

Daniel Filipe Rasteiro da Silva

IMPLEMENTATION OF THE FIRELOC APPLICATION

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor Filipe João Boavida Mendonça Machado de

Araújo and Joaquim António Saraiva Patriarca and presented to
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021

IM
P

LE
M

EN
TA

TI
O

N
 O

F
T

H
E

FI
R

EL
O

C
 A

P
P

LI
C

A
TI

O
N

D
an

ie
l F

ili
p

e
R

as
te

ir
o

 d
a

Si
lv

a

Faculty of Sciences and Technology

Department of Informatics Engineering

Implementation of the FireLoc
Application

Daniel Filipe Rasteiro da Silva

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Filipe João Boavida Mendonça Machado de Araújo and Joaquim

António Saraiva Patriarca and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021

This page is intentionally left blank.

Acknowledgements

First, I would like to express my profound thanks my supervisor, Professor Filipe Araújo
for all the knowledge transmitted during the period of this dissertation and his attention
and dedication.

To Joaquim Patriarca, for all the answers to my questions and his availability to help to
integrate this work with the remaining parts of the FireLoc Project.

To Miguel, Paul and company for all the coffees and chats, serious or not, that kept me
going during the pandemic.

To my family and parents, my deepest gratitude and love for always supporting me in my
studies, believing, and encouraging me to achieve my goals and writing this dissertation.

This work was carried out under the FireLoc project (PCIF/MPG/0128/2017), funded by
the Portuguese Science Foundation.

iii

This page is intentionally left blank.

Abstract

Nowadays, one of the greatest problems we face recurringly is forest fires. Forest fires
cause great damage to populations and their livelihoods as well as the environment when
not contained early on. The Fireloc project aims at providing a crowdsourced detection
system where the users will retrieve positional data and a photo of the fire to submit a
report. After the data being verified, it is sent to the authorities, which may use this to
quickly plan the best course of action. In this dissertation we will be developing the points
of interaction of this system with the users.

This dissertation focuses on developing a mobile application to collect positional data, such
as geographical position of the user, and orientation relatively to the magnetic north, and
image collection. To develop the mobile application we use the Ionic framework with An-
gular as the underlying web framework. Using Ionic it is possible to access a smartphone’s
native functionalities and use them in a web application format, which will be compiled into
a native application. In this dissertation, we compiled the mobile application to an android
apk. We also use NgRx to manage state and component communication, which permitted
simplifying the complex relationships among the various components and services present.

Also, we implemented a web portal to display fire related data using the Angular frame-
work. In the development of the portal, we use Firebase as an authentication provider to
implement several methods of authentication. We also use NgRx to handle state manage-
ment and component communication similarly to the mobile application. Thanks to the
shared technologies in both the web portal and mobile application, it was possible to reuse
some of the infrastructure, namely services from the mobile application in the portal.

Lastly, in this dissertation we implemented an API to support the functionalities of the
web portal. This API was implemented using the Django framework. Django supports
GIS manipulation functionalities out of the box, which combined with its simple query API
and ORM permitted us to develop complex queries using the geographical data collected
in the mobile application.

Keywords

Forest Fires, Mobile Application, NgRx, Ionic, Angular, Web Development

v

This page is intentionally left blank.

Resumo

Atualmente, um dos problemas que enfrentamos com frequência são fogos florestais. Os
fogos causam enormes danos às populações e ao seu sustento, bem como ao ambiente em
geral quando não são contidos com rapidez nas fases iniciais. O projeto Fireloc procura
providenciar um sistema de deteção por crowdsourcing, onde os utilizadores recolhem dados
positionais e uma foto para reportar um incêndio. Após a verificação dos dados, estes
são enviados ás autoridades, permitindo que estes possam planear com rapidez a melhor
estratégia. Nesta dissertação iremos desenvolver os pontos de interação entre o sistema e
os utilizadores.

Esta dissertação foca-se no desenvolvimento de uma aplicação móvel que recolhe dados
posicionais, como a localização geográfica do utilizador, a sua orientação em relação ao
norte magnético e recolhe imagens. Para desenvolver a aplicação móvel usamos a framework
Ionic com Angular a servir de base. Utilizando Ionic é possivel aceder às funcionalidades
nativas do smartphone e as usar num formato de aplicação web, que será depois compilada
numa aplicação nativa. Nesta dissertação, compilámos a aplicação móvel para um android
apk. Também utilizámos NgRx para gerir estado e a comunicação entre componentes,
permitindo simplificar as relações complexas existentes entre componentes e serviços.

Também desenvolvemos uma portal web para mostrar os dados relacionados com os fogos
utilizando a framework Angular. No desenvolvimento do portal, utilizámos Firebase como
provider de autenticação para implementar vários métodos de autenticação. Também uti-
lizámos NgRx para gerir a comunicação entre componentes e gerir o estado do portal à
semelhança do que foi feito na aplicação móvel. Graças às tecnologias partilhadas entre o
portal e a aplicação móvel, foi possivel reutilizar alguma da infrastrutura, nomeadamente
serviçoes da aplicação no portal.

Por último, nesta dissertação implementámos uma API para suportar as funcionalidades
do portal web. Esta API foi implementada utilizando a framework Django. Django suporta
funcionalidades de manipulaçao de dados GIS, o que, combinado com a sua simples API de
queries e ORM, permitiu desenvolver queries complexas com os dados geográficos recolhidos
na aplicação móvel.

Palavras-Chave

Fogos Florestais, Aplicação Móvel, NgRx, Ionic, Angular, Desenvolvimento Web

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Document Structure . 3

2 Technologies 4
2.1 Constraints/Criteria . 4

2.1.1 Platform Support . 4
2.1.2 Supported Languages . 5
2.1.3 Pricing . 5

2.2 Frameworks . 5
2.2.1 Pre-Selection Process . 5
2.2.2 Pre-Selected Frameworks . 6
2.2.3 Evaluation . 7

2.3 Map Packages . 8
2.3.1 Pre-Selection Process . 8
2.3.2 Pre-Selected Packages . 9
2.3.3 Evaluation . 9

2.4 State Management . 10
2.4.1 Vanilla state management and component communication 10
2.4.2 State management flow using NgRx 11
2.4.3 NgRx key concepts and definitions 11

2.5 API Server Technologies . 13
2.5.1 Django . 14
2.5.2 GeoServer / GeoNode . 14
2.5.3 Docker . 14

2.6 Summary . 15

3 Similar Products 16
3.1 Similar Apps . 16

3.1.1 Fotoquest Go . 16
3.1.2 Conclusions . 18

3.2 Similar Portals . 18
3.2.1 IPMA . 18
3.2.2 NASA . 20
3.2.3 Conclusions . 20

3.3 Summary . 21

4 Requirements 22
4.1 Fireloc App . 22

ix

Chapter 0

4.1.1 Context Diagrams . 22
4.1.2 Use Cases . 23
4.1.3 Non-functional Requirements . 24

4.2 Fireloc Portal . 24
4.2.1 Context Diagrams . 25
4.2.2 Use Cases . 26
4.2.3 Non-functional Requirements . 27
4.2.4 Mockups . 28
4.2.5 Main Page . 29

4.3 Module 6 - Geoportal API Server . 33
4.3.1 Supported Operations . 33
4.3.2 Response Data . 33
4.3.3 Error Handling . 34
4.3.4 Integration . 34

4.4 Security and Privacy . 34
4.5 Summary . 34

5 Architecture 35
5.1 Context . 35
5.2 Containers . 36
5.3 Components . 38

5.3.1 Fireloc App . 38
5.3.2 Fireloc Portal . 39
5.3.3 Module 6 - Geoportal API Server . 40

5.4 Sequence Diagrams . 40
5.5 Summary . 45

6 Implementation 47
6.1 Implementation of the Mobile App . 47

6.1.1 Authentication . 48
6.1.2 Security . 49
6.1.3 User Contribution . 49
6.1.4 Viewing Contributions . 58
6.1.5 User Management . 62

6.2 Implementation of the Web Portal . 63
6.2.1 User Authentication . 63
6.2.2 Security . 67
6.2.3 Data Visualization . 68
6.2.4 User Management . 72

6.3 Implementation of the Geoportal API . 73
6.3.1 Authentication . 73
6.3.2 Queries . 75

6.4 Summary . 78

7 Testing the System 79
7.1 Unit Testing . 79

7.1.1 General test suit setup . 79
7.1.2 Results . 80

7.2 Non-Functional Requirement Tests . 80
7.2.1 Usability . 80
7.2.2 Latency . 86

7.3 User Tests . 88

x

Contents

7.3.1 Test setup . 88
7.3.2 Results . 88

7.4 Validation . 89
7.5 Summary . 90

8 Conclusion 91
8.1 Main Conclusions . 91
8.2 Future Work . 92

xi

This page is intentionally left blank.

Acronyms

AU Authenticated User. 97, 99, 103, 105, 119

BPMN Business Process Model and Notation. 49

CRUD Create, Read, Update, and Delete. 13, 52

FIRMS Fire Information for Resource Management System. 20

GDPR General Data Protection Regulation. 63, 78

GIS Geographic Information System. v, vii, 14, 92

IPMA Instituto Português do Mar e da Atmosfera. 18, 19

ML Machine Learning. 2

MTV Model-Template-View. 14

ORM Object-Relational Mapping. v, vii, 14

OS Operating System. 14

PV Professionals and Volunteers. 97, 99, 101, 103, 105–107, 109, 111, 112, 114, 116–119

SSD System Sequence Diagrams. 35, 40, 41, 45

UI User Interface. 34, 78, 88

UU Unauthenticated User. 97, 99, 103, 105

UX User Experience. 88

XSRF cross-site request forgery. 68

XSSI cross-site script inclusion. 68

xiii

This page is intentionally left blank.

List of Figures

1.1 How to Contribute . 1
1.2 Fireloc System . 2

2.1 NgRx Lifecycle Diagram . 11

3.1 Fotoquest . 17
3.2 Fotoquest Steps . 18
3.3 IPMA Earthquake Page . 19
3.4 IPMA Fire Risk Page . 19
3.5 IPMA Fire Risk Selected Zone . 20
3.6 NASA FIRMS Portal . 20

4.1 App - Unauthenticated User Diagram . 22
4.2 App - Authenticated User Diagram . 23
4.3 Portal - Unauthenticated User Diagram . 25
4.4 Portal - Authenticated User Diagram . 25
4.5 Portal - Hierarchy Diagram . 26
4.6 Landing Page / Unauthenticated Map Page 28
4.7 Map container . 28
4.8 Main Page . 29
4.9 Login Page . 30
4.10 Register Page . 31
4.11 Settings Page . 31
4.12 Statistics Page . 32

5.1 Context Diagram . 36
5.2 Containers Diagram . 37
5.3 Fireloc App Components Diagram . 38
5.4 Fireloc Portal Components Diagram . 39
5.5 Geoportal API Server Components Diagram 40
5.6 Create Account Success Sequence Diagram 41
5.7 Create Account Failure Sequence Diagram 42
5.8 Login Sequence Diagram . 42
5.9 Login Failure Sequence Diagram . 43
5.10 3rd Party Login Sequence Diagram . 43
5.11 Firebase authentication sequence . 44
5.12 Contribution Sequence Diagram . 44
5.13 View Contribution Sequence Diagram . 45
5.14 Portal Data Request Diagram . 45

6.1 Verify Position Component . 53
6.2 Verify Orientation Component . 54

xv

Chapter 0

6.3 Cancel Dialogue . 56
6.4 Back Button . 58
6.5 Verify Orientation Component . 60
6.6 Contribution Details Component . 62
6.7 Firebase authentication sequence . 64
6.8 Action Hierarchy . 66
6.9 Search Bar Component . 69
6.10 Web portal fire extent . 70
6.11 Advanced Query Options Component . 72

7.1 Cancel and Back Button example . 81
7.2 Location Disabled Warning . 82
7.3 Account predefined fields . 83
7.4 Angle Warning Message . 84
7.5 Web portal location form values . 85
7.6 Web portal login error messages . 86
7.7 Measurements for the mobile app . 86
7.8 Measurements for the web portal . 87
7.9 Measurements for loading images . 87
7.10 Locations of Interest for Field Tests . 88

1 Full Contribution Process . 120
2 Verify Location Process . 121
3 Verify Orientation Process . 122
4 Take Photo Process . 123
5 Turn to Shadow Step . 124
6 Take Ten Steps Step . 124
7 Verify Shadow Step . 125
8 Verify Optional Position Step . 126
9 Cancel Contribution Step . 127

xvi

This page is intentionally left blank.

List of Tables

2.1 Framework Pre-Selection Table . 5
2.2 Package Pre-Selection Table . 9

4.1 App Unauthenticated User Use Case Mapping 23
4.2 App Authenticated User Use Case Mapping 24
4.3 Unauthenticated User Portal Use Case Mapping 27
4.4 Authenticated User Portal Use Case Mapping 27

7.1 Functionalities of the mobile app . 89
7.2 Functionalities of the portal . 89
7.3 Security requrements validation . 89

UC1: Login . 97
UC2: User Registration . 99
UC3: Password Recovery . 101
UC4: Delete Account . 103
UC5: Logout . 105
UC6: Request Personal Data . 106
UC7: Report Fire . 107
UC8: Complete Report Fire . 109
UC9: View Contribution . 111
UC10: Change Password . 112
UC11: Change Username . 114
UC12: View Occurring Fire . 116
UC13: View Occurring Fire Detail . 117
UC14: Search Location . 118
UC15: Search Timeframe . 119

xviii

This page is intentionally left blank.

Chapter 1

Introduction

This chapter presents the context, motivation and objectives for the work developed in
this dissertation. We also present the contributions made to the Fireloc project and the
structure of the document.

1.1 Context and Motivation

One of the greatest challenges we increasingly face are forest fires. As we may remember
almost everyday on news outlets, forest fires of large dimensions spread in Australia (2020),
California (2021), Turkey (2021) and also Portugal (2017), threatening large communities
and ravaging the land. These fires cause great harm and suffering in neighboring commu-
nities, financial losses to the small local agrarian businesses and harm the local flora and
fauna. Portugal is a country that suffers from forest fires with an average of 18277 fires and
136502 hectares of burned area by year [4], where many occur in zones of difficult access.

Considering the far-reaching reprecursions of a forest fire, its early detection is of utmost
importance to effectively containing it and preventing loss of life and material. The de-
tection strategies used are varied. These include the surveillance towers, patrols by local
authorities and even more modern methods, such as the use of drones. While some of these
methods can be effective, they are nevertheless costly, both in time and money spent. An-
other method relies on reports from the population of surrounding areas, but the question
arises of the veracity of their reports, since a false report can result in firefighting means
being dispatched, depriving a possible fire of fighting resources.

Figure 1.1: Figure obtained from [10]

1

Chapter 1

The Fireloc project, a three year project financed by FCT, aims at providing an inova-
tive solution. The project aims to develop a crowdsourced system for users, through the
utilizations of their smartphones, to report fires by collecting some positional data and a
photo of the fire as depicted in Figure 1.1. The data will be processed, and through the
use of ML algorithms, Fireloc will evaluate the veracity of a report and make the data
available to the authorities. Figure 1.2 depicts the flow of the proposed system. This data
allows the authorities to quickly identify the location and dimensions of the fire so as to
better combat it.

Figure 1.2: Figure obtained from [10]

The work reported in this dissertation was developed in the context of the Fireloc project,
aiming at the development of the interfaces for the users to report the fires and to view
the impact of their contributions.

1.2 Objectives

The Fireloc project encompasses several important tasks, the sum of which will produce
the final system to be released to the general public. Among these tasks, this dissertation
focuses on the key tasks of collecting the necessary data for the system and providing the
visual output to the users. To accomplish this, this dissertation has three goals. The
creation of a mobile application to collect data, the creation of a web portal to visualize
data and a support API for the web portal.

The mobile application will provide the user with the means for collecting data to report
a fire, such as the positional data and the photographical evidence of the fire. This appli-
cation is to be integrated with an API that will support the necessary server operations.
This API is to be developed separately by other members of the Fireloc team.

The web portal, available to browsers, will provide the user with the means to observe the
collected geographic data. The data, treated beforehand, will display the extent of the
fires, their locations and the contributions that led to it. The portal’s functionalities are
to be supported by a dedicated support API.

The support API will provide the web portal with functionalities to prepare the data to

2

Introduction

be visualized. The API is to be incorporated in the main server of the Fireloc project.

1.3 Contributions

In the context of the Fireloc project, some of the developed systems can be considered
original contributions, namely:

• The successful development of an android mobile application that collects positional
data and images to report a fire. This application can collect the user’s position, his
orientation relative to the magnetic north, and photos of the fire. It can also allow
the user to visualize his previous contributions. This application is also ready for
iOS deployment.

• The development of a web portal capable of displaying data related to a fire and
search of fire events based on multiple criteria.

• An array of services and infrastructure that can be shared between the mobile appli-
cation and the web portal.

1.4 Document Structure

The remaining dissertation is organized in seven chapters. Chapter 2 contains the relevant
technologies for the development of this dissertation. Chapter 3 presents available products
with similar characteristics. In chapter 4, the requirements for the mobile app, the web
portal and the support API are discussed. Chapter 5 presents the architecture defined
to implement the identified requirements. Chapter 6 discusses the implementation of the
mobile app, the web portal and support API, focusing on the development of the main
components. In chapter 7, the tests performed on the developed products are discussed,
including tests to the software and usage in real life. Lastly, chapter 8 presents the main
conclusions, as well as the future work.

3

Chapter 2

Technologies

In this chapter we discuss the relevant technologies for the development of the mobile app,
the web portal as well as the API server.

After some preliminary research we identified the most important ones as the framework
we will use to develop both the mobile app and the portal, along with the package(s) we
will use to render the maps as this is one of the critical components of our design.

The framework, since it will provide important scaffolding to the system and, if chosen
correctly will enable us to share blocks of code between the mobile app and the web
portal. The map rendering packages since the main operations of the web portal are all
based upon the displaying of data whose correct interpretation requires it geographical
visualization. We discuss the various choices of technologies for each of the previous points
focusing on their analysis following several relevant constraints and criteria we defined to
make our decision.

Lastly we give an overview of the technologies chosen to handle application state and to
develop the API server.

2.1 Constraints/Criteria

We now specify the constraints for our choice of development framework and map rendering
package(s). The choice of the constraints was made based upon factors discussed during
preliminary meetings inside the Fireloc Project, such as the need for the quick development
of several systems mainly the mobile app and its cost. Therefore, the platform support, the
supported languages, the learning curve and the pricing all influence the quick development
of our system.

