

Pedro Miguel Pinheiro Fernandes

DEVELOPMENT OF A MOBILE APPLICATION AND BACKEND

FOR THE SIMULATED USE OF CRYPTOCURRENCIES

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor Paulo José Osório Rupino da Cunha, PhD and

Professor Manuel Paulo de Albuquerque Melo, PhD and presented to
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021

D
EV

EL
O

P
M

EN
T

O
F

A
 M

O
B

IL
E

A
P

P
LI

C
A

TI
O

N
 A

N
D

 B
A

C
K

EN
D

 F
O

R
 T

H
E

SI
M

U
LA

TE
D

 U
SE

 O
F

C
R

Y
P

TO
C

U
R

R
EN

C
IE

S
P

e
d

ro
 M

ig
u

el
 P

in
h

e
ir

o
 F

er
n

an
d

es

Faculty of Sciences and Technology

Department of Informatics Engineering

Development of a mobile application

and backend for the simulated use of

cryptocurrencies

Pedro Miguel Pinheiro Fernandes

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Paulo José Osório Rupino da Cunha, PhD and Prof. Manuel

Paulo de Albuquerque Melo, PhD and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering

September 2021

This page is intentionally left blank.

Acknowledgements

Firstly, I want to thank my family for all the support throughout the execution of the
dissertation and for keeping me going forward even when there were stepbacks.

To all my friends that lived with me in Coimbra these last years, which we all kept moti-
vating each other to complete this last step of our academic path.

Finally, I would like to express my gratitude to my advisors, Professor Paulo Rupino and
Professor Paulo Melo, who were always available to help in every step of this dissertation.
And, also, a big thank you to the professors Helder Sebastião, Pedro Godinho and Tiago
Sequeira, involved in the project Descripto, that gave great advice and recommendations
throughout the project.

iii

This page is intentionally left blank.

Abstract

The main objective of these results is to help developing a simulated system of cryptocur-
rency trading and digital payments, that's compatible with Android and iOS. This system
will be used by a group of selected participants for a pseudo-experiment with the main
goal of evaluating the preferences of participants related to di�erent cryptocurrencies and
their charcteristics (volatility, anonymity, trading velocity and settlement time).

In order to develop the system several tasks were conducted. First, a state of the art
study was done. It covered the decision about the technology to use for the creation of the
frontend side (graphical user interface) where it was chosen the Progressive Web Applica-
tion solution. An analysis of Graphical interfaces of existing trading and wallet/payment
mobile applications was also performed, as well as, evaluated which backend architecture
pattern would be more suitable. Then, security considerations for web applications were
also described. Secondly, a software requirements document was written, that consists of
functional and non-functional requirements, use cases, and mockups. The next step was
the de�nition of technologies to use during the development of the application. Then,
the software architecture for the system, that's going to be developed, was designed. Af-
ter that and before starting the implementation, the risk analysis and the development
methodology de�nition were done. Finally, the system was implemented and tested.

Keywords

Cryptocurrency, Payment, Trading, Progressive Web Application, Wallet, Cryptocurrency
Transactions

v

This page is intentionally left blank.

Resumo

Estes resultados têm como principal objetivo auxiliar no desenvolvimento de um sistema
simulado de troca de criptomoedas e pagamentos digitais, compatível com Android e
iOS. Este sistema vai ser usado por um grupo de participantes selecionados para uma
pseudo-experiência com o principal propósito de avaliar as preferências dos participantes
relativamente a diferentes criptomoedas e as suas características (volatilidade, anonimato,
velocidade de troca e tempo de liquidação).

Para desenvolver o sistema foram feitas uma série de tarefas. Numa fase inicial foi feito o
estudo do estado da arte que incidiu particularmente sobre a decisão para a tecnologia a
usar para a criação da parte de frontend (interface grá�co do utilizador) onde foi escolhida a
solução de Progressive Web Application. Também é feita uma análise de interfaces grá�cas
de aplicações já existentes no mercado, tanto de trading como de carteira/pagamentos.
Por �m, foi analisada qual é a arquitetura mais adequada para a implementação da parte
do backend e descritos quais os aspectos de segurança a considerar numa aplicação web.
De seguida, foi elaborado o documento de requisitos que contém requisitos funcionais e
não funcionais, casos de uso e mockups. O próximo passo foi de�nir as tecnologias a
utilizar durante o desenvolvimento da aplicação. Depois, foi desenhada a arquitetura do
sistema a desenvolver. Depois disso e antes de começar a implementação, foi feita uma
análise de riscos e de�nida a metodologia de desenvolvimento. Finalmente, o sistema foi
implementado e testado.

Palavras-Chave

Criptomoedas, Pagamento, Trading, Progressive Web Application, Carteira, Transações de
Criptomoedas

vii

This page is intentionally left blank.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 1

1.3 Objectives . 2

1.4 Document Structure . 2

1.5 Work Plan . 3

2 State of the Art 10

2.1 Analysis of Mobile Payment Systems . 10

2.1.1 MB WAY . 10

2.1.2 Paypal . 10

2.1.3 Trust Wallet . 10

2.1.4 Conclusion . 11

2.2 Analysis of Mobile Cryptocurrency Trading Systems 12

2.2.1 FOREX.com . 12

2.2.2 Kraken . 12

2.2.3 Conclusion . 12

2.3 Frontend Solutions . 13

2.3.1 Native Applications . 13

2.3.2 Cross-Platform Applications . 14

2.3.3 Comparison of Mobile Development Approaches 21

2.4 Backend Solutions . 24

2.4.1 Types of Databases . 24

2.4.2 Patterns of Software Architecture . 25

2.5 Security Considerations . 29

2.5.1 Authentication . 29

2.5.2 Access Control . 30

2.5.3 Session Management . 30

2.5.4 Data and Input Validation . 31

2.5.5 Bu�er Over�ows . 31

2.5.6 Logging . 31

2.5.7 Error Handling . 32

3 Software Requirements Speci�cation 34

4 Selection of Technologies 38

4.1 Progressive Web Application Frameworks 38

4.1.1 ReactJS . 38

4.1.2 AngularJS . 39

4.1.3 VueJS . 39

4.1.4 Framework Decision . 39

ix

Chapter 0

4.2 Backend Technologies . 40

4.2.1 Flask . 40

4.2.2 Spring Boot . 40

4.2.3 ExpressJS . 41

4.2.4 Technology Decision . 41

4.3 SQL Databases . 41

4.3.1 MySQL . 42

4.3.2 PostgreSQL . 42

4.3.3 Database Decision . 42

4.4 NoSQL Databases . 43

4.4.1 MongoDB . 43

4.5 Containerization Technology . 43

4.5.1 Docker . 43

4.6 Message Queue Software . 44

4.6.1 Apache Kafka . 44

4.7 SMS (Short Message System) Communication API 45

4.7.1 Vonage . 45

4.7.2 Plivo . 45

4.7.3 Sinch . 46

4.7.4 Twilio . 46

4.7.5 SMS API Decision . 46

5 Software Architecture 48

5.1 C4 Model . 48

5.1.1 Level 1 . 48

5.1.2 Level 2 . 49

5.1.3 Level 3 . 50

5.2 Entity Relationship Diagram (ERD) . 55

5.2.1 User Service . 55

5.2.2 Cryptocurrency Service . 56

5.2.3 Market Service . 57

5.2.4 Transactions Service . 60

5.2.5 Wallet Service . 62

6 Development 65

6.1 Development Environment Con�guration . 65

6.2 Risk Analysis . 67

6.3 Development Methodology - Scrum . 68

6.4 Implemented Functional Requirements . 69

6.5 Client-side Implementation (React.js) . 70

6.6 Server-side Implementation (Node.js) . 71

6.7 System Implementation and Description . 72

6.8 Security mechanisms implemented . 86

7 Testing 89

7.1 Functional Testing . 89

7.1.1 Unit Testing . 90

7.1.2 End-to-End Testing . 91

7.2 Load Testing . 93

7.3 Usability Testing . 94

7.3.1 Test Methodology . 94

7.3.2 Test Results . 95

x

Contents

8 Conclusion and Future Work 102

xi

This page is intentionally left blank.

Acronyms

API Application Programming Interface. 13

App Application. 10, 11, 13, 16�24, 26, 29, 38

Apps Applications. 11

IDE Integrated Development Environment. 11

iOS iPhone Operating System. 10�12, 18

Mac Macintosh (Apple Computer). 11

MVC Model-View-Controller. 29

OS Operating System. 10�13, 15, 17

PWA Progressive Web Applications. 16�18, 21

SDK Software Development Kit. 11

SIBS Sociedade Interbancária de Serviços. 22

TLS Transport Layer Security. 17

UI User Interface. 11, 17

URL Uniform Resource Locator. 17, 19, 30

UX User Experience. 11, 18

xiii

This page is intentionally left blank.

List of Figures

1.1 Expected work plan for the 1st semester . 5

1.2 Real work plan for the 1st semester . 6

1.3 Expected work plan for the 2nd semester . 7

1.4 Real work plan for the 2nd semester . 8

2.1 Hybrid Application Structure [70] . 15

2.2 Interpreted Application (using react native framework) Structure [19] 16

2.3 Cross Compiled Application Structure . 17

2.4 Web Application Structure . 18

2.5 Service Worker life cycle on the �rst installation [42] 20

2.6 Client/Server Pattern high level structure [89] 26

2.7 Model-View-Controller Pattern high level structure 27

2.8 Microservices Pattern high level structure [49] 28

3.1 Payment screen . 36

5.1 System Context Diagram (Level 1) . 49

5.2 Container Diagram (Level 2) . 50

5.3 Component Diagram of the user side API application (Level 3) 52

5.4 Component Diagram of the admin side API application (Level 3) 54

5.5 Entity Relationship Diagram for User Service 55

5.6 Entity Relationship Diagram for Cryptocurrency Service 56

5.7 Entity Relationship Diagram for Market Service 57

5.8 Entity Relationship Diagram for Transactions Service 60

5.9 Entity Relationship Diagram for Wallet Service 62

6.1 Authentication service container con�guration 65

6.2 MySQL users database container con�guration 65

6.3 Zookeeper and Kafka containers con�gurations 66

6.4 Con�guration �le for the NGINX reverse proxy 67

6.5 Risk analysis table . 68

6.6 Scrum process [10] . 68

6.7 Trello board for the project . 69

6.8 Implemented Functional User Requirements 70

6.9 Implemented Functional Administrator Requirements 70

6.10 React project structure (general) . 71

6.11 React project structure ("src" folder) . 71

6.12 React project structure (components folder) 71

6.13 Back-side project structure (general) . 72

6.14 Back-side project structure (wallet service directory) 72

6.15 React project structure (wallet service "src" directory) 72

6.16 Register screen . 73

xv

Chapter 0

6.17 Password hashing implementation . 74

6.18 Login screen . 75

6.19 User authorization code . 75

6.20 View wallet screen . 76

6.21 View all activity screen . 76

6.22 Change wallet �lters screen . 76

6.23 Payment menu screen . 77

6.24 Payment con�rmation screen . 78

6.25 Payment pin insertion screen . 78

6.26 Send cryptocurrency menu screen . 79

6.27 Send cryptocurrency con�rmation screen . 79

6.28 Send cryptocurrency pin insertion screen . 79

6.29 Request cryptocurrency menu screen . 80

6.30 Request cryptocurrency qr code generated screen 80

6.31 Create sell order screen . 81

6.32 Create buy order screen . 81

6.33 Create sell order con�rmation screen . 81

6.34 Create sell order pin insertion screen . 81

6.35 User's open orders screen . 82

6.36 User's closed orders screen . 82

6.37 Settings menu screen . 83

6.38 Edit personal information screen . 83

6.39 Edit security information (PIN code) screen 83

6.40 Help menu screen . 84

6.41 Help login's section screen . 84

6.42 Admin panel users screen . 84

6.43 Admin panel cryptocurrencies screen . 85

6.44 Admin panel wallets screen . 85

6.45 Admin panel orderbooks screen . 86

6.46 Admin panel logs screen . 86

7.1 Test case for login with invalid credentials 90

7.2 Test case for login with valid credentials . 91

7.3 Results for the login function unit testing 91

7.4 Example of a end-to-end testing �le for login 92

7.5 Example of a end-to-end testing result for login 93

7.6 Load testing results for the make a cryptocurrency payment API endpoint . 94

7.7 Questionnaire �rst question . 96

7.8 Questionnaire second question . 96

7.9 Quesionnaire third question . 96

7.10 Questionnaire fourth question . 97

7.11 Questionnaire �fth question . 97

7.12 Questionnaire sixth question . 97

7.13 Usability testing tasks results (clicks) . 98

7.14 Usability testing tasks results (di�culty level) 98

7.15 Pos-Questionnaire �rst question . 99

7.16 Pos-Questionnaire second question . 99

7.17 Pos-Questionnaire third question . 99

7.18 Pos-Questionnaire forth question . 100

1 Main dashboard . 113

2 Activity menu . 113

xvi

List of Figures

3 Send money to someone . 114

4 Set amount of money to send . 114

5 Security PIN . 114

6 Payment with NFC . 115

7 Payment with QR Code . 115

8 Payment with Number or Barcode . 116

9 Ask for money from someone . 117

10 Split the bill with someone . 118

11 Information menu . 119

12 Application settings . 120

13 Personal information . 121

14 Consent for usage of personal information 121

15 Main dashboard . 122

16 Activity menu . 122

17 Send money . 123

18 Request money . 123

19 Receive money instructions . 124

20 Receive money . 124

21 Set amount of money to receive . 125

22 Receive money with amount set . 125

23 Settings . 126

24 Main dashboard . 127

25 Main dashboard with hidden values . 127

26 Filter to select dashboard's cryptocurrencies 128

27 Dashboard with last noti�cations . 128

28 Send cryptocurrency (select recipient) . 129

29 Con�rm send transaction . 129

30 Receive cryptocurrency (through QR Code) 130

31 Receive cryptocurrency with amount set . 130

32 Buy set amount of cryptocurrency (through third-party provider) 131

33 Cryptocurrency dashboard . 132

34 Crypocurrency market information . 132

35 Swap crypto tokens . 133

36 Con�rm swap operation . 133

37 Exchange crypto tokens . 133

38 Con�rm exchange operation . 133

39 Settings . 134

40 Account funds menu . 135

41 History of trade positions (Open and Closed) 136

42 History of trade orders (Open and Closed) 136

43 Watchlists menu . 137

44 More actions for Watchlists Menu . 137

45 Markets menu . 138

46 Bitcoin (¿) market dashboard . 138

47 Menu to set alerts of price changes . 139

48 Noti�cation for alerts set of price changes 139

49 Menu to make a trade in the Market (sell) 140

50 Menu to make an order in the Market (sell) 140

51 Markets menu . 141

52 Markets menu with one selected . 141

53 Filter of markets menu . 141

xvii

Chapter 0

54 Menu with every order, trade and position done 142

55 Menu to make a cryptocurrency trade in the Market (buy) 142

56 Pair Bitcoin/¿ market dashboard . 143

57 Menu to select the currency pair . 143

58 Results for the login route unit testing . 145

59 Results for the logout route unit testing . 145

60 Results for the password recovery route unit testing 145

61 Results for the register route unit testing . 146

62 Results for the add cryptocurrency route unit testing 147

63 Results for the edit cryptocurrency route unit testing 148

64 Results for the get all cryptocurrencies route unit testing 148

65 Results for the get error logs route unit testing 149

66 Results for the get fatal logs route unit testing 149

67 Results for the get info logs route unit testing 149

68 Results for the get warn logs route unit testing 149

69 Results for the add limit order route unit testing 150

70 Results for the add market order route unit testing 150

71 Results for the cancel order route unit testing 150

72 Results for the get buy orders history route unit testing 150

73 Results for the get sell orders history route unit testing 151

74 Results for the get last buy orders history route unit testing 151

75 Results for the get last sell orders history route unit testing 151

76 Results for the get user buy orders route unit testing 151

77 Results for the get user sell orders route unit testing 151

78 Results for the get complete orderbook route unit testing 151

79 Results for the get user available cryptocurrencies route unit testing 151

80 Results for the get number of actions per day route unit testing 152

81 Results for the set number of actions per day route unit testing 152

82 Results for the edit wallet quantity route unit testing 152

83 Results for the make payment route unit testing 152

84 Results for the send cryptocurrency route unit testing 153

85 Results for the get �at balance route unit testing 153

86 Results for the get wallet �lters route unit testing 153

87 Results for the get wallet information route unit testing 153

88 End-to-end testing results for the register action 155

89 End-to-end testing results for the login action 155

90 End-to-end testing results for the forgot password action 155

91 End-to-end testing results for the contact us while logged o� action 156

92 End-to-end testing results for the send cryptocurrency action 156

93 End-to-end testing results for the request cryptocurrency action 156

94 End-to-end testing results for the add market sell order action 156

95 End-to-end testing results for the add limit sell order action 156

96 End-to-end testing results for the add market buy order action 157

97 End-to-end testing results for the add limit buy order action 157

98 End-to-end testing results for the edit personal information action 157

99 End-to-end testing results for the edit PIN code action 157

100 End-to-end testing results for the invite user action 157

101 End-to-end testing results for the add cryptocurrency action 158

102 Usability testing page 1 . 159

103 Usability testing page 2 . 160

104 Usability testing page 3 . 161

xviii

List of Figures

105 Usability testing page 4 . 162
106 Usability testing page 5 . 163
107 Usability testing page 6 . 164
108 Usability testing page 7 . 165
109 Usability testing page 8 . 166
110 Usability testing page 9 . 167
111 Usability testing page 10 . 168
112 Usability testing page 11 . 169
113 Usability testing page 12 . 170
114 Usability testing page 13 . 171
115 Usability testing page 14 . 172
116 Usability testing page 15 . 173

xix

This page is intentionally left blank.

List of Tables

2.1 Comparison Table of features for the di�erent mobile development approaches 22

3.1 Functional user requirement for payments 34
3.2 Pay for goods use case description . 35
3.3 Non-Functional Usability Requirement . 36

xxi

This page is intentionally left blank.

Chapter 1

Introduction

This document reports all the work conducted for the curricular unit of Dissertation/Internship,
advised by Prof. Paulo José Osório Rupino da Cunha and Prof. Manuel Paulo de Albu-
querque Melo. The dissertation is part of the Master's degree in Informatics Engineering
(MEI) with specialization in Software Engineering, in the Department of Informatics En-
gineering (DEI) of the Faculty of Sciences and Technologies of the University of Coimbra
(FCTUC).

This chapter is divided in �ve sections that present the context and motivation of the
project, list all the objectives for this dissertation, describe the document structure and
explain the work plan for its execution.

1.1 Context

Nowadays, the emergence of an economy that is not supported by a physical currency
is becoming a subject of investigation in several sectors, such as universities, banks and
governments. In October of 2008, the �rst cryptocurrency called Bitcoin appeared, through
an article published by someone under the pseudonym Satoshi Nakamoto [56]. Since then,
cryptocurrencies have been growing and gaining extreme importance.

This work is part of a bigger project called DesCripto. DesCripto's main objective is to
purpose desired architectures that can be used, as reference, for central banks or private
institutions that look to introduce new cryptocurrencies. The proposals are based on the
analysis of the key success factors of cryptocurrencies and the main characteristics of digital
coins.

1.2 Motivation

DesCripto is split into multiple tasks. This document will cover one of them, which seeks
to determine the impact of di�erent characteristics in cryptocurrencies, by doing a pseudo-
experiment. This experiment will be repeated with breaks in between them in order to
help evaluate its consistency. The participants are university students from Faculdade de
Economia da Universidade de Coimbra and, also, university partners, such as, workers
from school cafeteria and canteen.

In order to achieve what was just described, a simulated system that allows cryptocurrency

1

Chapter 1

trading in a small market and digital payments will be created. The developed system will
be used by the selected participants for the pseudo-experiment. In each experiment, they
will receive a precise amount of coins and numeraire (in euros) that, in an initial phase,
can be traded in the market created for the experiment. This period allows to evaluate
the preferences of participants related to di�erent cryptocurrencies and their characteristics
that can be: more or less volatility, anonymity, trading velocity and settlement time. Based
on the prices prevailing in the �nal days of this period, each cryptocurrency will have a
�xed price expressed in units of the cash-equivalent (euros). Then, for the �nal period of
each experiment, participants may no longer trade and can exchange their cryptocurrencies
for goods in the school cafeteria or canteen. Even though the results of the experiment are
directly related with the �rst period, which corresponds to the trading phase, the last one
is also indispensable, because it allows the participants to understand that they can use
the traded cryptocurrencies in their wallet to make purchases of real things.

1.3 Objectives

The system to be developed consists of a mobile web application that is compatible with
Android and iOS, which is identi�ed by Crypta Project. It also speci�es the backend of the
system where cryptocurrency exchanges and transactions are controlled.

In order to begin the development of this system, there are several aspects that need to be
addressed, such as, study technologies for both the frontend and backend side of the appli-
cation, graphical interfaces of existing trading and wallet/payment applications, security
considerations for a web application, elaboration of a software requirements document,
de�nition of technologies that will be used for the development and an initial software
architecture of the system. For the frontend an approach of development and framework
needs to be chosen, for the backend an architecture pattern and a frameworks need do be
selected. In the elaboration of the software requirements document was considered the in-
put of the stakeholders (professors) involved, as well as, the graphical interfaces of existing
applications analysed. There is also a decision making process that needs to be done in
order to de�ne the technologies that are going to be used in the implementation, which
will also helps in the next step, that corresponds to the design of the software architec-
ture. Before starting the development, there are two things that must be done, the risk
analysis and the development methodology de�nition. Finally, with everything prepared,
the implementation will be done, as well as, its validation through a testing process.

1.4 Document Structure

The remaining of this document is structured as follows:

� State of the Art, where in the section 2.3 di�erent approaches are compared for
mobile applications development, in the sections 2.1 and 2.2 graphical interfaces of
wallet/payment and trading mobile applications are analysed, then in the section
2.4 di�erent software architecture patterns are compared and the last section 2.5,
security considerations for web applications are presented.

� Software Requirements Speci�cation, that describes how the software requirements
are collected, and section 3 displays an example extracted from the Software Require-
ments Speci�cation Document.

