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Abstract
Nanophotonics is a field of research dedicated to study the interactions of

nanosized-objects with light. One of the goals of nanophotonics is to enable the
miniaturization of optical components at a competitive scale with microelectron-
ics. There are several rewards in using light based technologies, such as building
photonic circuits that are not only smaller but faster and more efficient than
the electronic counterparts, new solar cells that have enhanced energy absorp-
tion, nano-optical sensors able to detect ultralow concentrations of molecules in
chemical solutions, amongst many others. My work aims to contribute to this
field of research by exploring new mechanisms to accomplish an efficient spatial
confinement of light.

This thesis is devoted to the analytical and numerical study of three different
ways to confine light in the nanoscale.

First, we investigate light trapping in open plasmonic resonators (meta-
atoms) with different shapes. It is found that in some conditions complex-
shaped dielectric cavities may support discrete light states screened by volume
plasmons that in the limit of a vanishing material loss have an infinite lifetime.
The embedded eigenstates can be efficiently pumped with a plane wave excita-
tion when the meta-atom core has a nonlinear response, such that the trapped
light energy is precisely quantized. Then, we investigate how the spatial dis-
persion effects, e.g., caused by the electron-electron interactions in a metal, af-
fect these trapped eigenstates in three-dimensional open plasmonic resonators.
Heuristically, one may expect that the repulsive-type electron-electron interac-
tions should act against light localization, and thereby that they should have
a negative impact on the formation of the embedded eigenstates. Surprisingly,
it is found that the nonlocality of the material response creates new degrees of
freedom and relaxes the requirements for the observation of trapped light. In
particular, a zero-permittivity condition is no longer mandatory and the same
resonator shell can potentially suppress the radiation loss at multiple frequen-
cies.

The possibility to trap and guide light in wire metamaterials is also investi-
gated. Specifically, we investigate the guided modes supported by a metamate-
rial slab formed by two mutually orthogonal and nonconnected sets of parallel
metallic wires. It is demonstrated that the wire medium slab has a peculiar
comb-like dispersion diagram. In the continuum approximation, the metamate-
rial supports a diverging number of guided mode branches that accumulate near
the light line due to a strong hyperbolic response in the static limit. In a real-
istic system, the number of guided modes branches is finite and is determined
by the density of wires. Remarkably, the guided modes may be characterized
by a fast field variation along the transverse direction, which can be exploited
to detect subwavelength particles or defects.

Lastly, we investigated topological trapped states in photonic crystals. We
show that in one-dimensional periodic systems the number of bands below a
band gap determines the topological Chern number of an extended system with
a synthetic dimension. It is theoretically and numerically demonstrated that in
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real-space the Chern number gives the number of gapless trapped state branches
localized at the interface of the photonic crystal, when its geometry is continu-
ously displaced by one lattice period. Furthermore, we introduce a novel class
of topological systems with inversion-symmetry and fractional (non-integral)
Chern numbers. It is proven that the non-integral topological number arises
due to the discontinuous behaviour of the Hamiltonian in the spectral domain.
We introduce a bulk-edge correspondence that links the number of edge-states
with the fractional topological number.

Keywords– Plasmonics, Nonlinear effects, Embedded eigenstates, Wire me-
dia, Subwavelength imaging, Metamaterials, Topological photonics, Chern num-
ber, Bulk-edge correspondence.
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Resumo
A nano-fotónica é uma área de investigação dedicada ao estudo das inter-

acções da luz com objectos nanométricos. Um dos objectivos da nanofotónica
é possibilitar a miniaturização de componentes ópticos para uma escala com-
petitiva com a microelectrónica. Existem vários benefícios em usar tecnologia
fotónica, como a construção de circuitos fotónicos com pequenas dimensões que
não são apenas mais rápidos mas também mais eficientes do que as suas con-
trapartes eletrónicas, novas células solares com uma maior absorção energética,
sensores nano-ópticos capazes de detectar concentrações extremamente baixas
de moléculas em soluções químicas, entre outros. O objectivo principal do meu
trabalho é contribuir para esta área de investigação, explorando novos mecan-
ismos de confinamento espacial da luz de forma eficiente.

Esta tese é dedicada ao estudo analítico e numérico de três mecanismos
diferentes de confinar a luz à nano-escala.

Em primeiro lugar, é investigado o aprisionamento da luz em ressoadores
plasmónicos abertos (meta-átomos) de diferentes geometrias. É mostrado que,
em certas condições, cavidades dieléctricas de geometrias complexas podem su-
portar estado fotónicos discretos que, no limite em que as perdas materiais
são nulas, possuem tempos de vida infinitos. Estes estados surgem devido à
acção dos plasmões de volume suportados pela camada plasmónica exterior do
meta-átomo e podem ser excitados eficientemente por uma onda plana quando
o núcleo do ressoador possui uma resposta não-linear. Demonstra-se que a en-
ergia aprisionada no núcleo do ressoador é precisamente quantizada. Depois, é
investigado o impacto dos efeitos de dispersão espacial, causados por exemplo
pelas interacções electrão-electrão em metais, nos estados próprios embebidos
suportados por ressoadores abertos plasmónicos tridimensionais. Heuristica-
mente, seria de esperar que as interacções repulsivas electrão-electrão agissem
de maneira deteriorante no mecanismo de localização de luz e, portanto, tivessem
um impacto negativo na formação dos estados próprios embebidos. Surpreen-
dentemente, é mostrado neste trabalho que a dispersão não-local do material
que encapsula o meta-átomo dá origem a novos graus de liberdade e relaxa os
requisitos necessários ao aprisionamento da luz. Em particular, a condição que
exige que o material da cápsula exiba uma permitividade exactamente igual
a zero deixa de ser obrigatória, passando a ser possível que a mesma cápsula
suprima a perda por radiação em várias frequências.

É estudada de seguida a possibilidade de aprisionar e guiar luz em meta-
materiais de fios metálicos. Especificamente, investigamos os modos guiados
suportados por um metamaterial formado por dois planos de fios metálicos mu-
tuamente ortogonais. É demonstrado que o meio de fios tem um diagrama de
dispersão peculiar, semelhante a um pente. No limite em que o material é visto
como um meio contínuo (homogeneizado), o metamaterial suporta um número
divergente de “ramos” de modos guiados que se acumulam junto à linha da luz
devido à forte resposta hiperbólica do metamaterial no limite estático. Num
sistema realista, o número de ramos é finito e determinado pela densidade de
fios. Curiosamente, os modos são caracterizados por uma variação do campo
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rápida na direcção transversal, que pode ser explorada na detecção de partículas
e defeitos de dimensão sub-lambda.

Por último, são investigados modos de luz topologicamente aprisionados em
cristais fotónicos. São estudadas as propriedades topológicas de sistemas per-
iódicos unidimensionais, e é mostrado que o número de bandas abaixo do hiato
de frequências determina o número de Chern de um sistema extendido com uma
dimensão sintética. É demonstrado teórica e numericamente que, no espaço-real,
o número de Chern determina o número de estados aprisionados na interface
de um cristal fotónico no intervalo de frequências da banda não-propagante,
quando a sua geometria sofre uma deslocação contínua de um período de es-
trutura. Além disso, é introduzida uma nova classe de sistemas topológicos
com inversão de simetria e números de Chern fraccionários. É provado que o
número topológico fraccionário é devido às descontinuidades do Hamiltoniano
no domínio espectral. É introduzida uma correspondência volume-interface que
liga o número de estados de interface com o número topológico fraccionário.

Palavras-Chave– Plasmónica, Efeitos não-lineares, Estados próprios em-
butidos, Meios de fios, Imagiologia sub-lambda, Metamateriais, Fotónica topológ-
ica, Número de Chern, Correspondência volume-interface.
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CHAPTER 1
Introduction

1.1 Background
The ability to communicate with no geographical restrictions with anyone
in the world was once a dream of humanity, turned into reality in the last
century. Some scientists attribute our tremendous evolutionary success to
our unique communication skills. In fact, we are the only animals to have
speech and complex languages with which not only we cooperate in tasks
but also express feelings and eternize our creative thought. With the evolu-
tion of language, it became easy for small populations to exchange ideas and
make decisions by having simple conversations, but as population increased
there was an rising need to communicate efficiently with other populations
that were physically far. This happened when transportation became read-
ily available through horses and boats, which made possible cultural and
technological exchanges that completely transformed human civilization.

Obviously, carrying a message through a rider in a horse was not ideal
since it depended greatly on factors like weather conditions and, plus, was
extremely slow. However, the advent of electricity gave us the first truly long-
distance technology that was fast and reliable: the electric telegraph in the
1830s. The telegraph used electrical signals to convey information through
copper wires. It was the first form of telecommunication that relied on trav-
elling electrons. This event marked the beginning of a new technological era
for telecommunications.

Later, we witness the birth of modern physics when Albert Einstein ex-
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plained the origin of the photoelectric effect in 1905. Furthermore, when
scientists started to study quantum-mechanical phenomena they concluded
that light is made up of elementary particles called photons that exhibit
wave-particle duality. Similar to electrons, photons were also capable of car-
rying information in guides such as optical fibers. Importantly, light can
carry a larger amount of information and at much higher velocities than
electrons. Ultimately, this led to the current state of affairs, where most of
the communication systems are formed by a complex network of electronic
and optical devices.

Even though light already dominates the transmission path, where in-
stead of copper wires now we use optical fibers, a significant part of the
communication systems still remains electronic. This means that there is
a need for signal conversion in the system, from electrical to optical and
vice versa, which is both inefficient and costly. To overcome this obstacle,
researchers engineered photonic devices capable of creating, manipulating
and detecting light like optical amplifiers [1], lasers [2–5] and light-emitting
diodes [6–8]. These devices explore the electromagnetic interaction of light
with the materials to achieve the relevant response. However, the footprint
of light-based technologies is too large due to the limitation imposed by the
diffraction limit of light in dielectric media, which does not allow the spa-
tial localization of electromagnetic waves in the subwavelength regime. This
hampers the miniaturization efforts of the optical circuits in scales equivalent
to the electronic circuits.

Plasmonics may offer a solution to achieve optical miniaturization. It
was found, as early as 1900, that the electromagnetic waves and electrons
may interact strongly in metallic interfaces or in small metallic nanostruc-
tures, leading to enhanced optical near field of subwavelength dimension.
This was latter described as a collective electron excitation, known as sur-
face and volume plasmons. There are innumerous applications for plasmonic
effects in technology, like plasmon nanoguiding [9–11] which can be realized
through various types of metallic nanostructures, such as metal films of finite
thickness and width embedded in a homogeneous dielectric. Another inter-
esting developed technology based on plasmonics is Surface Enhanced Raman
Scattering (SERS) [12–14], which provides much greater detection sensitiv-
ity than conventional Raman spectroscopy of biological molecules adsorbed
by metal surfaces. Other application is the fabrication of electronic circuits
through nanolithography [15–17]. Due to the increasingly small circuits, opti-
cal projection lithography benefits of surface plasmons that strongly enhance
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the nanoscale spatial distribution of the electrical field near the surface.
With the evolution of optical technologies came an increasing necessity

for materials that provided extraordinary and unusual electromagnetic re-
sponses. Researchers tried instead to fabricate their own artificial materials
by tailoring the microscopic structure in such a manner that the materials
behaved electromagnetically in the desired way. These structures are called
“metamaterials,” and typically consist of metallic or dielectric inclusions sep-
arated by a lattice constant much smaller than the radiation wavelength. The
wave propagation depends on the overall properties of the structure and the
discrete nature of the structure can be ignored: the material behaves as a ho-
mogeneous and continuous medium. It is possible then to describe it with an
overall dielectric permittivity and magnetic permeability using homogeniza-
tion techniques: this is known as the effective-medium approximation. Since
the electromagnetic parameters of these materials depend on the geometry
and composition of the man-made inclusions, the metamaterial concept of-
fers an unprecedented flexibility in designing new electromagnetic responses.
One of the most studied class of artificial media are arrays of metallic wires,
known as “wire metamaterials”. Such media have shown great potential in
electromagnetic manipulation in the subwavelength scale [18–22], showing
also other extraordinary effects such has superlensing [23–25], negative re-
fraction [26,27], anomalous high density of photonic states [28,29] and strong
spatial dispersion [30, 31].

Another way of obtaining extraordinary optical effects is recurring to
topological materials. The topology of a photonic material characterizes the
global properties of the Bloch eigenfunctions. This new field of research is
rooted in ideas originally developed to understand topological phases of mat-
ter in solid-state physics. In photonics, it has allowed us to discover novel
states of light and consequently new extraordinary applications [32,33]. One
discovery in condensed matter-physics that spurred the most interest was
the discovery of topological insulators, which are materials that are isolators
in the bulk but allow for propagation of electrons on their surface without
backscattering even in the presence of impurities [34–37]. There are different
classes of topological insulators, and typically the topological properties are
rooted in some particular symmetry of the system, e.g., invariance to dis-
crete translations, time-reversal symmetry, or others. The first example of
a topological system in condensed matter was an electron gas biased with
a magnetic field. In such case, it turns out that the Hall conductivity is
quantized, and its quantum is determined by a topological invariant known
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as the Chern number. Haldane and Raghu proposed a photonic analogue of
Chern insulators in gyrotropic photonic crystals [40,41], which was later con-
firmed by experiments realized by Wang et al [42]. This analogy originated a
series of subsequent scientific studies, resulting in some promising technolog-
ical applications. One of the most important applications is the possibility to
construct waveguides that transmit electromagnetic energy without reflection
and thus can dramatically improve the robustness of optical devices against
construction imperfections, mitigating the impact of insertion loss [43–45].
This could decrease significantly the power requirements of classical signals.

1.2 Scope of research
Spatial confinement of light is of tantamount importance to the development
of optical devices, since it can be potentially useful for light-emitting devices
[46, 47] (e.g. plasmonic nanolasers), optical switching [48, 49] and enhanced
nonlinear effects [50]. In particular, there is currently a great demand for
mechanisms that enable confining and storing light into tiny volumes for very
long oscillation periods. However, this goal remains elusive today because
the coupling with the surrounding environment invariably leads to absorption
and radiation losses. The standard way to confine light into some space-
region is by using opaque physical barriers, e.g., reflecting mirrors [51] or
photonic band-gap materials [52,53], or alternatively by exploiting the total
internal reflection as in whispering gallery resonators [54,55]. However, these
resonators typically need to have dimensions much larger than the radiation
wavelength to effectively block the radiation leakage to the exterior. Other
mechanisms that promote the light localization rely on plasmonics [56, 57],
weakly radiating anapole modes in dielectric nanoparticles [58] and Anderson
localization [59, 60].

In this thesis, we investigate novel mechanisms to confine light in sub-
wavelength spatial dimensions by using materials with a plasmonic nature,
wire metamaterials and topological photonic materials. First, we explore the
formation of ”embedded eigenstates” by using plasmonic materials. These
optical bound states have suppressed radiation loss and exist within the ra-
diation continuum in open resonators [61–71]. Next, we explore the use
of wire metamaterials to spatially confine electromagnetic energy along the
transversal direction. At last, we investigate the topological properties of
periodic systems and use them in a advantageous way to concentrate light
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between two photonic crystals. We present the theoretical description of the
relevant mechanisms for each studied problem using analytical models and
numerically demonstrate the validity of our results.

1.3 Organization of the Thesis
This thesis is organized in 6 chapters, with the first one being this introduc-
tion.

In chapter II, we investigate light trapping in open plasmonic resonators
(meta-atoms) with different shapes. We start by theoretically analyzing dif-
ferent possible cross-sectional geometries and deriving the analytical condi-
tions under which the meta-atom supports embedded eigenstates. Then,
we characterize the electromagnetic response of the meta-atom in the linear
regime. Lastly, we consider a nonlinear material response in the meta-atom
and investigate the properties of the trapped light energy, namely its quan-
tization and decay in time.

In chapter III, we investigate the impact of a spatially-dispersive shell
on the embedded eigenstates supported by the meta-atom. To this end, we
start by doing a full electromagnetic characterization of the particle using
Mie theory and using the hydrodynamic model to consider the impact of
the nonlocal effects. By enforcing suitable boundary conditions, we obtain
a characteristic equation whose solutions describe the allowed values for the
occurrence of embedded eigenstates. We then calculate the embedded eigen-
state solutions in terms of several parameters of the resonator and analyze
the electromagnetic fields spatial distribution of such solutions. Lastly, we
characterize the response of the meta-atom under external excitation.

In chapter IV, we study wave guiding in wire metamaterials. Specifi-
cally, we investigate the guided modes supported by a wire metamaterial
slab formed by two mutually orthogonal and nonconnected sets of parallel
wires. Firstly, using homogenization techniques and additional boundary
conditions, we theoretically describe the electromagnetic properties of the
fundamental transverse magnetic bulk modes supported by the wire medium
slab. Then, we calculate the dispersion characteristic of the guided modes
and compare the analytical results with full-wave simulations. Finally, we
devise a subwavelength detector for defects or imperfections based on the
studied guided modes.

Lastly, we study in chapter V topological light states in photonic crystals.
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To that end, we investigate the topological properties of one-dimensional pe-
riodic systems. First, we describe the wave propagation along the periodic
dimension using Hermitian operators and Bloch waves. We then add a syn-
thetic dimension to the system and we show that, due to the cyclic nature of
the Hermitian operator in both dimensions, it is possible to characterize its
topological phases. We are then able to perform the calculation of the Chern
number (topological number) associated with each photonic band. Remark-
ably, we find that the gap Chern number is determined by the number of
bands below the gap, which is thereby a topological number. In the second
part of the chapter, we establish a bulk-edge correspondence that links the
number of gapless trapped states in real-space and the calculated topological
number. We illustrate the developed ideas with several numerical examples
with one-dimensional photonic crystals and also full-wave simulations of the
trapped states that corroborate our hypothesis. Finally, we consider 1D-type
systems with inversion symmetry. We show that in these type of systems,
when the unit cell of the crystal is displaced only by half a period, the topo-
logical numbers are not integers but rather fractional numbers. We explain
the consequences of this exotic feature and develop a fractional bulk edge-
correspondence. To conclude, we show several numerical examples of such
systems.

In chapter VI, the main conclusions and achievements of this thesis are
reviewed.