2.1.1 Platform Support

This constraint relates to whether the framework/package is supported by both iOS, An-
droid and Web deployment with similar performance in all platforms.

While we want an application which runs on both iOS and Android, we desire to minimize
the workload by having a framework which will allow not only development of code for the
mobile platforms, but can also use the same codebase for developing the web application
with minimal adjustments.

4

Technologies

For the map package, we want one which can be easily integrated with the chosen framework
and therefore is also supported by these platforms.

2.1.2 Supported Languages

Which programming languages does the framework/package support for development. This
constraint can impact the learning curve of the chosen technologies.

2.1.3 Pricing

Whether the framework/package(s) is free or not. This includes the framework itself and
related services if there are any available.

2.2 Frameworks

We now discuss the various pre-selected frameworks present in the market and compare
them and choose the best according to the constraints presented in the previous section.

2.2.1 Pre-Selection Process

Given the number of frameworks in the market its volatility regarding new technology, we
decided to pre-select five frameworks based on the number of times they appear in selec-
tion/ranking articles online and how old/recent those articles are, as well as the platforms
those articles are published on. Therefore, we want recent articles (2 years at most, this
being from late 2017 onward, this can give us an idea of the consistency of the framework
and its popularity) and published on well-respected platforms usually dedicated to the
development community.

These criteria serve to filter out less known and undesirable frameworks, since we require
a good, maintainable, and well regarded framework.

Table 2.1 contains the results of the pre-selection1:

Framework Forks Stars Watches Mentions
(x/5)

Selected
(Yes/No)

Appcelerator Titanium [17] 1.2k 2.5k 194 1 No
Corona SDK N/A N/A N/A 1 No
Flutter [18] 10.1k 79.4k 2.5k 4 Yes

Framework7 [19] 3.1k 14.9k 726 2 No
Ionic [20] 13.1k 39.6k 1.8k 5 Yes

jQuery Mobile [21] 2.6k 9.9k 575 2 No
NativeScript [24] 1.3k 17.8k 713 2 No
PhoneGap [26] 2.2k 1.6k 85 3 Yes

React Native [27] 18.5k 82.7k 3.7k 5 Yes
Xamarin [28] 1.6k 3.9k 435 3 Yes

Table 2.1: Framework Pre-Selection Table

1References for the websites visited: [41] [33] [52] [31] [42]

5

Chapter 2

2.2.2 Pre-Selected Frameworks

Flutter

Flutter is Google’s open-source solution to mobile, web and desktop hybrid development2.

• Platform Support: iOS, Android, Web, Windows, Mac, Linux

• Supported Languages: Dart (has similarities with Java and JavaScript)

• Pricing: Free

Ionic

Ionic is an open-source framework developed by Drifty Co.

• Platform Support: iOS, Android, Web, Desktop

• Supported Languages:

– Languages: HTML, CSS, JavaScript, TypeScript

– Frameworks: Angular, React and Vue (in Beta)

• Pricing:

– Community Edition: Free

– Enterprise Edition: Custom Pricing

PhoneGap

PhoneGap is an open-source distribution of Cordova from Apache Cordova’s team.

• Platform Support: iOS, Android

• Supported Languages: HTML, CSS, JavaScript

• Pricing: Free

React Native

React Native is a framework released and maintained by Facebook for iOS and Android
development.

• Platform Support: iOS, Android, Web (through 3rd party packages)

• Supported Languages: JavaScript

• Pricing: Free
2References: [11] [12] [13]

6

Technologies

Xamarin

Xamarin is Microsoft’s open-source solution for hybrid development, which extends the
.NET framework.

• Platform Support: Supports iOS, Android and Windows (.NET)

• Supported Languages:

– Mainly Used: C#/XAML

– As an added Feature: Objective-C, Java, C/C++ Interop

• Pricing: Framework is free. IDE for enterprises 6000$ on the first year and 2600$ for
the following years.

2.2.3 Evaluation

For the following discussion we shall assume the criteria to be the constraints presented in
section 2.2.1.

Platform Support

Regarding platform support, we are hoping not only for iOS and Android support but also
Web, since we require an application which can also run in the browser.

Both Flutter and Ionic fulfil this criteria since they support all three desired platforms. Yet,
according to various comparisons, the performance on Web is substantially better using
Ionic, while performance in iOS and Android is only slightly better in favor of Flutter.
(Supporting links in References)

A React Native app while using essentially the same codebase as a normal React app,
still requires a 3rd party package to be able to be deployed as a web application, therefore
increasing the reliance on community software and subsequently the risks in using this
technology.

Xamarin has no support for web deployment, since it’s inserted in the .NET environment,
which has a web solution in the form of ASP.NET. To use Xamarin for iOS and Android
development, we would need to develop the web app using ASP.NET in an attempt to max-
imize shared code or use another web framework, which would also increase the workload
and development time.

As for PhoneGap, there were no solutions available for web deployment and, to do the web
app, we would have to use another framework with the same risks as discussed previously.

Supported Languages

Regarding a framework’s support for programming languages, both Ionic, PhoneGap and
React Native support JavaScript. Considering the current popularity of JavaScript in the
programming community, choosing a framework that supports this language or any subset
of it (eg: TypeScript) seems recommendable.

7

Chapter 2

As for Flutter and Xamarin, both require a unique language integrated in their own envi-
ronment. Yet, it is important to consider other facts.

Flutter is developed by Google, one of the world’s leading tech companies and enjoys wide
support since it was released, as well as being described by users as easy to learn. The fact
it was released by Google may mean it may enjoy a better integration with other Google
environment products. If Fireloc is to rely on Google products in the long run, perhaps an
investment on Flutter isn’t a bad choice.

Xamarin enjoys a similar relationship with Microsoft and therefore the argument above
also applies.

Pricing

Regarding pricing all are free except Ionic and Xamarin, yet, Ionic’s Community Version
is sufficient for the good development of the FireLoc application since only a couple of
features are paid. These Ionic features (advanced plugins, exclusive IDE, etc.) are not
necessary and will not affect the development of the application if we choose to go with
the Community Edition.

For Xamarin, the platform itself is free, but since we are developing this in a university
environment we cannot be sure how Xamarin will classify us (company or not). Therefore
we may be subject to high costs of production just in a specific IDE which must be used
for development.

Therefore all options are equal with regards to pricing, with the exception of Xamarin.

Choice

Given the constraints presented and the framework options, we decided to develop the
mobile app using Ionic. The fact we have the base knowledge to operate with it as well
as the low cost of developing and maintaining, make it the prime choice. Using Ionic, we
will also have a code base we can readily replicate with minor changes to support the web
portal.

2.3 Map Packages

We now discuss the various packages and libraries found that may be used to render maps
in both our mobile app and web portal.

2.3.1 Pre-Selection Process

The pre-selection of packages for map rendering was easier. Despite the large number of
packages, many focus on integrating a root package (ex: mapbox [39]) into an existing web
framework such as Angular, Vue or React (ex: vue2-google-maps [50]) therefore we will
focus on the main packages, which we identified in Table 2.2.

8

Technologies

Package Forks Stars Watches
Leaflet[22] 4.7k 29.6k 955

Openlayers[25] 2.4k 7.6k 424
Mapbox[23] 1.6k 6.5k 347
Google Maps N/A N/A N/A

Table 2.2: Package Pre-Selection Table

2.3.2 Pre-Selected Packages

Since all packages fulfil the requirements of being supported by our selected framework,
they already fulfil the Platform Support and Supported Languages criteria.

Leaflet

Leaflet[38] is an open source, lightweight library for interactive maps. Leaflet is free al-
though we have to provide the map layers ourselves. This isn’t necessarily a problem since
there are several open-sourced providers which can fill this gap.

Openlayers

Openlayers[47] is an open source library used to place dynamic maps in any web page,
displaying tiles and data from any source.

Mapbox

Service provided by Mapbox. It provides several map layers and modes as well as the
means to render them on a web client. This is a paid service, with a free tier of 50.000
monthly loads, with pricing starting at $5.00 afterwards[40].

Google Maps

Service provided and maintained by Google[29]. It provides both map layers and the means
to render them in a web client. Google Maps is a paid service for web development with
pricing ranging from $2.00 to $7.00 per 1000 requests[30].

2.3.3 Evaluation

We now evaluate them over the remaining open criteria.

Pricing

Looking at the pricing of each, it is clear we need to discard both Google Maps and Mapbox.

Our objective is to cut costs on subscriptions and usage fees and since Google charges from
the beginning it is not a good option.

9

Chapter 2

Mapbox is a hard choice. The free tier is generous, and could cover most of usage cycle of
the product. However we need to consider two points. First, the usage is for both the web
portal and the mobile app. So we need to consider the usage of both products when looking
at the cost. Second, the usage is expected to greatly increase in the summer months, both
for the portal and the mobile app. Both points lead us to believe the free usage quota will
be reached.

Lastly we have Openlayers and Leaflet. These are open source products with no costs
associated. The only cost of using this option would be if we used a paid provider for the
map tiles. Since there are also open-sourced tile providers, we can say these options will
have no monetary costs associated.

Choice

With regards to the package we will use to render our maps, we decided to go with Leaflet.

Leaflet and Openlayers are similar in many aspects, fulfilling our criteria and being free.
However, the fact that Leaflet is considered lightweight and by far the more popular (from
which we can deduce there exits more online support for future problems) makes it clear
it is the best choice.

2.4 State Management

Considering both the mobile app and, to a lesser extent, the web portal, it is crucial to
keep track of the data collected and requested during a session. Another critical point is
how we share data between application components, which depending on the method used
can become tricky as the application complexity increases. Thus, it is clear we need a tool
to help managing our application’s state and internal communication.

2.4.1 Vanilla state management and component communication

Using only Angular and its base dependency RxJS, we will go over some possible ways of
addressing state sharing and component communication.

Component communication can be handled in several ways. We may employ the usual
parent-child communication based on property binding for passing data to a child. Also, we
may listen to events when passing data to the parent component using the EventEmitter
class, which is an extension of the RxJS Subject class. However, these are limited ways of
communication, since they depend on parent-children relationships for passing data, which
are prone to code bloating when sharing too much information, requiring greater attention
to the component lifecycle methods to maintain the data updated.

An alternative approach commonly found is to create a service managing various observ-
ables, which our components can subscribe to read data. The problem with this approach
is the tendency to group the observables into several services, so, as the complexity of the
app increases and our components and services become more and more linked, we still
have the same code bloating problem, with many components having as a dependency an
increasing number of common services.

Adding to this increase of complexity, we have yet to solve the problem of storing the data.
The easiest way is to keep the data in the responsible component or service, and pass it to

10

Technologies

whatever component or service needs it, using one of the previously discussed methods. A
problem arises from this solution when we consider the Angular lazy loading mechanism.
What happens if some component needs data from some part of our application, and we
have yet to visit the component handling it? To solve this situation, we might create a
repository for that data, but we are adding complexity to an already complex solution,
and we still have no way of ensuring simple properties, such as, data immutability, ready
access, and maintainability.

2.4.2 State management flow using NgRx

In the Angular community, a common solution for the problems presented above in appli-
cations of higher complexity is the use of NgRx, which will be adopted in this dissertation.
NgRx is a framework for building reactive applications that provides an implementation
of the observable store pattern, which is inspired on Redux.

Figure 2.1 depicts the state management lifecycle using NgRx. Starting with the compo-
nent, this will emit actions that can contain a payload, which may or not contain data.
These actions will trigger reducers, which will update the store based on the action type
and payload. The selector listens to the store and each time a value is changed it will emit
the value to any subscribed components. Lastly, an action can also trigger a side effect.
The effect will interact with the services of our application and can also dispatch actions.

Figure 2.1: NgRx Lifecycle Diagram

2.4.3 NgRx key concepts and definitions

The following concepts are important to understand how NgRx works inside the Angular
environment. These definitions were based on the official documentation [44].

Store

Store is a single, immutable, centralized, serializable and type safe data structure used to
store our application data, which can also be persisted and rehydrated if necessary. It can
be accessed by all components and services through the use of selectors. Also it is available
throughout the entire lifecycle of the components. The store can be divided into feature

11

Chapter 2

stores that provide new pieces of state — feature states. The concept of feature store we
will be developed in later chapters.

When integrating NgRx store with Angular components, the only import necessary in the
component is the store.

Action

Actions are unique events dispatched from components and services. They have the struc-
ture of a JSON object with the following elements:

• type: a unique string detailing the type of the action, usually following the convention
"[Source] Description";

• props: an optional property in the form of a JSON object used to pass data along
with the action.

Reducer

Reducers are pure functions that handle the transition between consecutive application
states. This is accomplished by taking the current state and the latest emitted action, and
generating a new state. The type of transition made by the reducer is based on the type
of the action emmitted. When generating the new state, the reducer can generate it with
data provided by the action through the props parameter or with any predefined value.
A common example for the latter is the implementation of flags, where an action without
props is emmitted, and a single store parameter is changed based on the action type.

To create a reducer, we use the function createReducer() that takes as input the initial
state, the functions to handle the state changes along with the actions that trigger them.

Selector

Selectors are pure functions used to obtain slices of the state. They provide useful features
such as portability, memoization, which is useful when considering performance issues,
composition, which allows using various selectors to create other selectors, testability and
type safety. These properties allow for safe and unique selectors, which take from the state
only the data required at the time.

To create a selector we need two functions from @ngrx/store, the createFeatureSelector
and the createSelector functions. The former creates a feature selector for a given feature
state, and the later, which takes the new feature selector, creates the selector for a property
in the feature state.

Selectors are synchronous functions by default, and will emit the latest value, when sub-
scribed to, and will emit every new value afterwards. When integrating the NgRx store
with Angular components any value to be used from the store will come from a selector in
the form of Observable<T>, where T is the generic type of the data from the store.

12

Technologies

Effect

Effects are a side effect model for the NgRx store powered by RxJS. Effects are long running
services, which use observable streams to provide new sources of actions, and listen to every
action dispatched by the store. These reduce state based on external interactions such as
fetching data from an API and other interactions, which the component does not need to
explicitly know about. Therefore, effects allow to isolate the components and reduce the
number of directly injected dependencies.

Considering what has just been said about effects, the typical use case will be the following.
We create an observable stream from the actions Observable provided by effects. This is
accomplished passing it RxJS and NgRx operators to build a chain of desired operations
to affect a given type of data. The most common RxJS and NgRx operators found in this
dissertation will be the following:

• ofType(): allows to restrict the actions the effect listens to the actions passed in
argument;

• switchMap(): returns an Observable based on an operation performed over the input
values, used when making API calls;

• map(): maps a source value according to a projector functionwith the resulting value
being emmitted as Observable, this allows to dispatch NgRx actions as the resulting
Observable;

• tap(): allows the execution of code outside the chain.

Entity

Entity is an adapter that provides an API to manipulate entity collections. It has a state
with two elements:

• ids: an array with the collection ids;

• entities: A dictionary with the entities of the collection indexed by their ids.

The entity adapter also provides CRUD methods and selectors for the data. It can also be
used as a feature store. This is particularly useful when considering some of the data we
will be manipulating, as described in later chapters.

To use the Entity State, we need the feature state to extend EntityState<T>, where T
is the type of the entity, and to add it to our main state. In the creation of the reducer
functions, we create the adapter by calling the createEntityAdapter<T>() function.
From the adapter we can also employ the method adapter.getInitialState() to obtain
the initial state necessary for creating the reducer, using the createReducer() function.

2.5 API Server Technologies

Now, we speak about the technologies already chosen to develop the API server. These
were already defined since the API server is to be integrated into the existing infrastructure
of the Fireloc Project. Therefore there will not be a selection process as with the previous
client-side technologies.

13

Chapter 2

2.5.1 Django

To build the server infrastructure, it was decided to go with Django[7]. Django is a python
framework used to build web applications, which follows the Model-Template-View (MTV)
design pattern.

Django is also highly extensible, supporting packages to fulfill several roles such as API
provision (perhaps the most relevant in our case). These features are easily integrated into
the working app, though the settings files.

These packages also allow us to use Django past the original MTV architecture. In our case,
it is of value the internal ORM and the simplicity of its use, while we provide the views
and client related logic separately using our front-end solutions: the mobile application
and the web portal.

For this project in specific, it is of particular value Django’s support for creating GIS
applications, this will help the development of the geographical server-side components.

2.5.2 GeoServer / GeoNode

GeoServer[16] is an open source server for sharing geospatial data. It implements the stan-
dards of Web Feature Service (WFS) used to offer direct fine-grained access to geographic
information at the feature and property level[53]. Web Map Service (WMS), used to pro-
vide simple HTTP interfaces for requesting geo-registered map images from distributed
geospatial databases, which can be displayed in browser applications[54]. And Web Cov-
erage Service (WCS) used to offer multi-dimensional coverage data over the internet[51].

We will use GeoServer to distribute the geospatial data needed to populate the web portal
maps. The data itself will be stored and managed via GeoNode[15].

GeoNode is a geospatial content management system, built with Django which allows for
integrated creation of data, metadata, and map visualizations (from multi-layer interactive
maps to embedded ones). Each dataset in the system can be shared publicly or restricted to
allow access to only specific users. GeoNode is also easily extensible to allow modification
to meet the requirements of each application[48].

2.5.3 Docker

Docker[8] is a virtualization tool, consuming less resources than a virtual machine, which
delivers software packages in containers. Each container is an isolated executable unit
which packages application software as well as any dependency libraries and configuration
files, communicating over previously defined channels, running on any OS.

In this project we’ll use Docker to separate each of the server modules. This is due to
the various dependencies each module has which can sometimes enter in conflict due to
different versions needed. By using Docker, we guarantee the independence of each module
over the others, as well as also assuring they are able to efficiently and easily communicate
among each other.

14

Technologies

2.6 Summary

In this chapter we presented the core technologies to be used in the development of the
mobile application, web portal and the Geoportal API, along with their selection process
when several options were available.

As development framework for the mobile application, we chose Ionic with Angular. This
choice took into consideration the supported languages, pricing and the ability to reuse
infrastructure for creating the web portal. For the map package, and considering the
frameworks to be used, we chose Leaflet.

By choosing Ionic with Angular, we require a state management package and for that we
decided on NgRx, the more mature of all available options.

For implementing the server, the Fireloc project predefined the Django framework, to be
used in conjunction with Geoserver and Docker.

15

Chapter 3

Similar Products

In this chapter we discuss some of the relevant mobile apps and web pages which served
as base to our design decisions.

