

Sergii-Zinovii Mykolyshyn

DATA MODELS FOR EDGE COMPUTING

VOLUME 1

Dissertation in the context of the Master in Informatics

Engineering, Specialization in Software Engineering, advised by

Professor Vasco Pereira and Professor Bruno Cabral and

presented to

Faculty of Sciences and Technology / Department of Informatics

Engineering.

September 2021

Faculty of Sciences and Technology

Department of Informatics Engineering

Data Models for Edge Computing

Sergii-Zinovii Mykolyshyn

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Vasco Pereira and Prof. Bruno Cabral and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering

September 2021

This page is intentionally left blank.

Acknowledgements

This report describes the performed work during 2020/2021 internship in the Department
of Informatics Engineering (DEI), from University of Coimbra. This is the final step of the
Master’s course, which englobes all the academic experience acquired in this institution.

I would like to thank my parents for giving me the chance to study in the best place I
could imagine, for believing in me, for teaching me to never give up on my dreams and to
work hard to accomplish my goals.

I would also like to thank Professor Vasco Pereira, for his availability, clarifying my doubts,
for every feedback, for guiding me during this phase, and for helping elaborating the
scientific paper and this report. Many thanks to Professor Bruno Cabral for clarifying my
doubts and for giving objective and clear feedback of what can be changed and improved
in the application, always with a lot of ideas. Also to Professor Jorge Bernardino for
sharing his knowledge, helping with the report elaboration and on the writing of the Data
Modeling tools paper, it was a big pleasure.

To Gonçalo Carvalho for being a very good colleague who became a friend, for sharing the
experiences, helping every time he could, giving his best explaining my doubts, giving a
lot of feedback on this report elaboration, and by helping a lot in the scientific paper.

To my friends, from the school, and who continue by my side until today, by supporting
me and being with me in good and worse times. To the friends I made in the University
and became very close during this course.

To my girlfriend Lígia, who is one of the best people I met until today. I can not express
in words my gratitude to you, for being very kind, understandable, pushing me to give my
best, and being there for me when I most need you.

Finally, to everyone who I met during this University journey and who somehow changed
my life and lead me to where and who I am today.

To all of you, an enormous thank you.

iii

This page is intentionally left blank.

Abstract

Edge Computing (EC) is an architecture paradigm that brings computation closer to end
users, with the aim of reducing latencies, bandwidth consumption, and also achieving
greater reliability, compared to a Cloud architecture.

The objective of this work is to collaborate in the extension of a database platform o
enable the databases modeling at Edge and Cloud levels simultaneously, maintaining total
transparency for the end-user.

By placing the database on the Edge, performing aggregation and summarization functions
on the collected data, before sending it to the Cloud, it is expected to achieve the benefits
of EC. The platform should be able to perform this data transformation on the database
located on the Edge and convert it to a single entity data warehouse located on the Cloud,
which aggregates the whole data, aiming to increase the database performance.

To reach this goal, it was acquired in-depth knowledge about EC and how Data Models
can be used with these systems, analyzed and evaluated existing Data Modeling tools, with
the aim of identifying differences between each and choose one tool to extend.

The produced outcome is a tool that helps to transform a classical single-layer database
design from an Entity Relationship (ER) diagram, into a multi-layer system with the
original database located on the Edge and a data warehouse on the Cloud. In addition,
the script is automatically generated, with all the data summarized. This approach will
reduce error’s probability, time spent in creating scripts manually, and make them modular,
by adapting it to any use case.

Keywords

Data Modeling, Edge Computing, Databases, Internet of Things, Cloud Computing, Entity-
Relationship

v

This page is intentionally left blank.

Resumo

EC é um paradigma de arquitetura que aproxima a computação dos utilizadores finais, com
o objetivo de reduzir latências, consumo de largura de banda e também alcançar maior
confiabilidade, comparativamente a uma arquitetura na nuvem.

O objetivo deste trabalho é colaborar na extensão de uma plataforma de base de dados para
possibilitar a modelação de bases de dados nos níveis da Edge e da Cloud simultaneamente,
mantendo a total transparência para o utilizador final.

Ao colocar a base de dados na Edge, realizando funções de agregação e sumarização nos
dados recolhidos, antes de enviá-los para a nuvem, espera-se obter os benefícios da EC. A
plataforma deve ser capaz de realizar essa transformação de dados localizados na Edge e
convertê-los em uma data warehouse de entidade única localizada na nuvem, que agrega
todos os dados, visando aumentar o desempenho da base de dados.

Para alcançar este objetivo, realizaram-se pesquisas aprofundadas sobre a EC e como tam-
bém sobre os Modelos de Dados que podem ser utilizados com estes sistemas, analisaram-
se e foram avaliadas as ferramentas de Modelação de Dados existentes, com o objetivo de
identificar as diferenças entre cada uma e escolher uma ferramenta para extender.

O resultado produzido é uma plataforma que ajuda a transformar um design clássico de
base de dados de camada única de um diagrama ER, num sistema multicamadas com a
base de dados original localizada na Edge e uma data warehouse na nuvem. Além disso,
o script é gerado automaticamente, com todos os dados sumarizados e agregados. Essa
abordagem reduzirá a probabilidade de erro, o tempo gasto na criação manual de scripts
e torná-los-á modulares, adaptando-os a qualquer caso de uso.

Palavras-Chave

Modelação de dados, Computação na Edge, Bases de dados, Internet das Coisas, Com-
putação na nuvem, Entidade-Relacionamento

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Document Outline . 2
1.4 Project Team Constitution . 2

2 State of the art 4
2.1 Edge Computing Paradigm . 4
2.2 Key architectures that enable Edge Computing 5

2.2.1 Fog Computing . 5
2.2.2 Multi-access Edge Computing . 5
2.2.3 Cloudlet Computing . 6

2.3 Data Warehouses . 7
2.4 Data Modeling . 8

2.4.1 Data Models and Data Modeling and its importance 8
2.4.2 Data Models Evolution . 9
2.4.3 Background in conceptual modeling 11
2.4.4 Data Modeling Tools . 12

2.5 Tools Evaluation . 20
2.6 State of the art conclusions . 21

3 Planning 23
3.1 Process Management . 23
3.2 Work Planning . 24
3.3 Risks Management . 25

3.3.1 Project Threshold of Success . 26
3.3.2 Risk Analysis . 26
3.3.3 Identified risks and mitigation strategies 26
3.3.4 Risks Matrix . 28

3.4 Planning conclusions . 29

4 Requirements Specification 31
4.1 Functional Requirements . 31
4.2 Non-Functional Requirements . 33
4.3 Mock-ups . 33
4.4 Requirements Specification conclusions . 36

5 Architecture of the Application 38
5.1 Architecture and Technologies . 39

5.1.1 Application Scheme . 39
5.1.2 C4 Architecture Model . 40

5.2 New ONDA Version . 41

ix

Chapter 0

5.2.1 Architecture of the Application conclusions 43

6 Implementation 45
6.1 Project Development . 45

6.1.1 Layers . 46
6.1.2 "Summary Entity" . 46
6.1.3 Aggregation connections . 48
6.1.4 Physical Diagram . 48
6.1.5 Scripts . 49

6.2 Additional improvements . 50
6.3 Implementation conclusions . 51

7 Tests 53
7.1 Functional Tests . 53

7.1.1 FR1 - Functional Requirement 1 . 54
7.1.2 FR2 - Functional Requirement 2 . 54
7.1.3 FR3 - Functional Requirement 3 . 54
7.1.4 FR6 - Functional Requirement 6 . 55
7.1.5 FR7 - Functional Requirement 7 . 55
7.1.6 FR8 - Functional Requirement 8 . 55
7.1.7 FR9 - Functional Requirement 9 . 56
7.1.8 FR10 - Functional Requirement 10 56
7.1.9 FR11 - Functional Requirement 11 56
7.1.10 FR13 - Functional Requirement 13 57
7.1.11 FR15 - Functional Requirement 15 57
7.1.12 FR16 - Functional Requirement 16 57
7.1.13 FR17 - Functional Requirement 17 58

7.2 Application Validation . 58
7.2.1 First Use Case . 58
7.2.2 Second Use Case . 59

7.3 Non-Functional Tests . 60
7.4 Tests Conclusions . 61

8 Conclusions 64
8.1 Experience acquired . 64
8.2 Future Work . 64
8.3 Final Considerations . 65

x

This page is intentionally left blank.

Acronyms

AI Auto Incremet. 9, 14–20

AP Access Points. 5, 6

BRR Business Readiness Rating. 20

CC Cloud Computing. 1, 4, 5, 21

CDM Conceptual Data Modeling. 12

CH Check. 14, 16, 17

CM Conceptual Modeling. 11–20

DEI Department of Informatics Engineering. iii, 1, 7, 14, 38, 43, 58, 59

EC Edge Computing. v, vii, 1, 2, 4, 5, 21, 24

ER Entity Relationship. v, vii, 1, 7, 8, 11, 12, 14, 21, 25, 32

FK Foreign Key. 12, 14–20, 38

IoT Internet of Things. 5, 7, 58

MEC Multi-access Edge Computing. 5, 6

NN Not Null. 9, 13–20

OO Object-Oriented. 12

PK Primary Key. 9, 12, 14–20

SQL Structured Query Language. 9, 13–15, 18, 32, 38, 40, 49, 56, 58

UML Unified Model Language. 12, 16, 18

UQ Unique. 14–20

xii

This page is intentionally left blank.

List of Figures

2.1 Fog Computing Paradigm . 5
2.2 Multi-access Edge Computing . 6
2.3 Cloudlet Computing . 7
2.4 Visual representation of the idea . 8
2.5 Data Models Evolution . 9

3.1 Work progress, with each month divided in sections of 2 weeks 25

4.1 ONDA Application Flow after implementation of "Must" Requirements . . 32
4.2 ONDA Conceptual View and Data Summary Entity properties Low level

Mock-up . 34
4.3 ONDA Conceptual View and Data Summary Entity properties High level

Mock-up . 35
4.4 Buttons to add layer properties . 35
4.5 Dropdown buttons . 35
4.6 Dropdown buttons . 36

5.1 ONDA System Application Diagram . 39
5.2 ONDA Context Diagram . 40
5.3 ONDA Container Diagram . 41
5.4 ONDA Application Flow . 41
5.5 Sequence of steps to automatically generate the script 42

6.1 ONDA Interface before extension . 45
6.2 Application properties bar . 46
6.3 Two distinct ONDA layers . 46
6.4 Add Summary Entity table . 47
6.5 Summary Entity table and its properties . 47
6.6 Autocomplete to add a new table field . 47
6.7 Create aggregation relationship . 48
6.8 Aggregation relationships example . 48
6.9 Generate physical diagram . 48
6.10 "Data Summary" physical view example . 49
6.11 Generate scripts . 49
6.12 Layer Properties example . 49
6.13 Conceptual View of ONDA tables and its relations 50
6.14 Wrong version of physical diagram . 51
6.15 Correct version of physical diagram . 51

7.1 Tables from the Edge . 58
7.2 Data Summary table from the Cloud . 59
7.3 Sales Shop Tables from the Edge . 60

xiv

List of Figures

7.4 Data Summary table from the Cloud . 60
7.5 "Summary Entity" properties error . 61

xv

This page is intentionally left blank.

List of Tables

2.1 Modeling Tools . 13
2.2 Comparison of different tools . 19

3.1 Masters Thesis Estimated and real work times 24
3.2 Risk 1 - Changes in requirements . 27
3.3 Risk 2 - Poor documentation . 27
3.4 Risk 3 - Failure to deliver on time . 27
3.5 Risk 4 - Technology risks . 28
3.6 Risk Matrix . 28

4.1 Functional Requirements with an identifier, description and defined priority 32

7.1 Functional Test Template . 53
7.2 Test of Functional Requirement 1 . 54
7.3 Test of Functional Requirement 2 . 54
7.4 Test of Functional Requirement 3 . 54
7.5 Test of Functional Requirement 6 . 55
7.6 Test of Functional Requirement 7 . 55
7.7 Test of Functional Requirement 8 . 55
7.8 Test of Functional Requirement 9 . 56
7.9 Test of Functional Requirement 10 . 56
7.10 Test of Functional Requirement 11 . 56
7.11 Test of Functional Requirement 13 . 57
7.12 Test of Functional Requirement 15 . 57
7.13 Test of Functional Requirement 16 . 57
7.14 Test of Functional Requirement 17 . 58

xvii

This page is intentionally left blank.

Chapter 1

Introduction

This dissertation under the Master’s program in Informatics Engineering, named Data
Models for Edge Computing, describes the developed work during the first and second
semesters of the school year 2020/2021. The thesis was advised by Professor Vasco Pereira
and Professor Bruno Cabral from the Department of Informatics Engineering (DEI) of the
University of Coimbra.

1.1 Motivation

Cloud Computing (CC) services prevailed in the last decade by bringing cost-effectiveness,
speed, and low response time. The number of devices connected to the Cloud is growing,
and the challenge to deliver data in a reasonable period and without losses is getting
harder to accomplish. Edge Computing (EC) paradigm has been emerging in the last
years, helping to solve problems that CC cannot anymore. It brings the computation closer
to the final user, achieving greater reliability, reducing latency, and reducing bandwidth
ingress to store or retrieve the data from the Cloud. In an EC system, data and computing
resources are placed closer to the mobile devices and sensors, which have the name of Edge
of the Internet [1].

The motivation of this work is to extend an existing platform which uses the Entity Rela-
tionship (ER) model and adapt it to create an important tool for the future development
of EC systems. The idea is to extend a tool where users can illustrate separate databases
for the Edge and the Cloud. The tool must auto-generate a script to retrieve the data and
create databases for different engines, like MySQL or PostgreSQL.

Before this work, a platform to represent both the Edge and Cloud layers was nonexistent.
Because of this, many different tools were analyzed as potential candidates to be extended,
as it will be possible to read in Chapter 2. ONDA[2] was selected because this tool is a
property of DEI, works with ER model, is easy to understand the source code and it is
possible to keep in contact with its authors easily.

1.2 Objectives

The purpose of this thesis is, first, to become aware of the Edge and Cloud Computing
paradigms and the ER model, which will represent databases in these two locations.

1

Chapter 1

Second, is to evaluate the available data modeling tools and the features they possess, to
create an overall knowledge of the differences between them.

The third goal is to extend ONDA, by introducing the concept of layers (Edge and Cloud).
On the Edge, users must be capable to create entities that store all the information re-
garding to the database. On the Cloud, the users can create an entity ("Data Summary")
to summarize the necessary data, choose an aggregation function to apply on the selected
fields, in a defined time window. These data selection and time window options will be
implemented in the user interface, and later the tool will translate this information into
an auto-generated MySQL or PostgreSQL script. This task is crucial because all the
database creation and data aggregation were previously made by hand. This is error prone
and makes it difficult to adapt project changes. Current approach tends to minimize the
amount of human errors and produce quicker results, by automating these tasks. Also,
the existence of such tool that aggregates the data can make a dramatic increase in the
performance of the data warehouse by reducing the number of rows to be accessed when
computing a query.

Finally, this implementation will be tested in the context of the research, to validate the
results and understand what can be improved in the next versions of this application.

1.3 Document Outline

This document is organized as follows: in Chapter 2 are provided concepts searched during
the first semester of the thesis, such as EC, data models, and tools to modulate a database.
In Chapter 3 are provided the project planning for the internship, how the work was man-
aged, what risks were identified, and how to avoid them. In Chapter 4 are provided the
requirements to implement in the new version of the application and it is shown and ex-
plained the initial Mock-ups. In Chapter 5 are provided the architecture of the application
and it is shown the general flow of the old and new implementations. In Chapter 6 are
provided the tool implementation process. In Chapter 7 are provided the tests made to the
new implementation and the results are analyzed. Last, Chapter 8 presents the acquired
experience, future work, and the final considerations.

1.4 Project Team Constitution

This team is composed by Professor Vasco Pereira, Professor Bruno Cabral, Professor Jorge
Bernardino, PhD student Gonçalo Carvalho and Master’s student Sergii Mykolyshyn. To-
gether, Professors and Gonçalo helped to write a significant part of the scientific paper
named Comparative Analysis of Data Modeling Design Tools. Also, everybody partici-
pated in the work planning, requirement gathering, definition of the first project mock-ups,
brainstorming with ideas, correction of this thesis, and making sure that everything would
go as expected in the work plan.

2

This page is intentionally left blank.

Chapter 2

State of the art

In this chapter is provided the state-of-the-art related to the Edge Computing (EC)
Paradigm and Data Models. In Section 2.1 is explained the background knowledge re-
lated to EC. In Section 2.1 are explained the key architectures that enable EC. In Section
2.3 is explained what is a Data Warehouse and how it is related with this thesis. In Sec-
tion 2.4 is explained what a data model is, its evolution in the past decades, the analyzed
Data Modeling tools, and the results of their evaluation. In Section 2.5 is explained the
methodology behind tools evaluation and how the evaluation was performed.

This literature review started with an exploration of different academic search engines,
such as DBLP, Google Scholar, and IEEE Xplore Digital Library. The search keywords
used were: "Edge Computing" with a raise in publications since 2016; "Cloud Computing"
which emerged more and more since 2009; "Data Modeling" and "Data Model" - these two
search keywords are continuously growing in publications since the middle of 1980.

2.1 Edge Computing Paradigm

EC is a recent paradigm where computing and storage resources are placed at the Inter-
net’s edge, very close to mobile devices, sensors and users. Professor Satyanarayanan from
the University Carnegie Mellon associates terms as Cloudlets, Microdata centers and Fog
nodes to this new paradigm [1]. The EC has its origins near 1999, when Akamai Technolo-
gies launched a system that originally delivered Web objects (images and documents) on
servers at the network edge, creating Content Delivery Networks and improving web sites
scalability, reliability, and performance. It has evolved to distribute pages and applications
to the network’s edge, providing customers with greater computing capacity [3]. Before
the development of EC, traditional Cloud Computing (CC) brought scalability, simplicity,
security, fault tolerance, and solved the computing and storage problems in a centralized
way [4, 5, 6].

With the growth of CC, practically 90 percent of global Internet users rely on cloud-based
services [4]. This approach started to produce problems, such as significant latency, data
transmission overhead, loss of privacy, energy consumption, and location limitations [6, 7].

For example, a self-driving car generates 1 Gigabyte of data every second and involves
real-time processing to perform correct decisions, and for this, data needs to be processed
at the Edge for short response time and efficient processing [8].

The EC paradigm emerged to tackle the CC problems, acting as its complement instead of

4

State of the art

its replacement. These two exist together since CC continues important in the development
of Internet of Things (IoT) devices, that are getting gradually more intelligent [6].

The next subsection will present the main architectures that permit the EC paradigm to
work.

2.2 Key architectures that enable Edge Computing

The Edge Computing paradigm can be classified into three main types, Fog Computing,
Multi-access Edge Computing (MEC) and Cloudlet Computing, explained in the next
subsections.

2.2.1 Fog Computing

Fog Computing is a virtualized platform that provides computing, storage and networking
services between devices and CC Data Centers and brings high quality of service by reduc-
ing latency, amount of data traffic, and improving efficiency [9]. This architecture extends
CC paradigm to fully support IoT. By doing the processing and storage of data closer
to the Edge of the network, it reduces service latency, conserves network bandwidth and
speeds up real-time processing [10, 11]. In Fog computing, large numbers of heterogeneous
devices communicate and cooperate between themselves, to perform storage and treatment
of data without involving third parties [12].

Figure 2.1: Fog Computing Paradigm

2.2.2 Multi-access Edge Computing

Our mobile devices are expected to be small to fit in our pockets. Due to this physical size
constraint, the computing power and battery capacity of mobile devices are reduced and
the user experience can not be as satisfactory as awaited. The technology evolution lead
to new solutions and the computations started to be offloaded to cloud infrastructures, via
Access Points (AP) associated with users. Locating computing servers at the AP, close to
the users, avoids delays between the cloud and AP.

With the appearance of EC, the network edge is the radio access network and the AP
started to be equipped with one more computing server, the mobile edge computing server.

5

Chapter 2

The advantages of such technologies are the proximity to users’ device, due to the AP
proximity and the improvement in computing and radio resource efficiency, since an AP
controls both of them [13].

Figure 2.2: Multi-access Edge Computing

2.2.3 Cloudlet Computing

Comparing to MEC and Fog Computing, Cloudlet Computing is a newer paradigm [14]
and is "a trusted cluster of computers, well connected to the Internet, with resources
available to use for nearby mobile devices" [15]. With this paradigm, it becomes possible
to offload mobile applications as mobile transactions and payments to a capable cloudlet
such as desktop or laptop in the proximity of the device. This type of technology boosts
the application’s performance, saves mobile data, and extends mobile device battery life.
The key challenge of the Cloudlets is the continuous need to be connected to it, so when
a user cannot be around his Cloudlet, he cannot perform such computations [16].

6

State of the art

Figure 2.3: Cloudlet Computing

2.3 Data Warehouses

One of the main objectives of this work is to define a construction of a single table data
warehouse from the visual representation of an Entity Relationship (ER) diagram. A data
warehouse is an integrated and time varying collection of data derived from operational
data used in strategic decision making. It is essentially a database that stores integrated,
often historical, and aggregated information extracted from multiple, heterogeneous, au-
tonomous, and distributed information sources [17].

In the context of this work, a system of meteorologic data collection related to the city
of Coimbra is being developed. IoT sensors located in the Department of Informatics
Engineering (DEI) and the data from OpenWeatherMap API are being collected on the
network’s Edge, near the user. An Edge server gathers this meteorologic data, such as
air quality, humidity, temperature. Only parts of the this information will be selected
and transformed into a data warehouse. This data warehouse is represented by a single
entity named "Data Summary". The main goal is to store this data grouped and organized
on the Cloud, for further processing by Artificial Intelligence algorithms. The algorithms
will make decisions based on the results, such as open/close blinds or turn on/off air
conditioning.

Since the data are collected on the Edge layer and transferred to the Cloud, it is im-
portant to aggregate them, making the data occupy less space, and reducing bandwidth
consumption and time spent transferring it. This means that the collected data are all
integrated in one place, the "Data Summary" entity. This new entity will have three
features: dimensions, facts, and functions. Dimensions represent the data granularity of
aggregation. These will have a default time dimension, which sets the aggregation time
window (hour, day, week, or month). The aggregations decrease the amount of rows to
be accessed, increasing the database performance. Facts portray the data values of the di-
mensions’. Functions depict the mathematical operations (aggregation functions) to apply
to the data, such as average, count, maximum, minimum, and standard deviation.

7

Chapter 2

Figure 2.4 represents the explained idea with example of the data aggregation about hu-
midity.

Figure 2.4: Visual representation of the idea

2.4 Data Modeling

This section explains what a data model is and how data models evolved in the past
decades. It also outlines the research on data modeling tools and presents tool evaluation.

2.4.1 Data Models and Data Modeling and its importance

A data model is a set of concepts that can describe the data structure and operations on a
database [18]. These data structures include objects, relations between these objects, and
rules that define how data is organized. Determining the business needs will lead to the data
model. The business stakeholders’ feedback is crucial to define rules and requirements to be
incorporated into the design of a new system or adapted in an iteration of an existing one
[19]. Data models are adopted to manage and analyze data representing any information
system. The data model is an essential element of the system development or database
design processes. Although the data modeling phase embodies only a smaller dimension
of the development effort, its influence on the eventual result is reasonably broader than
any other phase.

