patologia Forense das Delegações do Centro e 

Sul do INMLCF (5 females, 26 males; aged 26-81years old). These bones were collected 

within five days after death and the available data from each individual (age, sex, cause 

of death, diseases indicators) were assessed in medical reports provided by the legist 

doctor. We excluded individuals with known diseases or other clinical conditions that 

could influence DNAm levels; 

ii) a set of 22 bones from BDS (12 females, 10 males; aged 49-93 years old) 

(Annex I, BDS form example) collected after the embalming method with Thiel (Eisma 

et al., 2013), in Departamento de Anatomia da Faculdade de Medicina da Universidade 

do Porto and in Faculdade de Medicina da Universidade de Coimbra. Bones from BDS 

were collected between 1 to 4 years after death (Annex II). For each individual the 

available information including, sex, age-at-death, state of the body) was provided by the 

Departamento de Anatomia da Faculdade de Medicina da Universidade do Porto; 

iii) nine dry bones (7 females, 2 males; aged 38-92 years old) from The 21st 

Century Identified Skeletal Collection (ISC/XXI) or Coleção de Esqueletos Identificados 

do Século XXI (CEI/XXI) were collected after approval by the Laboratório de 

Antropologia Forense (LAF) from CEF (Centro de Ecologia Funcional). The CEI/XXI 

arises from a collaboration in 2007 between the Department of Anthropology of the 

University of Coimbra and the City Council of Santarém (responsible for the cemetery 

from which the skeletons originate) to carry the unclaimed skeletons to the University for 

investigation purposes. The City Council of Santarém made available copies of 
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certificates of death of each individual, and other relevant information, as name, age-at-

death, sex, nationality, between other data (Ferreira et al., 2014). 

The bone samples from deceased individuals collected during autopsies were 

involved in aluminum foil, with label identification (case number, age and sex), and 

individualized in plastic bags (Figure 3.2A). The recommendation should be the 

individualization in paper bags, however as the bones were frozen at -80ºC, we choose 

plastic bags. Bones samples from BDS were collected in small plastic recipients with 

identification number and then freeze at -80ºC (Figure 3.2B, C). Dry bones samples from 

CEI/XXI were individualized in plastics bags and were kept at room temperature (Figure 

3.3).  

Bone collection took place from December 2018 to January 2020. The processing 

of bone samples occurred in LGH from CIAS and in Serviço de Genética e Biologia 

Forenses (SGBF) from INMLCF, according to the recommended guidelines. 

 

 

 

 

 

Figure 3.2: Bones. A) Bone sample collected from one deceased individual during 

autopsy in INMLCF; B) Bone sample collected from BDS; C) Bone sample collected 

from BDS, the photo was captured after bone cut. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Dry bone sample from CEI/XXI, the photo was captured after bone cut. 

 

A B C 
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1.3. Tooth samples  

A total set of 31 tooth samples were used in this research. Twenty-three tooth 

samples from living individuals (16 females, 7 males; 27-94 years old) collected in dentist 

offices, after written informed consent, and 8 tooth samples from deceased individuals 

collected from BDS (5 females, 3 males; 48-88 aged years old) in Departamento de 

Anatomia da Faculdade de Medicina da Universidade do Porto before the embalming 

method of the body (Annex I, BDS form example; Annex II). The collection of teeth 

before the embalming ensures the control of any possible influence related to the process 

of conservation. Available data such as age, sex and clinical conditions were collected 

with the informed consent for living individuals, and were provided by the Departamento 

de Anatomia da Faculdade de Medicina da Universidade do Porto for deceased 

individuals. Tooth samples from living and deceased (BDS) individuals were collected in 

clean tubes with absolute ethanol and kept at room temperature until analysis (Figure 

3.4). The processing of tooth samples occurred in SGBF from INMLCF, according to the 

recommended guidelines, and in LGH from CIAS. 

 

 

 

 

 

Figure 3.4: Tooth samples in plastic recipient. 

 

1.4. Buccal swabs  

A set of 39 buccal swabs from living individuals of Portuguese ancestry (16 males, 

23 females; aged 3-86 years old) was collected with a sterile brush (Sarstedt, Nümbrecht, 
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Germany) (Figure 3.5). Buccal swabs were stored under refrigeration (short periods) or 

frozen at -20ºC (for long-term storage) (Goodwin et al., 2007). The processing of buccal 

swabs occurred in LGH from CIAS. Data of each individual such as age, sex and clinical 

conditions were collected with the informed consent form (Annex I, buccal swab 

consent). 

   

 

 

 

Figure 3.5: Buccal swabs from living individuals. 

 

2. Ethical or institutional guidelines  

 

The study protocol of this doctoral research was approved by the Ethical 

Committee of Faculdade de Medicina da Universidade de Coimbra, process nº 038-CE-

2017 (Annex III, Ethical Committee of Faculdade de Medicina da Universidade de 

Coimbra). For blood, buccal swabs and tooth samples, from living individuals, written 

informed consent was previously obtained from adult participants and from children´s 

parents, under the age of 18 years. In addition, for blood and bone samples collected 

during autopsies we request for approval by the Ethical committee of the INMLCF. 
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3. Laboratory methods 

 

3.1. DNA extraction 

3.1.1. Blood samples  

Genomic DNA extraction from blood samples was performed in LGH from CIAS, 

using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), according to the 

instructions of the manufacture. Briefly, the procedure consisted in four steps: i) lysis, 

consisting in addition of 20 µl of proteinase K (Qiagen) (10 mg/ml) and 200 µl of Lysis 

Buffer AL to 200 µl of blood in a 1.5 ml microcentrifuge tube; ii) binding DNA in the 

lysate to a silica-based membrane in a QIAamp Mini spin column; iii) washing 

contaminants with two buffers (AW1 and AW2); and iv) elution of DNA (50 µl) from the 

membrane in a clean 1.5 ml microcentrifuge tube with buffer AE. The DNA solution was 

stored at 4ºC or -10ºC (see Annex IV, for the complete protocol). 

 

3.1.2. Bone and tooth samples  

DNA extraction from bones and tooth samples was made in INMLCF, according 

to standard guidelines. All sample manipulations were performed in laminar flow 

chambers equipped with filters and UV lights (Workstation I and Workstation II). In 

workstation I, we made a pre-treatment of bone and tooth samples (Annex IV, for guide 

with steps and illustrations). Briefly, after decontamination of laminar flow chambers, the 

bone fragment or root tooth were collected using a chainsaw; and put in commercial 

bleach (sodium hypochlorite, 10%) during 5 minutes. Following the bone and tooth 

fragments were put in distilled water for another 5 min to remove residual bleach. A drill 

was used to remove other exogenous contaminants. After, we make some cuts (around 

0.5 x 0.5 cm) in the fragment and it was put in a vial for grinding (Figure 3.6). In a SPEX 
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Sample Prep Freezer/Mill 6770 with liquid nitrogen, the bone and tooth fragments were 

submitted to several temperatures until a fine powder is obtain. The powder can be used 

immediately for DNA extraction, or kept at -80 ºC.   

 

 

 

 

 

Figure 3.6: Bone fragments in vial before grinding. 

 

In a workstation II (Figure 3.7A), we used a semi-automatic protocol with 

PrepFiler Express BTA™ Forensic DNA Extraction kit (Applied Biosystems, Foster City, 

CA) for DNA extraction protocol (Annex IV, for guide with steps and illustrations). 

Briefly, we performed all the manipulations with the required reagents to prepare the 

extraction. Following the practical guidelines of the INMLCF and the recommendation 

of the manufacturer's user manual, around 50 mg fine powder (of bones or teeth) were 

put in a lysis tube (Figure 3.7B). We prepared the PrepFiler BTATM lysis solution (each 

sample requires the following: 220 µl PrepFiler BTATM lysis Buffer, 3 µl freshly prepared 

1 M DTT, 7 µl Proteinase K). For each bone and tooth samples we added 230 µl of the 

prepared PrepFiler BTATM lysis solution, vortex and centrifuged. We put the PrepFiler 

bone and tooth Lysate Tube in a thermal shaker and incubated at 56ºC, 750 rpm overnight. 

This is the standard protocol used in INMLCF. 
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Figure 3.7: A) Workstation II; B) Bone powder before the addition of prepared PrepFiler 

BTATM lysis solution. 

 

The day after, centrifuge the PrepFiler bone and tooth Lysate Tube and the clear 

lysate was put in automated robot AutoMate Express™ (Applied Biosystems, Foster City, 

CA) Forensic DNA Extraction System (Figure 3.8A), which can extract 11 samples at 

only one run, plus positive and negative control (NTC, non-template control). The 

controls are always included in each run. A bloodstain collected specifically for this study 

according to ethical guidelines was used as a positive control.  

The DNA extraction protocol is very efficient and very fast (only 30 min, after 

digestion overnight). Moreover, all the reagents were individualized in cartridges, only 

being exposed in a safe climate during DNA extraction (Zupanič Pajnič et al., 2016), 

reducing human handling and the possibility of contamination. The isolated DNA (Figure 

3.8B) can be stored at 4ºC for up two weeks or at -20ºC for longer storage. 

 

 

 

 

 

 

Figure 3.8: A) Robot AutoMate Express™ Forensic DNA Extraction System from 

INMLCF (Coimbra, Delegação do Centro); B) Isolated DNA.  

 

 

A 

B 
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For bones from CEI/XXI, an additional step was required after pre-treatment of 

bone fragment and before DNA extraction using PrepFiler Express BTA™ Forensic DNA 

Extraction kit. We use two different protocols with EDTA (Protocol 1 - EDTA and 

Protocol 2 - EDTA, described in Chapter 4. Results and discussion: F. Dry bone samples 

from Coleção de Esqueletos Identificados do Século XXI-CEI/XXI) to aid the full 

demineralization process, which facilities DNA extraction. Full demineralization is 

considered the best method of DNA extraction from old bone material (Jakubowska et 

al., 2012; Amory et al., 2012). Demineralization shows to increase the yield of DNA 

obtained in old samples (Zupanič Pajnič et al., 2016). Consequently, this process must be 

the most suitable for DNA extraction with dry bone samples from CEI/XXI, which 

presented higher PMI and suffered different postmortem influences.  

 

3.1.3. Buccal swabs  

Genomic DNA from buccal swabs was extracted using the FavorPrepTM Genomic 

DNA mini kit (Favorgen Biotech Corp, Taiwan) at LGH from CIAS, according to the 

instructions of the manufacture. Briefly, the procedure consisted in four steps: i) lysis - 

after resuspending the buccal swab in 1 ml of distilled water (Figure 3.9) followed by a 

centrifugation step, 200 µl of FABG Lysis Buffer and 20 µl of proteinase K (10 mg/ml) 

(VWR Life Science) were added to the pellet of buccal cells; ii) binding the lysate with 

DNA to a silica-based membrane in FABG columns; iii) washing contaminants with two 

buffers (W1 and Wash buffer); and iv) elute DNA from the membrane with 50 µl of 

Elution buffer. The isolated DNA was stored at 4ºC or -10ºC (see Annex IV, for the 

complete protocol). 
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Figure 3.9: First step of DNA extraction from buccal swabs: resuspension of swabs in 1 

ml of distilled water. 

 

3.2. DNA quantification  

The accurate quantification of the amount of DNA and the evaluation of its quality 

are a crucial step when dealing with human remains. For each tissue type, different 

quantification methods were chosen.  

 

3.2.1. Blood samples and buccal swabs    

DNA extraction from blood and buccal swabs were quantified in a Nanodrop 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), according to 

instructions of the manufacturer. This method based on absorption of UV light, DNA 

absorbs light at 260 nm; other molecules (as proteins and carbohydrates) absorbs at other 

length (respectively 280 nm and 230 nm). Pure DNA shows the ratio of absorptions at 

260 nm and 280 nm between 1.8 and 2.0. The obtained DNA concentrations for blood 

samples ranged between 20 to 40 ng/µl and for buccal swabs between 2 to 20 ng/µl. 

 

3.2.2. Bone and tooth samples  

DNA quantification of DNA extracts from bone and tooth samples, was made 

using the QuantifilerTM Human DNA Quantification Kit (Applied Biosystems, Foster 

City, CA) on the Applied Biosystems® 7500 Real-Time PCR System (HID Real-Time 
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PCR Analysis Software), according to the recommended guidelines (Thermo Fisher 

Scientific, 2018). The obtained DNA concentrations for bone and tooth samples ranged 

between 5 to 50 ng/µl. 

DNA quantification assay included primers for amplify the target specific DNA 

and the internal PCR control (IPC); IPC template; and two TaqMan® MGB probes (one 

labeled with FAM™ dye, which identify the amplified sequence and the other labeled 

with VIC™ dye, which identify the amplified IPC) (Thermo Fisher Scientific, 2018). 

DNA quantification using the QuantifilerTM Human DNA Quantification Kit 

requires the preparation of eight DNA quantification standards dilution series with known 

concentrations ranging from 50 ng/µl to 0.023 ng/µl. We put into each well of the reaction 

plate, 23 µl of the PCR mix reaction (Table 3.1) and 2 µl DNA standards or DNA samples 

or controls. A negative PCR control (NTC) for the quantification and the negative and 

positive controls of the DNA extraction were included in each run.  

 

Table 3.1: Volume of each reagent per sample. 

Reagent Volume per reaction (µl) 

Quantifiler® Human Primer Mix 10.5 µl 

Quantifiler® PCR Reaction Mix 12.5 µl 

 

The IPC system (an internal control of amplification) allows the interpretation of 

quantification data by differentiation between true negative results or reactions affected 

by other factors as PCR inhibitors (Thermo Fisher Scientific, 2018): 

i) if the VICTM dye (IPC detector) amplified, but there is no amplification of the 

FAM TM dye (Quantifiler Human detector), this means that there is a successful PCR 

reaction (IPC target amplification), but there is no DNA in the sample, because 

amplification of FAMTM dye was unsuccessful. It is a true negative result;  
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ii) when the FAMTM dye amplified but there is no amplification of the VICTM dye, 

it is possible that the amount of DNA is very high (>10 ng/µl) or there are PCR inhibitors;  

iii) if there is not any amplification of FAMTM dye or VICTM dye, it is a no valid 

result; possibly, there is no DNA in the sample or an unsuccessful reaction due to the 

presence of PCR inhibitors.  

 

3.3. Bisulfite conversion  

 To evaluate DNAm levels across the selected DNA regions we used sodium 

bisulfite treatment introduced by Frommer et al. (1992), consisting in a chemical 

modification in which unmethylated cytosine residues are converted into uracil residues 

(U). Methylated cytosine (5mC or Cm) remains unchanged during bisulfite treatment 

(Grunau et al., 2001; Genereux et al., 2008) (Figure 3.10). The recovered DNA can be 

amplified by the polymerase chain reaction (PCR) following by Sanger sequencing, 

where U is detected as thymine (T).  

Sodium bisulfite treatment requires a relatively low amount of DNA and can be 

applied to all CpG sites across the genome (Vidaki et al., 2013), being very often accepted 

as the method of choice in forensic DNAm analysis. 

In this work, genomic DNA from all tissue types (blood, bone, teeth and buccal 

swabs) was subjected to bisulfite conversion using the EZ DNA Methylation-GoldTM Kit 

(Zymo Research, Irvine, USA). Briefly, 20 μl of the extracted genomic DNA solution (in 

a total amount of 200 to 500 ng) was treated with sodium bisulfite and the modified DNA 

was extracted to a final volume of 10 μl. The procedure was performed according to the 

instructions of manufacturer, as follows: 

i) preparing CT Conversion Reagent, and add 130 µl of CT Conversion Reagent 

to the 20 µl of genomic DNA (as the total amount of input DNA should be between 200-
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500 ng for optimal results, some DNA samples were adjusted according DNA 

concentration); 

ii) put the sample mixture in thermal cycler with the following conditions (98°C 

for 10 min; 64°C for 2.5 hours);  

iii) put the sample into the Zymo-Spin™ IC Column with 600 µl of M-Binding 

Buffer, mixing by inverting the column several times; 

iv) centrifugation at full speed (30 sec); 

v) addition of 100 µl of M-Wash Buffer. Repeat the step iv; 

vi) addition of 200 µl of M-Desulphonation Buffer, and incubate at room 

temperature for 15-20 min. Repeat the step iv; 

vii) addition of 200 µl of M-Wash Buffer and centrifuge at full speed (30 sec). 

Repeat this step; 

viii) addition of 10 µl of M-Elution Buffer to the column matrix into a 1.5 ml 

microcentrifuge tube to elute DNA. Repeat the step iv; 

ix) storage the DNA at or below -20°C; for long term storage, at or below -70°C. 
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Figure 3.10: DNAm analysis based on bisulfite-PCR sequencing. After bisulfite 

conversion, in CpG sites (red circles) only the unmethylated cytosine is converted into U, 

while the 5mC or Cm remains as C. In non-CpG sites, the unmethylated cytosine is also 

transformed in U (red arrows). After PCR amplification all the U are displayed as T in 

the Sanger sequence of the sense strand. Adapted from GrŠković et al. (2013). 

 

3.3.1. Efficiency of bisulfite conversion  

The EZ DNA Methylation-GoldTM Kit allowed that almost all unmethylated 

cytosines (>99%) were converted to U, while more than 99% of 5mC is protected of 

conversion, according to the instructions of manufacturer (Zymo Research, Irvine, USA). 

This is important because bisulfite treatment requires the full conversion of unmethylated 

cytosine into U to obtain a correct analysis of DNAm levels at specific CpG sites.  

After the bisulfite treatment, all the unmethylated cytosine residues in CpG and 

non-CpG positions were converted into U. As cytosines in non-CpGs are essentially 

unmethylated, in that positions all cytosines were converted into U. In this study, the 

efficiency of bisulfite conversion was estimated by measurement of the conversion of a 
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random number of cytosines at non-CpG positions. A mean conversion efficiency of 

99.99% was observed over all samples and loci under study. This should mean that in 

almost all non-CpG sites, the conversion of C into U occurred completely and only the T 

was observed in sequencing chromatogram. 

 

3.4. Polymerase Chain Reaction (PCR)  

After bisulfite conversion, modified DNA samples were submitted to PCR 

reactions. The PCR amplification for selected regions of the target genes ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 was made using the Qiagen Multiplex PCR kit 

(Qiagen, Hilden, Germany). Primer sequences were previously described in Bekaert et 

al. (2015a) and Zbieć-Piekarska et al. (2015b) (primer sequences are listed in Table 3.2).  

A total PCR volume of 25 l was used consisting in a 1 l of the bisulfite 

converted DNA, 1 l (0.2 µM final concentration) of each forward and reverse primer, 

12.5 µl of 2x Qiagen Multiplex PCR Master Mix (Qiagen) and 9.5 l of RNase-free water. 

PCR amplification was performed on a Biometra TProfessional thermocycler (Biometra 

GmbH) consisting in an initial step at 95ºC for 15 min followed by 40 cycles of 30 sec at 

95ºC, 1 min at 60ºC and 1 min at 72ºC for the ELOVL2 gene, and 35 cycles of 30 sec at 

95ºC, 1 min at 56ºC and 1 min at 72ºC for FHL2, EDARADD, PDE4C and C1orf132 

genes. A final extension of 72°C for 10 min ended PCR amplification. A negative PCR 

control was included in each amplification. The size (addressed with GeneRuler Low 

Range DNA Ladder - Thermo Scientific) and quality of PCR products were visualized on 

2% agarose gels. A strong band with the anticipated product size should be present for 

sequencing. 
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3.5. Sanger sequencing 

 Despite bisulfite Sanger sequencing (Figure 3.11) is not a new methodology in 

DNAm analysis, some reports addressed that it is very useful, rapid, cost-effective and 

highly accurate in detection of methylation levels of CpG sites (Jiang et al., 2010; Parrish 

et al., 2012). 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Sequencing data after bisulfite conversion and PCR amplification. Original 

DNA sequence reveals non-CpG sites and CpG sites. In chromatogram, red arrows 

represent converted cytosines at non-CpG sites and blue arrows show the CpG sites. 

Methylated cytosines at three CpG sites are represented by Y in the converted DNA 

sequence from the gene ELOVL2. G and A represent guanine and adenine, respectively. 

 

An amount of 2 µl of each PCR product was purified with 0.5 µl of ExoSAP-IT 

(Affymetrix, Cleveland, USA) in a reaction with the following conditions: 37ºC for 15 

min, followed by 80ºC for 15 min. The ExoSAP cleanup reagent removes the excess of 

primers and/or nucleotides not incorporated in the PCR reaction.  

The Sanger dideoxy chain termination sequencing reaction was performed using, 

per sample: 2 µl of the purified DNA, 0.5 µl of reverse primer (100 ng/µl), 1 µl of the 

reagent Big-Dye Terminator v1.1 Cycle Sequencing kit (Applied Biosystems, Foster City, 

USA) and 6.5 µl of H2O in a total volume of 10 µl. The sequencing reaction was run in a 

Original DNA  

 

Converted DNA  

 

C A  G  G  T  C  C  A  G  C  C  G  G  C  G  C  C  G  G  T  T  T    
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Biometra TProfessional thermocycler (Biometra GmbH) with the following conditions: 

initial denaturation at 96ºC for 20 sec, following 25 cycles of denaturation at 96ºC for 25 

sec following annealing and extension at 60ºC for 2 min.  

The sequencing reactions were then purified using columns Optima™ DTR (Edge 

BioSystems, CA, USA) according to the manufacturer instructions, and applied directly 

on the ABI3130 genetic analyzer (Applied Biosystems, Foster City, USA) using the POP-

7™ polymer as separation matrix. Sequenced samples were analyzed using the software 

Chromas (Version 2.32, Technelysium, Australia). 

 

Table 3.2: PCR primers and sequence to analyse for PCR-sequencing. 

 

Primers Primer sequences Reference 

ELOVL2-for AGGGGYGTAGGGTAAGTGAG  

ELOVL2-rev AAACCCAACTATAAACAAAACCAA Bekaert et al. 

Sequence to 

Analyse 

TAGGTTTAGTYGGYGTYGGTTTYGYGY

GGYGGTTTAAYGTTTAY 

(2015a) 

EDARADD-for TTGGTGATTAGGAGTTTTAGTGTTTT Bekaert et al. 

EDARADD-rev CCACCTACAAATTCCCCAAA (2015a) 

Sequence to 

Analyse 

TTTAGTYGTTTTGAGGTTTATGGYGATG

TTGAGTTTGGTTTTTTAATTTTTTGGAGT

TTGTTATGGAAGAAGTAATAGATTYGA

GAAGATGTTYGTTGG 

- 

FHL2-for TGTTTTTAGGGTTTTGGGAGTATAG Zbieć-Piekarska 

FHL2-rev ACACCTCCTAAAACTTCTCCAATCTCC et al. (2015b) 

Sequence to 

Analyse 

AGTTATYGGGAGYGTYGTTTTYGGYGT

GGGTTTTYGGGYGYGAGTTTYGGAYGA

GGTTTGGGYGYGGT 
- 

PDE4C-for AGGTTTGTAGTAGGTTGAG Bekaert et al. 

PDE4C-rev AACTCAAATCCCTCTC (2015a) 

Sequence to 

Analyse 

TAGGTTGAGTYGTTTTYGYGGTYGTTAT

AGTATGATTAGAGTTTYGAAGTATTTGT

GGYGGTAATTTYGGYGTTTTATTYGTAT

TTAATAGYGTTTTTATTYGGATTYGATA 

- 

C1orf132-for GTAAATATATAAGTGGGGGAAGAAGGG Zbieć-Piekarska 

C1orf132-rev TTAATAAAACCAAATTCTAAAACATTC et al. (2015b) 

Sequence to 

Analyse 

AAGGGGGTTARGTTATTAAGTTTTGAAG

TTRGTRGGATTATTTATRGTRGTTTGRGT

AGATTT 
- 



Chapter 3. Sample and design research 

DNA methylation as an age predictor in living and deceased individuals 

Page | 75 

3.5.1. Methylation quantification of CpGs after PCR direct DNA 

Sanger sequencing  

 

The methylation status of C in each CpG dinucleotide was estimated according to 

Jiang et al. (2010) and Parrish et al. (2012), by measuring the peak height values of C and 

T through the formula [C/C+T] in the sequencing chromatogram extracted from Chromas 

(Version 2.32, Technelysium, Australia), as shown in Figure 3.12. In each CpG, a single 

C reveals complete methylation (100%), a single T shows complete unmethylation (0%) 

and overlapping C and T reveals partial methylation (0-100%). A number of examples 

for each gene were present in Figure 3.13. 

As the reverse primer was used in the sequencing reaction, resulting in a cleaner 

chromatogram, the reverse-complement strand of the sequencing chromatogram was used 

to estimate the ratio between peak heights of C and T.  
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Figure 3.12: Peaks height determination in the sequencing chromatogram extracted from 

Chromas (Version 2.32, Technelysium). The example shows the evaluation of DNAm 

levels of CpGs located at EDARADD locus in a younger adult individual (28 years, 

female). In each CpG, the blue arrow (peak height C) represents methylated cytosines and 

the red arrow (peak height T) represents unmethylated cytosines. The value of the blue 

and the red arrows are putted in the formula [C/C+T] and the percentage of DNAm level 

is calculated. 

 
 

 

 

 

 

 
 

 

Peak height C = 867 

Peak height T = 515 

 

% DNAm =  

Peak height of C + T 

Peak height of C 
x 100 

 

  % DNAm =                           x 100 = 63% 867 

(867 + 515) 
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A 

Methylation rate 

78%   53%    80%        85%                                   55%                        60% 

74%                                                 62% 

Methylation rate 

B 

       47%                         52%        50%                          70%          55%     

C 

Methylation rate 
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Figure 3.13: Examples of sequencing chromatograms for different methylation levels of 

the ELOVL2, EDARADD, FHL2, PDE4C and C1orf132 genes by bisulfite PCR-

sequencing. Blue arrows show CpG sites from each gene. A) Chromatogram of the 

ELOVL2 gene for a blood sample from a living individual (37 years, female); B) 

Chromatogram of the EDARADD gene for a blood sample from a living individual (22 

years, female); C) Chromatogram of the FHL2 gene for a blood sample from a living 

individual (2 years, male); D) Chromatogram of the PDE4C gene for a blood sample from 

a living individual (94 years, female); E) Chromatogram of C1orf132 gene for a blood 

sample from a deceased individual (35 years, male).  

 

 

 

Methylation rate 

     72%                           59%    60%               70% 

D 

Methylation rate 

            89%               87%                              80% 
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3.5.2. Reproducibility of direct bisulfite sequencing  

To assess the reproducibility of the direct sequencing method, two separate PCR 

amplifications and Sanger sequencing analyses were performed in about 10% of the 

training set of blood samples for all genes. We checked if DNAm levels obtained in each 

CpG site under analysis are consistent between duplicate samples for the same individual.  

 

3.5.3. DNAm standards   

Each primer set used for bisulfite sequencing was independently verified, to 

confirm the accuracy of sequencing data using the DNAm commercial standards EpiTect 

Control DNA®, methylated and EpiTect Control DNA®, unmethylated (Qiagen, Hilden, 

Germany). Standard DNA samples premixed at methylation levels of 0%, 50%, and 100% 

were used for analysis. For each tissue type, the methylation levels obtained for the best-

selected CpG sites were plotted against the expected DNAm levels.   

 

3.6. Multiplex-PCR SNaPshot assay 

After bisulfite conversion, modified DNA samples were analyzed for five CpG 

target sites located at ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C and TRIM59 genes 

using the SNaPshot assay of Jung et al. (2019). 

The capability of the SNaPshot® Multiplex System methodology allows to 

determine simultaneously DNAm levels of different CpGs from selected genes. The 

reaction is characterized by the multiplex amplification of several genomic regions and 

by a single-base extension (SBE) reaction, using multiplexed primers with variable size 

to target the different CpGs. The chemistry is based on the dideoxy SBE of unlabeled 

oligonucleotide primers that binds to the complementary template in the presence of 

fluorescently labeled ddNTPs and DNA polymerase (Applied Biosystems, 2005). The 
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polymerase extends the primer by one nucleotide, adding a single ddNTP to its 3' end 

(that represent the methylation signal of the targeted CpG site). The fluorescence color 

reports which base was added, that should be C (direct primer) or G (reverse primer) for 

the methylation signal or T (direct primer) or A (reverse primer) for the unmethylation 

signal (Applied Biosystems, 2005; Applied Biosystems, 2010). 

The PCR amplification for the five CpG markers was performed using the Qiagen 

Multiplex PCR kit (Qiagen, Hilden, Germany) and primers and conditions previously 

described in Jung et al. (2019), with some adaptations (primer sequences are listed in 

Table 3.3). The total PCR volume was 12.5 l, containing 1 l of converted DNA, 0.5 l 

of pool primers (µM concentration of each primer is present in Table 3.3), 6.25 µl of 2x 

Qiagen Multiplex PCR Master Mix (Qiagen) and 4.75 l of RNase-free water.
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Table 3.3: Multiplex PCR primers adapted from Jung et al. (2019). The concentrations of ELOVL2 and TRIM59 genes were modified in the 

multiplex amplification SNaPshot reaction, to obtain a clear and strong band from these genes. 

 

Genes 

(GRCh38) 

Primer sequences ( 5'>3') Concentration 

µM 

Amplicon 

size (bp) 

ELOVL2 

(Chr6:11044628) 

F: GGGGYGTAGGGTAAGTGAG 

R: CAACRAATAAATATTCCTAAAACTCC 

0.6 

0.6 
187 

FHL2 

(Chr2:105399282) 

F: GGGTTTTGGGAGTATAGTAGT 

R: AAAATAACCCCCTCCTCC 

0.3 

0.3 
191 

KLF14 

(Chr7:130734355) 

F: AGGTTGTTGTAATTTAGAAGTTT 

R: ATATTTAACAACCTCAAAAATTATCTTATC 

0.3 

0.3 
114 

C1orf132 

(Chr1:207823681) 

F: GGGTTAYGTTATTAAGTTTTGAAG 

R: TAAAACCAAATTCTAAAACATTC 

0.8 

0.4 
116 

TRIM59 

(Chr3:160450189) 

F: TATGGTATYGGTGGTTTGGGGGAGA 

R: ATAAAAAACACTACRCTCCACAACATAAC 

0.4 

0.4 
148 
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Multiplex PCR amplification was performed in a Biometra TProfessional 

thermocycler (Biometra GmbH) and the program consisted in an initial step at 95ºC for 

11 min, followed by 25 cycles of 20 sec at 94ºC, 1 min at 56 ºC and 30 sec at 72ºC. A 

final extension of 72°C for 7 min ended the multiplex PCR amplification. A negative 

PCR control (NTC) was included in each amplification. The size and quality of PCR 

products were visualized on 2% agarose gels with UV light (Figure 3.14).   

 

Figure 3.14: Agarose gel electrophoresis with the amplification products obtained using 

multiplex methylation SNaPshot assay for five CpGs located at ELOVL2, FHL2, KLF14, 

C1orf132 and TRIM59 genes. The first band represents the products of amplification of 

the ELOVL2 (187bp) and FHL2 (191bp), the second the amplification product of TRIM59 

(148bp) and the third band corresponds to the amplification products of C1orf132 (116bp) 

and KLF14 (114bp). NTC, negative PCR control; L, DNA Ladder. 

 

Subsequently, 1 µl of the PCR products was purified with 0.5 µl of ExoSAP-IT 

(Affymetrix, Cleveland, USA) in an initial purification reaction (37ºC for 15 min 

followed by 80ºC for 15 min) (Step 1, Figure 3.15). After, the 1.5 µl of the purified PCR 

multiplex products was submitted to the SNaPshot reaction with 1 µl of SNaPshot 

Multiplex Kit (Applied Biosystems), 0.5 µl of pool primer mix (concentrations according 

Table 3.4) and 2 µl H2O, in a total volume of 5 µl. Sequencing was performed in a 

Biometra TProfessional thermocycler (Biometra GmbH) with the following conditions: 

10 sec at 96°C, following 5 sec at 50°C and 30 sec at 60°C, for 25 cycles (Step 2, Figure 

3.15). A final purification was made using the 5 µl of the SNaPshot reaction with 1 µl of 

rSAP (Shrimp Alkaline Phosphatase Recombinant, Applied Biosystems) (37ºC for 60 

                                      Samples                                                    NTC     L 
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min and enzyme inactivation at 85ºC 15 min) (Step 2, Figure 3.15). After that, 0.5 µl of 

each the purified SNaPshot reaction was diluted in 9.5 µl of a formamide solution with 

GS120 LIZ size standard (Applied Biosystems) (9 µl formamide + 0.5 µl GS120 LIZ), 

and the SBE reactions were run using the SeqStudio Genetic Analyzer (Applied 

Biosystems) and the GeneMapper Software 6 (Applied Biosystems) (Step 3, Figure 

3.15). The methylation quantification was assessed in the electropherograms.  
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Table 3.4: Sequencing primers used for the multiplex methylation SNaPshot assay, according to Jung et al. (2019). 

 

 

 

 

 

 

Genes Primer sequences ( 5'>3') 
Concentration 

(µM) 

Length 

(nt) 
Orientation 

ELOVL2 (T)9GGGAGGAGATTTGTAGGTTTAGT 5.0 32 F 

FHL2 (T)21GTTTTGGGAGTATAGTAGTTAT 0.5 43 F 

KLF14 (T)28TTAACAACCTCAAAAATTATCTTATCTCC 0.3 57 R 

C1orf132 (T)46AAACCAAAATTTAAATCTAC 1.2 66 R 

TRIM59 (T)51CCTCAAAAACCRTCRACCACCRAC 0.1 75 R 
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Figure 3.15: Methylation SNaPshot assay. Adapted from Quick Reference Card: ABI 

PRISM® SNaPshot™ Multiplex System (Applied Biosystems, 2010). 

 

 

 

Step 1 

Step 2 

Step 3 
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3.6.1. Methylation quantification of CpGs after multiplex 

SNaPshot assay  

 

The methylation levels at each CpG site (0–1) from the ELOVL2, FHL2, KLF14, 

C1orf132 and TRIM59 genes were estimated from the nucleotide intensities measured by 

peak heights observed in the electropherograms, as described in Jung et al. (2019).  

The methylation level from ELOVL2 and FHL2 CpGs was estimated using the 

formula [C/C+T], in which C represents the methylation signal and T represents the non-

methylation signal. The DNAm level from KLF14, C1orf132 and TRIM59 CpGs was 

measured by the equation [G/G+A], in which the G is the reverse complement of C and 

the A is the reverse complement of T (Figure 3.16). 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Electropherogram of the multiplex methylation SNaPshot assay for 

detection of DNAm levels in a blood sample from a female with 51 years old. Black (C) 

and blue (G) peaks represent methylation signal; red (T) and green (A) peaks represent 

non-methylation signal. 

 

 

 

 

 

 

       ELOVL2                FHL2                  KLF14               C1orf132          TRIM59 

Peaks: 

Black: Methylation signal (C) 

Red: Non-methylation signal (T) 

Blue: Methylation signal (G) 
Green: Non-methylation signal (A) 
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3.7. Statistical analyses  

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Independent analyses 

were made for data obtained through Sanger sequencing and SNaPshot methodologies in 

each training set of different tissue types.  

Linear regression models were used to analyze relationships between methylation 

levels of CpG sites and chronological age, calculating the coefficient of correlation R, R2, 

corrected R2 and the p-value reflecting the statistical significance of the regression model. 

The unstandardized regression coefficients and corresponding p-values were also 

calculated to interpret the effect of each independent variable on the outcome. The 

normality of the dependent variable chronological age was assessed by Shapiro–Wilk and 

Kolmogorov–Smirnov tests. Multicollinearity was investigated by estimating Spearman 

correlation coefficients between predictor variables and the coefficient values >70% were 

considered as signal of multicollinearity. Cook’s distance was used to find influential 

outliers in all the predictor variables. 

For Sanger sequencing data, using the simple linear regression coefficients from 

the highest age-correlated CpG sites from each gene, ELOVL2, EDARADD, FHL2, 

PDE4C and C1orf132, we predicted age of individuals, in each training set or tissue 

combined training sets, according to the equation: Y = b0 + b1x1, where: Y is the 

predicted age of the individual; b0 is the y-intercept; b1 is the slope of the line; and x1 is 

the methylation value of the selected CpG (the independent variable). The highest age 

correlation CpG site (showing the highest value of the regression coefficient R) from each 

gene, or the best combination of CpG sites addressed by using a stepwise regression 

approach, were selected for simultaneous analysis using multiple linear regression to 

build a final age prediction model (APM). Using the multiple regression coefficients, we 
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predicted age of individuals applying the multiple linear regression formula: Y = b0 + 

b1x1 + b2x2 + . . . + bNxN, where: Y is the predicted age of the individual; b0 is the y-

intercept; b1, b2, bN the slope of the selected CpGs; and x1, x2, xN the methylation values 

of the selected CpGs.  

For the SNaPshot methodology, simple linear regressions were used to analyze 

relationships between DNAm levels and chronological age at individual CpG sites 

located at each ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes. The simple linear 

regression coefficients of each significant age-correlated CpG site were used to predict 

age of individuals in each training set. Methylation information of the significant age-

correlated CpGs was used in the stepwise regression analysis to select the best 

combination of the predictor variables to be used in the final multiple linear regression 

APMs.   

Spearman correlation coefficients between predicted and chronological ages, the 

Mean Absolute Deviation (MAD) between chronological and predicted ages and the root 

mean square error (RMSE) were calculated for each training set of different tissue type 

or combination of tissues. For each training set the obtained MAD value was interpreted 

as either correct or incorrect if the predicted age was concordant with the chronological 

age using a cutoff value according to the standard error (SE) of estimate obtained in the 

developed APM. Moreover, MAD values and correct predictions were calculated for 

subsets of distinct age categories in the training sets of blood samples and buccal swabs. 

Validation of the final APMs in each training set was performed by a K-fold cross 

validation that consists in removing randomly a set of samples from the training set and 

to develop K independent multiple linear regressions on the remaining samples. 

Subsequently, each APM is used to predict the age of the removed samples assigned as 

validation sets. The MAD values were obtained for each of the K independent multiple 
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linear regressions and the mean value was calculated. An additional validation was 

performed by splitting the complete data set into two subsets (training and validation sets) 

and an independent regression was calculated for the training set and applied to the 

validation set. In addition, when available an independent set of samples were used for 

validation purposes. 

The assessment of differences in males and females was made using the 

comparison of regression lines using the STATGRAPICS Centurion XV, version 15.2.05 

(StatPoint Technologies, Inc., VA). For the evaluation of differences, we made a 

comparison of regression lines relating chronological age and DNAm levels of each gene 

at two levels (males / females) of the categorical factor. Analyses were made to determine 

if there are significant differences between the slopes and the intercepts at the two levels 

of that categorical factor.  

The evaluation of the effect of PMI in DNAm levels was made considering six 

pairs of individuals from BDS with the same or similar chronological age (A, B, C, D, E 

and F). Individuals belonging to the pairs A, C and F have 1 year of difference between 

PMIs of the individuals of the pair, individuals of the pair D have 2 years of difference 

between the PMIs and individuals of the pairs B and E share the same PMI and were used 

as control.  
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A. DNA methylation age estimation in blood samples  

 

The obtained data from blood samples from living and deceased individuals was used on 

published original papers:  

 

Correia Dias H, Cordeiro C, Corte Real F, Cunha E, Manco L. Age estimation based on 

DNA methylation using blood samples from deceased individuals. Journal of Forensic 

Sciences 2019, 65(2): 465-470. DOI: 10.1111/1556-4029.14185. 

 

Correia Dias H, Cordeiro C, Pereira J, Pinto C, Corte Real F, Cunha E, Manco L. DNA 

methylation age estimation in blood samples of living and deceased individuals using 
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1. Introduction  

 

Several DNA methylation (DNAm) markers have been investigated in various 

tissues and body fluids using DNA-based methodologies such as bisulfite pyrosequencing 

(Weidner et al., 2014; Bekaert et al., 2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; 

Eipel et al., 2016; Cho et al., 2017; Daunay et al., 2019; Pfeifer et al., 2020), EpiTYPER 

technology (Freire-Aradas et al., 2016), massively parallel sequencing (Naue et al., 2017, 

2018; Aliferi et al., 2018) or SNaPshot assays (Lee et al., 2015; Hong et al., 2017; Jung 

et al., 2019). This allowed the identification of many CpG markers showing high 

correlations with chronological age, potential useful as forensic age predictors. Thus, a 

number of high accurate age prediction models (APMs) have been proposed for specific 

tissues, including blood (Zbieć-Piekarska et al., 2015a, 2015b; Naue et al., 2017), teeth 

(Giuliani  et al., 2016), buccal swabs (Eipel et al., 2016) or saliva (Hong et al., 2017), or 

as multi-tissue models (Horvath, 2013; Alsaleha et al., 2017; Jung et al., 2019).  

Most of DNAm markers have been investigated and validated mainly in whole 

blood of living individuals using bisulfite pyrosequencing. Because DNAm at genes 

ELOVL2, FHL2, EDARADD, PDE4C, C1orf132, KLF14 and TRIM59 have been 

repeatedly reported in independent studies to have strong age association in blood, they 

are considered to be some of the most promising age-predictive markers for blood. Both 

ELOVL2 and EDARADD genes were included in a shortlist of 44 genomic regions most 

significantly associated with age in a meta-analysis (Bacalini et al., 2017). Also, the 

PDE4C locus was ranked in the three best markers among 102 age-related CpG sites in 

blood (Weidner et al., 2014). Zbieć-Piekarska et al. (2015b) using pyrosequencing 

published an assay which included five CpG sites in the ELOVL2, FHL2, KLF14, 

C1orf132/MIR29B2C and TRIM59 genes, resulting in a Mean Absolute Deviation (MAD) 
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from the chronological age of 3.9 years in blood samples from 120 Polish individuals. 

Cho et al. (2017) replicated the strong age association for DNAm markers in the ELOVL2, 

C1orf132, TRIM59, KLF14 and FHL2 genes using pyrosequencing methodology in blood 

samples of 100 Korean individuals obtaining a MAD of 4.2 years.  

Meanwhile, the bisulfite polymerase chain reaction (PCR) sequencing 

methodology was shown to be an efficient and economical alternative tool for rapid 

quantification of DNAm, with similar linearity and accuracy than pyrosequencing 

analysis (Jiang et al., 2010; Parrish et al., 2012). 

Recently, based on CpGs selected in the Zbieć-Piekarska et al. (2015b) model, 

Jung et al. (2019) tested the five CpG sites located in ELOVL2, FHL2, KLF14, 

C1orf132/MIR29B2C and TRIM59 genes for age prediction purposes in blood, saliva and 

buccal swab samples of healthy Korean individuals using the multiplex methylation 

SNaPshot method. The age-predictive linear regression model using the five CpG sites 

showed a high correlation between predicted and chronological ages in blood samples, 

with a MAD from chronological age of 3.174 years. Moreover, at least one or more of 

these genes were previously investigated for forensic purposes in blood samples of living 

(Bekaert et al., 2015a; Zbieć-Piekarska et al., 2015a; Cho et al., 2017) or deceased 

individuals (Bekaert et al., 2015a; Hamano et al., 2016; Naue et al., 2018; Pfeifer et al., 

2020).  

Most studies on DNAm for age estimation purposes focused on the identification 

of new sets of markers in a specific population group or training specific methodologies. 

However, the validation and replication of experiments to test proposed age-predictive 

DNA markers and methodologies are strongly recommended for forensic applications to 

establish consistency between populations and laboratories (Cho et al., 2017; Daunay et 

al., 2019).  
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Moreover, the possibility that postmortem changes could alter the methylation 

status when performing age prediction should also be considered in forensic cases. To the 

best of our knowledge, only four studies have used blood samples from deceased 

individuals to address the correlation between DNAm and chronological age. The study 

of Bekaert et al. (2015a), using the pyrosequencing methodology, investigated CpG sites 

from four genes (ASPA, PDE4C, ELOVL2 and EDARADD) in blood samples from 169 

deceased and 37 living individuals. Naue et al. (2018) investigated 13 CpGs (located in 

genes DDO, ELOVL2, F5, GRM2, HOXC4, KLF14, LDB2, MEIS1-AS3, NKIRAS2, 

RPA2, SAMD10, TRIM59 and ZYG11A) in blood samples from 29 deceased individuals 

by massively parallel sequencing. These markers were previously selected as strong age-

dependent loci on whole blood from living individuals (Naue et al., 2017). Hamano et al. 

(2016) analyzed the methylation levels of the ELOVL2 and FHL2 promoter regions by 

methylation-sensitive high resolution melting (MS-HRM) using 22 living and 52 dead 

blood samples. Finally, Pfeifer et al. (2020) evaluated DNAm levels of PDE4C, ASPA, 

EDARADD and ELOVL2 genes by pyrosequencing in 151 blood samples from deceased 

individuals and compared with methylation information captured from 21 blood samples 

from living individuals.    

That said, the main purposes of the current study were as follows: 

i) to develop specific APMs for blood samples from living and deceased 

individuals of Portuguese ancestry through the bisulfite PCR sequencing methodology 

using DNAm markers at genes ELOVL2, FHL2, EDARADD, PDE4C and C1orf132;  

ii) to replicate the multiplex SNaPshot assay proposed by Jung et al. (2019) in 

blood samples from Portuguese individuals; 

iii) to compare DNAm status between different populations;  
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iv) to address putative differences in the methylation status between blood 

samples from living and deceased individuals.  

 

2. Materials and Methods  

 

2.1. Sample collection 

Peripheral blood samples of 71 healthy individuals of Portuguese ancestry (45 

females, 26 males; aged 1-95 years old), were collected in EDTA-tubes from users of 

Biobanco - Hospital Pediátrico de Coimbra and other hospitals for developing our 

DNAm model. Written informed consent was previously obtained from adult participants 

and from children´s parents, under the age of 18 years. 

A total of 73 blood samples (15 females, 58 males; aged  24-91 years old) was 

collected in EDTA-tubes during autopsy in Serviço de Patologia Forense da Delegação 

do Centro do INMLCF, after consulting RENNDA (Registo Nacional de Não Dadores) 

and from the Bodies Donated to Science (BDS) before the embalming method with Thiel 

(Eisma et al., 2013), in Departamento de Anatomia da Faculdade de Medicina da 

Universidade do Porto (Annex II). All blood samples from deceased individuals were 

collected within five days after death.  

The study protocol was approved by the Instituto Nacional de Medicina Legal e 

Ciências Forenses and by the Ethical Committee of Faculdade de Medicina da 

Universidade de Coimbra (nº 038-CE-2017).  

 

2.2. DNA extraction, quantification and bisulfite conversion  

Blood samples from living and deceased individuals were submitted to DNA 

extraction using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), as previously 
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described in Chapter 3. Sample and design research. DNA extracts were quantified in a 

Nanodrop spectrophotometer (Thermo Fisher Scientific). Genomic DNA was subjected 

to bisulfite conversion using EZ DNA Methylation-GoldTM Kit (Zymo Research, Irvine, 

USA) according to the instructions of manufacturer (previously described  in Chapter 3. 

Sample and design research). Briefly, 20 µl of genomic DNA (in a total amount of 200 

to 500 ng) was treated with sodium bisulfite and modified DNA was extracted to a final 

volume of 10 μl. 

 

2.3. Polymerase chain reaction (PCR) and Sanger sequencing  

After bisulfite conversion, the modified DNA samples were submitted to PCR for 

selected regions of genes ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 using the 

Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) and sequenced with Big-Dye 

Terminator v1.1 Cycle Sequencing kit (Applied Biosystems), using primers and 

conditions previously described  in Chapter 3. Sample and design research. C1orf132 

gene was analyzed only for blood samples from deceased individuals. To assess the 

reproducibility of the method, two separate PCR amplifications and Sanger sequencing 

analyses were performed in about 10% of DNA samples for all genes. 

Two independent investigators evaluated about 50% of the samples included in 

this study to indemnify the inter-observatory error.  

 

2.4. SNaPshot assay  

After bisulfite conversion, the modified DNA samples were submitted to a 

multiplex SNaPshot assay for the five CpG sites at genes ELOVL2, FHL2, KLF14, 

C1orf132/MIR29B2C and TRIM59 with the primers and conditions previously described 

in Jung et al. (2019). Particular conditions for multiplex PCR amplification and multiplex 
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SBE (single-base extension) reactions were as previously described in Chapter 3. Sample 

and design research.  

 

2.5. DNAm quantification 

Methylation quantification of C in each CpG dinucleotides evaluated by Sanger 

sequencing and SNaPshot methodologies was estimated according previously described 

in Chapter 3. Sample and design research. 

 

2.6. Statistical analyses 

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Linear regression models 

were used to analyze relationships between methylation levels and chronological age. 

Independent analyses were made for Sanger sequencing and SNaPshot methodologies in 

the set of blood from living individuals, deceased individuals and in the overall study 

sample (blood samples from living and deceased individuals).  

For Sanger sequencing data, using the simple linear regression coefficients from 

the highest age-correlated CpG sites selected from each gene, we predicted age of 

individuals in blood samples from living and deceased individuals, and in the overall 

sample. The same highest age-correlated CpG sites in each set of samples were selected 

for simultaneous analysis using multiple linear regression to build specific final APMs 

for blood from living and deceased individuals and for the overall set of living and 

deceased individuals. A training set of 53 healthy individuals (35 females, 18 males; aged 

1-95 years old) was used for development of the APM. In deceased individuals, the 

training set for development of APM consisted of 51 autopsies (7 females, 44 males; aged 

24-86 years old). 
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For the multiplex SNaPshot assay, simple linear regression coefficients of each 

significant age-correlated CpG located at ELOVL2, FHL2, KLF14, TRIM59 and 

C1orf132 genes were used to predict age of individuals in blood samples from living, 

deceased and the overall set of samples. Methylation information of the significant age-

correlated CpGs was used in the multiple regression approach to select the predictor 

variables to be used in the final multi-locus APMs. The training sets included peripheral 

blood samples from 59 Portuguese healthy living individuals (37 females, 22 males; aged 

1-94 years old) and a total of 62 blood samples from deceased individuals (13 females, 

49 males; aged 28-86 years old). 

For both methodologies, the mean absolute deviation (MAD) between 

chronological and predicted ages and the root mean square error (RMSE) were calculated 

using the final APM for training sets of blood samples. MAD values were also calculated 

for subsets of distinct age categories in each training set. For living individuals the MAD 

values were calculated for subsets of four distinct age categories: <18 years old, 19-39 

years old, 40-60 years old and >61 years old. For deceased individuals, three distinct age 

categories were addressed (24-51 years old, 52-71 years old and 72-88 years old). Each 

obtained result was interpreted as either correct or incorrect if the predicted age was 

concordant with the chronological age using a cutoff value according to the standard error 

(SE) of estimate obtained in the developed APM.  

Validation of the final APMs developed for each set of samples and each 

methodology was performed by splitting the complete data set into two subsets (training 

and validation sets) and by a 4-fold cross validation as previously referred in Chapter 3. 

Sample and design research. Additionally, for the methylation information captured 

using bisulfite sequencing methodology an independent validation of the APM was 

performed using an independent set of 18 blood samples of healthy individuals (10 
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females, 8 males; aged 1-93 years old) and an independent set of 22 blood samples of  

deceased individuals (8 females, 14 males; aged 37-91 years old).  

The evaluation of differences between sex was made through comparison of two 

regression lines relating chronological age and DNAm levels of each gene at two levels 

(males/females) of the categorical factor, using the software STATGRAPHICS Centurion 

XV, version 15.2.05 (StatPoint Technologies, Inc., VA) in the training set of living 

individuals using both methodologies.  

 

3. Results 

 

In the present study we evaluated the DNAm levels of several CpG sites located 

at  ELOVL2, FHL2, EDARADD, PDE4C, KLF14, C1orf132 and TRIM59 genes through 

bisulfite conversion followed by PCR and direct Sanger sequencing or the SNaPshot 

methodology in blood samples from living and deceased individuals.  

The efficiency of bisulfite conversion was confirmed measuring the conversion of 

a random number of cytosines at non-CpG positions. A mean conversion efficiency of 

99.99% was observed over all samples and loci.  

As Sanger sequencing is a semi-quantitative methodology for assessing DNAm 

levels, we tested the reproducibility of the method in about 10% of the blood samples of 

living and deceased individuals by two separate PCR amplifications and sequencing 

analyses for all genes. The obtained data revealed that DNAm levels obtained in each 

CpG site of ELOVL2, EDARADD, PDE4C, C1orf132 and FHL2 for the same individual 

are consistent in duplicate analysis (Supplementary Figure S1). The mean percentage 

difference in DNAm levels for all CpGs in each gene was 6.5% for PDE4C (two samples), 
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4.3% for EDARADD (seven samples), 2.9% for ELOVL2 (five samples), 3.9% for FHL2 

(seven samples) and 7.6% for C1orf132 (nine samples).  

In addition, the accuracy of methylation levels obtained by bisulfite sequencing 

was evaluated by analyzing the PCR mixture amplification for each locus using three 

different methylation rates of 0%, 50%, and 100% (Supplementary Figure S2). For each 

best-selected site in blood samples from living and deceased individuals, bisulfite 

sequencing resulted in DNAm levels that bore a significant linear relationship to expected 

methylation levels (Supplementary Figure S2). 

 

3.1. Age estimation in blood samples from living individuals  

 

We evaluated DNAm levels of several CpG sites located at genes ELOVL2, FHL2, 

EDARADD and PDE4C through bisulfite conversion followed by PCR and direct Sanger 

sequencing in 71 blood samples from living Portuguese individuals. Moreover, we 

reanalyzed the multiplex methylation SNaPshot assay of Jung et al. (2019) testing the 

five CpG sites located in genes ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 in blood 

samples from 59 healthy Portuguese individuals.  

 

3.1.1. DNAm data obtained in blood samples from living individuals using 

bisulfite Sanger sequencing 

 

DNAm levels and sex  

Two simple linear regression lines of methylation status and age between males 

and females showed no statistically significant difference in slope and intercept for target 
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sites in blood samples from living individuals (P-value >0.05, Table 4.1). Thus, all the 

analyses were made ignoring differences due to sex.   

 

Table 4.1: Comparison of two regression lines between males and females in blood 

samples from living individuals using data obtained from Sanger sequencing. 

 

Marker 
P-value 

Intercept Slope 

ELOVL2 CpG6 0.5884 0.7638 

FHL2 CpG3 0.9968 0.1959 

EDARADD CpG3 0.3914 0.2013 

PDE4C CpG2 0.2511 0.0612 

 

Correlation between DNAm levels and chronological age  

DNAm levels of 37 CpG sites located at ELOVL2 (9 CpGs), FHL2 (12 CpGs), 

EDARADD (4 CpGs) and PDE4C (12 CpGs) genes were analyzed in a training set of 53 

blood samples from living Portuguese individuals (35 females, 18 males; aged 1-95 years 

old). Positive correlations between methylation levels and chronological age were 

observed for all examined CpG sites of the ELOVL2 gene and negative correlations were 

observed for CpG2, CpG3 and CpG4 at EDARADD gene (Supplementary Table S1). 

For FHL2 and PDE4C genes, different correlations were observed among the tested CpG 

markers: clear positive correlations were observed for FHL2 CpG1 to CpG6 and CpG8, 

and PDE4C CpG1 to CpG5; and clear negative correlations were observed for FHL2 

CpG11, CpG12, and PDE4C CpG6, CpG9 (Supplementary Table S1). Supplementary 

Figure S3 shows the correlation between age and DNAm levels of the best site in these 

four genes.   
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Development of an age prediction model (APM)  

Simple linear regressions testing the correlation between methylation levels and 

chronological age, revealed significant associations (P-value <0.05) for all CpGs from 

the genes ELOVL2 and FHL2 (except CpG7, CpG9 and CpG10) (Supplementary Table 

S1). Significant associations with methylation levels were also observed for EDARADD 

CpG2, CpG3 and CpG4, as well as for PDE4C CpG1 to CpG6 and CpG9 

(Supplementary Table S1).  

The FHL2 CpG3 (R = 0.940, P-value = 1.78 × 10-25) was the most powerful CpG 

site considering all CpGs analyzed in the four genes, explaining 88.1% of the variation in 

age, followed by ELOVL2 CpG6 (R = 0.936; P-value = 7.97 × 10-25), explaining 87.4% 

of the variation in age, EDARADD CpG3 (R = -0.888; P-value = 7.86 × 10-19), explaining 

78.4% of the variation in age, and PDE4C CpG2 (R = 0.852; P-value = 6.32 × 10-16), 

explaining 72% of the variation in age (Table 4.2; Supplementary Table S1). The 

predicted age of individuals was calculated through the simple linear regression 

coefficients for the individual strongest age-associated markers and the obtained MAD 

values between predicted and chronological ages were as follows: 8.01 years for ELOVL2 

CpG6; 7.81 years for FHL2 CpG3; 10.57 years for EDARADD CpG3; and 11.87 years 

for PDE4C CpG2 (Table 4.2; Supplementary Figure S4).  
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Table 4.2: Simple and multiple linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD and PDE4C genes to test for 

association between the DNAm levels obtained by bisulfite sequencing and chronological age in blood samples from living individuals. 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

Locus 
CpG 

site 
Location N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 CpG6 Chr6:11044644 53 0.936 0.877 0.874 10.41 7.97 × 10-25 8.01 

FHL2 CpG3 Chr2:105399291 53 0.940 0.884 0.881 10.11 1.78 × 10-25 7.81 

EDARADD CpG3 Chr1:236394382 53 -0.888 0.788 0.784 13.63 7.86 × 10-19 10.57 

PDE4C CpG2 Chr19:18233133 53 0.852 0.725 0.720 15.53 6.32 × 10-16 11.87 

Multiple linear regression 

APM (ELOVL2 CpG6, FHL2 CpG3, 

EDARADD CpG3 and PDE4C CpG2) 
53 0.972 0.946 0.941 7.13 1.11 × 10-29 5.35 
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Combining the methylation information of CpGs most highly associated with age 

per locus, ELOVL2 CpG6, FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2, the multi-

locus APM reveals a higher age correlation value (R = 0.972), highly significant (P-value 

= 1.11 × 10-29), explaining 94.1% of the variation in age (corrected R2 = 0.941)  (Table 

4.2). The value of corrected R2 demonstrated that only around 6% of the variation in age 

cannot be explained by that model (Table 4.2). All the selected predictor variables 

showed a significant p-value justifying their inclusion in the final model (Table 4.3). 

Table 4.3: Statistical parameters obtained in a multiple regression model with the four 

CpGs in genes ELOVL2, FHL2, EDARADD and PDE4C in blood samples from living 

individuals.  

 

 

 

 

 

 

Predicted age of individuals was calculated through the multiple linear regression 

coefficients (Table 4.3) using the formula: (-81.879) + 103.031 × DNAm level ELOVL2 

CpG6 + 99.331 × DNAm level FHL2 CpG3 - 58.97 × DNAm level EDARADD CpG3 + 

35.843 × DNAm level PDE4C CpG2. A strong correlation between predicted and 

chronological ages was obtained (Spearman correlation coefficient, r = 0.972) with a 

MAD from chronological age of 5.35 years (RMSE = 6.64) (Figure 4.1). Correct 

predictions were 75.5% assuming that chronological and predicted ages match ±7 years, 

according to the standard error of estimate calculated for the final APM (SE = 7.13)   

(Table 4.2).  

Marker Coefficient P-value 

(Intercept) -81.879 0.011 

ELOVL2 CpG6  103.031 0.000 

FHL2 CpG3 99.331 0.001 

EDARADD CpG3 -58.970 0.028 

PDE4C CpG2 35.843 0.013 
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Figure 4.1: Predicted age versus chronological age using the four best markers ELOVL2 

CpG6, FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2 in blood samples from living 

individuals. MAD and Spearman correlation coefficient, r, are plotted on the chart. 

 

Differences between predicted and chronological ages with aging  

Evaluating the differences between ages using the multiple APM developed in 

living individuals, larger differences between predicted and chronological ages were 

observed with increasing age (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Differences between chronological and predicted ages (years) plotted against 

chronological age (years) in blood samples from living individuals. 
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To investigate these age-related differences, we divided our training set of 53 

living individuals in four age groups (<18 years old; 18-39 years old; 40-60 years old; 

>61 years old) to estimate MAD and percentage of correct predictions in each age range 

group (Table 4.4; Figure 4.3). Age predictions were considered either correct or incorrect 

if the predicted age was concordant with the chronological age ±7 years, according to the 

standard error of estimate calculated for the final APM (SE = 7.13). 

The MAD value is higher in the two older age categories (G3 and G4 age range 

groups): 40-60 years old (MAD = 6.49 years) and >61 years old (MAD = 6.27 years). In 

concordance, the lower percentage of correct predictions was observed in the older age 

groups G3 and G4 (58.3% and 76.5%, respectively). For younger individuals <18 years 

old (G1) and age range group 19-39 years old (G2), the smaller MAD values were 

obtained (MAD = 3.26 and 4.99 years, respectively) and the higher values of correct 

predictions were observed (83.3% in both age groups) (Table 4.4; Figure 4.3).  

 

Table 4.4: MAD between predicted and chronological ages stratified by age group in the 

training set of 53 blood samples from living individuals. 

 

 

 

 

 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  <18 years 12 3.26 83.3 

G2 19-39 years 12 4.99 83.3 

G3 40-60 years 12 6.49 58.3 

G4  >61 years 17 6.27 76.5 

Overall 1-95 years 53 5.35 75.5 
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Figure 4.3: MAD from chronological age calculated for each age group in blood samples 

from living individuals. The MAD is printed on top of each respective age range. 

 

Validation of the multi-locus APM developed in living individuals  

For evaluation of the accuracy of our multi-locus APM with ELOVL2 CpG6, 

FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2 markers we made a 4-fold cross 

validation using our data set of 53 blood samples from living individuals. The mean of 

MAD values obtained amongst the four validation sets was 6.20 years (RMSE = 6.27), 

similar to the obtained in the overall population (MAD = 5.35 years).  

The validation approach through splitting the overall sample set of 53 living into 

two sets of 27 and 26 samples (training and validation sets) allowed to obtain a MAD 

value of 6.08 years (RMSE = 7.45) in the new training set of 27 samples. Applying this 

multiple model on the validation set of 26 samples, a MAD of 5.81 years was obtained 

(RMSE = 6.51). Both independent MAD values were very close to the MAD of 5.35 years 

for the overall sample.  

Additionally, using an independent sample set of 18 blood samples from healthy 

Portuguese individuals (10 females, 8 males; aged 1-93 years old), we evaluated the 

performance of our multi-locus APM developed in the overall sample of 53 living 

individuals. Based on the multiple linear regression model a strong correlation between 
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predicted and chronological ages was observed (Spearman correlation coefficient, r = 

0.977), with a MAD from the chronological age of 4.98 years (RMSE = 6.58) (Figure 

4.4). 

 

 

 

 

 

 

 

 

Figure 4.4: Predicted age versus chronological age of the test set, 18 living individuals, 

using the final model developed for blood samples from living individuals with the 

markers ELOVL2 CpG6, FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2. MAD value 

and Spearman correlation coefficient, r, are plotted on the chart. 

 

In spite of the smallest number of samples in the test set of 18 individuals, 

evaluating the differences according to age ranges, we observed also an increase of MAD 

values with the increase of age (Table 4.5; Figure 4.5). Age groups <18 and 19–39 were 

grouped together because of the low number of samples.   

 

Table 4.5: MAD between predicted and chronological ages stratified by age group in the 

test set of 18 blood samples from living individuals. 

 

 

 

 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1 + G2 0-39 years 7 3.38 100 

G3 40-60 years 5 5.70 60.0 

G4 >61 years 6 6.25 66.7 

Overall 1-95 years 18 4.98 77.8 
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Figure 4.5: MAD from chronological age in the test set, 18 samples, using the developed 

APM for blood samples from living individuals. The MAD values are printed on the top 

of each age range. Age groups 1 and 2 were grouped together. 

 

3.1.2. DNAm data obtained in blood samples from living individuals using 

SNaPshot methodology 

 

Correlation between DNAm levels and chronological age 

DNAm levels at the five CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 

and TRIM59 genes were simultaneously measured through a SNaPshot assay in 

peripheral blood samples from 59 healthy Portuguese individuals (22 males, 37 females; 

aged 1-94 years old). Three samples did not amplify for ELOVL2 gene and one sample 

did not amplify for KLF14 gene.  

Two simple linear regression lines of methylation status and age between males 

and females showed no statistically significant difference in slope and intercept in the 

sample set of living individuals (except in slope for C1orf132) (Table 4.6). Thus, all the 

analyses were made ignoring sex differences. 
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Table 4.6: Comparison of two regression lines between males and females in blood 

samples from living individuals using data obtained from SNaPshot methodology. 

 

 

 

 

 

Positive correlations between DNAm and chronological age were observed for 

ELOVL2, FHL2, KLF14 and TRIM59 genes and a negative correlation with age was 

obtained for C1orf132 gene (Supplementary Figure S5). 

 

Development of an age prediction model (APM) 

Using simple linear regression, all the five CpG sites showed strong correlations 

between DNAm and chronological age (Supplementary Figure S5). The strongest 

correlation was observed for ELOVL2 gene (R = 0.951, P-value = 3.58 × 10-29), 

explaining 90.2% of the variation in age, followed by FHL2 (R = 0.946, P-value = 1.49 

× 10-29), explaining 89.3% of the variation in age, C1orf132 (R = -0.924, P-value = 1.67 

× 10-25), explaining 85.2% of  the variation in age, and TRIM59 (R = 0.910, P-value = 

2.04 × 10-23), explaining 82.4% of the variation in age. The KLF14 gene showed the 

lowest age correlation (R = 0.791, P-value = 1.57 × 10-13), explaining 61.8% of the 

variation in age (Table 4.7). Predicting age through the simple linear regression equation 

for each CpG site revealed  MAD values of  6.73 years for ELOVL2, 7.40 years for FHL2, 

8.29 years for TRIM59, 8.80 years for C1orf132, and 13.46 years for KLF14 (Table 4.7; 

Supplementary Figure S6). 