First we discuss mobile apps whose purpose, like ours, is to collect user data through user
input. We will give a brief overview of the app and go over the main points we judged to
be of value to our development.

Next, we go over the web portals. These will focus on displaying information to the users,
specifically geographical data. We will discuss their purpose and our main takeaways.

3.1 Similar Apps

In this section we discuss the similar mobile apps found. We chose Fotoquest Go[14], due
to its purpose for using geographical data we intend to collect.

3.1.1 Fotoquest Go

Fotoquest is an app designed to collect evidence of how quickly our landscape is changing.
This is done through "quests" where the user goes to a certain point in the map and takes
a photo of his surroundings.

16

Similar Products

Figure 3.1: Fotoquest

As shown above, Fotoquest uses the phone’s gps to provide directions to the goal. Once
the user is close enough to one of the objectives, new indications are given before asking
him to take a photo of his surroundings which is then uploaded to their services, as well
as asking what has changed in the landscape.

17

Chapter 3

Figure 3.2: Fotoquest Steps

3.1.2 Conclusions

Fotoquest has characteristics that may help us, such as the detailed process of step-by-step
instructions. However, there are also lessons about what we should not do. Namely the
option to edit the photos, something our system must not allow so as to avoid adulterating
possible relevant data.

3.2 Similar Portals

In this section we discuss the similar portals found. We chose the IPMA and NASA pages
due to their similarity of purposes with the portal we are going to develop.

3.2.1 IPMA

IPMA is the official page for the Instituto Português do Mar e da Atmosfera. The services
provided in this page range from meteorological forecasting to sea wave height to seismic
activity. In this website, there are two elements of interest for the project. The seismic
activity map[34] and the fire risk map[35].

18

Similar Products

Figure 3.3: IPMA Earthquake Page

Figure 3.3 shows the seismic activity map. In it we can see the map occupies the greater
part of the page and secondary information is thrust to other parts of the page.

In the map, we can also see the events marked and when we hover over them we can see
relevant details.

Figure 3.4: IPMA Fire Risk Page

In figure 3.4 we can observe the fire prevention page of IPMA. Here we are presented with
a map of Portugal as a whole with its subdivisions clearly defined. Once we click on any
of these divisions, the page zooms and centers on the chosen county, displaying relevant
data in a popup as seen in Figure 3.5.

19

Chapter 3

Figure 3.5: IPMA Fire Risk Selected Zone

3.2.2 NASA

NASA, National Aeronautics and Space Administration, is a north american agency re-
sponsible for space exploration and research. NASA also monitors Earth from orbiting
satellites and posts such information online, among them fire related data through the
FIRMS[43] portal.

Figure 3.6: NASA FIRMS Portal

Figure 3.6 the main page of FIRMS, in it we can see a world map occupying the whole page.
In the map we can see several fire events, which upon clicking display relevant information.
We can also see several options of layers and tools to help visualize the data.

3.2.3 Conclusions

Given the pages shown before, we can take the following conclusions for the development
of the web portal. First, the map should be the central component of the main page.
The map should allow for several layers of information and the events should display some
information when hovered upon as well as legends for any symbol or significant color used
if there is a need to distinguish.

From IPMA we can also take the division of areas. The Fire prevention page clearly
displays the boundaries and combined with other information layers should provide a good

20

Similar Products

base for our map.

Next is that any secondary task not related to the information being displayed on the map
should be separated into other pages. Complementary information to the map is usually
displayed on the sides.

3.3 Summary

In this chapter we presented products available similar to the applications we are developing
in this dissertation. From them we concluded several aspects in the implementation of a
flow of actions in the mobile application and when displaying information in the portal.

21

Chapter 4

Requirements

In this chapter we discuss the requirements for this dissertation. The chapter is divided
between the three main objectives for the dissertation, the mobile app, the web portal and
the API server.

For both the mobile app and the web portal, we will discuss the context diagrams for each
identified user. From the context diagrams, we will obtain our use cases which will detail
the interactions between the user and the system and how it should respond. Next, we
will discuss the non-functional requirements that will support the app and the portal.

Finally, we will discuss the API server, detailing the operations it needs to support.

4.1 Fireloc App

In this section, we defined the requirements for the Mobile App.

4.1.1 Context Diagrams

For the Fireloc App, we have identified two types of user stakeholders: the unauthenticated
user and the authenticated user.

In Figure 4.1, we present the context diagram for the Unauthenticated User with its re-
spective system interactions. This user only has access to authentication interactions.

Figure 4.1: App - Unauthenticated User Diagram

22

Requirements

The authenticated user and its interactions are represented in Figure 4.2. This user type
refers to any Unauthenticated User that has either logged in or registered.

Figure 4.2: App - Authenticated User Diagram

The interactions of the authenticated user are divided in three groups: data gathering and
visualization, account management, and authentication management.

Data gathering and visualization interactions encompass fire reporting and viewing the
user’s contributions. Fire reporting is the main interaction with the mobile app, having
two operational modes, a basic report mode with the ’must-have’ information and a com-
plete report mode with a more detailed set of gathered data. Concerning visualization
interactions, the app provides means for the user viewing his own contributions.

The user management interactions encompass deleting the account, changing the password,
changing the username, and requesting the user’s personal data.

Finally, the authentication management concerns the logout interaction. When the user
logs out, he resumes his previous role as an unauthenticated user with all the associated
interactions.

4.1.2 Use Cases

In this subsection we define all interactions of the user with the mobile app identified
previously through use cases.

The mappings of the interactions for each stakeholder to the respective use cases are found
in tables 4.1 and 4.2. The definition of each use case can be found in Appendix A.

Designation Use Case Success Criteria
Login Login UC1 User can log in
Register User Registration UC2 User can create an account
Recover Password Password Recovery UC3 User can recover the password

Table 4.1: App Unauthenticated User Use Case Mapping

23

Chapter 4

Designation Use Case Success Criteria
Logout Logout UC5 User can log out
Change Username Change Username UC11 User can change his username
Change Password Change Password UC10 User can change his password
Delete Account Delete Account UC4 User can delete his account
View Contributions View Contribution UC9 The user can view his contributions
Basic Report Report Fire UC7 User is able to submit a report
Complete Report Complete Report Fire UC8 User is able to submit a complete report

Table 4.2: App Authenticated User Use Case Mapping

4.1.3 Non-functional Requirements

In this section we go through the non-functional requirements for the mobile app, which
are usability and latency.

Usability

Given the fact that the main purpose of this app is gathering information, we must ensure
it is as easy to interact for our users as possible.

Among the various functionalities, the reporting process must be of easy access once the
user opens the app, as we must account for possible external factors when he makes a
report. Also, we must ensure that each piece of collect information is the central point
of the interaction on each page. Following a simple, intuitive design that highlights the
action needed. However we must also account for human error. Thus, we need to reduce
the interactions that require input of information to those absolutely necessary, and give
appropriate feedback to the user, as to whether he has completed those interactions in a
satisfactory way or not.

To measure the usability requirement we will use the Nielsen Usability Checklist/Euristics.

Latency

As with any mobile app, one of the key aspects users notice is how long they have to wait
for content or for an operation to resolve. Thus, low latency is an essential characteristic
that we need to cover. This implies we must assure low latency for the majority of our
requests.

According to a study from Appdynamics [1], users do not notice values inferior to 1s but
a majority will abandon the use of an app for waiting time values above 4s. So, we have
set our latency target value to be inferior to 4s.

4.2 Fireloc Portal

In this section, we define the requirements for the Fireloc Portal.

24

Requirements

4.2.1 Context Diagrams

For the Fireloc Portal, as in the case of the Fireloc Mobile App, we have two types of users,
which are the unauthenticated user and the authenticated user.

Figure 4.3: Portal - Unauthenticated User Diagram

The context diagram of the unauthenticated user is displayed on Figure 4.3. This user
only has access to authentication interactions, since we aim to restrict access to advanced
interactions we have with the Fireloc system to registered users.

Figure 4.4: Portal - Authenticated User Diagram

25

Chapter 4

The context diagram in Figure 4.4 shows the authenticated user interactions. Like the ones
defined for the mobile app, they are restricted to unauthenticated users that have logged
in or have registered.

These interactions are divided into four groups: searching, visualization, account manage-
ment, and authentication management.

The visualization interactions comprehend viewing the results from our queries in the form
of fire events and their details. The account management and authentication interactions
are analogous to the ones defined for the mobile app.

The authenticated user can be subclassified into four types of users. All of them have
access to the same set of operations, but the results and detailed information are filtered
according to each type’s privileges.

Figure 4.5: Portal - Hierarchy Diagram

The context diagram in Figure 4.5 shows these four types of authenticated users: system
admins, users belonging to authorities and institutions, volunteers, and general public.
Volunteers are users that have made a contribution to the system, while the general public
references users that haven’t made any contribution.

4.2.2 Use Cases

Now we map the interactions with their respective use cases. Those relating to the unau-
thenticated user are found in Table 4.3, while those relating to the authenticated user are
in Table 4.4. The account management interactions are analogous to those of the mobile
app, being found in Table 4.2.

Similarly to the use cases of the mobile app, these can also be found in the Appendix A.

26

Requirements

Designation Use Case Success Criteria
Login Login UC1 User can log in
Register User Registration UC2 User can create an account
Recover Password Password Recovery UC3 User can recover the password

Table 4.3: Unauthenticated User Portal Use Case Mapping

Designation Use Case Success Criteria
View Fire Event View Occurring Fire UC12 User can view active fires
View Fire Event Details View Occurring Fire Detail UC13 User can view active fire details
Search by Location Search Location UC14 User can make a query by location
Search by Date Search Timeframe UC15 User can make a query by date

Table 4.4: Authenticated User Portal Use Case Mapping

4.2.3 Non-functional Requirements

For the non-functional requirements of the fireloc web portal, we defined the usability and
latency requirements.

Usability

The portal’s main goal is to provide critical information to users with diverse backgrounds
and motivations. So, we must ensure that the interactions are easy and intuitive for any
type of user. To achieve this, we must provide the user with a familiar layout similar to
the ones he might encounter in more established web pages. This will ensure that most
users have some prior knowledge of how to operate the Fireloc Portal. But, we still need
to reduce the complexity of the layout as much as possible. This includes reducing the
number of menus that we should introduce on the portal and the depth of any possible
sub-menus. Any interaction that requires user input, such as query parameters, should
already have these predefined to reduce human error. In the case of any user error, we
need to give enough feedback for him to be able to correct it. And this feedback should
be as simple as possible.

Latency

As with the mobile app, low latency is an essential characteristic we need to cover. This
requirement rises to new importance when we think about the main focus of the portal,
which is the display of critical information. This implies we must assure low latency for the
majority of our requests. To define this requirement, we set the latency maximum value
to 4s analogous, to the mobile app.

27

Chapter 4

4.2.4 Mockups

In this section we present the mockups for the portal, and as discussed previously, we
follow the single page design principle commonly found in similar products.

Landing Page

Figure 4.6: Landing Page / Unauthenticated Map Page

1. Map container: Displays the map with the active fire events

2. Login button: Clicking redirects the user to the login page

Figure 4.7: Map container

28

Requirements

4.2.5 Main Page

Figure 4.8: Main Page

1. Map container: Displays the map with the requested information

2. Details button: Clicking requests the information associated with the selected fire
event

3. Fire Event container: Displays the information associated with a single contribution
for the selected event

4. Location field: Allows the user to select a location to query about

5. Search button: Allows the user to perform queries based on the filled query fields

6. Statistics button: Redirects the user to the statistics page

7. Settings button: Redirects the user to the settings page

8. Logout button: Logs out the user

9. Date fields: Allows the user to specify a time range for the query

29

Chapter 4

Login Page

Figure 4.9: Login Page

1. Fireloc Image

2. Register button: Redirects the user to the register page

3. Login form: Contains the fields for the login process

4. Recover password button: Redirects to the recover password button

5. Login button: Submits the login form

6. Google button: Logs the user in through the google account

30

Requirements

Register Page

Figure 4.10: Register Page

1. Register button: Submits the register form

2. Fireloc Image

3. Login form: Contains the fields for the register process

4. Login button: Redirects to the login page

Settings Page

Figure 4.11: Settings Page

31

Chapter 4

1. Edit profile button: Redirects the user to the edit profile page

2. Change password button: Redirects the user to the change password page

3. Change email button: Redirects the user to the change email page

4. Delete account button: Redirects the user to the delete account page

5. Statistics button: Redirects the user to the statistics page

6. Settings button: Redirects the user to the settings page

7. Logout button: Logs out the user

Statistics Page

Figure 4.12: Statistics Page

1. Statistics container: Contains the graphics with the necessary information

2. Statistics button: Redirects the user to the statistics page

3. Settings button: Redirects the user to the settings page

4. Logout button: Logs out the user

32

Requirements

4.3 Module 6 - Geoportal API Server

In this section we detail the specifications for the API Server supporting the web portal.

4.3.1 Supported Operations

The API Server must support a REST API over HTTPS that implements the following
functionalities:

• fetching fire events according to a preset configuration; for instance, current time and
all territory;

• searching for fire events by selected location in accordance with use case UC14;

• searching for fire events by selected date in accordance with use case UC15;

• fetching details of a single fire event in accordance with use case UC13;

• fetching User Contributions associated with a single fire event in accordance with
use case UC13;

Each of the previously defined operations should return a JSON payload with the requested
content to the client. The payload content must be filtered according to the data privileges
of each user type. These are system admins, users attached to authorities and institutions,
volunteers, and general public. The management of these privileges is not responsibility of
this module.

4.3.2 Response Data

The following list breaks down the possible content for the response payload which can
encompass:

• geographical position of volunteers and associated data, for instance the fire photo;

• geographical position of volunteers and associated data, for instance the fire photo,
by degree of trust;

• fire event estimated position;

• fire event estimated position by degree of trust;

• probability surface for the geographical extension of the fire event;

• fire event progression projection;

• burned areas;

• risk charts with valuable infrastructure marked, such as gas posts or schools;

• statistics such as total burned area by NUT2 and NUT3, number of fires by NUT2
and NUT3;

• weight of each contribution.

33

Chapter 4

4.3.3 Error Handling

Should an operation fail on the server, an error message should be sent as response with
the operation and error type to the client.

4.3.4 Integration

Lastly, the server must be of easy integration with the remaining parts of the system.

4.4 Security and Privacy

In this section we defined the security requirements for both the mobile application and
the web portal.

The applications must be of secure use and follow the established guidelines which apply
both to Angular and Ionic applications [49].

For the mobile application and web portal this concerns the secure use of the user private
data when handling authentication and, the collected data when contributing. Therefore
we must ensure we keep no data beyond the duration of the authentication session and the
data is sent in a secure manner to the Fireloc servers, which handle storage.

The following list contains the security requirements not included in the Angular security
guidelines:

• SEC1: Data should not be persisted in memory beyond the duration of the authen-
tication session.

• SEC2: Apart from the refresh token, no data should be persisted in the device after
exiting the application.

• SEC3: Collected data should not be kept in memory beyond the duration of the
contribution process.

4.5 Summary

In this chapter we presented the requirements for the mobile application, the web portal
and the Geoportal API, which included the discussion of the functional and non-functional
requirements.

The functional requirements presented were the use cases for the mobile app and web
portal, which include the authentication, the collection of data and data visualization and
their success criteria. We also presented the security requirements for the each of the these
system components.

For the web portal, we also presented the mockups describing the position of the UI
components.

Finally we present the non-functional requirements, which are the usability and latency
and their evaluation methods and success values.

34

Chapter 5

Architecture

In this chapter we discuss the architecture of the Fireloc System. We start by discussing
the context surrounding the Fireloc System. After, we characterize the identified high level
building blocks. Then, we discuss how each high level block is constituted in its elementary
components. This structure follows the first three Cs of the C4 standard model [5], whose
key concepts are Context, Containers, Components; however the fourth C (Code) is defined
in a later chapter.

Following the characterization of the C4 model, we present the System Sequence Diagrams
(SSD) to view in more detail the operations carried by the system.

Lastly, this architecture is designed to be modular to satisfy scaling constraints.

5.1 Context

The architectural context surrounding the relevant parts of system is depicted in Figure
5.1.

35

Chapter 5

Figure 5.1: Context Diagram

As may be observed in Figure 5.1, first we have our User, who can be any registered or
non-registered person who accesses our system. He has two main drivers. The first is to
send data related to a fire, for that he will use the mobile app (Fireloc App) to collect
and send it. The second being to view the fires in Portugal (past or present) and how his
contributions may have impacted the detection of fires.

Next we have the mobile app (Fireloc App), this will interact with the User to collect the
data and send it through the exposed API to the Fireloc Server.

Next we have the web portal (Fireloc Portal). This interacts with the User to provide data
according to the permissions granted to the type of User he is. This data is fetched from
the Fireloc Server through another API.

Finally, we have the Fireloc Server. This element is the junction of all the developed and
to-be-developed functionalities of the Fireloc Project. This server will expose several APIs
which will be accessed through both the Fireloc App and the Fireloc Portal as well as
provide other functionalities.

5.2 Containers

In this section we describe the containers identified for the system.

The containers are the higher level building blocks of a system. We identified nine in our
system. Seven of them are in the Fireloc Server. Six of them are designated as "Module
X", while the other is the database. These are:

• Module 1: User Management - provides account and authentication management;

• Module 2: Event Location Assessment - verification of the user-provided position
and data;

36

Architecture

• Module 3: Geographical Data API - provides support for the mobile app;

• Module 4: Image - provides image analysis;

• Module 5: User Provided Text - provides text analysis;

• Module 6: Geoportal API - provides support for the web portal;

• Database - used to store all the system data.

The remaining two containers are:

• Fireloc App - used to collect relevant fire data;

• Fireloc Portal - used to visualize fire related data.

In the subsequent presentation we restrict our analysis to the Fireloc App, the Fireloc Por-
tal and the Geoportal API (module 6) containers, since only these three were implemented
in the scope of this dissertation. In the diagrams of Figure 5.2 we will also include the
containers that interact with these three in order to identify all interactions.

Figure 5.2: Containers Diagram

The main containers of the system are six, as depicted in Figure 5.2. They are:

• Fireloc App container. This is the mobile application. This app provides an interface
that allows to collect data for reporting fires, viewing his contributions and managing
his profile. It will communicate through JSON/HTTPS with the User Management
container (Module 1), and the Geographical Data API container (Module 3).