1.4 List of Author Publications
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CHAPTER 2
Light trapping in 2D open

plasmonic nanostructures with
complex geometries

2.1 Introduction
The natural modes of oscillation of a physical system can be usually split
into two categories: the bound modes – which form the discrete spectrum
– and the extended modes – which form the continuous spectrum. Usually,
the discrete and the continuous spectra do not overlap. For example, in the
hydrogen atom the allowed electron energy levels are split into two disjoint
subsets: the discrete negative energies (bound states) and the continuous
positive energies (free-electron states). The discrete spectrum is invariably
associated with spatially localized states that are square integrable and hence
normalizable. On the other hand, the continuous spectrum is associated with
delocalized (extended) states that are not square-integrable. The emergence
of a spatially localized state in a regime wherein the natural modes are in-
herently delocalized is contrary to common sense and may seem a priori
impossible because of the markedly different nature of these states. For ex-
ample, in electronic systems it is counterintuitive to have a bound state at
the same energy level for which the system supports free electron states.
Surprisingly, it was shown by von Neumann and Wigner in 1929 that bound
states embedded in the continuum (embedded eigenstates) are really allowed
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within the framework of the usual wave theories [1,2], and the concept of an
electronic state with “positive energy” was even experimentally verified in
the context of semiconductor heterostructures [3].

Notably, in recent years there has been a considerable interest in the
emergence of embedded eigenstates in photonic platforms [4–9]. In particu-
lar, it has been shown that open material structures (e.g., standing in free-
space) with tailored geometries may support spatially localized stationary
light oscillations with a square integrable electromagnetic field distribution,
notwithstanding that at the same oscillation frequency the system also sup-
ports infinitely many spatially extended modes (belonging to the continuous
spectrum) [4, 6–9]. Here, we note that in photonic platforms formed by ma-
terial inclusions standing in free-space a localized photonic state is always
embedded in the radiation continuum and hence is an “embedded eigen-
state”. Moreover, it should be highlighted that the emergence of embedded
eigenstates in open (optically transparent) material structures is rather sur-
prising because usually light escapes from any open region due to the radi-
ation leakage. Until recently, all the known configurations to localize light
in the radiation continuum with transparent materials required unbounded
(infinitely extended) material structures [4, 6–9], which in practice has lim-
ited interest. Any deviation from the ideal situation leads to a perturbed
localized eigenstate with a finite lifetime.

In a recent series of works [10–12], it was developed a different paradigm
to implement open material structures with a discrete light spectrum. It was
shown that volume plasmons, i.e. charge density oscillations in an electron
gas, give the opportunity to confine light in a spatially-bounded open optical
cavity in such a manner that in ideal conditions the oscillation lifetime can
be infinitely large [10–14]. Moreover, in Ref. [11] it was devised a mechanism
to pump the oscillations of the embedded eigenstate in a core-shell cavity and
ensure at the same time that the trapped light energy has a precise value.
In other words, the energy of the trapped light state is precisely quantized.
Because of this property and due to the obvious analogies with electronic
systems the core-shell resonator is designated as “optical meta-atom”. The
key idea of the “meta-atom” concept is to exploit nonlinear effects to squeeze
the wavelength of the incoming light into the core region until it reaches a
very precise value for which the plasmonic shell blocks the trapped radiation
from exiting the meta-atom [11].

In this chapter we explore alternative two-dimensional (2D) meta-atom
configurations and demonstrate that optical cavities with arbitrary com-
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plex shapes can support embedded eigenstates similar to those studied in
Refs. [10–12,14] for spherical core-shell geometries. Moreover, we investigate
in detail realistic relaxation mechanisms of the meta-atom in the trapped
regime, such as the leakage due to the conversion of light into higher order
harmonics.

This chapter is organized as follows. In section 2.2, we outline different
possible cross-sectional geometries for the meta-atom and derive the condi-
tions under which the meta-atom supports embedded eigenstates. In section
2.3, we analyze the electromagnetic response of the meta-atom in the linear
regime. In section 2.4, the nonlinear response of the meta-atom and the
quantization of the trapped light energy are investigated. The conclusions
are drawn in Sect. 2.5.

2.2 Embedded eigenstates in two-dimensional
cavities

We consider a generic 2D core-shell nanostructure of arbitrary shape (Fig.
2.1) with a dielectric core with relative permittivity ε1, and a shell with a
plasma-type response in the frequency regime of interest. Specifically, it
is assumed that the permittivity of the shell has a Drude-type dispersion
ε2(ω) = 1 − ω2

p/[ω(ω + iωc)], where ωp is the plasma frequency and ωc is
the collision frequency. The materials are non-magnetic µ = µ0 and the
meta-atom stands in free-space. Figure 2.1 depicts a generic geometry of the
structure, being implicit that the core-shell structure is invariant to transla-
tions along the z-direction. It is also assumed that the fields are polarized
in such a manner that H = Hzẑ and E = Exx̂+Eyŷ (transverse magnetic –
TM – polarization), and that the wave propagation is in the xoy plane with
∂/∂z = 0. For now, it is supposed that the response of the involved materials
is linear, but later we will allow the core to be characterized by a Kerr-type
nonlinearity.

The embedded eigenstates may emerge in the regime wherein the shell
supports volume plasmon oscillations, i.e. when the permittivity of the shell
vanishes ε2(ωp) = 0 [12]. Volume plasmons are non-radiative natural oscil-
lations of an electron gas, which in some circumstances may hybridize with
the radiation fields and in this manner perfectly screen the radiation in the
core region [12]. From a purely electromagnetic point of view, this effect can
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Figure 2.1: Generic geometry of the 2D core-shell meta-atom (top view).

be explained by the fact that a material with ε = 0 can behave as perfect
magnetic conductor (PMC) for TM-polarized waves, which corresponds to
an opaque boundary [15]. Specifically, for TM-polarized waves an ε = 0
material mimics precisely a PMC, except for incident waves that impinge
on the material along the normal direction [15]. For normal incidence it is
possible to have an energy flow through an ε-near-zero material (ENZ) due
to an evanescent-type near-field tunneling effect [16–18]. Thus, the embed-
ded eigenstates can occur at the frequency ω = ωp in the limit of vanishing
material loss ( ωc → 0 with ε1 real-valued).

Having a shell with ε2 = 0 is a necessary but not a sufficient condition to
trap light in the core-shell resonator. Indeed, there is an additional require-
ment: the geometry and the material parameters of the core region need to be
such that ω = ωp is coincident with one of the natural oscillation frequencies
ωPMC
m (m=1,2,...) of the equivalent PMC cavity [12]:

ωp = ωPMC
m , for some m. (2.1)

In the system under study the modes of the equivalent PMC cavity are
solutions of a Dirichlet boundary value problem:
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∇·
(1
ε
∇Hz

)
+

ω2

c2
Hz = 0, in the core region, (2.2a)

Hz = 0, at the core boundary. (2.2b)

Furthermore, in order that the field in the shell can have a purely elec-
trostatic nature (volume plasmon mode), only the cavity modes with∮
core boundary

E·dl = 0 are allowed. Equivalently, because of Faraday’s law, it

is necessary that: ∫∫
core

Hzdxdy = 0. (2.3)

In the following subsections we illustrate the outlined ideas for different
geometries of the meta-atom. We would like to highlight that a few recent
works have explored similar concepts to demonstrate that zero-index mate-
rials can be used to realize geometry invariant cavities [13, 19, 20].

2.2.1 Circular cross-section geometry
In the first example, the meta-atom has a circular cross-section such that the
core has radius R1 and the shell has radius R2. In this case, the eigenmodes
of the equivalent PMC cavity (with a PMC wall placed at ρ = R1) are the
solutions of Eq. (2.2a),

Hz = H0e
inφ

{
J|n|

(
ω
c

√
ε1ρ

)
, ρ < R1

0 , otherwise , (2.4)

where H0 is a normalization constant, and Jn is the Bessel function of the
first kind and order n. Imposing the boundary condition (2.2b), it is found
that Hz must vanish at ρ = R1, which implies that for ω = ωp,

J|n|

(
ωp

c

√
ε1R1

)
= 0. (2.5)

This condition is satisfied only for well-defined values of the inner radius
R1 and of the core permittivity ε1. Importantly, the embedded eigenmodes
only occur for a nonzero azimuthal quantum number n ̸= 0 (∂/∂φ ̸= 0), so
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that condition 2.3 can be satisfied. From a different perspective, for n = 0 the
electromagnetic fields are constant over the ENZ shell boundary (∂/∂φ = 0).
Hence, waves with n = 0 impinge along the normal direction on the ENZ
material interface so that the shell is penetrable by these waves. Thus, the
ENZ shell behaves as a PMC wall only for TM-polarized waves with ∂/∂φ ̸=
0. As an example, for waves associated with the lowest order positive mode
n = 1 (dipole mode), the first zero of J1(u) occurs for u ≈ 3.81, and this
gives the opportunity to have an embedded eigenmode with infinite lifetime
for R1 = R1,0 ≡ 3.83 c√

ε1ωp
at ω = ωp.

The electric field of a trapped mode in the core is calculated with the
usual formulas Eρ = 1

−iωε1
1
ρ
∂φHz and Eφ = 1

iωε1
∂ρHz, with Hz satisfying

Eq. (2.4). On the other hand, the electric field in the shell must be a
solution of the Laplace equation, and thereby is of the form E = −∇ϕ
with ϕ = (A1ρ

|n| + A2ρ
−|n|)einφ. Taking into account that the tangential

(azimuthal) electric field vanishes at the shell-air boundary and is continuous
at the shell-core boundary, it is simple to prove that the electric potential
satisfies:

ϕ = η1H0J
′
|n|(k1R1)R1

1

n

(ρ/R2)
|n| − (ρ/R2)

−|n|

(R1/R2)|n| − (R1/R2)−|n| e
inφ, R1 < ρ < R2.

(2.6)
Thus, the electromagnetic fields in the shell remain finite in the limiting

case ε2 = ε′2 + iε′′2 → 0, and there are no singularities in this limit.
In general, if the material loss is nonzero or if the core radius is detuned

the decay time becomes finite and the corresponding oscillation frequency
has an imaginary part: ωr = ω′ + iω′′ with ω′′ < 0. This complex resonant
frequency can be found by considering solutions of the wave equation of the
form:

Hz = H0e
inφ

{ anJ|n|(k1ρ), ρ < R1

bnJ|n|(k2ρ) + cnY|n|(k2ρ), R1 < ρ < R2

dnH
(1)
|n| (k0ρ), ρ > R2

(2.7)

where k0 = ω/c, k1 = k0
√
ε1, k2 = k0

√
ε2, Yn is the Bessel function of the

second kind and order n, and H
(1)
n is the Hankel function of the first kind

and order n. The coefficients an, bn, cn and dn must be such that Hz and
1
ε
∂Hz

∂ρ
are continuous functions of ρ at ρ = R1 and ρ = R2. This yields the

following homogeneous linear system
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J|n|(k1R1) −J|n|(k2R1) −Y|n|(k2R1) 0

0 −J|n|(k2R2) −Y|n|(k2R2) H
(1)
|n| (k0R2)

k1
ε1
J ′
|n|(k1R1) −k2

ε2
J ′
|n|(k2R1) −k2

ε2
Y ′
|n|(k2R1) 0

0 −k2
ε2
J ′
|n|(k2R2) −k2

ε2
Y ′
|n|(k2R2) k0H

′(1)
|n| (k0R2)



an
bn
cn
dn

 =


0
0
0
0

 ,

(2.8)
which has a nontrivial solution only when ω is such that the determinant of
the matrix vanishes. The quality factor of the natural mode of oscillation is
given by Q = ω′/(−2ω′′) and corresponds roughly to the ratio of the lifetime
(τph) and the period of oscillation (T ): Q/2π = τph/T [12].

To illustrate the discussion, we consider the case wherein R2 = 1.1R1

and the meta-atom core is filled with air (ε1 = 1). Figure 2.2 shows the
calculated quality factor of the meta-atom as a function of the core radius
R1/R1,0 and for different values of the shell material loss (i.e., different values
of the normalized collision frequency ωc/ωp). As seen in Fig. 2.2, in the
ideal case wherein the collision frequency vanishes and the core radius is
tuned so that R1/R1,0 = 1, the quality factor diverges to infinity Q = ∞,
which corresponds to an embedded eigenvalue with infinite lifetime. When
the effect of material loss is considered or the core radius is detuned (R1 ̸=
R1,0), the quality factor and the oscillation lifetime become finite. Different
from conventional dielectric resonators (e.g., whispering gallery cavities), the
quality factor can be rather large even for subwavelength meta-atoms. In
practice, the maximum quality factor is determined by the ENZ material loss.
Similar to the theory of Ref. [12] for a spherical cavity, it can be checked that
when R1/R1,0 = 1 the quality factor is Q ≈ ωp/ωc, and hence is determined
by the lifetime of the volume plasmons in the ENZ shell.

In the shell region the magnetic field is of the form Hz = einφfn(k2ρ) and
hence it is possible to introduce a transverse impedance given by:

Eφ

Hz

≡ ZTM
n =

k2
iωε0ε2

f ′
n(k2ρ)

fn(k2ρ)
, (2.9)

where η2 = η0/
√
ε2 is the impedance of the shell and fn is some linear

combination of Bessel functions of order n. It can be checked that in the
limit k2ρ → 0 and for n ≥ 1, f ′

n(k2ρ)
fn(k2ρ)

∼ 1
k2ρ

. Thus, the transverse impedance
diverges, ZTM

n → ∞, in the limit wherein ε2 → 0. This confirms that the
ENZ shell really behaves as a PMC for TM-polarized modes with ∂/∂φ ̸= 0.
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Figure 2.2: Quality factor as a function of R1/R1,0 for different values of
the material loss in the cylindrical meta-atom shell and for the n = 1 mode.

Quite differently, for modes with n = 0 the transverse impedance is finite
in the ENZ limit. For example, if f0 = J0(k2ρ) it can be verified that when
ε2 → 0 the impedance satisfies ZTM

0 = iη2k2ρ/2 = iη0k0ρ/2 and is therefore
finite. Thus, the ENZ shell is generally penetrable by waves with ∂/∂φ = 0
consistent with the discussion in the beginning of the subsection. It can also
be verified that the transverse impedance of transverse electric (TE) waves
(with electric field along the z-direction and magnetic field in the xoy plane)
is finite in the ENZ limit. Thus, the ENZ shell mimics the PMC response
only for a specific wave polarization and when ∂/∂φ ̸= 0, and hence the
meta-atom is generally open to electromagnetic waves.
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2.2.2 Other geometries: square-shaped and kite-shaped
cross-sections

To demonstrate that the embedded eigenstates with infinite lifetime are not
specific of meta-atoms with circular cross-section, we studied the natural
modes of open cavities with more complex shapes, such as a square or a
kite-shaped cross-section geometry [see Fig. 2.3].

a) b)

z

y

x

Figure 2.3: Snapshot in time of the magnetic field (Hz) associated with the
dipolar trapped state (in arbitrary units) in a meta-atom with a) a square-
shaped and b) a kite-shaped cross-section, respectively. The corresponding
electric field is on average directed along the x-direction.

For a square-shaped cross-section geometry (Fig. 2.3a), Eq. (2.2) has
an analytical solution, Hz = H0 sin(n

π
l
x) sin(mπ

l
y), where n,m = 1, 2, ...

are integer numbers and l is the side of the square (it is supposed that
the boundaries are x = 0, l and y = 0, l). The associated eigenfrequencies
are ωS,mn = c√

ε1

√
(mπ

l
)2 + (nπ

l
)2. Similar to the cylindrical case, the mode

of interest cannot have a monopole-type symmetry. Indeed, the monopole
mode m = n = 1 does not satisfy the condition (2.3) and hence must be
excluded. For a dipolar-type symmetry there are two options, (m,n) = (1, 2)
or (m,n) = (2, 1), which correspond to ωS,12 = c√

ε1
π
l

√
5. The profile of

the relevant dipolar mode is depicted in Fig. 2.3a. In order to have an
embedded dipolar state it is required that the plasma frequency of the ENZ
material satisfies ωp = ωS,12, or equivalently the side of the square is equal
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to l = c√
ε1

π
ωp

√
5.

Evidently, for a completely generic geometry, e.g. for a kite-shaped cross-
section (see Fig. 2.3b), Eq. (2.2) does not have an analytical solution. In
this case, the allowed oscillation frequencies of the embedded eigenstates
need to be numerically determined. We used a commercial electromagnetic
simulator [21] to calculate the resonant frequencies of the equivalent cavity
with PMC walls. The profile of lowest frequency dipolar mode (the dipolar
modes are nondegenerate for this geometry) is represented in Fig. 2.3b. From
the numerical simulation, it is found that the resonant frequency is related
to the diameter of the object Dx (along the x-direction) as ωK = 6.41c

Dx
√
ε1

, so
that the light trapping condition is Dx = 6.41c

ωp
√
ε1

. In summary, the geometrical
conditions required to have infinite-lifetime oscillations with a dipolar mode
in each of the meta-atom geometries are:

R1,0 =
3.83c

ωp
√
ε1
, circular-shaped

l0 =

√
5πc

ωp
√
ε1
, square-shaped

Dx,0 =
6.41c

ωp
√
ε1
, kite-shaped.

(2.10)

Note that in the ideal case wherein the ENZ shell is lossless the oscillation
frequency and the lifetime of the embedded eigenstate are totally independent
of the geometry of the shell [12, 13, 19, 20].

2.3 Meta-atom excitation in the linear regime
Up to now, the discussion was focused on the physical nature and properties
of the embedded eigenstates. Next, we analyze the electromagnetic response
of a meta-atom under external excitation.

The meta-atom is illuminated by a linearly polarized plane wave with
magnetic field along the z-direction and electric field along the x-direction.
Figure 2.4 depicts the ratio between the electric field in the meta-atom core
center (Ex0) and the incident electric field amplitude (Einc) as a function of
the frequency for the three geometries introduced in Sec. 2.2. The results of
Fig. 2.4 were obtained using CST Microwave Studio [21]. Note that Ex0/Einc
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may be regarded as the transfer function of the meta-atom. For the circular
cross-section case, Ex0/Einc can be determined as well using Mie theory (for
cylindrical waves) [12] and is given by the Mie coefficient aTM

1 of the inner
core.

a) b) c)

Figure 2.4: Normalized electric field in the meta-atom geometrical center as
a function of the frequency for the a) circular geometry; b) square geometry;
c) kite geometry. The curves (iii) correspond to meta-atoms that support
embedded dipolar-type eigenstates with infinite lifetime, i.e., for which the
condition (2.10) is satisfied. The curves (i) and (ii) correspond to objects
with linear dimensions scaled by a factor of (i) 1.02 and (ii) 0.98 as compared
to the tuned geometry [curve (iii)]. The effect of ENZ loss is neglected in
the simulation (ωc/ωp ≈ 0). The inner core has permittivity ε1 = 1 for the
circular-geometry and ε1 = 2 for the square- and kite- geometries.

