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Abstract

The growing usage of Machine Learning (ML) based systems in safety-critical contexts has
prompted increased concerns over the reliability of the models and algorithms used. De-
spite their effectiveness, these models can make mistakes with serious consequences. These
failures are often attributable to some sort of defect in the model architecture or lack of
training data. Other times, however, these errors happen due to random hardware faults.
To limit the effects of the latter, several methods have been developed and applied to ML
models with the goal of increasing their fault tolerance. Models based on Deep Neural
Networks (DNNs), particularly Convolutional Neural Networks (CNNs), are especially sig-
nificant due to their applications in safety-conscious tasks such as autonomous driving or
medical environments.

In this work, we study the effectiveness of existing methods in improving the fault tolerance
of CNNs, such as Dropout, Redundancy, Ranger and Stimulated Dropout. We use four
datasets of varying complexity that represent diverse applications of ML models, one of
which in a safety-critical context. In addition, we combine some of these fault tolerance
methods into hybrid approaches.

To measure the fault tolerance of ML models, we devise and implement a model-agnostic
experimental process that uses the ucXception framework to inject faults during the testing
phase.

Our evaluation of the tested methods shows that only Ranger and Stimulated Dropout
consistently improve the fault tolerance of CNN-based ML models. Of these two methods,
Stimulated Dropout shows the largest improvement in fault tolerance; however, the high
computational costs of this method make its use a challenge for modern architectures in
its current form, and further research is required to improve its performance.

Keywords

Safety-Critical Systems, Convolutional Neural Networks, Fault Tolerance, Fault Injection,
C++, PyTorch, Dropout, Redundancy, Ranger, Stimulated Dropout
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Resumo

A utilização crescente de sistemas baseados em Aprendizagem Computacional (AC) em
contextos seguros-críticos tem levado a um aumento da preocupação associada à fiabili-
dade dos modelos e algoritmos utilizados. Apesar da sua elevada eficiência, estes modelos
podem cometer erros com consequências graves. Estas falhas são com frequência atribuíveis
a algum tipo de defeito na arquitetura do modelo ou a falta de dados de treino. Contudo,
existem ocasiões em que estes erros acontecem devido a falhas aleatórias de hardware. De
forma a limitar os efeitos destes tipos de falhas, vários métodos foram desenvolvidos e
aplicados a modelos de AC com o objetivo de aumentar a sua tolerância a falhas. Modelos
baseados em Redes Neuronais Profundas (RNPs), particularmente Redes Neuronais Con-
volucionais (RNCs), são especialmente significativos devido à sua utilização em contextos
sensíveis como a condução autónoma ou aplicações médicas.

Neste projeto, estudamos a eficiência de métodos existentes para melhorar a tolerância a
falhas de RNCs, como Dropout, Redundância, Ranger e Stimulated Dropout. Utilizamos
quatro conjuntos de dados de complexidade variável que representam aplicações diversas
de modelos de AC, uma delas num contexto seguro-crítico. Para além disto, combinamos
alguns destes métodos de tolerância a falhas em abordagens híbridas.

Para medir a tolerância a falhas dos modelos de AC, idealizamos e implementamos um
processo experimental utilizável com qualquer modelo que utiliza a framework ucXception
para injetar falhas durante a fase de testagem.

A nossa avaliação dos métodos testados mostra que apenas o Ranger e Stimulated Dropout
melhoram de forma consistente a tolerância a falhas de modelos de AC baseados em RNCs.
Destes dois métodos, Stimulated Dropout mostra uma maior melhoria na tolerância a fal-
has; contudo, o elevado custo computacional deste método torna a sua utilização desafiante
em arquiteturas modernas na sua forma atual, e mais investigação é necessária para mel-
horar o seu desempenho.

Palavras-Chave

Sistemas Seguros-Críticos, Redes Neuronais Convolucionais, Tolerância a Falhas, Injeção
de Falhas, C++, PyTorch, Dropout, Redundância, Ranger, Stimulated Dropout
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Chapter 1

Introduction

The adoption of Machine Learning (ML) has been expanding in recent years [57]. Recent
advances in ML algorithms, especially Deep Neural Networks (DNNs) and Convolutional
Neural Networks (CNNs), as well as growing availability of large amounts of datasets and
the reduced cost of computational capabilities, have been the catalysts for this expansion.
As a consequence, ML is transforming a wide range of domains, from finance and health
care, to science and technology [73]. Some of these domains have strict safety requirements;
in these cases, the systems used are called Safety-Critical Systems (SCSs). SCSs are defined
[62] as systems whose failure can result in loss of life, significant property damage, or
damage to the environment.

The usage of ML in safety-critical contexts comes with particular concerns, one of which
is the possibility that the model will make an unintended mistake, resulting in adverse
consequences. Some of these mistakes are intrinsic to ML models since it is unfeasible
to achieve an accuracy of 100% in every possible scenario in real-world circumstances.
However, there are failures which are not related to the accuracy of the model and can
occur at random in any computerized system. These mistakes happen due to hardware
faults [110], which are caused by external factors that are difficult to control and predict.
Because of these characteristics, these failures can compromise the security of these systems
and reduce user’s trust.

For the use of ML models, particularly those that use DNNs, to become achievable in
safety-critical scenarios, the consequences of these events have to be reduced as much as
possible. In this context, it is vital to create approaches that increase the fault tolerance
of these types of models.

The objectives of this work are to examine, compare and discuss the impact of several
techniques on the fault tolerance of CNN-based ML models in a data-driven way. These
techniques include regularisation with Dropout [106], redundancy [110], modified learning
through Stimulated Dropout [15], and Ranger [28]. In addition to applying these techniques
to baseline models, we also combine these approaches into hybrid models.

1
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1.1. Contributions

This work aims to investigate techniques for improving the fault tolerance of CNN-based
ML models. In this context, our main contributions are detailed in the following para-
graphs.

We implemented a well known CNN architecture [67] and created ML models that could be
used as a baseline for comparing properties. We applied existing fault tolerance methods
[15, 106, 110] as well as our own implementation of a recent method [28], to the baseline
models. We selected some of these fault tolerance techniques and combined them, creating
hybrid models. In addition, we trained and tested the models on four datasets of varying
complexity.

We designed a model-agnostic experimental process to evaluate the fault tolerance of any
ML model. This was achieved by using the ucXception [111] framework to inject faults in
the models during testing.

Finally, we performed an analysis and comparison between the implemented ML models
using several metrics. We quantified the impact of the selected fault tolerance methods
in the performance and fault tolerance of ML models, and came to the conclusion that
Stimulated Dropout and Ranger provide the most improvement in fault tolerance.

1.2. Structure

This document is organized as follows: in Section 1, we introduce the topic and problem
statement and summarise the contributions; in Section 2, we provide the necessary theo-
retical knowledge to further understand the project topic and implementation; in Section
3, we describe the motivation, objectives and our planned approach to solve the problem;
in Section 4, we detail the experimental process, including justifications for the selected
tools and resources and explanations for the implementation; in Section 5, we present the
experimental findings, analyse and compare the results on different metrics; and finally in
Section 6, we present a summary of the work and specify future directions.

2
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Chapter 2

Background and Related Work

2.1. Artificial Neural Networks

The development of Artificial Neural Networks (ANNs) was inspired in part by biological
learning systems [85, p.82]. Even though there are some differences between them, ANNs
can be thought of as loosely analogous to the neural systems in the brain. ANNs are built
out of a dense and interconnected set of simple units, where each unit takes a number of
inputs and returns a single output value. These inputs can be either the outputs values
of other units, or external data points. Because of the similarity they share with their
biological counterparts, these units are interchangeably called neurons or artificial neurons,
and these networks can also be referred to as neural networks.

In order to understand how each unit works, we first need to learn about its history. The
first representation of an artificial neuron was created by McCulloch and Pitts in 1943
[79], in what is commonly called the McCulloch-Pitts (MCP) neuron. It is described as a
simple logic gate with binary outputs. As we can see in figure 2.1, there are multiple input
signals which are integrated into the body of the neuron. If the accumulation of the values
of those inputs exceeds a certain threshold, an output signal is generated and passed on
through the axon.

Figure 2.1: Model representation of biological neuron
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Based on this work, Rosenblatt developed the perceptron in 1957 [100]. A perceptron takes
in several inputs x1, x2, . . . xk and produces a single binary output.

For the purpose of generating this output, Rosenblatt developed a simple rule. It starts
by introducing weights w1, w2, . . . wj, which are real numbers that are associated with a
specific input and represent the importance the respective input has on the output. The
binary output is then determined by whether the weighted sum of the inputs is greater
than or less than a given threshold.

This threshold can be transformed into a variable called bias, which is equal to the negative
threshold. Bias represents how easy it is to activate the given unit, which in this case means
to turn its output from 0 to 1. We can see the expression for this rule in equation 2.1.

output =
{

0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(2.1)

Perceptrons can be joined together into networks. An example of a possible network [88]
is represented in figure 2.2.

Figure 2.2: Example Artificial Neural Network

This structure can be classified as a feedforward neural network, since the output of one
layer is used as input to the next. As we can see, each neuron of one layer is connected
to each neuron of the next, which means that the layers are fully-connected. Since this is
a perceptron network, each neuron receives and outputs a binary value. We can separate

5
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this network into sections with different roles: one input layer, one hidden layer and one
output layer.

The input layer receives information from an input sample. Input samples can be any
encoded information in the format of real or integer values. One example of an input is
a grayscale image with dimensions of 28x28 pixels. In this case, each neuron in the input
layer would represent one pixel, with the value of each neuron being the intensity of that
pixel in binary, either 0 to 1.

The first hidden layer receives the weighted outputs of the input layer. There is usually
more than one hidden layer, in such a way that the output of the first hidden layer is the
input of the second, the output of the second is the input of the third and so on. Each of
these layers can have any desired number of neurons. The total number of layers is called
the depth of the network and the number of neurons of a layer is called the layer width.

We can intuitively think of each additional hidden layer as incrementally increasing the
complexity of the network. This means that as a general rule, increasing the depth and
width of a network will enable it to learn more abstract patterns.

The output layer receives the weighted outputs of the last hidden layer and generates the
final return values for the network. The decision that the network makes depends on the
neuron of the output layer with the highest value.

Using Figure 2.2 as an example, we can see that there are 10 neurons in the output layer.
If the output of the first neuron is 1 and the outputs of the rest are 0, then the decision of
the network is that the input image belongs to class “0”.

As previously mentioned, in perceptron networks, all neuron values are binary. This means
that learning complex patterns is realistically impossible. Because of this, the function that
generates the output of each neuron, called the activation function, is modified in most
ANN architectures. One widely used activation function is the sigmoid function, which
receives and returns real values.

In the context of ANNs, learning means adapting the weights and biases of the network
to a given training dataset. This means that given a set of examples and their respective
labels, the network should be able to output values that correctly classify each of the
training inputs. To quantify how well we are achieving this goal, we utilise cost functions.
One example of a cost function is Mean Squared Error (MSE), which simply measures the
average of the squares of the errors. In this case, the errors are the difference between the
expected labels of a given input and the actual labels that were returned by the network.
We can see an example cost function that utilises MSE in equation 2.2, where w represents
the weights, b corresponds to the biases, n is the number of elements in the training dataset,
y is the correct label for sample x and ŷ is the predicted label for that sample.

C(w, b) ≡ 1

n

∑
x

‖y − ŷ‖2. (2.2)

The objective is therefore to minimise this cost function. This can be achieved in many
ways, one of which is by using the gradient descent algorithm [88]. This algorithm works by
iteratively taking small steps in the direction that decreases the cost function. In practice,
this means that the algorithm calculates the gradient for the weights and biases of the
network, and then moves in the direction specified by the negative gradient. This process
continues until a local minimum is reached.

The most common way for computing the gradient of the cost function for one input and

6
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output set is through an algorithm called backpropagation [101]. This computation is done
one layer at a time, starting from the output layer and ending on the input layer. This
is accomplished by applying the chain rule in order to avoid redundant calculations. This
method is more efficient than traditional, naive approaches that calculate the gradient
separately for every layer.

2.2. Deep Neural Networks

Now that we have explained in broad terms how ANNs work, we can introduce specific
implementations that are relevant to this thesis.

Deep Neural Networks (DNNs) are ANNs that have multiple layers between the input
and output layers. Deep Learning (DL) is a term that encompasses all Machine Learning
(ML) methods that utilise DNNs. In recent years, DL has taken a dominant role [74] in
an immense amount of fields, both in terms of state-of-the-art performance and real-world
applications.