37

Chapter 5

• Fireloc Portal container. This is a web application. This application provides the
interface for the different types of users to view fire related data as well as managing
their accounts. It will communicate through JSON/HTTPS with the User Man-
agement container (Module 1) and the Geoportal API container (Module 6). The
communication with Module 6 is both through REST and Websockets.

• User Management container (Module 1). This provides the functionalities for user
management. This module exposes a REST API, whose endpoints the app and the
portal container will connect to. It also reads and writes to a database.

• Geographical Data API container (Module 3). This manages the geospatial and
image data for the fire report sent from the mobile app during the report process.
This module exposes a REST API, whose endpoints the app container will connect
to. It also reads and writes to a database.

• Geoportal API container (Module 6). This provides the necessary data requested by
the portal. This module exposes a REST API, whose endpoints the portal container
will connect to. It also reads and writes to a database.

• Database container. This stores all system data. Also, the remaining server-side
containers read and write data to this container.

5.3 Components

Now we describe the components for Fireloc App, Fireloc Portal and Geoportal API con-
tainers.

5.3.1 Fireloc App

Figure 5.3: Fireloc App Components Diagram

The components of the Fireloc App container are presented in Figure 5.3. For the sake of
clarity we encompassed the UI components in a single one to reduce visual cluttering.

Excluding the UI components, we have the following ones:

38

Architecture

• Authentication: Handles the logic of the various forms of authentication defined in
the in our use cases in Appendix A.

• API: Provides the functionalities required to process data and send requests to the
API endpoints via JSON/HTTPS.

• Internet: Provides functionalities to handle changes in the internet status, such as
alerting the user when he leaves internet cover.

• Location: Provides functionalities for the use of native geolocation services, measur-
ing the location of the user during the contribution process.

• Loader: Handles the creation of loading UI actions.

• Storage: Handles the persistence of data during sessions.

• Environment: Provides functionalities related to management and use of environment
variables and other global constants and variables that might be required by the
various services and components.

5.3.2 Fireloc Portal

Comparing the services from the mobile application with the web portal, we verify that
several of them are common. So, since we selected the Ionic framework these can be shared
even though they are compiled to different platforms – mobile and web.

The architecture of the Fireloc Portal is presented in Figure 5.4. It has the same underlying
structure of the mobile app, except for the removal of the Location service, which is not
necessary for the web portal, and the addition of the Websocket Controller to handle live
updates coming from the server.

Figure 5.4: Fireloc Portal Components Diagram

39

Chapter 5

5.3.3 Module 6 - Geoportal API Server

Figure 5.5: Geoportal API Server Components Diagram

The diagram depicted in Figure 5.5 represents the components of our last container, the
Geoportal API Server.

In the upper level, we have the Portal API component. This is responsible for the logic
necessary to handle incoming requests from authenticated clients. Below it, we have the
Internal API component, which is a communication layer to isolate the Portal API from
the remaining modules in the system. This API is responsible for requesting the data
needed by the Portal API to the database or the different modules of the system.

The decision to divide this module into three components aims to comply with three
guiding aspects. First, an external API to serve web clients (Portal API), isolating the
other modules of the system. Secondly, to comply with the modular restrictions of our
requirements, this API should not interact directly with the remaining internal modules,
thus the need to define an internal API housed in its respective component. Lastly, the
RESTful architectural logic doesn’t directly apply to pushing data from a server to a
client, thus we separate those functionalities and place them in the Websocket Handler
component.

5.4 Sequence Diagrams

In this section we analyse the main interactions of the users with the system and the
associated events through System Sequence Diagrams. While ideally each use case should

40

Architecture

have one SSD for the main success scenario, our system has many similar sequence flows.
This allows using a single diagram to cover multiple operations. This applies both for
mobile app and web portal operations.

Figure 5.6: Create Account Success Sequence Diagram

The sequence diagram depicted in Figure 5.6 shows the interaction sequence for creating
an account. This applies to a registration through both the mobile app and the web portal
platforms. In this process, the user inserts the data for his account through our frontend
that is sent to the User Management module (Module 1). This module parses and validates
the data. Once the data has been validated, it is matched against the existing users in our
database. If none exists, the user is inserted into the database. A message is then sent
to the frontend, allowing the user to proceed. Then, the user must confirm the account
creation, resulting in a code being sent to Module 1. If the code is valid, the account is
validated and an authentication token is sent to the client application.

When there is a failure in the process of creating an account, this failure occurs only when
verifying the data against the database, since the data is only submitted to the backend
server if it passes the validation in the frontend. Therefore, if an error occurs in the
database, an error message is sent to the client as shown in Figure 5.7.

41

Chapter 5

Figure 5.7: Create Account Failure Sequence Diagram

The sequence diagram of Figure 5.8 shows the login sequence when the client authenticates
through our authentication service. First, the user sends his credentials through the client
application. Next, the credentials are parsed and validated against the database. Once
the credentials have been corroborated, an authentication token is generated and sent to
establish a session on the client.

Figure 5.8: Login Sequence Diagram

Figure 5.9 depicts the case of a failure in authenticating the credentials, where an error
message is sent to the client.

42

Architecture

Figure 5.9: Login Failure Sequence Diagram

In Figure 5.10, we have the sequence diagram for authentication through a 3rd party
provider1. In this case, the user’s credentials will be provided through a trusted service in
which the user already has an account. The service will then send a token to our frontend,
which, in turn, will be sent to Module 1. This module will validate the provided token and
initiate a session for the client. In Figure 5.11, we present an example of this process for
the Firebase provider.

Figure 5.10: 3rd Party Login Sequence Diagram

1Extension 1.a of use case UC1

43

Chapter 5

Figure 5.11: Firebase authentication sequence

The sequence diagram of Figure 5.12 shows the process of submitting a contribution. Here,
the data is sent from our frontend application (mobile app) to the Geographical Data API
(Module 3), which will parse and validate the data sent. Once this is completed, the data
is added to our database for posterior analysis. This sequence also applies for changes in
settings such as passwords, or e-mails. The only change is the data from the frontend is
being sent to Module 1 instead of Module 3.

Figure 5.12: Contribution Sequence Diagram

In Figure 5.13, we show the sequence for viewing a contribution made on the mobile app.
First, the client requests the contributions associated with a determined user from Module
3, which in turn fetches the data from the database, sending it to the client in response.
The user will then select one of the contributions from the list sent, and the client will
request the details of that contribution from Module 3. Module 3 will fetch the details
from the database, and send it to the client in response.

44

Architecture

Figure 5.13: View Contribution Sequence Diagram

The sequence diagram of Figure 5.14 depicts a request from the portal. This sequence
diagram is applicable to all queries made by the portal, since they all follow the same
pattern. In it, the user uses our frontend portal to make a query, such as, search by date,
place or path, with the parameters sent to the Portal API. The request parameters are
then parsed by the Portal API, which is responsible for handling the communications with
the portal. Once the query parameters have been parsed, the data is requested through
the Internal API. This API will determine whether to fetch the data from our database or
request it from the remaining Fireloc modules. Once the Internal API has the data, it is
returned to the Portal API, which in turn sends it in response to the client.

Figure 5.14: Portal Data Request Diagram

5.5 Summary

In this chapter we presented the architecture of the system. The main components of
the system defined were the mobile application and the web portal, which operate in a
client-server relationship with the Fireloc server, where the Geoportal API will be hosted.

The architecture of the mobile application and the web portal have many elements in
common, due to the underlying Angular framework.

Lastly, we described the SSDs that define the flow of data of the various system operations,

45

Chapter 5

including the fetching and sending data to the Fireloc server, and the authentication flows
to be implemented.

46

Chapter 6

Implementation

In this chapter we present how the proposed components — the mobile app, the web portal
and the API — were implemented.

For the mobile app and the web portal, we discuss the implementation of their inner
mechanics, namely, state management, component comunication, authentication, security,
and user management. The adoption of a similar structure for both components was pos-
sible by the choice of the Ionic framework, which allows the use of the same technology,
Angular, in both. This has many advantages, such as, common services, or the testing
framework and methodology, which allows reducing the development time as well as in-
creasing the robustness of our implementation.

Lastly we discuss the API endpoints created to suport the web portal.

Before discussing the implementation, it’s important to clarify certain terms used in this
chapter. First, if no context is provided, the term ’event’ refers to a fire event a user is
witnessing or that has already occurred and wants to obtain details about it. Second, when
presenting the integration with NgRx, state can be used to reference either the entirety of
our application state, or just slices of it. When we reference state, if not explicitly defined,
the reader is to assume we are referencing the slice associated with the context of the
section. For example, when describing authentication, state references the authentication
state, or when referencing settings, the local settings state. Another important term is
’main action’. This refers to an action that is the starting point of a chain of actions, for
example, when discussing the login process, the main action is the action dispatched when
we press ’login’. Lastly, the use of <T> denotes a generic type T.

6.1 Implementation of the Mobile App

In this section, we describe the implementation of the mobile app according to the ar-
chitecture defined in section 5.3.1. We grouped the functionalities into several categories:
authentication, contribution process, viewing contributions and user management. Each
category was implemented as an Ionic page. A page in Ionic is a simple Angular component
wrapped into its own Angular module with a routing module attached. However, since
there is no tangible difference between a page component and a generic component, we
sometimes use the term component to refer a page in the context of layout or in its inner
functionality that does not affect the organization of our code.

47

Chapter 6

6.1.1 Authentication

Since the fire information should be reliable, the requirements define that only authenti-
cated users may contribute with reports. So, we now detail the authentication process and
its implementation.

All functionalities related to authentication are encompassed in an Angular module.

Authentication Process

The process of authentication is as follows:

1. The user inserts his credentials,

2. The credentials are sent to the server through the Fireloc API,

3. The server validates the credentials and generates a token,

4. The server returns the token to the client,

5. The client saves the token to be sent with future requests

This process can be observed in the login sequence (Figure 5.8), which is according with
the use case UC1.

State management

The first step is the definition of the authentication state, whose interface is presented
in Listing 6.1. This stores all authentication data, while the application is running. The
authentication state includes the authentication status, the access and refresh tokens, the
expiration date of the access token, and an error flag. The refresh token is persisted in
memory.

interface AuthState {
isAuthenticated: boolean;
accessToken: string;
refreshToken: string;
authFailure: boolean;
expiresIn: number;

}

Listing 6.1: Authentication State Interface

Access to the state properties is made through selectors derived from the AuthState feature
selector.

Authenticating a user

For a user to be authenticated, he must simply open the application and insert his creden-
tials in the correct fields. Once he submits the credentials, a NgRx action is dispatched to

48

Implementation

the store with the credentials, triggering an effect. The effect will call the authentication
service, which will make a http request to the appropriate API endpoint to authenticate
the user. Should the credentials be correct, we are returned a pair of tokens (access and
refresh), which are placed in the store via a reducer function.

Hydration

Once we open the application, an action is dispatched to the store, triggering the hydration
effect. This effect will check the device’s storage for a refresh token and call the appropriate
API endpoint to refresh the tokens. This allows for any user who has not logged out of
the application, to maintain the session without being forced to constantly reauthenticate
himself each time he reopens the app.

6.1.2 Security

Security is a critical concern to be addressed in the application. It revolves around sending,
fetching and displaying information. Since we use Angular as the base framework of the
Ionic app, the security concerns and methodology apply both to the mobile app and the
web portal. Our implementation follows the Angular recommended security procedures.
These are developed in section 6.2.2.

6.1.3 User Contribution

Contributing is the core action of the mobile app. It is a multi-step process, each with
its own challenges. These can be divided in mandatory and non-mandatory steps. The
mandatory steps are three. First, the collection of the user’s position. Second, the device’s
orientation and lastly, a photo of the fire. The non-mandatory steps can vary in relation to
the user’s position or orientation, but the collection of the data remains the same and so
does its implementation. For a full view of the contribution process and all steps, as well
as the possible interactions, the reader can consult the BPMN2 diagrams of Appendix B.

Before Contributing

The contribution process as is detailed in use case UC7, requires that the user has to
enable his device location services, which in turn allows us to collect the user’s location.
So, we must ensure the user is aware if the location service is enabled or not in the mobile
settings. This is a twofold task and is spread over several parts of the execution of the app.
To ensure the user is aware of the dependency on the device location service, each time
the user opens the app, from a cold start, we check the system permissions and ask for
the user to grant access to the location services (if it is has not yet been granted) and to
turn on the location. This is done through the use of the android-permissions available
through ionic-native. The snippets of Listings 6.2 and 6.3 illustrates the use of this API.

49

Chapter 6

this.androidPermissions.checkPermission(
this.androidPermissions.PERMISSION.ACCESS_COARSE_LOCATION

).then(
// handler function
);

Listing 6.2: Verify Location Access Permission

this.androidPermissions.requestPermission(
this.androidPermissions.PERMISSION.ACCESS_COARSE_LOCATION
).then(() => {

this.locationAccuracy.request(
this.locationAccuracy.REQUEST_PRIORITY_HIGH_ACCURACY

).then(
// handler function

)},
error => {

// error handler function
}

Listing 6.3: Request Location Access Permission

But, the user may decide not to enable the location services, or he may minimize the app
and disable the location services, and return to the app. These actions need to be accounted
for and the behavior of the app should reflect them. The solution to these limitations was
to implement an Angular guard to verify the status of the location access. An Angular
guard or route guard is an Angular interface that allows controlling the access to a route
based on a condition provided in its implementation. Ionic exposes all five Angular guard
interfaces: canActivate, canActivateChild, canDeactivate, resolve and canLoad.
We use the canDeactivate interface. This guard decides if a route can be deactived — if
we can navigate out of it. In the implementation of the canDeactivate interface, we use
the locationEnabledFlag property of the menu options feature store. This flag holds the
on/off value of the device location service. The guard verifies the following two conditions:
fist, if the url we are navigating to is the contribution url and the device location service
is off, we remain in the same page (the menu page) and display an alert; second, if the
location service is on, or if we are navigating to a different url, we allow the navigation out
of the menu page.

To detect when the user changes the location to on or off, we use the diagnostic plugin
from ionic-native to register a listener to the diagnostic state as depicted in the snippet of
Listing 6.4. This step occurs whenever the app starts. As presented in Listing 6.4, when
the location mode changes in the diagnostic state, we emit an NgRx action to the store,
which in turn triggers the menu reducer and update the menu options feature state.

50

Implementation

this.diagnostic.registerLocationStateChangeHandler(state => {
if (state === this.diagnostic.locationMode.LOCATION_OFF) {

this.store.dispatch(AppActions.locationIsDisabled());
} else if (state === this.diagnostic.locationMode.HIGH_ACCURACY) {

this.store.dispatch(AppActions.locationIsEnabled());
}

});

Listing 6.4: Register Diagnostic Listener

State management

For the contribution process, we set up a feature store divided into three parts each with
its own reducer functions as shown in Listing 6.5.

interface ContributionState {
userContribution: UserContributionState;
backgroundLocation: BackgroundLocationState;
contributionOptions: ContributionOptionsState;

}

Listing 6.5: Contribution State Interface

UserContributionState stores the current contribution values, which the user actively
collected. BackgroundLocationState stores the location measurements collected in the
background. Since the background locations is a collection of locations, we store it using
EntityState<T>. This allows us to easily manage the measurements. Lastly, we have
ContributionOptionsState that stores the various flags and options needed throughout
the contribution process.

The store is updated throughout the contribution process and is reset once the contribution
is submitted or the user cancels the contribution.

Collecting Location Data

Collecting the user’s location data is the most important step in the whole process. Part
of the location data is provided by the user in two distinct moments along the contribution
process, and another part is collected in the background by the application.

Each time a user starts the contribution process, that is, when he enters the contribution
page, an action is dispatched to the store. This action triggers an effect, which calls
the location service to start measuring the location in the background. This action is
dispatched through a resolver — Background Location Resolver. A resolver is an Angular
service that implements the Resolve<T> interface by overriding the resolve() method.
This method is invoked when the navigation to a route starts and awaits for a value before
activating the route. In our case, we use this period of time to dispatch the action.

51

Chapter 6

resolve(route: ActivatedRouteSnapshot,
state: RouterStateSnapshot): Observable<any> {

this.store.dispatch(AppActions.calculateAutoInitialLocation());

return this.store
.pipe(

select(selectCanAdvanceFromMandatoryPositionResolver),
filter((hasValue: boolean) => hasValue),
tap(() => {

this.store.dispatch(
ContributeActions.advancedFromMandatoryPositionResolver()
)

}),
first()

);
}

Listing 6.6: Background Location Resolver

In Listing 6.6, we present the Background Location Resolver. The resolve() function is
used to dispatch the action to populate the store with the first set of user coordinates,
which is utilized to instantiate the map component. Meanwhile, the resolver is blocked by
the filter() operator, which checks the value of a flag in the store. When the store has
the required coordinates, it sets a flag indicating to advance the process. Once this flag is
set, the resolver is unblocked in the filter() operator. Then the resolver dispatches a new
action that will call a service method that starts the background location collection. After,
it emits the first value of the stream, finalizing the observable and exiting the resolver.

Once the service method is called, as long as the user is contributing, we dispatch to
the store a new position consisting of the longitude and latitude values of the device at
that exact moment, at fixed intervals. This position is then added to BackgroundLoca-
tionState through adapter.addOne(), which is one of the CRUD operators from NgRx
Entity.

Collecting the user data is done on the verify-location component. This component displays
a map instantiated with the latest location fetched before activating the component.

52

Implementation

Figure 6.1: Verify Position Component

In Figure 6.1 we show the verify-location component. Here, the user verifies if the location
being displayed matches his real location and confirms it. The base map is provided by
ArcGIS service [3] and shows real satellite data. The user can explore the surrounding
area by zooming in or out and moving around the map to verify his position.

The user may realize the position is incorrect, which could be caused by the presence of
bodies of water or a change in the GPS satellites. In this situation, he can change the
location by pressing ’Alterar’. Once he has clicked ’Alterar’, any change in position of the
map will move the marker to the center of the map, displaying the new position of the
user. By clicking ’Reset’ the map will automatically center on the initial position. If the
position is correct, the user presses ’Confirmar’, dispatching a new action to the store with
the position of the user.

Collecting Orientation Data

After collecting the user’s position the system has to acquire his orientation in relation to
the magnetic north, which is accomplished by collecting the device’s orientation.

Each time the user is performing a contribution, he has to calibrate the device. We indicate
this condition when the user enters the component through an alert message asking the
user to move the device around, allowing the device to self-calibrate.