2

Introduction

� Technologies De�nition, this chapter contains every technology considered to develop
the system and the decisions made for each one, with the following sections: section
4.1 - Progressive web application frameworks, section 4.2 - Backend technologies,
section 4.3 - Relational databases, section 4.4 - Non-relation databases, section 4.5 -
Containerization technology, section 4.6 - Message queue software and section 4.7 -
SMS (Short Message System) communication API.

� Software Architecture, which describes the architecture design for the system by
using the C4 Model in the section 5.1 and the database design for each service by
using entity relationship diagrams (ERD) in the section 5.2.

� Development, which contains the risk analysis and development methodology of the
project, the implemented functional requirements, the con�guration for the develop-
ment environment, the client-side and server-side implementation, the system imple-
mentation/description and the security mechanisms implemented.

� Testing, this chapter describes all the performed tests, such as, functional testing
(unit and end-to-end testing), load testing and usability testing.

1.5 Work Plan

For each semester, the project tasks and their respective scheduling are represented through
Gantt Charts. Regarding the 1st Semester, two charts are displayed: in the Figure 1.1
the expected work plan for the 1st semester is represented, and the �gure 1.2 shows the
real work plan done during the 1st semester. Lastly, there is also a chart with the planned
work for the 2nd semester in the �gure 1.3. Each task has an associated timestamp with
a duration in days and a start and an end date which are chronologically represented with
a blue bar and its dependencies.

In the �rst semester, it is possible to observe that some deviations occurred with some of
the tasks. In the state of the art study, there was a meaningless delay in the task 1.3 of
just one day, there was also a signi�cant delay in the task 1.4 that took two more days
to complete and started twelve days late, this can be explained by the delayed started
in the collection of the software requirements. The task 3 took twenty nine more days
than expected, this can be simply explained by the fact that the task 3.3 was done in
late December rather than early December. The tasks 4 and 5 also su�ered some delays,
because their start dates coincided with other projects from courses of the 1st Semester.

In the third �gure 1.3 below, it is displayed a Gantt chart with the expected work plan
for the 2nd semester. This will help to better understand in which order every task needs
to be done and, approximately, how much time they will take. This chronological order
is extremely important for the 2nd semester, because the con�guration of environments
(developing, testing and exploration) is a must before starting developing the system and
writing any type of code.

Lastly, for the second semester, the �rst conclusion we can take from both Gantt charts
(expected - �g. 1.3 and real �g. 1.4) is that one task was removed and another was
added. The removed one ("Writing of paper about developed software") was due to the
lack of time to completion and, after discussing with thesis advisors, it was not essential
for right now. The added one was due to the necessity of having to learn most of the
technologies used. Another main di�erence in both charts is that the expected ends in
the 30th of June, whilst the real one ends in the 07th of September, this is because the
project deadline was postponed to the special season (in September), mostly because of

3

Chapter 1

development delays. Regarding the deviations between the expected and real chart, there
are a couple aspects that can be addressed, such as: the addition of task 2 which delayed
the beginning of the development by 22 days and, also, the development in itself took
longer than expected cause of its di�culty, especially the market trading service. Finally,
the last observable di�erence is the fact that the testing task was expected to be done after
the development, but was actually done along with the development, this is due to the fact
that the development methodology was only de�ned in the second semester, and in this
methodology, the development is divided in sprints and in each sprint some features are
implemented and tested.

4

In
tro

d
u
ctio

n

Figure 1.1: Expected work plan for the 1st semester

5

C
h
a
p
ter

1

Figure 1.2: Real work plan for the 1st semester

6

In
tro

d
u
ctio

n

Figure 1.3: Expected work plan for the 2nd semester

7

C
h
a
p
ter

1

Figure 1.4: Real work plan for the 2nd semester

8

This page is intentionally left blank.

Chapter 2

State of the Art

2.1 Analysis of Mobile Payment Systems

This chapter helps better understand how mobile payment systems work. This will assist
in the de�nition of functional requirements and the design of mockups for the application,
more speci�cally, in the wallet/transactions side of the app. For this, screenshots were
taken from the di�erent systems and each one was described to understand its importance.
In this particular case, the mobile applications studied were MB Way, PayPal and Trust
Wallet, being that the only criteria to choose them was its market popularity.

2.1.1 MB WAY

MB WAY1 is an App that was created in 2014 by SIBS with no associated costs, that
allows to make purchases (online and in physical stores), generate credit cards, send and
ask money and split the bill. All the screenshot's descriptions are in the subsection MB
Way of the Appendix A.

2.1.2 Paypal

Paypal2 is one of the biggest companies of online payments. It's a �nancial service that
allows the user to pay for purchases by associating a bank account, a debit card or a credit
card. He can also send and receive money to/from someone else, as long as he has the
email or the phone number. The description of each screenshot is in the subsection Paypal
of the Appendix A.

2.1.3 Trust Wallet

Trust Wallet3 is a decentralized wallet where the user holds the keys to his own cryp-
tocurrency wallet, meaning that only he has control over his funds. It also doesn't keep
any personal information and its main goal is to make crypto more accessible. It allows
the user to send and receive cryptocurrency, buy and trade crypto and keep track of the

1https://www.mbway.pt/perguntas
2https://www.paypal.com/pt/webapps/mpp/personal
3https://community.trustwallet.com/t/what-is-trust-wallet/189

10

https://www.mbway.pt/perguntas
https://www.paypal.com/pt/webapps/mpp/personal
https://community.trustwallet.com/t/what-is-trust-wallet/189

State of the Art

account movements. The description of the screenshots taken is in the subsection Trust
Wallet of the Appendix A.

2.1.4 Conclusion

After analyzing each payment system, there are several aspects that stand out and are
fundamental in a mobile application that deals with currency transactions, such as: a
main dashboard where a user can check the currencies balance and recent activity, then a
payment menu that allows a user to scan a QR code in order to execute a payment, also
it should be able to send some currency to someone by using an identi�er (e.g. using a
phone number or email) and a request money menu where it's possible to generate a QR
code which will then help to execute a payment. Finally it needs to have a PIN code in
order to verify each operation and a settings menu.

11

Chapter 2

2.2 Analysis of Mobile Cryptocurrency Trading Systems

It's also important to comprehend how systems for trading cryptocurrency work, which
will help de�ne the functional requirements and mockups for the market trading side
of the application. Therefore this chapter describes the functionalities from two mobile
applications that allow cryptocurrency trading, that are FOREX.com and Kraken. The
criteria to choose these applications was the market popularity and the similarities with
the application to be developed.

2.2.1 FOREX.com

The forex.com4 mobile App is a trading platform that allows the user to make trades,
analyse markets (through market changes charts), access news and analyses, set up alerts
and make deposits and withdrawals of funds. Screenshot's descriptions are in the subsection
FOREX.com of the Appendix A.

2.2.2 Kraken

Kraken5 released a mobile App in October 2019. There an user can: view trading and
staking portfolio balances, trade with market, limit, stop loss and take pro�t order types,
margin trade and view market price charts. The descriptions of each screenshot is in the
subsection Kraken of the Appendix A.

2.2.3 Conclusion

Analyzing every single mobile cryptocurrency trading system made it possible to under-
stand which features need be implemented when developing an application like this. The
following features are essential for a trading system: A portfolio menu where users can
check their open/closed orders in the market and a trade menu to make two possible types
of orders, limit and market, in order to buy or sell some kind of cryptocurrency.

4https://www.forex.com/en-uk/support/faqs/mobile-trading
5https://support.kraken.com/hc/en-us/articles/360049788312-Kraken-Pro-mobile-app-FAQ

12

https://www.forex.com/en-uk/support/faqs/mobile-trading
https://support.kraken.com/hc/en-us/articles/360049788312-Kraken-Pro-mobile-app-FAQ

State of the Art

2.3 Frontend Solutions

Smartphone applications are part of a market that's constantly growing, in particular
for mobile operating systems, such as, Android and iOS. According to Stadista [76], in
the 3rd quarter (July, August and September) of 2020 there were 2.87 million applications
available in the Google Play App Store and 1.96 million in Apple App Store. Both Android
and iOS have their own native development structure, meaning that each OS has its own
architecture. This native behaviour allows accessing to the platform and hardware features
of each mobile device. But, when creating mobile solutions, the main challenge is to
provide a solution that works across multiple platforms, being that, going with a native
methodology, the company has to create and maintain separate solutions for each OS [66].

With that being said, the focus point would be to create a single application that would
work across multiple platforms, and here is where cross platform mobile development comes
into play. The ultimate goal of this kind of development is to achieve native performance
[98] and create a single application that can be used across di�erent OS, which reduces
maintenance and release overheads for di�erent platforms since there's only one code base
[66]. A mobile application can be made cross platform with di�erent approaches, some
of them focus on the application construction phase to do this, while others focus on the
application execution phase [66]. The most common approaches for cross platform that
will be covered are: Hybrid, Interpreted, Cross Compiled and Web.

2.3.1 Native Applications

Nowadays, the native development approach is one of the most common when it comes to
making mobile applications, mainly because there are no concerns about browser behavior
and compatibility, and it also takes advantage of the native features of each mobile oper-
ating system to deliver the best user experience. But one of the main concerns about the
native approach is the fact that, to make a new mobile application, each mobile OS has
a di�erent code base, which means that there's a need to have multiple pro�cient teams
capable of developing for each mobile OS or, at least, the main ones such as Android and
iOS.

Native Approach for Android

When it comes to the native approach for Android, the most used programming languages
are Java, Kotlin and C++ [97]. Also, Google provides an Android development tool called
Android SDK6, which is bundled with Android Studio, the o�cial IDE for Android and,
as soon as the native Android application is developed, it can be submitted to the Google
Play App Store (o�cial App store for Android applications).

Native Approach for iOS

Developing a native application for iOS can be more challenging, mostly because, unlike
Android, they can only be developed in a device with Mac OS. It uses Apple tools such
as, the o�cial Apple Development Kit called iOS SDK7 along with the o�cial IDE for

6https://developer.android.com/studio
7https://developer.apple.com/ios

13

https://developer.android.com/studio
https://developer.apple.com/ios

Chapter 2

iOS developing named XCode8, as well as TestFlight9 which is a tool that helps developers
test beta versions of their applications before releasing them in the App Store (o�cial App
store for iOS applications).

Main Advantages and Disadvantages

This way of developing mobile applications has some advantages that really make it popular
among companies in this sector, such as [47]:

1. Performance: Native mobile applications are fast, reliable and responsive since
they are developed speci�cally for each mobile OS and make use of device's built-in
features.

2. Ability to work o�ine: Native mobile applications work even if there's no Internet
connection, this is one of the main topics when comparing to a mobile web applica-
tion that needs internet access, although there's some that can work o�ine, called
Progressive Web Apps. They can make use of a service worker which pre-caches
custom o�ine pages.

3. User Interface and User Experience (UI/UX): Users are more likely to enjoy
the application and there will be a reduced learning curve because of each mobile
OS's speci�c UI/UX guidelines and standards.

4. Support from OS App Store: Google Play and App Store provide complete
support to their users, also it's a way of having all the applications for each OS
centralized in one single place, making it easier to �nd for the end users.

Although native development has a lot of positive things, it can also have some negative
ones, like [75]:

1. Multiple codebases: Each OS will have it's own codebase, for instance, iOS appli-
cations will not run on any other mobile OS.

2. Development expenses: Di�erent codebases for each mobile OS also means that
there's a need to have multiple development teams, and each has to be in charge of
developing for a speci�c OS, which can also add cost to the development process.

3. Frequent Updates: When a new update is launched, whether it was to �x a number
of bugs or simply to add new features, there's always a chance that the users don't
update their application, maybe because they didn't notice the update or they don't
have enough storage space, which may cause users to eventually delete the application
due to un�xed bugs or outdated features.

2.3.2 Cross-Platform Applications

Hybrid Approach

This approach consists of a mix between native and web approaches. The application is es-
sentially written using web technologies (HTML, CSS and JavaScript) and embed HTML5

8https://developer.apple.com/xcode
9https://developer.apple.com/testflight

14

https://developer.apple.com/xcode
https://developer.apple.com/testflight

State of the Art

applications inside a native container (UIWebView in iOS and WebView in Android)[98].
This approach uses the device's browser engine which renders and displays the HTML,
whilst the device-speci�c hardware is accessed through native APIs (Application Program-
ming Interface). Unlike web applications, these applications need to be downloaded and
installed from an o�cial store[66]. Some examples of frameworks to make hybrid appli-
cations are Cordova, PhoneGap and Ionic. The following Figure 2.1 represents an hybrid
application diagram:

Figure 2.1: Hybrid Application Structure [70]

Main Advantages and Disadvantages

The main advantages of Hybrid Applications are[33][66]:

1. It's distributed through the platform application store.

2. Because it uses native features, the user interface can be reused across di�erent
platforms.

3. It can access the device features.

On the other hand, it has some disadvantages like[33][66]:

1. Worse performance than a native application because it executes in the browser
engine.

2. The user interface lacks the look and feel from a native application.

3. Since operating systems operate di�erently, design issues might be di�cult to solve,
because the solution can be di�erent from OS to OS.

15

Chapter 2

Interpreted Approach

In this approach, the application code is deployed to the mobile phone and will be in-
terpreted there. The source code is interpreted at runtime, by an interpreter, across
distinct operating systems. Then, the interpreted App will access the native while the
native features will be available through an abstraction layer (varies with the framework
used) that interacts with the native APIs[66]. The users of this kind of App interact with
platform-speci�c native user interface components. The application logic is implemented
in a platform-independent way, using languages like XML, Java, JavaScript, etc[98]. Some
of the most common frameworks that use this approach are React Native and NativeScript.
An application made with the React Native framework as the follow structure (Figure 2.2):

Figure 2.2: Interpreted Application (using react native framework) Structure [19]

Main Advantages and Disadvantages

The main advantages when using an interpreted approach are[33][66]:

1. An interpreted application has the look and feel similar to a native application.

2. There's only one source code for all the target platforms.

3. It's distributed through the platform application store.

On the other side, the major disadvantages are[33][66]:

1. The development heavily depends on the set of features provided by the chosen
framework.

2. The performance of the application might be a bit lower, because the code is inter-
preted in runtime and needs to be done every time.

3. The user interface reusability also depends on the framework selected for develop-
ment.

16

State of the Art

Cross Compiled Approach

In this approach there's a cross compiler that converts the source code from a common
language into native binaries for each of the support platforms, producing real native
applications[20]. This approach depends heavily on the e�ciency and reliability of the
cross compiler[66]. The most common framework for this approach is Xamarin. The
diagram in the Figure 2.3 represents the structure of a cross compiled application.

Figure 2.3: Cross Compiled Application Structure

Main Advantages and Disadvantages

Using this approach has the following advantages[33][66]:

1. Has the same features as a native application does.

2. Can make use of the native user interface components and device hardware/software.

3. There's only one application source code that gets cross compiled into an application
for each platform.

4. Its performance is very close to the native approach.

However it has a couple disadvantages, such as[64][33]:

1. The user interface and platform speci�c features (camera, location, noti�cations, etc.)
can't be reused, because they are speci�c for each OS and the way they are utilized
change from platform to platform.

17

Chapter 2

2. Applications that are developed using this approach are typically larger than native
ones.

Web Approach

The Web Approach consists of developing web applications that are designed to run in
the mobile web browser. These are mostly developed with HTML, CSS and JavaScript,
also they are browser based which grants platform independency and the data is store in a
server[66]. There are also some features that are available with HTML5, such as, getting
data from mobile sensors (accelerometer, gyroscope, etc.) and have access to user and
device information (e.g. contact list)[25]. An Web Application is structured as follows
(Figure 2.4):

Figure 2.4: Web Application Structure

Progressive Web Applications

The term Progressive Web Apps (PWA) was introduced in 2015 by Alex Russell in a blog
post [72] that stated initial design ideas for this new type of Web App with the main goal of
�lling the gap between web applications and native/cross-platform applications [20]. These
characteristics initially identi�ed by him are still considered relevant for PWA nowadays
[69]:

� Responsive: To �t any form factor, i.e. users are able to use the application on

18

State of the Art

any screen size and everything is available at any viewport size. Even though this
concept is not particular of PWAs, it is essential for web applications that want to
provide a good user experience in mobile devices[20].

� Connectivity independent: This is one of the main di�erences from regular Web
App. PWAs are progressively-enhanced with Service Workers (technology detailed
further ahead) to let them work o�ine, meaning that, during a service worker install
event, custom o�ine pages can be pre-cached for later use.

� App-like-interactions: A good PWA can act, look and feel like a native applica-
tion, by adopting a Shell + Content application model to replicate their behaviour
(navigation and interaction)[20].

� Fresh: Service Workers help fetching new content whenever is needed, either when
the user opens the app or during a background synchronization task. This ensures
that the App is always up-to-date[20].

� Safe: Served via TLS, that's a Service Worker requirement, for optimal communi-
cation security[20].

� Discoverable: PWAs are identi�able as "applications" thanks to W3C Manifests
and Service Worker registration scope allowing search engines to �nd them.

� Re-engageable: PWA can access the re-engagement UI of the OS, such as, push
noti�cations. This concept is important to draw users into using the app again.

� Installable: It's possible to the save the application to the home screen through
browser prompts, allowing users to install applications without the inconvenience of
an App store.

� Linkable: PWA don't require installation and are easy to share via URL.

In order to achieve some of the characteristics previously mentioned, there are technologies
that need to be implemented, such as:

� Service Workers: This technology consists of a JavaScript script that executes
background operations since it can't interact with the Document Object Model[42]
(DOM, that's a programming interface for HTML documents[46]). It also works
as an application-level network proxy, that allows developers to control caching of
data and assets for o�ine availability, background synchronization and registering
for push noti�cations[42]. The following �gure represents the life cycle of a service
work on the �rst installation.

19

Chapter 2

Figure 2.5: Service Worker life cycle on the �rst installation [42]

� Application Shell (AppShell): This component is the �rst user interface to ren-
der, that looks to avoid the feeling of a slow App. It consists of static assets and
interface components (e.g. navigation bars, toolbars and other elements developed
with HTML, CSS and JavaScript), which means that they don't depend of anything
external to render. The AppShell when well developed and optimized provides an
optimal user experience[20].

� Web App Manifest: The manifest provides information in a JSON �le and can be
used to con�gure PWAs, that then can be installed in a computer or mobile device[84].
This �le contains the following info: name, author, icon(s), version, description, list
of necessary resources, splash screen images, background colors, display types and
more that are less relevant and not commonly used[20][84].

Building this kind of progressively-enhanced web applications has some main advantages
[40] over native applications, such as:

1. Cheaper: PWA are cheaper than other applications, because they are developed
just once, when compared to creating applications separately for Android and iOS.

2. Small size and fast download: PWA don't take nearly as much space as native
applications, making them also faster to download.

3. O�ine mode: PWA can be cached by the web browser, meaning that they can also
be used when o�ine.

4. Require no installation or manual updates: With PWA, there's no need to visit
the Play Store or App Store. Users can just use the application by typing the URL
in the web browser, also when there's a new update, users don't need to manually
install it.

But they also have some disadvantages [40] that can have some negative impact when
choosing the right solution to build applications, like:

1. No access to App stores: Meaning that PWA don't have the Play Store or App
Store exposure that native applications do.

20

State of the Art

2. Less functionalities: PWA have fewer features when compared to native applica-
tions. As a result, UX can be lost, which may also cause a drop in the number of
potential users.

3. Issues with older devices: Since PWA have been around for just a few years,
some older mobile devices with outdated web browsers might not be able to support
them.

2.3.3 Comparison of Mobile Development Approaches

In order to comprehend which mobile development approach is the most suitable for this
project, a comparative analysis of native, hybrid (Ionic framework), cross compiled (Xam-
arin framework), interpreted (NativeScript framwork) and web approach is presented. The
analysis was adapted from several scienti�c papers ([59], [29], [20] and [98]), mainly the
following set of features along with the metric values used:

1. Access to device native features[59][29]: Represents the level of accessibility
to the device native features that an approach o�ers. Possible values: Very high,
high, medium, low, very low.

2. App Size[29]: Space needed to install an application. Possible values: Very high,
high, medium, low, very low.

3. Battery use[29]: One important factor to take into consideration is battery con-
sumption of each approach. Possible values: Very high, high, medium, low, very
low.

4. Distribution[20][29]: An application can be distributed through App Stores or
directly in a web browser. Possible values: App Store or URL (Web Browser).

5. Initial boot time[29]: Since this project will deal with payment, it's important to
consider how much time an application takes to boot. Possible values: Very high,
high, medium, low, very low.

6. Installable[20]: Whether it's possible to install an application on a mobile device
or not. Possible values: Yes or No.

7. O�ine Usage[20][29]: If an application can be used o�ine or only with internet
connection. Possible values: Yes or No.

8. Speed and Cost of Development[29]: This feature depends on the code reusabil-
ity, because sometimes there's a need to develop more than one codebases. Possible
values: Very high, high, medium, low, very low.

9. User Experience (look and feel)[29]: This is directly related with the level of
satisfaction an user feels when using an application. Possible values: Very high,
high, medium, low, very low.

10. User Interfaces[98][29]: Evaluates if an application interface uses native or web
components. Possible values: Native or Web.

11. User-perceived performance[98][59][29] Represents the performance perceived
by an end user when using an application, the main factors that a�ect this feature are
the loading time and execution speed). Possible values: Very high, high, medium,
low, very low.

21

C
h
a
p
ter

2

Features
Mobile Development Approaches

Native Hybrid
(Ionic)

Interpreted
(NativeScript)

Cross Compiled
(Xamarin)

PWA
Android iOS

Access to Device Native Features Very High Very High Low Medium Medium Very Low

App Size Very Low Medium Medium Very High
Medium (Android)
Very High (iOS)

Very Low

Battery Use High Very Low Low Medium High Low

Distribution App Stores App Stores App Stores App Stores App Stores URL (Web browser)

Initial Boot Time Very Low Low High High Medium Very Low

Installable Yes Yes Yes Yes Yes Yesª

O�ine Usage Yes Yes Yes Yes Yes Yes

Speed and Cost of Development Very High Very High Low Medium High Very Low

User Experience Very High Very High Medium High High Low

User Interfaces Native Native Web Native Native Web

User-Perceived Performance Very High Very High Medium Medium Medium Low

Table 2.1: Comparison Table of features for the di�erent mobile development approaches

(a) With Progressive Web Applications there's the possibility to implement the feature "Add to home screen", this allows the user to "install" a
Web App and use it as a native installed application. To enable this, the website must have a valid Web App Manifest and load its assets through
a Service Worker[6].

