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Abstract

The computation of the magnetic field in the umbra- the darkest part of a sunspot, was the main
motivation of this work. After several simplifications of the physical scenario to concretize this
ambitious goal, it was realized that one should start by constructing stable and convergent numerical
methods for nonlinear parabolic equations.

In this thesis, numerical methods for initial boundary value problems (IBVPs) of nonlinear
parabolic equations with Dirichlet or Neumann boundary conditions are proposed, and their stability
and convergence analysis are established. These methods, defined in nonuniform partitions, can be
seen simultaneously as finite difference methods (FDMs) and piecewise linear finite element methods
(FEMs). Error estimates showing that the semi-discretization errors are second-order convergent with
respect to a discrete version of the usual H1-norm are established. These error estimates show that the
proposed methods lead to a second-order approximation for the solution and for its gradient.

In the scope of the FDM, these error estimates are supraconvergent. This means that although they
present spatial truncation error with first-order with respect to the norm ∥ · ∥∞, the corresponding error
is second-order convergent with respect to a discrete version of the H1-norm. On the other hand, in
the finite element community, these error estimates can be seen as superconvergent estimates. In fact,
piecewise linear FEMs lead, for linear elliptic equations, to first-order approximations with respect to
the usual H1-norm, and second-order approximations with respect to the usual L2-norm. Although
this fact, the second-order convergence is concluded with respect to a discrete version of the H1-norm.

It should be pointed out that for differential problems with Dirichlet boundary conditions in
two-dimensional domains or Neumann boundary conditions in the one-dimensional case, the error
estimates are constructed assuming solution in C4. For differential problems with Dirichlet boundary
conditions in the one-dimensional case, lower smoothness assumptions are imposed.

The application of the developed methods to simulate strong and vertical magnetic fields is also
an objective of the present work. Given this scenario, the numerical simulation is considered only
the vertical component of the magnetic fields and one horizontal component. Dirichlet boundary
conditions are assumed in a rectangular domain and are defined using numerical data, as well as the
initial condition. The velocity field is also assumed to be known and obtained from numerical data
too. As the quality of the magnitude of the magnetic field deteriorates with time due to the convective-
dominated regime, a stabilization improvement is considered. Due to limitations on computational
time, data handling, and availability of sunspot simulation, the numerical experiment is performed on
a Network region where, on a shorter spatial scale, the condition is very similar to the one presented
on the umbra of the sunspots.

Another goal of the present thesis is the automatic detection and geometric definition of sunspots,
including the limits of umbra and penumbra, in solar images. An image processing algorithm based
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on mathematical morphology is proposed, and its performance to detect and segment sunspots is
analyzed. For this purpose, the Geophysical and Astronomical Observatory of the University of
Coimbra database was used. In the near future, those results will be used to define the computational
domain for the sunspots magnetic field evolution.

Keywords: Sunspots, magnetic field, nonlinear parabolic equations, finite difference methods,
piecewise linear finite element methods, stability, convergence.



Resumo

A evolução do campo magnético na umbra- a parte mais escura de uma mancha solar, foi a motivação
central para este trabalho. Depois de várias simplificações no cenário físico, iniciou-se o estudo de
métodos numéricos para equações de derivadas parciais parabólicas não lineares.

Nesta tese são propostos métodos numéricos para problemas não lineares parabólicos com
condições inicial e de fronteira do tipo Dirichlet ou Neumann e é estabelecida a sua análise numérica
no que diz respeito à estabilidade e convergência. Os métodos propostos, definidos em partições
não uniformes, podem ser vistos simultaneamente como métodos de diferenças finitas e métodos de
elementos finitos segmentados lineares. São ainda construídas estimativas de segunda ordem para
o erro associado à discretização espacial, relativamente a uma versão discreta da norma H1. Estas
estimativas mostram que os métodos propostos permitem construir aproximações de segunda ordem
para a solução bem como para o seu gradiente.

No âmbito dos métodos de diferenças finitas, as estimativas de erro estabelecidas são estimativas
supraconvergentes, isto é, o erro de truncatura associado à discretização espacial é de primeira ordem
relativamente à norma ∥.∥∞ e o correspondente erro global é de segunda ordem relativamente a uma
norma que pode ser vista como uma versão discreta da norma usual de H1. Na comunidade dos
métodos de elementos finitos, estes resultados podem ser vistos como resultados de superconvergência.
De facto, embora baseado no método de elementos finitos segmentado linear que apresenta, para
equações elípticas lineares, ordem 2 relativamente à norma usual de L2 e ordem 1 relativamente
à norma de H1, conclui-se ordem 2 relativamente a uma norma que pode ser vista como uma
discretização da norma usual de H1.

É de salientar que, quando o problema diferencial é complementado com condições de Dirichlet
em domínios bidimensionais ou condições de Neumann num intervalo, as estimativas de erro são
construídas assumindo que as soluções analíticas estão em C4. Por outro lado, para problemas com
condições de Dirichlet no caso unidimensional são impostas condições de regularidade mais fracas.

A aplicação dos métodos desenvolvidos na simulação do campo magnético na umbra é também
um dos objetivos da presente trabalho. Neste contexto são consideradas na simulação numérica a
componente vertical e uma componente horizontal. No que diz respeito às condições de fronteira,
são assumidas condições de Dirichlet definidas a partir de dados numéricos, assim como a condição
inicial. Supõe-se que o campo de velocidades é também conhecido. Atendendo a que o problema em
questão é dominado pela convecção, observa-se que a qualidade do campo magnético se deteriora
no tempo. Com o objetivo de contornar esta patologia numérica, é implementado um método de
estabilização.

Outro objetivo da presente tese é a detecção automática e definição geométrica das manchas solares,
incluindo os limites da umbra e da penumbra, em imagens do sol. Um algoritmo de processamento de
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imagens baseado em morfologia matemática é proposto e seu desempenho na detecção e segmentação
de manchas solares é analisado. Para o efeito, utiliza-se a base de dados do Observatório Geofísico
e Astronómico da Universidade de Coimbra. Os resultados obtidos serão utilizados, num trabalho
futuro, para definir o domínio computacional para o estudo da evolução do campo magnético de
manchas solares.

Palavras-Chave: Manchas solares, campo magnético, equações parabólicas não lineares, métodos
de diferenças finitas, métodos de elementos finitos segmentado linear, estabilidade, convergência.
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Chapter 1

Introduction

The evolution of technology and scientific knowledge presents us every day with challenging problems
in the most diverse areas. In what concerns complex problems of physical nature, numerical models
with good mathematical properties are computationally simulated, under different scenarios. These
models allow mimic physical phenomena and study their evolution under certain assumptions. The
numerical analysis thus plays a fundamental role in the most diverse areas, such as medicine, industry,
or even in solar physics. Another current problem arising from the evolution of technology is the
processing and analysis of image data, in a fast and efficient way. The application of image processing
techniques and their robustness contributes to the development of full automatic tools, able to detect
features in images. The automatic methods reveal many advantages over manual ones, namely
processing speed, precision and objectivity.

The initial aim of this thesis was the simulation of the evolution of solar magnetic field (intensity
and orientation) and the consequent emergence of sunspots in the solar surface. Note that this simula-
tion involves several complex physical processes to characterize the system completely. Radiative
transfer, turbulence, processes related to atomic and plasma physics, among others, should be taken
into consideration. Actually, it is a huge challenge, of enormous complexity and computational
demand, which numerous teams have been working for more than 15 years (see, for example, [12] and
[78]). To develop robust and effective methods to solve this problem, it is necessary, on one hand, sim-
ulate the evolution of solar magnetic field as well as the plasma. On the other hand, it is also required
to establish the scenarios that lead to the emergence of sunspots. These scenarios can be obtained
simulating the emergency of magnetic field from deeper layers (very complex process), or/and using
sunspots as a starting point for seeding magnetic field configuration. Therefore having well-defined
sunspots in solar images has an important role in the definition of scenarios. The candidate had the
opportunity to visit Max Planck Institute for Solar System Research, a known renown institute in solar
physics, to gain some insights on this thematic.

Given this initial aim’s boldness, two new objectives emerged to gain sensitivity and experience
with these themes. Firstly, a numerical study of a simplistic model of equations applicable to regions
characterized by a strong and vertical magnetic field is done. These conditions are valid and originate
not just sunspots, but also several other solar structures like, for example, network, inter-network
regions, sharing similarities in their behaviour although observed at different scales [81]. It should be
pointed out that although complex physical processes are significant elements in a realistic simulation,
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2 Introduction

they can be, in many particular cases, neglected. Secondly, the development of an automatic tool
based on image processing techniques that precisely define sunspots limits, and also separate it into
umbra and penumbra. This second aim is related with the fact that the magnetic field evolution and
its interplay with the plasma are crucial to the evolution of previously mentioned solar structures.
Therefore imprints of those structures in the solar atmosphere can be used to complement and validate
the magnetic field study.

1.1 The sun

All matter is made up of particles with specific properties according to the physical state in which
belongs. Among the classic physical states we have solid, liquid, and gas. Frequently, plasma is
considered the fourth state of matter, and is the most common state in the universe. Daily, plasmas can
be found inside plasma TV’s, fluorescent lamps, or just looking at the sun. Basically plasma is a hot
ionized gas with positive and negative charged particles, approximately in the same number, that are
in constant activity of ionization and recombination. Because it is ionized, this state allows the matter
to be a good conductor of electric current, responding to the interaction with electromagnetic forces.

Essentially, the sun is a huge ball made of plasma where magnetic and electric fields are ev-
erywhere. The sun, as Figure 1.1. illustrates, can be divided into three inner layers, which are the
core, radiative zone, and convective zone, and three outer layers, the photosphere, chromosphere, and
corona.

The core is where nuclear fusion occurs. During this physical process, a large amount of energy
is released that then is propagated to more external layers. Since the inner part of the sun cannot
be observed, everything that is known about its interior results from the combination of theoretical
models and observations of its outer layers. Despite of being the energy source of the sun, the core
does not play an important role in the interaction between plasma and magnetic field that is seen in
the outer layers. The layer above the core is the radiative zone where energy is transported solely
through radiation. It is also characterized by a rotation profile as a rigid body contrasting with the
next layer. In convective zone, last inner layer of the sun, as its name suggests, the energy is mostly
transported through convection. Here, the sun has a differential rotation where the equator rotating
about 30% faster than the polar regions [75]. At the top of the convective zone there is a very thin
layer called photosphere. It is from here that the radiation in the visible spectrum is able to escape and
reach Earth, therefore it is the deepest layer of the sun that can be observed. The photosphere is called
the solar surface, although it is not a solid surface, as it happens on Earth. The chromosphere is the
next layer. Even though the plasma density in this layer is lower than in the photosphere, there is still
energy transport by radiation and advection. Corona is the sun’s outermost layer, and is characterized
by such a low density of the plasma that the particles very rarely interact to each other. The set of the
three outer layers of the sun make up the solar atmosphere.

It is known that the interaction of the plasma with the solar magnetic field generates several
phenomena that can be seen in the different layers of the sun. The study of such phenomena (sunspots,
filaments, plages, flares, etc.) is crucial to understand the physical processes present in the sun. This
knowledge is of great importance since changes in the radiation emitted by the sun, in the solar
magnetic field, energy explosions, etc., could have several impacts on the Earth. Such events can
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perturb precision navigation systems, interrupt satellite functions, and be dangerous for astronauts
health. When they are more severe may even result in perturbations in the electric power system and
cause the loss of satellites through damaged electronics [67]. Two examples of this kind of events are
following pointed out. The first one occurred on 13th March 1989 and caused a blackout in Quebec,
Canada [17]. The other one occurred on 4th November 2015, the flights disappear from the radar
screens of the Swedish air traffic control towers which led to the closure of the country’s airspace
for more than an hour [58]. Changes in the Earth’s environment that can be traced from physical
processes occurring in the space, namely in the sun, are called Space Weather. It can be seen as
a natural hazard where scientific knowledge should be used to understand how it affects the wider
society, as well as to identify actions to mitigate the risks [36]. Therefore, the influence of the sun on
the Earth makes the study of this star highly relevant today.

Despite having several phenomena resulting from solar activity, the study done in this thesis
focuses only on sunspots since they are the first visible manifestation of the solar magnetic field in the
solar atmosphere.

1.1.1 Sunspots

Sunspots were the first solar phenomena to be observed, by naked eye, and recorded, as drawings,
dating from around 364 BC, by Chinese observers [45]. However, the first instrumental observations
that allowed the study of the sun, from the physical point of view and in a systematic way, were
carried out by Galilei, Scheiner and others, around 1611 [74]. In 1908, Hale discovered that sunspots
have a magnetic nature [35]. Actually, sunspots are manifestations of strong magnetic field intensities
visible in the photosphere. These structures are temporary, with a lifetime from hours to months, vary
in diameter from thousand kilometers to several dozens of thousand kilometers [74].

Sunspots are composed by a dark central area, the umbra, which spans from 3900 to 4800 K in
temperature (K denotes Kelvin), and a less dark area that surrounds the umbra, the penumbra, where
temperature varies from 5400 to 5500 K (see Figure 1.2). In the umbra the magnetic field, which is
nearly perpendicular to the surface, reaches values between approximately 1800 G and 3700 G (G
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denotes Gauss). In penumbra the magnetic field is more horizontal, and its strength goes around 700 G
to 1000 G (for more details please see [74]). Not always the magnetic field configuration leads to the
formation of a fully formed sunspot. In these case only a umbra like structure, called pore, is created.
Over the years, different models have been proposed to explain the mechanism for sunspot formation

Fig. 1.2 Image taken on July, 2010 by the New Solar Telescope
at the Big Bear Solar Observatory reveals up-close details of

a sunspot like never before (Image: ©BBSO).

in the solar photosphere. The theory purposed by Parker [59] is widely accepted. This theory is based
on the rise of magnetic flux tubes. According to it, magnetic field lines are approximated to magnetic
flux tubes. With the increase of the magnetic field inside the tube, its magnetic pressure raises. To keep
the total pressure inside the tube (the sum of gas and magnetic pressures) equals to its surroundings,
the gas pressure drops leading to a decrease in density. The difference between the densities inside
and around the tube makes the tube rises, and erupts to the surface due to a force that is exerted by the
surrounding fluid, the so-called buoyancy (the same force that allows us to float on the sea). With rise
of large flux tubes of great magnetic intensity results sunspots which are the intersection of them with
the solar surface. A scheme representing this theory is shown in Figure 1.3. Sunspots appear darker
and less warm than the surroundings because the strong magnetic fields that originated them suppress
the convection mechanism. Consequently, the plasma coming from the deepest layers of the sun does
not emerge and does not supply thermal energy to the upper layers, which end up cooling through
radiation. The magnetic buoyancy instability, that in astrophysics is usually called Parker instability,
is one of the most used instabilities created in the models to simulate the appearance of sunspots.

Fig. 1.3 A scheme representing the emergence of a magnetic flux tube
(image from [80]).
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According to rising flux-tubes model, sunspots are the first observable manifestation of the solar
magnetic field. Therefore, the study of these structures is of great importance both to understand solar
dynamics and to monitor and forecast solar activity allowing the obtaining of results for the Space
Weather studies.

1.1.2 Network and internetwork magnetic fields

Inside the solar convective zone, there are convective cells spanning from 100 km (solar granulation)
up to 30000 km (super granulation). These convective motions can concentrate a strong magnetic
field in the edged of their cells. In the case of solar granulation, the typical magnetic field that those
cells can concentrate reaches several hundreds of G, presenting both polarities. The regions where
this type of magnetic field is present is called inter-network. Concerning the supergranulation, mainly
due to their long lifetime, the magnetic field goes up the few kG concentrated in nearly vertical flux
tube, on both polarities, with a size that often exceeds 500 km [8]. The regions where this type of
magnetic field is present is called network. An example of the configuration of the z-component of
magnetic field in a network region is shown in Figure 1.4.

Although the magnetic field configuration in this type of regions is very similar to the one presented
in the umbra of sunspots, these structures are difficult to observe due to their smaller size and their
appearance similar to the background.

Fig. 1.4 Example of the z-component of the magnetic field in a network region.

1.1.3 Equations

Magnetohydrodynamics (MHD) is the branch of Physics that studies the dynamics of fluids that are
electrical conductors in the presence of magnetic field. The nobel prize in Physics in 1970, Hannes
Alfvén, was who started the study of MHD. Afterwards, a set of coupled equations were stated, the
so-called MHD equations. This set of governing equations is often used to simulate magnetic fields,
and therefore are also used in many studies of solar phenomena. Two of the equations that can be
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used to describe the system are the induction equation

∂B
∂ t

= ∇× (u×B)+η∆B, (1.1)

and the Navier-Stokes equation,

∂u
∂ t

+(u ·∇)u =−∇(pg/ρ)+ν∆u+(J×B)/ρ. (1.2)

The induction equation describes the evolution of the magnetic field B over time in a medium with
magnetic diffusivity η , and a velocity field u. The Navier-Stokes equation describes the evolution of
the velocity field u in a medium with dynamic viscosity ν , density ρ , being pg the gas pressure, and J
the electric current density. Please note that the following equality holds

J×B =
1
µ0

B ·∇B−∇(B2/2µ0),

where µ0 is the vacuum permeability, B2 is given by the square of the euclidean norm of B, and
B2/2µ0 is called the magnetic pressure (pm). For more details see [20].

Let assume ∇ ·u = 0, i.e. the particular case in which the plasma is non-relativistic and incompress-
ible, that implies a velocity of the medium much less than the speed of sound. With the establishment
of previous condition, can be considered without loss of generality that the density of the fluid follows
a homogeneous distribution, and normalize it, getting ρ = 1 [9]. Let also assume that plasma motions
are dominated by the magnetic field which implies that the gas pressure can be neglected [32, 75].

Therefore, taking into account the cross product rule

∇× (X ×Y ) = (∇ ·Y +Y ·∇)X − (∇ ·X +X ·∇)Y,

where X and Y are vector fields of the same dimension, the solenoidal constraint on B (i. e., ∇ ·B = 0)
[20], and the assumptions considered before, the equations (1.1) and (1.2) can be rewritten, respectively,
as follows,

∂B
∂ t

+(u ·∇)B = (B ·∇)u+η∆B, (1.3)

and

∂u
∂ t

+(u ·∇)u =−∇(B2/2µ0)+
1
µ0

(B ·∇)B+ν∆u. (1.4)

The assumptions previously made are considered valid in the solar atmosphere. For example, the
coupled equations (1.3) and (1.4) can be used to describe the temporal evolution of B and u, in the
umbra and pores [1].

The system (1.3)-(1.4) is a particular case of the system of second-order nonlinear parabolic
equations

∂U
∂ t

+F(U,∇U) = ∇ · (A(U)∇U)+G in Ω× (0,T ], (1.5)
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where U = (B,u), A is a diagonal matrix with entries Aii ≥ A0 > 0, i = 1, . . . ,6, ∇U = (∇B,∇u),
F = ( fi, i = 1, . . . ,6) and G = (gi, i = 1, . . . ,6).

1.2 Outline

The organization of the present thesis is described in what follows.
Chapter 2, Stability and convergence analysis for IBVP with Dirichlet boundary conditions is

devoted to the study of numerical methods for nonlinear parabolic IBVPs, defined in a real interval, and
complemented with boundary conditions of Dirichlet type and an initial condition. The corresponding
elliptic boundary value problems (BVPs) are also considered. For both classes of differential problems,
methods that can be simultaneously seen as FDMs and piecewise linear FEMs are proposed, stability
and convergence results are established. In what concerns convergence, error estimates are deduced
considering discrete H1-norms, and smooth and nonsmooth solutions. This last assumption requires
different techniques. For smooth solution, estimates for the spatial truncation error have a central role
in the final result while for nonsmooth solution the analysis is based on the use of the Bramble-Hilbert
lemma [11]. In both cases, second-order error estimates are deduced for the numerical solution and
for its gradient. Consequently, the results can be seen simultaneously as supraconvergent results, in
the scope of FDMs, and superconvergent results, in the scope of FEMs.

Chapter 3, An application to sunspots, is motivated by the application of the methods studied in
Chapter 2, for one-dimensional IBVPs, to the numerical simulation of the vertical solar magnetic
field observed in some solar regions, namely in the umbra and also in the network. As the physical
phenomenon is defined in a two-dimensional domain, this chapter starts with the natural extension of
the results presented in Chapter 2 for the corresponding numerical methods defined in nonuniform
partitions of a two-dimensional domain. It should be pointed out that the error estimates are obtained
considering smooth solutions. The last part of this chapter is focused in the application of the studied
numerical tools to the numerical simulation of the vertical magnetic field in umbra. To simplify is
assumed that the velocity field is known, in all space and time domain. The initial condition is also
known, as well as the magnetic field on the boundary of space and time domain. As the behaviour
of the magnetic and velocity fields in the network are similar to the ones in umbra, the velocity field
and the the magnetic fields used as input data were taken from the numerical simulation of a network
region obtained with the Bifrost code [14, 34]. During the numerical experiences, it was realized that
the numerical solution does not reproduce the reference solution due to the convection-dominated
regime observed in the solar magnetic field. A stabilization term defined by an artificial diffusion was
used to correct the observed numerical results’ pathologic behaviour, improving its quality.

To obtain, in Chapter 3, the numerical experiments for the solar magnetic field, the magnetic
field knowledge on the boundary of space and time domain is assumed, i.e., the solar magnetic field
dynamics is complemented with Dirichlet boundary conditions. Indeed this assumption is not realistic,
and conditions of Neumann or Robin type should be more adequate. Chapter 4, Convergence analysis
for IBVP with Neumann boundary conditions intends to contribute to the study of numerical methods
for nonlinear parabolic IBVPs with Neumann boundary conditions. It is clear that even for problems
with smooth solutions, the construction of the discretization of the boundary conditions that leads to
second-order error estimates is not a trivial question. Here, defining a convenient functional scenario,
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are proposed numerical methods for a nonlinear parabolic IBVP and for its correspondent nonlinear
elliptic equation that lead to second-order convergent numerical solutions with respect to a discrete
H1-norm. While in the previous chapters, only the semi-discrete approximations are studied, this
chapter also provides the theoretical convergence support for fully discrete in time and space methods.

Chapter 5, Detection of sunspots in spectroheliograms, is focused on image processing techniques
to detect and segment sunspots. For this purpose, an automatic algorithm based on mathematical
morphology is developed for the data acquired in the Geophysical and Astronomical Observatory
of the University of Coimbra. Its performance to detect and segment sunspots in solar images is
analyzed.

This thesis finishes with Chapter 6, Conclusions, where main conclusions are drawn and open
problems are raised, which will be object of future research.



Chapter 2

Stability and Convergence Analysis for
IBVP with Dirichlet boundary conditions

2.1 Introduction

The main goal of the present chapter is to propose numerical discretizations of the following system
of second-order nonlinear parabolic equations

∂U
∂ t

+F(U,∇U) = ∇ · (A(U)∇U)+G in Ω× (0,T ], (2.1)

that depends only on x and t, and where, to simplify, Ω = (0,1), U = (u1,u2), A is a diagonal matrix
with entries α(u1) ≥ α0 > 0 and β (u2) ≥ β0 > 0, ∇U = (∇u1,∇u2), F = ( f1, f2) and G = (g1,g2).
This system is complemented with homogeneous Dirichlet boundary conditions

U = 0 on ∂Ω× (0,T ], (2.2)

with ∂Ω = {0,1}, and initial conditions

U(x,0) =U0(x), x ∈ Ω, (2.3)

having U0 = (u1,0,u2,0). In what follows the following notation is used: if U : Ω× [0,T ] 7→ R2 then
by U(t) is represented the function U(t) : Ω 7→ R2,U(t)(x) =U(x, t).

The objective is to introduce numerical methods that can be seen simultaneously as fully discrete
piecewise linear FEMs, defined with convenient quadrature rules, and as FDMs defined on nonuniform
grids. We will be mainly focused on semi-discretization methods, that is in spatial discretizations, that
converts the IBVP (2.1), (2.2), (2.3) in an initial value problem that can be solved using an efficient
and accurate numerical methods for this kind of problems.

The proposed methods are based on piecewise linear FEMs, and it is well known that they lead to
a first-order approximation with respect to the usual H1-norm, and to a second-order approximation
with respect to the usual L2-norm. On the other hand, the methods that will be studied can be seen as
FDMs defined on non-uniform grids characterized by a truncation error with first-order with respect
to the norm ∥ · ∥∞. Following the lines of the research presented in [41, 71], it will be shown that

9
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the proposed numerical methods lead to a second-order approximation with respect to a discrete
version of the usual H1-norm. Once it is obtained a higher-order approximation than the expected,
the piecewise linear FEM is said superconvergent and, as FDM is said supraconvergent. Thus, the
designation of super-supraconvergent for the methods studied here is used to explicitly state these
facts. Recall that there are several procedures to define second-order approximations for the gradient
of the solution using the piecewise linear finite element approximations. Without being exhaustive it
is mention the classical papers [42, 44].

To gain some insights into the design and convergence analysis of super-supraconvergent dis-
cretizations of second-order nonlinear equations, we start by considering the nonlinear elliptic BVP

−(A(u)u′)′+ f (u,u′) = g in Ω, (2.4)

with homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω. (2.5)

It is desired to extend the results obtained for the previous elliptic problem, to the following system of
nonlinear elliptic equations

−∇ · (A(U)∇U)+F(U,∇U) = G in Ω, (2.6)

where U depends only on the spatial variable, with homogeneous Dirichlet boundary conditions

U = 0 on ∂Ω. (2.7)

For the fully discrete piecewise linear finite element approximations for the solution of the
previous nonlinear problems, it is proved second-order convergence for the gradient without any
post-processing, a popular procedure followed in different contexts, that leads to an improvement of
the accuracy of the gradient approximations (see for instance [44, 79]).