53

Chapter 6

Once the compass is calibrated, the application can collect the orientation measurement.
This requires that the device be in the horizontal, pointing towards the fire. Then the user
can press ’Confirmar Orientação’ to submit the measurement. To help in this submission,
the application display several values on the screen to inform the user. First is the ori-
entation value in relation to the magnetic north in degrees, and the others are ’Ângulo’
and ’Inclinação’, which are the rotation according to the X and Y axis of the device. This
screen can be observed in Figure 6.2.

Figure 6.2: Verify Orientation Component

To obtain these values we attach a listener to the orientation event provided by the Motion
capacitor plugin, which in turn returns the values of the rotation of the device according
to the X, Y. Considering any rotation along these axes may have an impact on the overall
orientation values, the user cannot submit the orientation unless the angles have a value
inferior to a predefined threshold of 5 degrees, which will trigger a warning message. The
orientation value is obtained from the DeviceOrientation plugin from @ionic-native/device-
orientation/ngx.

Once all conditions are met and the user presses ’Confirmar Orientação’, an action is
dispatched to the store with the values of the orientation.

54

Implementation

Collecting Photographical Data

The last step needed to submit a contribution is taking a photo of the fire the user is
reporting. Taking the photo is done through the Camera capacitor plugin. The plugin
calls the device’s camera app where the user takes the photo of the fire. Once the user
takes the photo, and confirms it is the photo he wants to submit, an action is dispatched
to the store with the base64 representation of the photo. The photo is also saved on the
user’s gallery.

It is important to reference two important facts. First, the user cannot import a photo
from his gallery, this is to force him to take a fresh photo. Second, the photo cannot be
edited while in the app so as not to alter any important aspect that the backend server
may need to correctly process the image once the user submits his contribution. All these
aspects are done based on the settings with which we call the camera plugin as seen in the
snippet of Listing 6.7.

takePhoto() {
Camera.getPhoto({

quality: 95,
allowEditing: false,
resultType: CameraResultType.Base64,
saveToGallery: true,
source: CameraSource.Camera,

}).then(value => this.confirmPhoto(value.base64String));
}

Listing 6.7: Camera plugin use

Cancelling the Contribution

Cancelling the contribution is a necessary part of our process. To this effect we need to
take into account the status of the contribution, mainly if the user has already done the
mandatory steps or not. If a user has concluded the mandatory steps, we have sufficient
data to be able to contribute.

To this effect whenever a user clicks the cancel button, a cancel action is dispatched
to the store. This action triggers an effect that will determine if the mandatory steps
are concluded or not. This is done through selecting the last mandatory parameter in
the contribution, the photo. If there is a photo in the store, the application opens an
alert, asking whether the user wishes to cancel or submit the data already collected (the
mandatory fields and all optional data until that moment), as depicted in Figure 6.3.

If the user declines, an action is dispatched to the store to clean up the contribution
store and stop the collection of the background location. If the user agrees, the action
contributeOnCancel is dispatched to submit the data to the backend server.

55

Chapter 6

Figure 6.3: Cancel Dialogue

Submitting the Contribution

A contribution can be submitted at three points: once the mandatory fields are completed
(partialContribute action), or if the user cancels during the collection of the optional
data (contributeOnCancel action), or when he finishes the full contribution process
(fullContribute action — mandatory + optional fields).

The process of submitting a contribution is divided in three effects. The first effect is to
extract the data collected by the user, while the second to read the data collected in the
background, and the last one submits all the data to the backend server. This division in
three effects aims to reduce the complexity of the observable stream.

In Listing 6.8 we present the first effect. This effect will select the contribution data col-
lected by the user from the store, and pass it as the props of the action (contributeSelectResult)
that triggers the next effect. The ofType() operator in the effect is used to select the
actions contributeOnCancel, partialContribute and fullContribute that signal the
start of the submission process.

But how is the data selected by the effect? The effect accesses the store and passes the data
to the observable stream, which is accomplished by the withLatestFrom() operator. This
operator joins two observables: the action observable filtered by the ofType() operator and
the observable from the store selection. So, this effect’s observable stream will now contain
two observables, but only the store select observable will be used. To reduce the number
of observables in the stream, we dispatch the action contributeSelectResult({data:
selectResult}) with the selected data as props, allowing the next effect to start with only
one observable.

56

Implementation

contribute$ = createEffect(() => {
return this.actions$

.pipe(
ofType(ContributeActions.contributeOnCancel,

ContributeActions.partialContribute,
ContributeActions.fullContribute),

withLatestFrom(
this.store.pipe(

select(selectContribution)
)

),
map(([_, selectResult]) => ContributeActions.contributeSelectResult({

data: selectResult}
))

);
});

Listing 6.8: Selecting Contribution Data

The second effect has a structure very similar to the previous one, so we omit the discussion
of its details.

Finally, the final effect is depicted in Listing 6.9. It makes a call to the Fireloc API with
the contribution data as payload. As we can see in the snippet below, we are handling
only one observable as described in the discussion of the first effect.

dispatchContribution$ = createEffect(() => {
return this.actions$

.pipe(
ofType(ContributeActions.dispatchContribution),
tap(() => this.loader.createLoader()),
switchMap(action => this.api.sendContribution(action.data)

.pipe(
map(() => ContributeActions.contributeSuccess()),
catchError(err => {

return of(ContributeActions.contributeFailed());
})

)
)

);
});

Listing 6.9: Submitting Contribution Data

Once the API sends a response, the effect dispatches either a success or failure action,
which will clean up the contribution data in the feature stores, resetting the state for
another contribution.

57

Chapter 6

Navigation

Navigating from one step to the next is important. In this particular case, navigation is
done through side actions in our effects. This allows us to isolate the components in terms
of dependencies and restrict access to the Angular router to the effects. Listing 6.10 shows
the effect triggered when the user sets the orientation that navigates to the next page.

step2$ = createEffect(() => {
return this.actions$

.pipe(
ofType(ContributeActions.setUserPosition),
tap(() => {

this.router.navigate(['contribute/verify-orientation']);
})

);
}, {dispatch: false});

Listing 6.10: Navigation in Effects

Navigating back is done through use of the back button provided by Ionic that has been
placed on the navbar as seen in Figure 6.4.

Figure 6.4: Back Button

Ionic keeps track of the components we navigate to and the order of navigation. Whenever
we press the back button Ionic will pop the last item from the navigation stack and render
the previous component.

6.1.4 Viewing Contributions

Another important aspect of the mobile app is providing means for the user to visualize
his own contributions. This functionality has two steps, fetching a list of contributions
associated with the user, and fetching a specific contribution from the returned list. This
sequence is best illustrated in the sequence diagram 5.14.

Contribution List

To view the users contribution list, the user first navigates to the Contribution List page.
Associated with this route is a resolver that dispatches an action to the store. The effect
associated with this action calls the API service and loads the contribution list.

The data loaded from the server contains the information required to instantiate the list
of contributions, namely the timestamp and the id of the contribution. With this data, we
initialize our state using the Entity State, where our entity is the list item returned from
the server. This can be seen in the snippet in Listing 6.11.

58

Implementation

const adapter = createEntityAdapter<UserContribListItem>({
selectId: model => model.fid,
sortComparer: sortContributionListItems

});

Listing 6.11: Contribution List Entity Adapter

Additionally, we pass a sorting function (sortContributionListItems) to the adapter, so all
entities will have the order we define. In this case, we require our entities sorted in a
descending order by their timestamps. The list is reloaded from the server each time the
user enters the component.

To display the contribution list, we pipe the selectAll store selector provided by our entity
adapter to the observable contributions$. The snippet in Listing 6.12 shows the creation
of the list.

<ion-list *ngIf="(contributions$ | async).length > 0 else noContributions">
<ion-item *ngFor="let item of contributions$| async"

(click)="viewContributionDetails(item.fid)">
{{ item.timestamp * 1000 | date: 'medium' }}

</ion-item>
</ion-list>

Listing 6.12: Contribution List

In Listing 6.12, we have two important parts, which are checking if the contribution list
has any items and displaying those items. The checking of the contribution list is per-
formed by the *ngIf directive, which verifies the length of the list obtained through the
contributions$ observable. Displaying the list of contributions is done with the *ngFor
directive. The data displayed in the list items is the timestamp. The timestamp value
is transformed to a readable format through the use of the date pipe. Both directives
automatically subscribe to the contributions$ observable using the async pipe. The
async pipe automatically unsubscribes the observable when the component is destroyed,
avoiding any memory leaks. An example of a contribution list can be seen in Figure 6.5.

59

Chapter 6

Figure 6.5: Verify Orientation Component

Contribution Details

Once the user clicks the list item corresponding to the desired contribution, the application
navigates to the component where the data will be displayed. Similarly to the contribution
list component route, the contribution detail component route has also a resolver. This
will call the API service to fetch the data associated with the selected contribution.

The loading time of a contribution is a critical aspect of a responsive application. A direct
approach would be to load all content in a single request. But we verified that sometimes it
passed the threshold of the 4s as defined in chapter 4. This was due to the size of the image
the user submitted of the fire. As an alternative approach, we load the image in a separate
step. This allows us to initialize the map and display the data within the established time
threshold, while the image is being loaded from the server.

These two steps require two store operations, one to create the entity of the contribution
detail with the data and another to update it with the image. As presented in Listing
6.13, the more complex operation is perhaps the update of the entity, which takes an
Update<T> object as well the current state as parameters. Update<T> requires two
fields, one is the id of the object we are going to update, the other is the changes in an json
object format. Since we wish to update the image field of the contribution, we require the
Update<T>, where a is the NgRx action payload, and r, which is the response from the
server.

60

Implementation

const updated: Update<SingleContributionClean> = {
id: a.id,
changes: {

image: r.data
}

);

Listing 6.13: Contribution Details Update

To maximize the responsiveness of the application, we should also minimize the number
of requests to the backend server. We accomplish this minimization by persisting the
contribution details in the store for the duration of the session, using the Entity State.
The API request to the backend is regulated by checking if the data is present in the store
before doing the request. The sequence of operations is presented in Listing 6.14, where
the concatLatestFrom() operator reads the data from the store, and the other operators
are used to check if the data exists in the store and block the request to the backend server
if so.

concatLatestFrom(action => this.store
.pipe(// adds the selection result to the stream

select(selectSingleId, {id: action.id})
)

),
tap(([_, selectResult]) => {

if (selectResult !== -1) {
this.store.dispatch(ViewContributionActions.contributionAlreadyLoaded());

}
}),
filter(([_, selectResult]) => selectResult === -1),

Listing 6.14: Contribution Details Update Effect

As for displaying the data itself, we use the asymmetrik/ngx-leaflet package to create
the map, initializing it with the values selected from the store for the desired entity, and
the same base map as in the contributing process. Once the photo is loaded, we sanitize
the content using the Angular DomSanitizer and update the component to display the
photo, as we can see in Figure 6.6.

61

Chapter 6

Figure 6.6: Contribution Details Component

6.1.5 User Management

The mobile app allows the user to manage his Fireloc account. This functionalities include
changing the user’s password, email, edit the user profile as well as deleting the account.

User State Management

User management is handled in the settings page. The state described in Listing 6.15 is
used to keep the profile data loaded from our server. This loading operation is done by a
resolver on the settings page route, which calls the backend server. The success action will
update the store with the information. As with all other feature stores in the app, when a
logout action is dispatched to the store, we clear the data from the profile.

interface UserState {
email: string;
firstName: string;
lastName: string;
tig: string;
forest: string;
fwho: string;
instruction: string;

}

Listing 6.15: User State

62

Implementation

Editing data

Changing the email and the password is a fairly simple process, in which, the user navigates
to the desired page, fills the fields (according to the use cases UC10 and UC11) and submits
the data. The submission of the data dispatches a NgRx action to the store with the new
data. This triggers the corresponding effect that makes the appropriate API call.

Changing the profile information is a more complex process. While some of the fields are
simple enough to understand, some require more careful consideration and the data may
change according to the perception of the user at the moment he edits the profile. For
example, he may not remember if he filled a given field when the account was created or
the value he inserted. Therefore we prefill the profile with the data from UserState, with
the user only changing the parameters that require changing. Submitting the data follows
the same process of editing the other parameters of the user account.

Validation

Sensitive data like passwords and emails are always validated before submitting. The pa-
rameters of validation are the same present in the backend server, such as pattern matching
for email validation, length of password, or inserting twice the password.

6.2 Implementation of the Web Portal

In this section we describe the implementation of the web portal according to the ar-
chitecture defined in section 5.3.2. To implement it, we divided the functionalities into
several categories: authentication, data visualization and user management. Following an-
gular best practices, we encompassed each of these three categories in an angular module,
authentication, data visualization, user management.

6.2.1 User Authentication

Authentication is an important aspect of the portal. We need to ensure each user only
has access to his allowed content, and, we need to make it a secure process. We now
detail the implementation of authentication, which is encapsulated in the authentication
(auth) module. The auth module implements our authentication service and includes the
UI components related to authenticating a user.

Firebase Service

We use Firebase to accomplish the authentication. Firebase is a mature solution that has all
the authentication methods identified in the requirements and is compliant with the GDPR
[9]. Its integration allowed to reduce the development time of the web portal. Among
the available authentication methods in Firebase, we implemented the email/password
authentication and google login.

It is important to define and clarify some terms and expressions. A Fireloc user/account
is the user representation in the Fireloc server. A Firebase user is the user representation
on Firebase and is associated with the Fireloc user. A google user is also a Firebase user.

63

Chapter 6

The process of authentication is as follows:

1. The user inserts his credentials,

2. the credentials are validated on Firebase,

3. Firebase returns a Firebase user reference,

4. we retrieve the userId for the Firebase user,

5. the userId is sent to our server, through our google authentication endpoint,

6. the server validates the userId using the Firebase admin SDK and fetches the user
from google,

7. a Fireloc account is created if none exists associated with the user, otherwise we fetch
the Fireloc user,

8. the server generates a token associated with the Fireloc account and sends it to the
client,

9. the client stores the token to be sent with future requests

These interactions can be observed in the diagram in Figure 6.7. In the diagram we adapt
the 3rd party login sequence (5.10) to the specifics of Firebase.

Figure 6.7: Firebase authentication sequence

To implement the authentication functionalities, we created a Firebase project. There, we
generated two sets of credentials, one for the web client in the form of a JSON object, and
a service account key, in the form of a JSON file stored in our server. In the snippet of
Listing 6.16 we present an example of the web client credentials.

64

Implementation

firebaseConfig: {
apiKey: 'my_api_key',
authDomain: 'authDomain',
projectId: 'projectId',
storageBucket: 'storageBucket',
messagingSenderId: 'messagingSenderId',
appId: 'appId',
measurementId: 'measurementId'

}

Listing 6.16: Firebase Configuration Object

On the web client, we import the AngularFireModule and initialize it with the web client
credentials in the app.module file. The AngularFireModule is part of the @angular/fire (or
angularfire2) package [2], which is the reference package for using Firebase with Angular.
Then, in the auth module at auth.module.ts, we import the AngularFireAuthModule.
While we could have imported this module directly at app.module, since all authentication
functionality will be encapsulated in our auth module, it’s better to only have access to
the AngularFireAuthModule from the modules that require those functionalities.

From Firebase itself we need two groups of functionalities, authentication functions and
user management. The authentication functions are encapsulated in the auth service, while
the user management in the api-http-settings service in the settings module. These services
are in turn called by the NgRx effects each time a corresponding action is dispatched from
the store.

The output of the angular/fire functions in the auth service are converted into observable
streams for better integration with NgRx effect streams. This conversion is accomplished
using the RxJS from() operator.

Authentication State Management

After setting up the auth service, the next step is to generate the AuthState feature store,
which is the slice of state responsible for everything related to authentication. The auth
store, shown in the snippet of Listing 6.17 is divided into three parts: flags, containing any
flag to regulate component behavior, errorCodes, containing all the authentication error
codes supported by the portal, and lastly, auth, containing authentication state flags.

interface AuthState {
flags: AuthFlagsState;
errorCodes: AuthErrorCodesState;
auth: AuthenticationState;

}

Listing 6.17: Settings State Interface

The AuthState is perhaps the state where most of its properties are used separately; so
we created selectors to access each single property, which were grouped using the same
criteria as the properties.

The actions for authentication are more complex than those of the mobile app, since we

65

Chapter 6

have here multiple errors defined associated with each function. This is exemplified in
Figure 6.8, where for each action dispatched from a component, we will have a success
response action and a corresponding failure response action, which in turn dispatches an
error action associated with one of the predefined codes.

Figure 6.8: Action Hierarchy

These sequences of actions, main/success or main/failure/error actions, occur in the au-
thentication effect. As presented in Listing 6.18 this effect starts by filtering the Actions
Observable stream through the NgRx ofType() operator, resulting in the main action ob-
servable. This observable is processed by the RxJS switchMap() operator, which calls the
corresponding API function. To the response observable we pass two operators: map(),
to dispatch the success action and catchError(), which dispatches the failure action with
the error code as a property. The handling of the error code is in a new effect that maps
the error code to the respective action.

authenticateUser$ = createEffect(() => {
return this.actions$

.pipe(
ofType(firebaseLoginUser),
switchMap(a => this.auth.firebaseLogin(a.email, a.password)

.pipe(
map(() => firebaseLoginUserSuccess()),
catchError(e => {

return of(firebaseLoginUserFailure({errorCode: e.code}));
})

)
)

);
});

Listing 6.18: Firebase Login Effect

After discussing the flow of actions, it remains to present the reducers. Apart from the
failure and the setCookie actions (and none of these alters the store state), no other actions

66

Implementation

requires props, so our reducer function on each action will generate a new state object based
on a preconfigured value. The auth state starts with the error codes initialized as false and
upon each emitted error action, the reducer changes the value to true. In each main action,
the reducer resets all properties associated with that action and possible error codes. Both
cases can be seen in the snippet of Listing 6.19. Success actions, such as, login-success and
logout-success continue to alter the state in their expected behavior.

const _reducer = createReducer(
on(FirebaseAuthActions.firebaseLoginUser, state => {

return {
...state,
normalLoginFirebaseUserNotFoundError: false,
normalLoginFirebaseInvalidEmailError: false,
normalLoginFirebaseWrongPasswordError: false,
normalLoginFirebaseNetworkErrors: false

};
}),
on(FirebaseAuthActions.firebaseLoginUserFailureInvalidEmailError, state => {

return {...state, normalLoginFirebaseInvalidEmailError: true};
}),

)

Listing 6.19: Authentication Reducer Snippet

Route Guards

In the mobile app, the user had no access to the paths of the components and the app
regulated the navigation through a defined sequence. But in the web portal, the users have
access to the urls, being able to access content they’re not authorized to navigate to. We
can avoid this limitation using Angular guards.