22

State of the Art

Mobile Development Approach Decision

After analysing the comparison table (Table 2.1), the right mobile development approach,
considering the context of this project, is the PWA (Progressive Web Application). Be-
cause, even though, it's not the one with the best user-perceived performance and user
experience, and doesn't have as much access as the others to native features, it has the
following advantages that are much better for this application, in particular: very low size,
battery usage, initial boot time, speed and cost of development. This is particularly im-
portant, because one of the main objectives of this App is to make and receive payments,
this means that, if it does not consume much battery, someone who is making transactions
frequently does not need to be repeatedly charging the phone, also, whether it is to pay or
receive, if the boot time is fast, the process becomes much faster, which is really good in a
time depending environment (e.g. school cafeteria). On the other side, very low speed and
cost of development is also very important, considering the small time window to make the
application (around �ve months) and the number of developers (in this case, only one).

23

Chapter 2

2.4 Backend Solutions

Backend is an extremely important aspect to consider when developing an application as it
refers to the server side of an App. This consists of the side that the user doesn't see. It's
responsible for storing data, accessing third-party services, handle the application logic,
etc. It communicates with the frontend by sending and receiving information that is then
displayed in a web browser (for a web application). In order to build the backend side,
there's two main aspects that need to be taken into consideration: the type of database
(Relational or Non-relational) and the pattern for the software architecture.

2.4.1 Types of Databases

Relational Databases (SQL)

This type of database is based on the Relational Model, that represents the database as a
collection of relations. This database stores and provides access to data that is related with
one another. This relation is represented by a table of values, where every row consists of
a collection of related data values [87][67].

Main Advantages and Disadvantages

The main advantages of Relational Databases are:

� Simplicity: This type of database uses tables which makes it the most simple strat-
egy, because it does not require any complex structure or querying processes. It's
perfectly possible to handle this database with simple queries [68].

� Data Accuracy: With this database there can be multiple tables related to each
other by using a primary and foreign key, which makes the data to be non-repetitive
[68].

� Data Integrity: One of the main features of this model is data integrity. Strong
data typing and validity certify that data checks with acceptable ranges and required
data is present. This also helps ensuring data accuracy and consistency [79].

� Flexibility: This model is also scalable and extensible, meaning that the system
will be �exible to increasing amounts of data [68][79].

� High Security: It's possible to improve security, because the data is split into
tables, and tables can be tagged as con�dential to control access [68].

This model also has some main disadvantages, such as:

� Speed: It can be slow when compared to a NoSQL model [79].

Non-Relational Databases (NoSQL)

On the other side, Non-Relational Databases are di�erent from traditional relational databases
because they don't store data in tables. This model has a variety of database types, such

24

State of the Art

as, document (the data is stored in a �le similar to JSON (JavaScript Object Notation)),
key-value (the data is stored as a key-value pair), wide-column (data is stored in tables,
rows and dynamic columns, and the di�erence to a relational database is that each row
doesn't need to have the same columns) and graph (data is stored in nodes and edges, it's
usually used with highly connected databases, like social networks applications) [94]. They
provide �exibility and scalability with large amounts of data.

Main Advantages and Disadvantages

The major advantages of a non-relational database are [12]:

� Easy Management: Because there's no structure required, they are easier to man-
age.

� Easily scalable.

� Doesn't require database administrators.

� Faster and more �exible when compared to a relational database.

It also has some disadvantages, such as:

� Doesn't have a standard query language [12].

� There's no standard interface to manage the database [12].

� It's di�cult to maintain [12].

� Consistency: NoSQL databases don't support ACID (Atomicity, Consistency, Iso-
lation, Durability) natively, which could also compromise consistency [50].

Database Decision

Considering the context of this project and the advantages/disadvantages of both types
of databases, it makes sense to choose a relational database for everything except the logs
because, even though they are not as fast as a non-relational database, they have three
highly important advantages that are, data accuracy, data integrity and high security, also
NoSQL databases don't support ACID (Atomicity, Consistency, Isolation, Durability) na-
tively. Considering the context of this project, we are dealing with an application that
represents a wallet with monetary value, meaning that security and integrity are indis-
pensable. In order to save the logs it makes sense to use non-relational database because it
grants easy scalability along with faster operations, which is the most adequate for logging
since every action executed in the backend will be logged, making it important to have
good scalability.

2.4.2 Patterns of Software Architecture

Client-Server Pattern

In this pattern, the system is segregated into two main components: service user (clients)
and service providers (servers), that are connected via network or internet connection.

25

Chapter 2

The server side continually listens for requests from the clients, when one is received, it's
processed, and then a response is sent back to the client. A server must be multi-threaded
in order to serve multiple clients at the same time, it can also be classi�ed as stateful or
stateless [26]. A stateful server store a session state, meaning that it can keep client data
from one request to the next. On the other hand, stateless servers don't keep any client
data [30]. Applications that follow this pattern contain three functional units: Presentation
Logic (interface that a client interacts with), Business Logic (where requests and responses
are processed) and Data (where information is stored). This pattern can also be 2-tier and
3-tier, in other words, in a 2-tier application the business logic can be combined with the
presentation logic in the client side or with the Data layer. In the 3-tier one, the business
logic is separated from the presentation logic and the data layer, representing a middle tier
[13].

Figure 2.6: Client/Server Pattern high level
structure [89]

Main Advantages and Disadvantages

For this software architecture pattern the main advantages are [27]:

� Centralization: This pattern is integrated with centralized control and all the
information is centralized in one place, making it easier for the administrator to
control the system.

� Scalability: Systems that follow this pattern are easily scalable, because clients and
servers capacity can be increased separately.

� Maintenance: It's easy to make changes (updates/upgrades/�xes) to the system,
without the clients noticing.

The major disadvantages of this model are [3]:

� Tra�c Congestion: The server may get overloaded if a big number of clients make
requests at the same time.

� Robustness: Since it's centralized, it has a single point of failure, which means
that, if a server fails, the client requests will not succeed, and the App stops working
completely.

� Cost: Building and maintaining a system based on this pattern can be very costly.

26

State of the Art

� Security: The communication between clients and servers can lead to some security
problems. It's particularly vulnerable to Denial of Service (DOS) attacks, because of
the tra�c congestion previously mentioned.

Model-View-Controller (MVC) Pattern

The Model-View-Controller is a software architecture pattern composed by three main
logical components: the Model, the View and the Controller. The Model component is
responsible for storing and managing data, and often corresponds to a database. The View
component often represents a graphical user interface, it contains all the functionalities that
directly interact with the user. Then the Controller component is where all the logic of the
application is and bridges the gap between the View and the Model, the controller receives
an input from the user (request), processes it, communicates with the model to grab the
data and then responds back to the View that displays the data [54][92].

Figure 2.7: Model-View-Controller Pattern
high level structure

Main Advantages and Disadvantages

The model-view-controller pattern has the following advantages [92]

� Simultaneous development: Developers can work simultaneously on the model,
view and controller, because they are separated.

� High Cohesion: With MVC, related actions can be grouped on a controller to-
gether. Views can also be grouped.

� Loosely Coupled: In this pattern, there is low coupling among models, views and
controllers.

� Modi�ability: Because components are separated, it's easier to make modi�cations
to the system.

This pattern also has some disadvantages, such as:

� Learning Curve: MVC can use multiple di�erent technologies, meaning that learn-
ing every single one to develop an application can take a long time [92].

� Frequent Model Changes: If the model is frequently changed, it can result in
excessive updates of the views as well, consequently, changing controllers too [80].

27

Chapter 2

Microservices Pattern

Microservices software architecture pattern is a form of service-oriented architecture that
consists of a collection of loosely coupled services. Each microservice can be created inde-
pendently and even in di�erent programming languages from one another. In this pattern
there's an API gateway that functions as the entry point for users. Instead of calling the
services directly, the users call an API gateway that then forwards that call to the right
service on the backend side [52].

Figure 2.8: Microservices Pattern high level
structure [49]

Main Advantages and Disadvantages

This pattern has a lot of advantages, like:

� Agility: Because microservices are loosely coupled, application bugs are easier to
�x, as it can be done for each individual service without a�ecting others and having
to completely shutdown the entire system. It's also possible to roll back an update
if something goes wrong [52].

� Small codebase: As each service has its own code, it's easier to learn it and add
new features [52].

� Fault isolation: If one microservice has a problem, it won't a�ect the rest of the
application, as long as upstream microservices are designed to handle faults correctly
[52].

� Scalability: Services can be scaled separately, meaning that it's possible to only
scale the necessary microservices without having to scale the whole application [52].

28

State of the Art

� Reusability: Because services are separated, it's possible to reuse them [58].

Microservices architecture also present some disadvantages, such as:

� Integration: The developer needs to make sure that the services are loosely coupled
as much as possible, otherwise, a change in one service can have an a�ect in another
service [51].

� Complexity: Even though, the point of this pattern is to separate the application
into simpler microservices, if the system is considerably big it can become complex
as well [52].

� Data integrity: Each microservice is responsible for its own data persistence, so
data consistency can be a challenge across the whole system [52].

Software Architecture Pattern Decision

As previously said, in the context of this project, security is de�nitely one of the main
concerns of this application, meaning that the �rst pattern (Client-Server) can be immedi-
ately excluded since it's one of the disadvantages. Furthermore, the two patterns left are
somewhat similar in terms of advantages, though the MVC has a disadvantage that can
be problematic, that is the long learning curve, which, considering the time period left to
develop the App (roughly 5 months) might not be the right one. The remaining one is the
Microservices model which is really adequate for the context of this project, because it has
a small codebase (easier to learn) and fault isolation (if a microservice stops working, it
won't a�ect the rest of the application), even though this pattern has complexity as one of
the disadvantages, it doesn't apply in this case, because the application to be developed is
not of big dimension.

2.5 Security Considerations

When developing a web application, there are several security aspects that need to be
considered and carefully handled. For the context of this project, security is the number
one priority, because this application will lead with wallets with real money. In order to
better understand how to protect a system, a checklist with the most common security
challenges is presented along with possible techniques to lower the probability of malicious
abuse. The following checklist was based on the white paper written by Gail Bayse [18].

2.5.1 Authentication

Challenge

The authentication represents the process of identifying if a user is actually who he claims
to be and it's usually done with an username/email and a password.

Possible Techniques

� The system should lock the login function after a de�ned number of log in attempts.
This login lock can be set to last a set number of hours to discourage the attacker

29

Chapter 2

and the system administrator should be noti�ed about this.

� All account activity regarding authentication should be logged (log in, log out, failed
attempts, password changes, log in locks).

� Strong password rules must be applied, containing numbers, upper and lower case let-
ters, special characters, and have minimum length of seven characters. The password
should also not be found in any dictionary.

� When a user forgets a password, it must be changed rather than recovered.

� When changing a password, a user must also provide the older one �rst.

� Set an expiration time for all passwords, to enable frequent changes.

� Use two-factor authentication.

� Authentication details must be transported in a secure way, and must be encrypted
using Secure Socket Layer (SSL) that can provide con�dentiality, integrity and au-
thentication (CIA Triad) for the transported data.

� Any passwords stored should be hashed (one-way hash).

2.5.2 Access Control

Challenge

After a user is authenticated, other challenge emerges, that consists of controlling what a
user is allowed to do and what data can be seen and modi�ed.

Possible Techniques

� There must be de�ned roles in the system, that control access to resources.

� Make sure that users cannot type custom URLs to access unauthorized pages.

2.5.3 Session Management

Challenge

Not protecting account credentials or session identi�ers (ID) are known points of vulnera-
bility for web applications.

Possible Techniques

� Cookies cannot contain con�dential information, because they are transmitted in
clear text. The user should always be aware and allow the application to use cookies.

� Session IDs shall be unique for each user, not contain personal information and can
only be generated when the user authentication was successfully done.

30

State of the Art

� Inactive sessions should expire after set amount of time, deleting the session ID, and
active ones should also have a set expire time, generating a new ID immediately after,
to reduce the time window for possible malicious actions.

� Sessions IDs must be protected with Secure Socket Layer (SSL).

� When users log out, the session ID must be deleted.

2.5.4 Data and Input Validation

Challenge

Assuring that every data input is what it should be, rather than malicious code, such as,
cross-site scripting or command injection.

Possible Technique

� The single best solution to avoid these attacks is validating every input against good
criteria, that will depend on the data that is being required.

2.5.5 Bu�er Over�ows

Challenge

This happens when an attacker sends large amounts of data, through a data �eld, that
exceed the capacity of the application. Attacks like this can make an application leave its
normal state.

Possible Techniques

� Every HTTP request with input from users must be analysed to identify large
amounts of data, and if the data is not suitable, that activity should be logged
and the data refused.

� Every input �eld must have a limit length and a speci�c data type.

2.5.6 Logging

Challenge

Logs are an indispensable tool for developers that help towards monitoring, troubleshooting
and debugging. They record information about an application's execution. They are also
useful to rebuild events that led to a system failure.

Possible techniques

� Any log should always have date/time and description.

31

Chapter 2

� Authentication and authorization actions must be logged (log in, log out, attempted
log in, password changes) and include: date/time, success/fail, resources a�ected and
the user involved.

� All administrator activity shall be logged.

� Log every time some data is deleted, to allow possible reconstruction.

� Data modi�cations should be logged as well.

� Most importantly, all the log �les must be encrypted, because they contain critical
information.

2.5.7 Error Handling

Challenge

In any system errors will always occur, either caused by the user or the system itself. And,
even though there's a testing process that looks to identify all the possible errors, there will
always be errors that are unanticipated. There must be a process to handle these kind of
errors as well, that need to include what it was, when it happened, and where it occurred.
This allows the system administrator to have appropriate information to then act on its
resolution.

Possible Techniques

� All the errors must be logged to an event log, including time/date, error code and,
if possible, the code line.

� When an error occurs during the execution of the system, the end user shall be able
to see an error page with some information.

� The application has to be thoroughly tested to identify possible errors.

� If an error occurs causing the application to completely or partially fail, it is impor-
tant to block any unauthorized operations.

32

This page is intentionally left blank.

Chapter 3

Software Requirements Speci�cation

In order to fully understand what needs to be in this system and how it should be, there
needs to be a speci�cation of software requirements. This also helps �guring out what
the stakeholders (in this case, teachers involved in this project) want, and come to full
agreement with them about functionalities and goals of this system.

To achieve clear and well de�ned software requirements, a document named "Software
Requirements Speci�cation for Crypta Project" was written. This document de�nes 9
general functional requirements that represent functionalities that a user can't see but
are implemented in the backend side, 15 user functional requirements that correspond to
functionalities directly related with the user with which he will interact in the frontend
side, 5 administrator functional requirements that constitute the functionalities related to
an admin that he will be able to access with a custom URL and manage the back-o�ce,
13 non-functional requirements (split in: 2 Availability, 2 Maintainability, 2 Performance,
1 Portability, 1 Reliability, 3 Security and 2 Usability), 14 use cases and mockups for every
user functionality. Below there's an example of a software requirement de�ned in the SRS
document.

Example of Software Requirement

To better understand how this document was written, there's an example of a user func-
tional requirement, the corresponding use case and mockup, as well as, one non-functional
usability requirement that directly a�ects the user functionality exempli�ed. The function-
ality chosen for the example corresponds to the payment process, where a user scans the
QR code provided by a merchant. Each requirement is constituted of an identi�er (ID),
description and a MoSCoW priority [93].

User Functional Requirement

Requirement ID Description MoSCoW

C10 A user shall be able to pay for goods in the pay/send
menu, by scanning a QR code.

Must Have

Table 3.1: Functional user requirement for payments

34

Software Requirements Speci�cation

Use Case

Use Case Pay for Goods

Primary Actor User

High Level Description This use case describes how users pay for goods
through the web application.

Preconditions The user must be logged in, have su�cient funds in
his wallet and have camera permissions enabled for
the application.

Main Flow

1) The user clicks the "Pay/Send" button in the
bottom toolbar.
2) The user is redirected to the payment page.
3) The user scans the QR code with the phone's
camera.
4) The user con�rms the transaction.
5) The user inserts his PIN.
6) The system processes the transaction.

Exceptions

3a) The user has the camera permissions disabled for
the application.
5a) The user enters an incorrect PIN.
6a) The user has insu�cient funds to complete the
transaction.

Table 3.2: Pay for goods use case description

35

Chapter 3

Mockup

Figure 3.1: Payment screen

Non-Functional Usability Requirement

Requirement ID Description MoSCoW

U01 The system shall have a uniform look and feel between
all screens.

Must Have

Table 3.3: Non-Functional Usability Requirement

36

This page is intentionally left blank.

Chapter 4

Selection of Technologies

In this chapter some technological decisions are made, which means that, for each technol-
ogy considered, advantages and disadvantages are considered in order to make the most
educated choice. This is made for both frontend and backend side. For the frontend
side there's only one decision that needs to be made, that is the progressive web appli-
cation framework. Moreover, for the backend side there are multiple decisions that need
to be made, such as, backend technologies, SQL databases, NoSQL databases (MongoDB
and Redis), containerization technology, message queue software and SMS (Short Message
System) Communication API.

4.1 Progressive Web Application Frameworks

In order to develop the frontend side, it is necessary to select the appropriate progressive
web application framework. The main aspect of the project that needs to be considered is
the tight scheduled for the development. This means that the right option has to be easy
to learn, have a lot of community support and have a rich and well de�ned documentation.
For this process three frameworks are considered: ReactJS, AngularJS and VueJS.

4.1.1 ReactJS

Main Advantages of ReactJS

� Scalable and Flexible applications [82].

� This framework uses Virtual-DOM technology that ensures fast rendering of the code
[62].

� React code for web applications can also be deployed for native Apps [62].

� Easy to learn [73].

� Very popular in the market - very frequent contributions to open source libraries
made by huge community of developers [73].

� Clear and well de�ned documentation [43].

38

Selection of Technologies

Main Disadvantages of ReactJS

� Besides JavaScript, it also requires knowledge in JSX [82].

� With increased �exibility, also comes a higher chance of issues [82].

4.1.2 AngularJS

Main Advantages of AngularJS

� Easy implementation due to well de�ned methodologies [82].

� Supports IntelliSense (intelligent code completion) and Typescript [62].

� Huge and active community of developers [73].

� Has a complex structure for large scale projects [73].

Main Disadvantages of AngularJS

� Requires knowledge of Typescript [82].

� Has a steep learning curve [73].

4.1.3 VueJS

Main Advantages of VueJS

� Has clear and detailed documentation [73].

� VueJS allows fast software delivery, making it perfect for smaller solutions [4].

� Better performance due to Virtual-DOM like ReactJS [73].

� Easy to learn [62].

Main Disadvantages of VueJS

� Its high �exibility can create a lot of issues [82].

� This framework is owned by a single person and not a company, meaning that it
doesn't have much support [82].

� Has a small community of developers, which can make it hard to �nd open source
libraries and community support [4].

4.1.4 Framework Decision

Considering the relevant aspects of the decision making previously mentioned, the right
option is ReactJS, because it's easy to learn, has a huge community and has a clear and
well de�ned documentation. On the other hand, AngularJS and VueJS were not chosen
because AngularJS has a steep learning curve and VueJS has a small community with very
small community support and contributions, making them not the best options.

39

Chapter 4

4.2 Backend Technologies

For the backend technologies the options addressed are: Flask, Spring Boot and Ex-
pressJS. Here the main concerns are also tight schedule for development and integration
with third party services, mainly databases. So, the best option has also to be easy to
learn, have community support and be easy to integrate with databases.

4.2.1 Flask

Main Advantages of Flask

� Easy to learn and use, mainly because it is a Python language that's considered one
of the easiest to learn, also this frameworks provides the necessary tools to easily and
quickly build web applications [37][24].

� This framework has a very detailed documentation with clear examples [37].

� High �exibility for web applications development [24].

� Has integrated support for unit testing [65].

� This framework is also very minimalistic and lightweight and can be used with very
low e�ort [37].

Main Disadvantages of Flask

� Not asynchronous-friendly, which means web application done with this framework
can only be handle one request at a time [37].

� For big projects, Flask can be very time consuming [37].

4.2.2 Spring Boot

Main Advantages of Spring Boot

� This framework is very easy to use with Java [74].

� Spring Boot reduces the time of development and increases productivity [96].

� It makes testing easier by providing default setups for unit and integration tests [1].

� Avoids writing a lot of boilerplate code (reusable code) [1].

� Avoids XML con�gurations [74].

� It also has a lot of libraries, plugins and tools that make development easier and
faster [74].

Main Disadvantages of Spring Boot

� Spring Boot might not be the best for large applications [85].

� When deploying applications, Spring Boot might include dependencies that are not
used, causing a huge deployment �le size [85].

40

Selection of Technologies

4.2.3 ExpressJS

Main Advantages of ExpressJS

� This framework allows using the same language (JavaScript) in the frontend and
backend, making the development process much faster and easier, since one person
can take care of both the front and back sides of the application [36].

� It's ideal for applications that handle a lot of requests (more scalable), as it uses
asynchronous communication [36].

� Fast learning process [36].

� Has a vast open-source community [35].

� Easy to integrate with third-party services and middlewares [36].

� It's also simple to connect with databases, such as, MySQL, Redis and MongoDB
[35].

Main Disadvantages of ExpressJS

� As an asynchronous based model, it relies on callback functions. This means that
keeping a lot of queued tasks with its own callback, might impact the quality of the
code, making it harder to understand and maintain [63].

� Asynchronous communication can also be a drawback since it can make development
more di�cult and time consuming.

4.2.4 Technology Decision

Given the previous aspects to decide which one is the best option, it's possible to consider
ExpressJS the more reliable option, since it has a fast learning process, a vast open-source
community, it's easy to integrate with third-party services and middlewares, and it's simple
to connect with databases, which is one of the main concerns. For the other options, Flask
was not considered because it's not asynchronous friendly meaning that it can only take
one request at a time (low scalability) and might not be indicated for a payment/trading
system. As for Spring Boot, seems as good as ExpressJS, but the latter one is preferred
because is JavaScript based like the frontend framework chosen. This avoids having to
learn two di�erent languages.