For each cross-sectional shape, we consider three different resonators with
linear dimensions scaled by a factor of (i) 1.02, (ii) 0.98 and (iii) 1.00 relative
to the ideal geometry [Eq. (2.10)] for which the meta-atom supports an em-
bedded dipolar-type state with infinite lifetime. As seen in Fig. 2.4, indepen-
dently of the cross-section, all the meta-atoms exhibit a similar response to
the plane-wave excitation. In particular, when the meta-atom dimensions are
slightly detuned from the optimum value in Eq. (2.10) [curves (i) and (ii)],
the scattering coefficients display resonances with Fano-type lineshapes [22],
similar to the spherical geometry case [12]. The fractional bandwidth of the
resonance is inversely proportional to the quality factor, and hence for a
perfectly tuned meta-atom [curves (iii)] the transfer function does not have
resonant features and |Ex0/Einc| ≈ 1 [12]. Hence, counterintuitively, in the
tuned case the meta-atom is penetrable by the incoming radiation, which
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further highlights that the considered cavity is open to external excitations.
To shed some light on this intriguing property, the time dynamics of the

electric field inside the meta-atom with circular cross-section was studied with
CST Microwave Studio [21]. The nanostructure is illuminated by a linearly
polarized plane wave with finite duration in time (Gaussian-shaped pulse).
The wave propagates along the positive y direction and the Gaussian pulse
is centered at tpeak = 177 ps with a full-width half maximum (FWHM) equal
to ∆τ = 78 ps. The plasma frequency of the ENZ material is ωp/2π = 1
THz and the meta-atom radius is tuned according to Eq. (2.10).

a) b)

|E
|/|

E0 in
c|

|E
|/|

E0 in
c|

t [ps] t [ps]

Ec

Einc

Ec

Einc

a) b)

Figure 2.5: Time evolution of the electric field envelope at the center of the
meta-atom for an incident pulse with a peak amplitude |E0

inc| for a) R1 = R1,0

and b) R1 = 0.98R1,0. The effect of ENZ loss is neglected in the simulation
(ωc/ωp ≈ 0), the inner core has relative permittivity ε1 = 1 and R2 = 1.1R1.

Figure 2.5a shows the normalized amplitude of the electric field at the
center of the meta-atom as a function of time for a tuned cavity (R1 =
R1,0). As seen, the electric field in the core is virtually coincident with the
incoming field. This property is consistent with the fact that |Ex0/Einc| ≈ 1
(Fig. 2.4(aiii)), i.e. a perfectly tuned meta-atom is nearly transparent to
the incoming radiation. Crucially, this property implies that the external
excitation is unable to pump the embedded eigenstate with infinite lifetime
when R1 = R1,0. Thus, consistent with the Lorentz reciprocity theorem, in
the same way as the light trapped in the embedded state cannot escape from
the meta-atom, an external source is also unable to excite the embedded
light state with infinite lifetime [11, 12]. In contrast, Fig. 2.5(b) shows that
when the structure is slightly detuned (R1 = 0.98R1,0) a significant part of
the energy of the incoming field can remain trapped in the meta-atom, and
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relax slowly with a decay rate ω′′ = 4.12× 108 rad/s, long after the incident
pulse overtakes the meta-atom.

2.4 Meta-atom excitation in the nonlinear regime:
Trapping a light ”bit”

In Ref. [11], it was shown that the limitations imposed by the Lorentz reci-
procity theorem can be surpassed with the help of a nonlinear response. The
key idea is to use a nonlinear material in the core region and choose the core
dimensions slightly below the optimum. The slight detuning of the inner core
allows the relevant eigenstate to be externally pumped (Fig. 2.5(b), whereas
the nonlinear material enables the resonator self-tuning and the trapping of
a quantized amount of light energy [11]. Here, we will explore the same
mechanism but for complex shaped 2D meta-atoms.

To begin with, we consider a meta-atom with a circular cross-section and
set the inner radius equal to R1 = 0.98R1,0. Assuming that the core has
a Kerr-type nonlinear response, the condition to obtain a perfect trapping
at the frequency ωp can be estimated as kNL

1 R1 = k1R1,0 [11], where kNL
1 =√

εNLωp
c

is the wave number inside the nonlinear medium and εNL is the
relative nonlinear permittivity. This condition is equivalent to [11]

χ(3)3

4
|Ec|2 = ε1

[(
R1,0

R1

)2

− 1

]
, (2.11)

where χ(3) is the third-order susceptibility of the nonlinear material [23] and
Ec is the electrical field complex amplitude at the core center in the station-
ary state. A similar condition holds for the other cross-section geometries
considered in this article with R1,0/R replaced by l0/l for the square-shaped
meta-atom and by Dx,0/Dx for the kite-shaped meta-atom. Importantly,
Eq. (2.11) reveals that Ec, and thereby also the field energy trapped in the
meta-atom, are precisely quantized and only depend on the geometrical pa-
rameters of the resonator and on the considered materials. To demonstrate
these ideas, we studied the time dynamics of the electric field in the open
resonator when it is excited by a pulse with the same Gaussian profile as in
the previous section. As discussed in Ref. [11], the effect of loss in the ENZ
material is strongly detrimental to the light trapping in the core (see Fig.
2.2), and in practice the ENZ material loss needs to be compensated by some
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active material with optical gain. Thus, in what follows it is assumed that
the ENZ shell is lossless (ωc/ωp ≈ 0).

Figure 2.6: Time variation of the normalized electric field |Ec|/|Eth
c | in the

core for an excitation pulse with (i) |E0
inc| = 1|Eth

c |, (ii) |E0
inc| = 2|Eth

c |, (iii)
|E0

inc| = 3|Eth
c |, and (iv) |E0

inc| = 4|Eth
c |, with the parameter χ(3) fixed.

Figure 2.6 depicts the peak amplitude of the electric field in the core (i.e.,
the field envelope) as a function of time for different values of the peak ampli-
tude of the incident field |E0

inc|. For the sake of generality, we use normalized

units so that the electric field is normalized to |Eth
c | =

√√√√4
3

ε1
χ(3)

[(
R1,0

R1

)2

− 1

]
,

i.e., the theoretical value of the field in steady-state regime [Eq. (2.11)].
For example, if the third-order nonlinear susceptibility of the core is χ(3) =
10−18 m−2V−2 and ε1 = 1 one has |Eth

c | = 2.3× 108 V/m.
The results of Fig. 2.6 confirm that in the stationary regime Ec always

saturates at the same value [curves (iii) and (iv)], and hence the trapped
light energy is indeed quantized. In our example, the saturation value is
|Ec| = 1.16|Eth

c |, showing that the theoretical formula (2.11) underestimates
the field in the core. The difference is expected because Eq. (2.11) is derived
under the assumption that the electric field is uniform in the core. Thus,
in steady-state the required nonlinearity strength is χ(3)|Ec|2 = 0.07. The
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nonlinearity strength can be made as small as one wishes with a design with
R1/R1,0 closer to the unity. Moreover, one can see from Fig. 2.6 that there
is a threshold value for |E0

inc|, and the light trapping only occurs for incident
pulses with amplitude larger than the threshold. In the example of Fig. 2.6
the threshold is roughly |E0

inc| = 3|Eth
c | [curve (iii)].

To further understand the nonlinear mechanisms that enable the light
trapping, we show in Fig. 2.7 the normalized field in the core (in the hori-
zontal axis) as a function of the normalized incident field (in the vertical axis)
in the nonlinear regime and for two fixed frequencies near ωp. This plot was
obtained using |Einc| = 1

|aTM
1 | |Ec|, with aTM

1 the Mie coefficient in the core.
The Mie coefficient is a function of the core permittivity εNL = ε1+

3
4
χ(3)|Ec|2,

and thereby of the core electric field. Remarkably, the characteristic |Ec| vs
|Einc| is multi-valued, and hence the meta-atom has a bi-stable response.

=10-6
p

=10-4
p

|Ec|/|Ec
th|

|Ec|/|Ec
th|

|Einc|
|Ec

th|

|Einc|
|Ec

th|

a)

b)

=10-6
p

=10-4
p

|Ec|/|Ec
th|

|Ec|/|Ec
th|

|Einc|
|Ec

th|

|Einc|
|Ec

th|

a)

b)

Figure 2.7: Bi-stable characteristic of the meta-atom for the fixed frequency
ω = ωp+∆ω with a) ∆ω = 10−4ωp and b) ∆ω = 10−6ωp. The arrow indicates
the discontinuous transition between different branches.

The light trapping occurs at the point |Ec| = |Eth
c | and |Einc| = 0 when

ω = ωp. To reach this point the amplitude of the incoming wave must exceed
a threshold value, so that the transition between the two branches (indicated
by the arrow) may take place. This threshold value depends strongly on
the frequency detuning ∆ω with respect to ω = ωp. The threshold value
is roughly 3|Eth

c | for curve (a) and 350|Eth
c | for curve (b), and approaches

infinity in the limit ∆ω → 0. In practice, the meta-atom is excited by a
finite duration pulse with a spectrum sufficiently wide to excite a continuum
range of ∆ω. Thus, the threshold value that enables the transition from the
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first to the second branch is determined by the global frequency response of
the meta-atom.

a) b) c)

d) e) f)

z
y

x

Ec/Ec
th

t=0 ps t=100 ps t=150 ps

t=1550 pst=250 pst=200 ps

Figure 2.8: Time snapshots of the x-component of the electric field in the
xoy plane showing the excitation of the meta-atom by the incoming pulse
that propagates along the +y-direction, and the trapping of a light “bit” in
the core after the incoming pulse overtakes the meta-atom.

To illustrate the dynamics of the light trapping, we show in Fig. 2.8
several time snapshots of the x-component of the electric field for the simu-
lation of Fig. 2.6(iii). Figure 2.8 clearly shows that a quantized amount of
the energy of the excitation pulse stays trapped in the open resonator and
that there is no energy leaked to the exterior after the core permittivity is
self-tuned.

As a result of the nonlinear response of the dielectric core, there is a
frequency conversion so that a third-order harmonic is generated in the core
[see Fig. 2.9]. The third-order harmonic generation may affect the mode
lifetime and may contribute to the relaxation of the trapped light [11], but
the process appears to be rather slow.

In order to investigate the impact of changing the cross-section geometry,
we also analyzed the temporal dynamics of the fields in a kite-type resonator
[see Fig. 2.3(b)]. Figure 2.10 shows the normalized electric field peak ampli-
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Figure 2.9: Plot of the Fourier transform of the x-component of the electric
field normalized to the peak value of the Fourier transform of the incident
wave: (i) at the center of the meta-atom and (ii) outside the meta-atom,
at (x, y, z) = (0, 1.5R2, 0). The duration of the simulation is 114∆τ and the
simulation parameters are as in Fig. 2.6(iii).

tude at the center of the kite-shaped meta-atom for different amplitudes of
the incident pulse. The diameter of the kite-shaped object is Dx = 0.98Dx,0

[curves (i-iv)] and the core permittivity in the linear regime is ε1 = 2. The
excitation pulse and the ENZ material are the same as in the previous exam-
ples. The results of Fig. 2.10 are somewhat analogous to those of the circular
cross-section case in Fig. 2.6. In particular, in the trapping regime the field
in the core has a nearly constant amplitude. However, the kite-geometry
appears to be much more sensitive to realistic decay mechanisms (e.g., third
harmonic conversion or absorption effects), because after the time instant
t = 2000 ps the light bit escapes from the core at the same rate as in the
linear regime. This increased sensitivity to relaxation mechanisms as com-
pared to the meta-atom with circular cross-section is in part due to the lower
quality factor of the kite resonator (see Fig. 2.4). In fact, for a kite resonator
with a larger quality factor (Dx = 0.99Dx,0) [curve (v) of Fig. 2.10] the light
bit is withheld in the core for a considerably longer period of time. However,
it is evident that the circular cross-section geometry enables a more robust
performance.
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Figure 2.10: a) Time variation of the normalized electric field at the center
of the kite-shaped meta-atom for an incident pulse with peak amplitude (i)
|E0

inc| = 3|Eth
c |, (ii) |E0

inc| = 4|Eth
c |, (iii) |E0

inc| = 5|Eth
c | and (iv) |E0

inc| =
6|Eth

c |. Curve (v) is for a kite with diameter Dx = 0.99Dx,0 and an incident
pulse with peak amplitude |E0

inc| = 7.13|Eth
c |.

2.5 Conclusions
In this chapter we demonstrated that the light trapping mechanism intro-
duced in Refs. [11,12] may be generalized to open core-shell plasmonic parti-
cles with arbitrary shape. When some particular geometrical conditions are
satisfied, complex-shaped cavities can support embedded eigenstates that in
the lossless limit have an infinite lifetime. Moreover, it was shown that a
fundamental restriction imposed by the Lorentz reciprocity theorem, which
forbids the direct external excitation of the embedded eigenstates, can be
circumvented with a nonlinear dielectric response, similar to what was done
in [11] for a spherical core-shell geometry. The amount of energy retained
within the meta-atom is precisely quantized and depends only on the core-
shell geometry. Numerical simulations suggest that the meta-atom geometry
has a considerable influence on the sensitivity to relaxation mechanisms.
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CHAPTER 3
Impact of nonlocal effects on

embedded eigenstates

3.1 Introduction
The light trapping studies done in chapter 2 and in Refs. [1–7] assumed
that the plasmonic ENZ shell of the meta-atom had a local response, i.e.,
the material permittivity was assumed independent of the spatial variation
of the fields. Possible effects of spatial dispersion were only superficially
discussed in [1]. In metals the nonlocal effects arise primarily due to many-
body electron-electron (repulsive-type) interactions, and are usually modelled
through a diffusion-term in the framework of the hydrodynamic model [5,8–
17]. Nonlocal effects may be critically important in plasmonics, especially for
nanosized particles [5, 8–19]. Thus, one might think that spatial dispersion
would be an additional obstacle to create embedded eigenstates. Surprisingly,
we prove in this chapter that it is precisely the opposite, and that nonlocal
effects offer a unique path to localize light in an open resonator. It is shown
that the conditions for the observation of embedded eigenstates are very
much relaxed when nonlocal effects are taken into account; in particular, the
shell permittivity is not anymore constrained to be precisely zero.

This chapter is organized as follows. In Sect. 3.2, we describe the electro-
magnetic fields in space of the nonlocal meta-atom using Mie theory and use
hydrodynamic model to characterize the nonlocal effects on the shell. Us-
ing classical and additional boundary conditions, we find the characteristic

37



equation for the bound states. We then calculate the embedded eigenstates
allowed solutions in function of several geometrical parameters of the par-
ticle. In Sect. 3.3, we study the electromagnetic response of the core-shell
particle under an external excitation. In Sect. 3.4, we analyze the reasons
why it is still possible to have trapped states with infinite lifetimes in core-
shell plasmonic particles with nonlocal effects. Finally, in Sect. 3.5 the main
conclusions are drawn.

3.2 Natural modes of the spatially dispersive
plasmonic core-shell nanoparticle

Figure 3.1(a) illustrates the geometry of the core-shell meta-atom. It consists
of a bi-layered spherical nanoparticle standing in air. The core region and
the outer shell have radii R1 and R2, respectively. The core material is a
simple dielectric with relative permittivity ε1, e.g., air, and the shell is made
of a plasmonic material, e.g., a noble or alkali metal at optical frequencies or
a semiconductor in the terahertz regime. The unbounded plasmonic material
supports three plane-wave modes with a spatial dependence of the type eik.r:
two transverse waves and also a longitudinal wave [5, 15].

Due to the spherical symmetry, the natural modes of the core-shell nanopar-
ticle (Fig. 3.1(a)) can be split into transverse radial magnetic (TMr) and
transverse radial electric (TEr) waves. We focus on the TMr modes whose
properties are determined by the hybridization of transverse and longitudinal
waves. Using Mie theory [20, 21] the electromagnetic fields may be written
in all the regions of space in terms of spherical Bessel functions [1]. Our
analysis relies on the hydrodynamic (or drift-diffusion) model [5] that takes
into account the nonlocal effects in the plasmonic shell. The hydrodynamic
model couples the Maxwell’s equations and the continuity equation

∇× E = −µ0∂tH, ∇× H = j + ε0ε∞∂tE, (3.1a)
∂tρ = −∇ · j (3.1b)

with the Navier-Stokes equation that governs the electron transport

∂tj = ε0ω
2
pE − ωcj − β2∇ρ. (3.2)
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In the above, ρ is the charge density and j the current density. In the spectral
domain (∂t = −iω and ∇ = ik) the current density j can be expressed in
terms of the electric field. The effective permittivity of the shell electron gas
(ε̄2) is defined such that j − iωε0ε∞E = −iωε0ε̄2 · E. As is well-known, it is
of the form:

ε̄2 = ε2,T

(
1 − 1

k2
k ⊗ k

)
+ ε2,L

1

k2
k ⊗ k, (3.3a)

ε2,T(ω) = ε∞ −
ω2

p

ω(ω + iωc)
, ε2,L(k, ω) = ε∞ −

ω2
p

ω(ω + iωc)− β2k2
. (3.3b)

The transverse permittivity ε2,T associated with the transverse waves fol-
lows the Drude-type dispersion model, with ωp the plasma frequency, ωc
the collision frequency and ε∞ is the high-frequency relative permittivity.
The longitudinal permittivity ε2,L associated with the longitudinal wave [5]
depends explicitly on the wave-vector (∇ = ik). The dispersion of the longi-
tudinal wave is determined by k2 = 1

β2

[
ω(ω + iωc)−

ω2
p

ε∞

]
, where β2 = 3/5v2F

and vF is the Fermi velocity [12,13]. The nonlocality strength parameter β/c
may reach values on the order of 1/450 in alkali metals [8], 1/280 in semicon-
ductors [17], and even larger values in metamaterials [22,23]. For simplicity,
except if explicitly mentioned otherwise, it is assumed in the paper that
ε∞ = 1.