In what concerns linear elliptic BVPs, in [6, 23], numerical methods based on piecewise linear
FEMs, that are equivalent to FDMs, were proposed. In these papers, the authors presented a new
approach to analyse the convergence properties of a fully discrete in space piecewise linear FEM. In
this new approach, the Bramble-Hilbert lemma [11] is the main tool in the convergence analysis. It
allows reducing the smoothness assumptions on the solutions of the differential problems usually
required when Taylor expansion is used: the usual smoothness assumption u ∈C4(Ω) is replaced by
the weaker assumption u ∈ H3(Ω)∩H1

0 (Ω). This new methodology has been largely used as can be
seen, for instance, in [5, 7, 24–27, 41, 71]. It should be pointed out that it is intended to use the same
approach here to establish the convergence results for the nonlinear problems introduced above for
lower smooth solutions. However we start by establishing the same convergence order considering the
particular structure of the truncation error and assuming that u ∈C4(Ω). Finally, it is observed that
the convergence results are established analysing carefully the error equation. As we are dealing with
nonlinear differential problems, the convergence estimates are not obtained using stability arguments.

In the FDMs, for linear time dependent problems, stability and consistency are equivalent to
convergence [43]. When we go to nonlinear differential problems, stability is a local property [65]. In
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fact, the stability of numerical methods applied to nonlinear problems is a local problem property in
the sense that is defined for approximations in a ball centered in a numerical solution. The stability
analysis usually requires some smoothness on such numerical solution, and the neighborhood can be
defined with a fixed radius or the radius can be step-size dependent. Although the stability analysis for
nonlinear methods can be seen as a classical problem where apparently no novelty can be introduced,
it requires a careful treatment and deep understanding of the concept. In fact, as it will be seen
in what follows, standard arguments can be used to show that, for instance, for the discretization
of nonlinear elliptic equations, the bound for the difference between two solutions depends on the
discrete W 1,∞-norm of the fixed solution. To conclude stability, it is necessary to assume the boudness
of such quantity. Such result can be proved provided that the discrete W 1,∞-norm for the error is at
least of first-order. This fact requires the study of the error. It is assumed that the diffusion coefficient
depends on the dependent variable and this fact requires a careful discretization of this term to obtain
a stable and convergent method. Although the methods introduced here, also seen as FDMs, present
first-order truncation error, it will be proved that they are second-order accurate with respect to a
discrete H1-norm assuming lower smoothness assumptions on the solutions. These results allow
obtaining the upper bounds that are crucial in the stability analysis. The stability will be established in
a ball centered in the numerical solution with radius step-size dependent ([47], [65]). As for elliptic
equations, for nonlinear parabolic problems it will be provided in this chapter the error estimates that
allow the establishment of the upper bounds for the discrete solutions needed in the stability analysis.

The present chapter is organized as follows. In Section 2.2, the elliptic equation (2.4) is considered
with homogeneous Dirichlet boundary conditions (2.5). In Section 2.2.1 some notations and important
results are introduced. Section 2.2.2 is devoted to the stability analysis, considering a first approach
where is realized that an additional assumption needs to be imposed in the numerical solution. In
Section 2.2.3 are presented convergence results for smooth solutions. Firstly is concluded first-
order of convergence for solutions in C3(Ω) taking into account the expression of the truncation
error, and using Taylor expansion. An improvement of the order of convergence is after achieved,
for solutions in C4(Ω), manipulating the expression of the truncation error which allows obtaining
second-order estimates for the error. The stability is established in Section 2.2.4, based on the error
estimates previously obtained, which is not a common approach in the literature. Section 2.2.5 is
dedicated for the convergence analysis for nonsmooth solutions. Using Bramble-Hilbert Lemma as
the main tool second-order of convergence is obtained for solutions in H3(Ω)∩H1

0 (Ω). Numerical
results illustrating the theoretical support developed in the previous section are in Section 2.2.6.
The extension of the principal results to the BVP (2.6)-(2.7) is the objective of Section 2.3, where
numerical simulations illustrating the order of convergence obtained theoretically for nonsmooth
solutions are also presented. Section 2.4 is devoted to the main goal of the present chapter, the
construction of a numerical method for the IBVP (2.1)-(2.3), and its convergence (Section 2.4.1)
and stability (Section 2.4.2) analysis, following the same approaches carried out for the stationary
problems. Numerical simulations illustrating the convergence result can also be found in this section.
Finally, in Section 2.5 some conclusions are presented.

Remark that the analytical study concerning the existence and uniqueness of the solution of the
BVPs or IBVPs studied in the scope of this thesis will not be considered.
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2.2 A nonlinear elliptic equation

2.2.1 Notations and definitions

We start by introducing a non-uniform grid Ωh, in Ω, of size N, induced by a vector h=(h1, ...,hN), hi >

0,∀i ∈ {1, ...,N}, with
N

∑
i=1

hi = 1. Let Λ be a sequence of such vectors h, and hmax = max
i=1,...,N

hi → 0.

Let Ωh = {xi : i = 0, ...,N} be the nonuniform grid in Ω, defined by xi = xi−1 +hi, i = 1, . . . ,N, with
x0 = 0 and xN = 1. Let Ωh = Ω∩Ωh be the set of interior nodes, and the set of boundary points of
the grid is denoted by ∂Ωh = ∂Ω∩Ωh. Let Wh and Wh,0 be, respectively, the space of grid functions
defined in Ωh, and the space of grid functions defined in Ωh and null on ∂Ωh.

In Wh,0 is introduced the following L2-discrete inner product

(uh,wh)h =
N−1

∑
i=1

hi+1/2uh(xi)wh(xi), uh,wh ∈Wh,0,

considering hi+1/2 =
hi+hi+1

2 . The norm induced by this inner product is denoted by ∥ · ∥h. In this
space, it is also considered the norm

∥vh∥h,∞ = max
i=1,...,N−1

|vh(xi)|, ∀vh ∈Wh,0.

The following notations are used in what follows

(uh,wh)+ =
N

∑
i=1

hiuh(xi)wh(xi), uh,wh ∈Wh,

and ∥uh∥+ =
√

(uh,uh)+,uh ∈Wh.

Note that ∥ · ∥h can be seen as a discrete version of L2-norm, and also

∥vh∥1,h =
(
∥vh∥2

h +∥D−xvh∥2
+

)1/2
, vh ∈Wh,0,

can be seen as a discrete version of the usual H1-norm.

Let D−x and D∗
x be the first-order finite difference operators defined by

D−xuh(xi) =
uh(xi)−uh(xi−1)

hi
, i = 1, . . . ,N.

D∗
xuh(xi) =

uh(xi+1)−uh(xi)

hi+1/2
, i = 0, . . . ,N −1.

Recall some useful results regarding functions in Wh,0.

Proposition 2.1. For vh ∈Wh,0 it holds

∥vh∥h ≤ ∥D−xvh∥+ (2.8)
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and
∥vh∥h,∞ ≤ ∥D−xvh∥+.

Inequality (2.8) is usually called Poincaré-Friedrichs inequality, and it can be seen as a discrete
version of its continuous version.

Consider now the following finite difference operator

D∗
x(A(Mhuh)D−xuh)(xi) =

A(Mhuh(xi+1))D−xuh(xi+1)−A(Mhuh(xi))D−xuh(xi)

hi+1/2
, i = 1, ...,N −1,

(2.9)
where Mh is the following average operator

Mhuh(xi) =
uh(xi)+uh(xi−1)

2
.

When A is constant, the finite difference operator (2.9) is reduced to the second-order centered finite
difference operator, ∆h, as the discrete version of the second derivative in space, defined by

∆huh(xi) =
hiuh(xi+1)− (hi +hi+1)uh(xi)+hi+1uh(xi−1)

hihi+1hi+1/2
,

for i = 1, . . . ,N −1.

For the finite difference operator (2.9), the following result holds, which is an analogue of the
integration by parts formula known in calculus.

Proposition 2.2. For uh,vh ∈Wh,0,

(D∗
x(A(Mhuh)D−xuh),vh)h =−(A(Mhuh)D−xuh,D−xvh)+.

It is also introduced the discrete operator ∇h defined as

∇huh(xi) =
hi

hi +hi+1
D−xuh(xi+1)+

hi+1

hi +hi+1
D−xuh(xi), i = 1, ...,N −1.

The source term g is discretized by

gh(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x)dx, (2.10)

where xi−1/2 = xi − hi
2 , and xi+1/2 = xi +

hi+1
2 .

Consider, for the elliptic equation (2.4), the weak formulation: find u ∈ H1
0 (Ω) such that

(A(u)u′,v′)+( f (u,u′),v) = (g,v), ∀v ∈ H1
0 (Ω). (2.11)

The piecewise linear finite element approximation Phuh with uh ∈ Wh,0, where Phuh denotes the
piecewise linear interpolator of uh, is solution of the following problem: find uh ∈Wh,0 such that

(A(Phuh)(Phuh)
′,(Phvh)

′)+( f (Phuh,(Phuh)
′),Phvh) = (g,Phvh), ∀vh ∈Wh,0.
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The fully discrete piecewise linear approximation is then obtained taking into account the following
approximations

(A(Phuh)(Phuh)
′,(Phvh)

′)≃ (A(Mhuh)D−xuh,D−xvh)+

and
( f (Phuh,(Phuh)

′),Phvh)≃ ( f (uh,∇huh),vh)h, (g,Phvh)≃ (gh,vh)h.

Then the fully discrete finite element approximation is obtained solving the following problem: find
uh ∈Wh,0 such that

(A(Mhuh)D−xuh,D−xvh)++( f (uh,∇huh),vh)h = (gh,vh)h, ∀vh ∈Wh,0. (2.12)

Taking into account Proposition 2.2, it is observed that the last problem is equivalent to the following
one: find uh ∈Wh,0 such that

−D∗
x(A(Mhuh)D−xuh)+ f (uh,∇huh) = gh in Ωh, (2.13)

complemented with the boundary condition

uh = 0 on ∂Ωh. (2.14)

2.2.2 Stability analysis

To study the stability of the FDM (2.13)-(2.14) or equivalently of the fully discrete FEM (2.12) it is
considered a solution uh ∈Wh,0, and its perturbation vh ∈Wh,0 induced by some different source data
g̃h, that satisfies

(A(Mhvh)D−xvh,D−xqh)++( f (vh,∇hvh),qh)h = (g̃h,qh)h, ∀qh ∈Wh,0. (2.15)

Suppose that A ≥ A0 > 0, where A0 is a constant, and f : R2 −→ R is a Lipschitz function with
Lipschitz constant CL. In what follows, suitable regularity conditions are assumed. In order to obtain
stability it is necessary to impose the following smoothness assumption on Λ

∃CR > 0 :
hmax

hmin
≤CR, ∀h ∈ Λ, (2.16)

where hmin = min{hi, i = 1, . . . ,N}.

Let ωh = uh − vh ∈Wh,0. Following [65], the objective is to establish conditions which guarantee
that if ∥gh − g̃h∥h → 0 as hmax → 0 then that ∥ωh∥h → 0 as hmax → 0.
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Since f is a Lipschitz function, using Proposition 2.1 for ωh, we have successively

(A(Mhvh)D−xωh,D−xωh)+ =−((A(Mhuh)−A(Mhvh))D−xuh,D−xωh)+

+( f (vh,∇hvh)− f (uh,∇huh),ωh)h +(gh − g̃h,ωh)h

≤ ∥A∥C1
B(R)

∥D−xuh∥h,∞∥ωh∥h∥D−xωh∥+
+CL(1+

√
2CR)∥D−xωh∥2

++∥gh − g̃h∥h∥ωh∥h

≤
(
∥A∥C1

B(R)
∥D−xuh∥h,∞ +CL(1+

√
2CR)+ ε

2)∥D−xωh∥2
+

+
1

4ε2 ∥gh − g̃h∥2
h,

where Cm
B (R) denotes the space of real differentiable functions with derivative of order m bounded in

R, where is considered the norm ∥v∥Cm
B (R) = max

i=0,...,m
∥v(i)∥∞. The last inequality leads to

(
A0 −

(
∥A∥C1

B(R)
∥D−xuh∥h,∞ +CL(1+

√
2CR)+ ε

2))∥D−xωh∥2
+ ≤ 1

4ε2 ∥gh − g̃h∥2
h. (2.17)

To conclude a sufficient condition for stability, it is necessary to ensure that there exists a positive
constant ε2, h independent, such that

A0 −
(
∥A∥C1

B(R)
∥D−xuh∥h,∞ +CL(1+

√
2CR)+ ε

2)> 0. (2.18)

To guarantee that the last assumption holds it is necessary to impose the uniform boundness of
∥D−xuh∥h,∞ for h ∈ Λ. It is observed that this property can follow from an error estimate as it will be
stated in Proposition 2.6.

2.2.3 Convergence analysis: smooth solutions

1. First approach

To simplify the presentation in what follows, we rewrite the BVP (2.4),(2.5) and (2.13), (2.14) by{
F(u) = g in Ω,

u = 0 on ∂Ω,
(2.19)

and {
Fh(uh) = gh in Ωh,

uh = 0 on ∂Ωh.
(2.20)

Let Rh : C(Ω)→Wh be the restriction operator defined by Rhu(x) = u(x), x ∈ Ωh, where C(Ω) denotes
the space of continuous functions. Let Eu be the discretization error, Eu = uh − Rhu. By Th is
represented the truncation error induced by the discretization Fh, and by Th,g = gh−Rhg is represented
the error induced by the replacement of g by gh. An error estimate can be obtained easily considering
that

Fh(Rhu(x)) = F(u(x))+Th(x)
= g(x)+Th(x), x ∈ Ωh.
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Then {
Fh(uh(x))−Fh(Rhu(x)) = Th,g(x)−Th(x), x ∈ Ωh,

Eu = 0 on ∂Ωh.
(2.21)

As we have

Fh(uh(x))−Fh(Rhu(x)) =
∫ 1

0

d
dθ

Fh(Rhu(x)+θEu(x))dθ

=
∫ 1

0
JFh(Rhu(x)+θEu(x))dθEu(x), x ∈ Ωh.

to obtain an error estimate for Eu it is necessary to analyse the following system
∫ 1

0
JFh(Rhu+θEu)dθEu = Th,g −Th in Ωh

Eu = 0 on Ωh.
(2.22)

To get the desired estimate, it is needed to guarantee that
[∫ 1

0
JFh(Rhu+θEu)dθ

]−1

exists and it is

bounded. In this case it is obtained that

∥Eu∥h ≤Cb
(
∥Th∥h +∥Th,g∥h

)
, (2.23)

where

∥∥∥∥∥
[∫ 1

0
JFh(Rhu+θEu)dθ

]−1
∥∥∥∥∥

h

= sup
0̸=wh∈Wh,0

∥∥∥∥[∫ 1
0 JFh(Rhu+θEu)dθ

]−1
wh

∥∥∥∥
h

∥wh∥h
≤Cb, (2.24)

Remark that if ∥∥∥∥∫ 1

0
JFh(Rhu+θEu)dθwh

∥∥∥∥
h
≥ 1

Cb
∥wh∥h, ∀wh ∈Wh,0, (2.25)

then (2.24) holds. Moreover, if

(JFh(Rhu+θEu)vh,vh)h ≥
1

Cb
∥vh∥2

h, ∀vh ∈Wh,0, (2.26)

then it is also concluded (2.24). This means that (2.25) and (2.26) are sufficient conditions for (2.24)
and consequently for the error estimate (2.23).

In what follows it is established an error estimate of the type (2.23) taking into account the
particular structure of the error equation (2.21).

Given the equality
(Fh(uh)−Fh(Rhu),Eu)h = (Th,g −Th,Eu)h,
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for the particular definition of Fh of the problem under analysis, and considering Proposition 2.2, the
following expression is deduced,

(A(Mhuh)D−xuh,D−xEu)+− (A(MhRhu)D−xRhu,D−xEu)+ = ( f (Rhu,∇hRhu)− f (uh,∇huh),Eu)h

+(Th,g −Th,Eu)h,

and it leads to

(A(Mhuh)D−xEu,D−xEu)+ = ( f (Rhu,∇hRhu)− f (uh,∇huh),Eu)h

+((A(MhRhu)−A(Mhuh))D−xRhu,D−xEu)+

+(Th,g −Th,Eu)h.

(2.27)

We also have that

((A(MhRhu)−A(Mhuh))D−xRhu,D−xEu)+ ≤ ∥D−xRhu∥h,∞ (|A(MhRhu)−A(Mhuh)|, |D−xEu|)+
≤ ∥D−xRhu∥h,∞∥A∥C1

B(R)
(|MhEu|, |D−xEu|)+

≤ ∥D−xRhu∥h,∞∥A∥C1
B(R)

∥Eu∥h∥D−xEu∥+

≤ ∥u′∥∞∥A∥C1
B(R)

∥D−xEu∥2
+. (2.28)

Therefore, from (2.27) and (2.28), and given that f is a Lipschitz function, it is obtained

(A(Mhuh)D−xEu,D−xEu)+ ≤ ∥u′∥∞∥A∥C1
B(R)

∥D−xEu∥2
+

+CL
√

2CR∥D−xEu∥2
++CL∥D−xEu∥2

++(Th,g −Th,Eu)h.

Moreover, since A0 is a lower bound of A, the following relation holds(
A0 −

(
∥u′∥∞∥A∥C1

B(R)
+CL(

√
2CR +1)

))
∥D−xEu∥2

+ ≤ (Th,g −Th,Eu)h. (2.29)

By the definition of the truncation error Th, we have Th =
3

∑
i=1

T (i)
h with T (1)

h being induced by the

discretization −D∗
x(A(MhRhu)D−xRhu), and so it is given by

T (1)
h (xi) = (hi+1 −hi)R(xi),

where R(xi) = −1
3 A(u(xi))u(3)(xi)− u′(xi)

(
u(2)(xi)A′(u(xi))+

1
4 A(2)(u(xi))u′(xi)

2
)
, with T (2)

h being
induced by the discretization f (u(xi),∇hu(xi)), and therefore

|T (2)
h (xi)| ≤

1
6

CLh2
max∥u∥C3(Ω),

and with T (3)
h being the remaining part of Th, and so it is obtained

|T (3)
h (xi)| ≤Ch2

max∥A∥C3
B(R)

∥u∥C4(Ω).
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Remark that assuming u ∈C4(Ω) than for Th,g is obtained the following representation Th,g = T (1)
h,g +

T (2)
h,g where

T (1)
h,g (xi) =

1
4
(hi+1 −hi)g′(xi),

and
|T (2)

h,g (xi)| ≤
1
2

h2
max∥g′′∥∞.

Note that, although the previous truncation errors representations were constructed assuming
u ∈C4(Ω), to obtain only first-order representation it is enough to assume that u ∈C3(Ω).

From (2.29) and given the truncations errors representations, it is obtained(
A0 −

(
∥u′∥∞∥A∥C1

B(R)
+CL(

√
2CR +1)

))
∥D−xEu∥2

+ ≤Ch2
max + ε

2∥Eu∥2
h

and finally, from the discrete Poincaré-Friedrichs, it is concluded the first-order estimate(
A0 − ε

2 −
(
∥u′∥∞∥A∥C1

B(R)
+CL(

√
2CR +1)

))
∥D−xEu∥2

+ ≤Ch2
max, (2.30)

provided that there exists a positive constant ε2 such that(
A0 − ε

2 −
(
∥u′∥∞∥A∥C1

B(R)
+CL(

√
2CR +1)

))
> 0. (2.31)

The convergence result can be summarized in the following theorem.

Proposition 2.3. Let us suppose that u ∈C3(Ω), there exists a positive constant ε2 such that (2.31)
holds, and uh ∈Wh,0 is defined by (2.12) or by (2.13)-(2.14), where the sequence of grids Ωh,h ∈ Λ,

satisfies (2.16). Then, for the error Eu = uh −Rhu, there exists a positive constant Cu such that

∥Eu∥1,h ≤Cuhmax. (2.32)

Proposition 2.3 states first convergence order with respect to the norm ∥ ·∥1,h which can be seen as
the discrete version of the usual H1- norm. Although this result was established assuming u ∈C3(Ω),
it can be shown, considering the truncation error representations obtained before, and for u ∈C4(Ω)

that if the grid Ωh is uniform then ∥Eu∥1,h ≤Ch2. In what follows it is shown that for nonuniform
grids we still have ∥Eu∥1,h ≤Ch2

max.

Recall the inequality (2.17) that leads to the stability of our discretization. To conclude the
sufficient condition for stability, it is needed to guarantee that there exists a positive constant ε ̸= 0
such that (2.18) holds. To guarantee such existence it is necessary to prove that ∥D−xuh∥h,∞ for h ∈ Λ,

is bounded. As
∥D−xuh∥h,∞ ≤ ∥D−xEu∥h,∞ +∥D−xRhu∥h,∞

and

|D−xEu(xi)| ≤ 1
hmin

N

∑
j=1

h j|D−xEu(x j)|

≤ 1
hmin

∥D−xEu∥+,
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then from (2.32) we get

∥D−xEu∥h,∞ ≤ 1
hmin

Cuhmax. (2.33)

and consequently, from (2.16), it is obtained

∥D−xuh∥h,∞ ≤CuCR +∥u′∥∞, (2.34)

that guarantees the boundness of ∥D−xuh∥h,∞ for h∈Λ, that leads to the stability of the finite difference
scheme (2.13)-(2.14), or equivalently, of the fully discrete piecewise linear FEM (2.12). It is observed
that CuCR can be very large depending on the smoothness of the solution u. We would like to obtain
an upper bound such that ∥D−xuh∥h,∞ for h ∈ Λ, is asymptotically bounded by ∥u′∥∞. This will be
done in the next section where is proved that ∥Eu∥1,h ≤Cuh2

max.

2. Second approach

An improvement in Proposition 2.3 can be obtained if the term (Th,g −Th,Eu)h, in (2.29), is be treated
carefully. The following result will have an important role in the estimation of such term.

Proposition 2.4. If q ∈C1(Ω) and qh(xi) = (hi+1 −hi)q(xi), i = 1, . . . ,N −1, then

(qh,vh)h ≤ 1
16ε2 h4

max

(
2∥q∥2

H1 +∥q∥2
C(Ω)

)
+2ε2∥D−xvh∥2

+,
(2.35)

for vh ∈Wh,0. In (2.35), being ε ̸= 0 an arbitrary constant.

Proof. We have successively the following

(qh,vv)h =
1
2

N−1

∑
i=1

(h2
i+1 −h2

i )q(xi)vh(xi)

=
1
2

N

∑
i=1

h2
i
(
q(xi−1)vh(xi−1)−q(xi)vh(xi)

)
=−1

2

N

∑
i=1

h2
i q(xi−1)

(
vh(xi)− vh(xi−1)

)
−1

2

N

∑
i=1

h2
i
(
q(xi)−q(xi−1)

)
vh(xi)

=−1
2

N

∑
i=1

h3
i q(xi−1)D−xvh(xi)

−1
2

N

∑
i=1

h2
i

∫ xi

xi−1

q′(x)dxvh(xi)

:= Q1 +Q2,

where

Q1 =−1
2

N

∑
i=1

h3
i q(xi−1)D−xvh(xi),
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and

Q2 =−1
2

N

∑
i=1

h2
i

∫ xi

xi−1

q′(x)dxvh(xi).

For Q1 it is obtained

Q1 ≤ 1
2
∥q∥C(Ω)h

2
max∥D−xvh∥+

≤ 1
16ε2 ∥q∥2

C(Ω)
h4

max + ε
2∥D−xvh∥2

+,

where ε ̸= 0 is an arbitrary constant, and for Q2

Q2 ≤ 1
2

N

∑
i=1

h2
i

(∫ xi

xi−1

(q′(x))2dx
)1/2√

hi|vh(xi)|

≤ 1
2

( N

∑
i=1

h4
i ∥q′∥2

L2(xi−1,xi)

)1/2√
2∥vh∥h

≤ 1
8ε2 h4

max∥q∥2
H1 + ε

2∥vh∥2
h.

The previous estimates for Qi, i = 1,2, allow obtaining the following estimate for (qh,vv)h

(qh,vh)h ≤ 1
16ε2 h4

max

(
2∥q∥2

H1 +∥q∥2
C(Ω)

)
+ε2

(
∥D−xvh∥2

++∥vh∥2
h

)
.

Furthermore, considering the discrete Poincaré -Friedrichs inequality, we establish (2.35).

Proposition 2.5. If ph is a grid function defined in Ωh such that there exists a positive constant C
satisfying

|ph(xi)| ≤Ch2
max, i = 1, . . . ,N −1,

then
(ph,vh)h ≤

1
4ε2C2h4

max + ε
2∥D−xvh∥2

+, (2.36)

for vh ∈Wh,0. In (2.36), ε ̸= 0 is an abitrary constant.