4.3 SQL Databases

Relational Databases (SQL) in this system are in charge of storing user's informations,
user's wallets and trading information, so the main aspects to consider are its availability,
security, performance and simplicity. On the other side, scalability is not a real problem
here, because this project is an experiment with a limited number of participants, meaning
that it won't have that many transactions or trades, to the point where scale becomes
an issue. For the SQL databases, MySQL and PostgreSQL are the two considered for
comparison, because they are the most popular ones.

41

Chapter 4

4.3.1 MySQL

Main Advantages of MySQL

� It's very easy to use (install and setup) [39].

� MySQL is very portable and can run on di�erent platforms [55].

� Ensures 24x7 uptime and o�er a lot of other solutions with high availability [55].

� It's very popular and widely used [78].

� Has great performance because it takes advantage of caching [86].

� MySQL has increased security as a result of the database administrator being able
to grant permissions to speci�c database tables according to roles [86].

Main Disadvantages of MySQL

� MySQL is not recommended for very large databases [55].

� It's di�cult to debug and maintain [86].

� Hard to scale [78].

4.3.2 PostgreSQL

Main Advantages of PostgreSQL

� Has a lot of community support [95].

� It's open source [60].

� Compatible with a lot of di�erent programming languages and platforms [61].

� Highly compliant with SQL standard [60].

Main Disadvantages of PostgreSQL

� It's not as popular as other SQL databases [95].

� PostgreSQL performance is not as good when compared to MySQL [95].

� Database replication is more complex [95].

� Installation and con�guration is not easy for beginners [61].

4.3.3 Database Decision

After reviewing both options and the main aspects that in�uence the decision, MySQL is
the better option, because it meets every requirement set with the following advantages:
easy to use, ensures 24x7 uptime, has great performance and increased security.

42

Selection of Technologies

4.4 NoSQL Databases

In this system there's only need to have one non-relational database that's in charge of
storing the application logs. The main points that need to be addressed here are high
scalability because there will be logs for everything with a lot of redundancy, high access
speed for quick checking and simplicity to use. Here it's only considered one NoSQL
database (MongoDB) because it meets all the mentioned concerns and is the one that the
author has experience with.

4.4.1 MongoDB

Main Advantages of MongoDB

� It's very scalable, since it has no schema [9].

� High speed of access, because it's a document oriented database where access is done
by indexing [9].

� MongoDB is highly scalable. It uses shards for horizontal scalability, making it easier
to increase storage capacity [83].

� Very clear and well de�ned documentation [83].

� It's simple to understand and learn, also, installation, setup and implementation are
easy and don't take much time [83].

� This database is free to use [11].

Main Disadvantages of MongoDB

� Doesn't support JOIN operations like a relational database [9].

� Uses high memory for data storage [9].

� Each document has a limit size of 16MB [11].

4.5 Containerization Technology

Since this system will be developed based on a microservices architecture, it's a good
practice to use a containerization technology. This can increase security and simpli�es the
isolation and segregation of microservices. For this technology there's not many options in
the market, being that the most popular and widely used solution is Docker, hence why
it's the only option considered, also there's no relevant disadvantages that would make this
a bad option.

4.5.1 Docker

Main Advantages of Docker

� Docker allows for rapid deployment, since application are packed into containers that
require minimal runtime [7].

43

Chapter 4

� Increased security, because applications run on containers that are completely segre-
gated and isolated from each other. This gives the developer complete control over
tra�c �ow [7].

� It's very �exible, giving developers the advantage of making their own con�guration
and then deploy [32].

� Docker also o�ers automation, this means that tasks can be scheduled for each in-
dividual container that will occur at set times, without human intervention. This
saves a lot of time and e�ort for the developers [32].

� It's a very stable environment, because, even though it has very frequent updates,
the environment remains stable and there's no need to roll-back to past versions [32].

Main Disadvantages of Docker

� Docker doesn't have cross-platform compatibility, meaning that, if an application
was designed to run in a Docker container on Windows, it won't run on Linux or
vice-versa [31].

� Using Docker also means increasing complexity a bit, because there's an additional
layer that needs to be learned and developed [31].

� Docker itself has poor monitoring of running containers, and only provides very basic
information [2].

4.6 Message Queue Software

For intra-process communication between microservices, a message queue software is used
in order to achieve asynchronous communication. The main aspects to consider here are:
high performance to ensure fast communication, high scalability so multiple messages can
be handled at once and fault tolerance mechanism meaning that the system doesn't stop
working if any issues happen. The only software addressed is Apache Kafka since it's
very popular, mature and meets every requirement set, and has no relevant disadvantages,
which means that it's a good option to choose for the message queue of this system.

4.6.1 Apache Kafka

Main Advantages of Apache Kafka

� Kafka is very durable, meaning that data is persistent and can't be replicated [15].

� It's able to handle high velocity and high volume of data, as well as, handling these
messages with very low latency, because it decouples the message, letting the con-
sumer consume that message at any time [16].

� Has a fault tolerance mechanism [16].

� High scalability, which means that it can handle large amount of message at once
[16].

� Kafka processes data and messages in real time [16].

44

Selection of Technologies

Main Disadvantages of Apache Kafka

� It lacks a full set of management and monitoring tools [15].

� Has issues with message modi�cation, in other words, performance decreases when
making modi�cations [15].

� Can behave uncoordinated and slow if the number of queues increases a lot [16].

� There are some message paradigms missing in Kafka, such as, point-to-point queues
and request/reply [8].

4.7 SMS (Short Message System) Communication API

This API is responsible for sending messages to users of the system with veri�cation codes
to increase security. The main aspects to consider, in order to choose the right service,
are the price and the compatible programming languages (has to be compatible with the
backend framework language). The APIs considered are: Vonage, Plivo, Sinch and
Twilio.

4.7.1 Vonage1

Price of Vonage (per message)

In this service one message costs 0.0426¿ to send, making it 42.6¿ for 1000 messages.

Programming Languages Compatibility

The supported programming languages for the SMS API in this service are: JavaScript,
Java, .NET, PHP, Pyhton and Ruby.

4.7.2 Plivo2

Price of Plivo (per message)

Sending one message using Plivo costs 0.040¿, which equals to 40¿ for 1000 messages.

Programming Languages Compatibility

The compatible programming languages with the provided SMS API by Plivo are: PHP,
Python, Java, JavaScript, Ruby, .NET and Go.

1https://www.vonage.com/communications-apis/sms/
2https://www.vonage.com/communications-apis/sms/

45

Chapter 4

4.7.3 Sinch3

Price of Sinch (per message)

Each message costs 0.018¿ in Sinch, making it 18¿ for 1000 messages.

Programming Languages Compatibility

Sinch's SMS API is available for the following programming languages: Java, PHP and
Pyhton.

4.7.4 Twilio4

Price of Twilio (per message)

With Twilio, for SMS communication each message costs 0.037¿, meaning that sending
1000 messages costs 37¿.

Programming Languages Compatibility

The SMS API from Twilio can be used with the following programming languages: PHP,
.NET, Java, JavaScript, Ruby and Python.

4.7.5 SMS API Decision

Since the programming language chosen for this project is JavaScript (ExpressJS), the
Sinch API can immediately be discarded. The remaining options all have JavaScript
compatibility, meaning that the deciding factor is the lowest price per message. So, in this
case, the best option is Twilio.

3https://www.sinch.com/products/apis/messaging/sms/
4https://www.twilio.com/sms

46

This page is intentionally left blank.

Chapter 5

Software Architecture

The Software Architecture consists of a scheme that describes several aspects and decisions
that add value to a software. So, when designing a software architecture that are some
things that need to be considered, such as, all the functional and non-functional require-
ments de�ned, how the system is organized, how the di�erent components in the system
communicate with each other, how external dependencies may a�ect the software, what
risks need to be considered, and a lot more.

5.1 C4 Model

The C4 Model provides a way for software development teams to e�ciently and e�ec-
tively communicate their software architecture at di�erent levels of detail. This is an
"abstraction-�rst" approach to create software architecture diagrams. The division of the
system in small sets of abstractions and diagram types makes this model easy to learn and
use [81]. For this project, the �rst three levels will be addressed.

5.1.1 Level 1

This level represents the "System Context Diagram". This diagram gives a very high level
where detail isn't important, because this only shows a zoomed out view of the entire
system. This level focus mainly on the actors of the system and the software systems as a
whole, rather than technologies and other low-level details. It's a great approach to show
to people that have no expertise in the �eld [81]. For this project, the system context
diagram (Figure 5.1) is as follows:

48

Software Architecture

Figure 5.1: System Context Diagram (Level 1)

Description of the system components:

� Application User: End-user of the system, who is invited to use the application.

� Application Admin: Person in charge of changing the system in the backend side.

� Cryptocurrency Wallet and Trading System: Represents the whole system,
where a user can manage a wallet, pay/send/request and trade cryptocurrencies.

5.1.2 Level 2

This level represents a "Container Diagram". Here there's a bit more detail, speci�cally
about the system. It shows which technologies are used and how responsibilities are dis-
tributed. This intended audience shifts more towards technical people inside and outside
the development team, mainly software architects and developers [81]. In this project, the
container diagram (Figure 5.2) identi�ed is the following:

49

Chapter 5

Figure 5.2: Container Diagram (Level 2)

Description of the system components:

� Web Application: This container is responsible for deliver the static content and
the frontend side to the browser.

� Progressive Web Application: Provides all the functionalities through a progres-
sive web application to the user's device web browser.

� API Application: Represents the main container of the system that has all the
services with the business logic of the system.

� Databases: Consists of all the databases that will communicate with the microser-
vices in the API Application container.

5.1.3 Level 3

After de�ning every system container in the previous level, each one will be decomposed in
this level ("Component Diagram"). This diagram shows every single component of a con-
tainer and describes them, with its role, responsibilities and technologies/implementation

50

Software Architecture

details. This diagram is designed particularly for inside software architects and developers
[81]. The designed diagrams for this project are shown next, the �rst corresponds to the
user side API application architecture (Figure 5.3) and the other one to the admin side
API application architecture (Figure 5.4).

User Side API Application

Description of the system components:

� User Service: Handles the user's registration, log in and password recovery. It will
also communicate with the email service to send con�rmation emails and password
recovery links, with the security service to encrypt data and verify con�dential in-
formation and with the logging service to log all user activity (sign in and sign out
actions).

� Wallet Service: This service is in charge of providing an user with cryptocurrencies
balances in his wallet, account activity and �lter cryptocurrencies displayed in his
wallet screen. It will also read and write in a SQL Database in order to update and
get wallet data.

� Transaction Service: Here is where all transactions will be made, such as, pay-
ments and sending and receiving cryptocurrency. There's communication with the
security service to verify the user's PIN, with an SQL Database to update the wal-
let's balance when a transaction is executed and the logging service to record every
transaction made.

� Trading Service: Every trade order will be executed in this component, will also
log every order made by using the logging service and will also use an SQL Database
to store/update orders.

� Email Service: Sends out emails to users.

� Security Service: Handles security functionalities, such as, data encryption and
con�dential information veri�cation.

� Logging Service: Service that logs every action that's executed in the system to
keep chronological track of things.

� SQL Database: There are four SQL Databases in this system: one that stores
information of users, other that stores wallet information of each user, another that
keeps transactions information and a last one that keeps everything trading related
(orders and market prices).

� NoSQL Database: There's also a NoSQL Database that stores logs for user activity,
transactions made and trades/orders done.

51

C
h
a
p
ter

5

Figure 5.3: Component Diagram of the user side API application (Level 3)

52

Software Architecture

Administrator Side API Application

Description of the system components:

� User Management Service: This service is in charge of inviting and editing users.
There's internal communication with the security service to check roles privileges and
with the logging service to save records of operations. It also reads and writes from
a SQL database to check credentials.

� Cryptocurrency Service: Here is where cryptocurrencies will be added/edited.
Each cryptocurrency has the following features that need be to de�ned: settlement
time, transaction cost and transaction privacy). This service communicates with
the security service to check role privileges, with the logging service to log opera-
tions (add and edit) and the SQL database where the crypto added/edited will be
created/updated.

� Security Service: Handles security functionalities, such as, con�dential information
veri�cation and system role checking.

� Logging Service: Service that logs every action that's executed in the system to
keep chronological track of things.

53

Figure 5.4: Component Diagram of the admin side API application (Level 3)

Software Architecture

5.2 Entity Relationship Diagram (ERD)

An Entity Relationship Diagram, also known as ERD, ER Diagram or ER Model, is a
type of structural diagram used in designing a database. It shows the relationship between
entities stored in a database [91]. Since a microservices architecture is used, each service
has its ownMySQL database. The following subsections have each service's ERD, as well as
the description of every entity. Some of the entities are de�ned in more than one database,
because microservices need to be as independent as possible from each other, therefore
there will be some necessary data redundancy between databases.

5.2.1 User Service

Figure 5.5: Entity Relationship Diagram for User Service

Description of each entity in the �gure 5.5:

� Users - Entity that keeps information about a user.

� id_user: Integer with unique ID to identify each user.

� phone_number: 9 character string with user's phone number (portuguese for-
mat).

� email: String with user's email.

� full_name: String with user's full name.

� password: String with user's hashed password concatenated with the hash salt
used to encrypt.

� pin_code: String with user's hashed pin code along with its hash salt.

� reset_code: String with a code used to con�rm the password recovery process.

� reset_code_exp: String with a unix timestamp that corresponds to the exact
date when the reset code expires.

� User Roles - Entity that keeps track of each user's role (user or admin).

55

Chapter 5

� id: Integer with user's ID.

� role: String with user's role.

� User Invitations - Entity that saves user invitations until they register in the
system.

� email: String with the email invited to the application.

� registration_code: String with registration code sent through email that has to
be used in the registration form.

� initial_amount: Initial balance of �at currency (in Euros) that an user will have
after registering to the system.

5.2.2 Cryptocurrency Service

Figure 5.6: Entity Relationship Diagram for
Cryptocurrency Service

Description of each entity in the �gure 5.6:

� Cryptocurrencies - Entity that keeps information about a cryptocurrency.

� crypto_id: Integer with unique ID to identify each cryptocurrency.

� name: String with the cryptocurrency's name.

� symbol: String with the cryptocurrency's symbol, usually a three character
word.

� price: String with the cryptocurrency's price in Euros.

56

Software Architecture

� cap: Integer with the cryptocurrency's maximum quantity in the application.

� privacy: String with the cryptocurrency's privacy that can be:

* private: Users can not see who made the transaction/trade.

* semi-private: Users can only see the user ID of who made the transac-
tion/trade, but can not map that ID to that person.

* public: Users can see the name or phone number of who made the transac-
tion/trade.

� fee: Float with a percentage value that corresponds to the transaction/trade fee
applied when they are executed.

� settlement_time: Integer with the number of hours of the settlement time,
which is the time that an amount of cryptocurrency transacted/traded takes to
be available in the wallet.

� User Roles - Entity that keeps track of each user's role (user or admin).

� id: Integer with user's ID.

� role: String with user's role.

5.2.3 Market Service

Figure 5.7: Entity Relationship Diagram for Market Service

Description of each entity in the �gure 5.7:

� Asks and Bids History - Entities that keep information about buy or sells orders
created by users and that were already closed.

57

Chapter 5

� order_id: Integer with the ID of an order.

� date: Integer with a unix timestamp from when the order was created.

� side: String with the side of the order (BUY or SELL.

� quantity: Float with the amount of cryptocurrency traded of that order.

� price: Float with the price of trade execution for that order.

� trader_id: Integer with the ID of the user that created the order.

� type: String with type of order: market when a price is not speci�ed and limit
when a price is set.

� crypto_id: Integer with the ID of the cryptocurrency related with that order.

� Auction Info - Entity that keeps information about the state of the market.

� status: String with status of the market, can be open when it is accepting new
orders and closed when is resolving the market and can not accept new orders.

� auction_items: Integer with number of market resolutions per day (maximum
24).

� auction_hour_times: Integer with number of market resolutions per hour (max-
imum 60).

� Crypto - Entity that keeps information about a cryptocurrency.

� crypto_id: Integer with unique ID to identify each cryptocurrency.

� name: String with the cryptocurrency's name.

� symbol: String with the cryptocurrency's symbol, usually a three character
word.

� privacy: String with the cryptocurrency's privacy that can be:

* private: Users can not see who made the transaction/trade.

* semi-private: Users can only see the user ID of who made the transac-
tion/trade, but can not map that ID to that person.

* public: Users can see the name or phone number of who made the transac-
tion/trade.

� fee: Float with a percentage value that corresponds to the transaction/trade fee
applied when they are executed.

� settlement_time: Integer with the number of hours of the settlement time,
which is the time that an amount of cryptocurrency transacted/traded takes to
be available in the wallet.

� Crypto Pair - Entity that tracks how much each user has in wallet of each cryp-
tocurrency.

� crypto_id: Integer with the cryptocurrency's ID.

� wallet_address: String with the user's wallet address.

� quantity: Float with the amount of some cryptocurrency in wallet.

� Orderbook Asks and Bids - Entities that keep information about buy or sells
orders created by users and that are currently open.

� order_id: Integer with the ID of an order.

� date: Integer with a unix timestamp from when the order was created.

58

Software Architecture

� side: String with the side of the order (BUY or SELL.

� quantity: Float with the amount of cryptocurrency in the created order.

� price: Float with the price in the order created (NULL if market order).

� status: String with status of the order, can be none when it has not changed
since created and partially when it was partially trade some amount of that
order.

� trader_id: Integer with the ID of the user that created the order.

� type: String with type of order: market when a price is not speci�ed and limit
when a price is set.

� cancelled: Integer with a unix timestamp that corresponds to the date when
that order should be cancelled.

� crypto_id: Integer with the ID of the cryptocurrency related with that order.

� Users - Entity that keeps necessary information about an user.

� user_id: Integer with the user's ID.

� wallet_address: String with the user's wallet address.

� full_name: String with the user's full name.

� User Fiat Balance - Entity that keeps track of how much each user has of �at
currency (Euros).

� id: Integer with the user's ID.

� balance: Float with the amount of �at currency that a user has.

59

Chapter 5

5.2.4 Transactions Service

Figure 5.8: Entity Relationship Diagram for Transactions Service

Description of each entity in the �gure 5.8:

� Activity - Entity that keeps all details about an user's transaction executed.

� id: Integer with activity's ID.

� user_id: Integer with the user's ID.

� type: String with type of activity, it can be:

* received: represents a transaction where that user received some amount of
cryptocurrency.

* sent: represents a transaction where a user sent some quantity of cryptocur-
rency.

� amount: Float with the amount received/sent in the transaction represented by
that activity.

� date: String with a unix timestamp from when the transaction was executed.

� phone_number: String with the phone number of the other user involved in the
transaction.

� crypto_name: String with the cryptocurrency's name.

60

Software Architecture

� status: String with the status of the transaction (pending or completed).

� Crypto - Entity that keeps information about a cryptocurrency.

� crypto_id: Integer with unique ID to identify each cryptocurrency.

� name: String with the cryptocurrency's name.

� symbol: String with the cryptocurrency's symbol, usually a three character
word.

� privacy: String with the cryptocurrency's privacy that can be:

* private: Users can not see who made the transaction/trade.

* semi-private: Users can only see the user ID of who made the transac-
tion/trade, but can not map that ID to that person.

* public: Users can see the name or phone number of who made the transac-
tion/trade.

� fee: Float with a percentage value that corresponds to the transaction/trade fee
applied when they are executed.

� settlement_time: Integer with the number of hours of the settlement time,
which is the time that an amount of cryptocurrency transacted/traded takes to
be available in the wallet.

� Crypto Pair - Entity that tracks how much each user has in wallet of each cryp-
tocurrency.

� crypto_id: Integer with the cryptocurrency's ID.

� wallet_address: String with the user's wallet address.

� quantity: Float with the amount of some cryptocurrency in wallet.

� Recent Activity - Entity that only keeps an activity ID and a user ID. It helps
keeping only the most recent activities.

� activity_id: Integer with activity's ID.

� user_id: Integer with the user's ID.

� Wallet - Entity that keeps details about a user's wallet.

� address: String with the user's wallet address.

� user_id: Integer with the user's ID.

� phone_number: String with the user's phone number.

� full_name: String with the user's full name.

� User Fiat Balance - Entity that keeps track of how much each user has of �at
currency (Euros).

� id: Integer with the user's ID.

� balance: Float with the amount of �at currency that a user has.

61

Chapter 5

5.2.5 Wallet Service

Figure 5.9: Entity Relationship Diagram for Wallet Service

Description of each entity in the �gure 5.9:

� Crypto - Entity that keeps information about a cryptocurrency.

� crypto_id: Integer with unique ID to identify each cryptocurrency.

� name: String with the cryptocurrency's name.

� symbol: String with the cryptocurrency's symbol, usually a three character
word.

� privacy: String with the cryptocurrency's privacy that can be:

* private: Users can not see who made the transaction/trade.

* semi-private: Users can only see the user ID of who made the transac-
tion/trade, but can not map that ID to that person.

* public: Users can see the name or phone number of who made the transac-
tion/trade.

� fee: Float with a percentage value that corresponds to the transaction/trade fee
applied when they are executed.

� settlement_time: Integer with the number of hours of the settlement time,
which is the time that an amount of cryptocurrency transacted/traded takes to
be available in the wallet.

62

Software Architecture

� Crypto Filters - Entity that keeps track of the state of a cryptocurrency in a user's
wallet �lters.

� wallet_address: String with the user's wallet address.

� crypto_id: Integer with the cryptocurrency's ID.

� selected: Boolean with the state of that cryptocurrency in the wallet (true or
false).

� Crypto Pair - Entity that tracks how much each user has in wallet of each cryp-
tocurrency.

� crypto_id: Integer with the cryptocurrency's ID.

� wallet_address: String with the user's wallet address.

� quantity: Float with the amount of some cryptocurrency in wallet.

� Wallet - Entity that keeps details about a user's wallet.

� address: String with the user's wallet address.

� user_id: Integer with the user's ID.