It is generally agreed upon that DL was officially introduced in 2006 when Hinton proposed
a novel deep structured learning architecture called Deep Belief Network [47]. Since then,
growing attention has been given to this field, resulting in numerous breakthroughs, for
instance in 2012 [53] when a team led by Hinton won the ImageNet image classification
competition.

2.3. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of DNN that is especially well suited for
the task of image classification [42]. To explain how CNNs work, it is helpful to start with
the ANN structure from Figure 2.2.

CNNs are basically ANNs which have two particular types of layers: convolutional and
pooling. There are three important concepts to understand how CNNs work: local recep-
tive fields, shared weights and pooling.

In order to understand the concept of local receptive fields, we can visualise the input
neurons in the format of the input image. For instance, if we have an input image of 28x28
pixels, the input neurons are represented as a 28x28 square. Now instead of connecting
each neuron of the input layer to every neuron of the first hidden layer, we will only connect
a localised region of the input space. In Figure 2.3 we can see an example with a region of
5x5 input neurons, which is connected to one hidden neuron. This region is called a local
receptive field.

The next step is to iteratively slide this region through the input neurons, from left to right
and top to bottom, until the region collides with the bottom right corner of the image.
The length of this slide is a modifiable parameter called stride. In most cases, the value of
the stride is 1.

In CNNs, the weights and biases are shared between all of the hidden neurons of a given

7
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Figure 2.3: Mapping of 5x5 region to hidden neuron

hidden layer. This means that all of the neurons that belong to the same hidden layer are
detecting the same pattern or feature, only for different regions of the input space. The
mapping between the input layer and a given hidden layer can also be called a feature map.
Convolutional layers are essentially an aggregation of a predetermined number of feature
maps, as we can see in figure 2.4. Each of these feature maps represent the capacity to
detect one feature at every possible location of the input space. The dimensions of this
feature are the same as the dimensions of the region in the input space.

Figure 2.4: Feature maps in hidden layer

Finally, CNNs have an additional type of layer called a pooling layer. These layers are
usually placed directly after a convolutional layer and are meant to summarise each of that
layer’s feature maps.

Pooling layers are composed of pooling units. These units contain the output of a pooling
operation that is performed on a region of a given feature map. This region is necessarily
smaller than the region used to create the feature map. In figure 2.5, since the previous

8
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region had dimensions of 5x5, the pooling region has dimensions of 2x2.

Figure 2.5: Max-pooling example

There are several different pooling operations. Some of the most commonly used include
max-pooling, which simply returns the maximum activation value out of a given region,
and average-pooling, which calculates the average in the region.

The final scheme of an example CNN can be viewed in Figure 2.6.

Figure 2.6: Example Convolutional Neural Network

In this case, the pooling layer is fully-connected to the output layer. Similarly to the
previously mentioned ANN architecture, we can now train the CNN using, for instance,
backpropagation and gradient descent.

9
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2.4. Normalisation

Normalisation is the process of standardizing data, i.e. putting data in the same range.
The inputs of DNNs are usually normalized as part of the pre-processing stage. Even with
this initial process, the activation values of neurons in the hidden layers of the network
can begin to deviate from their usual magnitude, both between different layers, across
neurons in the same layer, and over time,[54, 118], which can negatively impact training
accuracy. In order to diminish this issue, normalisation can be added to the network as a
layer. Normalisation layers have two purposes: speeding up training time and improving
generalization accuracy [108].

Local Response Normalisation (LRN) is a type of normalisation first introduced in
the AlexNet architecture [65]. It was inspired by a concept from neurobiology called lateral
inhibition, where excited neurons should subdue their neighbours. In ANNs, this means
that neurons with higher outputs inhibits adjacent neurons, creating local maximums and
increasing the significance of the high value neurons. In CNNs, LRN can be applied within
the same channel, or across different channels. Later architectures such as VGGNets [105]
removed LRN since its effect was not significant in CNNs with a high number of layers
[72].

Batch Normalisation (BN) [54] is a normalisation technique that is applied to individ-
ual layers. It works by first normalising the inputs of the specific layer. This normalisation
is achieved by subtracting the mean and dividing by the standard deviation, where both
values are obtained from the current minibatch. Afterwards, we apply a scale coefficient
and scale offset. BN has a different implementation depending on the type of layer it is
applied to; if it is a Fully-Connected (FC) layer, BN is inserted after the affine transforma-
tion (e.g. summation) and before the activation function, whereas in convolutional layers,
BN is applied after the convolution and before the activation function.

BN has two major drawbacks. First, it produces inconsistent results in training and testing,
which makes it inadequate for complex architectures such as Recurrent Neural Network
(RNN) [50]. Second, the error increases dramatically when using small batch sizes [115].
This means that in order to use BN, a sufficiently large batch size needs to be selected (e.g.
32, 64), which can be memory-consuming depending on the task. Despite these issues, BN
is one of the most common normalisation techniques for DNNs [3] and is an integral part
of several prominent architectures [45, 49, 109].

Another widely used normalisation technique is Layer Normalisation (LN) [50], which
aims to correct or improve some of the drawbacks of BN. This technique works similarly to
BN, with the exception that it estimates the normalisation statistics (mean and variance)
from the summed inputs to the neurons within a hidden layer. This is done individually
for each training sample, which makes it so that the normalisation does not introduce new
dependencies between training cases.
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2.5. Overfitting in Artificial Neural Networks

Overfitting is an issue in ML performs well in the training set but fails to generalise
to unseen data [118]. In ANNs this happens because the weights are being tuned to
fit particularities of the training examples which are not representative of the general
distribution of samples [99, p. 73]. This process is particularly apparent during later
iterations of the training algorithm, as the decision surface becomes overly complex [85, p.
111].

There are two important concepts related to overfitting: training error and generalization
error. The training error is the error of the model as calculated on the training set, whereas
generalization error is a measure of the model performance on previously unseen data.
Generalization error is estimated based on a validation set (hence often being referred to
as validation error), which is randomly sampled from the training set [118]. Methods that
prevent overfitting aim to reduce the generalization error.

2.5.1. Data augmentation

One of the most common ways of preventing overfitting is by using a larger training dataset,
either by collecting more data, or through data augmentation. Data augmentation [39, 103]
is a set of techniques that aims to enhance the size and quality of training datasets. In image
data augmentation, two of the most relevant techniques are data warping and oversampling.

Data warping involves transforming existing images while keeping the same label. Example
transformations include altering geometric or color properties [104], erasing parts of the
image at random [119] or adversarial training [41].

Oversampling is another data augmentation technique. It is based on creating artificial
samples using methods such as mixing existing images [61] or utilising generative adver-
sarial networks (GANs) [23].

These techniques are not suitable for every scenario. Smaller datasets can have inherent
biases [104] which cannot be prevented or reduced with Data Augmentation.

2.5.2. Regularization

Regularization is defined [42, sec. 5.2.2] as any modification that is made to a learn-
ing algorithm that is intended to reduce overfitting. Regularization techniques can be
used instead of or in addition to the previously mentioned overfitting prevention methods.
There are various regularization methods, of which we will mention Early Stopping, L1/L2
Regularization, Dropout and Stimulated Dropout.

2.5.3. Early Stopping

Early Stopping is one of the most commonly used forms of regularization in ANNs [95].
As we have previously mentioned, after a certain point in the training process, the gener-
alization error starts to increase. We have also noted that this can be seen as an indication
that the model is overfitting.
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The principle behind early stopping is that we can obtain a model with better generalisation
capacity by returning the state of the model at the point in time at which it had the lowest
generalisation error. The learning algorithm is therefore terminated whenever there has
been no decrease in the generalisation error over a predefined number of iterations. This
process can be visualised in Figure 2.7.

Error

Epochs

Generalisation error

Training error

Early stopping point

Figure 2.7: Early Stopping when there is an increase in generalization error

2.5.4. L1 and L2 Regularization

L1 and L2 regularization are other commonly used techniques. The basic concept behind
these methods is that they penalise models that have large weight values, such that these
weights are driven towards the origin (zero). They do so by subtracting a penalty term to
the cost function, which is calculated differently for both types. The penalty term for L1
is the sum of the absolute values of the weights, while for L2 it is the sum of the squared
values of the weights.

The motivation for L1 and L2 regularization is that if the weight values are kept small,
the learning algorithm will become biased against complex decision surfaces, resulting in
a simpler model that has a better generalization capacity.

L1 regularization often results in a model that is sparse [42, sec. 2.3.2]. Sparsity in this
sense means that most model parameters are zero. For this reason, L1 is utilised in feature
selection.

2.5.5. Dropout

Dropout [106] is another regularization method. It provides a simple and computationally
efficient way of preventing overfitting. During each training iteration, each neuron has a
predetermined probability p of being omitted. In the original version of dropout, both
input and hidden layer neurons can be omitted and the probability p can be different
between layers (e.g. 0.2 in the input layer and 0.5 on the hidden layers). If a neuron
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is omitted, it will not be considered during that iteration, which leads to a continuous
changing of the network at every iteration.

Figure 2.8: Example network with dropout

In the testing phase, the full network is utilised, including the neurons that were omitted.
However, every neuron output is multiplied by the probability p of its corresponding layer.
This serves to compensate for the larger size of the network, since the outputs of each layer
will be larger than in the training phase. This can be interpreted [66] as the averaging of
the several different networks that were generated during training. This averaging reduces
the testing error, leading to better results than previously mentioned methods such as L2
regularization [92].

2.6. Dependable and Secure Computer Systems

In the past decade, ML has been increasingly used to solve complex problems, particularly
through DNN models [17, 117]. There are some problems, such as the classification of skin
cancer [38] or the detection of arrhythmia [98], among others, that are achievable by these
kinds of models with similar accuracy to specialists in those fields. Recently there have
been major advances in the usage of DNNs for object detection and image classification
purposes in autonomous vehicles with promising results [30]. Nowadays, there is a higher
circulation of autonomous vehicles than ever before, something which is expected to grow
in the future [24, 117].

Since these types of models are being used more and more in situations that are sensitive
in terms of safety, there is a discussion to be had about the possibility of these models
making mistakes, as well as the negative impact of those mistakes.

Every computer-based system delivers a service to its users [18]. When that service cor-
responds to the function of the system (i.e. what the system is intended to do) it is said
that the system delivered a correct service. On the other hand, if the service deviates from
what is expected, this is referred to as a system failure. A deviation between expected and
actual service is called an error.
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Errors are caused by faults, which are anomalous physical conditions in the system. Faults
can occur for several reasons, such as thermal cycling, transistor variability or Single Event
Upsets (SEUs) [90]. SEUs happen when highly energetic particles (e.g. alpha particles)
strike sensitive regions of a microelectronic circuit [35]. These events occur arbitrarily in
natural environments.

In autonomous driving, one example of a failure is misclassifying an object, for instance
by mistaking a vehicle for a bird [28], resulting in a delayed response that can potentially
cause an accident. Autonomous driving systems that are reliable have a low probability of
such misclassifications happening or at least affecting the correct functioning of the system.

Because of the potentially harmful consequences of failures in sensitive domains, software
solutions are required to meet strict standards such as IEC 62304 [55] for medical and ISO
26262 [56] for automotive applications.

In order to set limits for the failures in different domains, failure rate metrics such as
Failure-in-Time (FIT) are widely used [70]. FIT represents the number of failures that can
be expected in one billion hours of operation. Standards such as ISO specify the maximum
FIT rate of devices in that domain (e.g. ISO 26262 limits the FIT rate to less than 10
[56]).

The FIT rate is calculated for the entire system in question [70], called the System on Chip
(SoC), and not just for the part of the system that is running specific processes such as a
DNN. This makes the fault tolerance of DNNs even more important, since they need to be
minimised in order to make sure the total FIT rate does not exceed the limits.

2.7. Critical Systems

Critical Systems (CSs) are systems where a failure can have a significant negative impact
at a human or economical level [46]. There are three types of CSs: Safety-critical, Mission-
critical and Business-critical.

Safety-Critical Systems (SCSs) are systems in which failure can lead to loss or injury to life,
property damage and/or damage to the environment [63]. This designation encompasses
a wide-ranging selection of fields, such as:

• Infrastructure, for instance in emergency services dispatch systems, electrical distri-
bution and generation and telecommunications;

• Medicine, in devices like mechanical ventilation, dialysis or robotic surgery, as well
as in medical imaging devices such as X-rays, computerized tomography (CAT) or
magnetic resonance imaging (MRI);

• Nuclear Engineering, in nuclear reactor control systems;

• Transport, from aviation, railway and spaceflight control systems to the automotive
industry.