Theorem 2.1. Let us suppose that the solution u of the BVP (2.4), (2.5) belongs to C4(Ω), g ∈C2(Ω),
A ∈ C3

B(R), and f is a Lipschitz function with Lipschitz constant CL. Let uh ∈ Wh,0 be defined by
(2.12) or by (2.13)-(2.14), where the sequence of grids Ωh,h ∈ Λ, satisfies (2.16). Then, for the error
Eu = uh −Rhu, there exists a positive constant Cu such that

∥Eu∥2
1,h ≤Cuh4

max

(
∥g∥2

C2(Ω)
+∥u∥2

C4(Ω)

(
1+∥u∥4

C4(Ω)

))
(2.37)

provided that there exist ε ̸= 0 such that

A0 −
(

7ε
2 +∥u′∥∞∥A∥C1

B(R)
+CL(

√
2CR +1)

)
> 0. (2.38)

Proof. To obtain an upper bound for ∥Eu∥1,h, it can be seen from (2.29) that it is necessary to get an
estimate for (Th,g −Th,Eu)h, which is done in what follows taking into account Propositions 2.4 and
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2.5, and the definitions of Th and Th,g. For (T (1)
h ,Eu)h and (T (1)

h,g ,Eu)h, Proposition 2.4 leads to

−(T (1)
h ,Eu)h ≤Ch4

max∥A∥2
C3

B(R)
∥u∥2

C4(Ω)

(
1+∥u∥4

C4(Ω)

)
+2ε

2∥D−xEu∥2
+, (2.39)

and
(T (1)

h,g ,Eu)h ≤Ch4
max∥g∥2

C2(Ω)
+2ε

2∥D−xEu∥2
+, (2.40)

where C is a positive constant depending on ε2, with ε ̸= 0 is an arbitrary constant.

Proposition 2.5 is now applied to (T (2)
h ,Eu)h, (T

(3)
h ,Eu)h, and (T (2)

h,g ,Eu)h leading to

−(T (2)
h ,Eu)h ≤Ch4

max∥u∥2
C3(Ω)

+ ε
2∥D−xEu∥2

+, (2.41)

−(T (3)
h ,Eu)h ≤Ch4

max∥A∥2
C3

B(R)
∥u∥2

C4(Ω)
+ ε

2∥D−xEu∥2
+, (2.42)

(T (2)
h,g ,Eu)h ≤Ch4

max∥g∥2
C2(Ω)

+ ε
2∥D−xEu∥2

+. (2.43)

Inserting the previous estimates in (2.29) we get(
A0 −

(
7ε

2 +∥u′∥∞∥A∥C1
B(R)

+CL(
√

2CR +1)
))

∥D−xEu∥2
+

≤Cuh4
max

(
∥g∥2

C2(Ω)
+∥u∥2

C4(Ω)

(
1+∥u∥4

C4(Ω)

))
.

(2.44)

Assuming that there exists a positive constant ε2 such that (2.38) holds we conclude (2.37).

2.2.4 Stability analysis revisited

Theorem 2.1 states that the finite difference scheme (2.13)-(2.14) or equivalently, the fully discrete
piecewise linear FEM (2.12), is second-order convergent with respect to the norm ∥ · ∥1,h which is a
discrete version of the usual H1-norm.

To obtain stability of the nonlinear finite difference scheme (2.13)-(2.14), or equivalently, of
the fully discrete piecewise linear FEM (2.12), it is needed to establish the uniform boundness
of ∥D−xuh∥h,∞,h ∈ Λ. Remark that this was obtained in (2.34) taking into account the first error
estimate established in Proposition 2.3. As it was mentioned before, to control the upper bound of
∥D−xuh∥h,∞,h ∈ Λ, it is shown in what follows that this sequence is asymptotically bounded by ∥u′∥∞.

Corollary 2.1. If uh ∈Wh,0 is defined by the finite difference scheme (2.13)-(2.14), or equivalently,
by the fully discrete piecewise linear FEM (2.12), then under the assumptions of the Theorem 2.1, it
holds

∥uh∥h,∞ ≤Cuh2
max +∥u∥∞, h ∈ Λ, (2.45)

∥D−xuh∥h,∞ ≤CuCRhmax +∥u′∥∞, h ∈ Λ. (2.46)
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Proof. Given that
uh(xi) = Eu(xi)+Rhu(xi), i = 1, . . . ,N −1,

and consequently,

∥uh∥h,∞ ≤ ∥Eu∥h,∞ +∥u∥∞

≤ ∥D−xEu∥++∥u∥∞

≤Cuh2
max +∥u∥∞, h ∈ Λ,

which concludes the proof of (2.45).

On the other hand, since

D−xuh(xi) = D−xEu(xi)+D−xRhu(xi), i = 1, . . . ,N,

and

|D−xEu(xi)| ≤
1

hmin

N

∑
j=1

h j|D−xEu(x j)|

≤ 1
hmin

∥D−xEu∥+,

from (2.37) it is obtained

|D−xEu(xi)| ≤Cu
h2

max

hmin

≤CuCR hmax,

which concludes the proof of (2.46).

From (2.17) we are able to guarantee the stability around uh ∈Wh,0 provided that there exists a
positive constant Cs such that

∥D−xuh∥h,∞ ≤Cs,h ∈ Λ, (2.47)

and
A0 −

(
∥A∥C1

B(R)
Cs +CL(1+

√
2CR)+ ε

2)> 0, (2.48)

and therefore, we have the stability inequality(
A0 −

(
∥A∥C1

B(R)
Cs +CL(1+

√
2CR)+ ε

2))∥D−xωh∥2
+ ≤ 1

4ε2 ∥gh − g̃h∥2
h, (2.49)

for h ∈ Λ with hmax small enough. The stability result can be summarized as follows.

Proposition 2.6. Under the assumptions of Theorem 2.1, if uh ∈ Wh,0 satisfies (2.13)-(2.14), then
there exists ε ̸= 0 such that for all vh ∈Wh,0 satisfying (2.13)-(2.14), with gh replaced by g̃h, we have
(2.49) provided that (2.48) holds, and where Cs satisfies (2.47).
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Proposition 2.6 states the local stability of the FDM (2.13)-(2.14) or equivalently of the fully dis-
crete FEM (2.12) in the numerical approximation uh ∈Wh,0 defined by (2.13)-(2.14) ([65]). Let denote
wh,vh solutions of (2.13)-(2.14), with gh replaced by g̃h,g∗h, respectively. In fact if g̃h,g∗h ∈ Bĥmax

(gh)

are such that ∥g̃h−g∗h∥h ≤ ĥmax, then ∥wh−vh∥1,h ≤ hmax, where ĥmax =
(

A0−
(
∥A∥C1

B(R)
Cs+CL(1+

√
2CR)+ ε2

))1/2√
2εhmax.

To compare our results with some results presented in the literature, in what concerns stability
for nonlinear problems, we realise that for instance in [47] vh,wh are chosen on a ball centered in
Rhu ∈Wh,0 while here such ball is centered in the numerical solution uh as in [65]. In particular, for
approximations on the ball centered in Rhu ∈Wh,0 holds the same result.

2.2.5 Convergence analysis: nonsmooth solutions

Theorem 2.1 states that if u ∈ C4(Ω), and g ∈ C2(Ω), then ∥Eu∥1,h ≤ Ch2
max. Using the approach

introduced in [6, 23], it is intended to improve the previous result, obtaining an analogous estimate
but requiring less regularity on the solution, assuming u ∈ H3(Ω)∩H1

0 (Ω). The main tool in the
convergence analysis is the Bramble-Hilbert Lemma [11]. The basic idea behind this convergence
analysis for the nonlinear problem under study is the following. Starting from

(Fh(uh),Eu)h = (gh,Eu)h

that can be rewritten in the equivalent form

Bh(uh)(uh,Eu) = (gh,Eu)h, (2.50)

where Bh(uh)(., .) : Wh,0 ×Wh,0 → R is a bilinear form. Since

(gh,Eu)h =
N−1

∑
i=1

∫ xi+1/2

xi−1/2

F(u(x))dxEu(xi)

= Bh(Rhu)(Rhu,Eu)+

(
N−1

∑
i=1

∫ xi+1/2

xi−1/2

F(u(x))dxEu(xi)−Bh(Rhu)(Rhu,Eu)

)
,

from (2.50) it is deduced the following equality

Bh(uh)(uh,Eu)−Bh(Rhu)(Rhu,Eu) =
N−1

∑
i=1

∫ xi+1/2

xi−1/2

F(u(x))dxEu(xi)−Bh(Rhu)(Rhu,Eu). (2.51)

The desired estimate for Eu is obtained proving that

Bh(uh)(uh,Eu)−Bh(Rhu)(Rhu,Eu)≥Ce∥Eu∥2
1,h, (2.52)

where Ce > 0, and

N−1

∑
i=1

∫ xi+1/2

xi−1/2

F(u(x))dxEu(xi)−Bh(Rhu)(Rhu,Eu)≤Ch4
max∥u∥2

H3(Ω)+ γ
2∥Eu∥2

1,h, (2.53)
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where γ ̸= 0 is an arbitrary constant and C depends on γ. In fact, (2.51), (2.52), and (2.53) allow
deducing

(Ce − γ
2)∥Eu∥2

1,h ≤Ch4
max∥u∥2

H3(Ω),

and the result follows immediately.

Following the previous lines it can be to proved the following result.

Theorem 2.2. Let us suppose that the sequence of grids Λ satisfies (2.16), the solution u of (2.11)
belongs to H3(Ω)∩H1

0 (Ω), A ∈ C1
B(R) with A ≥ A0 > 0, and f : R2 → R is a Lipschitz function,

with Lipschitz constant CL, such that f (u,u′) ∈ H2(Ω). Let uh ∈ Wh,0 be a solution of (2.12) or
(2.13)-(2.14), and let Eu be the discretization error, Eu = uh −Rhu. If

CL

(
1+
√

2CR

)
+∥A∥C1

B(R)
∥u′∥∞ < A0

then there exists a positive constant C, h-independent, such that

∥D−xEu∥2
+ ≤C

N

∑
i=1

h4
i

(
∥u∥2

H3(xi−1,xi+1)
+∥ f (u,u′)∥2

H2(xi−1,xi)

)
, (2.54)

for h ∈ Λ, hmax small enough.

Proof. It can be shown that

(A(Mhuh)D−xuh,D−xEu)+ = (gh,Eu)h − ( f (uh,∇huh),Eu)h

= ( f (Rhu,∇hRhu),Eu)h +(A(MhRhu)D−xRhu,D−xEu)+

+
3

∑
i=0

T (i)
h − ( f (uh,∇huh),Eu)h,

(2.55)

where

T (0)
h = ((A(R̂hu)−A(MhRhu))R̂hu′,D−xEu)+,

T (1)
h = (A(MhRhu)(R̂hu′−D−xRhu),D−xEu)+,

T (2)
h = (( f (u,u′))h −Rh f (u,u′),Eu)h,

T (3)
h = (Rh f (u,u′)− f (Rhu,∇hRhu),Eu)h,
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where R̂h : C(Ω) → Wh is defined by R̂hv(xi) = v(xi−1/2), i = 1, . . . ,N, R̂hv(x0) = v(x0). To show
(2.55) observe that we have successively

(gh,Eu)h =
N−1

∑
i=1

∫ xi+1/2

xi−1/2

(−(A(u)u′)′+ f (u,u′))dxEu(xi)

=
N

∑
i=1

hi
(
A(Mhu(xi))(u′(xi−1/2)−D−xu(xi)

)
D−xEu(xi)

+
N

∑
i=1

hi(A(u(xi−1/2))−A(Mhu(xi)))u′(xi−1/2)D−xEu(xi)

+
N

∑
i=1

hiA(Mhu(xi))D−xu(xi)D−xEu(xi)

+
N−1

∑
i=1

(∫ xi+1/2

xi−1/2

f (u,u′)dx−hi+1/2 f (u(xi),u′(xi))

)
Eu(xi)

+
N−1

∑
i=1

hi+1/2
(

f (u(xi),u′(xi))− f (u(xi),∇hu(xi))
)

Eu(xi)

+
N−1

∑
i=1

hi+1/2 f (u(xi),∇hu(xi))Eu(xi).

In what follows T (i)
h , i = 0,1,2,3 are estimated separately.

Estimation of T (0)
h

As A has a bounded derivative, therefore is a Lipschitz function with constant L,

|A(R̂hu)−A(MhRhu)| ≤ L|R̂hu−MhRhu|.

Let consider

|R̂hu−MhRhu|=
∣∣∣∣ω(1/2)− ω(1)+ω(0)

2

∣∣∣∣= |λ (ω)|, ω ∈W 2,1(Ω),

with ω(ξ ) = u(xi−1 +ξ hi), ξ ∈ [0,1], λ is the linear functional λ : W 2,1(Ω)→ R such that

λ (g) = g(1/2)− g(1)+g(0)
2

, g ∈W 2,1(Ω).

Since λ (g) = 0 for g = 1,ξ , and λ is bounded in W 2,1(Ω), by Bramble-Hilbert Lemma is obtained

|λ (g)| ≤C
∫ 1

0
|g′′(ξ )|dξ ,

which leads to

|R̂hu−MhRhu| ≤Chi

∫ xi

xi−1

|u′′(s)|ds,
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taking into account the smoothness assumption on u, and being C a positive constant. Since u∈H3(Ω),
u′ is bounded, thus ∥R̂hu′∥h,∞ ≤ ∥u′∥∞. Therefore, for a positive constant C0, it is obtained the
following estimate for T (0)

h

|T (0)
h | 6C0

( N

∑
i=1

h4
i ∥u′′∥2

L2(xi−1,xi)

)1/2

∥D−xEu∥+

6C0

( N

∑
i=1

h4
i ∥u∥2

H2(xi−1,xi)

)1/2

∥D−xEu∥+

6
C0

4ε2

N

∑
i=1

h4
i ∥u∥2

H2(xi−1,xi)
+ ε

2∥D−xEu∥2
+,

where ε is an arbitrary nonzero real constant.

Estimation of T (1)
h

Note that A(MhRhu) is bounded, which leads to

|T (1)
h | ≤C

(
|R̂hu′−D−xRhu|, |D−xEu|

)
+
,

with C a positive constant.

Let consider

hi|R̂hu′−D−xRhu|= |ω ′(1/2)−ω(1)+ω(0)|= |λ (ω)|, ω ∈W 3,1(Ω),

with ω(ξ ) = u(xi−1 +ξ hi), ξ ∈ [0,1], λ is the linear functional λ : W 3,1(Ω)→ R defined by

λ (g) = g′(1/2)−g(1)+g(0), g ∈W 3,1(Ω).

As λ (g) = 0, for g = 1,ξ ,ξ 2, and λ is bounded in W 3,1(Ω), by Bramble-Hilbert Lemma, it is
concluded that

|λ (g)| ≤C
∫ 1

0
|g′′′(ξ )|dξ ,

which implies, under the smoothness assumption on u, that

hi|R̂hu′−D−xRhu| ≤Ch2
i

∫ xi

xi−1

|u′′′(s)|ds.

For a positive constant C1, the estimate of T (1)
h is obtained as follows

|T (1)
h |6C1

N

∑
i=1

h2
i

∫ xi

xi−1

|u(3)(x)|dx |D−xEu(xi)|

6C1

( N

∑
i=1

h4
i ∥u(3)∥2

L2(xi−1,xi)

)1/2

∥D−xEu∥+

6
C1

4ε2

N

∑
i=1

h4
i ∥u∥2

H3(xi−1,xi)
+ ε

2∥D−xEu∥2
+,
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for ε ̸= 0 an arbitrary constant.

Estimation of T (2)
h

To obtain an estimate for T (2)
h it is followed the procedure developed in [6]. Therefore, considering

w(x) = f (u(x),u′(x)), T (2)
h can be rewritten as follows

T (2)
h =

N−1

∑
i=1

(∫ xi+1/2

xi−1/2

w(x)dx−hi+1/2w(xi)

)
Eu(xi).

Note that for

T̂ (2)
h =

N−1

∑
i=0

(
−hi+1

2
(w(xi)+w(xi+1))+

∫ xi+1

xi

w(x)dx
)
(Eu(xi)+Eu(xi+1)) ,

and

T̃ (2)
h =

N−1

∑
i=0

(
hi+1

2
(w(xi)−w(xi +1))−

∫ xi+1/2

xi

w(x)dx+
∫ xi+1

xi+1/2

w(x)dx
)
(Eu(xi+1)−Eu(xi)) ,

it holds the following equality ∣∣∣T (2)
h

∣∣∣= ∣∣∣∣∣ T̂
(2)

h + T̃ (2)
h

2

∣∣∣∣∣ . (2.56)

To get an estimate of T̂ (2)
h , it is considered, for ω ∈W 2,1(Ω) that∣∣∣∣−w(xi)+w(xi+1)

2
+

1
hi+1

∫ xi+1

xi

w(x)dx
∣∣∣∣= ∣∣∣∣−ω(0)+ω(1)

2
+
∫ 1

0
ω(µ)dµ

∣∣∣∣= |λ (ω)|,

with ω(ξ ) = u(xi +ξ hi+1), ξ ∈ [0,1], λ is the linear functional λ : W 2,1(Ω)→ R defined by

λ (g) =
g(0)+g(1)

2
−
∫ 1

0
g(µ)dµ, g ∈W 2,1(Ω).

As λ (g) = 0, for g = 1,ξ , and λ is bounded in W 2,1(Ω), by Bramble-Hilbert Lemma, it is concluded
that there exists a positive constant Ĉ2 such that

|λ (g)| ≤ Ĉ2

∫ 1

0
|g′′(ξ )|dξ ,

which implies, under the smoothness assumption on w, that

hi+1

∣∣∣∣−w(xi)+w(xi+1)

2
+

1
hi+1

∫ xi+1

xi

w(x)dx
∣∣∣∣≤ Ĉ2h2

i+1

∫ xi

xi−1

|w′′(s)|ds.

Consequently, the following estimate is obtained

|T̂ (2)
h |6 Ĉ2

4ε2

(
N

∑
i=1

h4
i+1∥w∥2

H2(xi−1,xi)

)1/2

+ ε
2∥D−xEu∥2

+ (2.57)
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with ε an arbitrary constant different from 0.
To get an estimate of T̃ (2)

h , it is considered, for ω ∈W 1,1(Ω) that∣∣∣∣∣(w(xi)−w(xi+1)

2
− 1

hi+1

∫ xi+1/2

xi

w(x)dx+
1

hi+1

∫ xi+1

xi+1/2

w(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ω(0)−ω(1)
2

−
∫ 1/2

0
ω(µ)dµ +

∫ 1

1/2
ω(µ)dµ

∣∣∣∣∣= |λ (ω)|,

with ω(ξ ) = u(xi +ξ hi+1), ξ ∈ [0,1], λ is the linear functional λ : W 1,1(Ω)→ R defined by

λ (g) =
g(1)−g(0)

2
+
∫ 1/2

0
g(µ)dµ −

∫ 1

1/2
g(µ)dµ, g ∈W 1,1(Ω).

As λ (g) = 0 for g = 1, and λ is bounded in W 1,1(Ω), by Bramble-Hilbert Lemma, it is concluded
that there exist a positive constant C̃2 such that,

|λ (g)| ≤ C̃2

∫ 1

0
|g′(ξ )|dξ ,

which implies, under the smoothness assumption on w, that

hi+1

∣∣∣∣(w(xi)+w(xi+1))−
1

hi+1

∫ xi+1

xi

w(x)dx
∣∣∣∣≤ C̃2h2

i+1

∫ xi

xi−1

|w′(s)|ds.

Consequently, the following estimate is obtained

|T̃ (2)
h |6 C̃2

4ε2

(
N

∑
i=1

h4
i+1∥w∥2

H1(xi−1,xi)

)1/2

+ ε
2∥D−xEu∥2

+, (2.58)

with ε an arbitrary constant different from 0.
Finally, from (2.56), (2.57), and (2.58), the following estimate is obtained for T (2)

h

|T (2)
h |6 C2

4ε2

N

∑
i=1

h4
i+1∥ f (u,u′)∥2

H2(xi−1,xi)
+ ε

2∥D−xEu∥2
+,

providing that f (u,u′) ∈ H2(Ω).

Estimation of T (3)
h

Taking into account that f is a Lipschitz function with Lipschitz constant CL, it follows that

|T (3)
h |6CL

N−1

∑
i=1

hi+1/2|u′(xi)−∇hu(xi)||Eu(xi)|.

As in [62], is considered now, for ω ∈W 3,1(Ω), the following representation

|u′(xi)−∇hu(xi)|=
1

hi+1 +hi

∣∣∣∣ω ′(ρ)−
[
ρ̂ (ω(1)−ω(ρ))+

1
ρ̂
(ω(ρ)−ω(0))

]∣∣∣∣= 1
hi+1 +hi

|λ (ω)|,
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where ω(ξ ) = u(xi−1 +ξ (hi +hi+1)), ξ ∈ [0,1], ρ = hi
hi+hi+1

, ρ̂ = hi
hi+1

, and λ is the linear functional
λ : W 3,1(Ω)→ R defined by

λ (g) = g′(ρ)−
[
ρ̂ (g(1)−g(ρ))+

1
ρ̂
(g(ρ)−g(0))

]
, g ∈W 3,1(Ω).

Since the functional λ is bounded in W 3,1(Ω), and g = 1,ξ ,ξ 2 implies λ (g) = 0, then, by Bramble-
Hilbert lemma, there exists a positive constant C such that

|λ (g)| ≤C
∫ 1

0
|g′′′(ξ )|dξ ,

which leads to
|u′(xi)−∇hu(xi)| ≤C(hi +hi+1)

∫ xi+1

xi−1

|u′′′(s)|ds.

The previous inequality leads to the following estimate for T (3)
h ,

|T (3)
h |6C3

( N

∑
i=1

h4
i ∥u(3)∥2

L2(xi−1,xi)

)1/2

∥D−xEu∥+

6
C3

4ε2

N

∑
i=1

h4
i ∥u∥2

H3(xi−1,xi)
+ ε

2∥D−xEu∥2
+,

with C3 a positive constant, and ε an arbitrary nonzero constant.

Taking into account representation (2.55) it follows successively

(A(Mhuh)D−xEu,D−xEu)+−4ε
2∥D−xEu∥2

+ ≤ ( f (Rhu,∇hRhu)− f (uh,∇huh),Eu)h

+((A(MhRhu)−A(Mhuh))D−xRhu,D−xEu)++Th

≤CL

(√
2CR∥Eu∥h∥D−xEu∥++∥Eu∥2

h

)
+∥A∥C1

B(R)
∥D−xRhu∥h,∞∥Eu∥h∥D−xEu∥++Th

≤
(

CL

(
1+
√

2CR

)
+∥A∥C1

B(R)
∥u′∥∞

)
∥D−xEu∥2

++Th,

where the last inequality was established taking into account Proposition 2.1, and having the following
estimate for Th

Th ≤

(
3

∑
j=0

C j

4ε2

)
N

∑
i=1

h4
i

(
∥u∥2

H3(xi−1,xi)
+∥ f (u,u′)∥2

H2(xi−1,xi)

)
.

Therefore, it is obtained that(
A0 −4ε

2 −
(

CL

(
1+
√

2CR

)
+∥A∥C1

B(R)
∥u′∥∞

))
∥D−xEu∥2

+ ≤ Th. (2.59)

If CL
(
1+

√
2CR

)
+∥A∥C1

B(R)
∥u′∥∞ < A0, then there exists ε ̸= 0 such that

A0 −4ε
2 −
(

CL

(
1+
√

2CR

)
+∥A∥C1

B(R)
∥u′∥∞

)
> 0,
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which leads to the existence of a positive constant C satisfying (2.54).

From Proposition 2.1 and Theorem 2.2 it can be concluded for the norm ∥ · ∥1,h of the error the
following estimate.

Corollary 2.2. Under the assumptions of Theorem 2.2, there exists a positive constant Cu, h-
independent, such that the following bound holds for the error Eu = uh −Rhu,

∥Eu∥1,h ≤Cuh2
max.

2.2.6 Numerical simulations

In what follows, are presented numerical examples to illustrate the main convergence result, Theo-
rem 2.2. These numerical experiments also allow showing the sharpness of the smoothness assump-
tions imposed in these result. To simplify is considered Ω = (0,1), and A(u) = 1. It is also used
random nonuniform grids for the spatial discretization.

As a first example it is considered

f (x1,x2) = cos(x1)+ sin(x2), x1,x2 ∈ R,

and g such that the BVP (2.4)-(2.5) has the solution

u(x) = (ex −1)(x−1), x ∈ Ω.

In this case u ∈ H3(Ω), and f satisfies the assumptions of the Theorem 2.2.

In what concerns the second example it is considered

f (x1,x2) = cos(x1)+ sin(x2), x1,x2 ∈ R,

and g is such that
u(x) = |2x−1|1.6 −1, x ∈ Ω,

is solution of the BVP (2.4)-(2.5). In this case u ∈ H2(Ω).

The discrete errors in these two situations are reported in Figure 2.1.
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(a) u ∈ H3(Ω) and the line has a slope of 2.21.

10−1.5 10−1 10−0.5

10−3

10−2

10−1

hmax

∥D
−

xE
u∥

+

(b) u ∈ H2(Ω) and the line has a slope of 1.24.

Fig. 2.1 Log-log plots of ∥D−xEu∥+ versus hmax for the elliptic equation. The solid lines represent
least-squares fittings.

The slope of the line in the left-hand side of Figure 2.1 is 2.21, which confirms that if it is
assumed the smoothness assumption specified in Theorem 2.2, i. e. u ∈ H3(Ω), then it is concluded
a second-order convergence rate. The slope of the line in the plot in the right-hand side is 1.24,
which shows that considering a weaker assumption of smoothness of the solution (u ∈ H2(Ω)), the
convergence rate decreases.

2.3 A nonlinear system of elliptic equations

2.3.1 Convergence analysis

In this section Theorem 2.2 is extended for the solution of the following FDM

−D∗
x(A(MhU)D−xUh)+F(Uh,∇hUh) = Gh in Ωh, (2.60)

where Uh = (u1,h,u2,h), with boundary conditions

Uh = 0 on ∂Ωh, (2.61)

that leads to an approximation for the solution of the differential system (2.6)-(2.7). In (2.60),
for Vh = (v1,h,v2,h), D−xVh = (D−xv1,h,D−xv2,h), D∗

xVh = (D∗
xv1,h,D∗

xv2,h), ∇hVh = (∇hv1,h,∇hv2,h),

A(MhVh) is a diagonal matrix with diagonal entries α(Mhv1,h),β (Mhv2,h), and Gh = (g1,h,g2,h) with
gℓ,h defined by (2.10) with g replaced by gℓ, ℓ= 1,2.