Data modeling creates a visual representation of either a whole information system or parts
of it to reveal connections between data points and structures. This is the first step in
database design, and Simsion and Witt [20] defined it as "a design activity which classifies
information in an organized way and defines their relations." Therefore, the process of data
modeling involves professional data modelers working closely with business stakeholders,
as well as potential users of the information system [21].

The ER model is one of the fundamental conceptual data models, which is usually associ-
ated with relational databases. This model is the focus of this work because it is the model
most often adopted at this stage of conceptual design. An Entity Relational Diagram is
a drawing that communicate the relationships between tables, also known as entities [22].

8

State of the art

An entity is a "thing" or "object" in the real world that is distinguishable from other
objects. Relationships have cardinalities, attributes, and constraints. The cardinality of a
relationship indicates the number of occurrences between two entities [23].

Any database architect needs to work with a tool that allows an easy data model design.
Such a choice will have a direct impact on the project quality. The design tool must be
suitable to represent a database, also be easy to use, and support a different number of
database engines. In addition, the tool should allow defining constraints such as Primary
Key (PK), Not Null (NN), Auto Incremet (AI), and produce a Structured Query Language
(SQL) script from the representation of data objects created by the user.

2.4.2 Data Models Evolution

In this section, are analyzed the different database models, their evolution, and character-
istics.

In the past decades, the evolution of data models, which average ten years between them,
has come a long way (Fig. 2.5). Before 1950, the File System model was the only way
to store data. From 1950 emerged the Hierarchical model, and in the 1960s, appeared
the Network model. Later, around the 1970s, the Relational and Semantic models gained
popularity, and one decade later, appeared the Object model. Around 1990 arose the
Object-Relational, and at the beginning of the 2000s arrived the NoSQL database models.

Figure 2.5: Data Models Evolution

File System Database Model

In the File System database model there are no modeling techniques, and that data
storage is in individual or multiple flat files, with no structure. This aspect adds ex-
pense, complexity and has a limited search capability [24]. Niazi et al. [25] developed
their research on new databases and used a database to manage file system metadata for
Distributed and Hierarchical File Systems.

9

Chapter 2

Hierarchical Database Model

TheHierarchical database model is a collection of connected records through links with
a parent-child relationship. This model is used to store information as related data objects
[26]. It starts with a root node, the parent of all parents, which has one or more children
(one-to-many relationship), while each child possesses only one parent [24]. Kroenke [27]
described the hierarchical model as "a data structure in which the elements of the structure
have only one-to-many relationships with one another."

One example of this model can be formed by a system that relates Customers with Orders,
and the administrator wants to find information about a specific order. First, it is necessary
to find the Customer and then loop through the linked list of Orders. In the worst-case
scenario, the intended order is the last stored in the system, and this example shows the
limitation of this implementation. Black et al. [28] provided another example of this model
with a Hierarchical database for surveillance, achieving outstanding success.

Network Database Model

Kroenke [27] described the Network Database Model as a data structure "in which at
least one relationship is many-to-many". This model improved the Hierarchical model by
associating each file with n number of other files, allowing child tables to have over one
parent (many-to-many relationships) [24].

Relational Database Model

The Relational Database Model is now the most widely used data model. It has been
the basis for many investigations and studies since E. F. Codd introduced it in 1970 [29].
Each table, also known as a relation, is a subset of the Cartesian product, characterized by
a name distinct from all other tables in the database. In a table, each row represents an
individual group of related data values, also known as tuples. Also, operations combining
different data types are not allowed [30].

This model removed the search limitation of the Hierarchical model, with prior knowledge
of the data structure. And grants relationship possibilities between any data, ensuring
many-to-many relationships. Also, the data can be retrieved from one or multiple related
tables in the database [24].

Semantic Database Model

The Semantic database model is a high-level semantics-based database description and
structuring formalism. It represents a database by types of entities existing in the appli-
cation environment, the classifications and groupings of those entities, and the structural
interconnections. The semantic database model also enhances the effectiveness and us-
ability of database systems [31]. This model emerged to address some weaknesses of the
Relational data model. For example, the poor representation of "real-world" entities, only
using one construct for both entities and relationships, and the difficulty of managing
complex objects. The relational constraint of atomic values means that accommodating
hierarchical or nested structures is challenging.

This data model attempts to provide more expressive means of representing information

10

State of the art

than the Hierarchical, Network, and Relational models, by providing a richer set of con-
structs to build schemas. Such constructs allow the database developer to incorporate more
of the meaning of some application domain [32]. The prime advantages over Data-oriented
models are the separation of conceptual and physical components, the diminished semantic
of relationship types, and the abstraction resources [33].

Object Database Model

TheObject database model combines the Object-Oriented concepts with the ER Model.
It expresses data and metadata in terms of objects. This model represents each object by
at least one object type that specifies the attributes and methods that its instances will
have [34]. It solves the Relational model’s many-to-many relationships’ complexity by
separating complex elements into minor parts [24].

Object-Relational Database Model

TheObject-Relational Database Model merges the best features of the Relational and
Object models by adding object-oriented concepts such as objects, methods, constructors,
arrays of objects, and nested tables.

These data models decrease redundant data, are compatible with object-oriented interfaces,
and have a large storage capacity, access speed, and manipulation power [35].

NoSQL Database Model

The NoSQL database model emerged with the continuous development of the Inter-
net and Cloud computing. The NoSQL databases are not built primarily on tables and
rarely use SQL for data manipulation. These systems are efficient when working with vast
amounts of data and when the data nature does not require a relational model.

The fundamental characteristics of these databases are i) strong consistency - everybody
sees the same version of data; ii) high availability - the clients can always find at least one
copy of the requested data; iii) partition-tolerance - the system keeps its characteristics,
even when deployed on different servers [36].

Because Relational databases are one of the most used and NoSQL databases are rising
demand, some authors, such as [37], [38], and [39], addressed the integration of Relational
and NoSQL databases. These authors had the goal to overcome the drawbacks of the
Relational model in distributed systems, in big data environments, and with high data
transfer associated with the number of users. Reniers et al. [40] address similar migration
techniques from Object to NoSQL databases by aggregating the data model and using a
flexible schema.

2.4.3 Background in conceptual modeling

In this subsection, it is addressed the Conceptual Modeling (CM) topic, identifying key
features and languages.

CM describes the physical or social aspects of the world abstractly. The result of a proper
and rigorous CM design is a functionally richer, less error-prone, adequately attuned, able

11

Chapter 2

to adapt to varying user requirements, and less expensive system [41]. Thus, designing the
CM at the beginning of the development cycle should be mandatory. It is easier to follow
and adapt to user requirements and explore existing relationships between the concepts.

Moody et al. [42] mentioned the vast amount of alternative designs to address Conceptual
Data Modeling (CDM). Several alternative models could provide accurate solutions, but
may have quite distinct implications for database and system design. The process of data
modeling is not simple, meaning it usually demands multiple iterations [43].

Thalheim [44] pointed different CM notations used to describe requirement specifications,
such as the ER diagram [45], the Unified Model Language (UML) [46], which are the most
regularly employed, Business Process Modeling and Notation, and Model-driven Engineer-
ing. Object-Oriented (OO) models are essentially expressive and more fitted to describe
static and dynamic features of complex applications. The OO modeling field relates objects
and attributes, whereas the real-world realm deals with things and properties [47].

The ER data model has existed for over 35 years. An ER diagram is appropriate for data
modeling because it is abstract and is easy to discuss and explain. It is easy to translate ER
models to relations. The base of this type of modeling are entities, which hold information
and relationships, defined as the associations between entities [30].

The primary advantages of CM for general systems and specifically for Database Manage-
ment Systems are:

• Provide a high-level perception of how the system will work;

• Join different mental models into a single CM design;

• Ensure that the data representation is accurate - missing fields in the database cause
unreliable results;

• Get a clear understanding of the data that developers can manage when building the
actual database;

• Identify any redundant or missing data;

• Make maintenance and upgrades faster and more affordable.

Next, it is performed a qualitative analysis of data modeling tools.

2.4.4 Data Modeling Tools

One of the main goals of this thesis is to analyze data modeling tools that convert the
conceptual model into a physical model. The list of analyzed tools appears in the Table
2.1. An ER diagram is appropriate for data modeling because it is abstract and is easy to
discuss and explain. The base of this type of modeling are entities, which hold information
and relationships, defined as the associations between entities [30].

To create an ER model, it is necessary to specify entities containing fields (attributes)
that will be the columns and relations between tables. In this model, the relationships
amongst tables have a cardinality setting that illustrates the following options: one-to-
one, one-to-many, zero-to-one, zero-to-many, and many-to-many. Despite this graphical
representation, the physical model produces a better comprehension of the relationships,
because it defines the relationship cardinality through the PK and Foreign Key (FK)

12

State of the art

constraints, as well as Unique or NN. Converting the design of the CM into a physical
model offers a straightforward interpretation of the model.

After these steps, and with a proper definition of the business logic, the next step is Forward
Engineering, which is the auto-generation of a SQL script from the created representation.
This last step is crucial for any database engineer to minimize errors and time spent creating
a database.

From the list of 79 Data Modeling Tools Compared [48] and 20 Best Data Modeling Tools
[49], were selected those that allow the user to perform Forward Engineering, and only
considered tools that continued receiving updates after 2018. They were sorted into four
major product types: Online free tools, Online commercial tools, Desktop free tools, and
Desktop commercial tools. The four product types are able to broadly represent all the
products available today, is well-aligned with the different users’ and enterprises’ needs.

Table 2.1: Modeling Tools

Modeling Tools
Product
Type Name

Online
free
tools
(I)

Dbdesigner.id
https://dbdesigner.id

Onda
http://onda.dei.uc.pt/v3

WWW SQL Designer
https://github.com/ondras/wwwsqldesigner

Online
commercial

tools
(II)

Dbdesigner.net
https://app.dbdesigner.net

dbDiffo
https://dbdiffo.com

GenMyModel
https://www.genmymodel.com

Lucidchart
https://lucid.app

sqlDBM
https://sqldbm.com

Desktop
free
tools
(III)

MySQL Workbench - Community Version
https://github.com/mysql/mysql-workbench

pgModeler
https://github.com/pgmodeler/pgmodeler

Umbrello UML
https://github.com/KDE/umbrello

Desktop
commercial

tools
(IV)

dbSchema
https://dbschema.com

dbWrench
http://www.dbwrench.com

Erwin Data Modeler
https://erwin.com/products/erwin-data-modeler

Navicat
https://www.navicat.com

Oracle SQL Developer Data Modeler
https://www.oracle.com/database/technologies

/appdev/sqldeveloper-landing.html

PowerDesigner
https://www.sap.com/products/powerdesigner-

data-modeling-tools.html

13

https://dbdesigner.id
http://onda.dei.uc.pt/v3
https://github.com/ondras/wwwsqldesigner
https://app.dbdesigner.net
https://dbdiffo.com
https://www.genmymodel.com
https://lucid.app
https://sqldbm.com
https://github.com/mysql/mysql-workbench
https://github.com/pgmodeler/pgmodeler
https://github.com/KDE/umbrello
https://dbschema.com
http://www.dbwrench.com
https://erwin.com/products/erwin-data-modeler
https://www.navicat.com
https://www.oracle.com/database/technologies
/appdev/sqldeveloper-landing.html
https://www.sap.com/products/powerdesigner-
data-modeling-tools.html

Chapter 2

Another relevant characteristic is that some tools have a visual representation of the con-
ceptual data model, but others only show the logical data model. However, others have
both types of visualization. On the one hand, the logical data model only describes the
data and its relations. On the other, the physical data model displays’ table structures,
including column name, data type, and the constraints, such as PK, FK, and Unique (UQ),
represent the relationships between tables.

In the following subsections, is performed a qualitative analysis of the selected tools. It
is provided a brief description of the key features, such as the release year; real-time col-
laboration options; generation of the physical model; the presence of Reverse Engineering
(auto-generation of ER from SQL) and Forward Engineering ; supported database engines
and data types; different constraints; the presence of CM; finally, the pros and cons are
analyzed.

Online free tools

Online free tools work on every platform, receive constant updates from the community,
and do not require installing the software. Also, every developer can contribute to any of
these projects.

Dbdesigner.id

Dbdesigner.id is a database design tool for web developers and beginners, which started in
2019 under MIT License as a hobby project and is continuously under construction. The
authors’ goal was to make database management accessible to everyone. They developed
it in Javascript, HTML, and CSS. To use Dbdesigner, they require creating a new user
account. With this tool, it is possible to share a link with a project contributor to work
simultaneously. It does not allow for a CM design. The tool does not provide reverse
engineering, and only works with MySQL. For each column, the user can choose among
different types (tinyint, smallint, bigint, int, bigint, float, double, datetime, date, times-
tamp, char, varchar, binary, blob, text, json). It enables an option to specify constraints
such as PK, FK, NN, UQ, and AI. It is also possible to set a default value for each entry in
a table. The user can select the referencing table and column name to create a relationship.

Pros: Link sharing for collaboration.

Cons: Needs registration and only uses MySQL.

Onda

Onda is a database modeling tool developed by the DEI community, with the first version
released in 2014, developed with Javascript, HTML, and CSS. Also, it has fast loading
times. The tool does not require any configuration, but there is no real-time collabora-
tion possibility. With Onda, it is possible to draw conceptual databases and visualize the
physical model. There is no reverse engineering option, but it is possible to perform for-
ward engineering for the most famous database engines like PostgreSQL, MySQL, Oracle,
MariaDB, and SQLite. Each column can have different types, such as boolean, integer,
float, date, character, varchar, text, or BLOB. It is possible to add constraints for each
column, such as PK, NN, AI, Check (CH), and UQ. The FK are automatically added in
the physical model through the designed relationships.

Pros: Zoom in/out, possibility to export the CM into different database engines.

14

State of the art

Cons: Some bugs on the physical model and script generation.

WWW SQL Designer

Released in 2005, WWW SQL Designer allows users to create and export data models
to SQL scripts. The interface has a mini-map for fast navigation. It does not require
configuration, does not have real-time collaboration or representation of the CM. With
this tool, it is possible to perform forward engineering for the MySQL database engine,
but it is impossible to perform reverse engineering. It supports many database constraints,
such as PK, FK, UQ, NN, and AI. There are different data types such as int, decimal, char,
binary, BLOB, date, and time.

Pros: Many data types, and drag-and-drop features.

Cons: No real-time collaboration, no representation of the CM, and only exports MySQL
scripts.

Online commercial tools

This subsection will introduce the online commercial tools. Because they work online, it is
possible to use them on every platform. It is necessary to get a subscription or activation
key. Otherwise, it is limited, where the features are only available for a short period or
with narrow options.

Dbdesigner.net

Since 2006, Dbdesigner.net is a database schema designer for data modeling. The table
representation is clean and has different colors for each table entry. Dbdesigner does not
require any configuration to use it. It is possible to share the database design with other
users to work simultaneously on it. This tool does not provide the visualization of the
databases’ CM model. Dbdesigner also offers a reverse engineering option. Besides it,
forward engineering enables code export for engines like MySQL, Microsoft SQL Server,
PostgreSQL, Oracle, and SQLite. This tool has distinct features that make it unique, such
as a mini-map for fast navigation, keyboard shortcuts, instant save with history, copy and
paste, undo and redo, and notes and comments. It supports data types such as binary,
boolean, date, decimal, float, integer, and varchar. The constraints are: PK, FK, NN, AI,
and UQ.

Pros: Developers can work simultaneously, has several database design templates, features
as instant save, undo and redo, easy-to-use interface. Also, it enables reverse engineering.

Cons: No representation of the CM.

dbDiffo

Released in 2014, Dbdiffo is a database modeling tool similar to Onda. Before using the
tool, it is necessary to specify the model name and choose the database engine for script
generation. With Dbdiffo, it is impossible to do a real-time collaboration, and it does
not provide the CM design. This tool does not allow reverse engineering, but regarding
forward engineering, it is possible to export scripts for database engines like IBM DB2,
Microsoft SQL Server, MySQL, Oracle, and PostgreSQL. The tables’ columns may be
bigint, binary, bit, blob, char, date, datetime, decimal, double, float, integer, longblob,

15

Chapter 2

longtext, mediumint, mediumtext, numeric, smallint, text, time, timestamp, varchar, or
year. Regarding the constraints, it is possible to define PK, FK, NN, and AI.

Pros: History toolbar, and unlimited undo.

Cons: No real-time collaboration and no reverse engineering.

GenMyModel

Released in 2012, GenMyModel speeds up the design of software architecture and business
processes. It is easy to add new entities and create relations between them because of its
interface and the provided documentation. It is necessary to log into the application via
GitHub or Google account, create a new diagram, and select a Relational Database. It
is possible to create a database from scratch or select an existing project from the cloud.
GenMyModel has real-time collaboration with a chat and also allows the creation of the
CM, since it has its base in the UML. The supported database’s engines are Apache Hive,
Oracle, MySQL, and PostgreSQL. This tool supports different data types, such as boolean,
binary, character, date, float, integer, time, or varchar. The tool can auto-generate PDF
and MS Word documents based on custom templates and export diagrams to GitHub. The
developers can use the open API and integration functions to build integrations for testing
or code proofing. Regarding the constraints, it is possible to define PK, FK, NN, CH, and
UQ.

Pros: Real-time team collaboration features, it auto-generates the documentation of the
data models.

Cons: If using the free version, it only provides basic features and limits the design to 20
objects, including not only the tables, but also each column and relationship.

LucidChart

Released in 2008, Lucidchart is a powerful tool, it has a free version, and also offers a trial
to explore its full potential. It is unnecessary to do any configuration before using the
tool. Lucidchart has team collaboration, is based in the UML, and allows CM design. It
is not possible to perform reverse engineering. Forward engineering is possible to several
database engines such as MySQL, PostgreSQL, Microsoft SQL Server, and Oracle. Each
column may have any data type introduced by the user, later converted into the specific
database engine data types. As in other tools, it is possible to choose from the list of
existing types. The constraints are PK, FK, NN, and AI.

Pros: Real-time collaboration feature, and different templates.

Cons: The user must know the specificities of the database engine data types because it
is possible to insert any string in the data type field.

sqlDBM

Released in 2017, sqlDBM has a free version that comes with limited features, and it is
possible to try the full version for 14 days. This design tool only requires configuring the
database type, and it does not offer CM design. There is also a team collaboration tool.
It is impossible to perform reverse engineering, but forward engineering allows to export
the script to Microsof SQL Server, MySQL, Snowflake, Amazon Redshift, PostgreSQL,
and Azure Synapse Analytics. Each column attribute can be of the type bigint, bigint
unsigned, binary, bit, blob, char, date, datetime, decimal, double, double unsigned, float,

16

State of the art

integer, numeric, text, time, timestamp, varchar, or year. Also, it is possible to specify the
constraints PK, FK, NN, AI, and UQ.

Pros: This tool has forward engineering and team collaboration possibilities. Little tuto-
rial, in the beginning, explaining functionalities, no need to sign-up. "Undo" and "redo"
options also present.

Cons: No CM design.

Desktop free tools

In this subsection, are analyzed four desktop free tools. These require installation, and
as make part of the open-source community are free to use, and every developer can con-
tribute to their development.

MySQL Workbench - Community Version

Created in 2002, MySQL Workbench is an application used to manage and design a
database schema. The open-source version has a GPL license with a GitHub repos-
itory. The significant differences between Community and Enterprise versions are the
non-presence of Schema & Model Validation, automated documentation of databases, and
non-existence of firewall specification rules. Before working with the tool, it is necessary
to set up the connection to the existing database. Otherwise, it is impossible to export
the MySQL script resulting from the establishment of tables and relations. MySQL Work-
bench does not have a real-time collaboration feature, but has the capacity to design the
CM. There is a possibility to reverse and forward engineer for MySQL Server databases.
Different categories organize the entity types like numeric, characters, time, geometry, and
others, such as bits or boolean. The number of constraints is also considerable, it enables
an option to insert PK, FK, NN, UQ, AI, Binary, and .

Pros: Unlimited "Undo" and "Redo" options.

Cons: Only available for Windows machines and no real-time collaboration. Also, neces-
sity to set up the connection to the existing database.

pgModeler

Created in 2006, pgModeler is a database modeling tool designed for PostgreSQL databases.
Despite the need to pay for the compiled version, it is possible to get the open-source
version and compile it manually. The tool has different colors to help visualization. If
there are missing functionalities, it is possible to create new extensions and contribute to
open-source code development. It is unnecessary to make any configuration before using
the application. The tool does not have an option for real-time collaboration, and it has the
feature to design the CM. It also provides reverse and forward engineering for PostgreSQL
databases. pgModeler has a database management module where it is possible to run
SQL commands, explore the objects, and handle data. It has distinct entity types like
bigint, bit, bool, char, date, decimal, float, int, json, money, text, time, and varchar. Also,
different constraints such as PK, FK, UQ, Exclude, CH, AI and NN are present.

Pros: It is possible to collaborate on the tool.

Cons: Only supports PostgreSQL database engine.

17

Chapter 2

Umbrello UML

Released in 2006, Umbrello UML is a UML diagram program developed by an international
free software community. This tool does not require any configuration. It is not possible
to perform real-time collaboration. It has a feature to design conceptual data models. It
is impossible to reverse engineering, but the forward engineering option allows generating
SQL scripts for MySQL and PostgreSQL. Each table column can have different types, such
as bool, char, double, float, int, or string. And there are different constraints: PK, FK,
AI, UQ, and NN.

Pros: Feature for CM.

Cons: Limited number of databases to export scripts, and no real-time collaboration.

Desktop commercial tools

In this subsection, we analyze desktop commercial tools. We chose these according to
Google Trends, since the tools number in this product type is high. For us to consider a
tool, it had to be googled at least ten times per week, from 2004 until 2021, worldwide, and
we found seven desktop proprietary tools matching the criteria. To use either tool, first, it is
necessary to install it on the machine and then either try a free trial or buy the full version.

dbSchema

Released in 2016, dbSchema does not require configurations. dbSchema cannot provide
a conceptual data model, neither exists real-time collaboration. It has both reverse and
forward engineering that works with all relational databases, including SqlServer, SAP
Adaptive Server, Oracle, MySql, Ingres, Informix, Db2, Derby, Firebird, Frontbase, Cache,
Pervasive, PostgreSQL, and Sqlite. Like all the previous tools, it allows adding different
data types to each column, like blob, boolean, char, date, double, float, int, json, real, text,
varchar. Farther, the constraints are PK, FK, NN, and AI.

Pros: The tool has both reverse and forward engineering for many database motors.

Cons: No real-time collaboration.

dbWrench

dbWrench is a multi-platform database design and synchronization software, released in
2004, and does not require any configuration. dbWrench does not support the design of the
CM and has no real-time collaboration. The reverse engineering does not exist in this tool,
and the forward engineering tool generates SQL scripts for Microsoft SQL Server, Oracle,
PostgreSQL, and MySQL. It is possible to connect to a database and run the code for table
creation. It offers some default column templates that save time creating tables. When
adding a column, there is a possibility to specify data types like binary, blob, bit, boolean,
char, date, decimal, double, float, json, number, real, time, varchar. The constraints are
PK, FK, NN, and AI.

Pros: Reverse and forward engineering for several databases engines.

Cons: No real-time collaboration.