Mission-critical systems are essential to the success of a specific task or the survival of a
business or organization [46]. Failures in these types of systems result in the termination
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of a specific operation, at the cost of time, resources or equipment. Examples of this
category include spacecraft navigation systems (where a failure can cause the spacecraft
to get destroyed), or database systems with no backup (where power outages can lead to
loss of important data).

Business-critical systems [46] are systems in which failure leads to significant economic
losses, at a tangible (e.g. money) and/or intangible (e.g. reputation) level. If these
systems fail, the business or organization can continue to function or partially function,
but there is a loss of time or resources. One example is a customer accounting system in a
bank, where if it fails, the data is not lost, and the business can continue operating without
it.

2.8. Faults

Faults can be classified according to their characteristics [110]. When a fault is constant
through time (which usually happens in cases where there is persistent physical damage
in the microelectronic components) it is called permanent. When the fault only lasts for
a brief interval, it is referred to as a transient fault or soft error. When transient faults
are recurring, they are called intermittent. Most of the faults that occur in systems with
current semiconductors are transient or intermittent [110].

In modern devices, the decreasing size of computer chips and the adoption of certain energy
management techniques (e.g. dynamic voltage scaling) increases those chip’s vulnerability
to transient faults [22, 91, 102]. Existing problems such as flaws in the design/manufactur-
ing of the components or using those components beyond their expected lifespan further
worsens this vulnerability. These characteristics contribute to the fact that transient faults
are much more common than permanent faults, by a rate of up to 100:1 [94]. Transient
faults have also gathered attention in recent years because of their impact in cloud services
[36].

Fault models describe the system components that become defective, as well as the condi-
tions in which this occurs [21]. Two widely used [33] fault models are:

• Stuck-at, where data or a control line is stuck at a high or low value or state (also
referred to as stuck-at-1 and stuck-at-0, respectively);

• Random bit-flips, where a data or memory element is assigned an incorrect, ran-
domly generated value.

The stuck-at fault model intends to mimic defects at the transistor and interconnection
structures level. These defects are examples of permanent faults [110].

The random bit-flip fault model [110], on the other hand, simulates faults that happen at
the register or memory level. These are examples of transient faults. A bit-flip operation
takes place when one bit of a binary value is flipped, i.e. switches to the opposite of
its current state. This alteration changes the logic value of the corresponding memory
element, affecting the processes which are accessing that memory element at the time. A
diagram for this operation can be seen in Figure 2.9.
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Figure 2.9: Example of a Random bit-flip caused by an Single Event Upset

2.9. Fault tolerance

Fault-tolerant systems have been studied in depth in research [110]. This implies several
key issues, from understanding how faults are originated in the first place, to categorising
faults based on similar characteristics into types [14, 18, 80] and lastly to evaluating the
behaviour that systems have when faults occur. The ultimate goal of this area of study
is understand the impact that faults have on systems, and develop methods to prevent or
mitigate those effects.

There are several concepts [18] which are important to define in order to understand this
field:

• Dependability is defined as the capacity of a given system to deliver trustworthy
service, i.e. to keep the amount of failures at a reasonable level.

• Trustworthiness is the degree of assurance that a system will perform as expected.

• Availability is the readiness of correct service at any given time.

• Reliability is the ability of a system to perform its required functions under certain
conditions for a given time interval [11]. Highly reliable systems have a low probabil-
ity of failure, which often translates to an increased trustworthiness of that system;
this concept is therefore very important when deciding on whether to use computer
systems to solve a certain task.

• Safety refers to the absence of harmful consequences on users, property and environ-
ment in the case of a system failure.

• Integrity is the ability for a system to prevent information modification or destruction,
while at the same time ensuring properties such as non-repudiation and authenticity.

• Maintainability is the ability for a system to be modified or improved.

• Robustness can be defined as dependability with respect to external faults (e.g.
hardware-related faults). Robust systems continue to operate as intended regard-
less of noise or variation of internal values.

Avizienis et al. [18] define several means to improve the dependability of a system.
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• Fault prevention refers to preventing faults or fault introductions (e.g. through fault
injection) from happening.

• Fault tolerance is the ability of a system to provide correct service despite the occur-
rence of faults.

• Fault removal refers to means to reduce the number and severity of faults.

• Fault forecasting refers to means to estimate the current number, the future incidence,
and the likely consequences of faults.

Traditionally, the fault tolerance of a system was assured by exploiting redundancy at the
hardware level, through methods such as replication, where multiple systems perform the
same operation and the final output is decided by majority-voting. Examples of this tech-
nique include Dual Modular Redundancy (DMR) [71, 113] and Triple Modular Redundancy
(TMR) [51, 76, 116], where two and three systems are used, respectively.

There are major downsides to this type of approach, such as overheads in cost, performance
and energy consumption [71]. This is further worsened by the fact that DNN models often
have applications with energy or spatial constraints (e.g. embedded devices). In addition,
replication-based techniques require synchronization between the systems, which may not
be trivial. For these reasons, these methods are not suitable for systems that require swift
and efficient functioning, such as most SCSs.

2.10. Fault injection

The occurrence of faults in a natural environment is arbitrary and rare. This makes it
troublesome to study their effects. Because of this, techniques have been developed to
either create or replicate faults at will.

Fault injection is defined [19] as the deliberate introduction of faults into a system. After
the injection, the system is usually examined in some way in order to identify any possible
errors or effects of that injection. A sequence of fault injections in the same system is
referred to as a fault injection campaign.

There are several characteristics which are important to have in fault injection tools:

• Repeatability: repeated fault injections should get the same results;

• Controllability: ability to control the temporal and spatial components of the fault
injection;

• Intrusiveness: degree of the unintentional effects that the fault injection tool has on
the system at a temporal and spatial level;

• Observability: how easy it is to observe and measure the effects of fault injection;

• Reachability: ability to access locations in the processor on which to inject faults;

• Reproducibility: ability to replicate the results of a fault injection campaign.

17



Chapter 2

One concern in fault injection is that testing every single possible fault bears tremendous
computational cost, even for moderately complex systems [64]. Consequently, it is common
to test only a fraction of the possible faults for controllability and reproducibility purposes.
The results are approximate estimates of those obtained by exhaustive testing [29].

The earliest methods for fault injection, known as Hardware Fault Injection (HFI),
worked by introducing physical disturbances into the hardware components of the system.
These types of tools can employ different techniques [19], such as pin-level fault injection,
Power Supply Disturbance (PSD), electromagnetic interference or particle radiation (e.g.
heavy-ion radiation).

Pin-level fault injection can have two types: Active probe or Socket insertion. Active
probe utilises specialised probes which are connected to the integrated circuits or hardware
components of the target system. These probes inject faults in the attached components by
altering their electrical current [48]. One downside of this approach is that if the electrical
current is too high, the target hardware is likely to become damaged.

On the other hand, in socket insertion, a socket is added between the target hardware and
its corresponding circuit board, allowing for the injection of complex faults into the pins
of the target hardware.

Some examples of tools that use pin-level fault injection include RIFLE [77] and Messaline
[16].

PSD is another method of HFI. It consists of dropping the supply voltage of the circuits
below the expected range [19]. This affects several nodes in the circuit at once and causes
multiple transient faults. It represents what might happen in case of a supply outage that
affects a computer system in a real-life scenario [60].

Transient faults can also be generated by performing electromagnetic bursts on part or the
entirety of the integrated circuits. This can be achieved by placing the target hardware
near an electromagnetic field [48]. This is considered a relatively imprecise method [48]
because it is difficult to control the moment at which the electromagnetic field is created,
and therefore it is also hard to regulate the time and location of the fault injection.

Lastly, particle radiation [35] can also be used to inject transient faults without physical
access to the hardware components. It is representative of what can happen in a real-life
situation, where neutron and alpha particle hits can cause errors. As the size of modern
integrated circuits becomes smaller, the probability of these particle hits increases, making
this a problem of increased importance [91].

Software Fault Injection (SFI), on the other hand, uses software tools that emulate
hardware faults by perturbing the state of memory or the hardware registers. SFI tools
can only inject faults on the resources that the hardware allows them to access.

The main advantages of SFI approaches are that they do not require expensive specialized
equipment [40], they can be applied to most computing devices [93] and they can be
programmed to inject faults automatically without supervision. They are also capable
of simulating an extensive range of fault models, from hardware to software (e.g. data,
interface and code) faults [19]. In general, these tools also offer more controllability and
repeatability when compared to HFI methods [64].

There are several properties which are important in SFI tools [87]:

• Representativeness is the ability to simulate the actual faults that a system might
have in operation. This property depends on the realism of the fault models. Realis-
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tic fault models emulate the types of faults that are expected to occur in the system.
They should also have the frequency distribution of normal circumstances. These
characteristics can be obtained by studying the failures that occur spontaneously
on the target system or in a similar system, a process called field failure data anal-
ysis. Failures can also be compared with other fault injection methods that have
demonstrated accurate failure representation.

• Usability is the ability to apply the SFI tool on any given system. This property
depends on the following aspects:

– Portability: SFI tools should be functional on different operating systems, ap-
plications and hardware components;

– Intrusiveness: the SFI tool should not affect the results of the experiments (e.g.
by impacting the performance);

– Flexibility: the SFI tool should cover a diverse range of fault models, as well as
have the capability to add new ones;

• Efficiency is the ability to produce experimental results with an adequate amount of
resources and time. The efficiency of an SFI tool depends on the effort that is put
in to obtain useful findings. Common indicators for efficiency include the number
of fault injections, and the probability of a fault injection causing an error. The
optimal type, location and timing of the injection should be determined by analysing
the system.

We can differentiate between SFI tools based on the timing of the injection: compile-time
and runtime [48]. In compile-time injection, the program instructions are modified before
the program is loaded and executed. This results in errors being injected into the source
code or assembly code of the program, which allows for the emulation of different types of
faults (e.g. hardware, software, transient and permanent) without any auxiliary software
program. One limitation of this approach is that the user needs to have access to the code
of the target program.

Runtime injection uses triggering mechanisms to activate the fault. There are different
types of triggering mechanisms, such as timers, exceptions/traps, or code insertions.

Timers expire at an exact instant, generating a time-out event. This event creates an
interrupt signal that is used to trigger the fault injection. Hardware timers need to be
associated with an interrupt handler which injects the fault. This technique is adequate
for emulating both transient and intermittent faults.

Instead of only injecting faults at an exact instant, exceptions/traps can be used to perform
fault injection before, during or after specific events occur. In the case of software traps,
the fault can be injected after a specific program instruction, whereas in hardware excep-
tions faults are injected when a hardware event occurs (e.g. accessing a specific memory
location).

Another runtime fault injection technique is code insertion, which works by inserting cer-
tain instructions on the source code of the target program just before an event occurs [75].
These instructions inject the fault and then the program continues. This technique dif-
fers from compile-time injection in that it adds instructions instead of modifying existing
instructions.

There are three main classes of SFI [87], divided according to the types of faults they are
intended to simulate: Data Error Injection (DEI), Interface Error Injection (IEI)
and Code Change Injection (CCI).
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DEI works by corrupting the values in a memory location or hardware registers. Though
originally intended to simulate the errors caused by hardware faults, DEI tools can also
be used to emulate software faults [20]. Different fault models can be used, including
stuck-at or bit-flip. When injecting faults in memory, the location of the injection can be
either deliberately selected (e.g. a specific variable) or randomly chosen from a memory
area, whereas injection in registers can be done in any of the registers that are accessible
through the software.

FIAT [20] is a DEI tool that emulates both hardware and software faults. Injections
are performed at compile time, by a fault injection library which is linked to the target
process. It is possible to control the experiments and analyse the results through a simple
user interface. One limitation of this approach is that it requires access to the source code
of the target process.

Xception [26] is another tool that injects faults at runtime. it takes advantage of existing
debugging and performance monitoring capabilities of modern CPUs in order to ensure
minimum interference in the target system, thus decreasing its intrusiveness. This tool is
able to time faults with great accuracy because it uses performance counters instead of the
less accurate system clock. One disadvantage of Xception is that it is reliant on features
that are only available in modern CPUs, which invalidates the usage of this tool on older
hardware.

GOOFI [13] is another example of a DEI tool. It is implemented in Java and includes a
SQL database that stores information about the experiments. Since it uses programming
languages which are available in a wide range of systems, it is easy to adapt this tool to
new systems. Because of its object-oriented approach, this tool also provides flexibility in
the types of faults that can be injected. Besides single and multiple transient faults, it
allows for new types of faults to be implemented easily.