For the geometry of the main text and TMr
n-polarized waves, the electro-

magnetic field in the plasmonic shell is a superposition of the transverse and
longitudinal waves such that [1, 13]

E = ET + EL = ∇×∇× {rΨT(r)Yn(r̂)}+∇{ΨL(r)Yn(r̂)}, (3.4)

H = +iωε0ε2,TΨT(r)r̂ × GradYn(r̂), (3.5)
where Yn is a spherical harmonic of order n and Grad is the surface gradient
operator.
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Figure 3.1: (a) Geometry of the open bounded bi-layered spherical meta-
atom. The shell is made of a plasmonic spatially-dispersive material. (b)
Characteristic function DS as a function of frequency, for a meta-atom with
β/c = 1/103/2, R21 = 1.1, R1 = 0.973R10 and ωc = 0. The zeros indi-
cate the values of the frequencies ω(j)

trap. The insets give the values of the
core permittivity ε1 and of the shell transverse permittivity ε2,T for the first
three solutions. (c)-(f) Embedded eigenstate frequency (blue lines) and sus-
ceptance at the core interface (green lines) as a function of the (c) locality
strength c/β, (d) normalized shell radius R21 = R2/R1, (e) normalized core
radius R1/R1,0 and (f) high-frequency relative permittivity ε∞. The suscep-
tance is normalized to the free-space impedance η0. The solid, dashed, and
dot-dashed curves correspond to the j = 1, 2, 3 solution branches, respec-
tively. The structural parameters are c/β = 1/103/2, ωc = 0, R21 = 1.1,
R1/R1,0 = 1 and ε∞ = 1 except when one of the parameters is shown in the
horizontal axis of a plot.
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The functions ΨT and ΨL are the transverse and longitudinal potentials,
respectively, and satisfy a spherical Bessel equation. For natural modes of
oscillation they are given by

ΨT =


Ajn(k1r) , r < R1

B1Tjn(kTr) +B2Tyn(kTr) , R1 < r < R2

Ch
(1)
n (k0r) , r > R2

, (3.6)

ΨL =

{
B1Ljn(kLr) +B2Lyn(kLr) , R1 < r < R2

0 , otherwise
, (3.7)

with k0 = ω/c, k1 =
√
ε1ω/c, kT =

√
ε2,Tω/c and k2L = 1

β2

[
ω(ω+ iωc)−

ω2
p

ε∞

]
.

The coefficients A, B1T, B2T, B1L, B2L and C must ensure i) the continuity of
the tangential components of the electromagnetic field and ii) that there is no
electric charge flow through the shell interfaces n̂·j = 0. The latter constraint
is the so called “additional boundary condition”. From these conditions, we
obtain a homogeneous linear system of equations of the form M ·x = 0 with
x = (A,B1T, B2T, B1L, B2L, C)

T and

M =



−[jn(k1r)r]
′
r=R1

[jn(kTr)r]
′
r=R1

[yn(kTr)r]
′
r=R1

jn(kLR1) yn(kLR1) 0
−ε1jn(k1R1) ε2,Tjn(kTR1) ε2,Tyn(kTR1) 0 0 0

0 qjn(kTR1) qyn(kTR1) kLR1j
′
n(kLR1) kLR1y

′
n(kLR1) 0

0 qjn(kTR2) qyn(kTR2) kLR2j
′
n(kLR2) kLR2y

′
n(kLR2) 0

0 [jn(kTr)r]
′
r=R2

[yn(kTr)r]
′
r=R2

jn(kLR2) yn(kLR2) −[h
(1)
n (k0r)r]

′
r=R2

0 ε2,Tjn(kTR2) ε2,Tyn(kTR2) 0 0 −ε0h(1)n (k0R2)


(3.8)

with q = (1− ε2,T)n(n+ 1) [1]. The nontrivial solutions ω = ω′ + iω′′ (with
ω′′ ≤ 0) of the characteristic equation D(ω,R1, ε1, R2, ωp, β) ≡ det(M) = 0
are the natural frequencies of oscillation of the system.

We also introduce a reduced characteristic system (MS · x̃ = 0 with
x̃ = (B1T, B2T, B1L, B2L)

T ) obtained by imposing that the tangential electro-
magnetic field components vanish at the outer interface r = R−

2 [1], and that
the additional boundary condition n̂ · j = 0 is satisfied at the inner (r = R+

1 )
and outer (r = R−

2 ) interfaces. The relevant matrix is:
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MS =


qjn(kTR1) qyn(kTR1) kLR1j

′
n(kLR1) kLR1y

′
n(kLR1)

qjn(kTR2) qyn(kTR2) kLR2j
′
n(kLR2) kLR2y

′
n(kLR2)

[jn(kTr)r]
′
r=R2

[yn(kTr)r]
′
r=R2

jn(kLR2) yn(kLR2)
ε2,Tjn(kTR2) ε2,Tyn(kTR2) 0 0

 .

(3.9)
The zeros of DS ≡ det(MS) = 0 in ω determine the frequencies for which a
given shell can support embedded eigenstates.

For each solution of DS = 0, we introduce a transverse admittance Y +
w

that links the fields at the inner shell interface (r = R+
1 ) as Y +

w r̂ × E =
r̂ × (H × r̂). The transverse admittance is purely imaginary Y +

w = −iBw.
Using Eqs. (3.4)-(3.5) it is straightforward to show that:

Y +
w =

iωε0ε2,TψT(r)
1
r
{[rψT(r)]′ + ψL(r)}

|r=R1 . (3.10)

From Eqs. (3.6)-(3.7) one obtains the explicit formula:

Y +
w η0 = ik0R1

B1Tε2,Tjn(kTR1) +B2Tε2,Tyn(kTR1)

B1T[jn(kTr)r]′r=R1
+B2T[yn(kTr)r]′r=R1

+B1Ljn(kLR1) +B2Lyn(kLR1)
(3.11)

In the above, η0 is the free-space impedance and (B1T, B2T, B1L, B2L) is de-
termined by the null space of MS. On the other hand, from Eq. (3.6), the
transverse admittance calculated at the core side of the interface (r = R−

1 )
is:

Y −
w η0 = ik0R1

ε1jn(k1R1)

[rjn(k1r)]′r=R1

. (3.12)

An embedded eigenvalue can be formed only when the conditions DS = 0
and Y + = Y −(ω,R1, ε1) are simultaneously satisfied. In general, there are
multiple allowed solutions for ε1.

In the local limit (β = 0), i.e., for an electron gas with non-interacting
electrons, it is known from Ref. [1] that the embedded eigenstates can oc-
cur only if the shell has a zero-permittivity, i.e., ε2 = 0 is a mandatory
condition. Thus, the oscillation frequency of a trapped state is necessarily
ω = ωp. An ε2 = 0 shell behaves as a perfect magnetic (PMC) wall for
TMr waves. The embedded eigenstates are formed when ω = ωp coincides
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with an eigenfrequency of the equivalent PMC resonator, i.e., the core sur-
rounded by a fictitious PMC boundary. For an embedded eigenstate with
dipolar-type symmetry, this condition leads to the geometrical constraint
R1 = R1,0 ≡ 4.49c/(ωp

√
ε1) [1].

In general, for a spatially dispersive shell, the embedded eigenstates are
solutions of D = 0 with a real-valued ω so that the oscillations do not de-
cay with time. The simplest way to understand the general structure of the
solutions and to generate them is by using the reduced dispersion equation
DS = 0. Remarkably, it turns out that in the lossless limit the solutions
of the reduced equation DS = 0 consist of an infinite number of branches
ω = ω

(j)
trap(R1, R2, ωp, β), j = 1, 2, 3,... (see Fig. 3.1(b)). This implies that

a nonlocal plasmonic shell with a given geometry may support multiple em-
bedded eigenstates, rather than a unique bound state as in the local case [1].
This finding is contrary to common sense as the nonlocal effects are rooted in
repulsive electron-electron interactions, which intuitively should act against
light localization. Curiously, it was shown in [24] that the nonlocal effects in
thin metal slabs may not adversely affect other type of plasmonic phenomena.

As mentioned above, the core permittivity ε1 needs to be precisely tuned
to ensure that Y +

w = Y −
w (ω,R1, ε1). The insets of Fig. 3.1(b) show the values

of (ε1, ε2,T ) for the first three allowed eigenfrequencies. The insets of Fig.
3.1(b) show the values of (ε1, ε2,T) for the first three allowed eigenfrequen-
cies. We choose solutions characterized by ε1 ≥ 1 (there are many solutions
for ε1 both in the local and in the nonlocal cases). The multiplicity of eigen-
frequencies is a consequence of the extra degrees of freedom provided by the
nonlocal response and gives the opportunity to trap light at frequencies con-
siderably far from ωp. Different from the local case, when β ̸= 0 the condition
ω = ω

(j)
trap does not lead to a zero permittivity, i.e., ε2,T ̸= 0 (the longitudinal

permittivity is also nontrivial due to the wave-vector dependence).
Figures 3.1(c)-(f) depict the numerically calculated oscillation frequency

(ωtrap) and the corresponding wave susceptance (Bw) for the first three branches
of solutions and for fields with a dipolar-type structure (TMr

n mode with
n = 1), as a function of the different geometrical and material parame-
ters of the meta-atom. Figure 3.1(c) shows that for a strong spatial dis-
persion (small values of c/β), ωtrap and Bw may differ considerably from
the corresponding local values ωp and 0. Note that in the local regime,
one has Y +

w ≡ 0, which corresponds to a PMC boundary. As the non-
locality strength decreases (c/β → ∞), and thereby the response of the
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plasmonic shell becomes increasingly local, the frequency of oscillation of
the embedded eigenstate approaches ωp. The sign of Bw alternates from
branch to branch and is positive for the first and third branches (solid and
dot-dashed curves) and negative for the second branch (dashed curve). The
deviations from the local case are more significant for the higher order so-
lution branches. Figure 3.1(d) illustrates the variation of ωtrap and Bw with
the normalized shell radius R21 = R2/R1, for a fixed value of the nonlocality
strength, β/c = 1/103/2 = 1/31.62 (we use a large value of β/c to illustrate
more clearly the impact of the spatial dispersion). The nonlocal effects are
stronger, i.e., the frequency detuning ωtrap−ωp is larger, when the plasmonic
shell is thinner. Figure 3.1(e) depicts the variation of ωtrap and Bw with the
normalized core radius R1/R1,0. Results reveal that the frequency detuning
ωtrap −ωp is larger when the meta-atom is smaller. Finally, in Fig. 3.1(f) we
have the variation of ωtrap and Bw with the high-frequency relative permit-
tivity ε∞, in which we see that ωtrap is shifted to lower frequencies with an
increase of ε∞.
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Figure 3.2: (a) Quality factor (for the dipolar mode) as a function of the
normalized core radius R1/R1,trap, for different values of the material loss in
the plasmonic shell. (b) Variation of the real ω′ and imaginary ω′′ parts of the
eigenmode frequency ω = ω′ + iω′′ with R1/R1,trap, for a lossless plasmonic
shell (ωc/ωp = 0). The structural parameters are c/β = 1/103/2, R21 = 1.1,
ε∞ = 1. The quality factor diverges to infinity when R1 = R1,trap = 0.973R1,0

which yields ω = ωtrap = 1.026ωp.

For a specific design example, we pick ε1 = 1, R21 = 1.1 and β/c =
1/103/2 and solve D = 0 with respect to (ω,R1) real-valued. We obtain
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R1,trap = 0.973R1,0 and ωtrap = 1.026ωp in the 1st branch of solutions (1st
zero of Fig. 3.1(b)). The quality factor of this meta-atom is depicted in Fig.
3.2(a) for a detuned core radius and different values of the shell material
loss. Similar to the local problem [1], for a tuned resonator (R1 = R1,trap)
the quality factor diverges to infinity (Q → ∞) when the material loss is
suppressed (ωc → 0), but in the nonlocal case for a frequency ω = ωtrap ̸= ωp.
Evidently, when the material response is dissipative, the quality factor and
the oscillation lifetime are finite. Figure 3.2(b) illustrates how the complex
resonance frequency ω = ω′ + iω′′ varies with the core radius for a lossless
material. As expected, when the core radius matches R1,trap the oscillation
frequency becomes real-valued, and the radiation loss is fully suppressed.

Figure 3.3(a) shows the electromagnetic field distribution (solid lines) of
the embedded eigenstate with R1,trap = 0.973R1,0 and ωtrap = 1.026ωp. The
dashed lines represent the profile of the embedded eigenstate in a meta-atom
without spatial dispersion (ωtrap = ωp and R1,trap = R1,0). From Fig. 3.3(a),
one can see that the electron-electron interactions in the plasmonic shell
affect weakly the electromagnetic field distributions of the trapped field in
the core region (r < R1). In contrast, the fields in the plasmonic shell (1 <
r/R1 < 1.1) are strongly perturbed by the nonlocality. Most strikingly, the
radial component of the electric field in the shell (see the curve |Er|y=0 in Fig.
3.3(a)) becomes continuous at the boundaries because the charge diffusion
effects prevent the localization of a surface charge density at the interfaces.
Both the local and the nonlocal models predict a strong enhancement of the
radial electric field in the plasmonic shell, which is a clear fingerprint of the
excitation of volume-plasmon-type oscillations. Furthermore, Fig. 3.3(b)
reveals that the magnetic field in the spatially dispersive shell, albeit small
is nontrivial. Thus, the embedded eigenstate results from the hybridization
of transverse (with ∇ · E = 0) and longitudinal (with ∇ · E ̸= 0) waves
in the shell. Quite differently, in the local case the embedded eigenstate
has a vanishing magnetic field in the shell and hence is purely longitudinal
(∇ · E ̸= 0) [1]. Figure 3.3(d) shows time snapshots of the radial Er(t = 0)
electric field and of the z-component Hz(t = 0) of the magnetic field obtained
using the nonlocal model. The dipolar structure of the field in the core is
evident; the electric dipole moment is oriented along x and the fields have
symmetry of revolution around the x-axis. Note that due to the symmetry
of the system the eigenmode is triply degenerate.
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Figure 3.3: Electromagnetic fields of an embedded eigenstate. (a) Field
amplitudes in the core-shell resonator (normalized to the electric field at
the core center, r = 0) as a function of the radial distance in the xoy plane,
calculated using the local (dashed lines) and the nonlocal models (solid lines).
Local model results: c/β → ∞, ωtrap = ωp, and R1,trap = R1,0; Nonlocal
model results: c/β = 1/103/2, ωtrap = 1.026ωp and R1,trap = 0.973R1,0. (b)
Zoom of η0|Hz| (blue) and |Eϕ| (green) in the shell for the nonlocal case.
(c) η0|Hz|x=0 (blue) and |Er|y=0 (green) as a function of c/β at center of the
shell (r = 1.05R1). (d) Time snapshots of the electric field in the nonlocal
meta-atom: (i) |Er|(t = 0) and (ii) |Hz|(t = 0) in the xoy plane. In all the
panels, R21 = 1.1, ε1 = 1, and ωc = 0.
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Figure 3.3(c) depicts the amplitude of the embedded eigenstate fields in
the plasmonic shell center as a function of c/β; the values of R1,trap and ωtrap
are recalculated for each c/β. Clearly, as the nonlocality strength increases
(smaller values of c/β), the amplitudes of the magnetic field and of the radial
electric field in the shell are enhanced. For β → 0 the magnetic field in the
shell approaches zero.

Figures 3.4(a) and (b) show the electromagnetic field profiles in the shell
for the second and third solutions of Fig. 3.1(b), respectively. The electric
field profiles of the higher order modes are characterized by an increased
number of maxima and nulls as compared to the first (fundamental) mode
shown in Fig. 3.3(a). The fields in the core are similar to those of the
fundamental mode (not shown).
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Figure 3.4: (a)-(b) Spatial variation of the electromagnetic fields in the
shell (cut in the xoy plane) for the modes labeled (i) and (ii) in Fig. 1b),
respectively. The right vertical axis is used for η0|Hz|x=0 and |Eϕ|x=0, and
the left vertical axis for |Er|y=0.

3.3 Scattering by a spatially dispersive plas-
monic core-shell nanoparticle under ex-
ternal excitation

To study the electromagnetic response of the core-shell particle under an
external excitation, we consider the problem of plane wave scattering with
the electric field linearly polarized. The meta-atom parameters are as in
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Fig. 3.3(a). The Mie scattering coefficients for plane wave incidence can be
found by expanding the fields in spherical harmonics, similar to the previous
section. To take into account the incident wave, the function ΨT must be
modified as

ΨT =


Ajn(k1r) r < R1

B1Tjn(kTr) +B2Tyn(kTr) R1 < r < R2

Ch
(1)
n (k0r) +

1
ik0
jn(k0r) r > R2

(3.13)

In the above, an → ik1A and cn → ik0C are the standard Mie coefficients
in the core and the air regions, respectively. Applying the same boundary
conditions as done in the previous section, one obtains a linear system of
equations of the form M · x = b, where M is given by the matrix (3.8) and
b is the vector:

b =
1

ik0

(
0 0 0 0 [jn(k0r)r]

′
r=R2

jn(k0R2)

)T

. (3.14)

Figure 3.5(a) depicts the absolute value of the Mie coefficient in the core
region |aTM

1 | as a function of frequency and for three different values of the
core radius R1. When R1 is detuned from the optimal value R1,trap, the
Mie coefficient has a resonant behavior with a Fano-type line shape. In
contrast, when R1 exactly matches R1, |aTM

1 | ≈ 1 has no resonant features
due to a pole-zero cancellation rooted in the reciprocity of the system [1].
The reciprocity constraint can be circumvented with a nonlinear material
response [4]. Specifically, with a nonlinearity the embedded eigenstates can
be pumped from the outside, ensuring that the energy stored in the resonator
is precisely quantized [4] (see also [25–28]). Figure 3.5(b) shows that the Mie
coefficient in the air region cTM

1 has a behavior analogous to aTM
1 .

3.4 Theoretical insights and justifications for
the embedded eigenstates in the nonlocal
meta-atom

The emergence of embedded eigenstates in plasmonic nanostructures is a
quite unique effect. Indeed, it is fundamentally impossible to localize light
in any spatially bounded (inhomogeneous) structure formed by transparent
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Figure 3.5: . (a) Mie coefficient |aTM
1 | in the core region and (b) Mie coef-

ficient |cTM
1 | in the air region as a function of the normalized frequency ω/ωp

and for three different values of the core radius. The meta-atom parameters
are c/β = 1/103/2, R21 = 1.1, ε1 = 1, and ωc = 0. The embedded eigenstate
is characterized by ωtrap = 1.026ωp and R1,trap = 0.973R1,0.

local isotropic dielectrics with ε ̸= 0 and µ ̸= 0 [1]. Next we unveil the reason
why spatially dispersive materials are less constrained than local materials.
In particular, we present two different justifications.