Marker 
P-value 

Intercept Slope 

ELOVL2  0.4473 0.9326 

FHL2  0.2844 0.7228 

TRIM59 0.2984 0.2098 

KLF14 0.4401 0.3436 

C1orf132 0.8803 0.0080 
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Table 4.7: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 genes using a 

SNaPshot assay in 59 blood samples from living individuals. 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.

Locus Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 Chr6:11044628 56 0.951 0.904 0.902 9.18 3.58 × 10-29 6.73 

FHL2 Chr2:105399282 59 0.946 0.895 0.893 9.42 1.49 × 10-29 7.40 

C1orf132 Chr1:207823681 59 -0.924 0.854 0.852 11.09 1.67 × 10-25 8.80 

TRIM59 Chr3:160450189 59 0.910 0.828 0.824 12.07 2.04 × 10-23 8.29 

KLF14 Chr7:130734355 58 0.791 0.625 0.618 17.59 1.57 × 10-13 13.46 

Multiple linear regression 

APM (ELOVL2, FHL2 and 

C1orf132) 
56 0.982 0.965  0.963 5.65 7.315 × 10-38 4.25 
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We tested the age-predictive multiple linear regression model using 

simultaneously all the five CpG sites in the training set of 59 blood samples of living 

individuals. Although individually all the five CpG sites showed strong and significant 

associations with age (Table 4.7), in the multivariate analysis the CpG sites at KLF14 

and TRIM59 genes showed non-significant age correlation values (P-value = 0.479 and  

P-value = 0.948, respectively), which could reveal signs of multicollinearity between 

variables (Supplementary Table S2). In concordance, when we applied the stepwise 

linear regression analysis, the same three significant CpG sites were chosen (located at 

ELOVL2, FHL2 and C1orf132 genes) (Table 4.8). Thus, we built a final model with these 

three significant CpGs which reveals a higher age correlation value (R = 0.982), 

explaining 96.3% of the variation in age (corrected R2 = 0.963), highly significant (P-

value = 7.315 × 10-38) (Table 4.7). Applying this model, the age prediction for each 

individual was obtained through the formula (Table 4.8): 38.751 + 61.058 × DNAm level 

ELOVL2 + 80.021 × DNAm level FHL2 - 47.631 × DNAm level C1orf132.  

 

Table 4.8: Statistical parameters  obtained in a multiple regression model with the three 

CpGs in genes ELOVL2, FHL2 and C1orf132, selected by stepwise regression approach, 

in blood samples from living individuals.  

 

 

 

 

 

The developed APM enabled us to estimate age with a correlation between 

predicted and chronological ages of 0.969 (Spearman correlation coefficient, r = 0.969) 

and a MAD from chronological age of 4.25 years (RMSE = 5.39) (Figure 4.6). Correct 

Marker Coefficient P-value 

(Intercept) 38.751 0.000 

ELOVL2 61.058 0.000 

FHL2 80.021 0.000 

C1orf132 -47.631 0.000 
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predictions were 75% assuming that chronological and predicted ages match ± 6 years, 

according to the standard error of estimate calculated for the final APM (SE = 5.65).    

 

 

 

 

 

 

 

 

 

Figure 4.6: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay developed with the three CpGs located at ELOVL2, FHL2 and C1orf132 

genes in blood samples from living individuals. MAD and Spearman correlation 

coefficient, r, are plotted on the chart. 

 

Differences between predicted and chronological ages with aging 

Evaluating the differences between ages using the final APM developed in living 

individuals with the three CpGs located at ELOVL2, FHL2 and C1orf132, larger 

differences between predicted and chronological ages were observed with increasing age 

(Figure 4.7).  
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Figure 4.7: Differences between chronological and predicted ages (years) plotted against 

chronological age (years) in blood samples from living individuals. 

 

The MAD values between predicted and chronological ages increase with the 

increasing of age in blood samples of living individuals: the highest MAD value was 

obtained for the age group >61 years old (MAD = 5.70 years) and the smallest for age 

group <18 years old (MAD = 3.03 years) (Table 4.9; Figure 4.8). In concordance, the 

percentage of correct predictions were higher in younger age groups (Table 4.9). 

 

Table 4.9: MAD between predicted and chronological ages stratified by age group in the 

training set of 56 blood samples from living individuals. 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  <18 years 12 3.03 91.7 

G2 19-39 years 12 3.28 83.4 

G3 40-60 years 14 4.26 78.6 

G4  >61 years 18 5.70 55.6 

Overall 1-94 years 56 4.25 75.0 
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Figure 4.8: MAD from chronological age calculated for each age group in blood samples 

from living individuals. The MAD is printed on top of each respective age range. 

 

Validation of the multi-locus APM developed in living individuals  

The accuracy of the final APM built with CpGs located at ELOVL2, FHL2 and 

C1orf132 was tested by a 4-fold cross validation. The MAD value between predicted and 

chronological ages was obtained in the validation set for each of the four independent 

multiple linear regressions and the calculated mean value reveals an average MAD value 

from chronological age of 4.75 years (RMSE = 4.77) amongst the four test sets, very close 

to the MAD of 4.25 years from the whole training set. 

As an additional validation, we split the dataset into two similar sets of 27 and 29 

samples each (training and validation set) and re-fitted the multivariate linear regression 

model on the training set. This allowed us to obtain an independent MAD value for the 

training set of 3.86 years (RMSE = 5.09). When this model was applied to the validation 

set, a MAD of 4.93 years was obtained (RMSE = 6.37). Both independent MAD values 

were very close to the MAD of 4.25 obtained from the whole data set (56 individuals). 
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3.1.3. Comparison between methodologies    

Comparing age correlation values of the two CpGs (ELOVL2, Chr6:11044628 and 

FHL2, Chr2:105399282) analyzed by both bisulfite sequencing and SNaPshot 

methodologies in the set of living individuals, we observed similar and very strong age 

correlation values (ELOVL2, R = 0.920 vs. R = 0.951 and FHL2, R = 0.937 vs. R = 0.946, 

respectively) (Table 4.10). 

 

Table 4.10: Comparison of age-correlated values obtained in blood samples from living 

Portuguese individuals through Sanger and SNaPshot methodologies. 

 

Abbreviations: R, Pearson correlation coefficient.  

 

3.2. Age estimation in blood samples from deceased individuals  

In the present section, we evaluated the association between chronological age 

and DNAm levels at genes ELOVL2, EDARADD, FHL2, PDE4C and C1orf132 in blood 

samples from deceased individuals, using the bisulfite PCR sequencing methodology. 

Moreover, we analyzed DNAm levels at the five CpG sites from the ELOVL2, FHL2, 

KLF14, C1orf132 and TRIM59 genes in blood samples of deceased individuals, through 

the multiplex methylation SNaPshot assay described in Jung et al. (2019). 

As we only have 15 females in our data set of blood samples from deceased 

individuals evaluated by the Sanger sequencing methodology (7 females in training set, 

 

Chromosomal location  

GRCh38  

(Position in 450K array) 

Portuguese ancestry 

Sanger sequencing SNaPshot 

Blood from living  

(1-95 years) 

Blood from living  

(1-94 years) 

R  R2 R  R2 

ELOVL2  

Chr6:11044628 
0.920 0.846 0.951 0.904 

FHL2  

Chr2:105399282 (cg06639320) 
0.937 0.878 0.946 0.895 
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8 females in an independent test set) and 13 females in the training set evaluated by the 

SNaPshot method, no statistically analysis was made for comparison between males and 

females. Hence, all the analyses were made ignoring sex differences. 

 

3.2.1. DNAm data obtained in blood samples from deceased individuals 

using bisulfite Sanger sequencing  

 

Correlation between DNAm levels and chronological age  

Forty-three CpG sites (ELOVL2: 9 CpGs; EDARADD: 4 CpGs; FHL2: 12 CpGs; 

PDE4C: 12 CpGs; and C1orf132: 6 CpGs) were selected for methylation evaluation 

through the bisulfite PCR sequencing method in the training set of 51 blood samples (7 

females, 44 males; aged 24-86 years old) from deceased individuals. The focused CpG 

positions were those selected in previous studies, with some adjacent CpG sites also 

considered in the analysis. For the set of 51 blood from deceased individuals, two samples 

did not amplify for C1orf132 gene and two samples did not amplify for ELOVL2 and 

PDE4C genes. 

To obtain a first overview of the markers and the change of DNAm per year, a 

linear regression for individual CpG sites was performed in the training set of 51 

individuals, after addressing the normal distribution of the dependent variable 

(Supplementary Table S3). The ELOVL2 locus showed highly significant values for all 

the selected CpG sites (R ≥0.66) reflecting the similar strength of the change in DNAm 

with age across all CpGs. For the remaining four loci, several CpG sites revealed no age-

dependency (non-significant p-values) and some CpGs, although significantly associated, 

revealed moderate or low correlation values. For FHL2, all selected CpGs showed lower 

or moderate change of DNAm with age (R <0.50) (Supplementary Table S3).  
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Development of an age prediction model (APM)  

Simple and multiple APMs were developed for the most significant age-associated 

CpG marker in each locus, which mean the CpG with the higher age correlation 

coefficient and more significant p-value. A clear positive correlation between DNAm 

levels and age was observed for ELOVL2 CpG4, PDE4C CpG2 and FHL2 CpG2 markers 

and a clear negative correlation was observed for C1orf132 CpG1 and EDARADD CpG3 

markers (Supplementary Figure S7).   

The ELOVL2 CpG4 showed the strongest correlation with age (R = 0.785; P-value 

= 2.39 × 10-11), explaining 60.8% of the variation in age, followed by C1orf132 CpG1 (R 

= -0.634; P-value = 0.000001), explaining 38.9% of the variation in age. For the 

remaining genes, the strongest age-correlated sites were: PDE4C CpG2 (R = 0.592; P-

value = 0.000008), explaining 33.6% of the variation in age; EDARADD CpG3 (R = -

0.621; P-value = 0.000001), explaining 37.3% of the variation in age; and FHL2 CpG2 

(R = 0.465; P-value = 0.00058), explaining 20% of the variation in age (Table 4.11; 

Supplementary Table S3).   

Predicting age based on DNAm levels of the best sites through the simple linear 

regression coefficients allowed to obtain a MAD of 8.89 years for ELOVL2 CpG4, 9.35 

years for PDE4C CpG2, 9.38 years for C1orf132 CpG1, 9.93 years for EDARADD CpG3 

and 11.40 years for FHL2 CpG2 (Table 4.11; Supplementary Figure S8). 

Because DNAm for the best CpG markers showed a linear relationship with age, 

no statistical transformation of variables was made. In spite of this, as a few existing 

studies refer a quadratic regression for ELOVL2 (Bekaert et al., 2015a) we tested the 

better fit for the relationship between DNAm levels and chronological age. The linear 

regression model showed the best result for ELOVL2 CpG4 (linear: R = 0.785, MAD = 

8.89, RMSE = 9.99; quadratic: R = 0.780, MAD = 8.48, RMSE = 10.10).  
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Table 4.11: Simple and multiple linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes 

to test for association between DNAm levels obtained by bisulfite sequencing and chronological age in blood samples from deceased individuals.  

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.

Locus CpG site Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 CpG4 Chr6:11044640 49 0.785 0.617 0.608 10.20 2.39 × 10-11 8.89 

C1orf132 CpG1 Chr1:207823681 49 -0.634 0.402 0.389 12.68 0.000001 9.38 

EDARADD CpG3 Chr1:236394382 51 -0.621 0.385 0.373 12.72 0.000001 9.93 

PDE4C CpG2 Chr19:18233133 49 0.592 0.350 0.336 13.29 0.000008 9.35 

FHL2 CpG2 Chr2:105399288 51 0.465 0.216 0.200 14.36 0.000584 11.40 

Multiple linear regression 

APM (ELOVL2 CpG4, C1orf132 CpG1, 

EDARADD CpG3, PDE4C CpG2 and FHL2 

CpG2) 

47 0.888 0.788 0.763 8.02 8.17 × 10-13 6.08 
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After addressing the absence of multicollinearity between the five most significant 

age-associated CpG sites (ELOVL2 CpG4, C1orf132 CpG1, EDARADD CpG3, PDE4C 

CpG2, FHL2 CpG2), and confirming the absence of outliers (Cook’s D <1), we tested a 

stepwise model by multiple linear regression joining successively the five markers (data 

not shown). An increase on age-associated statistical values was observed with the 

successive addition of CpGs. The overall APM using the five CpGs showed the most high 

correlation coefficient (R = 0.888), highly significant (P-value = 8.17 × 10-13), explaining 

76.3% of the variation in age (Table 4.11). Applying this model, the age prediction for 

each individual was obtained with the multiple linear regression coefficients (Table 4.12) 

through the formula: 20.495 + 77.938 × DNAm level ELOVL2 CpG4 + 46.879 × DNAm 

level FHL2 CpG2 – 70.729 × DNAm level EDARADD CpG3 + 28.741 × DNAm level 

PDE4C CpG2 – 47.984 × DNAm level C1orf132 CpG1. Figure 4.9 presents a plot with 

chronological age versus predicted age in the training set of 47 individuals. A strong 

correlation between predicted and chronological ages was observed (Spearman 

correlation coefficient, r = 0.868), with a MAD of 6.08 years (Figure 4.9). The success 

rate of correct predictions was 63.8% assuming that chronological and predicted ages 

match ± 8 years (according to the SE of 8.02, Table 4.11). 

 

Table 4.12: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 in blood samples 

from deceased individuals.  

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 20.495 0.559 

ELOVL2 CpG4  77.938 0.001 

C1orf132 CpG1 -47.984 0.015 

EDARADD CpG3  -70.729 0.001 

PDE4C CpG2 28.741 0.196 

FHL2 CpG2 46.879 0.030 
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Figure 4.9: Predicted age versus chronological age using the five best markers ELOVL2 

CpG4, FHL2 CpG2, EDARADD CpG3, PDE4C CpG2 and C1orf132 CpG1 in blood 

samples from deceased individuals. MAD and Spearman correlation coefficient, r, are 

plotted on the chart. 

 

Differences between predicted and chronological ages with aging  

Evaluating the differences between ages using the multi-locus APM developed 

for blood samples from deceased individuals through bisulfite PCR sequencing we 

observed some differences between age categories (Figure 4.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in blood samples from deceased individuals.  
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To investigate these age-related differences, we divided our training sample set in 

three age groups (Group 1: 24-51 years old; Group 2: 52-71 years old; Group 3: 72-86 

years old), and then we calculated the MAD values and percentage of correct predictions 

(Table 4.13; Figure 4.11). A higher MAD value was observed in G3, which is the group 

that included older age categories (72-86 years old). Also, the percentage of correct 

predictions showed to be the lowest in this age range (Table 4.13).  

 

Table 4.13: MAD between predicted and chronological ages stratified by age group in 

the training set of 47 blood samples from deceased individuals. 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  24-51 years 14 6.69 57.1  

G2 52-71 years 23 4.97 78.3  

G3 72-86 years 10 7.79 40.0  

Overall 24-86 years 47 6.08 63.8 

 

 

 

 

 

 

 

 

Figure 4.11: MAD from chronological age calculated for each age group in blood 

samples from deceased individuals. The MAD is printed on top of each respective age 

range. 
 

Validation of the multi-locus APM developed in deceased individuals 

The model accuracy of the APM, based on DNAm levels of ELOVL2 CpG4, 

C1orf132 CpG1, FHL2 CpG2, PDE4C CpG2 and EDARADD CpG3 markers, was 
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evaluated through a 4-fold cross validation in the training set of 47 deceased individuals, 

producing a MAD (mean value obtained for the four test sets) of 7.22 years (RMSE = 

7.43). This value was very close to the MAD of 6.08 (RMSE = 7.49) obtained in the 

whole training set. 

The validation by splitting the overall training set into two sets of 24 and 23 

samples (training and validation sets) allowed to obtain an independent MAD value for 

the training set of 6.11 years (RMSE = 7.38). Applying the model on the validation set, a 

MAD of 7.23 years (RMSE = 8.35) was obtained. Both independent MAD values were 

very close to the MAD of 6.08 years (RMSE = 7.49). 

Additionally, an independent set of 22 blood samples from deceased individuals 

(8 females, 14 males; aged 37-91 years old) was used to test the accuracy of the developed 

APM. In validation set, three samples did not amplify for C1orf132 and one of these three 

samples did not amplify for EDARADD, ELOVL2 and PDE4C. The validation in 19 

samples revealed a MAD of 8.84 years (RMSE = 10.98) (Figure 4.12). 

 

 

 

 

 

 

 

 

 

Figure 4.12: Predicted age versus chronological age of the test set, 19 deceased 

individuals, using the final best model developed for blood samples from deceased 

individuals including the markers ELOVL2 CpG4, FHL2 CpG2, EDARADD CpG3, 

C1orf132 CpG1 and PDE4C CpG2. MAD and Spearman correlation coefficient, r, are 

plotted on the chart. 
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3.2.2. DNAm data obtained in blood samples from deceased individuals 

using SNaPshot methodology 

 

Correlation between DNAm levels and chronological age 

A total of 62 blood samples from deceased individuals (49 males, 13 females; 

aged 28-88 years old) was tested using a multiplex methylation SNaPshot assay described 

in Jung et al. (2019). Some samples did not amplify: one sample for TRIM59 gene, three 

samples for KLF14 gene and two of these three samples also did not amplify for C1orf132 

gene. Among the five markers simultaneously analyzed using the multiplex SNaPshot 

assay, positive correlations were observed for ELOVL2, FHL2, KLF14 and TRIM59 genes 

and a negative correlation was obtained for C1orf132 gene (Supplementary Figure S9). 

 

Development of an age prediction model (APM) 

Testing age association among the five CpGs through simple linear regression, the 

CpG site located at ELOVL2 showed the strongest correlation between DNAm and 

chronological age (R = 0.791, P-value = 2.04 × 10-14), explaining 61.9% of the variation 

in age, followed by TRIM59 (R = 0.769, P-value = 4.78 × 10-13), explaining 58.4% of the 

variation in age, FHL2 (R = 0.654, P-value = 8.16 × 10-9), explaining 41.8% of the 

variation in age, C1orf132 (R = -0.591, P-value = 6.56 × 10-7), explaining 33.8% of the 

variation in age, and finally KLF14 (R = 0.568, P-value = 0.000003), explaining 33.1% 

of the variation in age (Table 4.14). Simple APMs were developed for each CpG site and 

the obtained MAD values from chronological age were 7.64 years, 7.97 years, 9.81 years, 

9.99 years and 10.40 years for ELOVL2, TRIM59, FHL2, C1orf132 and KLF14 genes, 

respectively (Table 4.14; Supplementary Figure S10). 
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Table 4.14: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 loci using 

SNaPshot assay in 62 blood samples from deceased individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

Locus Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression  

ELOVL2 Chr6:11044628 62 0.791 0.626 0.619 9.75 2.04 × 10-14 7.64 

TRIM59 Chr3:160450189 61 0.769 0.591 0.584 10.24 4.78 × 10-13 7.97 

FHL2 Chr2:105399282 62 0.654 0.428 0.418 12.06 8.16 × 10-9 9.81 

C1orf132 Chr1:207823681 60 -0.591 0.350 0.338 12.93 6.56 × 10-7 9.99 

KLF14 Chr7:130734355 59 0.568 0.322 0.311 12.86 0.000003 10.40 

Multiple linear regression 

APM (ELOVL2, FHL2, 

C1orf132 and TRIM59) 
59 0.899 0.808 0.793 7.26 1.07 × 10-18 5.36 
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We tested the age-prediction multiple linear regression model using 

simultaneously these CpG sites in the training set of 59 blood samples from deceased 

individuals, however the CpG site at KLF14 gene revealed a non-significant age 

correlation value (P-value = 0.424; Supplementary Table S4). 

Furthermore, we used the stepwise regression to select the best model and the four 

CpG sites at ELOVL2, FHL2, C1orf132 and TRIM59 genes were chosen. The final model 

constructed with these sites showed high age correlation coefficients (R = 0.899), 

explaining 79.3% of the variation in age (corrected R2 = 0.793), highly significant (P-

value = 1.07 × 10-18) (Table 4.14). The developed formula obtained with regression 

coefficients to calculate age was the following (Table 4.15): 14.914 + 63.627 × DNAm 

level ELOVL2 + 40.299 × DNAm level FHL2 - 24.185 × DNAm level C1orf132 + 57.717 

× DNAm level TRIM59. The model showed a strong correlation between predicted and 

chronological ages (Spearman correlation coefficient, r = 0.916), with a MAD of 5.36 

years (RMSE = 6.94) (Figure 4.13). Correct predictions were 72.9% assuming the 

standard error of estimate calculated for the final APM (SE = 7.26) (Table 4.14).    

 

Table 4.15: Statistical parameters obtained in a multiple regression model with the four 

CpGs in genes ELOVL2, FHL2, C1orf132 and TRIM59, selected by stepwise regression 

approach, in blood samples from deceased individuals. 

 

 

 

 

 

 

 

  

Marker Coefficient P-value 

(Intercept) 14.914 0.043 

ELOVL2 63.627 0.007 

FHL2 40.299 0.019 

C1orf132 -24.185 0.000 

TRIM59 57.717 0.001 
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Figure 4.13: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay at the four CpGs located at ELOVL2, FHL2, C1orf132 and TRIM59 genes 

in blood samples from deceased individuals. MAD and Spearman correlation coefficient, 

r, are plotted on the chart. 

 

Differences between predicted and chronological ages with aging  

Evaluating the MAD values between predicted and chronological ages with the 

increasing of age using the final APM (with ELOVL2, FHL2, C1orf132 and TRIM59 

genes) we observed an increase of MAD values with the increasing of age (Figure 4.14).  

. 

 

 

 

 

 

 

 

Figure 4.14: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in blood samples from deceased individuals. 
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The largest MAD value was obtained in individuals of the age group 72-88 years 

old (MAD = 6.24 years), while the smallest MAD was observed in the age group 28-51 

years old (MAD = 5.00 years) (Table 4.16; Figure 4.15). Moreover, for younger age 

categories, we observed higher values of correct predictions (respectively for G1 and G2, 

73.7% and 75%) and a lower value in the older age group G3 (68.8%) (Table 4.16). 

 

Table 4.16: MAD between predicted and chronological ages stratified by age group in 

the training set of 59 blood samples from deceased individuals. 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  28-51 years 19 5.00 73.7 

G2 52-71 years 24 5.07 75.0 

G3 72-88 years 16 6.24 68.8 

Overall 28-88 years 59 5.36 72.9 

 

 

 

 

 

 

 

Figure 4.15: MAD from chronological age calculated for each age group in blood 

samples from deceased individuals. MAD increases with age to age group 3 (72-88 years 

old). The MAD is printed on top of each respective age range. 

 

Validation of the multi-locus APM developed in deceased individuals 

The 4-fold cross validation allowed to estimate an averaged MAD between 

predicted and chronological ages obtained for each of the four independent multiple linear 
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regressions of 6.13 years (RMSE = 6.22), very close to the MAD of 5.36 years (RMSE = 

6.94) obtained from the whole data set.  

The validation by splitting the sample set into two similar sets of 31 samples and 

28 samples (training and validation sets) allowed to obtain an independent MAD value 

for the training set of 6.15 years (RMSE = 7.35). The model was applied to the validation 

set and a MAD of 5.66 years was obtained (RMSE = 7.51). Both independent MAD 

values were very close to the MAD of 5.36 years (RMSE = 6.94) obtained from the whole 

data set. 

 

3.2.3. Comparison between methodologies  

Comparing the obtained data for the sites investigated in both Sanger sequencing 

and SNaPshot methodologies (ELOVL2, FHL2 and C1orf132), very slight differences in 

age correlation values were observed for ELOVL2 (R = 0.781 vs. R = 0.791) and C1orf132 

(R = 0.634 vs. R = -0.591) (Table 4.17). However, for FHL2 gene the age correlation 

value obtained in SNaPshot was higher (R = 0.654) comparing with sequencing (R = 

0.431) (Table 4.17).   
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Table 4.17: Comparison of age-correlated values obtained in blood samples from 

deceased Portuguese individuals through Sanger and SNaPshot methodologies. 

 

Abbreviations: R, Pearson correlation coefficient.  

 

3.3. Age estimation in blood samples from living and deceased individuals  

In the present section, we evaluated the association between chronological age 

and DNAm levels at ELOVL2, EDARADD, FHL2 and PDE4C genes in blood samples 

from both living and deceased individuals that were analyzed using the bisulfite PCR 

sequencing methodology. The C1orf132 locus was addressed only for blood samples 

from deceased individuals and, hence, was excluded from this analysis. 

Likewise, we analyzed the association between chronological age and DNAm at 

the five CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes in 

blood samples from both living and deceased individuals that were analyzed through the 

multiplex methylation SNaPshot assay described in Jung et al. (2019). 

 

 

 

 

 

Chromosomal location  

GRCh38  

(Position in 450K array) 

Portuguese ancestry 

Sanger sequencing SNaPshot 

 Blood deceased  

(24-86 years) 

 Blood deceased 

(28-88 years) 

R R2 R R2 

ELOVL2  

Chr6:11044628 
0.781 0.610 0.791 0.626 

C1orf132 

Chr1:207823681 
-0.634 0.402 -0.591 0.350 

FHL2 

Chr2:105399282 (cg06639320) 
0.431 0.186 0.654 0.428 
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3.3.1. DNAm data obtained in blood samples from living and deceased 

individuals using bisulfite Sanger sequencing  

 

Correlation between DNAm levels and chronological age  

We combined all blood samples from 71 living and 73 deceased individuals 

evaluated through Sanger sequencing methodology, including samples used in 

independent validation sets, in a total of 144 blood samples (84 males, 60 females; aged 

1-94 years old), for testing the association between DNAm and chronological age. From 

deceased individuals, three samples did not amplify for ELOVL2 and PDE4C genes and 

one of these samples for the EDARADD gene. 

Strong age correlation values were observed for all the CpGs located at ELOVL2, 

for the first three CpGs located at FHL2 and PDE4C genes, and for the CpG5 at FHL2 

and PDE4C genes. For the CpG3 located at EDARADD, a strong age correlation value 

was also observed (Supplementary Table S5).  

 

Development of an age prediction model (APM)  

Testing the association between DNAm levels and chronological age through 

simple linear regression, the strongest age correlation value within each gene was 

obtained for ELOVL2 CpG6 (R = 0.892, P-value = 7.773 × 10-50), explaining 79.5% of 

the variation in age, PDE4C CpG2 (R = 0.830, P-value = 4.656 × 10-37), explaining 68.7% 

of the variation in age, FHL2 CpG1 (R = 0.828, P-value = 1.405 × 10-37), explaining 

68.4% of the variation in age, and EDARADD CpG3 (R = -0.786, P-value = 3.266 × 10-

31), explaining 61.5% of the variation in age (Table 4.18; Supplementary Table S5). A 

clear positive correlation between DNAm levels and age was observed for ELOVL2 
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CpG6, PDE4C CpG2 and FHL2 CpG1 markers, and a clear negative correlation was 

observed for EDARADD CpG3 marker (Supplementary Figure S11). 

Simple APMs using the regression coefficients of these CpG sites allowed to 

obtain a MAD from chronological age of 8.76 years for ELOVL2 CpG6, 10.85 years for 

PDE4C CpG2, 11.15 years for FHL2 CpG1  and 12.68 years for EDARADD CpG3 (Table 

4.18; Supplementary Figure S12).  
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Table 4.18: Simple and multiple linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD and PDE4C genes to test for 

association between the DNAm levels obtained by bisulfite sequencing and chronological age in the overall sample set of blood samples from 

living and deceased individuals. 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

Locus CpG Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 CpG6 Chr6:11044644 141 0.892 0.796 0.795 11.33 7.77 × 10-50 8.76 

PDE4C CpG2 Chr19:18233133 141 0.830 0.689 0.687 13.99 4.66 × 10-37 10.85 

FHL2 CpG1 Chr2:105399282 144 0.828 0.686 0.684 13.91 1.41 × 10-37 11.15 

EDARADD CpG3 Chr1:236394382 143 -0.786 0.617 0.615 15.41 3.27 × 10-31 12.68 

Multiple linear regression 

APM (EDARADD CpG3, FHL2 CpG1, 

ELOVL2 CpG6 and PDE4C CpG2) 
141 0.947 0.897 0.894 8.12 3.47 × 10-66 6.21 
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The methylation levels of the 141 blood samples from living and deceased 

individuals for the four most significant age-associated CpG sites (ELOVL2 CpG6, 

PDE4C CpG2, FHL2 CpG1 and EDARADD CpG3) were put simultaneously in a multiple 

linear regression analysis to construct the best multi-locus APM. All the predictor 

variables showed a significant p-value (Table 4.19). In concordance, the same pattern of 

significance was obtained through the stepwise regression analysis using the four selected 

sites demonstrating that this model should be selected as the final APM. Using the four 

CpGs, the multiple linear regression statistics showed a very strong age correlation value 

(R = 0.947), highly significant (P-value = 3.470 × 10-66), explaining 89.4% of the 

variation in age (Table 4.18). The predictive equation developed for estimating age was  

(Table 4.19): (-50.140) - 74.671 × DNAm level EDARADD CpG3 + 39.409 × DNAm 

level FHL2 CpG1 + 114.654 × DNAm level ELOVL2 CpG6 + 47.214 × DNAm level 

PDE4C CpG2 (Figure 4.16). 

Predicted and chronological ages were highly correlated (Spearman correlation 

coefficient, r = 0.924) and the multi-locus APM allowed to obtain a MAD from 

chronological age of 6.21 years (RMSE = 7.87) (Figure 4.16; Table 4.18). Correct 

predictions were 71.6% assuming that chronological and predicted ages match ± 8 years.    

 

Table 4.19: Statistical parameters obtained in a multiple regression model with the four 

CpGs in genes ELOVL2, FHL2, EDARADD and PDE4C, selected by stepwise regression 

approach, in the overall set of blood samples from living and deceased individuals.  

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) -50.140 0.001 

ELOVL2 CpG6  114.654 0.000 

FHL2 CpG1 39.409 0.001 

EDARADD CpG3  -74.671 0.000 

PDE4C CpG2 47.214 0.000 
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Figure 4.16: Predicted age versus chronological age using the four best markers 

EDARADD CpG3, FHL2 CpG1, ELOVL2 CpG6 and PDE4C CpG2 in blood samples 

from living and deceased individuals. MAD and Spearman correlation, r, are plotted on 

the chart. 

 

Differences between predicted and chronological ages with aging  

Evaluating the differences between ages using the multi-locus APM developed 

for blood samples from both living and deceased individuals some differences between 

age categories were observed (Figure 4.17).  

 

 

 

 

 

 

 

Figure 4.17: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in the combined set of blood samples from living and 

deceased individuals. 
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To investigate these age-related differences, we split our training set of 141 blood 

samples in four age groups to estimate MAD and percentage of correct predictions in each 

age range group (Table 4.20; Figure 4.18). Age predictions were considered either 

correct or incorrect if the predicted age was concordant with the chronological age ±8 

years, according to the standard error of estimate calculated for the final APM (SE = 

8.12). 

The MAD value is higher in the two older age categories G3 and G4, MAD = 7.79 

years and MAD = 6.44 years, respectively. In concordance, the lower percentage of 

correct predictions was observed in the older age groups G3 and G4 (60.5% and 67.8%, 

respectively). For younger individuals (G1 and G2), the smaller MAD values and the 

higher values of correct predictions were observed, MAD = 3.76 years (93.3%) and MAD 

= 4.33 years (87.5%), respectively (Table 4.20; Figure 4.18). 

 

Table 4.20: MAD between predicted and chronological ages stratified by age group in 

the overall training set of 141 blood samples from living and deceased individuals. 

 

 

 

 

 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  <18 years 15 3.76 93.3 

G2 19-39 years 24 4.33 87.5 

G3 40-60 years 43 7.79 60.5 

G4  >61 years 59 6.44 67.8 

Overall 1-94 years 141 6.21 71.6 
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Figure 4.18: MAD from chronological age calculated for each age group in blood 

samples from living and deceased individuals. The MAD is printed on top of each 

respective age range. 

 

Validation of the multi-locus APM developed in living and deceased individuals 

A 4-fold cross validation demonstrated a mean MAD value amongst the four 

validation sets of 6.42 years (RMSE = 6.46), similar to the obtained in the training set, 

MAD = 6.21 years, showing the accuracy and reproducibility of our developed APM. The 

validation by splitting the sample into two sets of 71 samples (training set: 39 living; 32 

deceased) and 70 samples (validation set: 32 living; 38 deceased) allowed to obtain an 

independent MAD value for the training set of 5.98 years (RMSE = 7.73). Applying the 

model on the validation set, a MAD of 6.83 years was obtained (RMSE = 8.35). Both 

independent MAD values were very close to the overall MAD of 6.21 years. 

 

3.3.2. DNAm data obtained in blood samples from living and deceased 

individuals using SNaPshot methodology 

 

Correlation between DNAm levels and chronological age  

We combined blood samples of 59 living and 62 deceased individuals analyzed 

through the SNaPshot methodology (in a total of 121 blood samples, 71 males, 50 
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females; aged 1-94 years old) for assessment of correlation between DNAm levels and 

age. In blood from living individuals, three samples did not amplify for ELOVL2 and one 

sample for KLF14; in blood from deceased individuals, one sample did not amplify for 

TRIM59, three samples for KLF14 and two of these three samples also did not amplify 

for C1orf132. 

Among the five genes simultaneously investigated, positive correlations were 

observed for ELOVL2, FHL2, KLF14 and TRIM59 genes and a negative correlation was 

observed for C1orf132 locus (Supplementary Figure S13). 

 

Development of an age prediction model (APM)  

The methylation levels of ELOVL2 locus showed the strongest correlation with 

chronological age (R = 0.919, P-value = 7.60 x 10-49), explaining 84.4% of the variation 

in age, followed by FHL2 (R = 0.874, P-value = 3.68 × 10-39), explaining of 76.2% the 

variation in age, C1orf132 (R = -0.834, P-value = 6.15 × 10-32), explaining 69.2% of the 

variation in age, TRIM59 (R = 0.830, P-value = 1.16 × 10-31), explaining 68.6% of the 

variation in age, and  KLF14 (R = 0.731, P-value = 8.33 × 10-21), explaining 53.0% of the 

variation in age (Table 4.21; Supplementary Figure S13). The predicted age of 

individuals were calculated through the simple linear regression coefficients for the 

individual markers allowing to obtain MAD values from chronological ages of 7.46 years, 

9.23 years, 10.33 years, 10.76 years and 12.76 years for ELOVL2, FHL2, C1orf132, 

TRIM59 and KLF14 genes, respectively (Supplementary Figure S14). 
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Table 4.21: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 loci using 

SNaPshot in 121 blood samples from living and deceased individuals. 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

Locus Location N R R2 
Corrected  

R2 
SE P-value MAD 

Simple linear regression  

ELOVL2 Chr6:11044628 118 0.919 0.845 0.844 9.60 7.60 × 10-49 7.46 

FHL2 Chr2:105399282 121 0.874 0.764 0.762 11.81 3.68 × 10-39 9.23 

C1orf132 Chr1:207823681 119 -0.834 0.695 0.692 13.50 6.15 × 10-32 10.33 

TRIM59 Chr3:160450189 120 0.830 0.688 0.686 13.61 1.16 × 10-31 10.76 

KLF14 Chr7:130734355 117 0.731 0.534 0.530 16.43 8.33 × 10-21 12.76 

Multiple linear regression 

APM (ELOVL2, FHL2, 

C1orf132 and TRIM59) 
115 0.963 0.928 0.925 6.71 1.03 × 10-61 4.97 
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Combining all the five CpG sites simultaneously in a multiple linear regression 

analysis to select the best multi-locus APM, a non-significant age correlation value was 

observed for KLF14 (P-value = 0.186; Supplementary Table S6). In concordance, the 

stepwise regression analysis also excluded KLF14 from the model. Therefore, the model 

for age prediction selecting the four CpG sites at ELOVL2, FHL2, C1orf132 and TRIM59 

genes used as a final APM, showed the multiple regression age correlation coefficient R 

of 0.963, explaining 92.5% of the variation in age (corrected R2 = 0.925), highly 

significant (P-value = 1.025 × 10-61) (Table 4.21). The developed formula obtained with 

regression coefficients (Table 4.22) to calculate age was the following: 17.936 + 66.925 

× DNAm level ELOVL2 + 52.009 × DNAm level FHL2 - 30.886 × DNAm level C1orf132 

+ 44.391 × DNAm level TRIM59. The model showed a strong correlation between 

predicted and chronological ages (Spearman correlation coefficient, r = 0.952), with a 

MAD of 4.97 years (RMSE = 6.54) (Figure 4.19). Correct predictions were 71.3% 

assuming that chronological and predicted ages match ± 7 years (SE = 6.71).    

 

Table 4.22: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2, C1orf132 and TRIM59, selected by stepwise regression 

approach, in the overall set of blood samples from living and deceased individuals.  

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 17.936 0.001 

ELOVL2 66.925 0.000 

FHL2 52.009 0.000 

C1orf132 -30.886 0.000 

TRIM59 44.391 0.000 
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Figure 4.19: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay at the four CpGs located at ELOVL2, FHL2, C1orf132 and TRIM59 genes 

in blood samples from living and deceased individuals. MAD and Spearman correlation 

coefficient, r, are plotted on the chart. 

 

Differences between predicted and chronological ages with aging  

Considering the final APM with ELOVL2, FHL2, C1orf132 and TRIM59 genes 

developed for blood from living and deceased, we noted some differences in DNAm with 

the increasing of age (Figure 4.20). 

 

 

 

 

 

 

 
 

Figure 4.20: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in the combined set of blood samples from living and 

deceased individuals. 
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Testing the differences in four age categories, the lower MAD values were 

observed for the first three age categories, G1, G2 and G3 (Table 4.23; Figure 4.21). The 

older individuals (G4, >61years old) showed the higher MAD value (MAD = 6.78 years) 

and the lower percentage of correct predictions (56.5%) (Table 4.23; Figure 4.21). 

 

Table 4.23: MAD between predicted and chronological ages stratified by age group in 

the overall training set of 115 blood samples from living and deceased individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: MAD from chronological age calculated for each age group in blood 

samples from living and deceased individuals. The MAD is printed on top of each 

respective age range. 

 

Validation of the multi-locus APM developed in living and deceased individuals  

A 4-fold cross validation using the whole dataset of 115 individuals allowed to 

estimate an averaged MAD of 5.25 years (RMSE = 5.29), close to the MAD of 4.97 years. 

The validation by splitting the sample into two sets of 58 samples (training set: 27 living; 

31 deceased) and 57 samples (validation set: 29 living; 28 deceased) allowed to obtain an 

Group Age range N MAD 
Correct  

Predictions (%) 

G1  <18 years 12 2.88 91.7 

G2 19-39 years 19 4.68 73.7 

G3 40-60 years 38 3.58 81.6 

G4  >61 years 46 6.78 56.5 

Overall 1-94 years 115 4.97 71.3 
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independent MAD value for the training set of 5.35 years (RMSE = 6.72). Applying the 

model on the validation set, a MAD of 5.35 years was obtained (RMSE = 7.18). Both 

independent MAD values were very close to the MAD of 4.97 years for the overall 

training set. 

 

3.3.3. Comparison between methodologies    

Comparing our obtained data for Portuguese people using Sanger sequencing and 

SNaPshot methodologies, for the sites investigated in both methodologies (ELOVL2, 

Chr6:11044628 and FHL2, Chr2:105399282) in the overall sample set of blood samples 

from living and deceased individuals, the age correlation values obtained for these two 

sites revealed strong or very strong age correlation values, showing very slight 

differences: for ELOVL2 (R = 0.872 vs. R = 0.919) and for FHL2 (R = 0.828 vs. R = 

0.874) (Table 4.24).  

 

Table 4.24: Comparison of age-correlated values obtained in blood samples from living 

and deceased Portuguese individuals through Sanger and SNaPshot methodologies. 

 

 

Abbreviations: R, Pearson correlation coefficient.  

 

Chromosomal location  

GRCh38  

(Position in 450K array) 

Portuguese ancestry 

Sanger sequencing SNaPshot 

 Blood living and  

deceased  

(1-94 years) 

 Blood living and 

deceased 

(1-94 years) 

R R2 R R2 

ELOVL2  

Chr6:11044628 
0.872 0.760 0.919 0.845 

FHL2 

Chr2:105399282 (cg06639320) 
0.828 0.686 0.874 0.764 
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3.4. Applicability of the developed APMs for blood samples from living and 

deceased individuals    

 

To further analyse the applicability of the constructed APMs, we tested the 

obtained models in blood samples from living individuals through both methodologies of 

Sanger sequencing and SNaPshot in deceased individuals and vice versa.  

 

3.4.1. Applying the developed APMs in blood samples from living 

individuals to deceased individuals 

  
The final multi-locus equation developed using blood samples from living 

Portuguese individuals (Table 4.3) applied to methylation information captured from 

blood samples from deceased individuals through Sanger sequencing methodology 

allowed to obtain a MAD from chronological age of 9.72 years (RMSE = 12.25), 

revealing a lower  accuracy when compared with the MAD obtained in living individuals 

(MAD = 5.35 years, Table 4.2). Spearman correlation between predicted and 

chronological age was 0.792 (Figure 4.22).  

 

 

 

 

 

 

 

 

Figure 4.22: Predicted age versus chronological age in a test sample set of blood samples 

from deceased individuals evaluated through Sanger sequencing methodology. MAD and 

Spearman correlation coefficient, r, are plotted on the chart. 
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Applying the equation developed for blood samples from living individuals 

(Table 4.8) through SNaPshot to methylation information captured from blood samples 

of deceased individuals, the obtained MAD value was 7.84 years (RMSE = 9.96), 

revealing also lower accuracy when compared with the MAD obtained in living 

individuals (MAD = 4.25 years; Table 4.7). Spearman correlation between predicted and 

chronological age was 0.862 (Figure 4.23). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Predicted age versus chronological age in a test sample set of blood samples 

from deceased individuals evaluated through SNaPshot methodology. MAD and 

Spearman correlation coefficient, r, are plotted on the chart. 

 

 

3.4.2. Applying the developed APMs in blood samples from deceased 

individuals to living individuals  

 
As CpG sites in C1orf132 gene were not investigated in blood from living 

individuals through bisulfite sequencing, we cannot test the reproducibility of the 
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ELOVL2 CpG4, FHL2 CpG2, EDARADD CpG3, C1orf132 CpG1 and PDE4C CpG2. 

Hence, we constructed a new APM for blood samples from deceased individuals 
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considering the best CpG sites located at ELOVL2 (CpG4), PDE4C (CpG2), EDARADD 

(CpG3) and FHL2 (CpG2). The new multiple linear multi-locus regression model 

developed for the 49 blood samples from deceased individuals, showed a strongly age 

correlation value (R = 0.871), highly significant (P-value = 5.01 × 10-13), explaining 

73.6% of the variation in age (Table 4.25). The new predictive equation based on 

regression coefficients (Supplementary Table S7) was: (-40.063) - 74.494 × DNAm 

level EDARADD CpG3 + 59.531 × DNAm level FHL2 CpG2 + 100.423 × DNAm level 

ELOVL2 CpG4 + 26.479 × DNAm level PDE4C CpG2. Predicted and chronological ages 

of the 49 deceased individuals were highly correlated (Spearman correlation coefficient, 

r = 0.849) with a MAD from chronological age of 6.42 years (RMSE = 7.94) (Figure 

4.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Predicted age versus chronological age using the APM developed with the 

markers ELOVL2 CpG4, FHL2 CpG2, EDARADD CpG3 and PDE4C CpG2 genes in the 

training set of deceased individuals. MAD and Spearman correlation coefficient, r, are 

plotted on the chart. 
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Table 4.25: Multiple linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD and PDE4C genes to test the association 

between the DNAm levels and chronological age in blood samples from deceased individuals using the Sanger sequencing methodology. 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.

Multiple linear regression N R R2 
Corrected 

R2 
SE P-value MAD 

APM (ELOVL2 CpG4, FHL2 CpG2, EDARADD 

CpG3 and PDE4C CpG2) 
49 0.871 0.758 0.736 8.38 5.01 × 10-13 6.42 
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Testing the reproducibility of the new APM with ELOVL2 CpG4, FHL2 CpG2, 

EDARADD CpG3 and PDE4C CpG2 in blood samples from living individuals a MAD of 

6.10 years was obtained (Figure 4.25), revealing similar accuracy when comparing with 

the APM developed in deceased individuals (MAD = 6.42 years; Table 4.25). Spearman 

correlation value between predicted and chronological ages was 0.974. 

 

 

 

 

 

 

 

 

Figure 4.25: Predicted age versus chronological age in a test sample set of 53 blood 

samples from living individuals using the new model developed using blood from 

deceased individuals with the markers ELOVL2 CpG4, FHL2 CpG2, EDARADD CpG3 

and PDE4C CpG2 markers. MAD and Spearman correlation coefficient, r, are plotted on 

the chart. 

  

 

Testing the reproducibility of our final APM developed with methylation 

information of  blood samples from deceased individuals through SNaPshot methodology 

(Table 4.15) in the set of  healthy Portuguese individuals allowed to obtain a MAD from 

chronological age of 5.40 years (RMSE = 6.88), which is similar to the accuracy of the 

model developed in deceased (MAD = 5.36 years; Table 4.14). Spearman correlation 

between predicted and chronological ages was 0.967 (Figure 4.26).  
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Figure 4.26: Predicted age versus chronological age in a test sample set of blood samples 

from living individuals. MAD and Spearman correlation coefficient, r, are plotted on the 

chart. 

  

 

4. Discussion  

 

Age estimation plays a relevant role in forensic science since it can be very useful 

in criminal, legal and civil investigations, including for the establishment of criminal 

responsibility or in immigration cases (Parson et al., 2018; Nuzzolese and Di Vella, 

2019). Moreover, prediction of age from biological evidences can be very useful for 

identification purposes of human remains from mass disasters or to solve crimes by 

limiting the search range of unknown suspects (Jung et al., 2017; Parson et al., 2018). 

In recent years, DNAm age has arisen as a promising tool for forensic age 

estimations. Previous forensic studies, most of them with blood samples of living 

individuals, using different loci and different number of markers, covering different age 

ranges and using different methodologies, gave high accurate APMs with values of MAD 

from chronological age between 3.5 to 7.5 years (Weidner et al., 2014; Bekaert et al., 

2015b; Zbieć-Piekarska et al., 2015a; Cho et al., 2017; Naue et al., 2017; Aliferi et al., 
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2018; Jung et al., 2019). To the best of our knowledge, only four studies have focused in 

blood samples from deceased individuals for development of APMs based on DNAm 

among a number of different loci including ELOVL2, FHL2, KLF14 and TRIM59 genes 

(Bekaert et al., 2015a; Hamano et al., 2016; Naue et al., 2018; Pfeifer et al., 2020).  

 In this study, we used the bisulfite PCR sequencing method to analyze the 

methylation patterns of CpG markers in four well-known age-associated loci (ELOVL2, 

FHL2, EDARADD and PDE4C) in a total number of 144 blood samples from living 

(training set of 53 individuals; validation set of 18 individuals) and deceased (training set 

of 51 individuals; validation set of 22 individuals). Additionally, DNAm of the C1orf132 

gene was also analyzed by using the same methodology in blood samples from deceased 

individuals. The selection of these markers was made based on their high age-correlated 

values observed in several previous studies in blood and other tissue types (Garagnani et 

al., 2012; Weidner et al., 2014; Florath et al., 2014; Bekaert et al., 2015a, 2015b; Zbieć-

Piekarska et al., 2015a, 2015b; Xu et al., 2015; Hamano et al., 2016; Giuliani et al., 2016; 

Freire-Aradas et al., 2016; Kananen et al., 2016; Park et al., 2016; Spólnicka et al., 2017; 

Fleckhaus et al., 2017; Cho et al., 2017; Thong et al., 2017; Naue et al., 2017, 2018; 

Freire-Aradas et al., 2017; Jung et al., 2019; Pfeifer et al., 2020). 

Moreover, for better application of developed approaches to forensic casework 

sample analysis it is important to further test the proposed markers and methodologies to 

establish consistency between populations and laboratories (Cho et al., 2017; Daunay et 

al., 2019). Hence, we tested the experiments proposed by Jung et al. (2019) using the 

SNaPshot methodology and the five CpG sites located in ELOVL2, FHL2, KLF14, 

C1orf132 and TRIM59 genes in a set of 121 samples from Portuguese individuals (59 

blood samples of healthy individuals and 62 blood samples from deceased individuals). 
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In the present study, a total of 37 CpGs (ELOVL2: 9 CpGs; FHL2: 12 CpGs; 

PDE4C: 12 CpGs; and EDARADD: 4 CpGs) was evaluated through Sanger sequencing 

in a training set of 53 blood samples from healthy Portuguese individuals. The same 

methodology was used to evaluate a total of 43 CpGs (ELOVL2: 9 CpGs; FHL2: 12 CpGs; 

PDE4C: 12 CpGs; EDARADD: 4 CpGs; and C1orf132: 6 CpGs) in a training set of 51 

blood samples from deceased individuals. The training set of blood samples from living 

individuals revealed the highest age correlation value per locus for FHL2 CpG3 (R = 

0.940), ELOVL2 CpG6 (R = 0.936), EDARADD CpG3 (R = -0.888) and PDE4C CpG2 

(R = 0.852). Blood samples from deceased individuals revealed the highest age 

correlation value per locus for ELOVL2 CpG4 (R = 0.785), C1orf132 CpG1 (R = -0.634), 

EDARADD CpG3 (R = -0.621), PDE4C CpG2 (R = 0.592) and FHL2 CpG2 (R = 0.465). 

In the overall training set of blood samples from both living and deceased individuals, the 

highest age correlation value per locus was observed for ELOVL2 CpG6 (R = 0.892), 

PDE4C CpG2 (R = 0.830), FHL2 CpG1 (R = 0.828) and EDARADD CpG3 (R = -0.786).  

Evaluating simultaneously through multiple linear regression the methylation 

information of the highest age-correlated CpG sites observed in blood samples from 

living individuals, a final four-locus APM was constructed, revealing good accuracy with 

a MAD from chronological age of 5.35 years, explaining 94.1% of the variation in age. 

In the training set of blood samples from deceased individuals, the final model built with 

the five highest age-associated CpG sites revealed the best results in age correlation, 

explaining 76.3% of the variation in age, and a MAD of 6.08 years. Moreover, the multi-

locus APM constructed with the methylation information of the four best age-associated 

CpG sites observed in the overall training set of blood samples (from both living and 

deceased individuals), allowed to obtain a MAD from the chronological age of 6.21 years, 

explaining 89.4% of the variation in age. This is a similar value in comparison with the 
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obtained for both independent models (MAD = 5.35 years in living with four CpGs, and 

MAD = 6.08 years in deceased with five CpGs).  

The MAD and age correlation values reported in our study using blood samples 

from living individuals are similar to the obtained in other APMs using pyrosequencing 

which has been the preferred method by forensic epigeneticists to assess site specific 

DNAm levels in age predictions, but also other methods (Garagnani et al., 2012; Bekaert 

et al., 2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; Thong et al., 2017; Cho et al., 

2017). Garagnani et al. (2012), using Sequenom’s EpiTYPER assay, reported high age 

correlation values (Pearson correlation) for CpGs located at ELOVL2 Chr6:11044644 

(cg16867657), Chr6:11044661 (cg21572722) and Chr6:11044655 (cg24724428) (0.91, 

0.89 and 0.85, respectively), which are similar to the values obtained in our study for the 

same sites: ELOVL2 CpG6, ELOVL2 CpG9 and ELOVL2 CpG8 (0.936, 0.860 and 0.850, 

respectively). For CpGs located at FHL2, also a similar value was obtained in Garagnani 

et al. (2012) for Chr2:105399310 (cg22454769) and in our study for the same position, 

FHL2 CpG6 (0.92 and 0.848, respectively). Bekaert et al. (2015a) using the 

pyrosequencing methodology reported a MAD of 3.75 years using a multivariate 

quadratic model with CpGs located at ELOVL2, EDARADD, PDE4C and ASPA genes. 

Interestingly, the selected CpG located at EDARADD demonstrated a R2 = 0.62, similar 

to the value observed in our study for the same position EDARADD CpG3 (R2 = 0.788). 

Zbieć-Piekarska et al. (2015b) evaluated DNAm patterns of ELOVL2, Clorf132, TRIM59, 

KLF14 and FHL2 loci by pyrosequencing revealing a high age correlation value (R = 

0.971) and a MAD of 3.4 years. This group reported strong age correlation values 

(Spearman correlation value) in CpGs located at ELOVL2 Chr6:11044661 and 

Chr6:11044644 (0.828 and 0.847, respectively) and CpGs located at FHL2 

Chr2:105399288 and Chr2:105399291 (0.843 and 0.826, respectively). In concordance, 
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our study revealed also similar strong age correlation values for the same sites in ELOVL2 

(0.849 and 0.926, respectively) and in FHL2 (0.954 and 0.951, respectively). Thong et al. 

(2017) and Cho et al. (2017) using pyrosequencing, reported strong age correlation values 

(Spearman correlation value) for the CpG located at FHL2 (Chr2:105399291) (0.905 and 

0.878 respectively) and for the CpG located at ELOVL2 (Chr6:11044644) (0.951 and 

0.874 , respectively); these values were similar to those obtained in our study for the same 

positions FHL2 CpG3 (0.951) and ELOVL2 CpG6 (0.926). Moreover, both studies 

reported high accuracy with a MAD around of 3.3 years.  

In the present study we also tested the experiments proposed by Jung et al. (2019) 

using a SNaPshot assay in an independent set of 59 blood samples of healthy Portuguese 

individuals using the same markers and methodology. Moreover, we evaluated DNAm 

levels through the SNaPshot method in a set of 62 blood samples from deceased 

individuals. Strong age correlation values were obtained for the five CpG sites at 

ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes in living individuals (0.791≤ R 

≤0.951). For deceased individuals, lower age-correlated values, although significant, 

were obtained (0.568≤ R ≤0.791). For both the training sets, the DNAm of ELOVL2 

showed the strongest age correlation value. The proposed final APM in living Portuguese 

individuals was constructed with the three CpGs at ELOVL2, FHL2 and C1orf132 genes 

that showed age correlation significance in the multiple regression analysis. This APM 

exhibited an age prediction accuracy (MAD = 4.25 years) similar to the model of Jung et 

al. (2019) constructed with all the five CpGs in genes ELOVL2, C1orf132, TRIM59, 

KLF14 and FHL2 in the Korean population demonstrating high age prediction accuracy 

(MAD = 3.174). Thus, our study replicated the age association test for the SNaPshot assay 

of Jung et al. (2019) in an independent validation set of living Portuguese individuals, 
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evidencing that the performance of these age-related markers through the SNaPshot 

methodology is relatively consistent across different populations. 

When we compare DNAm levels obtained from the multiplex methylation 

SNaPshot assay in blood samples from the Portuguese and the Koreans (Jung et al., 2019) 

all the CpG sites showed strong or very strong correlation with age (0.763≤ R ≤0.951), 

except for C1orf132 (R = -0.637) in Koreans. However, some differences can be found 

in the extent of the age association for the targeted loci comparing our data with that 

obtained in the Korean population. The higher correlation with age was obtained for the 

CpG sites at FHL2 in Koreans (R = 0.893) and ELOVL2 in Portuguese (R = 0.951). On 

the other hand, the lowest correlation value was found for KLF14 in Portuguese, and for 

C1orf132 in Koreans. Moreover, in the multivariate analysis the CpG sites at KLF14 and 

TRIM59 genes showed non-significant age correlation values (P-value >0.05) in 

Portuguese individuals, while in Koreans all the five CpG sites showed significant age 

correlation values (P-value <0.001) (Jung et al., 2019). Consequently, the APM proposed 

by Jung et al. (2019), included DNAm at the five genes, while our model included only 

three genes. Moreover, when we tested the original model of Jung et al. (2019) with 

methylation data from living Portuguese individuals, a higher MAD value of 15.26 years 

was obtained, revealing difference in applicability of the model of Jung et al. (2019) 

(developed for Koreans) to the set of Portuguese individuals, possible due to differences 

in ancestry. Similarly, the study of Cho et al. (2017) in the Korean population, replicating 

a study of Zbieć-Piekarska et al. (2015b) in the Polish population using pyrosequencing, 

found age correlation differences in specific markers. Such kind of differences suggests 

the possibility that some effects in methylation levels may be population specific. This 

phenomenon supports the notion that specific markers can be more adequate to different 

population groups to explain age-related DNAm variance, which points to the usefulness 
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of replication and validation studies of proposed markers and genotyping methods in 

different populations and datasets before forensic applications.  

Regarding blood from deceased individuals, the final multi-locus APM 

constructed with the predictor variables ELOVL2, FHL2, C1orf132 and TRIM59 revealed 

a strong age correlation (R = 0.899) and exhibiting an accurate age prediction with a MAD 

from chronological age of 5.36 years. For the whole sample set, addressing both living 

and deceased individuals, the final multi-locus model for age prediction constructed with 

four CpGs located at ELOVL2, FHL2, C1orf132 and TRIM59 genes obtained from the 

stepwise regression analysis, showed a high age prediction accuracy (MAD = 4.97 years), 

explaining 92.5% of the variation in age. This MAD value is comparable to those obtained 

in blood samples from deceased (MAD = 5.36 years) and living individuals (MAD = 4.25 

years).  

In our study, CpGs from the ELOVL2 gene were always the strong age-correlated 

in comparison with all the other investigated markers (FHL2, EDARADD, PDE4C, 

C1orf132, TRIM59 and KLF14), either using SNaPshot or Sanger sequencing. Using the 

Sanger sequencing methodology, in blood samples from living individuals all the CpGs 

located at ELOVL2 revealed strong or very strong correlation values with chronological 

age (R ≥0.850). In blood samples from deceased individuals only the ELOVL2 gene 

showed high significant age-correlation values for all the selected CpG sites reflecting a 

similar strength on the change in DNAm with chronological age (R ≥0.663). Similarly, 

for the SNaPshot methodology, the CpG site in the ELOVL2 showed the strongest age 

correlation in living (R = 0.951) and deceased (R = 0.791). This result is in concordance 

with previous reports showing that  ELOVL2 gene is a stable age-associated marker that 

exhibits the most strong age-related changes, being currently used in several APMs in  

different tissues such as whole blood, teeth, saliva, buccal swabs and bone samples 
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(Garagnani et al., 2012; Hannum et al., 2013; Weidner et al., 2014; Bekaert et al., 2015a, 

2015b; Zbieć-Piekarska et al., 2015a, 2015b; Xu et al., 2015; Giuliani et al., 2016; 

Spólnicka et al., 2017; Naue et al., 2017, 2018; Slieker et al., 2018; Jung et al., 2019; 

Gopalan et al., 2019; Márquez-Ruiz et al., 2020; Pfeifer et al., 2020). In a recent work, 

Bacalini et al. (2017) demonstrated that most tissues show ELOVL2 hypermethylation 

with age. The authors demonstrated that this hypermethylation is associated with in vitro 

cell replication rather than with senescence, indicating that ELOVL2 methylation is a 

marker of cell divisions occurring during human aging. Moreover, a study by Spólnicka 

et al. (2017) emphasizes the high utility of the ELOVL2 marker for prediction of 

chronological age in forensics by showing unchanged prediction accuracy in individuals 

affected by three diseases (Graves’s disease and early or late onset Alzheimer’s disease).  

In our study, bisulfite sequencing and SNaPshot methodologies showed that the 

prediction accuracy depends on the chronological age of samples, both in living and 

deceased individuals. We obtained the largest MAD values in older ages, which was 

concordant with previous studies (Bekaert et al., 2015a; Zbieć-Piekarska et al., 2015a, 

2015b; Hamano et al., 2016; Pfeifer et al., 2020). This means that individual differences 

in the rate of methylation change occur with age, being slight in youths and accumulating 

with age, enabling that the APMs are more accurate in younger than in older individuals 

(Bekaert et al., 2015a; Hamano et al., 2016; Pfeifer et al., 2020). The fact that DNAm 

patterns predict age with more accuracy in younger than in older individuals suggests 

increased inter-individual variation within older people, possibly due to environmental, 

diseases and stochastic factors (Jaenisch and Bird, 2003; Boks et al., 2009; Heyn et al., 

2012; Spólnicka et al., 2017). In spite of this, DNAm age is accepted as an “epigenetic 

clock”, reflecting stable DNAm changes across the genome, nevertheless capturing 
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aspects of the biological age of the individual (Hannum et al., 2013; Horvath, 2013; 

Zbieć-Piekarska et al., 2015b; Horvath and Raj, 2018; Horvath et al., 2018).  

Another relevant issue is the possible influence of sex in DNAm levels of age-

correlated markers. To date, there is no consensus for a relationship between age-

associated DNAm levels and sex (Hannum et al., 2013; Bekaert et al., 2015a, 2015b; 

Huang et al., 2015; Zbieć-Piekarska et al., 2015b; Freire-Aradas et al., 2018). Our study 

showed for blood samples of living individuals very slight sex differences or no statistical 

differences, in accordance with previous studies (Bekaert et al., 2015a; Huang et al., 

2015; Zbieć-Piekarska et al., 2015b; Freire-Aradas et al., 2018; Daunay et al., 2019). 

Therefore, it seems that sex did not influence DNAm levels of the age-related CpG sites, 

at least for those selected in our study. No statistical comparison between males and 

females was made for deceased individuals in our study, because only 15 females were 

evaluated by Sanger sequencing and 13 females through the SNaPshot assay.  

 For forensic casework application of developed APMs the evaluation of a putative 

influence of postmortem changes in DNAm levels could be an important topic. However, 

to the best of our knowledge, only four studies have focused in blood samples from 

deceased individuals for development of APMs based on DNAm among a number of 

different loci including ELOVL2, FHL2, EDARADD, PDE4C, KLF14 and TRIM59 genes 

(Bekaert et al., 2015a; Hamano et al., 2016; Naue et al., 2018; Pfeifer et al., 2020). When 

comparing blood samples from living and deceased individuals, Bekaert et al. (2015a), 

Hamano et al. (2016) and Pfeifer et al. (2020) suggested similar distributions of DNAm 

patterns. Bekaert et al. (2015a) using the pyrosequencing methodology, analyzed 169 

blood samples of deceased individuals (including 37 blood samples from living 

individuals) (age range 0–91 years) for ELOVL2, PDE4C, EDARADD and ASPA genes. 

The authors proposed an overall prediction model using the four best age-associated CpG 
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sites from each gene, which demonstrated to be highly accurate, explaining 95% of the 

variation in age with a MAD of 3.75 years. Interestingly, the highest age-correlated CpG 

sites from ELOVL2 (CpG4; Chr6:11044640) and EDARADD (CpG3; Chr1:236394382) 

found in training set of the deceased Portuguese individuals captured by Sanger 

sequencing methodology correspond to the same best positions observed by Bekaert et 

al. (2015a). The work of Hamano et al. (2016), using the MS-HRM method to address 

the methylation levels of ELOVL2 and FHL2 genes, revealed similar distributions of 

DNAm levels in 22 living blood samples and 52 dead blood samples. However, the 

authors suggested that potential differences in methylation patterns between living and 

dead samples could be ignorable by the MS-HRM method. Naue et al. (2018) investigated 

through massively parallel sequencing 13 previously selected age-dependent loci in 

tissues such as brain, bone, muscle, buccal swabs and whole blood of 29 deceased 

individuals (aged 0–87 years old), including amongst others the ELOVL2 locus. All the 

analyzed markers in blood (DDO, ELOVL2, F5, GRM2, HOXC4, KLF14, LDB2, 

NKIRAS2, RPA2, SAMD10, TRIM59, MEIS1 and ZYG11A) showed a comparable age-

dependency in comparison to a previous study using whole blood of living individuals 

(Naue et al., 2017). Interestingly, the ELOVL2 position (Chr6:11044644; cg16867657) 

showed a Pearson correlation coefficient of 0.88, which is similar to the value (R = 0.76) 

obtained in our training set of deceased individuals using Sanger sequencing for the same 

position (CpG6). In concordance, Pfeifer et al. (2020) demonstrated no significant 

differences in DNAm levels of PDE4C, ASPA, EDARADD and ELOVL2 genes between 

blood samples from living and deceased individuals.    

In regards to our study, potential differences in methylation status between 

samples from living and deceased individuals were observed since the highest age-

correlated CpGs were different in some genes between both groups using Sanger 



A. DNA methylation age estimation in blood samples 

DNA methylation as an age predictor in living and deceased individuals 

Page | 162 

sequencing methodology: in living individuals the best age-associated markers were 

ELOVL2 CpG6, EDARADD CpG3, PDE4C CpG2 and FHL2 CpG3, whereas in deceased 

individuals the strong age-associated markers were ELOVL2 CpG4, EDARADD CpG3, 

PDE4C CpG2 and FHL2 CpG2. Moreover, the correlation between DNAm and age 

obtained in genes ELOVL2, EDARADD, FHL2 and PDE4C is lower in blood samples of 

deceased individuals (0.30≤ R ≤0.79) vs. living individuals (0.41≤ R ≤0.94), with 

ELOVL2 revealing the higher and most similar DNAm levels in both groups. Through the 

SNaPshot methodology, the individual analysis of DNAm levels also showed higher age 

correlation values in living individuals (0.79≤ R ≤0.95) in relation to blood samples from 

deceased (0.57≤ R ≤0.79). Moreover, in the multivariate analysis, the CpG sites at KLF14 

and TRIM59 genes showed non-significant age correlation values in living individuals, 

while in deceased individuals only the CpG at KLF14 showed a non-significant p-value. 