� full_name: String with the user's full name.

� User Fiat Balance - Entity that keeps track of how much each user has of �at
currency (Euros).

� id: Integer with the user's ID.

� balance: Float with the amount of �at currency that a user has.

63

This page is intentionally left blank.

Chapter 6

Development

In this chapter numerous aspects about the development phase are described. Starting with
the development environment con�guration, risk analysis, development methodology and
organization and the project structure. Then, some of the most important details taken
into account during the implementation are explained, along with some of the decisions
made during the development.

6.1 Development Environment Con�guration

Before starting to develop the application, all the environment needed to be set up. As
shown in the architecture, in the Chapter 5, each microservice and database needs to be
inside a container. In order to containerize each one, Docker is used. To con�gure all the
docker containers, a �le named docker-compose.yaml was created where each microservice
and database was de�ned. The following two �gures (6.1 and 6.2) show an example of
how the containers were de�ned, one for the authentication service (User Service in the
architecture) and other for the MySQL database for the users.

Figure 6.1: Authentication service
container con�guration

Figure 6.2: MySQL users database
container con�guration

Apart from the containers for the microservices and the MySQL databases, two other
containers need to be set up, one for zookeeper which is a centralized service that provides
synchronization services in distributed systems [17], and another one for kafka that is a
distributed event streaming platform that allows to publish (write) and subscribe to (read)
streams of events [14]. Figure 6.3 represents the con�guration used to de�ne the zookeeper
and kafka containers.

65

Chapter 6

Figure 6.3: Zookeeper and Kafka containers con�gurations

After creating the �le with all the necessary con�gurations, the containers can be initi-
ated by running the command docker-compose up. The con�gurations for the MySQL
containers, like the one in the �gure 6.2, all have one line at the end which is responsible
for running a MySQL script when the container starts up. This ensures that when the
systems �rst �res up, all the tables and queries are created and executed in the di�erent
databases for each microservice.

After starting up all the containers it is important to make sure that everything initiated
correctly. That can be done by running the command docker ps which lists all the running
containers and also, by pinging each container through its name and port.

Finally, this environment needs to be set up three di�erent times. First it was set up in
a local machine for development, then it was requested a virtual machine (VM) from DEI
Helpdesk which has a public IP address that allows to access it remotely. It worked as
a staging VM to perform all the necessary tests. Lastly, it was also set up in another
virtual machine that works as a �nal VM when the software is all implemented and tested,
which is available in the public address https://crypta.dei.uc.pt. In order to expose the web
application and redirect the tra�c to the API endpoints through the public IP address in
the VMs, NGINX reverse proxy was used with the con�guration shown in the �gure 6.4.

66

Development

Figure 6.4: Con�guration �le for the NGINX reverse proxy

6.2 Risk Analysis

Risk Analysis is crucial in order to contain and mitigate risks that can occur during software
development. During a risk analysis the following tasks are fundamental [71]: Identify risks
and their triggers and consequences, classify likelihood and impact (1 - low, 3 - medium,
5 - high) of the risk that then generate a severity value, craft a mitigation plan to be used
when a risk is triggered, monitor the project for risk triggers and execute the mitigation
action when one is triggered. A risk can be described as a potential problem that can
happen during software development, which can compromise the success of the project.

For this project the following risk analysis was performed (�gure 6.5). It describes all the
probable risks that can occur along with the severity, mitigation plan and consequences.
To better understand and analyze risks, they are presented in a table like form, that was
constantly updated during the project every time a risk is triggered or closed, also there
was a periodic veri�cation to check if there was new risks or if any should be removed.

67

Chapter 6

Figure 6.5: Risk analysis table

6.3 Development Methodology - Scrum

Scrum is based on iterative development where requirements and implementation evolve
and re�ne along with the project development [88]. This project management framework
is currently used in most of the agile projects in Worldwide [22]. As shown in �gure
6.6, this process starts with the de�nition of the product backlog which is a list of the
project requirements, then the focus shifts towards the creation of the sprint backlog.
After that, the spring begins which usually includes the development and validation of the
requirements set in the sprint backlog. Finally, at the end of the sprint, a meeting is held
to make demonstrate the developed functionalities during the sprint to the product owner
[22].

Figure 6.6: Scrum process [10]

Project Organization

This section describes how the development of this project was organized. A Trello1 board
was created before starting the development stage. The main objective of this tool is to
organize project of any size, by creating cards, which represent tasks, and distributing
them through di�erent sub-boards.

1https://trello.com/

68

https://trello.com/

Development

Figure 6.7 displays the trello board for this project at a stage close to the project deadline.
The board is sub-divided in �ve columns:

� Product Backlog: List with all the functionalities to implement during the project.

� Sprint Backlog: List with the functionalities to implement during a single sprint,
in this case it lasts two weeks.

� In Progress: Tasks that are currently being worked on.

� Ready for test: Tasks that were already developed and are waiting to be tested.

� Done: Tasks that were already implemented and tested.

Figure 6.7: Trello board for the project

At the start of every sprint, tasks were picked depending on their MoSCoW priority,
di�culty of a task (harder and longer tasks �rst) and dependency between them (some
tasks implementation might depend on others).

6.4 Implemented Functional Requirements

In the document Software Requirements Speci�cation (SRS) several functional require-
ments were de�ned, more speci�cally, 15 user functional requirements and 5 administrator
functional requirements. However, some of them were only partially implemented mostly
due to changes in those requirements during its implementation.

The following tables 6.8 and 6.9 contain the list of user and admin functional require-
ments, as well as their respective implementation status, being that it either is implemented
(green), partially (yellow) and not implemented (red).

69

Chapter 6

Figure 6.8: Implemented Functional User Requirements

Figure 6.9: Implemented Functional Admin-
istrator Requirements

As we can see in the �gure 6.8, the requirement C08 ("A user shall be able to instantly
navigate to the main menu, see his noti�cations and display the settings menu by using the
buttons at the top toolbar") and C14 ("A user shall be able to view his orders, positions
and history of trades in the Portfolio Menu") were only partially implemented. For
the requirement C08, noti�cations were not implemented and for C14 positions were not
considered and everything is considered an order (either open or closed).

6.5 Client-side Implementation (React.js)

For the client-side implementation, the mobile web application interface was developed in
React.js alongside CSS (Cascading Style Sheets) for styling. Furthermore, Webpack2 was
used as a module bundler and Babel3 as a Javascript transpiler. Both these tools help
building the React.js application.

When it comes to the structure of the code, it is important to keep it as uniform as possible.
To avoid confusions and to facilitate future code re-factoring, we used framework standards
to organize the project directories [38]. The following �gures 6.10, 6.11 and 6.12 show how
the project is structured.

2https://webpack.js.org/
3https://babeljs.io/

70

https://webpack.js.org/
https://babeljs.io/

Development

Figure 6.10: Re-
act project struc-
ture (general)

Figure 6.11: Re-
act project struc-
ture ("src" folder)

Figure 6.12: Re-
act project struc-
ture (components
folder)

As we can see by the �gures above, the project directory consists of: a build folder where
the �les for production are created, a node_modules folder where all the libraries used
during development are installed, a public folder that has the HTML �les and images
to compile during deployment, src folder with all the project source code, routers with
the code for the routing between URLs and components, services folder with a single �le
that help communicating with the API endpoints, styles folder with all the styling CSS
code, an app.js �le from where the react application starts up from, .babelrc �le with
the con�guration for Babel, package.json with project properties and dependencies and
webpack.con�g.js with the Webpack con�guration for module bundling.

6.6 Server-side Implementation (Node.js)

For the server-side implementation, Node.js was used with the package Express, MongoDB
for the service that saves the logs and MySQL in the remaining services.

Since the backend is developed on top of a microservices architecture, each service has its
own project directory and is created inside distinct docker containers to ensure indepen-
dency between each other. Each container also has an independent MySQL database. The
following �gures 6.13, 6.14 and 6.15 will help understand how each service implementation
was structured.

71

Chapter 6

Figure 6.13:
Back-side project
structure (gen-
eral)

Figure 6.14:
Back-side project
structure (wallet
service directory)

Figure 6.15: Re-
act project struc-
ture (wallet ser-
vice "src" direc-
tory)

The �gures above shown how the backend is structured (�gure 6.13) and, since all the
services were structured the same way, it is possible to check in the �gures 6.14 and 6.15
how a service folder and a service source code (src) folder are structured. As we can see, a
service directory has the following folders and �les: node_modules folder which has all the
libraries used during the implementation installed, src folder with all the source code, test
folder with all the test cases for unit testing, .env �le where the environment variables are
declared, Docker�le �le which has the con�guration for the docker container, package.json
with the project properties and dependencies and tscon�g.json with the con�guration for
typescript. Furthermore, inside the src folder the structure is: db folder with database
con�guration, errors folder with the errors that can be thrown in a request, events folder
with the code for the event synchronization (publish events and subscribe event streams),
middleware folder where the functions that execute before a request is processed in its
route, models folder with the functions responsible of querying to the database, routes
where the di�erent API endpoints are de�ned along with the logic that processes each
request, services with functions that are called inside the routes logic but are not exposed
through the API and app.js �le that starts up the service.

6.7 System Implementation and Description

Now, all the implemented functionalities will be explained using screenshots and describing
them. This will help better understand some of the implementation decisions made in the
front-side development and how the application can be used by its users.

Registration

Figure 6.16 illustrates the registration screen. In order to register in the application,
users need to be invited by an administrator using an email. An invitation email is sent

72

Development

containing a randomly generated 6 digit invitation code and a button which redirects to
the registration page. In that page, a user needs to �ll a form with: 6 digit invitation
code, valid phone number from Portugal (9 digits), email with a valid format, full name
with only letters and a minimum of 5 characters, a strong password (length between 8 and
20, at least 1 lowercase and 1 uppercase letter, 1 number and 1 symbol), repeat the same
password and a PIN code that is used to con�rm operations in the application. After �lling
everything, the user needs to click the "Create Account" button, which �rst validates all
the �elds. If there's an invalid �eld, its box is highlighted in red and a error message
is displayed. If everything is valid, a request is sent to the server which will process it
and respond with a success or error message. In case of error, the message with the error
description received from the server is displayed, otherwise the user is redirected to the
login page (�gure 6.18).

In regards to the backend, when a request arrives to register a user, all �elds are �rst
validated. Then it checks if phone number or email inserted are already being used, if
that email has an invitation code associated in the database and �nally if the invitation
code inserted by the user corresponds to the one saved in the database. After all the
validations, the password and PIN code are encrypted so they can be saved in the database,
that encryption is done with the code in the �gure 6.17 which �rst creates a "salt", that
consists of the hashing of a string with the user's email concatenated with his full name
(to guarantee uniqueness) with the hash function SHA-256 (Secure Hash Algorithm of 256
bits), then that salt is used to hash the original password/PIN code with the hash function
Scrypt, �nally the hashed password/PIN code is returned with its salt concatenated. Lastly,
all the information originally inserted by the user, along with the hashed password and
PIN code, saved in the database and a success message is returned to the client-side in the
response.

Figure 6.16: Register
screen

73

Chapter 6

Figure 6.17: Password hashing implementation

Login

In �gure 6.18 the screen for the login is displayed. In this page users can do three actions:
log into the application, recover password (through the "Forgot password?" button) and
contact the support team (system administrators). In order to log in, a user needs to type
his phone number and password. Then click the "Login" button which validates the login
�elds (phone number and password). If all �elds are valid, a request is sent to the server,
otherwise the invalid �eld is highlighted in red and an error message is displayed. If the
response from the server is successful, the user is redirected to the main page (wallet screen
in �gure 6.20), else the error message sent by the server is shown to the user.

In the backend, when a login request arrives, it �rst validates the parameters, then it
checks, by the phone number, if the user exists in the system. If so, it gets the user role
from the database (user or administrator) and creates a jwt token with the user's ID,
email and role as payload. Finally, that token created along with the user ID is sent in the
request session. By doing this, the session will be persisted in a cookie in the client-side
that will be sent in every request to the server during 1 hour (expiration time for cookies in
the con�guration). This helps with the user authorization in the server-side when requests
arrive, which can be done be validating the jwt token as shown in the �gure 6.19.

74

Development

Figure 6.18: Login screen

Figure 6.19: User authorization code

View wallet and all activity

After a user logs in, he's redirected to the wallet screen shown in the �gure 6.20. This
screen is considered the main page of the application and consists of two toolbars, one at
the top with the settings button and other at the bottom with the di�erent menus available
in the application. It also has a display panel with the user's current �at balance (in Euros
(¿)) and a recent activity panel that has the user's last two transactions executed with
compacted information. Finally there's a wallet panel with cryptocurrencies and its balance
in that user's wallet, this panel also has a �lters option to select which cryptocurrencies
should be displayed.

The recent activity panel has a "View all activity" button which opens a page with all the
activity as shown in �gure 6.21. It includes every transaction made by the user, as well as,
complete information about them.

75

Chapter 6

Figure 6.20: View wallet
screen

Figure 6.21: View all activ-
ity screen

Change wallet �lters

When the "Filter" button is clicked in the wallet panel, a new page opens (�gure 6.22)
which allows the user to select which cryptocurrency he wants to be displayed in the main
wallet screen. He can also press the "Select all available in wallet" that automatically
selects all the cryptocurrencies that have a balance bigger than 0 in the wallet. Finally,
the user presses the "Save" button which makes a request to the server in order to save
his �lters, so the next time he opens the application, his wallet is consistent with the last
time he used it.

Figure 6.22: Change wallet
�lters screen

76

Development

Make payment with QR code

Figure 6.23 illustrates the screen where a user can make a payment by reading a QR code.
This starts by navigating to this menu in the bottom toolbar and giving permissions for
the application to use the phone camera. Then, the user needs to point the camera to
the QR code generated by another user and con�rm the transaction the modal screen that
pops up (�gure 6.24). By con�rming the transaction, a new modal screen prompts the
user to insert his PIN code (�gure 6.25).

In the backend, when the server receives the payment request, it validates its parameter
which corresponds to the string read from the QR code that needs to have the following
structure: <Cryptocurrency name>:<Recipient wallet's address>?amount=<transaction
quantity>. After the parameter's validation, it checks if the wallet address exists and if
the user paying has enough balance the execute the transaction. Finally, the transaction's
quantities are calculated taking in consideration the transaction fee and the transaction is
completed. Though the user paying will have his balance instantly updated, the user re-
ceiving will only have his balance updated depending on settlement time. Until concluded,
the transaction appears as pending.

Figure 6.23: Payment
menu screen

77

Chapter 6

Figure 6.24: Payment con-
�rmation screen

Figure 6.25: Payment pin
insertion screen

Send cryptocurrency

Figure 6.26 shows how to send cryptocurrency. The user needs to input the recipient's
phone number, the amount, and select the cryptocurrency that he wishes to send. Then,
the �elds are validated, highlighting in red and displaying an error message in case of
invalid �elds, else it displays a modal screen to con�rm the transaction (�gure 6.27) and
then another modal screen to insert his PIN code (�gure 6.28).

In the backend, the logic to process the request is the same, with the only di�erence being
the request parameters, in this case the request has a phone number which is then used to
get the user's wallet address from the database.

78

Development

Figure 6.26: Send cryp-
tocurrency menu screen

Figure 6.27: Send cryp-
tocurrency con�rmation
screen

Figure 6.28: Send cryp-
tocurrency pin insertion
screen

Request cryptocurrency

Figure 6.29 illustrates the request cryptocurrency screen. In this page, the user can type
an amount, select a cryptocurrency and, by clicking the "Generate QR code", a modal
screen is shown with a QR code (�gure 6.30). This code can be scanned by another user
in the payment screen. When read, it translates into a string with the following pattern:
<Cryptocurrency name>:<Recipient wallet's address>?amount=<transaction quantity>.

79

Chapter 6

The user can also save the code as an image and send it, which allows remote transactions.

Figure 6.29: Request cryp-
tocurrency menu screen

Figure 6.30: Request cryp-
tocurrency qr code gener-
ated screen

Create market and limit orders

In the trade menu, a user can create orders. Orders can be to sell or to buy some cryp-
tocurrency (�gures 6.31 and 6.32). After choosing if he wants to sell or buy, he needs to
select if he wants to create a market order, which means that he does not need to type a
price because the order will execute at the market price at the execution moment, or a limit
order where the user has to type at what minimum/maximum price he wishes to execute
the trade (minimum for sell orders and maximum for buy orders). Then, with those two
options chosen, the user needs to �ll the form with the information asked. In case of a
market order, the user has to select the pretended cryptocurrency, type an amount to trade
and, optionally, input a date for the order to expire. For a limit order, the only di�erence
is a new �eld which takes the minimum/maximum price for the trade. Then, when the
user clicks the button "Place SELL/BUY Order", the �elds inserted are validated and an
error message is shown if invalid, otherwise it will ask for con�rmation through a modal
screen (�gure 6.33) and for the PIN code as well (�gure 6.34). In case of error during this
process (inserted PIN is wrong) it shows a failure screen, else it sends the request to the
server and shows a successful screen. Finally, this screen also has a panel at the bottom
that updates when the cryptocurrency selected in the form changes. It essentially shows
the history of orders that were executed for that same crypto. The information shown
depends on the privacy property of each one, if it is private, it does not show anything, if
semi-private, it only shows the trader's ID, and if public, it shows the trader's full name.

In the backend, when the request to create an order arrives, it �rst validates its parameters
and then it saves the order in the database. The database has two di�erent tables, one that
keeps an orderbook for the buy orders and another for the sell orders. It was implemented
an auction trade market, which is a market that has a period where it receives orders
(considered open) and another period where the market is resolved and the orders are

80

Development

executed (considered closed, because it can't receive orders in that period). Each order in
the orderbook includes the cryptocurrency name.

Figure 6.31: Create sell or-
der screen

Figure 6.32: Create buy or-
der screen

Figure 6.33: Create sell or-
der con�rmation screen

Figure 6.34: Create sell or-
der pin insertion screen

View open and closed orders

In the menu "My Orders", an user can view his open and closed orders (�gures 6.35 and
6.36)). In the open orders menu all the orders that are still waiting to be executed are
displayed with their properties, such as, order side (buy or sell), type (market or limit),
amount, price, date until when the order is valid and the date of creation. On the other

81

Chapter 6

hand, the closed orders screen shows all the orders that were already executed along with
the side of the order (bought or sold) and execution price, amount and date.

Figure 6.35: User's open
orders screen

Figure 6.36: User's closed
orders screen

Settings menu

At the top toolbar, a user can press the button in the middle represented with a cogwheel
to be redirected to the settings menu shown in �gure 6.37. In this menu, the user can check
his information (full name and email) associated to his account and access the following:
"Admin Panel" (if he has administrator role, otherwise this option is hidden), "Personal
Info" to edit his personal information (full name and password) (�gure 6.38), "Security"
to change his PIN code (�gure 6.39), "Help" which has several topics with tutorials to help
understand how the application functionalities work (�gures 6.40 and 6.41), "About" with
information about the system and "Logout" to log the user out of the app.

82

Development

Figure 6.37: Settings menu
screen

Figure 6.38: Edit personal
information screen

Figure 6.39: Edit se-
curity information (PIN
code) screen

83

Chapter 6

Figure 6.40: Help menu
screen

Figure 6.41: Help login's
section screen

Admin panel

In this application, there are two roles: user and admin. The only di�erence between them
two is that admin has an extra option in the settings menu that allows him to access an
administrator panel. The following subsections describe each menu in that panel.

Users

Figure 6.42 displays users menu in the administrator panel. Here, an admin can view every
user registered in the system along with their personal information. It is also possible to
invite a new user. This can be done be typing a new email that is not already registered
and an initial amount that corresponds to the �at currency balance (in Euros) when the
user �rst enters his account.

Figure 6.42: Admin panel users screen

84

Development

Cryptocurrencies

In the cryptocurrencies menu (�gure 6.43), the admin can check all the cryptocurrencies
present in the system, as well as their information. He can also add a new cryptocurrency
by inserting the following information: name, symbol, price, cap, privacy, transaction fee
and settlement time.

Figure 6.43: Admin panel cryptocurrencies screen

Wallets

Figure 6.44 represents the wallets menu where adminstrators can check how much of each
cryptocurrency each wallet has, and also edit that same amount.

Figure 6.44: Admin panel wallets screen

Orderbooks

In the market menu displayed in �gure 6.45, it is possible to check all the orders currently
waiting for market execution in the orderbooks, alongside their information. An admin
can also set how many auctions should happen, by setting the number of auctions per day
(maximum of 24, i.e. 1 per hour) and the number of auctions per hour (maximum of 60,
i.e. 1 per minute), meaning that the maximum possible number of auctions in one day is

85

Chapter 6

1440 (one auction every minute of the day). He also has the ability to instantly execute a
market resolution (auction) by click the "Resolve Market Now" button.

Figure 6.45: Admin panel orderbooks screen

Logs

Finally, an admin can check every log produced in the backend servers by pressing one of
the buttons in the logs screen (�gure 6.46) which allows him to check four levels of logs:
fatal, error, warning and info. By pressing one of these buttons, a csv (comma-separated
values) �le is generated and downloaded to the admin computer with a list of logs of that
speci�c level order by creation date.

Figure 6.46: Admin panel logs screen

6.8 Security mechanisms implemented

This section lists the mechanisms used to meet the non-functional security requirements
and make the web application more secure. The following are the strategies adopted to
accomplish that:

� Use of Transport Layer Security (TLS): TLS is a security protocol that evolved

86

Development

from an older one called Secure Sockets Layer (SSL) and is used to encrypt the com-
munication between web applications and servers [28]. It is responsible for encryption
(hides the data being transferred), authentication (makes sure that the parties ex-
changing data are who they claim to be) and integrity (veri�es that the data was not
forget or tampered) [28].

� Access tokens with short expiration time: For authentication purposes the jwt
access tokens generated on login are stored in a cookie and have a expiration time
of one hour. Even though it may look that it violates the non-functional security
requirement S03 ("The system shall not store cookies on the customer's device con-
taining sensitive information"), it does not, because the cookie only stores the jwt
token, that, when decrypted, only has the user's ID, email and role, which is not
considered sensitive information. Also, the use of cookies for access tokens over lo-
cal storage has the advantage of not being vulnerable to cross-site scripting (XSS)
attacks.