Remark that the FEM (2.60)-(2.61) is equivalent to the following fully discrete piecewise linear
FEM:

find Uh ∈ [Wh,0]
2 such that

(A(MhUh)D−xUh,D−xQh)++(F(Uh,∇hUh),Qh)h = (Gh,Qh)h, ∀Qh ∈ [Wh,0]
2 (2.62)
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where the inner product (·, ·)h in [Wh,0]
2 is defined in the usual way. In (2.62), if Qh = (q1,h,q2,h),Vh =

(v1,h,v2,h), then (Qh,Vh)+ = ∑
i=1,2

(qi,h,vi,h)+.

The fully discrete variational problem is a fully discrete version of the variational problem:

find U ∈ [H1
0 (Ω)]2 such that

((AU)∇U,∇Q)+(F(U,∇U),Q) = (G,Q), ∀Q ∈ [H1
0 (Ω)]2. (2.63)

For Vh = (v1,h,v2,h) ∈ [Wh,0]
2 the following notation is used ∥D−xVh∥2

+ = ∑
i=1,2

∥D−xvi,h∥2
+, and

∥D−xVh∥h,∞ = max
ℓ=1,2

max
i=1,...,N

|D−xvℓ,h(xi)|.

Furthermore, it is also used the notation: if A is a 2-diagonal matrix with entries α and β then

∥A∥C1
B(R)

= max{∥α∥C1
B(R)

,∥β∥C1
B(R)

}.

Theorem 2.3. Let us suppose that the sequence of grids Λ satisfies (2.16), the solution U = (u1,u2)

of (2.63) belongs to [H3(Ω)∩H1
0 (Ω)]2, F(U,∇U) ∈ [H2(Ω)]2, fi, i = 1,2, are Lipschitz functions

with Lipschitz constant CL, the diagonal entries of A, α and β , have a lower positive bound A0, and
α,β ∈C1

B(R). Let Uh = (u1,h,u2,h) ∈ [Wh,0]
2 be solution of the FDM (2.60)-(2.61) or, equivalently, of

the fully discrete piecewise FEM (2.62), and let EU =Uh −RhU be the discretization error. If

A0 −
(

2
(

1+
√

2CR

)
CL +∥A∥C1

B(R)
∥D−xRhU∥h,∞

)
> 0. (2.64)

then there exists a positive constant C, h-independent, such that

∥D−xEU∥2
+ ≤C

N

∑
i=1

h4
i

(
∥U∥2

[H3(xi−1,xi)]2
+∥F(U,∇U)∥2

[H2(xi−1,xi)]2

)
, (2.65)

for h ∈ Λ and hmax small enough.

Proof. The proof of this result follows the proof of Theorem 2.2.
Let EU = (E1,E2). It is observed that for Q1 := ( f1(RhU,∇hRhU)− f1(Uh,∇hUh),E1)h we have

successively the following inequalities

Q1 ≤CL

((
∥E1∥h +

√
2CR∥D−xE1∥++∥E2∥h +

√
2CR∥D−xE2∥+

)
∥E1∥h

)
≤CL

(
(1+

√
2CR)∥D−xE1∥2

++(1+
√

2CR)∥D−xE2∥+∥D−xE1∥+
)

≤CL

(
3
2
(1+

√
2CR)∥D−xE1∥2

++
1
2
(1+

√
2CR)∥D−xE2∥2

+

)
.

Analogously, for Q2 := ( f2(RhU,∇hRhU)− f2(Uh,∇hUh),E2)h it is easily get

Q2 ≤CL

(
1
2
(1+

√
2CR)∥D−xE1∥2

++
3
2
(1+

√
2CR)∥D−xE2∥2

+

)
.

Then for Q1 +Q2 it is deduced

Q1 +Q2 ≤ 2CL

(
1+
√

2CR

)
∥D−xEU∥2

+.
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Consequently, following the proof of Theorem 2.2 it is obtained(
A0 −4ε

2 −
(

2(1+
√

2CR)CL +∥A∥C1
B(R)

∥D−xRhU∥h,∞

))
∥D−xEU∥2

+

≤C
N

∑
i=1

h4
i

(
∥U∥2

[H3(xi−1,xi)]2
+∥F(U,∇U)∥2

[H2(xi−1,xi)]2

)
,

where ε ̸= 0.
If (2.64) holds, then there exists a positive constant C such that (2.65) holds.

Corollary 2.3. Under the assumptions of Theorem 2.3, there exists a positive constant C, h-independent,
such that

∥EU∥1,h ≤C h2
max,

for h ∈ Λ with hmax small enough.

Under the assumptions of Theorem 2.3, and following the proof of Corollary 2.1 the next result is
easily proved.

Corollary 2.4. Let Uh ∈ [Wh,0]
2 be solution of the FDM (2.60)-(2.61), or equivalently, of the fully

discrete piecewise FEM (2.62). Then, under the conditions of Theorem 2.3, there exists a positive
constant Cs, h−independent, such that

∥Uh∥h,∞ ≤Cs

∥D−xUh∥h,∞ ≤Cs

for h ∈ Λ with hmax small enough.

The stability analysis for the FDM (2.60)-(2.61), or equivalently, of the fully discrete piecewise
FEM (2.62) can be carried out following the steps of the analysis presented before for the case of the
nonlinear elliptic equation.

2.3.2 Numerical simulations

In the numerical experiments concerning the scheme (2.60)-(2.61) it is considered, as before, Ω =

(0,1)2, A is the identity matrix, and it is also used random nonuniform grids for the spatial dis-
cretization. The nonlinear system is numerically solved using the fixed-point method, with iteration
function R(U) = B−1(G−F(U)), where B is the tridiagonal matrix by blocks related to the dis-
cretization −D∗

x(A(MhUh)D−xUh), F is the vector representing the nonlinear term, and G is the vector
representing the source term.

In the first example, it is considered F = ( f1, f2) defined by

f1(x1,x2,x3,x4) = cos(x1)+ sin(x2)+ cos(x3)+ sin(x4), x1,x2,x3,x4 ∈ R,

f2(x1,x2,x3,x4) = x1 + sin(x2)+ x3 + sin(x4), x1,x2,x3,x4 ∈ R.
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The function G is such that U = (u1,u2) with

u1(x) = (ex −1)(x−1), x ∈ Ω, (2.66)

u2(x) = |2x−1|4 −1, x ∈ Ω,

is solution of the BVP (2.6)-(2.7). It is observed that U ∈ [H3(Ω)]2, and F satisfies the assumptions
of Theorem 2.3.

In the second example F is considered as before, u1 is given by (2.66) and u2 defined by

u2(x) = |2x−1|1.52 −1, x ∈ Ω.

In this case U ∈ [H2(Ω)]2.
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(a) U ∈ [H3(Ω)]2 and the line has a slope of 2.07.
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(b) U ∈ [H2(Ω)]2 and the line has a slope of 1.07.

Fig. 2.2 Log-log plots of ∥D−xEU∥+ versus hmax for the system of elliptic equations. The solid lines
represent least-squares fittings.

Figure 2.2 illustrates the behaviour of the numerical method (2.60)-(2.61), in the last two scenarios:
the results in the plot in the left-hand side were obtained with U ∈ [H3(Ω)]2, and the estimated
convergence rate is 2.07, while in the plot in the right-hand side we take U ∈ [H2(Ω)]2, and the
estimated convergence rate is 1.07. These results illustrate the sharpness of Theorem 2.3 on smoothness
assumptions on the solutions. In fact, the second-order convergence rate is lost when the solution is in
[H2(Ω)]2.

2.4 A nonlinear system of parabolic equations

2.4.1 Convergence analysis

To compute an approximation for the IBVP (2.1)-(2.3), it is proposed the following semi-discrete
scheme

dUh

dt
(t)+F(Uh(t),∇hUh(t)) = D∗

x(A(MhUh(t))D−xUh(t))+Gh(t), t ∈ (0,T ] (2.67)
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with boundary and initial conditions

Uh = 0 on ∂Ωh × (0,T ], (2.68)

Uh(0) = RhU0 in Ωh. (2.69)

Remark that the semi-discrete scheme is equivalent to the following fully discrete piecewise linear
FEM

find Uh(t) ∈ [Wh,0]
2 such that for all t ∈ (0,T ] and Qh ∈ [Wh,0]

2

(
dUh

dt
(t),Qh

)
h
+(A(MhUh(t))D−xUh(t),D−xQh)++(F(Uh(t),∇hUh(t)),Qh)h = (Gh(t),Qh)h,

(2.70)
with

(Uh(0),Qh)h = (RhU0,Qh)h, ∀Qh ∈ [Wh,0]
2. (2.71)

This fully discrete method is obtained from the piecewise linear FEM

find Uh(t) ∈ [Wh,0]
2 such that for all t ∈ (0,T ] and Qh ∈ [Wh,0]

2

(
dPhUh

dt
(t),PhQh

)
+(A(PhUH(t))∇PhUh(t),∇PhQh)+(F(PhUh(t),∇PhUh),PhQh) = (G(t),PhQh),

with
(PhUh(0),PhQh) = (U0,PhQh),∀Qh ∈ [Wh,0]

2

considering suitable quadrature rules.

Theorem 2.4. Let us suppose that the sequence of grids Λ satisfies (2.16), and U(t) ∈ [H3(Ω)∩
H1

0 (Ω)]2, U ∈ [C1([0,T ],C(Ω))]2, F(U(t),∇U(t))∈ [H2(Ω)]2, F is a Lipschitz function with Lipschitz
constant CL, the diagonal entries of A, α and β , have a lower positive bound A0, and α,β ∈C1

B(R).
Let Uh(t) ∈ [Wh,0]

2 be a solution of the initial value problem (2.67)-(2.69) or, equivalently, solution of
the fully discrete piecewise linear FEM (2.70)- (2.71), and suppose that Uh ∈ [C1([0,T ],Wh,0)]

2. Let
EU =Uh −RhU be the discretization error. Then, for any ε ̸= 0 there exists a positive constant C, h
and t independent such that

∥EU(t)∥2
h +D

∫ t

0
e

∫ t

s
S(U(µ))dµ

∥D−xEU(s)∥2
+ds ≤ e

∫ t

0
S(U(µ))dµ

∥EU(0)∥2
h

+
∫ t

0
e

∫ t

s
S(U(µ))dµ

Th(s)ds, t ∈ [0,T ],

(2.72)
where

Th(t) =C
N

∑
i=1

h4
i

(∥∥∥∥∂U
∂ t

(t)
∥∥∥∥2

[H2(xi−1,xi)]2
+∥U(t)∥2

[H3(xi−1,xi)]2
+∥F(U(t),∇U(t))∥2

[H2(xi−1,xi)]2

)
,
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the coefficients D and S being given by

D = 2(A0 −6ε
2), (2.73)

and

S(U(t)) =
1

2ε2 ∥A∥2
C1

B(R)
∥D−xRhU(t)∥2

h,∞ +CL

(
4+2

CLCR

ε2

)
, (2.74)

respectively.

Proof. Let U(t) = (u1(t),u2(t)) and EU(t) = (E1(t),E2(t)). It can be shown that

(g1,h(t),E1(t))h =

(
Rh

∂u1

∂ t
(t),E1(t)

)
h
+

((
∂u1

∂ t
(t)
)

h
−Rh

∂u1

∂ t
(t),E1(t)

)
h

+(α(Mhu1,h(t))D−xRhu1(t),D−xE1(t))+

+

((
α(R̂hu1(t))−α(MhRhu1(t))

)
R̂h

∂u1

∂x
(t),D−xE1(t)

)
+

+

(
α(MhRhu1(t))

(
R̂h

∂u1

∂x
(t)−D−xRhu1(t)

)
,D−xE1(t)

)
+

+

((
α(MhRhu1(t))−α(Mhu1,h(t))

)
D−xRhu1(t),D−xE1(t)

)
+

+( f1(RhU(t),∇hRhU(t)),E1(t))h

+( f1,h(t)− f1(t),E1(t))h

+( f1(t)− ( f1(RhU(t),∇hRhU(t)),E1(t))h,

where, to simplify, the following notation is used

f1(t) = f1(RhU(t),Rh∇U(t)),

and f1,h(t) is defined by (2.10) with g replaced by f1(t).

Taking this into account, from the first equation of (2.70) with q1,h = E1(t), it is easily obtained(
dE1

dt
(t),E1(t)

)
h

+(α(Mhu1,h(t))D−xE1(t),D−xE1(t))+

= ( f1(RhU(t),∇hRhU(t))− f1(Uh(t),∇hUh(t)),E1(t))h

+((α(MhRhu1(t))−α(Mhu1,h(t)))D−xRhu1(t),D−xE1(t))+

+
4

∑
i=0

T (i)
h ,

(2.75)
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where

T (0)
h =

((
α(R̂hu1(t))−α(MhRhu1(t))

)
R̂h

∂u1

∂x
(t),D−xE1(t)

)
+

,

T (1)
h =

(
α(MhRhu1(t))

(
R̂h

∂u1

∂x
(t)−D−xRhu1(t)

)
,D−xE1(t)

)
+

,

T (2)
h = ( f1,h(t)− f1(t),E1(t))h,

T (3)
h = ( f1(t)− f1(RhU(t),∇hRhU(t)),E1(t))h,

T (4)
h =

(
Rh

∂u1

∂ t
(t)−

(
∂u1

∂ t

)
h
,E1(t)

)
h
.

It can be shown that there exist positive constants Ci, i = 0, . . . ,4, h and t independent, such that

|T (0)
h | ≤C0

(
N

∑
i=1

h4
i ∥u1(t)∥2

H2(xi−1,xi)

)1/2

∥D−xE1(t)∥+

≤ C0

4ε2

N

∑
i=1

h4
i ∥u1(t)∥2

H2(xi−1,xi)
+ ε

2∥D−xE1(t)∥2
+

= T̂ (0)
h + ε

2∥D−xE1(t)∥2
+

|T (1)
h | ≤C1

(
N

∑
i=1

h4
i ∥u1(t)∥2

H3(xi−1,xi)

)1/2

∥D−xE1(t)∥+

≤ C1

4ε2

N

∑
i=1

h4
i ∥u1(t)∥2

H3(xi−1,xi)
+ ε

2∥D−xE1(t)∥2
+

= T̂ (1)
h + ε

2∥D−xE1(t)∥2
+

|T (2)
h | ≤C2

(
N

∑
i=1

h4
i ∥ f1(U(t),∇U(t))∥2

H2(xi−1,xi)

)1/2

∥D−xE1(t)∥+

≤ C2

4ε2

N

∑
i=1

h4
i ∥ f1(U(t),∇U(t))∥2

H2(xi−1,xi)
+ ε

2∥D−xE1(t)∥2
+

= T̂ (2)
h + ε

2∥D−xE1(t)∥2
+

|T (3)
h | ≤C3

(
N

∑
i=1

h4
i ∥U(t)∥2

[H3(xi−1,xi)]2

)1/2

∥D−xE1(t)∥+

≤ C3

4ε2

N

∑
i=1

h4
i ∥U(t)∥2

[H3(xi−1,xi)]2
+ ε

2∥D−xE1(t)∥2
+

= T̂ (3)
h + ε

2∥D−xE1(t)∥2
+
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|T (4)
h | ≤C4

(
N

∑
i=1

h4
i

∥∥∥∥∂u1

∂ t
(t)
∥∥∥∥2

H2(xi−1,xi)

)1/2

∥D−xE1(t)∥+

≤ C4

4ε2

N

∑
i=1

h4
i

∥∥∥∥∂u1

∂ t
(t)
∥∥∥∥2

H2(xi−1,xi)

+ ε
2∥D−xE1(t)∥2

+

= T̂ (4)
h + ε

2∥D−xE1(t)∥2
+

Note that the estimates of T (i)
h , for i= 0, ...,3, are obtained exactly in the same way as, respectively,

T (i)
h , for i = 0, ...,3, defined for the case of the elliptic equation in Section 2.2.5. Considering

w(x) =
∂u1

∂ t
(t), T (4)

h can be rewritten as follows

T (4)
h =

N−1

∑
i=1

(
hi+1/2w(xi)−

∫ xi+1/2

xi−1/2

w(x)dx
)

E1(xi),

and therefore, the estimate of T (4)
h is obtained following the same procedure as the one used to obtain

the estimate of T (2)
h .

Taking into account that f is a Lipschitz function (with Lipschitz constant CL), it is also obtained
the following

( f1(RhU(t),∇hRhU(t))− f1(Uh(t),∇hUh(t)),E1(t))h

≤CL

(
∥E1(t)∥h +∥E2(t)∥h +

√
2CR (∥D−xE1(t)∥++∥D−xE2(t)∥+)

)
∥E1(t)∥h

≤CL

(
3
2
+

CLCR

ε2

)
∥E1(t)∥2

h +
CL

2
∥E2(t)∥2

h + ε
2 (∥D−xE1(t)∥2

++∥D−xE2(t)∥2
+

)
,

and, as α ∈C1
B(R), it follows that

((α(MhRhu1(t))−α(Mhu1,h(t)))D−xRhu1(t),D−xE1(t))+
≤ ∥A∥C1

B(R)
∥D−xRhu1(t)∥h,∞∥E1(t)∥h∥D−xE1(t)∥+

≤ 1
4ε2 ∥A∥2

C1
B(R)

∥D−xRhu1(t)∥2
h,∞∥E1(t)∥2

h + ε
2∥D−xE1(t)∥2

+,

where ε ̸= 0 is an arbitrary positive constant.

Considering the previous estimates in (2.75) it is deduced

d
dt
∥E1(t)∥2

h +2
(
A0 −7ε

2)∥D−xE1(t)∥2
+

≤
(

1
2ε2 ∥A∥2

C1
B(R)

∥D−xRhu1(t)∥2
h,∞ +CL

(
3+2

CLCR

ε2

))
∥E1(t)∥2

h

+CL∥E2(t)∥2
h +2ε2∥D−xE2(t)∥2

++T1,h(t),

(2.76)
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where

T1,h(t) = 2
4

∑
i=0

T̂ (i)
h =

C̃1

2ε2

(
N

∑
i=1

h4
i

(∥∥∥∥∂u1

∂ t
(t)
∥∥∥∥2

H2(xi−1,xi)

+∥U(t)∥2
[H3(xi−1,xi)]2

+∥ f1(U(t),∇U(t))∥2
H2(xi−1,xi)

))
,

for some positive constant C̃1, h and t independent.

Analogously, from the second equation of (2.70) with q2,h = E2(t) we can establish for ε ̸= 0,

d
dt
∥E2(t)∥2

h +2
(
A0 −7ε

2)∥D−xE2(t)∥2
+

≤
(

1
2ε2 ∥A∥2

C1
B(R)

∥D−xRhu2(t)∥2
h,∞ +CL

(
3+2

CLCR

ε2

))
∥E2(t)∥2

h

+CL∥E1(t)∥2
h +2ε

2∥D−xE1(t)∥2
++T2,h(t),

(2.77)

with

T2,h(t)≤
C̃2

2ε2

(
N

∑
i=1

h4
i

(∥∥∥∥∂u2

∂ t
(t)
∥∥∥∥2

H2(xi−1,xi)

+∥U(t)∥2
[H3(xi−1,xi)]2

+∥ f2(U(t),∇U(t))∥2
H2(xi−1,xi)

))
,

for some positive constant C̃2, h and t independent.

Combining (2.76) and (2.77) we get the following differential inequality

d
dt
∥EU(t)∥2

h +2
(
A0 −6ε

2)∥D−xEU(t)∥2
+

≤
(

1
2ε2 ∥A∥2

C1
B(R)

∥D−xRhU(t)∥2
h,∞ +CL

(
4+2

CLCR

ε2

))
∥EU(t)∥2

h

+T1,h(t)+T2,h(t)

that leads to (2.72).

Corollary 2.5. Under the assumptions of Theorem 2.4, if ε is fixed such that

A0 −6ε
2 > 0, (2.78)

then there exists a positive constant C, h and t independent, such that holds the following

∥EU(t)∥2
h +

∫ t

0
∥D−xEU(s)∥2

+ds ≤Ch4
max,

for h ∈ Λ and hmax small enough.
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2.4.2 Stability analysis

The stability of the initial value problem (2.67)-(2.69) in (Uh(t))h∈Λ, where Uh(t) ∈ [Wh,0]
2 is a

solution of (2.67)-(2.69), is now discussed in the following sense: for all σs > 0 there exists a
positive constant σi > 0 such that, for all Vh(t) ∈ [Wh,0]

2 that satisfies (2.67) and Vh(0) ∈ [Wh,0]
2, if

∥Vh(0)−Uh(0)∥h ≤ σi, then we have ∥Vh(t)−Uh(t)∥h ≤ σs, for t ∈ [0,T ], h ∈ Λ with hmax small
enough.

We start by considering ωh(t) =Uh(t)−Vh(t). We have(
dωh

dt
(t),ωh(t)

)
h
+ (A(MhVh(t))D−xωh(t),D−xωh(t))+

=−((A(MhUh(t))−A(MhVh(t)))D−xUh(t),D−xωh(t))+
+(F(Vh(t),∇hVh(t))−F(Uh(t),∇hUh(t)),ωh(t))h.

Proceeding as in the proof of Theorem 2.4, it can be shown that

1
2

d
dt
∥ωh(t)∥2

h+ A0∥D−xωh(t)∥2
+ ≤ ∥A∥C1

B(R)
∥D−xUh(t)∥h,∞∥ωh(t)∥h∥D−xωh(t)∥+

+CL

(
1+

CLCR

2ε2

)
∥ωh(t)∥2

h + ε
2∥D−xωh(t)∥2

+,

that leads to

d
dt
∥ωh(t)∥2

h+ 2(A0 −2ε
2)∥D−xωh(t)∥2

+

≤
( 1

2ε2 ∥A∥2
C1

B(R)
∥D−xUh(t)∥2

h,∞ +CL

(
2+

CLCR

ε2

))
∥ωh(t)∥2

h,
(2.79)

for t ∈ (0,T ], h ∈ Λ and hmax small enough.

From the inequality (2.79) we obtain

∥ωh(t)∥2
h +D

∫ t

0
e

∫ t

s
S(Uh(µ))dµ

∥D−xωh(s)∥2
+ds ≤ e

∫ t

0
S(Uh(µ))dµ

∥ωh(0)∥2
h,

(2.80)

for t ∈ [0,T ],h ∈ Λ and hmax small enough. In (2.80), D = 2(A0 −2ε2), and

S(Uh(t)) =
1

2ε2 ∥A∥2
C1

B(R)
∥D−xUh(t)∥2

h,∞ +CL

(
2+

CLCR

ε2

)
. (2.81)

The stability of the initial value problem (2.67)-(2.69) in (Uh(t))h∈Λ can be easily concluded if
there exists a positive constant Cs, h and t independent, such that∫ t

0
∥D−xUh(µ)∥2

h,∞dµ ≤Cs, t ∈ [0,T ], (2.82)

for h ∈ Λ with hmax small enough.
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Theorem 2.4 is now used to guarantee the existence of such positive constant Cs. As we have∫ t

0
|D−xuℓ,h(xi,s)|2ds ≤ 2

∫ t

0
|D−xEℓ(xi,s)|2ds+2

∫ t

0
|D−xuℓ(xi,s)|2ds

≤ 2
hmin

∫ t

0
∥D−xEℓ(s)∥2

+ds+2
∫ t

0

∥∥∥∥∂uℓ
∂x

(s)
∥∥∥∥2

∞

ds,

for ℓ= 1,2, from Corollary 2.5 it is successively obtained

∫ t

0
∥D−xUh(s)∥2

h,∞ds ≤ 2
hmin

Ch4
max +2

∫ t

0

∥∥∥∥∂U
∂x

(s)
∥∥∥∥2

∞

ds

≤Cs,

because uℓ(t) ∈ H3(Ω) and H3(Ω) is imbedded in C1(Ω), ℓ= 1,2.

Then, there exists a positive constant Ĉs such that S(Uh(t))≤ 2Ĉs, t ∈ [0,T ]. Consequently,if we
fix σs > 0, then for σi < e−ĈsT σs, we have

∀Vh(0) ∈ [Wh,0]
2 : ∥Vh(0)−Uh(0)∥h < σi =⇒∥Vh(t)−Uh(t)∥h < σs, t ∈ [0,T ].

The stability result is now summarized in what follows.

Corollary 2.6. Under the assumptions of Theorem 2.4, the solution Uh(t) ∈ [Wh,0]
2 of (2.67)-(2.69),

is a stable solution in [0,T ].

2.4.3 Numerical simulations

Regarding the implementation of the numerical method (2.67)-(2.69), to simplify, it is considered
Ω = (0,1)2, and it is used random nonuniform grids for the spatial discretization. Furthermore, let
introduce, in the time domain [0,T ], the uniform grid {tn = n∆t, n = 0, . . . ,M } with tM = T , and
∆t = tn+1 − tn denoting the step size.

A first-order implicit-explicit Euler method for the time discretization is applied. The linear part
is implicitly discretized while the nonlinear part is explicitly discretized. It is denoted by u1,h(tn) and
u2,h(tn) the numerical approximations for u1(tn) and u2(tn), respectively. The fully discrete numerical
scheme reads as

Un+1
h −Un

h

∆t
−A∆hUn+1

h +F(Un
h ,∇hUn

h ) = Gn+1
h , n = 0,1, . . . ,M −1,

with initial conditions
U0

h = RhU0 in Ωh,

and boundary conditions
Un

h = 0 on ∂Ωh, n = 0, ...,M .