All these data could be explained by postmortem changes that can alter the methylation 

status among specific loci. After death, there is a decay of biological functions and the 

organism suffers some alterations. Consequently, it is possible that some of these changes 

influence DNAm levels. These DNAm changes after death suggest that a specific APM 

developed for blood samples from living individuals cannot accurately be applied for 

blood samples from deceased individuals. In concordance, when we applied the final 

APM built for living individuals through Sanger sequencing (APM with ELOVL2 CpG6, 

EDARADD CpG3, FHL2 CpG3 and PDE4C CpG2; MAD = 5.35 years) to the 

independent set of blood samples from deceased individuals, we obtained a higher value 

of MAD (9.72 years), which represents a decrease of the model accuracy in this set of 

samples. In particular, for the selected sites included in APM for living individuals, strong 

or very strong age correlation values were obtained (0.852≤ R ≤0.940), whereas in 

deceased individuals we observed for the same sites, lower age correlation values (0.459≤ 
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R ≤0.764). In the same way, when we applied the final multi-locus APM developed for 

living individuals using the SNaPshot methodology (with ELOVL2, FHL2 and C1orf132) 

to the methylation information captured in the set of deceased individuals using the same 

methodology and the same markers, a MAD of 7.84 years was observed. This value is 

higher when comparing with the accuracy obtained in the model developed for living 

individuals (MAD = 4.25 years).  

For testing APMs developed in blood samples from deceased individuals to age 

prediction in living individuals, we developed an additional APM for blood samples from 

deceased individuals using Sanger sequencing with methylation information from 

ELOVL2 CpG4, EDARADD CpG3, PDE4C CpG2 and FHL2 CpG2 (removing the 

C1orf132 marker that was not analyzed in living individuals), revealing a MAD from 

chronological age of 6.42 years. When this model was tested in the training set of living 

individuals a similar high accuracy was observed (MAD = 6.10 years). In concordance, 

when we applied the model developed for blood samples from deceased individuals (with 

ELOVL2, FHL2, C1orf132 and TRIM59) using SNaPShot methodology (MAD = 5.36 

years) to the set of living individuals, a similar MAD of 5.40 years was obtained. Thus, 

we hypothesized that APMs developed using methylation information captured in blood 

samples from deceased individuals (using Sanger sequencing or SNaPshot 

methodologies) can be applied to age prediction in living individuals with similar 

accuracy. Hence, in both bisulfite sequencing and SNaPshot methodologies, we observed 

that the best APM developed for blood samples from living individuals, is not so accurate 

when applied to blood samples from deceased individuals. Because of this, we postulate 

that in cases of application to forensic contexts, the developed APMs should be applied 

to the same sample type and, more important, the health status of sample donor should be 

the same of the original model in order to achieve a more accurate age prediction. This 
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can be a challenge for forensic casework, in which, very often, the forensic specialist does 

not know the individual's state of life to select a specific model developed for living or 

deceased individuals. It may be advantageous to develop a single APM that combines 

information from the DNAm levels of blood samples from living and deceased 

individuals to be applied to forensic age estimate without information on the health status 

of the sample donor. When this is not possible, our data suggest that APMs developed 

using blood samples from deceased individuals could be applied to blood samples from 

living individuals, but not the contrary. We believe that this issue is an important point 

for development of new APMs or reproducibility of the existing APMs.  

Finally, we should also consider that differences in sample size, DNAm markers, 

population age ranges, laboratory methodologies, or statistical techniques could influence 

accuracies across the different studies. In particular, bisulfite sequencing is a semi-

quantitative method and thus may not be optimal for precise methylation analysis. Even 

though, using DNAm standards, the analysis for the best CpG site selected from each 

gene in living individuals (ELOVL2 CpG6, EDARADD CpG3, FHL2 CpG3 and PDE4C 

CpG2), in deceased individuals (ELOVL2 CpG4, EDARADD CpG3, FHL2 CpG2, 

C1orf132 CpG1, and PDE4C CpG2) and in the overall sample set of blood samples 

(ELOVL2 CpG6, EDARADD CpG3, FHL2 CpG1 and PDE4C CpG2) indicates that the 

bisulfite sequencing method is accurate in terms of actual methylation versus expected 

methylation of known quantities of methylated to unmethylated DNA. Furthermore, the 

SNaPshot method demonstrated to be a promising method in forensic fields because of 

its capacity for multiplexing analysis, investigating simultaneously the DNAm levels 

across several specific CpGs previously reported as promising age-correlated markers. In 

our study, both methodologies shown to be efficient and economical alternative tools for 

rapid and efficient quantification of DNAm in blood samples. In agreement, when we 
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compare the age correlation captured by both methodologies for all the training sets, in 

general we observed similar values at the same CpGs (ELOVL2, Chr6:11044628; FHL2, 

Chr2:105399282; C1orf132, Chr1:207823681), supporting the accuracy of DNAm 

quantification of both methodologies for age predictions.  

As conclusion, using a training set of 53 blood samples of living individuals, we 

developed a final APM with the highly age-associated CpGs in genes ELOVL2, FHL2, 

EDARADD and PDE4C through the bisulfite sequencing methodology. The model 

revealed an accurate age estimation with a MAD from chronological age of 5.35 years. 

Our results are in concordance with previous studies using the pyrosequencing assay, 

being accurate for age estimations in forensic casework, at least in blood. Moreover, 

addressing age-dependency of multiple CpG sites in five genes ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 through bisulfite Sanger sequencing in blood samples 

of deceased individuals, the combination of the five most strong age-correlated markers 

from each gene in a final APM showed a MAD of 6.08 years that seems to be informative 

and accurate for age prediction purposes. This value revealed a similar accuracy 

comparing with the APM developed for blood samples from living individuals, showing 

reproducibility and applicability of bisulfite sequencing for age estimation in forensic 

contexts using blood. Bisulfite sequencing is simple, does not include complex 

procedures, being less time-consuming and less expensive, showing to have near 

equivalent accuracy to pyrosequencing (Jiang et al., 2010; Parrish et al., 2012). Moreover, 

bisulfite sequencing enabled us to assess the methylation level across multiple CpG sites 

allowing the possibility to choose several CpGs of interest.  

In this study, we also validated and replicated in blood samples from living 

Portuguese individuals the SNaPshot assay of Jung et al. (2019) evaluating DNAm levels 

in the five specific CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 
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genes. Although using a different APM built with only three CpGs at ELOVL2, FHL2 

and C1orf132 genes, similar high prediction accuracies were obtained (MAD = 4.25 years 

in Portuguese and MAD = 3.174 years in Koreans). Some differences in the methylation 

patterns were observed between the two populations (Koreans and Portuguese) 

suggesting the possibility that some effects in DNAm levels of age markers may be 

population specific. In deceased individuals, an independent APM with four CpGs in 

ELOVL2, FHL2, C1orf132 and TRIM59 genes was developed, showing a slightly lower 

prediction accuracy (MAD of 5.36 years) in relation to living individuals. Both MAD 

values obtained in APMs developed using SNaPshot methodology were similar, attesting 

the reproducibility of this methodology in blood samples from living and deceased 

individuals.   

Our data revealed differences in DNAm levels between living and deceased 

individuals using both methodologies, suggesting that possible DNAm postmortem 

changes could alter the methylation status among specific loci. This is supported by 

differences in age correlation values, differences in the accuracy of the developed models 

and differences in selection of highest CpGs in each training set. Moreover, we observed 

that APMs developed in living individuals cannot be applied to dead people with identical 

accuracy, which reveals the necessity and usefulness of development of APMs specific 

not only for each type of sample but also considering the life and death status of the donor. 

Meanwhile, when this is not possible, our data suggest that APMs developed using blood 

from deceased individuals can be applied to living people. Furthermore, the development 

of APMs in the whole data set of samples from living and deceased individuals seems to 

be more suitable to be applied to forensic contexts when the status of sample donor is 

unknown.  
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1. Introduction  

 

Age estimation is one of the most relevant questions in forensic contexts, being 

necessary both for living and deceased individuals (Cunha et al., 2009). Macroscopic and 

imagiological analyses followed by an appropriate mathematical approach are now 

standard procedures. But genetics and chemistry are also playing important roles in that 

respect (Zapico et al., 2019). Odontological age estimation approaches have also played 

an important role in age estimation of living and deceased individuals and in non-adults 

and adults (Adserias-Garriga, 2019b). Despite, there is no standard method that can be 

applied for all the forensic scenarios, including living and deceased individuals and all 

the age ranges. 

To date, few studies have considered teeth for DNA methylation (DNAm) 

analyses to predict age (Bekaert et al., 2015a; Giuliani et al., 2016; Márquez-Ruiz et al., 

2020). Giuliani et al. (2016) investigated methylation data at ELOVL2, FHL2 and PENK 

loci by Maldi-Tof mass spectrometry in 21 modern teeth and proposed age prediction 

models (APMs) for cementum, dentin and pulp with a median absolute deviation between 

estimated and chronological ages of 2.45, 7.07 and 2.25 years, respectively. In 

concordance, Bekaert et al. (2015a) evaluating DNAm levels by pyrosequencing in 29 

dentin samples from living individuals, reported a multiple quadratic regression model 

with seven CpGs located at PDE4C, ELOVL2 and EDARADD genes explaining 74% of 

the variation in age with a mean absolute deviation (MAD) between estimated and 

chronological ages of 4.86 years. A recent study by Márquez-Ruiz et al. (2020) testing 

by bisulfite pyrosequencing the methylation levels in 65 tooth samples, obtained a 

significant positive age association for CpG sites at ELOVL2 and PDE4C and developed 

an APM with nine CpGs from these two loci with a MAE of 5.08 years.  
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Considering these promising results, the main goal of the present study was to 

investigate DNAm information for age prediction purposes in tooth samples from 

identified Portuguese individuals using the bisulfite polymerase chain reaction (PCR) 

Sanger sequencing and multiplex SNaPshot methodologies. Both methods used herein 

are semi-quantitative but have shown to be efficient and economical alternative tools for 

rapid quantification of DNAm.  

 

2. Materials and Methods 

  

2.1. Sample collection 

A set of 31 tooth samples (10 males, 21 females; aged 26-94 years old) was 

collected from living individuals (n = 23) in dentist offices, after informed consent, and 

from Bodies Donated to Science (BDS) (n = 8, Annex II) in Departamento de Anatomia 

da Faculdade de Medicina da Universidade do Porto before the embalming method of 

the body with Thiel (Eisma et al., 2013). The collection of teeth before the embalming 

ensures the control of any possible influence related to the process of conservation.  

The study protocol was approved by the Instituto Nacional de Medicina Legal e 

Ciências Forenses (INMLCF) and by the Ethical Committee of Faculdade de Medicina 

da Universidade de Coimbra (nº 038-CE-2017).  

 

2.2. DNA extraction, quantification and bisulfite conversion  

Genomic DNA extraction from tooth samples was performed using a robot with 

PrepFiler Express BTA™ Forensic DNA Extraction Kit (Applied Biosystems, Foster 

City, CA). DNA Quantification was made using the real-time PCR-based Quantifiler™ 

Human DNA Quantification Kit (Applied Biosystems, Foster City, CA). These 
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procedures were made in INMLCF, according to standard guidelines, as previously 

described in Chapter 3. Sample and design research. 

After extraction and quantification, genomic DNA was subjected to bisulfite 

conversion using EZ DNA Methylation-GoldTM Kit (Zymo Research, Irvine, USA) 

according to the instructions of manufacturer (previously described  in Chapter 3. Sample 

and design research). Briefly, 20 µl of genomic DNA (in a total amount of 100 to 400 

ng) was treated with sodium bisulfite and modified DNA was extracted to a final volume 

of 10 μl. 

 

2.3. Polymerase chain reaction (PCR) and Sanger sequencing  

After bisulfite conversion, the modified DNA samples were submitted to PCR for 

selected regions of genes ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 using the 

Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany). PCR products were sequenced 

with Big-Dye Terminator v1.1 Cycle Sequencing kit (Applied Biosystems), using primers 

and conditions previously described in Chapter 3. Sample and design research.   

 

2.4. SNaPshot assay  

After bisulfite conversion, the modified DNA samples were submitted to a 

multiplex SNaPshot assay for five CpG sites at genes ELOVL2, FHL2, KLF14, 

C1orf132/MIR29B2C and TRIM59 with the primers and conditions previously described 

in Jung et al. (2019). Particular conditions for multiplex PCR amplification and multiplex 

SBE reactions were as previously described in Chapter 3. Sample and design research. 

 

2.5. DNAm quantification 

The methylation levels at each CpG site (0–1) was estimated by measuring the 

peak height of C (unconverted methylated DNA) and T (converted non-methylated DNA) 
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observed in the electropherograms through the formula [C/C+T], as previously described 

in Chapter 3. Sample and design research. 

 

2.6. Statistical analyses  

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Independent analyses 

were made for the data obtained through Sanger sequencing and SNaPshot 

methodologies. Linear regression models were used to analyze relationships between 

DNAm levels and chronological age allowing the selection of the highest age-related 

CpGs and the development of APMs, as previously described in Chapter 3. Sample and 

design research. Briefly, using the simple linear regression coefficients from each 

significant age-correlated CpG site, we predicted age of individuals. The best 

combination of significant age-correlated CpGs selected from a stepwise regression 

analysis was used in a multiple regression approach to build the final multi-locus APM 

in each set of tooth samples.  

The MAD between chronological and predicted ages and the root mean square 

error (RMSE) were calculated for the training set of tooth samples using the final APM 

developed in each methodology.  

Validation of the final APMs for each set of tooth samples in both methodologies 

was performed by splitting the complete data set into two subsets (training and validation 

sets) and by a 3-fold cross validation as previously referred in Chapter 3. Sample and 

design research. 

DNAm sex analysis was performed through comparison of two regression lines 

relating chronological age and DNAm levels of each gene at two levels (males/females) 
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of the categorical factor, using the software STATGRAPHICS Centurion XV, version 

15.2.05 (StatPoint Technologies, Inc., VA) in both methodologies.  

 

3. Results  

 

In the present study, we report on methylation levels of 43 CpG sites located at 

ELOVL2, FHL2, PDE4C, EDARADD and C1orf132 genes using the bisulfite Sanger 

sequencing methodology from tooth samples from living and deceased individuals. 

Moreover, using the multiplex SNaPshot assay reported by Jung et al. (2019), 

methylation data from five CpGs at ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C and 

TRIM59 genes were obtained from teeth.  

 

3.1. DNAm data obtained in teeth from living and deceased individuals 

using bisulfite Sanger sequencing  

 

DNAm levels were evaluated in 31 tooth samples (23 from living and 8 from 

deceased individuals; 10 males, 21 females; aged 26-94 years old) through Sanger 

sequencing methodology. 

Using DNAm standards, the accuracy of methylation levels obtained by bisulfite 

PCR sequencing in each best-selected CpG in the training set of tooth samples revealed 

a significant linear relationship to expected methylation levels (Supplementary Figure 

S15).  
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DNAm levels and sex  

Two simple linear regression lines of methylation status and age between males 

and females showed no statistically significant difference in slope and intercept for the 

targets sites selected by Sanger sequencing in the training set of teeth (P-value >0.05, 

Table 4.26). Thus, all the analyses were made ignoring sex differences. 

 

 Table 4.26: Comparison of two regression lines between males and females in tooth 

samples using data obtained from Sanger sequencing. 

 

 

 

 

 

Correlation between DNAm levels and chronological age   

The DNAm levels in tooth samples showed no significant correlation with age for 

any CpG site at EDARADD and C1orf132 genes (Supplementary Table S8). Thus, these 

loci were excluded for further analysis. The CpG sites at the remaining genes ELOVL2, 

FHL2, PDE4C showed positive but moderate or weak correlations between DNAm and 

age (Supplementary Table S8). One sample did not amplify for FHL2 and four samples 

did not amplify for PDE4C. Supplementary Figure S16 shows the correlation between 

age and DNAm levels of the best site in ELOVL2, FHL2 and PDE4C genes.   

 

Development of an age prediction model (APM)  

Simple linear regression statistics testing the association between DNAm and 

chronological age revealed the strongest site FHL2 CpG4 (R = 0.658, P-value = 

0.000078), explaining 41.3% of the variation in age, followed by PDE4C CpG1 (R = 

Marker 
P-value 

Intercept Slope 

ELOVL2 CpG3 0.1621 0.6443 

FHL2 CpG4 0.1185 0.1696 

PDE4C CpG1 0.2767 0.5262 
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0.474, P-value = 0.013), explaining 19.3% of the variation in age, and ELOVL2 CpG3 (R 

= 0.379, P-value = 0.036), explaining 11.4% of the variation in age (Table 4.27; 

Supplementary Table S8).  

The predicted age of individuals was calculated through the simple linear 

regression coefficients for FHL2 CpG4, PDE4C CpG1 and ELOVL2 CpG3 allowing to 

obtain a MAD of 11.35 years, 14.58 years and 15.22 years, respectively (Table 4.27; 

Figure 4.27; Supplementary Figure S17).   
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Table 4.27: Simple linear regression statistics of the best age predictors in FHL2, PDE4C and ELOVL2 genes to test the association between 

DNAm levels obtained by bisulfite sequencing and chronological age in tooth samples from living and deceased individuals.   

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

Locus CpG Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression  

FHL2 CpG4 Chr2:105399297 30 0.658 0.433 0.413 14.57 0.000078 11.35 

PDE4C CpG1 Chr19:18233139 27 0.474 0.224 0.193 17.54 0.012588 14.58 

ELOVL2 CpG3 Chr6:11044634 31 0.379 0.143 0.114 18.32 0.035738 15.22 



B. DNA methylation age estimation in tooth samples 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 177 

We tested the age prediction multiple linear regression model using 

simultaneously the three best CpG sites, however only CpG4 at FHL2 gene revealed a 

significant age correlation value (P-value = 0.002, Supplementary Table S9). 

Furthermore, we used the stepwise regression approach selecting the 12 significant age-

correlated CpG sites located at ELOVL2 (2 CpGs), FHL2 (6 CpGs) and PDE4C (4 CpGs) 

but only the same FHL2 CpG4 was chosen. Age prediction for each individual tooth 

estimated according to the individual regression coefficients for the high age-associated 

marker FHL2 CpG4  was as follows: (-114.989) + 239.863 × DNAm level FHL2 CpG4 

(Table 4.28). The predicted age captured from the 30 tooth samples allowed to obtain a 

moderate correlation between predicted and chronological ages of 0.589 (Spearman 

correlation) with a MAD from the chronological age of 11.35 years (RMSE = 14.08) 

(Figure 4.27). Correct predictions were 76.7% assuming that chronological and predicted 

ages match ± 15 years, according to the standard error of estimate calculated for the final 

APM (SE = 14.57) (Table 4.27).   

 

Table 4.28: Statistical parameters obtained by simple linear regression for the FHL2 

CpG4, selected by stepwise regression approach in tooth samples.  

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) -114.989 0.005 

FHL2 CpG4 239.863 0.000 
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Figure 4.27: Predicted age versus chronological age using best marker FHL2 CpG4 in 

teeth from living and deceased individuals. MAD and Spearman correlation coefficient, 

r, are plotted on the chart. 

 

Validation of the simple APM developed in living and deceased individuals  

The simple APM developed for tooth samples with FHL2 CpG4 was tested by a 

3-fold cross validation allowing an averaged MAD from the chronological age of 12.22 

years (RMSE = 12.36) from the three independent validation sets. The additional 

validation by splitting the overall training set into two sets of 16 and 14 samples (training 

and test sets) allowed to obtain a MAD of 10.40 years (RMSE = 13.20) in the training set 

and 11.93 years (RMSE = 15.98) in the test set. 

 

3.2. DNAm data obtained in teeth from living and deceased individuals 

using SNaPshot methodology   

 

From the 31 tooth samples from living and deceased individuals evaluated using 

the multiplex methylation SNaPshot assay of Jung et al. (2019), 24 samples (16 from 
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living and 8 from deceased individuals; 8 males, 16 females; aged 27-88 years old) were 

successfully PCR-amplified and the obtained data were used for subsequent analysis. 

 

DNAm levels and sex  

DNAm sex analysis in the training set of teeth analyzed by SNaPshot 

methodology revealed no statistically significant difference in slope and intercept for  

sites located at ELOVL2, KLF14 and TRIM59 loci (P-value >0.05, Table 4.29). Thus, all 

the analyses were made ignoring sex differences. 

 

Table 4.29: Comparison of two regression lines between males and females in tooth 

samples using data obtained from the SNaPshot methodology.  

 

 

 

 

Correlation between DNAm levels and chronological age  

From the 24 tooth samples with successful amplifications using the multiplex 

methylation SNaPshot assay, ELOVL2, KLF14 and FHL2 genes were not successfully 

amplified for one sample. Positive and significant age correlations were observed for 

ELOVL2, KLF14 and TRIM59 genes in the training set sample (Table 4.30; 

Supplementary Figure S18). The CpG sites in FHL2 and C1orf132/MIR29B2C genes 

showed a lower or no significant age correlation (Table 4.30) and were excluded for 

further analysis. 

 

 

 

Marker 
P-value 

Intercept Slope 

ELOVL2 0.6102 0.0922 

KLF14 0.4980 0.2465 

TRIM59 0.9121 0.0714 
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Development of an age prediction model (APM)  

DNAm levels in KLF14 locus showed the strongest age correlation (R = 0.728, P-

value = 0.000084), explaining 50.7% of the variation in age, following by ELOVL2 (R = 

0.685, P-value = 0.000311), explaining 44.4% of the variation in age, and TRIM59 (R = 

0.665, P-value = 0.000389), explaining 41.7% of the variation in age (Table 4.30). Using 

these sites in simple linear regression models the calculated MAD values from 

chronological age were 9.68 years for KLF14, 11.27 years for ELOVL2 and 11.51 years 

for TRIM59 (Supplementary Figure S19).  



B. DNA methylation age estimation in tooth samples 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 181 

Table 4.30: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 genes using 

SNaPshot assay in teeth from living and deceased individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

 

 

 

 

 

 

 

 

 

 

 

Locus Location N R R2 
Corrected  

R2  
SE P-value MAD 

Simple linear regression  

ELOVL2 Chr6:11044628 23 0.685 0.469 0.444 13.33 0.000311 11.27 

FHL2 Chr2:105399282 23 0.331 0.110 0.067 17.43 0.122700 - 

KLF14 Chr7:130734355 23 0.728 0.529 0.507 12.56 0.000084 9.68 

C1orf132 Chr1:207823681 24 -0.080 0.006 -0.039 19.07 0.709684 - 

TRIM59 Chr3:160450189 24 0.665 0.443 0.417 14.28 0.000389 11.51 

Multiple linear regression 

APM (ELOVL2 and KLF14) 23 0.886 0.785 0.764 12.56 2.09 × 10-7 7.07 
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The training set of 23 teeth was used to develop a multiple linear regression model 

using simultaneously the methylation information of the three individual significant age-

correlated CpG sites located at KLF14, ELOVL2 and TRIM59 genes. However, the CpG 

site at TRIM59 gene showed non-significant age correlation value in the multiple model, 

which could reveal signs of multicollinearity between variables (Supplementary Table 

S10). In concordance, the stepwise regression approach allowed to select a final dual-

locus model with the CpG sites at ELOVL2 and KLF14. The multiple linear regression 

using ELOVL2 and KLF14 DNAm data allowed us to obtain a strong age correlation value 

(R = 0.886), highly significant (P-value = 2.09 × 10-7), explaining 76.4% of the variation 

in age (Table 4.30). Predicting age of each individual through the formula: 11.519 + 

106.261 × DNAm level ELOVL2 + 291.877 × DNAm level KLF14 (Table 4.31), allowed 

to estimate age with a correlation between predicted and chronological ages of 0.883 

(Spearman correlation), and a MAD from chronological age of 7.07 years (RMSE = 8.11) 

(Figure 4.28). Correct predictions were 95.7% assuming that chronological and predicted 

ages match ± 13 years, according to the standard error of estimate calculated for the final 

APM (SE =12.56) (Table 4.30).   

 

Table 4.31: Statistical parameters obtained in a multiple regression model with the two 

CpGs in genes ELOVL2 and KLF14 selected by stepwise regression approach, in tooth 

samples. 

 
 

 

 

Marker Coefficient P-value 

(Intercept) 11.519 0.061 

ELOVL2  106.261 0.000 

KLF14 291.877 0.000 
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Figure 4.28: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay at the two CpGs located at ELOVL2 and KLF14 genes in teeth from living 

and deceased individuals. MAD and Spearman correlation coefficient, r, are plotted on 

the chart. 

 

Validation of the multi-locus APM developed in living and deceased individuals  

 

The 3-fold cross validation made to test the accuracy of the model, allowed to 

estimate an averaged MAD from the chronological age for the three independent 

validation sets of 7.33 years (RMSE = 7.48), very close to the MAD of 7.07 years from 

the total training data set. A validation by splitting the sample into two sets of 12 and 11 

samples (training and validation sets) allowed to obtain an independent MAD value for 

the training set of 7.35 years (RMSE = 8.59). The model was applied to the validation set 

allowing to obtain a MAD of 6.34 years (RMSE = 7.25). 

 

3.3. Comparison between methodologies  

The age correlation values obtained in tooth samples using Sanger sequencing and 

SNaPshot methodologies revealed similar moderate age correlations for FHL2 (R = 0.451 

vs. R = 0.331, respectively) and a similar negligible age correlation for C1orf132 (R = -
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0.123 vs. R = -0.080, respectively). ELOVL2 marker showed a higher age correlation 

value through SNaPshot (R = 0.685) comparing with Sanger sequencing (R = 0.237) 

(Table 4.32).   

 

Table 4.32: Comparison of age-correlated values obtained in tooth samples from living 

and deceased Portuguese individuals through Sanger and SNaPshot methodologies. 

 

Abbreviations: R, Pearson correlation coefficient. 

 

Differences between predicted and chronological ages with aging were not 

evaluated for both methodologies, because we have a limited number of 31 tooth samples 

that is not representative of all age groups. 

 

4. Discussion 

  

Nowadays, the increasing growth of epigenetics in forensic contexts led to the 

development of DNAm models to predict age based in different sample types. However, 

only few studies have focused in DNAm age prediction based on teeth (Bekaert et al., 

2015a; Giuliani et al., 2016; Márquez-Ruiz et al., 2020). Teeth are a valuable source of 

DNA in forensics, due to its high resistance to adverse conditions (including postmortem 

Chromosomal location  

GRCh38  

(Position in 450K array) 

Portuguese ancestry 

Sanger sequencing SNaPshot 

Teeth  

(26-94 years) 

Teeth  

 (27-88 years) 

R  R2 R R2 

ELOVL2  

Chr6:11044628 
0.237 0.056 0.685 0.469 

C1orf132  

Chr1:207823681 
-0.123 0.015 -0.080 0.006 

FHL2  
Chr2:105399282 (cg06639320) 

0.451 0.204 0.331 0.110 
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DNA decay). Very often, this tissue has better quality than bone samples (Higgins and 

Austin, 2013). 

In the present study, we analyzed 31 tooth samples of Portuguese ancestry through 

the bisulfite Sanger sequencing method to obtain methylation information of several 

CpGs located at ELOVL2 (9 CpGs), FHL2 (12 CpGs), EDARADD (4 CpGs), PDE4C (12 

CpGs) and C1orf132 (6 CpGs) genes, repeatedly reported as age-associated in blood 

(Weidner et al., 2014; Bekaert et al., 2015a; Zbieć-Piekarska et al., 2015b; Thong et al., 

2017; Cho et al., 2017; Duanay et al., 2019; Pfeifer et al., 2020). Moreover, we used the 

multiplex methylation SNaPshot assay of Jung et al. (2019) in 24 tooth samples to analyze 

five CpG sites located at ELOVL2, FHL2, KLF14, C1orf132 and TRIM59. SNaPshot 

methodology seems promising in forensic fields because of its capacity for multiplexing 

analysis.  

The Sanger sequencing methodology did not allow to develop a multi-locus APM 

in tooth samples, since only lower and moderate correlation values between age and 

DNAm were obtained. This suggests that this method could have limited usefulness for 

forensic age estimation using teeth. Meanwhile, a simple linear regression model using 

the high age-correlated FHL2 CpG4 revealed a model accuracy of 11.35 years, which is 

a higher MAD value. Testing this APM by a 3-fold cross validation (MAD = 12.22 years) 

and the validation by splitting the overall training set into two sets (MAD = 10.40 years 

in the training set and MAD = 11.93 years in the test set) showed similar values, 

suggesting the accuracy of the APM.  

Using the SNaPshot method, a moderate accurate multiple model combining 

CpGs at ELOVL2 and KLF14 was obtained (MAD of 7.07 years). Testing the developed 

model by the 3-fold cross validation (MAD = 7.33 years) and through the validation by 

splitting the sample into two sets (MAD = 7.35 years for the training set and 6.34 years 
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for the validation set) showed MAD values very close to the MAD of 7.07 years obtained 

from the total training data set. This suggests that accurate results can be obtained when 

testing the developed models. 

  Regarding previous studies using teeth, Bekaert et al. (2015a), evaluating DNAm 

levels by pyrosequencing in 29 dentin samples of living individuals, reported a multiple 

quadratic regression model developed with seven CpGs located at PDE4C, ELOVL2 and 

EDARADD genes explaining 74% of the variation in age with a MAD of 4.86 years. The 

model included the ELOVL2 CpG site (Chr6:11044628) selected in our study using 

SNaPshot. Giuliani et al. (2016) using five CpGs located at ELOVL2, FHL2 and PENK 

genes, addressed by Maldi-Tof mass spectrometry in 21 teeth extracted from living 

individuals with age ranging from 17 to 77 years, obtained a median absolute deviation  

of 7.07 years in dentin samples. A recent study by Márquez-Ruiz et al. (2020) testing 

methylation levels of specific CpG sites located in the ELOVL2 and PDE4C genes by 

bisulfite pyrosequencing in 65 tooth samples from individuals aged 15-85 years old, 

developed an APM with nine CpG sites showing a MAE of 5.08 years. All these studies 

showed the usefulness of ELOVL2 in development of epigenetic clocks using tooth 

samples. In agreement, our dual-model obtained with the SNaPshot method included a 

CpG from this locus. Similar to Bekaert et al. (2015a) and Márquez-Ruiz et al. (2020), 

our study showed non-significant sex DNAm differences, using Sanger sequencing and 

SNaPshot methodologies.  

The age correlation in tooth samples using both methodologies revealed similar 

values for FHL2 and C1orf132 markers. However, for CpG from ELOVL2 a slight 

difference was observed between both methodologies emphasizing the need of additional 

studies with a more representative sample set of tooth samples. 
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The present study has some limitations, being the sample size the major drawback. 

Moreover, despite we used 31 teeth not all of them were successful amplified for all 

genes. Larger sample sets could have higher statistical power and could be more 

representative of DNAm changes according to different age range and in different tissue 

types. We should consider also that different CpGs and/or genes were addressed in both 

methodologies, consequently this could influence the accuracy of the developed models.  

In conclusion, considering that to date only few reports used teeth in development 

of models for forensic age estimation, we evaluated DNAm levels from tooth samples 

using the bisulfite Sanger sequencing and SNaPshot methodologies. Our study allowed 

to develop a dual-locus APM with CpGs located at ELOVL2 and KLF14 genes through 

SNaPshot method, exhibiting a moderate age prediction accuracy, allowing to obtain a 

MAD from chronological age of 7.07 years. Our results suggest that bisulfite PCR 

sequencing could have limited efficacy using tooth samples, being a complementary 

methodology for evaluating DNAm changes and creating age estimation models in this 

type of tissue. 

 

  

 

 

 

 

 

 



  

 

 



  

 

 

Chapter 4. Results and discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. DNA methylation age estimation in fresh bone samples 

 

The obtained data from bone samples collected during autopsies was used on the 

published original paper:  

 

Correia Dias H, Corte Real F, Cunha E, Manco L. DNA methylation age estimation 

from human bone and teeth. Australian Journal of Forensic Sciences 2020. 

Doi:10.1080/00450618.2020.1805011. 
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1. Introduction  

 

Bones can be one of the last evidences of an individual and provide an important 

source for DNA in many cases of forensic identification. Thus, bones can be one of the 

most informative samples for forensic purposes (Meissner and Ritz-Timme, 2010). 

Estimating an individual’s age based on skeletal indicators is not new in forensic 

casework, and many age estimation methods based on anthropological features were 

implemented (Adserias-Garriga and Wilson-Taylor, 2019; Cunningham, 2019); however, 

these methods can be affected by some factors as characteristics of the reference sample 

and subjectivity (Cunha et al., 2009; Franklin, 2010; Nakhaeizadeh et al., 2014). 

Additionally, molecular or chemical methodologies can be a promising alternative for age 

estimation (Zapico et al., 2019), but can also suffer from practical difficulties related to 

standardization of methods or implementation in many forensic contexts (Meissner and 

Ritz-Timme, 2010). 

DNA methylation (DNAm) based models for age estimation are increasingly 

accepted as a promising tool to be applied in future forensic contexts. However, to date, 

few studies have assessed to DNAm levels in bone samples for age estimation purposes 

(Horvath et al., 2015, 2018; Naue et al., 2018; Gopalan et al., 2019; Lee et al., 2020). 

Horvath et al. (2015) applied a previously developed model with 353 CpGs (Horvath, 

2013) to 48 trabecular bone samples, obtaining a correlation value of 0.88 between 

predicted and chronological ages. Later, Horvath et al. (2018) developed the “skin & 

blood clock” focused on 391 CpGs analyzed in several tissues, including blood, skin, 

buccal swabs and saliva. When applying the “skin & blood clock” to trabecular bone 

samples, the authors obtained a correlation between predicted and chronological ages of 

0.82 (Horvath et al. 2018). Using massive parallel sequencing, Naue et al. (2018) 
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obtained in fresh bone samples collected during autopsy from 29 individuals a moderate 

correlation between DNAm and age for CpGs at ELOVL2, KLF14 and TRIM59 genes 

(0.58, 0.51 and 0.61, respectively). Gopalan et al. (2019) using genome-wide DNAm data 

from 155 bone samples developed a powerful “37 bone clock CpGs” for age prediction 

based on CpG sites from TRIM59, ELOVL2 and KLF14 genes, among others. They 

obtained a root mean square error (RMSE) of 4.9 years. They investigated also forensic 

samples with 2-3 years of natural decomposition, however these samples were excluded 

from analysis. More recently, Lee et al. (2020) observed for TRIM59 and ELOVL2 CpGs 

an age correlation value of 0.434 and 0.415, respectively, when evaluated 30 bones using 

the SNaPshot assay proposed by Jung et al. (2019). In addition, Lee and collaborators 

applied the “skin & blood clock” previously developed by Horvath et al. (2018) in 12 

bones using the Infinium HumanMethylation EPIC BeadChip array, observing strong age 

correlation values (r >0.70) for 38 CpGs, including for CpGs FHL2 (cg06639320, 

cg22454769), EDARADD (cg09809672), ELOVL2 (cg21572722, cg16867657), KLF14 

(cg20426994) and TRIM59 (cg07553761). Predicting age using the 12 bones allowed to 

obtain a mean absolute deviation (MAD) from chronological age of 6.4 years (r = 0.964) 

(Lee et al., 2020).  

Considering the scarcity of studies in development of age prediction models 

(APMs) based on DNAm analysis using bones, the development of specific models for 

this tissue type is required, as well as the discovery of the best age-related markers. To 

address this issue, the present study aimed to develop APMs for bone samples from 

Portuguese individuals, using the bisulfite Sanger sequencing and SNaPshot 

methodologies. The previously known and validated age-associated genes ELOVL2, 

EDARADD, PDE4C, FHL2, C1orf132/MIR29B2CHG, TRIM59 and KLF14 were used in 

the analyses.  
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2. Materials and Methods  

 

2.1. Sample collection 

A set of 31 bone samples (26 males, 5 females; aged 26-81 years old) was 

collected from identified deceased individuals during autopsies in Serviço de Patologia 

Forense das Delegações do Centro e Sul, after consulting RENNDA (Registo Nacional 

de Não Dadores). All these bones were collected within five days after death.  

Moreover, a training set of 22 bones (10 males, 12 females; aged 49-93 years old) 

collected from identified Bodies Donated to Science (BDS) was included. Bones from 

BDS were collected in Departamento de Anatomia da Faculdade de Medicina da 

Universidade do Porto and in the Faculdade de Medicina da Universidade de Coimbra, 

after the embalming method with Thiel (Eisma et al., 2013). The training set of bones 

from BDS has different postmortem intervals (Annex II). 

The study protocol was approved by the Instituto Nacional de Medicina Legal e 

Ciências Forenses (INMLCF) and by the Ethical Committee of Faculdade de Medicina 

da Universidade de Coimbra (nº 038-CE-2017).  

 

2.2. DNA extraction, quantification and bisulfite conversion  

The pre-treatment of fresh bone samples, genomic DNA extraction using 

PrepFiler Express BTA™ Forensic DNA Extraction Kit (Applied Biosystems, Foster 

City, CA) and DNA Quantification with the real-time PCR-based Quantifiler™ Human 

DNA Quantification Kit (Applied Biosystems, Foster City, CA) were made in INMLCF, 

as described in Chapter 3. Sample and design research. Then, genomic DNA was 

subjected to bisulfite conversion using the EZ DNA Methylation-GoldTM Kit (Zymo 
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Research, Irvine, USA) according to the instructions of manufacturer. Briefly, 20 µl of 

genomic DNA (in a total amount of 100 to 400 ng) was treated with sodium bisulfite and 

modified DNA was extracted to a final volume of 10 μl. Specific details were previously 

described in Chapter 3. Sample and design research.  

 

2.3. Polymerase chain reaction (PCR) and Sanger sequencing  

After bisulfite conversion, the modified DNA samples were submitted to PCR for 

selected regions of genes ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 using the 

Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) and sequenced with Big-Dye 

Terminator v1.1 Cycle Sequencing kit (Applied Biosystems), using primers and 

conditions previously described in Chapter 3. Sample and design research.   

 

2.4. SNaPshot assay  

After bisulfite conversion, the modified DNA samples were submitted to a 

multiplex SNaPshot assay for five CpG sites at genes ELOVL2, FHL2, KLF14, C1orf132 

and TRIM59 with the primers and conditions described in Jung et al. (2019). Particular 

conditions for multiplex PCR amplification and multiplex SBE reactions were as 

previously described in Chapter 3. Sample and design research. 

 

2.5. DNAm quantification 

The methylation levels at each CpG site (0–1) was estimated by measuring the 

peak height of C (unconverted methylated DNA) and T (converted non-methylated DNA) 

observed in the electropherograms through the formula [C/C+T], as previously described 

in Chapter 3. Sample and design research. 
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2.6. Statistical analyses  

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Independent analyses were 

made for each training set of bones using data obtained through bisulfite sequencing and 

SNaPshot methodologies. Linear regression models were used to analyze relationships 

between methylation levels and chronological age as previously described in Chapter 3. 

Sample and design research. Briefly, using the simple linear regression coefficients from 

each significant age-correlated CpG site, we predicted age of individuals for each 

individual gene. The best combination of significant age-correlated CpGs, selected from 

a stepwise regression analysis was used in a multiple regression approach to build the 

final multi-locus APM in each set of bones.  

The MAD between chronological and predicted ages and the root mean square 

error (RMSE) were calculated for each training set of bone samples using the final APM 

developed in each methodology.  

Validation of the final APMs for each set of bones in both methodologies was 

performed by splitting the complete data set into two subsets (training and validation 

sets), and by a 3-fold cross validation, as previously referred in Chapter 3. Sample and 

design research. 

Sex DNAm analysis was made using the software STATGRAPHICS Centurion 

XV, version 15.2.05 (StatPoint Technologies, Inc., VA), as reported in Chapter 3. Sample 

and design research for the training set of bones from BDS in both methodologies. 

The effect of PMI (postmortem interval) was evaluated in six pairs of individuals 

from the BDS, with identical or similar chronological age, calculating the mean of the 

differences between DNAm levels obtained for all the CpGs within each gene. 
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3. Results 

 

In the present study, we evaluated the DNAm levels of several CpG sites located 

at genes ELOVL2, FHL2, PDE4C, EDARADD, C1orf132, KLF14 and TRIM59 in bones 

from autopsies and from BDS using the bisulfite Sanger sequencing and the SNaPshot 

methodologies. 

Using three known quantities of DNAm standards (0%, 50% and 100% 

methylation levels), the methylation data obtained by bisulfite sequencing revealed a 

linear relationship between the observed and the expected DNAm levels of the best age-

correlated CpG site in each training set of samples (bones from autopsies and from BDS) 

(Supplementary Figure S20). 

 

3.1. Age estimation in bones collected during autopsies  

 

3.1.1. DNAm data obtained in bones from autopsies using bisulfite Sanger 

sequencing 

 

DNAm levels of 43 CpG sites located at ELOVL2, FHL2, PDE4C, EDARADD 

and C1orf132 genes were evaluated by the bisulfite Sanger sequencing methodology from 

29 bones from autopsies (4 females, 25 males; aged 26-80 years old).  

 

Correlation between DNAm levels and chronological age   

Bone samples revealed positive correlations for all the CpG sites located at genes 

ELOVL2, FHL2 and PDE4C and negative correlations for the CpG sites on the remaining 
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two genes EDARADD and C1orf132 (Supplementary Table S11). Plots with the best 

CpG in each gene are present in Supplementary Figure S21. 

Simple linear regression showed strong and significant age correlation values 

(0.70< R <0.90) for almost all CpGs located at ELOVL2 and for the three first CpG sites 

at C1orf132 gene. The remaining markers showed negligible, weak or moderate age 

correlations (Supplementary Table S11). One sample did not amplify for the PDE4C 

gene. 

 

Development of an age prediction model (APM) 

Testing the association between chronological age and DNAm levels for the 

individual 43 CpG sites, the strongest age-correlated value was obtained for the ELOVL2 

CpG6 (R = 0.852; P-value = 4.64 × 10-9), explaining 71.5% of the variation in age, 

following by C1orf132 CpG1 (R = -0.834; P-value = 1.93 × 10-8), explaining 68.4% of 

the variation in age (Table 4.33; Supplementary Table S11). For the remaining genes, 

the best markers showed moderate age correlation values: FHL2 CpG1 (R = 0.692, P-

value = 0.000032), explaining 46.0% of the variation in age; PDE4C CpG2 (R = 0.690; 

P-value = 0.000049), explaining 45.6% of the variation in age; and EDARADD CpG3 (R 

= -0.561; P-value = 0.001564), explaining 28.9% of the variation in age (Table 4.33; 

SupplementaryTable S11). 

Simple linear regression APMs based on these individual CpGs revealed MAD 

values from chronological age of 5.73 years for ELOVL2 CpG6, 6.35 years for C1orf132 

CpG1, 8.39 years for FHL2 CpG1, 8.07 years for PDE4C CpG2 and 9.23 years for 

EDARADD CpG3 (Table 4.33; Supplementary Figure S22).  
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Table 4.33: Simple and multiple linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes 

to test for association between the DNAm levels obtained by bisulfite sequencing and chronological age in bone samples from autopsies. 

 

Locus CpG  Location N R R2 
Correc

ted R2 
SE P-value MAD 

Simple linear regression  

ELOVL2 CpG6 Chr6:11044644 29 0.852 0.725 0.715 7.24 4.64 × 10-9 5.73 

C1orf132 CpG1 Chr1:207823681 29 -0.834 0.695 0.684 7.63 1.93 × 10-8 6.35 

FHL2 CpG1 Chr2:105399282 29 0.692 0.479 0.460 9.97 0.000032 8.39 

PDE4C CpG2 Chr19:18233133 28 0.690 0.476 0.456 10.19 0.000049 8.07 

EDARADD CpG3 Chr1:236394382 29 -0.561 0.314 0.289 11.45 0.001564 9.23 

Multiple linear regression 

APM (ELOVL2 CpG5, ELOVL2 CpG7, 

ELOVL2 CpG6, C1orf132 CpG1, 

EDARADD CpG3 and EDARADD CpG4) 

29 0.970 0.941 0.925 3.71 2.097 × 10-12 2.56 

 
Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.
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We selected all the 29 CpG sites which showed individual significant association 

with age located at ELOVL2 (9 CpGs), FHL2 (7 CpGs), EDARADD (3 CpGs), PDE4C 

(5 CpGs) and C1orf132 (5 CpGs) and applied the stepwise linear regression analysis to 

select other relevant variables to be used in a final multi-locus APM (Table 4.34). 

 

 

Table 4.34: Statistical parameters obtained in a multiple regression model with the six 

CpGs in genes ELOVL2, C1orf132 and EDARADD selected by stepwise regression 

approach, in bone samples from autopsies. 

 

 

 

 

 

 

 

 

 

 

 

The stepwise regression selected six CpGs located at ELOVL2 (CpG5, CpG6, 

CpG7), EDARADD (CpG3, CpG4) and C1orf132 (CpG1) and revealed in the multiple 

regression analysis a high age correlation coefficient (R = 0.970), explaining 92.5% of 

the variation in age, highly significant (P-value = 2.097 × 10-12) (Table 4.33). Age 

prediction for each individual bone sample was estimated according to the equation 

developed with the regression coefficients as present in Table 4.34: 129.912 - 66.051 × 

DNAm level C1orf132 CpG1 - 136.346 × DNAm level EDARADD CpG3 + 62.928 × 

DNAm level EDARADD CpG4 + 67.573 × DNAm level ELOVL2 CpG5 + 144.915 × 

DNAm level ELOVL2 CpG6 - 137.429 × DNAm level ELOVL2 CpG7. The developed 

APM enabled us to estimate age with a correlation between predicted and chronological 

ages of 0.957 (Spearman correlation) and a MAD from chronological age of 2.56 years 

Marker Coefficient P-value 

(Intercept) 129.912 0.004 

EDARADD CpG3 -136.346 0.000 

EDARADD CpG4 62.928 0.013 

C1orf132 CpG1 -66.051 0.005 

ELOVL2 CpG5 67.573 0.000 

ELOVL2 CpG6 144.915 0.001 

ELOVL2 CpG7 -137.429 0.004 
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(RMSE = 3.24) (Figure 4.29). Correct predictions were 79.3% according to the standard 

error of estimate calculated for the final APM (SE = 3.71).    

 

 

 

 

 

 

 

 

 

Figure 4.29: Predicted age versus chronological age using the six markers ELOVL2 

CpG5, ELOVL2 CpG6, ELOVL2 CpG7, EDARADD CpG3, EDARADD CpG4 and 

C1orf132 CpG1 in bones from autopsies. MAD and Spearman correlation coefficient, r, 

are plotted on the chart. 

 

Validation of the multi-locus APM developed in deceased individuals  

The 3-fold cross validation to test the accuracy of the model, showed an averaged 

MAD from the chronological age for the three independent validation sets of 3.77 years 

(RMSE = 3.93). This value is very close to the MAD of 2.56 years of the whole training 

set. 

Additionally, a second validation method by splitting the sample (29 bones) into 

two sets of 16 and 13 samples (training and validation sets) revealed an independent MAD 

value for the training set of 2.03 years (RMSE = 2.70). The multiple linear regression 

equation developed in the training set of 16 samples was applied to the validation set 

allowing to obtain a MAD of 3.15 years (RMSE = 4.08). 
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3.1.2. DNAm data obtained in bones from autopsies using SNaPshot 

methodology   

 

Using the multiplex SNaPshot assay reported by Jung et al. (2019), methylation 

data from the five CpG sites at ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes 

were obtained from 31 bones from autopsies (26 females, 5 males; aged 26-81 years old).  

 

Correlation between DNAm levels and chronological age   

Positive correlations with age were observed for CpGs at genes ELOVL2, FHL2, 

KLF14 and TRIM59, and a negative correlation was obtained for C1orf132 locus 

(Supplementary Figure S23).  

 

Development of an age prediction model (APM) 

Among the five markers, the CpG site in the FHL2 locus showed the strongest age 

correlation (R = 0.708, P-value = 0.000008), explaining 48.4% of the variation in age, 

followed by TRIM59 (R = 0.633, P-value = 0.000129), explaining 38.1% of the variation 

in age, ELOVL2 (R = 0.619, P-value = 0.000202), explaining 36.3% of the variation in 

age, KLF14 (R = 0.540, P-value = 0.001708), explaining 26.7% of the variation in age, 

and C1orf132 (R = -0.507, P-value = 0.003640), explaining 23.1% of the variation in age 

(Table 4.35; Supplementary Figure S23). Simple APMs using each CpG site revealed 

MAD values from the chronological age of 7.95 years for FHL2, 8.50 years for ELOVL2, 

8.86 years for TRIM59, 9.29 years for KLF14 and 9.70 years for C1orf132 genes 

(Supplementary Figure S24).  
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Table 4.35: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 loci using 

SNaPshot assay in bones from autopsies. 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

Locus Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression 

FHL2 Chr2:105399282 31 0.708 0.501 0.484 10.26 0.000008 7.95 

TRIM59 Chr3:160450189 31 0.633 0.402 0.381 11.23 0.000129 8.86 

ELOVL2 Chr6:11044628 31 0.619 0.384 0.363 11.40 0.000202 8.50 

KLF14 Chr7:130734355 31 0.540 0.292 0.267 12.23 0.001708 9.29 

C1orf132 Chr1:207823681 31 -0.507 0.257 0.231 12.53 0.003640 9.70 

Multiple linear regression 

APM (FHL2 and KLF14) 31 0.777 0.604 0.576 9.30 0.000002 7.18 
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Multiple linear regression analysis with simultaneously all the five predictor 

variables revealed non-significant p-values for few predictors (Supplementary Table 

S12). In concordance, fitting the stepwise regression analysis by using simultaneously the 

five CpG sites, only CpG sites at FHL2 and KLF14 genes were chosen. The final multiple 

dual-locus model built with CpG sites at FHL2 and KLF14 showed a moderate age 

correlation value (R = 0.777; P-value = 0.000002), explaining 57.6% of the variation in 

age (Table 4.35). The developed formula obtained with the regression coefficients to 

predict age was as follows: 15.727 + 105.392 × DNAm level FHL2 + 154.672 × DNAm 

level KLF14 (Table 4.36).  

 

Table 4.36: Statistical parameters obtained in a multiple regression model with the two 

CpGs in genes FHL2 and KLF14 selected by stepwise regression approach, in bone 

samples from autopsies. 

 

 

 

 

 

 

 

 

 

 The two-locus model showed a strong correlation of 0.746 between predicted and 

chronological ages (Spearman correlation value), with a MAD from chronological age of 

7.18 years (RMSE = 8.84) (Figure 4.30). Correct predictions were 71% assuming that 

chronological and predicted ages match ± 9 years, according to the standard error of 

estimate calculated for the final APM (SE = 9.30).    

 

Marker Coefficient P-value 

(Intercept) 15.727 0.027 

FHL2 105.392 0.000 

KLF14 154.672 0.012 
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Figure 4.30: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay at the two CpGs located at FHL2 and KLF14 genes in bones from 

autopsies. MAD and Spearman correlation coefficient, r, are plotted on the chart. 

 

Validation of the multi-locus APM developed in deceased individuals  

The 3-fold cross validation to test the accuracy of the model, showed an averaged 

MAD from the chronological age for the three independent validation sets of 7.84 years 

(RMSE = 7.86), a value very close to the MAD of 7.18 of the whole training set. The 

validation by splitting the sample into two sets of 16 and 15 samples each (training and 

validation sets) allowed to obtain an independent MAD from the chronological age for 

the training set of 5.40 years (RMSE = 6.78) and for the validation set of 9.35 years 

(RMSE = 12.07). 

 

3.1.3. Comparison between methodologies  

Comparing the age correlation value obtained in bones from autopsies using 

Sanger sequencing and SNaPshot, we observed similar age association for ELOVL2 

Chr6:11044628 (R = 0.736 vs. R = 0.619, respectively) and FHL2 Chr2:105399282 (R = 

0.692 vs. R = 0.708, respectively). The C1orf132 Chr1:207823681 revealed a stronger 
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age-correlated value for Sanger compared to SNaPshot (R = -0.834 vs. R = -0.507, 

respectively) (Table 4.37). 

 

Table 4.37: Comparison of age-correlated values obtained in bones from autopsies 

through Sanger and SNaPshot methodologies. 

 

Abbreviations: R, Pearson correlation coefficient.  

 

 

3.2. Age estimation in bones collected from BDS  

 

3.2.1. DNAm data obtained in bones from BDS using bisulfite Sanger 

sequencing 

 

A total of 43 CpGs located at genes ELOVL2, FHL2, PDE4C, EDARADD and 

C1orf132 was evaluated in 22 bones from BDS (10 males, 12 females; aged 49-93 years 

old) through Sanger sequencing methodology. One sample was not analyzed for PDE4C 

due to complete PCR failure. 

DNAm sex analysis revealed no statistically significant difference between males 

and females for the selected target sites (P-value >0.05, Table 4.38).  

 

 

Chromosomal location  

GRCh38 

(Position in 450K array) 

Portuguese ancestry 

Sanger sequencing  SNaPshot 

Bone deceased  

(26-80 years) 

Bone deceased 

(26-81 years) 

R R2 R R2 

ELOVL2  
Chr6:11044628 

0.736 0.542 0.619 0.384 

C1orf132  

Chr1:207823681 
-0.834 0.695 -0.507 0.257 

FHL2  

Chr2:105399282 (cg06639320) 
0.692 0.479 0.708 0.501 
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Table 4.38: Comparison of two regression lines between males and females in bones 

from BDS using data obtained from Sanger sequencing. 

 

 

 

 

 

 

Correlation between DNAm levels and chronological age  

Evaluating the association between DNAm levels and chronological age, we 

observed positive age correlations for CpGs from FHL2 and PDE4C genes, while a 

negative age correlation was observed for EDARADD gene (Supplementary Table S13). 

Plots with the best CpG in these three genes are present in Supplementary Figure S25.  

The ELOVL2 and C1orf132 genes showed negligible or very weak age correlation values 

and were excluded from further analysis (Supplementary Table S13).  

 

Development of an age prediction model (APM) 

The strongest age correlation was observed for PDE4C CpG3 (R = 0.771, P-value 

= 0.000044), explaining 57.2% of the variation in age, followed by FHL2 CpG3 (R = 

0.655, P-value = 0.000945), explaining 40.0% of the variation in age, and EDARADD 

CpG3 (R = -0.430, P-value = 0.0459), explaining only 14.4% of the variation in age 

(Table 4.39; Supplementary Table S13). Simple linear regression analysis for each CpG 

showed MAD values from chronological age of 5.53 years for PDE4C CpG3, 7.12 years 

for FHL2 CpG3 and 8.57 years for EDARADD CpG3 (Table 4.39; Supplementary 

Figure S26).  

We tested the age prediction multiple linear regression model using 

simultaneously these three CpG sites, however no significant age correlation values were 

obtained for EDARADD CpG3 (P-value = 0.283) and FHL2 CpG3 (P-value = 0.505) 

Marker 
P-value 

Intercept Slope 

FHL2 CpG3 0.1532 0.5363 

FHL2 CpG2 0.8553 0.5905 

EDARADD CpG3 0.1366 0.8291 

PDE4C CpG3 0.9887 0.7717 
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(Supplementary Table S14). In concordance, through stepwise regression approach, 

only PDE4C CpG3 was chosen.  

Trying to address other relevant sites for the development of a more accurate 

APM, we use the stepwise regression approach selecting the 10 significant age-correlated 

CpG sites located at FHL2 (6 CpGs), EDARADD (1 CpG) and PDE4C (3 CpGs). A final 

dual-locus model constructed with the FHL2 CpG2 and PDE4C CpG3, in 21 bone 

samples (one sample did not amplify for PDE4C gene), was chosen, showing an age 

correlation of R = 0.851, highly significant (P-value = 0.000009), and explaining 69% of 

the variation in age (corrected R2 = 0.694) (Table 4.39). The developed formula obtained 

with the regression coefficients to estimate age was the following: (-40.785) + 109.005 × 

DNAm level PDE4C CpG3 + 79.494 × DNAm level FHL2 CpG2 (Table 4.40). The 

model showed a strong correlation between predicted and chronological ages (Spearman 

correlation coefficient, r = 0.831), with a MAD from chronological age of 4.67 years 

(RMSE = 5.98) (Figure 4.31) and a rate of correct predictions of 85.7%.  
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Table 4.39: Simple and multiple linear regression statistics of the best age predictors in FHL2, EDARADD and PDE4C genes using bisulfite 

sequencing to test for association between the DNAm levels and chronological age in bones from BDS. 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.

Locus CpG Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression  

PDE4C CpG3 Chr19:18233131 21 0.771 0.594 0.572 7.63 0.000044 5.53 

FHL2 CpG3 Chr2:105399291 22 0.655 0.429 0.400 9.41 0.000945 7.12 

EDARADD CpG3 Chr1:236394382 22 -0.430 0.185 0.144 11.25 0.045937 8.57 

Multiple linear regression 

APM (FHL2 CpG2 and PDE4C CpG3) 21 0.851 0.725 0.694 6.46 0.000009 4.67 
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Table 4.40: Statistical parameters obtained in a multiple regression model with the two 

CpGs in genes FHL2 and PDE4C selected by stepwise regression approach, in bones 

from BDS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31: Predicted age versus chronological age using the two markers FHL2 CpG2 

and PDE4C CpG3 in bones from BDS. MAD and Spearman correlation coefficient, r, are 

plotted on the chart. 

 

Validation of the multi-locus APM developed in deceased individuals  

The 3-fold cross validation allowed to estimate an averaged MAD of 6.39 years 

(RMSE = 6.42). The validation by splitting the training set (21 bones) into two sets of 11 

and 10 samples (training and validation sets) revealing an independent MAD value for 

the training set of 5.28 years (RMSE = 7.20). The multiple linear regression equation 

developed in the training set of 10 samples was applied to the validation set, allowing to 

obtain a MAD of 4.90 years (RMSE = 5.17).   

 

Marker Coefficient P-value 

(Intercept) -40.785 0.029 

FHL2 CpG2 79.494 0.009 

PDE4C CpG3 109.005 0.000 
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3.2.2. DNAm data obtained in bones from BDS using SNaPshot 

methodology  

 

Using the multiplex SNaPshot assay of Jung et al. (2019), DNAm levels from the 

five CpGs located at ELOVL2, FHL2, KLF14, C1orf132, TRIM59 genes were evaluated 

in 22 bones from BDS (10 males, 12 females; aged 49-93 years old). 

 

Correlation between DNAm levels and chronological age 

A negligible and non-significant age correlation was observed for all genes, 

(Table 4.41). One sample did not amplify for ELOVL2 gene.  
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Table 4.41: Simple linear regression statistics at the five CpGs of the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 genes using SNaPshot in 

bones from BDS. 

 

 

Locus Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression  

ELOVL2 Chr6:11044628 21 0.412 0.170 0.124 11.75 0.071018 - 

FHL2 Chr2:105399282 22 0.245 0.060 0.010 12.38 0.285069 - 

KLF14 Chr7:130734355 22 0.256 0.066 0.016 12.34 0.262466 - 

TRIM59 Chr3:160450189 22 0.147 0.022 -0.030 12.63 0.523623 - 

C1orf132 Chr1:207823681 22 -0.040 0.002 -0.051 12.76 0.863357 - 

 
Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.
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3.2.3. Comparison between methodologies  

For the training set of bones from BDS, comparing the correlation with age for 

CpGs located at ELOVL2 (Chr6:11044628), FHL2 (Chr2:105399282) and C1orf132 

(Chr1:207823681) genes captured by Sanger sequencing and SNaPshot methodologies 

we observed a low age correlation values in both methodologies, excepting for FHL2 

through Sanger sequencing showing a moderate age correlation (Table 4.42). 

 

Table 4.42: Comparison of age-correlated values obtained in bones from BDS through 

Sanger and SNaPshot methodologies. 

 

Abbreviations: R, Pearson correlation coefficient.  

 

3.2.4. Evaluation of the effect of PMI (postmortem interval) in BDS 

We selected 12 individuals from the BDS and made some pairs (A, B, C, D, E and 

F) with identical or similar chronological age to look for methylation differences due to 

the PMI (Table 4.43). These individuals suffer the same postmortem conditions of body 

preservation: pre-treatment of the body with Thiel Embalming (Eisma et al., 2013). 

 

 

 

Chromosomal location  

GRCh38  

(Position in 450K array) 

Portuguese ancestry  

Sanger sequencing    SNaPshot 

Bone deceased  

(49-93 years) 

Bone deceased  

(49-93 years) 

R R2 R R2 

ELOVL2  

Chr6:11044628 
-0.223 0.050 0.412 0.170 

C1orf132 

 Chr1:207823681 
-0.305 0.093 -0.040 0.002 

FHL2  

Chr2:105399282 (cg06639320) 
0.580 0.337 0.245 0.060 
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Table 4.43: Postmortem interval of the selected BDS with the same or similar 

chronological age. 

 

ID Age Sex PMI* Pair 

BDS 2 65 F 3 A1 

BDS 3 65 F 2 A2 

BDS 5 75 F 3 B1 

BDS 19 75 F 3 B2 

BDS 20 79 M 2 C1 

BDS 26 79 M 3 C2 

BDS 21 87 F 2 D1 

BDS 4 87 F 4 D2 

BDS 28 80 M 3 E1 

BDS 37 80 F 3 E2 

BDS 30 76 M 2 F1 

BDS 17 77 F 3 F2 

 

* PMI is the time between the date at death of the individual and the date of the analysis 

of the sample (Annex II). 

 

 

We calculated the mean of the differences between DNAm levels obtained for all 

the CpGs within each gene, ELOVL2 (9 CpGs), EDARADD (4 CpGs), FHL2 (12 CpGs), 

PDE4C (12 CpGs) and C1orf132 (6 CpGs), for the individuals of each pair A, B, C, D, E 

and F. The obtained values were between 0.0128 and 0.1817 (Table 4.44).   

 

Table 4.44: Average of the differences between DNAm levels of all the CpGs from each 

gene for the two individuals included in each pair A, B, C, D, E and F. 

 

 

 

 

* The lowest and highest difference values are in bold. 

 

Pair ELOVL2 FHL2 EDARADD PDE4C C1orf132 

B1 + B2 0.120949 0.030042 0.048724 0.112839 0.099582 

E1 + E2 0.056997 0.037493 0.023679 0.114643 0.159157 

A1 + A2 0.154689 0.032505 0.057994 0.078198 0.012791* 

C1 + C2 0.048475 0.08736 0.135608 0.046099 0.037883 

F1 + F2 0.145283 0.034358 0.02165 0.097257 0.103971 

D1 + D2 0.099053 0.038798 0.024982 0.084667 0.181683* 
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4. Discussion  

 

Anthropological age estimation approaches have been continually used in the past 

decades, helping forensic investigations. Forensic anthropology has been accepted as a 

“means of personal identification” in cases in which the traditional identifiers, as DNA 

analysis, cannot be applied (de Boer et al., 2020). In recent years, the growth of DNAm 

age has brought new knowledge and challenges in the forensic field (epigenetic 

approaches). The analysis of DNAm levels in different tissue types allowed the 

development of several epigenetic clocks (review in Goel et al., 2017; Zolotarenko et al., 

2019). Despite this, only few studies have considered the study of DNAm levels in bone 

samples (Horvath et al., 2015, 2018; Naue et al., 2018; Gopalan et al., 2019; Lee et al., 

2020).  

In this study, DNAm levels of 43 CpGs located at the five high age-correlated 

genes (ELOVL2, FHL2, EDARADD, PDE4C and C1orf132) were evaluated using Sanger 

sequencing methodology in two training sets of bone samples (31 bones from autopsies 

and 22 bones from BDS). Using the stepwise regression approach with methylation 

information of 29 significant CpGs located at the ELOVL2, FHL2, EDARADD, PDE4C 

and C1orf132 genes analyzed through the Sanger sequencing methodology, a multi-locus 

APM with six markers (ELOVL2 CpG5, ELOVL2 CpG6, ELOVL2 CpG7, C1orf132 

CpG1, EDARADD CpG3 and EDARADD CpG4) was developed in the training set of 29 

bones from autopsies. This final APM revealed a high age correlation value (R = 0.970), 

showing high accuracy allowing to obtain a MAD from chronological age of 2.56 years. 

This suggests that bisulfite Sanger sequencing methodology could be suited for forensic 

purposes using bone derived DNAm. In the training set of bones from BDS, through the 

Sanger sequencing methodology, the stepwise regression approach using the 10 
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significant age-correlated CpGs located at FHL2, EDARADD and PDE4C genes, allowed 

to obtain a dual-locus APM with FHL2 CpG2 and PDE4C CpG3. The model showed a 

high age-correlated value (R = 0.851), allowing to obtain a MAD from chronological age 

of 4.67 years.  

Using the SNaPshot methodology, five CpGs located at ELOVL2, C1orf132, 

FHL2, KLF14 and TRIM59 genes were analyzed in these same training sets. The 

SNaPshot method allowed to develop in bones from autopsies a final dual-locus APM, 

combining FHL2 and KLF14 genes, showing moderate age correlation value of 0.777 and 

a MAD from chronological age of 7.18 years. As this model included only two CpG sites, 

while the APM constructed with methylation information captured by Sanger sequencing 

used six predictor variables, this should justify the higher MAD value obtained in the 

APM developed through the SNaPshot assay.  

Despite the scarcity of methylation data reported in bones samples, Naue et al. 

(2018) investigated through massive parallel sequencing whether 13 previously selected 

age-dependent loci have predictive value in several forensically relevant tissues including 

bones. Using 29 bones from deceased individuals (aged 0–87 years old) they found no 

age-dependency for several genes, but statistically significant age correlations of 0.58, 

0.51 and 0.61 (Pearson correlation) were observed for one CpG site within the amplified 

region of genes ELOVL2, KLF14 and TRIM59. This is in concordance with our study, in 

which methylation levels captured by the SNaPshot assay in bone samples from 

autopsies, revealed for CpGs located at ELOVL2, KLF14 and TRIM59 genes significant 

correlation values (R ≥0.540). Moreover, one CpG located at KLF14 was included in our 

final dual-locus APM. 

Gopalan et al. (2019) generated DNAm data from 32 bones alongside with 

published data from 133 bones from living and deceased individuals (aged 49-112 years 
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old). They identify 108 sites with significant association with age. The authors have 

developed an APM that produces high accuracy of age estimation. From all CpG sites 

that comprised the best model (37 bone clock CpG regions), two ELOVL2 positions 

(cg16867657 and cg24724428) and one KLF14 position (cg07955995) were included. In 

particular, the ELOVL2 CpG6 (Chr6:11044644; cg16867657) from our APM with six 

CpGs developed by Sanger sequencing has already been included in Gopalan et al. (2019) 

and Naue et al. (2018) studies, revealing to be a promising marker for bone samples. 