18

State of the art

Erwin Data Modeler

Founded in 1988, the platform allows creation and maintenance of data warehouses and
databases. This tool provides several tutorials to help understand how to do data modeling.
Financial services, healthcare, critical infrastructure, and technology companies use Erwin
Data Modeler. The tool does not require any configuration, and does not have an option of
real-time collaboration. Erwin provides a possibility to design the conceptual data model.
It only has forward engineering that supports database engines such as Oracle, MySQL,
IBM DB2, SAP IQ, and Teradata. The different data types for columns in this tool are
char, integer, date, boolean, real, and float. The tool has constraints such as PK, FK, NN,
AI, and UQ.

Pros: Supports several database engines for forward engineering.

Cons: It is necessary to fill in a form to try the trial version, but there is no guarantee that
the application will be accepted. The local version of the tool doesn’t work on Mac OS, and
it is necessary to use the cloud version. No real-time collaboration, and reverse engineering.

Table 2.2: Comparison of different tools

Product
Type Tool name Characteristics

Open
source Online Supported databases Supported

OS Constraints CM
design Free Licence

I
Dbdesigner.id 3 3 MySQL Windows,

Linux, macOs PK, FK, UQ, AI, NN 7 3 MIT

Onda 3 3
MySQL, postgreSQL, MariaDB,

Oracle, SQLite
Windows,

Linux, macOs PK,FK,NN,CH,AI,UQ 3 3 CCANCSAIL*

WWW SQL
Designer 3 3

MySQL, sqlLite,
Oracle, PostgreSQL,

mssql, web2py

Windows,
Linux, macOs PK, FK, UQ, AI, NN 7 3 BSD-3-Clause

II

Dbdesigner.net 7 3
MySQL, Microsoft SQL, PostgreSQL,

Oracle, SQLite
Windows,

Linux, macOs PK, FK, UQ, AI, NN 7 7 Proprietary

dbDiffo 7 3
IBM DB2, MS SQL Server,
MySQL, Oracle, PostgreSQL

Windows,
Linux, macOs PK, FK, NN, AI 7 7 Proprietary

GenMyModel 7 3
Apache Hive, Oracle,
MySQL, PostgreSQL

Windows,
Linux, macOs PK, FK 3 7 Proprietary

Lucidchart 7 3 MS SQL Server, MySQL, Oracle Windows,
Linux, macOs PK, FK, NN, AI 3 7 Proprietary

sqlDBM 7 3

MS SQL Server, MySQL, Snowflake,
Amazon Redshift, PostgreSQL,

Azure Synapse Analytics

Windows,
Linux, macOs PK, FK, NN, AI 7 7 Proprietary

III

MySQLWorkbench
Community Version 3 7 MySQL Windows PK, FK, NN, UQ, AI,

Binary, Unsigned 3 3 GPL

pgModeler 3 7 PostgreSQL Windows,
Linux, macOs PK, FK, UQ, E, CH 3 3 GPL

Umbrello UML 3 7 mySQL, PostgreSQL Windows,
macOs PK, FK, AI, UQ 3 3 LGPL

IV

dbSchema 7 7

SqlServer, SAP Adaptive Server, Oracle,
MySql, Ingres, Informix, Db2, Derby,

Firebird, Frontbase, Cache,
Pervasive, PostgreSQL, SQlite

Windows,
Linux, macOs PK, FK, NN, AI 7 7 Proprietary

dbWrench 7 7
Microsoft SQL Server, Oracle,

PostgreSQL, MySQL
Windows,

Linux, macOs PK, FK, NN, AI 7 7 Proprietary

Erwin Data Modeler 7 7
Oracle, MySQL, IBM,
DB2, SAP IQ, Teradata

Windows,
Linux, macOs PK, FK, AI, NN 3 7 Proprietary

Navicat 7 7
MySQL, Microsoft SQL Server, Oracle,

PostgreSQL, SQLite, MariaDB
Windows,

Linux, macOs PK, FK, UQ, AI, NN 3 7
Proprietary/
Shareware

Oracle SQL Developer
Data Modeler 7 7

Oracle, DB2, MySQL,
and Microsoft SQL Server MySQL

Windows,
Linux, macOs PK, FK, UQ, AI, NN 3 7 Proprietary

PowerDesigner 7 7
Oracle, PostreSQL, IBM DB2, SQP IQ,

Microsoft SQL, Teradata Windows PK, FK, UQ, AI, NN 3 7 Proprietary

Constraints meaning: PK - Primary Key; FK - Foreign Key; UQ - Unique; AI - Auto Increment; NN - Not Null; E - Exclude; CH - Check; U - Unsigned
*Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Navicat

Navicat is proprietary software created in 2002 and provides a mini-map for fast navigation.
It allows adding colors to tables, thus making them more visually appealing. This tool does
not require any configuration and does not have real-time collaboration. It is a powerful and
cost-effective database design tool that allows designing CM. It allows performing reverse
and forward engineering processes. This tool allows creating data models for MySQL,

19

Chapter 2

Microsoft SQL Server, Oracle, PostgreSQL, SQLite, and MariaDB databases. It has several
data types, such as blob, boolean, integer, varchar, date, and timestamp. For the data
constraints, there are PK, FK, NN, AI, and UQ.

Pros: Performs reverse and forward engineering.

Cons: No real-time collaboration.

Oracle SQL Developer Data Modeler

They released Oracle SQL Developer in 2006, and it is an integrated development en-
vironment that simplifies the development and management of Oracle Databases. It is
unnecessary to do any configuration. This application permits conceptual data modeling.
Although, it does not have real-time collaboration. The application allows performing
forward engineering for the Oracle Database engine. It supports managing the Oracle
Database performance, security, storage, and settings. The tool has different data types
such as blob, char, decimal, float, date, and timestamp. There is the possibility to define
PK, FK, AI, and UQ constraints.

Pros: Quick loading time, and the existence of a tutorial that explains how the tool works.

Cons: Only supports Oracle databases.

PowerDesigner

PowerDesigner is a collaborative enterprise modeling tool, released in 1989 with the name
of "AMC*Designer" and is currently owned by SAP. It is a modeling tool for easy visu-
alization, understanding, and management of the data in a project. It is unnecessary to
make any configurations. PowerDesigner has real-time collaboration, and it is possible to
implement a CM. Also, it has multiple database connections to model the data. The tool
also offers reverse engineering. However, forward engineering allows working with the most
popular data management systems, such as Oracle, PostgreSQL, IBM DB2, SQP IQ, Mi-
crosoft SQL Server, and Teradata. This tool only works on Windows OS. PowerDesigner
allows creating multiple entities at once and saves a lot of time. The present data types
are integer, decimal, money, boolean, characters, text, date, and timestamp. For the data
constraints, there are PK, FK, NN, AI, and UQ.

Pros: Has real-time collaboration, and several database engines for forward engineering.

Cons: Only available for Windows, and no reverse engineering.

In this section, was performed a qualitative evaluation of each tool by presenting concise
descriptions and pros and cons. Table 2.2 displays a summary of the fundamental charac-
teristics of each. In the following section, it is explained the evaluation method. And the
scoring assessment. Hence, producing an objective analysis.

2.5 Tools Evaluation

Tools Evaluation is performed using a combination between Business Readiness Rating
(BRR) and OSSpal methodologies, as explained in the scientific paper, already submitted
for revision, in the end of this document. To avoid repeated text, it was decided that the
new methodology and explanation of the punctuation would not be in this part of the text.

20

State of the art

2.6 State of the art conclusions

This Chapter is an introduction to the EC and CC paradigms, for those who have little or
none notions about these topics. One of the most important conclusions to be drawn from
here is that the Edge and Cloud should exist together, as a compliment to one another, as
it will be in this extended application. The data modeling plays an essential role in any
system development or database design processes. Within the scope of this work will be
used the ER data model, because it is the most widely used model. The analysis of data
modeling tools was performed with help of PhD student Gonçalo Carvalho, who adapted
the evaluation methodology and made the calculations, Professor Vasco Pereira, Professor
Bruno Cabral and Professor Jorge Bernardino. This analysis will help database architects
to choose the best tool to perform their projects, according their needs.

21

This page is intentionally left blank.

Chapter 3

Planning

In order for any project to be successful, it must be previously planned and analyzed, to
have a clear view of the final product. Planning the software development process is a
crucial step. It includes project requirements gathering, work planning, product design,
and risks identification. This chapter explains the planning of this internship. In Section
3.1 is explained what methodology was adopted in the development of the thesis, also how
the work was managed. In Section 3.2 is explained how the work was divided and the
duration of each task. In Section 3.3 is explained how the risk management works, the
project success criteria and are presented risks associated to this work.

3.1 Process Management

For the development of this thesis was adopted an Agile methodology. This methodology
argues that the development process should seek client satisfaction through continuous
deliveries of the software, by constantly keeping in touch with the client [50]. In this
specific case, the client is referred as the supervisors. The agile methodology is unique due
to the 12 principles it has [51]:

1. The highest priority is to satisfy the customer through early and continuous software
delivery;

2. The changes in requirements are welcome, even late in development. Agile processes
harness change for the customer’s advantage;

3. Deliver working software frequently, from a couple of weeks to a couple of months;

4. Business people and developers must work together daily throughout the project;

5. Build projects around motivated individuals;

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation;

7. Working software is the primary measure of progress;

8. Agile processes promote sustainable development;

9. Continuous attention to technical excellence and good design enhances agility;

10. Simplicity – the art of maximizing the amount of work not done is essential;

23

Chapter 3

11. The best architectures, requirements, and designs emerge from self-organizing teams;

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

At the beginning of the second semester, were defined project requirements, and also
were designed low-level mock-ups. Since this work follows an incremental methodology,
the defined requirements could be changed. This means that new requirements could be
added. Also, the requirements that made little sense at some stage of the project could be
removed.

It was defined since the beginning that there would exist meetings every week, via Zoom,
between the supervisors and the intern. Apart from that, each month it was filled a doc-
ument with the project progress. This document included information such as developed
work and planned work for the next month. Each month can be called a sprint, since it
is treated "as a project with a month’s horizon" [52].

3.2 Work Planning

The present thesis is divided in two semesters. In the first semester, the focus is mostly
on bibliographic research concerning Edge Computing (EC), data models, data modeling
tools, initial study of the tools, and decision and specification of the new functionalities
to implement, explained in Chapter 4. In the second semester, the gained knowledge is
applied on the requirement specification, implementation of functionalities, results tests
and analysis.

Table 3.1 shows the estimated and real times for the project parts during the two work
semesters.

Table 3.1: Masters Thesis Estimated and real work times

Task Name Estimated time
(weeks)

Real time
(weeks)

1 Bibliographic Research 4 4
2 Analysis of data modeling tools 12 20
3 Familiarization with the modeling tool 3 2
4 Specification of the requirements and extension of the data modeling tool 10 12
5 Project tests and results analysis 4 4
6 Writing of the Masters Thesis 23 23

Tasks

1. Bibliographic Research

This task encompasses an analysis of the state-of-the-art on EC and different Data
Models suitable for EC Paradigm, starting in September 2020 and with a duration
of the first semester.

2. Analysis of data modeling tools

This task started with the research on many Data Modeling Tools and writing a
comparative scientific paper on the existing tools and understanding which one is the
most suitable for a data modeler to use. It started in October and had a duration of
9 months.

24

Planning

3. Familiarization with the modeling tool

We can divide this task into two different stages. The first stage is code familiar-
ization, by correcting an identified Onda [2] problem. The second stage was the
specification of requirements and their implementation to present on the interme-
diate evaluation. A drop-down menu was added to the navigation bar, to select
between different table types and also implemented two new types of tables (facts
table and dimension table). In Chapter 6, are provided the details about problem-
solving and familiarization with the code. This task occurred between December and
mid-January.

4. Specification of the requirements and extension of the data modeling tool

In this stage, the project requirements were collected and later implemented following
an agile methodology. Also in this step were designed low level mock-ups, which suf-
fered changes during the project implementation. At the end of the second semester,
it is expected to be possible to draw an extended Entity Relationship (ER) database
model on the Edge and the Cloud. These models must have data aggregation func-
tions to gather data from the Edge and transfer them to a Data Warehouse placed
on the Cloud. This work duration is of about five months.

5. Project tests and results analysis

Tool testing in a defined use case and results analysis. The duration of this step was
of approximately one month.

6. Writing of the Masters Thesis

The writing of the Masters’ Thesis started in October 2020 and is a continuous work.

In the Figure 3.1 appears the Gantt chart to illustrate the work progress during develop-
ment of this thesis. To each row corresponds a task from the previous list and its duration,
in weeks.

Figure 3.1: Work progress, with each month divided in sections of 2 weeks

3.3 Risks Management

In this section is explained the project success criteria and how it can be achieved. There
are also identified, evaluated and it is defined a risk mitigation process, that will prevent
the negative impact during this thesis execution.

A risk is an event that may have a negative impact on the project execution. Risk Man-
agement is the process of identifying, evaluating and responding to mentioned events, in
order to handle first the risks with greater probability of occurrence, or with highest impact
(highest loss) [53]. The risks are identified by their ID, description, impact on the project,
scale of the impact, and their probability.

25

Chapter 3

There does not exist a project without risks, and this work is no exception. In this section,
the main risks are identified before they become problems and affect the work. After
risk identification, it is important to follow the mitigation plan in order to minimize the
occurrence of the risks.

3.3.1 Project Threshold of Success

Any project is considered successful when it is completed at time, cost (which is the same as
time in this work) and according to the intended scope [54]. The intended scope is a working
prototype with successful test results and all the "Must" requirements implemented.

3.3.2 Risk Analysis

When a risk is identified, it must be categorized, accordingly to a probability to occur and
the impact it may cause to the project. This is important in any project management
environment, in order to save time and resources in risks that have low impact or low
probability to occur, and focus on the most important things.

A risk is defined by the following entities:

• ID - Identifies the risk, to differentiate one risk from another;
• Description - Describes the problem that can occur;
• Project impact - What will happen, in case the risk occurs;
• Impact scale - In case of the occurrence, the impact it will have in the project

execution;
• Probability - Probability of risk occurrence.

Impact Scale

• High - Extreme event, means large delays;
• Medium - Large impact, but can be managed with effort, using mitigation plan;
• Low - Minor impact on the project schedule.

Probability Scale

• High - High probability of occurrence;
• Medium -Medium probability of occurrence;
• Low - Low probability of occurrence.

3.3.3 Identified risks and mitigation strategies

Tables 3.2, 3.3, 3.4 and 3.5 display the identified risks, accordingly to the previous spec-
ifications. The four main risks of this work are changes in project requirements, poor
documentation, failure to deliver the work on defined time, and technology risks. Below
each table it is explained the mitigation strategy used to overcome the issue. It is also
explained the impact and probability scale of the identified risks.

26

Planning

Table 3.2: Risk 1 - Changes in requirements

ID Risk 1
Description Changing requirements

Project impact
Changes to the schedule
Overloaded sprints
Abandoned tasks

Impact Scale Medium
Probability High

As the project follows an Agile methodology, the risk of adding new requirements became
a constant problem during the second semester of the project development, this is why
the probability of this to happen is high. Every time this happened, it was analyzed the
impact it would have on the project execution and if the changes were worth the effort.
This mitigation strategy guaranteed that the sprints would not get overloaded and that all
the tasks were executed properly and in time. The impact scale is defined as medium, but
it also varies from one requirement to another.

Table 3.3: Risk 2 - Poor documentation

ID Risk 2

Description Poor documentation, leading to problems to understand
the code, the project structure and the functionalities

Project impact Deliver wrong results
Delays on project delivery

Impact Scale High
Probability Low

Because an existing tool without documentation was extended, it was important to not
repeat the same mistake, which means that this risk did not became real. Every peace of
code was commented, in order to avoid that further versions would suffer from the same
problem. This is the reason why the probability of occurrence of this risk is low. The poor
documentation has a high impact on the project, because it is normal that after some time
even the developers can forget how some functionalities are implemented.

Table 3.4: Risk 3 - Failure to deliver on time

ID Risk 3
Description Failure to deliver the defined tasks for a sprint in time

Project impact

Delays in project implementation
Uncompleted tasks
Client dissatisfaction
Bad working atmosphere

Impact Scale High
Probability Medium

This risk became real in different points of the second semester of this thesis, during the
extensions of the data modeling tool. This is the reason why the probability to occur is
defined as medium. The impact scale of this risk is high, this is why it had to be mitigated
properly. In the weekly meetings the undone tasks were discussed to be done differently,
simplified or even discarded if not important.

27

Chapter 3

Table 3.5: Risk 4 - Technology risks

ID Risk 4

Description

Technology risks - as the goal of the project is to extend an
existing tool, there is a need to first understand the project
structure, and evolving technologies, and continue to develop
using the existing project libraries

Project impact
Deliver wrong results
Overloaded sprints
Delays in project implementation

Impact Scale High
Probability Medium

The technology risks occurred in different points of the development process, which leads
to medium probability scale. This could also have a high project impact. To mitigate this
risk, the amount of research and study was higher and constant, to avoid delayed deliveries
and overloaded sprints.

3.3.4 Risks Matrix

In this subsection is referred a Risks Matrix. This technique helps visualizing their inci-
dence, in order to pay more attention to the most critical risks, before they become a real
problem during the project execution.

In the previous subsection were identified four risks:

• Risk 1 - Changes in requirements and priorities;
• Risk 2 - Poor documentation;
• Risk 3 - Failure to deliver on time;
• Risk 4 - Technology risks.

Table 3.6: Risk Matrix

Probability
Low Medium High

High R2 R3
R4

Medium R1Impact
Low

As it is possible to see in Table 3.6, the risks that deserve more attention in this work
are R1, R2, and R3, located in the orange part of the matrix. Although the risk R2 is
located in the green zone, it should not be discarded, but the amount of paid attention is
also less than the previous three.

After this analysis, the risks were properly mitigated and always minimized, which lead to
a successful project execution.

28

Planning

3.4 Planning conclusions

The software development process planning is a crucial step in any project, and should
not be underestimated. This work was developed using Agile methodology, explained in
Section 3.1. The initial work plan suffered changes and the project was not concluded in
the end of June as expected, but in the start of September. This required to change the
work plan and adjust it to the new deadline. The risks management part helped avoiding
the risks to become the true, and was successfully followed. This thesis is an example of a
good work planning and its importance.

29

This page is intentionally left blank.

Chapter 4

Requirements Specification

This chapter discusses the Functional and Non-Functional Requirements of the new version
of ONDA.

The definition of this type of requirements is essential in the initial phase of any project.
Requirement specification makes it clear and easy to understand the problem that needs
to be solved and find the best approach to do it. Each requirement has a number, a
description, and a priority.

4.1 Functional Requirements

A functional requirement is any requirement which specifies what the system should do.
They appear better explained in the Table 4.1.

For the requirement prioritization it was used the MoSCoW scale [55], in order to keep the
deadline. MoSCoW initials stand for:

• Must have - essential requirements, where there is no point in delivering the project
without them;

• Should have - important requirements but if not implemented, the system can be
still used;

• Could have - desirable requirements that could be implemented if don’t affect the
deadline of the project;

• Won’t have - not implemented requirements during the project execution, due to lack
of resources/time but can be implemented in the future.

31

Chapter 4

Table 4.1: Functional Requirements with an identifier, description and defined priority

Functional
Requirement

No.
Function Requirement Description Priority

FR 1 User should be able to create two layers, first representing Edge and second
representing Cloud. Must

FR 2 When one of the layers is selected, the new entities must be added to it.
The entities can not transit between layers. Must

FR 3 User should be able to specify the layer name, database engine, and database name
of each of the layers’ databases Must

FR 4 User should be able to specify each database engine language (mySQL or postgreSQL) Should
FR 5 User should be able to select the data warehouse type (single or star) Should

FR 6 User should be able to create a new data entity ("Data Summary"), which
aggregates the selected information from the Edge Must

FR 7 Allow users to select the data he wants to add to the new entity Must

FR 8 User should select a mathematical function he wants to apply on
the selected data Must

FR 9 Allow user to select a time to update the database, and the time window between
the data collections Must

FR 10 User should be able to visualize the new table properties Must
FR 11 Allow user to delete a field of the "Data Summary" table Must

FR 12 Allow user to change the function to apply on the selected data of the
"Data Summary" table Should

FR 13 Allow users to connect the tables from different layers visually, with links Must

FR 14 When typing the field name to add to the "Data Summary" table, there should appear
an autocomplete dropdown with the available options, to minimize the errors Should

FR 15 Generate physical representation of the database Must

FR 16 The physical view of "Data Summary" entity should have the function of the selected field,
field name, selected dimensions and its fields Must

FR 17 The application should generate the final Structured Query Language (SQL) script Must

When all the Functional Requirements with "Must" priority are implemented, the appli-
cation should follow the flow from the Fig. 4.1.

Figure 4.1: ONDA Application Flow after implementation of "Must" Requirements

The first step is to create the Edge layer and add this layer properties such as its name
and the database name. The second step is to select this layer and create new entities and
to add the respective fields to the tables. It is also possible to upload a previously saved
Entity Relationship (ER) model to this layer. In the third place, it is necessary to create

32

Requirements Specification

the second layer and also add the properties, as mentioned previously. The fourth step is
to add a new entity, named "Data Summary". In the fifth place is to add the facts (entries
from the Edge layer tables) to this new entity, aggregation functions (maximum, minimum,
standard deviation, among others) that user wants to apply on the data and choose the
starting point to collect the data (time window). After this step, it is necessary to click on
the Physical View button, to generate the physical representation of the database. The last
step is to click on the Script button, where the application generates the final script with
two separate databases, regarding to the Edge and the Cloud, according to the selected
fields, functions, time, and database properties.

4.2 Non-Functional Requirements

Non-functional requirements are requirements that do not have a specific functionality in
the system, they are requirements that help to obtain the desired solution, specifying the
qualities that the system can have. Some examples of these requirements are scalability,
compatibility, security, and usability.

The goal of this project is to extend an existing tool, so in this new implementation only
the usability was considered.

Usability can be divided into five dimensions [56]:

1. Learnability - how easy is it for users to accomplish basic tasks the first time they
interact with the design;

2. Efficiency - how quickly the user reaches his goals;
3. Memorability - if the user can start using the application again after some time

without using it;
4. Errors - how often users make mistakes;
5. Satisfaction - the user evaluation of the user interface.

The Non-Functional Requirement of usability will be tested and validated in Section 7.2.
The other requirements will not be tested because this project was not designed to have
capacity to support significant number of users simultaneously, nor to be compatible with
mobile devices. There is no sensitive information involved in the platform, so the security
is not a requirement as well.

4.3 Mock-ups

The goal of creating Mock-ups is to align the mentioned requirements with the design of
the application, to save time and effort during the project implementation.

In the beginning of the second semester, after specifying the requirements, the first low-
level Mock-ups were drawn, to better understand the possible final look of the application.
Also, it gave a better notion of the interaction between the user and ONDA application.
These Mock-ups had a general idea of the different layers and the user interface properties
to manipulate the data, as it is possible to see in Fig 4.2. The low-level Mock-ups do not
have to represent every detail, and the changes are applied quickly, unlike the high-level
Mock-ups, where the design is similar to the final product.

On the left side of the figure, it is represented the first layer ("Edge") and its tables. Some
of these entities are connected to the Data Summary entity named "Summary Entity", with

33

Chapter 4

aggregation relationship, represented with a black square, and a line connecting the tables.
In the middle there is the new "Cloud" layer, with a data entity named "Summary_Entity",
which has facts, functions, time window options, and the aggregation connections from the
first layer.