In order to estimate the convergence rate numerically, it is defined the error

∥EU∥� =
√

∥E1∥2
�+∥E2∥2

�,
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where

∥E1∥2
� = max

n=1,...,M

{
∥En

1∥2
h +∆t

n

∑
i=1

∥D−xE i
1∥2

+

}
,

and ∥E2∥� is defined analogously.
Now is considered the diagonal entries of A, α = β = 0.1, and is defined F as

f1(x1,x2,x3,x4) = cos(x1)+ sin(x2)+ cos(x3)+ sin(x4), x1,x2,x3,x4 ∈ R

and
f2(x1,x2,x3,x4) = x1 + sin(x2)+ x3 + sin(x4), x1,x2,x3,x4 ∈ R.

Finally, the time step is defined ∆t = 10−6, which is small enough so the first-order error from the
time discretization does not pollute the convergence rate with reference to the space variable.

In the first example it is considered U = (u1,u2) defined by

u1(x, t) =−e−t(ex −1)(x−1),

and
u2(x, t) = e−t((2x−1)4 −1),

for x ∈ Ω, t ∈ [0,1] and determine G such that U is solution of the IBVP (2.1)-(2.3). In this case
U(t) ∈ [H3(Ω)]2 for t ∈ [0,1], and F satisfies the assumptions of Theorem 2.4.

In the second example, U is such that u1 is the same as before, and u2 is given by

u2(x, t) = e−t |2x−1|1.52 −1.

10−1 10−0.8

10−1

hmax

∥E
U
∥ �

(a) U(t) ∈ [H3(Ω)]2 and the line has a slope of 1.87.

10−0.8 10−0.6 10−0.4

10−1

10−0.5

hmax

∥E
U
∥ �

(b) U(t) ∈ [H2(Ω)]2 and the line has a slope of 1.21.

Fig. 2.3 Log-log plots of ∥EU∥� versus hmax for the system of parabolic equations. The solid lines
represent the least-squares fitting.

Figure 2.3 illustrates the error estimate in Theorem 2.4. The results included in the left figure
were obtained with U(t) ∈ [H3(Ω)]2. The slope of the linear regression, in this case, is 1.87 but it
reduces to 1.2 when we take u2 ∈ H2(Ω).
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2.5 Conclusions

In this chapter was considered the nonlinear system of parabolic equations (2.1). This system is a
generalization of the system of equations (1.3)-(1.4), which describes the evolution of the magnetic
field in the umbra of sunspots. To simplify, were assumed in this generalization homogeneous Dirichlet
boundary conditions (2.2), and the initial conditions (2.3). To gain some intuition, the chapter started
considering the nonlinear elliptic problem (2.4)-(2.5), and its extension to the nonlinear elliptic system
(2.6)-(2.7). For the three problems, piecewise linear FEM, that can be seen as FDM, were proposed.
The goal was to establish conditions that allowed to prove the stability of the methods, and also
conditions that allowed obtaining second-order approximations in space with respect to a discrete
H1-norm.

The main results of this chapter are, for the elliptic equation, Theorem 2.2 and Proposition 2.6, for
the elliptic system, Theorem 2.3, and finally for the parabolic system, Theorem 2.4, and Corollary 2.6.
In these results, under certain assumptions, for the numerical approximation of u ∈ H3(Ω)∩H1

0 (Ω),
U ∈ [H3(Ω)∩H1

0 (Ω)]2, and U(t) ∈ [H3(Ω)∩H1
0 (Ω)]2 respectively, the second-order of convergence

and stability were proved .
In addition, for each numerical method, numerical experiments illustrating the convergence results

for nonsmooth solutions were included.





Chapter 3

An application to sunspots

3.1 Introduction

This chapter aims to extend some of the results presented before to an IBVP defined in a two-
dimensional domain. Besides, it intends to show our studies’ application to a particular situation
involving the time and space evolution of the solar magnetic field in one region characterized by a
strong and vertical magnetic field like is present in sunspot umbra or Network regions. In fact, results
presented in Chapter 2 are extended to a two-dimensional problem. Thus, the needed natural discrete
functional scenario is introduced in Section 3.2, and, in Section 3.3, the main convergence result of
this section is established - Theorem 3.1. It should be recalled that this result is proved assuming
that the solution of the IBVP (3.1), (3.2), (3.3) is smooth. In Section 3.3, Numerical simulations -
application to sunspots, some numerical experiments in the context of the solar magnetic field in
the umbra are presented. In the umbra, it is assumed that the evolution of the magnetic field and
velocity are well described by the coupled equations (1.3) and (1.4). As the methods proposed in
the previous sections are meant to be simulated, it is assumed that the velocity is known in the
computational domain, and the magnetic field is also known in the boundary of such domain, as
well as the initial condition. As a matter of fact, such assumptions are not realistic, but they are
prompted by the analytical support developed before in the sense that the ultimate aim is to apply the
methods studied before. It is believed that the extension of the results presented here, considering
the boundary conditions used in the next chapter, may lead to more realistic results. As far as the
magnetic field equation is concerned, the z component of the magnetic field is the strongest one in
the darkest zone of the umbra, as reported in the literature ([10]). In what follows, the behaviour
of the two magnetic field components is simulated: the z and y components. Surely, component x
could replace y component. In what concerns the computational domain, a two-dimensional domain
is considered in x and y directions. The numerical experiments presented in this chapter may well be
acknowledged as preliminary work; as such, it should be point out that further numerical work on the
coupling of the magnetic field (1.3) the velocity equations (1.4) should be considered in the future.
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3.2 The numerical scheme and some results

Motivated by the application that we would like to consider and the corresponding simplification,
which is the numerical illustration of the behaviour of the magnetic field in the umbra considering only
two components, in this section is considered the system of equations (1.5) that has as a particular
case the one defined by the equations (1.3) and (1.4), one of each with two unknowns, and that can be
rewritten in the following equivalent form

∂Ui

∂ t
+ fi(U,∇U) = ∇.

(
α2i−1,2i(Ui(t))∇Ui(t)

)
+gi in Ω× (0,T ],

i = 1,2,3,4,
(3.1)

with Ω = (0,1)2, α2i−1,2i(Ui(t)), i = 1,2,3,4, are 2-diagonal matrix with diagonal entries α2i−1(Ui(t))

and α2i(Ui(t)). In (3.1), ∇U = (∇Ui, i = 1,2,3,4) and ∇Ui =

(
∂Ui

∂x
,
∂Ui

∂y

)
. Observe that, in the

context of the differential system (1.5), (U1,U2) denotes the magnetic field and (U3,U4) represents
the velocity field.

It is considered that system (1.5) is complemented with

U(t) = 0 on ∂Ω× (0,T ], (3.2)

and
U(0) =U0 in Ω. (3.3)

It is clear that for (1.3) and (1.4), the previous boundary conditions are not realistic. In fact, as the
domain Ω is bounded, Dirichlet boundary conditions are not appropriate to describe the behaviour of
the magnetic and the velocity fields on the boundary. In this case, Neumann boundary conditions or
Robin boundary conditions seem to be more realistic. However, to make easier the numerical analysis,
homogeneous Dirichlet boundary conditions were adopted. Remark that, as mentioned before, in the
application to sunspots, it is assumed that the velocity field is known which reduces the system (3.1)
to a system for the magnetic components with known magnetic field on the boundary.

Let Λ be a sequence of vectors H = (h,k), where h = (h1, . . . ,hN) and k = (k1, . . . ,kM) have

positive entries such that
N

∑
i=1

hi =
M

∑
j=1

k j = 1. Let Hmax = max{hmax,kmax}, where hmax = max
i=1,...,N

hi,

being kmax be defined analogously. It is assumed that Hmax → 0. Let {xi, i = 1, . . . ,N} and {y j, j =
1, . . . ,M} be two partitions of [0,1] induced by h and k, respectively, and let ΩH be defined by
ΩH = {xℓ, ℓ = 0, . . . ,N} × {y j, j = 0, . . . ,M}. Let ΩH = Ω ∩ ΩH , ∂ΩH = ∂Ω ∩ ΩH . By WH,0 is
represented the space of grid functions defined in ΩH that are null on ∂ΩH , and the space of grid
functions defined in ΩH is denoted by WH .

Let UH(t) ∈WH,0 be the solution of the following system of differential equations{
U ′

i,H(t)+ fi(UH(t),∇H,aUH(t)) = ∇
∗
H

(
α2i−1,2i,H(Ui,H(t))∇H,−Ui,H(t)

)
+RHgi in ΩH × (0,T ],

i = 1,2,3,4.
(3.4)
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In (3.4),
∇H,aUH(t) = (∇H,aUi,H(t), i = 1,2,3,4),

∇H,aUi,H(t) = (∇hUi,H(t),∇kUi,H(t)), i = 1,2,3,4,

with

∇hUi,H(xℓ,y j, t) =
1

hℓ+hℓ+1

(
hℓD−xUi,H(xℓ+1,y j, t)+hℓ+1D−xUi,H(xℓ,y j, t)

)
, (xℓ,y j) ∈ ΩH ,

being ∇k defined analogously. Moreover,

∇H,−UH(t) = (∇H,−Ui, i = 1,2,3,4),

∇H,−Ui,H(t) = (D−xUi,H(t),D−yUi,H(t)),

∇
∗
H(v1,H ,v2,H) = D∗

xv1,H +D∗
yv2,H , vi,H ∈WH , i = 1,2,

where,

D−xv1,H(xℓ,y j, t) =
v1,H(xℓ,y j, t)− v1,H(xℓ−1,y j, t)

hℓ
,

D∗
xv1,H(xℓ,y j, t) =

v1,H(xℓ+1,y j, t)− v1,H(xℓ,y j, t)
hℓ+1/2

,

and D−y and D∗
y are defined analogously. Furthermore, Mh represents the average operator

MhvH(xℓ,y j) =
1
2
(
vH(xℓ−1,y j)+ vH(xℓ,y j)

)
, (xℓ,y j) ∈ ΩH ,

being Mk defined analogously. The 2-diagonal matrix α2i−1,2i,H(Ui,H(t)) has the diagonal entries
α2i−1(MhUi,H(t)) and α2i(MkUi,H(t)).

The differential system (3.4) is complemented with the boundary condition

UH = 0 on ∂ΩH × (0,T ], (3.5)

and initial condition
UH(0) = RHU0 in ΩH . (3.6)

In (3.6), RH : [C(Ω)]4 → [WH,0]
4 is the restriction operator RHU(x,y) =U(x,y),(x,y) ∈ ΩH . To

simplify, the same notation is used to represent the restriction operator RH : C(Ω)→WH,0.

The convergence properties of the semi-discrete approximation defined by (3.4), (3.5) and (3.6),
can now be easily established using convenient norms.

Let introduce the inner product

(uH ,vH)H =
N−1

∑
ℓ=1

M−1

∑
j=1

hℓ+1/2k j+1/2uH(xℓ,y j)vH(xℓ,y j), uH ,vH ∈WH,0,
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and the corresponding norm denoted by ∥ · ∥H . As in the one-dimensional case, it is introduced the
discrete H1-norm

∥uH∥1,H =
√
∥uH∥2

H +∥∇H,−uH∥2
H,+,

where
∥∇H,−uH∥2

H,+ = ∥D−xuH∥2
x,++∥D−yuH∥2

y,+,

with

∥D−xuH∥2
x,+ =

N

∑
ℓ=1

M−1

∑
j=1

hℓk j+1/2
(
D−xuH(xℓ,y j)

)2

being ∥D−yuH∥2
y,+ defined analogously. The following notations are also used

(uH ,vH)x,+ =
N

∑
ℓ=1

M−1

∑
j=1

hℓk j+1/2uH(xℓ,yℓ)vH(xℓ,y j), uH ,vH ∈WH ,

being (uH ,vH)y,+ defined analogously.
In this scenario the Poincaré-Friedrichs inequality also holds, and is given by

∥uH∥2
H ≤ 1

2
∥∇H,−uH∥2

H,+, ∀uH ∈WH,0. (3.7)

In fact, as in the one-dimensional version of the Poincaré-Friedrichs inequality presented before, we
have

∥uH∥2
H ≤ ∥D−xuH∥2

x,+, ∥uH∥2
H ≤ ∥D−yuH∥2

y,+,

and consequently it arises (3.7).
Let A be a two-diagonal matrix with diagonal entries a and b. Observe that holds the following

equality

(∇∗
H(A(vH)∇H,−uH ,wH)H =−(a(MhvH)D−xuH ,D−xwH)x,+− (b(MkvH)D−yuH ,D−ywH)y,+, (3.8)

for all uH ,vH ,wH ∈WH,0.

3.2.1 Convergence analysis

The next result establishes that the error of the semi-discrete approximation UH(t) ∈ [WH,0]
4, defined

by (3.4), (3.5), (3.6), is of second-order with respect to the norm ∥.∥1,H , provided that the solution
U(t) of the IVBP (3.1), (3.2) and (3.3) belongs to [C4(Ω)]4. It is assumed that the sequence of grids
ΩH ,H ∈ Λ, satisfies the following: there exists a positive constant CR such that

hmax

hmin
≤CR,

kmax

kmin
≤CR. (3.9)

For UH ∈ [WH,0]
4 the following notations are used

∥UH∥2
H =

4

∑
i=1

∥UH,i∥2
H ,
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∇H,−UH = (∇H,−UH,i, i = 1, . . . ,4),

∥∇H,−UH∥2
H,+ =

4

∑
i=1

∥∇H,−UH,i∥2
H,+.

Let EU(t) =UH(t)−RHU(t) ∈ [WH,0]
4 be the spatial discretization error where U is solution of

the IBVP (3.1), (3.2), (3.3), and UH(t) ∈ [WH,0]
4 is the the correspondent semi-discrete approximation

defined by (3.4), (3.5), (3.6).
The error EU(t) = (Ei(t), i = 1, . . . ,4) is solution of the following problem

(E ′
i(t),Ei(t))H =−(α2i−1,2i,H(Ui,H(t))∇H,−Ei(t),∇H,−Ei(t))H,+

+((α2i−1,2i,H(RHUi(t))−α2i−1,2i,H(Ui,H(t)))∇H,−RHUi(t),∇H,−Ei(t))H,+

+( fi(RHU(t),∇H,aRHU(t))− fi(UH(t),∇H,aUH(t)),Ei(t))H − (Ti,H(t),Ei(t))H

in (0,T ],
i = 1,2,3,4,

(3.10)

EU(x,y, t) = 0,(x,y) ∈ ∂ΩH × (0,T ], (3.11)

and
EU(x,y,0) = 0,(x,y) ∈ ΩH . (3.12)

In (3.10), Ti,H(t) denotes the spatial truncation error that admits the following representation

Ti,H(t) = Ti,x(t)+Ti,y(t)

with
Ti,x(t) = T (1)

i,x (t)+T (2)
i,x (t)

and
T (1)

i,x (xℓ,y j, t) = (hℓ+1 −hℓ)Ri,x(xℓ,y j, t),

where

Ri,x(x,y, t) =−∂Ui

∂x
(x,y, t)

(
∂ 2Ui

∂x2 (x,y, t)α ′
2i−1(Ui(x,y, t))+

1
4

α
′′
2i−1(Ui(x,y, t))

(∂Ui

∂x
(x,y, t)

)2
)

−1
3

α2i−1(Ui(x,y, t))
∂ 3Ui

∂x3 (x,y, t).

Moreover,
|T (2)

i,x (xℓ,y j, t)| ≤Ch2
max

(
∥Ui(t)∥C4(Ω)+∥U(t)∥[C3(Ω)]4

)
,

where C is a H, t and Ui independent constant. The truncation error with respect to y, Ti,y, is defined
analogously.

Theorem 3.1. Let U ∈
(
C1([0,T ],C(Ω))

)4 ∩
(
C([0,T ],C4(Ω))

)4 be solution of the IBVP (3.1), (3.2)
and (3.3) and let UH ∈

(
C1([0,T ],WH,0)

)4 be the the correspondent semi-discrete approximation
defined by (3.4), (3.5), (3.6). Let EU(t) = UH(t)−RHU(t) ∈ [WH,0]

4, t ∈ [0,T ], be the spatial dis-
cretization error. It is assumed that fi, i = 1,2,3,4, are Lipschitz functions with Lipschitz constant CL.
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Let A be the diagonal block matrix, where each block i has as entries α2i−1 ≥ A0 > 0 and α2i ≥ A0 > 0
in R, for i = 1, . . . ,4, being A j j ∈C3

B(R), j = 1, . . . ,8. If the sequence of grids ΩH ,H ∈ Λ, satisfies
(3.9), then there exists a positive constant CU , H and t independent, such that

∥EU(t)∥2
H +β

∫ t

0
e
∫ t

s θ(U(µ))dµ∥∇H,−EU(s)∥2
H,+ds ≤CU H4

max

∫ t

0
e
∫ t

s θ(U(µ))dµ∥U(s)∥2
[C4(Ω)]4

ds,

(3.13)
for t ∈ [0,T ],H ∈ Λ. In (3.13) ε,γ ̸= 0 are arbitrary constants, and β and θ are given by

β = 2(A0 −6ε
2), (3.14)

and

θ(U(t)) =
1

2ε2 ∥U(t)∥2
[C1(Ω)]4

∥A∥2
C1

B(R)
+2C2

L

(
1
γ2 +

CR

2ε2

)
+10γ

2. (3.15)

Proof. Notice that

((
α2i−1,2i,H(RHUi(t))− α2i−1,2i,H(Ui,H(t))

)
∇H,−RHUi(t),∇H,−Ei(t)

)
H,+

≤ 1
4ε2 ∥Ui(t)∥2

C1(Ω)
∥α2i−1,2i∥2

C1
B(R)

∥Ei(t)∥2
H

+ε
2∥∇H,−Ei(t)∥2

H,+,

(3.16)

where ε ̸= 0 is an arbitrary constant. For ( fi(RHU(t),∇H,aRHU(t))− fi(UH(t),∇H,aUH(t)),Ei(t))H

follows successively that(
fi(RHU(t),∇H,aRHU(t)) − fi(UH(t),∇H,aUH(t)),Ei(t)

)
H

≤CL

(
4

∑
i=1

∥Ei(t)∥H +
√

2CR

4

∑
i=1

∥∇H,−Ei(t)∥H,+

)
∥Ei(t)∥H

≤ 1
4γ2C2

L∥EU(t)∥2
H +

(
CRC2

L

2ε2 + γ
2
)
∥Ei(t)∥2

H

+ε2∥∇H,−EU(t)∥2
H,+,

(3.17)

where γ ̸= 0 is an arbitrary constant. Taking into account the particular structure of Ti,x(t), and
following the proof of Proposition 2.4, it can be shown that

−(T (1)
i,x (t),Ei,H(t))H ≤ h4

max

( 1
4ε2 ∥Ri,x(t)∥2

C(Ω)
+

1
4γ2 ∥Ri,x(t)∥2

C1(Ω)

)
+ε

2∥D−xEi(t)∥2
++ γ

2∥Ei(t)∥2
H

and also
−(T (2)

i,x (t),Ei,H(t))H ≤C
1

4γ2 h4
max∥Ui(t)∥2

C4(Ω)
+ γ

2∥Ei(t)∥2
H .
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As for that (Ti,y(t),Ei(t))H an analogous estimate could be obtained, for (Ti,H(t),Ei,H(t)) it follows
that

−(Ti,H(t),Ei,H(t))H ≤ H4
max

( 1
4ε2

(
∥Ri,x(t)∥2

C(Ω)
+∥Ri,y(t)∥2

C(Ω)

)
+

1
4γ2

(
∥Ri,x(t)∥2

C1(Ω)
+∥Ri,y(t)∥2

C1(Ω)

))
+ε

2∥∇H,−Ei(t)∥2
H,++4γ

2∥Ei(t)∥2
H

+C 1
2γ2 H4

max∥Ui(t)∥2
C4(Ω)

.

(3.18)

Considering now the upper bounds (3.16), (3.17) and (3.18) in (3.10), we guarantee the existence of a
positive constant CU , H, t and U independent, such that

d
dt ∥EU(t)∥2

H +2(A0 −6ε2)∥∇H,−EU(t)∥2
H,+ ≤ θ(U(t))∥EU(t)∥2

H +CU H4
max∥U(t)∥2

[C4(Ω)]4
,

(3.19)
where θ(U(t)) is defined by (3.15). Attending that EU(0) = 0, the inequality (3.19) leads to (3.13).

Corollary 3.1. Under the assumptions of Theorem 3.1, if ε is fixed such that

A0 −6ε
2 > 0

then there exists a positive constant CU , H, t independent, such that

∥EU(t)∥2
H +

∫ t

0
∥∇H,−EU(s)∥2

H,+ds ≤CU H4
max

∫ t

0
∥U(s)∥2

[C4(Ω)]4
ds,

for t ∈ [0,T ],H ∈ Λ.

3.2.2 Application to sunspots- numerical experiments

This section is dedicated to the simulation of the numerical method proposed to solve the IBVP
of parabolic equations (3.1)-(3.3), in the context of strong magnetic field concentrations like the
conditions present for example in the umbra- the most central zone of the sunspots.

The governing equations to simulate magnetic fields under the conditions existing in the umbra,
(1.3) and (1.4), can be described by the system (1.5) taking in account some assumptions. To simplify,
the velocity field is assumed to be known and, consequently, only the magnetic field components
needed to be computed. It is clear that this assumption is not realistic but simplifies the problem
because the numerical computation of the numerical solution involving the Navier-Stokes equation
(1.4) is a challenge requiring a significant time investment. In what concerns the magnetic field
components, the vertical one, Bz, which, as mentioned in the introduction, is the most significant, and
also the y direction component, By, are considered. Another choice is, of course, possible.

The plasma velocity, used as input in the numerical experiments, was taken from the numerical
simulation of a network region [14] obtained with the Bifrost code (a general and flexible 3D Radiation
MHD code developed in Oslo, described in detail in [34]) (http://sdc.uio.no/search/simulations). The
choice fell on the simulation of a network region and not a sunspot since there is a lack of availability
of open-to-use sunspot simulations, and also because of computational cost and even data handling.

http://sdc.uio.no/search/simulations
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To define the magnetic components on the boundary ∂Ω the results from such simulation are also
used.

While the original Bifrost simulation considered a fully three-dimensional problem, accounting for
the velocity, u, and magnetic field, B, this simulation assumes that the velocity is known at certain time
steps (every 10 seconds), and model only the y and z components of the magnetic field. To describe
the time and space evolution of the magnetic field B = (By,Bz) = (B1,B2) that depends on the velocity
field u = (uy,uz) = (u1,u2) the following system of partial differential equations is considered

∂B
∂ t

+(u ·∇)B− (B ·∇)u = η∆B, in Ω× (0,T ], (3.20)

with
B(x,y, t) = B∂Ω(x,y, t), (x,y) ∈ ∂Ω, t ∈ (0,T ], (3.21)

and
B(x,y,0) = B0(x,y), (x,y) ∈ Ω. (3.22)

where B∂Ω and B0 are known functions.

The semi-discrete approximation BH for B is then defined by the differential problem

B′
1,H(x,y, t) +u1,H(x,y, t)∇hB1,H(x,y, t)+u2,H(x,y, t)∇kB1,H(x,y, t)

−B1,H(x,y, t)∇hu1,H(x,y, t)−B2,H(x,y, t)∇ku1,H(x,y, t)
= η∆HB1,H(x,y, t)

B′
2,H(x,y, t) +u1,H(x,y, t)∇hB2,H(x,y, t)+u2,H(x,y, t)∇kB2,H(x,y, t)

−B1,H(x,y, t)∇hu2,H(x,y, t)−B2,H(x,y, t)∇ku2,H(x,y, t)
= η∆HB2,H(x,y, t)

(x,y) ∈ ΩH , t ∈ (0,T ],

(3.23)

where ∆H = D2,x +D2,y, being D2,x and D2,y the standard second-order centered finite difference
operator in x and y directions, respectively.

The system (3.23) is completed with

BH(x,y, t) = B∂Ω(x,y, t), (x,y) ∈ ∂ΩH , t ∈ (0,T ], (3.24)

and
BH(x,y,0) = B0(x,y), (x,y) ∈ ΩH . (3.25)

The time integration of the differential problem (3.23), (3.24), (3.25) is a challenging problem in
what concerns the stability in time due to the presence of the convective terms and reaction terms. In
what follows is considered that the convective terms are explicitly discretized, while the diffusion and
reaction terms are implicitly discretized.

To define a fully discrete scheme in space and time, it is introduced in [0,T ] the grid {tn,n =

0, . . . ,M } where t0 = 0, tM = T and tn+1 − tn = ∆t. The differential problem (3.23), (3.24), (3.25) is
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then replaced by the following implicit-explicit fully discrete method

Bn+1
1,H (x,y)−Bn

1,H(x,y)

∆t
+u1,H(x,y, tn+1)∇hBn

1,H(x,y)+u2,H(x,y, tn+1)∇kBn
1,H(x,y)

−Bn+1
1,H (x,y)∇hu1,H(x,y, tn+1)−Bn+1

2,H (x,y)∇ku1,H(x,y, tn+1)

= η∆HBn+1
1,H (x,y)

Bn+1
2,H (x,y)−Bn

2,H(x,y)

∆t
+u1,H(x,y, tn+1)∇hBn

2,H(x,y)+u2,H(x,y, tn+1)∇kBn
2,H(x,y)

−Bn+1
1,H (x,y)∇hu2,H(x,y, tn+1)−Bn+1

2,H (x,y)∇hu2,H(x,y, tn+1)

= η∆HBn+1
2,H (x,y)

(x,y) ∈ ΩH , n = 0, . . . ,M −1,

(3.26)

with
B j

H(x,y) = B∂Ω(x,y, t j), (x,y) ∈ ∂ΩH , j = 1, . . . ,M , (3.27)

and
B0

H(x,y) = B0(x,y), (x,y) ∈ ΩH . (3.28)

Let Ω = (3360)×(3800) (km2), T = 1560 (s), η = 0.2 (km2/s) ([30]). The units of the magnetic
field and of the velocity are µT (microtesla) and km/s, respectively. The domain Ω is discretized with
a uniform grid of rectangles with spacings ∆x = 48, and ∆y = 19. It was opted to use the same grid
as the original Bifrost simulation to avoid spatial interpolation procedures. Regarding the temporal
discretization, we take ∆t = 0.1. Since B and u are known for ti = 10i, i = 0, ...,156, it is considered
linear interpolants of these quantities across time to allow a simulation with the chosen value of ∆t.

