Raul Filipe Dias Barbosa

SENDING SERVICE INTENTIONS BY VOICE IN INDUSTRIAL ENVIRONMENTS

UNIVERSIDADE P
COIMBRA

90

UNIVERSIDADE b

COIMBRA

Raul Filipe Dias Barbosa

SENDING SERVICE INTENTIONS BY VOICE IN
INDUSTRIAL ENVIRONMENTS

VOLUME 1

Dissertation in the context of the Master in Informatics Engineering, specialization
in Intelligent Systems, supervised by Professor Joao Nuno Gong¢alves Costa
Cavaleiro Correia, Professor Tiago José dos Santos Martins da Cruz and Master
Bruno Parreira, presented to the Faculty of Sciences and Technology/Department
of Informatics Engineering.

September 2021

Faculty of Sciences and Technology

Department of Informatics Engineering

Sending service intentions by voice
iIn industrial environments

Raul Filipe Dias Barbosa

Dissertation in the context of the Master in Informatics Engineering, specialization in
Intelligent Systems, supervised by Professor Joao Nuno Gongalves Costa Cavaleiro Correia,
Professor Tiago José dos Santos Martins da Cruz and Master Bruno Parreira, presented to the
Faculty of Sciences and Technology/Department of Informatics Engineering.

September 2021

UNIVERSIDADE B

COIMBRA

This page is intentionally left blank.

Abstract

Nowadays, we are used to using virtual assistants in Smart Home contexts or to ask for
instructions. However, the potential that this technology presents has been growing, and
as such, the first steps in applying these intelligent assistants in industrial environments
are beginning to emerge. In this work, the main objective is to develop and implement the
functionalities of a virtual assistant in an industrial context, which leads to the investigation
of two distinct areas, policy management systems and virtual assistants. The integration
of these two areas will enable the user to express its intention about the virtual assistant
so that it, using policy management systems, can implement the network request. For
all this logic to be successfully implemented, it was necessary to define, correctly and
concisely, all the possible states that intent can reach in order to avoid inconsistencies in
the system. To prove the operation of this system, in the end, a use case is presented about
the creation of a service, where the user, using the virtual assistant, can create it. Once
the specific knowledge in networks is not general knowledge, this technology has eased the
user, allowing them to orchestrate the network through voice commands.

Keywords

Virtual Assistants, SDN, Policies, Intents, MyCroft, Networks

iii

This page is intentionally left blank.

Resumo

Hoje em dia, estamos habituados a utilizar assistentes virtuais em contextos de Smart Home
ou para pedir instrucées. O potencial que esta tecnologia apresenta tem vindo a crescer e
como tal, comecam a surgir os primeiros passos na aplicacao destes assistentes inteligentes
em ambientes industriais. O principal objetivo deste trabalho visa o desenvolvimento e
implementacao de funcionalidades de um assistente virtual em contexto industrial, o que
leva & investigacao de duas areas distintas, sistemas de gestao de politicas e assistentes vir-
tuais. A integragdo destas duas areas, vai possibilitar ao utilizador exprimir a sua intengao
sobre o assistente virtual, de modo a que este, recorrendo a sistemas de gestao de politicas,
consiga implementar o pedido na rede. Para que toda esta logica seja implementada com
sucesso, foi necessario definir, de forma correcta e concisa, todos os possiveis estados que
um intento pode alcangar, de forma a evitar inconsisténcias no sistema. Para comprovar o
funcionamento deste sistema, no final, é apresentado um caso de uso sobre a criagao de um
servigo, onde o utilizador recorrendo ao assistente virtual, consegue criad-lo. Uma vez que o
conhecimento especifico em redes nao é de conhecimento geral, esta tecnologia veio trazer
facilitismos ao utilizador, permitindo orquestrar a rede através de comandos por voz.

Palavras-Chave

Assistentes virtuais, SDN, Politicas, Intentos, MyCroft, Redes

This page is intentionally left blank.

Contents

1 Introduction

1.1 Goals
1.2 Contributions
1.3 Document structure L

2 Technologies, Literature and Related Work

2.1 SDN & Policies Based Networking Management
2.1.1 SDN .« e
2.1.2 Policies Based Networking Management

2.2 Machine Learning in network management
2.2.1 Machine Learning-concepts L.
2.2.2 Related Work oo

2.3 Virtual Assistants oL L

24 Conclusion.

3 Methodology & Work Plan

3.1 Methodology e
3.2 Workplan
3.2.1 First Semester
3.2.2 Second Semester
3.3 Conclusion. e

4 System Design

4.1 Requirements & Architecture oL
4.2 Internal system operation
4.3 Intent Structure
4.4 Intent State Machine
4.5 Mapping table
4.6 Usecases e
4.7 Conclusion. L

5 Framework

5.1 Technology selection
5.2 Validation stage
53 Conflict stage
5.4 Compilation stage
5.5 Imstallation stage Lo
5.6 Monitoring stage Lo
5.7 User action
5.8 Use cases implementation L.
5.9 Conclusion

vil

Chapter 0

6 Experimentation 39
6.1 Creation of the test environment 39
6.2 Create a SErvice 40
6.3 Conclusion 44

7 Conclusion and Future Work 46

viii

This page is intentionally left blank.