These results support the notion that gene ELOVL2 is a highly age-correlated gene in 

many tissues (Gopalan et al., 2019).  

Recently, Lee and collaborators (2020) applied the previously developed “skin & 

blood clock” focused on 391 CpGs proposed by Horvath et al. (2018) to 12 bone samples. 

A model accuracy of 6.4 years (r = 0.964) was obtained. This value is similar to the MAD 

value obtained in the dual-locus model (FHL2 and KLF14) developed in the training set 

of bones from autopsies through the SNaPshot methodology (MAD of 7.18 years, R = 

0.777). In addition, Lee and collaborators (2020) observed a strong age correlation value 

for several CpGs including cg06639320 (FHL2, Chr2:105399282, R = 0.810), 

cg09809672 (EDARADD, Chr1:236394382, R = -0.743), cg21572722 (ELOVL2, 

Chr6:11044661, R = 0.837), cg16867657 (ELOVL2, Chr6:11044644, R = 0.910), 

cg20426994 (KLF14, Chr7:130733449, R = 0.881) and cg07553761 (TRIM59, 

Chr3:160450189, R = 0.702). Interestingly, in our study for the set of bones from 

autopsies, comparable age-correlated values were obtained for these same positions using 

the Sanger sequencing, FHL2 CpG1 (Chr2:105399282, R = 0.692), EDARADD CpG3 

(Chr1:236394382, R = -0.561), ELOVL2 CpG9 (Chr6:11044661, R = 0.590) and 

ELOVL2 CpG6 (Chr6:11044644, R = 0.852), or using the SNaPshot methodology, FHL2 

(Chr2:105399282, R = 0.708) and TRIM59 (Chr3:160450189, R = 0.633).  
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In the training set of bones from BDS no association was observed between 

DNAm levels and sex, in all the investigated CpGs for both methodologies, as previously 

reported for these genes or others, and other tissue types (Bekaert et al., 2015a; Huang et 

al., 2015; Freire-Aradas et al., 2018; Daunay et al., 2019; Márquez-Ruiz et al., 2020). 

DNAm sex analysis was not performed in set of bones from autopsies due the limited 

number of females. Additionally, as both training sets of bones were not representative 

of all age groups, namely groups aged 26-81 years old and 49-93 years old, we did not 

analyze the differences between predicted and chronological ages with the increase of 

age. 

Comparing both methodologies of bisulfite sequencing and SNaPshot, in the set 

of bones collected during autopsies, similar age correlation values were observed for 

ELOVL2 and FHL2 genes. However, C1orf132 gene revealed a stronger age correlation 

value in Sanger sequencing. For the training set of bones from BDS a weak or negligible 

age correlation was obtained for the same position from ELOVL2 and C1orf132 genes in 

both methodologies. For the CpG located at FHL2 a stronger age correlation value was 

observed using Sanger sequencing methodology. As we use a limited set of bone samples 

in both methodologies, these differences in DNAm levels can be related with the number 

of samples. In future studies, the use of a larger sample set will allow to explore the 

differences between methodologies more accurately. 

Significant differences in DNAm levels were observed between the two sets of 

bones, from BDS and from autopsies, which led us to make an independent analysis for 

each set of bone samples and consequently, to the development of different APMs for 

each group. We hypothesize that these differences between the two sets of bones can be 

related with the treatment of the BDS after death. As BDS need to be preserved for long 

periods after death, the body is submitted to an embalming process: Thiel Embalming 
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(Eisma et al., 2013). This treatment included chemical components, which can influence 

DNAm levels. Although this topic has not been investigated so far, it is a relevant question 

for forensic investigations.  

In addition, we investigated if the different PMI of the individuals could interfere 

in DNAm levels. Bones from autopsies were collected until five days after death and 

bones from BDS have a higher PMI. We cannot compare samples from BDS with samples 

from autopsies because these samples do not share the same preservation conditions (pre-

treatment of the body), and this can also interfere in DNAm levels as previously 

described. For assessment of PMI effect, we compared pairs of bones from BDS with the 

same preservation conditions and the same or similar chronological age (consequently 

with presumed similar DNAm levels), being the PMI the only factor of DNAm changes. 

As the difference obtained in DNAm levels is very low, we can hypothesize that there is 

no effect of PMI in DNAm levels in bones samples from BDS. We can observe that the 

mean difference of DNAm levels for pairs B and E (which have the same PMI between 

the two individuals of each pair) is similar to the obtained for the individuals of pair D, 

which has the higher difference on PMI (2 years).   

In conclusion, considering that to date only few reports used bone samples in 

development of models for forensic age estimation, we evaluated DNAm levels from two 

sets of bones using the bisulfite Sanger sequencing and SNaPshot methodologies. Our 

study allowed to develop a highly accurate APM in bone samples from autopsies with six 

CpGs located at genes ELOVL2, EDARADD and C1orf132 through bisulfite Sanger 

sequencing, with a MAD from chronological age of 2.56 years. Moreover, in a training 

set of bones from BDS, a dual-locus model with FHL2 and PDE4C genes with an 

accuracy of 4.67 years was developed using bisulfite sequencing. The SNaPshot method 

allowed to construct a final dual-locus model with FHL2 and KLF14 genes for bones 
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from autopsies, exhibiting moderate age prediction accuracy (MAD = 7.18 years). 

Evaluating DNAm changes by SNaPshot assay in the training set of bones from BDS any 

APM could be developed. We observed differences in DNAm levels of bones from 

autopsies and bones from BDS, which can be related with the treatment of the body after 

death. Meanwhile, this issue needs to be explored in future studies. Our study suggests 

that skeletal human remains, with high resistance to harsh conditions and often 

recoverable for long postmortem intervals, can be prime targets for DNAm analyses in 

forensic contexts.  
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1. Introduction  

 

Nowadays, age estimation in the living is increasingly important in forensic 

contexts. Recently, DNA methylation (DNAm) age estimation appears as promising 

approach for several forensic contexts. Most epigenetic age clocks have been developed 

on different tissue types from living individuals, such as blood, teeth, buccal swabs and 

saliva, using many age-correlated markers (as ELOVL2, FHL2, EDARADD, ASPA, 

PDE4C, PENK, C1orf132, TRIM59 and KLF14 genes) and different technologies 

including SNaPshot and pyrosequencing (e.g. Garagnani et al., 2012; Bekaert et al., 

2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; Giuliani et al., 2016; Park et al., 

2016; Eipel et al., 2016; Jung et al., 2019; Pfeifer et al., 2020; Márquez-Ruiz et al., 2021).  

The collection of buccal swabs and saliva samples does not require invasive 

procedures so it can be a good approach for forensic DNAm age estimation. In fact, 

several epigenetic clocks have been developed using buccal swabs and saliva (Bocklandt 

et al., 2011; Park et al., 2014; Silva et al., 2015; Bekaert et al., 2015b; Eipel et al., 2016; 

Hong et al., 2017; Alghanim et al., 2017; Hamano et al., 2017; Jung et al., 2019; Koop 

et al., 2020; Pfeifer et al., 2020).  

Bekaert et al. (2015b) using pyrosequencing evaluated DNAm levels of ASPA, 

ELOVL2, PDE4C and EDARADD genes in 50 buccal swabs from living individuals 

obtained a Mean Absolute Deviation (MAD) between chronological and predicted ages 

of 3.32 years. 

Eipel et al. (2016), using pyrosequencing, tested in 55 buccal swabs from healthy 

individuals (1-85 years) the applicability of Weidner´s model developed for blood 

samples with three CpGs in PDE4C, ASPA and ITGA2B genes, which revealed a MAD 

from chronological age of 5.0 years (R2 = 0.81) (Weidner et al., 2014). Using the age 
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prediction formula from the Weidner´s model, a lower accuracy was obtained by Eipel et 

al. (2016) for buccal swabs (MAD = 14.6 years, R2 = 0.91). Therefore, Eipel and 

collaborators (2016) developed a specific age prediction model (APM) with the 

previously reported three CpG sites for the 55 buccal swabs obtaining a higher MAD 

value of 4.3 years.   

Using the SNaPshot method, Jung et al. (2019) developed tissue-specific APMs 

for blood, saliva and buccal swabs, obtaining more similar MAD values for blood and 

saliva samples (MAD = 3.17 years; MAD = 3.29 years, respectively) than the obtained in 

buccal swabs (MAD = 3.82 years). Moreover, the age correlation values obtained for 

saliva and blood samples in CpGs located at ELOVL2 (Chr6:11044628), FHL2 

(Chr2:105399282), C1orf132 (Chr1:207823681) genes were more similar (0.699≤ R 

≤0.832 and 0.637≤ R ≤0.893, respectively) than the obtained for buccal swabs (0.314≤ R 

≤0.684).   

Naue et al. (2018) investigated DNAm levels of 13 age-correlated markers in 

blood, bone, brain, buccal swabs and muscle from 29 deceased individuals. For buccal 

swabs, strong and significant age correlation values were obtained for CpGs located at 

ELOVL2 (Chr6:11044644; cg16867657), KLF14 (Chr7:130734357) and TRIM59 

(Chr3:160450189; cg07553761) (R = 0.83; R = 0.70; R = 0.85, respectively).  

In 2020, Pfeifer and colleagues investigated DNAm levels of ELOVL2, 

EDARADD, PDE4C and ASPA genes by pyrosequencing in 149 buccal swabs from living 

individuals. Using 100 buccal swabs and applying the published equation developed by 

Bekaert et al. (2015b), a MAD of 8.68 years was obtained. Pfeifer et al. (2020) developed 

a new specific model for their training set of buccal swabs with some CpGs from the same 

genes investigated by Bekaert et al. (2015b), obtaining a better accuracy with a MAD of 

4.65 years. 
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More recently, a study proposed by Koop et al. (2020) evaluated DNAm changes 

of one CpG from PDE4C gene located upstream of cg17861230 in buccal swabs from 

living and deceased individuals using pyrosequencing. They observed a higher age 

correlation value in the model developed for the training set of 71 living individuals (r2 = 

0.87) with only this site from PDE4C. Testing this APM to buccal swabs from an 

independent sample set of living individuals (N = 71, r2 = 0.85) and from deceased 

individuals (N = 52, r2 = 0.90), a moderate accuracy was observed (MAD = 7.8 years and 

MAD = 9.1 years, respectively). In the set of deceased individuals, Koop and colleagues 

considerate different stages of body decomposition to evaluate postmortem DNAm 

changes, observing no influence in age estimation.  

Considering the potential usefulness of buccal swabs as a source of DNA for 

DNAm age clocks, this study aimed to examine in a sample set of buccal swabs from 

living Portuguese individuals: i) the DNAm profiles for age prediction purposes of CpG 

sites from ELOVL2 locus, one of the most powerful age predictor markers proposed in 

previous studies, through the bisulfite PCR sequencing methodology; and ii) the DNAm 

levels of three CpGs located at TRIM59, KLF14 and ELOVL2 genes, using the multiplex 

SNaPshot method proposed by Jung et al. (2019). These three CpGs were the best age-

correlated markers addressed in buccal swabs by Jung et al. (2019). 

 

2. Materials and Methods  

 

2.1. Sample collection 

A set of 39 buccal swabs from healthy individuals of Portuguese ancestry (16 

males, 23 females; aged 3-86 years old) was collected according to recommended 
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guidelines. Written informed consent was previously obtained from adult participants and 

from children’s parents under the age of 18 years. 

 

2.2. DNA extraction, quantification and bisulfite conversion  

Buccal swabs collected with a sterile brush (Sarstedt, Nümbrecht, Germany) were 

submitted to DNA extraction using the FavorPrepTM Genomic DNA mini kit (Favorgen 

Biotech Corp, Taiwan) and DNA extracts were quantified in a Nanodrop 

spectrophotometer (Thermo Fisher Scientific), according to previously described in 

Chapter 3. Sample and design research.  

Genomic DNA was subjected to bisulfite conversion using EZ DNA Methylation-

GoldTM Kit (Zymo Research, Irvine, USA), as previously described in Chapter 3. Sample 

and design research. Briefly, 20 µl of genomic DNA (in a total amount of 40 to 400 ng) 

was treated with sodium bisulfite and modified DNA was extracted to a final volume of 

10 μl. 

 

2.3. Polymerase chain reaction (PCR) and Sanger sequencing  

After bisulfite conversion, the modified DNA samples were submitted to PCR for 

nine CpGs from ELOVL2 gene using the Qiagen Multiplex PCR kit (Qiagen, Hilden, 

Germany) and sequenced with Big-Dye Terminator v1.1 Cycle Sequencing kit (Applied 

Biosystems), using primers and conditions previously described  in Chapter 3. Sample and 

design research.  

 

2.4. SNaPshot assay  

After bisulfite conversion, the modified DNA samples were submitted to a 

multiplex SNaPshot assay for three CpGs located at ELOVL2, KLF14 and TRIM59 genes 
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with the primers and conditions previously described in Jung et al. (2019). Particular 

conditions for multiplex PCR amplification and multiplex SBE reactions were described 

in Chapter 3. Sample and design research.  

 

2.5. DNAm quantification 

DNAm quantification in both methodologies was assessed as previously described 

in Chapter 3. Sample and design research.   

 

2.6. Statistical analyses 

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Independent analyses 

were made for the data obtained through Sanger sequencing and SNaPshot 

methodologies. Linear regression models were used to analyze relationships between 

methylation levels and chronological age as previously described in Chapter 3. Sample 

and design research. Briefly, using the simple linear regression coefficients from each 

significant age-correlated CpG site, we predicted age of individuals for each individual 

gene. The best combination of significant age-correlated CpGs selected from a stepwise 

regression analysis was used in a multiple regression approach to build the final multi-

locus APM in each set of buccal swabs.  

The MAD between chronological and predicted ages and the root mean square 

error (RMSE) were calculated for the overall training set using the final APM developed 

in each methodology. Moreover, MAD values were calculated for subsets of three distinct 

age categories in the training set (<13 years old; 14-33 years old; 34-86 years old). Each 

obtained result was interpreted as either correct or incorrect if the predicted age was 
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concordant with the chronological age using a cutoff value according to the standard error 

(SE) of estimate obtained in the developed APM.  

Validation of the final APMs developed for each set of buccal swabs in both 

methodologies was performed by splitting the complete data set into two subsets (training 

and validation sets) and by 3-fold cross validation, as previously described in Chapter 3. 

Sample and design research.  

The evaluation of differences between sex was made through comparison of two 

regression lines relating chronological age and DNAm levels of each gene at two levels 

(males/females) of the categorical factor, using the software STATGRAPHICS Centurion 

XV, version 15.2.05 (StatPoint Technologies, Inc., VA) for both methodologies.  

 

3. Results 

 

DNAm levels of nine CpGs located at the ELOVL2 locus, analyzed through 

bisulfite PCR sequencing, and DNAm levels of three CpGs located at the ELOVL2, 

KLF14 and TRIM59 genes, examined by the multiplex methylation SNaPshot assay 

described by Jung et al. (2019), were assessed in buccal swabs from Portuguese 

volunteers. 

The accuracy of measurement of DNAm levels obtained by Sanger sequencing 

methodology was tested using DNAm standards of 0%, 50% and 100%. The obtained 

DNAm levels of the best-selected ELOVL2 sites in buccal swabs showed a significant 

linear relationship to the expected DNAm levels (Supplementary Figure S27).  
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3.1. DNAm data obtained in buccal swabs using bisulfite Sanger 

sequencing 

 

Correlation between DNAm levels and chronological age 

Testing the association between DNAm levels of CpGs located at the ELOVL2 

locus and chronological age in a training set of 23 buccal swabs from living Portuguese 

individuals (15 females, 8 males; aged 3-86 years old), positive age correlations were 

observed for all the CpGs (Supplementary Table S15). The best CpGs at ELOVL2 are 

presented in Supplementary Figure S28. 

No statistically significant difference was observed comparing DNAm levels 

between males and females for the target sites selected in ELOVL2 locus (P-value >0.05, 

Table 4.45). Therefore, all the subsequent analyses were made ignoring differences 

between males and females.  

 

Table 4.45: Comparison of two regression lines between males and females in buccal 

swabs from living individuals using data obtained from Sanger sequencing. 

 

ELOVL2 
P-value 

Intercept Slope 

CpG1 0.5697 0.9452 

CpG4 0.5400 0.1776 

CpG5 0.4726 0.7819 

 

Development of an age prediction model (APM)  

Simple linear regression models testing the correlation between DNAm levels and 

chronological age, revealed significant associations for all the CpGs located at ELOVL2 

(R ≥0.485) (Supplementary Table S15). The strongest age correlation value was 

observed for ELOVL2 CpG1 (R = 0.823, P-value = 0.000001), explaining 66.2% of the 

variation in age, followed by ELOVL2 CpG5 (R = 0.806, P-value = 0.000003), explaining 

63.3% of the variation in age, and ELOVL2 CpG4 (R = 0.787, P-value = 0.000008), 
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explaining 60.1% of the variation in age (Table 4.46; Supplementary Figure S28). The 

remaining CpG sites showed moderate age-correlated values (0.485≤ R ≤0.683) 

(Supplementary Table S15). 

Using the simple linear regression coefficients for the three strongest ELOVL2 

age-associated markers, the predicted age of the individuals was calculated and the 

obtained MAD values were: 10.29 years for ELOVL2 CpG1; 10.62 years for ELOVL2 

CpG5; and 11.39 years for ELOVL2 CpG4 (Supplementary Figure S29). 

Multiple linear regression analysis with simultaneously methylation information 

of CpG1, CpG4 and CpG5 located at ELOVL2 gene reveled a non-significant p-value for 

ELOVL2 CpG5 (P-value >0.05, Supplementary Table S16). Moreover, in stepwise 

regression analysis using simultaneously all the nine CpGs located at ELOVL2 gene, only 

the ELOVL2 CpG1 and ELOVL2 CpG4 were selected. A multiple linear regression model 

with these two CpGs revealed a strong age correlation value (R = 0.894), explaining 78% 

of the variation in age (corrected R2 = 0.780), highly significant (P-value = 1.0347 × 10-

7) (Table 4.46).
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Table 4.46: Simple and multiple linear regression statistics of the best age predictors in ELOVL2 gene to test for association between the DNAm 

levels obtained by bisulfite sequencing and chronological age in buccal swabs from living individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

 

ELOVL2 Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression 

CpG1 Chr6:11044628 23 0.823 0.677 0.662 14.40 0.000001 10.29 

CpG4 Chr6:11044640 23 0.787 0.619 0.601 15.65 0.000008 11.39 

CpG5 Chr6:11044642 23 0.806 0.650 0.633 14.99 0.000003 10.62 

Multiple linear regression 

APM (ELOVL2 CpG1 and 

ELOVL2 CpG4) 
23 0.894 0.800 0.780 11.62 1.035 × 10 -7 8.32 
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Using the multiple linear regression coefficients (Table 4.47) the developed 

equation to estimate age was the following: (-88.854) + 92.953 × DNAm level ELOVL2 

CpG1 + 81.656 × DNAm level ELOVL2 CpG4. Predicted and chronological ages of the 

23 buccal swabs from Portuguese individuals were highly correlated (Spearman 

correlation coefficient, r = 0.917) (Figure 4.32). The difference between predicted and 

chronological ages for each individual using the two-CpGs APM developed from 

ELOVL2 allowed to obtain a MAD of 8.32 years (RMSE = 10.07) (Table 4.46). The 

percentage of correct predictions (considering cutoff of 11.62 years) was 73.9%. 

 

Table 4.47: Statistical parameters obtained in a multiple regression model with the two 

CpGs in ELOVL2 gene, selected by stepwise regression approach, in buccal swabs from 

living individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Predicted age versus chronological age using the two markers ELOVL2 

CpG1 and ELOVL2 CpG4 in buccal swabs from living individuals. MAD and Spearman 

correlation coefficient, r, are plotted on the chart. 
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Differences between predicted and chronological ages with aging  

Some differences between predicted and chronological ages can be observed with 

the increase of age using the multiple APM developed with CpGs from ELOVL2 (Figure 

4.33).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in buccal swabs from living individuals.  

 

If three age groups (Group 1: <13 years old; Group 2: 14-33 years old; Group 3: 

34-86 years old) were considered from the overall training set to evaluate age-related 

changes, and the MAD values and percentage of correct predictions were calculated 

within each group, we can observe an increase in the MAD values from G1 to G3 (Table 

4.48; Figure 4.34).  

 

Table 4.48: MAD between predicted and chronological ages stratified by age group in 

the training set of 23 buccal swabs from living individuals. 

 

 

 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1 <13 years 9 7.45 77.8 

G2 14-33 years 6 8.15 66.6 

G3 34-86 years 8 9.42 62.5 

Overall 3-86 years 23 8.32 73.9 
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In concordance, the lower percentage of correct predictions was observed in the 

older age G3 (62.5%) and the higher values of correct predictions were observed in the 

younger age categories: G1 (77.8%) and G2 (66.6%) (Table 4.48).  

 

 

 

 

 

 

 

 

 

Figure 4.34: MAD from chronological age calculated for each age group in buccal swabs 

from living individuals. MAD increases with age. The MAD is printed on top of each 

respective age range. 

 

Validation of the multiple APM developed in living individuals  

Through the 3-fold cross validation, each independent multiple linear regression 

predictive model tested in the removed samples (three validation sets) allowed to obtain 

an averaged MAD of 10.52 years (RMSE = 10.56). The validation by splitting the sample 

into two sets of 12 and 11 samples (training and validation sets) allowed to obtain a MAD 

value of 8.94 years (RMSE = 10.52) for the training set, and a MAD of 10.45 years 

(RMSE = 12.38) for the validation set.  
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3.2. DNAm data obtained in buccal swabs using SNaPshot methodology 

 

Correlation between DNAm levels and chronological age  

DNAm levels of CpGs located at ELOVL2, KLF14 and TRIM59 genes were 

analyzed using the multiplex SNaPshot assay in 39 buccal swabs from living individuals 

(16 males, 23 females; aged 3-86 years old). Some samples have unsuccessful SNaPshot 

sequencing: four samples for TRIM59, four other samples for KLF14, one of these four 

samples did not amplify for ELOVL2 and two other samples did not amplify for ELOVL2. 

Evaluating DNAm association with age, positive correlations were observed for 

the CpGs located at all genes (Supplementary Figure S30).  

 

DNAm levels and sex  

Using DNAm information of CpGs located at ELOVL2, KLF14 and TRIM59 no 

statistically significant differences were observed between males and females in the 

training set (P-value >0.05, Table 4.49).  

 

Table 4.49: Comparison of two regression lines between males and females in buccal 

swabs from living individuals using data obtained from the SNaPshot methodology. 

 

 

 

 

Development of an age prediction model (APM)  

Testing association between DNAm levels and chronological age, the strongest 

correlation was observed for TRIM59 marker (R = 0.946, P-value = 1.183 × 10-17), 

explaining 89.1% of the variation in age, followed by ELOVL2 (R = 0.846, P-value = 

8.295 × 10-11), explaining 70.7% of the variation in age, and KLF14 (R = 0.821, P-value 

Marker 
P-value 

Intercept Slope 

ELOVL2  0.9192 0.0751 

TRIM59 0.9063 0.1896 

KLF14 0.8396 0.3157 
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= 9.204 × 10-10), explaining 67.4% of the variation in age. The predicted age of individuals 

was calculated through the simple linear regression coefficients for the individual markers 

allowing to obtain a MAD of 6.73 years for TRIM59, 11.44 years for ELOVL2 and 11.86 

years for KLF14 (Table 4.50; Figure 4.35; Supplementary Figure S31).  
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Table 4.50: Simple linear regression statistics at the three CpGs of the ELOVL2, KLF14 and TRIM59 genes using SNaPshot assay in buccal swabs 

from living individuals. 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. 

Locus Location N R R2 
Corrected 

R2 
SE P-value MAD 

Simple linear regression  

TRIM59 Chr3:160450189 35 0.946 0.894 0.891 8.98 1.183 × 10 -17 6.73 

ELOVL2 Chr6:11044628 36 0.846 0.716 0.707 15.27 8.295 × 10 -11 11.44 

KLF14 Chr7:130734355 35 0.821 0.684 0.674 15.44 9.204 × 10 -10 11.86 
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Using simultaneously these three CpGs through multiple linear regression 

statistics, only the CpG located at TRIM59 gene revealed a significant age correlation 

value (P-value = 3.074 × 10-8) (Supplementary Table S17). In concordance, by stepwise 

regression approach, only this same CpG was chosen. Age prediction estimated according 

to the individual regression coefficients for the highest age-associated marker, TRIM59 

(Table 4.51) was as follows: (-8.920) + 108.282 × DNAm level TRIM59. The obtained 

Spearman correlation value between predicted and chronological ages was 0.962 and the 

MAD from chronological age was 6.73 years (RMSE = 8.70) (Table 4.50; Figure 4.35). 

The percentage of correct predictions (considering the cutoff of 8.98) was 80%. 

 

Table 4.51: Statistical parameters obtained by simple linear regression for the TRIM59 

gene, selected by stepwise regression approach in buccal swabs.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.35: Predicted age versus chronological age using the multiplex methylation 

SNaPshot assay at the CpG site located at TRIM59 gene in buccal swabs from living 

individuals. MAD and Spearman correlation coefficient, r, are plotted on the chart. 
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Differences between predicted and chronological age with aging  

Using the developed simple linear regression model with methylation information 

of TRIM59 captured by SNaPshot methodology, we observed some differences between 

predicted and chronological ages with increasing age (Figure 4.36).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36: Differences between chronological and predicted ages (years) plotted 

against chronological age (years) in buccal swabs from living individuals.  

 

We divided our training set of 35 buccal swabs successful amplified and 

sequenced by SNaPshot assay for the TRIM59 in three age ranges (Group 1: <13 years 

old; Group 2: 14-33 years old; Group 3: 34-86 years old) (Table 4.52; Figure 4.37) and 

calculated the MAD and percentage of correct predictions within each group. The 

obtained MAD value increases from G1 to G3 with the increasing of age (MAD = 2.55 

years, MAD = 5.24 years and MAD = 10.69 years, respectively). In concordance, the 

lower percentage of correct predictions was observed in the older group G3: 53% (Table 

4.52; Figure 4.37).  
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Table 4.52: MAD between predicted and chronological ages stratified by age group in 

the training set of 35 buccal swabs from living individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: MAD from chronological age calculated for each age group in buccal swabs 

from living individuals. MAD increases with age. The MAD is printed on top of each 

respective age range. 

 

Validation of the simple APM developed in living individuals  

The 3-fold cross validation allowed to estimate an averaged MAD in the three 

validation sets of 7.07 years (RMSE = 7.17). The validation by splitting the sample in the 

training set of 19 samples and in the validation set of 16 samples allowed to obtain an 

independent MAD value of 5.98 years (RMSE = 7.68) for the training set, and MAD of 

7.50 years (RMSE = 9.83) for the validation set. Both independent MAD values were 

very close to the MAD of 6.73 years (RMSE = 8.70) obtained from the whole data set. 

 

Group Age range N MAD 
Correct  

Predictions (%) 

G1 <13 years 11 2.55 100 

G2 14-33 years 9 5.24 100 

G3 34-86 years 15 10.69 53 

Overall 3-86 years 35 6.73 80 
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3.3. Comparison between methodologies  

Comparing the value of correlation with age of CpG located at ELOVL2 using 

Sanger and SNaPshot methodologies, we observed similar values (Table 4.53).  

 

Table 4.53: Comparison of age-correlated values obtained in buccal swabs through 

Sanger and SNaPshot methodologies. 

 

 

 

 

 

 

 

Abbreviations: R, Pearson correlation coefficient.  

 

4. Discussion 

 

Buccal swabs can be a relevant source of DNA, however few studies have 

developed DNAm clocks using this tissue type (Bekaert et al., 2015b; Eipel et al., 2016; 

Naue et al., 2018; Jung et al., 2019; Koop et al., 2020). It is known that DNAm patterns 

of buccal epithelial and blood cells may differ and consequently, the epigenetic clocks 

developed for blood samples (as the model of Weidner et al., 2014) need to be adapted 

when applied to other tissue type, as buccal swabs (Eipel et al., 2016). It has been 

observed that APMs developed specifically for buccal swabs are more advantageous for 

accurate age predictions in buccal swabs than the use of models that were previously 

developed in blood (Eipel et al., 2016). The specific cellular composition of saliva, blood 

and buccal swabs could influence age predictions based on tissue-specific CpGs (Eipel et 

Chromosomal location 

GRCh38  

Portuguese ancestry 

Sanger sequencing SNaPshot 

Buccal swabs  

(3-86 years old)  

Buccal swabs   

(3-86 years) 

R R2 R R2 

ELOVL2  

Chr6:11044628 
0.823 0.677 0.846 0.716 
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al., 2016; Vidaki et al., 2016). For instance, saliva and buccal swabs can show different 

DNAm patterns as a consequence of the different amount of leukocytes and epithelial 

cells they contain (Thiede et al., 2000; Vidaki et al., 2016). Moreover, as saliva can have 

large number of leukocytes, DNAm levels of saliva and blood samples can be more 

similar, being reflected in the accuracy of developed models (Vidaki et al., 2016; Jung et 

al., 2019).  

In the present study, we assessed DNAm levels of ELOVL2, KLF14 and TRIM59 

genes in 39 buccal swabs from living Portuguese individuals through Sanger sequencing 

methodology (nine CpGs located at ELOVL2 gene) and by multiplex SNaPshot method 

(three CpGs located at ELOVL2, KLF14 and TRIM59 genes). 

Evaluating DNAm levels of CpGs from ELOVL2 gene through Sanger sequencing 

in a training set of 23 buccal swabs, a two-CpGs APM combining ELOVL2 CpG1 and 

ELOVL2 CpG4 through multiple linear regression analysis allowed to obtain a strong age 

correlation value (R = 0.894), highly significant (P-value = 1.035 × 10-7), and explaining 

78% of the variation in age. The model showed a moderate accuracy with a MAD from 

chronological age of 8.32 years.  

We tested the experiments of Jung et al. (2019) evaluating simultaneously three 

CpGs located at ELOVL2, KLF14 and TRIM59 genes through SNaPshot assay in a 

training set of 39 buccal swabs. When using a multiple linear regression approach with 

the three loci, absence of significant values was observed for ELOVL2 and KLF14 loci. 

The predicted age of individuals calculated through the simple linear regression 

coefficients for the strongest age-correlated CpG located at the TRIM59 gene (R = 0.946) 

allowed to obtain a MAD from chronological age of 6.73 years. Jung and colleagues 

(2019) investigating DNAm levels of ELOVL2, KLF14, FHL2, TRIM59 and C1orf132 

genes in buccal swabs from Korean people observed the highest age-correlated value also 
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for TRIM59 locus (R = 0.734), following by KLF14 (R = 0.711), ELOVL2 (R = 0.684), 

FHL2 (R = 0.455) and C1orf132 (R = -0.314). They developed a specific APM for buccal 

swabs with these five CpGs, revealing a high age correlation (R = 0.943) and a MAD 

from chronological age of 3.823 years. The MAD value reported by Jung et al. (2019) is 

lower than the obtained in our study (6.73 years), revealing higher accuracy in Korean 

people, which can be explained by the use of more CpGs/genes (five CpGs) in the model. 

Despite this, it is possible to observe higher age correlation values of the same positions 

for Portuguese training set (TRIM59, R = 0.946; ELOVL2, R = 0.846; KLF14, R = 0.821) 

comparing with the previously reported in Korean. This suggests that putative population 

specific changes can influence DNAm levels.  

The previously reports by Bekaert et al. (2015b) and Eipel et al. (2016), using 

around 50 buccal swabs and the pyrosequencing methodology, revealed an accurate MAD 

values of 3.32 years (eight CpGs) and 4.3 years (three CpGs), respectively. In our study, 

the obtained MAD value is higher with both methodologies, but less CpGs were used in 

each APM (Sanger sequencing with two CpGs, MAD = 8.32 years; SNaPshot with only 

one CpG, MAD = 6.73 years). The use of less predictor variables and, in addition, the 

limited number of samples included in the training sets for both methodologies (23 for 

Sanger sequencing and 39 for SNaPshot) should be determinant factors for the accuracy 

of the model.  

In our study, comparing methylation levels obtained in both methodologies for the 

CpG site located at ELOVL2 (Chr6:11044628), similar age-correlated values (R = 0.823 

for Sanger sequencing; R = 0.846 for SNaPshot) were obtained, suggesting that both 

methodologies showed high accuracy in DNAm quantification. 

When comparing the present DNAm data from buccal swabs to data obtained in 

blood samples from living Portuguese individuals captured by the same Sanger 
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sequencing and SNaPshot methodologies (as previously addressed in Chapter 4. Results 

and discussion: A. DNA methylation age estimation in blood samples), different 

methylation features can be found. Using Sanger sequencing, we observed that:  

i) the best site from ELOVL2 locus is different (CpG1 in buccal swabs vs. CpG6 

in blood samples from living individuals);  

ii) DNAm levels of CpG1, CpG4, CpG5 showed very strong age correlation 

values in blood samples from living individuals (0.916≤ R ≤0.936), while in buccal 

swabs, only strong age-correlated values were obtained for the same positions (0.787≤ R 

≤0.823); this can revealed a specific age-association of each CpG in different tissue types;  

iii) the MAD value obtained in buccal swabs with two CpGs from ELOVL2 is 

higher (MAD = 8.32 years) (revealing lower accuracy) comparing with APM developed 

in blood samples from living individuals (MAD = 5.35 years) using four CpGs from 

ELOVL2, EDARADD, PDE4C and FHL2; however, it is known that the model accuracy 

could be improved by the inclusion of a larger number of CpGs or genes (Horvath, 2013; 

Lin et al., 2016).  

Regarding the SNaPshot methodology, the best age-correlated marker for buccal 

swabs was the TRIM59 gene, while for blood samples was the ELOVL2 (R = 0.951). This 

can explain the need of made a previous selection of tissue-specific CpGs/genes for each 

tissue type.  Moreover, in our study, the MAD value obtained for buccal swabs with only 

one CpG is higher (6.73 years) (lower accuracy) comparing to the APM developed for 

blood samples from living Portuguese individuals (MAD = 4.25 years) that included three 

CpGs located at ELOVL2, FHL2 and C1orf132 genes. Once again, the addition of more 

predictor variables can be an important factor in model accuracy. In concordance with 

our data, Jung et al. (2019) reported different tissue-specific models for blood and buccal 
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swabs, revealing lower accuracy in buccal swabs (MAD = 3.174 in blood vs. MAD = 

3.823 in buccal swabs). 

In our study, DNAm levels captured by both methodologies in buccal swabs 

revealed lower accuracy in older ages. The increase in MAD values with aging, reflecting 

lower accuracy in age estimation, can be the reflection of individual alterations in the rate 

of methylation change that occurs with age, being slight in youths and accumulating with 

age. These differences in DNAm levels with the increase of age, reported by our data, are 

in concordance with previous studies across several tissues (Bekaert et al., 2015a; Zbieć-

Piekarska et al., 2015a, 2015b; Hamano et al., 2016; Pfeifer et al., 2020). Additionally, 

our reports showed non-significant sex DNAm changes in both methodologies for all the 

investigated CpG sites (P-value >0.05), in concordance with Bekaert et al. (2015b). 

In conclusion, we developed two APMs for buccal swabs from living Portuguese 

individuals using two different methods for evaluation of DNAm levels. A two-CpGs 

APM combining ELOVL2 CpG1 and ELOVL2 CpG4 markers, analyzed through bisulfite 

sequencing, allowed to obtain a MAD of 8.32 years. Through SNaPshot, a MAD of 6.73 

years was obtained using methylation information of one CpG located at TRIM59 gene. 

We should note that the present study suffers from several limitations, being the small 

sample set the major drawback. Despite a larger sample set of buccal swabs was collected 

for the present study, the amount of extracted DNA was often insufficient for age-related 

DNAm analysis. 
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1. Introduction  

 

A wide range of publications based on DNA methylation (DNAm) analysis for 

age estimation has emerged in the forensic field. Several age-related markers have been 

investigated in different tissues, including blood, saliva, buccal swabs, sperm, teeth, 

bones, allowing the development of tissue-specific age prediction models (APMs) with 

similar high accuracy in age prediction (Goel et al., 2017). The discovery of universal 

biomarkers of age applied simultaneously to many tissue types can be a challenge, since 

it has been observed that only few markers can work well as multi-tissue age predictive 

markers (Jung et al., 2019). However, the development of multi-tissue APMs can brought 

many advantages in forensics, since they can be applicable to several contexts with 

different types of samples.  

Horvath (2013) assessed to methylation information of 353 CpGs developing a 

highly accurate multi-tissue age predictive model showing a strong correlation between 

predicted and chronological ages (R = 0.97), and revealing a median absolute difference 

between chronological and predicted ages of 2.9 years (training set) and 3.6 years (test 

set). The high accuracy can be explained by the larger number of CpGs included in the 

model. However, the need of a high number of age markers can also bring a challenge for 

forensic casework application. Moreover, in the Horvath model a larger error (around 10 

years) was observed in several tissues suggesting that the best markers for one tissue may 

not be the best for another. 

Eipel et al. (2016) reported that using a specific APM with methylation 

information of age-correlated markers selected in one tissue-specific type can lead to a 

decrease in model accuracy in age prediction if applied to a different tissue. This should 

be related with the tissue-specific differences in epigenetic patterns (Illingworth et al., 

2008; Li et al., 2010; Bernstein et al., 2010).  
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Jung and colleagues (2019) develop a multi-tissue APM with DNAm captured by 

SNaPshot assay from five CpGs located at ELOVL2, FHL2, C1orf132, KLF14 and 

TRIM59 genes applied to blood, buccal swabs and saliva. The multi-tissue model showed 

high accuracy with a Mean Absolute Deviation (MAD) from chronological age of 3.553 

years. This MAD value is similar to the reported by the same study when developing 

tissue-specific APMs (MAD = 3.17 years in blood; MAD = 3.82 years in buccal swabs; 

MAD = 3.29 years in saliva). In addition, Jung and colleagues (2019) have observed that 

FHL2 gene is more tissue-specific revealing strong positive age correlation values in 

saliva and blood, and a weak age correlation in buccal swabs. They observed also that 

ELOVL2 and TRIM59 seem to work as better multi-tissue markers than FHL2, C1orf132 

or KLF14.  

We previously assessed to the methylation information of age-correlated CpG 

sites in genes ELOVL2, FHL2, EDARADD, PDE4C, C1orf132, TRIM59 and KLF14, 

captured by Sanger sequencing and SNaPshot methodologies, using several tissue types 

including, blood, tooth, bone and buccal swabs, to develop tissue-specific APMs. In the 

present study, we reexamined DNAm levels of these highly age-correlated genes 

combining various tissues in order to test for multi-tissue APMs. For this main purpose, 

we:  i) evaluated, by means of simple linear regression analysis, the age correlation value 

for single CpG sites in the combined set of samples; and ii) developed multi-locus multi-

tissue APMs based simultaneously in the methylation information of several genes and/ 

or CpGs. 
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2. Materials and Methods  

 

2.1. Sample collection 

A total of 245 samples collected from Portuguese individuals was used in this 

study for development of multi-tissue APMs, including: 71 blood samples from living 

individuals (45 females, 26 males; aged 1-95 years old); 73 blood samples from deceased 

individuals (15 females, 58 males; aged 24-91 years old); 39 buccal swabs from living 

individuals (16 males, 23 females; aged 3-86 years old); 31 tooth samples (10 males, 21 

females; aged 26-94 years old; living individuals, n = 23; BDS, n = 8); and 31 bone 

samples collected from autopsies (26 males, 5 females; aged 26-81 years old). 

We excluded methylation information captured from bones collected from BDS 

because these were subjected to an embalming treatment, which can have an effect in 

DNAm levels, as described in Chapter 4. Results and Discussion: C. DNA methylation 

age estimation in fresh bone samples.  

 

2.2. DNAm analyses  

Processing of samples (DNA extraction, quantification, bisulfite conversion, 

Sanger sequencing and SNaPshot assay) was made in accordance with previously 

described in Chapter 3. Sample and design research. 

 

2.3. Statistical analyses 

Statistical analyses were performed using IBM SPSS statistics software for 

Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). As previously reported 

in Chapter 3. Sample and design research, simple and multiple linear regression models 
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were used to analyze relationships between DNAm levels at CpG sites and chronological 

age for both Sanger sequencing and SNaPshot methodologies.  

For Sanger sequencing data, three groups of combined samples were assigned as 

training sets: 

- Group 1, addressing methylation information captured from CpGs located at ELOVL2, 

FHL2, EDARADD and PDE4C genes from all samples of blood, teeth and bones 

(Supplementary Table S18). We excluded buccal swabs because DNAm was only 

investigated in ELOVL2. Moreover, we did not include the methylation information 

captured from the C1orf132 gene, because this locus was not investigated in blood 

samples from living individuals.  

- Group 2, addressing methylation information of all genes ELOVL2, FHL2, EDARADD, 

PDE4C and C1orf132 in blood samples from deceased individuals, teeth and bones 

(Supplementary Table S19). We excluded blood samples from living individuals 

(C1orf132 was not studied) and buccal swabs (where only the ELOVL2 was investigated).  

- Group 3, specific for the nine CpG sites of the ELOVL2 locus, comprising DNAm 

information in all tissue types (Supplementary Table S20).  

For data obtained through the SNaPshot assay, two groups of combined tissues 

were used: 

- Group 1, included methylation information of ELOVL2, KLF14, TRIM59, C1orf132, 

FHL2 genes captured in blood samples from living and deceased individuals, tooth 

samples from living and deceased individuals and bone samples collected from autopsies;  

- Group 2, included DNAm levels of the three CpGs located at ELOVL2, KLF14 and 

TRIM59 genes in all these tissues and buccal swabs, since in buccal swabs only these 

three CpG sites have been evaluated. 
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The stepwise regression analysis was used to select the best combination of age-

associated sites in developing multi-locus APMs. For both methodologies, Spearman 

correlation coefficients and MAD values, between chronological and predicted ages, and 

the root mean square error (RMSE) were calculated. 

 

3. Results  

 

The association between chronological age and DNAm levels of CpGs located at 

ELOVL2, EDARADD, FHL2, PDE4C and C1orf132 was assessed in several types of 

samples by the bisulfite PCR sequencing methodology. Moreover, DNAm levels of CpGs 

located at ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes were reexamined in the 

same tissues through the multiplex methylation SNaPshot assay, described by Jung et al. 

(2019). We built several groups of combined samples in each methodology for 

development of multi-tissue APMs. Some samples did not amplify for all the investigated 

genes in each group.  

 

3.1. Multi-tissue APMs using Sanger sequencing  

 

Using DNAm information from the ELOVL2, EDARADD, PDE4C, C1orf132 and 

FHL2 genes assessed by the Sanger sequencing methodology, we developed multi-tissue 

APMs using the three groups of combined samples previously detailed in the Materials 

and Methods section. In groups 1 and 2 we develop: i) simple linear regression APMs 

with the best age-associated CpG from each gene; and ii) multi-locus APMs with the 

selected CpGs from all genes using a stepwise regression approach. In group 3, we 

developed a simple linear regression model with the best CpG from ELOVL2 and a final 

APM with the selected CpGs from ELOVL2 gene by stepwise approach. 
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Correlation between DNAm levels and chronological age in group 1  

Thirty-seven CpG sites (ELOVL2: 9 CpGs; EDARADD: 4 CpGs; FHL2: 12 CpGs; 

and PDE4C: 12 CpGs) were selected for methylation evaluation through the bisulfite 

PCR sequencing method in the training set of 204 samples, including blood (from living 

and deceased individuals), teeth (from living and deceased individuals) and bone 

collected during autopsies (85 females, 119 males; aged 1-94 years). The ELOVL2 locus 

showed the highly significant age-correlation values for all the CpG sites (R ≥0.575), 

reflecting the similar strength of change in DNAm with age across all CpGs. The first six 

CpGs located at FHL2, showed a R ≥0.512 (Supplementary Table S18), however for 

the remaining sites the age correlation values revealed a negligible or weak correlation. 

For EDARADD CpG2 and EDARADD CpG3, a moderate age correlation was observed 

as well as for PDE4C CpG5 and PDE4C CpG1 to CpG3 (Supplementary Table S18). 

Considering the strongest age-correlated site in each gene, the best marker was 

ELOVL2 CpG5 with a correlation value between DNAm and chronological age of 0.706, 

(P-value = 1.12 × 10-31), explaining 49.6% of the variation in age, followed by EDARADD 

CpG3 (R = -0.682, P-value = 5.27 × 10-29), explaining 46.3% of the variation in age, 

FHL2 CpG1 (R = 0.662; P-value = 5.92 × 10-27), explaining 43.5% of the variation in 

age, and PDE4C CpG2 (R = 0.605; P-value = 4.50 × 10-21), explaining 36.3% of the 

variation in age (Table 4.54; Supplementary Table S18).  For these sites, a clear positive 

age correlation was observed for ELOVL2 CpG5, PDE4C CpG2 and FHL2 CpG1 

markers, and a clear negative age correlation was observed for EDARADD CpG3 marker 

(Supplementary Figure S32).   

The predicted age of individuals was calculated using the simple linear regression 

coefficients for the individual four strongest age-associated markers, allowing to obtain 

MAD values of 12.98 years for ELOVL2 CpG5, 13.47 years for EDARADD CpG3, 13.72 
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years for FHL2 CpG1 and 13.99 years for PDE4C CpG2 (Table 4.54; Supplementary 

Figure S33). 
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Table 4.54: Simple and multiple linear regression statistics of the age predictors in ELOVL2, FHL2, EDARADD and PDE4C genes to test for 

association between the DNAm levels and chronological age in the group 1. 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly. *Blood samples from living and deceased individuals. 

Locus 
CpG 

site 
Location 

Multi-tissue: type of samples 

included 
N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 CpG5 Chr6:11044642 Blood* + Bones + Teeth 201 0.706 0.499 0.496 16.24 1.12 × 10-31 12.98 

EDARADD CpG3 Chr1:236394382 Blood* + Bones + Teeth 202 -0.682 0.465 0.463 16.64 5.27 × 10-29 13.47 

PDE4C CpG2 Chr19:18233133 Blood* + Bones + Teeth 196 0.605 0.366 0.363 18.32 4.50 × 10-21 13.99 

FHL2 CpG1 Chr2:105399282 Blood* + Bones + Teeth 203 0.662 0.438 0.435 17.07 5.92 × 10-27 13.72 

Multiple linear regression 

APM  (ELOVL2 CpG5, EDARADD 

CpG3, PDE4C CpG2, PDE4C CpG5, 

PDE4C CpG6, PDE4C CpG9, FHL2 

CpG1, FHL2 CpG5 and FHL2 CpG11) 

Blood* + Bones + Teeth 194 0.932 0.868 0.862 8.51 1.97 × 10-76 6.42 
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Testing simultaneously the 28 significant age-associated CpGs from ELOVL2 (9 

CpGs), EDARADD (3 CpGs), FHL2 (9 CpGs) and PDE4C (7 CpGs) by stepwise 

regression analysis, a multi-locus multi-tissue APM that selected nine CpGs (ELOVL2 

CpG5, EDARADD CpG3, PDE4C CpG2, PDE4C CpG5, PDE4C CpG6, PDE4C CpG9, 

FHL2 CpG1, FHL2 CpG5 and FHL2 CpG11) was constructed. This model revealed an 

age correlation value, R = 0.932 (P-value = 1.97 × 10-76), explaining 86.2% of the 

variation in age (corrected R2 = 0.862) (Table 4.54). The final multi-locus multi-tissue 

APM developed in 194 samples allowed to predict age of individuals through the formula 

(Table 4.55): 32.920 + 51.682 × DNAm level ELOVL2 CpG5 – 34.322 × DNAm level 

EDARADD CpG3 + 34.419 × DNAm level PDE4C CpG2 + 59.975 × DNAm level 

PDE4C CpG5 – 41.886 × DNAm level PDE4C CpG6 – 68.194 x DNAm level PDE4C 

CpG9 – 85.035 × DNAm level FHL2 CpG1 + 139.387 × DNAm level FHL2 CpG5 – 

58.241 × DNAm level FHL2 CpG11. The obtained correlation between predicted and 

chronological ages was 0.902 (Spearman correlation coefficient) (Figure 4.38), with a 

MAD from chronological age of 6.42 years (RMSE = 8.26). Correct predictions were 

75.7% assuming that chronological and predicted ages match ± 9 years, according to the 

standard error of estimate calculated for the final APM (SE = 8.51).    
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Table 4.55: Statistical parameters obtained in a multiple regression model with the nine 

CpGs in genes ELOVL2, FHL2, EDARADD and PDE4C, selected by stepwise regression 

approach, in blood, bone and tooth samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38: Predicted age versus chronological age using the multi-locus multi-tissue 

APM developed for ELOVL2, FHL2, EDARADD and PDE4C genes including blood 

samples from living individuals (1), blood samples from deceased individuals (2), bone 

samples (3), tooth samples from living individuals (4) and tooth samples from deceased 

individuals (5).   

 

Marker Coefficient P-value 

(Intercept) 32.920 0.004 

ELOVL2 CpG5  51.682 0.000 

FHL2  CpG1 -85.035 0.001 

FHL2  CpG5 139.387 0.000 

FHL2  CpG11 -58.241 0.000 

EDARADD CpG3  -34.322 0.002 

PDE4C CpG2 34.419 0.003 

PDE4C CpG5 59.975 0.000 

PDE4C CpG6 -41.886 0.000 

PDE4C CpG9 -68.194 0.000 
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Correlation between DNAm levels and chronological age in group 2  

Forty-three CpG sites (ELOVL2: 9 CpGs; EDARADD: 4 CpGs; FHL2: 12 CpGs, 

PDE4C: 12 CpGs; and C1orf132: 6 CpGs) were selected for methylation evaluation 

through the bisulfite PCR sequencing method in the training set of 133 samples, including 

blood (from deceased individuals), teeth (from living and deceased individuals) and bone 

collected during autopsies (40 females, 93 males; aged 24-94 years).  

All the CpGs located at ELOVL2 locus showed significant age correlation values 

(0.425≤ R ≤0.563) (Supplementary Table S19). In general, for all CpGs from the 

remaining genes FHL2, EDARADD, PDE4C and C1orf132 we observed a lower age 

association comparing with ELOVL2 CpGs (Supplementary Table S19). 

Testing the correlation between methylation levels and chronological age, the 

highest age-correlated site was ELOVL2 CpG5 (R = 0.563; P-value = 3.09 × 10-12), 

explaining 31.2% of the variation in age. For the remaining genes, the CpG from each 

locus with the strongest age-correlated value was PDE4C CpG2 (R = 0.470; P-value = 

2.87 × 10-8), explaining 21.4% of the variation in age, C1orf132 CpG1 (R = -0.455, P-

value = 7.04 × 10-8), explaining 20% of the variation in age, EDARADD CpG3 (R = -

0.416, P-value = 7.90 × 10-7), explaining 16.6% of the variation in age, and FHL2 CpG1 

(R = 0.365; P-value = 0.000017), explaining 12.7% of the variation in age (Table 4.56; 

Supplementary Table S19). A clear positive correlation was observed for ELOVL2 

CpG5, PDE4C CpG2 and FHL2 CpG1, and a clear negative age correlation for 

EDARADD CpG3 and C1orf132 CpG1 (Supplementary Figure S34). Predicting age 

based on DNAm levels of these sites through simple linear regression allowed to obtain 

MAD values of 10.97 years for ELOVL2 CpG5, 11.36 years for C1orf132 CpG1, 11.87 

years for PDE4C CpG2, 12.40 years for EDARADD CpG3 and 12.64 years for FHL2 

CpG1 (Table 4.56; Supplementary Figure S35).
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Table 4.56: Simple and multiple linear regression statistics of the age predictors in ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes to 

test for association between the DNAm levels and chronological age in the group 2. 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.**Blood samples from deceased individuals only (C1orf132 

was not studied in blood samples from living individuals using Sanger sequencing methodology). 

Locus 
CpG 

site 
Location 

Multi-tissue: type 

of samples included 
N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 CpG5 Chr6:11044642 
Blood** + Bones + 

Teeth 
130 0.563 0.317 0.312 13.84 3.09 × 10-12 10.97 

C1orf132 CpG1 Chr1:207823681 
Blood** + Bones + 

Teeth 
126 -0.455 0.207 0.200 14.67 7.04 × 10-8 11.36 

PDE4C CpG2 Chr19:18233133 
Blood** + Bones + 

Teeth 
125 0.470 0.221 0.214 14.70 2.87 × 10-8 11.87 

EDARADD CpG3 Chr1:236394382 
Blood** + Bones + 

Teeth 
131 -0.416 0.173 0.166 15.03 7.90 × 10-7 12.40 

FHL2 CpG1 Chr2:105399282 
Blood** + Bones + 

Teeth 
132 0.365 0.133 0.127 15.35 0.000017 12.64 

Multiple linear regression 

APM  (C1orf132 CpG4, FHL2 CpG5, 

FHL2 CpG6, FHL2 CpG8 and ELOVL2 

CpG5) 

Blood** + Bones + 

Teeth 
123 0.797 0.635 0.620 10.09 2.71 × 10-24 7.27 
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Evaluating simultaneously the 30 significant age-associated CpGs (among the 43 

CpGs from ELOVL2, EDARADD, FHL2, PDE4C and C1orf132 genes) by stepwise 

regression approach, we developed a multi-locus multi-tissue APM with methylation 

information of FHL2 CpG5, FHL2 CpG6, FHL2 CpG8, ELOVL2 CpG5 and C1orf132 

CpG4. This multi-locus APM showed an age correlation value R = 0.797 (P-value = 2.71 

× 10-24) and explained 62% of the variation in age (corrected R2 = 0.620) (Table 4.56). 

The predicted age of each individual was calculated using the multivariate regression 

coefficients through the formula (Table 4.57): 17.244 – 53.968 × DNAm level C1orf132 

CpG4 + 156.170 × DNAm level FHL2 CpG5 – 82.244 × DNAm level FHL2 CpG6 – 

61.144 × DNAm level FHL2 CpG8 + 76.131 × DNAm level ELOVL2 CpG5. The model 

showed a MAD from chronological age of 7.27 years (RMSE = 9.68) (Table 4.56), and 

a correlation between predicted and chronological ages (Figure 4.39) of 0.799 (Spearman 

correlation coefficient). Correct predictions were 77.2% assuming that chronological and 

predicted ages match ± 10 years, according to the standard error of estimate calculated 

for the final APM (SE = 10.09).    

 

Table 4.57: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2 and C1orf132, selected by stepwise regression approach, 

in blood, bone and tooth samples. 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 17.244 0.127 

FHL2  CpG5 156.170 0.000 

FHL2  CpG6 -82.244 0.046 

FHL2  CpG8 -61.144 0.004 

ELOVL2 CpG5  76.131 0.000 

C1orf132 CpG4  -53.968 0.000 
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Figure 4.39: Predicted age versus chronological age using the multi-tissue model 

developed for ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes including blood 

samples from deceased individuals (2), bone samples (3) and tooth samples from living 

(4) and deceased individuals (5).   

 

Correlation between DNAm levels and chronological age in group 3  

Methylation information of nine CpGs located at ELOVL2 gene were reexamined 

in a training set of 227 samples including all the tissue types (blood, buccal swabs, teeth 

and bones). A moderate or strong age correlation values (0.582≤ R ≤0.736) was observed 

for all the CpGs (Supplementary Table S20). The strongest age-correlated value was 

observed for ELOVL2 CpG5 (R = 0.736; P-value = 2.07 × 10-39), explaining 53.9% of the 

variation in age (Table 4.58; Supplementary Table S20). Predicted age using this site 

allowed to obtain a MAD of 13.07 years (Table 4.58; Supplementary Figure S36).  

DNAm information of simultaneously all CpGs tested through the stepwise 

regression allowed the selection of CpG3, CpG5, CpG8 and CpG9 for development of a 
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final linear regression model. Applying this APM, the age prediction for each individual 

was obtained through the formula detailed in Table 4.58. The obtained correlation 

between predicted and chronological age was 0.752 (Spearman correlation coefficient),  

the MAD from chronological age was 12.09 years (Table 4.58; Supplementary Figure 

S37), and the rate of correct predictions was 67.4% considering the cutoff of  ± 15 years, 

according to the standard error of estimate calculated for the final APM (SE = 15.38).    
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Table 4.58: Multi-tissue APM based in ELOVL2 methylation information obtained using Sanger sequencing methodology. 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic position was based on the GRCh38/hg38 assembly. *Blood samples from living and deceased individuals. 

 

Linear regression analysis (CpGs 

selected) 

Multi-tissue: type of 

samples included  
N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

APM (DNAm level ELOVL2 CpG5, 

Chr6:11044642) 

Blood* + Bones + 

Teeth +  Buccal swabs 
224 0.736 0.541 0.539 16.47 2.07 × 10-39 13.07 

Multiple linear regression 

APM (Predicted Age = (-70.085) + 106.833 

× DNAm level ELOVL2 CpG3 + 75.533 × 

DNAm level ELOVL2 CpG5 + 80.890 × 

DNAm level ELOVL2 CpG8 – 98.512 × 

DNAm level ELOVL2 CpG9) 

Blood* + Bones + 

Teeth + Buccal swabs 
224 0.778 0.605 0.598 15.38 4.26 × 10-43 12.09 
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3.2. Multi-tissue APMs using SNaPshot methodology  

 

DNAm information of five CpGs located at ELOVL2, FHL2, KLF14, C1orf132 

and TRIM59 genes captured by SNaPshot methodology, was used to develop multi-tissue 

APMs in two groups of combined samples, as previously described in Materials and 

Methods.  

 

Correlation between DNAm levels and chronological age in group 1  

DNAm levels at five CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 and 

TRIM59 genes were simultaneously measured through a SNaPshot assay in the combined 

set of 176 samples, including blood (living and deceased individuals), bones and teeth 

from Portuguese individuals (105 males, 71 females; 1-94 aged years old). DNAm levels 

of ELOVL2, FHL2, KLF14 and TRIM59 genes revealed a positive correlation with 

chronological age, and DNAm levels of C1orf132 showed a negative age correlation 

(Supplementary Figure S38). 

Testing the individual DNAm association with chronological age for the five CpG 

sites, the strongest correlation was observed for ELOVL2 (R = 0.779, P-value = 3.17 × 

10-36), explaining 60.4% of the variation in age, followed by FHL2 (R = 0.697, P-value 

= 9.21 × 10-27), explaining 48.3% of the variation in age, KLF14 (R = 0.683, P-value = 

8.37 × 10-25), explaining 46.3 % of the variation in age, C1orf132 (R = -0.682, P-value = 

4.04 × 10-25), explaining 46.2% of the variation in age, and TRIM59 (R = 0.595, P-value 

= 3.66 × 10-18), explaining 35.1% of the variation in age (Table 4.59). Simple APMs for 

each CpG site allowed to obtain MAD values from chronological age of 10.97 years for 

ELOVL2, 12.46 years for C1orf132, 12.64 years for KLF14, 12.71 years for FHL2 and 

13.85 years for TRIM59 (Table 4.59; Supplementary Figure S39). 
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Applying the stepwise regression approach, only the CpGs located at ELOVL2, 

KLF14 and C1orf132 genes were selected for the development of a final multi-locus 

APM. The multi-tissue APM with ELOVL2, KLF14 and C1orf132 markers showed a very 

strong age correlation, R = 0.922 (P-value = 3.14 × 10-67), explaining 84.7% of the 

variation in age (corrected R2 = 0.847) (Table 4.59). Predicting age through the 

multivariate regression coefficients as follows (Table 4.60): 29.220 + 96.850 × DNAm 

level ELOVL2 + 208.747 × DNAm level KLF14 - 33.437 × DNAm level C1orf132, 

allowed to obtain a MAD from chronological age of 6.49 years (RMSE = 8.42) (Table 

4.59). Correct predictions were 73.8% considering the cutoff of  ± 9 years, according to 

the standard error of estimate calculated for the final APM (SE = 8.53). The obtained 

Spearman correlation value between predicted and chronological ages was 0.893 (Figure 

4.40).  
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Table 4.59: Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, KLF14, TRIM59 and C1orf132 genes using 

SNaPshot assay in the group 1. 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.*Blood samples from living and deceased individuals. 
 

 

 

Locus Location 
Multi-tissue: type of 

samples included 
N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 Chr6:11044628 Blood* + Bones + Teeth 172 0.779 0.606 0.604 13.908 3.17 × 10-36 10.97 

FHL2 Chr2:105399282 Blood* + Bones + Teeth 175 0.697 0.486 0.483 15.902 9.21 × 10-27 12.71 

KLF14 Chr7:130734355 Blood* + Bones + Teeth 171 0.683 0.466 0.463 15.991 8.37 × 10-25 12.64 

C1orf132 Chr1:207823681 Blood* + Bones + Teeth 174 -0.682 0.465 0.462 16.286 4.04 × 10-25 12.46 

TRIM59 Chr3:160450189 Blood* + Bones + Teeth 175 0.595 0.354 0.351 17.855 3.66 × 10-18 13.85 

Multiple linear regression 

APM (ELOVL2, KLF14 and 

C1orf132) 
Blood* + Bones + Teeth 168 0.922 0.850 0.847 8.53 3.14 × 10-67 6.49 
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Table 4.60: Statistical parameters obtained in a multiple regression model with the three 

CpGs in genes ELOVL2, C1orf132 and KLF14, selected by stepwise regression approach, 

in blood, bone and tooth samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40: Predicted age versus chronological age using the multi-tissue APM 

developed for ELOVL2, C1orf132 and KLF14 genes including blood samples from living 

individuals (1), blood samples from deceased individuals (2), bone samples (3), tooth 

samples from living individuals (4) and tooth samples from deceased individuals (5).   

 

Correlation between DNAm levels and chronological age in the group 2  

The DNAm levels of three CpG sites located at ELOVL2, KLF14 and TRIM59 

genes, were simultaneously measured through the SNaPshot assay in a combined set of 

Marker Coefficient P-value 

(Intercept) 29.220 0.000 

C1orf132 -33.437 0.000 

ELOVL2 96.850 0.000 

KLF14  208.747 0.000 
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215 samples that included blood, bones, teeth and also buccal swabs (121 males, 94 

females; aged 1-94 years old).  

The simple linear regression analysis allowed to obtain positive correlations 

between DNAm and chronological age for all these genes (Supplementary Figure S40). 

The strongest age correlation value was observed for ELOVL2 (R = 0.793, P-value = 3.95 

× 10-46), explaining 62.6% of the variation in age. The remaining two genes revealed 

lower age correlation values, KLF14 (R = 0.477, P-value = 1.44 × 10-30) and TRIM59 (R 

= 0.323, P-value = 2.29 × 10-19), explaining 47.5% and 32.0% of the variation in age, 

respectively (Table 4.61). Predicted age for each CpG site revealed MAD values from 

chronological age of 11.40 years for ELOVL2, 13.93 years for KLF14 and 16.43 years for 

TRIM59 (Table 4.61; Supplementary Figure S41).  

Based on the stepwise regression approach, a multi-tissue APM with ELOVL2 and 

KLF14 genes was developed, revealing a strong age correlation value, R, of 0.870 (P-

value = 1.95 × 10-61) and explaining 75.4% of the variation in age (corrected R2 = 0.754) 

(Table 4.61). Predicted age using the multiple regression equation (Table 4.62): (-2.832) 

+ 120.282 × DNAm level ELOVL2 + 268.955 × DNAm level KLF14, allowed to obtain 

a MAD of 9.02 years (RMSE = 11.85) and a rate of correct predictions of 71.6% (standard 

error of estimate, SE = 11.95). Predicted and chronological ages revealed a correlation 

value (Spearman correlation coefficient, r) of 0.840 (Figure 4.41).  
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Table 4.61: Simple and multiple linear regression statistics at the three CpGs of the ELOVL2, KLF14 and TRIM59 genes using SNaPshot assay in 

the group 2. 

 

 

 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological 

and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.* Blood from living and deceased individuals. 

 

 

Locus Location 
Multi-tissue: type of samples 

included 
N R R2 

Corrected 

R2 
SE P-value MAD 

Simple linear regression 

ELOVL2 Chr6:11044628 
Blood* + Bones + Teeth + 

Buccal swabs 
208 0.793 0.628 0.626 14.84 3.95 × 10-46 11.40 

KLF14 Chr7:130734355 
Blood* + Bones + Teeth + 

Buccal swabs 
206 0.691 0.477 0.475 17.41 1.44 × 10-30 13.93 

TRIM59 Chr3:160450189 
Blood* + Bones + Teeth + 

Buccal swabs 
210 0.568 0.323 0.320 19.98 2.29 × 10-19 16.43 

Multiple linear regression 

APM (ELOVL2 and KLF14) 
Blood* + Bones + Teeth + 

Buccal swabs 
201 0.870 0.756 0.754 11.95 1.95 × 10-61 9.02 
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Table 4.62: Statistical parameters obtained in a multiple regression model with the two 

CpGs in genes ELOVL2 and KLF14, selected by stepwise regression approach, in blood, 

bone, tooth and buccal swab samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41: Predicted age versus chronological age using the multi-tissue APM 

developed for ELOVL2, KLF14 and TRIM59 genes including blood samples from living 

individuals (1), blood samples from deceased individuals (2), bone samples (3), tooth 

samples from living individuals (4), tooth samples from deceased individuals (5) and 

buccal swabs (6).   

 

 

 

4. Discussion  

 

Specific APMs with high accuracy have been developed using many tissue types 

in the past decade (e.g. Bocklandt et al., 2011; Garagnani et al., 2012; Bekaert et al., 

2015a; Zbieć-Piekarska et al., 2015b; Eipel et al., 2016; Naue et al., 2018; Gopalan et al., 

Marker Coefficient P-value 

(Intercept) -2.832 0.225 

ELOVL2 120.282 0.000 

KLF14  268.955 0.000 
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2019; Márquez-Ruiz et al., 2020). However, the discovery of DNAm age-related markers 

with similarly high accuracy in different types of tissues (universal markers) is a 

challenging task in the forensic field (Koch and Wagner, 2011). In fact, only few studies 

have developed multi-tissue APMs (Horvath, 2013, Alsaleh et al., 2017; Jung et al., 

2019). Instead, each age-correlated marker seems to reveal a specific ability to predict 

chronological age, as each can be affected by different intrinsic or environmental factors. 