On the right side, it is possible to see a "Properties" panel, regarding the "Summary
Entity". These options include the table name, data warehouse type, which will be only
single in this new implementation, facts properties, which include an input field to add
facts names and associate a function to the fact. Below are the dimensions, the information
in this area is updated after a new "aggregation" relationship, from Layer 1 to Layer 2.
In the bottom are displayed the time options, which include the time field, starting date
from which the user wants to collect the data, time granularity, which is the time window
between data collections and the database refresh rate.

Figure 4.2: ONDA Conceptual View and Data Summary Entity properties Low level Mock-
up

Figure 4.3 displays the High Level Mock-up, which gives a clear idea of how the application
should look in its final version. It is normal that this representation is not final and can
suffer changes, depending on the Clients feedback.

Next will be shown and explained different buttons used in this ONDA implementation.
On the left side it is displayed the button mock-up and on the right side there is the actual
button.

The first button is the one that adds layer properties, as shown in Fig. 4.4. When user
clicks it, the layer properties are displayed on the right panel and it is possible to set the
layer and database names.

Figure 4.5 represents the dropdown option buttons. It is possible to select between multiple
choices when user clicks on them. For example, when user clicks on "Single", appears an
option to select "Single" or "Star" regarding the database type; when user clicks "Min", it is
possible to select the mathematical function regarding the fact, such as "Max", "Average",
"Count" or "StDev". Last, when user clicks on "Hour", appear options like "Day", "Week",
"Month" or "Year", regarding the time window options.

Figure 4.6 refers to the buttons that is necessary to click if the user wants to add a new

34

Requirements Specification

Figure 4.3: ONDA Conceptual View and Data Summary Entity properties High level
Mock-up

(a) Mock-up of the button to add layer properties
(b) Actual button to add layer properties

Figure 4.4: Buttons to add layer properties

(a) Mock-up of the dropdown buttons (b) Actual dropdown buttons

Figure 4.5: Dropdown buttons

35

Chapter 4

fact to the "Summary Entity".

(a) Mock-up of the button to add a new fact (b) Actual button to add a new fact

Figure 4.6: Dropdown buttons

4.4 Requirements Specification conclusions

Requirements Specification is another crucial activity in any software development project.
For this thesis, first were defined 17 Functional Requirements, which followed the MoSCoW
scale of priorities. These requirements will be testes in Chapter 7. Later, were identified
the Non-Functional Requirements and one of them was considered, the usability. Last,
were defined the application mock-ups, to align the requirements with the design. These
mock-ups suffered little changes and the final product is slightly different from the first
idea.

36

This page is intentionally left blank.

Chapter 5

Architecture of the Application

Current chapter discusses the architecture of the application, the technologies used to
implement the Front-End and the Back-End.

ONDA [2] is a database modeling tool created by the Department of Informatics En-
gineering (DEI) community, developed in HTML, CSS and Javascript. The existence of
large number of Javascript libraries and a big online community, made the implementation
easier than it would be without them. The implementation includes new functionalities,
mentioned in Chapter 4.

When a user opens ONDA interface, it is possible to create a new Entity Diagram or open
an already saved one, create tables (entities), add relations between two tables and select
the type of database engine to generate the outcome script.

By adding an entity, the user creates a conceptual representation of the database. The first
field of each added entity is automatically defined as a Primary Key, and can be changed.
The relations between tables can be defined as "zero-to-one", "one-to-one", "zero-to-many"
or "one-to-many", on each side of the relation. The physical representation is a translation
of the conceptual model. The physical model adds the Foreign Key (FK) associated with
the relationships, and may add new tables depending on the type of relationships defined
in the conceptual model. The Structured Query Language (SQL) script is the final result of
the design process. It provides the code, to be imported into a database engine, containing
the instructions represented through the physical model.

Currently, ONDA does not allow to create two distinct databases in the same diagram,
neither it is possible to generate a script that stores and aggregates all the data in the same
place. Because of these limitations, the final product is aimed to generate a SQL script, to
help database architects to create two distinct databases in different physical places. Here
it is introduced the concept of layers, which in this thesis have the name of "Edge" and
"Cloud". The possibility to use both Edge and Cloud services aims to enhance the system
performance.

This Chapter is divided in two Sections. Section 5.1 explains the general application
architecture of both current and new implementations and technologies that will be used
to implement the new solution. Section 5.2 has an explanation of the current Application
Flow that leads to the script and also has the steps to follow in order to produce the new
expected result.

38

Architecture of the Application

5.1 Architecture and Technologies

For the implementation purpose, it was produced a System Architecture Diagram, which
is a good starting point for diagramming the software system, and allows to see the big
picture of the application (Fig. 5.1).

This diagram applies to the existing ONDA implementation, and to the new version.

Figure 5.1: ONDA System Application Diagram

5.1.1 Application Scheme

Front-End

Application Front-End refers to the part that user sees and interacts with. Since the
Front-End of the previous versions of ONDA was all developed using HTML, CSS and
Javascript, the idea was to continue and extend the existing work, only with a goal to
add new functionalities. For the drawing purposes and drag and drop functionalities, it
was used JQuery version 1.12.1 (Javascript library), which has a free version of a library
named joint.js [57].

Back-End

The Back-End refers to all the logic part implemented in the application, from the button
click handlers, to insertion of tables, its properties, and final script generation. For the
implementation of the Back-End logical structure, it was used Node.js, a Javascript runtime
engine. Node allows to run the code on the web browser and receive and send information
between Front-End and Back-End in JSON format, to produce the content on the browser.
The development of Back-End functionalities, as in the original version, was through the
Javascript language.

For this project, there is no need to have a database attached, since all the information

39

Chapter 5

is stored locally on the web server, and as soon as the browser is closed, the information
is lost. This can be prevented by saving the conceptual diagram into a JSON file, which
later can be retrieved and loaded into the application.

5.1.2 C4 Architecture Model

To better understand the application architecture, it was used an existing model with a
graphical notation technique, named C4 Architecture Model [58].

It is composed by four hierarchical levels:

• Context diagrams are the level one and they show the system and its relationship
with users and other systems;

• Container diagrams are the level two and they decompose the system into inter-
related containers. A container represents level one applications or data stores;

• Component diagrams are the level three and they decompose containers into inter-
related components, and relate the components to other containers or other systems
from level two;

• Code diagrams are the level four and they provide additional details about the
design of the architectural elements from level three that can be mapped to code.

Accordingly to the official website of this model [58], the level three and four diagrams
should only be done if the developer feels it adds value. In case of this work the application
already exists, there is no need to identify which components will be used, how they will
be structured, and how they will be interacting with other structural blocks.

Context diagram

The first level of this architecture provides a starting point of the application, showing the
software system and the interactions it has with the world. At this level the detail is not
important, since it is explained in the next levels.

Figure 5.2: ONDA Context Diagram

Figure 5.2 has a User, which is a person who uses the Software System. The Software
System is the highest level of abstraction, it is something that delivers value to the users.
This specific application allows users to draw, visualize and generate SQL script from the
drawing.

40

Architecture of the Application

Container diagram

In the second level of abstraction, the system is "zoomed in" from previous level and
divided in containers. A container is something that needs to be running in order for the
software system to work.

Figure 5.3: ONDA Container Diagram

In the Figure 5.3, the containers are represented as blue rectangles. TheWeb Server delivers
the static content and the ONDA single page application. The Single Page Application
provides all of the ONDA functionalities to users via web browser, it is the Front-End of
the application.

5.2 New ONDA Version

The Application Flow of the new tool version is the same as the existing in the current
ONDA version, as represented in the Fig. 5.4.

Figure 5.4: ONDA Application Flow

First, the user creates tables and relations on the Conceptual View, then it is automatically
generated a Physical View considering this information, and in the last step, it is generated
a Script with the data entities, their properties, and relations.

In the new ONDA implementation, the idea is the same, but the steps to generate the final
script are different from the old version, as Fig 5.5 provides an example.

The application automatically generates a Physical representation of the database from the
Conceptual view. Then, the generated script is different from the normal ONDA version,
because it includes two distinct database configurations, the "Edge Layer" and the "Cloud

41

Chapter 5

Layer" databases, which has a Single "Data Summary" entity, with all the data aggregation
options.

Figure 5.5: Sequence of steps to automatically generate the script

In this new platform version were included different modifications, such as:

• Included a new button to create layers;
• Layer properties menu, where it is possible to change the database and layer names;
• Possibility to add tables to the new layers;
• Created a new "Data Summary" entity;
• Added options menu to the "Data Summary". In this menu it is possible to add/re-

move facts and functions, add/remove time window properties;
• Added new type of relationship - aggregation;
• Created table relationships between different layers, represented by lines and squares;
• Changed the physical view of the "Data Summary" entity;
• Added support to the new data warehouse script.

42

Architecture of the Application

5.2.1 Architecture of the Application conclusions

ONDA is a database modeling tool created by the DEI community. The application can be
divided into two parts, the Front-End (the view), and the Back-End (the logical part). To
represent it better was developed a C4 Architecture Model, composed by four levels, but
only represented by the first two, the other two are optional and big level of detail doesn’t
add much value to this project. The new ONDA version with the new modifications were
also explained in this Chapter. The application architecture is important to identify the
technologies that will be used and how they will interact within the platform and with the
outside world.

43

This page is intentionally left blank.

Chapter 6

Implementation

This chapter shows the most relevant details of the final project implementation part, with
an explanation of major problems that appeared during the development.

The ONDA user interface was build after defining the Functional Requirements and low-
level mock-ups, defined in Sections 4.1 and 4.3. These suffered continuous improvements,
which aimed the most intuitive usability of the application. For this reason, the final result
is not exactly the same as it was defined in the beginning.

In the Figure 6.1 is shown the application version as it was in the beginning of extension.

Figure 6.1: ONDA Interface before extension

6.1 Project Development

This section clarifies the different phases of the project development. This development
can be divided in five parts: Layers, "Summary Entity", Aggregation connections, Physical
Diagram, and Scripts.

The application main screen can be divided in three main parts: the properties bar on
the top of the page, the manipulation canvas, where the user adds new tables and creates
relationships between them, and the table properties tab, where the user adds, removes
and changes the table properties.

45

Chapter 6

6.1.1 Layers

In the first phase, the aim was to introduce a concept of creating a new layer and being
able to add tables to each one of them, where it would not be possible to drag tables from
one side to another. One of the mentioned layers will represent the database placed on
the Edge of the network and the other will represent the data warehouse located on the
Cloud. Figure 6.2 shows the new properties bar, where exists a button to add a new layer
to the application. This button is highlighted in red.

Figure 6.2: Application properties bar

After clicking this button, the application looks like in the Figure 6.3. It divides the
program in two separate layers. To add a table to the respective layer, it is necessary to
select a side and then the entity will be added to it. This concept was implemented with
help of external library named Joint.js, which helps with canvas manipulation and attaches
entities to the pretended side.

Figure 6.3: Two distinct ONDA layers

In the first implementation phase, arose the Risk 4 - Technology risk, which was mitigated
by discarding Requirements with "Should" priority, in order to deliver the application in
time. As this work is an extension of a tool, the problem was to first understand the
previous implementation, regarding the used library and the existing project files and
functions. The rest of the application was developed in Javascript, HTML and CSS, so it
was necessary to continue the implementation using these.

6.1.2 "Summary Entity"

The second phase was the implementation of the "Summary Entity". This entity sum-
marizes all the relevant information that can be selected in the table properties. This
information regards to the field names, aggregation functions ("Min", "Max", "Count",
"Average", "StDev") that apply to each field, dimensions, which are the table names where
the aggregation start, and time properties, as explained in 2.3.

To add this new table, it is necessary to click on the button highlighted in Figure 6.4 and
select "Summary Entity" from the displayed options.

Figure 6.5 displays and example of the "Summary Entity" table and its properties.

46

Implementation

Figure 6.4: Add Summary Entity table

The example table has 12 fields, each of them with a function that applies to it. Each
field starts with its source table name, to indicate where the data is coming from, because
there could exist more than one table with the same field name. For this reason, it is not
possible to see the full length table field.

On the right side of the table are displayed the table properties.

Figure 6.5: Summary Entity table and its properties

It is possible to add more fields, by clicking the "plus" button near "Facts". This function
displays an input field, with autocomplete function, to minimize the amount of errors on
the input, as it displayed in Figure 6.6. When the user selects a pretended field, it is
highlighted with a green color, then it is necessary to press the "check" button.

To change a field function, with a click on the dropdown which has "Min" as default, from
there it is possible to select a pretended function.

Figure 6.6: Autocomplete to add a new table field

The table properties also allow to change the function, without having to delete the field.
Each fact has a function attached to it, then it is necessary to click on the dropdown option
and simply change the function, which updates the system. It is also possible to delete
any field, simply by pressing the "x" button.

47

Chapter 6

6.1.3 Aggregation connections

The third phase was the implementation of the visual connections to represent the aggre-
gation of tables with the "Summary Entity". Once more arose the R4 - Technologies risk,
because it was necessary to use the Joint.js library. This library also helps to create visual
relationships between tables. The R4 risk was properly mitigated, as previously explained
in Chapter 3.

To create this visual connection, it is necessary to click on the button highlighted in Figure
6.7 and select "Aggregation" from the displayed options.

Figure 6.7: Create aggregation relationship

The next step is to select the first table, where the relationship starts. After it, simply
click on the "Summary Entity" table, and the connection is created, as displayed on the
Figure 6.8. This table can aggregate more than one relationships, that appear on table
properties, and later is generated in the script.

Figure 6.8: Aggregation relationships example

As it is possible to see, the connections design are not perfect and will be perfected in the
next versions of this prototype implementation. The line that starts on the tables on the
left goes until the middle of the screen, and after starts in the same point and goes until
the "Summary Entity". This part gave a lot of problems because of the existence of two
layers, and this connection was not easy to achieve.

6.1.4 Physical Diagram

The fourth phase was the implementation of generation of the physical diagram. Without
this step, it is impossible to achieve the last step, which is the automatic generation of the
script.

To generate the physical view of the application, it is necessary to click on the button
named "Physical", highlighted in Figure 6.9.

Figure 6.9: Generate physical diagram

The Physical view is different from Conceptual, because there don’t appear aggregation
relationships, and the information is displayed differently. First appears the summarization

48

Implementation

function, then the field and then the field data type, as it is shown in Figure 6.10. In the
end appear the dimensions and respective fields, which come from aggregations.

Figure 6.10: "Data Summary" physical view example

6.1.5 Scripts

In the fifth and final phase, the script generation was defined. This is the main objective
of the application, and it is very important that the generated script outputs a valid
Structured Query Language (SQL) code. To generate the result, it is necessary to click on
the highlighted button in Figure 6.11.

Figure 6.11: Generate scripts

It is also necessary to specify the layer properties, as shown in Figure 6.12. These properties
include the layer and database names, and database language engine. The user can choose
this last option, but it was not implemented and it was established that the application
will only generate MySQL scripts.

Figure 6.12: Layer Properties example

The final output creates the first layer database, its tables, with respective fields and
relationships. Then, it creates the second layer database, "Summary Entity" table, with the
fields that belong to it. Finally, it generates the events. The events include information with

49

Chapter 6

the start time from when the data is being collected, what data needs to be summarized,
aggregated and inserted in the database, and the time interval between these insertions.

6.2 Additional improvements

Before the actual implementation and extension, the starting point was to resolve a problem
that ONDA had. This would be a good starting point to a better understanding of how
the tool works. The most critical problem was in the generation of the Physical diagram
from Conceptual view, when existed over one weak relation between the tables.

Conceptual View

To explain the existing problem in the tool, Fig. 6.13 will show the difference between the
Conceptual View and the Physical View.

As it is possible see in the Figure.6.13a and Figure.6.13b, the conceptual view of the two
entities presents the information inside the tables and their relationships. This information
is the same, excepting that the Fig. 6.13b has two weak relations, while Fig.6.13a only has
one.

(a) Conceptual diagram with one relation (b) Conceptual diagram with two relations

Figure 6.13: Conceptual View of ONDA tables and its relations

Physical View

After the user creates a conceptual schema, the next step is to generate the physical
diagram. As it is possible to see in Fig.6.14 the "entity_1" of the Fig.6.14b only has two
entries and should have one more. For each existing relation to the same table it should
create a new entry and this did not happen.

In the Fig.6.14b is shown the physical diagram with a problem. The physical table named
"entity_1" is exactly the same as in the Fig. 6.13a, where only exists one relation.

50

Implementation

(a) Physical diagram with one relation (b) Physical diagram with two relations - wrong
version

Figure 6.14: Wrong version of physical diagram

This problem was corrected and the source code was sent back to the Professor. After
this step started the implementation mentioned before in this Chapter. Fig.6.15 shows
how things are in the correct version of ONDA. When a new weak relation is created, a
new entity is added to the related table, as we can see in Fig.6.15b. The table named
"entity_1" has "entity_0_a" and "entity_0_a1", which didn’t happen in the Fig.6.14b.

(a) Physical diagram with one relation (b) Physical diagram with two relations - correct
version

Figure 6.15: Correct version of physical diagram

6.3 Implementation conclusions

The implementation part of this work, apart from the writing this thesis, was one of the
hardest challenges. Once the requirements were outlined and the additional improvements
finished, started the actual implementation, which lasted almost six month. The aggrega-
tion connections required knowledge of an external library, which had to be studied and
tested, the "Summary Entity" with its properties was also difficult to implement. The im-
plementation will be finally tested in the next Chapter, to identify what can be improved
or changed.

51

This page is intentionally left blank.

Chapter 7

Tests

This chapter describes the Functional and Non-Functional tests performed on the developed
software. It is also performed an application validation, with comparison of the generated
and expected scripts, in order to understand if the final product works as it should.

7.1 Functional Tests

Functional Testing is a quality assurance technique for testing software solutions in various
levels to test its functionalities in order to avoid failures. This type of testing is of black
box type, which means that all test cases are created based on the project specifications
and with no knowledge of the implemented code. This way, these tests focus on what the
the solution does, caring with the inputs it takes and the outputs it gives. The tests were
performed on the most important requirements, defined in Table 4.1, with priority Must
Have. In the next Table is displayed an example of a test case in this project.

Table 7.1: Functional Test Template

ID Test ID
Requirement ID Requirement ID to which the test belongs

Title Brief test description

Result Pass in case the test produces an expected result
Fail in case the test produces an unexpected result

A test case is defined by the test ID, the tested requirement ID, a test title, which is the
brief test description and the test result, with its outcome. In the end of each table there
is produced the sequence of the steps to perform the test.

53

Chapter 7

7.1.1 FR1 - Functional Requirement 1

This Functional Test with ID FT1 tests the first Functional Requirement - FR1.

Table 7.2: Test of Functional Requirement 1

ID FT1
Requirement ID FR1

Scenario User should be able to create two layers, first representing Edge
and second representing Cloud

Result Pass, the system has two different layers created

The application has a new button with label "Add Layer", where user clicks to create
it. ONDA already has the first layer created by default, and it is possible to change its
properties. When the button is clicked, appears a message saying "Layer Created" and
the new layer is created with a different color and separation, in order to distinguish the
layers.

7.1.2 FR2 - Functional Requirement 2

This Functional Test with ID FT2 tests the second Functional Requirement - FR2.

Table 7.3: Test of Functional Requirement 2

ID FT2
Requirement ID FR2

Scenario When one of the layers is selected, the new entities must be added
to it. The entities can not transition between layers

Result Pass, different tables were created in respective layer and could
not be dragged between layers

After creating a new layer, the user clicked on the first that was already created and added
a new entity, by clicking on "Add Entity" button, and selected "Entity". Then, the user
added a "Summary Entity". The same procedure was done by clicking on the new layer,
and the tables were added successfully. In the end, when the user tried to drag the tables
from one layer to another, it was not possible.

7.1.3 FR3 - Functional Requirement 3

This Functional Test with ID FT3 tests the third Functional Requirement - FR3.

Table 7.4: Test of Functional Requirement 3

ID FT3
Requirement ID FR3

Scenario User should be able to specify the layer name, IP address, database
engine,database name, and database credentials of the layer 1 and
2 databases

Result Pass, layer properties were added successfully

On the upper left side of the screen, exists a button with a text saying "Layer Properties".
The user clicked on the button, filled in the information with layer and database names,

54

Tests

and clicked the button "Add layer properties". In the bottom of the screen appeared a
message "Layer Properties Added Successfully".

7.1.4 FR6 - Functional Requirement 6

This Functional Test with ID FT4 tests the sixth Functional Requirement - FR6.

Table 7.5: Test of Functional Requirement 6

ID FT4
Requirement ID FR6

Scenario User should be able to create a new data entity ("Data Summary"),
which aggregates the selected information from the Edge

Result Pass, the new entity was created successfully

The user created a new layer, named "Edge", clicked on it and added a new entity named
"Data Summary", through the "Add Entity" button. The table appeared on the screen
and it was possible to see its properties.

7.1.5 FR7 - Functional Requirement 7

This Functional Test with ID FT5 tests the seventh Functional Requirement - FR7.

Table 7.6: Test of Functional Requirement 7

ID FT5
Requirement ID FR7

Scenario Allow users to select the data he wants to add to the new entity
Result Pass, user was able to add all the pretended data to the new entity,

and even delete the unwanted data, without problems

After creating a new data entity, it was possible to add a new field, through the input
present on the table properties. When the user typed the fields he wanted, the application
made suggestions, in order to minimize the errors and help the user. Afterwards, it was
necessary to confirm the field by clicking on the button with a "check" icon.

7.1.6 FR8 - Functional Requirement 8

This Functional Test with ID FT6 tests the eighth Functional Requirement - FR8.

Table 7.7: Test of Functional Requirement 8

ID FT6
Requirement ID FR8

Scenario User should select an aggregation function he wants to apply on
the selected data

Result Pass, it was possible to add a function and change it

When the user selects a field from the input, the default function attached to it is "Min".
It is possible to change to four other functions, such as: "Max", "Average", "Count" and

55

Chapter 7

"StDev". Afterwards, it is necessary to confirm the operation, by clicking on the button
with a "check" icon.

7.1.7 FR9 - Functional Requirement 9

This Functional Test with ID FT7 tests the ninth Functional Requirement - FR9.

Table 7.8: Test of Functional Requirement 9

ID FT7
Requirement ID FR9

Scenario Allow user to select a time field to update the database, and the
time window between the data collections

Result Pass, the time window was selected and appears on the final Struc-
tured Query Language (SQL) script

After adding all the relevant table fields, the user needed to pick which is the time window
field to group the data on, the data granularity, and the time frequency to update the
database. After this, the user clicked on the button with a "check" icon and the time
properties were added successfully.

7.1.8 FR10 - Functional Requirement 10

This Functional Test with ID FT8 tests the tenth Functional Requirement - FR10.

Table 7.9: Test of Functional Requirement 10

ID FT8
Requirement ID FR10

Scenario User should be able to visualize the new table properties
Result Pass, the table properties appear successfully

When the user clicked on the "Data Summary" table, the selected data and time window
appeared successfully. The problem was when the user clicked on more than once on the
table, the dimensions were being duplicated. It was a visual problem, that did not affect
the final script, but made an illusion that the dimensions were being added continuously.

7.1.9 FR11 - Functional Requirement 11

This Functional Test with ID FT9 tests the eleventh Functional Requirement - FR11.