� Encrypted password in database: It is extremely important to keep the user's
password secure. To that end, passwords are hashed before being stored in the
database, this protect against attackers that manage to access the database, for
example, through SQL injection.

87

This page is intentionally left blank.

Chapter 7

Testing

In 1984, Barry W. Boehm expressed the di�erence between software veri�cation and soft-
ware validation by de�ning the following questions: "Am I building the product right?"
(veri�cation) and "Am I building the right product?" (validation) [21]. According to the
IEEE Standard Glossary of Software Engineering Terminology [44] the de�nitions of "ver-
i�cation" and "validation" are:

� Veri�cation: The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at the start
of that phase.

� Validation: The process of evaluating a system or component during or at the end
of the development process to determine whether it satis�es speci�ed requirements.

Regarding the �rst question raised by Boehm (Am I building the product right?), several
tasks have been done to answer this question, such as, requirements gathering 3, where
the Software Requirements Speci�cation document was originated, and the software archi-
tecture design.

At this point, we need to check if the software is working like it is supposed to, in other
words, we need to validate the system.

This chapter focuses on the testing techniques and its results. Firstly functional testing
was performed which includes unit testing in the server side and end-to-end testing in the
client side. Then, load tests were executed in order to check response time and capacity,
depending on the number of requests. Finally, usability tests were conducted to get some
feedback from the end-users, as well as, check the usability of the system.

7.1 Functional Testing

Functional testing is a type of software testing that determines if a each part of a system
is working in accordance with the de�ned requirements [41]. In this case, we will validate
each functional requirement de�ned in the Software Requirements Speci�cation document,
by doing the following techniques of functional testing: unit testing and end to end testing.

89

Chapter 7

7.1.1 Unit Testing

Unit testing is a type of white-box testing (tests depend on both the implementation
and the speci�cation [48]) that is performed by the developers, since it is code based. It is
supposed to be done by testing individual units separately, being that a unit is the smallest
testable part of an application, that is usually not larger than a class [57].

In order to execute unit tests two Node.js libraries: Chai [23] which is an assertion library
that provides functions and methods that help comparing the output of a certain test with
its expected value, this is called an assertion. Assertions will pass when the expected value
is not equal to the actual value and fail if vice versa. The other library used was Mocha
[53] which provides functions and methods that are executed in a speci�c order and logs
its result in the terminal. Mocha regularly uses the functions describe and it that provide
structure to the tests by grouping them into test suites and test cases. A test suite is a
group of tests related to a single functionality and a test case (also called a unit test) is a
single description of a part of code that either passes or fails. Test suites use the keyword
describe and test cases the keyword it. Mocha also provides tools that allow cleaning the
state of the software to assure that test cases are being run independently of each other
[45].

In order to perform unit testing, the following steps were conducted:

1. De�nition of each isolated functionality for testing with an input and
output: Since microservices architecture was used, where each service has several
functional requirements implemented as single and isolated units, we can de�ne our
tests suites to meet each of the API endpoints which correspond to all the func-
tional requirements, being that each test suite has multiple test cases with di�erent
inputs/outputs.

2. Write the test suites and test cases: The tests were conducted on the Mocha
framework with Chai library that allows to make assertion on the inputs/outputs.
The �gures 7.1 and 7.2 are examples of two test cases for the login function, one
where the credentials are invalid and the login fails and other where they are valid
and the login succeeds. By those �gures it is possible to check that two methods from
the Mocha library are used to de�ne the test suites: describe which gives structure
to test suites by grouping test cases and it which is utilized to identify each individual
test case. Then, from the Chai library, two methods are also used: request that
makes request to each route on the server, which also allows to add parameters in
the request header, and expect which allows to make assertions in order to check if
values meet certain prede�ned conditions by using sub-methods, such as, "equal"
and "to have".

Figure 7.1: Test case for login with invalid credentials

90

Testing

Figure 7.2: Test case for login with valid credentials

3. Execution of each test suite independently and analysis of results: After
writing each test suite and test case, it is possible to run the unit tests by running
the command "mocha -r ts-node/register" followed by the directory of the �le with
the test suites/cases. After running that command, the tests are performed and the
results are displayed by listing all the tests cases executed with the time taken to
perform and a cross that indicates that it passed or a cross if it failed, like shown in
the following �gure 7.3.

Figure 7.3: Results for the login function unit testing

Since each microservice has several routes (API endpoints), the unit testing results are all
written in the Appendix B at the end of this document.

7.1.2 End-to-End Testing

End-to-End testing is a technique that helps testing the application �ow from the beginning
until the end to make sure that it behaves as expected. The main purpose is to simulate
real scenarios and validate the system and its components for integration and data integrity
[90].

In order to perform this type of tests, the library Cypress was used, which performs end-to-
end expressions. It also has the ability to run the application in the browser and provides
real-time debugging. In every action during the execution of each test, a snapshot of the
interface is saved, which lets the testers know what changed in between actions [34].

To use this libraby, a npm package was installed using the command npm install cypress
�save-dev. Then, it is possible to open the cypress web interface by running the command
node_modules/.bin/cypress open. In this interface all the end-to-end testing �les created
in the testing directory are listed and can all be executed at once. The main structure of
a test �le looks as follows in the �gure 7.4.

91

Chapter 7

Figure 7.4: Example of a end-to-end testing �le for login

The main methods used in the con�guration of the test �les for end-to-end testing are [77]:

� visit: allows to access a remote URL.

� get: used to get one or more HTML DOM (Document Object Model) elements by
selector or name.

� focused: gets the DOM element that is currently focused.

� type: types into a DOM element that was previously selected with the commands
get or focused.

� select: selects an option in a select DOM element.

� submit: utilized to submit a form element.

� click: clicks a DOM element.

� should: used to create an assertion, usually takes two arguments, a chainer (for
example, have.text or include) that works as a condition and a value to assert against
that chainer.

� url: gets the URL of the current page.

� getCookie: gets a browser cookie by its name.

Figure 7.5 above shows how a result is displayed when a test �le is executed with cypress in
the web interface. The complete results for this type of integration tests will be presented
in tables at the end of this document in the Appendix C.

92

Testing

Figure 7.5: Example of a end-to-end testing result for login

7.2 Load Testing

Load testing is a technique of non-functional testing with the main goal of testing the
performance of a software application under varying load conditions by simulating multiple
users using the application concurrently. This technique allows the measuring of response
times, throughput rates, resource utilization levels and identify the application's breaking
point, assuming that that point is below the peak load condition.

In order to start the staging phase, the application (server and client side) were deployed
to a VM (Virtual Machine) to ensure that everyone involved in the project would be able
to test it as well. This VM has the following speci�cation: 4 VCPUs, 4 GB of RAM and
50 GB of storage.

Although the application will not be released to the public during the duration of the
project, it is crucial to understand how well the system performs under certain load condi-
tions and how many number of users and server requests it can handle. This analysis will
make it easier to verify if a upgrade to the VM is needed when the app goes into a �nal
stage of deployment to the public. When conducting this analysis, the most important
step is to make sure that it complies with the non functional performance requirement
PF02 ("The system shall execute transactions in less than 3 seconds").

To perform this test, the library ApacheBench (ab) was used, which is a tool capable of
testing HTTP servers [5]. In order to perform this test, several parameters had to be
input, such as: number of total requests, number of concurrent requests (sent in the same
moment), a cookie with the JWT token to authenticate the user sending the request, a
JSON �le with the body of the request, the content type of the data sent in the request
and the URL of the API endpoint to test. In this case the command used to load test
is as follows: ab -n <number of total requests> -c <number of concurrent requests> -C
<cookie with JWT token> -p <path for directory with request body> -T <content type of
the request> <url of the API endpoint to test>.

Since this system has several API endpoints, only the one which is expected to deal with
the bigger tra�c will be tested. In this case, the one chosen was the endpoint responsible
for making a cryptocurrency payment (/api/transactions/make-payment). The following
table 7.6 presents the test outputs from the tool used when dealing with a certain number
of concurrent requests.

93

Chapter 7

Figure 7.6: Load testing results for the make a cryptocurrency payment
API endpoint

One of the �rst observations that can be taken from the table 7.6 is the fact that, from
the line with 10 concurrent requests made forward the number of requests per second
(average) stabilized at 12, which means that this endpoint can only process that number
of requests per second, approximately. Other conclusion we can take from the average
time per request (in milliseconds) is that it crosses the 3 seconds mark (3000 ms) when
sending 40 concurrent requests, breaking the non functional performance request (PF02)
set, which says that "the system shall execute transactions in less than 3 seconds". We
can also check that the maximum time per request (in milliseconds) surpasses the 3 second
mark by a large margin when more than 30 concurrent requests are sent. With this in
mind and considering the context of this project, which states that the application will be
used by a limited number of users from the Faculdade de Economia da Universidade de
Coimbra, it is safe to say that is very unlikely that 30 requests will be made concurrently
to the same endpoint. In case of need to expand the number of users, we can scale the
system by upgrading the speci�cations of the virtual machine by adding more processing
speed (CPU) and memory RAM.

7.3 Usability Testing

After performing the functional testing to make sure that the application has the minimum
number of bugs possible, we can now perform the non-functional usability testing. This
technique is used to get an external perspective of the application being developed since it
is performed by real people that then give their feedback. Since the scope of this project
is a web application that will eventually be used by a real audience, its usability is a
extremely important factor to consider.

To conduct the usability tests, four participants were chosen with fairly di�erent back-
grounds. Their ages range from early 20s to early 50s. Their academic quali�cations
include high school, bachelor's degree and master's degree. We also looked to �nd testers
with and without a technological background. And the most important aspect is that none
of the testers had previous knowledge of this application.

7.3.1 Test Methodology

The tests were performed in a quiet environment to ensure maximum focus and supervised
to guarantee the veracity of the results. In order to perform the test a Google Forms1

was created and its template is in the Appendix D. The test (form) starts with an brief
explanation of the scope of this project and what the form is about (what is usability
testing). Then the tester needs to �ll a questionnaire with his age, academic quali�ca-

1https://www.google.com/forms/about/

94

https://www.google.com/forms/about/

Testing

tions, academic �eld (if applicable), current job and 6 questions that help understand the
knowledge and experience of the tester with mobile application, mobile wallets and trading
markets. Then, he is asked to perform 17 tasks in the application and, for each one, �ll
with the number of clicks necessary to complete, the task's success (success or fail) and
the di�culty level (from 1 to 5, being 1 very easy and 5 very hard).

The tasks asked to perform were the following:

1. Register into the application through the email received.

2. Login into the application.

3. Change wallet �lters to see only the �rst cryptocurrency in the list.

4. Check all activity in the wallet.

5. Make payment with the QR code below.

6. Send 0.01 Bitcoin (BTC) to the phone number 966666666.

7. Generate a QR code to request 0.01 Bitcoin (BTC).

8. Create a market sell order for 0.01 Bitcoin (BTC) that is only good until tomorrow.

9. Create a limit buy order for 0.01 Bitcoin (BTC) at 14.42¿ that is good until cancelled.

10. Check your open and then closed orders.

11. Cancel the market sell order for 0.01 Bitcoin (BTC).

12. Edit your personal information (full name).

13. Edit your security settings (PIN code).

14. Check the instructions to reset your password.

15. Visit the "About" section of the application.

16. Contact the application support team and send a message with subject "Greeting"
and message "Hello team.".

17. Logout of the application.

Finally, after performing every task asked, the tester needs to �ll a pos-questionnaire
which helps understand how he felt about using the mobile web application and to get
some feedback.

7.3.2 Test Results

Questionnaires

The �gures below represent the graphs generated from the answers to the questions asked
to the testers before performing the tasks. They were asked in order to understand how
much knowledge and experience each tester had of mobile application, trading markets and
mobile wallets. The following graphs range from 1 to 5, being that, the higher the value
the more experienced the tester is with the subject asked in the questionnaire.

95

Chapter 7

Figure 7.7: Questionnaire �rst question

Figure 7.8: Questionnaire second question

Figure 7.9: Quesionnaire third question

96

Testing

Figure 7.10: Questionnaire fourth question

Figure 7.11: Questionnaire �fth question

Figure 7.12: Questionnaire sixth question

Overall all the testers have some experience with mobile applications, though most of the
testers had very few knowledge and experience with trading markets. Also, in general, the
testers had some knowledge and experience with mobile wallets and, when asked about it,
most of them said that they use MB Way.

97

Chapter 7

Tasks Performance

In order to better understand the results obtained from the usability tests two tables were
made. One that shows the expected number of clicks per task, which considers that a user
performed the task without any mistakes, and the actual number of clicks per task for each
tester (�gure 7.13). And another one that represents the di�culty level per task that each
tester felt (�gure 7.14).

Figure 7.13: Usability testing tasks results (clicks)

Regarding the number of clicks it is considered that a task, that took more than two clicks
than expected (margin for error), is abnormal and marked with red in the table.

In the table above it is possible to check that most testers required an excessive number
of clicks to complete the task 8 (creating a market sell order), subsequently the task 9,
despite being very similar to the previous one, did not take as much clicks. This can be
explained by the fact that testers learned it by exploring around doing the task 8. Another
explanation for this is also the fact that those testers did not have much knowledge and
experience with trading markets like seen in the questionnaires (�gures 7.9 and 7.11).
There is also one tester that has a lot of outliers and even could not complete the tasks
8 and 9 (subsequently making the task 11 undoable), which can also be justi�ed by the
his knowledge and experience since this tester does not have much contact with newer
technology and does not know and experienced mobile wallets and trading markets at all.

Figure 7.14: Usability testing tasks results (di�culty level)

For the di�culty level of each task, the same methodology was used, where every outlier
is marked with red and correspond to the task's di�culty level above than neutral (hard
or very hard).

By the table, we can take the same conclusions, where the task 8 was considered the most
di�cult and the tester 2 was the one that found the tasks harder.

Pos-Questionnaire

The following �gures display the graphs generated from the answers to the questions asked
to the testers after performing the tasks. In this case, testers have to select an option (from
strongly disagree to strongly agree) for each question.

98

Testing

Figure 7.15: Pos-Questionnaire �rst question

Figure 7.16: Pos-Questionnaire second question

Figure 7.17: Pos-Questionnaire third question

99

Chapter 7

Figure 7.18: Pos-Questionnaire forth question

This questionnaire looks to understand how the tester felt about using the application and
to get some feedback. Overall, the testers found the application easy to understand and use
(�gures 7.15 and 7.16, with exception of the tester 2 which had trouble doing the trading
market related tasks. Regarding the third question three of the users fairly con�dent that
they could still �nd and use all the functionalities if they would to open the application
tomorrow, with the second tester being again neutral because of his lack of experience with
mobile applications. Finally, all the users agreed that the application UI (user interface)
was pleasant to use, but was not a strong agreement which means that there is still room
to improve the design.

Recommendations to improve the application

Lastly, it was asked the testers to provide some recommendations that they think could
improve the application, obtaining the following feedback:

� Tester 1

� Improve the user interface.

� Tester 2

� Make the tasks related to the orders easier to understand.

� Tester 3

� Make design more pleasant;

� Make the market menu easier to use and understand.

� Tester 4

� It would be nice if the presentation of the menu market was more intuitive to
use.

100

This page is intentionally left blank.

Chapter 8

Conclusion and Future Work

The main purpose of this work was to develop a system capable of making cryptocurrencies
transactions and trading in a simulated market. To achieve this, a state of the art study
was conducted where the main focal points were: the approaches to adopt in the frontend
development, the proper software architecture pattern for the backend of the application
and security considerations for web applications. After that, the functional requirements
were collected through the analysis of the graphical interfaces of existing applications and
feedback given from the stakeholders (professors) and a "Software Requirements Speci-
�cation" document was redacted with those requirements (nine general, �fteen user and
�ve administrator functional requirements), along with thirteen non-functional require-
ments, fourteen use cases and mockups for every user functionality de�ned. Then the
technologies that will be used for the development of the application were de�ned. This
de�nition was done by comparison of di�erent technologies or, in some cases, simply de-
�ned, when there was only one technology considered. The technological decisions made
were: Progressive web application framework - ReactJS, backend technology - ExpressJS,
relational database - MySQL, non-relational database - MongoDB, containerization tech-
nology - Docker, messege queue system - Apache Kafka and SMS communication API -
Twilio. Then, a software architecture was designed resorting to the C4 model. The �rst
three levels of this model were considered and three diagrams for this system were gen-
erated: System Context, Container and Component. After that and before starting the
implementation, the risk analysis and development methodology de�nition were done. Fi-
nally the application was implemented and validated by using functional testing (unit and
end-to-end testing) where all tests passed successfully, load testing, that made it possible
to check that the system can take up to 12 requests per second and that when 40 concur-
rent requests are sent the average time per request is more than 3 seconds, and usability
testing, which made it clear that the application needs user-interface improvements and
the market trading menu needs to be easier to use and understand.

In terms of future work and even though, the application was completely implemented,
there is still some room for improvement. Regarding the front-end and taking into consid-
eration the feedback from the usability tests, the design of the web application could be
upgraded or even redone by a group of quali�ed designers to make it as pleasant as possible
for the participants of the experiment (�nal deployment). Regarding the back-end, there
is also several improvable aspects, such as, the integration with the SMS communication
API, which was not implemented and replaced with email communication and the creation
of several server endpoints which allows the system administrators to get more particular
information about the application, speci�cally about the trading market and the transac-
tions performed. Finally, one more general aspect that should be addressed in the future,

102

Conclusion and Future Work

that is the testing of the system as a whole, by a controlled number of participants, with
fake money. This would help better understand how the system behaves in a real scenario
and if it is ready to be deployed and start the actual experimentation.

103

References

[1] 106 Spring Boot interview questions, n.d. [Online]. Available from: https://www.

javapedia.net/Spring-Boot#qanda1248 [Accessed 2021-01-16].

[2] 3 Pros and 3 Cons of Working with Docker Containers � Sweet-
code.io, n.d. [Online]. Available from: https://sweetcode.io/

3-pros-3-cons-working-docker-containers/ [Accessed 2021-01-16].

[3] 5 Advantages and Disadvantages of Client Server Network |
Drawbacks & Bene�ts of Client Server Network, n.d. [On-
line]. Available from: https://www.hitechwhizz.com/2020/11/

5-advantages-and-disadvantages-drawbacks-benefits-of-client-server-network.

html [Accessed 2021-01-08].

[4] 7 Progressive Web App Development Frameworks to Know in 2021 - Geeks-
forGeeks, n.d. [Online]. Available from: https://www.geeksforgeeks.org/

7-progressive-web-app-development-frameworks-to-know-in-2021/ [Accessed
2021-01-16].

[5] ab - Apache HTTP server benchmarking tool - Apache HTTP Server Version 2.4, n.d.
[Online]. Available from: https://httpd.apache.org/docs/2.4/programs/ab.html
[Accessed 2021-08-24].

[6] Add to Home screen - Progressive web apps (PWAs) | MDN, n.d. [Online]. Available
from: https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/
Add_to_home_screen [Accessed 2021-01-04].

[7] Advantages and Disadvantages of Docker - Learn Docker - DataFlair,
n.d. [Online]. Available from: https://data-flair.training/blogs/

advantages-and-disadvantages-of-docker/ [Accessed 2021-01-16].

[8] Advantages and Disadvantages of Kafka - DataFlair, n.d. [On-
line]. Available from: https://data-flair.training/blogs/

advantages-and-disadvantages-of-kafka/ [Accessed 2021-01-16].

[9] Advantages of MongoDB | Disadvantages of MongoDB - DataFlair, n.d. [Online].
Available from: https://data-flair.training/blogs/advantages-of-mongodb/

[Accessed 2021-01-16].

[10] Agile methodologies enhance Appian delivery: Part 1 - Bits In
Glass, n.d. [Online]. Available from: https://bitsinglass.com/

agile-methodologies-enhance-appian-delivery-part-1/ [Accessed 2021-08-
31].

[11] All About MongoDB NoSQL Database: Advantages and Disadvantages, n.d. [Online].
Available from: https://acodez.in/mongodb-nosql-database/ [Accessed 2021-01-
16].

104

https://www.javapedia.net/Spring-Boot#qanda1248
https://www.javapedia.net/Spring-Boot#qanda1248
https://sweetcode.io/3-pros-3-cons-working-docker-containers/
https://sweetcode.io/3-pros-3-cons-working-docker-containers/
https://www.hitechwhizz.com/2020/11/5-advantages-and-disadvantages-drawbacks-benefits-of-client-server-network.html
https://www.hitechwhizz.com/2020/11/5-advantages-and-disadvantages-drawbacks-benefits-of-client-server-network.html
https://www.hitechwhizz.com/2020/11/5-advantages-and-disadvantages-drawbacks-benefits-of-client-server-network.html
https://www.geeksforgeeks.org/7-progressive-web-app-development-frameworks-to-know-in-2021/
https://www.geeksforgeeks.org/7-progressive-web-app-development-frameworks-to-know-in-2021/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Add_to_home_screen
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Add_to_home_screen
https://data-flair.training/blogs/advantages-and-disadvantages-of-docker/
https://data-flair.training/blogs/advantages-and-disadvantages-of-docker/
https://data-flair.training/blogs/advantages-and-disadvantages-of-kafka/
https://data-flair.training/blogs/advantages-and-disadvantages-of-kafka/
https://data-flair.training/blogs/advantages-of-mongodb/
https://bitsinglass.com/agile-methodologies-enhance-appian-delivery-part-1/
https://bitsinglass.com/agile-methodologies-enhance-appian-delivery-part-1/
https://acodez.in/mongodb-nosql-database/

References

[12] Ameya, N., Anil, P. and Dikshay, P., 2013. Type of NOSQL databases and its compar-
ison with relational databases. International journal of applied information systems,
5(January 2013), pp.16�19.

[13] Anatomy of the Client/Server Model, n.d. [Online]. Available from: https://

docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/intbas3.htm [Accessed 2021-
01-08].

[14] Apache Kafka, n.d. [Online]. Available from: https://kafka.apache.org/ [Accessed
2021-08-27].

[15] Apache Kafka Advantage Disadvantage - Beyond Corner, n.d. [Online]. Avail-
able from: https://beyondcorner.com/learn-apache-kafka-tutorial/

apache-kafka-advantage-disadvantage/ [Accessed 2021-01-16].