A careful selection of age-associated CpGs and the validation of these proposed markers 

in each tissue type should be the first step for the development of multi-tissue APMs.  

We reexamined DNAm levels of ELOVL2, FHL2, PDE4C, EDARADD, 

C1orf132, TRIM59 and KLF14 genes, previously captured in different tissue types (blood 

samples from living and deceased individuals; tooth samples; fresh bone samples; and 

buccal swabs) by Sanger sequencing and SNaPshot methodologies to build tissue-specific 

APMs, and, in the present study, we developed multi-tissue APMs combining sets of 

these tissues. In each group of combined tissues (three groups made with DNAm data 

captured by Sanger sequencing and two groups with DNAm levels captured by SNaPshot) 

we developed simple linear regression APMs for the best-selected CpG sites from each 

gene, and multi-locus APMs using the best combination of CpGs selected by the stepwise 

regression approach. 

In all the three groups of combined samples evaluated through Sanger sequencing 

methodology, we observed that ELOVL2 CpG5 was the strongest site (group 1, R = 0.706; 

group 2, R = 0.563; group 3, R = 0.736). This position revealed the most accurate MAD 

value in their respective groups 1, 2 and 3 (MAD = 12.98 years; MAD = 10.97 years; 

MAD = 13.07 years, respectively).  

  The stepwise approach combining the significant age-correlated CpGs from group 

1 (28 CpGs from four genes) and from group 2 (30 CpGs from five genes), allowed to 
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develop multi-locus multi-tissue APMs with nine CpGs in group 1 and with five CpGs in 

group 2. The multi-locus multi-tissue APM developed in group 1 (ELOVL2 CpG5, 

EDARADD CpG3, PDE4C CpG2, PDE4C CpG5, PDE4C CpG6, PDE4C CpG9, FHL2 

CpG1, FHL2 CpG5 and FHL2 CpG11) revealed a very strong age correlation value (R = 

0.932), highly significant (P-value = 81.97 × 10-76), explaining 86.2% of the variation in 

age. This model developed with 194 Portuguese individuals (aged 1-95 years old), 

included blood samples (living and deceased), tooth samples (living and deceased) and 

bone samples collected during autopsies, and allow to predict age with moderate accuracy 

showing a MAD from chronological age of 6.42 years. The second multi-locus multi-

tissue APM developed in group 2 by Sanger sequencing (C1orf132 CpG4, FHL2 CpG5, 

FHL2 CpG6, FHL2 CpG8 and ELOVL2 CpG5) revealed a lower age correlation value (R 

= 0.797; P-value = 2.71 × 10-24), explaining 62% of the variation in age, allowing to 

obtain also a moderate accurate MAD value of 7.27 years. This model was developed 

without blood samples from living individuals and could be less informative. However, 

as we observed previously in this study (Chapter 4. Results and discussion: A. DNA 

methylation age estimation in blood samples, 3.4. Applicability of the developed APMs 

for blood samples from living and deceased individuals), APMs developed for blood 

samples from deceased individuals can be applied to blood samples from living 

individuals with similar accuracy. Consequently, we can hypothesize that the developed 

APM without methylation information captured in blood samples from living individuals 

can be applied to blood samples from living individuals with similar MAD value. 

Meanwhile, this should be accepted with caution and need to be further tested. Other 

relevant aspect, is that the percentage of the variation in age explained by the first multi-

locus APM (developed in the group 1) is very high (86.2%), and can reflect the presence 

of more CpGs in the model (nine CpGs) and/or the larger size of the sample set.  
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We should note that the models developed in groups 1 and 2 included CpGs from 

ELOVL2 and FHL2 genes, revealing that these markers can be promising age-associated 

genes for the development of multi-tissue APMs. It has been shown that ELOVL2 is a 

stable epigenetic marker that can reveal higher age correlation value across several tissues 

(Hannum et al., 2013; Gopalan et al., 2019). In recent years, this locus has been used as 

a powerful age-correlated marker in many APMs developed for blood, tooth, bones and 

buccal swabs, revealing similar high accuracy in all APMs (Garagnani et al., 2012; 

Weidner et al., 2014; Bekaert et al., 2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; 

Xu et al., 2015; Hamano et al., 2016; Giuliani et al., 2016; Freire-Aradas et al., 2016; 

Cho et al., 2017; Thong et al., 2017; Naue et al., 2018; Gopalan et al., 2019; Jung et al., 

2019; Márquez-Ruiz et al., 2020). Moreover, it has been demonstrated that ELOVL2 can 

be a high-performance multi-tissue marker for age predictions (Slieker et al., 2018; Naue 

et al., 2018; Jung et al., 2019). The FHL2 gene has already been used in several studies 

in blood, tooth and buccal swabs (Garagnani et al., 2012; Zbieć-Piekarska et al., 2015a; 

Hamano et al., 2016; Giuliani et al., 2016; Freire-Aradas et al., 2016; Cho et al., 2017; 

Thong et al., 2017; Jung et al., 2019) and more recently tested in bone samples (Lee et 

al., 2020). Meanwhile, as defended by Jung and collaborators (2019) this marker and the 

C1orf132 seem to have tissue-specific characteristics. Particularly for FHL2 gene, a 

strong age correlation value was observed for blood and saliva samples, while weak age 

correlation was obtained for buccal swabs (Jung et al., 2019).  

The multi-tissue model developed in group 3 with ELOVL2 CpG3, CpG5, CpG8 

and CpG9 sites, can be applied to blood (from living and deceased individuals), teeth, 

bones and buccal swabs, revealing a MAD value of 12.09 years. The advantage of this 

model is the inclusion of buccal swabs but, at the same time, only included CpGs located 

at ELOVL2 gene. As this model showed a higher MAD comparing with the previous 
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multi-locus APMs developed in groups 1 and 2, and considering also the tissue-specific 

APM developed exclusively for buccal swabs (MAD = 8.32 years) (see Chapter 4. 

Results and discussion: D. DNA methylation age estimation in buccal swabs), it does not 

seem very useful for age predictions in forensic contexts.  

Regarding methylation information captured by SNaPshot methodology, the best 

CpG was the position located at ELOVL2 gene both in group 1 (blood, bones and teeth), 

R = 0.779, and in group 2 (blood, bones, teeth and buccal swabs), R = 0.628. In group 1, 

the multi-locus multi-tissue APM obtained by stepwise regression addressing methylation 

information of five CpGs located at ELOVL2, FHL2, KLF14 C1orf132 and TRIM59 

genes, allowed the selection of three sites located at ELOVL2, KLF14 and C1orf132 

genes. This model revealed a very strong age correlation value (R = 0.922), with a MAD 

from chronological age of 6.49 years. In the group 2 (which included buccal swabs), 

DNAm levels of the three sites located at ELOVL2, KLF14 and TRIM59 genes allowed 

the development of a multi-locus multi-tissue model with ELOVL2 and KLF14 genes. 

This dual-locus model revealed a strong age correlation (R = 0.870) and a MAD from the 

chronological age of 9.02 years. In concordance with data reported using Sanger 

sequencing, in both multi-locus APMs developed using the SNaPshot methodology, the 

CpG from ELOVL2 was selected, revealing, once again, the powerful of this marker for 

development of multi-tissue APMs in forensic contexts.  

In conclusion, in this study we reexamined DNAm levels of of ELOVL2, FHL2, 

PDE4C, EDARADD, C1orf132, TRIM59 and KLF14 genes captured by Sanger 

sequencing and SNaPshot methodologies, and several multi-tissue APMs were developed 

using blood, buccal swabs, teeth and bones samples from Portuguese individuals. By 

Sanger sequencing, we obtained an accurate MAD of 6.42 years in the multi-locus APM 

developed for blood (from living and deceased individuals), bones and tooth samples 
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using nine CpGs from four different genes (ELOVL2, FHL2, PDE4C and EDARADD). A 

similar MAD of 7.27 years was obtained in the multi-locus APM developed with blood 

(from deceased individuals), bone and tooth samples using five CpGs from three different 

genes (ELOVL2, FHL2 and C1orf132). Using the SNaPshot assay, a multi-locus APM 

was developed combining C1orf132, ELOVL2 and KLF14 genes in a multi-tissue sample 

with blood (from living and deceased individuals), bone and teeth, revealing a MAD from 

chronological age of 6.49 years. The multi-locus APM more suitable for a multi-tissue 

sample combining blood (from living and deceased individuals), bone, tooth and buccal 

swabs included genes ELOVL2 and KLF14, revealing a MAD of 9.02 years. Both 

methodologies revealed similar accuracy for use in multi-tissue APMs being both simple, 

rapid and cost-effective and easily available in forensic laboratories. The multi-tissue 

models herein developed can be a promising tool for age estimation in forensic contexts. 
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1. Introduction 

 

Forensic anthropologists have to deal with human identification, not only in 

routine practice, but also in exceptional scenarios, associated with mass disaster or crimes 

against humanity including war crimes and human rights violation (de Boer et al., 2019; 

de Boer et al., 2020). Age estimation represents one of the big four parameters within the 

biological profile for identification purposes. Meanwhile, age estimation remains one of 

the most difficult task in forensic contexts. For estimating age in forensic anthropology, 

the selection of appropriate methods depends on the type of bones present, the state of 

preservation of these bones, and the age range in which the person is included. Nowadays, 

several anthropological methods to estimate age are available for fetal, children, adults, 

and older adults based on different skeletal or dental indicators (Adserias-Garriga and 

Wilson-Taylor, 2019; Cunningham, 2019). 

Age estimation based on DNA methylation (DNAm) has emerged as a new tool 

in the forensic field for the development of age prediction models (APMs). Most forensic 

studies addressing DNAm age prediction were performed across different tissues, 

including blood, buccal swabs or saliva, however few studies have focused on bone 

samples (Horvath et al., 2015, 2018; Naue et al., 2018; Gopalan et al., 2019; Lee et al., 

2020). Moreover, these studies used fresh bones collected from patients (Horvath et al., 

2015, 2018; Gopalan et al., 2019), fresh bone samples collected during autopsy (Naue et 

al., 2018) or collected from Bodies Donated to Science (Gopalan et al., 2019). Moreover, 

in the study of Gopalan et al. (2019), they also used forensic bone samples with 2-3 years 

of natural decomposition in an outdoor environment, which have been excluded due to 

non-reliable results (Gopalan et al., 2019).  
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This study aimed to estimate age of skeletonized individuals of Coleção de 

Esqueletos Identificados do Século XXI (CEI/XXI), which have different postmortem 

interval (PMI) comparing with the previously reported studies, through DNAm analysis.  

 

2. Materials and Methods  

 

2.1. Sample collection 

The 21st Century Identified Skeletal Collection (ISC/XXI) or Coleção de 

Esqueletos Identificados do Século XXI (CEI/XXI), housed in the Laboratory of Forensic 

Anthropology, Department of Life Sciences at the University of Coimbra, arises from a 

collaboration in 2007 between the Department of Anthropology of the University of 

Coimbra and the City Council of Santarém (responsible for the cemetery from which the 

skeletons originate) to carry the unclaimed skeletons to the University for investigation 

purposes. At this moment (2021), CEI/XXI has around 302 skeletons almost exclusively 

Portuguese individuals, which died between 1982 and 2012. The collection has been used 

in many investigations related with different forensic anthropology issues as ancestry, 

PMI, age-at-death, analysis of burned human remains (Ferreira et al., 2020). For age 

estimation investigation, the main drawback of the CEI/XXI is the advanced age of the 

individuals, which limits forensic investigations (Ferreira et al., 2014). Particularly, only 

12.25% of the individuals aged less than 61 years (Ferreira et al., 2020).   

A set of nine femur of skeletonized individuals from the CEI/XXI (7 females, 2 

males; aged 38-92 years old) was selected (Table 4.63). As DNA extraction from bones 

requires fragmentation of the sample, being a destructive process, a careful choice of 

skeletons from CEI/XXI was made to avoid the degradation of the collection. Moreover, 
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a small number of samples was first selected to control the cost and time consumed of 

DNA analysis. We considered two key factors for the selection: 

i) state of preservation of the skeleton, mainly of the bone in question (femur);  

ii) age of the individual; 

All the skeletons selected have until 18 years of PMI, which represents the time 

between the death and the analysis of the human remains (Table 4.63). A brief description 

(in Portuguese) about the features, state of preservation, postmortem conditions and 

measurements of selected bone was made in Annex VII. 

 

Table 4.63: Antemortem data of selected skeletons from CEI/XXI.  

ID Age Sex Death date 

Collection 

and analysis  

date 

CEI/XXI 87 83 years Female 05/04/2000 2018 

CEI/XXI 128 38 years Female 03/12/2008 2018 

CEI/XXI 62 60 years Male 07/06/2000 2018 

CEI/XXI 103 92 years Female 05/01/2007 2018 

CEI/XXI 122 55 years Male 06/01/2008 2018 

CEI/XXI 123 83 years Female 08/02/2007 2018 

CEI/XXI 267 59 years Female 14/07/2004 2018 

CEI/XXI 164 48 years Female 08/07/2008 2019 

CEI/XXI 262 58 years Female 16/01/2011 2019 

 

2.2. Bone processing 

The processing of dry bone samples (femur) was made at INMLCF, following the 

standard guidelines, as previously described in Chapter 3. Sample and design research. 

Briefly, we made a pre-treatment of bone sample, which consists in cleaning the bone 

(with bleach and then distilled water) and grinding it, in a room designated exclusively 

for processing human remains.  

Two additional pre-incubations with ethylene diamine tetra acetic acid (EDTA) 

were performed at LGH from CIAS, before DNA extraction (Protocol 1 – EDTA and 
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Protocol 2 – EDTA). The treatment with EDTA was made to improve the amount of DNA 

extracted from bones (Zupanič Pajnič et al., 2016).  

The Protocol 1 – EDTA, adapted from the User-Developed Protocol: Purification 

of total DNA from compact animal bone using the DNeasy® Blood & Tissue Kit (Qiagen, 

2006), consisted in: incubation of the bone powder (100-150 mg) with 5 ml EDTA 

(Promega) 0.5 M for 24 hours at room temperature on a rotator mixer (Figure 4.42). After 

centrifugation for 5 minutes at 2000 g, the EDTA solution was discarded. These steps 

were repeated for 4-5 days. Then, about 150 mg of bone powder was used for DNA 

extraction. 

The Protocol 2 – EDTA consisted in: a pre-incubation of 100 mg of bone powder 

with 2 ml EDTA 0.5 M, pH 8 for 1h; after centrifugation for 5 minutes at 2000 g, the 

EDTA solution was discarded. Then only 50 mg of bone powder was placed in a lysis 

tube for DNA extraction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42: A) Incubation of bone powder of skeleton CEI/XXI 87 with Protocol 1 – 

EDTA. B) Bone powder of several skeletons form CEI/XXI (around 100-150 mg) before 

the incubation with EDTA. 
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2.3. DNA extraction, quantification and bisulfite conversion 

Subsequent DNA extraction and purification were performed at the INMLCF 

using PrepFiler Express BTATM Forensic DNA extraction kit (Applied Biosystems, Foster 

City, CA) as described in Chapter 3. Sample and design research. For Protocol 1- EDTA 

bone samples, a modified protocol was used, which consists in triplicate the volume of 

reagents (this means each sample requires the following: 660 µl PrepFiler BTATM lysis 

Buffer, 9 µl freshly prepared 1 M DTT, 21 µl Proteinase K). For Protocol 2- EDTA bone 

samples, the standard protocol, previously described in Chapter 3. Sample and design 

research, was used. 

DNA Quantification was performed with the real-time PCR-based Quantifiler™ 

Human DNA Quantification Kit (Applied Biosystems, Foster City, CA) at the INMLCF, 

as described in Chapter 3. Sample and design research.  

After that, genomic DNA was subjected to bisulfite conversion using the EZ DNA 

Methylation-GoldTM Kit (Zymo Research, Irvine, USA) according to the instructions of 

manufacturer, as previously described in Chapter 3. Sample and design research. Briefly, 

for bones from CEI/XXI, 30 µl of genomic DNA (in a total amount of 0.063 ng to 0.216 

ng) was treated with sodium bisulfite and modified DNA was extracted to a final volume 

of 10 μl.  

 

2.4. Polymerase chain reaction (PCR) and Sanger sequencing  

After bisulfite conversion, the modified DNA samples were submitted to PCR for 

the selected regions of genes ELOVL2, FHL2 and C1orf132 using the Qiagen Multiplex 

PCR kit (Qiagen, Hilden, Germany) and sequenced with Big-Dye Terminator v1.1 Cycle 

Sequencing kit (Applied Biosystems), using primers and conditions previously described  
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in Chapter 3. Sample and design research. For bones from CEI/XXI, 1.5 l of the 

bisulfite converted DNA was used in the total PCR volume of 25 l. 

The design research used for each sample is presented in Table 4.64.
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Table 4.64: Design research made using bones from CEI/XXI. 

ID 
Bone 

preparing 

Normal/Standard Protocol Pre-treatment with EDTA 

 

DNA  

extraction 

 

DNA 

quantification 

Bisulfite 

conversion, 

PCR, 

sequencing 

 

DNA 

extraction 

 

DNA 

quantification 

Bisulfite 

conversion, 

PCR, 

sequencing 

CEI/XXI 87         
Protocol 1 – 

EDTA 
    

CEI/XXI 128       - 
Protocol 1 – 

EDTA 
  - 

CEI/XXI 62   - - - 
Protocol 2 – 

EDTA 
    

CEI/XXI 103   - - - 
Protocol 2 – 

EDTA 
    

CEI/XXI 122   - - - 
Protocol 1 – 

EDTA 
- - 

CEI/XXI 123   - - - - - - 

CEI/XXI 267   - - - 
Protocol 2 – 

EDTA 
  - 

CEI/XXI 164   - - - - - - 

CEI/XXI 262   - - - 
Protocol 2 – 

EDTA 
  - 
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3. Results 

 

In the present study, we used bone samples from the CEI/XXI to extract DNA. 

Despite the extracted amount of DNA could not be enough for a successful DNAm 

analysis, we performed bisulfite conversion and PCR-sequencing for ELOVL2, FHL2 and 

C1orf132 genes in few samples from the collection.  

 

Standard protocol 

First, we selected an older individual (CEI/XXI 87, aged 83 years old) and a 

younger individual (CEI/XXI 128, aged 38 years old) for DNA extraction through the 

standard protocol, routinely used at the INMLCF (protocol without EDTA, as previously 

described in Chapter 3. Sample and design research). As observed in Table 4.65, for 

CEI/XXI 87, both VICTM dye, which represents the internal PCR control (IPC) detector, 

and FAMTM dye, which represents the Quantifiler Human detector, had amplification 

(positive PCR result), despite the very low amount of DNA (0.0035 ng/µl). For the 

CEI/XXI 128, the VICTM dye (IPC detector) had amplification, but the amplification of 

the Quantifiler Human detector did not occur; this means that there is a successful 

amplification for IPC target, but the human-specific target was not amplified. There is a 

true negative result and consequently, there is no DNA in the sample (Table 4.65).  

 

Table 4.65: Quantification data obtained in dry bones from CEI/XXI with the standard 

protocol. 

 

 

ID Protocol 
Quantity 

Human 

Quantity 

IPC 

Quantity 

ng/µl 
Interpretation 

CEI/XXI 

87 

Without 

EDTA 
36.93 27.98 0.0035 Positive result 

CEI/XXI 

128 

Without 

EDTA 
Undetermined 27.88 - Negative Result 
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For the skeleton CEI/XXI 87, we proceeded with the DNAm analysis, including 

bisulfite conversion and PCR amplification for CpGs located at ELOVL2, but we obtained 

a complete failure of PCR amplification.  

 

Protocol 1 – EDTA 

Then, we used an alternative protocol with a pre-incubation with EDTA in these 

two selected skeletons (Protocol 1 – EDTA), but the amount of the extracted DNA 

remained very low (Table 4.66).  

 

Table 4.66: Quantification data obtained in dry bones from CEI/XXI with the alternative 

Protocol 1 – EDTA. 

 

ID Protocol 
Quantity 

Human 

Quantity 

IPC 

Quantity 

ng/µl 
Interpretation 

CEI/XXI 

87 

Protocol 

1- EDTA 
35.90 27.48 0.004679 Positive result 

CEI/XXI 

128 

Protocol 

1- EDTA 
36.97 27.68 0.002087 Positive result 

 

 

As the skeleton CEI/XXI 87 revealed a higher amount of DNA, we performed a 

new bisulfite conversion, amplification and sequencing for the ELOVL2 and C1orf132 

genes. We obtained a reduced PCR performance in both PCR reactions, however the 

sequencing chromatogram allowed to assess to the DNAm levels (Table 4.67).  
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Table 4.67: Methylation quantification of CpGs located at ELOVL2 and C1orf132 genes 

using the femur sample of the skeleton CEI/XXI 87. 

 

 

 

 

 

 

 

 

 

Protocol 2 – EDTA  

Using another protocol with EDTA (Protocol 2 – EDTA) and selecting four 

different skeletons (CEI/XXI 103, aged 92 years old; CEI/XXI 62, aged 60 years old; 

CEI/XXI 262, aged 58 years old; CEI/XXI 267, aged 59 years old), similar lower amounts 

of DNA were obtained (Table 4.68). 

 

 

Table 4.68: Quantification data obtained in dry bones from CEI/XXI with the alternative 

Protocol 2 – EDTA. 

 

 

Despite the low DNA concentration, we have performed the bisulfite conversion 

and PCR amplification in skeletons CEI/XXI 62 and CEI/XXI 103. Bisulfite converted 

CEI/XXI 

87 

C1orf132 

C/(C+T) 

CpG1 0 

CpG2 0.08237 

CpG3 0 

CpG4 0 

CpG5 0 

CpG6 0.081006 

CEI/XXI 

87 

ELOVL2 

C/(C+T) 

CpG1 0.215726 

CpG2 0.21131 

CpG3 0.234907 

CpG4 0.221178 

CpG5 0.228864 

CpG6 0.092448 

CpG7 0.204248 

CpG8 0.280985 

CpG9 0.29793 

ID Protocol 
Quantity 

Human 

Quantity 

IPC 

Quantity 

ng/µl 
Interpretation 

CEI/XXI 103 
Protocol 2 –

EDTA 
36.10 27.65 0.004012 Positive result 

CEI/XXI 62 
Protocol 2 – 

EDTA 
35.32 27.53 0.007233 Positive result 

CEI/XXI 262 
Protocol 2 – 

EDTA 
36.80 27.03 0.002385 Positive result 

CEI/XXI 267 
Protocol 2 – 

EDTA 
36.46 27.23 0.003073 Positive result 
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DNA samples showed a complete failure of PCR amplification or a reduced PCR 

performance. The Sanger sequencing for the FHL2 gene in these PCR products showed 

no reliable results in the sequencing chromatograms. Hence, no further analysis was made 

with this set of bones. 

 

4. Discussion 

  

We addressed skeletonized individuals from the CEI/XXI for DNAm analysis 

using bisulfite conversion and PCR sequencing methodology.  

Three different protocols for DNA extraction were used: i) Standard protocol, 

previously described in Chapter 3. Sample and design research, without EDTA and using  

50 mg of bone powder in DNA extraction); ii) Protocol 1 – EDTA (using a pre-incubation 

with EDTA, and around 150 mg of bone powder + EDTA which required 3x of the 

volume of reagents, being more expensive); and iii) Protocol 2 – EDTA (with EDTA, and 

50 mg of bone powder + EDTA). The amount of extracted DNA was low in all the 

processed skeletons, with the protocols with EDTA-treatment giving similar 

performances to the obtained with the standard protocol without EDTA. Nevertheless, we 

observed a little improvement of the amount of extracted DNA with the EDTA pre-

incubation.  

We obtained DNA concentrations in the extractions between 0.0021 ng/µl and 

0.0071 ng/µl that is a very low amount of DNA to be subjected to bisulfite conversion, in 

which occurs DNA degradation or fragmentation through the conversion. The bone 

samples from CEI/XXI analyzed in this study revealed a complete failure in PCR or 

reduced performance in amplification after bisulfite conversion, excepting for the 

skeleton CEI/XXI 87 in which methylation data of CpGs located at ELOVL2 and 
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C1orf132 genes were observed. Nevertheless, we must note that this bone sample belongs 

to an older individual (83 years old), with putative high patterns of DNAm for these two 

genes. However, comparing with DNAm data obtained in other bone samples collected 

from individuals during autopsies and from BDS with the same chronological age or aged 

between 79-87 years old (previously described in Chapter 4. Results and discussion: C. 

DNA methylation age estimation in fresh bone samples), we observed that no consistent 

and reliable DNAm data were obtained for the skeletonized individual CEI/XXI 87. 

Indeed, in bones collected during autopsies and/or from BDS, the methylation level is 

higher than 50% in all the CpGs located in both C1orf132 and ELOVL2 genes, while for 

CEI/XXI 87 we observed values lower than 29% for all the CpGs (as shown in Table 

4.67). This can be related with the state of preservation of the skeleton as result of 

environmental postmortem conditions, which leads to degradation of DNA in bone 

samples. Our samples from CEI/XXI can be considered “ancient samples” not due the 

PMI (of about 18 years, Table 4.63) but due the very low amount and degradation of the 

DNA extracted from bones. We hypothesize that the bisulfite PCR sequencing used in 

our analysis do not have sufficient sensitivity to address a low quantity of DNA or 

degraded DNA obtained from these types of samples. Other reports employing massively 

parallel sequencing (MPS) have shown successful results with limited amount and/or 

highly degraded DNA. Pedersen et al. (2014) assessed to DNAm levels of permafrost 

hair samples collected from a Paleo-Eskimo with 4000 years old, and predicted age-at-

death. This reveals the reliability of assess to DNAm levels and predict age based on 

methylation data from ancient samples using more accurate techniques such as MPS.  

 

Moreover, it has been observed that ancient DNA can suffer postmortem 

miscoding lesions (DDMLs), which cause incorrect incorporation of nucleotides, as 
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deamination (Hofreiter et al. 2001; Brotherton et al., 2007). Postmortem deamination is 

a spontaneously chemical process that occurs due the hydrolytic deamination of cytosine 

residues into uracils (Hofreiter et al. 2001). This can affect the rate of DNAm analysis 

through bisulfite conversion because if deamination occurs all the residues C (either 

unmethylated or methylated) can be transformed in T.  As in our methylation data from 

bones from CEI/XXI we observed very low rate of DNAm, we can hypothesize that our 

samples also suffered from a deamination process. Despite of this phenomenon, it has 

been showed the stability of Cm patterns in ancient DNA, when preserved ancient DNA 

samples were used (Briggs et al., 2010; Llamas et al., 2012). 

In conclusion, the amount of extracted DNA from a number of CEI/XXI skeletons 

was not sufficient for a subsequent successful DNAm analysis for age estimation 

purposes that include procedures as bisulfite conversion and successful PCR for Sanger 

sequencing. It is important to note that selected bones from CEI/XXI showed several 

states of conservation and have suffer from different postmortem influences, which can 

influence the amount of DNA present in bones.  

Meanwhile, we should not discard the possibility of using DNA recovered from 

skeletonized individuals from CEI/XXI in forensic science studies. As an example, the 

bone powder of these nine skeletonized individuals was used in another research study in 

the field of forensics, where similar amounts of extracted DNA allowed the successful 

analysis of ancestry-informative markers (AIMs) (Botelho, 2020). 

The use of skeletonized individuals from CEI/XXI, with several states of 

preservation and postmortem influences, was a challenge in terms of DNAm analysis, at 

least in this work. Despite the different procedures used, the obtained quantity of DNA 

extracted from skeletonized human remains did not allow successful results in the 

analysis of DNAm for age estimation purposes.  
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Chapter 5. General discussion 

 

 

DNA methylation (DNAm) is currently one of the hottest topics in forensics, 

being accepted as a promising tool for age estimation. In recent years, several  DNAm-

derived epigenetic clocks have been proposed using several types of biological tissues, 

different techniques and many CpGs (Bocklandt et al., 2011; Garagnani et al., 2012; 

Hannum et al., 2013; Horvath, 2013; Florath et al., 2014; Weidner et al., 2014; Bekaert 

et al., 2015a, 2015b; Zbieć-Piekarska et al., 2015a, 2015b; Xu et al., 2015; Lee et al, 

2015; Giuliani et al., 2016; Eipel et al., 2016; Park et al., 2016; Freire-Aradas et al., 2016, 

2018; Cho et al., 2017; Thong et al., 2017; Spólnicka et al., 2017; Hamano et al., 2016, 

2017; Naue et al., 2017, 2018; Vidaki et al., 2017; Hong et al., 2017; Aliferi et al., 2018; 

Naue et al., 2018; Hong et al., 2019; Jung et al., 2019; Gopalan et al., 2019; Daunay et 

al., 2019; Lee et al., 2020; Márquez-Ruiz et al., 2020; Pfeifer et al., 2020).  

 

In the present study, DNAm levels of a number of CpG sites located in seven 

genes, ELOVL2, FHL2, EDARADD, PDE4C, C1orf132, KLF14 and TRIM59, were 

assessed by Sanger sequencing and SNaPshot methodologies for development of tissue-

specific APMs using blood (Chapter 4. Results and discussion: A. DNA methylation age 

estimation in blood samples), teeth (Chapter 4. Results and discussion: B. DNA 

methylation age estimation in tooth samples), bones (Chapter 4. Results and discussion: 

C. DNA methylation age estimation in fresh bone samples) and buccal swabs (Chapter 4. 

Results and discussion: D. DNA methylation age estimation in buccal swabs). Moreover, 

using methylation information captured in these tissues, we developed multi-tissue APMs 

in combined sets of these different tissue types (Chapter 4. Results and discussion: E. 
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DNA methylation age estimation through multi-tissues). We have tested DNA extraction 

from skeletonized individuals for DNAm analysis in order to build APMs in these 

valuable sources of samples in forensics, however the amount of extracted DNA was not 

enough to obtain successful results (Chapter 4. Results and discussion: F. Dry bone 

samples from Coleção de Esqueletos Identificados do Século XXI-CEI/XXI). 

Additionally, we evaluated the effect of the postmortem interval (PMI) in DNAm levels 

in bones from BDS (Chapter 4. Results and discussion: C. DNA methylation age 

estimation in fresh bone samples).  

 

Bisulfite Sanger sequencing was the first technique to be described for analyzing 

DNAm patterns. In this study, we analyzed a number of CpG sites by direct PCR 

sequencing of five previously known age-related genes, ELOVL2, EDARADD, FHL2, 

PDE4C and C1orf132. Moreover, using the SNaPshot methodology, we assessed DNAm 

levels of five highly CpGs located at ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C and 

TRIM59, replicating the experiments proposed by Jung et al. (2019).  

 

Considering methylation information of the highly age-associated markers in each 

tissue (Table 5.1 and Table 5.2), we observed that for both Sanger sequencing and 

SNaPshot methodologies, the best age-predictive sites in blood samples from living 

individuals were located at ELOVL2 and FHL2, showing similar age-correlation results, 

whereas in blood samples from deceased individuals the best CpG site was located at 

ELOVL2. For bone samples from autopsies, DNAm levels captured by Sanger sequencing 

revealed the best age-associated site located at ELOVL2, while through the SNaPshot 

assay the best CpG site was located at FHL2. Bone samples from BDS revealed 

contrasting data across the several analyzed genes: for Sanger sequencing, the best marker 
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was located at PDE4C, and for SNaPshot all the genes revealed no significant age-

correlated values. In tooth samples, the best marker seems to be the FHL2 using Sanger 

sequencing, however SNaPshot revealed KLF14 gene as the best marker. For buccal 

swabs, TRIM59 was the best marker using the SNaPshot methodology, being ELOVL2 

the second best age-related predictor; however, only three genes were investigated 

through SNaPshot (ELOVL2, KLF14 and TRIM59) in buccal swabs and only the ELOVL2 

gene was investigated by Sanger sequencing.  

Considering the two methodologies used in this study, most CpGs show strong 

(0.70≤ R ≤0.90) or very strong (R ≥0.90) correlation values in blood samples from living 

individuals (Tables 5.1 and 5.2). As the selection of candidate age-predictive markers 

for our study was made considering the higher accuracy obtained in previous reports, 

mainly focusing in blood samples from living individuals (Garagnani et al., 2012; Florath 

et al., 2014; Weidner et al., 2014; Xu et al., 2015; Zbieć-Piekarska et al., 2015b; Cho et 

al., 2017; Alghanim et al., 2017; Alsaleh et al., 2017; Jung et al., 2019), it was expected 

that these markers may work better in this same tissue type. 
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Table 5.1: Age-correlated values for the best CpG sites in each tissue type using Sanger sequencing.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: R, correlation coefficient. The best CpG site from each gene in each tissue type is in bold. Genomic positions were based on the 

GRCh38/hg38 assembly.

Gene 
CpG 

site 
Location 

Blood 

living 

Blood 

deceased 

Blood 

living 

and 

deceased 

Bone 

autopsies 

Bone 

BDS 

Teeth 

living 

and 

deceased 

Buccal 

swabs 

R R R R R R R 

CpG1 Chr6:11044628 0.920 0.781 0.872 0.736 -0.223 0.237 0.823 

CpG3 Chr6:11044634 0.884 0.740 0.859 0.764 -0.006 0.379 0.631 

ELOVL2 CpG4 Chr6:11044640 0.916 0.785 0.880 0.780 -0.077 0.221 0.787 

 CpG6 Chr6:11044644 0.936 0.764 0.892 0.852 -0.059 0.336 0.683 

 CpG1 Chr2:105399282 0.937 0.431 0.828 0.692 0.580 0.451 

FHL2 CpG2 Chr2:105399288 0.940 0.465 0.821 0.654 0.641 0.409 

CpG3 Chr2:105399291 0.940 0.459 0.813 0.480 0.655 0.517 

CpG4 Chr2:105399297 0.814 0.141 0.623 0.371 0.370 0.658 

EDARADD CpG3 Chr1:236394382 -0.888 -0.621 -0.786 -0.561 -0.430 -0.124 

 CpG1 Chr19:18233139 0.849 0.401 0.785 0.592 0.259 0.474 

PDE4C CpG2 Chr19:18233133 0.852 0.592 0.830 0.690 0.372 0.466 

 CpG3 Chr19:18233131 0.827 0.585 0.813 0.620 0.771 0.391 

C1orf132 CpG1 Chr1:207823681  -0.634  -0.834 -0.305 -0.123 
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Table 5.2: Age-correlated values obtained for the CpGs located at genes ELOVL2, FHL2, KLF14, TRIM59 and C1orf132 in each tissue type using 

the SNaPshot assay. 

 

 

 

 

 

 

 

 

Abbreviations: R, correlation coefficient. The best CpG site in each tissue is in bold. Genomic positions were based on the GRCh38/hg38 

assembly.

Gene CpG site Location 

Blood  

living 

Blood  

deceased 

Blood 

living and 

deceased 

Bone 

autopsies 

Bone 

BDS 

Teeth 

living and 

deceased 

Buccal 

swabs 

R R R R R R R 

ELOVL2 CpG1 Chr6:11044628 0.951 0.791 0.919 0.619 0.412 0.685 0.846 

FHL2 CpG1 Chr2:105399282 0.946 0.654 0.874 0.708 0.245 0.331  

KLF14 CpG1 Chr7:130734355 0.791 0.568 0.731 0.540 0.256 0.728 0.821 

C1orf132 CpG1 Chr1:207823681 -0.924 -0.591 -0.834 -0.507 -0.040 -0.080  

TRIM59 CpG1 Chr3:160450189 0.910 0.769 0.830 0.633 0.147 0.665 0.946 
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Simple linear regression was used to derive APMs for each tissue type using the 

best age-associated site in each gene, obtained through Sanger sequencing, and using each 

one of the five CpGs investigated by the SNaPshot assay. The observed values of MAD 

between predicted and chronological ages ranged between 5.53 years and 15.22 years, 

showing higher to lower accuracy. Using Sanger sequencing, the high age-prediction 

accuracy was obtained for PDE4C CpG3 (MAD = 5.53 years) in bones from BDS, 

followed by ELOVL2 CpG6 (MAD = 5.73 years) in bone samples from autopsies, FHL2 

CpG3 (MAD = 7.81 years) in blood samples from living individuals, ELOVL2 CpG6 

(MAD = 8.76 years) in blood from living and decased individuals, ELOVL2 CpG4 (MAD 

= 8.89 years) in blood samples from deceased individuals, and FHL2 CpG4 (MAD = 

11.35 years) in tooth samples. For methylation data captured by SNaPshot, the best age-

predictor reported in each tissue was also different: ELOVL2 for blood samples from 

living and deceased individuals and for the overall training set of blood samples (MAD 

= 6.73, 7.64 and 7.46 years, respectively), FHL2 for bone samples from autopsies (MAD 

= 7.95 years) and KLF14 for teeth (MAD = 9.68 years). These results suggest that each 

age-associated marker could reveal specificity for each tissue type. Hence, the most 

suitable approach for accurate age predictions in specific tissues is the selection of 

specific markers showing the best age-correlation performance. It has been shown in 

previous reports that several genes and/or CpGs perform better in specific tissues 

(Weidner et al., 2014; Eipel et al., 2016). However, it seems that some markers can reveal 

good results across different tissues and can be used for the development of multi-tissue 

APMs with a similar accuracy (Horvath, 2013; Jung et al., 2019).  

 

It is well described that simple linear regression models for age prediction showed 

higher MAD values comparing with multi-locus APMs that include a variable number of 
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genes/CpGs. This means that the inclusion of more predictive variables from the same 

gene or from different genes can improve the model accuracy. Considering the multi-

locus APMs developed in this study (Table 5.3), we observed that:  

i) for blood samples from living individuals, the best APM included methylation 

information of ELOVL2, C1orf132 and FHL2 genes captured by the SNaPshot assay. This 

model revealed high accuracy with a MAD = 4.25 years. The model included less CpGs 

(three CpGs) comparing with that developed using Sanger sequencing (with four CpGs 

allowing a higher MAD value = 5.35 years). 

ii) for blood samples from deceased individuals, the APM developed through 

SNaPshot methodology, with ELOVL2, C1orf132, FHL2 and TRIM59 genes, revealed a 

higher accuracy (MAD = 5.36 years) in comparison with the APM developed using 

Sanger sequencing methodology (MAD = 6.08 years). Once again, the model developed 

through SNaPshot methodology included less predictor variables (four CpGs) than the 

APM developed with methylation information captured by Sanger sequencing (five 

CpGs). 

iii) the best multi-locus APM developed for tooth samples included methylation 

information of genes ELOVL2 and KLF14 captured by the SNaPshot assay. This model 

revealed a moderate accuracy (MAD = 7.07 years). Using Sanger sequencing in teeth, 

only CpGs located at FHL2 gene revealed moderate or strong age correlation values, and 

it was not possible to develop a multi-locus model.  

iv) for bones collected during autopsies, the best APM was developed with DNAm 

levels of ELOVL2 CpG5, ELOVL2 CpG7, ELOVL2 CpG6, C1orf132 CpG1, EDARADD 

CpG3 and EDARADD CpG4 markers captured by Sanger sequencing, revealing a high 

accuracy with a MAD of 2.56 years. Of note, the model included more predictor variables 
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(six CpGs) than the model developed with the methylation information captured by 

SNaPshot (two CpGs, MAD = 7.18 years), allowing to obtain a higher accuracy.  

v) for buccal swabs, the dual-locus model developed by Sanger sequencing with  

CpGs from ELOVL2 showed a MAD = 8.32 years. For SNaPshot methodology, it was 

not possible to develop a multi-locus model.  

vi) for combined training set of blood samples from living and deceased 

individuals, the multi-locus APM (with ELOVL2, FHL2, C1orf132 and TRIM59 genes) 

developed with methylation information captured by SNaPshot revealed the higher 

accuracy (MAD = 4.97 years) in comparison with the model developed using Sanger 

sequencing with EDARADD CpG3, FHL2 CpG1, ELOVL2 CpG6 and PDE4C CpG2 

markers (MAD = 6.21 years).  

From these results, we can say that not only the gene/CpG selected or the number 

of CpGs included in the APM contribute to the model accuracy, but also the methodology 

used in evaluation of DNAm levels (Table 5.3). Usually, when we used more CpGs in 

the development of APMs, the model accuracy increases, as it has been observed in point 

iv. However, as it has been observed in point i, ii and v, the models developed through 

SNaPshot assay, combining less CpGs, can reveal high accuracy comparing to models 

developed by Sanger sequencing with more CpGs. 
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Table 5.3: Summary of the best tissue-specific APMs based on DNAm levels of ELOVL2, FHL2, PDE4C, EDARADD, C1orf132, TRIM59 and 

KLF14 captured by Sanger sequencing and SNaPshot methodologies. 

Tissue Method  APM R R2 P-value MAD 

MAD 

Cross 

validation 

Blood  
Sanger 

sequencing  

ELOVL2 CpG6, FHL2 CpG3, 

EDARADD CpG3, PDE4C CpG2 
0.972 

0.946  

(corrected R2 = 0.941) 
1.11 × 10-29 5.35 6.20* 

(Living) SNaPshot ELOVL2, FHL2, C1orf132 0.982 
0.965  

(corrected R2 = 0.963) 
7.32  ×  10-38 4.25 4.75* 

 

Blood 

Sanger  

sequencing 

ELOVL2 CpG4, FHL2  CpG2, 

EDARADD  CpG3, PDE4C  CpG2, 

C1orf132  CpG1 

0.888 
 0.788  

(corrected R2 = 0.763) 
8.17 × 10-13 6.08 7.22* 

(Deceased) SNaPshot ELOVL2, FHL2, C1orf132, TRIM59 0.899 
0.808 

 (corrected R2 = 0.793) 
1.07  × 10-18 5.36 6.13* 

Blood 
Sanger  

sequencing 

ELOVL2 CpG6, FHL2  CpG1, 

EDARADD  CpG3, PDE4C  CpG2 
0.947 

0.897 

(corrected R2 = 0.894) 
3.470  × 10-66 6.21 6.42* 

(Living and 

Deceased) 
SNaPshot ELOVL2, FHL2, C1orf132, TRIM59 0.963 

0.928 

(corrected R2 = 0.925) 
1.03 × 10-61 4.97 5.25* 

 

Bones  

Sanger  

sequencing 

ELOVL2  CpG5, ELOVL2  CpG6, 

ELOVL2  CpG7, EDARADD  CpG3, 

EDARADD  CpG4, C1orf132  CpG1 

0.970 
0.941 

(corrected R2 = 0.925) 
2.097 × 10-12 2.56 3.77** 

(Autopsies) SNaPshot FHL2, KLF14 0.777 
0.604  

(corrected R2 = 0.576) 
0.000002 7.18 7.84** 

Bones (BDS) 
Sanger  

sequencing 
FHL2 CpG2, PDE4C CpG3 0.851 

0.725  

(corrected R2 = 0.694) 
0.000009 4.67 6.39** 

Teeth  
Sanger  

sequencing 
FHL2 CpG4*** 0.658 

0.433  

(corrected R2 = 0.413) 
0.000078 11.35 12.22** 

(Living and 

Deceased) 
SNaPshot ELOVL2, KLF14 0.886 

0.785  

(corrected R2 = 0.764) 
2.09  × 10-7 7.07 7.33** 
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Abbreviations: R, correlation coefficient. MAD, mean absolute deviation (years) between chronological and predicted ages.  

* 4 fold; 

** 3 fold; 

*** APM built by simple linear regression analysis with the best CpG or by multiple linear regression with CpGs from the same locus. 

Buccal swabs  
Sanger  

sequencing 
ELOVL2 CpG1, ELOVL2 CpG4*** 0.894 

0.800  

(corrected  R2 = 0.780) 
1.035 ×10 -7 8.32 11.80** 

 (Living) SNaPshot TRIM59*** 0.946 
0.894  

(corrected  R2 = 0.891) 
1.183 × 10 -17 6.73 7.07** 
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Considering the multi-locus multi-tissue APMs developed in this study, 

combining sets of samples from the different tissues under study (Table 5.4), the best 

model (MAD = 6.49 years) was developed in group 1 (including blood from living and 

deceased individuals, bone from autopsies and tooth samples), with three CpGs located 

at ELOVL2, KLF14 and C1orf132 genes captured by the SNaPshot assay. Despite, this 

value is slightly higher than the obtained in the model developed by Sanger sequencing 

(nine CpGs, MAD = 6.42 years). However, the SNaPshot model has only three CpGs, 

being more useful for forensic casework.  

Combining samples of blood from living and deceased individuals, bones from 

autopsies, teeth, and buccal swabs (group 3 in Sanger sequencing and group 2 in 

SNaPshot), the best multi-locus multi-tissue APM was the model developed with 

methylation information captured by SNaPshot (APM with ELOVL2 and KLF14; MAD 

= 9.02 years) (Table 5.4). We should note that in the training set of buccal swabs only 

the ELOVL2 gene was evaluated using Sanger sequencing (in group 3) and ELOVL2, 

KLF14 and TRIM59 genes using SNaPshot (in group 2). Thus, we assessed to DNAm 

levels of less age-correlated markers for development of all the APMs.  
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Table 5.4: Summary of the multi-locus multi-tissue APMs based on DNAm levels of ELOVL2, FHL2, PDE4C, EDARADD, C1orf132, TRIM59 

and KLF14 captured by Sanger sequencing and SNaPshot methodologies. 

  

 

*Blood samples from living and deceased individuals; **Blood samples from deceased individuals.

Tissues Group Method APM R R2 P-value MAD 

 

 

Blood* + Bones 

autopsies +  

Group 

1 

Sanger 

sequencing 

ELOVL2 CpG5, EDARADD CpG3, 

PDE4C CpG2, PDE4C CpG5, 

PDE4C CpG6, PDE4C CpG9, FHL2 

CpG1, FHL2 CpG5, FHL2 CpG11 

0.932 
0.868 

(corrected  R2 = 0.862) 
1.97 × 10-76 6.42 

+ Teeth 
Group 

1 
SNaPshot ELOVL2, KLF14, C1orf132 0.922 

0.850  

(corrected  R2 = 0.847) 
3.14 × 10-67 6.49 

 

Blood* + Bones 

autopsies + 

Teeth  

Group 

3 

Sanger 

sequencing 

ELOVL2 CpG3, ELOVL2 CpG5, 

ELOVL2 CpG8, ELOVL2 CpG9 
0.778 

0.605  

(corrected  R2 = 0.598) 
4.26 × 10-43 12.09 

+ Buccal swabs 
Group 

2 
SNaPshot ELOVL2, KLF14 0.870 

0.756  

(corrected  R2 = 0.754) 
1.95 × 10-61 9.02 

Blood** + 

Bones autopsies 

+ Teeth 

Group 

2 

Sanger 

sequencing 

C1orf132 CpG4, FHL2 CpG5, FHL2 

CpG6, FHL2 CpG8, ELOVL2 CpG5 
0.797 

0.635 

(corrected  R2 = 0.620) 
2.71 × 10-24 7.27 
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In forensic contexts, the developed APMs can be potentially used in several 

situations such as: i) cases of migration, in which the age of the minor is unknown; ii) 

cases in which only human remains are present, frequently associated with mass disaster 

or crimes against humanity, including war crimes and human rights violation; or iii) cases 

of unidentified fresh bodies.  

In cases of migration, the developed models for buccal swabs (a less invasive 

collection of the biological sample) or the APMs developed using blood samples from 

living individuals, can be useful. The APMs developed using blood from living 

individuals allowed a high accuracy in age predictions, particularly the APM developed 

with methylation data captured by Sanger sequencing that included ELOVL2 CpG6, 

FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2 (MAD = 5.35 years) and the APM 

developed using SNaPshot methodology, with methylation information of ELOVL2, 

FHL2 and C1orf132 genes (MAD = 4.25 years). While, for buccal swabs the developed 

APMs using Sanger sequencing, with two CpGs from ELOVL2 gene (MAD = 8.32 years), 

and using the SNaPshot methodology, with the CpG located at TRIM59 gene (MAD = 

6.73 years), showed lower accuracy as less CpGs or genes were selected. 

For cases in which only human remains are present, the tissue-specific models 

developed for bones and teeth can be promising in age estimations. Bones and teeth 

represent one of the most important evidences of DNA preserved in forensic contexts, 

being sometimes the last evidence of the individuals. Among the developed models, the 

APM built for bones collected during autopsies through Sanger sequencing methodology, 

that includes six CpGs located at ELOVL2, C1orf132 and EDARADD genes (ELOVL2 

CpG5, ELOVL2 CpG7, ELOVL2 CpG6, C1orf132 CpG1, EDARADD CpG3, EDARADD 

CpG4), was the most promising, obtaining a high accuracy of 2.56 years. Anthropological 

age estimation methods for adults based in skeletal age cannot overcome this value of 
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accuracy and in cases of missing bones, or when degraded bones are present 

anthropological methods cannot be applied. For tooth samples, the APM developed with 

methylation data of only two CpGs, located at ELOVL2 and KLF14 genes captured by 

SNaPshot methodology, allowed to estimate age with a moderate accuracy of 7.07 years. 

This model can be promising for age estimations in adults and older adults, but cannot 

overcome the age prediction made by odontological approaches in children.  

In addition, if we were dealing with fresh bodies, sometimes without any kind of 

documentation or possibly any complaints (as cases of disasters with refugees), the APMs 

developed using blood samples from deceased individuals can be advantageous, helping 

the identification. In these cases, identification is a paramount issue related to 

humanitarian, civil and legal aspects. Age estimation can direct the experts and lead to a 

positive identification.  

Even more, we can hypothesize that our developed APM for blood samples from 

living individuals can be applied to fresh bloodstains in forensic contexts due to DNAm 

stability, as it was demonstrated for developed models in previous studies (Zbieć-

Piekarska et al., 2015a; Huang et al., 2015; Thong et al., 2017). Huang et al. (2015) 

observed no statistically significant differences in age prediction between blood samples 

and bloodstains, as well as in the comparison of predicted age on the basis of different 

period bloodstains. These results were similar to the observed by Zbieć-Piekarska et al. 

(2015a) in which the rate of correct predictions in bloodstains seems to be not related with 

the time of storage. Also, Thong et al. (2017) showed that the MAD values remain similar 

when applying the blood model to bloodstains. Based on this, it is also possible that our 

models developed for blood samples from living individuals could be applied to forensic 

casework in cases of bloodstains. 
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Lastly, also the multi-tissue APMs can be advantageous in forensic cases in which 

the origin of the sample is unknown, since their application do not require prior 

knowledge of the tissue type in question. Our developed multi-tissue APMs revealed a 

moderate accuracy of 6 to 7 years combining blood from living and deceased individuals, 

bone and tooth samples (group 1 either in Sanger or in SNaPshot).  

 

In the present study, the ELOVL2 gene revealed to be the strongest age-correlated 

gene in almost all the tissues investigated. DNAm levels captured by Sanger sequencing 

revealed for the nine CpGs located at ELOVL2 the best performance of the change in 

DNAm with aging in blood samples from living individuals (0.850≤ R ≤0.936), blood 

samples from deceased individuals (0.663≤ R ≤0.785), buccal swabs (0.485≤ R ≤0.823) 

and bones from autopsies (0.590≤ R ≤0.852). DNAm levels captured in teeth and bones 

from BDS seem to be an exception because ELOVL2 revealed no significant p-values in 

almost all CpGs. Moreover, in the tissue-specific APMs developed by Sanger, we 

observed that CpGs from ELOVL2 are always included in the multi-locus models 

developed using blood samples (living and deceased individuals) and bones from 

autopsies (Table 5.3). Also, in the tissue-specific models developed by SNaPshot we can 

observe that the ELOVL2 is always present in the multi-locus models developed for blood 

samples from living and deceased individuals and tooth samples (Table 5.3). Concerning 

the multi-tissue models, developed through Sanger sequencing or SNaPshot 

methodologies, all the multi-locus APMs included CpGs located at ELOVL2 (Table 5.4). 

Also in all groups of combined samples, simple linear regression models revealed the 

highest age-correlation value for ELOVL2 CpG5 (Group 1: R = 0.706; Group 2: R = 

0.563; Group 3: R = 0.736) using Sanger sequencing. In groups of combined samples 

using SNaPshot data, the CpG located at ELOVL2 revealed the higher age-correlation 
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value (Group 1: R = 0.779; Group 2: R = 0.793). Hence, in accordance with the previous 

studies, the ELOVL2 gene has shown to be the most promising marker for age assessment. 

It has been demonstrated that this gene exhibits reliable age-associated changes in 

different tissues such as blood, teeth, saliva or bone (Bekaert et al., 2015; Naue et al., 

2018; Jung et al., 2019; Gopalan et al., 2019). 

 

Until now, few studies have focused in blood samples from deceased individuals 

(Bekaert et al., 2015a; Hamano et al., 2016; Naue et al., 2018; Pfeifer et al., 2020). 

Moreover, when Bekaert et al. (2015a), Hamano et al. (2016) and Pfeifer et al. (2020) 

compared DNAm data obtained from living and deceased individuals, no significant 

differences were observed. However, our study revealed that potential differences in 

methylation status between blood samples from living and deceased individuals could 

exist, since the highest age-correlated CpGs were different for some genes between the 

two groups when assessed through the bisulfite sequencing methodology. Moreover, the 

correlation between DNAm and age obtained in genes ELOVL2, EDARADD, FHL2 and 

PDE4C is lower in blood samples of deceased individuals versus living individuals. Also, 

through the SNaPshot assay, DNAm levels of ELOVL2, FHL2, C1orf132, KLF14 and 

TRIM59 genes showed higher age correlation values in blood samples from living 

individuals (0.79≤ R ≤0.95) compared to blood samples from deceased individuals (0.57≤ 

R ≤0.79). Hence, our study suggests the possible influence of postmortem changes that 

can alter the methylation status among specific loci, although this issue has not yet been 

clarified until now.  

Moreover, our study showed that the APMs developed in blood samples from 

living individuals cannot be applied to deceased individuals with a similar accuracy 

(Chapter 4. Results and discussion: A. DNA methylation age estimation in blood samples, 
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3.4. Applicability of the developed APMs for blood samples from living and deceased 

individuals). Indeed, when we applied the final APM built with methylation information 

captured by Sanger sequencing from living individuals (MAD = 5.35 years) to the 

independent set of 51 blood samples from deceased individuals, we obtained a higher 

value of MAD (9.72 years), which represents a decrease of the model accuracy in this set 

of samples. In the same way, applying the final multi-locus APM developed for living 

individuals using the SNaPshot methodology (MAD = 4.25 years) to the methylation 

information captured in the set of deceased individuals, a MAD of 7.84 years was 

observed. Contrary, it seems that the APM developed for blood samples from deceased 

individuals with four genes by Sanger sequencing with a MAD of 6.42 years, when 

applied to the training set of living individuals demonstrated a similar high accuracy 

(MAD = 6.10 years). In concordance, the model developed for blood samples from 

deceased individuals by SNaPShot methodology (MAD = 5.36 years) when applied to 

the set of living individuals revealed a similar MAD of 5.40 years. In addition, when the 

life and death status of the donor is not known, it is more advantageous to use the APMs 

developed in deceased individuals or developed for a combined training set of blood 

samples from living and deceased individuals, as the models developed in Chapter 4, with 

MAD of 4.97 years and 6.21 years for SNaPshot and Sanger sequencing, respectively. 

 

Regarding to DNAm changes with the increase of age, our study showed in blood 

samples from living and deceased individuals and also in buccal swabs that the prediction 

accuracy depends on the chronological age of individuals. Higher MAD values and lower 

percentage of correct predictions were obtained in older ages, in concordance with 

previous studies (Bekaert et al., 2015a; Zbieć-Piekarska et al., 2015a, 2015b; Hamano et 

al., 2016; Pfeifer et al., 2020). This can be explained by inter-individual differences in 
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the rate of methylation changes during aging due to environmental, diseases and 

stochastic factors being these differences slight in youths and accumulating with age 

(Jaenisch and Bird, 2003; Boks et al., 2009; Heyn et al., 2012; Spólnicka et al., 2017). 

This enables that the APMs are more accurate in younger than in older individuals 

(Bekaert et al., 2015a; Hamano et al., 2016; Pfeifer et al., 2020).  

 

 

Another relevant issue in this field is the possible influence of sex in DNAm levels 

of the age-correlated markers. To date, there is no consensus for a relationship between 

age-associated DNAm levels and sex (Bekaert et al., 2015a, 2015b; Zbieć-Piekarska et 

al., 2015b; Huang et al., 2015; Freire-Aradas et al., 2018; Márquez-Ruiz et al., 2020). In 

our study, very slight differences or no significant differences between males and females 

were obtained for DNAm levels of age-related CpGs located at ELOVL2, EDARADD, 

FHL2, PDE4C, C1orf132, TRIM59 and KLF14 genes from blood, teeth, bones and buccal 

swabs. This result is in concordance with previous studies in these or others genes 

(Bekaert et al., 2015a; Huang et al., 2015; Zbieć-Piekarska et al., 2015b; Freire-Aradas 

et al., 2018; Daunay et al., 2019). 

    

Regarding to population specific changes in DNAm, our study using the SNaPshot 

methodology suggests some differences in DNAm levels between blood samples of 

Portuguese individuals and other population groups, as Korean and Polish individuals 

(Zbieć-Piekarska et al., 2015b; Cho et al., 2017; Jung et al., 2019). Such differences 

suggest that specific markers can be more adequate to different population groups to 

explain DNAm age-related variation. This population specificity of DNAm levels can 

justify the usefulness of replication and validation studies of proposed age-related 

markers as well as genotyping methods in different populations before forensic 

applications. 
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We should note that our study suffers from some limitations that should be 

highlighted:  

 i) The major drawback was the limited number of collected samples, mainly in 

bones and teeth. On regards of swab samples, although easier to obtain, the extracted 

amount of DNA was often insufficient for age-related DNAm analysis. Larger sample 

sets have greater statistical power and may be more representative of DNAm changes 

related to different age groups and different types of tissues. Hence, possibly for all the 

training sets used in the present research, larger sample sizes with larger age ranges could 

be helpful in obtaining more accurate APMs. However, we should note that other studies 

in the forensic field used similar sample sizes in the training set, including: Huang et al. 

(2015) with 89 blood samples (aged 9-75 years old); Alghanim et al. (2017) with 72 blood 

samples (aged 5-73 years old); Naue et al. (2018) with a set of 29 deceased individuals 

(including blood, bone and other tissues, aged 0-87 years old); Giuliani et al. (2016) with 

21 modern teeth (aged 17-77 years old). In any case, in regards to our study, a number of 

difficulties in sample collection should be noted: generally, it is easier to collect samples 

from living individuals, including blood, buccal swabs, or teeth (except for living children 

in which there was great difficulty in obtaining tooth samples). When dealing with 

deceased individuals, the difficulty of obtaining samples (blood, bones and tooth samples) 

should be considered because samples of young individuals are rarer and only available 

in cases of road accident, for example. Moreover, ethical and bureaucratic issues can lead 

to a delay in collecting samples for all age ranges, as only individuals who do not declare 

in RENNDA their life-long opposition can be used for scientific researches.  

 ii) Other factors, such as the existence of some diseases or clinical conditions or 

even some routines such as smoking or drinking, may interfere with methylation data. In 
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samples from deceased individuals, despite having access to medical reports of each case, 

information related to possible clinical conditions was unknown in many cases.  

iii) Samples collected from the CEI/XXI suffer also from some limitations as the 

fact of skeletons do not have many teeth due to advanced age. Consequently, no tooth 

samples have been collected for this study. Moreover, skeletons may have been exposed 

to several postmortem conditions leading to DNA degradation and loss. This may explain 

the small amount of DNA extracted from skeletonized individuals in the present study. 

iv) Bones collected from BDS can be affected by the embalming method. In this 

work, the bone fragment was collected after the embalming method with Thiel (Eisma et 

al., 2013). This can possibly influence DNAm analysis. Moreover, bone samples from 

BDS have different PMI, which could be a factor of DNAm changes. However, in our 

study, we observed consistent DNAm changes between individuals from BDS with the 

same or similar chronological age but different PMIs.  

v) The use of different methodologies for evaluation of DNAm levels across the 

studies can influence the accuracy of APMs. In particular, bisulfite sequencing or the 

SNaPshot methodologies are semi-quantitative methods and thus may not be the optimal 

tool for precise DNAm analysis.  
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Chapter 6. Conclusions and future directions 

 

 

 This study, which is based on the assessment of DNAm levels of highly age-

correlated genes, can have a significant contribution to the knowledge of forensic age 

estimation. Several types of samples from Portuguese individuals were examined 

allowing the selection of the best age-correlated markers in each tissue type. 

Consequently, we developed several tissue-specific APMs potentially useful for several 

forensic contexts as in cases of migration, cases associated with mass disaster, crimes 

against humanity or cases of unidentified fresh bodies. Moreover, combining methylation 

information of different biological tissues, several multi-tissue APMs useful in cases in 

which the origin of the sample is unknown have been built. Our study revealed that the 

bone-APMs based on DNAm levels can be more advantageous for forensic age estimation 

than the traditional anthropological methods, currently used for adults age assessment, 

since a higher age prediction accuracy has been obtained (between 2.56 years to 7.18 

years in bone samples from autopsies). However, in future studies, the validation of these 

APMs built using bone samples should be made in a larger sample set.      

 

General conclusions from this study are reported below: 

 Our results are in accordance with the previous studies showing that DNAm levels 

at specific CpG sites can be used to predict the age of an individual. The DNAm 

age or epigenetic age was found strongly associated with chronological age and 

this may become a relevant tool that can help in forensic positive identification. 

 In accordance with previous reports, our study revealed that the age prediction 

accuracy depends on the chronological age of individuals, being observed higher 
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MAD values and a lower percentage of correct predictions in older age groups in 

comparison with younger age groups. 

 In general, similar DNAm patterns were observed using both Sanger sequencing 

and SNaPshot methodologies, suggesting that both methods can be used in 

forensic casework. 

 Our data showed that DNAm levels could be slightly influenced by population-

specific differences, at least in blood samples. In another way, it was not observed 

significant DNAm sex differences in each tissue type under study. 

 DNAm levels captured in bone samples from BDS do not seem to be influenced 

by the PMI. 

 It was observed that postmortem alterations in blood samples can influence 

DNAm levels of the age-correlated markers and consequently the accuracy of 

APMs. This can be a challenge for forensic purposes when applying APMs 

developed in the blood samples from living individuals to blood from deceased 

individuals, leading to misinterpretation of age predictions. However, it has been 

demonstrated that APMs developed for blood samples from deceased individuals 

can be accurately applied to blood from living individuals. 

 Generally, DNAm levels in blood samples from living individuals captured by 

both Sanger sequencing and SNaPshot methodologies show higher age correlation 

values compared to the other tissue types, including blood samples from deceased 

individuals. 

 The tissue-specific features of DNAm led to different selection of genes and/or 

CpGs according to the tissue under analysis; consequently, specific APMs should 

be developed for each tissue type being more accurate for age predictions.  
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 In accordance with previous studies, the number of predictor variables included 

in tissue-specific and multi-tissue APMs influences the accuracy of age 

predictions. However, our study revealed that the methodology used for 

assessment of DNAm levels can also influence the prediction accuracy in each 

tissue type. The best tissue-specific APMs developed in blood samples (living and 

deceased individuals) have been built by SNaPShot assay with a lower number of 

variables comparing with the models developed by Sanger sequencing. However, 

the best model developed for bones from autopsies was built using Sanger 

sequencing and a larger number of predictor variables. 

 The identification of universal markers for age prediction, showing similar 

patterns of DNAm across different tissues, remains a challenge in the forensic 

field. Meanwhile, our multi-tissue APMs with a combination of three to nine 

CpGs developed for blood, tooth and bone samples can achieve a very strong age 

correlation value and an accuracy of 6 to 7 years. 

 In general, the best age marker is the ELOVL2 gene, being selected for almost all 

the developed models (tissue-specific APMs and multi-tissue APMs) and showing 

similar high degree of association with age in the different biological samples.  

 

In regards of future studies to best complement and validate those results obtained 

in the present work, it would be important: 

- to validate and test larger sample sets, mainly for bones and teeth, with the 

inclusion of all age ranges to improve the reliability of the tissue-specific epigenetic 

clocks;  

- to validate the developed multi-tissue epigenetic clocks in larger independent 

sample sets;  
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- to test the accuracy of our tissue-specific and multi-tissue APMs in other 

ancestry groups; 

- to explore the accuracy of the developed epigenetic clocks in individuals with 

some known diseases or to build specific clocks for certain diseases; 

- to test other methodologies for DNAm assessment as massively parallel 

sequencing (MPS), which have shown successful results with limited amount and/or 

highly degraded DNA. The use of MPS for DNAm analysis on bone samples from 

skeletonized individuals can be a more reliable tool, allowing the successful development 

of DNAm-APMs.  

 

Moreover, to give new insights in the field of DNAm research for age estimation, 

a number of different suggestions can be addressed in terms of future research: 

- to build guidelines for implementation of DNAm age models in forensic 

laboratories considering ethical and bureaucratic issues, and technical and 

methodological aspects related to correct DNAm evaluation, as suggested by Bell et al. 

(2019). To the best of our knowledge, despite the increasing development of DNAm age 

research, it is not yet clarified how these models can be used in routine forensic casework;  

  -to test additional epigenetic features as chromatin modifications associated with 

the aging process or to test the combination of several approaches as anthropological, 

chemical, and epigenetic approaches in order to join many age indicators for the 

development of more accurate APMs. Aging being a complex biological process is 

difficult to predict. Age estimation can be improved by the use of a multidisciplinary 

approach. 
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Requerente/Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

Colheita de amostras de sangue, ossos e dentes 

(Corpos Doados à Ciência)   

  

Faculdade de Medicina da Universidade de:  

Coimbra   

Porto   

Lisboa    

  

-Nº mínimo de colheitas 20 indivíduos (F/M)  

-Recolha pela investigadora (Helena Correia Dias) na respectiva Faculdade de 

Medicina, quando existam amostras que justifiquem a deslocação.  