In addition to providing support for compile-time SFI, GOOFI can also perform Scan-
Chain Implemented Fault Injection (SCIFI), which uses components that are present in
modern VLSI circuits to inject faults directly into the pins and internal state elements of
the integrated circuit.

TensorFI [69] is an example of a recent SFI tool that is built onto TensorFlow [10], a
popular ML framework. It modifies the TensorFlow graph and allows for the injection of
both hardware and software faults.

Since TensorFI is meant to be used with TensorFlow, the user only needs to add a small
number of lines in the Python code in order to use this tool. It is also supported by
previous versions of TensorFlow, enabling the programmer to use it in existing programs
without modifications. Finally, there is a minimal overhead to the execution, which means
TensorFI is a very efficient tool.

BinFI [29] is an adapted version of TensorFI. This tool searches for the critical bits in a
process (i.e. the bits in which the fault injection causes errors). In comparison with other
methods that also identify the critical bits, BinFI produces similar results while ensuring
a speedup of 5x. This is because instead of performing an exhaustive search like existing
methods, it uses binary-search, which is more efficient.

IEI works by corrupting the input or output values that are exchanged between the target
component and the environment or other software/hardware components. This exchange
is done through the target component’s interface.

When the inputs are corrupted, this tests the target components ability to tolerate faults
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that occur in external components, whereas when the faults are injected in the output
values, we are able to evaluate the effects of internal faults on the external components.
Testing with fault injection in the input values has particular importance in programs that
include an Application Programming Interface (API), since they need to be able to handle
faults that might occur in a wide range of devices.

IEI tools can be based on two types of techniques: test-driver, which uses a special program
that is linked to the target component and tests it with corrupted inputs; and interceptor,
which corrupts the inputs that are sent from other components to the target component.

Fuzz and Ptyjig [83] are two of the earliest IEI tools. They send random data to the
target process (in this case, a UNIX utility program) in order to check if the altered data
induces errors. The results were that the tools were able to crash or hang between 24%
and 33% of utility programs on three UNIX systems. Over the years, these tools were
tested on modern Operating Systems (OSs) [82, 84] and the conclusion is that there is
some improvement; in 2020, the failure rates were between 12% and 19% using the original
methods.

Code Change Injection

CCI [87] is used to emulate software faults by injecting code that causes programming
bugs. The injection can be achieved by simply modifying a small set of instructions in the
source code or the binary executable. This is often done before execution [32] in order to
make the faults permanent. Some studies inject faults during execution [37] in order to
have more control over the timing of the injection.

FINE [58] is the earliest tool to employ CCI. It is able to inject hardware-induced software
errors as well as software faults. FINE injects faults into the binary code of a target process
in systems with a UNIX kernel. This tool was later extended with DEFINE [59], which
adds the capacity for executing experiments in a distributed environment and expands the
available fault types. Using these tools often results in a high number of inactivated faults,
since the inputs required to activate the faults are frequently very specific.

2.11. Effects of faults in Artificial Neural Networks

Any process that is running on a computer-based system can be affected by faults. As
mentioned in the previous section, transient faults do a bit-flip on one of the CPU registers
of the computer. In practice, this means that the process that is using those registers at
a given time will use defective values, which can lead to errors in internal values. If that
process happens to be an ANN, these types of errors can impact it in several different
ways:

• Input layer: change in the values of the input neurons;

• Weights: change in the values of the weights or in the values of mathematical oper-
ations involving the weights;

• Neuron body: change in the value of the summation or the output of the activation
function. If the activation function has fixed bounds (e.g. tanh has a range of [−1, 1]),
changes in the summation often cause the neuron to become saturated, i.e. stuck at
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the upper or lower bounds. In the cases where the activation function is unbounded
(e.g. ReLu has a range of [0,+∞]), these alterations can result in

It is commonly held that ANNs have some intrinsic tolerance to the impact of faults
[110]. In other words, if a fault causes a fluctuation in the value of some neurons in the
network, this deviation can evened out by the remaining neurons. This is attributed to
ANNs distributed structure and over-provisioning [81] (i.e. having more neurons than the
minimum number required to perform a computation).

In most cases, this intrinsic capacity makes ANNs capable of withstanding the impact of
faults. In rare occasions, however, these faults can overwhelm the network’s fault tolerance
capacity and affect the output of the neural network resulting in a misclassification. We
can see an example of this in Figure 2.10b.

(a) ANN with no faults. The output class is
1.

(b) ANN with fault and error propagation.
Because of the error, the output class is al-
tered to 2.

Figure 2.10: Visualisation of the effect of transient faults in ANNs. Darker color means
higher values.

Nowadays, most research in applying ANNs to the visual domain utilises DNNs. There
has been some research into the characteristics of DNNs that impact their fault tolerance
the most [68].

According to [68], one of the most important characteristics is the topology of the network.
Special emphasis is given to the type of layer that is used. Normalisation layers [65], for
instance, are a type of layer that is used to increase the generalization accuracy of the
network by bounding the output of specific layers to a predetermined range. They are
often applied before unbounded activation functions (e.g. applying LRN before ReLU in
AlexNet [65]) in order to prevent the output values of the activation layer from exploding.
In addition to their intended purpose, LRN layers also increase the fault tolerance of the
network since they normalize faulty values according to their adjacent fault-free values.

Another important characteristic is the type of data that is used in the implementation
of the DNN. When a fault occurs in a specific bit, the vulnerability of that bit to Silent
Data Corruptions (SDCs) is proportional to the dynamic value range of the data type.
This means that data types with higher value ranges have proportionally higher deviations
due to faults, which in turn results in a higher probability of there being an SDC. In [68],
it is stated that, when possible, it is preferable to choose a data type with an adequate
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dynamic value range according to the needs of the specific network. An added benefit of
using data types with smaller dynamic value ranges is increased energy efficiency, which is
a requirement for some safety-critical DNN systems such as those used in the automotive
domain.

It has been proven [68] that in an autonomous driving scenario, the DNNs which are used
for object detection might output the wrong class for a stop sign, or fail to detect it. This
type of mistake can provoke serious safety violations in the form of loss of life or damage
to property. Since traditional DNNs have no intrinsic way of detecting and handling this
type of situation, it is essential to research possible solutions to this problem.

2.12. Fault tolerance in Artificial Neural Networks

There have been significant efforts to improve the fault tolerance capabilities of ANNs.
A diagram with the main categories of current fault tolerance techniques can be seen in
Figure 2.11.

Fault tolerance

Active

Passive

Explicit redundancy

Optimization under
constraints

Modified learning

Figure 2.11: Diagram with types of fault tolerance applied to ANNs

There are two generally accepted types of fault tolerance [110]. The first is active fault
tolerance. Systems that employ this type have two components, one for detecting faults
and another for controlling them. The main idea is that these systems detect faults as they
appear and handle the effects using mechanisms that compensate for those effects. This
compensation is achieved by taking the tasks that were being carried out by the faulty
components of the neural network and assigning them to non-defective ones.

The second type is passive fault tolerance. In contrast to the previous type, systems
that use passive fault tolerance do not directly detect and manage faults. Instead, these
systems make architectural changes to the neural network that increase its redundancy,
thus indirectly compensating for the fault effects. These changes ensure that the neural
network outputs are as expected even when faults occur. In comparison to active fault
tolerance, this approach incurs low overhead, since no additional components have to be
in place in order for it to work.
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There are several categories of passive fault tolerance [110], of which we will mention the
three most relevant ones.

The first is explicitly augmenting redundancy. The starting point for this method is
usually an unmodified ANN which is trained on a given training dataset. After this stage,
there is a selection phase that results in the works by inserting redundancy in hidden
neurons (those belonging to the hidden layers of the ANN) and their respective weights.

After this stage there is a selection of neurons based on a ranking of their sensitivity. The
sensitivity of a neuron can be understood as a measure of the change in the output of the
network whenever that neuron is changed. Changing the value of a neuron has an impact
on the output of the network that is proportional to that neuron’s sensitivity. Highly
sensitive neurons are also called critical neurons.

Several techniques are then applied to the neurons with the highest sensitivity. These
techniques include spatial redundancy (i.e. duplicating critical neurons) or evenly weight
distribution with neuron pruning and removal of unnecessary weights.

The second category is referred to as optimization under constraints. In this category,
the training process is turned into an optimization problem, where the constraints are the
fault tolerance capacity of the model and the model’s ability to perform the task that is
assigned to it. Optimization algorithms are then used in order to find an ANN architecture
and parameters that satisfy these restrictions.

Initially, classical optimization problems such as minmax were used [34]. In these cases,
conventional methods were used to find the solution. One issue with this was that these
methods used up too many resources.

One example of research in this category is using genetic algorithms as an optimization
algorithm to adapt the network’s architecture, for instance in the work done in [120]. In
this case, each network is an individual and the fitness function depends on the global error
of the network i.e. the difference between the actual output and the expected output. The
authors conclude that the evolved networks had improved fault tolerance and generalisation
capacity compared to networks trained conventionally.

The final category is modified learning. As the name suggests, alterations are made to
the model during training that make it more tolerant to faults in the testing phase. There
are two subcategories of modified learning.

The first one is inserting regularization into the learning algorithm. Regularization is
defined as any modification that is made to a learning algorithm that intends to reduce
overfitting.

The second subcategory is characterised by adding noise, perturbations or fault injections
to the learning algorithm during the training phase. The reasoning behind this is that when
some of the internal values of the ANN change, other neurons will tend to compensate for
this change. This results in a more evenly distributed set of weights, which leads to an
improvement in the fault tolerance of the network.

In Section 2.5.5 we discussed the Dropout technique, which belongs to the first type of
modified learning. In the following sections we will detail Stimulated Dropout, a technique
that fits in the second type of modified learning, and also one recent technique that does
not fit within either subcategory, called Ranger.
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2.12.1. Ranger

Constraining the weights of ANNs has proven to be useful for improving their fault tol-
erance in works such as [114], where the magnitude of the weights in the same layer are
bound to a predetermined range.

One recent technique employing this idea is Ranger [28]. As previously mentioned, one of
the possible consequences of transient faults is a large deviation in a neuron output value. If
the network cannot intrinsically handle this deviation, the error can be propagated through
the network and possibly affect the output. Ranger aims to increase the fault tolerance
capability of ANNs by restricting the output values of neurons at certain layers in the
network, thus preventing errors that occur before those layers from affecting the following.
The selection of the layers where Ranger is applied is essential for this technique to have a
significant effect. It has been proven empirically [28] that Ranger provides the most effect
if it is used directly after activation layers.

An example application of Ranger can be visualised in Figure 5.10. This is an adapted
version of a diagram in the original paper [28]. We are using the example fault propagation
given in Figure 2.10b, and demonstrating the effect of Ranger when applied to the network
between the input and hidden layers.

As a reminder, when faults cause the output value of a neuron to increase dramatically,
this error can propagate through the network and affect neurons in subsequent layers. By
restricting the range of values that pass from the input layer to the hidden layer, Ranger
dampened the error that occurred in the input layer and stopped it from being propagated
to the following layers. This prevented the network from misclassifying the sample. If
Ranger was applied between every layer, this protection would extend to errors that occur
all throughout the network, not just in the input layer.

2

1

R
an
ge
r

Figure 2.12: Ranger

In order to apply Ranger, one first has to derive the restriction bounds. In cases where
the activation function of the selected layer is already bounded (e.g. tanh has a range of
[−1,+1]), those bounds are used. In the cases where the activation function is unbounded
(e.g. ReLu has range [0,+∞]) the restriction range is obtained by sampling the values of
the activation layer when testing the model on 20% of the training data. Afterwards, the
upper bound is obtained by calculating the 99.9% percentile of that set of values.
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2.12.2. Stimulated Dropout

Stimulated Dropout is a novel approach first introduced as part of the project that this
thesis is a part of [15]. The implementation of this technique is similar to dropout with
one important distinction: instead of being omitted, neurons in the applicable layers have
their output values modified arbitrarily. This numerical manipulation consists of a random
bit-flip operation that is made on the output value. To help visualise this operation, we
have the representation of an example output value in Figure 2.13. Stimulated Dropout
is an example of a fault tolerance technique and can be characterised as modified learning
by adding noise.

Figure 2.13: 32 bit representation of neuron output value

The internal values of ANNs can have one of several data formats. The most common is
the single-precision floating point format with 32 bits from the IEEE 754-2019 standard
[52], which is represented in the image. This format can be divided into three parts: the
sign which corresponds to one bit, the exponent which has eight bits and the significand
which has 23 explicitly stored bits and one implicit leading bit.