[16] Apache Kafka Advantages and Disadvantages - javatpoint,
n.d. [Online]. Available from: https://www.javatpoint.com/

apache-kafka-advantages-and-disadvantages [Accessed 2021-01-16].

[17] Apache ZooKeeper, n.d. [Online]. Available from: https://zookeeper.apache.org/
[Accessed 2021-08-27].

[18] Bayse, G., 2021. SANS Institute Information Security Reading Room A Security
Checklist for Web Application Design.

[19] Biørn-Hansen, A. and Ghinea, G., 2018. Bridging the Gap: Investigating Device-
Feature Exposure in Cross-Platform Development. Proceedings of the 51st hawaii
international conference on system sciences [Online], (August). Available from:
https://doi.org/10.24251/hicss.2018.716.

[20] Biørn-Hansen, A., Majchrzak, T.A. and Grønli, T.M., 2018. Progressive web apps
for the uni�ed development of mobile applications, vol. 322. Springer International
Publishing. Available from: https://doi.org/10.1007/978-3-319-93527-0_4.

[21] Boehm, B.W., 1984. Verifying and Validating Software Requirements and Design
Speci�cations. Ieee software [Online], 1(1), pp.75�88. Available from: https://doi.
org/10.1109/MS.1984.233702.

[22] Cervone, H.F., 2011. Understanding agile project management methods using Scrum.
Oclc systems and services [Online], 27(1), pp.18�22. Available from: https://doi.

org/10.1108/10650751111106528.

[23] Chai, n.d. [Online]. Available from: https://www.chaijs.com/ [Accessed 2021-08-18].

[24] Choosing Python Web Frameworks: Django and Flask - Coding Dojo
Blog, n.d. [Online]. Available from: https://www.codingdojo.com/blog/

choosing-python-web-frameworks [Accessed 2021-01-16].

[25] Ciman, M. and Gaggi, O., 2017. An empirical analysis of energy consumption of
cross-platform frameworks for mobile development. Pervasive and mobile computing
[Online], 39, pp.214�230. Available from: https://doi.org/10.1016/j.pmcj.2016.
10.004.

[26] Client-Server Architectures, n.d. [Online]. Available from: http://www.cs.sjsu.edu/
\simpearce/oom/ood/distArch/server [Accessed 2021-01-08].

105

https://docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/intbas3.htm
https://docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/intbas3.htm
https://kafka.apache.org/
https://beyondcorner.com/learn-apache-kafka-tutorial/apache-kafka-advantage-disadvantage/
https://beyondcorner.com/learn-apache-kafka-tutorial/apache-kafka-advantage-disadvantage/
https://www.javatpoint.com/apache-kafka-advantages-and-disadvantages
https://www.javatpoint.com/apache-kafka-advantages-and-disadvantages
https://zookeeper.apache.org/
https://doi.org/10.24251/hicss.2018.716
https://doi.org/10.1007/978-3-319-93527-0_4
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1108/10650751111106528
https://doi.org/10.1108/10650751111106528
https://www.chaijs.com/
https://www.codingdojo.com/blog/choosing-python-web-frameworks
https://www.codingdojo.com/blog/choosing-python-web-frameworks
https://doi.org/10.1016/j.pmcj.2016.10.004
https://doi.org/10.1016/j.pmcj.2016.10.004
http://www.cs.sjsu.edu/$\sim $pearce/oom/ood/distArch/server
http://www.cs.sjsu.edu/$\sim $pearce/oom/ood/distArch/server

Chapter 8

[27] Client Server Model - CIO Wiki, n.d. [Online]. Available from: https://cio-wiki.
org/wiki/Client_Server_Model [Accessed 2021-01-08].

[28] CloudFlare, 2021. What is Transport Layer Security? | TLS protocol | Cloud�are
UK [Online]. Available from: https://www.cloudflare.com/en-gb/learning/ssl/
transport-layer-security-tls/ [Accessed 2021-08-31].

[29] Delia, L., Thomas, P., Corbalan, L., Sosa, J.F., Cuitiño, A., Cáseres, G. and Pesado,
P., 2019. Development approaches for mobile applications: Comparative analysis
of features. Advances in intelligent systems and computing [Online], 857(January),
pp.470�484. Available from: https://doi.org/10.1007/978-3-030-01177-2_34.

[30] Di�erence between stateful and stateless server | Practice | GeeksforGeeks,
n.d. [Online]. Available from: https://practice.geeksforgeeks.org/problems/

difference-between-stateful-and-stateless-server [Accessed 2021-01-08].

[31] Discussing Docker. Pros and Cons., n.d. [Online]. Available from: https://phauer.
com/2015/discussing-docker-pros-and-cons/ [Accessed 2021-01-16].

[32] Docker Containers: The Pros and Cons of Docker | The Iron.io
Blog, n.d. [Online]. Available from: https://blog.iron.io/

docker-containers-the-pros-and-cons-of-docker/ [Accessed 2021-01-16].

[33] El-Kassas, W.S., Abdullah, B.A., Yousef, A.H. and Wahba, A.M., 2017. Taxonomy of
Cross-Platform Mobile Applications Development Approaches. Ain shams engineering
journal [Online], 8(2), pp.163�190. Available from: https://doi.org/10.1016/j.

asej.2015.08.004.

[34] End to End Testing Framework | cypress.io, n.d. [Online]. Available from: https:

//www.cypress.io/how-it-works [Accessed 2021-08-20].

[35] Express.js Mobile App Development: Pros and Cons for Developers | Bi-
nariks, n.d. [Online]. Available from: https://binariks.com/blog/tools/

express-js-mobile-app-development-pros-cons-developers/ [Accessed 2021-01-
16].

[36] Express.js Mobile App Development: pros and cons of Node.js frame-
work, n.d. [Online]. Available from: https://apiko.com/blog/

express-mobile-app-development/ [Accessed 2021-01-16].

[37] ExpressJS vs. Flask � Sweetcode.io, n.d. [Online]. Available from: https://

sweetcode.io/espressjs-flask-sweetcode-app-dev/ [Accessed 2021-01-16].

[38] File Structure � React, n.d. [Online]. Available from: https://reactjs.org/docs/

faq-structure.html [Accessed 2021-08-29].

[39] Five Advantages & Disadvantages Of MySQL, n.d. [Online]. Available from: https://
www.datarealm.com/blog/five-advantages-disadvantages-of-mysql/ [Accessed
2021-01-16].

[40] Fortunato, D. and Bernardino, J., 2018. Progressive web apps: An alternative to the
native mobile Apps | Progressive Web Apps: uma alternativa às Apps móveis nativas.
Iberian conference on information systems and technologies, cisti, 2018-June, pp.1�6.

[41] Functional Testing: A Complete Guide with Types and Example, n.d.
[Online]. Available from: https://www.softwaretestinghelp.com/

guide-to-functional-testing/ [Accessed 2021-08-17].

106

https://cio-wiki.org/wiki/Client_Server_Model
https://cio-wiki.org/wiki/Client_Server_Model
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/
https://doi.org/10.1007/978-3-030-01177-2_34
https://practice.geeksforgeeks.org/problems/difference-between-stateful-and-stateless-server
https://practice.geeksforgeeks.org/problems/difference-between-stateful-and-stateless-server
https://phauer.com/2015/discussing-docker-pros-and-cons/
https://phauer.com/2015/discussing-docker-pros-and-cons/
https://blog.iron.io/docker-containers-the-pros-and-cons-of-docker/
https://blog.iron.io/docker-containers-the-pros-and-cons-of-docker/
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1016/j.asej.2015.08.004
https://www.cypress.io/how-it-works
https://www.cypress.io/how-it-works
https://binariks.com/blog/tools/express-js-mobile-app-development-pros-cons-developers/
https://binariks.com/blog/tools/express-js-mobile-app-development-pros-cons-developers/
https://apiko.com/blog/express-mobile-app-development/
https://apiko.com/blog/express-mobile-app-development/
https://sweetcode.io/espressjs-flask-sweetcode-app-dev/
https://sweetcode.io/espressjs-flask-sweetcode-app-dev/
https://reactjs.org/docs/faq-structure.html
https://reactjs.org/docs/faq-structure.html
https://www.datarealm.com/blog/five-advantages-disadvantages-of-mysql/
https://www.datarealm.com/blog/five-advantages-disadvantages-of-mysql/
https://www.softwaretestinghelp.com/guide-to-functional-testing/
https://www.softwaretestinghelp.com/guide-to-functional-testing/

References

[42] Gaunt, M., n.d. Introdução aos service workers | Web Fundamentals | Google Develop-
ers [Online]. Available from: https://developers.google.com/web/fundamentals/
primers/service-workers [Accessed 2021-01-08].

[43] Getting Started � React, n.d. [Online]. Available from: https://reactjs.org/docs/
getting-started.html [Accessed 2021-01-16].

[44] Institute of Electrical and Electronics Engineers, 1990. IEEE Standard Glossary of
Software Engineering Terminology. O�ce [Online], 121990(1), p.1. Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342.

[45] Introduction to Testing with Mocha and Chai | Codecademy, n.d. [Online].
Available from: https://www.codecademy.com/articles/bapi-testing-intro [Ac-
cessed 2021-08-18].

[46] Introduction to the DOM - Web APIs | MDN, n.d. [Online]. Available
from: https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_

Model/Introduction [Accessed 2021-01-08].

[47] Jobe, W., 2013. Native Apps Vs. Mobile Web Apps. International journal of in-
teractive mobile technologies (ijim) [Online], 7(4), p.27. Available from: https:

//doi.org/10.3991/ijim.v7i4.3226.

[48] Kapfhammer, G.M., 2004. Software testing. Computer science handbook, sec-
ond edition [Online], pp.105�1�105�43. Available from: https://doi.org/10.1201/
b11362-16.

[49] Learn About the Microservices Architecture, n.d. [Online]. Available from:
https://docs.oracle.com/en/solutions/learn-architect-microservice/

index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953 [Accessed 2021-01-
06].

[50] Leavitt, N., 2010. Will NoSQL Databases Live Up to Their Promise? Computer
[Online], 43(2), pp.12�14. Available from: https://doi.org/10.1109/mc.2010.58.

[51] Microservice Architecture Examples and Diagram - DevTeam.Space,
n.d. [Online]. Available from: https://www.devteam.space/blog/

microservice-architecture-examples-and-diagram/ [Accessed 2021-01-08].

[52] Microservices architecture style - Azure Application Architecture Guide | Microsoft
Docs, n.d. [Online]. Available from: https://docs.microsoft.com/en-us/azure/

architecture/guide/architecture-styles/microservices [Accessed 2021-01-08].

[53] Mocha - the fun, simple, �exible JavaScript test framework, n.d. [Online]. Available
from: https://mochajs.org/ [Accessed 2021-08-18].

[54] MVC Architecture in 5 minutes: a tutorial for beginners, n.d. [Online]. Available
from: https://www.educative.io/blog/mvc-tutorial [Accessed 2021-01-08].

[55] MySQL Advantages and Disadvantages - techstrikers.com, n.d. [On-
line]. Available from: https://www.techstrikers.com/MySQL/

advantages-and-disadvantages-of-mysql.php [Accessed 2021-01-16].

[56] Nakamoto, S., n.d. Bitcoin: A Peer-to-Peer Electronic Cash System [Online]. Available
from: www.bitcoin.org.

107

https://developers.google.com/web/fundamentals/primers/service-workers
https://developers.google.com/web/fundamentals/primers/service-workers
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
https://www.codecademy.com/articles/bapi-testing-intro
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://doi.org/10.3991/ijim.v7i4.3226
https://doi.org/10.3991/ijim.v7i4.3226
https://doi.org/10.1201/b11362-16
https://doi.org/10.1201/b11362-16
https://docs.oracle.com/en/solutions/learn-architect-microservice/index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953
https://docs.oracle.com/en/solutions/learn-architect-microservice/index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953
https://doi.org/10.1109/mc.2010.58
https://www.devteam.space/blog/microservice-architecture-examples-and-diagram/
https://www.devteam.space/blog/microservice-architecture-examples-and-diagram/
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://mochajs.org/
https://www.educative.io/blog/mvc-tutorial
https://www.techstrikers.com/MySQL/advantages-and-disadvantages-of-mysql.php
https://www.techstrikers.com/MySQL/advantages-and-disadvantages-of-mysql.php
www.bitcoin.org

Chapter 8

[57] Nidhra, S., 2012. Black Box and White Box Testing Techniques - A Literature Review.
International journal of embedded systems and applications [Online], 2(2), pp.29�50.
Available from: https://doi.org/10.5121/ijesa.2012.2204.

[58] O que são microsserviços? | AWS, n.d. [Online]. Available from: https://aws.

amazon.com/pt/microservices/ [Accessed 2021-01-08].

[59] Patel, P., n.d. PWA vs Hybrid App vs Native: Choosing the Right Mobile App | by
Priyesh Patel | Bits and Pieces [Online]. Available from: https://blog.bitsrc.io/
4-ways-to-build-your-mobile-app-make-the-right-choice-efe079c7c817 [Ac-
cessed 2021-01-03].

[60] PostgreSQL: features of the open source database - IONOS, n.d. [Online]. Available
from: https://www.ionos.com/digitalguide/server/know-how/postgresql/ [Ac-
cessed 2021-01-16].

[61] PostgreSQL vs. MySQL: Know The Major Di�erences, n.d. [Online]. Available from:
https://www.simplilearn.com/tutorials/sql-tutorial/postgresql-vs-mysql

[Accessed 2021-01-16].

[62] Progressive Web Apps: How to Choose the Best Framework? |
Danavero, n.d. [Online]. Available from: https://danavero.com/blog/

progressive-web-apps-how-choose-best-framework [Accessed 2021-01-16].

[63] Pros and Cons of Node.js Web App Development | AltexSoft, n.d. [On-
line]. Available from: https://www.altexsoft.com/blog/engineering/

the-good-and-the-bad-of-node-js-web-app-development/ [Accessed 2021-
01-16].

[64] Pros and Cons of Xamarin vs Native Mobile Development | AltexSoft,
n.d. [Online]. Available from: https://www.altexsoft.com/blog/mobile/

pros-and-cons-of-xamarin-vs-native/ [Accessed 2020-12-31].

[65] Python Flask: pros and cons - DEV Community, n.d. [Online]. Available from: https:
//dev.to/detimo/python-flask-pros-and-cons-1mlo [Accessed 2021-01-16].

[66] Rahul Raj, C.P. and Tolety, S.B., 2012. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. 2012 annual ieee india
conference, indicon 2012 [Online], pp.625�629. Available from: https://doi.org/10.
1109/INDCON.2012.6420693.

[67] Relational Data Model in DBMS: Concepts, Constraints, Example, n.d. [Online].
Available from: https://www.guru99.com/relational-data-model-dbms.html [Ac-
cessed 2021-01-04].

[68] Relational Database Advantages | 8 Advantages of Relational Database, n.d. [Online].
Available from: https://www.educba.com/relational-database-advantages/ [Ac-
cessed 2021-01-04].

[69] Richard, S. and LePage, P., 2020. What makes a good Progressive Web App? [Online].
Available from: https://web.dev/pwa-checklist/ [Accessed 2020-10-29].

[70] Ripkens, B., 2014. Ionic: An AngularJS based framework on the rise. 2014-
11-28 [Online]. Available from: https://blog.codecentric.de/en/2014/11/

ionic-angularjs-framework-on-the-rise/.

108

https://doi.org/10.5121/ijesa.2012.2204
https://aws.amazon.com/pt/microservices/
https://aws.amazon.com/pt/microservices/
https://blog.bitsrc.io/4-ways-to-build-your-mobile-app-make-the-right-choice-efe079c7c817
https://blog.bitsrc.io/4-ways-to-build-your-mobile-app-make-the-right-choice-efe079c7c817
https://www.ionos.com/digitalguide/server/know-how/postgresql/
https://www.simplilearn.com/tutorials/sql-tutorial/postgresql-vs-mysql
https://danavero.com/blog/progressive-web-apps-how-choose-best-framework
https://danavero.com/blog/progressive-web-apps-how-choose-best-framework
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-node-js-web-app-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-node-js-web-app-development/
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://dev.to/detimo/python-flask-pros-and-cons-1mlo
https://dev.to/detimo/python-flask-pros-and-cons-1mlo
https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1109/INDCON.2012.6420693
https://www.guru99.com/relational-data-model-dbms.html
https://www.educba.com/relational-database-advantages/
https://web.dev/pwa-checklist/
https://blog.codecentric.de/en/2014/11/ionic-angularjs-framework-on-the-rise/
https://blog.codecentric.de/en/2014/11/ionic-angularjs-framework-on-the-rise/

References

[71] Risk Management in Software Development and Software Engineering Projects,
n.d. [Online]. Available from: https://www.castsoftware.com/research-labs/

risk-management-in-software-development-and-software-engineering-projects

[Accessed 2021-06-01].

[72] Russel, A., 2015. Progressive Web Apps: Escaping Tabs Without Losing Our
Soul � Infrequently Noted. Available from: https://infrequently.org/2015/06/

progressive-apps-escaping-tabs-without-losing-our-soul/ [Accessed 2020-10-
29].

[73] Selected Best PWA Frameworks in 2020 - SimiCart, n.d. [Online]. Available from:
https://www.simicart.com/blog/pwa-frameworks/ [Accessed 2021-01-16].

[74] Spring Boot Tutorial - JournalDev, n.d. [Online]. Available from: https://www.

journaldev.com/7969/spring-boot-tutorial [Accessed 2021-01-16].

[75] Stangarone, J., 2010. Native mobile apps : The wrong choice for business
? [Online]. Available from: https://www.mrc-productivity.com/blog/2016/08/

native-mobile-apps-the-wrong-choice-for-business/ [Accessed 2020-10-29].

[76] Statista, 2020. Biggest app stores in the world 2020 | Statista [On-
line]. Available from: https://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/ [Accessed 2020-12-28].

[77] Table of Contents | Cypress Documentation, n.d. [Online]. Available from: https:

//docs.cypress.io/api/table-of-contents [Accessed 2021-08-22].

[78] The advantages and disadvantages of MySQL - MySQL - Makble, n.d. [Online]. Avail-
able from: http://makble.com/the-advantages-and-disadvantages-of-mysql

[Accessed 2021-01-16].

[79] The Advantages of a Relational Database Management System, n.d.
[Online]. Available from: https://www.techwalla.com/articles/

the-advantages-of-a-relational-database-management-system [Accessed
2021-01-04].

[80] The Bene�ts and Drawbacks of using The MVC Pattern � Kanian's Blog,
n.d. [Online]. Available from: https://kanian77.wordpress.com/2008/09/

03/the-benefits-and-drawbacks-of-using-the-mvc-pattern/ [Accessed 2021-
01-08].

[81] The C4 model for visualising software architecture, n.d. [Online]. Available from:
https://c4model.com/ [Accessed 2021-01-06].

[82] The Most Popular Progressive Web Apps Frameworks in 2020, n.d.
[Online]. Available from: https://www.mindinventory.com/blog/

best-progressive-web-apps-frameworks/ [Accessed 2021-01-16].

[83] The Pros and Cons of MongoDB - Virtual-DBA Remote DBA Services & Sup-
port - Certi�ed Database Experts, n.d. [Online]. Available from: https://www.

virtual-dba.com/pros-and-cons-of-mongodb/ [Accessed 2021-01-16].

[84] Web App Manifest (Manifesto da Aplicação da Web) | MDN, n.d. [Online]. Avail-
able from: https://developer.mozilla.org/pt-PT/docs/Web/Manifest [Accessed
2021-01-08].

109

https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects
https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://www.simicart.com/blog/pwa-frameworks/
https://www.journaldev.com/7969/spring-boot-tutorial
https://www.journaldev.com/7969/spring-boot-tutorial
https://www.mrc-productivity.com/blog/2016/08/native-mobile-apps-the-wrong-choice-for-business/
https://www.mrc-productivity.com/blog/2016/08/native-mobile-apps-the-wrong-choice-for-business/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://docs.cypress.io/api/table-of-contents
https://docs.cypress.io/api/table-of-contents
http://makble.com/the-advantages-and-disadvantages-of-mysql
https://www.techwalla.com/articles/the-advantages-of-a-relational-database-management-system
https://www.techwalla.com/articles/the-advantages-of-a-relational-database-management-system
https://kanian77.wordpress.com/2008/09/03/the-benefits-and-drawbacks-of-using-the-mvc-pattern/
https://kanian77.wordpress.com/2008/09/03/the-benefits-and-drawbacks-of-using-the-mvc-pattern/
https://c4model.com/
https://www.mindinventory.com/blog/best-progressive-web-apps-frameworks/
https://www.mindinventory.com/blog/best-progressive-web-apps-frameworks/
https://www.virtual-dba.com/pros-and-cons-of-mongodb/
https://www.virtual-dba.com/pros-and-cons-of-mongodb/
https://developer.mozilla.org/pt-PT/docs/Web/Manifest

Chapter

[85] What are the advantages and disadvantages of Spring Boot? - Java Interview Ques-
tions & Answers, n.d. [Online]. Available from: https://www.java2novice.com/

java_interview_questions/spring-boot-pros-and-cons/ [Accessed 2021-01-16].

[86] What are the advantages and disadvantages of using MySQL stored proce-
dures?, n.d. [Online]. Available from: https://www.tutorialspoint.com/

What-are-the-advantages-and-disadvantages-of-using-MySQL-stored-procedures

[Accessed 2021-01-16].

[87] What Is a Relational Database | Oracle, n.d. [Online]. Available from: https://www.
oracle.com/database/what-is-a-relational-database/ [Accessed 2021-01-04].

[88] What is AGILE? - What is SCRUM? - Agile FAQ's | Cprime, n.d. [Online]. Avail-
able from: https://www.cprime.com/resources/what-is-agile-what-is-scrum/

[Accessed 2021-06-02].

[89] What is Client-Server? De�nition and FAQs | OmniSci, n.d. [Online]. Available
from: https://www.omnisci.com/technical-glossary/client-server [Accessed
2021-01-05].

[90] What Is END-TO-END Testing: E2E Testing Framework with Exam-
ples, n.d. [Online]. Available from: https://www.softwaretestinghelp.com/

what-is-end-to-end-testing/ [Accessed 2021-08-20].