Angular guards are classes that implement one or more of the five interfaces, which are
canActivate, canActivateChild, canDeactivate, resolve and canLoad. These can
be passed to our routes configuration and whenever a user tries to access the route, the
guard mediates access to that route.

Among the possible interfaces, we chose the canActivate guard interface. In its imple-
mentation, we select and evaluate the isLoggedIn state property, which indicates if a user
is authenticated. If the user is authenticated, we return the value ’true’. This indicates
the route can successfully resolve and it allows access to the content. If the user is not
authenticated, we return the value ’false’. This should have solved our problems, however,
if the user was not authenticated, he would be left in a blank page, since no content was
allowed to be displayed. Thus, we also indicate the router that it should navigate to the
home page before resolving, allowing for a more pleasant user experience.

6.2.2 Security

One of the advantages of using Angular to build the web portal is the support for security
features. So, creating a secure application passes largely by following the security patterns,
as defined in the official Angular documentation [49]. Thus, we now describe the steps taken
to secure our web application.

67

Chapter 6

Secure Elements

To display images coming from our server, we must first make the value safe, this is done
through the bypassSecurityTrustResourceUrl method available in the DomSanitizer
class. This allows us to mark the image value as safe for Angular.

Http Requests

There are several ways to make an http request, one is through the Fetch API, the other
being through the HttpClient, a service class available through the Angular common pack-
age. Http requests are usually vulnerable to attacks such as cross-site request forgery
(XSRF) and cross-site script inclusion (XSSI). To mitigate these risks, it is recommended
we use HttpClient [49], a recommendation we followed.

HttpClient automatically sets a X-XSRF-TOKEN http header on all mutating requests to
relative urls, which can be used to identify the origin of the request, thereby protecting
against XSRF attacks. For XSSI attacks it automatically recognizes the ")]}’,
n" string used by servers to make JSON responses non-executable and parses the response
content.

It is also important to note that all requests to the Fireloc API are made through HTTPS.

6.2.3 Data Visualization

The visualization of fire data is the main goal of the web portal. The functionalities are
querying the database according to a specific set of parameters (location, start and end
date), and visualizing statistical and generic data.

Authentication and permissions

These functionalities require data at several levels of permissions. The generic data, which
are active fire events, does not require authentication to access it, while the remaining,
such as query results and statistics, do. To achieve this separation, the statistics data has
its own page, protected by the authentication guard, while the main page displays the
various components based on the authentication status. If a user is authenticated, the
details panel, the query bar and the details button are displayed, if he’s not, only the map
is displayed and the user can not perform those actions.

The amount of data displayed on the portal, depends on the type of user and is handled on
the server side. The portal only displays data and does not make any kind of filtering based
on permissions. This permits the portal to only fetch relevant data from the endpoints.

Queries

To make a query, the user interacts with the search-bar component. The component has
four fields: District, County, Start Date and End Date, a Search button to submit the
query and a Reset button to return all to the default values. All available values are preset
into the options of each field, reducing the chance of error by the user.

68

Implementation

Figure 6.9: Search Bar Component

The ’District’ and ’County’ fields serve to specify a location we wish to query. A user can
pick the county directly from a list of all available counties or, can first choose a district,
and from there pick the county from those of that district. Should a user pick a district
and no county to perform a query, the county field is highlighted to indicate the necessity
to fill that field. It was decided to lock queries to a single county. So, a certain fire event
may be present in several queries made with different locations if the fire was active in
more than one county. District and Counties were taken from the Carta Administrativa
Oficial de Portugal [6].

The Start and End Date fields delimit the interval of time that a fire may have existed in.
Start Date delimits the earliest day for the fire to have started. End Date, the latest day
for the fire to have ended. A user can omit either parameter in the query. If no start date
is chosen and end date is, all fires ending at or before the end date will be displayed. If no
end date is chosen, all fires starting at or after the Start Date will be displayed.

Each of these three parameters can be used alone to make a query or grouped for a more
detailed result.

Once the parameters are set, pressing ’Search’ dispatches a NgRx action with the val-
ues for each parameter. Following the flow of the NgRx effect, through the use of the
switchMap() operator, the API service makes an HTTP call to the backend server. Once
a response is received, if data is returned, the store is updated and the new data is displayed
on the map component.

Event Details

To obtain an event’s details, the user simply has to select the event marker and press
’Details’. This will dispatch a NgRx action to the store and trigger the fetchEventDetails
effect, which in turn will make an HTTP GET request to the API. A successful response
will contain a GeoJson payload. This payload contains the data necessary to draw the
extent of the fire event upon the map, producing the result observed in Figure 6.10.

69

Chapter 6

Figure 6.10: Web portal fire extent

Unlike some of the data the user fetches from the server, such as the contributions, the
application does not save the result from fetching the event details to the store, since this
data can change between queries as more contributions are added and the predicted area
of the fire changes.

Contribution Details

The contribution details are the data available per user type from the contributions sub-
mitted and associated with a fire event.

Fetching the data is a two step process. First, we fetch a list of contribution ids, which
are returned in the same response as the event details. Based on the returned ids, the
NgRx entity adapter is initialized with the id field, but the other fields remain to be
initialized. The interface of the entity adapter is displayed in Listing 6.20. Second, we
load the remaining data of the contribution from the server. This is done by calling the
endpoint ’/events/event_contribution/${contributionId}/’ with the id of the contribution
to be fetched. This endpoint returns the remaining contribution data, which is used to
update the entity collection.

interface ContributionDetail {
id: number;
location: string;
direction: string;
img: string;
timestamp: number;

}

Listing 6.20: Contribution Detail Interface

The update of the entity collection is performed by an Update<T> object, where T is

70

Implementation

the interface of the entity. The Update<T> object requires two fields, one is the id of
the object we are going to update, and the other is the changes in JSON format. So, we
update all the remaining contribution fields creating the Update<T> object as presented
in Listing 6.21.

const updatedDetails: Update<ContributionDetail> = {
id: data.id,
changes: {

id: data.id,
location: formattedLocation,
img: data.img,
timestamp: data.timestamp

};

Listing 6.21: Contribution Detail Update

This update object is then sent as payload on a success NgRx action, which triggers
the store reducer. The reducer will call the entity object and update the state through
updateOne() as presented in Listing 6.22.

on(MainActions.fetchSingleContributionDetailsSuccess, (state, action) => {
return adapter.updateOne(action.update, state);

})

Listing 6.22: Contribution Detail update reducer

Filtering Contributions

Filtering a contribution is performed based on the confidence degree of the fire event
position and on the confidence degree of the contributor position. Both, by default, have
an interval value ranging from 50% to 100% of confidence, allowing the visualization of
only the more trustworthy contributions. The filters are added as parameters to each query
request sent to the server. This component is depicted in Figure 6.11.

71

Chapter 6

Figure 6.11: Advanced Query Options Component

These values can be edited at the settings page under ’advanced settings’. This decision
was made so as not to clutter the main page with too many options.

6.2.4 User Management

Similar to the mobile app, the portal allows for the user to manage his account. These
functionalities include changing the user’s password, email, delete his account. These are
integrated in the settings module.

Authentication

For a user to have access to any of these functionalities, he must be logged in, since
all components are protected by the authentication guard. Given the integration of the
authentication services with Firebase, we must comply with their best practice policies.
One of them is the requirement that the user may not perform these operations if he has
not logged in for a long period.

Firebase Integration

To perform any action, which alters the firebase user, we require a user instance. We
can obtain one from the auth service, which is provided by the auth module. Having the
user instance, it’s only a matter of calling the relevant method from the user and pass the
parameters if necessary.

72

Implementation

As before, these actions take place in a specific service (settings.service), where we wrap
the calls to firebase with the from() RxJS operator. This transforms the return value
into an observable stream to be used with the effects. The effects will handle the calls to
the service. However, unlike the authentication functions that return Promise<User> or
Promise<UserCredential>, firebase only returns Promise<void> with these actions or an
error code.

State Management

The user management execution flow is similar to the authentication process as described
in section 6.2.1. We create a SettingsState feature store, with two features, errorCodes and
options, as observed in Listing 6.23.

interface SettingsState {
errorCodes: SettingsErrorCodeState;
options: SettingsOptionsState;

}

Listing 6.23: Settings State Interface

Validation

Data inserted by the user is validated through similar patterns as described in the mobile
app 6.1.5. This includes the same methods of inserting twice the password when changing
it as well as using the same pattern for password and email validation. This reuse of basic
services was possible to the design choice of using the same technology in the mobile app
as previously discussed.

6.3 Implementation of the Geoportal API

In this section we describe the work developed in the context of this dissertation regarding
the Geoportal API. This consisted in the implementation of the API endpoints for the
authentication and the queries, which support the web portal. A restriction of the project
was the use of the Django framework.

6.3.1 Authentication

Support for authentication is a crucial part of the API server. This ensures that access to
the server’s resources is given only to trusted clients.

In the authentication process of the backend server, we used google authentication. This
comprehends the creation of an authentication backend that uses the Firebase Admin SDK,
and the definition of an endpoint to receive requests from the portal.

73

Chapter 6

Authentication Backend

In the Django framework the BaseBackend class should be extended for the integration
of new authentication methods. So, for integrating the Firebase Admin SDK, we extend
this class implementing two methods, which are authenticate() and get_user(). The
purpose of the authenticate()method is to validate the credentials given and authenticate
the user, while the purpose of get_user() is to return the authenticated user from the
database.

To validate the credentials and authenticate the user, the authenticate() method receives
a request and other arguments, such as the google token, which is the idToken generated
by Firebase.

The validity of the idToken is verified with the Firebase Admin SDK. To use any Firebase
admin functionality, we must initialize it with our client id. This is a JSON key file
generated on the Firebase web console. We initialize our credential with the key and use it
to initialize the Firebase SDK, using the initialize_app() function. This function returns
an initialized instance of the Firebase app. This can be observed in Listing 6.24

cred = credentials.Certificate(CLIENT_ID);
firebase_app = initialize_app(cred)

Listing 6.24: Initialize Firebase Admin

With the Firebase app initialized, we can now use the authentication module and call the
verify_id_token() method, passing the id token. The verify_id_token() method
decodes the idToken and validates the token payload, such as the expiration date, issued-
at-time, issuer, audience, subject and authentication time1, any issue found with the token
raises a ValueError exception. This is presented in Listing 6.25.

try:
decoded_token = auth.verify_id_token(token)

email = decoded_token['email']

if not email:
raise ValueError('No email present in token.')

except ValueError as e:
return None

Listing 6.25: Validating the idToken

If the token is valid, we can access the decoded payload and retrieve some information
about the user. In our case, we require the user’s email. With the email we can verify if
a Fireloc account is already created with that email. If no account is found, we create a
new Fireloc user, using the create() method of the User model, saving it to the database
through the save() method as seen in Listing 6.26.

1In accordance with the instructions at [32]

74

Implementation

try:
user = User.objects.get(email=email)
return user

except User.DoesNotExist:
user = User.objects.create(username=email, email=email)
user.save()
return user

Listing 6.26: Fetching the user

Lastly, it is necessary to configure the Django application to use this new backend for
authentication. For this, we reconfigure the settings file to use the new backend by adding
it to the list of authentication backends as indicated in Listing 6.27.

AUTHENTICATION_BACKENDS = ['authapi.auth_backend.AuthBackend']

Listing 6.27: Configuring Settings

When using the google authentication method, we encompass both authenticating the
account and creating it in the same function. This is due to the fact that everything
concerning the google authentication method coming from the frontend client, using the
idToken.

API Endpoint

To interact with the Authentication Backend, we created a new API endpoint. This is
accomplished by extending the APIView class to handle google authentication. In this
class we implement the post() method, which will handle HTTP POST requests to the
associated url.

Once the payload is extracted from the request, the APIView calls the authenticate method
from the django.contrib.auth module. Since we have the authentication backend config-
ured, and we are passing google_token as an argument, authenticate will validate the
idToken present in the payload (’token_param’). Once the user is authenticated, the token
for the user is created using the the Django rest framework app rest_framework.authtoken,
as presented in Listing 6.28.

if token_param in data:
user = authenticate(google_token=data[token_param])

if user is not None:
token, created = Token.objects.get_or_create(user=user)

Listing 6.28: Token generation with google authentication

6.3.2 Queries

The queries are the main functionalities of the API endpoints. As described in the Web
Portal section, the query process is twofold. First, the client makes a query to the server,

75

Chapter 6

which responds with a list of fire events and the associated data. Second, the user will
choose one fire event to obtain details about. These functionalities were implemented in
the events Django app.

Fire Event List

To obtain the fire event list, we defined the EventQuery class by extending APIView,
where we implemented the get() method, which processes GET requests. In the GET
request payload, we expect three query parameters from the client, which are a location,
a start and an end date. These are used to perform a query to the database as detailed in
section 6.2.3.

geom = Concelhos.objects.get(dicofre=location)

event_result = FireEvent.objects.filter(
extent__intersects=geom.geom

).filter(
maxtime__lte=end_time

).filter(
mintime__gte=start_time

)

data = {'events': fire_event_query_result_cleaner(event_result)}

Listing 6.29: Event Query

The snippet present in Listing 6.29 shows the event query when using all query fields.
First, we define the concelho restricting the fire event location. This is done by querying
the Concelhos model and fetching the object with the dicofre value matching the one sent
in the request. Since the dicofre value is unique, we only get one. With the concelho object,
’geom’, we can now perform a query on FireEvent.

The filter() method returns a QuerySet object that allows the chaining of other filters,
forming a complex query. So, in Listing 6.29, the first filter() call defines the condition
on the geometry field, which here defines a fire where its geometry intersects the geometry
of the location we have previously fetched, geom. This condition is further elaborated in
the second filter. This defines the time that the fire event ended, which is equal or inferior
to the given date. The last filter defines the condition of the start date of the fire, which
is equal or greater than the given one.

The queryset will return the FireEvents matching the parameters, however, the user may
not require the entire FireEvent object, so we pass the queryset to the helper function
fire_event_query_result_cleaner(), which will return the events in a simpler format
ready for the client to display. Among the changes done in the helper function, the most
important is the conversion of the coordinate system that will convert the portuguese
coordinate system to the standard coordinate system, which is defined in Listing 6.30.
Since django has built-in tools facilitating this process we convert the points to be displayed
to the 4326 standard system in the server before sending them to the client.

76

Implementation

from django.contrib.gis.gdal import SpatialReference, CoordTransform
from django.contrib.gis.geos import Point
def convert_centroid_coord_system(centroid):

pt_reference = SpatialReference(3763)
display_reference = SpatialReference(4326)

trans = CoordTransform(pt_reference, display_reference)

new_point = Point(centroid.coords[0], centroid.coords[1], srid=3763)

new_point.transform(trans)

return new_point

Listing 6.30: Converting Coordinate Systems

Fire Event Details

To obtain the fire event details, we implemented the SingleEventDetails class extending
APIView in which we implemented the get() method. The get() method receives the id
of the event as a query parameter and returns as a response the geometry of the fire event,
which is its extent area, and the list of contribution ids. The contribution ids are obtained
by filtering the Points queryset for the fire event id received from the client as presented
in Listing 6.31. From the query results we will need only the fid field.

result = Points.objects.filter(
idevent__exact=id

)

ids = result.values('fid')

Listing 6.31: Fetching contributions

The extent (area) of the fire event is slightly more complex, and this is because we need
to serialize the data into the geojson format that leaflet can read. Fortunately Django
permits performing such an operation. The snippet of Listing 6.32 shows this operation.
We define the output format as geojson, pass the queryset, and specify the geometry field,
which in our case is ’convexhull’ and indicate the fields that appear in the property field.
The output will be a geojson string ready to be processed by leaflet, which is returned in
the response payload.

geom = serialize('geojson', FireEvent.objects.filter(fid=id),
geometry_field='convexhull', fields=('fid',)

)

Listing 6.32: Serializing to geojson

77

Chapter 6

6.4 Summary

In this chapter, we presented the implementation of the mobile application, the web portal
and the Geoportal API, which included the discussion of the UI of the applications and the
inner structure. The Ionic framework allowed some services and functionaties to be shared
between the mobile app and the web portal, namely the validation of input data and forms,
the visualization of the contribution data, and the supporting NgRx infrastructure. Also,
the choice of the NgRx permitted agregating locally in a shared entity the data used by
the components of each application. Also, another advantage of NgRx was the reduction
the number of dependencies of each component. The combination of these technologies
sped up the development time and increased the robustness.

In the mobile application, to improve the quality of the data collected we implement steps
for calibrating and positioning the device, and ensure all required services are enabled.

In the implementation of the security policies we followed the best practices of Angular.
Also, the use of Firebase permitted the inclusion of different forms of authentication,
improving the usability of the web portal application. Also as a side effect, it decreased
the cost of implementing GDPR.

Finally, we discussed the implementation of the Geoportal API.

78

Chapter 7

Testing the System

In this chapter we present the tests done to the mobile app and the web portal to ascertain
the good implementation of several critical functionalities.

First, we will discuss the unit tests performed. This includes the test setup and the evalu-
ated system parts. Next, we will discuss the non-functional requirement tests. These will
focus on evaluating the mobile app and the web portal according to the metrics described
in Chapter 4. Following the non-functional requirement tests, we will go over the user tests
and their results. Here, we evaluate how well users have responded to real life experience
with the system.

7.1 Unit Testing

The NgRx portion of the systems integrates the application components with each other
and handles the state of the system, including the data collected in the mobile app and
requested in the portal. Therefore, it is critical to ensure the NgRx components (actions,
reducers and selectors) are working as expected, since any error can have serious reprecur-
sions when we consider how sensitive the data we are handling is. To do this, we must
ensure: the data in the store is securely modified at the correct time by the appropri-
ate reducers; the actions dispatched activate only the reducers required for its intended
operation; and the selectors are fetching only the required data. So, the unit tests were
concentrated on the NgRx portions of the mobile app and web portal.

In the implementation of the tests, we use Jasmine [36] and Karma [37] both of which
come with Angular and Ionic. Jasmine is a testing framework that allows describing test
suit for each file, while Karma runs the Jasmine tests.

7.1.1 General test suit setup

Since the actions will modify the store state, for each reducer we create a test suit, which
will evaluate the following parameters:

• An action only changes the necessary properties of the state.

• The properties changed by an action assume an expected value.

• Only actions the reducer listens to are altering the state.