Usually the bit-flip operation will choose one of these bits at random and switch its value,
thus changing the value of the number that is stored. This manipulation mirrors the
random bit-flip fault model mentioned in subsection 2.3.3. The impact of this bit-flip
depends on the original number and on the bit that is switched. For instance, if the value
of the number is 2 and there is a bit-flip on the 29th most significant bit, the value will
increase to 3.689e+19. On the other hand if the value of the number is 0.1 and the same
bit is switched, the value decreases to 5.421e-21.

The difference between that fault model and the procedure in Stimulated Dropout is that
the bit-flip operation does not affect the sign. This is because it was empirically verified that
switching the sign would reduce the accuracy of the network prohibitively, thus invalidating
the technique.

This numerical manipulation is meant to recreate the effect that faults would have in the
neural network if the chosen neurons were to be affected. By repeating this across a pre-
determined percentage of neurons, the neural network is trained while taking into account
the possibility of these types of errors in the output values of neurons, which in turn leads
to an added robustness of the final model. This can also be thought of as adding noise to
the neural network, an example of modified learning which was mentioned in Subsection
2.9.

The hypothesis that was being proven was that the regularization capabilities of Stimulated
Dropout could be advantageous in improving the resilience of neural networks. This means
that since the generalization error reduces when using dropout, this added generalization
capability could translate into a more resilient model. The results of the thesis show that
there is some decrease in the incidence of soft errors when using stimulated dropout.
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Chapter 3

Approach and Methodology

3.1. Motivation and Objectives

In the previous chapter, essential concepts related to Artificial Neural Networks (ANNs)
and dependable systems were introduced. The main takeaway from that chapter is that
even though faults are uncommon, there is a significant possibility of a failure occurring.
Because of this, measures should be taken to prevent such events from affecting systems.
As we have previously discussed, this is particularly true in Safety-Critical Systems (SCSs),
since these faults can result in safety hazards.

With this issue in mind, the objectives of this work are:

• Implement and validate existing proposals such as Dropout and Stimulated Dropout
on additional datasets with varying complexity;

• Implement current methods for improving the fault tolerance of ANNs, such as Re-
dundancy and Ranger;

• Combine current methods into hybrid techniques;

• Perform a critical comparison between all implemented techniques, by injecting faults
on the models at inference time and observing the impact in performance metrics.

3.2. Approach

In order to accomplish the goals that were set out, the work was divided into several steps.
The guidelines for each step are described in the following sections.

3.2.1. Implement a baseline model on relevant datasets

The first step is to create a Machine Learning (ML) model that can perform image clas-
sification on a custom dataset. The model should act as a starting point on which more
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specific techniques will be added. To achieve this, we used the PyTorch C++ Frontend
[96], a ML framework for the C++ programming language.

The code that was used was based on the documentation for this framework, particularly
the example that classifies digits from the MNIST dataset [97]. In Chapter 4 we detail the
additional datasets that were used and their purpose. Since the aim of this project is to
improve models intended for safety-critical systems, one of the selected datasets has traffic
signals [43], representing the application of these models in the automotive industry.

This step is crucial since this work intends to produce results in a safety-critical context.

3.2.2. Add fault injection during testing

To evaluate the behaviour of the model when faults occur, we resorted to a fault injection
tool. For the reasons mentioned in the literature, we opted for a software-based tool. From
those available, we selected ucXception [111].

Firstly we needed to verify if the Software Fault Injection (SFI) tool had the intended
effect on the models. To achieve this, we conceived a testing process that is detailed in
Subsection 4.5.2. After validating this process (by checking if the testing accuracy changes
after injecting faults), we proceeded to use it in other models and datasets.

This step is mandatory since it will enable us to study the effects of faults.

3.2.3. Dropout and Stimulated Dropout

After setting up a Baseline Convolutional Neural Network (CNN) model and obtaining a
way of measuring its fault tolerance, we moved on to implementing current methods of
reducing the effects of faults.

The first one was Dropout. This technique was implemented by adding dropout to every
layer of the previously mentioned CNN model. The second was Stimulated Dropout,
which was similarly applied to each layer. The difference is that instead of ignoring a
certain percentage of the neurons in each layer, the output values of the selected neurons
are changed by a random amount.

This stage is very important because it will enable us to validate the work done in this
project and compare it to other established techniques.

3.2.4. Redundancy

Another type of fault tolerance technique to be analysed results from the application
of redundancy techniques to the Baseline CNN model. These techniques are aimed at
improving the fault tolerance capacity of the network by altering the number of neurons
or feature maps in the fully-connected or convolutional layers, respectively [110].

The implementation of redundancy-based methods in a safety-critical context is mandatory
for this work.
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3.2.5. Ranger

Ranger [28] is a fault tolerance technique with a good balance between Silent Data Cor-
ruption (SDC) coverage and overhead compared to other techniques in the State-of-the-art
(SOTA). Since it was originally implemented in TensorFlow using Python, we utilised the
descriptions in the paper to produce our own implementation in PyTorch and C++.

Implementing this method was a bonus objective for this thesis.

3.2.6. Creating hybrid methods

After implementing the previously mentioned methods, we considered the most relevant
combinations in order to verify if the resulting models have improved fault tolerance.

3.2.7. Perform experiments, compare results and draw conclusions

Finally we injected faults while testing these models in the way described in Section 3.2.2,
in order to obtain metrics that allowed us to compare the models. For this comparison we
used two types of metrics. The first is related to training, testing and experimentation,
and includes:

• Classification Accuracy: number of correctly predicted data points divided by the
total number of data points;

• Loss: value calculated by the cost/loss function;

• Time: including loading, training, testing and experiment time.

The second is related to the fault tolerance of the model. The metrics of this type are
percentages calculated by dividing the number of times that a specified event happened by
the number of fault injections made during a single experiment. The events can be SDC,
Hang/Crash or No Effect:

• Silent Data Corruption: when the testing accuracy is lower than expected, we can
say that the fault injection caused an SDC, also known as soft error;

• Hang/Crash: when the testing freezes or crashes;

• No Effect: when there is no discernible effect in the testing accuracy.

This is the most important step of this work and is highly dependant on the other stages
for it to succeed.
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Chapter 4

Experimental Setup

4.1. Environment

In order to study the effects of faults in neural networks, we need to define the conditions
on which our experiments will be conducted.

4.1.1. Programming Language

The first consideration was the choice of the programming language. There were two
categories of languages that were considered. The first is interpreted languages, that is,
languages that are executed without previous compilation. Examples of this type include
Lua, JavaScript and Python. The second is compiled languages, which are explicitly
processed by a compiler. Examples are C, C++ or Rust.

A recent study on error resilience [27] compared different programming languages in regards
to the amount and type of failures that occur when faults are injected. These failures are
categorised as No Effect, Silent Data Corruption (SDC) or Crash/Hang. According to
[27], interpreted languages are more likely to encounter failures compared to compiled
languages. However, these failures are less likely to become SDCs. In contrast, compiled
languages have an inferior amount of failures but show a higher percentage of SDCs.

When choosing a programming language, one has to take into account the dependability
requirements of the system. If the availability of a system is of paramount importance,
compiled languages are preferable since they lead to fewer failures (therefore the system
will be available more often) [27]. If the preciseness of the calculations is a bigger concern,
then interpreted languages should be chosen due to the fact that they are less likely to
cause SDCs.

In Safety-Critical Systems (SCSs) there is often a need to balance these two characteristics.
For example, an autonomous driving system should continue to function despite faults
occurring, but it should also perform exact calculations so as not to cause an accident due
to misclassifications.

In addition, there are differences in speed and resource efficiency between Programming
Languages (PLs), with interpreted languages often being slower than their compiled coun-
terparts. This is particularly troublesome in SCSs, since many of these systems require
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efficient methods due to limited resources (e.g. energy or hardware).

Taking these requirements into account and since we are concerned with the impact of SDCs
on Artificial Neural Networks (ANNs), we selected the C++ [25] compiled programming
language.

4.1.2. PyTorch

One additional specification is the choice of a Machine Learning (ML) framework that
allows for the design, development and manipulation of models with low restrictions and
impediments. The framework must also have a C++ implementation, since this is the
programming language that was selected. Finally, the framework should preferably be
widely used in research to produce relevant implementations that can be readily understood
and expanded.

As of August 2021, PyTorch [96] is the most used ML framework in academia [6]. It also
provides a C++ API, which is a version of the original PyTorch Python frontend that
allows users to design and build models in C++ while sharing similar component structure
and nomenclature. Since this framework meets all our requirements, we selected PyTorch.

4.1.3. ucXception

Faults in Deep Neural Networks (DNNs) can occur randomly [90]. Because of this, to
consistently study their effects, it is necessary to inject faults in the neural network models.
For accessibility, only software-based fault injection methods [110] were considered. From
those methods, the selected tool should be able to emulate transient hardware faults that
happen during runtime. With that purpose, the fault injection framework ucXception was
used.

This framework causes faults by altering the CPU registers of the computer while a process
is running. If these registers are being accessed by the process, this modification can cause
deviations in the internal values that the process is using. In this context, the internal
values of the neural network that is executing can be altered, which can possibly lead to a
misclassification. Since the process needs to access the CPU registers for the fault injection
to be successful, the neural networks had to be executed on the CPU.

The faults are also injected exclusively during the testing of the model. The model classifies
every image in the test dataset and at the end of each iteration the outcome can be one
out of three possibilities: No Effect, Hang/Crash or SDC. This last possibility is returned
when the accuracy of the model is lower than the expected test accuracy. By storing these
outcomes, we can measure the fault tolerance of the model.

The emulation of soft errors by this tool is achieved by doing bit-flips in a specified bit in a
given CPU register. This replicates what happens when an actual hardware fault occurs,
while not needing any additional equipment.

Faults are much more likely to occur in testing than in training [90]. This is due to the
fact that testing is often not done in a controlled environment. Moreover, the point of this
work is to study the effects of faults in real-life scenarios where there are consequences
to errors in the DNN. Because of this, the fault injection capabilities of ucXception are
utilised during testing.
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4.1.4. Relevant libraries

Additional libraries were utilised for various reasons.

CMake [31] is a set of tools designed to manage the building, testing and packaging of
software in a compiler-independent way. In our project, it was used to compile the C++
source files.

NumPy [5] is a Python library that allows for the manipulation of multi-dimensional arrays
as well as applying mathematical functions. In this project it is used in general purpose
array manipulation, and also in more specific applications such as calculating the percentile
for our implementation of Ranger.

We use the Matplotlib [78] and Seaborn [9] Python libraries for creating graphical repre-
sentations of data such as stacked or grouped plots.

OpenCV [89] is used in Python and C++ for image processing, such as reading images,
manipulating color channels or altering dimensions.

4.2. Datasets

Several datasets were considered to train and validate the model. We used datasets with
varying complexity in order to verify if the results could be generalised to different use
cases.

4.2.1. MNIST

MNIST [86] is a collection of handwritten digits, divided into 60000 training and 10000
testing samples.

The images are grayscale, they have dimensions of 28x28 pixels, and there are 10 classes
which correspond to a digit from 0 to 9. These numbers are also size-normalized and
centered, such that minimal pre-processing is required. The images have an IDX file
format which was read using existing functions from the PyTorch framework.

MNIST is also commonly used in research papers, including some that study fault tolerance
in neural networks [15, 28]; so it is a relevant benchmark that can be used to compare our
techniques with the State-of-the-art (SOTA). A sample image from the dataset can be
seen in Figure 4.1, and the training and testing data frequency distributions are shown in
Figure 4.2.

4.2.2. Fashion-MNIST

Fashion-MNIST [12] is a dataset that consists of Zalando article images of clothing and
shoes. It was developed with the purpose of being used as a more complex alternative to
MNIST. Because of this, it has the same image dimensions, number of classes and structure
(number of training and testing samples) as the MNIST dataset. Additionally, it is also
stored in the same file format, which means we can use the same functions we used earlier
to read the files.
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Figure 4.1: Example 28x28 image with label "7" from the MNIST dataset

(a) Frequency distribution of MNIST (Train-
ing)

(b) Frequency distribution of MNIST (Test-
ing)

Figure 4.2: Frequency distribution for Training and Testing sets of MNIST

An example image for this dataset is shown in Figure 4.3. In the frequency distribution,
shown in Figure 4.4, we can see that all classes are balanced (have the same number of
samples), in contrast to the MNIST dataset (Figure 4.2).