Table 7.10: Test of Functional Requirement 11

ID FT9
Requirement ID FR11

Scenario Allow user to delete a field of the "Data Summary" table
Result Pass, the intended field was deleted

After adding a new field to the "Data Summary" entity, it was also possible to delete the
selected data field and add different information, by clicking on the button with a "x" icon.

56

Tests

There exists more than one delete button, one for each table field, this guarantees that
only the selected field was deleted. The user selected the table by clicking on it, and then
pressing the delete button.

7.1.10 FR13 - Functional Requirement 13

This Functional Test with ID FT10 tests the thirteenth Functional Requirement - FR13.

Table 7.11: Test of Functional Requirement 13

ID FT10
Requirement ID FR13

Scenario Allow users to connect the tables from different layers visually,
with links

Result Pass, the links are added successfully

The user clicked on the first layer, pressed the "Add Relation" button, and selected "Ag-
gregation". Then, selected the table to begin the relation. After, he clicked in the "Data
Summary" entity and created a new "aggregation" relationship. Every time the user
wanted to create a relation between tables, he needs to click on the layer where the first
table is. The test result is a pass, but sometimes the connections are not clear enough.

7.1.11 FR15 - Functional Requirement 15

This Functional Test with ID FT11 tests the fifteenth Functional Requirement - FR15.

Table 7.12: Test of Functional Requirement 15

ID FT11
Requirement ID FR15

Scenario Generate physical representation of the database
Result Pass, the physical view was generated successfully

The user introduced the tables and its relations and clicked on the button "Physical".
The aggregation relationship connections do not appear on the physical diagram, but only
the table fields from the aggregated tables (dimensions), which appear in the "Summary
Entity" table, as it is supposed to be.

7.1.12 FR16 - Functional Requirement 16

This Functional Test with ID FT12 tests the sixteenth Functional Requirement - FR16.

Table 7.13: Test of Functional Requirement 16

ID FT12
Requirement ID FR16

Scenario The physical view of "Data Summary" entity should show the the
selected field function, field name, selected dimensions and its fields

Result Pass, all the information appears as expected

57

Chapter 7

The "Summary Entity" has the selected field names and respective functions and also, as
mentioned in Table 7.13, it does not have the aggregation connections, but possesses the
dimension fields.

7.1.13 FR17 - Functional Requirement 17

This Functional Test with ID FT13 tests the seventeenth Functional Requirement - FR17.

Table 7.14: Test of Functional Requirement 17

ID FT13
Requirement ID FR17

Scenario The application should generate the final SQL script
Result Pass, the application generated a valid script

After adding the layer properties and creating the conceptual and physical schemas, the
user clicked on "Script" button, located on the upper right size of the screen, which gener-
ated the SQL script. This script was validated and will be explained in the next Section.

7.2 Application Validation

In order to validate the application, were produced two proofs of concept. In both of them,
the scripts were also created manually, to validate and compare them.

7.2.1 First Use Case

The first use case refers to a meteorologic data collection related to the city of Coimbra,
from Internet of Things (IoT) sensors installed in Department of Informatics Engineering
(DEI) and from the OpenWeatherMap API. An Edge server gathers this meteorologic data
and then the user aggregates and summarizes these data into a Cloud Data Warehouse.

Figure 7.1: Tables from the Edge

58

Tests

Figure 7.1 displays the tables which collect such data, with fields and their relationships,
while Figure 7.2 displays what information will be gathered on the cloud. The data are
collected from tables "Location_raw_data", which is the actual sensors from DEI and
from "Weather_raw_data", which are the information from OpenWeatherMap. All the
collected data in this use case, are the count of the times that the data appears in a
certain time window, and its average. The data started to be collected on 12/07/21 and
are updated every hour. The data are aggregated between tables "Campus", "Building",
"Room" and "Sensor" from the Edge, and the table "Summary_Entity_0" from the Cloud.

The application produced a script, which was compared with the script produced manually
and was approved by the project supervisors.

Figure 7.2: Data Summary table from the Cloud

The final script that the application produces is located in the Appendix 8.3. The first part
of the script, until the "Cloud data warehouse" comment regards the database located at
the Edge of the network. From this part until the end, it regards the Cloud data warehouse
and the data selection.

It is possible to see that the data is collected from the 12th of july of 2021, with an interval
of one hour between the data.

7.2.2 Second Use Case

The second use case was about a sales shop, represented in Figure 7.3.

In this scenario it is pretended to discover the average amount of money spent by a costumer
in a store in a defined product, as can be seen in Figure 7.4.

This use case produced practically everything right, but the operation "Group by" is done
by the shop_id, because it is the first table of the aggregations. The correct version would

59

Chapter 7

Figure 7.3: Sales Shop Tables from the Edge

Figure 7.4: Data Summary table from the Cloud

have the information grouped by the costumer_id, because its granularity is the lowest.
The initial requirements do not include this issue and it was only discovered in the late
part of implementation, with the only option to leave it for the future work.

The final script that the application produces is located in the Appendix 8.3. The first part
of the script, until the "Cloud data warehouse" comment regards the database located at
the Edge of the network. From this part until the end, it regards the Cloud data warehouse
and the data selection, like in the example above.

It is possible to see that the data is collected from the 12th of august of 2012, with an
interval of one hour between the data.

7.3 Non-Functional Tests

As mentioned in section 4.2, the only Non-Functional Requirement that will be tested
is usability. For this purpose, the application was tested by a database architect, who
pretended to build a data warehouse.

The tests were conducted by one responsible, the facilitator, who asked the database
architect to perform simple actions, without telling explicitly where to click and how exactly
do the operations. In the end, the participant was asked some questions related to the
performance of the application:

• Question: How would you describe your overall experience with the application?
Answer: "The overall experience is good, the application is easy to use and the design
is intuitive. As a database engineer, I would use it whenever I needed, it’s a good
tool."

60

Tests

• Question: What did you like the most about using ONDA?
Answer: "The auto-complete feature, makes it very easy to add new facts and avoid
errors when typing."

• Question: What did you like the least?
Answer: "It was somewhat difficult to create the aggregation connections, there could
exist a manual explaining it."

Tasks list

1. Create a new layer and add layer properties;
2. Add a table to each layer;
3. Add facts to the "Data Summary" entity;
4. Remove facts from the "Data Summary";
5. Create "aggregation" between tables from layer one to the "Data Summary";
6. Generate Physical View;
7. Add time window properties;
8. Generate MySQL script;

In eight tasks, the participant had trouble in the task number five - Create "aggregation"
between tables from layer one to the "Data Summary". This means that the user efficiency
was 87.5%. After the questions and answers, the user was satisfied with the application
and rate it with an eight in ten grade.

7.4 Tests Conclusions

As it is possible to verify from the above tests, all the requirements with priority "Must
Have" were implemented and the project prototype passed successfully on the tests.

During the tests, appeared a problem in FR10 because after creating the "Summary En-
tity", which could induce the user in mistake, when every time the table was clicked on
and the dimensions kept appearing duplicated, as shown in Figure 7.5.

Figure 7.5: "Summary Entity" properties error

61

Chapter 7

The other problem exists in drawing "aggregation" relationships. The connections can get
confusing sometimes, making it difficult to understand what is happening.

The Functional and Non-Functional tests served to validate the application and to identify
what can be improved in the next ONDA versions. The platform was validated because the
generated scripts produced the expected outcomes, and all the indispensable Functional
Requirements passed tests successfully. Two of four Functional Requirements with the
"Should" priority were not implemented, the specification of the database engine language
and the selection of the data warehouse type. On the other side, the changing of the
summarization function and the autocomplete feature were implemented successfully and
work as it is expected.

62

This page is intentionally left blank.

Chapter 8

Conclusions

In this chapter are done the conclusions of the thesis, approaching the acquired experience,
what more could be done in the future and the final considerations.

8.1 Experience acquired

During the first semester of the internship, the work was focused on the research of the
theoretical concepts, writing of the thesis, and the Comparative Analysis of Data Mod-
eling Design Tools scientific paper. In this semester, the research and writing skills were
improved.

In the second semester the writing of the thesis and the scientific paper continued, simul-
taneously with the development of the application. The definition of a good work plan
with risk management techniques and risk mitigation strategies were crucial for the project
success. Then, the requirements gathering and mock-ups drawing helped visualising the
application final look. In this semester the programming skills were tested, from the logical
(back-end) part to the visual representation (front-end). The biggest issue was related to
the fact that it is an application extention, with a goal to change less code as possible,
what sometimes was a big challenge. The external libraries were difficult to understand, as
well as the existing code, but it was overpast with the mitigation techniques from Chapter
3. By going through the all phases of the software development, from the project man-
agement, to the final work testing, the acquired experience will help entering into the real
world projects.

8.2 Future Work

As future work of this application, it will be interesting to develop or correct the next
topics:

• Correct the "Summary Entity" properties bug that duplicates the displayed data;
• Calculate the lowest granularity of the tables or set it manually in table options, in

order to group the information correctly;
• Make aggregation lines look more attractive to the user;
• Add support to PostgreSQL database engine, as defined in the Functional Require-

ment 4;

64

Conclusions

• Add support to the "Star" Data Warehouse, as defined in the Functional Requirement
5;

These bullet options were not implemented in order to deliver a working prototype by the
time that project ended. In the weekly meetings, it was decided to discard the Functional
Requirement 4 and 5 ("Should" have) priority, and implement them if the deadline would
permit.

8.3 Final Considerations

As in any project there are difficulties, this was not an exception. From the writing part
to the implementation, this was a very challenging work, and required a lot of dedication.
With this internship, it is aimed to help the database architect to choose the right data
modeling tools, among the analyzed alternatives in the scientific paper, which are also
present in the Chapter 2. The developed product attends the initial expectations, and
results in a data modeling tool which produces a multi-layer system with a one database on
the Edge and a data warehouse on the Cloud layers, simultaneously. It also automatically
generates a script, with all the data summarized and aggregated. This approach reduces
error’s probability and time spent, by avoiding the manual creation of the scripts. Despite
this project is delivered after the initially set deadline, it meets the defined requirements
and produces working scripts, and is ready to help data modelers in creating their own
multi-layer databases.

65

This page is intentionally left blank.

Conclusions

Appendix A

67

C
hapter

8

Listing 8.1: MySQL Script of the first proof of concept

--
-- Edge database
--
--

CREATE DATABASE edge;
CREATE TABLE edge.campus (

id BIGINT,
description VARCHAR(512),
PRIMARY KEY(id)

);

CREATE TABLE edge.building (
id BIGINT,
description VARCHAR(512),
campus_id BIGINT NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.room (
id BIGINT,
description VARCHAR(512),
building_id BIGINT NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.sensor (
id BIGINT,
description VARCHAR(512),
communication VARCHAR(512),
room_id BIGINT NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.location_raw_data (
id BIGINT,
temperature DOUBLE PRECISION,
humidity DOUBLE PRECISION,
timestamp TIMESTAMP,
weather_raw_data_id BIGINT NOT NULL,
sensor_id BIGINT NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.weather_raw_data (
id BIGINT,
temperature DOUBLE PRECISION,
humidity DOUBLE PRECISION,
pressure DOUBLE PRECISION,
clouds DOUBLE PRECISION,
timestamp TIMESTAMP,
day_type_id BIGINT NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.day_type (
id BIGINT,

68

C
onclusions

day VARCHAR(512),
description VARCHAR(512),
PRIMARY KEY(id)

);

ALTER TABLE building ADD CONSTRAINT building_fk1 FOREIGN KEY (campus_id) REFERENCES campus(id);
ALTER TABLE room ADD CONSTRAINT room_fk1 FOREIGN KEY (building_id) REFERENCES building(id);
ALTER TABLE sensor ADD CONSTRAINT sensor_fk1 FOREIGN KEY (room_id) REFERENCES room(id);
ALTER TABLE location_raw_data ADD CONSTRAINT location_raw_data_fk1 FOREIGN KEY (weather_raw_data_id) REFERENCES weather_raw_data(id);
ALTER TABLE location_raw_data ADD CONSTRAINT location_raw_data_fk2 FOREIGN KEY (sensor_id) REFERENCES sensor(id);
ALTER TABLE weather_raw_data ADD CONSTRAINT weather_raw_data_fk1 FOREIGN KEY (day_type_id) REFERENCES day_type(id);

--
-- Cloud data warehouse
--
--
CREATE DATABASE cloud;

CREATE TABLE cloud.summary_entity0 (
id BIGINT(20) UNSIGNED NOT NULL AUTO_INCREMENT,
location_raw_data_temperature_COUNT double DEFAULT NULL,
location_raw_data_temperature_AVERAGE double DEFAULT NULL,
location_raw_data_humidity_COUNT double DEFAULT NULL,
location_raw_data_humidity_AVERAGE double DEFAULT NULL,
weather_raw_data_temperature_COUNT double DEFAULT NULL,
weather_raw_data_temperature_AVERAGE double DEFAULT NULL,
weather_raw_data_humidity_COUNT double DEFAULT NULL,
weather_raw_data_humidity_AVERAGE double DEFAULT NULL,
weather_raw_data_pressure_COUNT double DEFAULT NULL,
weather_raw_data_pressure_AVERAGE double DEFAULT NULL,
weather_raw_data_clouds_COUNT double DEFAULT NULL,
weather_raw_data_clouds_AVERAGE double DEFAULT NULL,
campus_id bigint UNSIGNED NOT NULL,
campus_description varchar(50),
building_id bigint UNSIGNED NOT NULL,
building_description varchar(50),
room_id bigint UNSIGNED NOT NULL,
room_description varchar(50),
sensor_id bigint UNSIGNED NOT NULL,
sensor_description varchar(50),
sensor_communication varchar(50),
date DATE,
year INT,
month TINYINT,
day TINYINT,
hour TINYINT,
PRIMARY KEY (id)

);

--
--
-- EVENTS
--
SET GLOBAL event_scheduler = "ON";
CREATE EVENT cloud.hour_sum_data
ON SCHEDULE EVERY 1 Hour
STARTS CONCAT(DATE(12/07/2021 INTERVAL 1 Hour), ’ 00:00:01’) -- now()
ON COMPLETION PRESERVE ENABLE
DO

INSERT INTO cloud.summary_entity0(

69

C
hapter

8

location_raw_data_temperature_COUNT,
location_raw_data_temperature_AVG,
location_raw_data_humidity_COUNT,
location_raw_data_humidity_AVG,
weather_raw_data_temperature_COUNT,
weather_raw_data_temperature_AVG,
weather_raw_data_humidity_COUNT,
weather_raw_data_humidity_AVG,
weather_raw_data_pressure_COUNT,
weather_raw_data_pressure_AVG,
weather_raw_data_clouds_COUNT,
weather_raw_data_clouds_AVG,
campus_id,
campus_description,
building_id,
building_description,
room_id,
room_description,
sensor_id,
sensor_description,
sensor_communication,
date,
year,
month,
day,
hour)

SELECT
COUNT(edge.location_raw_data.temperature),
ROUND(AVG(edge.location_raw_data.temperature),2),
COUNT(edge.location_raw_data.humidity),
ROUND(AVG(edge.location_raw_data.humidity),2),
(

SELECT COUNT(edge.weather_raw_data.temperature)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT ROUND(AVG(edge.weather_raw_data.temperature),2)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT COUNT(edge.weather_raw_data.humidity)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT ROUND(AVG(edge.weather_raw_data.humidity),2)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT COUNT(edge.weather_raw_data.pressure)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

70

C
onclusions

),
(

SELECT ROUND(AVG(edge.weather_raw_data.pressure),2)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT COUNT(edge.weather_raw_data.clouds)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
(

SELECT ROUND(AVG(edge.weather_raw_data.clouds),2)
FROM edge.weather_raw_data
WHERE edge.weather_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)

),
edge.campus_id,
edge.campus_description,
edge.building_id,
edge.building_description,
edge.room_id,
edge.room_description,
edge.sensor_id,
edge.sensor_description,
edge.sensor_communication,
DATE(edge.location_raw_data_timestamp),
YEAR(edge.location_raw_data_timestamp),
MONTH(edge.location_raw_data_timestamp),
DAY(edge.location_raw_data_timestamp),
HOUR(edge.location_raw_data_timestamp)
FROM edge.location_raw_data
JOIN edge.sensor ON edge.sensor_id = edge.location_raw_data.sensor_id
JOIN edge.room ON edge.room_id = edge.sensor.room_id
JOIN edge.building ON edge.building_id = edge.room.building_id
JOIN edge.campus ON edge.campus_id = edge.building.campus_id
WHERE edge.location_raw_data_timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)
GROUP BY edge.location_raw_data_sensor_id;

71

This page is intentionally left blank.

Conclusions

Appendix B

73

C
hapter

8

Listing 8.2: MySQL Script of the second proof of concept
--
-- Edge database
--
--

CREATE DATABASE edge;
CREATE TABLE edge.country (

id bigint AUTO_INCREMENT,
country varchar(50),
PRIMARY KEY(id)

);

CREATE TABLE edge.district (
id bigint AUTO_INCREMENT,
district varchar(512),
country_id bigint NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.city (
id bigint AUTO_INCREMENT,
city varchar(50),
district_id bigint NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.shop (
id bigint AUTO_INCREMENT,
name varchar(100),
address varchar(512),
phone int,
city_id bigint NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.sale (
id bigint AUTO_INCREMENT,
amount double precision,
timestampp timestamp,
shop_id bigint NOT NULL,
costumer_id bigint NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.costumer (
id bigint AUTO_INCREMENT,
name varchar(50),
address varchar(512),
phone int,
nif int,
age int,
PRIMARY KEY(id)

);

CREATE TABLE edge.product (
id bigint AUTO_INCREMENT,
product varchar(100),
price int,

74

C
onclusions

code int,
category_id bigint NOT NULL,
PRIMARY KEY(id)

);

CREATE TABLE edge.category (
id bigint AUTO_INCREMENT,
category varchar(100),
PRIMARY KEY(id)

);

CREATE TABLE edge.product_sale (
product_id bigint,
sale_id bigint,
PRIMARY KEY(product_id,sale_id)

);

ALTER TABLE district ADD CONSTRAINT district_fk1 FOREIGN KEY (country_id) REFERENCES country(id);
ALTER TABLE city ADD CONSTRAINT city_fk1 FOREIGN KEY (district_id) REFERENCES district(id);
ALTER TABLE shop ADD CONSTRAINT shop_fk1 FOREIGN KEY (city_id) REFERENCES city(id);
ALTER TABLE sale ADD CONSTRAINT sale_fk1 FOREIGN KEY (shop_id) REFERENCES shop(id);
ALTER TABLE sale ADD CONSTRAINT sale_fk2 FOREIGN KEY (costumer_id) REFERENCES costumer(id);
ALTER TABLE product ADD CONSTRAINT product_fk1 FOREIGN KEY (category_id) REFERENCES category(id);
ALTER TABLE product_sale ADD CONSTRAINT product_sale_fk1 FOREIGN KEY (product_id) REFERENCES product(id);
ALTER TABLE product_sale ADD CONSTRAINT product_sale_fk2 FOREIGN KEY (sale_id) REFERENCES sale(id);

--
-- Cloud data warehouse
--
--
CREATE DATABASE cloud;

CREATE TABLE cloud.summary_entity0 (
id BIGINT(20) UNSIGNED NOT NULL AUTO_INCREMENT,
sale_amount_AVERAGE double precision DEFAULT NULL,
shop_id bigint UNSIGNED NOT NULL,
shop_name varchar(50),
shop_address varchar(50),
shop_phone int UNSIGNED NOT NULL,
costumer_id bigint UNSIGNED NOT NULL,
costumer_name varchar(50),
costumer_address varchar(50),
costumer_phone int UNSIGNED NOT NULL,
costumer_nif int UNSIGNED NOT NULL,
costumer_age int UNSIGNED NOT NULL,
product_id bigint UNSIGNED NOT NULL,
product_product varchar(50),
product_price int UNSIGNED NOT NULL,
product_code int UNSIGNED NOT NULL,
date DATE,
year INT,
month TINYINT,
day TINYINT,
hour TINYINT,
PRIMARY KEY (id)

);

--
--
-- EVENTS

75

C
hapter

8

--
SET GLOBAL event_scheduler = "ON";
CREATE EVENT cloud.hour_sum_data
ON SCHEDULE EVERY 1 Hour
STARTS CONCAT(DATE(12/08/12 INTERVAL 1 Hour), ’ 00:00:01’) -- now()
ON COMPLETION PRESERVE ENABLE
DO

INSERT INTO cloud.summary_entity0(
sale_amount_AVG,
shop_id,
shop_name,
shop_address,
shop_phone,
costumer_id,
costumer_name,
costumer_address,
costumer_phone,
costumer_nif,
costumer_age,
product_id,
product_product,
product_price,
product_code,
date,
year,
month,
day,
hour)

SELECT
ROUND(AVG(edge.sale.amount),2),
edge.shop.id,
edge.shop.name,
edge.shop.address,
edge.shop.phone,
edge.costumer.id,
edge.costumer.name,
edge.costumer.address,
edge.costumer.phone,
edge.costumer.nif,
edge.costumer.age,
edge.product.id,
edge.product.product,
edge.product.price,
edge.product.code,
DATE(edge.sale.timestamp),
YEAR(edge.sale.timestamp),
MONTH(edge.sale.timestamp),
DAY(edge.sale.timestamp),
HOUR(edge.sale.timestamp)
FROM edge.sale
JOIN edge.shop ON edge.shop.id = edge.sale.shop_id
JOIN edge.city ON edge.city.id = edge.shop.city_id
JOIN edge.district ON edge.district.id = edge.city.district_id
JOIN edge.country ON edge.country.id = edge.district.country_id
WHERE edge.sale.timestamp BETWEEN DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:00:00’)
AND DATE_FORMAT(DATE_SUB(NOW(), INTERVAL 1 HOUR), ’%Y-%m-%d %H:59:59’)
GROUP BY edge.sale.shop_id;

76

References

[1] M. Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39, 2017.

[2] Onda. http://onda.dei.uc.pt/v3. Accessed: 17-10-2020.

[3] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally
distributed content delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[4] M. Aazam, S. Zeadally, and K. A. Harras. Fog computing architecture, evaluation,
and future research directions. IEEE Communications Magazine, 56(5):46–52, 2018.

[5] Robert Elsenpeter Toby Velte, Anthony Velte. Cloud Computing, A Practical Ap-
proach. McGraw-Hill Osborne Media, 1 edition, 2009.

[6] K. Cao, Y. Liu, G. Meng, and Q. Sun. An overview on edge computing research.
IEEE Access, 8:85714–85728, 2020.

[7] Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. Edge-oriented com-
puting paradigms: A survey on architecture design and system management. ACM
Comput. Surv., 51(2), April 2018.

[8] Weisong Shi Jie Cao, Quan Zhang. Edge Computing: A Primer. SpringerBriefs in
Computer Science. Springer International Publishing, 1st ed. edition, 2018.

[9] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. New York, NY, USA, 2012. Association for
Computing Machinery.

[10] Long Mai, Nhu-Ngoc Dao, and Minho Park. Real-time task assignment approach
leveraging reinforcement learning with evolution strategies for long-term latency min-
imization in fog computing. Sensors, 18:2830, 08 2018.

[11] Zaigham Mahmood. Fog Computing. Springer International Publishing, 1st ed. edi-
tion, 2018.

[12] Sudeep Tanwar. Fog Computing for Healthcare 4.0 Environments: Technical, Societal,
and Future Implications. Signals and Communication Technology. Springer Interna-
tional Publishing;Springer, 1st ed. edition, 2021.