[91] What is Entity Relationship Diagram (ERD)?, n.d. [Online]. Avail-
able from: https://www.visual-paradigm.com/guide/data-modeling/

what-is-entity-relationship-diagram/ [Accessed 2021-08-26].

[92] What is Model-View-Controller(MVC)? Its components, advantages
and disadvantages. | Web Designing, Web and Mobile Apps De-
velopment Company in Islamabad and Gujrat, Pakistan, n.d.
[Online]. Available from: https://www.webicosoft.com/blog/

what-is-model-view-controllermvc-its-components-advantages-and-disadvantages/

[Accessed 2021-01-08].

[93] What is MoSCoW Prioritization? | Overview of the MoSCoW Method,
n.d. [Online]. Available from: https://www.productplan.com/glossary/

moscow-prioritization/ [Accessed 2021-09-06].

[94] What is non relational database for beginners? - DEV Com-
munity, n.d. [Online]. Available from: https://dev.to/duomly/

what-is-non-relational-database-for-beginners-4pg6 [Accessed 2021-01-
05].

[95] What is PostgreSQL? | Features | Advantages and Disadvantages, n.d. [Online]. Avail-
able from: https://www.educba.com/what-is-postgresql/ [Accessed 2021-01-16].

[96] What is Spring Boot? | Features and Advantages of Spring Boot, n.d. [Online]. Avail-
able from: https://www.educba.com/what-is-spring-boot/ [Accessed 2021-01-16].

[97] Winer, D., 2020. Android Developers Blog: 11 Weeks of Android: Languages
[Online]. Available from: https://android-developers.googleblog.com/2020/07/
11-weeks-of-android-languages.html [Accessed 2020-11-10].

[98] Xanthopoulos, S. and Xinogalos, S., 2013. A comparative analysis of cross-platform
development approaches for mobile applications. Acm international conference pro-
ceeding series [Online], (June 2014), pp.213�220. Available from: https://doi.org/
10.1145/2490257.2490292.

110

https://www.java2novice.com/java_interview_questions/spring-boot-pros-and-cons/
https://www.java2novice.com/java_interview_questions/spring-boot-pros-and-cons/
https://www.tutorialspoint.com/What-are-the-advantages-and-disadvantages-of-using-MySQL-stored-procedures
https://www.tutorialspoint.com/What-are-the-advantages-and-disadvantages-of-using-MySQL-stored-procedures
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.cprime.com/resources/what-is-agile-what-is-scrum/
https://www.omnisci.com/technical-glossary/client-server
https://www.softwaretestinghelp.com/what-is-end-to-end-testing/
https://www.softwaretestinghelp.com/what-is-end-to-end-testing/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.webicosoft.com/blog/what-is-model-view-controllermvc-its-components-advantages-and-disadvantages/
https://www.webicosoft.com/blog/what-is-model-view-controllermvc-its-components-advantages-and-disadvantages/
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
https://dev.to/duomly/what-is-non-relational-database-for-beginners-4pg6
https://dev.to/duomly/what-is-non-relational-database-for-beginners-4pg6
https://www.educba.com/what-is-postgresql/
https://www.educba.com/what-is-spring-boot/
https://android-developers.googleblog.com/2020/07/11-weeks-of-android-languages.html
https://android-developers.googleblog.com/2020/07/11-weeks-of-android-languages.html
https://doi.org/10.1145/2490257.2490292
https://doi.org/10.1145/2490257.2490292

Appendices

111

This page is intentionally left blank.

AppendixA

MB Way

Main Dashboard and Activity Menu

The application is launched into a main screen with a dashboard and a toolbar in the
bottom, as shown in the Figure 1. The dashboard has the associated cards at the top, as
well as several buttons right below. These buttons allow the user to do numerous actions,
some of them are: send money to someone, use the app to pay for purchases, ask money
from someone and split the bill with another person. In the toolbar there's also an option
that allows the user to see his activity. That information is displayed as shown in the
Figure 2, with the date, the type of action, the amount and the other person involved in
the transaction.

Figure 1: Main dashboard Figure 2: Activity menu

Send Money

If the user pretends to send money to someone, he can do it by selecting one person from
his phone contacts or by manually typing a phone number. After choosing the recipient,
the amount has to be set and a description can also be added (optional). Finally, in order
to con�rm the transaction, the security PIN (Personal Identi�cation Number) has to be
inserted.

113

Appendix

Figure 3: Send money to someone Figure 4: Set amount of money to
send

Figure 5: Security PIN

114

Payment Methods

With MB WAY there's also the possibility to pay for purchases. This can be achieved
through three distinct methods, which are:

� Payment with NFC (Figure 6): This method allows the user to pay with NFC (Near
Field Communication), meaning that, as long as the user as the NFC sensor active,
he can pay by holding his phone close to the vendor's NFC reader.

� Payment with QR Code (Figure 7): Purchases can also be paid with QR Code, which
can be done just by giving the application access to the camera, and then reading
the QR Code provided by the seller.

� Payment with Number of Barcode (Figure 8): Lastly there's also the option to pay
with phone number or barcode, just by providing either one.

Figure 6: Payment with NFC Figure 7: Payment with QR Code

115

Appendix

Figure 8: Payment with Number or
Barcode

Ask for Money

An user can also ask for money from someone else (Figure 9), either in his phone contacts
or by typing a phone number, after that an amount has to be set, in order to con�rm the
action. This request will be valid for 7 days. There's also the option to remind the other
person about this operation, by going to the activity menu and clicking Relembrar, which
will send a reminder noti�cation.

116

Figure 9: Ask for money from some-
one

Split the Bill

Sometimes it's necessary to split the bill with other people (Figure 10, this can be done
with MB WAY just by selecting who to split with. After that the total amount needs
to bet set and each person will receive a noti�cation to pay some amount. This request
expires in 7 days.

117

Appendix

Figure 10: Split the bill with some-
one

Information Menu

In the toolbar there's a "More" section as well. Here (Figure 11, the user can either
see general information about the application or access the settings menu. Regarding
the general information, he can see things, such as: news and discounts, merchants that
have MB WAY services, �nd an ATM (Automated Teller Machine), associated banks,
documents, rate the application, privacy policy, terms and conditions, and FAQ (Frequently
Asked Questions).

118

Figure 11: Information menu

Settings

Then, in the settings menu (Figure 12, the user can change some of the App settings,
such as, security settings, where he can set a limit amount to purchases and credit cards
(per day), change security PIN, choose type of authentication (for example, use biometric
authentication), set MB WAY lock code that prompts every time someone opens the App
and payment options, where some options can be set, like paying without PIN in purchases
up to 20¿ and paying with the phone locked. There's also bank cards settings where they
are managed and a "my devices" option, where the user can see every device that logged
using his phone number.

119

Appendix

Figure 12: Application settings

Personal Information

Lastly, MBWAY also allows to change personal info (Figure 13) and to change permis-
sion regarding the usage of personal information (Figure 14, mostly to receive e-mails,
noti�cations and SMS with new merchants, o�ers and promotions.

120

Figure 13: Personal information Figure 14: Consent for usage of per-
sonal information

Paypal

Main Dashboard and Activity Menu

Paypal also launches into a main screen with a dashboard and two toolbars, one at the
top and another one at the bottom, as displayed in the Figure 15. The dashboard presents
three main things, the account balance, recent activity and a button to view all the account
activity (Figure 16). Then, the toolbar at the top has a noti�cations button (displayed as a
bell), a pro�le button at the very center and a settings button in the far right. Finally, the
bottom toolbar has the follow operations: pay with QR Code, send money, request money
and a more option with some features as well, like reloading prepaid phones, getting paid
with QR codes, sending bank deposits or cash and supporting a charity.

121

Appendix

Figure 15: Main dashboard Figure 16: Activity menu

Send and Request Money

Regarding one of the main goal of this application, that is sending (Figure 17) and re-
questing (Figure 18) money, it behaves as follows: the user either types a contact name, an
username or an e-mail, or scans a QR code, both to send or request money. Furthermore,
when requesting money, he can also share his link to get paid and split the bill with other
people.

122

Figure 17: Send money Figure 18: Request money

Receive Money

An user can share his QR code (Figure 20) so people can scan it and send him money.
There's also an option to set an amount of money to receive (Figure 21 and Figure 22).

123

Appendix

Figure 19: Receive money instruc-
tions

Figure 20: Receive money

124

Figure 21: Set amount of money to
receive

Figure 22: Receive money with
amount set

Settings

Finally, in the settings menu (Figure 23) the user can do operations, such as, linking banks
and cards, managing permissions given to other websites (in the "Log in and Security"
option) and setting up push noti�cations.

125

Appendix

Figure 23: Settings

Trust Wallet

Main Dashboard and Noti�cations Dashboard

The Trust Wallet opens up into a main screen (Figure 24) that has a dashboard and two
toolbars (top and bottom). In the dashboard all values can be hidden (Figure 25), also
there's the wallet name, the amount of money there, several cryptocurrencies that can be
selected with a �lter (Figure 26) and three buttons: Send, Receive and Buy. Then the
toolbar at the top has a noti�cations button (Figure 27), a �lter button and three sections:
Tokens, Finance and Collectibles. Finally, in the bottom toolbar, an user can change to a
DApp (Decentralized Application), to a DEX (Decentralized Exchange) menu and to the
settings.

126

Figure 24: Main dashboard Figure 25: Main dashboard with
hidden values

127

Appendix

Figure 26: Filter to select dash-
board's cryptocurrencies

Figure 27: Dashboard with last no-
ti�cations

Send Cryptocurrency

As displayed in the Figure 28, sending cryptocurrency to someone can be done, after
selecting which one to send, by typing the recipient address or scanning his QR code,
and by inserting an amount. Lastly, the user can review the information inserted and the
network fee, and con�rm the transaction (Figure 29).

128

Figure 28: Send cryptocurrency (se-
lect recipient)

Figure 29: Con�rm send transaction

Receive Cryptocurrency

It's also possible for an user to share his QR code (Figure 30) so people can scan it and
send him cryptocurrency. There's also an option to set an amount of money to receive
(Figure 31).

129

Appendix

Figure 30: Receive cryptocurrency
(through QR Code)

Figure 31: Receive cryptocurrency
with amount set

Buy Cryptocurrency

Buying cryptocurrency is possible too (Figure 32). It can be done by selecting which one
to buy and setting an amount, after that it will redirect to a third-party provider to �nish
the transaction.

130

Figure 32: Buy set amount of cryp-
tocurrency (through third-party
provider)

Cryptocurrency Dashboard

Each cryptocurrency has it's own dashboard as shown in the Figure 33, where the user
can send, receive and copy (copies address to receive directly). He can also check that
cryptocurrency market information (Figure 34).

131

Appendix

Figure 33: Cryptocurrency dash-
board

Figure 34: Crypocurrency market
information

Swap and Exchange Crypto Tokens

In the DEX (Decentralized Exchange) users can swap and exchange tokens. Swapping
tokens (Figure 35) is a more simpli�ed way of buying and selling tokens, though it requires
a network fee that is given to the miners/validators. After inserting the cryptocurrencies
and the amount, a screen is shown with the network fee and to con�rm the transaction
(Figure 29). Another option is to exchange tokens (Figure 37), this is a more elaborate way
of trading where an user can see an order book and can set "Buy" and "Sell" orders. To
do that, a trading pair needs to be selected (upper left) which will update the order book,
in the right side, for that token (red are sell orders and green are buy orders). Then, by
default, it's set to the lowest sell/buy order, but the price per token and the amount can be
changed. It's also possible to tap any sell/buy order in the right to automatically indicate
the price. Finally a con�rm transaction screen appears with the network fee (Figure 38).

132

Figure 35: Swap crypto tokens Figure 36: Con�rm swap operation

Figure 37: Exchange crypto tokens Figure 38: Con�rm exchange opera-
tion

133

Appendix

Settings

Lastly, in the settings menu (Figure 39) the user can do actions, such as, switching between
wallets, enabling dark mode, adding a six digit passcode to protect operations, managing
push noti�cations and changing currency in the preferences. It also has links to the App
social media.

Figure 39: Settings

FOREX.com

Account Funds Menu

Besides the net equity value (consists of the total cash plus the pro�t/loss value) that's
always displaying in the toolbar at the top, there's also an account funds menu (Figure
40) that has values such as, pro�t and loss (positive value means pro�t and negative value
means loss), amount available to trade, total cash, total margin and margin level. It's also
possible to withdraw and add funds.

134

Figure 40: Account funds menu

Portfolio Menu

In the portfolio menu it's possible to watch every trade position (Figure 41) and order
(Figure 42) that's either Open or Closed.

135

Appendix

Figure 41: History of trade positions
(Open and Closed)

Figure 42: History of trade orders
(Open and Closed)

Watchlists Menu

The watchlists menu (Figure 43) has every watchlist created. Each one has a list of markets
selected by the user, that can be searched by category or by name. As shown in the Figure
44, there's a menu with more actions , such as, add markets, edit watchlist, create a new
watchlist and manage watchlists.

136

Figure 43: Watchlists menu Figure 44: More actions for Watch-
lists Menu

Markets Menu and Market Dashboard

As mentioned before, the users can search markets by name or by category (Figure 45).
They can also press one of the markets to open its dashboard which displays a chart with
the market price changes in a time frame like the one in the Figure 56, that can be set in
the upper left corner and that's updating in real time. It also has two buttons at the top
with values, that allow the user to buy or sell from that market.

137

Appendix

Figure 45: Markets menu Figure 46: Bitcoin (¿) market dash-
board

Alerts Menu

In the alerts menu, the user can set alerts that go o� when a market hits a certain price
(e.g. for Bitcoin(¿) in the Figure 47). When it hits that price set a noti�cation is pushed
to the user as shown in the Figure 48.

138

Figure 47: Menu to set alerts of
price changes

Figure 48: Noti�cation for alerts set
of price changes

Market Trade Menu

With this application the user can also do two operations, trade and order. When trading
(Figure 49) represents a trade buy, but it's the same for sell, an amount has to be inserted
(minimum 1), then there's three options that can also be set: the take pro�t (closes a
position when it reaches a pre-de�ned price), the stop loss (which can be regular meaning
that closes a position if it drop to a pre-de�ned price to limit losses or trailing which will
adjust automatically based on the market price) and the hedging (strategy that opens
additional positions in order to protect adverse movements in the market). When ordering
(Figure 50 where sell and buy are displayed equally, only with di�erent colors), the process
is the same as to trading, but in this case, the wished price to sell/order has to be set, as
well as the option Good until to Cancelled (will be opened until the user chooses otherwise)
or Time (will be opened until a certain date set).

139

Appendix

Figure 49: Menu to make a trade in
the Market (sell)

Figure 50: Menu to make an order
in the Market (sell)

Kraken

Markets Menu

As shown in the Figure 51, all markets selected by the user are displayed in the Markets
Menu. They can also be clicked and a drop-down list of currency pairs will appear (Figure
52). In the top right corner there's a button that allows to �lter this list as seen in the
Figure 53. There can be set options, such as, time period (for the market performance
displayed), way of sorting (through volume or alphabetical) and a quote currency �lter
(displays only �at, only crypto or both).

140

Figure 51: Markets menu Figure 52: Markets menu with one
selected

Figure 53: Filter of markets menu

141

Appendix

Cryptocurrency Trading Menu and Dashboard

The Trade Menu consists of a board (Figure 54) that shows every order, trade and position
that's either open or closed. It also has a New order button at the bottom right corner
that prompts a new form like the one in the Figure 55). This form allows the user to
buy/sell cryptocurrency, by inserting the amount and the limit price. Other options can
also be set, such as, leverage (none, 2x, 3x, 4x and 5x), limit (market, stop loss and take
pro�t), start date (now or custom), expiration date (until cancelled or custom), post limit
order (prevents order taker fees and ensures the maker fee if it's executed), fee currency
(preferred currency to apply fees) and conditional close (none, limit, stop loss, take pro�t).

Figure 54: Menu with every order,
trade and position done

Figure 55: Menu to make a cryp-
tocurrency trade in the Market
(buy)

The user can also watch a currency pair dashboard (Figure 56) by clicking one in the
markets menu. In this dashboard there's the price changes in the last 24 hours and 1
week (highest and lowest value reached), market changes chart (1 minute, 5 minutes, 15
minutes, 1 hour, 4 hours, 1 day and 1 week), order book, recent trades and the user history
of orders and positions of that pair. Finally, it's also possible to switch the currency pair
by clicking the one being displayed in the top left corner and switch for a new one like in
the Figure 57).

142

Figure 56: Pair Bitcoin/¿ market
dashboard

Figure 57: Menu to select the cur-
rency pair

143

This page is intentionally left blank.

Appendix B

Authentication Microservice Routes Unit Testing

Figure 58: Results for the login route unit testing

Figure 59: Results for the logout route unit testing

Figure 60: Results for the password recovery route unit testing

145

A
p
p
en
d
ix

Figure 61: Results for the register route unit testing

146

Cryptocurrency Microservice Routes Unit Testing

Figure 62: Results for the add cryptocurrency route unit testing

147

A
p
p
en
d
ix

Figure 63: Results for the edit cryptocurrency route unit testing

Figure 64: Results for the get all cryptocurrencies route unit testing

148

Logs Microservice Routes Unit Testing

Figure 65: Results for the get error logs route unit testing

Figure 66: Results for the get fatal logs route unit testing

Figure 67: Results for the get info logs route unit testing

Figure 68: Results for the get warn logs route unit testing

149

Appendix

Market Microservice Routes Unit Testing

Figure 69: Results for the add limit order route unit testing

Figure 70: Results for the add market order route unit testing

Figure 71: Results for the cancel order route unit testing

Figure 72: Results for the get buy orders history route unit testing

150

Figure 73: Results for the get sell orders history route unit testing

Figure 74: Results for the get last buy orders history route unit testing

Figure 75: Results for the get last sell orders history route unit testing

Figure 76: Results for the get user buy orders route unit testing

Figure 77: Results for the get user sell orders route unit testing

Figure 78: Results for the get complete orderbook route unit testing

Figure 79: Results for the get user available cryptocurrencies route unit testing

151

Appendix

Figure 80: Results for the get number of actions per day route unit testing

Figure 81: Results for the set number of actions per day route unit testing

Transactions Microservice Routes Unit Testing

Figure 82: Results for the edit wallet quantity route unit testing

Figure 83: Results for the make payment route unit testing

152

Figure 84: Results for the send cryptocurrency route unit testing

Wallet Microservice Routes Unit Testing

Figure 85: Results for the get �at balance route unit testing

Figure 86: Results for the get wallet �lters route unit testing

Figure 87: Results for the get wallet information route unit testing

153

This page is intentionally left blank.

Appendix C

End-To-End Testing Results

Figure 88: End-to-end testing results for the register action

Figure 89: End-to-end testing results for the login action

Figure 90: End-to-end testing results for the forgot password action

155

Appendix

Figure 91: End-to-end testing results for the contact us while logged o� action

Figure 92: End-to-end testing results for the send cryptocurrency action

Figure 93: End-to-end testing results for the request cryptocurrency action

Figure 94: End-to-end testing results for the add market sell order action

Figure 95: End-to-end testing results for the add limit sell order action

156

Figure 96: End-to-end testing results for the add market buy order action

Figure 97: End-to-end testing results for the add limit buy order action

Figure 98: End-to-end testing results for the edit personal information action

Figure 99: End-to-end testing results for the edit PIN code action

Figure 100: End-to-end testing results for the invite user action

157

Appendix

Figure 101: End-to-end testing results for the add cryptocurrency action

158

Appendix D

Usability Testing Form

Figure 102: Usability testing page 1

159

Appendix

Figure 103: Usability testing page 2

160

Figure 104: Usability testing page 3

161

Appendix

Figure 105: Usability testing page 4

162

Figure 106: Usability testing page 5

163

Appendix

Figure 107: Usability testing page 6

164

Figure 108: Usability testing page 7

165

Appendix

Figure 109: Usability testing page 8

166

Figure 110: Usability testing page 9

167

Appendix

Figure 111: Usability testing page 10

168

Figure 112: Usability testing page 11

169

Appendix

Figure 113: Usability testing page 12

170

Figure 114: Usability testing page 13

171

Appendix

Figure 115: Usability testing page 14

172

Figure 116: Usability testing page 15

173

This page is intentionally left blank.

	Introduction
	Context
	Motivation
	Objectives
	Document Structure
	Work Plan

	State of the Art
	Analysis of Mobile Payment Systems
	MB WAY
	Paypal
	Trust Wallet
	Conclusion

	Analysis of Mobile Cryptocurrency Trading Systems
	FOREX.com
	Kraken
	Conclusion

	Frontend Solutions
	Native Applications
	Cross-Platform Applications
	Comparison of Mobile Development Approaches

	Backend Solutions
	Types of Databases
	Patterns of Software Architecture

	Security Considerations
	Authentication
	Access Control
	Session Management
	Data and Input Validation
	Buffer Overflows
	Logging
	Error Handling

	Software Requirements Specification
	Selection of Technologies
	Progressive Web Application Frameworks
	ReactJS
	AngularJS
	VueJS
	Framework Decision

	Backend Technologies
	Flask
	Spring Boot
	ExpressJS
	Technology Decision

	SQL Databases
	MySQL
	PostgreSQL
	Database Decision

	NoSQL Databases
	MongoDB

	Containerization Technology
	Docker

	Message Queue Software
	Apache Kafka

	SMS (Short Message System) Communication API
	Vonage
	Plivo
	Sinch
	Twilio
	SMS API Decision

	Software Architecture
	C4 Model
	Level 1
	Level 2
	Level 3

	Entity Relationship Diagram (ERD)
	User Service
	Cryptocurrency Service
	Market Service
	Transactions Service
	Wallet Service

	Development
	Development Environment Configuration
	Risk Analysis
	Development Methodology - Scrum
	Implemented Functional Requirements
	Client-side Implementation (React.js)
	Server-side Implementation (Node.js)
	System Implementation and Description
	Security mechanisms implemented

	Testing
	Functional Testing
	Unit Testing
	End-to-End Testing

	Load Testing
	Usability Testing
	Test Methodology
	Test Results

	Conclusion and Future Work