The first key point is that the electromagnetic field of a TMr mode in the
nonlocal shell is a superposition of two counter-propagating transverse waves
and two counter-propagating longitudinal waves; hence, for a given spherical
harmonic order there are 2 + 2 = 4 degrees of freedom. In order that the
radiation loss is suppressed, the electromagnetic fields outside the core-shell
nanoparticle must vanish. Thus, both the tangential electromagnetic fields
and the normal component of the electric current (n̂ · j) must vanish at the
shell outer interface, which corresponds to 1+ 1+ 1 = 3 scalar homogeneous
boundary conditions. Evidently, there is a remaining degree of freedom (4−
3 = 1), and thereby the homogeneous boundary conditions at the outer
interface do not automatically force (E,H) to vanish in the shell when ω ̸= ωp.
In contrast, in the local limit there are only 2 degrees of freedom associated
with the TMr transverse waves. In this case, the boundary conditions at the
outer shell interface require the continuity of the tangential components of the
fields, which correspond to 2 scalar equations. For homogeneous boundary
conditions there are no extra degrees of freedom, and thus, in the local case
the fields in the shell are necessarily trivial and it is fundamentally impossible
to have embedded eigenstates with ε2 ̸= 0 [1].
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A more general argument is presented next. In the lossless limit, the
hydrodynamic model [Eqs. (3.1a), (3.1b) and (3.2)] can be written in a
compact form as

Mg · i∂tQ = L̂ · Q, (3.15)
where Q = (E,H, j̃, ρ̃)T represents a ten-component state vector with j̃ =
j/
√
ε0ω2

p and ρ̃ = ρβ/
√
ε0ω2

p. Here, is a first-order linear-differential Hermi-
tian operator defined as

L̂ =


0 i∇× 1 −i

√
ε0ω2

p1 0
−i∇× 1 0 0 0
i
√
ε0ω2

p1 0 0 −iβ∇
0 0 −iβ∇· 0

 , (3.16)

where 1 is the 3x3 identity matrix and 0 is a 3x3 matrix filled with zeros,
and Mg is a material matrix given by

Mg =


ε01 0 0 0
0 µ01 0 0
0 0 1 0
0 0 0 1

 . (3.17)

Let us introduce the Green’s function G (for a homogeneous unbounded
space) that satisfies L̂ · G = ωMg · G + iδ(r − r′)1g. Consider now some
solution of L̂ ·Q = ωMg ·Q defined in the interior of some volumetric region
of space V (the plasmonic shell). Let Σ stand for the boundary surface
enclosing volume V. The considered function can be trivially extended to all
space (with the state vector identical to zero outside V ) as the solution of:

L̂ · Q = ωMg · Q +


−in̂ × H
in̂ × E
iβn̂ρ̃
iβn̂ · j̃

 δΣ, (3.18)

where δΣ represents a delta-function type distribution that vanishes outside
Σ, which when integrated over all space gives the area of Σ; n̂ is the outward
unity normal vector. From the definition of the Green function, we have
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Q(r) =
∫
Σ

ds′G(r − r′) ·


−n̂ × H(r′)
n̂ × E(r′)
βn̂ρ̃(r′)
βn̂ · j̃(r′)

 . (3.19)

Let us consider that Σ (the shell boundary) is formed by external and
internal surfaces Σ = Σout ∪ Σin. Suppose also that the tangential electro-
magnetic fields and the normal component of the current vanish at the outer
shell boundary, which are the necessary conditions for the formation of an
embedded eigenstate. Then, Eq. (3.19) becomes (imposing also that the
normal component of the current vanishes at the inner shell interface)

Q(r) =
∫
Σout

ds′G(r−r′)·


0
0

βn̂ρ̃(r′)
0

+

∫
Σin

ds′G(r−r′)·


−n̂ × H(r′)
n̂ × E(r′)
βn̂ρ̃(r′)

0

 .

(3.20)
Importantly, Eq. (3.20) shows that notwithstanding the homogeneous

boundary conditions on the outer surface, the surface integral over Σout is not
suppressed because ρ̃|Σout can be nontrivial. Due to this reason, different from
the local case discussed in [1], it is not feasible to use analytical continuation
arguments to conclude that Q vanishes inside the shell (volume V ). In other
words, for layered structures, the state vector Q can have a contribution from
the outer surface, and thereby does not need to vanish in the shell region.
This explains why embedded eigenstates can be formed in a wide spectral
range when the nonlocality of the shell is taken into account.

Furthermore, Eq. (3.20) can be understood as an homogeneous integral
equation with respect to the unknowns ρ̃|Σout , ρ̃|Σin , n̂ × E|Σin and n̂ × H|Σin

and subject to the constraints n̂×E|Σout = 0 and n̂×H|Σout = 0, n̂ · j̃|Σout = 0
and n̂ · j̃|Σin = 0. This homogeneous integral equation generalizes the reduced
characteristic system discussed in Sect. 3.2. The homogeneous integral equa-
tion can have non-trivial solutions only for specific values of ω which depend
exclusively on the geometrical shape of the plasmonic resonator, and on ωp,
β. Such values of ω determine the frequencies of the allowed embedded
eigenstates. Clearly, the spatially dispersive response strongly relaxes the
conditions under which the embedded eigenstates can be formed and does
not require the material response to be singular in any manner.
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3.5 Conclusion
In conclusion, we theoretically demonstrated that multiple embedded eigen-
states with suppressed radiation loss may be supported by open spatially-
dispersive core-shell meta-atoms. Surprisingly, the nonlocal effects due to
electron-electron repulsive interactions do not prevent the emergence of bound
states in the continuum. They rather act to strongly relax the material and
geometrical conditions required for the formation of light oscillations with
infinite lifetimes. Remarkably, the nonlocality enables the same material
shell to perfectly screen multiple frequencies. Moreover, the material pa-
rameters of the shell do not exhibit any type of singularity. The effect is
not restricted to spherical geometries, but can occur in any plasmonic res-
onator with two or more disjoint interfaces. Even though realistic material
loss remains a practical obstacle, in principle it can be compensated using
some gain mechanism [29, 30]. Thus, we believe that spatial-dispersion may
provide an exciting and novel path for the realization of nanostructures with
embedded eigenstates, which can have applications in optical memories and
others. Furthermore, our work unveils a novel mechanism to couple radiation
with matter without any form of radiation leakage.
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CHAPTER 4
Confined guided modes in a

double wire medium slab

4.1 Introduction
As stated in the introduction, wire metamaterials have been extensively stud-
ied in recent years [1]. These artificial media are formed by long metallic
rods arranged in various possible ways, ranging from simple periodic arrays
of parallel wires [2–5] to more complex configurations with connected or non-
connected orthogonal sets of wires [1,4,6–8]. The unique geometry of the wire
metamaterials (with long and thin inclusions), combined with the high opti-
cal contrast between the metallic wires and the dielectric background, gives
rise to peculiar electromagnetic properties such as a strongly spatially disper-
sive (nonlocal) response [1,5,6,9–11], extreme optical anisotropy [12], anoma-
lously high density of photonic states [13–17], and low-loss broadband anoma-
lous dispersion [18, 19]. These unusual properties lead to quite interesting
applications, including near-field transport and manipulation [20–26], ultra-
compact waveguiding [27–29], negative refraction [30–33], near-field [34–36]
and far-field [37, 38] superlensing and the correction of chromatic aberra-
tions [39]. Furthermore, wire metamaterials may boost the Cherenkov emis-
sion by charged particles [14], enhance the Purcell factor [15], the Casimir
interactions [13, 16, 40], and the radiative near-field heat transfer [41].

Effective medium models enable the accurate and fast characterization of
the electromagnetic response of wire metamaterials [5,6,9–11,42]. In partic-
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ular, homogenization methods have been used to analyze the guided modes
supported by single wire medium slabs [43–48], and double wire medium
slabs [27–29]. In the configurations studied in [27–29] the metallic wires are
tilted by ± 45◦ with respect to the interfaces. In contrast, here we character-
ize the transverse magnetic (TM) guided modes supported by a double wire
grid with one set of wires perpendicular to the interface with air, and another
set parallel to the interface [see Fig. 4.1]. Our analytical model is based on
the transverse average (TA)-field approach introduced in [49, 50], which en-
ables taking into account explicitly the termination of the bulk structure. We
demonstrate that in the continuum limit, the metamaterial slab supports a
diverging (infinite) number of guided mode branches with dispersions that
accumulate near the light line, with a comb-like structure. Interestingly, the
guided modes that are weakly bounded to the wire metamaterial slab, may
exhibit a fast field variation along the transverse direction. We suggest that
these waves may be useful to detect structural defects with subwavelength
dimensions.

The chapter is organized as follows. In Sect. 4.2 we briefly review the
TA-field homogenization approach. In Sect. 4.3, we discuss the properties
of the fundamental TM bulk mode supported by the double wire medium
slab. In Sect. 4.4, we calculate the dispersion characteristic of the TM
guided modes and compare the analytical results with full-wave simulations.
Then, in Sect. 4.5 we show that the guided modes can be used to detect
subwavelength defects or imperfections. Finally, in Sec. 4.6 the conclusions
are drawn. In this work we assume that the fields are monochromatic with
a time variation ejωt.

4.2 Homogenization model
The wire metamaterial consists of a grid of nonconnected metallic wires with
radius rw. The two mutually orthogonal sets of wires are oriented along
the x and z directions, as illustrated in Fig. 4.1. The spacing between
adjacent parallel wires is a, whereas the spacing between adjacent orthogonal
wires is a/2 . The wires are embedded in a standard dielectric with relative
permittivity εh.

In the long-wavelength regime (λ >> a) the wire grid may be regarded
as a continuum described by the relative dielectric function [6, 8, 51]
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Figure 4.1: Geometry of the crossed wire grid formed by two mutually
orthogonal and nonconnected sets of metallic wires oriented along the x and
z directions. The spacing between adjacent parallel wires is a, whereas the
spacing between adjacent orthogonal wires is a/2. The thickness of the slab
along the z direction is L. (a) Perspective view and (b) top view.

ε = εxxx̂⊗ x̂+ εhŷ ⊗ ŷ + εzzẑ⊗ ẑ , (4.1)
where x̂, ŷ and ẑ are the unit vectors along the coordinate axes. For ideal
perfectly electrical conducting (PEC) thin wires (rw/a << 1), the relative
permittivity components εxx and εzz are given by [6, 8, 51]

εii = εh

(
1−

β2
p

β2 − k2
i

)
, i = x, z , (4.2)

where βp is the effective plasma wavenumber, β =
√
εh(ω/c) is the wave

number in the dielectric host, and c is the speed of light in vacuum. The
parameter βp depends uniquely on the geometrical properties of the structure
[5] and satisfies

βp =
1

a

√√√√ 2π

ln
(

a
2πrw

)
+ 0.5275

. (4.3)

In the usual approach, the bulk medium fields obtained from the effective
dielectric function are used to characterize the wave propagation. However,
for thin metamaterial slabs, the bulk medium fields may fail to accurately
model the electromagnetic response near the interfaces, as shown in [50].

59



This happens in part because the electromagnetic response is sensitive to the
termination plane, i.e., to the plane where the bulk material is truncated.
To circumvent this problem, we rely on the transverse average (TA)-field ap-
proach introduced in [49,50]. In the TA-field approach the microscopic fields
are averaged only along the directions parallel to the interface (in the present
problem, along the x- and y- directions). In contrast, the bulk medium fields
are obtained by averaging the microscopic fields over the 3D unit cell.

Interestingly, it was demonstrated in [50] that in some conditions the TA-
fields can be written in terms of the bulk medium fields. In particular, for the
considered wire grid the TA-fields associated with a plane wave of the bulk
medium with electric field E = Eave

−jk·r and wave vector k = (kx, ky, kz) are
given by (for convenience, we use notations slightly different from the ones
of [50])

ETA(z; kz) = β2Ḡ(z|zx;k)e−jkzzx · x̂x̂ · (εxx − 1)Eave
−jk||·r

+
1

k2 − β2
(β21− k⊗ k)e−jkzz · ẑẑ · (εzz − 1)Eave

−jk||·r,
(4.4a)

BTA =
1

−jω

(
− jk|| +

∂

∂z
ẑ
)
× ETA , (4.4b)

where k|| = (kx, ky, 0) is the transverse wave vector, 1 is the identity dyadic,
and z = zx represents the z-coordinate of a generic plane of wires directed
along the x-direction. The TA electric and induction fields are denoted by
ETA and BTA. The tensor Ḡ is defined by [50]

Ḡ(z|zx;k) =
[
1+

1

β2

(
−jk||+

∂

∂z
ẑ

)
⊗
(
−jk||+

∂

∂z
ẑ

)]
A(z−zx; kz) (4.5a)

A(z; kz) =
a

2γ0

[
e−γ0|z| +

∑
±

e±γ0z

e(γ±jkz)a − 1

]
, |z| < a/2. (4.5b)

Here, γ =
√
k2
|| − β2 and the sum in (4.5b) is over two terms one with the “+”

sign and other with the “-” sign. The function A(z; kz) can be extended to
arbitrary z as a Bloch wave with propagation constant kz. For more details,
a reader is referred to [50].
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4.3 Isofrequency contours of the bulk medium
We want to study the wave propagation in the xoz plane (ky = 0) with
magnetic field polarized along the y-direction [see Fig. 4.1]. The disper-
sion characteristic of the TM modes supported by the crossed wire grid is
determined by [32]

k2
x

k2 − β2εxx
+

k2
z

k2 − β2εzz
= 1, (4.6)

which may be reduced to a polynomial equation of second degree in the
variable k2

z . This means that the crossed wire grid supports two independent
TM plane wave modes with H = Hyŷ and propagation constants along z of
the form ±k

(1)
z and ±k

(2)
z . Thus, as compared to a standard dielectric there

is an additional TM wave. This property is a fingerprint of the strongly
nonlocal response of the wire metamaterial [6, 8, 51]. It turns out that for
long wavelengths, one of the TM waves is an evanescent wave (±k

(2)
z is purely

imaginary), and thereby there is a single propagating mode in the wire grid
(with real-valued propagation constant ±k

(1)
z ). The (bulk) fields associated

with a generic TM plane wave are of the form:

H = H0e
−jk·rŷ, E =

H0

ωε0

(
kz
εxx

x̂− kx
εzz

ẑ

)
e−jk·r. (4.7)

The isofrequency contours of the propagating TM mode supported by
the unbounded wire grid are depicted in Fig. 4.2(a). The isofrequency con-
tours consist of two hyperbolas with asymptotes running along the x and z
directions, i.e., the directions parallel to the two sets of wires. Curiously, the
asymptotes correspond to the flat isofrequency contours of the TEM modes
supported by each individual array of parallel wires [45, 52]. The shape of
the isofrequency contours implies that the group velocity tends to be oriented
along the wire directions.

Moreover, because of the hyperbolic nature of the isofrequency contours
the wire grid can support waves with rather large wave vectors. Interest-
ingly, as |kx| approaches the host medium wave number (|kx| → β + 0+) the
corresponding kz ≡ k

(1)
z diverges to infinity [see Fig. 4.2(b)]. This suggests

that a finite thickness wire medium slab (truncated at z = 0 and z = L)
may support weakly bounded guided modes with |kx| slightly larger than
β. Specifically, if the host medium is air, the guided modes are expected to
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Figure 4.2: (a) Isofrequency contours of the fundamental TM bulk mode
for a metamaterial formed by wires standing in air. The wire radius is rw =
0.05a. The text insets indicate the value of the normalized frequency ωa/c.
The gray dashed lines represent the asymptotes of the hyperbolas. The green
arrows represent the kx and kz components of the wave vector of a particular
bulk mode with kx slightly larger than ω/c.

have dispersions near the light line and to be associated with fields that vary
extremely fast along the z direction. Note that heuristically the condition
for the emergence of guided modes is that k

(1)
z L ≈ nπ with n = 1, 2, 3, ... an

integer and k
(1)
z = k

(1)
z (kx, ω) the positive real-valued solution of (4.6) with

respect to kz. Since k
(1)
z has a divergent behavior as |kx| → ω/c, it is obvious

that k
(1)
z L ≈ nπ can have an infinite number of solutions (each associated

with a different n) with kx slightly larger than ω/c. In other words, the
continuum model predicts a diverging number of guided modes with disper-
sions piling up near the light line. In the next section, this prediction is
numerically verified.

4.4 Dispersion characteristic of the guided modes
The dispersion of the TM guided modes supported by the wire grid slab can
be calculated in the usual way by expanding the electromagnetic fields in
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the air and wire grid regions in terms of plane waves. However, different
from the standard homogenization approach, here the fields inside the wire
metamaterial are written in terms of the TA-fields, rather than in terms of
the bulk fields. Specifically, for 0 < z < L one has:

E(z) = B+
1 ETA(z; k

(1)
z ) +B−

1 ETA(z;−k(1)
z )

+B+
2 ETA(z; k

(2)
z ) +B−

2 ETA(z;−k(2)
z )

(4.8a)

H(z) = B+
1 HTA(z; k

(1)
z ) +B−

1 HTA(z;−k(1)
z )

+B+
2 HTA(z; k

(2)
z ) +B−

2 HTA(z;−k(2)
z )

(4.8b)

where B±
1,2 are the complex amplitudes of the excited waves in the meta-

material and ETA(z; k) is found from the relevant bulk electric field in (4.7)
using (4.4a) with k|| = kxx̂. Here, kx is the wavenumber of the guided mode.
Furthermore, HTA = BTA/µ0 is obtained from the corresponding ETA using
equation (4.4b). Similarly, in the air regions it is possible to write:

E =
1

jωε0
e−jkxx

{
(γ0x̂− jkxẑ)A1e

−γ0(z−L) , z > L

(−γ0x̂− jkxẑ)A2e
+γ0z , z < 0

(4.9a)

H = ŷe−jkxx

{
A1e

−γ0(z−L) , z > L

A2e
+γ0z , z < 0

(4.9b)

where γ0 =
√

k2
x − ω2ε0µ0 is the free-space propagation constant and A1,2

are the complex amplitudes of the excited waves in the air regions.
At the interfaces with air (z = 0 and z = L), we enforce the continuity

of the tangential components of the electromagnetic fields (Hy and Ex) and
an additional boundary condition (ABC) [53, 54] that guarantees that the
electric current flowing along the wires directed along z vanishes. When
the host medium is the same in all the three regions of space, the ABC is
equivalent to enforce that the normal component of the electric field (Ez) is
continuous at the interfaces [54]. In this manner, we obtain a homogeneous
6 × 6 linear system. The dispersion of the TM guided modes is found by
setting the determinant of the linear system equal to zero.