4.2.3. GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) [44] dataset contains pho-
tographs of traffic signals (example in Figure 4.5). It has 51839 images divided into 43
classes, with each image having 3 channels (Red, Green and Blue (RGB)). The dimensions
of the images range from 15x15 to 250x250. Within each class, the images differ in the an-
gle, brightness and other characteristics, in order to provide some variation and encompass
plenty of possible real-life circumstances. Since the images did not have a standard size,
we resized them using the OpenCV library. The final dimensions were 28x28, in order to
preserve the most features possible while not increasing the training time prohibitively.

The motivation for choosing this dataset came from the need to verify if the results that
were obtained with the MNIST dataset could be replicated in a dataset that represents
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Figure 4.3: Example 28x28 image with label "Ankle boot" from the Fashion-MNIST
dataset

(a) Frequency distribution of Fashion-
MNIST (Training)

(b) Frequency distribution of Fashion-
MNIST (Testing)

Figure 4.4: Frequency distribution for Training and Testing sets of Fashion-MNIST

the real-life usage of the model in a safety-critical context, in this case, in autonomous
driving.

We created a text file with the paths to the images, named info_traffic.txt. This file
contains the path, label and dataset (training or testing) of every image, and was generated
with Python. It is used to load the dataset in C++.

The class distribution for the GTSRB can be seen in Figure 4.6.

4.2.4. CIFAR-10

The CIFAR-10 [1] dataset is composed of a subset of the 80 million tiny images dataset.
There are 50000 training images and 10000 testing images, which are labelled as one of
10 classes. The classes range from animals (e.g. bird, cat, ...) to means of transport (e.g.
airplane, truck, ...). The images have dimensions of 32x32 and 3 channels (RGB). An
example image can be seen in Figure 4.7 and the class distribution is shown in Figure 4.8.
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Figure 4.5: Example 28x28 image of a traffic signal with label "21" from the GTSRB
dataset

(a) Frequency distribution of GTSRB
(Training)

(b) Frequency distribution of GTSRB (Test-
ing)

Figure 4.6: Frequency distribution for Training and Testing sets of GTSRB

4.3. Model architectures

First we need to select a network to serve as a baseline, so that we can add the techniques
and see their impact on several metrics. The context for this work is the study of fault
tolerance in Convolutional Neural Networks (CNNs), and as such the primary requirement
is that this network must have convolutional layers.

In the following subsections we will specify the neural network architectures that were used
for the experiments.
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Figure 4.7: Example 32x32 image with label "Horse" from the CIFAR-10 dataset

(a) Frequency distribution of CIFAR10
(Training)

(b) Frequency distribution of CIFAR10
(Testing)

Figure 4.8: Frequency distribution for Training and Testing sets of CIFAR10

4.3.1. LeNet

LeNet or LeNet-5 [67] is a CNN architecture that is widely used in academia. It is composed
of convolutional, pooling and fully-connected layers. Even though it was initially developed
for the MNIST dataset, it can also be used in other datasets.

Since LeNet is simple and easily replicable, we can use it as a baseline on which to add
layers and techniques, allowing us to evaluate their impact on the fault-tolerance of the
network in an unbiased way. Additionally, some relevant works in the literature already
use LeNet to evaluate fault tolerance [15, 28] which makes comparisons between existing
techniques easier.

A diagram for the baseline network can be seen in Figure 4.9a. Details of this and other
networks that will be mentioned, including the size of the convolutional layers and the
number of neurons on the fully-connected layers, can be found in the network.h file of the
project repository.

We implemented the original LeNet architecture for all datasets. This architecture has a
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few differences depending on the dataset, namely: the input size (32x32 for CIFAR10 and
28x28 for the remaining datasets); the number of input neurons of the first fully-connected
layer (400 for CIFAR10 and 256 for other datasets); the number of channels (one for
MNIST and Fashion-MNIST, 3 for GTSRB and CIFAR10 ). We identify this architecture
as (1). A diagram for architecture (1) can be seen in Figure 4.9a.

Additional techniques were applied to the network, such as Dropout after the ReLU acti-
vation function in the Fully-Connected (FC) layers, as can be seen in Figure 4.9b. Ranger
was applied after every ReLU function, including in convolutional layers.

Figure 4.9d shows a combination of the previous techniques, by placing Ranger directly
after ReLU in layers conv1 through fc2, and applying Dropout to the output of the Ranger
layers in fc1 and fc2.

Finally, the architecture for LeNet with Stimulated Dropout is represented in Figure 4.9e.
In this case, the technique is applied before the ReLU activation function, since this was
the order in the original work [15].

(a) LeNet (b) LeNet with
Dropout

(c) LeNet with
Ranger

(d) LeNet
with Ranger
and Dropout

(e) LeNet with
Stimulated
Dropout

Figure 4.9: Diagrams for LeNet networks (1)

In order to evaluate the impact of redundancy on LeNet when combined with the other
techniques that were proposed, we altered some properties of architecture (1). We added
one convolutional layer (conv3 ) and increased the input and output dimensions of the
convolutional layers, as well as the number of neurons in the fully-connected layers. We
called the resulting network architecture (2), and used it in every dataset as a baseline in
a similar way to architecture (1). We intended to evaluate the changes in fault tolerance
when more layers and neurons were added to the network.

As an additional technique, we changed the number of neurons, but only in the fully-
connected layers, with the purpose of verifying if doubling or halving the number of neurons
would have an effect on the fault tolerance. This was only done in the MNIST dataset,
because it did not provide satisfactory results.

Every technique that was applied to architecture (1) was also applied to architecture (2).
However, Stimulated Dropout was not used in experiments. This is because the training
time for this method increases greatly with larger networks, with makes it impossible to
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train this network configuration for every dataset due to time constraints.

Diagrams for networks with architecture (2) can be seen in Figure 4.10.

(a) LeNet (b) LeNet with
Dropout

(c) LeNet with
Ranger

(d) LeNet
with Ranger
and Dropout

(e) LeNet with
Stimulated
Dropout

Figure 4.10: Diagrams for LeNet networks (2)

4.4. Implementation

In this section we describe the implementation process for all models.

4.4.1. Directory tree

The project directory is structured as shown in Figure 4.11.

The source files for training and testing each model (represented here as sourcefiles.cpp)
are located in the main directory.

The build folder contains the model executables, which are generated after compiling the
project. It also includes folders for storing all datasets, models and results, organised in
subfolders according to the dataset.

script.sh and script2.sh are also in the build folder, and they are executed from this working
directory during the experiments.

The network folder contains files that describe the network and dataset classes as well as
changeable parameters. cifar.h and cifar.cpp are files that define the CIFAR10 dataset
class and necessary loading functions.

network.h has class implementations for every network, including shared parameters for ev-
ery dataset such as number of channels, number of output classes, Dropout probability and
Stimulated Dropout probability. It also contains the code implementation for Stimulated
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Figure 4.11: Directory tree for the project repository

Dropout and Ranger.

options.h has the Options class and Options objects for every model. This class has
important parameters for training and testing, as we can see in Figure 4.12.

Finally, the utils folder has several utility files in Python, which have diverse functions from
drawing and saving graphs (graphs.py) to pre-processing images (resizing.py) and general
utilities such as reading metrics, generating text files with information about the datasets,
or the sampling function used by Ranger (utils.py).

4.4.2. Baseline and techniques

The baseline model for architecture (1) was adapted from the code available in the PyTorch
documentation [97]. This was the basis for every other model, and as such, any alteration
or additional technique was added on top of it.

The project was structured in a modular way, for the sake of simplicity and to allow
further improvements or expansions. Making alterations to the baseline model, such as
adding layers, changing the number of neurons, or adding methods between layers was
facilitated since all networks are in the network.h file.

The procedure to create a new model involved duplicating the source code, network class
and options object of the baseline model, and then refactoring the code (e.g. changing the
path of the dataset or changing the name of the results file). Since we are using CMake,
the model executable and source code file were included in the CMakeLists.txt file before
compilation.
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stat ic Options options_MNIST = {
28 , // image_size
10 , // num_classes
1 , //num_channels
64 , // tra in_batch_si ze
200 , // te s t_ba tch_s i z e
60000 , // t ra in_s i z e
10000 , // t e s t_ s i z e
10 , // i t e r a t i o n s
20 , // l o g_ in t e r v a l
" . / bu i ld / da ta s e t s /MNIST/raw" , // dataset_path
" bu i ld / info_mnist . txt " , // in fo_f i l e_pa th
torch : : kCUDA, // t ra in_dev ice
torch : : kCPU, // t e s t_dev i c e
" bu i ld /models /MNIST/modelMNIST . pt" , //model_path
" bu i ld / r e s u l t s /MNIST/resultsMNIST . txt " , // re su l t s_pa th

} ;

Figure 4.12: Options class

The only technique that had to be implemented from scratch was Ranger. Redundancy
was achieved by modifying properties of the network (e.g. number of neurons, number
of layers), and Dropout already has an existing function in PyTorch [2]. The code for
Stimulated Dropout was available in the project repository and just needed to be placed
in the network.h file and adapted to our networks and datasets.

4.4.3. Ranger

In the original paper, Ranger [28] is implemented using TensorFlow in Python. In order
to use this technique, it was necessary to implement it in PyTorch and C++ based on
the descriptions in the paper. Although we attempted to recreate the original technique
faithfully, there are some differences, namely the fact that the upper bound needs to be
calculated manually using an utility function instead of automatically.

A diagram for the process of applying Ranger can be seen in Figure 4.18.

We start this process by testing the model on randomly selected 20% of the training dataset
(1). Every time the model is used to predict the label of a batch of images, the forward
function in that model’s class (defined in network.h) is called. This means that the input
tensor will be passed forward through the network.

Then, we use a function to save the output values of a predetermined ReLU activation
function and append those values to a Tensor vector (2). Only one ReLU can be selected
at the same time. For demonstration purposes, we decided to use the ReLU function that
is applied after the first fully-connected layer, fc1.

When the testing is finished, the Tensor vector has the output values of the selected ReLU
activation function for every batch. After testing, this vector is saved in the pt file format
(3) using the torch::save function.

The next step is to read the vector in Python (4), so that we can calculate the 99%
percentile. This is done using the tensor_sampling function, which uses PyTorch’s JIT
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library to read vector.pt. After loading the values into a NumPy array, we use that library’s
percentile function to calculate the 99% percentile.

We then use a function that is native to PyTorch, torch::clamp, in order to restrict the
output values of the selected ReLU activation function to a given range (5). Since we
are dealing with ReLU, the lower bound of that range is 0, and the upper bound is the
percentile value calculated in (4).

Finally, we repeat the process from (1) to (5) for every ReLU function in the network (6).

4.5. Training and testing

4.5.1. Training and testing

In order to maintain a stable and unbiased environment, the models were trained and
tested on a single machine with the following technical specifications:

• Operating System: Ubuntu 20.04.1 LTS

• Processor : AMD Ryzen 7 3700X 8-Core Processor

• Random-access memory : 16GB DDR4 System memory

• Graphics card : Nvidia GeForce RTX 2060

• CUDA: Version 11.2.67

This machine has installations for two PyTorch versions, 1.10 (Nightly) and 1.4 [8]. Version
1.4 is only used for models with Stimulated Dropout, since it is the most recent version
that is compatible with the code implementation of that technique.

GPU acceleration (CUDA) was used in order to speed up training and testing in all models,
with the exception of those that use Stimulated Dropout. This is due to incompatibilities
between the drivers used by the graphics card and version 1.4 of PyTorch. As a result,
models that use Stimulated Dropout had to be trained and tested using the CPU.

4.5.2. Experimenting with fault injection

Hardware faults are rare and arbitrary. To reliably study their impact on systems, re-
searchers have developed software-based fault injection programs or methods. We used
ucXception [112] to inject faults and developed an experimental process so that we can
check the effect those faults have on ANN-based ML models.

A diagram for the experimental process can be seen in Figure 4.19. We use testModel
as a placeholder for the name of the actual model executable we choose (e.g. testM-
NISTDropout will test a model with Dropout on the MNIST dataset). The names of all
executables are available in the project repository.

We developed two bash scripts for this process. The first, script.sh, runs the model exe-
cutable (testModel) while the runtime is less than 60 seconds (1). The model executable
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will load the testing data and test the model on that data continuously (2). This script
resumes execution of the model executable whenever that process crashes or freezes. In
the diagram, each rectangle with the label test represents one test run, i.e. finished testing
on the entire testing dataset. The testing accuracy is calculated at the end of each run
and is written in a text file (3). This text file will later be used to calculate fault tolerance
metrics.