[13] L. Li, T. Q. S. Quek, J. Ren, H. H. Yang, Z. Chen, and Y. Zhang. An incentive-aware
job offloading control framework for multi-access edge computing. IEEE Transactions
on Mobile Computing, 20(1):63–75, 2021.

[14] K. Dolui and S. K. Datta. Comparison of edge computing implementations: Fog
computing, cloudlet and mobile edge computing. In 2017 Global Internet of Things
Summit (GIoTS), pages 1–6, 2017.

77

http://onda.dei.uc.pt/v3

Chapter 8

[15] H. Li, G. Shou, Y. Hu, and Z. Guo. Mobile edge computing: Progress and challenges.
In 2016 4th IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), pages 83–84, 2016.

[16] Y. Li and W. Wang. The unheralded power of cloudlet computing in the vicinity of
mobile devices. In 2013 IEEE Global Communications Conference (GLOBECOM),
pages 4994–4999, 2013.

[17] Bodo Hüsemann, Jens Lechtenbörger, and Gottfried Vossen. Conceptual data ware-
house design. Citeseer, 2000.

[18] Shamkant B Navathe. Evolution of data modeling for databases. Communications of
the ACM, 35(9):112–123, 1992.

[19] IBM definition of Data Modeling. https://www.ibm.com/cloud/learn/
data-modeling. Accessed: 27-04-2021.

[20] Graeme Simsion and Graham Witt. Data modeling essentials. Elsevier, 2004.

[21] Wikipedia definition of Data Modeling. https://www.ibm.com/cloud/learn/
data-modeling. Accessed: 27-04-2021.

[22] Ralph Kimball and Margy Ross. The DataWarehouse Toolkit. John Wiley & Sons
Inc, 2004.

[23] Abraham Silberschatz, Henry F Korth, and S Sudarshan. Database system concepts.
McGraw-Hill Education, New York, New York, USA, 7th edition, 1991.

[24] N.P. Singh and C.S. Gupta. Relational Database Management Systems. Abhishek
Publications, 2014.

[25] Salman Niazi, Mahmoud Ismail, Seif Haridi, and Jim Dowling. Hopsfs: Scaling hier-
archical file system metadata using newsql databases. In Sherif Sakr and Albert Y.
Zomaya, editors, Encyclopedia of Big Data Technologies. Springer, 2019.

[26] Steve C Wotring and John R Ripley. System and method for transforming a relational
database to a hierarchical database, December 16 2003. US Patent 6,665,677.

[27] D Kroenke. Database processing: fundamentals, and implementation, 2000.

[28] James Black, Dimitrios Makris, and Tim Ellis. Hierarchical database for a multi-
camera surveillance system. Pattern Anal. Appl., 7(4):430–446, 2004.

[29] EF Codd. A relational model of data for large shared data banks. communicattions
of the acm, 13 (6), 377–387, 1970.

[30] Nelson Eng Adrienne Watt. Database Design, 2nd Edition. The BCcampus Open
Textbook Project, 2014.

[31] Michael Hammer and Dennis Mc Leod. Database description with sdm: A semantic
database model. 6(3):351–386, September 1981.

[32] Paul Beynon-Davies. Database systems. Springer, 2004.

[33] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Comput. Surv., 19(3):201–260, September 1987.

[34] Michael Grossniklaus. An object-oriented version model for context-aware data man-
agement. Zürich : ETH Zürich, 2007. Zugl.: Diss., Univ., Zürich, 2007.

78

https://www.ibm.com/cloud/learn/data-modeling
https://www.ibm.com/cloud/learn/data-modeling
https://www.ibm.com/cloud/learn/data-modeling
https://www.ibm.com/cloud/learn/data-modeling

References

[35] J. Bhogal and P. Moore. Towards object-oriented context modeling: Object-oriented
relational database data storage. In 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, pages 542–547, 2014.

[36] A B M Moniruzzaman and Syed Akhter Hossain. Nosql database: New era of
databases for big data analytics - classification, characteristics and comparison, 2013.

[37] S. Bouamama. Migration from a Relational Database to NoSQL. International Journal
of Knowledge-Based Organizations, 8(3):63–80, 2018.

[38] J. Pokorný. Integration of Relational and NoSQL Databases. In Asian Conference on
Intelligent Information and Database Systems - Intelligent Information and Database
Systems, volume 10752, pages 35–45, 2018.

[39] Denio; Mello Ronaldo S. Schreiner, Geomar A.; Duarte. When Relational-Based Ap-
plications Go to NoSQL Databases: A Survey. Information, 10(7):22, 2019.

[40] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. Object to
nosql database mappers (ONDM): A systematic survey and comparison of frameworks.
Inf. Syst., 85:1–20, 2019.

[41] D Batra and G M Marakas. Conceptual data modelling in theory and practice. Eu-
ropean Journal of Information Systems, 4(3):185–193, 1995.

[42] Daniel L. Moody and Graeme G. Shanks. What makes a good data model? Evalu-
ating the quality of entity relationship models. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 881 LNCS:94–111, 1994.

[43] Drazen Brdjanin, Goran Banjac, Danijela Banjac, and Slavko Maric. An experi-
ment in model-driven conceptual database design. Software and Systems Modeling,
18(3):1859–1883, 2019.

[44] Bernhard Thalheim. Entity-Relationship Modelling: Foundations of Database Tech-
nology. Springer-Verlag, Inc, New York, 2000.

[45] Peter Chen. The Entity-Relationship Model—toward a Unified View of Data. ACM
Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[46] Welcome To UML, https://www.uml.org/, 2019. Accessed: 2021-06-28.

[47] Sabah Al-Fedaghi and Haya Alahmad. Orientation in Conceptual Modeling Frame-
works. pages 1298–1303, 2018.

[48] 79 Data Modeling Tools Compared. https://www.databasestar.com/
data-modeling-tools/. Accessed: 16-10-2020.

[49] 20 Best Data Modeling Tools. https://www.guru99.com/
data-modeling-tools-design-database.html. Accessed: 16-10-2020.

[50] Agile Methodologies. https://www.xpand-it.com/blog/
top-5-agile-methodologies/. Accessed: 09-06-2021.

[51] 12 principles of Agile methodology. https://www.agilealliance.org/
agile101/12-principles-behind-the-agile-manifesto/. Accessed: 03-
06-2021.

79

https://www.databasestar.com/data-modeling-tools/
https://www.databasestar.com/data-modeling-tools/
https://www.guru99.com/data-modeling-tools-design-database.html
https://www.guru99.com/data-modeling-tools-design-database.html
https://www.xpand-it.com/blog/top-5-agile-methodologies/
https://www.xpand-it.com/blog/top-5-agile-methodologies/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

Chapter 8

[52] SCRUM Sprint Duration. https://www.scrum.org/resources/blog/
weekly-scrum-interview-question-what-duration-sprint. Accessed:
09-06-2021.

[53] Rist Management. https://en.wikipedia.org/wiki/Risk_management.
Accessed: 04-05-2021.

[54] Ofer Zwikael and Jack Meredith. Evaluating the success of a project and the perfor-
mance of its leaders. IEEE Transactions on Engineering Management, PP:1–13, 07
2019.

[55] MOSCOW PRIORITISATION. https://www.agilebusiness.org/page/
ProjectFramework_10_MoSCoWPrioritisation. Accessed: 14-05-2021.

[56] Non-Functional Requirements. Accessed: 2021-07-28.

[57] JointJS Library. https://resources.jointjs.com/docs/jointjs/v3.3/
joint.html. Accessed: 08-06-2021.

[58] C4 Architecture Model. https://c4model.com/. Accessed: 08-06-2021.

80

https://www.scrum.org/resources/blog/weekly-scrum-interview-question-what-duration-sprint
https://www.scrum.org/resources/blog/weekly-scrum-interview-question-what-duration-sprint
https://en.wikipedia.org/wiki/Risk_management
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://resources.jointjs.com/docs/jointjs/v3.3/joint.html
https://resources.jointjs.com/docs/jointjs/v3.3/joint.html
https://c4model.com/

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Comparative Analysis of Data Modeling
Design Tools
GONÇALO CARVALHO1 A, SERGII MYKOLYSHYN1 B, BRUNO CABRAL1 C, JORGE
BERNARDINO2,1 D (IEEE MEMBER), VASCO PEREIRA1 E,
1Univ Coimbra, CISUC, Department of Informatics Engineering, Portugal (e-mail: gcarvalho@dei.uc.pt, sergii.myk@gmail.com, bcabral@dei.uc.pt,
vasco@dei.uc.pt)
2Polytechnic of Coimbra, ISEC, Coimbra, Portugal (e-mail: jorge@isec.pt)

Corresponding authors: Gonçalo Carvalho (e-mail: gcarvalho@dei.uc.pt)

A:0000-0001-7095-5003, B:0000-0003-0851-8165, C:0000-0001-9699-1133, D:0000-0001-9660-2011, E:0000-0002-4225-9075

ABSTRACT Conceptual modeling describes the physical or social aspects of the world abstractly,
encompassing the interpretation of data production, gathering, visualization, and analysis. The quality of
the data analysis system will condition the excellence of any decision-making process. Thus, accurately
specifying the database model is essential. The primary goal of our work is to compare tools that can create
this physical model. We recognize several types of data models, but this work will only encompass the
relational data model. We will evaluate free and commercial data modeling tools. But it is challenging to
decide how to compare them and which elements are crucial. We propose a new approach for software tools’
evaluation based on the Business Readiness Rating (BRR) model and the OSSpal evaluation methodology.
In this work, we show that this new methodology can be tailored to the needs of each individual developer or
team, thus providing fitter and meaningful results. Also, by applying this hybrid approach to the evaluation
of database modelling tools, we show it can robustly handle the bias from lesser relevant evaluation
categories.

INDEX TERMS Data Modeling, Design Tools, Databases, Database Modeling Tools

I. INTRODUCTION
A data model is a set of concepts that can describe the
data structure and operations on a database [1]. These data
structures include objects, relations between these objects,
and rules that define how data is organized. Determining
the business needs will lead to the data model. The business
stakeholders’ feedback is crucial to define rules and require-
ments to be incorporated into the design of a new system or
adapted in an iteration of an existing one [2].

Data modeling creates a visual representation of either a
whole information system or parts of it to reveal connections
between data points and structures. This is the first step in
database design, and Simsion and Witt [3] defined it as “a
design activity which classifies information in an organized
way and defines their relations.” Therefore, the process of
data modeling involves professional data modelers working
closely with business stakeholders, as well as potential users
of the information system [4].

The Entity Relationship (ER) model is one of the funda-
mental conceptual data models, which is usually associated

with relational databases. This model is the focus of this work
because it is the model most often adopted at this stage of
conceptual design. An Entity Relationship Diagram (ERD) is
a drawing that communicate the relationships between tables,
also known as entities [5]. An entity is a “thing” or “object”
in the real world that is distinguishable from other objects.
Relationships have cardinalities, attributes, and constraints.
The cardinality of a relationship indicates the number of
occurrences between two entities [6].

Any database architect needs to work with a tool that
allows an easy data model design. Such a choice will have
a direct impact on the project quality. The design tool must
be suitable to represent a database, also be easy to use, and
support a different number of database engines. In addition,
the tool should allow defining constraints such as Primary
Key (PK), Not Null (NN), Auto Increment (AI), and produce
a Structured Query Language (SQL) script from the repre-
sentation of data objects created by the user.

To the best of our knowledge, this is the first work that
evaluates database modeling tools using a formal evaluation

VOLUME 4, 2016 1

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

methodology. The major contributions of this work are the
following:

• Provide a background on conceptual modeling and data
modeling tools;

• Propose a new methodology for evaluating software
modeling tools based on the Business Readiness Rating
(BRR) model and the OSSpal methodology;

• Demonstrate an evaluation of free and commercial data
modeling tools. This evaluation reproduces an accurate
result reflecting the usefulness of the tools and their
level of productivity for users.

We organized the rest of this paper as follows. In Section
II, we review similar works. In Section III, we provide
the background on conceptual models. In Section IV, we
describe and analyze each tool. In Section V, we explain
the evaluation methodology used in the tools’ assessment. In
Section VI, we evaluate the selected tools. Finally, in Section
VII, we describe the main conclusions.

II. RELATED WORK
In this section, we will review other approaches that evalu-
ated software quality through different methodologies.

In 2005, SpikeSource, the Center for Open Source In-
vestigation at Carnegie Mellon West, and Intel Corporation
created the BRR model [7], which lets IT managers promptly
deliver informed and educated decisions about open-source
software. They developed BRR to be a complete, simple,
adaptable, and consistent model to help choose the right soft-
ware. The authors evaluated open-source software according
to 12 categories: functionality, usability, quality, security, per-
formance, scalability, architecture, support, documentation,
adoption, community, and professionalism. They divided the
BRR into four phases: i) A quick assessment, to identify a list
of components, measure each component, and remove any
component that does not fit the user requirements. ii) Target
usage assessment, define the 12 category weights according
to importance from 1 to 12, choose the top seven (or less)
and assign a percentage of importance totaling 100%. Set
the metric weights within each category according to their
importance, also totaling 100%. iii) Data collection and
processing, collect data for each metric in each category,
and calculate the applied weighting for each metric. iv) Data
translation, calculate the final BRR score.

In 2017, Wasserman et al. [8] proposed an extension to
the BRR, which originated the OSSpal open-source software
assessment methodology. Motivated by solving the short-
comings of the original approach, such as i) some bias in
the BRR score, according to the evaluator knowledge of
the project, besides existing documentation and commercial
support; ii) the lack of details provided by a single numeric
score; iii) the reduced amount of adequate software to endure
this evaluation; and iv) the prime consideration of opinions
of others, including both peers and experts. Thus, the authors
introduced some changes, among other minor improvements,
i) because the BRR only used the top seven ranked categories,
which may leave out of the analysis important categories to

other evaluators, Wasserman et al. condensed the Categories
from 12 into seven, which the authors state to be the most im-
portant in open-source software: Functionality, Operational
Software Characteristics, Support and Service, Documenta-
tion, Software Technology Attributes, Community and Adop-
tion, and Development Process.; ii) removed the final score
calculation formula; iii) created a list of adequate software
for evaluation and grouped them into categories based on the
software taxonomy produced annually by the International
Data Corporation (IDC) [9]; and iv) developed a website
for users to use and rank the software tools to surpass the
impossibility to assess which tool is better amongst two or
three with the same feature score.

We resorted to several databases, DBLP - computer sci-
ence bibliography, Google Scholar, and IEEE Xplore, to find
other works regarding the use of these evaluation schemas.

From 2017 to 2019 several papers used the OSSpal
methodology in different research areas, such as Business
Intelligence Tools [10], [11], Data Mining Tools [12], E-
commerce Tools [13], Project Management Tools [14]–[17],
and NoSQL databases [18]. These works used the same
implementation and analyzed three or four tools. The results
when evaluating the same tool were different, for example,
OpenProject 4.5 and 3.45 in [15] and [14] respectively, and
ProjectLibre 3.82 and 3.6 in [15] and [16] respectively.
This highlight’s the subjective approach of the evaluation,
because the Categories’ weights and the number of analyzed
characteristics encompassing the Functionality category were
different while evaluating the same tools. Also, all these
works had a final score, so they were an assessment through
the BRR model assessment rather than an evaluation by the
OSSpal methodology.

Nevertheless, the penalty for high scores in less critical
measures is one of the OSSpal methodology shortcomings.
Ultimately, it will depend on the person evaluating the soft-
ware products, which can lead to some bias scoring.

In our approach, we will use the BRR model, with the OS-
Spal Categories, which are more adapted to the tools under
evaluation, and we introduce some changes by providing a
broader range of values for the evaluation of the features.
We also evaluate a significantly higher amount of tools (17),
both free and commercial, in a different research area, and
through our Department survey, we aimed to remove the
subjectiveness of our evaluation.

III. BACKGROUND IN CONCEPTUAL MODELING
In this section, we address the Conceptual Model (CM) topic,
identifying key features and languages.

CM describes the physical or social aspects of the world
abstractly. The result of a proper and rigorous CM design
is a functionally richer, less error-prone, adequately attuned,
able to adapt to varying user requirements, and less expensive
system [19]. Thus, designing the CM at the beginning of the
development cycle should be mandatory. It will be easier to
follow and adapt to user requirements and explore existing
relationships between the concepts.

2 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

We adopt data models to manage and analyze data repre-
senting any information system. The data model is an essen-
tial element of the system development or database design
processes. Although the data modeling phase embodies only
a smaller dimension of the development effort, its influence
on the eventual result is reasonably broader than any other
phase. Moody et al. [20] mentioned the vast amount of alter-
native designs to address Conceptual Data Modeling (CDM).
Several alternative models could provide accurate solutions,
but may have quite distinct implications for database and
system design. The process of data modeling is not simple,
meaning it usually demands multiple iterations [21].

Thalheim [22] point different CM notations used to de-
scribe requirement specifications, such as the ER diagram
[23], the Unified Modeling Language (UML) [24], which are
the most regularly employed, Business Process Modeling and
Notation, and Model-driven Engineering. Object-Oriented
(OO) models are essentially expressive and more fitted to
describe static and dynamic features of complex applications.
The OO modeling field relates objects and attributes, whereas
the real-world realm deals with things and properties [25].

The ER data model has existed for over 35 years. An ER
diagram is appropriate for data modeling because it is ab-
stract and is easy to discuss and explain. It is easy to translate
ER models to relations. The base of this type of modeling are
entities, which hold information and relationships, defined as
the associations between entities [26].

The primary advantages of CM for general systems and
specifically for Database Management Systems (DBMS) are:

• Provide a high-level perception of how the system will
work;

• Join different mental models into a single CM design;
• Ensure that the data representation is accurate - missing

fields in the database cause unreliable results;
• Get a clear understanding of the data that developers can

manage when building the actual database;
• Identify any redundant or missing data;
• Make maintenance and upgrades faster and more afford-

able.
Next, we perform a qualitative analysis of data modeling

tools.

IV. MODELING TOOLS
In this section, we will analyze different data modeling tools.
We will include the physical model and the script generation
(forward engineering) in the analysis’s scope. However, we
will not cover the physical deployment, access, and configu-
ration of the database.

To create an ER model, it is necessary to specify ta-
bles (entities) containing fields (attributes) that will be the
columns and relations between tables. In this model, the
relationships amongst tables have a cardinality setting that
illustrates the following options: one-to-one, one-to-many,
zero-to-one, zero-to-many, and many-to-many. Despite this
graphical representation, the physical model produces a bet-
ter comprehension of the relationships. Because it translates

these into tables, and it defines the cardinality through the
PK and Foreign Key (FK) constraints, as well as or NN.
Converting the design of the CM into a physical model offers
a straightforward interpretation of the model.

After these steps, and with a proper definition of the
business logic, the next step is Forward Engineering, which
is the auto-generation of a SQL script from the created repre-
sentation. This last step is crucial for any database engineer
to minimize errors and time spent creating a database.

From the list of 79 Data Modeling Tools Compared [27]
and 20 Best Data Modeling Tools [28], we selected those
that allow the user to perform Forward Engineering, and
only considered tools that continued receiving updates after
2018. We sorted them into four major product types: Online
free tools, Online commercial tools, Desktop free tools, and
Desktop commercial tools. The four product type are able
to broadly represent all the products available today, is well-
aligned with the different users’ and enterprises’ needs.

TABLE 1: Modeling Tools

Modeling Tools
Product

Type Name

Online
free
tools
(I)

Dbdesigner.id
https://dbdesigner.id
Onda
http://onda.dei.uc.pt/v3
WWW SQL Designer
https://github.com/ondras/wwwsqldesigner

Online
commercial

tools
(II)

Dbdesigner.net
https://app.dbdesigner.net
dbDiffo
https://dbdiffo.com
GenMyModel
https://www.genmymodel.com
Lucidchart
https://lucid.app
sqlDBM
https://sqldbm.com

Desktop
free
tools
(III)

MySQL Workbench - Community Version
https://github.com/mysql/mysql-workbench
pgModeler
https://github.com/pgmodeler/pgmodeler
Umbrello UML
https://github.com/KDE/umbrello

Desktop
commercial

tools
(IV)

dbSchema
https://dbschema.com
dbWrench
http://www.dbwrench.com
Erwin Data Modeler
https://erwin.com/products/erwin-data-modeler
Navicat
https://www.navicat.com
Oracle SQL Developer Data Modeler
https://www.oracle.com/database/technologies

/appdev/sqldeveloper-landing.html
PowerDesigner
https://www.sap.com/products/powerdesigner-

data-modeling-tools.html

VOLUME 4, 2016 3

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

Another relevant characteristic is that some tools have a
visual representation of the conceptual data model, but others
only show the logical data model. However, others have both
types of visualization. On the one hand, the logical data
model only describes the data and its relations. On the other,
the physical data model displays’ table structures, including
column name, data type, and the constraints, such as PK, FK,
and Unique (UQ), represent the relationships between tables.

In the following subsections, we perform a qualitative
analysis of the selected tools. We provide a brief descrip-
tion of the key features, such as the release year; real-time
collaboration options; generation of the physical model; the
presence of Reverse Engineering (auto-generation of ER
from SQL) and Forward Engineering; supported database
engines and data types; different constraints; the presence of
CM; finally, the pros and cons are analyzed.

A. ONLINE FREE TOOLS
Online free tools work on every platform, receive constant
updates from the community, and do not require installing
the software. Also, every developer can contribute to any of
these projects.

Dbdesigner.id
Dbdesigner.id is a database design tool for web developers

and beginners, which started in 2019 under MIT License as
a hobby project and is continuously under construction. The
authors’ goal was to make database management accessible
to everyone. They developed it in Javascript, HTML, and
CSS. To use Dbdesigner, they require creating a new user
account. With this tool, it is possible to share a link with
a project contributor to work simultaneously. It does not
allow for a CM design. The tool does not provide reverse
engineering, and only works with MySQL. For each column,
the user can choose among different types (tinyint, smallint,
bigint, int, bigint, float, double, datetime, date, timestamp,
char, varchar, binary, blob, text, json). It enables an option to
specify constraints such as PK, FK, NN, UQ, and AI. It is
also possible to set a default value for each entry in a table.
The user can select the referencing table and column name to
create a relationship.

Pros: Link sharing for collaboration.
Cons: Needs registration and only uses MySQL.

Onda
Onda is a database modeling tool developed by the De-

partment of Informatics Engineering (DEI) community, with
the first version released in 2014, developed with Javascript,
HTML, and CSS. Also, it has fast loading times. The tool
does not require any configuration, but there is no real-time
collaboration possibility. With Onda, it is possible to draw
conceptual databases and visualize the physical model. There
is no reverse engineering option, but it is possible to perform
forward engineering for the most famous database engines
like PostgreSQL, MySQL, Oracle, MariaDB, and SQLite.
Each column can have different types, such as boolean,

FIGURE 1: Example of a database model at WWW SQL
Designer

integer, float, date, character, varchar, text, or BLOB. It is
possible to add constraints for each column, such as PK,
NN, AI, Check Constraint (CH), and UQ. The FK are auto-
matically added in the physical model through the designed
relationships.

Pros: Zoom in/out, possibility to export the CM into dif-
ferent database engines.

Cons: Some bugs on the physical model and script
generation.