The calculated dispersion characteristic (ω vs. kx) of the TM guided
modes for a wire grid with a fixed thickness L and two different wire densities
a/L is depicted in Fig. 4.3. As seen, the metamaterial slab has an intrigu-
ing dispersion diagram formed by a “comb” of guided mode branches that
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accumulate near the light line for low frequencies. The green dashed curves
in Fig. 4.3 were obtained with the effective medium model, whereas the blue
solid curves were calculated with the eigenmode solver of CST Microwave
Studio [55] that takes into account the granularity of the metamaterial slab.
The effective medium results concur well with the full-wave results, even for
high frequencies and large wave vectors when the lattice constant becomes
comparable to the wavelength and the homogenization is expected to become
less accurate (the limit of the Brillouin zone).

Figure 4.3: Comb-like dispersion diagram of the TM guided modes sup-
ported by a metamaterial slab, for a fixed slab thickness L and different
lattice periods a. The radius of the wires is rw = 0.05a. (a) a = L/10
and (b) a = L/20. The green dashed curves and the blue solid curves are
obtained from the effective medium model and CST Microwave Studio sim-
ulations [55], respectively. The black dashed line represents the light line.

The peculiar comb-like structure of the dispersion diagram is a conse-
quence of the strongly hyperbolic response of the metamaterial near the static
limit, as already discussed in Sect. 4.3. Remarkably, within the effective
medium framework – wherein the wire grid is regarded as an ideal electro-
magnetic continuum – the number of guided modes diverges to infinity [see
green dashed curves in Fig. 4.3(a)-(b)]. In contrast, when the granularity of
the metamaterial slab is taken into account the number of guided modes be-
comes finite and depends on the wire density. Specifically, it turns out that
the number of guided modes is exactly N −1, where N = L/a represents the
number of unit cells along the z-direction. This feature is consistent with
the fact that the structure is effectively a stack of N metallic sheets; i.e., the
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structure may be roughly regarded as a transmission line formed by N in-
dependent conductors, which supports N − 1 independent transmission-line
modes (quasi-TEM modes). Note that all the wires in the same z =const.
plane behave effectively as a single conductor.

Figure 4.4: (a) Magnetic field (Hy) distribution in the xoz-plane for the
guided mode associated with the diamond-shaped red symbol in Fig. 4.3(b);
the mode has ωa/c = 0.17 and kxc/ω = 1.007. (i) Result obtained with CST
Microwave Studio [55]; (ii) Result obtained with the effective medium model.
(b) (i) Similar to (ai) but for the mode associated with the circular-shaped
red symbol in Fig. 4.3(b) obtained with CST Microwave Studio [55]; the
mode has ωa/c = 0.506 and kxc/ω = 1.005; (ii) Transverse field profile for the
same mode as in (i). The blue solid curves are calculated with the effective
medium model and the green dashed curves with the full-wave simulator [55].

In Fig. 4.4, we depict the transverse electromagnetic field distributions
of the modes marked in Fig. 4.3(b) with the discrete red symbols. The
results are calculated using both the effective medium model (solving the
homogeneous system discussed in Sect. 4.4) and the full-wave simulations
(excitation of the guided mode by applying a phased array of voltage gener-
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ators to the wires directed along x, analogous to Fig. 4.5(b)) [55]. As seen
in Figs. 4.4(a)(i-ii) and (b)(ii), there is a reasonably good agreement be-
tween the two calculation methods, further demonstrating the validity of the
TA-field approach. In Fig. 4.4(b)(ii), the agreement between the full wave
simulation and the effective model deteriorates slightly near the interfaces
(z = 0 and z = 20a) because of the excitation of higher order evanescent
waves not captured by the effective medium formalism.

The results of Fig. 4.4 confirm that the weakly bounded guided modes
(with kxc/ω ≈ 1) may exhibit a very fast variation along the z-direction.
This is evident in the time snapshot of the transverse magnetic field shown
in Figs. 4.4(a)(i-ii). Clearly, the longitudinal component of the wave vector
is much smaller than the transverse component (i.e. kx/kz << 1), which is
in agreement with the hyperbolic isofrequency contours of the bulk medium
(Fig. 4.2). For increasing frequencies, the discrepancy between the transverse
and longitudinal wave numbers is progressively smaller [see Fig. 4.4(b)(i)].

4.5 Detection of structural imperfections
The rather short transverse wavelength of the guided modes may be advan-
tageously exploited to detect structural defects or imperfections with sub-
wavelength dimensions in the host medium. For example, they may be used
to detect structural changes due to the exposure of the material to adverse
conditions (e.g., high pressure, mechanical deformations, etc), which may
lead to cracks or other defects.

To illustrate the idea, we consider a scenario wherein a pair of subwave-
length square-shaped obstacles (with dimensions px = pz = 2a ) made of
an highly absorbing material are placed inside a square wire grid with di-
mensions Lx = Lz = 30a and lattice constant a = 1mm [Fig. 4.5(a)]. A
fast-varying guided mode is generated by exciting adjacent planes of metallic
wires with voltages in opposition of phase, as illustrated in Fig. 4.5(b). The
two orthogonal sets of wires are excited separately: first the wires parallel
to the z-direction (Fig. 4.5(b)(i)) and then the wires oriented along the
x-direction (Fig. 4.5(b)(ii)).
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Figure 4.5: (a) Geometry of a square wire grid with lattice period a =
L/30 and wire radius rw = 0.05a, with two square-shaped obstacles with
dimensions 2a placed inside the grid. The obstacles are made of a highly
absorbing material (εobs/ε0 = 1 − j5, µobs/µ0 = 1 − j5). (b) Illustration
of the wire grid excitation. (c) and (d) Time snapshots of the normalized
magnetic field Hy(t = 0) obtained with CST Microwave Studio [55], for a wire
grid with a = 1 mm and f = 23.9 GHz. (c) Excitation of the z-oriented wires;
(d) excitation of the x-oriented wires. The direction of the wave propagation
is indicated by the gray arrows.

67



In Figs. 4.5(c)-(d), we show time snapshots of the radiated magnetic field,
Hy(t = 0), in the presence of the two subwavelength absorbing obstacles, for
each of the two excitations discussed previously and for the oscillation fre-
quency f = 23.9 GHz. The results were obtained using CST Microwave
Studio [55]. Notwithstanding the subwavelength dimensions of the absorb-
ing obstacles, two prominent shadows are perfectly discernible behind the
obstacles position. In this example, the shadow regions are due to the en-
ergy absorbed by the particles. The emergence of the subwavelength shadows
is only possible due to the fast transverse variation of the guided modes sup-
ported by the wire grid. A similar effect would occur in presence of a crack
that disrupts some subset of metallic wires. Thus, the proposed structure
may be useful to detect and localize defects due to structural changes of the
host material.

4.6 Conclusions
In conclusion, it was demonstrated that with the continuum approximation a
nonconnected crossed wire grid supports a diverging number of guided mode
branches that pile up near the light line for low frequencies. In practice, due
to the granularity of the metamaterial, the number of guided modes is finite
and depends on the wire density. The comb-like structure of the dispersion
diagram is rooted in the strong hyperbolic response of the double wire array
near the static limit. It was shown that even though the guided modes are
weakly attached to the wire grid slab, they exhibit an extremely fast field
variation along the transverse direction. Finally, it was suggested that the
studied metamaterial may be useful to pinpoint subwavelength defects or
imperfections due to structural changes of the host material.
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CHAPTER 5
Trapped light modes in

topological photonic systems

5.1 Introduction
As discussed in the general introduction, topology has recently emerged as a
new tool to characterize global properties of physical systems, e.g., physical
responses that are robust to perturbations of the system parameters [1–11].
There are different classes of topological platforms. Usually a nontrivial
topology is rooted in some particular symmetry or combination of symme-
tries of the system, e.g., invariance under discrete translations, time-reversal,
parity, etc. For systems with a Chern-type classification the topological
analysis relies on the spectrum of some family of Hermitian operators Ĥq
parameterized by a two-component label q = (q1, q2) [12, 13]. The Hermi-
tian property is not essential [13–21]. Provided the two-parameter space is
a closed surface with no boundary and Ĥq varies smoothly with q, then it
is possible to assign a topological number C to each band of eigenfunctions.
This result is known as the Chern theorem. The number C is an integer and
its value is insensitive to perturbations of Ĥq that do not close the band-gap.

In most studies so far, the topological properties are inherited from the
periodicity of the system along two-directions of space and q is identified with
a Bloch wave vector. The corresponding two-parameter space is a Brillouin
zone, which is effectively a closed surface with no boundary (a torus) due to
its cyclic nature, as required by the Chern theorem. Thus, topological mate-
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rials are characterized by integer Chern numbers. Here, we depart away from
this paradigm and present an example of a photonic-type topological system
with a synthetic dimension and fractional Chern numbers. Our analysis
unveils that “fractional” topological numbers can emerge when Ĥq is discon-
tinuous in the q-space. It is shown that a spatial displacement in real-space
“pumps” topological charge into the system with the synthetic dimension. It
should be noted that fractional Chern insulators have been widely discussed
in condensed-matter systems [22–24]. However, the emergence of fractional
Chern numbers in such platforms is rooted in many-body effects, and, in
our understanding, there is no obvious link between our theory and these
systems.

This chapter is organized as follows. In Section 5.2 it is shown that
in 1D-type periodic systems the number of photonic bands below the gap
can be understood as a topological number. In Section 5.3, we link the
gap Chern number to the number of edge states supported by an extended
system with a synthetic dimension. It is demonstrated that in real-space the
topological number determines the number of gapless trapped-state branches
that are created when the geometry of the 1D-periodic system is continuously
displaced by one spatial period. In Section 5.4, we show that fractional gap
Chern numbers may arise in 1D-periodic systems with inversion-symmetry
due to a discontinuity of Ĥq in the q-space. The conclusions are drawn in
Section 5.5.

5.2 Topological band count
We consider a generic platform that is formed by a 1D real-space periodic
system, which we shall designate as “waveguide”. The “waveguide” can be
visualized as some periodic (possibly three-dimensional (3D)) structure that
only allows propagation (waveguiding) along the x-direction. For example, it
can be a hollow metallic structure, with the metal walls invariant to transla-
tions along the x-axis, and with the guide periodically loaded with dielectric
inclusions ε(x, y, z) = ε(x+a, y, z); here a is the lattice period. For simplicity,
in most examples we shall take the “waveguide” as a genuinely 1D photonic
crystal formed by a periodic stack of dielectric slabs (ε(x) = ε(x+a)) and re-
strict our attention to propagation along the x axis. However, it is underlined
that it can be fully three-dimensional.

We admit that the wave propagation in the structure is determined by
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some operator Ĥ(r,−i∆) such that the time evolution of the system state
vector Ψ , e.g., the electromagnetic field, is described by a Schrödinger-type
dynamics i∂tΨ = ĤΨ . The time evolution of any (eventually dispersive)
electromagnetic platform can always be expressed in such a manner [9, 12,
25, 26]. For convenience, we designate Ĥ as the Hamiltonian.

Due to the periodicity along the x-direction, the eigenstates are Bloch
waves labeled by a Bloch wave number qx. The corresponding envelopes uqx

(defined such that Ψqx = uqxe
iqxx) satisfy Ĥ(x,−i∂x + qx)uqx = ωqxuqx with

ωqx the eigenfrequencies. Note that uqx can be a multi-component vector.
The parameters y, z, −i∂y, −i∂z are omitted from now on in the argument
of the operator Ĥ as they are not relevant for the discussion.

Let us now add a second label (qs) to the Hamiltonian related to a trans-
lation in space s → x− x0:

Ĥq ≡ Ĥqx,qs = Ĥ(x− x0(qs),−i∂x + qx). (5.1)
The coordinate shift x0 is parameterized by qs. In section 5.3, it will be shown
that qs may be understood as a “momentum” determined by a synthetic
dimension. It is assumed that x0(qs) is continuous and that x0(qs + 2π) −
x0(qs) = Na, with a the spatial period of the waveguide and N some integer
number. Since Ĥ(x,−i∂x + qx) = Ĥ(x− a,−i∂x + qx), it follows that Ĥqx,qs

is a periodic function of qs with period 2π. In a full cycle, as qs varies from
qs = −π to qs = π, the waveguide is displaced by N complete spatial periods
towards the +x-direction.

Since the spectrum of Ĥqx,qs is cyclic in both qx and qs one can characterize
its topological phases. To this end, consider a generic band of eigenfunctions
(Ψqx(x)) of the “waveguide”: Ĥ(x,−i∂x)Ψqx(x) = ωqxΨqx(x). Then, it is
obvious that Ĥquq = ωquq with q = (qx, qs), ωq = ωqx and the envelope

uq(x) = Ψqx(x− x0(qs))e
−iqxx = uqx(x− x0(qs))e

−iqxx0(qs). (5.2)

This property shows that the eigenvalues of Ĥq are independent of qs, and
thereby the band-gaps of Ĥq are the same as the band-gaps of the “waveg-
uide”. In other words, a translation in space does not alter the band structure.

The Bloch eigenmodes Ψqx of Ĥ can be taken as smooth periodic functions
of qx in the 1D-Brillouin zone −π/a ≤ qx ≤ π/a. The Chern number C
associated with a given band of Ĥq can be found in a standard way from the
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Berry potential Aq = i⟨uq|∂quq⟩ using C = 1
2π

∫ π/a

−π/a
dq1

∫ π

−π
dq2

(∂A2,q
∂q1

− ∂A1,q
∂q2

)
with (q1, q2) ≡ (qx, qs). The eigenfunctions are normalized as ⟨uq|uq⟩ = 1
with ⟨.|.⟩ the canonical inner product. Since the Berry potential is a smooth
function in the interior of the integration domain, from the Stokes theorem
the Chern number is:

C =
1

2π

∫ π/a

−π/a

dqx
(
A1,q|qs=−π −A1,q|qs=+π

)
+

1

2π

∫ π

−π

dqx
(
A2,q|qs=−π/a −A2,q|qs=+π/a

)
.

(5.3)

Using uq(x) = Ψqx(x − x0(qs))e
−iqxx one finds that A2,q = i⟨Ψq|∂qsΨq⟩

with Ψq ≡ Ψqx(x − x0(qs)). Noting that i⟨Ψq|∂qsΨq⟩ is a periodic function
of qx, it follows that the second integral in the right-hand side of Eq. (5.3)
vanishes. On the other hand, using uq(x) = uqx(x− x0(qs))e

−iqxx0(qs), we get

A1,q = i⟨uqx(x− x0(qs))|∂qx [uqx(x− x0(qs))]⟩+ x0(qs). (5.4)
We used ⟨uq|uq⟩ = 1 and the periodicity of the envelope in x. The first

term in the right-hand side of Eq. (5.4) is a periodic function of qs because
of the periodicity of the envelope in x. Thus, it does not contribute to the
first integral in Eq. (5.3). Taking this into account, we obtain the first key
result of the chapter

C =
1

2π

∫ π/a

−π/a

dqx(x0(−π)− x0(+π)) = −1

a
[x0(π)− x0(−π)] = −N. (5.5)

We used x0(qs + 2π) − x0(qs) = Na in the last identity. The above
formula proves that each photonic band of Ĥq has a topological charge of
“−N”, i.e., identical to minus the number of displaced unit cells towards +x.
Note that C has an integer value because Ĥq satisfies the conditions of the
Chern theorem. In particular, the gap Chern number of a given band-gap
is identical to the number of bands (nbands) below the gap multiplied by the
number of shifted cells (N) in one qs-cycle:

Cgap = −nbands ×N. (5.6)
Therefore, the number of photonic bands below the gap of a generic

1D-type photonic crystal can be understood as a topological number. The
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topological charge of each band is acquired from the translational shift suf-
fered by the waveguide. In other words, a translation in space effectively
“pumps” topological charge into the system described by Ĥq. This property
and its consequences are discussed in Section 5.3.

5.3 The synthetic dimension and bulk-edge
correspondence

5.3.1 The synthetic dimension
Next, it is shown that Ĥq can be regarded as the momentum-space oper-
ator of a system that consists of the original 1D-type waveguide (which as
previously mentioned can be embedded in a three-dimensional space) with
an additional synthetic dimension. Systems with synthetic dimensions were
recently discussed in the literature to emulate physical and topological phe-
nomena in higher dimensions (see e.g., [27–29]).

Consider a generic family of operators ĤK = (x,−i∂x) periodic both in
K and x: ĤK = ĤK+2π and ĤK(x,−i∂x) = ĤK(x + a,−i∂x). The operator
ĤK(x,−i∂x) may also depend on other space coordinates (y, z, etc) and space
derivatives, but as they are not relevant for the analysis they are omitted.
We introduce a matrix operator (Ĥe) that acts on a column state vector of
the form Ψ = [Ψm(x)] = [...Ψ−1 Ψ0 Ψ1...]T , m = 0,±1,±2,…, through a
convolution:

Ψ → ĤeΨ = [(ĤeΨ)n] where (ĤeΨ)n =
∑
m

Ĥn−m(x,−i∂x)Ψm(x), (5.7)

with n = 0,±1,±2,... . The matrix elements of Ĥe are defined as:

Ĥm(x,−i∂x) =
1

2π

∫ 2π

0

dKĤK(x,−i∂x)e
iKm. (5.8)

The state vector Ψ = [Ψm(x)] has two space-type coordinates: x which
corresponds to a continuous real-space coordinate, and m which corresponds
to a discrete (lattice) coordinate. The coordinate m determines the synthetic
dimension. The Bloch eigenfunctions are characterized by a state vector of
the form Ψ = [Ψm(x)] with Ψm(x) = uk,K(x)e

ikxeimK and satisfy ĤeΨ =
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ωk,KΨ, where (k,K) is the two-dimensional Bloch wave vector (−π/a ≤ k ≤
π/a and −π ≤ K ≤ π). Substituting Ψ = [uk,K(x)e

ikxeimK] into Eq. (5.7) and
using the Fourier synthesis relation ĤK(x,−i∂x) =

∑
n Ĥn(x,−i∂x)e

−inK, it
is found that the secular equation ĤeΨ = ωk,KΨ reduces to:

ĤK(x,−i∂x + k)uk,K = ωk,Kuk,K. (5.9)

Thus, the operator ĤK(x,−i∂x + k) is the momentum-space version of Ĥe.
The previous theory can be readily applied to the family of operators

Ĥq = Ĥ(x − x0(qs),−i∂x + qx) considered in Sect. 5.2, with the obvious
correspondence (qx, qs) ↔ (k,K). In particular, Ĥq is the momentum-space
version of some operator Ĥe defined on an extended-space determined by the
continuous coordinate x (which varies in the “real-space”) and by the discrete
coordinate m (which varies along the synthetic lattice-type dimension). This
property is important as it guarantees that the gap-Chern number can be
linked to the number of edge-states through a bulk-edge correspondence [13,
30–34].