Acronyms

API Application Programming Interface. 4-6, 8, 13, 14, 20, 30-32, 36, 37, 43
BGP Border Gateway Protocol. 6

BNSF Base Network Service Functions. 6

CNS Current Network State. 14

DDPG Deep Deterministic Policy Gradient. 13

DPG Deterministic Policy Gradient. 13

DQN Deep Q-Network. 13

DROM DDPG Routing Optimization Mechanism. 13
ECA event-condition-action. 9

IoT Internet of Things. 1

IP Internet Protocol. 35, 41, 42

IT Information technology. 1, 46

JSON JavaScript Object Notation. 7, 14, 15, 28

LSTM Long short-term memory. 13

ML Machine Learning. 1, 2, 4, 10-18, 2022, 25, 46
MLRC Machine Learning Routing Computation. 13
NIC Network Intent Composition. 6

ODL OpenDaylight. xiii, 5, 6, 15, 17, 28, 32, 38, 43
ONOS Open Network Operating System. xiii, 6, 7, 13, 15
OSDF Open Software Defined Framework. 8

OVS Open vSwitch. 33, 39

PBNM Policies Based Networking Management. 2, 7, 15
PCA Principle Component analysis. 12

PCEP Path Computation Element Protocol. 6

PNSF Platform Network Service Functions. 6

PobMC Policy-based Managers Coordination. 9

Acronyms

QoS Quality of Service. xiii, 8, 11, 14, 32, 38

RNN Recurrent neural network. 13

SAL Service Abstraction Layer. 6

SDN Software-Defined Networks. 2, 4-8, 11-13, 15-17, 20, 21, 28, 32
SLA Service Level Agreement. 8

SLO Service Level Objective. 8

SVM Support Vector Machine. 11, 12

pal

This page is intentionally left blank.

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.5

SDN System Architecture 5
OpenDaylight (ODL) Architecture 6
Open Network Operating System (ONOS) Architecture 7
Adapt intent parser - data structure 15
Methodology 16
Work plan for the first semestero 17
Work plan for the second semester-planned 17
Work plan for the second semester-implemented 17
System overview L. 20
Internal system operation flowchart in a generic interaction - implementation

of high level policies 21
Internal system operation flowchart in a generic interaction - monitoring . . 22
Intent Structure 23
Intent State Machine 24
Installation process 25
Mapping table 25
Use cases diagramo 26
Validation stage 29
Invalid Intent 29
Conflict stage 30
Conflict Intent 30
Compilation stage 31
Compilation of priority Intent, 31
Installation stage 32
Monitoring stage 33
User action e 34
Use case - implementation 35
Excerpt from the topology request 36
Statistics captured by API-Testbed 36
Topology graph 37
Topology graph - Dijkstra algorithm 37
Request toadd flows 38
Request to Quality of Service (QoS) 38
Setting up the environment L L L. 39
Testing environment L Lo Lo 40
Connection test between Host 1and 6 40
Test-Create a service 41
Test-Name a service L 41

Chapter 0

6.6 Test-Access a Service e 41
6.7 Test-Internet access in service 41
6.8 Test-Performance in service 42
6.9 Test-Missing parameters o 42
6.10 Test-Unknown users e 42
6.11 Test-Service name already exists 42
6.12 Test-Users involved in other services 43
6.13 Test-Compilation error 43
6.14 Test-Request successfully installed 43
6.15 Connection test between Host 1 and 6(after service created) 44
6.16 Connection test between Host 6 and 7(Internet Access) 44

xiv

This page is intentionally left blank.

List of Tables

4.1 MoSCoW method
4.2 Use case description Lo

XVi

This page is intentionally left blank.

Chapter 1

Introduction

The exponential growth of technology has facilitated the way people/companies view their
daily lives, making, for example, processes and experiences more efficient. Virtual assistants
insertion in the human environment has further strengthened this issue, ensuring that
consumers’ lives are even more straightforward and more practical [5]. In business terms,
digital transformation is increasingly present, and some consider this a promising element
for this transformation to occur. So investing in this sector is investing in the future of
business [4].