79

Chapter 7

• Each reducer creates a new state from the previous one, ensuring state immutability.

For the selectors a different approach was taken. We created a mock state with all the
values available in the state and our test suit evaluated if each selector is only returning
the values it is supposed to.

The test parameters described above follow NgRx best practices as described in the official
documentation [44]. Also, Jasmine establishes a structure in the development of the test,
requiring that each component tested should have an associated spec file. So, it is the
conviction of the author that the adoption of these practices will help the development
and testing of new integrated components in the system.

7.1.2 Results

Using the setup previously described, we created 156 tests. The application of these tests
allowed the detection of some subtle bugs that were promptly corrected and the current
passes all tests. This ensures the good internal functioning of both the mobile app and the
web portal stores.

7.2 Non-Functional Requirement Tests

We now present the tests performed on the mobile app and web portal to ascertain their
compliance with the non-functional requirements of usability and latency as specified in
Chapter 4.

7.2.1 Usability

As discussed in Section 4.1.3 and 4.2.3, to evaluate the usability of both the mobile and
web applications we use the Nielsen’s Usability Heuristics [45].

Heuristics

From the various heuristics defined by Nielsen, we chose those that better fit our products.
They were:

• Match between system and the real world: use of familiar concepts to the user.

• User control and freedom: giving the user control of the flow of work.

• Visibility of system status: the design should give users feedback on what is happen-
ing.

• Error prevention: checking for error causing situations, or asking users to confirm,
etc.

• Help users recognize, diagnose, and recover from errors: simple error messaging in
plain language and suggestions of solutions.

80

Testing the System

Mobile App Evaluation

- Match between system and the real world: In the mobile app, the need for the
users to easily interpret the instructions in diverse situations led us to use simple terms,
both in the instructions and when visualizing data. This principle was also considered in
the UI design of the app, where the UI elements were placed in their natural positions.

- User control and freedom: In the mobile app, the user has complete control over
the flow of actions. All pages have a ’go back’ button, allowing the user to return to the
previous page. This action is also enabled by the ’return’ hardware button. In addition,
the contribution page also has a ’cancel’ button in the expected natural position, which is
the upper right corner of the page. This allows the user to cancel the contribution process
and return to the main menu without going through the ’go back’ buttons. Both of these
examples are depicted in Figure 7.1 and can be found in their expected place in the navbar.

Figure 7.1: Cancel and Back Button example

- Visibility of system status: The mobile application is required to provide system
feedback to the user. So, when the user is verifying his position, the provided feedback is the
position clearly marked on the map. When he is measuring the orientation, the feedback is
the orientation values, updated each time the device moves. Furthermore we also provide
feedback on the status of system features, such as, loading states, the availability of the
location and network services, which are used by the system. The location status is depicted
in Figure 7.2.

81

Chapter 7

Figure 7.2: Location Disabled Warning

- Error prevention: The mobile app design was made with error prevention in mind.
This principle is materialized, for instance, in the definition of predefined values in the
input forms regarding the authentication of the user or in the creation/modification of his
account, as presented in Figure 7.3.

82

Testing the System

Figure 7.3: Account predefined fields

Another case of the application of this principle is found when the user interacts with the
system to collect some data. In this, whenever possible, we established guards to help the
user understand the correct way of collecting such data. This is the case depicted in Figure
7.4, where we display a warning when the user does not have the phone in the appropriate
position.

83

Chapter 7

Figure 7.4: Angle Warning Message

- Help users recognize, diagnose, and recover from errors: Figure 7.4 is the
perfect example of diagnosing and recovering from errors. Here the user receives a warn-
ing when he mispositions the phone, which allows him to recover and correct the phone
position.

Web Portal Evaluation

- Match between system and the real world: In the portal design we tried to match
our terms to the vocabulary most users are familiar with, such as using the term ’County’
and ’District’ instead of the less known official designations of NUT 2 and 3 [46]. Another
consideration was matching the design with other similar products as described in Chapter
3.

- User control and freedom: In the portal, the user has complete freedom of his
actions, being available the browser’s capabilities of reloading, and going back and forward.

- Visibility of system status: The web portal hasn’t as many interactions with the
user as the mobile app, so the system status is relevant in the measure of error prevention
and recovery, which we will detail in the next heuristics.

- Error prevention: The situations most likely to induce the user in error are those
pertaining to input. User input is necessary when making a query, inserting user infor-

84

Testing the System

mation when registering, logging in, and changing settings. When making queries, the
values are all predefined, thus preventing the user from inserting invalid errors, also, when
a wrong value is inserted, the user always has the ’clear’ button to reset the form values,
as can be observed in Figure 7.5.

Figure 7.5: Web portal location form values

- Help users recognize, diagnose, and recover from errors: The portal has a wide
array of status and error messages permitting the easy identification of any committed
error. These enable him to understand if the error was committed by him or was a system
error. In Figure 7.6, we present several possible errors during the authentication process.
The reader will notice that these errors will not occur all at the same time and exemplify
the thoroughness of the diagnostic.

85

Chapter 7

Figure 7.6: Web portal login error messages

7.2.2 Latency

The following box diagrams of Figures 7.7, 7.8 and 7.9 show the results of the measurements
taken of the response time for the major requests done to the API.

Figure 7.7: Measurements for the mobile app

86

Testing the System

Figure 7.8: Measurements for the web portal

Figure 7.9: Measurements for loading images

As discussed in Section 4.1.3, the values for the request time should be lower than the 4
seconds threshold. Latencies less than 1 second are ideal for a more pleasant user experi-
ence. We have achieved this goal except for the specific case for loading images. We verify
that when loading images, some cases have a latency superior to the 4 second limit. This
cases can be explained by the size and resolution of the images, besides other factors such
as the quality of the connection. As discussed in the section 6.1.4, we have mitigated this
case by splitting the process. So, although this does not directly solve the problem of the
image latency, it allows the user to see the page with information (text data) faster, which
improves the usability in this case. As a future feature of the Fireloc System, the server
could reduce the resolution of the images before sending them to the clients (mobile app
and web portal).

87

Chapter 7

7.3 User Tests

Thus far, the mobile app has been the part of the system which the team of the Fireloc
Project has prioritized and thus has realized extensive field tests with real users of this
system.

The Fireloc Project identified the mobile app as a critical component for field tests. So its
test was prioritized and and extensive tests were performed. The teams that realized the
tests have a diverse background in geography, geolocation, and informatics. They evaluated
the user interactions, namely on the quality of the UI, UX and the provided information,
which was considered in further adjustments. Also the robustness of the application was
evaluated, which was its capacity to recover in situations with low quality and lack of signal
connection.

7.3.1 Test setup

In performing these tests, the users were given a working version of the mobile app and
access credentials. The team was split in groups of testers that were distributed to different
locations in Coimbra, Figure 7.10. It was specified which type of photo to take and when
to make the contribution.

Figure 7.10: Locations of Interest for Field Tests

To evaluate the overall satisfaction with the mobile app, a questionnaire was given to the
users after each test.

7.3.2 Results

The results summarized are on a scale of 0 to 5 with 5 being the highest satisfaction level:

• Overall ease in finding the contribution functionality: 4.9

• Overall definition of the contribution steps: 4.3

• Location step ease of use and comprehension: 4.5

• Orientation step ease of use and comprehension: 4.5

• Photo step ease of use and comprehension: 4.9

88

Testing the System

• Turning towards the shadow step ease of use and comprehension: 4.3

• Taking ten steps step ease of use and comprehension: 4.3

• Orientation after ten steps ease of use and comprehension: 4.2

7.4 Validation

In section 4.1.2 and 4.2.2 we defined the success criteria for the planned functionalities.

With the user tests described in the previous section, we were able to ascertain that the
functionalities met the success criteria, as presented in Table 7.1.

Use Case Passes / Fails
UC1 Passes
UC2 Passes
UC3 Passes
UC4 Passes
UC9 Passes
UC7 Passes
UC8 Passes

Table 7.1: Functionalities of the mobile app

Table 7.2 presents the functionalities of the portal and whether they fulfil or not the success
criteria.

Use Case Passes / Fails
UC1 Passes
UC2 Passes
UC3 Passes
UC4 Passes
UC12 Passes
UC13 Passes
UC14 Passes
UC15 Passes

Table 7.2: Functionalities of the portal

As presented in sections 6.1.2 and 6.2.2, the Angular security guidelines are being followed.
The remaining security requirements, presented in Table 7.3 were validated in the unit tests
previously described.

Designation Passes / Fails
SEC1 Passes
SEC2 Passes
SEC3 Passes

Table 7.3: Security requrements validation

89

Chapter 7

7.5 Summary

In this chapter we presented the tests performed to the system. These were functional tests,
measurements to validate the non-functional requirements and field tests. The functional
tests were unit tests.

The unit tests were performed on the mobile application and web portal. These cover
the NgRx portion of both applications. Also, the tests validated the security requirements
concerning to the data storage in the application and ensure the robustness of the solutions
implemented.

The measurements performed verified that the applications fulfilled the success criteria of
the non-functional requirements, with the exception of the image loading operation.

Lastly, the field tests performed ascertained the fulfilment of the success criteria for the
application.

90

Chapter 8

Conclusion

In this chapter we start by presenting the main conclusions of the work done in this
dissertation. Then, we finish with the suggestions of future work to be done.

8.1 Main Conclusions

The main objective of this dissertation was to implement the points of contact of the user
with the Fireloc system, which were the mobile app and the web portal. These objectives
were fully achieved, since both applications satisfy all the functional and non-functional
requirements defined for the project. The mobile application is capable of reliably collecting
fire reports with different types of positional data and photos and delivering them to the
Fireloc servers; also, the web portal is capable of displaying data to the users, with the
users able to search fire data stored in the server through diverse queries.

The use of Ionic greatly facilitated the development of the mobile app. With it, we were
able to use web technologies, such as leaflet, to produce a working and complex interface
in a short span of time. Ionic also helped in the generation of the android apk, providing
the means to wrap the web application into a native application with native capabilities.
Further benefits of using Ionic was the sharing of infrastructure, namely services and parts
of the NgRx infrastructure, between the mobile app and the web application.

The use of Firebase to provide authentication in the web application proved to be an
important asset. This allowed to quickly deploy in the web portal reliable and secure
authentication, and user management functionalities, which were easily integrated in the
backend server. However, Firebase has some edge cases that can hamper testing in the
browser. This must be taken into consideration in further development.

NgRx proved to be a very useful and powerful state management framework. Prior expe-
rience in developing applications using Angular revealed some of the problems exposed in
section 2.4.1, and was one of the main reasons to investigate a different method of han-
dling state. While NgRx does require some aditional boilerplate code, when we consider
the additional code we have to write (reducers, actions, selectors), this code is simpler to
write and follows a clearly defined logic. This allowed the creation of complex and easily
maintainable states, while keeping the components clean and pure.

For the development of the server, Django was of utmost use. When implementing the
support API for the web portal, we relied heavily on the modules provided by Django, not
just for the server infrastructure, but also for data manipulation. By providing modules

91

Chapter 8

for GIS manipulation and geojson serialization, we were able to use a unified API for
implementing all required operations. While there are many available and competitive
options for developing server infrastructure, such as Flask or Nodejs, by providing these
modules for handling geospatial data, Django proved to be the superior choice for the
Fireloc project.

8.2 Future Work

While we achieve all the objectives proposed for this dissertation, we identify some oppor-
tunities for further development.

The next logical step of the mobile application will be the generation of the iOS native
application. This can be accomplished using iOS building tools in conjunction with Ionic,
similarly to the way the android apk was generated. We can also envisage further de-
velopment and integration of new features. The development of the anonymous usage
functionality is a promising concept from the point of view of privacy. While Fireloc takes
steps in ensuring the safety of the data collected, some users may be deterred from using
the mobile app by privacy questions. This functionality can boost the effectiveness of our
system by increasing the number of users, which is in accordance with the philosophy of
crowdsourcing. Another functionality that may be included in the mobile application is
the integration of more authentication methods. Considering the use of google login as
an example, we already have the logic available in the authentication module of the web
application. Thanks to the shared technologies and architecture, it can be easily integrated
with the mobile application. Should Firebase be used as an authentication provider, more
methods can easily be added.

When considering the web application, a next step would be synchronizing the authentica-
tion APIs used in both the mobile and the web applications to allow a seamless integration
of the data flow—mobile application/server/web portal. Further steps may include adding
more map modes to view different kinds of data, such as critical infrastructure in the area
surrounding active fires. This data should only be available to the authorities for security
reasons. Another feature to add to the portal could be the inclusion of statistics, a feature
useful to understand the impact of the fires and the role of the entities in their prevention
and detection.

To support both the mobile application and the web portal, another useful feature would
be to include the ability to reduce image sizes in the server. As already discussed in section
7.2.2, images take a long time to load from the server and for displaying purposes may
not require their original size and detail. Reducing their size after processing will allow to
reduce response times, enhancing the user experience in the mobile app.

92

References

[1] 16 metrics to ensure mobile app success. url: https://www.appdynamics.com/
media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-
team-should-monitor.pdf (visited on 08/09/2021).

[2] angular/fire. url: https://www.npmjs.com/package/@angular/fire (visited on
06/06/2021).

[3] arcGIS. url: https://www.arcgis.com/index.html (visited on 07/29/2021).

[4] Áreas Ardidas Oficial. url: https://www.portugal.gov.pt/pt/gc22/comunicacao/
comunicado?i=area-ardida-ficou-em-metade-da-media-dos-ultimos-10-anos
(visited on 09/02/2021).

[5] C4 Model. url: https://c4model.com/#coreDiagrams (visited on 12/20/2020).

[6] Carta Administrativa Oficial de Portugal. url: https://www.dgterritorio.gov.
pt/cartografia/cartografia-tematica/caop (visited on 04/01/2021).

[7] Django. url: https://www.djangoproject.com/ (visited on 12/11/2020).

[8] Docker. url: https://www.docker.com/ (visited on 12/22/2020).

[9] Firebase Privacy Policy. url: https://firebase.google.com/support/privacy
(visited on 08/30/2021).

[10] Fireloc Website Homepage. url: https://fireloc.org/ (visited on 08/20/2021).

[11] Flutter. url: https://flutter.dev/ (visited on 11/02/2019).

[12] Flutter Docs. url: https://flutter.dev/docs/resources/technical-overview
(visited on 11/02/2019).

[13] Flutter Docs. url: https : / / flutter . dev / docs / deployment / web (visited on
11/02/2019).

[14] Fotoquest Go. url: https://fotoquest-go.org/en/ (visited on 12/22/2020).

[15] GeoNode. url: https://geonode.org/ (visited on 12/22/2020).

[16] GeoServer. url: http://geoserver.org/ (visited on 12/22/2020).

[17] Github: Appcelerator Tituanium. url: https://github.com/appcelerator/titanium_
mobile (visited on 11/01/2019).

[18] Github: Flutter. url: https://github.com/flutter/flutter (visited on 11/01/2019).

[19] Github: Framework7. url: https://github.com/framework7io/framework7 (vis-
ited on 11/01/2019).

[20] Github: Ionic. url: https://github.com/ionic-team/ionic (visited on 11/01/2019).

[21] Github: JQuery Mobile. url: https://github.com/jquery/jquery-mobile (visited
on 11/01/2019).

[22] Github: Leaflet. url: https://github.com/Leaflet/Leaflet (visited on 12/05/2020).

93

https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf
https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf
https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf
https://www.npmjs.com/package/@angular/fire
https://www.arcgis.com/index.html
https://www.portugal.gov.pt/pt/gc22/comunicacao/comunicado?i=area-ardida-ficou-em-metade-da-media-dos-ultimos-10-anos
https://www.portugal.gov.pt/pt/gc22/comunicacao/comunicado?i=area-ardida-ficou-em-metade-da-media-dos-ultimos-10-anos
https://c4model.com/#coreDiagrams
https://www.dgterritorio.gov.pt/cartografia/cartografia-tematica/caop
https://www.dgterritorio.gov.pt/cartografia/cartografia-tematica/caop
https://www.djangoproject.com/
https://www.docker.com/
https://firebase.google.com/support/privacy
https://fireloc.org/
https://flutter.dev/
https://flutter.dev/docs/resources/technical-overview
https://flutter.dev/docs/deployment/web
https://fotoquest-go.org/en/
https://geonode.org/
http://geoserver.org/
https://github.com/appcelerator/titanium_mobile
https://github.com/appcelerator/titanium_mobile
https://github.com/flutter/flutter
https://github.com/framework7io/framework7
https://github.com/ionic-team/ionic
https://github.com/jquery/jquery-mobile
https://github.com/Leaflet/Leaflet

Chapter 8

[23] Github: Mapbox. url: https://github.com/mapbox/mapbox-gl-js (visited on
12/05/2020).

[24] Github: NativeScript. url: https://github.com/NativeScript/NativeScript
(visited on 11/01/2019).

[25] Github: Openlayers. url: https://github.com/openlayers/openlayers (visited
on 12/05/2020).

[26] Github: PhoneGap. url: https://github.com/phonegap/phonegap-app-developer
(visited on 11/01/2019).

[27] Github: React-Native. url: https://github.com/facebook/react-native (visited
on 11/01/2019).

[28] Github: Xamarin. url: https://github.com/xamarin/Xamarin.Forms (visited on
11/01/2019).

[29] Google Maps. url: https : / / developers . google . com / maps / documentation /
javascript/overview#Inline (visited on 12/05/2020).

[30] Google Maps Pricing. url: https://cloud.google.com/maps-platform/pricing/
?_ga=2.219981017.1784570227.1607461334-1609716321.1607461334 (visited on
12/05/2020).

[31] Hackernoon. url: https://hackernoon.com/top-10-best-mobile-app-development-
frameworks-in-2019-612b95cf930f (visited on 11/01/2019).

[32] idToken verification instructions. url: https://firebase.google.com/docs/auth/
admin/verify-id-tokens (visited on 07/04/2021).

[33] Iflexion. url: https://www.iflexion.com/blog/top- hybrid- mobile- app-
frameworks (visited on 11/01/2019).

[34] IPMA Earthquakes. url: http://www.ipma.pt/pt/geofisica/sismicidade/
(visited on 12/22/2020).

[35] IPMA Fires. url: http://www.ipma.pt/pt/riscoincendio/rcm.pt/ (visited on
12/22/2020).

[36] Jasmine. url: https://jasmine.github.io/ (visited on 07/29/2021).

[37] Karma. url: https://karma-runner.github.io/latest/index.html (visited on
07/29/2021).