5.3.2 The bulk-edge correspondence
The bulk-edge correspondence establishes a precise relation between the gap
Chern numbers of two topological materials and the net number of unidi-
rectional edge states supported by a material interface [30–34]. There is a
simple argument that justifies the emergence of edge-states at the interface
of a topological system terminated with an “opaque” (impenetrable) elec-
tromagnetic boundary [13, 34]. Interestingly, the gap Chern number can be
written as a volume integral of the Green’s function of a large cavity termi-
nated with periodic boundaries [13,34]. The key point is that in a band-gap
the Green’s function evaluated in the interior of the cavity is insensitive to
the boundary conditions on the walls. This is so because in a band-gap
the radiation from a point-source in the interior of the cavity is unable to
reach the walls. However, it turns out that if the cavity walls are “opaque”,
the integral that determines the Chern number (evaluated with the Green’s
function that satisfies the opaque-type boundary conditions) vanishes. The
sensitivity of the Chern number integral to the boundary conditions forcibly
implies the emergence of gapless edge states at “opaque”-type interfaces. For
detailed arguments a reader is referred to Refs. [13,34] (see also Refs. [35,36]).
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From the previous discussion, the Chern invariants of the operator Ĥe

determine a bulk-edge correspondence in the extended space with a syn-
thetic dimension. Are there any consequences of this bulk-edge correspon-
dence in real-space? To answer this question, consider two 1D-type peri-
odic “waveguides”, described by the (real-space) Hamiltonians Ĥ1 and Ĥ2,
respectively. Suppose that the waveguides have a common band-gap. Fur-
thermore, let us add a synthetic (discrete) dimension to each waveguide,
such that the extended-space Hamiltonians are Ĥe1 and Ĥe2, with each
of them described by a momentum-space Hamiltonian of the form Ĥq,i =

Ĥi(x− x
(i)
0 (qs),−i∂x + qx), i = 1, 2. For definiteness, we take x

(i)
0 (qs) ≡ Ni∆,

with Ni an integer and ∆ = qs
2π
a. Then, from Eq. (5.6) the gap Chern

number difference in a common gap is:

δCgap ≡ Cgap,1 − Cgap,2 = nbands,2 ×N2 − nbands,1 ×N1. (5.10)
Here, nbands,i is the number of bands below the gap for the i-th waveguide.
In particular, when the number of shifted cells in both waveguides is N2 =
N1 = 1, the gap Chern number difference is given by the difference of the
number of bands below the gap, which thereby is a topological quantity.

The bulk-edge correspondence implies that an interface of the two topo-
logical platforms supports |δCgap| unidirectional gapless edge states. A generic
interface in the extended space does not have an obvious real-space geomet-
ric interpretation. The exceptions are the x=const. interfaces, which corre-
spond to standard real-space interfaces between the two waveguides (when
the waveguides are embedded in 3D space, it is implicit that their cross-
sections are identical).

Let us investigate the consequences of the bulk-edge correspondence for
an interface x=const., let us say x = 0. By definition, the edge states in
the extended space must be localized near x = 0 and have a variation along
the synthetic dimension (coordinate n) of the form einqs with qs the wave
number of the edge state in the synthetic dimension: Ψ = [Ψn(x)] with
Ψn(x) = Ψ(x)einqs (n = 0,±1,±2,…). Evidently, the edge states projection
into real-space (Ψ0(x) = Ψ(x)) corresponds to a wave trapped at the interface
x = 0 of the two waveguides. A fixed qs in extended space corresponds to a
spatial shift x

(i)
0 = Ni

qs
2π
a in real-space. Thus, as qs varies from 0 to 2π the

internal structure of the i-th waveguide is displaced by Ni cells. For some
particular combinations of the shifts the x = 0 interface can support trapped
(localized) states. The bulk-edge correspondence establishes that the number
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of gapless “trapped states” branches in real-space is precisely |δCgap|, which
is another of the key results of the chapter.

5.3.3 Numerical examples
To illustrate the developed ideas, we consider the case where the “waveg-
uides” are 1D photonic crystals formed by stacked dielectric slabs (see Fig.
5.1(ai) for the geometry of a generic binary photonic crystal). The band
structure of a 1D photonic crystal can be calculated by using an equiva-
lence with transmission lines (see Appendix A). The unit cell of the crystal
is formed by an arbitrary number (N) of layers (see Fig. 5.7(a), left for the
case N = 3).

Consider now the scenario where two photonic crystals are paired to form
an interface at x = 0 (Fig. 5.2(ai)). The semi-space x < 0 is filled with a
photonic crystal modeled by Ĥ1(x−x

(1)
0 (qs),−i∂x), and the semi-space x > 0

by a photonic crystal modeled by Ĥ2(x−x
(2)
0 (qs),−i∂x) with x

(i)
0 = Ni∆. The

trapped states at an interface (x = 0) between two semi-infinite photonic
crystals are forcibly decaying in space Bloch modes of the infinite photonic
crystals in the regions x > 0 and x < 0. Thereby, since the current and
voltage of the equivalent circuit are continuous at the interface x = 0, the
localized trapped states must satisfy [39]:

Z
(1)
L (−N1∆, ω) + Z

(2)
R (−N2∆, ω) = 0. (5.11)

Here, Z(i)
L and Z

(i)
R are the left- and right- Bloch impedances of the i-th

photonic crystal. Each value of ∆ = qs
2π
a corresponds to a specific spatial-

shift of the inner structure of the photonic crystals. In one full qs-cycle, the
parameter ∆ varies from ∆ = 0 to ∆ = a. The effect of shifting the geometry
of a generic photonic crystal is illustrated in Figs. 5.1(aii) and 5.1(aiii).
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Figure 5.1: (a) (i) Structure of a binary photonic crystal formed by two
phases A and B. The left and right Bloch surface impedances calculated at the
generic plane x = x0 are indicated in the figure. The x = 0 plane is placed at
the middle of slab A (center of symmetry). (ii) Representation of a negative
displacement of the geometry of the photonic crystal. (iii) Representation
of a positive displacement of the geometry. The areas shaded in grey are
cut-way from the structure when another photonic crystal is inserted into
the region x < 0. (b) Band structure of a photonic crystal (blue solid curves)
with parameters εa = 7, εB = 1, µA = µB = 1, dA = 0.4a and dB = 0.6a.
The grey strips represent the band gaps. Each band gap is numbered with a
red label.
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In the first example, we suppose that the semi-space x < 0 is a perfectly
electric conducting (PEC) wall, so that Z

(1)
L = 0. The semi-space x > 0 is

filled with a binary photonic crystal with a unit cell formed by two dielectric
slabs A and B of thickness dA and dB, and relative dielectric permittivity and
permeability εA, µA and εB, µB, respectively [see Fig. 5.1(a)]. The structural
parameters are taken as εA = 7, εB = 1, µA = µB = 1, dA = 0.4a and
dB = 0.6a. Figure 5.1(b) shows the numerically calculated band structure
(ω vs k ≡ qx) with the band gaps shaded in grey. Since for the PEC semi-
space Cgap,1 = 0, it follows that the gap-Chern number difference is Cgap =
nbands,2 ×N2 [Eq. (5.10)]. Note that the gap Chern number of the dielectric
photonic crystal with the synthetic dimension is nonzero, even though the
structure in real-space is reciprocal. In fact, the time-reversal symmetry in
real-space does not imply a time-reversal symmetry in the extended space.

Suppose that N2 = −1 so that the photonic crystal is displaced by a
complete period along the negative x-axis in a full ∆-cycle [Fig. 5.1(aii)].
The dispersion of the interface states as a function of the spatial shift ∆ is
determined by Z

(2)
R (∆, ω) = 0. The corresponding solutions in the band-gaps

are plotted in Fig. 5.2(b) (blue curves). As seen, in agreement with the bulk-
edge correspondence, δCgap = −nbands,2, the number of branches ω = ωn(∆)
in each gap is exactly coincident with the number of bands below the gap.
Each branch ωn(∆) crosses completely the band-gap, and all the branches
have a positive slope vs. ∆ indicating that they are unidirectional gapless
states in the extended space with the synthetic dimension. Our formalism
enables to predict in a simple manner how many (defect-type) trapped states
occur in real-space for a fixed frequency in the band-gap, when the geometry
of the crystal is displaced by one period. The number of trapped states is
exactly the number of bands below the gap. The operation of a “spatial
shift” by one period may be regarded as a “topological pump” that inserts
topological charge into the system. The topological charge is identical to the
number of bands below the gap. The topological invariant manifests itself as
the number of trapped states branches at the interface in a band gap.
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Figure 5.2: (a) Representation of the pairing of two different photonic
crystals. (b) Interface state solutions for a photonic crystal with the same
parameters as in Fig. 5.1(b) in the right semi-space, and a PEC material in
the left semi-space. The grey horizontal dashed lines delimit the band gaps
which are numbered by the red labels. (c) Time-snapshot of the magnetic
field of the interface state in the fourth gap for (i) the solution marked by
the green circle with ∆/a = 0.3, and (ii) the solution marked by the green
star with ∆/a = 0.38.

The profile of two trapped states in the fourth band gap are represented
in Fig. 5.2(c). The field profiles were obtained using CST Microwave Studio
[40]. As seen, the trapped states are confined to the interface of the photonic
crystal and of the PEC, and decay exponentially into the bulk region. As
could be expected, the trapped mode in the center of the band gap (Fig.
5.2(c)(ii) for ∆ = 0.38) is much more confined to the interface than the one
near the bottom edge of the band gap (Fig. 5.2(c)i) for ∆ = 0.30).

In the second example, the PEC region in the semi-space x < 0 is replaced
by a binary photonic crystal with parameters εA,l = 2, εB,l = 1, µA,l = µB,l =
1, dA,l = 0.4a and dB,l = 0.6a, with the photonic crystal in the semi-space
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x > 0 the same as before. Figure 5.3(a) shows the band structures of the
right (blue solid curve) and left (green dashed curve) crystals. There are
two common frequency band gaps highlighted with the shaded grey strips.
Consider first the situation wherein one of the photonic crystals is held fixed,
while the other crystal is displaced by one cell period to the negative x
direction. Figure 5.3(b) depicts the interface states dispersion ω = ωn(∆) in
the two common gaps for the two possible displacements: i) the left crystal
is held fixed and the right crystal slides to the left [blue solid curves; N1 = 0
and N2 = −1 in Eq. (5.11)], ii) the right crystal is held fixed and the left
crystal slides to the left [green dashed curves; N1 = −1 and N2 = 0 in Eq.
(5.11)]. For the case i) [case ii)] the number of solution branches is identical
to the number of bands of the right [left] crystal below the gap, consistent
with the bulk-edge correspondence [see Eq. (5.10)]. The slope of the curves
ω = ωn(∆) is different in the two cases. This property is explained by the fact
that δCgap has a different sign in each case. Indeed, the sign of δCgap is linked
to the angular momentum of the edge modes in a closed system [34, 41, 42].
Thereby, the direction of the energy flow in the extended space must change
when the gap Chern number sign changes.

We also studied the situations where the materials inner structures are
simultaneously displaced to the negative x-direction N1 = N2 = −1 (blue
solid curves in Fig. 5.3(c), or, alternatively, the right crystal is displaced
to the negative x-direction and the left crystal to the positive x-direction
(N1 = 1 and N2 = −1) (green dashed curves in Fig. 5.3(c)). In both cases,
it is observed that the number of trapped states branches in a common band
gap is identical to |δCgap| ≡ |nbands,2 × N2 − nbands,1 × N1|. For example,
for the lowest frequency gap nbands,2 = 4 and nbands,1 = 3. Consistent with
this property, one observes a single gapless trapped state branch when N1 =
N2 = −1 and 7 gapless trapped states branches when N1 = −N2 = 1.
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Figure 5.3: (a) Green dashed curves: band structure of binary photonic
crystal with parameters εA,l = 2, εB,l = 1, µA,l = µB,l = 1, dA,l = 0.4a and
dB,l = 0.6a. Blue curves: band structure of the same photonic crystal as
in Fig. 5.1. The grey strips indicate the common band gaps and the red
labels the gap number. (b) Dispersion of the interface states in the common
band gaps for a negative displacement of one of the crystals with the other
held fixed. Blue solid curves: right photonic crystal slides one cell to the
left; green dashed curves: left photonic crystal slides one cell to the left.
(c) Similar to (b) but for a situation where both crystals geometries suffer
a negative spatial shift (blue solid curves, N1 = N2 = −1), or alternatively
the left crystal suffers a positive spatial shift and the right crystal a negative
spatial shift (green dashed curves, N1 = 1 and N2 = −1).
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We verified that the bulk-edge correspondence also holds true in other
more complex 1D photonic crystal geometries. For example, consider the
case where the left photonic crystal of the previous example is replaced by
a ternary layered structure with parameters εA,l = 2, εB,l = 1, εC,l = 3,
µA,l = µB,l = µC,l = 1, dA,l = 0.3a, dB,l = 0.6a and dC,l = 0.1a. Different
from the binary crystals considered in the previous examples, the ternary
crystal does not have inversion (parity) symmetry. Figure 5.4 reports a study
identical to that of Fig. 5.3, when the ternary photonic crystal (region x < 0)
is paired with the same binary photonic crystal as in Fig. 5.2. The results
are qualitatively analogous to those of Fig. 5.3 and again confirm that it is
possible to predict the number of trapped states from the knowledge of the
number of bands below the band-gap.

Furthermore, we also studied the emergence of interface states in 1D-type
waveguides embedded in a two-dimensional real-space. Specifically, consider
a waveguide with metallic lateral walls constructed from a 2D photonic crys-
tal with the unit cell represented in Fig. 5.5(a). The lateral width of the
guide is Nya and the electric field is oriented along the z-direction. The corre-
sponding band-diagram for propagation along the x-direction is represented
in Figs. 5.5(b) and 5.5(c) for the cases Ny = 5 and Ny = 6, respectively.
The band diagram is numerically calculated with CST Microwave Studio
[40]. The band-gaps are shaded in gray. We terminated this waveguide
(positioned in the semi-space x > 0) with a metallic plate placed at x = 0,
and numerically found the edge states for different shifts of the waveguide
geometry. The trapped states dispersion ω = ωn(∆) is shown in Figs. 5.5(d)
and 5.5(e). We consider displacements along the negative (N2 = −1, blue
curves) and positive (N2 = 1, green dashed curves) x-axis. As seen, also for
this more complex system, the number of branches agrees with the number of
bands of the waveguide below the gap. Furthermore, as expected, the slope
of the curves ω = ωn(∆) depends on the displacement direction.
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Figure 5.4: Analogous to Fig. 5.3(a) for the case where the photonic
crystal in the semi-space x < 0 is replaced by a ternary photonic crystal with
parameters εA,l = 2, εB,l = 1, εC,l = 3, µA,l = µB,l = µC,l = 1, dA,l = 0.3a,
dB,l = 0.6a and dC,l = 0.1a. The band structure of the ternary photonic
crystal is represented with green dashed curves in panel (a).
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the figure is d = 0.115a. (b) Band diagram of the waveguide with metallic
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in the band gap for a waveguide constructed from a 2D photonic crystal
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5.4 Fractional Chern systems

5.4.1 Non-integer Chern numbers
Consider now some 1D-type “waveguide” system with inversion symmetry
described by a real-space Hamiltonian Ĥ(x,−i∂x). Different from the previ-
ous section, here it is supposed that the state vector Ψ (in real-space) is a
scalar function.

We consider again the Hamiltonian Ĥq = Ĥ(x − x0(qs),−i∂x + qx) with
eigenfunctions uq(x) = Ψqx(x − x0(qs))e

−iqxx [Eq. (5.2)]. However, different
from Sect. 5.2, here it is assumed that x0(qs + 2π) − x0(qs) = N × a/2, so
that the number of displaced cells in one cycle is half of an integer, which
is a fractional number when N is odd. In particular, it follows that Ĥq is a
discontinuous function in the q-parameter space when N is odd.

Following the same steps as in Sect. 5.2, still assuming that Ψqx(x) is
picked as a smooth periodic function of qx, one can show that the Chern
number of a given band of Ĥq is determined by the first term in the right-
hand side of Eq. (5.3):

C =
1

2π

∫ π/a

−π/a

dqx(A1,q|qs=−π −A1,q|qs=+π). (5.12)

Suppose without loss of generality that x0(−π) = 0. Then, it is seen that
A1,q|qs=−π = Aqx and A1,q|qs=π = Ãqx with Aqx = i⟨uqx|∂qxuqx⟩ and Ãqx =
i⟨ũqx|∂qxũqx⟩ with uqx(x) ≡ Ψqx(x)e

−iqxx and ũqx(x) ≡ Ψqx(x − Na/2)e−iqxx.
The integrals θZak =

∫ π/a

−π/a
dqxAqx and θ̃Zak =

∫ π/a

−π/a
dqxÃqx are by definition

the Zak phases determined by the symmetry centers x = 0 and x = Na/2 of
the original periodic 1D system [39]. Thereby, from Eq. (5.12) we get:

C =
1

2π
(θZak − θ̃Zak). (5.13)

The Zak phase is gauge dependent, i.e. it can vary modulo 2π with Ψqx .
Interestingly, it is shown in the Appendix B that for a scalar Hamiltonian
the difference of the Zak phases θ̃Zak − θZak is gauge independent, when both
θ̃Zak, θZak are evaluated using the same gauge. Specifically, it turns out that
θ̃Zak = θZak +Nπ [Eq. (5.33)]. This proves that:

C = −1

2
N. (5.14)
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Thereby, a half-of-cycle pump yields a fractional gap Chern number that
is identical to the number of bands below the gap multiplied by N/2:

Cgap = −nbands

2
N. (5.15)

This is another key finding of the paper. Evidently, the non-integer gap
Chern number is insensitive to any perturbations of the system that do not
close the band-gap. The fractional Chern number occurs because the opera-
tor Ĥq is discontinuous: Ĥqx,qs ̸= Ĥqx,qs+2π when N is odd. The quantization
of the Chern number is rooted in the parity symmetry of the system.