WWW SQL Designer
Released in 2005, WWW SQL Designer allows users to

create and export data models to SQL scripts. The interface
has a mini-map for fast navigation (Fig. 1). It does not require
configuration, does not have real-time collaboration or repre-
sentation of the CM. With this tool, it is possible to perform
forward engineering for the MySQL database engine, but it is
impossible to perform reverse engineering. It supports many
database constraints, such as PK, FK, UQ, NN, and AI. There
are different data types such as int, decimal, char, binary,
BLOB, date, and time.

Pros: Many data types, and drag-and-drop features.
Cons: No real-time collaboration, no representation of the

CM, and only exports MySQL scripts.

B. ONLINE COMMERCIAL TOOLS
This subsection will introduce the online commercial tools.
Because they work online, it is possible to use them on every
platform. It is necessary to get a subscription or activation
key. Otherwise, it is limited, where the features are only
available for a short period or with narrow options.

Dbdesigner.net
Since 2006, Dbdesigner.net is a database schema designer

for data modeling (Fig. 2). The table representation is clean
and has different colors for each table entry. Dbdesigner does
not require any configuration to use it. It is possible to share
the database design with other users to work simultaneously
on it. This tool does not provide the visualization of the

4 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

FIGURE 2: Example of a database model at Dbdesigner.net

databases’ CM model. Dbdesigner also offers a reverse engi-
neering option. Besides it, forward engineering enables code
export for engines like MySQL, Microsoft SQL Server, Post-
greSQL, Oracle, and SQLite. This tool has distinct features
that make it unique, such as a mini-map for fast navigation,
keyboard shortcuts, instant save with history, copy and paste,
undo and redo, and notes and comments. It supports data
types such as binary, boolean, date, decimal, float, integer,
and varchar. The constraints are: PK, FK, NN, AI, and UQ.

Pros: Developers can work simultaneously, has several
database design templates, features as instant save, undo and
redo, easy-to-use interface. Also, it enables reverse engineer-
ing.

Cons: No representation of the CM.

dbDiffo
Released in 2014, Dbdiffo is a database modeling tool

similar to Onda. Before using the tool, it is necessary to
specify the model name and choose the database engine
for script generation. With Dbdiffo, it is impossible to do
a real-time collaboration, and it does not provide the CM
design. This tool does not allow reverse engineering, but
regarding forward engineering, it is possible to export scripts
for database engines like IBM DB2, Microsoft SQL Server,
MySQL, Oracle, and PostgreSQL. The tables’ columns may
be bigint, binary, bit, blob, char, date, datetime, decimal,
double, float, integer, longblob, longtext, mediumint, medi-
umtext, numeric, smallint, text, time, timestamp, varchar, or
year. Regarding the constraints, it is possible to define PK,
FK, NN, and AI.

Pros: History toolbar, and unlimited undo.
Cons: No real-time collaboration and no reverse

engineering.

GenMyModel
Released in 2012, GenMyModel speeds up the design of

software architecture and business processes. It is easy to add
new entities and create relations between them because of
its interface and the provided documentation. It is necessary
to log into the application via GitHub or Google account,

create a new diagram, and select a Relational Database. It is
possible to create a database from scratch or select an existing
project from the cloud. GenMyModel has real-time collabo-
ration with a chat and also allows the creation of the CM,
since it has its base in the UML. The supported database’s
engines are Apache Hive, Oracle, MySQL, and PostgreSQL.
This tool supports different data types, such as boolean,
binary, character, date, float, integer, time, or varchar. The
tool can auto-generate PDF and MS Word documents based
on custom templates and export diagrams to GitHub. The
developers can use the open API and integration functions
to build integrations for testing or code proofing. Regarding
the constraints, it is possible to define PK, FK, NN, CH, and
UQ.

Pros: Real-time team collaboration features, it auto-
generates the documentation of the data models.

Cons: If using the free version, it only provides basic
features and limits the design to 20 objects, including not
only the tables, but also each column and relationship.

LucidChart
Released in 2008, Lucidchart is a powerful tool, it has

a free version, and also offers a trial to explore its full
potential. It is unnecessary to do any configuration before
using the tool. Lucidchart has team collaboration, is based
in the UML, and allows CM design. It is not possible to
perform reverse engineering. Forward engineering is possible
to several database engines such as MySQL, PostgreSQL,
Microsoft SQL Server, and Oracle. Each column may have
any data type introduced by the user, later converted into
the specific database engine data types. As in other tools,
it is possible to choose from the list of existing types. The
constraints are PK, FK, NN, and AI.

Pros: Real-time collaboration feature, and different tem-
plates.

Cons: The user must know the specificities of the database
engine data types because it is possible to insert any string in
the data type field.

sqlDBM
Released in 2017, sqlDBM has a free version that comes

with limited features, and it is possible to try the full version
for 14 days. This design tool only requires configuring the
database type, and it does not offer CM design. There is also
a team collaboration tool. It is impossible to perform reverse
engineering, but forward engineering allows to export the
script to Microsof SQL Server, MySQL, Snowflake, Amazon
Redshift, PostgreSQL, and Azure Synapse Analytics. Each
column attribute can be of the type bigint, bigint unsigned,
binary, bit, blob, char, date, datetime, decimal, double, dou-
ble unsigned, float, integer, numeric, text, time, timestamp,
varchar, or year. Also, it is possible to specify the constraints
PK, FK, NN, AI, and UQ.

Pros: This tool has forward engineering and team collabo-
ration possibilities. Little tutorial, in the beginning, explain-

VOLUME 4, 2016 5

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

ing functionalities, no need to sign-up. "Undo" and "redo"
options also present.

Cons: No CM design.

C. DESKTOP FREE TOOLS
In this subsection, we analyze four desktop free tools.
These require installation, and as make part of the open-
source community are free to use, and every developer can
contribute to their development.

MySQL Workbench - Community Version
Created in 2002, MySQL Workbench is an application

used to manage and design a database schema. The open-
source version has a GPL license with a GitHub repository.
The significant differences between Community and Enter-
prise versions are the non-presence of Schema & Model
Validation, automated documentation of databases, and non-
existence of firewall specification rules. Before working with
the tool, it is necessary to set up the connection to the existing
database. Otherwise, it is impossible to export the MySQL
script resulting from the establishment of tables and relations.
MySQL Workbench does not have a real-time collaboration
feature, but has the capacity to design the CM. There is
a possibility to reverse and forward engineer for MySQL
Server databases. Different categories organize the entity
types like numeric, characters, time, geometry, and others,
such as bits or boolean. The number of constraints is also
considerable, it enables an option to insert PK, FK, NN, UQ,
AI, Binary, and Unsigned (U).

Pros: Unlimited "Undo" and "Redo" options.
Cons: Only available for Windows machines and no real-

time collaboration. Also, necessity to set up the connection
to the existing database.

pgModeler
Created in 2006, pgModeler is a database modeling tool

designed for PostgreSQL databases. Despite the need to pay
for the compiled version, it is possible to get the open-source
version and compile it manually. The tool has different colors
to help visualization (Fig. 3). If there are missing functional-
ities, it is possible to create new extensions and contribute
to open-source code development. It is unnecessary to make
any configuration before using the application. The tool does
not have an option for real-time collaboration, and it has
the feature to design the CM. It also provides reverse and
forward engineering for PostgreSQL databases. pgModeler
has a database management module where it is possible to
run SQL commands, explore the objects, and handle data.
It has distinct entity types like bigint, bit, bool, char, date,
decimal, float, int, json, money, text, time, and varchar. Also,
different constraints such as PK, FK, UQ, Exclude (E), CH,
AI and NN are present.

Pros: It is possible to collaborate on the tool.
Cons: Only supports PostgreSQL database engine.

FIGURE 3: Example of a database model at pgModeler

Umbrello UML
Released in 2006, Umbrello UML is a UML diagram pro-

gram developed by an international free software community.
This tool does not require any configuration. It is not possible
to perform real-time collaboration. It has a feature to design
conceptual data models. It is impossible to reverse engineer-
ing, but the forward engineering option allows generating
SQL scripts for MySQL and PostgreSQL. Each table column
can have different types, such as bool, char, double, float, int,
or string. And there are different constraints: PK, FK, AI,
UQ, and NN.

Pros: Feature for CM.
Cons: Limited number of databases to export scripts, and

no real-time collaboration.

D. DESKTOP COMMERCIAL TOOLS
In this subsection, we analyze desktop commercial tools.
We chose these according to Google Trends, since the tools
number in this product type is high. For us to consider a
tool, it had to be googled at least ten times per week, from
2004 until 2021, worldwide, and we found seven desktop
proprietary tools matching the criteria. To use either tool,
first, it is necessary to install it on the machine and then
either try a free trial or buy the full version.

dbSchema
Released in 2016, dbSchema does not require configura-

tions. dbSchema cannot provide a conceptual data model,
neither exists real-time collaboration. It has both reverse and
forward engineering that works with all relational databases,
including SqlServer, SAP Adaptive Server, Oracle, MySql,
Ingres, Informix, Db2, Derby, Firebird, Frontbase, Cache,
Pervasive, PostgreSQL, and Sqlite. Like all the previous
tools, it allows adding different data types to each column,
like blob, boolean, char, date, double, float, int, json, real,
text, varchar. Farther, the constraints are PK, FK, NN, and
AI.

Pros: The tool has both reverse and forward engineering
for many database motors.

Cons: No real-time collaboration.

6 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

dbWrench
dbWrench is a multi-platform database design and syn-

chronization software, released in 2004, and does not require
any configuration. dbWrench does not support the design
of the CM and has no real-time collaboration. The reverse
engineering does not exist in this tool, and the forward
engineering tool generates SQL scripts for Microsoft SQL
Server, Oracle, PostgreSQL, and MySQL. It is possible to
connect to a database and run the code for table creation. It
offers some default column templates that save time creating
tables. When adding a column, there is a possibility to
specify data types like binary, blob, bit, boolean, char, date,
decimal, double, float, json, number, real, time, varchar. The
constraints are PK, , NN, and AI.

Pros: Reverse and forward engineering for several
databases engines.

Cons: No real-time collaboration.

Erwin Data Modeler
Founded in 1988, the platform allows creation and mainte-

nance of data warehouses and databases. This tool provides
several tutorials to help understand how to do data model-
ing. Financial services, healthcare, critical infrastructure, and
technology companies use Erwin Data Modeler. The tool
does not require any configuration, and does not have an
option of real-time collaboration. Erwin provides a possibil-
ity to design the conceptual data model. It only has forward
engineering that supports database engines such as Oracle,
MySQL, IBM DB2, SAP IQ, and Teradata. The different data
types for columns in this tool are char, integer, date, boolean,
real, and float. The tool has constraints such as PK, FK, NN,
AI, and UQ.

Pros: Supports several database engines for forward engi-
neering.

Cons: It is necessary to fill in a form to try the trial
version, but there is no guarantee that the application will be
accepted. The local version of the tool doesn’t work on Mac
OS, and it is necessary to use the cloud version. No real-time
collaboration, and reverse engineering.

Navicat
Navicat is proprietary software created in 2002 and pro-

vides a mini-map for fast navigation. It allows adding colors
to tables, thus making them more visually appealing. This
tool does not require any configuration and does not have
real-time collaboration. It is a powerful and cost-effective
database design tool that allows designing CM. It allows
performing reverse and forward engineering processes. This
tool allows creating data models for MySQL, Microsoft
SQL Server, Oracle, PostgreSQL, SQLite, and MariaDB
databases. It has several data types, such as blob, boolean, in-
teger, varchar, date, and timestamp. For the data constraints,
there are PK, FK, NN, AI, and UQ.

Pros: Performs reverse and forward engineering.

FIGURE 4: Example of a database model in PowerDesigner

Cons: No real-time collaboration.

Oracle SQL Developer Data Modeler
They released Oracle SQL Developer in 2006, and it is

an integrated development environment that simplifies the
development and management of Oracle Databases. It is
unnecessary to do any configuration. This application per-
mits conceptual data modeling. Although, it does not have
real-time collaboration. The application allows performing
forward engineering for the Oracle Database engine. It sup-
ports managing the Oracle Database performance, security,
storage, and settings. The tool has different data types such
as blob, char, decimal, float, date, and timestamp. There is
the possibility to define PK, FK, AI, and UQ constraints.

Pros: Quick loading time, and the existence of a tutorial
that explains how the tool works.

Cons: Only supports Oracle databases.

PowerDesigner
PowerDesigner is a collaborative enterprise modeling tool,

released in 1989 with the name of “AMC*Designer” and
is currently owned by SAP. It is a modeling tool for easy
visualization, understanding, and management of the data in
a project (Fig. 4). It is unnecessary to make any configura-
tions. PowerDesigner has real-time collaboration, and it is
possible to implement a CM. Also, it has multiple database
connections to model the data. The tool also offers reverse
engineering. However, forward engineering allows working
with the most popular data management systems, such as
Oracle, PostgreSQL, IBM DB2, SQP IQ, Microsoft SQL
Server, and Teradata. This tool only works on Windows OS.
PowerDesigner allows creating multiple entities at once and
saves a lot of time. The present data types are integer, dec-
imal, money, boolean, characters, text, date, and timestamp.
For the data constraints, there are PK, FK, NN, AI, and UQ.

Pros: Has real-time collaboration, and several database
engines for forward engineering.

Cons: Only available for Windows, and no reverse
engineering.

In this section, we did a qualitative evaluation of each tool
by presenting concise descriptions and pros and cons. Table

VOLUME 4, 2016 7

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

TABLE 2: Comparison of different tools

Product
Type Tool name Characteristics

Open
source Online Supported databases Supported

OS Constraints CM
design Free Licence

I
Dbdesigner.id 3 3 MySQL

Windows,
Linux, macOs PK, FK, UQ, AI, NN 7 3 MIT

Onda 3 3
MySQL, postgreSQL, MariaDB,

Oracle, SQLite
Windows,

Linux, macOs PK,FK,NN,CH,AI,UQ 3 3 CCANCSAIL*

WWW SQL
Designer 3 3

MySQL, sqlLite,
Oracle, PostgreSQL,

mssql, web2py

Windows,
Linux, macOs PK, FK, UQ, AI, NN 7 3 BSD-3-Clause

II

Dbdesigner.net 7 3
MySQL, Microsoft SQL, PostgreSQL,

Oracle, SQLite
Windows,

Linux, macOs PK, FK, UQ, AI, NN 7 7 Proprietary

dbDiffo 7 3
IBM DB2, MS SQL Server,

MySQL, Oracle, PostgreSQL
Windows,

Linux, macOs PK, FK, NN, AI 7 7 Proprietary

GenMyModel 7 3
Apache Hive, Oracle,
MySQL, PostgreSQL

Windows,
Linux, macOs PK, FK 3 7 Proprietary

Lucidchart 7 3 MS SQL Server, MySQL, Oracle
Windows,

Linux, macOs PK, FK, NN, AI 3 7 Proprietary

sqlDBM 7 3

MS SQL Server, MySQL, Snowflake,
Amazon Redshift, PostgreSQL,

Azure Synapse Analytics

Windows,
Linux, macOs PK, FK, NN, AI 7 7 Proprietary

III

MySQLWorkbench
Community Version 3 7 MySQL Windows PK, FK, NN, UQ, AI,

Binary, Unsigned 3 3 GPL

pgModeler 3 7 PostgreSQL
Windows,

Linux, macOs PK, FK, UQ, E, CH 3 3 GPL

Umbrello UML 3 7 mySQL, PostgreSQL
Windows,

macOs PK, FK, AI, UQ 3 3 LGPL

IV

dbSchema 7 7

SqlServer, SAP Adaptive Server, Oracle,
MySql, Ingres, Informix, Db2, Derby,

Firebird, Frontbase, Cache,
Pervasive, PostgreSQL, SQlite

Windows,
Linux, macOs PK, FK, NN, AI 7 7 Proprietary

dbWrench 7 7
Microsoft SQL Server, Oracle,

PostgreSQL, MySQL
Windows,

Linux, macOs PK, FK, NN, AI 7 7 Proprietary

Erwin Data Modeler 7 7
Oracle, MySQL, IBM,
DB2, SAP IQ, Teradata

Windows,
Linux, macOs PK, FK, AI, NN 3 7 Proprietary

Navicat 7 7
MySQL, Microsoft SQL Server, Oracle,

PostgreSQL, SQLite, MariaDB
Windows,

Linux, macOs PK, FK, UQ, AI, NN 3 7
Proprietary/
Shareware

Oracle SQL Developer
Data Modeler 7 7

Oracle, DB2, MySQL,
and Microsoft SQL Server MySQL

Windows,
Linux, macOs PK, FK, UQ, AI, NN 3 7 Proprietary

PowerDesigner 7 7
Oracle, PostreSQL, IBM DB2, SQP IQ,

Microsoft SQL, Teradata Windows PK, FK, UQ, AI, NN 3 7 Proprietary

Constraints meaning: PK - Primary Key; FK - Foreign Key; UQ - Unique; AI - Auto Increment; NN - Not Null; E - Exclude; CH - Check; U - Unsigned
*Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

2 displays a summary of the fundamental characteristics of
each. In the following section, we will explain the evaluation
method. And the scoring assessment. Hence, producing an
objective analysis.

V. THE EVALUATION METHODOLOGY
Since we focus on evaluating data modeling tools for rela-
tional databases, this section will explain how to perform this
assessment.

We are proposing a hybrid evaluation methodology that
will suppress the previously mentioned shortcomings. And
for that, we developed an approach based on the BRR cal-
culations, but instead of the 12 categories, we will use the
seven defined in the OSSpal methodology, these encompass
all significant categories by combining some of the original
12 into a single category. Also, we introduced some changes
in the evaluation of the Functionality features of BRR. First,
we removed the binary answers by providing a broader range
of values. Second, we discarded adding extra features, no
bonus score for tools, and only scored a tool with -1 when
a feature is absent from the proposed set.

The OSSpal methodology combines quantitative and qual-

itative measures to evaluate and compare software tools in
several categories. The examiner assigns a quantitative score
to the tools instead of only analyzing the pros and cons.
OSSpal proposes the following seven categories:

• Functionality: analyses how well the software meets
the user’s requirements.

• Operational Software Characteristics: evaluates how
secure the software is, how well does it perform, how
good is the User Interface (UI), and how easy is the
software to install, configure, deploy, and maintain.

• Support and Service: examines how well is the soft-
ware component supported and if there is commercial
or community support or both.

• Documentation: assesses if there is a suitable tutorial
and reference documentation for the software.

• Software Technology Attributes: analyses how good
the software architecture is and how portable, extensi-
ble, open, and easy to integrate it is.

• Community and Adoption: examines the adoption of
the component by community, market, and industry.
Also, how active is the community for the software.

• Development Process: evaluates the level of profes-

8 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

sionalism of the development process and the project
organization.

After assessing the previous OSSpal categories, four steps
were followed according to the BRR model:

1) Identify all the software components to be analyzed and
measure them considering the evaluation criteria.

2) Select an appropriate weighting factor for each cate-
gory/metric (sub-categories):

a) Assign a percentage of importance for each category
that will be used as a weighting factor. The sum of all
the weigh factors should add up to 100%.

b) Similarly, if a specific category is evaluated using
multiple metrics, assign a percentage of importance
for each metric, totaling 100% within the category.

3) Score each category/metric and attribute it a value from
1 to 5 (1 - Unacceptable, 2 - Poor, 3 - Acceptable, 4 -
Very Good, 5 - Excellent).

4) The category evaluation and the weighting factors (Eq.
1) should be used to calculate the final score (Eq. 2).

Category Score =
∑

Metric score×Metric weight∑
Metric weights

(1)

Final Score =∑
Category score× Category weight∑

Category weight
(2)

As defined in the BRR model [7], the Functionality cat-
egory will have a different approach because "each type
of software application has a unique set of features that
needs to be fulfilled by the software package". The original
model evaluates the presence of features, not being a typical
qualitative or quantitative measurement. However, in our
hybrid approach we introduce a quantitative measure of these
features to highlight the differences between the tools. The
method to assess this category ends with Equation 3, and is
as follows:

• Specify the features to analyze, weighting them from 1
to 3 (less important to very important);

• Compare the feature list of the component being evalu-
ated with the standard feature list. For each feature:
– If met, classify the implementation of the feature

using a scale from 1 to 3 (poor implementation to full
implementation) and multiply by the feature weight;

– If not met, deduct importance weight from the sum
(classify as -1)

• Standardize the result to a scale from 1 to 5 (Tab. 3):
– The result is the cumulative sum of all the feature

results, which punishes the missing features.

Functionality Score =
∑

Feature score× Feature weight∑
Feature weights

(3)

TABLE 3: Quality ranking

Values Score Evaluation
>96% 5 Excellent

[90% - 96% [4 Good
[80% - 90% [3 Acceptable
[65% - 80% [2 Poor

<65% 1 Unacceptable

Equation 3 is nothing more than an example of Equation 1,
specifically for the Functionality category.

VI. MODELING TOOLS EVALUATION
In this section, to evaluate the data modeling tools, we will
show the application of the methodology proposed in the
previous section.

To define the weights to be given to the OSSPal categories,
we carried out a survey. In this survey, we consulted with 18
professionals in the area of databases and software engineer-
ing. First, we asked them to give a score (in percentage) of
the seven OSSpal categories totaling 100% according to their
experience in database modeling and general software engi-
neering. Then, we asked them to ponder, with values ranging
from one to three, the chosen features of the Functionality
category. Tables 4 and 5 display the statistics of our survey.

Regarding the Category (Table 4), we asked to fill each
Category with a percentage totaling 100%. We analyzed
the average, standard deviation (STDDEV), and median.
The maximum and minimum values of each Category were
disparate. The lower value was a 15% difference between the
values in the Support and Service and Development Process
categories, up to 42% in the Functionality category. Thus, we
evaluated the average without the maximum and minimum
values and presented the difference between these values.
The only positive difference is in the Operational Software
Characteristics category. We considered the average values
because of three reasons: i) the sum of the average values
total 100%; ii) the sum of average without maximum and
minimum values was only 98.09%, and the differences are
not significant between the two approaches; iii) the sum of
median values was only 92.50%, and the differences are
not significant between the two approaches except for the
Functionality with a difference of -5.17%.

The Functionality Category had the highest weight, and
we further decomposed it into features or sub-categories.
We asked the same community to rank and weight each
measure with a value between 1 (less important) and 3 (very
important). We also analyzed the average, standard deviation
(STDDEV), and median. The maximum and minimum val-
ues of each Functionality were equivalent amongst the func-
tionalities. Because the variation of the values is minor, the
differences between averages (with and without maximum
and minimum values) are not significant (0.01), we used the
average values.

VOLUME 4, 2016 9

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

TABLE 4: OSSpal Category weights (%)

Category AVG STDDEV MEDIAN MAX MIN AVG
(w/o MAX-MIN)

AVG
(w/o MAX-MIN)-AVG

Functionality 32.67 13.37 27.50 60 18 31.88 -0.79
Operational Software Characteristics 19.28 5.87 20.00 30 5 19.50 0.22
Documentation 10.83 5.17 10.00 20 3 10.75 -0.08
Support and Service 10.58 4.94 10.00 20 5 10.34 -0.24
Software Technology Attributes 10.22 5.09 10.00 20 2 10.13 -0.10
Community and Adoption 10.22 6.36 10.00 30 2.5 9.47 -0.75
Development Process 6.19 4.40 5.00 15 0 6.03 -0.16

Sum 100 - 92.50 - - 98.09 -

TABLE 5: Functionality Features Weights

Measures AVG STDDEV MEDIAN MAX MIN
Supported databases 2.37 0.58 2.00 3.00 1.00
Supported constraints 2.21 0.61 2.00 3.00 1.00
Supported OS 1.95 0.69 2.00 3.00 1.00
Reverse engineering 1.84 0.81 2.00 3.00 1.00
Real-time collaboration 1.79 0.77 2.00 3.00 1.00
CM design 1.79 0.69 1.84 3.00 1.00

Sum 11.95

TABLE 6: Measures of the Functionality Category for each tool

Product
Type Tool name

Measures and weights Weighted
total

W.Total /
Sum Weights

(Eq. 3)

Percentage
(%)

Normali
zation
Tab 3

Supp.
DBs

Supp.
constraints

Supp.
OS

Reverse
engineering

Real-time
collab.