The next step was to inject faults during the testing. Firstly we cloned the ucXception
repository (https://github.com/ucx-code/ucXception) and followed the configurations in
the README file. After setting up the continuous model testing, we run script2.sh. his
script uses ucXception to inject a transient hardware fault into the testModel executable.
It achieves this by searching for the testing executable by its name, retrieving its process
id and performing fault injection on that process id. By default, this is done five times
per bit, 64 bits per register, for the 27 available registers (8640 times in total). The fault
injection is repeated 5 times on the same bit to make sure that this injection actually
happens.

If this fault causes testModel to crash, we leave the while loop in (1) and write SEGMEN-
TATION FAULT in the results file (5). Similarly, if the fault injection results in a hang
(testModel freezes), we write HANG in the results file (6). In both cases, after dealing
with the error, script.sh is restarted (7).

An additional Python function (count_tolerance_metrics in utils.py), was used for mea-
suring the results of these fault injections. This function increments a counter every time
it measures the outcome of a bit and returns the relative frequency of each outcome for
the entire experiment.

This measurement is done by reading the results file line by line and assessing the outcome
of each bit-flip. It can be one of the following:

• Silent Data Corruption, if at least one of the testing accuracies of that bit-flip is
lower than the true testing accuracy of the model;

• Hang/Crash, if HANG or SEGMENTATIONFAULT is written at least once and
none of the testing accuracies is lower than the true testing accuracy;

• No Effect: if all testing accuracies are equal to the true testing accuracy of the model.

The outcome of each bit-flip is then grouped for each bit. By default, 5 bit-flips are done
per bit, so we join 5 outcomes to evaluate the outcome of a bit. This outcome can be one
the following:

• Silent Data Corruption, if at least one of the bit-flip outcomes is an SDC;

• Hang/Crash, if at least one of the bit-flip outcomes is Hang/Crash and none is SDC;

• No Effect: if all bit-flip outcomes are No Effect.

An example outcome for a bit can be seen in Figure 4.13. The true testing accuracy in
this example is 0.94. The outcomes of the first and fourth bit-flips are SDCs, while the
third is Hang/Crash, and the second and fifth are No Effect. By grouping these outcomes,
we conclude that the outcome of bit 9 of register 14 is an SDC.
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. . .
14−−−9
0 .72
0 .94
0 .94
14−−−9
0 .94
0 .94
0 .94
14−−−9
HANG
14−−−9
0 .68
0 .68
14−−−9
0 .94
0 .94
. . .

Figure 4.13: The outcome for bit 9 of register 14 is SDC

Initially, we intended to perform the fault injection experiments in parallel on different
machines, in order to maximise the amount of experiments done in a given time period.
We found that the results differed depending on the machine that was used, including with
machines that shared the same PyTorch and Linux version. Because of this, tests were
executed on a single computer.

The scripts are executed in the background by using the nohup command [4]. This allowed
us to keep the scripts running even after closing the terminal.

script.sh is executed with the following command line arguments:

• $1: Name of the executable file;

• $2: Path to the results text file, in which the testing accuracy will be written whenever
a test run ends.

script2.sh has the following command line arguments:

• $1, $2, $3: Number of register, bit and repetition from which to start injecting faults.
The register values are limited from 0 to 26 and the bit values are limited from 0 to
63. For instance, if these numbers are 2 24 3, the injection will start at register no.
2, bit no. 24 and at the third repetition of the fault injection

• $4: Name of the executable file

• $5: Path to the results text file

• $6: Accuracy of the model that is being tested

• $7: Maximum number of fault injections per bit

• $8: Loading time of the model (ms)

45



Chapter 4

• $9: Testing time of the model (ms)

The interval between fault injections is calculated using the loading and testing times of
the model (parameters $8 and $9). The reasoning behind this calculation is that there
should be a minimum number of test runs before the fault injection, in order to make sure
that the testing accuracy of at least one test run is printed on the results file.

The calculation is done by generating a random integer number between 1 and 3, then
multiplying that value by the time it takes the model to do a single test run, and finally
adding the resulting number to the time it takes to load the dataset. The section of
script2.sh where this calculation is performed can be seen in Figure 4.14.

. . .
r=$ ( ( ( RANDOM % 3)+1))
i n t e r v a l=$ ( loading_time + test ing_time ∗ r )
. . .

Figure 4.14: Section of script2.sh where the interval value is calculated (milliseconds)

The experiments had to be done separately, since it was observed during the experiments
that the testing metrics differed when more than one test was being done at the same
time. This is because ptrace, the Linux command that is used by ucXception to stop
the execution of the process and perform the bit-flip, can only be used in one process
at a time [7]. Additionally, more tests have a significant impact on the performance of
the computer, which can lead to an increase in inference time. This leads to not only
increased testing time, but also an inability to perform fault injection during testing in
certain circumstances, since the model has to finish a test run (testing on the full dataset)
before the accuracy of that run is written on the results file. In other words, if the testing
takes too long, the fault injector will move on to the next bit while the previous has not
output its testing accuracy. An example of this situation can be seen in Figure 4.15.

. . .
2−−−51
0 .9888
2−−−51
0 .9888
0 .9888
2−−−51
2−−−52
0 .9888
0 .9888
2−−−52
0 .9888
. . .

Figure 4.15: Testing for the last bit-flip in bit 51 of register 2 takes too long

To start an experiment, we first need to run the commands in Figure 4.16. These instruc-
tions will enter root mode and allow the fault injector to attach to the target process.
Afterwards, script.sh is run in the same terminal. This script continuously tests the model
on a specific testing dataset, and writes the testing accuracy in a text file with results.
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Whenever the model crashes or hangs, the script re-runs it, allowing the testing to con-
tinue.

sudo − i
echo 0 > /proc / sys / ke rne l /yama/ptrace_scope
exit
. / s c r i p t . sh testMNIST Resu l t s /MNIST/resultsMNIST . txt

Figure 4.16: Commands to setup ucXception and run script.sh

Finally, script2.sh is executed in a separate terminal. An example execution can be visu-
alised in Listing 4.17.

. / s c r i p t 2 . sh 0 0 0 testMNIST Resu l t s /MNIST/resultsMNIST . txt 0 .989
5 80 850

Figure 4.17: Example command to run script2.sh

This script will continuously inject faults on the testMNIST process, and will write the
register and bit of that injection on the resultsMNIST.txt file.
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Figure 4.18: Diagram with application of Ranger
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Figure 4.19: Diagram of fault injection experiment
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Chapter 5

Results and Discussion

In this Chapter we will present and analyse the results of the experiments, evaluate the
performance of the models and compare them according to several metrics.

5.1. Training and testing metrics

After figuring out the architecture for the neural networks, we trained and tested them in
the mentioned datasets. In order to evaluate the model performance, we calculated metrics
during training and testing. These metrics are described as follows:

• Classification Accuracy: percentage of correct predictions for some given data;

• Loss: measure of how bad a model is. We use negative log likelihood loss;

• Loading time: time in milliseconds it takes to load a given dataset;

• Training/testing time: time in seconds/milliseconds it takes to train/test some model
on a given dataset;

• Experiment time: time in hours it takes to perform an experiment.

5.1.1. Classification accuracy

We obtained the accuracy values for the different models, subsets (training and testing)
and datasets, as we can see in Figure 5.1.
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(a) Training and testing accuracy of each
model for the MNIST dataset

(b) Training and testing accuracy of each
model for the GTSRB dataset

(c) Training and testing accuracy of each
model for the Fashion-MNIST dataset

(d) Training and testing accuracy of each
model for the CIFAR10 dataset

Figure 5.1: Training and testing accuracy per dataset

5.1.2. Loss

In Figure 5.2 the training and testing NLL loss of all datasets is represented.
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(a) Training and testing NLL loss of each
model for the MNIST dataset

(b) Training and testing NLL loss of each
model for the GTSRB dataset

(c) Training and testing NLL loss of each
model for the Fashion-MNIST dataset

(d) Training and testing NLL loss of each
model for the CIFAR10 dataset

Figure 5.2: Training and testing Negative Log Likelihood Loss per dataset

5.1.3. Loading time

A comparison of the approximate loading times for the different datasets is visible in Figure
5.3. The loading time is the time in milliseconds that it takes for the dataset to be loaded
before being used for training or testing.

The loading time of a dataset is important because it impacts the experiment time, since
whenever the experiment resets, the dataset has to be loaded.

5.1.4. Training time

The time it took to train each model, excluding the loading time, is presented in Figure
5.4. The training in these models is done using GPU acceleration.

Ranger is not represented in this graph, since it is applied the model after training. Apply-
ing Ranger is a one-time expense called instrumentation time [28]. In our implementation,
this time depends on the testing time of the model, since we are testing the model in 20%
of the training dataset for every ReLU function.

Figure 5.5 shows the training time per dataset for the models on which Stimulated Dropout
was applied. Instead of using GPU acceleration, these models were trained with the CPU,
since the PyTorch version used for Stimulated Dropout (v1.4) had incompatibilities with
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Figure 5.3: Loading time for each dataset

(a) Training time (seconds) for the MNIST
dataset

(b) Training time (seconds) for the GTSRB
dataset

(c) Training time (seconds) for the Fashion-
MNIST dataset

(d) Training time (seconds) for the CIFAR10
dataset

Figure 5.4: Training time per dataset in seconds, using GPU acceleration (CUDA)
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the CUDA version of the graphics card. We also trained the baseline model for the MNIST
dataset with the CPU to verify the differences.

Figure 5.5: Training time (seconds) for models with Stimulated Dropout per dataset, using
CPU

5.1.5. Testing time

The testing time for all models is shown in Figure 5.6. Every test was done in the CPU.

5.1.6. Experiment time

The experiment time depends on the testing and loading times, since these variables di-
rectly influence the time between the fault injections, as well as the time it takes to resume
injection after the model crashes.

5.2. Experimental outcomes

The results of the experiments for the MNIST, GTSRB, Fashion-MNIST and CIFAR10
datasets are shown in Figures 5.8 through 5.11.

The possible outcomes for a bit-flip are Silent Data Corruption (SDC), Hang/Crash or No
Effect. The metrics in this Section are the relative frequencies of each outcome.
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(a) Testing time (milliseconds) for the
MNIST dataset

(b) Testing time (milliseconds) for the GT-
SRB dataset

(c) Testing time (milliseconds) for the
Fashion-MNIST dataset

(d) Testing time (milliseconds) for the CI-
FAR10 dataset

Figure 5.6: Testing time per dataset in milliseconds

5.2.1. Redundancy

In Figure 5.8 we can see the experimental outcomes for models that utilise redundancy
techniques for the MNIST dataset.

5.2.2. Dropout

Experimental results for models with Dropout for every dataset can be seen in Figure 5.9.

5.2.3. Ranger

In Figure 5.10 we can see the experimental outcomes for models with Ranger for every
dataset. The models were obtained by applying Ranger to baseline models of architectures
(1) and (2) for every dataset. In theMNIST dataset, additional tests were made to evaluate
the impact of Ranger on models with Dropout.

5.2.4. Stimulated Dropout

Figure 5.11 contains the experimental outcomes for models with Stimulated Dropout for
every dataset. A Stimulated Dropout probability of 0.2 was used in every dataset, since
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(a) Experiment time (hours) for the MNIST
dataset

(b) Experiment time (hours) for the GTSRB
dataset

(c) Experiment time (hours) for the Fashion-
MNIST dataset

(d) Experiment time (hours) for the CI-
FAR10 dataset

Figure 5.7: Experiment time per dataset in milliseconds

this is the probability that provided the best results in the original thesis [15]. Additionally,
a probability of 0.5 was tested in the MNIST dataset in order to evaluate the difference in
SDC rate.

5.3. Discussion

5.4. Training and testing metrics

5.4.1. Classification accuracy

The results obtained in this category are meant to evaluate the type of impact that the fault
tolerance techniques have on the accuracy of baseline models. The clearest observation is
that architecture (2) has better accuracy than architecture (1), which is to be expected
since the latter is a basic architecture originally intended to be used with MNIST.

Another remark is that Dropout has an inconsistent impact on both training and testing

57



Chapter 5

Figure 5.8: Experimental outcomes for models with redundancy for the MNIST dataset

accuracy. In architecture (1), this technique decreases these metrics in all datasets, whereas
in architecture (2) it has a mixed influence, decreasing them in MNIST and Fashion-
MNIST while increasing them in GTSRB and CIFAR10.

In theory, since Dropout is a regularization method, it should increase the accuracy for
models that are overfit. Since we are using the same architectures for all datasets, we know
that models trained on the simpler datasets (MNIST and Fashion-MNIST ) should be more
overfit than those trained on more complex ones (GTSRB and CIFAR10 ). However, in
our case, we can see that Dropout benefits the models that are less overfit. Our results
therefore disagree with the results in the original paper [107].