  

Sangue:  

-Colheita de 2 mL de sangue periférico ou cardíaco (tubos com EDTA fornecidos)  

-Armazenamento: sem centrifugar, congelar a -20°C  

  

Osso (punch bone ou fragmento do osso)  

-tíbia    

-clavícula  

Fazer 5 a 7 punch bone----- congelar -80°C  

Se for fragmento, envolver em papel de alumínio e congelar -80 °C  

  

Dente  

- 1º ou 2º Molar (superior ou inferior) saudáveis e sem tratamentos dentários;   

-Armazenamento: recipiente fornecido, temperatura ambiente.  

  

  

  

BDS: form example 
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ID 

Corpo 

Doado 

à 

Ciência 

 

Idade 

 

Sexo 

F/M 

 

Sangue Osso Dente 

 

Datas 

 

         

Sim   

  

Não   

   

Sim   

  

Não   

   

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim   

  

Não   

  

Sim   

  

Não   

  

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim  

  

Não  

  

Sim  

  

Não  

  

Sim  

  

Não  

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim  

  

Não   

  

Sim  

  

Não   

  

Sim  

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim   

  

Não   

  

Sim   

  

Não   

  

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim  

  

Não   

  

Sim  

  

Não   

  

Sim  

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim   

  

Não   

  

Sim   

  

Não   

  

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim   

  

Não   

  

Sim   

  

Não   

  

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  

        

Sim   

  

Não   

  

Sim   

  

Não   

  

Sim   

  

Não   

Óbito  

___/___/___  

Colheita da amostra  

___/___/___  
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ID 

Corpo Doado à 

Ciência 

Observações: Causa da morte e/ou possíveis doenças 

antemortem conhecidas, ou outras condições clínicas 

Associadas 
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 
Antropologia Forense 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

  

  

A estimativa da idade é uma questão muito importante nos dias de hoje. É necessária para 

identificação do indivíduo e para resolução de certas situações civis e judiciais. Com o aumento 

considerável de imigrantes e refugiados, sem documemntos válidos, torna-se importante a criação 

de novas metodologias para estimar a idade destes indivíduos.   

A recolha de saliva para estudos de estimativa da idade é um procedimento indolor e bastante 

rápido. A investigação será feita no Departamento de Ciências da Vida da Universidade de 

Coimbra pela investigadora Maria Helena Correia Dias e está incluída no âmbito do seu trabalho 

de Doutoramento em Antropologia Forense.   

A própria investigadora fará a recolha das amostras dos doadores voluntários, após 

consentimento informado. A investigadora disponibiliza-se a esclarecer qualquer dúvida ou 

questão, quer no acto da colheita da amostra (esfregaço bucal), quer posteriormente, a qualquer 

altura (helenacorreiadias30@gmail.com; 962903987).   

Para ser incluído neste estudo, apenas necessita de concordar com o respectivo consentimento 

abaixo exposto.   

  

Consentimento informado  

  

Eu,_____________________________________________________________, 

autorizo a investigadora Maria Helena Correia Dias, estudante de Doutoramento em 

Antropologia Forense na Faculdade de Ciências e Tecnologia da Universidade de Coimbra, a 

recolher um esfregaço bucal para fins de investigação científica incluída no seu trabalho de 

Doutoramento.   

A minha participação é voluntária e tomei conhecimento de que a amostra apenas seria 

usada no âmbito de investigação científica, sendo que toda a informação obtida a partir da mesma 

será mantida de forma confidencial e em anonimato.   

 

  

Buccal swab consent 
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Tomei conhecimento que os resultados provenientes deste estudo serão publicados 

cientificamente, salvaguardando-se, contudo, a total confidencialidade das informações dos 

doadores. Os estudos não terão qualquer tipo de fins lucrativos e a recolha dos esfregaços bucais 

não provoca qualquer dor ou consequência futura danosa ou prejudicial para o doador.   

Declaro que compreendi toda a informação anteriormente exposta neste consentimento, 

ou explicada pessoalmente pela investigadora, aceitando por isso participar neste estudo de forma 

voluntária.  

    

  

Doador:     ______________________   

Investigadora: ______________________  

  

                         _________,_____de ____________de ____  

  

Muito obrigada pela participação neste estudo.  

  

  

Dados do doador:  

Nome:____________________________________________________  

Idade:____  

Sexo:_____  

Nacionalidade:_____________  
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Biological features of Bodies Donated to Science (BDS) 

ID BDS Age Sex 
Date at 

death 

Type of 

Sample 

 

Date 

collection 

 

City of 

collection 

BDS 1 75 M 28/04/2015 Bone 15/05/2018 Coimbra 

BDS 2 65 F 24/02/2015 Bone 15/05/2018 Coimbra 

BDS 3 65 F 28/07/2016 Bone 15/05/2018 Coimbra 

BDS 4 87 F 03/12/2014 Bone 15/05/2018 Coimbra 

BDS 5 75 F 28/11/2015 Bone; tooth 19/07/2018 Porto 

BDS 6 88 M 01/08/2018 Blood; tooth 03/08/2018 Porto 

BDS 7 72 M 05/08/2018 Blood; tooth 07/08/2018 Porto 

BDS 8 66 F 10/08/2018 Tooth 31/08/2018 Porto 

BDS 9 66 M 24/08/2018 Blood 29/08/2018 Porto 

BDS 10 55 F 02/09/2018 Blood 03/09/2018 Porto 

BDS 11 84 M 14/09/2018 Blood 17/09/2018 Porto 

BDS 12 61 M 22/09/2018 Blood 24/09/2018 Porto 

BDS 13 84 M 30/09/2018 Blood 02/10/2018 Porto 

BDS 14 49 F 21/10/2018 
Blood; tooth 

Bone 

23/10/2018 

11/02/2019 

Porto 

BDS 15 72 F 26/10/2018 Blood; tooth 29/10/2018 Porto 

BDS 16 52 F 31/10/2015 Bone 22/11/2018 Porto 

BDS 17 77 F 13/11/2015 Bone 22/11/2018 Porto 

BDS 18 56 M 17/11/2015 Bone 22/11/2018 Porto 

BDS 19 75 F 28/11/2015 Bone 22/11/2018 Porto 

BDS 20 79 M 05/04/2016 Bone 22/11/2018 Porto 

BDS 21 87 F 12/05/2016 Bone 22/11/2018 Porto 

BDS 22 63 M 13/05/2016 Bone 22/11/2018 Porto 

BDS 23 54 F 03/06/2016 Bone 22/11/2018 Porto 

BDS 24 81 M 01/08/2016 Bone 11/02/2019 Porto 

BDS 25 73 F 29/08/2016 Bone 11/02/2019 Porto 

BDS 26 79 M 20/09/2016 Bone 11/02/2019 Porto 

BDS 27 85 M 30/09/2016 Bone 11/02/2019 Porto 

BDS 28 80 M 06/11/2016 Bone 11/02/2019 Porto 

BDS 29 93 M 23/02/2017 Bone 11/02/2019 Porto 

BDS 30 76 M 27/03/2017 Bone 11/02/2019 Porto 

BDS 31 57 M 8/12/2018 Blood 11/12/2018 Porto 

BDS 32 81 M 18/12/2018 Blood 20/12/2018 Porto 

BDS 33 66 M 30/12/2018 Blood 02/01/2019 Porto 

BDS 34 93 F 14/01/2019 Blood 15/01/2019 Porto 

BDS 35 82 M 30/01/2019 Tooth 01/02/2019 Porto 

BDS 36 48  F 02/02/2019 Blood; tooth 04/02/2019 Porto 

BDS 37 80 F 29/03/2016 Bone 16/04/2019 Porto 
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Ethical Committee of Faculdade de Medicina 

da Universidade de Coimbra 
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Protocol I_DNA extraction from blood samples (full protocol) 

 

Genomic DNA extraction from blood samples performed using the QIAamp DNA 

Mini Kit (Qiagen, Hilden, Germany), according to the instructions of the manufacture: 

 

1. Addition of 20 µl of proteinase K (Qiagen) (10 mg/ml) and 200 µl of Lysis Buffer AL 

to 200 µl of blood in a 1.5 ml microcentrifuge tube. Mix by vortex. 

2. Incubation at 56 ºC (10 min). Quick centrifugation. 

3. Addition of 200 µl of ethanol (96-100%), vortex (15 sec) and quick centrifugation.  

4. Transfer the sample mixture to QIAamp Mini spin column (in a 2 ml collection tube), 

centrifugation at 8000 rpm (1 min) and remove the collection tube. Replace the collection 

tube.  

5. Pipet 500 µl of Buffer AW1. Centrifugation at 8000 rpm (1 min) and remove the flow-

through.  

6. Pipet 500 µl of Buffer AW2 and centrifugation at 14.000 rpm (3 min).  

7. Put the QIAamp Mini spin column in a new collection tube (2 ml) and centrifuge (1 

min) at 14.00 rpm.  

8. Use a clean 1.5 ml microcentrifuge tube, put the QIAamp Mini spin column, pipet 200 

µl Buffer AE, incubation at room temperature during 5 min for increase the amount of 

DNA. Centrifugation at 8000 rpm (1 min).  

9. Storage the DNA at 4ºC or -10ºC. 
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Protocol II_Guide for processing human remains and extract DNA 

(step by step with illustrations) 

 

Workstation I at INMLCF: after at least 20 minutes of UV decontamination (5º steps) 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Step 1: After collecting the fresh bone, a new ID label is given.  

In example, BDS 24 (CDC 24, Corpo Doado à Ciência 24) is a fresh tibial right 

bone from a male with 81 years old, collected in Departamento de Anatomia da 

Faculdade de Medicina da Universidade do Porto. 
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Step 2: Bone fragment cut (before cleaning the bone). 

Step 3: Clean the bone fragment chemically with commercial bleach during 5 

minutes (A, B), then put in distilled water (ddH2O) during 5 minutes (C, D). 

A B 
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Step 4: Clean the bone mechanically with a drill (physical removal of the surface 

using a rotary sanding tool). 

 

Step 5: Make some cuts (around 0.5 x 0.5 cm) in the bone fragment (A and B) and 

put in a vial for grinding bone (C and D). 

 

C D 

A 
B 
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Grinding bones in SPEX Sample Prep Freezer/Mill 6770 with liquid nitrogen. 

 

 

 

 

 

 

 

 

In a workstation II in INMLCF: after at least 20 minutes of UV decontamination (3º 

steps) 

 

 

 

 

 

C D 
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Step 2: DNA extraction using a semi-automatic protocol with PrepFiler Express 

BTA™ Forensic DNA Extraction kit (Thermo Fisher Scientific Inc., Waltham, MA, 

USA).  

 

Step 1: around 50 mg of fine powder were put in a lysis tube (standard protocol). 

Prepared the PrepFiler BTATM lysis solution in workstation II. Put the PrepFiler Bone 

Lysate Tube in a thermal shaker and incubated at 56ºC, 750 rpm overnight.  
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Protocol III_DNA extraction from buccal swabs (full protocol) 

 

Genomic DNA from buccal swabs was extracted using the FavorPrepTM Genomic 

DNA mini kit (Favorgen Biotech Corp, Taiwan), according to the instructions of the 

manufacture: 

 

1. Resuspending the buccal swab in 1 ml of dH2O, centrifuged at 12.000 rpm (3 min) and 

discard the supernatant.  

2. Addition of 200 µl of FABG Buffer and 20 µl of proteinase K (10 mg/ml). Vortex.  

3. Put in the Thermo mix at 56ºC (at least one hour).  

4. Preheat the elution buffer in a 70ºC water bath.  

5. Addition of 200 µl of ethanol (100%) and vortex (10 sec).  

6. Transfer the sample mixture to FABG column (with a 2 ml collection tube), centrifuge 

at 12.000 rpm (5 min) and remove the flow-through.  

7. Wash FABG column with 400 µl of W1 buffer, centrifuge at 12.000 rpm (1 min) and 

remove the flow-through.  

8. Add 600 µl of Wash Buffer (ethanol added) to the FABG column. Centrifugation at 

12.000 rpm (1 min), remove the flow-through.  

9. Dry the column with a final centrifugation during 3 min at 12.000 rpm.  

10. For DNA elution, put the FABG column to a new 1.5 ml microcentrifuge tube, add 

60 µl of preheated elution buffer to the column and centrifuge at 12.000 rpm (1 min). 

Isolated DNA can be stored at 4ºC or -10ºC. 
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A. DNA methylation age estimation in blood samples  
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Table S1: Univariate linear regression analysis of the 37 CpG sites in ELOVL2, FHL2, 

EDARADD and PDE4C loci in 53 blood samples from living individuals.  

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

CpG1 Chr6: 11044628 0.920 0.846 0.843 11.61 2.14 × 10
-22

 

CpG2 Chr6: 11044631 0.868 0.753 0.749 14.71 3.95 × 10
-17

 

CpG3 Chr6: 11044634 0.884 0.781 0.777 13.85 1.82 × 10
-18

 

CpG4 Chr6: 11044640 0.916 0.838 0.835 11.91 8.22 × 10
-22

 

ELOVL2 CpG5 Chr6: 11044642 0.936 0.876 0.873 10.43 9.22 × 10
-25

 

(N = 53) CpG6 Chr6: 11044644 0.936 0.877 0.874 10.41 7.97 × 10
-25

 

CpG7 Chr6: 11044647 0.914 0.836 0.833 11.99 1.15 × 10
-21

 

CpG8 Chr6: 11044655 0.850 0.722 0.716 15.63 8.89 × 10
-16

 

CpG9 Chr6: 11044661 0.860 0.740 0.735 15.10 1.53 × 10
-16

 

CpG1 Chr2:105399282 0.937 0.878 0.876 10.33 5.68 × 10
-25

 

CpG2 Chr2: 105399288  0.940 0.883 0.881 10.12 1.89 × 10
-25

 

CpG3 Chr2: 105399291  0.940 0.884 0.881 10.11 1.78 × 10
-25

 

CpG4 Chr2: 105399297  0.814 0.662 0.655 17.22 1.31 × 10
-13

 

CpG5 Chr2: 105399300  0.921 0.849 0.846 11.53 1.48 × 10
-22

 

FHL2 CpG6 Chr2: 105399310  0.848 0.719 0.714 15.70 1.11 × 10
-15

 

(N = 53) CpG7 Chr2: 105399314  0.263 0.069 0.051 28.59 0.057 

CpG8 Chr2: 105399316  0.530 0.281 0.267 25.12 0.00004 

CpG9 Chr2: 105399323  -0.079 0.006 -0.013 29.54 0.575 

CpG10 Chr2: 105399327  -0.262 0.068 0.050 28.60 0.058 

CpG11 Chr2: 105399338 -0.794 0.631 0.623 18.01 1.29 × 10
-12

 

CpG12 Chr2: 105399340 -0.658 0.432 0.421 22.32 8.82 × 10
-8
 

 CpG1 Chr1: 236394458 0.014 0.000 -0.019 29.63 0.920 

EDARADD CpG2 Chr1: 236394441 -0.745 0.555 0.546 19.76 1.59 × 10
-10

 

(N = 53) CpG3 Chr1: 236394382 -0.888 0.788 0.784 13.63 7.86 × 10
-19

 

 CpG4 Chr1: 236394370 -0.619 0.383 0.371 23.27 7.73 × 10
-7
 

CpG1 Chr19: 18233139 0.849 0.720 0.715 15.67 1.02 × 10
-15

 

CpG2 Chr19: 18233133 0.852 0.725 0.720 15.53 6.32 × 10
-16

 

CpG3 Chr19: 18233131 0.827 0.684 0.678 16.64 2.25 × 10
-14

 

CpG4 Chr19: 18233127 0.525 0.276 0.261 25.22 0.000055 

CpG5 Chr19: 18233105 0.804 0.647 0.640 17.61 4.07 × 10
-13

 

PDE4C CpG6 Chr19: 18233091 -0.432 0.187 0.171 26.72 0.001 

(N = 53) CpG7 Chr19: 18233082 0.140 0.020 0.000 29.34 0.318 

CpG8 Chr19: 18233079 -0.273 0.074 0.056 28.51 0.048 

CpG9 Chr19: 18233070 -0.410 0.168 0.152 27.02 0.002 

CpG10 Chr19: 18233058 -0.097 0.009 -0.010 29.49 0.489 

CpG11 Chr19: 18233048 -0.116 0.013 -0.006 29.43 0.409 

CpG12 Chr19: 18233042 0.015 0.000 -0.019 29.62 0.916 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly.
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Table S2: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 in blood samples from 

living individuals.  

 

 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 39.280 0.000 

ELOVL2 63.817 0.001 

FHL2 70.186 0.001 

C1orf132 -47.768 0.000 

TRIM59 -1.100 0.948 

KLF14 30.324 0.479 
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Table S3: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 loci in 51 blood samples from deceased individuals.  

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

 CpG1 Chr6: 11044628 0.781 0.610 0.602 10.28 3.50 × 10
-11

 
 CpG2 Chr6: 11044631 0.700 0.490 0.479 11.76 2.15 × 10

-8
 

 CpG3 Chr6: 11044634 0.740 0.547 0.538 11.09 1.25 × 10
-9
 

 CpG4 Chr6: 11044640 0.785 0.617 0.608 10.20 2.39 × 10
-11

 

ELOVL2 CpG5 Chr6: 11044642 0.700 0.490 0.479 11.76 2.16 × 10
-8
 

(N = 49) CpG6 Chr6: 11044644 0.764 0.584 0.575 10.63 1.65 × 10
-10

 
 CpG7 Chr6: 11044647 0.758 0.575 0.566 10.74 2.82 × 10

-10
 

 CpG8 Chr6: 11044655 0.706 0.498 0.488 11.67 1.48 × 10
-8
 

 CpG9 Chr6: 11044661 0.663 0.440 0.428 12.33 2.08 × 10
-7
 

 CpG1 Chr2:105399282 0.431 0.186 0.169 14.64 0.002 
 CpG2 Chr2: 105399288 0.465 0.216 0.200 14.36 0.000584 
 CpG3 Chr2: 105399291 0.459 0.211 0.195 14.41 0.000704 
 CpG4 Chr2: 105399297 0.141 0.020 0.000 16.06 0.323 
 CpG5 Chr2: 105399300 0.388 0.151 0.133 14.95 0.005 

FHL2 CpG6 Chr2: 105399310 0.224 0.050 0.031 15.81 0.114 

(N = 51) CpG7 Chr2: 105399314 0.118 0.014 -0.006 16.11 0.411 
 CpG8 Chr2: 105399316 0.194 0.038 0.018 15.92 0.173 
 CpG9 Chr2: 105399323 -0.031 0.001 -0.019 16.22 0.830 
 CpG10 Chr2: 105399327 -0.037 0.001 -0.019 16.21 0.796 
 CpG11 Chr2: 105399338 -0.214 0.046 0.026 15.85 0.131 
 CpG12 Chr2: 105399340 -0.158 0.025 0.005 16.02 0.269 

 CpG1 Chr1: 236394458 0.001 0.000 -0.020 16.22 0.993 
EDARADD CpG2 Chr1: 236394441 -0.351 0.123 0.105 15.19 0.012 

(N = 51) CpG3 Chr1: 236394382 -0.621 0.385 0.373 12.72 0.000001 
 CpG4 Chr1: 236394370 -0.321 0.103 0.085 15.37 0.022 

 CpG1 Chr19: 18233139 0.401 0.161 0.143 15.10 0.004 
 CpG2 Chr19: 18233133 0.592 0.350 0.336 13.28 0.000008 
 CpG3 Chr19: 18233131 0.585 0.342 0.328 13.36 0.000010 
 CpG4 Chr19: 18233127 0.231 0.053 0.033 16.03 0.111 
 CpG5 Chr19: 18233105 0.299 0.089 0.070 15.72 0.037 

PDE4C CpG6 Chr19: 18233091 -0.335 0.112 0.093 15.52 0.019 

(N = 49) CpG7 Chr19: 18233082 -0.169 0.029 0.008 16.24 0.246 
 CpG8 Chr19: 18233079 -0.199 0.040 0.019 16.15 0.170 
 CpG9 Chr19: 18233070 -0.340 0.116 0.097 15.49 0.017 
 CpG10 Chr19: 18233058 -0.248 0.061 0.041 15.96 0.086 
 CpG11 Chr19: 18233048 -0.159 0.025 0.005 16.27 0.275 
 CpG12 Chr19: 18233042 -0.267 0.071 0.051 15.88 0.064 

 CpG1 Chr1: 207823681 -0.634 0.402 0.389 12.68 0.000001 
 CpG2 Chr1: 207823675 -0.491 0.241 0.225 14.27 0.000338 

C1orf132 CpG3 Chr1: 207823672 -0.570 0.325 0.311 13.47 0.000019 

(N = 49) CpG4 Chr1: 207823660 -0.451 0.203 0.186 14.63 0.001 
 CpG5 Chr1: 207823657 -0.427 0.183 0.165 14.82 0.002 
 CpG6 Chr1: 207823637 -0.498 0.248 0.232 14.21 0.000268 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 
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Table S4: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 in blood samples from 

deceased individuals. 
 

 

 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 18.924 0.029 

ELOVL2 65.369 0.005 

FHL2 36.006 0.032 

C1orf132 -26.255 0.001 

TRIM59 43.886 0.014 

KLF14 40.717 0.424 
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Table S5: Univariate linear regression analysis of the 37 CpG sites in ELOVL2, FHL2, 

EDARADD and PDE4C loci in 144 blood samples from living and deceased individuals.  

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 
 

 

 

 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

CpG1 Chr6: 11044628 0.872 0.760 0.759 12.28 5.88 × 10
-45

 

CpG2 Chr6: 11044631 0.794 0.631 0.628 15.25 7.33 × 10
-32

 

CpG3 Chr6: 11044634 0.859 0.738 0.736 12.84 2.79 × 10
-42

 

CpG4 Chr6: 11044640 0.880 0.774 0.772 11.93 9.75 × 10
-47

 

ELOVL2 CpG5 Chr6: 11044642 0.839 0.704 0.702 13.65 1.46 × 10
-38

 

(N = 141) CpG6 Chr6: 11044644 0.892 0.796 0.795 11.33 7.77 × 10
-50

 

CpG7 Chr6: 11044647 0.876 0.767 0.765 12.10 7.98 × 10
-46

 

CpG8 Chr6: 11044655 0.758 0.574 0.571 16.38 1.54 × 10
-27

 

CpG9 Chr6: 11044661 0.745 0.554 0.551 16.75 3.66 × 10
-26

 

CpG1 Chr2:105399282 0.828 0.686 0.684 13.91 1.41 × 10
-37

 

CpG2 Chr2:105399288 0.821 0.675 0.672 14.17 1.92 × 10
-36

 

CpG3 Chr2:105399291 0.813 0.661 0.659 14.45 3.26 × 10
-35

 

CpG4 Chr2:105399297 0.623 0.399 0.395 19.25 2.05 × 10
-17

 

CpG5 Chr2:105399300 0.774 0.600 0.597 15.72 5.13 × 10
-30

 

FHL2 CpG6 Chr2:105399310 0.667 0.445 0.441 18.50 6.84 × 10
-20

 

(N = 144) CpG7 Chr2:105399314 0.346 0.120 0.114 23.30 0.000021 

CpG8 Chr2:105399316 0.460 0.212 0.206 22.05 6.54 × 10
-9

 

CpG9 Chr2:105399323 0.187 0.035 0.028 24.40 0.025069 

CpG10 Chr2:105399327 0.056 0.003 -0.004 24.80 0.508107 

CpG11 Chr2:105399338 -0.482 0.232 0.227 21.76 9.59 × 10
-10

 

CpG12 Chr2:105399340 -0.118 0.014 0.007 24.67 0.160230 

 CpG1 Chr1:236394458 -0.026 0.001 -0.006 24.90 0.761497 
EDARADD CpG2 Chr1:236394441 -0.629 0.395 0.391 19.38 4.16 × 10

-17
 

(N = 143) CpG3 Chr1:236394382 -0.786 0.617 0.615 15.41 3.27 × 10
-31

 

 CpG4 Chr1:236394370 -0.530 0.281 0.275 21.26 1.03 × 10
-11

 

CpG1 Chr19:18233139 0.785 0.617 0.614 15.53 9.25 × 10
-31

 

CpG2 Chr19:18233133 0.830 0.689 0.687 13.99 4.66 × 10
-37

 

CpG3 Chr19:18233131 0.813 0.660 0.658 14.63 2.16 × 10
-34

 

CpG4 Chr19:18233127 0.526 0.277 0.272 21.33 2.03 × 10
-11

 

CpG5 Chr19:18233105 0.726 0.527 0.524 17.26 2.33 × 10
-24

 

PDE4C CpG6 Chr19:18233091 -0.370 0.137 0.131 23.30 0.000006 

(N = 141) CpG7 Chr19:18233082 0.065 0.004 -0.003 25.03 0.445853 

CpG8 Chr19:18233079 -0.234 0.055 0.048 24.39 0.005193 

CpG9 Chr19:18233070 -0.417 0.174 0.168 22.81 2.78 × 10
-7

 

CpG10 Chr19:18233058 -0.055 0.003 -0.004 25.05 0.520182 

CpG11 Chr19:18233048 -0.163 0.027 0.020 24.75 0.051747 

CpG12 Chr19:18233042 -0.005 0.000 -0.007 25.09 0.957291 
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Table S6: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 in blood samples from 

living and deceased individuals. 
 

 

 

 

 

 
 

 

 

Abbreviations: Significant p-values are in bold. 

 

Table S7: Statistical parameters obtained in a multiple regression model with the four 

CpGs in ELOVL2, FHL2, EDARADD and PDE4C genes in blood samples from deceased 

individuals. 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 21.259 0.000 

ELOVL2 69.782 0.000 

FHL2 45.197 0.000 

C1orf132 -32.729 0.000 

TRIM59 33.794 0.002 

KLF14 41.210 0.186 

Marker Coefficient P-value 

(Intercept) -40.063 0.120 

ELOVL2 CpG4  100.423 0.000 

FHL2 CpG2 59.531 0.007 

EDARADD CpG3  -74.494 0.000 

PDE4C CpG2 26.479 0.229 
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B. DNA methylation age estimation in tooth samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Annex V. Supplementary Material Tables  

 
DNA methylation as an age predictor in living and deceased individuals 

Page | 387 

Table S8: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 loci in 31 tooth samples from living and deceased 

individuals.  

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

 CpG1 Chr6: 11044628 0.237 0.056 0.024 19.23 0.199224 

 CpG2 Chr6: 11044631 0.280 0.079 0.047 19.00 0.126816 

 CpG3 Chr6: 11044634 0.379 0.143 0.114 18.32 0.035738 

 CpG4 Chr6: 11044640 0.221 0.049 0.016 19.31 0.233055 

ELOVL2 CpG5 Chr6: 11044642 0.375 0.141 0.111 18.35 0.037618 

(N = 31) CpG6 Chr6: 11044644 0.336 0.113 0.082 18.65 0.064411 

 CpG7 Chr6: 11044647 0.195 0.038 0.005 19.42 0.292839 

 CpG8 Chr6: 11044655 0.126 0.016 -0.018 19.64 0.497705 

 CpG9 Chr6: 11044661 0.270 0.073 0.041 19.06 0.141588 

 CpG1 Chr2:105399282 0.451 0.204 0.175 17.26 0.012313 

 CpG2 Chr2: 105399288 0.409 0.167 0.137 17.66 0.024895 

 CpG3 Chr2: 105399291 0.517 0.267 0.241 16.56 0.003430 

CpG4 Chr2: 105399297 0.658 0.433 0.413 14.57 0.000078 

CpG5 Chr2: 105399300 0.508 0.258 0.231 16.67 0.004167 

FHL2 CpG6 Chr2: 105399310 0.377 0.142 0.112 17.92 0.039980 

(N = 30) CpG7 Chr2: 105399314 0.311 0.097 0.065 18.39 0.094135 

 CpG8 Chr2: 105399316 0.238 0.057 0.023 18.79 0.205182 

 CpG9 Chr2: 105399323 0.150 0.022 -0.012 19.13 0.429448 

 CpG10 Chr2: 105399327 0.063 0.004 -0.032 19.31 0.742681 

 CpG11 Chr2: 105399338 -0.330 0.109 0.077 18.26 0.074968 

 CpG12 Chr2: 105399340 -0.092 0.008 -0.027 19.26 0.629751 

 CpG1 Chr1: 236394458 0.012 0.000 -0.036 19.32 0.950015 

EDARADD CpG2 Chr1: 236394441 0.137 0.019 -0.016 19.14 0.470412 

(N = 30) CpG3 Chr1: 236394382 -0.124 0.015 -0.020 19.17 0.513074 

 CpG4 Chr1: 236394370 -0.182 0.033 -0.001 19.00 0.336123 

 CpG1 Chr19: 18233139 0.474 0.224 0.193 17.54 0.012588 

 CpG2 Chr19: 18233133 0.466 0.217 0.186 17.62 0.014265 

 CpG3 Chr19: 18233131 0.391 0.153 0.119 18.33 0.043908 

 CpG4 Chr19: 18233127 0.437 0.191 0.158 17.91 0.022783 

 CpG5 Chr19: 18233105 0.329 0.108 0.073 18.80 0.093455 

PDE4C CpG6 Chr19: 18233091 0.258 0.067 0.029 19.24 0.194010 

(N = 27) CpG7 Chr19: 18233082 0.364 0.132 0.098 18.55 0.062155 

 CpG8 Chr19: 18233079 0.246 0.061 0.023 19.30 0.215924 

 CpG9 Chr19: 18233070 0.062 0.004 -0.036 19.87 0.758269 

 CpG10 Chr19: 18233058 0.167 0.028 -0.014 19.06 0.424049 

 CpG11 Chr19: 18233048 0.238 0.057 0.009 19.65 0.286645 

 CpG12 Chr19: 18233042 0.290 0.084 0.038 19.36 0.190559 

 CpG1 Chr1: 207823681 -0.123 0.015 -0.021 18.68 0.525111 

 CpG2 Chr1: 207823675 -0.188 0.035 0.000 18.48 0.328168 

C1orf132 CpG3 Chr1: 207823672 0.104 0.011 -0.026 18.72 0.593103 

(N = 29) CpG4 Chr1: 207823660 0.029 0.001 -0.038 18.89 0.882728 

 CpG5 Chr1: 207823657 -0.255 0.065 0.026 18.35 0.208917 

 CpG6 Chr1: 207823637 0.126 0.016 -0.022 18.74 0.521969 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 
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Table S9: Statistical parameters obtained in a multiple regression model with the three 

CpGs in genes FHL2, ELOVL2 and PDE4C in tooth samples from living and deceased 

individuals. 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

Table S10: Statistical parameters obtained in a multiple regression model with the three 

CpGs in genes ELOVL2, KLF14 and TRIM59 in tooth samples from living and deceased 

individuals. 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) -115.647 0.039 

FHL2 CpG4 231.807 0.002 

PDE4C CpG1 7.438 0.729 

ELOVL2 CpG3 3.649 0.947 

Marker Coefficient P-value 

(Intercept) 12.126 0.076 

ELOVL2 113.705 0.008 

TRIM59 -13.768 0.814 

KLF14 296.217 0.000 
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C. DNA methylation age estimation in bone samples  
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Table S11: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 loci in 29 bone samples collected during autopsies. 

Gene 
CpG 

site 
Location R R

2 Corrected 

R
2 SE P-value 

 CpG1 Chr6: 11044628 0.736 0.542 0.525 9.35 0.000005 

 CpG2 Chr6: 11044631 0.628 0.395 0.372 10.75 0.000263 

 CpG3 Chr6: 11044634 0.764 0.583 0.568 8.93 0.000001 

 CpG4 Chr6: 11044640 0.780 0.609 0.594 8.65 6.02 × 10
-7

 

ELOVL2 CpG5 Chr6: 11044642 0.777 0.603 0.589 8.71 7.29 × 10
-7

 

(N = 29) CpG6 Chr6: 11044644 0.852 0.725 0.715 7.24 4.64 × 10
-9

 

 CpG7 Chr6: 11044647 0.718 0.515 0.497 9.62 0.000012 

 CpG8 Chr6: 11044655 0.717 0.514 0.496 9.63 0.000012 

 CpG9 Chr6: 11044661 0.590 0.348 0.324 11.16 0.000750 

 CpG1 Chr2:105399282 0.692 0.479 0.460 9.97 0.000032 

 CpG2 Chr2:105399288 0.654 0.428 0.407 10.45 0.000118 

 CpG3 Chr2:105399291 0.480 0.230 0.202 12.12 0.008397 

 CpG4 Chr2:105399297 0.371 0.138 0.106 12.83 0.047401 

 CpG5 Chr2:105399300 0.635 0.403 0.381 10.66 0.000215 

FHL2 CpG6 Chr2:105399310 0.389 0.151 0.120 12.73 0.037139 

(N = 29) CpG7 Chr2:105399314 0.288 0.083 0.049 13.24 0.130072 

 CpG8 Chr2:105399316 0.379 0.144 0.112 12.79 0.042569 

 CpG9 Chr2:105399323 0.176 0.031 -0.005 13.60 0.361021 

 CpG10 Chr2:105399327 0.009 0.000 -0.037 13.82 0.962069 

 CpG11 Chr2:105399338 -0.313 0.098 0.064 13.13 0.098775 

 CpG12 Chr2:105399340 -0.004 0.000 -0.037 13.82 0.983379 

 CpG1 Chr1:236394458 -0.212 0.045 0.010 13.51 0.269687 

EDARADD CpG2 Chr1:236394441 -0.414 0.171 0.140 12.58 0.025729 

(N = 29) CpG3 Chr1:236394382 -0.561 0.314 0.289 11.45 0.001564 

 CpG4 Chr1:236394370 -0.441 0.195 0.165 12.40 0.016516 

 CpG1 Chr19:18233139 0.592 0.351 0.326 11.34 0.000902 

 CpG2 Chr19:18233133 0.690  0.476 0.456 10.19 0.000049 

 CpG3 Chr19:18233131 0.620 0.385 0.361 11.04 0.000430 

 CpG4 Chr19:18233127 0.490 0.240 0.210 12.27 0.008183 

 CpG5 Chr19:18233105 0.633 0.401 0.378 10.89 0.000299 

PDE4C CpG6 Chr19:18233091 0.238 0.057 0.020 13.66 0.223136 

(N = 28) CpG7 Chr19:18233082 0.287 0.083 0.047 13.47 0.138316 

 CpG8 Chr19:18233079 -0.028 0.001 -0.038 14.06 0.887979 

 CpG9 Chr19:18233070 -0.174 0.030 -0.007 13.85 0.375355 

 CpG10 Chr19:18233058 0.196 0.039 0.002 13.80 0.316687 

 CpG11 Chr19:18233048 -0.144 0.021 -0.017 13.92 0.464184 

 CpG12 Chr19:18233042 -0.085 0.007 -0.031 14.02 0.666801 

 CpG1 Chr1:207823681 -0.834 0.695 0.684 7.63 1.93 × 10
-8

 

 CpG2 Chr1:207823675 -0.753 0.567 0.551 9.09 0.000002 

C1orf132 CpG3 Chr1:207823672 -0.774 0.599 0.585 8.75 8.30 × 10
-7

 

(N = 29) CpG4 Chr1:207823660 -0.634 0.402 0.380 10.69 0.000223 

 CpG5 Chr1:207823657 -0.311 0.097 0.063 13.14 0.100697 

 CpG6 Chr1:207823637 -0.408 0.166 0.136 12.62 0.028010 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 
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Table S12: Statistical parameters obtained in a multiple regression model with the five 

CpGs in genes ELOVL2, KLF14, TRIM59, C1orf132 and FHL2 in bone samples collected 

during autopsies. 

 

 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 42.089 0.013 

ELOVL2 -7.354 0.899 

TRIM59 52.798 0.097 

KLF14 120.165 0.040 

C1orf132 -35.458 0.038 

FHL2 61.184 0.283 
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Table S13: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 loci in 22 bone samples from BDS. 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

 CpG1 Chr6: 11044628 -0.223 0.050 0.002 12.14 0.317751 

 CpG2 Chr6: 11044631 0.154 0.024 -0.025 12.31 0.494247 

 CpG3 Chr6: 11044634 -0.006 0.000 -0.050 12.45 0.978553 

 CpG4 Chr6: 11044640 -0.077 0.006 -0.044 12.42 0.734888 

ELOVL2 CpG5 Chr6: 11044642 -0.003 0.000 -0.050 12.45 0.990470 

(N = 22) CpG6 Chr6: 11044644 -0.059 0.004 -0.046 12.43 0.793437 

 CpG7 Chr6: 11044647 -0.056 0.003 -0.047 12.43 0.804966 

 CpG8 Chr6: 11044655 0.184 0.034 -0.015 12.24 0.413208 

 CpG9 Chr6: 11044661 -0.088 0.008 -0.042 12.41 0.695851 

 CpG1 Chr2:105399282 0.580 0.337 0.303 10.14 0.004648 

 CpG2 Chr2: 105399288 0.641 0.411 0.381 9.56 0.001315 

 CpG3 Chr2: 105399291 0.655 0.429 0.400 9.41 0.000945 

 CpG4 Chr2: 105399297 0.370 0.137 0.093 11.57 0.090455 

 CpG5 Chr2: 105399300 0.652 0.425 0.396 9.44 0.001009 

FHL2 CpG6 Chr2: 105399310 0.584 0.342 0.309 10.11 0.004287 

(N = 22) CpG7 Chr2: 105399314 0.341 0.116 0.072 11.71 0.120096 

 CpG8 Chr2: 105399316 0.459 0.210 0.171 11.07 0.031820 

 CpG9 Chr2: 105399323 0.198 0.039 -0.009 12.21 0.377918 

 CpG10 Chr2: 105399327 0.367 0.135 0.092 11.58 0.092745 

 CpG11 Chr2: 105399338 0.062 0.004 -0.046 12.43 0.783816 

 CpG12 Chr2: 105399340 0.126 0.016 -0.033 12.36 0.577520 

 CpG1 Chr1: 236394458 -0.404 0.163 0.121 11.39 0.062444 

EDARADD CpG2 Chr1: 236394441 -0.282 0.080 0.034 11.95 0.202829 

(N = 22) CpG3 Chr1: 236394382 -0.430 0.185 0.144 11.25 0.045937 

 CpG4 Chr1: 236394370 -0.385 0.149 0.106 11.49 0.076444 

 CpG1 Chr19: 18233139 0.259 0.067 0.018 11.57 0.257413 

 CpG2 Chr19: 18233133 0.372 0.138 0.093 11.12 0.097173 

 CpG3 Chr19: 18233131 0.771 0.594 0.572 7.63 0.000044 

 CpG4 Chr19: 18233127 0.579 0.336 0.301 9.76 0.005922 

 CpG5 Chr19: 18233105 0.556 0.309 0.273 9.95 0.008828 

PDE4C CpG6 Chr19: 18233091 0.115 0.013 -0.039 11.89 0.618456 

(N = 21) CpG7 Chr19: 18233082 0.115 0.013 -0.039 11.89 0.621088 

 CpG8 Chr19: 18233079 0.151 0.023 -0.029 11.84 0.512878 

 CpG9 Chr19: 18233070 0.240 0.057 0.008 11.63 0.295684 

 CpG10 Chr19: 18233058 -0.091 0.008 -0.044 11.92 0.695193 

 CpG11 Chr19: 18233048 0.265 0.070 0.021 11.54 0.245144 

 CpG12 Chr19: 18233042 -0.151 0.023 -0.032 12.14 0.525183 

 CpG1 Chr1: 207823681 0.305 0.093 0.048 11.86 0.166966 

 CpG2 Chr1: 207823675 0.138 0.019 -0.030 12.34 0.541185 

C1orf132 CpG3 Chr1: 207823672 0.055 0.003 -0.047 12.44 0.806656 

(N = 22) CpG4 Chr1: 207823660 0.247 0.061 0.014 12.07 0.266854 

 CpG5 Chr1: 207823657 0.239 0.057 0.010 12.09 0.283866 

 CpG6 Chr1: 207823637 0.058 0.003 -0.046 12.43 0.798367 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 
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Table S14: Statistical parameters obtained in a multiple regression model with the three 

CpGs in genes FHL2, EDARADD and PDE4C in bone samples from BDS. 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Coefficient P-value 

(Intercept) 19.753 0.652 

EDARADD CpG3 -53.625 0.283 

PDE4C CpG3 118.822 0.002 

FHL2 CpG3 27.766 0.505 
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D. DNA methylation age estimation in buccal swabs  
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Table S15: Univariate linear regression analysis of the nine CpG sites in ELOVL2 locus 

in 23 buccal swabs. 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly.  

 

 

Table S16:  Statistical parameters obtained in a multiple regression model with the three 

CpGs in gene ELOVL2 in buccal swabs from living individuals. 

 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

Table S17:  Statistical parameters obtained in a multiple regression model with the three 

CpGs in genes ELOVL2, TRIM59 and KLF14 in buccal swabs from living individuals. 

 

 

 

 

Abbreviations: Significant p-values are in bold. 

 

 

 

 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

CpG1 Chr6: 11044628 0.823 0.677 0.662 14.40 0.000001 

CpG2 Chr6: 11044631 0.533 0.284 0.250 21.45 0.008807 

CpG3 Chr6: 11044634 0.631 0.398 0.370 19.66 0.001241 

CpG4 Chr6: 11044640 0.787 0.619 0.601 15.65 0.000008 

ELOVL2 CpG5 Chr6: 11044642 0.806 0.650 0.633 14.99 0.000003 

(N = 23) CpG6 Chr6: 11044644 0.683 0.467 0.441 18.51 0.000328 

CpG7 Chr6: 11044647 0.622 0.387 0.357 19.85 0.001538 

CpG8 Chr6: 11044655 0.649 0.421 0.394 19.29 0.000808 

CpG9 Chr6: 11044661 0.485 0.235 0.199 22.17 0.019061 

ELOVL2 Coefficient P-value 

(Intercept) -83.022 0.000 

CpG1 81.881 0.023 

CpG4 76.023 0.011 

CpG5 11.870 0.656 

Marker Coefficient P-value 

(Intercept) -9.019 0.003 

ELOVL2  19.386 0.291 

TRIM59 81.446 0.000 

KLF14 68.295 0.111 
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E. DNA methylation age estimation through multi-tissues 
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Table S18: Univariate linear regression analysis of the 37 CpG sites in ELOVL2, FHL2, 

EDARADD and PDE4C loci in 204 samples including blood from living and deceased 

individuals, teeth from living and deceased individuals and bone collected during 

autopsies. 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

CpG1 Chr6: 11044628 0.700 0.490 0.488 16.38 6.34 × 10
-31

 

CpG2 Chr6: 11044631 0.614 0.377 0.374 18.10 3.36 × 10
-22

 

CpG3 Chr6: 11044634 0.653 0.427 0.424 17.37 7.77 × 10
-26

 

CpG4 Chr6: 11044640 0.603 0.364 0.361 18.29  2.51 × 10
-21

 

ELOVL2 CpG5 Chr6: 11044642 0.706 0.499 0.496 16.24  1.12 × 10
-31

 

(N = 201) CpG6 Chr6: 11044644 0.696 0.484 0.481 16.48 2.09 × 10
-30

 

CpG7 Chr6: 11044647 0.595 0.354 0.351 18.44 1.27 × 10
-20

 

CpG8 Chr6: 11044655 0.629 0.395 0.392 17.84 1.66 × 10
-23

 

CpG9 Chr6: 11044661 0.575 0.331 0.328 18.76 4.17 × 10
-19

 

CpG1 Chr2:105399282 0.662 0.438 0.435 17.07 5.92 × 10
-27

 

CpG2 Chr2: 105399288  0.605 0.366 0.363 18.12 1.10 × 10
-21

 

CpG3 Chr2: 105399291  0.614 0.377 0.374 17.97 1.99 × 10
-22

 

CpG4 Chr2: 105399297  0.512 0.262 0.258 19.56 6.09 × 10
-15

 

CpG5 Chr2: 105399300  0.626 0.392 0.389 17.76 1.84 × 10
-23

 

FHL2 CpG6 Chr2: 105399310  0.527 0.277 0.274 19.36 7.14 × 10
-16

 

(N = 203) CpG7 Chr2: 105399314  0.313 0.098 0.094 21.62 0.000005 

CpG8 Chr2: 105399316  0.387 0.150 0.145 20.99 1.20 × 10
-8
 

CpG9 Chr2: 105399323  0.079 0.006 0.001 22.70 0.264956 

CpG10 Chr2: 105399327  0.024 0.001 -0.004 22.76 0.738171 

CpG11 Chr2: 105399338 -0.460 0.211 0.207 20.22 5.23 × 10
-12

 

CpG12 Chr2: 105399340 -0.130 0.017 0.012 22.56 0.064529 

 CpG1 Chr1: 236394458 -0.030 0.001 -0.004 22.75 0.666693 

EDARADD CpG2 Chr1: 236394441 -0.517 0.267 0.264 19.49 3.41 × 10
-15

 

(N = 202) CpG3 Chr1: 236394382 -0.682 0.465 0.463 16.64 5.27 × 10
-29

 

 CpG4 Chr1: 236394370 -0.403 0.163 0.159 20.83 2.61 × 10
-9
 

CpG1 Chr19: 18233139 0.497 0.247 0.243 19.97 1.11 × 10
-13

 

CpG2 Chr19: 18233133 0.605 0.366 0.363 18.32 4.50 × 10
-21

 

CpG3 Chr19: 18233131 0.562 0.316 0.313 19.03 8.13 × 10
-18

 

CpG4 Chr19: 18233127 0.246 0.060 0.055 22.31 0.000506 

CpG5 Chr19: 18233105 0.456 0.208 0.204 20.49 1.69 × 10
-11

 

PDE4C CpG6 Chr19: 18233091 -0.141 0.020 0.015 22.79 0.048212 

(N = 196) CpG7 Chr19: 18233082 0.058 0.003 -0.002 22.98 0.419384 

CpG8 Chr19: 18233079 -0.135 0.018 0.013 22.80 0.058330 

CpG9 Chr19: 18233070 -0.298 0.089 0.084 21.97 0.000021 

CpG10 Chr19: 18233058 -0.042 0.002 -0.003 23.01 0.556208 

CpG11 Chr19: 18233048 -0.095 0.009 0.004 23.03 0.192072 

CpG12 Chr19: 18233042 -0.014 0.000 -0.005 23.13 0.843371 
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Table S19: Univariate linear regression analysis of the 43 CpG sites of ELOVL2, FHL2, 

EDARADD, PDE4C and C1orf132 loci in 133 samples including blood from deceased 

individuals, teeth from living and deceased individuals and bone collected during autopsies. 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

CpG1 Chr6: 11044628 0.516 0.266 0.260 14.34 3.42 × 10
-10

 

CpG2 Chr6: 11044631 0.508 0.258 0.253 14.41 6.63 × 10
-10

 

CpG3 Chr6: 11044634 0.439 0.192 0.186 15.04 1.78 × 10
-7
 

CpG4 Chr6: 11044640 0.447 0.200 0.194 14.97 9.56 × 10
-8
 

ELOVL2 CpG5 Chr6: 11044642 0.563 0.317 0.312 13.84 3.09 × 10
-12

 

(N = 130) CpG6 Chr6: 11044644 0.524 0.274 0.269 14.26 1.61 × 10
-10

 

CpG7 Chr6: 11044647 0.425 0.181 0.174 15.15 4.57 × 10
-7
 

CpG8 Chr6: 11044655 0.488 0.238 0.232 14.61 3.82 × 10
-9
 

CpG9 Chr6: 11044661 0.478 0.229 0.223 14.70 8.56 × 10
-9
 

CpG1 Chr2:105399282 0.365 0.133 0.127 15.35 0.000017 

CpG2 Chr2:105399288 0.342 0.117 0.110 15.49 0.000060 

CpG3 Chr2:105399291 0.357 0.127 0.121 15.40 0.000027 

CpG4 Chr2:105399297 0.262 0.069 0.062 15.91 0.002368 

CpG5 Chr2:105399300 0.360 0.129 0.123 15.38 0.000023 

FHL2 CpG6 Chr2:105399310 0.266 0.071 0.064 15.89 0.002044 

(N = 132) CpG7 Chr2:105399314 0.210 0.044 0.037 16.12 0.015669 

CpG8 Chr2:105399316 0.257 0.066 0.059 15.93 0.002951 

CpG9 Chr2:105399323 0.092 0.008 0.001 16.42 0.295906 

CpG10 Chr2:105399327 0.040 0.002 -0.006 16.47 0.652528 

CpG11 Chr2:105399338 -0.149 0.022 0.015 16.30 0.088475 

CpG12 Chr2:105399340 -0.033 0.001 0.007 16.48 0.704589 

 CpG1 Chr1:236394458 -0.034 0.001 -0.007 16.51 0.66260 

EDARADD CpG2 Chr1:236394441 -0.254 0.065 0.057 15.98 0.003365 

(N = 131) CpG3 Chr1:236394382 -0.416 0.173 0.166 15.03 7.90 × 10
-7
 

 CpG4 Chr1:236394370 -0.305 0.093 0.086 15.74 0.000395 

CpG1 Chr19:18233139 0.362 0.131 0.124 15.52 0.000031 

CpG2 Chr19:18233133 0.470 0.221 0.214 14.70 2.87 × 10
-8

 

CpG3 Chr19:18233131 0.419 0.176 0.169 15.12 0.000001 

CpG4 Chr19:18233127 0.307 0.094 0.087 15.85 0.000465 

CpG5 Chr19:18233105 0.314 0.099 0.091 15.81 0.000340 

PDE4C CpG6 Chr19:18233091 0.063 0.004 -0.004 16.62 0.485909 

(N = 125) CpG7 Chr19:18233082 0.137 0.019 0.011 16.49 0.125778 

CpG8 Chr19:18233079 0.042 0.002 -0.006 16.64 0.642685 

CpG9 Chr19:18233070 -0.115 0.013 0.005 16.54 0.200083 

CpG10 Chr19:18233058 0.081 0.006 -0.002 16.10 0.373614 

CpG11 Chr19:18233048 -0.015 0.000 -0.008 16.55 0.872788 

CpG12 Chr19:18233042 0.032 0.001 -0.007 16.54 0.723825 

CpG1 Chr1:207823681 -0.455 0.207 0.200 14.67 7.04 × 10
-8
 

CpG2 Chr1:207823675 -0.311 0.097 0.089 15.65 0.000356 

C1orf132 CpG3 Chr1:207823672 -0.197 0.039 0.031 16.15 0.025508 

(N = 126) CpG4 Chr1:207823660 -0.195 0.038 0.030 16.17 0.028147 

CpG5 Chr1:207823657 -0.335 0.112 0.105 15.47 0.000133 

CpG6 Chr1:207823637 -0.065 0.004 -0.004 16.46 0.468501 
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Table S20: Univariate linear regression analysis of the nine CpG sites in gene ELOVL2 

in blood samples from living and deceased individuals, bone samples collected during 

autopsies, buccal swabs from living individuals and tooth samples from living and 

deceased individuals. 

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error. 

Significant p-values are in bold. The strongest age-associated CpG site is in bold and 

underlined. Genomic positions were based on the GRCh38/hg38 assembly. 

 

 

 

 

 

 

 

 

 

 

 

Gene 
CpG 

site 
Location R R

2
 

Corrected 

R
2
 

SE P-value 

 CpG1 Chr6: 11044628 0.712 0.507 0.505 17.06 5.58 × 10
-36

 

 CpG2 Chr6: 11044631 0.626 0.392 0.389 18.97 9.29 × 10
-26

 

 CpG3 Chr6: 11044634 0.678 0.460 0.458 17.86 1.50 × 10
-31

 

 CpG4 Chr6: 11044640 0.634 0.402 0.399 18.80 1.50 × 10
-26

 

ELOVL2 CpG5 Chr6: 11044642 0.736 0.541 0.539 16.46 2.07 × 10
-39

 
(N = 224) CpG6 Chr6: 11044644 0.708 0.501 0.499 17.16 2.08 × 10

-35
 

 CpG7 Chr6: 11044647 0.618 0.381 0.379 19.12 6.12 × 10
-25

 

 CpG8 Chr6: 11044655 0.661 0.437 0.434 18.25 1.80 × 10
-29

 

 CpG9 Chr6: 11044661 0.582 0.338 0.335 19.77 1.16 × 10
-21
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A. DNA methylation age estimation in blood samples  
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Figure S1: Reproducibility of direct bisulfite Sanger sequencing. Each plot represents DNAm levels of each gene obtained from one sample (one 

individual) that was run in duplicate analysis. A) DNAm levels of the four CpGs located at EDARADD gene in a blood sample from a male, aged 

77 years old; B) DNAm levels of the nine CpGs located at ELOVL2 gene in a blood sample from a male, aged 55 years old; C) DNAm levels of 

the six CpGs located at C1orf132 gene in a blood sample from a male, aged 28 years old; D) DNAm levels of  the 12 CpGs located at PDE4C gene 

in a blood sample from a female, aged 2 years old; E) DNAm levels of the 12 CpGs located at FHL2 gene in a blood sample from a female, aged 

76 years old. Colors represent two separate analysis of the same individual (PCR amplification and Sanger sequencing). The concordance between 

the two colors within each plot showed the reproducibility of direct bisulfite Sanger sequencing method.
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Figure S2: Actual methylation (0–100%) obtained for the best-selected CpGs in blood samples from living (A) and deceased individuals (B). 

Actual methylation versus expected methylation of known quantities of methylated to unmethylated DNA standards in blood samples from living 

(C) and deceased individuals (D). 
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Figure S3: Correlations between DNAm levels and chronological age in 53 blood samples from living individuals obtained through Sanger 

sequencing methodology. A) Positive correlation between methylation levels and chronological age for ELOVL2 CpG6 (green), FHL2 CpG3 

(yellow) and PDE4C CpG2 (dark red) markers; B) negative correlation for EDARADD CpG3 marker (blue). The corresponding Spearman 

correlation coefficients (r) are depicted inside each plot. 
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B) Predicted Age = (-139.712) + 

282.380 × DNAm level FHL2 

CpG3. 
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Figure S4: Plots with predicted age (years) versus chronological age (years) of the 53 

living individuals using simple linear regression models developed with the best CpG site 

in each gene through the Sanger sequencing methodology. MAD value and Spearman 

correlation coefficient are plotted in each chart. A) Predicted age of the 53 living 

individuals based on methylation levels of the ELOVL2 CpG6. For two individuals aged 

2 and 4 years old, negative prediction values were obtained and were set at 0; B) Predicted 

age of the 53 living individuals based on methylation levels of the FHL2 CpG3. For two 

individuals aged 1 and 3 years old, negative prediction values were obtained and were set 

at 0; C) Predicted age of the 53 living individuals based on methylation levels of the 

EDARADD CpG3. For three individuals aged 1 and 3 years old, negative prediction 

values were obtained and were set at 0; D) Predicted age of the 53 living individuals based 

on methylation levels of the PDE4C CpG2. For two individuals aged 1 and 4 years old, 

negative prediction values were obtained and were set at 0.  
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Figure S5: Correlations between DNAm levels and chronological age in 59 blood samples from living individuals obtained through SNaPshot 

methodology. A) Positive correlation between methylation levels and chronological age for CpG sites in ELOVL2 (red), FHL2 (dark blue), KLF14 

(green) and TRIM59 (yellow) genes; B) negative correlation for C1orf132 locus (light blue). The corresponding Spearman correlation coefficients 

(r) are depicted inside each plot. 
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Figure S6: Plots with predicted age (years) versus chronological age (years) of the 59 

living individuals using simple linear regression models developed with the five CpGs in 

each gene through the multiplex methylation SNaPshot methodology. MAD value and 

Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age of the 56 

living individuals based on methylation levels of the CpG from ELOVL2 gene. For the 

five individuals aged 2, 4, 5, 6 and 11 years old, negative prediction values were obtained 

and were set at 0; B) Predicted age of the 59 living individuals based on methylation 

levels of the CpG from FHL2 gene; C) Predicted age of the 58 living individuals based 

on methylation levels of the CpG from KLF14 gene; D) Predicted age of the 59 living 

individuals based on methylation levels of the CpG from C1orf132 gene; E) Predicted 

age of the 59 living individuals based on methylation levels of the CpG from TRIM59 

gene.  
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Figure S7: Correlations between DNAm levels and chronological age in 51 blood samples from deceased individuals obtained through Sanger 

sequencing methodology. A) Positive correlation between methylation levels and chronological age for ELOVL2 CpG4 (green), PDE4C CpG2 

(dark red),  FHL2 CpG2 (yellow) markers; B) negative correlation between methylation levels and chronological age for C1orf132 CpG1 (gray) 

and EDARADD CpG3 (blue) markers. The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S8: Plots with predicted age (years) versus chronological age (years) of the 51 

deceased individuals using simple linear regression models developed with the best CpG 

site in each gene through the Sanger sequencing methodology. MAD value and Spearman 

correlation coefficient (r) are plotted in each chart. A) Predicted age of the 49 deceased 

individuals based on methylation levels of the ELOVL2 CpG4; B) Predicted age of the 49 

deceased individuals based on methylation levels of the PDE4C CpG2; C) Predicted age 

of the 49 deceased individuals based on methylation levels of the C1orf132 CpG1; D) 

Predicted age of the 51 deceased individuals based on methylation levels of the 

EDARADD CpG3; E) Predicted age of the 51 deceased individuals based on methylation 

levels of the FHL2 CpG2.    
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Figure S9: Correlations between DNAm levels and chronological age in 62 blood samples from deceased individuals obtained through SNaPshot 

methodology. A) Positive correlation between methylation levels and chronological age for CpG sites in ELOVL2 (red), FHL2 (dark blue), KLF14 

(green) and TRIM59 (yellow) genes; B) negative correlation between methylation levels and chronological age for C1orf132 locus (light blue). 

The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S10: Plots with predicted age (years) versus chronological age (years) of the 62 

deceased individuals using simple linear regression models developed with the five CpGs 

in each gene through the multiplex methylation SNaPshot methodology. MAD value and 

Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age of the 62 

deceased individuals based on methylation levels of the CpG from ELOVL2 gene; B) 

Predicted age of the 62 deceased individuals based on methylation levels of the CpG from 

FHL2 gene; C) Predicted age of the 59 deceased individuals based on methylation levels 

of the CpG from KLF14 gene; D) Predicted age of the 60 deceased individuals based on 

methylation levels of the CpG from C1orf132 gene; E) Predicted age of the 61 deceased 

individuals based on methylation levels of the CpG from TRIM59 gene. 
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Figure S11: Correlations between DNAm levels and chronological age in 144 blood samples from living and deceased individuals obtained through 

Sanger sequencing methodology. A) Positive correlation between methylation levels and age for ELOVL2 CpG6 (green), FHL2 CpG1 (yellow) 

and PDE4C CpG2 (dark red) markers; B) negative correlation between methylation levels and chronological age for EDARADD CpG3 (blue). The 

corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S12: Plots with predicted age (years) versus chronological age (years) of the 144 

living and deceased individuals using simple linear regression models developed with the 

best CpG site in each gene through the Sanger sequencing methodology. MAD value and 

Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age of the 141 

living and deceased individuals based on methylation levels of the ELOVL2 CpG6; For 

two individuals aged 2 and 4 years old, negative prediction values were obtained and were 

set at 0; B) Predicted age of the 141 living and deceased individuals based on methylation 

levels of the PDE4C CpG2. For two individuals aged 1 and 15 years old, negative 

prediction values were obtained and were set at 0; C) Predicted age of the 144 living and 

deceased individuals based on methylation levels of the FHL2 CpG1; D) Predicted age 

of the 143 living and deceased individuals based on methylation levels of the EDARADD 

CpG3. 
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Figure S13: Correlations between DNAm levels and chronological age in 121 blood samples from living and deceased individuals obtained through 

SNaPshot methodology. A) Positive correlation between methylation levels and chronological age for CpG sites in ELOVL2 (red), FHL2 (dark 

blue), KLF14 (green) and TRIM59 (yellow) genes; B) negative correlation between methylation levels and chronological age for C1orf132 locus 

(light blue). The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S14: Plots with predicted age (years) versus chronological age (years) of the 121 

living and deceased individuals using simple linear regression models developed with the 

five CpGs in each gene through the multiplex methylation SNaPshot methodology. MAD 

value and Spearman correlation value (r) are plotted in each chart. A) Predicted age of 

the 118 individuals based on methylation levels of the CpG from ELOVL2 gene. For two 

individuals aged 2 and 5 years old, negative prediction values were obtained and were set 

at 0; B) Predicted age of the 121 individuals based on methylation levels of the CpG from 

FHL2 gene; C) Predicted age of the 117 individuals based on methylation levels of the 

CpG from KLF14 gene; D) Predicted age of 119 individuals the based on methylation 

levels of the CpG from C1orf132 gene; E) Predicted age of the 121 individuals based on 

methylation levels of the CpG from TRIM59 gene.  
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B. DNA methylation age estimation in tooth samples  
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Figure S15: A) Actual methylation (0–100%) obtained for the best-selected CpGs in tooth samples from living and deceased individuals. B) 

Actual methylation versus expected methylation of known quantities of methylated to unmethylated DNA standards.  
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Figure S16: Positive correlation between DNAm levels and chronological age in 31 tooth 

samples from living and deceased individuals obtained through Sanger sequencing 

methodology for ELOVL2 CpG3 (green), FHL2 CpG4 (yellow) and PDE4C CpG1 (dark 

red) markers. The corresponding Spearman correlation coefficients (r) are depicted inside 

the plot.  
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Figure S17: Plots with predicted age (years) versus chronological age (years) of the 31 

living and deceased individuals using simple linear regression models developed with the 

best CpG site in each gene through the Sanger sequencing methodology. MAD value and 

Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age of the 27 

individuals based on the methylation levels of the PDE4C CpG1; B) Predicted age based 

on 31 individuals based on methylation levels of the ELOVL2 CpG3. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S18: Positive correlation between DNAm levels and chronological age in 24 tooth 

samples from living and deceased individuals obtained through SNaPshot methodology 

for CpGs in ELOVL2 (red), KLF14 (green) and TRIM59 (yellow) genes. The 

corresponding Spearman correlation coefficients (r) are depicted inside the plot. 
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Figure S19: Plots with predicted age (years) versus chronological age (years) of the 24 

living and deceased individuals using simple linear regression models developed with the 

three CpGs through the multiplex methylation SNaPshot. MAD value and Spearman 

correlation coefficient (r) are plotted in each chart. A) Predicted age of the 23 individuals 

based on methylation levels of the CpG from KLF14 gene; B) Predicted age of the 23 

individuals based on methylation levels of the CpG from ELOVL2 gene; C) Predicted age 

of the 24 individuals based on methylation levels of the CpG from TRIM59 gene. 
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C. DNA methylation age estimation in fresh bone samples 
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Figure S20: Actual methylation (0–100%) obtained for the best-selected CpGs in bone samples collected during autopsies (A) and in bones 

collected from BDS (B). Actual methylation versus expected methylation of known quantities of methylated to unmethylated DNA standards in 

bones collected during autopsies (C) and bones collected from BDS (D). 
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Figure S21: Correlations between DNAm levels and chronological age in 29 fresh bone samples collected during autopsies obtained through 

Sanger sequencing methodology. A) Positive correlation between methylation levels and chronological age for ELOVL2 CpG6 (green), FHL2 

CpG1 (yellow), PDE4C CpG2 (dark red); B) negative correlation between methylation levels and chronological age for EDARADD CpG3 (blue) 

and C1orf132 CpG1 (gray). The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 

 

r = -0.679 
r = -0.779 
 

B 

r = 0.840 

r = 0.663 

r = 0.746 

 

A 

ELOVL2 CpG6 

FHL2 CpG1 

PDE4C CpG2 

EDARADD CpG3 

C1orf132 CpG1 



                                                  Annex VI. Supplementary Material Figures 

DNA methylation as an age predictor in living and deceased individuals 

 

Page | 441 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d
 A

g
e 

(y
ea

rs
)

Chronological Age (years)

r = 0.840  

MAD = 5.73 

A: ELOVL2 CpG6 

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d

 A
g

e 
(y

ea
rs

)

Chronological Age (years)

B: C1orf132 CpG1 

r = 0.779 

MAD = 6.35  

B) Predicted Age = 200.069 – 

167.935 × DNAm level 

C1orf132 CpG1.  

C) Predicted Age = (-48.396) + 

145.109 × DNAm level FHL2 

CpG1. 

A) Predicted Age = (-91.106) + 

192.805 × DNAm level ELOVL2 

CpG6.  