CM
design

(2.37) (2.21) (1.95) (1.84) (1.79) (1.79)

I
Dbdesigner.id 1 3 3 -1 3 -1 16.58 1.39 46.26 1

Onda 3 3 3 -1 -1 3 21.32 1.78 59.47 1
WWW SQL Designer 1 3 3 -1 -1 -1 9.42 0.79 26.28 1

II

Dbdesigner.net 3 3 3 3 3 -1 28.68 2.40 80.03 3
dbDiffo 3 2 3 -1 -1 3 19.11 1.60 53.30 1

GenMyModel 3 3 3 -1 3 3 28.47 2.38 79.44 2
Lucidchart 3 2 3 -1 3 3 26.26 2.20 73.27 2
sqlDBM 3 3 3 3 -1 -1 21.53 1.80 60.06 1

III
MySQL Workbench 1 3 1 3 -1 3 20.05 1.68 55.95 1

pgModeler 1 3 3 3 -1 3 23.95 2.00 66.81 2
Umbrello UML 2 3 2 -1 -1 -1 9.84 0.82 27.46 1

IV

dbSchema 3 2 3 3 -1 -1 19.32 1.62 53.89 1
dbWrench 3 2 3 -1 -1 -1 11.95 1.00 33.33 1

Erwin Data Modeler 3 3 3 -1 -1 -1 14.16 1.19 39.50 1
Navicat 3 3 3 3 -1 -1 21.53 1.80 60.06 1

Oracle SQL Developer 3 3 3 -1 -1 3 21.32 1.78 59.47 1
PowerDesigner 3 3 1 3 3 3 31.95 2.67 89.13 3

The primary category is Functionality as it encompasses,
among others, the number of supported databases engines,
the restrictions it has, and constraints. Therefore, this cat-
egory got a weight of 32.67%. In the second place, Op-
erational Software Characteristics has 19.28% as well and
includes areas such as security, performance, usability, relia-
bility, and scalability, which are crucial to evaluate each tool.
The Documentation category comes in third with 10.83%
once good information helps with installation, configura-
tion, and extension of the software easily. Support and Ser-
vice, Community and Adoption, and Software Technology
Attributes had 10.58%, 10.22%, and 10.22% respectively
because the software needs to be supported, modular, easy to
extend, and integrate. The latter category also measures if the

project is extensible and how fast problem resolution is. With
less importance, Development Process categories received a
weight of and 6.19% respectively. Table 4 represents these
weights, ordered from most to less important, based on the
average (in bold).

The next step was to decompose the Functionality cate-
gory into the most relevant characteristics (features or sub-
categories). Table 5 displays the results of our survey to
the research community survey, previously explained, the
average (in bold) ordered these, leading to the following
layout: Supported databases (2.37), Supported constraints
(2.21), Supported OS (1.95), Reverse engineering (1.84),
Real-time collaboration (1.79), and CM design (1.79). The
sum of the weights was 11.95.

10 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

TABLE 7: Assessment of the OSSpal Categories’ score for each tool

Product
Type Tool name Categories

Functionality
(32.67)

Operational
Software

Characteristics
(19.28)

Documentation
(10.83)

Support and
Service
(10.58)

Software
Technology
Attributes

(10.22)

Community
and Adoption

(10.22)

Development
Process
(6.19)

I
Dbdesigner.id 1 5 2 2 4 3 3

Onda 1 4 1 3 4 2 4
WWW SQL Designer 1 3 4 5 4 3 5

II

Dbdesigner.net 3 5 5 2 3 3 3
dbDiffo 1 3 4 3 3 2 3

GenMyModel 2 3 3 2 3 3 3
Lucidchart 2 4 3 4 3 4 5
sqlDBM 1 5 4 2 3 3 5

III
MySQL Workbench 1 4 2 2 4 3 3

pgModeler 2 4 5 5 4 4 4
Umbrello UML 1 3 5 4 4 5 5

IV

dbSchema 1 4 5 3 3 3 5
dbWrench 1 3 3 3 3 3 3

Erwin Data Modeler 1 4 4 2 3 3 3
Navicat 1 3 4 2 3 3 3

Oracle SQL Developer 1 5 3 2 3 3 3
PowerDesigner 3 3 4 2 3 3 5

Table 6 displays the result of the assessment of each Fea-
ture of the Functionality Category, according to the method-
ology criteria. Between brackets are the average weight val-
ues that resulted from our community survey. As previously
mentioned, any software that does not incorporate a measure,
its weight (importance) will be deducted. Also, to better
differentiate the tools, we added a wider range for the values
depending on each measure:

1) Supported databases, this category accounts for the
number of database engines that the tool can generate
SQL scripts from the conceptual model. This character-
istic has the highest weight value because it is important
for a tool to have a wide range of choices, not limit the
user. The tools that support one database got the score
of one, the tools that support two, a score of two, and
three or more databases receive a score of three;

2) The number of different constraints that the tool has
goes in the feature: Supported constraints. If it has at
least two of the following group PK, AI, and NN, the
tool receives a score of two, and those that have these or
more, such as UQ or E have a score of three;

3) In the feature Supported OS, we considered three OS:
Windows, Linux, and macOS. Each tool will score
one point for each supported OS. Thus, a tool like
Powerdesigner that only supports Windows will score
one, Umbrello UML supports Windows and macOS will
score two, and the rest three.

4) Only some tools have reverse engineering, so those
that have it receive a score of three, otherwise the set
importance will be deducted from the cumulative sum,
so the score will be set as -1;

5) Regarding the feature Real-time collaboration, the tools
that have it received three, otherwise the set importance
will also be deducted from the cumulative sum, so the

score will be set as -1;
6) The evaluation of the feature CM design is according to

the tools’ capacity to provide a CM design. If provided,
the tool has a score of three, otherwise the set impor-
tance will be deducted from the cumulative sum, so the
score will be set as -1.

Following the proposed methodology, we calculated the
Weighted total, representing the cumulative multiplication of
the score by the feature’s weight (importance). For example,
Dbdesigner. id Functionality score (Equation 3) is calculated
as: [(1 ×2.37) + (3 × 2.21) + (3 × 1.95) + (−1 × 1.84) +
(3× 1.79) + (−1× 1.79)]/11.95 = 1.39.

Using this value, we assessed the percentage of each tool
score. Finally, we converted the values according to Table 3,
represented in the last column. None of the tools achieved the
highest score (5). Dbdesigner.net and PowerDesigner, both
with a score of three (3), were the best-rated tools in this
Category.

The last step is to calculate each tool’s score, using Equa-
tion 2, taking into account the values of different categories
from the Table 7, multiplying it by its weights, where we
converted the percentage into unit values, and adding up these
scores. The result of these calculations is shown in Table 8.

After applying the proposed methodology to the tools (Eq.
2), in the product type of Online free tools, WWW SQL
Designer received the highest score, 2.89. This tool has
some shortcomings, such as supporting only one database,
not allowing real-time collaboration, and not having relation-
ship cardinalities. These contributed to a low value in the
Functionality category, the one that has the highest weight.
However, in the remaining categories, the tool performs well,
giving it a prominent place.

In the product type of Online commercial tools, Db-
designer.net ended the assessment with 3.50, the overall

VOLUME 4, 2016 11

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

TABLE 8: Final score

Product
Type Tool name Score

I
WWW SQL Designer 2.89

Dbdesigner.id 2.62
Onda 2.38

II

Dbdesigner.net 3.50
Lucidchart 3.20
sqlDBM 2.86

GenMyModel 2.57
dbDiffo 2.35

III
pgModeler 3.56

Umbrello UML 3.10
MySQL Workbench 2.43

IV

PowerDesigner 3.13
dbSchema 2.88

Oracle SQL Developer 2.63
Erwin Data Modeler 2.54

Navicat 2.35
dbWrench 2.35

highest value. This tool has a high number of supported
databases, restrictions, and operating systems. It supports
reverse engineering and real-time collaboration. Although it
is not extensible, the tool is easy to work with, with good
documentation, qualified support, and broadly adopted by the
community.

In the product type of Desktop free software, pgModeler
received the highest score, 3.56 out of 5. This tool got better
results, despite its Functionality score, because it only sup-
ports PostgreSQL and does not have real-time collaboration.
PgModeler is extensible, has clear documentation and widely
adopted by the community.

In the product type of Desktop commercial software,
PowerDesigner got the highest score, 3.13. This tool sup-
ports several database engines, cardinality options, real-time
collaboration, allows performing reverse engineering, and
it has good documentation. However, it only supports one
Operating System (OS).

All the previously mentioned and analyzed tools offer
unique resources to its users, and the differences in the final
score display their heterogeneity. This classification results
mainly from the fundamental differences in the Functionality
category. From the six features in our approach, all tools have
three (with the highest importance according to our survey).
However, the BRR model imposes a penalization when a tool
has a missing feature.

In addition, it allows us to generate results that accurately
reflect the usefulness of the tools and their level of pro-
ductivity for users. Also, we aimed to identify all crucial
Functionality characteristics. Ultimately, the choice must
also encompass the purpose of the project and the developer’s
skills. Nevertheless, we only considered six features. Despite

our survey to classify their importance, we acknowledge the
threat that, for other evaluators, these specific features may
not be the best, the most adequate, or the most representative
for data modeling tools. We tried to remove the subjectiv-
ity by gathering input from several database and software
engineering professionals, but based on the data presented.
Anyone can change the weights as they see fit to suit their
specific context, thus achieving more adequate results for
their needs.

VII. CONCLUSIONS
This paper covers the evaluation of six open-source and
eleven proprietary database modeling tools using a new and
tailored approach. We gathered information for this analysis
from the documentation available on each tool’s website, by
installing, testing, and using the tools. Also, we selected the
proprietary desktop software according to Google Trends,
then applied filter criteria because the number of modeling
tools is high.

We used a hybrid methodology based on BRR and OS-
Spal and made a survey within our department research
community to assess category and functionalities weigths.
WWW SQL Designer (2.89), Dbdesigner.net (3.50), pgMod-
eler (3.56), and PowerDesigner (3.13) are the most valuable
tools in each product type. Overall, pgModeler, an open-
source desktop tool, achieved the highest value amongst the
17 evaluated tools.

To provide a meaningful evaluation of database modelling
tools, it was necessary to develop a hybrid methodology,
since neither BRR nor OSSPal were able to fully satisfy the
requirements of this analysis per se. BRR is prone to ignore
important information, since it considers subjectively the
seven highest ranked categories out of the 12 possible. And
the OSSpal methodology does not provide a referential final
score. Furthermore, the combination of both methodologies
and the further improvement to the functional evaluation,
have shown that our method provides more meaningful and
tailored results for the evaluators, that can be also adapted
to support decision in specific contexts, just by changing the
weights used.

ACKNOWLEDGMENTS
This work is also supported by the European Regional De-
velopment Fund (FEDER), through the Competitiveness and
Internationalization Operational Programme (COMPETE
2020) of the PORTUGAL 2020 framework [Project InfraCrit
with Nr. 039555 (POCI-01-0247-FEDER-039555)].

REFERENCES
[1] S. B. Navathe, “Evolution of data modeling for databases,” Communica-

tions of the ACM, vol. 35, no. 9, pp. 112–123, 1992.
[2] “IBM definition of Data Modeling.” https://www.ibm.com/cloud/learn/

data-modeling. Accessed: 27-04-2021.
[3] G. Simsion and G. Witt, Data modeling essentials. Elsevier, 2004.
[4] “Wikipedia definition of Data Modeling.” https://www.ibm.com/cloud/

learn/data-modeling. Accessed: 27-04-2021.
[5] R. Kimball and M. Ross, The DataWarehouse Toolkit. John Wiley & Sons

Inc, 2004.

12 VOLUME 4, 2016

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

[6] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts.
New York, New York, USA: McGraw-Hill Education, 7th ed., 1991.

[7] OpenBRR, “Business Readiness Rating for Open Source,” tech. rep., 2005.
[8] A. I. Wasserman, X. Guo, B. McMillian, K. Qian, M.-Y. Wei, and Q. Xu,

“Osspal: Finding and evaluating open source software,” pp. 193–203,
2017.

[9] International Data Corporation, “International Data Corporation Software
Taxonomy,” 2016.

[10] T. Ferreira, I. Pedrosa, and et al., “Evaluating open source business
intelligence tools using osspal methodology,” in Proceedings of the 9th
International Joint Conference on Knowledge Discovery, Knowledge En-
gineering and Knowledge Management (A. L. N. Fred and J. Filipe, eds.),
pp. 283–288, SciTePress, 2017.

[11] N. Leite, I. Pedrosa, and et al., “Open source business intelligence plat-
forms’ assessment using osspal methodology,” in Proceedings of the 15th
International Joint Conference on e-Business and Telecommunications,
ICETE 2018 - Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WIN-
SYS, Porto, Portugal, July 26-28, 2018 (C. Callegari, M. van Sinderen,
P. Novais, P. G. Sarigiannidis, S. Battiato, Á. S. S. de León, P. Lorenz, and
M. S. Obaidat, eds.), pp. 356–362, SciTePress, 2018.

[12] A. K. Pereira, A. P. Sousa, J. R. Santos, and et al., “Open source data
mining tools evaluation using osspal methodology,” in Proceedings of the
13th International Conference on Software Technologies, ICSOFT 2018,
Porto, Portugal, July 26-28, 2018 (L. A. Maciaszek and M. van Sinderen,
eds.), pp. 706–712, SciTePress, 2018.

[13] T. Ferreira, I. Pedrosa, and et al., “Evaluating open source e-commerce
tools using osspal methodology,” in Proceedings of the 20th International
Conference on Enterprise Information Systems, ICEIS 2018, Funchal,
Madeira, Portugal, March 21-24, 2018, Volume 1 (S. Hammoudi, M. Smi-
alek, O. Camp, and J. Filipe, eds.), pp. 213–220, SciTePress, 2018.

[14] H. C. de Paula and et al., “An application of osspal for the assessment
of open source project management tools,” in Proceedings of the 15th
International Conference on Web Information Systems and Technologies,
WEBIST 2019, Vienna, Austria, September 18-20, 2019 (A. Bozzon,
F. J. D. Mayo, and J. Filipe, eds.), pp. 411–417, ScitePress, 2019.

[15] A. Oliveira and et al., “Evaluating open source project management tools
using osspal methodology,” in Proceedings of the 15th International Con-
ference on Web Information Systems and Technologies, WEBIST 2019,
Vienna, Austria, September 18-20, 2019 (A. Bozzon, F. J. D. Mayo, and
J. Filipe, eds.), pp. 343–350, ScitePress, 2019.

[16] J. F. Marques and et al., “Evaluation of asana, odoo, and projectlibre
project management tools using the osspal methodology,” in Proceedings
of the 11th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management, IC3K 2019, Vol-
ume 2: KEOD, Vienna, Austria, September 17-19, 2019 (J. L. G. Dietz,
D. Aveiro, and J. Filipe, eds.), pp. 397–403, ScitePress, 2019.

[17] S. Cruz and et al., “Project management tools assessment with osspal,”
in Proceedings of the 11th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, IC3K
2019, Volume 2: KEOD, Vienna, Austria, September 17-19, 2019 (J. L. G.
Dietz, D. Aveiro, and J. Filipe, eds.), pp. 390–396, ScitePress, 2019.

[18] A. Calçada and et al., “Evaluation of couchbase, couchdb and mongodb
using osspal,” in Proceedings of the 11th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement, IC3K 2019, Volume 1: KDIR, Vienna, Austria, September 17-19,
2019 (A. L. N. Fred and J. Filipe, eds.), pp. 427–433, ScitePress, 2019.

[19] D. Batra and G. M. Marakas, “Conceptual data modelling in theory and
practice,” European Journal of Information Systems, vol. 4, no. 3, pp. 185–
193, 1995.

[20] D. L. Moody and G. G. Shanks, “What makes a good data model? Evaluat-
ing the quality of entity relationship models,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 881 LNCS, pp. 94–111, 1994.

[21] D. Brdjanin, G. Banjac, D. Banjac, and S. Maric, “An experiment in
model-driven conceptual database design,” Software and Systems Mod-
eling, vol. 18, no. 3, pp. 1859–1883, 2019.

[22] B. Thalheim, Entity-Relationship Modelling: Foundations of Database
Technology. Springer-Verlag, Inc, New York, 2000.

[23] P. Chen, “The Entity-Relationship Model—toward a Unified View of
Data,” ACM Transactions on Database Systems (TODS), vol. 1, no. 1,
pp. 9–36, 1976.

[24] “Welcome To UML, https://www.uml.org/,” 2019.
[25] S. Al-Fedaghi and H. Alahmad, “Orientation in Conceptual Modeling

Frameworks,” in IEEE 15th International Conference on Dependable, Au-

tonomic and Secure Computing, IEEE 15th International Conference on
Pervasive Intelligence and Computing, IEEE 3rd International Conference
on Big Data Intelligence and Computing, pp. 1298–1303, 2018.

[26] N. E. Adrienne Watt, Database Design, 2nd Edition. The BCcampus Open
Textbook Project, 2014.

[27] “79 Data Modeling Tools Compared.” https://www.databasestar.com/
data-modeling-tools/. Accessed: 16-10-2020.

[28] “20 Best Data Modeling Tools.” https://www.guru99.com/
data-modeling-tools-design-database.html. Accessed: 16-10-2020.

GONÇALO CARVALHO received the B.Sc. in
Geography from University of Coimbra (UC), the
M.Sc. degree in Geographical Information Sys-
tems from University of Trás-os-Montes e Alto
Douro (UTAD) and B.Sc. in Informatics Enge-
neering from Polytechnic of Coimbra (IPC), in-
stitutions located in Portugal, in 2005, 2009 and
2016, respectively. After the experience as a web
and software developer between 2015 and 2018,
he currently has a studentship for his Ph.D. re-

search from the University of Coimbra. His main research interests are in
the areas of databases, distributed systems, edge computing, cyber-physical
systems, and machine learning.

SERGII MYKOLYSHYN received his Bachelor’s
degree from the University of Coimbra (UC) in
2019. He is currently pursuing his Masters’s de-
gree in Informatics Engineering, specializing in
Software Engineering, also in the UC. His main re-
search interest areas are databases and Cloud/Edge
Computing.

BRUNO CABRAL concluded his Ph.D. with hon-
ors in 2009 at the University of Coimbra (UC) in
the area of Informatics Engineering. Bruno holds
a Tenured Professor position with the Informat-
ics Engineering Department of the University of
Coimbra (UC). Bruno has been an Adjunct As-
sociate Teaching Professor at the Carnegie Mel-
lon University (CMU), USA, and a faculty of
the Dual-degree Masters in Software Engineering
(MSE). He is the coordinator of the Master Pro-

gram in Software Engineering at the UC and a senior researcher of the
Systems and Software Engineering group of Centre of Informatics and
Systems of the University of Coimbra (CISUC). His main research interests
are in the areas of distributed systems, parallel programming languages,
machine learning, and dependable computing. Bruno was either the PI or
staff member on multiple EU, Government and privately funded research
projects, and frequently works as a consultant to the software industry.

VOLUME 4, 2016 13

Carvalho et al.: Comparative Analysis of Data Modeling Design Tools

JORGE BERNARDINO (Member, IEEE) re-
ceived the Ph.D. degree from the University of
Coimbra, in 2002. From 2005 to 2010, he was
the President of ISEC (Coimbra Engineering Insti-
tute). From 2017 to 2019, he was also the President
of ISEC Scientific Council. In 2014, he was a Vis-
iting Professor at CMU. He was the Director of the
Applied Research Institute (i2A) of Polytechnic
of Coimbra from 2019 to 2021. He is currently
a Coordinator Professor with the Polytechnic of

Coimbra—ISEC, Portugal. He has authored more than 200 publications in
refereed conferences and journals and participated in several national and
international projects. His main research interests include big data, NoSQL,
data warehousing, dependability, and software engineering.

VASCO PEREIRA received his Ph.D in Infor-
matics Engineering in 2016, from the Faculty of
Sciences and Technology of the University of
Coimbra (Portugal). He is currently an Assistant
Professor at the Department of Informatics En-
gineering at the same university and the vice-
coordinator of the bachelor’s degree in Informat-
ics Engineering. He is also a researcher at the
Laboratory of Communications and Telematics
of the Centre of Informatics and Systems of the

University of Coimbra (CISUC) where he has been involved in national
and European research projects. He is currently involved in projects such
as 5G - Components and Services for 5G Networks (POCI-01-0247-
FEDER-024539), MobiWise - from mobile sensing to mobility advising
(P2020 SAICTPAC/0011/2015) and SOCIALITE - Social-Oriented Inter-
net of Things Architecture, Solutions and Environment (POCI-01-0145-
FEDER-016655). His main research interests include QoS, performance
in Wireless Sensor Networks and IoT. His homepage can be reached at
http://faculty.uc.pt/uc26416.

14 VOLUME 4, 2016

	Introduction
	Motivation
	Objectives
	Document Outline
	Project Team Constitution

	State of the art
	Edge Computing Paradigm
	Key architectures that enable Edge Computing
	Fog Computing
	Multi-access Edge Computing
	Cloudlet Computing

	Data Warehouses
	Data Modeling
	Data Models and Data Modeling and its importance
	Data Models Evolution
	Background in conceptual modeling
	Data Modeling Tools

	Tools Evaluation
	State of the art conclusions

	Planning
	Process Management
	Work Planning
	Risks Management
	Project Threshold of Success
	Risk Analysis
	Identified risks and mitigation strategies
	Risks Matrix

	Planning conclusions

	Requirements Specification
	Functional Requirements
	Non-Functional Requirements
	Mock-ups
	Requirements Specification conclusions

	Architecture of the Application
	Architecture and Technologies
	Application Scheme
	C4 Architecture Model

	New ONDA Version
	Architecture of the Application conclusions

	Implementation
	Project Development
	Layers
	"Summary Entity"
	Aggregation connections
	Physical Diagram
	Scripts

	Additional improvements
	Implementation conclusions

	Tests
	Functional Tests
	FR1 - Functional Requirement 1
	FR2 - Functional Requirement 2
	FR3 - Functional Requirement 3
	FR6 - Functional Requirement 6
	FR7 - Functional Requirement 7
	FR8 - Functional Requirement 8
	FR9 - Functional Requirement 9
	FR10 - Functional Requirement 10
	FR11 - Functional Requirement 11
	FR13 - Functional Requirement 13
	FR15 - Functional Requirement 15
	FR16 - Functional Requirement 16
	FR17 - Functional Requirement 17

	Application Validation
	First Use Case
	Second Use Case

	Non-Functional Tests
	Tests Conclusions

	Conclusions
	Experience acquired
	Future Work
	Final Considerations