Different Dropout probabilities impact architecture (2) in mixed ways, such as decreas-
ing the testing accuracy in the MNIST and Fashion-MNIST datasets, while increasing
it in GTSRB and CIFAR10. The exception to this is Dropout with probability of 0.8,
which consistently provides the lowest training and testing accuracy values. This is to be
expected, due to the large proportion of connections which are dropped out.

Stimulated Dropout has a negative impact on the accuracy in all datasets with the excep-
tion of MNIST. However, it shows an improvement in accuracy in comparison with the
Dropout technique in every dataset with the exception of Fashion-MNIST.

Finally, applying Ranger improves the accuracy in both architectures, including in cases
where it is combined with Dropout. This contrasts with the findings in the original paper
[28], which state that Ranger does not affect the accuracy in LeNet.

The training and testing accuracies for the MNIST dataset (Figure 5.1a) present little
variation between models and between the training and testing sets. The redundancy
techniques, particularly 0.5x Neurons, provide the best testing accuracy out of every model
for the (1) architecture, whereas in (2) the best training and testing accuracy is achieved
by the combination of Dropout 0.5 and Ranger.
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(a) Experimental outcomes for models with
Dropout for the MNIST dataset

(b) Experimental outcomes for models with
Dropout for the GTSRB dataset

(c) Experimental outcomes for models with
Dropout for the Fashion-MNIST dataset

(d) Experimental outcomes for models with
Dropout for the CIFAR10 dataset

Figure 5.9: Experimental outcomes for models with Dropout

5.4.2. Loss

This metric shows huge differences between datasets. Different scales were used to improve
visibility in some of the results with lower loss values.

Overall, architecture (2) shows a decrease in the loss value in comparison to architecture
(1). This reduction is most significant in the GTSRB dataset, where there is a decrease of
90% in the training loss and 53% in the testing loss.

Stimulated Dropout reduces or maintains the loss value in most datasets, with the exception
of Fashion-MNIST where there is an exponential increase. Dropout increases the training
loss while decreasing the testing loss in both architectures and in most datasets, except in
Fashion-MNIST.

5.4.3. Loading time

Since MNIST and Fashion-MNIST have the same number of images, image dimensions,
file formats and loading procedure, the loading time is equivalent. GTSRB has equal
image dimensions to MNIST and a lower number of images, but the loading time is higher
because it has three color channels instead of one.

Out of the selected datasets, CIFAR10 is the one that takes longer to load, because of
increased image dimensions, three color channels and an unoptimized loading procedure.
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(a) Experimental outcomes for models with
Ranger for the MNIST dataset

(b) Experimental outcomes for models with
Ranger for the GTSRB dataset

(c) Experimental outcomes for models with
Ranger for the Fashion-MNIST dataset

(d) Experimental outcomes for models with
Ranger for the CIFAR10 dataset

Figure 5.10: Experimental outcomes for models with Ranger

5.4.4. Training time

Generally we can conclude that the (2) architecture has increased training time compared
to (1) throughout every dataset. As expected, MNIST and Fashion-MNIST have similar
training times, whereas GTSRB and CIFAR10 take longer.

The training times for Stimulated Dropout (Figure 5.5) need to be evaluated separately
since the training was done using the CPU. We also trained baseline models for architec-
tures (1) and (2) for the MNIST dataset for comparison purposes.

Training a Stimulated Dropout model of architecture (1) on the MNIST dataset results in
an increase of 31x in training time when compared to the baseline model. This is a con-
siderable difference, especially considering architecture (1) is a very simple Convolutional
Neural Network (CNN).

In order to verify if this difference changes with the complexity of the network, a Stim-
ulated Dropout model with architecture (2) was developed and trained on the MNIST
dataset. The results show an increase of 52x, which made it unfeasible to train models
with architecture (2) for every dataset.

Similarly to the training times in Figure 5.4, CIFAR10 has the highest time value out of
every dataset for architecture (1). In contrast with what was expected, Fashion-MNIST
and GTSRB have lower training times than MNIST. This is possibly due external inter-
ference of processes running on the CPU while training the MNIST model (e.g. running
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(a) Experimental outcomes for models with
Stimulated Dropout for the MNIST dataset

(b) Experimental outcomes for models with
Stimulated Dropout for the GTSRB dataset

(c) Experimental outcomes for models with
Stimulated Dropout for the Fashion-MNIST
dataset

(d) Experimental outcomes for models
with Stimulated Dropout for the CIFAR10
dataset

Figure 5.11: Experimental outcomes for models with Stimulated Dropout

an experiment). In the future, these results should be validated in other machines.

5.4.5. Testing time

Such as in previous timing metrics, the testing time is higher in the models that use the
(2) architecture. Another key point is that applying Ranger decreases the testing time
on every dataset. Stimulated Dropout has mixed results, increasing the testing time in
some datasets (MNIST and Fashion-MNIST ), while decreasing it in others (GTSRB and
CIFAR10 ).

5.4.6. Experiment time

In every dataset, adding Ranger led to a decrease in the experiment time. Similarly to
what occurs in previous time metrics, the impact of Stimulated Dropout depends on the
dataset. This technique increases the experiment time in MNIST and Fashion-MNIST,
while decreasing it forGTSRB and CIFAR10.
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5.5. Experimental outcomes

5.5.1. Redundancy

In general, we can identify a decrease in SDCs when moving from architecture (1) to
architecture (2). However, when we modify exclusively the number of neurons, there is
no such decrease. In fact, doubling or halving the number of neurons while maintaining
other factors intact always increases the SDC rate, although the degree of this increase
depends on the architecture. In architecture (1), these modifications increase the SDC
rate by around 70% to 90%, whereas the same methods in architecture (2) have an impact
of 11% to 16%. We can conclude that altering the number of neurons of the network does
not have a positive impact on the SDC rate for the dataset, and as such will not apply
this technique to other datasets.

5.5.2. Dropout

The tendency across MNIST, Fashion-MNIST and CIFAR10 is that Dropout either in-
creases the SDC rate, or has a mixed impact. Examples of the former situation occur in
Figure 5.9a, where Dropout increases SDC rates for both architectures, and in architecture
(1) in Figure 5.9d, where there is an increase of around 3%. Mixed results can be seen in
Figure 5.9c, where in architecture (1) the SDC rate increases by 5%, and in architecture
(2) this metric fluctuates between around 17% more and 4% less; as well as in architecture
(2) of Figure 5.9d, where the SDC rate varies between 5% lower and 2.5% higher than
the baseline model. This indicates that Dropout has an unpredictable impact on these
datasets, and as such does not consistently decrease the SDC rate.

The experimental results on the GTSRB dataset provide different conclusions from the
previously mentioned datasets. As we can see in Figure 5.9b, applying Dropout consistently
decreases the SDC rate, regardless of the architecture. Furthermore, it provides the best
results out of the Dropout experiments, with a decrease in SDC rate of 41% for Dropout
with probability 0.2 applied to architecture (2).

Regarding the impact of different Dropout probabilities on the experimental outcomes, one
can relate MNIST to Fashion-MNIST, since in both datasets the SDC rate decreases with
the increase of Dropout probability. Additionally, there is a similarity between GTSRB
and CIFAR10, since Dropout with a probability of 0.5 has a higher SDC rate than the
other probabilities. Further research is needed to understand why there is a difference
between datasets, and to find the Dropout probability that provides the lowest SDC rate.

5.5.3. Ranger

In contrast to the results obtained in the original paper [28], our experiments do not show a
consistent decrease in the SDC rate when using Ranger. GTSRB and Fashion-MNIST have
mixed results, with higher SDC rates for architecture (1), and lower rates for architecture
(2). In CIFAR10, applying Ranger actually has a negative impact, increasing the SDC
rate between 3% and 22%.

The exception to these negative results is MNIST, where Ranger significantly decreased
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the SDC rate of every tested model; in fact, the lowest SDC rate for the MNIST dataset
across all experiments was obtained by applying Ranger to architecture (2) (2%, which
means a reduction of 69% compared to the baseline model).

The experiments using Dropout in the MNIST dataset reiterate that Ranger can be used
to improve models with different techniques. Since applying Ranger to Dropout with
probability 0.5 did not produce better results than applying Ranger to the baseline, this
combination was not tested on other datasets.

There is a possibility that the differences between our observations and the ones in the
original paper [28] can be attributed to the fact that we are using a different programming
language and Machine Learning (ML) framework. This raises questions about the impact
of using different tools to train, test and experiment with the same model architectures.
These results should be validated in the future by performing experiments with the original
implementation of this technique in Tensorflow.

5.5.4. Stimulated Dropout

After analysing the subfigures, we can see that applying Stimulated Dropout with a proba-
bility of 0.2 to architecture (1) lowers the SDC rate in every dataset. This reduction ranges
from 39% in MNIST to 68% in Fashion-MNIST. After comparing these results to those
obtained with previous techniques, we can conclude that applying Stimulated Dropout to
GTSRB, Fashion-MNIST and CIFAR10 results in the lowest SDC rates for these datasets.

A model with Stimulated Dropout probability of 0.5 was also tested on theMNIST dataset,
as can be seen in Figure 5.11a. The result is an increase of the SDC rate of 84% compared
to the model with a probability of 0.2. This rise is consistent with the results obtained in
[15].

There is a possibility that since the model with Stimulated Dropout is using a different
PyTorch version from the baseline model, the experimental outcomes for the models with
Stimulated Dropout may be affected in some way. To prove this, further testing is required
to compare both versions. This can be done by adapting the code of both models to a
single version.
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Chapter 6

Conclusion and Future Work

In recent years, an increasing number of tasks with safety considerations has been per-
formed by computerised systems employing Machine Learning (ML) models. Failures in
these systems can lead to harmful consequences from an environmental, property or hu-
man viewpoint; because of this, Safety-Critical Systems (SCSs) have strict performance
requirements and the possibility of failure should be minimised.

Hardware faults are events that can occur arbitrarily in any computerised system. These
faults can affect the processes that are running on the processor, causing errors. In the
cases where that process is an Artificial Neural Network (ANN), these errors can change
numeric values in the network, causing the output values to change. This can result in a
misclassification, and therefore a safety violation.

This work focused on evaluating and improving the fault tolerance of Convolutional Neural
Network (CNN) models to prevent such safety violations from occurring. To achieve this,
we selected the necessary tools and structured the project in order to implement CNN-
based ML models; we prepared an experimental analysis to evaluate the fault tolerance of
a model; we applied a set of fault tolerance techniques to baseline models and finally we
compared the performance of all models. Our goal was to assess which of the fault tolerance
techniques produced the best results on a wide group of metrics, with particular emphasis
on the Silent Data Corruption (SDC) rate since this metric represents misclassifications
resulting from a fault injection. We also wanted to evaluate the difference in these metrics
when applying the same model to different datasets.

The results show that regularization methods such as Dropout and methods that employ
Redundancy do not have a consistent, positive impact on the SDC rate. The results also
show that the Ranger method has better performance in virtually all training, testing and
experimental metrics. In addition to increasing the accuracy and decreasing the loss in
most cases, Ranger also decreases the testing and experiment time, while maintaining the
same training time as the model it is applied to (although it requires extra time to calculate
the bounds). These results contrast with those obtained in the original paper [28], since
it anticipates an overhead of 0.53% and the same accuracy. In the fault tolerance metrics,
our implementation of Ranger again differs from the expected values, since the SDC rate
does not decrease as predicted, and in some architectures actually increases.

Stimulated Dropout shows a slight loss in accuracy in most datasets; however, the benefit
of this technique is that it has the lowest SDC rates in most datasets out of the tested
methods. Comparing this technique with Ranger, we show it has a lower SDC rate in
all but the simplest dataset (MNIST ); however, the downside is a training time that is
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considerably higher than the baseline, in contrast with Ranger which has a low overhead
in training time. This difference in training time weakens the use of Stimulated Dropout
in larger CNN architectures.

Additions to this work should start by validating the results of Stimulated Dropout by
using the same PyTorch version. Afterwards, other recent fault tolerance methods should
be implemented for comparison purposes.

One major focus of future work should be improving the efficiency of Stimulated Dropout
to allow it to be considered in modern architectures. In addition, further experimentation
is needed to validate the results of this method on larger CNN architectures. Future
work should also attempt to understand the change in the SDC rate when the Stimulated
Dropout probability is modified.

If the issues with Stimulated Dropout are solved, this technique can become an important
addition to any CNN-based ML model that is used in an SCS. We hope that using this
and other methods can make these models more tolerant to faults, thus preventing these
events from causing damage in a real-life situation.
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