Figure 3.1 illustrates the behaviour of the magnetic field for t = 100 computed with (3.26), (3.27),
(3.28). Figure 3.2 includes the plot of the magnetic field obtained with the Bifrost code. Note that ∥ ·∥
denotes the euclidean norm.

Fig. 3.1 ∥B100
H ∥ obtained with (3.26), (3.27), (3.28).
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Fig. 3.2 ∥B(100)∥ obtained with the Bifrost code.

Taking into account the results plotted in Figure 3.2 as reference solution, it is concluded that the
convective dominance effect destroys the numerical solution plotted in Figure 3.1. To justify the last
sentence the local Péclet number associated with the method given by

Pe =
max{∆x,∆y}∥u∥L∞(Ω)

2η
, (3.29)

is computed. As the magnitude of the velocity field is of order 20, then a quick calculation shows that
Pe is of order 103 that confirms our remark.

To circumvent this issue, a strategy of numerical diffusion by adding to the right hand side of
(3.20) the term max{∆x,∆y}∥u∥L∞(Ω)∆B was adopted. This is a classical technique for stabilizing
this type of problems. Although it allows stabilizing the convection-dominated regime, the technique
overly diffuses the numerical solution, up to the point that it does not explode or oscillate, but bears
little resemblance with the reference solution of the Bifrost simulation as time increase, which can be
seen in Figures 3.3, 3.4 and 3.5.

From the numerical results presented in Figures 3.3, 3.4 and 3.5, it is clear that the study of
methods well adapted to convection-dominated problems for solar magnetic field, even in the umbra
scenario, will be considered in the near future (see for instance [13, 40, 56, 64] and the reference [78]
in solar applications).

3.3 Conclusions

This chapter aims to extend some of the results presented in Chapter 2 to a system of parabolic
equations defined in a two-dimensional domain. It also intends to apply the proposed methods to
illustrate the behaviour of the solar magnetic field in the umbra.

In what concerns the first objective, in Theorem 3.1 is proved that the natural extension to the
two-dimensional case of the semi-discrete approximation, studied before for system of parabolic
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(a) ∥B11
H ∥ obtained with (3.26), (3.27), (3.28). (b) ∥B(11)∥ obtained with the Bifrost code.

Fig. 3.3 Magnetic field magnitude at t = 11.

(a) ∥B111
H ∥ obtained with (3.26), (3.27), (3.28). (b) ∥B(111)∥ obtained with the Bifrost code.

Fig. 3.4 Magnetic field magnitude at t = 111.
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(a) ∥B315
H ∥ obtained with (3.26), (3.27), (3.28). (b) ∥B(315)∥ obtained with the Bifrost code.

Fig. 3.5 Magnetic field magnitude at t = 315.

equations defined in an interval, also leads to a second-order approximation. This result is established
assuming that the solution of the differential problem is smooth in the sense that, for each time, it
belongs to [C4(Ω)]4. Of course, that is expected to prove the same result when the solution is in
[H3(Ω)∩H1

0 (Ω)]4 using the Bramble-Hilbert approach.
The second objective was partially fulfilled in the sense that from the results presented in Figures

3.3, 3.4, and 3.5, it is observed that the numerical method with a very simple stabilization term is not
able to illustrate the magnetic field for large times. In fact, as time increases, the numerical solution
deteriorates. This fact can be avoided by investing in stabilization techniques to be coupled with the
proposed method.

In the context of the application to the solar magnetic field, it is realized that additional investment
is needed in the extension of the results presented here to problems with boundary conditions of
Neumann or Robin type. The next chapter starts by giving one first answer to this question considering
a parabolic equation with Neumann boundary conditions.



Chapter 4

Convergence Analysis for IBVP with
Neumann boundary conditions

4.1 Introduction

In the last chapters are studied discretizations of nonlinear elliptic and nonlinear parabolic systems
considering Dirichlet boundary conditions, and it was proved that the corresponding numerical
solutions are second-order convergent with respect to a discrete H1-norm. The study of numerical
methods for Neumann BVPs or Neumann IBVPs is not being developed even for problems with
smooth solutions. Without being exhaustive is mentioned [28] where, for a second-order linear
differential equation, involving the Laplace operator, defined in a square of R2, a FDM based on
nonuniform grids was proposed, and its convergence analyzed following the approach taken in the last
chapter for smooth solutions.

In what follows is considered the one-dimensional IBVP

∂u
∂ t

=
∂

∂x

(
A(u)

∂u
∂x

)
−qu+g in Ω× (0,T ], (4.1)

where Ω = (0,1), q(x)≥ q0 > 0, x ∈ Ω, complemented with the homogeneous Neumann boundary
condition

A(u(x, t))
∂u
∂x

(x, t) = 0, (x, t) ∈ ∂Ω× (0,T ], (4.2)

and with the initial condition
u(x,0) = u0(x), x ∈ Ω. (4.3)

The simplified model (4.1)-(4.3) studied in what follows gives some insights in the generalization
of the results presented in the two previous chapters to different boundary conditions. The analysis
presented is well adapted for problems with smooth solutions. An extension of the Bramble-Hilbert
analysis used before will be an object of analysis in the near future.

This chapter starts by considering in Section 4.2 the elliptic problem

−
(
A(u)u′)′+qu = g in Ω, (4.4)

57
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with the boundary condition
A(u)u′ = 0 on ∂Ω, (4.5)

and for this BVP, a FDM, which can be seen as fully discrete piecewise linear FEM, is proposed,
and it leads to a second-order approximation with respect to a discrete H1-norm. The main difficulty
associated with this problem is the definition of the discretizations of (4.4) and (4.5) that are compatible
in the sense that a discrete version of

(A(u)u′,v′)+(qu,v) = (g,v), ∀v ∈ H1(Ω)

holds. Then, in Section 4.3 is considered the IBVP (4.1), (4.2) and (4.3). For this problem is presented
the stability and convergence analysis of a finite difference semi-discretization method, which can be
seen as a semi-discrete method based on the piecewise linear finite element approximation. Moreover,
a fully discrete scheme in space and time of the implicit-explicit type is studied, and its convergence
is concluded. Conclusions are presented in Section 4.4.

4.2 An elliptic nonlinear BVP

4.2.1 Some notations and results

Let Λ be a sequence of vectors h = (h1, . . . ,hN) with positive entries such that
N

∑
i=1

hi = 1. It is also

introduced the following grids

Ωh = {xi : i = 0, . . . ,N, x0 = 0, xN = 1, xi = xi−1 +hi, i = 1, . . . ,N},

Ω
∗
h = {xi : i =−1, . . . ,N +1, x−1 =−h1, xN+1 = 1+hN , xi ∈ Ωh, i = 0, . . . ,N},

and ∂Ωh = ∂Ω∩Ωh.

By Wh is represented the space of grid functions defined in Ωh and the space of grid functions
defined in Ω

∗
h is denoted by W ∗

h . In Wh is considered the following inner product

(vh,wh)h =
1
2

h1vh(x0)wh(x0)+
N−1

∑
i=1

hi+1/2vh(xi)wh(xi)+
1
2

hNvh(xN)wh(xN),vh,wh ∈Wh,

and the correspondent norm is denoted by ∥ · ∥h. As before, the following notation is used

∥D−xvh∥+ =

(
N

∑
i=1

hivh(xi)
2

)1/2

, vh ∈Wh.

By ∥ · ∥1,h is denoted the norm in Wh

∥vh∥1,h =
(
∥vh∥2

h +∥D−xvh∥2
+

)1/2
, vh ∈Wh,

that can be seen as a discrete version of the usual H1-norm.
The following result is an important tool in the convergence analysis.
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Proposition 4.1. For vh ∈Wh we have

vh(x)2 ≤ 2∥vh∥2
1,h, x ∈ ∂Ωh. (4.6)

Proof. Given

vh(x0) =−
i

∑
j=1

h jD−xvh(x j)+ vh(xi),

then
vh(x0)

2 ≤ 2
(
∥D−xvh∥2

++ vh(xi)
2) .

Consequently,
N−1

∑
i=1

hi+1/2vh(x0)
2 ≤ 2

(
∥D−xvh∥2

++
N−1

∑
i=1

hi+1/2vh(xi)
2

)
,

that leads to (4.6) for x = x0. The proof of (4.6) for x = xN follows the same steps.

It is introduced now the operator that will be used to discretize the boundary conditions. By Dη it
is denoted the following operator

Dηvh(x0) =−1
2

(
A(Mhvh(x1))D−xvh(x1)+A(Mhvh(x0))D−xvh(x0)

)
,

Dηvh(xN) =
1
2

(
A(Mhvh(xN+1))D−xvh(xN+1)+A(Mhvh(xN))D−xvh(xN)

)
,

(4.7)

defined for vh ∈W ∗
h .

The following proposition relates −D∗
x(A(Mhuh)D−xuh) with the boundary operator Dη . Its proof

can be done by direct verification using summation by parts.

Proposition 4.2. For uh ∈W ∗
h and vh ∈Wh we have

(−D∗
x(A(Mhuh)D−xuh),vh)h = (A(Mhuh)D−xuh,D−xvh)+−Dηuh(x0)vh(x0)−Dηuh(xN)vh(xN).

(4.8)

The weak solution u ∈ H1(Ω) for the BVP (4.4) and (4.5) satisfies

(A(u)u′,v′)+(qu,v) = (g,v), ∀v ∈ H1(Ω). (4.9)

The piecewise linear approximation Phuh where, as before, Ph denotes de piecewise linear interpo-
lation operator and uh ∈Wh, is then obtained, solving the following variational problem

(A(Phuh)Phu′h,Phv′h)+(qPhuh,Phvh) = (g,Phvh), ∀vh ∈Wh. (4.10)

To compute uh ∈Wh, it is considered the discrete problem

(A(Mhuh)D−xuh,D−xvh)++(Rhquh,vh)h = (Rhg,vh)h, ∀vh ∈Wh. (4.11)



60 Convergence Analysis for IBVP with Neumann boundary conditions

Assuming that uh ∈W ∗
h , by Proposition 4.2, the last problem can be rewritten as

(−D∗
x
(
A(Mhuh)D−xuh

)
,vh)h +(Rhquh,vh)h = (Rhg,vh)h

−Dηuh(x0)vh(x0)−Dηuh(xN)vh(xN),
(4.12)

for all vh ∈Wh. If it is assumed that

−D∗
x
(
A(Mhuh)D−xuh

)
+Rhquh = Rhg in Ωh (4.13)

then
Dηuh(x0) = Dηuh(xN) = 0. (4.14)

Moreover, if uh ∈W ∗
h is solution of (4.13), (4.14), then uh satisfies (4.11).

4.2.2 Convergence analysis for smooth solutions

The convergence analysis is presented in what follows assuming that the solution of the BVP (4.4)
and (4.5) belongs to C4(Ω

∗
) where Ω

∗
=
⋃
h∈Λ

[−x1,xN+1].

Let Th be the truncation error induced by the discretization (4.13) in Ωh. Observe that

|Th(x0)| ≤Ch2
1∥u∥C4(Ω

∗
), |Th(xN)| ≤Ch2

N∥u∥C4(Ω
∗
),

and for i = 1, . . . ,N−1, Th(xi) = T (1)
h (xi)+T (2)

h (xi), where T (ℓ)
h , ℓ= 1,2 are induced by the discretiza-

tion −D∗
x
(
A(MhRhu)D−xRhu

)
. Hence it follows that

T (1)
h (xi) = (hi+1 −hi)R(xi),

where, as before, R(xi) =−1
3 A(u(xi))u(3)(xi)−u′(xi)

(
u(2)(xi)A′(u(xi))+

1
4 A(2)(u(xi))u′(xi)

2
)
, and

|T (2)
h (xi)| ≤Ch2

max∥u∥C4(Ω).

If Th,∂Ω denotes the truncation error induced by the discretization of the boundary conditions defined
by the boundary operator Dη , then

|Th,∂Ω(x0)| ≤Ch2
1∥u∥C3(Ω

∗
)

and
|Th,∂Ω(xN)| ≤Ch2

N∥u∥C3(Ω
∗
).

Remark that
Dηu(x0) =−A(u(x0))u′(x0)+Th,∂Ω(x0),

and as we are dealing with homogeneous Neumann conditions we get

Dηu(x0) = Th,∂Ω(x0). (4.15)
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Analogously, we also have
Dηu(xN) = Th,∂Ω(xN). (4.16)

Theorem 4.1. Let u ∈C4(Ω
∗
) be the solution of the BVP (4.4) and (4.5) with A ≥ A0 > 0 in R, and

q ≥ q0 > 0 in Ω. Let uh ∈W ∗
h be the solution of the BVP (4.13), (4.14) and let Eu = uh − R̃hu ∈W ∗

h

be the error, where R̃h : C(Ω
∗
)→W ∗

h denotes the restriction operator. Then there exists a positive
constant Cu, h independent, such that

∥Eu∥1,h ≤Cuh2
max∥u∥C4(Ω

∗
), (4.17)

for h ∈ Λ, provided that there exists a ε ̸= 0 such that

A0 −6ε
2 > 0 (4.18)

and
q0 −6ε

2 − 1
4ε2 ∥u′∥2

∞∥A∥2
C1

B(R)
> 0. (4.19)

Proof. For the numerical solution uh ∈W ∗
h we have

(A(Mhuh)D−xuh,D−xEu)++(Rhquh,Eu)h = (Rhg,Eu)h

+ ∑
i=0,N

Dηuh(xi)Eu(xi). (4.20)

For u ∈C4(Ω
∗
) that satisfies (4.4) and (4.5) we also have

(A(MhR̃hu)D−xR̃hu,D−xEu)++(RhqRhu,Eu)h = (Rhg,Eu)h +(Th,Eu)h

+Dηu(x0)Eu(x0)+Dηu(xN)Eu(xN),

and then, taking into account (4.15) and (4.16), we deduce

(A(MhR̃hu)D−xR̃hu,D−xEu)++(RhqRhu,Eu)h = (Rhg,Eu)h +(Th,Eu)h

+ ∑
i=0,N

Th,∂Ω(xi)Eu(xi). (4.21)

From (4.20) and (4.21), it is concluded the following equation for Eu

(A(Mhuh)D−xuh,D−xEu)+ −(A(MhR̃hu)D−xR̃hu,D−xEu)++(RhqEu,Eu)h

=−(Th,Eu)h − ∑
i=0,N

Th,∂Ω(xi)Eu(xi). (4.22)

As in Chapter 2, it can be shown that holds the following

(A(MhuhD−xEu,D−xEu)++(RhqEu,Eu)h = ((A(MhR̃hu)−A(Mhuh))D−xR̃hu,D−xEu)+

−(Th,Eu)h − ∑
i=0,N

Th,∂Ω(xi)Eu(xi)

≤ ∥D−xR̃hu∥h,∞∥A∥C1
B(R)

∥Eu∥h∥D−xEu∥+
−(T (1)

h ,Eu)h − (T (2)
h ,Eu)h

− ∑
i=0,N

Th,∂Ω(xi)Eu(xi).

(4.23)
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Remark that we are considering Neumann boundary conditions at x = x0,xN , and then Eu(xi), i = 0,N,

are not necessarily zero. This fact do not allow the use of Proposition 2.4 to get an estimate for
(T (1)

h ,Eu)h. Another question is related with the estimation of ∑
i=0,N

Th,∂Ω(xi)Eu(xi) where Th,∂Ω(xi),

i = 0,N are second-order terms.

Following the proof of Proposition 2.4 of Chapter 2, it can be shown that

−(T (1)
h ,Eu)h ≤ h2

max

(
1
2∥R∥h,∞∥D−xEu∥++

√
2

2 ∥R∥H1∥Eu∥h

)
+ ∑

i=0,N

hi

2

(
|T (1)

h (xi)|+hi|R(xi)|
)
|Eu(xi)|

≤ h4
max

1
16ε2

(
∥R∥2

h,∞ +2∥R∥2
H1

)
+ε

2∥D−xEu∥2
++ ε

2∥Eu∥2
h

+ ∑
i=0,N

1
8ε2

(
h2

i T (1)
h (xi)

2 +h4
i R(xi)

2
)
+ ∑

i=0,N
ε

2Eu(xi)
2,

(4.24)

where, to simplify the presentation, is considered in this chapter h0 = h1. Considering now Proposition
4.1, it is obtained the following estimate

−(T (1)
h ,Eu)h ≤ h4

max
1

16ε2

(
∥R∥2

h,∞ +2∥R∥2
H1

)
+ε

2∥D−xEu∥2
++ ε

2∥Eu∥2
h

+ ∑
i=0,N

1
8ε2

(
h2

i T (1)
h (xi)

2 +h4
i R(xi)

2
)
+2ε

2∥Eu∥2
1,h.

(4.25)

Using again Proposition 4.1 in ∑
i=0,N

Th,∂Ω(xi)Eu(xi) we get

∑
i=0,N

−Th,∂Ω(xi)Eu(xi)≤ ∑
i=0,N

1
4ε2 Th,∂Ω(xi)

2 +2ε
2∥Eu∥2

1,h. (4.26)

Furthermore, the following estimates are obtained

(A(Mhuh)D−xEu,D−xEu)+ ≥ A0∥D−xEu∥2
+,

(RhqEu,Eu)h ≥ q0∥Eu∥2
h,

∥D−xR̃hu∥h,∞∥A∥C1
B(R)

∥Eu∥h∥D−xEu∥+
≤ 1

4ε2 ∥u′∥2
∞∥A∥2

C1
B(R)

∥Eu∥2
h + ε

2∥D−xEu∥2
+,

and
−(T (2)

h ,Eu)h ≤
1

4ε2 ∥T (2)
h ∥2

h + ε
2∥Eu∥2

h.
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Inserting the last estimates, and the estimates (4.25) and (4.26) in (4.23), it is concluded that(
A0 −6ε2

)
∥D−xEu∥2

+ +
(

q0 −6ε2 − 1
4ε2 ∥u′∥∞∥A∥C1

B(R)

)
∥Eu∥2

h

≤ h4
max

16ε2

(
∥R∥2

h,∞ +2∥R∥2
H1

)
+ ∑

i=0,N

1
8ε2

(
h2

i T (1)
h (xi)

2 +h4
i R(xi)

2)
+ ∑

i=0,N

1
4ε2 Th,∂Ω(xi)

2 +
1

4ε2 ∥T (2)
h ∥2

h.

(4.27)

Fixing ε ̸= 0 satisfying (4.18) and (4.19), and attending that T (1)
h (xi), Th,∂Ω(xi), i = 0,N, are second

order terms, conclude (4.17).

4.3 A parabolic IBVP

4.3.1 A semi-discrete approximation

This section aims to extend the results of the previous section to the IBVP (4.1), (4.2), (4.3). Let
uh(t)∈W ∗

h , t ∈ [0,T ], be the semi-discrete approximation for the previous IBVP defined by the spatial
discretization studied in the last section that is, let uh(t) ∈W ∗

h defined by the following initial value
problem (IVP)

u′h(t) = D∗
x(A(Mhuh(t))D−xuh(t))−Rhq(t)uh(t)+Rhg in Ωh × (0,T ],

Dηuh(t) = 0 on ∂Ωh × (0,T ],
uh(0) = Rhu0 in Ωh.

(4.28)

To study the stability of the IVP (4.28) it is necessary to consider a solution ũh(t) ∈W ∗
h of (4.28) with

initial condition ũh(0) ∈Wh. In the next result is established an estimate for uh(t)− ũh(t). Recall that
Cm([0,T ],V ), m ∈N0, where V is a normed vector space, denotes the space of functions v : [0,T ]→V
such that v( j) : [0,T ]→V , j = 0, . . . ,m, are continuous functions.

Proposition 4.3. Let uh, ũh ∈C([0,T ],W ∗
h )∩C1([0,T ],Wh) be solutions of (4.28) with initial condi-

tions uh(0), ũh(0) ∈Wh, respectively. Let ωh(t) = uh(t)− ũh(t). Then

∥ωh(t)∥2
h +2(A0 − ε

2)
∫ t

0
e

2q0(s−t)+

∫ t

s

1
2ε2 ∥A∥2

C1
B(R)

∥D−xuh(µ)∥2
h,∞dµ

∥D−xωh(s)∥2
+ds

≤ e
−2q0t+

∫ t

0

1
2ε2 ∥A∥2

C1
B(R)

∥D−xuh(µ)∥2
h,∞dµ

∥ωh(0)∥h in [0,T ],

(4.29)

where ε ̸= 0 is an arbitrary constant.

Proof. We start by remarking that ωh(t) is solution of the following differential problem
ω ′

h(t) = D∗
x(A(Mhuh(t))D−xuh(t))−D∗

x(A(Mhũh(t))D−xũh(t))−Rhq(t)ωh(t) in Ωh × (0,T ],
Dηuh(t) = Dη ũh(t) = 0 on ∂Ωh × (0,T ],
ωh(0) = Rhu0 − ũh(0) in Ωh.

(4.30)



64 Convergence Analysis for IBVP with Neumann boundary conditions

From (4.30), taking into account (4.8), it is obtained the following equality

(ω ′
h(t),ωh(t))h =−(A(Mhuh(t))D−xuh(t)−A(Mhũh(t))D−xũh(t),D−xωh(t))+

−(Rhq(t)ωh(t),ωh(t))h, t ∈ (0,T ].
(4.31)

Moreover
−(A(Mhuh(t))D−xuh(t) −A(Mhũh(t))D−xũh(t),D−xωh(t))+

≤ (−A0 + ε2)∥D−xωh(t)∥2
+

+
1

4ε2 ∥D−xuh(t)∥2
h,∞∥A∥2

C1
B(R)

∥ωh(t)∥2
h,

where ε ̸= 0 is an arbitrary constant, and consequently, from (4.31), it is obtained

1
2

d
dt
∥ωh(t)∥2

h +(A0 − ε2)∥D−xωh(t)∥2
+

≤
(
−q0 +

1
4ε2 ∥D−xuh(t)∥2

h,∞∥A∥2
C1

B(R)

)
∥ωh(t)∥2

h in (0,T ],

that leads to (4.29).

Inequality (4.29) guarantees that the IVP (4.28) has at most one solution in C([0,T ],W ∗
h )∩

C1([0,T ],Wh). In fact, if uh, ũh are solutions in C([0,T ],W ∗
h )∩C1([0,T ],Wh), then, from (4.29), it is

concluded that uh(t) = ũh(t) in Ωh.

As for the Dirichlet boundary problem studied before, to obtain stability from (4.29), it is

necessary to impose the uniform boundness of
∫ t

0
∥D−xuh(µ)∥h,∞dµ, t ∈ [0,T ],h ∈ Λ. It is clear that

such boundness cannot be concluded from (4.28). In fact from this last IVP it can be shown that

∥uh(t)∥2
h +2A0

∫ t

0
e2q0(s−t)∥D−xuh(s)∥2

+ds

≤ e−2q0t
(
∥Rhu0∥2

h +
1
q0

∫ t

0
e2q0s∥Rhg∥2

hds
)
, t ∈ [0,T ],

(4.32)

and consequently
∫ t

0
∥D−xuh(s)∥2

+ds ≤Cb, t ∈ [0,T ],h ∈ Λ. This last upper bound allows concluding

that there exists a positive constant Cb, h and t independent, such that∫ t

0
∥D−xuh(µ)∥2

h,∞dµ ≤ 1
hmin

Cb, t ∈ [0,T ],h ∈ Λ.

The boundness of
∫ t

0
∥D−xuh(µ)∥2

h,∞dµ, t ∈ [0,T ],h ∈ Λ, will be established in what follows through

the error analysis.
Let Eu = uh(t)− R̃hu(t) ∈W ∗

h be the spatial discretization error where u is solution of the IBVP
(4.1), (4.2), (4.3) and uh(t) ∈W ∗

h is the semi-discrete approximation defined by (4.28). This error is
solution of the IVP

E ′
u(t) = D∗

x(A(Mhuh(t))D−xuh(t))−D∗
x(A(MhR̃hu(t))D−xR̃hu(t))

−Rhq(t)Eu(t)−Th(t) in Ωh × (0,T ],
Dηuh(t)−Dη R̃hu(t) = Th,∂Ω(t) on ∂Ω× (0,T ],
Eu(0) = 0 in Ωh,

(4.33)
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where the expressions of Th(t) and Th,∂Ω(t) are obtained from the corresponding expressions Th and
Th,δΩ presented in the last section, replacing u and their derivatives with respect to x by u(t) and their
partial derivatives with respect to the spatial variable, respectively.