0

20

40

60

80

0 20 40 60 80 100

P
re

d
ic

te
d

 A
g

e 
(y

ea
rs

)

Chronological Age (years)
C: FHL2 CpG1 

r = 0.663 

MAD = 8.39 



Annex VI. Supplementary Material Figures 

DNA methylation as an age predictor in living and deceased individuals 

Page | 442 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S22: Plots with predicted age (years) versus chronological age (years) of the 29 

fresh bone samples collected during autopsies using simple linear regression models 

developed with the best CpG site in each gene through the Sanger sequencing 

methodology. MAD value and Spearman correlation coefficient (r) are plotted in each 

chart. A) Predicted age of the 29 individuals based on methylation levels of the ELOVL2 

CpG6; B) Predicted age of the 29 individuals based on methylation levels of the C1orf132 

CpG1; C) Predicted age of the 29 individuals based on methylation levels of the FHL2 

CpG1; D) Predicted age of the 28 individuals based on methylation levels of the PDE4C 

CpG2; E) Predicted age of the 29 individuals based on methylation levels of the 

EDARADD CpG3. 
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Figure S23: Correlations between DNAm levels and chronological age in the 31 fresh bone samples collected during autopsies obtained through 

SNaPshot methodology. A) Positive correlation between methylation levels and chronological age for CpG sites in ELOVL2 (red), FHL2 (blue), 

KLF14 (green) and TRIM59 (yellow) genes; B) negative correlation between methylation levels and chronological age for CpG in C1orf132 locus 

(light blue). The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S24: Plots with predicted age (years) versus chronological age (years) of the 31 

bone samples from deceased individuals collected during autopsies using simple linear 

regression models developed with the five CpGs in each gene through the multiplex 

methylation SNaPshot. MAD value and Spearman correlation coefficient (r) are plotted 

in each chart. A) Predicted age of the 31 individuals based on  methylation levels of the 

CpG from ELOVL2 gene; B) Predicted age of the 31 individuals based on CpG from 

FHL2 gene; C) Predicted age of the 31 individuals based on methylation levels of the 

CpG from KLF14 gene; D) Predicted age of the 31 individuals based on methylation 

levels of the CpG from C1orf132 gene; E) Predicted age of the 31 individuals based on 

methylation levels of the CpG from TRIM59 gene.  
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Figure S25: Correlations between DNAm levels and chronological age in 22 bone samples collected from BDS obtained through Sanger 

sequencing methodology. A) Positive correlation between methylation levels and chronological age for FHL2 CpG3 (green) and PDE4C CpG3 

(yellow); B) negative correlation between methylation levels and chronological age for EDARADD CpG3 (blue). The corresponding Spearman 

correlation coefficients (r) are depicted inside each plot.  
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Figure S26: Plots with predicted age (years) versus chronological age (years) of 22 bone 

samples collected from BDS using simple linear regression models developed with the 

best CpG site in each gene through the Sanger sequencing methodology. MAD value and 

Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age of the 21 

individuals based on methylation levels of the PDE4C CpG3; B) Predicted age of the 22 

individuals based on methylation levels of the FHL2 CpG3; C) Predicted age of the 22 

individuals based on methylation levels of the EDARADD CpG3. 
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D. DNA methylation age estimation in buccal swabs  
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Figure S27: A) Actual methylation (0–100%) obtained for the best-selected CpGs in buccal swabs from living individuals. B) Actual methylation 

versus expected methylation of known quantities of methylated to unmethylated DNA standards.
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Figure S28: Positive correlation between DNAm levels and chronological age in 23 

buccal swabs from living individuals obtained through Sanger sequencing methodology 

for ELOVL2 CpG1 (blue), ELOVL2 CpG5 (yellow) and ELOVL2 CpG4 (green). The 

corresponding Spearman correlation coefficients (r) are depicted inside the plot. 
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Figure S29: Plots with predicted age (years) versus chronological age (years) of the 23 

buccal swabs from living individuals using simple linear regression models developed 

with the best CpGs in ELOVL2 gene through the Sanger sequencing methodology. MAD 

value and Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age 

based on methylation levels of ELOVL2 CpG1; B) Predicted age based on methylation 

levels of ELOVL2 CpG5; C) Predicted age based on methylation levels of ELOVL2 CpG4.  
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Figure S30: Positive correlation between DNAm levels and chronological age in 39 

buccal swabs from living individuals obtained through SNaPshot methodology for CpG 

sites in ELOVL2 (red), KLF14 (green) and TRIM59 (yellow) genes. The corresponding 

Spearman correlation coefficients (r) are depicted inside the plot. 
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Figure S31: Plots with predicted age (years) versus chronological age (years) of the 39 

buccal swabs using simple linear regression models developed with the three CpGs in 

each gene through the multiplex methylation SNaPshot. MAD value and Spearman 

correlation coefficient (r) are plotted in each chart. A) Predicted age of the 36 individuals 

based on methylation levels of the CpG from ELOVL2 gene; B) Predicted age of the 35 

the individuals based on methylation levels of the CpG from KLF14 gene.  
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E. DNA methylation age estimation through multi-tissues   
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Figure S32: Correlations between DNAm levels and chronological age in 204 samples included in group 1 (including blood samples from living 

and deceased individuals, tooth from living and deceased and bone samples collected from autopsies) obtained through Sanger sequencing 

methodology. A) Positive correlation between methylation levels and chronological age for ELOVL2 CpG5 (green), PDE4C CpG2 (dark red),  

FHL2 CpG1 (yellow) markers; B) negative correlation between methylation levels and chronological age for EDARADD CpG3 (blue) markers. 

The corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S33: Plots with predicted age (years) versus chronological age (years) of the 204 

samples, including blood samples from living and deceased individuals, tooth from living 

and deceased and bone samples collected from autopsies, using simple linear regression 

models developed with the best CpG site in each gene through the Sanger sequencing 

methodology. MAD value and Spearman correlation coefficient (r) are plotted in each 

chart. A) Predicted age of the 201 individuals based on methylation levels of the ELOVL2 

CpG5; B) Predicted age of the 202 individuals based on methylation levels of EDARADD 

CpG3; C) Predicted age of the 203 individuals based on methylation levels of the FHL2 

CpG1; D) Predicted age of the 197 individuals based on methylation levels of the PDE4C 

CpG2.  

 

 

 

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d
 A

g
e 

(y
ea

rs
)

Chronological Age (years)

r = 0.679

MAD = 13.99

D: PDE4C CpG2

D) Predicted Age = 0.468 + 

101.410 × DNAm level PDE4C 

CpG2. 



Annex VI. Supplementary Material Figures 

 

DNA methylation as an age predictor in living and deceased individuals 

Page | 462 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S34: Correlations between DNAm levels and chronological age in 133 samples included in group 2 (including blood from deceased 

individuals, tooth from living and deceased individuals and bone samples collected from autopsies) obtained through Sanger sequencing 

methodology. A) Positive correlation between methylation levels and chronological age for ELOVL2 CpG5 (green), PDE4C CpG2 (dark red),  

FHL2 CpG1 (yellow) markers; B) negative correlation between methylation levels and chronological age for C1orf132 CpG1 (gray) and 

EDARADD CpG3 (blue) markers. The corresponding Spearman correlation coefficients (r) are depicted inside each plot.
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Figure S35: Plots with predicted age (years) versus chronological age (years) of the 133 

samples, including blood from deceased individuals, tooth from living and deceased 

individuals and bone samples collected from autopsies, using simple linear regression 

models developed with the best CpG site in each gene through the Sanger sequencing 

methodology. MAD value and Spearman correlation coefficient (r) are plotted in each 

chart. A) Predicted age of the 130 individuals based on methylation levels of the ELOVL2 

CpG5; B) Predicted age of the 131 individuals based on methylation levels of EDARADD 

CpG3; C) Predicted age of the 132 individuals based on methylation levels of the FHL2 

CpG1; D) Predicted age of the 126 individuals based on methylation levels of the PDE4C 

CpG2.  

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d

 A
g

e 
(y

ea
rs

)

Chronological Age (years)
E: FHL2 CpG1

r = 0.383

MAD = 12.64

E) Predicted Age = 17.967 + 

56.274 × DNAm level FHL2 

CpG1. 

D) Predicted Age = 119.899 - 

95.515 × DNAm level EDARADD 

CpG3. 
0

20

40

60

80

100

0 20 40 60 80 100

P
re

d
ic

te
d

 A
g

e 
(y

ea
rs

)

Chronological Age (years)

r = 0.454

MAD = 12.40

D: EDARADD CpG3



                                                 Annex VI. Supplementary Material Figures 

DNA methylation as an age predictor in living and deceased individuals 

Page | 465 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S36: Plot with predicted age (years) versus chronological age (years) of the 224 

samples, including blood samples from living and deceased individuals, tooth from living 

and deceased individuals, buccal swabs and bone collected during autopsies, using simple 

linear regression models developed with the best CpG site in ELOVL2 gene through the 

Sanger sequencing methodology. MAD value and Spearman correlation coefficient (r) 

are plotted in the chart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S37: Predicted versus chronological ages using the one locus multi-tissue model 

developed for ELOVL2 gene included blood samples from living (1), blood samples from 

deceased individuals (2), bone samples collected from autopsies (3), tooth samples from 

living (4), tooth samples from deceased individuals (5) and buccal swabs (6).   
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Figure S38: Correlations between DNAm levels and chronological age in 176 samples, including blood samples from living and deceased 

individuals, bone samples collected from autopsies and teeth from living and deceased individuals, obtained through SNaPshot methodology. A) 

Positive correlation between methylation levels and chronological age for CpG sites in ELOVL2 (red), FHL2 (blue), KLF14 (green) and TRIM59 

(yellow) genes; B) negative correlation between methylation levels and chronological age for CpG site in C1orf132  gene (light blue). The 

corresponding Spearman correlation coefficients (r) are depicted inside each plot. 
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Figure S39: Plots with predicted age (years) versus chronological age (years) of the 176 

samples, including blood samples from living and deceased individuals, tooth samples 

from living and deceased individuals and bone samples collected from autopsies, using 

simple linear regression models developed with the five CpGs through the multiplex 

methylation SNaPshot methodology. MAD value and Spearman correlation coefficient 

(r) are plotted in each chart. A) Predicted age of the 172 individuals based on methylation 

levels of the ELOVL2; B) Predicted age of the 175 individuals based on methylation levels 

of the FHL2; C) Predicted age of the 174 individuals based on methylation levels of the 

C1orf132; D) Predicted age of the 171 individuals based on methylation levels of the 

KLF14; E) Predicted age of the 175 individuals based on methylation levels of the 

TRIM59. 
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Figure S40: Positive correlation between DNAm levels and chronological age in 215 

samples (including blood samples from living and deceased individuals, bone samples 

collected from autopsies, teeth from living and deceased individuals and buccal swabs 

from living individuals) obtained through SNaPshot methodology for CpGs in ELOVL2 

(red), KLF14 (green) and TRIM59 (yellow) genes. The corresponding Spearman 

correlation coefficients (r) are depicted inside the plot. 
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Figure S41: Plots with predicted age (years) versus chronological age (years) of the 215 

individuals, including blood samples from living and deceased individuals, bone samples 

collected from autopsies, teeth from living and deceased individuals and buccal swabs 

from living individuals, using simple linear regression models developed with the three 

CpGs in each gene through the multiplex methylation SNaPshot methodology. MAD 

value and Spearman correlation coefficient (r) are plotted in each chart. A) Predicted age 

of the 208 individuals based on methylation levels of the CpG from ELOVL2 gene; B) 

Predicted age of the 206 individuals based on methylation levels of the CpG from KLF14 

gene; C) Predicted age of the 210 individuals based on methylation levels of the CpG 

from TRIM59 gene.  
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 21/07/2018 

Esqueleto: CEI/XXI_87 

Conservação geral do esqueleto: Esqueleto frágil, em mau estado de conservação. 

Fémures no geral degradados, essencialmente na zona das epífises e diáfises.  

Fémur esquerdo: Cabeça do fémur em mau estado de preservação, exposição do tecido 

trabecular na região próxima do colo anatómico; grande Trocânter: exposição do tecido 

trabecular; pequeno Trocânter: exposição do tecido trabecular; perda do côndilo lateral 

na região posterior e lateral; evidência de eburnação no côndilo medial; raspagem de osso 

em meio da diáfise (norma posterior, possível extracção de DNA anterior); rebordo de 

osteofitose no côndilo medial.  

Fémur direito: Cabeça do fémur: exposição do tecido trabecular; grande Trocânter: 

exposição mais evidênciada do tecido trabecular comparativamente ao fémur esquerdo; 

pequeno Trocânter: exposição do tecido trabecular; degradação do côndilo lateral (menos 

severa em comparação ao fémur esquerdo); degradação na região posterior do osso. 

Dados AM: 

Sexo: F 

Idade Cronológica: 83 anos 

Ancestralidade:- 

Estatura: - 

Peça óssea retirada e lateralidade: Fémur esquerdo 

Medidas   

Não aconselhével (devido a degradação dos ossos) mas retiradas medidas.        
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Fémur esquerdo                                                                       

-Comprimento máximo : 36.8 cm 

-Comprimento fisiológico: 36.8 cm 

Fémur direito 

-Comprimento máximo : 37.3 cm 

-Comprimento fisiológico: 37.1 cm 

Observações:  

Fémur esquerdo e fémur direito: presentes fragmentados.  

 

 

 

Fotos 
 

 

Figura 1: Fémur direito e esquerdo do esqueleto CEI/XXI_87. Fotografia em norma 

anterior.  

 

 

 

 

 

 

 

 

 

Figura 2: Fémur direito e esquerdo do esqueleto CEI/XXI_87. Fotografia em norma 

posterior. Visível raspagem prévia do osso para possivelmente análises de DNA no fémur 

esquerdo.   

 

Foto 

Norma anterior 

Norma posterior 

Fotos ao nível dos côndilos 

em norma posterior  
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Figura 3: Fémur direito do esqueleto CEI/XXI_87. Fotografia em norma posterior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figura 6: Epífise distal do fémur esquerdo do CEI/XXI_87. Fotografia em norma 

posterior, visão lateral. 

 

Figura 4: Epífise distal do 

fémur direito do esqueleto 

CEI/XXI_87. Fotografia  

norma posterior. 

Figura 5: Fémur esquerdo do esqueleto CEI/XXI_87. 

Fotografica em norma posterior (A e B). Em B evidência de 

eburnação no côndilo medial.  

A B 
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 21/07/2018 

Esqueleto: CEI/XXI_128 

Conservação geral do esqueleto:  bom estado de conservação  

Dados AM: 

Sexo: F 

Idade Cronológica: 38 anos 

Ancestralidade:- 

Estatura: - 

Peça óssea retirada e lateralidade: Fémur direito 

Medidas                            

Fémur direito 

-Comprimento máximo: 44.7 cm 

-Comprimento fisiológico: 44.3 cm 

Fémur esquerdo      

 -Comprimento máximo: 44.4 cm 

-Comprimento fisiológico: 44.3 cm 

 

 

 

 

 

Foto 

Norma anterior 

Norma posterior 
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Fotos 
  

Figura 1: Fémur direito do esqueleto CEI/XXI_128. Fotografia em norma anterior.  

 

 

Figura 2: Fémur direito do esqueleto CEI/XXI_128. Fotografia em norma posterior.  
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 22/05/2018 

Esqueleto: CEI/XXI_296 

Conservação geral do esqueleto:  bom estado de conservação  

Dados AM: 

Sexo: M 

Idade Cronológica 77 anos 

Ancestralidade:- 

Estatura: - 

Peça óssea retirada e lateralidade: Fémur esquerdo 

Medidas                 

Fémur esquerdo 

-Comprimento máximo: 42.6 cm 

-Comprimento fisiológico: 42.5 cm 

Observações 

O indivíduo poderá ter cancro (dados antemortem). Não incluir no estudo. 

 

 

 

 

 

 

 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

 
 

 

 

 

 

 

 

 

 

 

Figura 1: Fémur direito do esqueleto CEI/XXI_296. Fotografia em norma anterior. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Annex VII. Description of bone samples collected from CEI/XXI 

DNA methylation as an age predictor in living and deceased individuals 

Page | 480 

Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 11/12/2018 

Esqueleto: CEI/XXI_62 

Conservação geral do esqueleto:  

Fémures preservados mas com alguma escamação essencialmente no fémur direito, 

côncilo lateral. Recolha de DNA anterior (raspagem) no fémur esquerdo. Ossos pesados. 

Dados AM: 

Sexo: M 

Idade Cronológica:  60 anos 

Ancestralidade:- 

Estatura: - 

Peça óssea retirada e lateralidade: Fémur direito 

Medidas: 

Fémur esquerdo 

-Comprimento fisiológico: 42 cm 

-Comprimento máximo: 42.2 cm 

Fémur direito 

-Comprimento fisiológico:  42 cm           

-Comprimento máximo: 42.5 cm 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

 

 

Figura 1: Fémur esquerdo do esqueleto CEI/XXI_ 62. Fotografia em norma anterior. 

 

 

Figura 2: Fémur esquerdo do esqueleto CEI/XXI_ 62. Fotografia em norma posterior. 

 

 

 

 

 

 

 

 

Figura 3: Fémur direito do esqueleto CEI/XXI_ 62. Fotografia em norma anterior. 

 

 

 

 

 

 

Figura 4: Fémur direito do esqueleto CEI/XXI_ 62. Fotografia em norma posterior. 
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Figura 5: Fémur direito esqueleto CEI/XXI_ 62. Vísivel erosão, fragmentação óssea no 

côndilo lateral. 
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 11/12/2018 

Esqueleto: CEI/XXI_78 

Dados AM: 

Sexo: M 

Idade Cronológica:  38 anos 

Ancestralidade:- 

Estatura:- 

Conservação: fémures pesados, preservados; recolha de DNA anterior (raspagem) no 

fémur esquerdo.  Fémures ligeiramente fragmentados nas epífises, mas são ossos 

completos.  

Peça óssea retirada e lateralidade: Fémur direito 

Medidas:  

Fémur direito 

-Comprimento fisiológico:  41.2 cm           

-Comprimento máximo: 41.7 cm  

Fémur esquerdo 

-Comprimento fisiológico: 41.9 cm 

-Comprimento máximo: 42 cm 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

 

 

 

 

 

Figura 1: Femur direito do esqueleto CEI/XXI_ 78. Fotografia em norma anterior.    

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2: Fémur direito do esqueleto CEI/XXI_ 78. Fotografia em norma posterior. 
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

Colecção de Esqueletos Identificados do Século XXI   

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 11/12/2018 

Esqueleto: CEI/XXI_103 

Dados AM: 

Sexo: F 

Idade Cronológica: 92 anos 

Ancrestralidade:- 

Estatura:- 

Conservação: fémures leves e fragmentados, côndilo lateral do fémur direito e do fémur 

esquerdo fragmentados. Côndilo lateral do fémur esquerdo mais fragmentado 

comparativamente ao direito. Fémur esquerdo, grande trocanter fragmentado. Ossos 

leves.  

Peça óssea retirada e lateralidade: Fémur esquerdo 

Medidas: Osso fragmentados; não fazer medições.     

 

 

 

 

 

 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

 

 

 

 

 

 

Figura 1: Fémur esquerdo do esqueleto CEI/XXI_103. Fotografia em norma anterior. 

 

 

 

 

 

 

 

Figura 2: Fémur esquerdo do esqueleto CEI/XXI_103. Fotografia em norma posterior. 

 

 

 

 

 

 

Figura 3: Fémur esquerdo do esqueleto CEI/XXI_103. Fotografia em norma posterior. 

Visível fragmentação no côndilo lateral. 

 

 

 

 

 

 

Figura 4: Fémur esquerdo do esqueleto CEI/XXI_103. Fotografia em norma anterior. 

Visível na região superior, o grande trocânter fragmentado. 
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Figura 5: Fémur direito do esqueleto CEI/XXI_103. Fotografia em norma anterior. 

 

 

 

 

 

 

 

Figura 6: Fémur direito do esqueleto CEI/XXI_103. Fotografia em norma posterior. 
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 11/12/2018 

Esqueleto: CEI/XXI_ 122 

Dados AM: 

Sexo: M 

Idade Cronológica: 55 anos 

Ancestralidade:-  

Estatura:- 

Conservação: fémures pesados, com alguma degradação nos côndilos e na cabeça 

femural, quer no fémur esquerdo quer no fémur direito.  

Peça óssea retirada e lateralidade: Fémur direito 

Medidas:  

Fémur esquerdo 

-Comprimento fisiológico: 42 cm  

-Comprimento máximo: 42.3 cm 

Fémur direito 

-Comprimento fisiológico:  42.7 cm           

-Comprimento máximo: 42.2 cm 

 

                                                                 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

 

 

 

 

 

Figura 1: Fémur direito do esqueleto CEI/XXI_122. Fotografia em norma anterior.  

 

 

 

 

 

 

Figura 2: Fémur direito do esqueleto CEI/XXI_122. Fotografia em norma posterior.  

 

 

 

 

 

 

 

 

 

 

 

Figura 3: Fémur esquerdo do esqueleto CEI/XXI_122. Fotografia em norma anterior.  

 

 

 

 

 

 

Figura 4: Fémur esquerdo do esqueleto CEI/XXI_122. Fotografia em norma anterior. 

Visível fragmentação ossea da cabeça do fémur. 



 Annex VII. Description of bone samples collected from CEI/XXI 

DNA methylation as an age predictor in living and deceased individuals 

Page | 490 

 

 

 

 

 

 

 

 

Figura 5: Fémur esquerdo do esqueleto CEI/XXI_122. Fotografia em norma posterior.  
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

 

Colecção de Esqueletos Identificados do Século XXI  

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 11/12/2018 

Esqueleto: CEI/XXI_123 

Dados AM: 

Sexo: F 

Idade Cronológica: 83 anos 

Ancestralidade:- 

Estatura:- 

Conservação: fémures preservados (ossos completos), mas com alguma escamação e 

fragmentação nas epífises.  

Peça óssea retirada e lateralidade:: Fémur direito 

Medidas:  

  Fémur direito 

-Comprimento fisiológico:  39.7 cm   

-Comprimento máximo: 42 cm      

Fémur esquerdo 

-Comprimento fisiológico: 42 cm 

-Comprimento máximo: 42.2 cm      

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Fotos 

                                                                 

 

                                                                 

 

 

 

 

Figura 1: Fémur esquerdo do esqueleto CEI/XXI_123. Fotografia em norma anterior.  

 

 

 

 

 

 

 

Figura 2: Fémur esquerdo do esqueleto: CEI/XXI_123. Fotografia em norma posterior.  

 

 

 

 

 

 

 

 

Figura 3: Fémur direito do esqueleto CEI/XXI_123. Fotografia em norma anterior. 

 

 

 

 

 

 

Figura 4: Fémur direito do esqueleto CEI/XXI_123. Fotografia em norma posterior.  
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Figura 5: Fémur direito do esqueleto CEI/XXI_123, norma posterior. Visível a erosão 

óssea no côndilo.  
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Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 
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Data: 11/12/2018 

Esqueleto: CEI/XXI_267 

Dados AM: 

Sexo: F 

Idade Cronológica: 59 anos 

Ancrestralidade:- 

Estatura:- 

Conservação: Estado geral dos fémures é bom (ossos completos) mas com alguma 

fragmentação, escamação; fémur direito  fragmentado no côndilo medial; fémur esquerdo  

fragmentação no côndilo medial e lateral.  

Peça óssea retirada e lateralidade: Fémur direito 

Medidas:  

Fémur direito 

Comprimento fisiológico:  37.3 cm           

Comprimento máximo: 37.7 cm 

 Fémur esquerdo 

Comprimento fisiológico: 37.5 cm  

Comprimento máximo: 37.6 cm 

 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 

 



 Annex VII. Description of bone samples collected from CEI/XXI  

DNA methylation as an age predictor in living and deceased individuals 

Page | 495 

Fotos 

 

 

 

 

 

 

Figura 1: Fémur esquerdo do esqueleto CEIXXI_267. Fotografia em norma anterior. 

 

 

 

 

 

 

 

Figura 2: Fémur esquerdo do esqueleto CEIXXI_267. Fotografia em norma posterior. 

 

 

 

 

 

 

 

Figura 3: Fémur direito do esqueleto CEIXXI_267. Fotografia em norma anterior. 

 

 

 

 

 

 

Figura 4: Fémur direito do esqueleto CEIXXI_267. Fotografia em norma posterior. 

 



 Annex VII. Description of bone samples collected from CEI/XXI 

DNA methylation as an age predictor in living and deceased individuals 

Page | 496 

Investigadora: Maria Helena Correia Dias 

Estudante de Doutoramento em Antropologia: 

Antropologia Forense 

Contacto telefónico: 962903987 

Email:helenacorreiadias30@gmail.com 

 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 

Colecção de Esqueletos Identificados do Século XXI   

Inventário _HelenaCorreiaDias_Metilação de DNA 

 

Data: 8/1/2019 

Esqueleto: CEI/XXI_164 

Dados AM: 

Sexo:- 

Idade Cronológica: 48 anos 

Ancrestralidade:- 

Estatura:- 

Conservação: Fémures completos mas com alguma fragmentação e escamação óssea nos 

côndilos; ossos leves. 

Exposição trabecular nos côndilos do fémur direiro na região posterior.  

Fémur esquerdo com erosão na cabeça femoral.  

Peça óssea retirada e lateralidade: Fémur direito 

Medidas:  

Fémur esquerdo 

-Comprimento fisiológico: 38.8 cm  

-Comprimento máximo: 39.4 cm 

 Fémur direito 

-Comprimento fisiológico:  38.8 cm           

-Comprimento máximo: 39.3 cm 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Figura 1: Fémur direito e esquerdo do esqueleto CEIXXI_164. Fotografia em norma  

anterior. 

 

 

 

 

 

 

 

 

 

 

Figura 2: Côndilos lateral e medial do fémur direito do esqueleto CEIXXI_164. 

Fotografia em norma posterior. Fragmentação óssea visível, com exposição do osso 

trabecular. 
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Data: 8/1/2019 

Esqueleto: CEI/XXI_178 

Dados AM: 

Sexo: F 

Idade Cronológica: 83 anos 

Ancrestralidade:- 

Estatura:- 

Conservação: Bom estado de preservação. Evidência de eburnação nos côndilos 

femurais. 

Peça óssea retirada e lateralidade: -  

Lateralidade: - 

Medidas: - 

 

 

 

 

 

 

 

 

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 
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Figura 1: Fémur direito e esquerdo do 

esqueleto CEIXXI_178. Fotografia em 

norma  anterior. 

 

 

 

 

 

 

 

 

 

Figura 2: Eburnação nos côndilos 

femurais do esqueleto CEIXXI_178. 

Fotografia em norma anterior. 
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Data: 8/1/2019 

Esqueleto: CEI/XXI_262 

Dados AM: 

Sexo: - 

Idade Cronológica: 58 anos 

Ancrestralidade:- 

Estatura:- 

Conservação: Bom estado de preservação do esqueleto. Fémures completos.  

Evidência de alguma erosão óssea nos côndilos dos fémures direito e esquerdo,  

Peça óssea retirada e lateralidade: Fémur direito 

Medidas:  

Fémur esquerdo 

-Comprimento fisiológico: 39.6 cm  

-Comprimento máximo: 39.8 cm 

Fémur direito 

-Comprimento fisiológico:  39.7 cm           

-Comprimento máximo): 40.1 cm 

 

                                                      

 

 

Foto 

Norma anterior 

Norma posterior 

Norma lateral  

Norma medial 

 



 Annex VII. Description of bone samples collected from CEI/XXI  

DNA methylation as an age predictor in living and deceased individuals 

Page | 501 

Fotos 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1: Fémur direito e esquerdo do esqueleto CEI/XXI_262. Fotografia em norma 

anterior.  
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CRIMINALISTICS

Helena Correia Dias,1,2,3 M.Sc.; Cristina Cordeiro,3,4 M.Sc., M.D.; Francisco Corte Real,3,4 M.D., Ph.D.;
Eug�enia Cunha,2,3 Ph.D.; and Lic�ınio Manco ,1 Ph.D.

Age Estimation Based on DNA Methylation
Using Blood Samples From Deceased
Individuals†

ABSTRACT: Age estimation using DNA methylation levels has been widely investigated in recent years because of its potential application
in forensic genetics. The main aim of this study was to develop an age predictor model (APM) for blood samples of deceased individuals based
in five age-correlated genes. Fifty-one samples were analyzed through the bisulfite polymerase chain reaction (PCR) sequencing method for
DNA methylation evaluation in genes ELOVL2, FHL2, EDARADD, PDE4C, and C1orf132. Linear regression was used to analyze relationships
between methylation levels and age. The model using the highest age-correlated CpG from each locus revealed a correlation coefficient of
0.888, explaining 76.3% of age variation, with a mean absolute deviation from the chronological age (MAD) of 6.08 years. The model was val-
idated in an independent test set of 19 samples producing a MAD of 8.84 years. The developed APM seems to be informative and could have
potential application in forensic analysis.

KEYWORDS: forensic science, forensic epigenetics, DNA methylation age, deceased individuals, bisulfite PCR sequencing

Age estimation based on DNA methylation has been widely
investigated in recent years. Prediction of age from biological
evidences can be very useful in forensic genetics for identifica-
tion purposes of human remains from mass disasters or to solve
crimes by limiting the search range of unknown suspects (1,2).
Several DNA methylation markers have been investigated in

various tissues and body fluids using DNA-based methodologies
such as bisulfite pyrosequencing (3–9), EpiTYPER technology
(10), massively parallel sequencing (11–13), or SNaPshot assays
(14–16).This allowed the identification of many CpG markers
showing high correlations with chronological age, potentially
useful as forensic age predictors. Thus, a number of high accu-
rate age prediction models have been proposed for specific tis-
sues, including blood (6,7,12), teeth (17), buccal swabs (8) or
saliva (15), or as multi-tissue models (13,16,18,19).
Most of DNA methylation markers have been investigated and

validated mainly in whole blood of living individuals using bisulfite
pyrosequencing. Because DNA methylation at genes ELOVL2,

FHL2, EDARADD, PDE4C, and C1orf132 have been repeatedly
reported in independent studies to have strong age association in
blood, they are considered to be some of the most promising age-
predictive markers for blood samples. Both ELOVL2 and EDAR-
ADD genes were included in a shortlist of 44 genomic regions
most significantly associated with age in a meta-analysis (20). Also,
the PDE4C locus was ranked in the three best markers among 102
age-related CpG sites in blood (3). Zbi�ec-Piekarska et al. (6) pub-
lished an assay which included in the overall model 5 CpG sites in
the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59
genes, resulting in a mean absolute deviation from the chronologi-
cal age (MAD) of 3.9 years. Cho et al. (9) replicated the strong
age association for DNA methylation markers in the ELOVL2,
C1orf132, TRIM59, KLF14, and FHL2 genes in blood samples of
100 Korean individuals.
To the best of our knowledge, only three studies have used

blood samples from deceased individuals to address the correla-
tion between DNA methylation and chronological age. The study
of Bekaert et al. (4), using the pyrosequencing methodology,
investigated CpG sites from 4 genes (ASPA, PDE4C, ELOVL,2
and EDARADD) in blood samples from 169 deceased and 37
living individuals. Naue et al. (13) investigated 13 CpGs (lo-
cated in genes DDO, ELOVL2, F5, GRM2, HOXC4, KLF14,
LDB2, MEIS1-AS3, NKIRAS2, RPA2, SAMD10, TRIM59, and
ZYG11A) in blood samples from 29 deceased individuals by
massively parallel sequencing. These markers were previously
selected as strong age-dependent loci on whole blood from liv-
ing individuals (12). Hamano et al. (21) analyzed the methyla-
tion status of the ELOVL2 and FHL2 promoter regions by
methylation-sensitive high-resolution melting (MS-HRM) using
22 living and 52 dead blood samples.
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Considering the scarcity of data addressing methylation status
in deceased individuals for age estimation purposes, the main
aim of the present study was to develop an age predictor model
(APM) for blood samples of deceased individuals based on five
previously known and validated age-associated genes ELOVL2,
EDARADD, PDE4C, FHL2, and C1orf132.
We report on the labor- and cost-effective semi-quantitative

bisulfite polymerase chain reaction (PCR) sequencing method,
using the peak height information obtained from chromatograms.
Although other groups have developed algorithms for quantita-
tive methylation analysis to help signal normalization and esti-
mation of effectiveness of bisulfite treatment (22), the direct
bisulfite PCR sequencing was previously shown to have similar
linearity and accuracy to pyrosequencing for methylation evalua-
tion (23,24).

Materials and Methods

Sample Collection

Blood samples from 51 autopsies (aged 24–86 years old; 7
females and 44 males) were collected in Unidade de Patologia
Forense da Delegac�~ao do Centro do Instituto Nacional de
Medicina Legal e Ciências Forenses (INMLCF), after consulting
RENNDA (Registo Nacional de N~ao Dadores). Additionally, a
set of 19 blood samples (aged 37–88 years; 8 females and 11
males) were collected for validation purposes in Unidade de
Patologia Forense da Delegac�~ao do Centro do INMLCF and
from Bodies Donated to Science (BDS) before the embalming
method with Thiel (25), in Departamento de Anatomia da Fac-
uldade de Medicina da Universidade do Porto. All dead bodies
had no evidence of cancer, which could affect the methylation
status (26). Blood samples were collected within 5 days after
death.
The study protocol was approved by the Instituto Nacional de

Medicina Legal e Ciências Forenses and by the Ethical Commit-
tee of Faculdade de Medicina da Universidade de Coimbra (no
038-CE-2017).

DNA Extraction, Bisulfite Conversion PCR and Sanger
Sequencing

Blood samples were collected in EDTA tubes and submitted
to DNA extraction using the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany). DNA extracts were quantified in a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Waltham, MA).
Genomic DNA was subjected to bisulfite conversion using EZ
DNA Methylation Gold Kit (Zymo Research, Irvine) according
to the instructions of manufacturer. Briefly, 20 lL of genomic
DNA (in a total amount of 200 to 400 ng) was treated with
sodium bisulfite and modified DNA was extracted to a final vol-
ume of 10 lL. After conversion, modified DNA samples were
submitted to PCR for selected regions of genes ELOVL2, FHL2,
EDARADD, PDE4C, and C1orf132 using the Qiagen Multiplex
PCR kit (Qiagen) using sets of primers previously described
(4,6) (Table S1). Total PCR volume was 25 lL, containing
2 lL of converted DNA, 0.2 lM of each primer, and 19 Qia-
gen Multiplex PCR Master Mix (Qiagen). PCR amplification
program consisted of an initial step at 95°C for 15 min followed
by 40 cycles of 30 sec at 95°C, 1 min at 60°C, and 1 min at
72°C for ELOVL2 gene and 35 cycles of 30 sec at 95°C, 1 min
at 56°C, and 1 min at 72°C for FHL2, EDARADD, PDE4C and
C1orf132 genes. A final extension of 72°C for 10 min ended

PCR amplification. A negative PCR control was included in
each amplification. The size and quality of PCR products were
visualized under UV light on 2% agarose gels. A strong band
with the anticipated product size should be present for sequenc-
ing. Subsequently, the PCR products were purified using Exo-
SAP-IT (Affymetrix, Cleveland) and sequenced using the
reverse primer by the Sanger’s dideoxy chain termination reac-
tion, using Big-Dye Terminator v1.1 Cycle Sequencing kit
(Applied Biosystems, Foster City) and the ABI 3130 sequencer
using the POP-7TM polymer as separation matrix (Applied
Biosystems).

Methylation Quantification of DNA Sequencing Data

The methylation status of cytosines (C) in each CpG dinu-
cleotide was estimated by measuring the ratio between peak
height values of cytosine (C) and thymine (T) through the for-
mula [C/C+T] in the sequencing chromatogram extracted from
Chromas (Version 2.32, Technelysium, Australia) (Fig. S1). In
each CpG, a single C was considered as completely methylated
(100%), a single T as completely unmethylated (0%) and over-
lapping C and T reveal partial methylation (0%–100%). As in
our data sequencing with the reverse primer results in a cleaner
chromatogram, we used the reverse complement strand in Chro-
mas to estimate the ratio between peak heights of C and T
(Fig. S2).

DNA Methylation Standards

Each primer set used for bisulfite sequencing was indepen-
dently verified, to confirm the accuracy of sequencing data using
the DNA methylation commercial standards EpiTect Control
DNA, methylated, and unmethylated (Qiagen). Standard DNA
samples premixed at methylation levels of 0%, 50%, and 100%
were used for bisulfite PCR sequencing analysis (Fig. S3).

Statistical Analyses

The statistical analyses were performed using IBM SPSS
statistics software for Windows, version 24.0 (SPSS, IBM Cor-
poration, Armonk, NY). Simple linear regressions were used to
analyze relationships between methylation levels and chronologi-
cal age at each single CpG site. Using the regression coefficients
from the highest age-correlated CpG sites from each gene, we
predicted age of individuals for each individual gene. The same
five highest age-correlated CpG sites were selected for simulta-
neous analysis using multiple linear regression to build a final
age prediction model (APM). The mean absolute deviation
between chronological and predicted ages (MAD) and the root
mean square error (RMSE) were calculated. For our training set
of 51 deceased individuals each obtained MAD value was inter-
preted as either correct or incorrect using a cutoff value accord-
ing to the standard error of estimate calculated for the APM
(�8 years). The normality of the dependent variable chronologi-
cal age was assessed by Shapiro–Wilk and Kolmogorov–Smir-
nov tests. Multicollinearity was investigated by estimating
Spearman correlation coefficients between predictor variables;
coefficient values >70% were considered as signal of multi-
collinearity. Cook’s distance was used to find influential outliers
in all the predictor variables. Validation of the APM was per-
formed in an independent set of 19 blood samples from deceased
individuals and by 4-fold cross-validation using the training set
of 51 individuals. The 4-fold cross-validation consisted in

2 JOURNAL OF FORENSIC SCIENCES



removing randomly a set of samples from the training set of 51
individuals and to develop 4 independent multiple linear regres-
sions on the remaining samples. The removed samples were
used for validation purposes. The MAD values were obtained
for each of the 4 independent multiple linear regressions, and
the mean value was calculated.

Results

We evaluated the association between chronological age and
DNA methylation levels in 51 blood samples from deceased indi-
viduals, aged 24–86 years old. Five genes selected based on previ-
ous studies were investigated using the bisulfite PCR sequencing
methodology. Forty-three CpG sites (ELOVL2, 9 CpGs; EDAR-
ADD, 4 CpGs; FHL2, 12 CpGs; PDE4C, 12 CpGs; and C1orf132,
6 CpGs) were selected for methylation evaluation. The focused
CpG positions were those selected in previous studies, with some
adjacent CpG sites also considered in the analysis.
The efficiency of bisulfite conversion was confirmed measur-

ing the conversion of a random number of cytosines at non-CpG
positions. A mean conversion efficiency of 99.99% was
observed over all samples and loci.
To obtain a first overview of the markers and the change of

DNA methylation per year, a linear regression for individual CpG
sites was performed in the training set of 51 individuals, after
addressing the normal distribution of the dependent variable
(Table S2). The ELOVL2 locus showed highly significant values
for all the selected CpG sites (R > 0.66) reflecting the similar
strength of the change in DNA methylation with age across all
CpGs. For the remaining four loci, several CpG sites revealed no
age dependency (nonsignificant p-values) and some CpGs, although
significantly associated, revealed moderate or low correlation val-
ues. For FHL2, all selected CpGs showed lower or moderate
change of DNA methylation with age (R < 0.50). Fig. S4 (A, B,
C, D, and E) illustrate the correlation between age and DNA
methylation levels for the most significant age-associated CpG site
in each locus, ELOVL2 CpG4, PDE4C CpG2, C1orf132 CpG1,
EDARADD CpG3, and FHL2 CpG2, and Table 1 shows the linear
regression statistics for the five CpG sites. The ELOVL2 CpG4
showed the strongest correlation with age (R = 0.785;
p = 2.39 9 10�11) explaining 60.8% of the age variation, followed
by C1orf132 CpG1 (R = 0.634; p = 0.000001), explaining 38.9%
of age variation. For the remaining genes, the strongest age-corre-
lated sites were as follows: PDE4C CpG2 (R = 0.592;
p = 0.000008), explaining 33.6% of age variation; EDARADD
CpG3 (R = 0.621; p = 0.000001), explaining 37.3% of age varia-
tion; and FHL2 CpG2 (R = 0.465; p = 0.00058), explaining 20%
of age variation. Predicting age through a simple linear regression
equation for the individual strongest age-associated markers, the

obtained MAD values were 8.89, 9.35, 9.38, 9.93, and 11.40 years,
respectively (see Fig. S5: A, B, C, D, and E).
Because DNA methylation for the best CpG markers showed a

linear relationship with age, no statistical transformation of variables
was made. In spite of this, as a few existing studies refer a quadra-
tic regression for ELOVL2 (4), we tested the better fit for the rela-
tionship between DNA methylation levels and chronological age.
The linear regression model showed the best result for ELOVL2
CpG4 (linear: R = 0.785, MAD = 8.89, RMSE = 9.99; quadratic:
R = 0.780, MAD = 8.48, RMSE = 10.10).
After addressing the absence of multicollinearity between the five

most significant age-associated CpG sites, and confirming the
absence of outliers (Cook’s D < 1), we tested a step-wise model
by multiple linear regression joining successively the five markers
(data not shown). An increase on age-associated statistical values
was observed with the successive addition of CpGs and the overall
APM using the 5 CpGs showed the highest correlation coefficient
(R = 0.888), highly significant (p = 8.17 9 10�13), explaining
76.3% of age variation (Table 1). Applying this model, the age pre-
diction for each individual was obtained through the formula:
(20.495) + 77.938 9 methylation level CpG4 ELOVL2 +
46.879 9 methylation level CpG2 FHL2–70.729 9 methylation
level CpG3 EDARADD + 28.741 9 methylation level CpG2
PDE4C–47.984 9 methylation level CpG1 C1orf132. Fig. 1A pre-
sents a plot with chronological age versus predicted age in the
training set of 51 individuals. A strong correlation between pre-
dicted and chronological ages was observed (Spearman correlation
coefficient, r = 0.868), with a MAD of 6.08 years (Table 1). The
success rate of correct predictions was 64% assuming that chrono-
logical and predicted ages match �8 years.
The accuracy of the overall APM was made through a 4-fold

cross-validation in the training set, producing a MAD (mean
value obtained for the 4 test set) of 7.22 years (RMSE = 7.43).
These values were very close to the MAD of 6.08
(RMSE = 7.49) obtained in the whole training set. Additionally,
we used an independent set of 19 blood samples from deceased
individuals to test the developed APM (Fig. 1B), obtaining a
MAD of 8.84 years (RMSE = 10.98).
In addition, to evaluate the accuracy of methylation levels

obtained by bisulfite sequencing, we detected the PCR mixture
amplification for each locus using three different methylation
rates of 0%, 50%, and 100% (Fig. S3). Bisulfite sequencing
resulted in DNA methylation levels that bore a significant linear
relationship to expected methylation levels.

Discussion

In the present study, we investigated several age-associated
CpG markers from five loci (ELOVL2, FHL2, EDARADD,

TABLE 1––Linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes to test for association between
CpG sites and chronological age in blood samples of 51 deceased individuals

Locus CpG Site Chr. Location R R2 Corrected R2 SE p MAD RMSE

Simple linear regression
ELOVL2 CpG4 Chr6: 11044640 0.785 0.617 0.608 10.20 2.39 9 10�11 8.89 9.99
C1orf132 CpG1 Chr1: 207823681 0.634 0.402 0.389 12.68 0.000001 9.38 12.42
EDARADD CpG3 Chr1: 236557683 0.621 0.385 0.373 12.72 0.000001 9.93 12.47
PDE4C CpG2 Chr19: 18343860 0.592 0.350 0.336 13.29 0.000008 9.35 12.75
FHL2 CpG2 Chr2: 105399288 0.465 0.216 0.200 14.36 0.000584 11.40 14.08

Multiple linear regression
APM 0.888 0.788 0.763 8.02 8.17 9 10�13 6.08 7.49

Abbreviations: R, correlation coefficient; SE, standard error; MAD, mean absolute deviation; APM, age prediction model; RMSE, root mean square error.
Location of CpGs for ELOVL2, FHL2 and C1orf132 is according to the human GRCh38/hg38 assembly and GRCh37/hg19 for EDARADD.
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PDE4C, and C1orf132) in blood samples of deceased individu-
als using the bisulfite PCR sequencing methodology. Methyla-
tion in ELOVL2, FHL2, and PDE4C genes showed a positive
correlation with age, whereas methylation in EDARADD and
C1orf132 genes was negatively correlated with age. Only the
ELOVL2 gene showed highly significant age-correlation values
for all the selected CpG sites reflecting a similar strength on the
change in DNA methylation with chronological age. This result
is in concordance with previous reports showing ELOVL2 as the
most strong age predictor locus across different tissues
(5,13,16,27). The remaining genes EDARADD, FHL2, PDE4C,
and C1orf132 reflect lower correlations between DNA methyla-
tion and age, with several CpG sites revealing moderate or
absence on age dependency. Nevertheless, the model using the
five highest age-associated CpG sites (ELOVL2 CpG4, C1orf132
CpG1, EDARADD CpG3, PDE4C CpG2, and FHL2 CpG2)
showed the best results in age correlation in the training set of

51 individuals, explaining 76.3% of variation in age, and a
MAD of 6.08 years. The cross-validation of the training set
leads to a MAD of 7.22 years and evaluation of model perfor-
mance using an independent test set of 19 individuals showed a
MAD of 8.84 years. Previous forensic studies, most of them
with blood samples of living individuals, using different loci and
different number of markers, covering different age ranges and
using different methodologies, gave values of MAD between 3.5
to 7.5 years (3,5,7,9,12,16). Thus, in our study the obtained
MAD value, although less accurate, is in the range of other
research approaches.
In regard to the studies that have used blood samples from

deceased individuals addressing the correlation between DNA
methylation and age, Bekaert et al. (4), using the pyrosequencing
methodology, analyzed 169 blood samples of deceased individu-
als (including 37 blood samples from living individuals) (age
range 0–91 years) for ELOVL2, PDE4C, EDARADD, and ASPA

FIG. 1––Plots with predicted versus chronological ages (years) of the training set of 51 individuals (A) and the test set of 19 samples using the final age pre-
diction model (B) based on ELOVL2 CpG4, FHL2 CpG2, EDARADD CpG3, PDE4C CpG2 and C1orf132 CpG1 markers. The Pearson correlation value (r)
was 0.888 in training set (A) as well as in the test set (B). The MAD value was 6.08 years in training set (A) and 8.84 in the test set (B).
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genes. The authors proposed an overall prediction model using
the four best age-associated CpG sites from each gene, which
was proven to be highly accurate, explaining 95% of the varia-
tion in age with a MAD of 3.75 years. Interestingly, the highest
age-correlated CpG sites from ELOVL2 (CpG6; Chr6:
11044640) and EDARADD (CpG3; Chr1: 236557683) found in
our study correspond to the same best positions observed by
Bekaert et al. (4). From PDE4C, our best CpG site (CpG2,
Chr19: 18343860) was not investigated by Bekaert et al. (4),
that found CpG1 (Chr19: 18343888) as the highest age-corre-
lated marker.
Naue et al. (13) investigated through massively parallel sequenc-

ing 13 previously selected age-dependent loci in tissues such as
brain, bone, muscle, buccal swabs, and whole blood of 29 deceased
individuals (age range 0–87 years), including among others the
ELOVL2 locus. In this study of Naue et al. (13), all the analyzed
markers in blood (DDO, ELOVL2, F5, GRM2, HOXC4, KLF14,
LDB2, NKIRAS2, RPA2, SAMD10, TRIM59, MEIS1, and ZYG11A)
showed a comparable age dependency in comparison to a previous
study using whole blood of living individuals (12). Interestingly,
the ELOVL2 position (Chr6: 11044644; cg16867657) showed a
Pearson correlation coefficient of 0.88, which is similar to the value
(r = 0.76) obtained in our data for the same position (CpG6).
The work of Hamano et al. (21) using the MS-HRM method

to address the methylation status of ELOVL2 and FHL2 genes
revealed similar distributions of DNA methylation levels in 22
living blood samples and 52 dead blood samples. However, the
authors suggested that potential differences in methylation status
between living and dead samples could be ignorable by the MS-
HRM method.
We should note that in our work, differences in accuracy were

observed in ELOVL2 vs. the other markers. The ELOVL2 marker
correlated highly with age and showed only slight differences
between CpG sites, in a similar way to the previous studies with
whole blood using other methodologies. The obtained differ-
ences in DNA methylation accuracy of age markers, with
ELOVL2 as exception, could be explained by modifications on
the methylation status of the studied genes by various factors
including diseases (28). The possibility that postmortem changes
can alter the methylation status among specific loci should also
be hypothesized, although this issue has not yet been clarified
until now (21). Moreover, it is well known that ELOVL2 gene is
a stable age-associated marker that exhibit consistent age-related
changes across different tissues such as whole blood, teeth or
saliva (5,13,16,27).
We should also consider that differences in sample size, DNA

methylation markers, population age ranges, laboratory method-
ologies, or statistical techniques could influence accuracies
across the different studies. In particular, bisulfite sequencing is
a semi-quantitative method and thus may not be optimal for pre-
cise methylation analysis. Even though, using DNA methylation
standards, the analysis for the best CpG site selected from each
gene (ELOVL2 CpG4, EDARADD CpG3, FHL2 CpG2,
C1orf132 CpG1, and PDE4C CpG2) (Fig. S3) indicates that the
bisulfite sequencing method is accurate in terms of
obtained methylation versus expected methylation of known
quantities of methylated to unmethylated DNA.
In conclusion, the present study addressed age dependency of

multiple CpG sites in five genes ELOVL2, FHL2, EDARADD,
PDE4C, and C1orf132 through bisulfite Sanger sequencing in
blood samples of deceased individuals. We verified that all selected
CpG sites in ELOVL2 showed strong age correlations (R > 0.66),
as well as three CpGs in C1orf132 (R > 0.57), two in PDE4C

(R > 0.58), and one in EDARADD (R = 0.62). FHL2 CpGs
showed the lower methylation age dependency. In spite of this, the
combination of the five most strong age-correlation markers from
each gene in a final APM showed a MAD of 6.08 that seems to
be informative and accurate for age prediction purposes.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:
Figure S1. Example of peaks height determination in the
sequencing chromatogram extracted from Chromas (Version
2.32, Technelysium). In each CpG, the blue arrow (peak height
C representing methylated cytosines) and the red arrow (peak
height T representing unmethylated cytosines) are compared.
The % of DNA methylation level is calculated through the for-
mula [C/C+T]. In the present example, we use the EDARADD

locus, and we choose a chromatogram of a younger adult indi-
vidual (female, 28 years).
Figure S2. Examples of sequencing chromatograms for differ-

ent methylation levels of ELOVL2, EDARADD, FHL2, PDE4C
and C1orf132 genes. (A) CpG4 from ELOVL2 gene (49 years,
male); (B) CpG3 from EDARADD gene (28 years, female); (C)
CpG2 from FHL2 gene (84 years, male); (D) CpG2 from
PDE4C gene (69 years, female); (E) CpG1 from C1orf132
(35 years, male). The blue arrows show the CpG used in the
APM.
Figure S3. Verification of bisulfite sequencing for the best

CpG site selected from each gene (ELOVL2 CpG4, EDARADD
CpG3, FHL2 CpG2, C1orf132 CpG1, and PDE4C CpG2) using
DNA methylation standards (EpiTect Control DNA, methylated
and unmethylated - Qiagen). A) Graphic shows the % of methy-
lation obtained in each CpG site for each level of expected
methylation (0%, 50% and 100%). Results indicate accuracy of
direct bisulfite sequencing across CpGs. B) Graphic shows the
obtained methylation vs. the expected methylation using 0%,
50% and 100% DNA methylation standards. Bisulfite sequenc-
ing resulted in DNA methylation levels that bore a significant
linear relationship to expected methylation levels.
Figure S4. Correlation between methylation levels and

chronological age for the most significant age associated CpG
sites within each locus, CpG4 of ELOVL2 (A), CpG1 of
C1orf132 (B), CpG3 of EDARADD (C), CpG2 of PDE4C (D)
and CpG2 of FHL2 (E) obtained in 51 deceased individuals.
The corresponding Spearman correlation coefficients (r) and
sample sizes (N) are depicted inside each plot.
Figure S5. Plot with predicted age (years) versus chronologi-

cal age (years) of the 51 individuals for CpG4 of ELOVL2 (A),
CpG2 of PDE4C (B), CpG1 of C1orf132 (C), CpG3 of EDAR-
ADD (D) and CpG2 of FHL2 (E). The corresponding Spearman
correlation coefficients (r) are: A) 0.706, B) 0.579, C) 0.649, D)
0.597 and E) 0.469.

Table S1. PCR primers and sequence to analyse for PCR-se-
quencing.
Table S2. Univariate linear regression analysis of the 43

CpGs sites in ELOVL2 (9 CpGs), FHL2 (12 CpGs), EDARADD
(4 CpGs), PDE4C (12 CpGs) and C1orf132 (6 CpGs) loci in 51
deceased individuals.
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A B S T R A C T

Many studies in the forensic field have reported that analysis of DNA methylation is the most reliable
method of predicting age. In a previous study, 5 CpG sites located in ELOVL2, FHL2, KLF14, C1orf132 and
TRIM59 genes were tested for age prediction purposes in blood, saliva and buccal swab samples from
Korean individuals using a multiplex methylation SNaPshot assay. The main goals of the present study
were i) to replicate the same multiplex SNaPshot assay in blood samples from Portuguese individuals, ii)
to compare DNA methylation status between two different populations and iii) to address putative
differences in the methylation status between blood from living and deceased individuals. Blood samples
from 59 living individuals (37 females, 22 males; aged 1–94 years-old) and from 62 deceased individuals
(13 females, 49 males; aged 28–86 years-old) were evaluated. The specific primers were those previously
described. Linear regression models were used to analyse relationships between methylation levels and
chronological age using IBM SPSS software v.24. Our results allowed to build a final age prediction model
(APM) for blood samples of living individuals with 3 CpG sites, at ELOVL2, FHL2 and C1orf132 genes,
explaining 96.3% of age variation, with a mean absolute deviation (MAD) from chronological age of 4.25
years. Some differences were found in the extent of the age association in the targeted loci comparing
Portuguese with Korean individuals. The final APM built for deceased individuals included 4 CpG sites, at
ELOVL2, FHL2, C1orf132 and TRIM59 genes, explaining 79.3% of age variation, with a MAD of 5.36 years.
Combining both sets of samples from living and deceased individuals, the most accurate APM with 4
CpGs, at ELOVL2, FHL2, C1orf132 and TRIM59 genes, explained 92.5% of variation in age, with a MAD of 4.97
years. In conclusion, our study replicated in blood samples of Portuguese living individuals a previous
SNaPshot assay for age estimation. The possibility that age markers might be population specific and that
postmortem changes can alter the methylation status among specific loci was suggested by our data. Our
study showed the usefulness of the multiplex methylation SNaPshot assay for forensic analysis in blood
samples of living and deceased individuals.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many studies in the field of forensics have reported that analysis
of DNA methylation is the most reliable method of predicting age
[1,2]. This allowed the identification of many CpG markers in
various tissues and body fluids, with high correlations between
DNA methylation and chronological age, potential useful in

forensic analysis. Most age-dependent DNA methylation markers
have been identified using methodologies for target bisulfite
sequencing, including pyrosequencing [3–8], Sanger sequencing
[9], EpiTyper [10], or massive parallel sequencing [11–13]. In recent
years, the SNaPshot reaction was also introduced as a useful tool
for DNA methylation analysis, addressing different tissues and
markers including blood, saliva, buccal swabs and semen of living
individuals [14–17].

Using the multiplex methylation SNaPshot method, the recent
study by Jung et al. [17], tested 5 CpG sites located in ELOVL2, FHL2,
KLF14, C1orf132/MIR29B2C and TRIM59 genes for age prediction
purposes in blood, saliva and buccal swab samples of healthy
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Korean individuals. The age-predictive linear regression model
using the 5 CpG sites showed a high correlation between predicted
and chronological ages in blood samples, with a Mean Absolute
Deviation (MAD) from the chronological age of 3.174 years. The
model using these 5 CpG sites was based on the model proposed by
Zbie�c-Piekarska et al. [5] in blood samples from 120 Polish
individuals using pyrosequencing, showing high prediction
accuracy with a MAD of 3.9 years. In addition, a MAD of 4.2 years
was obtained in another test set of 100 Korean blood samples using
the same markers and pyrosequencing methodology [8].
Moreover, at least one or more of these same genes were
previously investigated for forensic purposes in blood samples
of living [4,6,8] or deceased individuals [4,12,18].

Most studies on DNA methylation for age estimation purposes
focused on the identification of new sets of markers in a specific
population group or training specific methodologies. However, the
validation and replication of experiments to test proposed age-
predictive DNA markers and methodologies are strongly recom-
mended for forensic applications to establish consistency between
populations and laboratories [8]. Moreover, the possibility that
postmortem changes could alter the methylation status when
performing age prediction should also be considered in forensic
cases and, so far, only two studies focused on this point [4,18].

That said, the main goals of the present study were as follows:
i) to replicate in blood samples from Portuguese individuals the
multiplex SNaPshot assay proposed by Jung et al. [17]; ii)
to compare DNA methylation status between two different
populations; and iii) to address putative differences in the
methylation status between blood samples from living and
deceased individuals. We re-analyzed DNA methylation detection
using the multiplexing capability of SNaPshot because this
methodology could be a simple, efficient and cost-effective way
to determine simultaneously DNA methylation levels for different
individual target CpG sites in the field of forensics.

2. Material and methods

2.1. Sample collection

Peripheral blood samples from 59 Portuguese healthy living
individuals (37 females, 22 males; aged 1–94 years-old) were
collected from users of Biobanco - Hospital Pediátrico de Coimbra.
Written informed consent was previously obtained from adult
participants and from children�s parents, under the age of 18 years.
A total of 62 blood samples from deceased individuals were
collected: 55 blood samples (11 females, 44 males; aged 28–86
years) from Portuguese individuals with no known diseases were
collected during autopsy in Serviço de Patologia Forense da
Delegação do Centro, after consulting RENNDA (Registo Nacional
de Não Dadores); and 7 blood samples (2 females, 5 males; aged
49–84 years) obtained from the Bodies Donated to Science (BDS)
were collected before the embalming method with Thiel [19] in
Departamento de Anatomia da Faculdade de Medicina da Universi-
dade do Porto. All the blood samples were collected within 5 days
after death.

The study protocol was approved by the Instituto Nacional
de Medicina Legal e Ciências Forenses and by the Ethical
Committee of Faculdade de Medicina da Universidade de Coimbra
(no 038-CE-2017).

2.2. DNA extraction, bisulfite conversion and SNaPshot assay

Blood samples from living and deceased individuals collected in
EDTA-tubes and stored frozen at �20 �C were subjected to DNA
extraction using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany).

DNA extracts were quantified in a Nanodrop spectrophotometer
(Thermo Fisher Scientific) and subjected to bisulfite conversion
using EZ DNA Methylation Gold Kit (Zymo Research, Irvine, USA)
according to the instructions of manufacturer. Briefly, 20 mL of
genomic DNA (in a total amount of 200–400 ng) were treated with
sodium bisulfite and modified DNA was extracted to a final volume
of 10 mL.

After bisulfite conversion, the modified DNA samples were
submitted to a multiplex polymerase chain reaction (PCR)
amplification for the 5 CpG sites at genes ELOVL2, FHL2, KLF14,
C1orf132 and TRIM59 with the primers previously described in Jung
et al. [17], using the Qiagen1 Multiplex PCR kit (Qiagen). Total PCR
volume was 12.5 mL, containing 1 mL (40–60 ng) of converted DNA,
0.5 mL of pooled primers (mM concentration of each primer
according [17]) and 6.25 mL of 2x Qiagen1 Multiplex PCR Master
Mix (Qiagen). The PCR amplification program consisted of an initial
hold at 95 �C for 11 min followed by 25 cycles of 20 s at 94 �C, 1 min
at 56 �C, and 30 s at 72 �C. A final extension of 72 �C for 7 min ended
PCR amplification. A negative PCR control was included in each
amplification. The size and quality of PCR products were visualized
on 2% agarose gels with ethidium bromide under UV light.

Subsequently, the PCR products were purified using 1 mL of
amplified products with 0.5 mL of ExoSAP-IT (Affymetrix, Cleve-
land, USA) in an initial purification reaction (37 �C for 15 min
followed by 80 �C for 15 min). Next, 1.5 mL of the purified PCR
products was sequenced using a multiplex SBE (single-base
extension) reaction with the addition of 1 mL of Ready Reaction
Mix SNaPshot Multiplex Kit (Applied Biosystems, Foster City, USA),
0.5 mL of a pooled primer mix of sequencing primers (mM
concentrations according [17]) and 2 mL H2O (in a total volume
of 5 mL). Sequencing program consists in 10 s at 96 �C, following 5 s
at 50 �C and 30 s at 60 �C for 25 cycles. A final purification was made
with 1 mL of Shrimp Alkaline Phosphatase Recombinant rSAP
(Applied Biosystems). The SBE reactions were analysed using
the SeqStudio Genetic Analyzer (Applied Biosystems) and the
GeneMapper Software 6 (Applied Biosystems).

The methylation levels at each CpG site (0–1) from the ELOVL2,
FHL2, KLF14, C1orf132 and TRIM59 genes were calculated from the
nucleotide intensities measured by peak heights observed in the
electropherograms, as described in Jung et al. [17].

2.3. Statistical analysis

Statistical analyses were performed using IBM SPSS statistics
software for Windows, version 24.0 (SPSS, IBM Corporation,
Armonk, NY). Independent analyses were made for the sets of
living, deceased and the overall sample set of blood samples.
Simple linear regressions were used to analyze relationships
between DNA methylation levels and chronological age at
individual CpG sites. Multiple regression analysis were performed
with the 5 CpGs from genes ELOVL2, FHL2, KLF14, C1orf132 and
TRIM59 in living, deceased and overall samples in order to select
the statistically significant predictor variables to be used in the
final age prediction model (APM) developed in each set of samples.

The MAD values between predicted and chronological ages
were calculated for the final APM constructed using the regression
coefficients from each sample set. Additionally, MAD values were
calculated using the final APM model, for subsets of distinct age
categories in the training set of living and deceased blood samples.
Four groups were considered for living individuals (<18 years,
19–39 years, 40–60 years and >61 years) and three distinct age
categories were addressed for deceased individuals (28–51 years,
52–71 years and 72–88 years).

Validation of the APM was performed by a 4-fold cross
validation using both individual training sets from living and
deceased individuals and the overall data set of blood samples. The

2 H.C. Dias et al. / Forensic Science International 311 (2020) 110267



cross validation consisted in removing randomly a set of samples
from the data set and assigned as a validation set while the rest of
the data is used as training set. An additional validation was
performed, in which the complete data set was split into 2 sets
(training and validation sets), and an independent regression was
calculated for the training set and applied to the validation set.

For the evaluation of differences between sexes, we made a
comparison of regression lines relating chronological age and DNA
methylation levels of each gene at two levels (males/females) of
the categorical factor. Analysis was made to determine if there
are significant differences between the slopes and the intercepts
at the two levels of that categorical factor, using the software
STATGRAPHICS Centurion XV, version 15.2.05 (StatPoint
Technologies, Inc., VA).

3. Results

In the present study, we reanalyzed the multiplex methylation
SNaPshot assay of Jung et al. [17] in blood samples from 59 healthy
individuals (1–94 years old; 37 females and 22 males) of
Portuguese ancestry. Moreover, we analyzed 62 blood samples
of deceased individuals (aged 28–86 years old; 54 males and 16
females) to compare methylation data between both groups.

Two simple linear regression lines of methylation status and
age between males and females showed no statistically significant
difference in slope and intercept in the overall sample set of living
and deceased individuals (Supplementary Table S1). Thus, all the
analyses were made ignoring gender differences.

DNA methylation levels at 5 CpG sites from the ELOVL2, FHL2,
KLF14, C1orf132 and TRIM59 genes were simultaneously measured
through a SNaPshot assay (Supplementary Fig. S1), and indepen-
dent analyses were made for living, deceased and the overall blood
samples. In all sets of samples, positive correlations were observed
between DNA methylation and chronological age for ELOVL2, FHL2,
KLF14 and TRIM59 genes (Supplementary Fig. S2), and a negative
correlation with age was obtained for C1orf132 (Supplementary
Fig. S3).

3.1. Replication of a SNaPshot assay in blood samples from living
individuals

In blood samples from living individuals (aged 1–94 years old), all
the 5 CpG sites showed strong correlations between DNA

methylation and chronological age (Supplementary Figs. S2A &
S3A). The strongest correlation was observed for ELOVL2 locus
(R = 0.951; P = 3.58 � 10�29), followed by FHL2 (R = 0.946;
P = 1.49 � 10�29), C1orf132 (R = �0.924; P = 1.67 � 10�25) and
TRIM59 (R = 0.910; P = 2.04 �10�23). The CpG at KLF14 gene showed
the lowest age correlation value (R = 0.791; P = 1.57 � 10�13)
(Table 1).

We tested the age-predictive multiple linear regression model
using simultaneously all the 5 CpG sites in the training set of 59
blood samples of living individuals. Although individually all the 5
CpG sites showed strong and significant associations with age
(Table 1 & Supplementary Figs. S2A & S3A), in the multivariate
analysis the CpG sites at KLF14 and TRIM59 genes showed non-
significant age correlation values (Supplementary Table S2), which
could reveal signs of multicollinearity between variables. In
concordance, when we applied the stepwise linear regression
analysis, the same three significant CpG sites were chosen (at
ELOVL2, FHL2 and C1orf132 genes). Thus, we built a final model with
these 3 CpGs, which reveals a higher age correlation value (R
= 0.982), explaining 96.3% of age variation (adjusted R2 = 0.963),
highly significant (P = 7.315 �10�38) (Table 2). Applying this model,
the age prediction for each individual was obtained through the
formula: (38.751) + 61.058 � DNA methylation level ELOVL2
+ 80.021 � DNA methylation level FHL2 � 47.631 � DNA methylation
level C1orf132. The developed APM enabled us to estimate age with
a correlation between predicted and chronological ages of 0.969
(Spearman correlation coefficient, r = 0.969) (Fig. 1A) and a MAD
from chronological age of 4.25 years.

The accuracy of the model was tested by a 4-fold cross
validation. A set of samples (a ‘fold’) was randomly removed from
the training set of 59 blood samples as validation set and four
independent multiple linear regressions were performed on the
remaining samples (training set). Subsequently, each prediction
model is used to predict the age of the removed samples
(validation set). The MAD between predicted and chronological
ages were obtained in the validation set for each of the 4
independent multiple linear regressions and the calculated mean
value reveal an average MAD value of 4.75 years amongst the four
test sets, very close to the MAD of 4.25 years from the whole
training set (Table 2). As an additional validation, we split the
dataset into 2 similar sets of 30 and 29 samples each (training and
validation set) and re-fitted the multivariate linear regression
model on the training set. This allowed us to obtain an independent

Table 1
Simple linear regression statistics of the 5 CpGs at the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 genes in blood samples from living, deceased and in the overall (living and
deceased) sample sets of Portuguese individuals.