[38] Leaflet. url: https://leafletjs.com/ (visited on 12/05/2020).

[39] Mapbox. url: https://www.mapbox.com/ (visited on 12/05/2020).

[40] Mapbox Pricing. url: https://www.mapbox.com/pricing/ (visited on 12/05/2020).

[41] Medium. url: https://medium.com/better-programming/best-hybrid-apps-
frameworks-in-2019-f5120a35fac2 (visited on 11/01/2019).

[42] Medium. url: https://medium.com/@rathod.atman/top- 5- hybrid- mobile-
applications - development - frameworks - in - 2019 - df16cdb10436 (visited on
11/01/2019).

[43] NASA Fires. url: https://firms.modaps.eosdis.nasa.gov/map/#d:2020-12-
20..2020-12-21;@-2.9,38.7,6z (visited on 12/22/2020).

[44] NgRx. url: https://ngrx.io/docs (visited on 06/03/2021).

[45] Nielsen Usability Heuristics. url: https://www.nngroup.com/articles/ten-
usability-heuristics/ (visited on 07/29/2021).

[46] Nomenclatura das Unidades Territoriais para Fins Estatísticos. url: https://www.
pordata.pt/O+que+sao+NUTS (visited on 07/18/2021).

94

https://github.com/mapbox/mapbox-gl-js
https://github.com/NativeScript/NativeScript
https://github.com/openlayers/openlayers
https://github.com/phonegap/phonegap-app-developer
https://github.com/facebook/react-native
https://github.com/xamarin/Xamarin.Forms
https://developers.google.com/maps/documentation/javascript/overview#Inline
https://developers.google.com/maps/documentation/javascript/overview#Inline
https://cloud.google.com/maps-platform/pricing/?_ga=2.219981017.1784570227.1607461334-1609716321.1607461334
https://cloud.google.com/maps-platform/pricing/?_ga=2.219981017.1784570227.1607461334-1609716321.1607461334
https://hackernoon.com/top-10-best-mobile-app-development-frameworks-in-2019-612b95cf930f
https://hackernoon.com/top-10-best-mobile-app-development-frameworks-in-2019-612b95cf930f
https://firebase.google.com/docs/auth/admin/verify-id-tokens
https://firebase.google.com/docs/auth/admin/verify-id-tokens
https://www.iflexion.com/blog/top-hybrid-mobile-app-frameworks
https://www.iflexion.com/blog/top-hybrid-mobile-app-frameworks
http://www.ipma.pt/pt/geofisica/sismicidade/
http://www.ipma.pt/pt/riscoincendio/rcm.pt/
https://jasmine.github.io/
https://karma-runner.github.io/latest/index.html
https://leafletjs.com/
https://www.mapbox.com/
https://www.mapbox.com/pricing/
https://medium.com/better-programming/best-hybrid-apps-frameworks-in-2019-f5120a35fac2
https://medium.com/better-programming/best-hybrid-apps-frameworks-in-2019-f5120a35fac2
https://medium.com/@rathod.atman/top-5-hybrid-mobile-applications-development-frameworks-in-2019-df16cdb10436
https://medium.com/@rathod.atman/top-5-hybrid-mobile-applications-development-frameworks-in-2019-df16cdb10436
https://firms.modaps.eosdis.nasa.gov/map/#d:2020-12-20..2020-12-21;@-2.9,38.7,6z
https://firms.modaps.eosdis.nasa.gov/map/#d:2020-12-20..2020-12-21;@-2.9,38.7,6z
https://ngrx.io/docs
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.pordata.pt/O+que+sao+NUTS
https://www.pordata.pt/O+que+sao+NUTS

References

[47] Openlayers. url: https://openlayers.org/ (visited on 12/05/2020).

[48] OSGeo-GeoNode. url: https://www.osgeo.org/projects/geonode/ (visited on
12/22/2020).

[49] Security - Angular. url: https://angular.io/guide/security (visited on 08/16/2021).

[50] vue2-google-maps. url: https://www.npmjs.com/package/vue2- google- maps
(visited on 12/05/2020).

[51] WCS. url: https://www.opengeospatial.org/standards/wcs (visited on 12/22/2020).

[52] Websoptimization. url: https : / / www . websoptimization . com / blog / hybrid -
mobile-app-frameworks/ (visited on 11/01/2019).

[53] WFS. url: https://www.opengeospatial.org/standards/wfs (visited on 12/22/2020).

[54] WMS. url: https : / / www . opengeospatial . org / standards / wms (visited on
12/22/2020).

95

https://openlayers.org/
https://www.osgeo.org/projects/geonode/
https://angular.io/guide/security
https://www.npmjs.com/package/vue2-google-maps
https://www.opengeospatial.org/standards/wcs
https://www.websoptimization.com/blog/hybrid-mobile-app-frameworks/
https://www.websoptimization.com/blog/hybrid-mobile-app-frameworks/
https://www.opengeospatial.org/standards/wfs
https://www.opengeospatial.org/standards/wms

Appendices

96

Appendix A - Use Cases

UC1: Login

Last Revision: November, 21st 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Unauthenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user has opened the app

Postconditions (success guarantee):
• The User is logged in

• The Unauthenticated User becomes an Authenticated User

Main Success Scenario:

1. The user selects ’Login’

2. The user inserts his credentials in the appropriate fields

3. The system authenticates the user

4. Redirect to the Main Page

Extensions (Alternative Flows):

97

Chapter

1.a The user selects ’Login with Google Account’:

1. The system opens the google pop-up

2. The user follows the steps of Google Authentication

4.a Invalid login data:

1. The system verifies that the credentials don’t match

2. The system displays an error message

3. The user remains in the Opening Page (Step 1)

4.b Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3. The user remains in the Opening Page (Step 1)

98

UC2: User Registration

Last Revision: November, 21st 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Unauthenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user has opened the app

Postconditions (success guarantee):
• The User is registered and is logged in

• The Unauthenticated User becomes Authenticated User

Main Success Scenario:

1. The user selects ’Register’

2. The system redirects to the Create Account Page

3. The user inserts his credentials in the appropriate fields

4. The user selects "Continue"

5. The system verifies the credentials inserted

6. The user accepts Terms and Conditions

7. The user selects "Continue"

8. The user inserts the optional data

9. The user clicks "Register"

10. The system creates the new user

11. The system redirects to the Main Page

Extensions (Alternative Flows):

99

Chapter

5.a The user inserts incorrect credentials:

1. The system verifies that the credentials don’t match the defined cri-
teria

2. The system displays an error message

3. The system highlights the fields with those credentials

5.b The user doesn’t fill all fields:

1. The system verifies a/some field(s) is/are missing

2. The system displays an error message

3. The system highlights the missing fields

6.a User doesn’t check a box to agree to the Terms and Conditions:

1. The system verifies the user hasn’t agreed to the Terms and Condi-
tions

2. The system displays a warning emphasizing that acceptance of T&C
is mandatory and that the account can not be created without such
an agreement

3. The system highlights the field for Terms and Conditions

9.a The user inserts credentials already used by other users:

1. The system verifies that the credentials match others already in use

2. The system displays an error message

3. The system highlights the fields with those credentials

4. Return to step 3

9.b Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3. The system redirects to the Opening Page

100

UC3: Password Recovery

Last Revision: November, 21st 2020

Level: User-goal

Priority: Nice-To-Have

Primary Actor: Unauthenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User has opened the app

Postconditions (success guarantee):
• The User recovers the password

Main Success Scenario:

1. The user selects "Recover Password"

2. System redirects to the Recover Password page

3. The user fills the appropriate recovery information

4. The system validates the recovery information

5. The system sends a link to the user’s email

6. The user clicks the link

7. The system redirects to the Change Password page

8. The user inserts the new password

9. The system changes the user’s password

10. The system invalidates the recovery link

11. The system displays a success message

12. Redirect to the Opening Page

Extensions (Alternative Flows):

101

Chapter

4.a The user doesn’t fill all fields:

1. The system verifies a/some field(s) is/are missing

2. The system displays an error message

3. The system highlights the missing fields

4.b Invalid recovery data:

1. The system verifies the credentials don’t match

2. The system displays an error message

3. The system redirects the user to the Opening Page (Step 1)

4.b, 9.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3. The system redirects to the Opening Page (Step 1)

102

UC4: Delete Account

Last Revision: November, 22nd 2020

Level: User-goal

Priority: Should-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User must be logged in

Postconditions (success guarantee):
• The User logs out

• The User’s account is deleted

• The Authenticated User becomes Unauthenticated User

Main Success Scenario:

1. The User selects "Change Settings"

2. The system redirects to the Settings Page

3. The User selects "Delete Account"

4. The system redirects to the Delete Account Page

5. The User inserts the appropriate credentials

6. The User selects "Continue"

7. The system validates the credentials

8. The system displays a confirmation message

9. The User confirms

10. The system redirects the user to the Opening Page

Extensions (Alternative Flows):

103

Chapter

5.a The user doesn’t fill all the necessary fields:

1. The system marks the empty fields

6.a The user doesn’t fill all the necessary fields:

1. The system marks the empty fields

2. The User remains in the same page

7.a The User inserted wrong credentials:

1. The system displays an error message

2. The User remains in the same page

7.b, 9.b Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3. The system redirects to the Main Page

9.a The User cancels:

1. The system discards the request

2. The system displays a confirmation message

3. The system redirects to the Main Page

104

UC5: Logout

Last Revision: November, 22nd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User must be logged in

Postconditions (success guarantee):
• The User logs out

• The Authenticated User becomes Unauthenticated User

Main Success Scenario:

1. The use case starts when the user is logged in and wants to exit the
application

2. The user selects "Settings"

3. The system redirects to the Settings Page

4. The user selects "Logout"

5. The system redirects to the Opening Page

105

Chapter

UC6: Request Personal Data

Last Revision: January, 21st 2021

Level: User-goal

Priority: Should-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is logged in

Postconditions (success guarantee):
• The User receives his data

Main Success Scenario:

1. The user selects ’A minha conta’

2. The system redirects to the settings page

3. The user selects ’Pedir dados pessoais’

4. The system sends the request to the server

5. Redirect to the Main Page

6. The user receives the data through his email sometime later

Extensions (Alternative Flows):
4.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3. The system redirects to the Main Page

106

UC7: Report Fire

Last Revision: November, 23rd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User, Anony-
mous User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User must be logged in

• The user must have his location turned on

Postconditions (success guarantee):
• The User reported the fire

• The User’s contribution is marked

Main Success Scenario:

1. The User selects "Report Fire"

2. The system redirects to the Report Fire Page

3. The User verifies his location on the map

4. The User selects "Continue"

5. The User marks his orientation

6. The User selects "Continue"

7. The system opens the User’s Camera

8. The User takes the photo of the fire

9. The User confirms the photo

10. The system shows the Continue Contribution page

11. The User selects "Finish Report"

12. The system collects and sends the data to the backend server

13. The system displays a success message

14. The system redirects to the Main Page

107

Chapter

Extensions (Alternative Flows):
3.a, 5.a, 9.a The User cancels:

1. The system discards the request

2. The system redirects to the Main Page

3.b The User selects "go back":

1. Follow steps of extension 3.a

5.b The User selects "go back":

1. The system discards the data from this step

2. Go to step 3

9.b The User selects "go back":

1. The system discards the data from this step

2. Go to step 5

11.a The User selects "Continue Contributing":

1. Go to UC8

12.a Internet is unavailable:

1. The system can’t connect with the server

2. The system redirects to the Main Page

108

UC8: Complete Report Fire

Last Revision: November, 23rd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User, Anony-
mous User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User must have followed extension 11.a of the Report Fire UC7

Postconditions (success guarantee):
• The User reported the fire

• The User’s contribution is marked

Main Success Scenario:

1. The System displays the instructions for the next steps

2. The User follows the steps

3. The User selects "Continue"

4. The User marks his position again

5. The User selects "Finish Report"

6. The system collects and sends the data to the backend server

7. The system displays a success message

8. The system redirects to the Main Page

Extensions (Alternative Flows):

109

Chapter

1.a, 2.a, 4.a The User cancels:

1. The system discards the request

2. The system redirects to the Main Page

4.b The User selects "go back":

1. The system discards the data from this step

2. Go to step 2

6.a Internet is unavailable:

1. The system can’t connect with the server

2. The system redirects to the Main Page

110

UC9: View Contribution

Last Revision: November, 23rd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The User must be logged in

Main Success Scenario:

1. The User selects "My Contributions"

2. The system redirects to the My Contributions Page

3. The system loads the contributions of the User

4. The User selects a contribution

5. The system redirects to the View Single Contribution page

6. The system fetches the details of the new contribution from the server

7. The system displays the details

Extensions (Alternative Flows):
3.a, 6.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

3.b No contributions found:

1. The system displays a message

2. End of Use Case

111

Chapter

UC10: Change Password

Last Revision: January, 21st 2021

Level: User-goal

Priority: Should-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is logged in

Postconditions (success guarantee):
• The User changes his password

Main Success Scenario:

1. The user selects ’A minha conta’

2. The system redirects to the settings page

3. The user selects ’Mudar Password’

4. The user inserts his new password

5. The user inserts the new password again

6. The user clicks ’continue’

7. The system sends the request to the server

8. Redirect to the Main Page

Extensions (Alternative Flows):

112

4.a, 5.a Error in password string:

1. The system displays an error message

2. The system highlights the field

3. The system clears the field

6.a Passwords don’t match:

1. The system displays an error message

2. The system clears both fields

3. Return to step 4

7.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

113

Chapter

something

UC11: Change Username

Last Revision: January, 21st 2021

Level: User-goal

Priority: Should-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is logged in

Postconditions (success guarantee):
• The User changes his username

Main Success Scenario:

1. The user selects ’A minha conta’

2. The system redirects to the settings page

3. The user selects ’Mudar Username’

4. The user inserts his new username

5. The user clicks ’continue’

6. The system sends the request to the server

7. Redirect to the Main Page

Extensions (Alternative Flows):

114

4.a Error in username string:

1. The system displays an error message

2. The system highlights the field

7.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

7.b Username already taken:

1. The system displays an error message

2. Return to step 4

115

Chapter

UC12: View Occurring Fire

Last Revision: November, 2nd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is authenticated

• Fire event is shown on the map

Postconditions (success guarantee):
• The User views the relevant data

• A fire event is selected

Main Success Scenario:

1. The user selects the marker corresponding to the appropriate fire

2. The system is queried for the user contributions corresponding to the fire

3. The contribution panel displays the user contributions corresponding to
the fire

4. The map displays a popup with relevant information

Extensions (Alternative Flows):
2.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message on the panel

116

UC13: View Occurring Fire Detail

Last Revision: November, 2nd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is authenticated

• Fire event is shown on the map

• A fire event has been selected

Postconditions (success guarantee):
• The User views the relevant data

Main Success Scenario:

1. The user selects ’Ver Detalhes do Fogo’

2. The system loads the relevant data from the server

3. The map zooms to the location of the fire

4. The map displays the projected area of the fire given by the system

5. The map displays the location of the relevant user contributions

Extensions (Alternative Flows):
2.a, 3.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

117

Chapter

UC14: Search Location

Last Revision: November, 15th 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is authenticated

Postconditions (success guarantee):
• Map Data is updated

• Base Location is selected

Main Success Scenario:

1. The user selects the content for the ’Distrito’ field

2. The user selects the content for the ’Conselho’ field

3. The user clicks ’Pesquisar’

4. The system loads the relevant data

5. The map zooms to the selected location

Extensions (Alternative Flows):
1.a, 2.a No content selected:

1. The system displays an error message and highlights the missing field

3.b No content selected:

1. The system displays an error message and highlights the missing
fields

2. Return to steps 1 or 2 depending on the missing fields

4.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

118

UC15: Search Timeframe

Last Revision: November, 2nd 2020

Level: User-goal

Priority: Must-Have

Primary Actor: Authenticated User

Stakeholders and Interests:
• Professionals and Volunteers

Preconditions:
• The user is authenticated

Postconditions (success guarantee):
• Map Data is updated

• Base Time is selected

Main Success Scenario:

1. The user uses the time slider to select a given date

2. The system loads the relevant data from the server

3. The map updates with the fires active in the given time

Extensions (Alternative Flows):
2.a Internet is unavailable:

1. The system can’t connect with the server

2. The system displays an error message

119

Chapter

Appendix B - Contribution Process Specification

Figure 1: Full Contribution Process

120

Figure 2: Verify Location Process

121

Chapter

Figure 3: Verify Orientation Process

122

Figure 4: Take Photo Process

123

Chapter

Figure 5: Turn to Shadow Step

Figure 6: Take Ten Steps Step

124

Figure 7: Verify Shadow Step

125

Chapter 8

Figure 8: Verify Optional Position Step

126

Figure 9: Cancel Contribution Step

127

	Introduction
	Context and Motivation
	Objectives
	Contributions
	Document Structure

	Technologies
	Constraints/Criteria
	Platform Support
	Supported Languages
	Pricing

	Frameworks
	Pre-Selection Process
	Pre-Selected Frameworks
	Evaluation

	Map Packages
	Pre-Selection Process
	Pre-Selected Packages
	Evaluation

	State Management
	Vanilla state management and component communication
	State management flow using NgRx
	NgRx key concepts and definitions

	API Server Technologies
	Django
	GeoServer / GeoNode
	Docker

	Summary

	Similar Products
	Similar Apps
	Fotoquest Go
	Conclusions

	Similar Portals
	IPMA
	NASA
	Conclusions

	Summary

	Requirements
	Fireloc App
	Context Diagrams
	Use Cases
	Non-functional Requirements

	Fireloc Portal
	Context Diagrams
	Use Cases
	Non-functional Requirements
	Mockups
	Main Page

	Module 6 - Geoportal API Server
	Supported Operations
	Response Data
	Error Handling
	Integration

	Security and Privacy
	Summary

	Architecture
	Context
	Containers
	Components
	Fireloc App
	Fireloc Portal
	Module 6 - Geoportal API Server

	Sequence Diagrams
	Summary

	Implementation
	Implementation of the Mobile App
	Authentication
	Security
	User Contribution
	Viewing Contributions
	User Management

	Implementation of the Web Portal
	User Authentication
	Security
	Data Visualization
	User Management

	Implementation of the Geoportal API
	Authentication
	Queries

	Summary

	Testing the System
	Unit Testing
	General test suit setup
	Results

	Non-Functional Requirement Tests
	Usability
	Latency

	User Tests
	Test setup
	Results

	Validation
	Summary

	Conclusion
	Main Conclusions
	Future Work