Theorem 4.2. Let Eu = uh(t)− R̃hu(t) ∈W ∗
h be the spatial discretization error where u is solution of

the IBVP (4.1), (4.2), (4.3) and uh(t) ∈W ∗
h is the semi-discrete approximation defined by (4.28). If

u ∈C([0,T ],C4(Ω
∗
))∩C1([0,T ],C(Ω)) then there exists a positive constant Cu, h and t independent,

such that
∥Eu(t)∥2

h +2(A0 −6ε
2)
∫ t

0
e
∫ t

s 2θ(u(µ))dµ∥D−xEu(s)∥2
+ds

≤Cuh4
max

∫ t

0
e
∫ t

s 2θ(u(µ))dµ∥u(s)∥2
C4(Ω

∗
)
ds, t ∈ (0,T ],

(4.34)

with ε ̸= 0 and

θ(u(t)) = q0 −6ε
2 − 1

4ε2 ∥u(t)∥2
C1(Ω)

∥A∥2
C1

B(R)
. (4.35)

Proof. From (4.33) it is easily obtained the following relation

1
2

d
dt
∥Eu(t)∥2

h ≤−(A(Mhuh(t))D−xuh(t),D−xEu(t))+

+(A(MhR̃hu(t))D−xR̃hu(t),D−xEu(t))+−q0∥Eu(t)∥2
h

−(Th(t),Eu)h − ∑
i=0,N

Th,∂Ω(xi, t)Eu(xi, t) in (0,T ]

Following the proof of Theorem 4.1, it can be shown that there exists a positive constant Cu, h and t
independent, such that

1
2

d
dt
∥Eu(t)∥2

h +(A0 −6ε
2)∥D−xEu(t)∥2

+

≤Cuh4
max∥u(t)∥2

C4(Ω
∗
)
−θ(u(t))∥Eu(t)∥2

h in (0,T ],
(4.36)

where θ is defined by (4.35). Inequality (4.36) leads to (4.34).

Corollary 4.1. Under the assumptions of Theorem 4.2, fixing ε ̸= 0 such as

A0 −6ε
2 > 0, (4.37)

then there exists a positive constant Cu, h and t independent, such that holds the following

∥Eu(t)∥2
h +

∫ t

0
∥D−xEu(s)∥2

+ds ≤Cuh4
max,

for h ∈ Λ and hmax small enough.

Corollary 4.2. Under the assumptions of Theorem 4.2, the solution uh(t) ∈W ∗
h of (4.28) is a stable

solution in [0,T ].

Proof. The stability of the IBVP (4.28) in (uh(t))h∈Λ can be concluded from (4.29) if there exists
positive constant Cs, h and t independent, such that∫ t

0
∥D−xuh(s)∥2

h,∞ds ≤Cs t ∈ [0,T ],
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for h ∈ Λ with hmax small enough. Theorem 4.2 is used to guarantee the existence of such constant.
Given ∫ t

0
∥D−xuh(s)∥2

h,∞ds ≤ 2
∫ t

0
∥D−xEu(s)∥2

h,∞ds+2
∫ t

0

∥∥∥∥∂u
∂ t

(s)
∥∥∥∥2

∞

ds

≤ 2
hmin

∫ t

0
∥D−xEu(s)∥2

+ds+2
∫ t

0

∥∥∥∥∂u
∂ t

(s)
∥∥∥∥2

∞

ds

from Corollary 4.1 is consequently obtained that

∫ t

0
∥D−xuh(s)∥2

h,∞ds ≤ 2Cu
h4

max

hmin
+2

∫ t

0

∥∥∥∥∂u
∂ t

(s)
∥∥∥∥2

∞

ds.

4.3.2 A fully discrete scheme

This section is focused in the study of a fully implicit-explicit scheme to compute an approximation
for the solution of the IBVP (4.1), (4.2), (4.3). Let {tn,n = 0, . . . ,M } a uniform grid in [0,T ], with
t0 = 0, tM = T and tn+1 − tn = ∆t. Let un

h ∈W ∗
h be defined by


un+1

h −un
h

∆t = D∗
x(A(Mhun

h)D−xun+1
h )−Rhq(tn+1)un+1

h +Rhg(tn+1) in Ωh,n = 0, . . . ,M −1,
Dηu j

h = 0 on ∂Ωh, j = 1, . . . ,M ,

u0
h = Rhu0 in Ωh,

(4.38)
where

Dηu j
h(x0) =−1

2

(
A(Mhu j−1

h (x1))D−xu j
h(x1)+A(Mhu j−1

h (x0))D−xu j
h(x0)

)
,

Dηu j
h(xN) =

1
2

(
A(Mhu j−1

h (xN+1))D−xu j
h(xN+1)+A(Mhu j−1

h (xN))D−xu j
h(xN)

)
.

In what follows, Cn,m(Ω
∗× [0,T ]) represents the space of functions defined in Ω

∗× [0,T ], with
continuous partial derivatives with respect to x and t until order n and m, respectively.

Then is established an upper bound for the global error En
u = un

h − R̃hu(tn) ∈W ∗
h that is solution of

the following finite difference problem

En+1
u −En

u

∆t
= D∗

x(A(Mhun
h))D−xun+1

h −Rhq(tn+1)En+1
u

−D∗
x(A(MhR̃hu(tn))D−xR̃hu(tn+1))− T̃h(tn+1) in Ωh,

n = 0, . . . ,M −1,
Dηu j

h −Dη R̃hu(t j) = T j−1, j
h,∂Ωh

on ∂Ωh, j = 1, . . . ,M ,

E0
u = 0 in Ωh,

(4.39)

where T j−1, j
h,∂Ωh

(xi) denotes the truncation error induced by the discretization of the boundary conditions
that admits the representation

T j−1, j
h,∂Ωh

(xi) = Th,∂Ωh(xi, t j)+T j−1, j
∂Ωh,∆t(xi),
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where T j−1, j
∂Ωh,∆t is the truncation error induced by the replacement of u(t j) by u(t j−1) in the coefficient

function A. This error satisfies

|T j−1, j
∂Ωh,∆t(xi)| ≤ ∆t∥A∥C1

B(R)
∥u∥2

C1(Ω
∗×[0,T ]), i = 0,N.

In (4.39), T̃h(tn+1) is given by
T̃h(tn+1) = Th(tn+1)+T n,n+1

h,∆t ,

being Th(tn+1) the spatial truncation error at tn+1 introduced before, and T n,n+1
h,∆t denotes the error

induced by the discretization of the temporal derivative, and by the replacement of A(MhR̃hu(tn+1))

by A(MhR̃hu(tn)). This error satisfies

|T n,n+1
h,∆t (xi)| ≤

1
2

∆t∥A∥C1
B(R)

∥u∥C1(Ω×[0,T ])

(
2∥u∥C2(Ω×[0,T ])+∥u∥2

C1(Ω×[0,T ])

)
+

1
2

∆t∥u∥C0,2(Ω×[0,T ]).
(4.40)

Theorem 4.3. Let u ∈ C4,0(Ω
∗× [0,T ])∩C2(Ω× [0,T ])∩C1(Ω

∗× [0,T ]) be solution of the IBVP
(4.1), (4.2), (4.3) and let un

h ∈W ∗
h ,n = 0, . . . ,M , be defined by (4.38) and let En

u = un
h − R̃hu(tn) ∈W ∗

h

be the global error. It is assumed that A ∈C3
B(R),A ≥ A0 > 0 in R, and q ≥ q0 > 0 in Ω. Then there

exists a positive constant Cu, h and n independent, such that

∥En
u∥2

h +σ∆t
n

∑
j=1

eθ(n− j)∆t∥D−xE j
u∥2

+ ≤ 1
θ

Γ

(
eθn∆t −1

)
, n = 1, . . . ,M , (4.41)

where
Γ ≤ Cu

(
h4

max∥u∥2
C4,0(Ω

∗×[0,T ])
+∆t2

(
∥u∥4

C1(Ω
∗×[0,T ])

+∥u∥2
C2(Ω×[0,T ])

+∥u∥2
C1(Ω×[0,T ])

(
∥u∥2

C2(Ω×[0,T ])
+∥u∥4

C1(Ω×[0,T ])

))) (4.42)

σ =
2(A0 −6ε2)

1−14ε2∆t
,

and

θ =

1
2ε2 ∥u∥2

C1(Ω×[0,T ])
∥A∥2

C1
B(R)

+14ε2

1−14ε2∆t

with ε ̸= 0 satisfying
1−14∆tε2 > 0 and A0 −6ε

2 > 0. (4.43)

Proof. From (4.39) it can be shown that holds the following

∥En+1
u ∥2

h ≤ (En
u ,E

n+1
u )h −∆tA0∥D−xEn+1

u ∥2
++

+∆t((A(MhR̃hu(tn))−A(Mhun
h))D−xR̃hu(tn+1),D−xEn+1

u )+

−∆tq0∥En+1
u ∥2

h −∆t(Th(tn+1)+T n,n+1
h,∆t ,En+1

u )h

+∆t ∑
i=0,N

(
Th,∂Ωh(xi, tn+1)+T n,n+1

∂Ωh,∆t(xi)
)

En+1
u (xi)

n = 0, . . . ,M −1,
E0

u = 0 in Ωh,

(4.44)
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Observe that

((A(MhR̃hu(tn))−A(Mhun
h))D−xR̃hu(tn+1),D−xEn+1

u )+ ≤ 1
2ε2 ∥u∥2

C1(Ω×[0,T ])
∥A∥2

C1
B(R)

∥En
u∥2

h

+ε
2∥D−xEn+1

u ∥2
+,

where ε ̸= 0 is an arbitrary constant, and

−(Th(tn+1),En+1
u )h ≤Cuh4

max∥u(tn+1)∥2
C4(Ω

∗
)
+ ε

2∥D−xEn+1
u ∥2

++2ε
2∥En+1

u ∥2
h

+ ∑
i=0,N

h2
i

2
|Th(xi, tn+1)||En+1

u (xi)|

≤Cuh4
max∥u(tn+1)∥2

C4(Ω
∗
)
+ ε

2∥D−xEn+1
u ∥2

++2ε
2∥En+1

u ∥2
h

+ ∑
i=0,N

h2
i

8ε2 Th(xi, tn+1)
2 +2ε

2∥En+1
u ∥2

1,h

≤Cuh4
max∥u(tn+1)∥2

C4(Ω
∗
)
+3ε

2∥D−xEn+1
u ∥2

++4ε
2∥En+1

u ∥2
h.

Moreover,

−(T n,n+1
h,∆t ,En+1

u )h ≤ 1
16ε2

[(
∥A∥C1

B(R)
∥u∥C1(Ω×[0,T ])

(
2∥u∥C2(Ω×[0,T ])+∥u∥2

C1(Ω×[0,T ])

))2

+∥u∥2
C0,2(Ω×[0,T ])

]
∆t2 + ε

2∥En+1
u ∥2

h,

and

∑
i=0,N

(
Th,∂Ωh(xi, tn+1)+T n,n+1

∂Ωh,∆t(xi)
)

En+1
u (xi) ≤ ∑

i=0,N

1
2ε2

(
Th,∂Ωh(xi, tn+1)

2 +T n,n+1
∂Ωh,∆t(xi)

2
)

+2ε
2∥En+1

u ∥2
1,h.

Taking in (4.44) the last estimates, it is obtained the following

(
1−14∆tε2)∥En+1

u ∥2
h +2∆t(A0 −6ε

2)∥D−xEn+1
u ∥2

+ ≤
(
1+∆t

1
2ε2 ∥u∥2

C1(Ω×[0,T ])∥A∥2
C1

B(R)
)
∥En

u∥2
h

+∆tΓ,
(4.45)

where Γ is defined by (4.42).

The sequence defined recursively by (4.45) can be seen, for ε satisfying (4.43), as a particular
case of the following one

an+1 ≤−αbn+1 +βan + γ̂, n = 0, . . . ,M −1, a0 = 0,

with an ≥ 0,bn ≥ 0, and α,β , γ̂ > 0. It can be shown that (an) satisfies

an +α

n

∑
j=1

β
n− jb j ≤ γ̂

n−1

∑
j=0

β
j, n = 1, . . . ,M . (4.46)
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Then, from (4.45), taking into account (4.46), we get

∥En
u∥2

h +
∆t2(A0 −6ε2)

1−14ε2∆t

n

∑
j=1

(
1+∆t 1

2ε2 ∥u∥2
C1(Ω×[0,T ])

∥A∥2
C1

B(R)

1−14ε2∆t

)n− j

∥D−xE j
u∥2

+

≤ ∆t
1−14ε2∆t

Γ

n−1

∑
j=0

(
1+∆t 1

2ε2 ∥u∥2
C1(Ω×0,T ])

∥A∥2
C1

B(R)

1−14ε2∆t

) j

,

for j = 1, . . . ,M , that leads to (4.41)

Theorem 4.3 establishes the following estimate for the error

∥En
u∥2

h +σ∆t
n

∑
j=1

eθ(n− j)∆t∥D−xE j
u∥2

+ ≤Cu

(
h4

max +∆t2
)
, n = 1, . . . ,M ,

giving that the approximation (4.38) is of second-order in space, and of first-order in time.

4.4 Conclusions

The study of stability and convergence properties of a numerical method for the IBVP (4.1), (4.2),
(4.3) was the main goal of this chapter. As a start point, it was considered the BVP (4.4) complemented
with homogeneous Neumann boundary conditions (4.5). For this problem, a FDM, which can be
seen as fully discrete piecewise linear FEM, was proposed, and in Theorem 4.1 was established its
second-order of convergence, with respect to a discrete H1-norm, assuming that the solution of the
differential problem u ∈C4(Ω

∗
). Note that the proof of these results followed the same techniques

used in Chapter 2 with the respective adaptations.
In what concerns the study of the IBVP (4.1), (4.2), (4.3), a semi-discrete approximation defined

by the FDM (4.28), which can be seen as a fully discrete piecewise linear FEM, was proposed, and its
convergence and stability analysis were studied for solutions in C([0,T ],C4(Ω

∗
))∩C1([0,T ],C(Ω)).

In Theorem 4.2, was proved the second-order of convergence of the method, and then, as a consequence
of the error analysis, the stability was concluded in Corollary 4.2. A fully discrete approximation for
this IBVP was also presented and its convergence was studied, having been proved its second-order of
convergence in space, and first-order of convergence in time. This result was stated in Theorem 4.3.





Chapter 5

Detection of sunspots in
spectroheliograms

5.1 Introduction

The purpose of this chapter is the automatic detection and geometric definition of sunspots, including
the limits of umbra and penumbra, in solar images. It is intended that with the experience in image
processing techniques suitable for this type of solar phenomena, one can contribute, in a future work,
to the study of magnetic field evolution in sunspots.

Concerning the image processing techniques to detect sunspots, the more oftenly used are thresh-
old techniques [19, 39], edge detection [55, 84], region growing [85], mathematical morphology
transforms [16, 21, 38, 83], neural networks [18], fuzzy sets [29, 30], and classification schemes
[57, 63]. Hybrid methods, that include different approaches, have also been developed and can be
found in [22, 50]. Another example of the integration of different methods could be found in [82],
which combines morphological operators and region growing techniques. In [85], a comparation be-
tween automatic approaches and manual analysis is done, which proves the efficiency of the automatic
techniques.

Once the Geophysical and Astronomical Observatory of the University of Coimbra has huge
collection of solar images that was never been processed, this historical database was chosen to apply
a sunspot detection and segmentation method developed within the scope of this work. However, the
detection and segmentation of sunspots are not the primary objective of the present thesis, and as such,
it has not invested in a new and innovative methodology. Since there is proven evidence of the success
of the application of mathematical morphology (MM) in various types of images, such as medical
images, remote sensing, as well as solar images, and also because of its versatility it was opted to
apply this theory/technique of image analysis.

The organization of this chapter is described in what follows. In Section 5.2 are presented the
basic concepts of the MM, which is the image processing technique chosen to be applied to detect
and segment sunspots. In Section 5.3 is described the Geophysical and Astronomical Observatory of
the University of Coimbra solar database once a subset of it was used in this work to construct and
validate a tool to detect and segment sunspots. The developed algorithm is presented step-by-step
in Section 5.4. Section 5.5 is reserved for the analysis and discussion of results, being presented

71
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the metrics used to evaluate the performance of the algorithm as also as examples resulting from
the application of the algorithm in some particular images. This chapter finishes with Section 5.6 of
conclusions.

5.2 Mathematical morphology: basic concepts

The origin of MM dates back to the 1960s, at the École des Mines de Paris, when George Matheron
and Jean Serra intended to study the geometry of porous medium [52]. Based on works of the
mathematicians H. Minkowski and H. Hadwiger, they took the first steps in the creation of a new
image analysis theory: the MM. Theoretical concepts and foundations have been developed over
the years, and scientific works on the subject have been published [53, 68]. However, only in 1982,
with the publication of the book "Image analysis and mathematical morphology" [69], MM starts to
broaden its audience. MM was initially used only in binary images but, over time, it has been evolved
and consolidated concepts. Several groups around the world have been contributing to its development,
making MM a recognized and powerful framework for image analysis and processing. Currently, it is
applied to all types of images, greyscale images, colour images, and even 3D images, defined in static
or dynamic spaces. What makes MM powerful is not only its applicability to various types of images
but also its versatility, giving the possibility to link basic operators and build more robust ones, and
the possibility of extracting measurements (like areas, sinuosity, among others). MM has successful
applications in several scientific fields [72] that require manipulation and analysis of images, such as
medicine [54, 66, 76], geology [3, 51, 61], and solar physics [4, 33, 38], among others.

The essence of MM consists in comparing features to be analyzed with some known and simple
shape, called the structuring element (SE). The SE must be chosen in a way that resembles the objects
sought in the image and also depends on the purpose of the study that is intended to be carried out. If
we are looking for, for example, solar filaments, the choice of the SE would fall on a line, since the
shape of this structure is more elongated. Since it is intended to detect sunspots, the natural choice
for SE is a disk. MM was initially developed to be applied only to binary images. In this sense, the
foundations of MM are based on set theory, and the morphological operations were developed from
order relations such as inclusion or intersection. The application of MM to greyscale images appeared
later, making it necessary to adapt the morphological operators. If in binary images the range of pixels
values is restricted to {0,1}, the same is not true for greyscale images which is extended to a larger
subset of N0. More concretely, a 2D greyscale image f is a function

f : D f ⊂ Z2 −→ {0,1, ..., tmax},

where D f the definition domain of f , and tmax is the maximum value of the data type which depends
on the image file format.

Since the set of images used in this work is composed of greyscale images, morphological
operators in the scope of functions are then presented, having as reference [2, 60, 73].

MM consists of a larger number of operators, however only the morphological transformations
used in the developed algorithm to detect sunspots are presented.
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In what follows the translation of an image f by a vector b, is denoted by fb, and is giving by

fb(x) = f (x−b).

5.2.1 Erosion and dilation

The erosion and dilation are the most basic operations of MM. They are seen as the two letters of the
morphological alphabet, once all the other operations can be expressed as a combinations of these two
[73].

To greyscale images, the erosion of an image f by a structuring element B of size λ , denoted by
εB( f ), is defined as the minimum of translations of f by the vectors −b of B:

εB( f ) = min
b∈B

f−b.

This operation is illustrated in Figure 5.1. As can be seen, the erosion causes an enlargement
of the darker areas of the image, highlighting them. In the case of Figure 5.1, as the size of the SE
increases, the umbra also increases. The dilation of an image (δB( f )) of an image f by a structuring

(a) Original image of a sunspot. (b) Erosion by a disk of size 1. (c) Erosion by a disk of size 6.

Fig. 5.1 Examples of the application of the erosion operator on a sunspot image.

element B of size λ , is the maximum of translations of f by the vectors −b of B:

δB( f ) = max
b∈B

f−b.

Unlike the erosion, the dilation leads to narrowing or even elimination of the darkest areas. In
Figure 5.2 can be seen that, with the increase of the SE, a disk, darker areas (the entire sunspot) tend
to disappear, and the lighter areas (the background) are highlighted.

The final results for both operators, erosion and dilation, are poor in details when compared with
the initial image.

5.2.2 Morphological gradient

The objective of the morphological gradient is to enhance and extract the contours of the homogeneous
regions of gray levels in an image.
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(a) Original image of a sunspot. (b) Dilation by a disk of size 1. (c) Dilation by a disk of size 6.

Fig. 5.2 Examples of the application of the dilation operator on a sunspot image.

Morphological gradient, also known as Beucher gradient, is defined as the arithmetic difference
between the dilation and the erosion by the SE B of size λ ,

ρB = δB − εB.

The objective of the morphological gradient is to enhance and extract the contours of the homogeneous
regions of grey levels in an image. The result of the aplication of the morphological gradient by a disk
of size 1, to the image in Figure 5.3a, can be seen in Figure 5.3b, where the contours of umbra and
penumbra were highlighted.

(a) Original image of a sunspot. (b) Gradient by a disk of size 1.

Fig. 5.3 Example of the application of the morphological gradient operator on a sunspot image.

5.2.3 Opening and closing

The erosion and dilation can be combined to perform two important transforms: opening and closing.
The opening appears as a way to recover many structures lost in erosion. However, the structures that
have been completely destroyed can never be recovered at all. So, the opening, denoted by γ , consists
of the erosion of an image f by the same structuring element B of size λ followed by a dilation with
the reflection1 of B,

γB( f ) = δB̌[εB( f )].

1The reflection of set B is given by B̌ = {−b|b ∈ B}, with respect to the origin.
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(a) Original image of a sunspot. (b) Opening by a disk of size 1. (c) Opening by a disk of size 6.

Fig. 5.4 Examples of the application of the opening operator on a sunspot image.

The application of the opening results in the cut of peaks (lighter zones of the image) and removes
small object protuberances. What happens is that darker areas (valleys) widen due to the reduction of
the peaks, thus losing details of the image. The Figure 5.4 illustrates the application of openings. As
can be seen in the referred figure, when the size of the SE increases, the darker areas (sunspots) are
enhanced, and the lighter structures (sun’s granulation) tend to disappear.

The closing transform, φ , is the dual operation of the opening, and consists in applying a dilation
by a SE B to an image f followed by an erosion by B̌,

φB( f ) = εB̌[δB( f )]

(a) Original image of a sunspot. (b) Closing by a disk of size 1. (c) Closing by a disk of size 6.

Fig. 5.5 Examples of the application of the closing operator on a sunspot image.

Figure 5.5 shows that the application of a closing operation wide the lighter zones and the darker
ones narrowed, and tend to disappear as the size of the SE increases.

The application of the opening and the closing change less the original image than the erosion and
the dilation respectively, i.e., the effects of the two first transforms are more attenuated than the other
two.
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5.2.4 Top-hat

The top-hat transforms are combinations of openings and closings. These transforms allow the
extraction of valleys or peaks of a dimension less than the one of the chosen SE. The black top-hat
(BTH) creates an image by subtracting the image f from its closing,

BT H( f ) = φB( f )− f .

The closing transform suppresses all the valleys (locally dark areas) which are smaller than the
dimension of the SE. Subtracting the initial image f from the image resulting of the closing allows
recovering these structures by putting them at the same level, and by simultaneously filtering the ones
that were not modified.

(a) Original image of a sunspot. (b) Black top-hat by a disk of size
10.

(c) Black top-hat by a disk of size
20.

Fig. 5.6 Examples of the application of the black top-hat operator on a sunspot image.

The Figure 5.6 illustrates results of the application of a black top-hat transforms. As expected, the
transformation performed extract dark areas, but, in Figure 5.6b only the umbra was extracted. This
fact happens because of the size of the SE chosen (10). The increase of its dimension to 20 (Figure
5.6c), allows the extraction of the whole sunspot. It should be noted that the choice of the shape and
the size of the SE, depends on the morphology of the structures to be extracted.

There is also the dual transformation of black to-hat which is called white top-hat. This trans-
formation was not used in the sunspot detection agorithm and for that reason it is not presented
here.

5.2.5 Geodesic reconstruction

The operator to be described belongs to a set of transformations of the MM called geodesics. Geodesics
transformations resort to distances that correspond to measures carried out in a predetermined region,
i.e., they are confined to that region. The difference between the geodesics and elementary transfor-
mations (also called Euclidean transformations) is, therefore, the space where they are defined, the
geodesic, and the Euclidean space respectively. Geodesic transformations have as input two images:
one where the transformation is applied (marker), and the other one that defines the region where
the transformation is applied (mask). In these kind of transformations, the SE is not explicit, is the
pair of images itself that produce new morphological primitives to use. Also the choice of the size of



5.2 Mathematical morphology: basic concepts 77

the primitives is unnecessary since these transformations are applied iteratively until idempotence
is reached. The interest of geodesic transformations lies in the fact that it is possible to analyze a
structure without having to analyze the entire space of the image.

In what concerns geodesic reconstruction, there are two types: reconstruction by dilation, and
by erosion. In the reconstruction by dilation the marker image is subjected to successive geodesic
dilations, with respect to the mask image, until idempotency (see [73] for more details). By definition
the mask and marker images must have the same domain, and the mask image must be greater or
equal than the marker image. Therefore, the reconstruction by dilation, denoted by Rδ

g , of a mask
image g, from a marker image f is given by,

Rδ
g ( f ) = δ

(i)
g ( f ),

where i is such that δ
(i)
g ( f ) = δ

(i+1)
g ( f ). The reconstruction by erosion (Rε

g) was not used in this work,
but is defined analogously.

How the reconstruction is applied depends on the intended purpose. When the restore of peaks
that are marked is desired a reconstruction by dilation should be used. By the other hand, to restore
valleys that are marked, a reconstruction by erosion should be chosen.

(a) Mask image. (b) Marker image. (c) Reconstructed image.

Fig. 5.7 Example of the application of the geodesic reconstruction by dilation operator.