Locus Chromosomal location (GRCh38) Group N R R2 P-value

ELOVL2 Chr6:11044628 Living 56 0.951 0.904 3.58 � 10�29

Deceased 62 0.791 0.626 2.04 � 10�14

Overall 118 0.919 0.845 7.60 � 10�49

FHL2 Chr2:105399282 Living 59 0.946 0.895 1.49 � 10�29

Deceased 62 0.654 0.428 8.16 � 10�9

Overall 121 0.874 0.764 3.68 � 10�39

C1orf132 Chr1:207823681 Living 59 �0.924 0.854 1.67 � 10�25

Deceased 60 �0.591 0.350 6.56 � 10�7

Overall 119 �0.834 0.695 6.15 � 10�32

TRIM59 Chr3:160450189 Living 59 0.910 0.828 2.04 � 10�23

Deceased 61 0.769 0.591 4.78 � 10�13

Overall 120 0.830 0.688 1.16 � 10�31

KLF14 Chr7:130734355 Living 58 0.791 0.625 1.57 � 10�13

Deceased 59 0.568 0.322 0.000003
Overall 117 0.731 0.534 8.33 � 10�21

Abbreviations: N, number of samples; R, correlation coefficient.
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MAD value for the training set of 3.86 years. When this model was
applied to the validation set, MAD of 4.93 years was obtained. Both
independent MAD values were very close to the MAD of 4.25
obtained from the whole data set (59 individuals).

3.2. Comparing DNA methylation values between different
populations

When we compare DNA methylation levels obtained from the
multiplex methylation SNaPshot assay in blood samples from
Portuguese and the Koreans [17] (Supplementary Table S3), all the
CpG sites showed strong correlation with age (0.763 < R < 0.951),
except for C1orf132 (R = �0.637) in Koreans. The higher correlation
value with age was obtained for FHL2 in Koreans (R = 0.893) and for
ELOVL2 in Portuguese (R = 0.951). Moreover, in the multivariate
analysis the CpG sites at KLF14 and TRIM59 genes showed
non-significant age correlation values (P > 0.05) in Portuguese
individuals (data not shown), while in Koreans all the 5 CpG sites
showed significant age correlation values (P < 0.001) [17]. Mean-
while, we tested the original model of Jung et al. [17] with our
methylation data from 59 living individuals and a MAD value of
15.26 years was obtained.

3.3. DNA methylation analysis in blood samples from deceased
individuals

A total of 62 blood samples from deceased individuals (aged 28–
86 years-old; 49 males and 13 females) were tested using the same
multiplex methylation SNaPshot assay. The CpG site in the ELOVL2
showed the strongest age correlation (R = 0.791; P = 2.04 �10�14),
followed by TRIM59 (R = 0.769; P = 4.78 � 10�13), FHL2 (R = 0.654;
P = 8.16 � 10�9), C1orf132 (R = �0.591; P = 6.56 � 10�7) and finally
the KLF14 that, similar to living individuals, showed the lower age
correlation value (R = 0.568; P = 0.000003) (Table 1).

We tested the age-prediction multiple linear regression model
using simultaneously the 5 CpG sites, however the predictor CpG
site at KLF14 gene revealed a non-significant age correlation value
(Supplementary Table S2). Furthermore, we used the stepwise
regression to select the best model and the 4 CpG sites at ELOVL2,
FHL2, C1orf132 and TRIM59 genes were chosen. The final model
constructed with these 4 predictor variables showed high age
correlation coefficients (R = 0.899), explaining 79.3% of age
variation (adjusted R2 = 0.793), highly significant (P
= 1.07 � 10�18) (Table 2). The developed formula obtained with
the regression coefficients to calculate age was the following:
(14.914) + 63.627 � DNA methylation level ELOVL2 + 40.299 � DNA
methylation level FHL2 + (�24.185) � DNA methylation level C1orf132
+ 57.717 � DNA methylation level TRIM59. The model showed a
strong correlation between predicted and chronological ages
(Spearman correlation coefficient, r = 0.916), with a MAD from
chronological age of 5.36 years (Fig. 1B).

The4-foldcrossvalidationinthewholedatasetof62bloodsamples
from deceased individuals allowed to estimate an averaged MAD of
6.13 years, close to the MAD of 5.36 from the total training data set

(Table 2). The validation by splitting the sample in two equal sets of 31
samples each (training and validation set) allowed to obtain an
independent MAD value for the training set of 6.15 years. The model
wasappliedtothevalidation setandaMADof 5.66yearswasobtained.
Both independent MAD values were very close to the MAD of 5.36
years obtained from the whole training data set (62 individuals).

3.4. DNA methylation analysis in blood samples from living and
deceased individuals

When we combine living and deceased individuals obtaining a
whole dataset of 121 blood samples (aged 1–94 years-old, 71
males, 50 females), considering all the 5 CpG sites for the
multivariate analysis, a non-significant age correlation value was
observed for KLF14 (Supplementary Table S2). In concordance, the
stepwise regression analysis also excluded KLF14 from the model.
Therefore, the APM selecting the 4 CpG sites at ELOVL2, FHL2,
C1orf132 and TRIM59 genes, showed the multiple regression age
correlation coefficient R = 0.963, explaining 92.5% of age variation
(adjusted R2 = 0.925), highly significant (P = 1.025 �10�61) (Ta-
ble 2). The developed formula obtained with regression coef-
ficients to calculate age was the following: (17.936) + 66.925 � DNA
methylation level ELOVL2 + 52.009 � DNA methylation level FHL2 +
(�30.886) � DNA methylation level C1orf132 + 44.391 � DNA
methylation level TRIM59. The model showed a strong correlation
between predicted and chronological ages (Spearman correlation
coefficient, r = 0.952), with a MAD of 4.97 years (Fig. 1C).

A 4-fold cross validation using the whole dataset of 121 individuals
allowedtoestimateanaveragedMADof5.25years,closetotheMADof
4.97 from the whole data set (Table 2). The validation by splitting the
sample in two sets of 61 and 60 samples each (training and validation
set by using the previous groups) allowed to obtain an independent
MAD value for the training set of 5.35 years. Applying the model to the
validation set, a MAD of 5.35 years was obtained. Both independent
MADvalueswereveryclosetotheMADof4.97yearsobtainedfromthe
whole data set (121 individuals).

3.5. Differences between predicted and chronological ages increase
with age

The MAD values between predicted and chronological ages
increase with the increasing of age in both blood sample sets of
living and deceased individuals (Fig. 2). In living individuals, the
MAD value was the largest for the age group > 61 years (MAD = 5.70
years) and the smallest for age group < 18 years (MAD = 3.03 years)
(Table 3). In deceased individuals, the largest MAD was obtained in
individuals of the age group 72–88 years (MAD = 6.24 years), while
the smallest MAD was observed in the age group 28–51 years
(MAD = 5.00 years) (Table 3).

4. Discussion

A number of DNA methylation markers have been proposed as
predictors of chronological age. However, for better application of

Table 2
Multiple linear regression statistics of CpGs at the ELOVL2, FHL2, C1orf132, KLF14 and TRIM59 genes in blood samples from living, deceased and in the overall (living and
deceased) sample sets of Portuguese individuals.

Model Group R R2 (adjusted R2) P-value MAD MAD 4-fold Cross

APMa Living 0.982 0.965 (0.963) 7.32 � 10�38 4.25 4.75
APMb Deceased 0.899 0.808 (0.793) 1.07 � 10�18 5.36 6.13
APMc Overall 0.963 0.928 (0.925) 1.03 � 10�61 4.97 5.25

Abbreviations: R, correlation coefficient; MAD, mean absolute deviation (years) between chronological and predicted ages; APM, age prediction model.
a APM (ELOVL2, FHL2 and C1orf132 genes).
b APM (ELOVL2, FHL2, C1orf132 and TRIM59 genes).
c APM (ELOVL2, FHL2, C1orf132 and TRIM59 genes).
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Fig. 1. Predicted versus chronological ages in the sample sets of blood samples. A) APM developed with the 3 CpGs at ELOVL2, FHL2 and C1orf132 genes in living individuals. B)
APM developed with 4 CpGs at ELOVL2, FHL2, C1orf132 and TRIM59 genes in deceased individuals. C) APM developed with the 4 CpGs at ELOVL2, FHL2, C1orf132 and TRIM59
genes in the overall sample of living and deceased individuals. MAD and r (Spearman correlation coefficient) values are plotted in each graph.
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developed approaches to forensic casework sample analysis it is
important to further test the proposed markers and bisulfite
sequencing methods. Therefore, in the present study we tested the
experiments proposed by Jung et al. [17] using a SNaPshot assay in
an independent set of blood samples of healthy Portuguese
individuals using the same markers and methodology. Moreover,
we evaluated DNA methylation levels through the SNaPshot
method in a set of blood samples from deceased individuals.

In the current study, strong age correlation values were
obtained for the 5 CpG sites at ELOVL2, FHL2, KLF14, C1orf132
and TRIM59 genes in blood samples from Portuguese living
individuals. The final APM proposed by Jung et al. [17] included all
the 5 genes ELOVL2, C1orf132, TRIM59, KLF14 and FHL2, demon-
strating high age prediction accuracy in the Korean population
(MAD = 3.174). In the Portuguese study sample, our proposed final

APM was built only with those 3 CpGs, at ELOVL2, FHL2 and
C1orf132 genes, that showed statistical significance in the
multivariate regression analysis. Nevertheless, this final APM
exhibited an age prediction accuracy (MAD = 4.25) similar to the
model of Jung et al. [17]. Thus, our study replicated the age
association test of Jung et al. [17] in an independent validation set,
evidencing that the performance of these markers through the
SNaPshot methodology is consistent across different populations.

However, comparing our data with that obtained in the Korean
population some differences can be found in the extent of the age
association for the targeted loci. In particular, CpG at ELOVL2
showed the strongest age correlation in Portuguese individuals,
while in Koreans the CpG at FHL2 showed the best result [17]. On
the other hand, the lowest correlation value was obtained for the
KLF14 CpG in Portuguese but for the C1orf132 CpG in Koreans.
Moreover, when we tested the original algorithm model of Jung
et al. [17] with our obtained methylation data from living
individuals, a lower accurate MAD value of 15.26 years was
obtained. Similarly, a study by Cho et al. [8] in the Korean
population replicating a study of Zbie�c-Piekarska et al. [5] in the
Polish population using pyrosequencing found age correlation
differences in specific markers. Such kind of differences suggest
the possibility that some effects in methylation levels may be
population specific. This phenomenon supports the notion that
specific markers can be more adequate to different population
groups to explain age-related DNA methylation variance. This
points to the usefulness of replication and validation studies
of proposed markers and genotyping methods in different
populations and datasets before forensic applications.

In our study, the final model constructed with 4 predictor
variables at ELOVL2, FHL2, C1orf132 and TRIM59 genes for samples
of deceased individuals, also exhibited age prediction accuracy
with a MAD from chronological age of 5.36 years. To the best of our
knowledge, only three studies have focused in blood samples from
deceased individuals for development of age prediction models
based on DNA methylation [4,12,18]. These three studies evaluated
DNA methylation levels among a number of different loci including
ELOVL2, FHL2, KLF14 and TRIM59 genes. When comparing blood
samples from living and deceased individuals, two of these studies
[4,18] suggested similar distributions of DNA methylation patterns.
However, in our study, the individual analysis of DNA methylation
levels showed higher age correlation values in living individuals
(0.79 � R � 0.95) compared to deceased individuals (0.57 � R � 0.79).
Moreover, in the multivariate analysis the CpG sites at KLF14 and
TRIM59 genes showed non-significant age correlation values in
living individuals, while in deceased individuals only the KLF14 CpG
site showed a non-significant p-value (Supplementary Table S2).
Thus, this data suggest that postmortem changes can occur in the
methylation levels. Nevertheless, a final model for age prediction
addressing the whole sample set of living and deceased individuals
constructed with the same 4 CpGs in ELOVL2, FHL2, C1orf132 and
TRIM59 genes, exhibited high age prediction accuracy explaining
92.5% of variation in age, with a MAD of 4.97 years.

Our study showed that the prediction accuracy depends on the
chronological age of individuals, both in living and deceased. The
higher MAD values were obtained in older ages, in concordance with
previous studies [4–6,18]. This mean that individual differences in
the rate of methylationchange occurs with age, being slight inyouths
and accumulating with age, enabling that the age prediction
models are more accurate in younger than in older [4,18]. Moreover,
our reports showed non-significant gender DNA methylation
differences, similar to previous studies [4,5].

In conclusion, we validated and replicated in blood samples of
Portuguese individuals the SNaPshot assay of Jung et al. [17] by
evaluating DNA methylation levels in 5 specific CpG sites from the
ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes. Although using a

Fig. 2. Differences between chronological and predicted ages (years) plotted
against chronological age (years) in blood samples from living individuals (A) and
from deceased individuals (B).

Table 3
Evaluation of mean absolute deviation (MAD) between chronological and predicted
ages in several age range groups in living and deceased individuals.

Group Age range N MAD

Living individuals
G1 <18 years 11 3.03
G2 19–39 years 12 3.28
G3 40–60 years 14 4.26
G4 >61 years 18 5.70

Deceased individuals
G1 28–51 years 19 5.00
G2 52–71 years 24 5.07
G3 72–88 years 16 6.24

Abbreviations: N, number of samples.
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different APM built with only 3 CpGs at ELOVL2, FHL2 and C1orf132
genes, similar high prediction accuracies were obtained
(MAD = 4.25 in Portuguese and MAD = 3.174 in Koreans). Some
differences in the methylation patterns were observed between
the two populations (Koreans and Portuguese) suggesting the
possibility that some effects in DNA methylation levels of age
markers might be population specific. The possibility that
postmortem changes could alter the methylation status among
specific loci was also suggested by our data. Nevertheless, the
development of independent age prediction models with 4 CpGs at
ELOVL2, FHL2, C1orf132 and TRIM59 genes in blood samples from
deceased individuals, as well as in the whole data set of living and
deceased individuals, showed good levels of age prediction
accuracy (5.36 and 4.97 years of MAD, respectively). Our study
showed the usefulness of the multiplex methylation SNaPshot
assay for forensic analysis in blood samples of living and deceased
individuals. This methodology seems promising in forensic fields
because of its capacity for multiplexing analysis, investigating
simultaneously the DNA methylation level across several specific
CpGs.
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ABSTRACT
Bones and teeth are valuable sources of information in forensic con-
texts. However, few studies have considered these tissues for DNA 
methylation (DNAm) analyses in age estimation. The main goal of the 
present study was to develop DNAm-based age prediction models 
(APMs) specific for bones and teeth. DNA samples from Portuguese 
individuals were evaluated through bisulphite Sanger sequencing and 
a multiplex SNaPshot assay to analyse relationships between DNAm 
and age. In bones our results allowed to build a final APM through 
Sanger sequencing with six CpGs at genes ELOVL2, EDARADD and 
MIR29B2C, explaining 92.5% of age variation, with a mean absolute 
deviation (MAD) from chronological age of 2.56 years. For teeth, we 
were unable to build a final multi-locus APM; the best FHL2 CpG4 age 
predictor explained 41.3% of age variance with a MAD of 11.35 years. 
The SNaPshot assay allowed to build two final dual-locus APMs with 
CpGs at FHL2 and KLF14 for bones, explaining 57.6% of age variation 
(MAD of 7.18 years), and with CpGs at ELOVL2 and KLF14 for teeth, 
explaining 76.4% of age variation (MAD of 7.07 years). Our study 
showed the usefulness of bone and tooth samples in evaluation of 
DNAm levels for age estimation purposes.
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Introduction

Forensic anthropologists have to deal with human identification, not only in routine 
practice but also in exception scenarios, associated with mass disaster or crimes against 
humanity including war crimes and human rights violation. Age estimation is one of the 
most relevant questions in forensic contexts, being necessary both for living and 
deceased individuals.1 The multidisciplinary approach to age estimation is paramount. 
Macroscopic and imagiological analyses in bones and teeth, followed by an appropriate 
mathematical approach are now standard procedures. But genetics and chemistry are 
also playing important roles in that respect. Yet, despite the existence of many biomole-
cular and chemical methods to predict age, there is no standard method that can be 
applied for all the forensic scenarios.
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Nowadays, analysis of DNA methylation (DNAm) has currently arisen as a promising 
tool for predicting age.2,3 Many age-dependent DNAm markers have been identified in 
various tissues using several methodologies for target bisulphite sequencing including 
pyrosequencing,4-9 Sanger sequencing,10 EpiTyper,11 massive parallel sequencing12-14 or 
SNaPshot.15-19 Although many CpG markers have been identified showing high correla-
tions with chronological age, validation of methodologies and markers should be made 
for development of accurate age prediction models (APMs) potential useful in forensic 
analysis. Also, due to the highly tissue-specific nature of DNAm,20,21 the development of 
specific models for particular types of tissues should be tested.

To date, few studies have considered bones13,22 and teeth5,23,24 for DNAm analyses. 
Using massive parallel sequencing, Naue et al.13 obtained in bone samples from 29 
individuals a moderate correlation between DNAm and age for CpGs at ELOVL2, KLF14 
and TRIM59 genes (0.58, 0.51 and 0.61, respectively). More recently, Gopalan et al.22 using 
genome-wide DNAm data from 165 bone samples developed a powerful ‘37 bone clock 
CpGs’ for age prediction based on CpG sites from TRIM59, ELOVL2 and KLF14 genes, 
among other. Giuliani et al.23 investigated methylation data at ELOVL2, FHL2 and PENK 
loci by Maldi-Tof mass spectrometry in 21 modern teeth and proposed an APM for 
cementum, dentin and pulp with the mean absolute deviation (MAD) between estimated 
and chronological ages of 2.45, 7.07 and 2.25 years, respectively. In concordance, Bekaert 
et al.5 evaluating DNAm levels by pyrosequencing in 29 dentin samples from living 
individuals, reported a multiple quadratic regression model with seven CpGs located at 
PDE4C, ELOVL2 and EDARADD genes explaining 74% of age variance with a MAD of 
4.86 years. A recent study by Márquez-Ruiz et al.24 testing by bisulphite pyrosequencing 
the methylation levels in 65 tooth samples from individuals, obtained a significant posi-
tive age association for CpG sites at ELOVL2 and PDE4C and developed an APM with nine 
CpGs from these two loci with a mean absolute error (MAE) of 5.08 years.

Considering these promising results, the main goal of the present study was to 
investigate DNAm information for age prediction purposes in bone and tooth samples 
from identified Portuguese individuals using the bisulphite polymerase chain reaction 
(PCR) Sanger sequencing and multiplex SNaPshot methodologies. Both methods used 
herein are semi-quantitative but have shown to be efficient and economical alternative 
tools for rapid quantification of DNAm in two previous studies from our group.10,19

Material and methods

Sample collection

A set of 31 bone samples (aged 26–81 years old; 26 males, 5 females) were collected from 
identified deceased individuals during autopsies in Serviço de Patologia Forense da 
Delegação do Centro e Sul, after consulting RENNDA (Registo Nacional de Não Dadores). 
A set of 31 tooth samples (aged 26–94 years old; 10 males, 21 females) were collected 
from living individuals (n = 23) in dentist offices, after informed consent, and from Bodies 
Donated to Science (BDS) (n = 8) in Departamento de Anatomia da Faculdade de Medicina 
da Universidade do Porto before the embalming method of the body. The collection of 
teeth before the embalming ensures the control of any possible influence related to the 
process of conservation.
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The study protocol was approved by the Instituto Nacional de Medicina Legal e Ciências 
Forenses (INMLCF) and by the Ethical Committee of Faculdade de Medicina da Universidade 
de Coimbra (nº 038-CE-2017).

DNA extraction, bisulphite conversion

Processing of bone and tooth samples was made in INMLCF, according to standard 
guidelines. Cleaning and grinding bone/teeth took place in a room designated exclusively 
for processing of human remains. All sample manipulations were performed in laminar 
flow chambers equipped with filters and UV lights. The procedure consists in the follow-
ing steps: washing the sample type (bone and teeth) with bleach for 5 minutes, and then 
it was put in distilled water (ddH2O) for another 5 minutes to remove residual bleach. 
A drill was used to remove other exogenous contaminants. After, we make some cuts 
(around 0.5 × 0.5 cm) in the fragment and it was put in a vial for grinding bone using 
a 6770 freezer/mill and nitrogen liquid. DNA extraction was performed using a robot with 
PrepFiler Express BTA™ Forensic DNA Extraction Kit (Applied Biosystems, Foster City, CA). 
DNA Quantification was made with the real-time polymerase chain reaction (PCR)-based 
kit Quantifiler™ Human DNA Quantification Kit (Applied Biosystems).

After extraction and quantification, genomic DNA was subjected to bisulphite conver-
sion using EZ DNA Methylation Gold Kit (Zymo Research, Irvine, USA) according to the 
instructions of manufacturer. Briefly, 20 µl of genomic DNA (in a total amount of 200 to 
400 ng) was treated with sodium bisulphite and modified DNA was extracted to a final 
volume of 10 μL.

Sanger sequencing

After bisulphite conversion, the modified DNA samples were submitted to PCR for 
selected regions of genes ELOVL2, FHL2, EDARADD, PDE4C and MIR29B2C using the 
Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) and sequenced with Big-Dye 
Terminator v1.1 Cycle Sequencing kit (Applied Biosystems), using primers and conditions 
previously described.10

SNaPshot assay

After bisulphite conversion, the modified DNA samples were submitted to a multiplex 
SNaPshot assay for 5 CpG sites at genes ELOVL2, FHL2, KLF14, MIR29B2C and TRIM59 with 
the primers and conditions previously described in Jung et al.18 Particular conditions for 
multiplex PCR amplification and multiplex SBE (single-base extension) reactions were as 
previously described.19

Statistical analyses

Statistical analyses were performed using IBM SPSS statistics software for Windows, 
version 24.0 (IBM Corporation, Armonk, NY, USA). Linear regression models were used 
to analyse relationships between methylation levels and chronological age. For Sanger 
sequencing, using the simple linear regression coefficients from the highest age- 
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correlated CpG sites from each gene we predicted age of individuals in bones and teeth. 
All the significant CpGs were combined for analysis using the stepwise regression 
approach for selection of the relevant variables to be included in final APMs. For the 
SNaPshot method, simple linear regression coefficients of each significant age-correlated 
CpG were used to predict age of individuals in bones and teeth. Methylation information 
of the significant age-correlated CpGs was used in the stepwise regression approach to 
select the predictor variables to be used in the final APMs. Spearman correlation coeffi-
cients and MAD values between predicted and chronological ages were calculated for 
training sets of bone and tooth samples. Validation of the final APMs was performed by 
threefold cross-validation that consists in removing randomly a set of samples from the 
training set and to develop three independent multiple linear regressions on the remain-
ing samples. Subsequently, each APM is used to predict the age of the removed samples 
assigned as validation sets. An additional validation was performed by splitting the 
complete data set into two subsets (training and validation sets) and an independent 
regression was calculated for the training set and applied to the validation set.

Results

In the present work we report on methylation levels of 43 CpG sites located at ELOVL2, 
FHL2, PDE4C, EDARADD and MIR29B2C genes through the bisulphite Sanger sequencing 
methodology obtained in 29 fresh bone samples (4 females and 25 males; aged 
26–80 years old) and in 31 tooth samples (23 from living and 8 from deceased individuals; 
10 males and 21 females; aged 26–94 years old). Moreover, using the multiplex SNaPshot 
assay reported by Jung et al.18, methylation data from 5 CpG sites at ELOVL2, FHL2, KLF14, 
MIR29B2C and TRIM59 genes were obtained from 31 fresh bone samples (26 males and 5 
females; aged 26–81 years old) and from 24 tooth samples (16 from living and 8 from 
deceased individuals; 8 males and 16 females; aged 27–88 years old).

DNA methylation data obtained using bisulphite Sanger sequencing

The DNAm levels from bone samples analysed through bisulphite Sanger sequencing revealed 
positive correlations for all the CpG sites located at genes ELOVL2, FHL2 and PDE4C, and 
negative correlations for the CpG sites on the remaining two genes EDARADD and MIR29B2C 
(Supplemental Table S1). Simple linear regression showed strong and significant age- 
correlation values (0.70 < R < 0.90) for almost all CpGs located at ELOVL2 and for the three 
first CpG sites at MIR29B2C (Supplemental Table S1). The remaining markers showed negligi-
ble, weak or moderate age correlations. The strongest age-correlated value was observed for 
the ELOVL2 CpG6 (R = 0.852; P = 4.64 x 10−9), following by MIR29B2C CpG1 (R = −0.834; P = 1.93 
x 10−8) (Table 1; Supplemental Figure S1). For the remaining genes, the best markers showed 
moderate age correlation values: FHL2 CpG1 (R = 0.692, P = 0.000032), PDE4C CpG2 (R = 0.690; 
P = 0.000049) and EDARADD CpG3 (R = −0.561; P = 0.001564) (Table 1; Supplemental Figure 
S1). Simple linear regression APMs based on these individual CpGs revealed MAD values from 
chronological age of 5.73 years for ELOVL2 CpG6, 6.35 years for MIR29B2C CpG1, 8.39 years for 
FHL2 CpG1, 8.07 years for PDE4C CpG2 and 9.23 years for EDARADD CpG3 (Table 1). We selected 
the 29 CpG sites which showed individual significant association with age, located at ELOVL2 (9 
CpGs), FHL2 (7 CpGs), EDARADD (3 CpGs), PDE4C (5 CpGs) and MIR29B2C (5 CpGs), and we 
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applied the stepwise linear regression analysis to select the relevant variables to be used in 
a final APM (Supplemental Table S2). The selected six CpGs located at ELOVL2 (CpG5, CpG6, 
CpG7), EDARADD (CpG3, CpG4) and MIR29B2C (CpG1) revealed in the multiple regression 
analysis a high age correlation coefficient (R = 0.970), explaining 92.5% of age variance, highly 
significant (P = 2.097 x 10−12) (Table 1). Age prediction for each individual bone sample was 
estimated according to the equation developed with the regression coefficients as present in 
Supplemental Table S2: 129.912–66.051 x DNAm levels MIR29B2C CpG1 – 136.346 x DNAm levels 
EDARADD CpG3 + 62.928 x DNAm levels EDARADD CpG4 + 67.573 x DNAm levels ELOVL2 
CpG5 + 144.915 x DNAm levels ELOVL2 CpG6 – 137.429 x DNAm levels ELOVL2 CpG7. The 
developed APM enabled us to estimate age with a correlation between predicted and 
chronological ages of 0.957 (Figure 1) and a MAD from chronological age of 2.56 years 
(Table 1). The accuracy of the model was tested by a threefold cross-validation using the 29 
bone samples. In this validation, a ‘fold’ (set of samples with 10 or 9 samples) was randomly 
removed from the training set as a validation set and three independent multiple linear 
regressions models were performed on the remaining samples (training sets). Each indepen-
dent multiple linear regression predictive model was tested in the removed samples (valida-
tion sets) allowing to obtain an averaged MAD from chronological age of 3.77 years, a value 
very close to the MAD of 2.56 of the whole training set. Additionally, a second validation 
method by splitting the sample in two sets of 16 and 13 samples (training and validation sets) 
revealed an independent MAD value for the training set of 2.03 years. The multiple linear 
regression equation was applied to the validation set allowing to obtain a MAD of 3.15 years.

The DNAm levels from tooth samples evaluated through the Sanger sequencing 
methodology showed no significant correlation with age for any CpG site at EDARADD 
and MIR29B2C genes (Supplemental Table S3). The CpG sites at the remaining genes 
ELOVL2, FHL2, PDE4C showed positive but weak correlations between DNAm and age: the 
strongest site was FHL2 CpG4 (R = 0.658, P = 0.000078), followed by PDE4C CpG1 
(R = 0.474, P = 0.013) and ELOVL2 CpG3 (R = 0.379, P = 0.036) (Table 2; Supplemental 
Figure S2). We tested the age prediction multiple linear regression model using simulta-
neously these three CpG sites; however, only CpG4 site at FHL2 gene revealed a significant 
age correlation value (P = 0.002). Furthermore, we used the stepwise regression approach 
selecting the 12 significant age-correlated CpG sites located at ELOVL2 (2 CpGs), FHL2 (6 
CpGs) and PDE4C (4 CpGs) but only the same FHL2 CpG4 was chosen. Age prediction for 

Table 1. Simple and multiple linear regression statistics of the five best CpGs located at ELOVL2, FHL2, 
EDARADD, PDE4C and MIR29B2C genes using methylation information from bone samples obtained 
from bisulphite Sanger sequencing.

Locus CpG Location N R R2 Corrected R2 SE P-value MAD

Simple linear regression                                                                
ELOVL2 CpG6 Chr6:11044644 29 0.852 0.725 0.715 7.24 4.64 x 10−9 5.73
MIR29B2C CpG1 Chr1:207823681 29 −0.834 0.695 0.684 7.63 1.93 x 10−8 6.35
FHL2 CpG1 Chr2:105399282 29 0.692 0.479 0.460 9.97 0.000032 8.39
PDE4C CpG2 Chr19:18233133 28 0.690 0.476 0.456 10.19 0.000049 8.07
EDARADD CpG3 Chr1:236394382 29 −0.561 0.314 0.289 11.45 0.001564 9.23

Multiple linear regression                                                               
APM (ELOVL2 CpG5 + ELOVL2 CpG6 + ELOVL2 CpG7 + 

MIR29B2C CpG1 + EDARADD CpG3 + EDARADD 
CpG4)

29 0.970 0.941 0.925 3.71 2.097 x −12 2.56

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) 
between chronological and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.
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each individual sample estimated according to the individual regression coefficients 
obtained from the 30 tooth samples with positive PCR amplification for the highest age 
associated marker FHL2 CpG4 was as follows: (−114.989) + 239.863 x DNAm levels FHL2 
CpG4 (Supplemental Table S4). The predicted age captured from the 30 tooth samples 
allowed to obtain a moderate correlation between predicted and chronological ages of 
0.589 (Figure 2), with a MAD from the chronological age of 11.35 years (Table 2).

DNA methylation data obtained using the multiplex SNaPshot methodology

Five specific CpGs located at genes ELOVL2, FHL2, KLF14, MIR29B2C and TRIM59 were simulta-
neously measured through a multiplex SNaPshot assay in 31 fresh bone samples from 
deceased individuals. Positive correlations with age were observed for CpGs at genes 
ELOVL2, FHL2, KLF14 and TRIM59 and a negative correlation was obtained for MIR29B2C 
locus (Supplemental Figure S3). Among the five markers, the CpG site in the FHL2 locus 
showed the strongest age correlation (R = 0.708, P = 0.000008), followed by TRIM59 (R = 0.633, 
P = 0.000129), ELOVL2 (R = 0.619, P = 0.000202), KLF14 (R = 0.540, P = 0.001708) and MIR29B2C 

Figure 1. Plot of predicted vs. chronological ages using the final APM based on 6 CpGs located at 
ELOVL2 (CpG5, CpG6, CpG7), EDARADD (CpG3, CpG4) and MIR29B2C (CpG1) built with methylation 
information from 29 fresh bone samples obtained with bisulphite PCR Sanger sequencing. Spearman 
correlation coefficient and MAD value from chronological age were plotted in the graph.

Table 2. Simple linear regression analysis of the three best CpG sites located at FHL2, PDE4C and 
ELOVL2 genes using methylation information from tooth samples from living and deceased individuals 
obtained from bisulphite Sanger sequencing.

Locus CpG Location N R R2 Corrected R2 SE P-value MAD

Simple linear regression                                                                
FHL2 CpG4 Chr2:105399297 30 0.658 0.433 0.413 14.57 0.000078 11.35
PDE4C CpG1 Chr19:18233139 27 0.474 0.224 0.193 17.54 0.012588 14.58
ELOVL2 CpG3 Chr6:11044634 31 0.379 0.143 0.114 18.32 0.035738 15.22

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) 
between chronological and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.
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(R = – 0.507, P = 0.003640) (Table 3; Supplemental Figure S3). Single APMs using each CpG site 
revealed MAD values from the chronological age of 7.95 years for FHL2, 8.50 years for ELOVL2, 
8.86 years for TRIM59, 9.29 years for KLF14 and 9.70 years for MIR29B2C genes (Table 3). Fitting 
the stepwise regression analysis by using simultaneously the 5 CpG sites, only CpG sites at 
FHL2 and KLF14 genes were chosen. The final multiple dual-locus model built with CpG sites at 
FHL2 and KLF14 showed a moderate age correlation value (R = 0.777; P = 0.000002), explaining 
57.6% of age variation (Table 3). The developed formula obtained with the regression 
coefficients to predict age was as follows: 15.727 + 105.392 x DNAm levels FHL2 + 154.672 
x DNAm levels KLF14 (Supplemental Table S5). The two-locus model showed a moderate 
correlation of 0.746 between predicted and chronological ages (Figure 3), with a MAD from 
chronological age of 7.18 years (Table 3). The threefold cross-validation to test the accuracy of 
the model, showed an averaged MAD from the chronological age for the three independent 
validation sets of 7.84 years, a value very close to the MAD of 7.18 of the whole training set. 
The validation by splitting the sample in two sets of 16 and 15 samples each (training and 
validation sets) allowed to obtain an independent MAD from the chronological age for the 
training set of 5.40 years and for the validation set of 9.35 years.

The tooth samples from living and deceased individuals evaluated using the same multi-
plex methylation SNaPshot assay showed positive and significant age correlations for ELOVL2, 
KLF14 and TRIM59 genes (Table 4; Supplemental Figure S4). The CpG sites in FHL2 and 
MIR29B2C genes showed a lower or no significant age correlation (Table 4) and were excluded 
for further analysis. DNAm levels in KLF14 locus showed the strongest age-correlation 
(R = 0.728, P = 0.000084), following by ELOVL2 (R = 0.685, P = 0.000311) and TRIM59 
(R = 0.665, P = 0.000389) (Table 4). Using these sites in simple linear regression models we 
calculated values of MAD from chronological age of 9.68 years for KLF14, 11.27 years for 
ELOVL2 and 11.51 years for TRIM59. The stepwise regression approach allowed to select a final 

Figure 2. Plot of predicted vs. chronological ages using the APM based on the high age associated 
marker FHL2 CpG4 built with methylation information from 30 tooth samples obtained with bisulphite 
PCR Sanger sequencing. Spearman correlation coefficient and MAD value from chronological age were 
plotted in the graph.
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dual-locus model with the CpG sites at ELOVL2 and KLF14 in 23 tooth samples with positive 
PCR amplification for both genes. The multiple linear regression allowed us to obtain a strong 
age correlation value (R = 0.886), highly significant (P = 2.09 x 10−7), explaining 76.4% of age 
variance (Table 4). Predicting age of each individual through the formula 11.519 + 106.261 
x DNAm levels ELOVL2 + 291.877 x DNAm levels KLF14 (Supplemental Table S6), we estimated 
age with a correlation between predicted and chronological ages of 0.883 (Figure 4), and 
a MAD from chronological age of 7.07 years (Table 4). The threefold cross-validation made to 
test the accuracy of the model, allowed to estimate an averaged MAD from the chronological 
age for the three independent validation sets of 7.33 years, very close to the MAD of 7.07 from 
the total training data set. A validation by splitting the sample in two sets of 12 and 11 samples 
(training and validation sets) allowed to obtain an independent MAD value for the training set 
of 7.35 years. The model was applied to the validation set allowing to obtain a MAD of 
6.34 years.

Figure 3. Predicted vs. chronological ages using the APM based on CpG sites at FHL2 and KLF14 genes 
built with methylation information from 31 bone samples obtained with the multiplex SNaPshot 
assay. Spearman correlation coefficient and MAD value from chronological age were plotted in the 
graph.

Table 4. Linear regression statistics at the 5 CpGs of the ELOVL2, FHL2, MIR29B2C, KLF14 and TRIM59 
loci using methylation information from tooth samples obtained from a multiplex methylation 
SNaPshot analysis.

Locus CpG Location N R R2 Corrected R2 SE P-value MAD

Simple linear regression                                                                
ELOVL2 Chr6:11044628 23 0.685 0.469 0.444 13.33 0.000311 11.27
FHL2 Chr2:105399282 23 0.331 0.110 0.067 17.43 0.122700 -
KLF14 Chr7:130734355 23 0.728 0.529 0.507 12.56 0.000084 9.68
MIR29B2C Chr1:207823681 24 − 0.080 0.006 −0.039 19.07 0.709684 -
TRIM59 Chr3:160450189 24 0.665 0.443 0.417 14.28 0.000389 11.51

Multiple linear regression                                                               
APM (ELOVL2 + KLF14) 23 0.886 0.785 0.764 12.56 2.09 x 10−7 7.07

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) 
between chronological and predicted ages. Genomic positions were based on the GRCh38/hg38 assembly.
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Discussion

In the present study, we analysed bones and teeth from individuals of Portuguese ancestry 
through the bisulphite Sanger sequencing method to obtain methylation information of 
several CpGs located at ELOVL2 (9 CpGs), FHL2 (12 CpGs), EDARADD (4 CpGs), PDE4C (12 
CpGs) and MIR29B2C (6 CpGs) genes. Sanger sequencing methodology, capturing several 
CpGs sites from the same locus, can allow the evaluation of DNA methylation levels from 
several positions. This can enable the finding of different age-correlated CpG sites and the 
development of APMs with more predictors and consequently with a more accurate age 
prediction. Moreover, we used the multiplex methylation SNaPshot assay of Jung et al.18 in the 
same tissues to analyse five CpG sites located at ELOVL2, FHL2, KLF14, MIR29B2C and TRIM59, 
repeatedly reported as age-associated genes. This methodology seems promising in forensic 
fields because of its capacity for multiplexing analysis, investigating simultaneously the DNA 
methylation level across several specific CpGs.

DNAm levels obtained from bones using bisulphite Sanger sequencing allowed the 
development of a final APM with six markers (ELOVL2 CpG5, ELOVL2 CpG6, ELOVL2 CpG7, 
MIR29B2C CpG1, EDARADD CpG3 and EDARADD CpG4) revealing a high age correlation 
value, R = 0.970. The model showed high accuracy allowing to obtain a MAD from 
chronological age of 2.56 years, which suggest that this methodology could be suited 
for forensic purposes using bone-derived DNAm. The SNaPshot method allowed to 
develop from bones a final dual-locus APM with FHL2 and KLF14 genes showing a MAD 
from chronological age of 7.18 years, and a moderate correlation of 0.746 between 
predicted and chronological ages.

Bone samples were already used in studies by Gopalan et al.22 and Naue et al.13 for age- 
association methylation purposes. Naue et al.13 investigated through massive parallel 
sequencing whether 13 previously selected age-dependent loci have predictive value in 

Figure 4. Predicted vs. chronological ages using the APM based on CpG sites at ELOVL2 and KLF14 
genes built with methylation information from 23 tooth samples obtained with the multiplex 
SNaPshot assay. Spearman correlation coefficient and MAD value from chronological age were plotted 
in the graph.
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several forensically relevant tissues including bones. Using 29 deceased individuals (age 
range 0–87 years) they found no age-dependency for several genes, but a statistically 
significant age correlation (≥0.6) was observed for at least one CpG site within the 
amplified region of genes ELOVL2, KLF14 and TRIM59. Gopalan et al.22 generated genome- 
wide DNA methylation data from 32 individual bone samples alongside with published 
data from 133 additional bone donors, both living and deceased spanning an age range 
of 49–112 years. The epigenome-wide association study on this combined dataset identify 
108 sites of DNA methylation that showed significant relationship with age. The authors 
have developed an APM using lasso regression that produces highly accurate estimates of 
age. From all CpG sites that comprised the best model (37 bone clock CpG regions), two 
ELOVL2 positions (cg16867657 and cg24724428) and one KLF14 position (cg07955995) 
were included. In particular, the ELOVL2 CpG6 (Chr6:11044644; cg16867657) from our 
study has already been included in Gopalan et al.22 and Naue et al.13 studies, revealing to 
be a promising marker for bone samples. This supports the idea that gene ELOVL2 is 
a uniquely useful predictor of chronological age, as it is significantly associated with age 
across multiple tissue types.

In tooth samples, a moderate accurate model combining CpGs at ELOVL2 and KLF14 
was obtained in our study with the SNaPshot method (MAD of 7.07 years). A similar value 
was obtained for dentin samples by Giuliani et al.23 (MAD = 7.07 years) using 5 CpGs 
located at ELOVL2, FHL2 and PENK genes addressed by Maldi-Tof mass spectrometry in 21 
teeth extracted from living individuals with age ranging from 17 to 77 years. Bekaert et al.5 

evaluating DNAm levels by pyrosequencing in 29 dentin samples of living individuals 
reported a multiple quadratic regression model developed with seven CpGs located at 
PDE4C, ELOVL2 and EDARADD genes explaining 74% of age variance with a MAD of 
4.86 years. The model included the ELOVL2 CpG site (Chr6:11044628) selected in our 
study through the SNaPshot method. A recent study by Márquez-Ruiz et al. 24 testing 
methylation levels of specific CpG sites located in the ELOVL2 and PDE4C genes by 
bisulphite pyrosequencing in 65 tooth samples from individuals aged 15–85 years old, 
developed an APM with nine CpG sites showing a mean absolute error (MAE) of 
5.08 years. All these studies showed the usefulness of ELOVL2 in development of epige-
netic clocks using tooth samples. In contrast, the Sanger sequencing methodology in our 
study did not allow to develop a multi-locus APM in teeth, since only lower and moderate 
correlation values between age and DNAm were obtained. This suggests that this method 
could have limited usefulness for forensic age estimation using tooth samples. 
Meanwhile, a simple linear regression model using the high age-correlated FHL2 CpG4 
revealed a model accuracy of 11.35 years, which is a higher MAD value.

The present study has some limitations, being the sample size the major drawback. 
Moreover, despite we used 31 samples in both sets of bones and teeth not all of them 
were successfully amplified for all genes; only 29 fresh bone samples were addressed 
using the bisulphite Sanger sequencing methodology and 24 tooth samples using the 
multiplex SNaPshot assay. Larger sample sets and different loci could have higher statis-
tical power and could be more representative of DNAm changes according to different 
age ranges and in different tissue types. We should take into account that also different 
CpGs and/or genes were addressed in both methodologies, consequently this could 
influence the accuracy of the developed models in each tissue type.

AUSTRALIAN JOURNAL OF FORENSIC SCIENCES 11



Conclusion

In conclusion, considering that to date only few reports used bone and tooth samples in 
development of models for forensic age estimation, we evaluated DNAm levels from 
bones and teeth using the bisulphite Sanger sequencing and SNaPshot methodologies. 
Our study allowed to develop a highly accurate APM in bone samples with six CpGs 
located at genes ELOVL2, EDARADD and MIR29B2C through bisulphite Sanger sequencing. 
The SNaPshot method allowed to construct two final dual-locus models, with FHL2 and 
KLF14 genes for bones and with ELOVL2 and KLF14 for teeth, exhibiting moderate age 
prediction accuracy. Our study suggests that skeletal and dental human remains, with 
high resistance to harsh conditions and often recoverable for long post-mortem intervals, 
can be prime targets for DNAm analyses in forensic contexts.
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A B S T R A C T

DNA methylation analysis in a variety of genes has brought promising results in age estimation. The main aim of
this study was to evaluate DNA methylation levels from four age-correlated genes, ELOVL2, FHL2, EDARADD and
PDE4C, in blood samples of healthy Portuguese individuals. Fifty-three samples were analyzed through the
bisulfite polymerase chain reaction (PCR) sequencing method for CpG dinucleotide methylation status. Linear
regression models were used to analyze relationships between methylation levels and chronological age. The
highest age-associated CpG in each locus was chosen to build a multi-locus age prediction model (APM), al-
lowing to obtain a Mean Absolute Deviation (MAD) between chronological and predicted ages of 5.35 years,
explaining 94.1% of age variation. Validation approaches demonstrated the accuracy and reproducibility of the
proposed multi-locus APM. Testing the APM in 51 blood samples from deceased individuals a MAD of 9.72 years
was obtained. Potential differences in methylation status between samples from living and deceased individuals
could exist since the highest age-correlated CpGs were different in some genes between both groups. In con-
clusion, our study using the bisulfite PCR sequencing method is in accordance with the high age prediction
accuracy of DNA methylation levels in four previously reported age-associated genes. DNA methylation pattern
differences between blood samples from living and deceased individuals should be taken into account in forensic
contexts.

1. Introduction

Forensic age estimation is an important clue for identification pur-
poses. In cases of living individuals, forensic age estimation could be
essential in judicial, criminal or civil situations, including cases of im-
migration or refugees (where the identity and age of individuals are
unclear), cases of minors (in questions related to imputability), for
determination of criminal responsibility, or even in civil cases of pen-
sionable age (for old adults lacking documents) [1–3].

Biochemical and genetic age predictive biomarkers used until now,
such as accumulation of D-aspartic acid in proteins [4], shortening of
telomeres, or deletion of mitochondrial DNA [5], have shown low ac-
curacy and other inconsistencies, being considered inappropriate for
forensic and identity science casework [6,7]. Consequently, there is still
no standard method for forensic age estimation. In this scenario, the
evaluation of DNA methylation has been gaining relevance in age es-
timation investigations because it has brought the most promising

results [8,9].
Although influenced by genetic, environmental, disease and sto-

chastic factors [10–13], there is growing evidence that DNA methyla-
tion patterns of specific CpG sites in genes such as ELOVL2, FHL2,
EDARADD, ASPA, PDE4C, PENK, C1orf132, TRIM59 and KLF14 are as-
sociated with chronological age in several tissues such as blood, buccal
swabs and teeth, for developing several forensic highly accurate age-
prediction models (APMs) [13–28]. Most studies used bisulfite mod-
ification and pyrosequencing to assess the methylation patterns of CpG
sites in blood samples for implementation of APMs
[15,16,18,19,23,27,28]. Meanwhile, the bisulfite polymerase chain
reaction (PCR) sequencing methodology was shown to be an efficient
and economical alternative tool for rapid quantification of DNA me-
thylation, with similar linearity and accuracy than pyrosequencing
analysis [29,30].

In a previous study, our group have used the bisulfite-PCR se-
quencing methodology for evaluation the correlation between
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chronological age and DNA methylation levels located at ELOVL2,
FHL2, EDARADD, PDE4C and C1orf132 genes in 51 blood samples from
deceased individuals [24]. The combination of the five strongest age-
correlation markers from each gene in a final APM seems to be in-
formative and could have potential application in forensic analysis
[24]. In the present study, using blood samples of living individuals, we
applied the same bisulfite-PCR sequencing method to evaluate CpG
methylation levels in the four age-correlated genes ELOVL2, FHL2,
EDARADD and PDE4C. The main purposes of the current study were: (i)
to develop a specific APM for blood samples from living individuals of
Portuguese ancestry, and (ii) to test the accuracy of this APM in blood
samples from deceased individuals.

2. Material and methods

2.1. Study population

Peripheral blood samples of 53 healthy individuals of Portuguese
ancestry (35 females, 18 males; aged 1–95 years), were collected in
EDTA-tubes from users of Biobanco - Hospital Pediátrico de Coimbra and
other hospitals for developing our DNA methylation model. An in-
dependent set of blood samples of 18 healthy individuals (10 females
and 8 males; aged 1–93 years old) was used for validation the devel-
oped APM. Additionally, 51 blood samples from deceased individuals (7
females and 44 males; aged 24–86 years old), previously reported in a
study by our group [24], were used for testing the reproducibility of the
developed APM.

The study protocol was approved by the ethical Committee of
Faculdade de Medicina da Universidade de Coimbra (n° 038-CE-2017).
Written informed consent was previously obtained from adult partici-
pants and from childreńs parents under the age of 18 years.

2.2. DNA methylation analysis by bisulfite conversion and PCR- sequencing

Genomic DNA was extracted with the QIAamp DNA Mini Kit
(Qiagen, Hilden, Germany) and quantified in a Nanodrop spectro-
photometer (Thermo Fisher Scientific). Genomic DNA was subjected to
bisulfite conversion using the EZ DNA Methylation-Gold Kit (Zymo
Research, Irvine, USA) according to the instructions of manufacturer, as
previously described [24]. After conversion, modified DNA samples
were submitted to PCR amplification for selected regions of genes
ELOVL2, FHL2, EDARADD and PDE4C, followed by Sanger sequencing,
as previously described [24]. To assess the reproducibility of the
method, two separate PCR amplifications and Sanger sequencing ana-
lyses were performed in about 10% of DNA samples for all genes.

2.3. Methylation quantification of DNA sequencing data

The methylation status of cytosine (C) in each CpG dinucleotides
was estimated according to Jiang et al. [29] and Parrish et al. [30], by
measuring the ratio between peak height values of C and thymine (T)
through the formula [C/C + T] in the sequencing chromatogram ex-
tracted from Chromas (Version 2.32, Technelysium). In each CpG, a
single C reveal complete methylation (100%), a single T complete un-
methylation (0%) and overlapping C and T partial methylation
(0–100%). As the reverse primer was used in the sequencing reaction,
the reverse-complement strand of the sequencing chromatogram was
used to estimate the ratio between peak heights of C and T. About 50%
of the samples included in this study was evaluated by two independent
investigators to indemnify the inter-observatory error.

2.4. DNA methylation standards

Each primer set used for bisulfite sequencing was independently
verified, to confirm the accuracy of sequencing data using the DNA
methylation commercial standards EpiTect Control DNA, methylated

and unmethylated (Qiagen, Hilden, Germany). Standard DNA samples
premixed at methylation levels of 0%, 50%, and 100% were used for
analysis (Supplementary Fig. S1).

2.5. Statistical analyses

Statistical analyses were performed using IBM SPSS statistics software
for Windows, version 24.0 (IBM Corporation, Armonk, NY, USA). Simple
linear regressions were used to analyze relationships between methyla-
tion levels and chronological age at each single CpG site. The CpG site
showing the highest age-correlation from each gene was selected for
combined analysis using multiple linear regression. Using the regression
coefficients, we predicted age of individuals applying the multiple linear
regression formula: Y = b0 + b1x1 + b2x2 + … + bNxN; where Y is the
age of the individual, b0 is the intercept, b1, b2, bN the slope of the se-
lected CpGs and x1, x2, xN the methylation values of the selected CpGs.

The Mean Absolute Deviation (MAD) between predicted and
chronological ages was calculated for the training sample (53 in-
dividuals) and for subsets of four distinct age categories: < 18 years,
19–39 years, 40–60 years and > 61 years. Each obtained result was
interpreted as either correct or incorrect if the predicted age was con-
cordant with the chronological age using a cutoff value according to the
standard error (SE) of estimate obtained in the developed APM.

An independent set of 18 blood samples from living individuals was
used for validation of the developed APM. In addition, a 4-fold cross
validation was performed in the training set of 53 living individuals,
which consisted in removing randomly a set of samples from the
training set and to develop four independent multiple linear regressions
on the remaining samples. The removed samples were assigned as va-
lidation sets to calculate the cross validation mean MAD values. An
additional validation was performed by splitting the complete training
set of 53 living individuals into 2 subsets of 27 and 26 blood samples
(training and validation sets). An independent regression was devel-
oped for the training set and applied to the validation set.

The evaluation of differences between gender was made through
comparison of two regression lines relating chronological age and DNA
methylation levels of each gene at two levels (males/females) of the
categorical factor, using the software STATGRAPHICS Centurion XV,
version 15.2.05 (StatPoint Technologies, Inc., VA).

3. Results

In the present study, we evaluated DNA methylation levels of sev-
eral CpG sites located at ELOVL2 (9 CpGs), FHL2 (12 CpGs), EDARADD
(4 CpGs) and PDE4C (12 CpGs) genes through bisulfite conversion
followed by PCR and direct Sanger sequencing.

The reproducibility of the direct bisulfite Sanger sequencing was
made in about 10% of the samples by two separate PCR amplifications
and sequencing analyses. The mean percentage difference in DNA me-
thylation levels for all CpGs in each gene was 6.5% for PDE4C (5
samples), 4.3% for EDARADD (7 samples), 2.9% for ELOVL2 (5 sam-
ples), and 3.9% for FHL2 (7 samples).

The accuracy of methylation levels obtained by bisulfite sequencing,
was evaluated by analyzing the PCR mixture amplification for each
locus using three different methylation rates of 0%, 50%, and 100%
(Supplementary Fig. S1). Bisulfite sequencing resulted in DNA methy-
lation levels that bore a significant linear relationship to expected
methylation levels.

No statistical significant differences were observed between males
and females in the overall training sample (53 individuals) comparing
slopes and intercepts of two simple linear regression lines of methyla-
tion status and age allowing to ignore gender differences in subsequent
analyses (data not shown).
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3.1. Development of an age prediction model in a training set of 53 living
Portuguese individuals

Simple linear regressions testing the correlation between methyla-
tion levels and chronological age revealed significant associations
(P < 0.05) for all CpGs from the genes ELOVL2 and FHL2 (except
CpG7, CpG9 and CpG10) (Supplementary Table S1). Significant asso-
ciations with methylation levels were also observed for EDARADD
CpG2, CpG3 and CpG4, as well as for PDE4C CpG1 to CpG6 and CpG9
(Supplementary Table S1). The strongest age-correlations within each
gene were observed for: ELOVL2 CpG6 (R = 0.936; P = 7.97 × 10-25),
explaining 87.4% of variation in age; FHL2 CpG3 (R = 0.940;
P = 1.78 × 10-25), explaining 88.1% of variation in age; EDARADD
CpG3 (R = -0.888; P = 7.86 × 10-19), explaining 78.4% of variation in
age; and PDE4C CpG2 (R = 0.852; P = 6.32 × 10-16), explaining 72%
of variation in age (Table 1; Fig. 1). The predicted age of individuals
was calculated through the simple linear regression coefficients for the
individual strongest age-associated markers and the obtained MAD
values were as follows: 8.01 years for ELOVL2 CpG6; 7.81 years for
FHL2 CpG3; 10.57 years for EDARADD CpG3; and 11.87 for PDE4C
CpG2 (Table 1).

Combining the methylation information of CpGs most highly asso-
ciated with age per locus, ELOVL2 CpG6, FHL2 CpG3, EDARADD CpG3
and PDE4C CpG2, the final multi-locus APM reveals a higher age cor-
relation value (R = 0.972), highly significant (P = 1.11 × 10-29),
explaining 94.1% of the variation in age (adjusted R2 = 0.941)
(Table 1). Predicted age of individuals was calculated through the
multiple linear regression coefficients using the formula
(-81.879) + 103.031 × DNA methylation levels ELOVL2
CpG6 + 99.331 × DNA methylation levels FHL2 CpG3 −
58.97 × DNA methylation levels EDARADD CpG3 + 35.843 × DNA
methylation levels PDE4C CpG2. A strong correlation between pre-
dicted and chronological ages was obtained (Spearman correlation
coefficient, r = 0.972) with a MAD from chronological age of
5.35 years (Fig. 2). Correct predictions were 75.5% assuming that
chronological and predicted ages match ± 7 years (Table 2).

3.2. Differences between predicted and chronological ages with aging

Larger differences between predicted and chronological ages were
observed with increasing of age (Fig. 3). To investigate these age-re-
lated differences, we divided our training set of 53 living individuals in
four age groups (< 18 years old; 18–39 years old; 40–60 years old; >
61 years old) to estimate MAD and percentage of correct predictions in
each age range group. MAD value is higher in the two older age cate-
gories (3 and 4 age range group): 40–60 years old (MAD = 6.49 years)
and > 61 years old (MAD = 6.27 years). In concordance, the lower
percentage of correct predictions was observed in the older age groups
3 and 4 (58.3% and 76.5%, respectively). For younger individuals <
18 years old (MAD = 3.26 years) and age range group 19–39 years old
(MAD = 4.99 years), the smaller MAD values were obtained and the

higher values of correct predictions were observed (83.3% in both age
groups) (Table 2).

3.3. Testing the accuracy of the developed APM

3.3.1. Living individuals
For evaluation of the accuracy of our multi-locus APM with ELOVL2

CpG6, FHL2 CpG3, EDARADD CpG3 and PDE4C CpG2 markers we made
a 4-fold cross validation using our data set of 53 blood samples. The
mean MAD value obtained amongst the four validation sets was
6.20 years, similar to the obtained in the overall population
(MAD = 5.35 years). The validation approach through splitting the
overall sample set of 53 living in two sets of 27 and 26 samples (training
and validation sets) allowed to obtain a MAD value of 6.08 years in the
new training set of 27 samples. Applying this multiple model on the
validation set of 26 samples, a MAD of 5.81 years was obtained. Both
independent MAD values were very close to the MAD of 5.35 years for
the overall sample. Additionally, using an independent sample set of 18
blood samples from healthy Portuguese individuals, the performance of
our multi-locus APM developed in the overall sample of 53 living in-
dividuals was evaluated. Based on the multiple linear regression model
a strong correlation between predicted and chronological ages was
observed (Spearman correlation coefficient, r = 0.977), with a MAD
from the chronological age of 4.98 years (Supplementary Fig. S2).

3.3.2. Deceased individuals
We tested the reproducibility of the developed multi-locus APM in a

different set of 51 blood samples from deceased individuals for which
methylation data was previously addressed [24]. The obtained corre-
lation value between predicted and chronological ages was 0.792, with
a MAD value from chronological age of 9.72 years (Supplementary Fig.
S3).

Some differences were observed in DNA methylation levels of blood
samples between living and deceased individuals. The correlation va-
lues obtained in living individuals for the selected sites chosen for de-
velopment of the final APM (ELOVL2 CpG6, EDARADD CpG3, FHL2
CpG3 and PDE4C CpG2) showed strong or very strong age correlation
values (0.852 < R < 0.940), whereas in deceased individuals we
observed for the same sites lower age correlation values
(0.459 < R < 0.764). In concordance we observed a decrease of
model accuracy in blood samples from deceased individuals when ap-
plying the APM previous developed in living individuals (MAD = 5.35
vs. 9.72). In blood samples from deceased individuals [24], the highest
age-correlation site selected from two genes (ELOVL2 CpG4 and FHL2
CpG2) is different from that selected in this study using blood samples
from living individuals. Moreover, the degradation of methylation at
postmortem is observed among the general CpG sites from all genes:
R < 0.936 in living vs. R < 0.785 in deceased for ELOVL2;
R < 0.940 in living vs. R < 0.465 in deceased for FHL2; R < 0.888
in living vs. R < 0.621 in deceased for EDARADD; and R < 0.852 in
living vs. R < 0.592 in deceased for PDE4C.

Table 1
Linear regression statistics of the best age predictors in ELOVL2, FHL2, EDARADD and PDE4C genes testing for the association between CpG sites and chronological
age in 53 blood samples of living individuals.

Locus CpG site Location R Corrected R2 SE P-value MAD

Simple linear regression
ELOVL2 CpG6 Chr6:11,044,644 0.936 0.874 10.41 7.97 × 10-25 8.01
FHL2 CpG3 Chr2:105,399,291 0.940 0.881 10.11 1.78 × 10-25 7.81
EDARADD CpG3 Chr1: 236,394,382 −0.888 0.784 13.63 7.86 × 10-19 10.57
PDE4C CpG2 Chr19: 18,233,133 0.852 0.720 15.53 6.32 × 10-16 11.87
Multiple linear regression
APM 0.972 0.941 7.13 1.11 × 10-29 5.35

Abbreviations: R, Regression coefficient; SE, standard error; MAD, Mean Absolute Deviation from the chronological age; APM, Age Prediction Model. Location of
CpGs is according to the human GRCh38/hg38 assembly.
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4. Discussion

Age estimation plays a relevant role in forensic science since it can
be very useful in criminal, legal and civil investigations, including for
the establishment of criminal responsibility or in immigration cases [3].
In this work, we used the bisulfite PCR-sequencing method to analyze

the methylation patterns of CpG markers in four well known age-as-
sociated loci (ELOVL2, FHL2, EDARADD and PDE4C) selected based on
their powerful value in several previous studies [13–28].

The training set of 53 blood samples from healthy Portuguese in-
dividuals revealed the highest age-correlation value per locus for
ELOVL2 CpG6, EDARADD CpG3, FHL2 CpG3 and PDE4C CpG2.
Evaluating simultaneously the methylation information of these sites in
a final four-locus APM, a good accuracy was revealed with a MAD from
chronological age of 5.35 years. This MAD value is similar to the ob-
tained in other APMs using the pyrosequencing methodology which has

Fig. 1. Correlation between methylation levels and chronological age for CpG6 of ELOVL2 (a), CpG3 of FHL2 (b), CpG3 of EDARADD (c) and CpG2 of PDE4C (d) in 53
healthy individuals. The corresponding Spearman correlation coefficients (r) and sample sizes (N) are depicted inside each plot.

Fig. 2. Plot with predicted age (years) versus chronological age (years) of the 53
individuals using the developed APM based on ELOVL2 CpG6, FHL2 CpG3,
EDARADD CpG3 and PDE4C CpG2 markers. Spearman correlation coefficient
was 0.972.

Table 2
Mean absolute deviation (MAD) between predicted and chronological ages
stratified according age groups in the training set.

Group Age range (years) N MAD Correct Predictions (%)

1 < 18 12 3.26 83.3
2 19–39 12 4.99 83.3
3 40–60 12 6.49 58.3
4 > 61 17 6.27 76.5
Total 1–95 53 5.35 75.5

Abbreviations: N, number of samples. Correct predictions were estimate ac-
cording to the standard error (SE = 7.13) for the developed age prediction
model.
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been the preferred method by forensic epigeneticists to assess site
specific DNA methylation levels in age predictions [15,16,18,19].

Meanwhile, the bisulfite Sanger sequencing methodology has shown
promising results in blood samples from deceased individuals [24]. In
this previous study, we have investigated the same four genes (ELOVL2,
FHL2, EDARADD and PDE4C) in addition to C1orf132, to develop an
APM using the highest age-correlated CpG from each locus, revealing a
correlation coeficient of 0.888, explaining 76.3% of age variation and
showing a MAD of 6.08 years [24].

Comparing both studies, potential differences in methylation status
between samples from living and deceased individuals could exist since
the highest age-correlated CpGs were different in some genes between
both groups. Moreover, the correlation between DNA methylation and
age obtained in genes ELOVL2, EDARADD, FHL2 and PDE4C is lower in
blood samples of deceased individuals vs. living individuals, with
ELOVL2 revealing the higher and most similar DNAm levels in both
groups. In concordance, when we applied the final APM built for living
individuals to the independent set of 51 blood samples from deceased
individuals [24], we obtained a higher value of MAD (9.72 years),
which represents a decrease of the model accuracy in this set of sam-
ples. This data could be explained by postmortem changes that can alter
the methylation status among specific loci, although this issue has not
yet been clarified until now [31]. DNA methylation changes after death
suggest that a specific APM developed for blood samples from living
individuals cannot accurately be applied for blood samples from de-
ceased individuals, in concordance with data obtained in our previous
study with the SNaPshot methodology [25]. ELOVL2 gene is an ex-
ception in concordance with general data recognizing this locus as a
stable age-associated marker exhibiting consistent age-related changes
across different tissues such as blood, teeth or saliva [15,21,32,33]. This
explains the potential power of ELOVL2 gene for age estimations in
forensic contexts proposed by several studies [13,18,20,32,34].

The accuracy obtained in independent models for blood samples of
living (this study) and deceased individuals [24] using the bisulfite
PCR-sequencing methodology was similar (MAD values of 5.35 and
6.08 years, respectively), attesting the reproducibility of the bisulfite
PCR-sequencing methodology. This approach is simple, does not in-
clude complex procedures, being less time-consuming and less ex-
pensive, showing to have near equivalent accuracy to pyrosequencing
[29,30]. Moreover, bisulfite PCR-sequencing enable us to assess the
percent methylation across multiple CpG sites allowing the possibility
to choose several CpGs of interest.

In the present study, larger differences with the increase of age were
observed in the training set of 53 living individuals, in concordance
with previous studies [16,18,19,25,31]. Grouping the samples into four
age categories, older individuals showed an increased MAD, with a
lower percentage of correct predictions. The fact that DNA methylation
patterns predict age with more accuracy in younger than in older

individuals suggests increased inter-individual variation within older
people, possibly due to environmental, diseases and stochastic factors
[10–13].

Another relevant issue is the possible influence of sex in DNA me-
thylation levels of age correlated markers. To date, there is no con-
sensus for a relationship between age-associated DNA methylation le-
vels and sex [16,19,25,32,35,36]. Similar to other studies
[16,25,35,36] our results showed no significant differences between
males and females, suggesting that gender has no influence in DNA
methylation levels of age-related CpG sites located at ELOVL2,
EDARADD, FHL2 and PDE4C genes.

The proposed APM developed using 53 blood samples from living
individuals was tested in an independent set of 18 blood samples, also
from living individuals, revealing reliability and reproducibility
(MAD = 4.98 years). Moreover, two additional validation approaches
have been made revealing high reproducibility. Through 4-fold cross
validation, using the training set of 53 living individuals, a mean MAD
value of 6.20 years was obtained for the validation sets; and through
splitting the overall sample set of 53 living individuals in two sets with
similar size (training and validation sets), a MAD value of 6.08 years
was obtained for the training set and a MAD of 5.81 years for the va-
lidation set.

Moreover, we can hypothesized that our developed APM for blood
samples from living individuals can be applied to fresh bloodstains in
forensic contexts due to DNA methylation stability, as it was demon-
strated for developed models in two previous studies [18,36]. Huang
et al. [36] observed no statistically significant differences in age pre-
diction between blood samples and bloodstains, as well as in the
comparison of predicted age on the basis of different period blood-
stains. These results were similar to the observed by Zbieć-Piekarska
[18] in which the rate of corrected predictions in bloodstains seems to
be not related with the time of storage. Based on this, it is also possible
that our model developed for blood samples from living individuals
could be applied to forensic casework in cases of bloodstains from
unknown origin.

As conclusion, using a training set of 53 blood samples of living
individuals, we developed a final APM with the highly age-associated
CpGs in genes ELOVL2, FHL2, EDARADD and PDE4C. The model re-
vealed an accurate age estimation with a MAD from chronological age
of 5.35 years. Our results through the bisulfite PCR-sequencing meth-
odology are in concordance with previous studies using the pyr-
osequencing assay, revealing being accurate for age estimations in
forensic casework, at least in blood. Moreover, a similar accuracy was
observed comparing with the APM developed for blood samples from
deceased individuals, showing reproducibility and applicability of bi-
sulfite PCR-sequencing for age estimation in forensic contexts using
blood. Differences in DNA methylation levels between living and de-
ceased individuals suggest that DNA methylation postmortem changes
can occur. This hypothesis reveal the necessity and usefulness of de-
velopment of APMs specific not only for each type of sample but also
considering the safety of the donor.
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