5.4.2 Fractional bulk-edge correspondence
Similar to Sect. 5.3, it is possible to add a synthetic dimension to the system
so that Ĥq is the momentum-space version of some Ĥe operator defined in an
extended space of coordinates. Is there any manifestation of the fractional
topological number Cgap in the real-space?

Unfortunately, the standard bulk-edge correspondence is not directly
applicable to systems with a fractional Chern number [13, 30–34]. How-
ever, motivated by the findings of the previous section, we conjecture that
an interface of inversion-symmetric systems with a fractional (half-integer)
Chern numbers supports a number of edge state branches equal to |δCgap| =
|Cgap,1−Cgap,2| = |nbands,2×N2−nbands,1×N1| when x

(i)
0 = Ni∆ and ∆ varied

in half-cycle 0 ≤ ∆ ≤ a/2. The counting of the edge mode branches is done
with the following rules i) if an edge-mode branch is completely contained in
0 ≤ ∆ ≤ a/2 it counts as “one” branch. ii) if the edge-mode branch intersects
the “momentum” boundaries ∆ = 0 and ∆ = a/2 it counts as half-branch.
Note that in case ii) the edge modes are not gapless with respect to the mo-
mentum domain 0 ≤ ∆ ≤ a/2. This is a consequence of the discontinuous
nature of Ĥq at ∆ = 0 and ∆ = a/2. It is underlined that ∆ = 0 and
∆ = a/2 correspond to the configurations for which the system has inversion
symmetry with respect to the origin (x = 0). Importantly, the notion of
parity-symmetry cannot be unambiguously applied to a PEC boundary or
to other opaque-type boundaries. Thus, such opaque-type boundaries are
excluded from the proposed fractional bulk-edge correspondence.

We did extensive numerical simulations to test the conjectured bulk-edge
correspondence for fractional Chern systems formed by dielectric photonic
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crystals. Here, we report the results obtained for two representative con-
figurations: an interface formed by pairing two binary crystals [example of
Fig. 5.3 discussed previously] and an interface formed by pairing a binary
photonic crystal with a quaternary inversion symmetric crystal [Fig. 5.6].
Note that binary photonic crystals are always inversion symmetric.
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Figure 5.6: (a) Green dashed curves: band structure of a quaternary pho-
tonic crystal with inversion symmetry and parameters εA,l = 2, εB,l = 1,
εC,l = 4, εD,l = 1, µA,l = µB,l = µC,l = µD,l = 1, dA,l = 0.5a, dB,l = 0.2a,
dC,l = 0.1a and dD,l = 0.2a. Blue curves: band structure of the same photonic
crystal as in Fig. 5.1. The grey strips indicate the common band gaps and
the red labels the gap number. (b)-(c) Same legend as in Fig. 5.3 with the
quaternary photonic crystal in the semi-space x < 0 and the binary photonic
crystal in the semi-space x > 0. The number of trapped-states branches in
half-cycle (0 < ∆/a < 0.5) is determined by a fractional Chern number.

In both examples, we computed the trapped states for a full-cycle spa-
tial shift (0 ≤ ∆ ≤ a/2). The relevant part of the dispersion diagram for
fractional Chern insulators is the range 0 ≤ ∆ ≤ a/2. The simplest way to
check that the proposed bulk edge correspondence works is to verify that the
number of branches on the left-hand side of the line ∆ = a/2 (marked by
the dashed red vertical line in Figs. 5.3 and 5.6 is exactly the same as the
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number of branches on the right-hand side of the line ∆ = a/2. Evidently,
the trapped states dispersions plotted in Figs. 5.3 and 5.6 have this property.
Note that similar to Sect. 5.3 we consider systems with N1 = 0 and N2 = −1,
with N1 = −1 and N2 = 0, with N1 = N2 = −1, and with N1 = −N2 = 1.
For example, in Fig. 5.6(c), |δCgap| = 7/2 for the low-frequency gap and
|δCgap| = 9/2 for the high-frequency gap, for the case N1 = −N2 = 1 (dashed
green lines). Consistent with the value of |δCgap|, the low (high) frequency
gap contains 3 (4) gapless trapped state branches and 1 gapped trapped state
branch at ∆ = 0 in the momentum range 0 ≤ ∆ ≤ a/2 (half-cycle pumping).
The gapped (at ∆ = 0) trapped state gives the contribution 1/2 to |δCgap|.
It can be checked that all the other plots are consistent with the conjectured
bulk-edge correspondence.

It should be noted that our theory is totally different from that of Ref.
[39], which predicts the emergence of interface states in one-dimensional
inversion-symmetric photonic crystals from the sign of the imaginary part
of the Bloch impedance calculated at an inversion symmetry plane. The sign
of the Bloch impedance depends on the gap Zak phase and on the number of
passbands below the gap. Different from [39], our theory predicts the precise
number of edge state branches created when the crystals are displaced by a
half-integer number of lattice periods.

For half-cycle pumping of a single crystal, let us say of the left crystal
(N1 = ±1 and N2 = 0), the gap Chern number is |δCgap| = n1,bands/2. Thus,
in this scenario, the gap Chern number is non-integer when the displaced
crystal has an odd number of bands below gap. Clearly, for |δCgap| non-integer
the proposed fractional bulk-edge correspondence implies the emergence of a
trapped state at one and only one of the symmetry centers ∆ = 0 and ∆ =
a/2 (e.g., see the green dashed lines in the first common gap in Fig. 5.3(b)).
In contrast, when is an integer (number of bands of the displaced crystal
below the gap is an even number) the fractional bulk-edge correspondence
implies that either both or none of the symmetry centers ∆ = 0 and ∆ = a/2
supports trapped edge states. The enunciated results are rather general and
apply to arbitrary values of N1, N2.

5.5 Conclusions
In summary, it was shown that in one-dimensional periodic systems the num-
ber of bands below a gap can be understood as a Chern topological number
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of an extended system with a synthetic dimension. This topological num-
ber determines the number of edge states in the extended space with the
synthetic dimension. The real-space projection of the edge states are modes
localized at the boundary of the 1D crystal, for some shift of the unit cell.
The number of trapped states branches “pumped” by a full-lattice period
displacement equals the number of bands below the gap. This result does
not require any particular symmetry, and establishes a rigorous and simple
bulk-edge correspondence for interfaces of one-dimensional systems.

Moreover, it was shown that in inversion-symmetric systems a displace-
ment by a half-lattice period in real-space determines an extended space
Hamiltonian with a fractional Chern number equal to the number of bands
below the gap divided by two. The non-integer Chern number is due to the
discontinuous nature of the Hamiltonian associated with the half-cycle topo-
logical pump. We conjecture that dielectric systems with a fractional topolog-
ical charge obey a fractional bulk-edge correspondence that links the number
of trapped-states branches with the fractional Chern number. Thereby, our
work determines an entirely novel and intriguing class of topological systems
with fractional topological charge, which may lead to rather unique physical
effects and phenomena.

Appendix A: Dispersion equation and Bloch
impedance of a 1D photonic crystal
As is well-known, the wave propagation in a 1D photonic crystal is formally
equivalent to the propagation in a periodic transmission line (Fig. 5.7(a)).
Thus, the characteristic equation for the Bloch waves can be easily found
using the ABCD-matrix formalism [38]. To this end, one needs to find the
ABCD-matrix for a unit cell, which links the input and output voltages and
currents as: (

V 1
I1

)
=

(
A B
C D

)
global

(
V 2
I2

)
. (5.16)

From the theory of microwave networks, the global ABCD matrix is given
by the product of the ABCD matrices of the uniform line sections:
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M ≡
(

A B
C D

)
global

=

(
A B
C D

)
1

...
(

A B
C D

)
N

. (5.17)

In the above,

(
A B
C D

)
i

=

(
cosh(γidi) Zc,i sinh(γidi)

Z−1
c,i sinh(γidi) cosh(γidi)

)
, i = 1, 2, 3, ..., N

(5.18)
is the ABCD matrix of the ith section, Zc,i = η0

√
µi/εi is the wave impedance

and γi = −iω
c

√
µiεi is the propagation constant. Here, η0 is the free-space

impedance and c is the speed of light in vacuum. The permittivity and
permeability εi, µi are normalized to the free-space values.

For Bloch waves the input and output voltages are linked by (V 2 I2)T =
eγa(V 1 I1)T with γ = α − ik the (complex) propagation constant of the
Bloch mode. Thus, using Eq. (5.16) one finds that the “output” voltages
and currents satisfy the homogeneous equation:

(
M− 1e+γa

)
·
(

V 2
I2

)
= 0, (5.19)

with M the global ABCD matrix defined as in Eq. (5.17). This result implies
that det(M− 1λ) = 0, or equivalently λ2 − λtr(M) + det(M) = 0, with λ =
e+γa. Since the system under analysis is reciprocal, one has det(M) = 1 [38].
The solutions of the second degree equation are λ1,2 =

tr(M)
2

±
√
[ tr(M)

2
]2 − 1.

Because of λ1,2 = e±λa, one has e+λa+ e−λa = λ1+λ2 = tr(M). This implies
that the characteristic equation for the Bloch waves is

cosh(γa) =
tr(M)

2
. (5.20)

Finally, the photonic band structure of the crystal is found by looking for
solutions of the eq. (5.20) with γ = −ik a purely imaginary number.
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Figure 5.7: (a) Equivalence between a multi-layered photonic crystal and a
periodic transmission line. (b) Geometry used in the calculation of the Bloch
impedance.
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We denote ZL(x0, ω) and ZR(x0, ω) as the Bloch impedances of the (un-
bounded) photonic crystal calculated at the plane x = x0 when looking at
the left or right, respectively (Fig. 5.1(ai)). To derive the formulas of the
Bloch impedances we also use the analogy with transmission lines as before.
Let us suppose without loss of generality that x = x0 lies in the first line
section of the equivalent transmission line, as illustrated in Fig. 5.7(b). It is
convenient to obtain the global ABCD matrix (M(x0)) for one period, with
the input and output voltages and currents referred to the planes x = x0 and
x = x0 + a, respectively (Fig. 5.7(b). This is done as before by multiplying
the ABCD matrices of the uniform line sections. For the example, for the
geometry shown in Fig. 5.7(b) one has:

M(x0) =

(
A B
C D

)
1,d′1

(
A B
C D

)
2,d2

(
A B
C D

)
3,d3

(
A B
C D

)
1,d′′1

.

(5.21)
Note that d′1 and d′′1 depend on x0. Similar to Eq. (5.19), for Bloch waves

associated with a propagation factor e−(±γ)x the output voltage and current
satisfy:

(M(x0)− 1e±γa) ·
(
V2 I2

)T
= 0. (5.22)

Note that γ = γ(ω) depends exclusively on the frequency and can be found
from Eq. (5.20). In the band-gaps γ is complex-valued and it is implicit that

Re{γ} > 0. Denoting M(x0) =

(
A B
C D

)
it follows from Eq. (5.22) that:(

V 2
I2

)
∼

(
−B

A− e±γa

)
∼

(
D − e±γa

−C

)
. (5.23)

Hence, the Bloch impedance for a wave that propagates towards the positive
x-direction is

ZR(x0) =
V2

I2
=

−B

A− eγa
=

D − eγa

−C
, (5.24)

whereas the Bloch impedance for a wave that propagates towards the negative
x-direction is:

ZL(x0) =
V2

−I2
=

B

A− e−γa
=

D − e−γa

C
. (5.25)
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We used the fact that the Bloch impedances are periodic: ZR(x0) = ZR(x0+
a), etc.

Appendix B: Relation between the Zak phases
of two symmetry centers

Here, we consider a generic scalar Hamiltonian Ĥ(x,−i∂x) with inversion
symmetry (Ĥ(x,−i∂x) = Ĥ(−x, i∂x)) and periodic in x, so that Ĥ(x,−i∂x) =
Ĥ(x+a,−i∂x). Next, it is shown that the Zak phases of two generic symmetry
centers (x = Na/2 and x = 0) are unambiguously related as θ̃Zak = θZak+Nπ.

As already discussed in Sect. 5.2, the Bloch eigenmodes Ψk of Ĥ can be
picked in such a way that Ψk(x) = uk(x)e

ikx is a globally defined smooth
periodic function of k. Since the system has inversion (parity) symmetry,
it follows that Ψk(−x) is also an eigenmode, but associated with the wave
number −k. Let θk be such that

Ψk(x) = Ψ−k(−x)eiθk , (5.26)
for all k, or equivalently eiθk = Ψk(x)/Ψ−k(−x). The division is defined
only because the state vector is a scalar; the normalization ⟨Ψk|Ψk⟩ = 1 is
implicit and guarantees that θk is real-valued. Evidently, eiθk is periodic,
smooth and globally defined because Ψk(x) also is. This implies that θk can
also be globally defined as a smooth function; θk is uniquely defined modulo
2π for a given Ψk(x). Different from Ψk(x), θk does not need to be periodic.
However eiθk is forcibly periodic, and thereby we must have:

θk+ 2π
a
− θk = 2πn, (5.27)

for some n integer (independent of k).
Let us now introduce a 1D Berry potential defined as

Ak = i⟨uk|∂kuk⟩, (5.28)
with uk(x) = Ψk(x)e

−ikx the state vector envelope. Noting that eiθk =
uk(x)/u−k(−x) and using A−k = −i⟨u−k|∂k(u−k)⟩ = −Ak − ∂kθk it follows
that

A−k +Ak = −∂kθk. (5.29)
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Hence, by integrating both sides of the formula we get

θZak ≡
∫ π/a

−π/a

Akdk = −1

2
(θπ/a − θ−π/a). (5.30)

Here, θZak is the so-called Zak phase [39], which from Eq. (5.27) is necessarily
an integer multiple of π.

Because of the inversion symmetry and of the periodicity, x = Na/2
is also a center of symmetry. Thus, it is also possible to write Ψk(x −
Na/2) = Ψ−k(−x − Na/2)eiθ̃k for some θ̃k. From Eq. (5.26), one finds
Ψk(x − Na/2) = Ψk(x + Na/2)e−iθkeiθ̃k or equivalently, using the Bloch
property Ψk(x−Na/2) = Ψk(x+Na/2)e−iθkeiθ̃keikNa. This proves that

θ̃k = θk − kNa+ 2πl, (5.31)

with l an integer independent of k. From Ψk(x−Na/2) = Ψ−k(−x−Na/2)iθ̃k

we get ũk(x) = ũ−k(−x)iθ̃k with ũk(x) = Ψk(x−Na/2)e−ikx. Hence, the 1D
Berry potential for the second center of symmetry Ãk = i⟨ũk|∂kũk⟩ satisfies
a formula analogous to Eq. (5.30):

Ã−k + Ãk = −∂kθ̃k. (5.32)
From Eq. (5.31) it is now evident that the Zak phase for the second center
of symmetry is such that:

θ̃Zak = θZak +Nπ. (5.33)
The above formula is consistent with the well-known fact that the Zak phase
depends on the center of symmetry [39].
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CHAPTER 6
Conclusions

In this thesis I extensively studied theoretically and numerically three differ-
ent mechanisms to achieve light localization with plasmonic materials, wire
metamaterials and photonic crystals.

In chapter II, we studied the formation of embedded eigenstates in two-
dimensional open core-shell plasmonic particles with arbitrary shape. Through
theoretical and numerical analysis, we determined the geometrical conditions
for each particular cross-section that have to be satisfied so that the meta-
atom supports embedded eigenstates with infinite lifetimes. To circumvent
the restrictions imposed by the Lorentz reciprocity theorem that forbids the
direct external excitation of the eigenstates, we used a nonlinear material to
break the reciprocity. Through electromagnetic simulations, we showed that
this strategy is successful in exciting the embedded eigenstates and that the
energy trapped inside the particle is precisely quantized. Furthermore, it was
also shown that the geometry influences directly the lifetime of the trapped
state.

In chapter III, we continued the study of the light trapping mechanism
of the previous chapter but now considering a three-dimensional spherical
meta-atom with a nonlocal plasmonic shell. We theoretically described the
diffusion-effects in the shell using the hydrodynamic model and demonstrated
that the meta-atom may now support multiple embedded eigenstates with
suppressed radiation loss. In fact, we showed that the electron-electron inter-
actions in the metal strongly relax the material and geometrical conditions
required for the formation of bound states, allowing the same particle to
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support states at multiple frequencies. With a spatially dispersive material,
it is no longer required for the plasmonic shell to have a permittivity exactly
equal to zero, which brings our work closer to a realistic experimental setup.

In chapter IV, we numerically studied the guided modes supported by a
crossed wire grid. We started by describing the electromagnetic properties
of the structure using a homogenization technique based on the transverse-
average fields. After using the classical and an additional boundary condi-
tions, we found through calculations that the structure supports a diverging
number of guided mode branches that pile up near the light line for low
frequencies. This behavior is due to the strong hyperbolic response of the
structure near the static limit. Using an electromagnetic simulator, we found
that in practice the number of guided modes is finite and depends on the wire
density. Furthermore, the guided modes exhibit an extremely fast field vari-
ation along the transverse direction even though they are weakly bounded
to the slab. To take advantage of this peculiarity, we devised a solution to
detect subwavelength defects due to structural changes in the host material.

Finally, in chapter V we theoretically and numerically studied the topo-
logical properties of one-dimensional periodic systems. First, we showed
that the number of photonic bands below a band gap can be understood
as a topological number of an extended system with a synthetic dimension,
defining the number of edge states in this system. In real-space, these states
correspond to localized modes at an interface of one-dimensional crystals,
for a given shift in the unit cell. For a full unit cell shift, the number of
trapped states branches is exactly equal to the number of photonic bands
below the gap. We established a rigorous and simple bulk-edge correspon-
dence for interfaces of one-dimensional systems and numerically illustrated
its application with several examples. In the second part of our chapter,
we considered only systems with inversion symmetry and a shift in the unit
cell of half-lattice period. We showed that these systems are characterized
by a fractional Chern number equal to the number of bands below the gap
divided by two. This result unveils an entirely novel class of topological sys-
tems with fractional topological invariants, which we conjecture may lead to
unique physical phenomena.
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