As an example of the application of the reconstruction by dilation operator, an image containing a
sunspot and 3 pores, Figure 5.7a, is used as mask image. Figure 5.7b, which was obtained eroding the
mask image by a disk of size 5, is used as marker image. The reconstruction by dilation of the mask
image from the marker image is shown in Figure 5.7c. As can be seen the sunspot was reconstructed,
but the pores, once were not marked, were not reconstructed. Note that this operator reconstruct the
shape, but not digital values.

The pair of transformations erosion and reconstruction is often used for filtering, eliminating
unwanted structures (erosion) and restoring the shape of the structures that matter (reconstruction).

5.2.6 Thinning

The thinning is part of a set of transformations of the MM called hit-or-miss transformations. Generally
speaking, this type of operations consists of first analyzing the image so that it is modified or not,
according to neighborhood criteria. In what concerns the thinning, when applied to grey level
images, it replaces the attribute of the central point by the attribute of one of the points of the
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chosen neighborhood configuration, or it maintains that value.The formal definition of thinning is not
presented in this work, once it requires more in-depth knowledge of MM. For more details, see [73].

5.3 Database

The Geophysical and Astronomical Observatory of the University of Coimbra has a collection of
solar observations on a daily basis that spans near nine decades until today. This extensive collection
acquired with the same instrumental apparatus is presently entirely available in digital format. The
image acquisition instrument, is a spectroheliograph based on Deslandres principles [48]. It consists
of a coelostat, with a primary flat mirror of 0.4 m of diameter, and a secondary one of 0.3 m which
sends the sunlight into an optical system. This spectrograph system is made of a converging lens
that focuses the solar disk into the slit, then the light passes through the pre-filters, after through a
collimator, and finally by a diffraction grating before being collected by the recording device. The
projected solar disk is entirely swept, across a slit, by mechanically moving the first focal lens of the
system. That process takes around 80 seconds to do the full scan. Consequently, the solar disk is
not recorded instantaneously but recorded in “slices” onto a CCD (onto a photographic plate before
2007). Those slices are combined later by a specific data reduction software allowing to record the full
solar disk at a specific wavelength in one image. These records are called spectroheliograms and they
correspond to the intensity observed at a specific wavelength. Regular observations of the full solar
disk in the spectral line of Ca II K started in 1926, where K1 (393.23 nm) and K3 (393.37 nm) have
been recorded. These K1 and K3 corresponds to fine structures inside the Ca II K line. Observations in
the spectral line of Hα (655.87 nm) started in 1989. In 2007 the Hα continuum wavelength (656.28
nm) was added [31]. Those different wavelengths have the property that each one probe different
layers of the sun and consequently allow observing a variety of solar phenomena. Observations in the
Ca II K, and in the Hα core, allow observing mainly the solar chromosphere due to their absorption
and emission line formation behaviour. On the other hand, when looking at the Hα continuum, one
looks at the white light of the Sun, meaning the general look of the photosphere when looked at naked
eye. That is caused by the absence of significant spectral lines at that specific wavelength allowing to
look directly at the photosphere and the structures that are present there. One of the most prominent
structures that can observed on the continuum are the sunspots. Sunspots look as darker regions on
the bright background. Their dark appearance originates from the interaction between the intense
solar magnetic field, and the photospheric plasma where the convection that brings hot material from
the bottom layers is suppressed by the so-called "frozen flux" ([77]). That leads to the cooling of
the plasma inside the sunspot, making them irradiate less, and by consequence making them darker
when observed on the continuum. An example of a Hα continuum spectroheliogram acquired at the
Geophysical and Astronomical Observatory of the University of Coimbra is shown in Fig. (5.8).
The image consists of the solar disk and some overwritten information related with the acquisition:
orientation, place, spectral line, and date. The data set used to develop the algorithm presented in this
chapter consists of 144 spectroheliograms, which are 8 bits digital images with 1200 x 1000 pixels,
taken at Hα continuum. The set comprises images of the solar cycle 24. In a simplified way, a solar
cycle can be described as a periodic variation in the solar activity that can be seen, for example, in the
number of sunspots [37]. The cycles have a periodicity of approximately 11 years, in which the solar
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Fig. 5.8 Example of a Hα continuum spectroheliogram with sunspots (some of them with umbra and
penumbra), acquired on the 25th of October 2014.

activity waxes and wanes. As can be seen in Figure 5.9 the solar cycle 24 started around 2009 and is
expected to end in 2020. The images of the data set used were chosen to represent the whole cycle:

Fig. 5.9 Solar Cycles: Average daily sunspot area record. (Courtesy of D. Hathaway).

taken in different years and in different seasons. Additionally, for each image, an observer, with about
40 years of experience, delineated, manually, the umbra and penumbra regions in order to build the
ground-truth data set used to validate the results obtained.

5.4 Automatic detection and segmentation of sunspots

Before the development of the sunspots detection and segmentation algorithm, some important aspects
were enumerate and have been taken into account posteriorly. Observing Figure 5.8, that shows an
example of a spectroheliogram acquired in Coimbra, can be seen that there are some text around the
image providing some information as the place, date, and time of the acquisition. This informational
text hampers any automatic processing algorithm. It can be also seen in Figure 5.8 that the solar disk
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appears to have a solid black background (except the informational text), but actually it is not true
once not all pixels have digital levels equal to zero. This characteristic of spectroheliograms results
from not only the instrumental noise but also from the characteristics of the acquisition process (one
spectroheliogram results from the juxtaposition of multiple “slices” of the solar disk). As it may lead
to false sunspots detection outside the solar disk, this issue must be taken into account. It is also true
that the solar disk is not a perfect circle, being slightly flatted over its rotation axis, but, relatively
to the hundreds of pixels of the solar disk diameter, and not thousands, the flattening effect can be
neglected. Therefore, the solar disk can be taken as perfectly circular, facilitating the construction of
the algorithm once the irregular boundary could be a problem in the detection of sunspots in the limb.
Due to the issues raised previously, an automatic preprocessing was built and should be performed
before the detection and segmentation algorithm.

The programming language used to develop the automatic method to detect and segment sunspots
was MATLAB using the image processing toolbox. Throughout this section, it is shown the results of
the main steps of the algorithm using Figure 5.10 as starting point.

Fig. 5.10 Spectroheliogram of 21st of November 2014, used to exemplify the application of the
sunspots detection and segmentation algorithm.

5.4.1 Preprocessing

The aims of the preprocessing are the identification of the solar disk, removal of informational text,
and the homogenization of the background. The preprocessing starts by applying a closing over the
original image using as structuring element a disk of 10 pixels of diameter, which essentially removes
small holes since it unites some objects/shapes. The choice of the structuring element was done in
order to preserve the circular nature of the solar disk. The resulting image, Figure 5.11a, became more
homogeneous, but the text was not removed. Therefore, a morphological operation opening, using as
structuring element a disk of size 20, is performed. When applying this transformation the objective is
essentially remove small objects/shapes. Figure 5.11b is the result of the application of the opening
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operation. Analyzing it, can be observed that the text disappeared, but the digital levels inside the
solar disk were not preserved. Therefore, another set of operations must be done until reaching the
desired final image. First, a morphological reconstruction is performed using the original image as
a mask, and the subtraction of Figure 5.11c by the original image as a marker, originating Figure
5.11d. Hereupon an adaptive threshold filter is applied with a lower cutting-value of 30 and an upper
cutting-value of 124. This last operation allows to recover the solar disk as a binary image. The result
is shown in Figure 5.11e. Analyzing the image, was detected the existence of a hole (a black spot)
inside the solar disk. The presence of holes at this stage of the preprocessing happens for some images
of the data set. In order to suppressed it, a fill hole operation is performed (Figure 5.11f). The next
objective is to make the solar disk of the image obtained in the previous step, a perfect circle. For
that it is necessary to determine the center (xc,yc), and the radius r of the solar disk. Recall that the
spectroheliograms used in this work have 1000 rows and 1200 columns. Let start with the calculation
of x-coordinate of the center, xc. Given the geometric center (xgc,ygc) = (1200

2 , 1000
2 ) of the image, it is

determined for all lines of the image which are 20% above and 20% below that point, the x-coordinate
of the first (x f irst) and last (xlast) pixels belonging to the solar disk, in the x-direction. That is, for
each line i ∈ {ygc − 0.2 ∗ 1000, ...,ygc + 0.2 ∗ 1000} = {300, ...,700}, the pixels x f irst i

and xlast i are
determined, and xc is calculated as follows

xc =
1

1000∗0.4

700

∑
i=300

x f irst i
+ xlast i

2
.

The y-coordinate of the center, yc, is calculated analogously, by the formula that follows,

yc =
1

1200∗0.4

840

∑
i=360

y f irst i
+ ylast i

2
.

Determining the center of the solar disk allows to calculate the radius, which is given by the average
between the distances of every pixel used in the calculation of the center, and the center itself. Having
the center and radius of Figure 5.11f determined, the solar disk of Figure 5.11f was transformed into a
perfect circle. The result is shown in Figure 5.11g. Finally, this image is multiplied by the original one
and the result is shown in Figure 5.11h. This last image is the final result of the preprocessing, with
the original digital levels inside the solar disk, and with digital levels equal to zero (corresponding to
the black color) outside of it.

5.4.2 Morphological detection of sunspots

The main goal of the algorithm, is the automatic detection of sunspots in Coimbra’s spectroheliograms.
The initial image fed into the algorithm is the final image of the pre-processing (Figure 5.11h). To
enhance the (possible) sunspots on the image, a black top-hat is applied once it allows extracts the
small elements and details seen in the image. This transform consists of the difference between the
closing by a disk of size 20 of the initial image (Figure 5.11h), and that very same initial image. Then,
the image resulted from the black top-hat (Figure 5.12a) is used to extract the contour of sunspots. For
that, an adaptive threshold is applied with limits 20 and 255, originating the image shown in Figure
5.12b. As can be seen, not only the sunspots were identified but also a lot of noise. An erosion by a
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(a) Closing. (b) Opening.

(c) Subtraction. (d) Reconstruction.

(e) Adaptive threshold. (f) Filling holes.

(g) Solar disk as a perfect circle. (h) Multiplication.

Fig. 5.11 Preprocessing.
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disk of diameter 1 is applied, which eliminates noisy specs. Since that also erodes real features, an
application of reconstruction is required to recover their original shape. The result is shown in Figure
5.12c. The sunspots are now correctly identified, and the next step is the extraction of its contours
which is done through the morphological gradient operation (Figure 5.12d) followed by a thinning
operation (Figure 5.12e). While gradient enhances the contours of the sunspots, the thinning allows to
reduce that contour to one pixel only, preserving the relationship between structures and holes. The
final result of this stage of the algorithm is shown in Figure 5.12f, where the sunspots’ contours were
superimposed over the original image.

(a) Black top-hat. (b) Adaptive threshold.

(c) Reconstruction. (d) Morphological gradient.

(e) Sunspots contours. (f) Sunspots contours over Figure 5.10.

Fig. 5.12 Sunspots detection step by step.
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5.4.3 Umbra-Penumbra Segmentation

Another aim of this work is the umbra-penumbra segmentation. Sunspots are, generally, constituted
by umbra and penumbra, which leads to a bimodal distribution of grey levels within each spot (as
an example see Figure 5.13). Nevertheless, there are sunspots constituted only by umbra (the so
called pores) and, in this case, it is assumed that the distribution of grey levels is unimodal. For this
reason, a representative set of sunspots was selected, and their histograms analyzed. For all practical
purposes, if the difference between the maximum and minimum grey levels of the histogram is greater
than 20, then the sunspot is considered to have a bimodal distribution, else the distribution should
be considered unimodal. Furthermore, concerning the bimodal distributions, a threshold value t is
automatically estimated between the two peaks of each histogram to segment umbra and penumbra,
as follows

t =
sunspotmax − sunspotmin

2
+ sunspotmin, (5.1)

where sunspotmax and sunspotmin are, respectively, the maximum and the minimum values of the grey
level inside the sunspot.

Fig. 5.13 Example of a sunspot histogram (grey level versus count of
pixels in the image) of a bimodal distribution.

The stage of umbra and penumbra segmentation then starts by labeling each sunspot so that each
one could be treated separately (Figure 5.14a). A sunspot in the image was chosen, as an example, to
explain the segmentation implementation in detail. It is highlighted with a square around in Figure
5.14b. To get the original grey levels of this sunspot, two operations are necessary: first, to isolate the
sunspot, an adaptive threshold is applied to the image in Figure 5.14a using the label number as limits,
which results in the binary image represented in Figure 5.14c. After that, an intersection between
that image and the original image is carried out resulting the image in Figure 5.14d. Hereupon, the
sunspotmax and sunspotmin are computed in order to determine the type of grey-scale distribution. In
the case of the sunspot chosen as an example, the distribution was bimodal and therefore the value t
was estimated following equation 5.1. However, in the case of unimodal distribution, t was assumed
to be 2. Thereafter, two adaptive thresholds are performed: the first one with limits 1 and t −1, to
segment the umbra, and the second one with limits t and 255 to segment the penumbra. The results
of these operations are shown in Figure 5.14e and Figure 5.14f, respectively. This stage ends with
the creation of four images: the first one resulting of the union of all the segmented umbrae (Figure
5.15a), the second one resulting of the union of all the segmented penumbrae (Figure 5.15b), the
third one resulting of the sum of all umbrae and penumbrae together (Figure 5.15c), and the last one
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resulting of the composite of the gradients of the umbrae and the penumbrae, superimposed over the
original image (Figure 5.15d).

(a) Sunspots labeled. (b) Sunspot selected as an example.

(c) Adaptive threshold. (d) Intersection.

(e) Umbra segmentation. (f) Penumbra segmentation.

Fig. 5.14 Segmentation step by step.

A zoom to one of the sunspots in Figure 5.10, and the respective output of the detection and
segmentation algorithm, is shown in the Figure5.16. Note that the sunspot in this example is very
complex once it presents four different umbrae all surrounded by the same patch of penumbra. A
possible scenario for the formation of a sunspot of this type is the branching of a magnetic flux tube
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(a) Union of umbrae. (b) Union of penumbrae.

(c) Sum of all umbrae and penumbrae. (d) umbrae and penumbrae contours.

Fig. 5.15 Results of the segmentation umbra-penumbra.
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which creates nearby sunspots. The penumbrae of these sunspots end up overlapping, giving rise to a
single structure.

(a) Sunspot in the original image. (b) Segmentation obtained for Figure 5.16a.

Fig. 5.16 Zoomed segmented sunspot.

5.5 Analysis and discussion of results

The automatic algorithm developed to detect and segment sunspots was applied to a representative
set of 144 Coimbra’s spectroheliograms of the solar cycle 24. These images were compared with
the correspondent ground-truth images built by a solar observer expert. By ground-truth images is
understood images with the information provided by direct observation (empirical evidence). To
evaluate the performance of the method, two distinct evaluations stages were considered: one for
sunspots detection quality, and another for the ability to separate umbra from penumbra. Note
that the resulting images presented in this section as examples are with reduced contrast for better
visualization.

In what concerns the evaluation of sunspots detection, the metrics used rely on pixel-based
comparisons. Therefore, each pixel of each output image need to be identified as a sunspot or non-
sunspot pixel, considering it positive or negative respectively. Depending on this identification and the
actual one (information taken from the ground-truth image), the pixel is classified according to the
confusion matrix shown in Table 5.1. True positive means that a pixel in the output image detected as
part of a sunspot is a sunspot pixel in the ground-truth image. By true negative is understood a pixel
that is detected as not being part of a sunspot, and in the ground-truth image it also not belongs to a
sunspot. False positive means a pixel detected as part of a sunspot that is not a sunspot pixel in the
ground-truth image. A false negative is a pixel not detected as belonging to a sunspot but actually is a
sunspot pixel in the ground-truth image.
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Table 5.1 Confusion matrix.

Actual Positive Actual Negative

Predicted Positive True Positive False Positive

Predicted Negative False Negative True Negative

The metrics chosen to evaluate the performance of the sunspots detection are the following,

precision =
T P

T P+FP
,

recall =
T P

T P+FN
,

f − score =
2∗ (Precision∗Recall)

Precision+Recall
,

where T P is the number of true positives, T N the number of true negatives, FP the number of false
positives, and FN the number of false negatives. The precision measures the proportion of pixels that
are actually positives out of all the pixels that are detected as positives. The recall, also known as
sensitivity, or true positive rate (T PR), gives the information about the proportion of pixels that are
detected as positives and are actually positives relatively to the universe of all pixels that are, in fact,
positives. While the precision allows to evaluate the cost of having false positives in large number, the
recall allows to select which is the best model when the number false negatives is high. The f − score
represents a trade-off between the two previous metrics. This set of metrics was chosen because it is
universally used in evaluation of binary detection algorithms in most diverse areas, for example in
[46, 49, 70].

Concerning the ability to differentiate umbra from penumbra, the overall accuracy (OA), which is
the ratio of pixels that were correctly classified to all the classified pixels, was the metric chosen and
is given by,

OA(%) =
UU +PP

UU +UP+PU +PP
∗100,

where UU is the number of umbra pixels that are detected as umbra; PP is the number of penumbra
pixels that are detected as penumbra; UP is the number of umbra pixels detected as penumbra pixels,
and PU is the number of penumbra pixels detected as umbra pixels. The values obtained for the
metrics are summarized in Table 5.2.

The automatic method developed presents satisfactory results for most of the images as can be
verified analyzing the Table 5.2. A comparison of developed algorithm in the scope of this thesis
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Table 5.2 Evaluation of the performance of the algorithm.

precision(%) recall(%) f − score(%) OA(%)

81.33 79.42 78.98 86.25

with another algorithm, based on pixel intensities, was done in [15]. This study demonstrate a better
efficiency of the method based on MM.

Following are listed some artefacts that may appear in spectroheliograms which may present
additional difficulties for automatic detection algorithms. Examples of outputs of the algorithm
developed for spectroheliograms with these same artefacts are also presented.

Due the Earth’s atmosphere and meteorological factors, applying automatic detection methods to
ground-based images present some specific hindrances. Despite this, the good performance of the
algorithm developed in the scope of this thesis is essentially kept when applying to most of the images
with strong atmospheric effects. Examples can be seen in Figure 5.17.

(a) Image of 20/12/2012. (b) Output of the image of 20/12/2012.

(c) Image of 16/12/2015. (d) Output of the image of 16/12/2015.

Fig. 5.17 Examples of detection results on spectroheliograms with clouds.
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Problems during the image acquisition process is another difficulty that can appear in some
spectroheliograms. Although in these cases the solar disk may present some deformations, the method
performs well, as shown in Figure 5.18.

(a) Image of 29/11/2010. (b) Output of the image of 29/11/2010.

(c) Image of 3/12/2010. (d) Output of the image of 3/12/2010.

Fig. 5.18 Examples of detection results on spectroheliograms with acquisition errors.

In the case of spectroheliograms with dust trapped in the slit (represented by almost horizontal
lines in the image), which could not be removed or corrected by the image acquisition software, the
method proved to be efficient, as can be seen in Figure 5.19.

Most methods of detecting solar phenomena take into account, in a pre-processing phase, the
removing of limb-darkening so that sunspots on the solar disk’s limb can be detected. The limb-
darkening is an optical effect typical of starts, namely the sun, which is characterized by the gradual
Since, in the essence of MM, the most important aspect is the geometric shape of the objects, the
developed algorithm does not need to correct limb-darkening, keeping its efficiency. Results of the
application of the method, in images with sunspots in the limb, are shown in Figure 5.20.

In fact, the method proves to be efficient in dealing with the artifacts that may appear in the
spectroheliograms. However, there are cases in which the method is not efficient, presenting an over
detection. This problem occurs due to the size of the structuring element in the top-hat transform. The
value used was chosen in order to have a trade-off among all the images of the set considered, in order
to reduce false positives. As future work is intended to solve these cases through a post processing
phase. However, given the slow rotation of the sun and the slow variation of the sunspots, the analysis
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(a) Image of 5/6/2015. (b) Output of the image of 5/6/2015.

Fig. 5.19 Example of detection results on spectroheliograms with dust.

(a) Image of 31/12/2010. (b) Output of the image of 31/12/2010.

(c) Image of 3/12/2010. (d) Output of the image of 3/12/2010.

Fig. 5.20 Examples of detection results on spectroheliograms with sunspots in the limb.
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of images acquired on consecutive days, or almost consecutive, is a good way to evaluate the results,
as can be seen in Figure 5.21.

(a) Output of the image of 16/11/2010. (b) Output of the image of 17/11/2010 (over
detection).

(c) Output of the image of 20/11/20106.

Fig. 5.21 Example of over detection and the results of the consecutive days.

5.6 Conclusions

The aim of this chapter was the detailed description of an automatic method which was developed
to detect sunspots, and its separation into umbra and penumbra, in the spectroheliograms of the
Geophysical and Astronomical Observatory of the University of Coimbra. The method developed
was based on since it is a versatile technique which was already used with success in processing of
several types of images, namely solar images. An analysis of the performance of the method was
carried out, and the metrics used to evaluate it showed the great efficiency of it. As a future work
it is intended to process the entire database of Geophysical and Astronomical Observatory of the
University of Coimbra. Thus, it will be possible to evaluate the method’s ability to deal with images
obtained through other acquisition systems as well as in other formats. By the other hand, it will allow
resuming the production of the Coimbra Observatory solar catalogs, which was interrupted in 1986.



Chapter 6

Conclusions

This final chapter starts recalling the main motivation of the present work: the computation of the
magnetic field in the umbra- the darkest part of a sunspot. This motivation was the driven force for the
work developed within this thesis: the study of numerical methods that can be used to simulate the
magnetic field.

In Chapter 2, Stability and convergence analysis for IBVP with Dirichlet boundary conditions,
this work started with the design and analysis of numerical methods for nonlinear parabolic IBVP
and the corresponding nonlinear elliptic BVP defined in a bounded interval and Dirichlet boundary
conditions. The convergence analysis is presented following two different approaches depending on
the smoothness of the solution of the differential problem. For smooth solutions, a second-order error
estimate is obtained, taking into account the particular structure of the spatial truncation error, while
for nonsmooth solutions, the error estimates were obtained applying the Bramble-Hilbert lemma. In
what concerns the stability, in a first attempt, it was observed the need for the uniform boundness of
the numerical solution around which is intended to conclude the stability property. This requirement
was then concluded from the established error estimates. And then the stability was easily followed.
As the numerical methods proposed can be seen simultaneously as FDMs and piecewise linear FEMs,
the obtained results can be seen simultaneously as supraconvergent and superconvergent results.

The extension of the results presented in Chapter 2 to the IBVP defined in two-dimensional
domains was the focus of Chapter 3, An application to sunspots. This extension was also driven by
the application to the magnetic field in the umbra, where vertical magnetic fields are observed. Based
on this fact, the initial motivation was then replaced by a simplified one - the numerical simulation
of two of the magnetic field components being one of them, the vertical one. The initial system of 6
nonlinear parabolic equations was then replaced by a system of 4 equations, which was considered in
this chapter. For a general system of nonlinear parabolic equations defined in a square, some of the
results presented in Chapter 2 were rewritten for this new situation when the differential problem has
smooth solutions. A numerical simulation of the studied numerical tool applied to the magnetic field
(2 components) in the umbra was developed within this chapter, assuming that the velocity field is
known in the space-time domain, the magnetic field is also known on the boundary of the space-time
domain, as well as the initial condition. These inputs were obtained from the numerical simulation
of the magnetic and velocity fields obtained with Bifrost code in a network scenario [14, 34]. This
choice is based on the fact that the qualitative behaviour of the magnetic field is similar in these two
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structures. A pathologic behaviour was observed in the numerical simulations, and to correct it, an
artificial diffusion term was added to the method. The results obtained with the new method and the
reference solution present the same qualitative behaviour at least for short times.

The numerical simulations presented in Chapter 3 were obtained considering Dirichlet boundary
conditions. As such boundary conditions are not realistic in the context of the magnetic field evolution,
numerical methods for IBVP with Neumann or Robin boundary conditions should be designed and
studied. Chapter 4, Convergence analysis for IBVP with Neumann boundary conditions, is centered
in the construction and convergence study of numerical methods for nonlinear parabolic IBVP with
Neumann boundary conditions. Here semi-discrete approximations and fully discrete in space and
time implicit-explicit approximations were analyzed, and their convergence was concluded. These
results were proved, taking into account the truncation error structure and assuming that the IBVP has
smooth solutions.

This thesis is concluded with the study of the automatic detection and geometric definition of
sunspots, including the limits of umbra and penumbra, in solar images, done in Chapter 5, Detection
of sunspots in spectroheliograms. Motivated by the accurate definition of the different zones of the
sunspots, this research topic intends to contribute to the identification of computational domains used
in the simulation of the magnetic field’s behaviour in different zones of the sunspots.

To conclude, it was noticed that there are several questions that were not answered in the present
work and deserve to be object of study:

• The extension of the convergence results presented in Chapter 3 for problems with nonsmooth
solutions via Bramble-Hilbert lemma approach.

• The stability and convergence of implicit-explicit methods for systems of nonlinear parabolic
equations with Dirichlet boundary conditions for the IBVP analized in Chapter 2 and 3.

• The stabilized methods obtained from the method studied in Chapter 3 corrected with more
convenient stabilization techniques taking into account that these methods can be seen as
piecewise linear finite element methods (see for instance [40, 56, 64]).

• The stability and convergence of the methods presented in Chapter 4 for nonlinear IBVP with
nonsmooth solutions via Bramble-Hilbert lemma in space and time.

• The extension of the previous results for IBVPs defined in spatial domains of higher dimensions.

• Numerical simulation of the solar magnetic field and plasma velocity field in different zones of
the sunspots.
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