Besides virtual assistants, this project involves a network management system that, through
high-level policies, implement and monitor the network with the help of Machine Learning
(ML) algorithms. With Internet of Things (IoT) devices growth, traffic volume on the
global network increases, affecting its performance. It is believed that 94% of companies
will be using IoT devices by the end of 2021 [28|. In the presence of this problem, some-
thing must be done to solve it. Policy management systems have the advantage of allowing
the implementation of network functionalities to correct problems like the one described.
In partnership with the virtual assistants, these systems function as a virtual Information
technology (IT) department where, through natural language, users can implement rules on
the network without requiring knowledge of it. These rules are applied through intentions,
a type of policy that expresses objectives without mentioning how they are implemented.
The virtual assistant will capture the user’s intentions and transmit them to the network
management system, implementing them.

1.1 Goals

This dissertation aims to implement features for a voice assistant in the context of industrial
environments. The system will have to capture the user’s intentions and implement them
in the network. Simultaneously, the network is monitored to optimise to avoid problems
such as policy conflicts or congestion. Thus we can expect results, such as:

e Development of ML models to identify the user’s intentions through voice commands

e Development of user intention mapping mechanisms for analysis and optimisation of
private networks

e Integration of the voice assistant with external components in order to demonstrate
the developed functionalities

Chapter 1

1.2 Contributions

The dissertation is part of an internal Capgemini project, where the system will be imple-
mented. Part of this work (thesis) received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 101017226 — Project
6G BRAINS.

1.3 Document structure

The document’s structure is divided into five sections, state of the art, methodology, system
design, framework, and last experimentation.

The second chapter will present a technological review more oriented to the surrounding
technologies. A literature review on the themes of Policies Based Networking Management
(PBNM) and ML applied to Software-Defined Networks (SDN) is also undertaken.

In the third chapter, the methodology chosen for developing this project and its planning
will be presented.

The fourth chapter starts with the requirements and architecture of the system. Then it
presents some essential diagrams for the elaboration of the project and the use cases.

The fifth chapter presents the framework, the selected technologies, and all the steps
implemented in this project. Finally, it ends with the implementation of the use case.

For the end, the sixth chapter presents the tests performed on the system.

This page is intentionally left blank.

Chapter 2

Technologies, Literature and Related
Work

This chapter introduces the research done to achieve the objectives mentioned in the in-
troductory chapter. In the first phase, the concept of Software-Defined Networks (SDN)
is introduced, what this technology consists of and examples of two tools, concluding with
related work on policy systems that use this technology. Next, we present concepts of Ma-
chine Learning (ML), in order to give an introduction of the concepts that will be used in
related work on ML applied to network data. Finally, continuing in the area of intelligent
systems, we conclude with the virtual assistants, where examples of open-source virtual
assistants are presented and the features of each.

2.1 SDN & Policies Based Networking Management

This section begins by introducing the concept of SDN, providing an understanding of how
this technology works, the differences to traditional ones and this architecture. Next, two
SDN controllers that were studied are presented, understanding how they work. Finally,
this section is concluded with a literature review on Policies Based Networking Manage-
ment.

2.1.1 SDN

SDN is an architecture designed to make a network more flexible and easier to manage
[31]. This approach allows programming the network behaviour through central control,
which communicates with software applications from the available Application Program-
ming Interface (API). One benefit of working with this software is that it allows the whole
network’s dynamic management, whatever the complexity [32].

We can assume that an SDN network allows [33] :

e Cost reduction
e Control over smarter traflic

e Smarter networks

Also, four key functionalities distinguish this software from the traditional ones [34]:

Technologies, Literature and Related Work

Centralised control

Separation of the data and control plan

Interfaces between control and data layers

Network programming

As we can see in Figure 2.1, this software is divided into three layers: Application layer,
Control and Infrastructure layer.

Application Layer
Application Application Application

Lo Lo Lo

/ Northbound
API

Control Layer

I APl

/ Southbound
API

Infrastructure Layer

Figure 2.1: SDN System Architecture

All these layers are interconnected through APIs, in the case of the connection between
the application level and the control, northbound APIs, and in the case of the control level
and infrastructure, southbound APIs.

This software is advantageous for this project as it has a centralised controller and makes
it easier to program the network, which are essential points for implementing the user’s
rules.

Before introducing the controllers studied, it is necessary to explain what intent is. An in-
tent is an expression of the desired state that you want to be realised and can be considered
[10]:

e Portable - can be moved between the different controller and network implementa-
tions and remain valid;

e Abstract - must not contain any details of a specific network;

The advantage of an Intent is flexibility, as it allows users to express policies using concepts
and terminology that are familiar to the user without having specific knowledge in the field.

Introduced the definition of intents, we will focus on controllers, where two platforms,
OpenDaylight and ONOS, were studied.

OpenDaylight (ODL) is an open-source platform that acts as an SDN controller to man-
age, program and automates networks. The first version of this controller was Hydrogen,
launched in the first quarter of 2014. The most current version is called Aluminium. This
platform is implemented in Java, which brings a great advantage as it can run on any
system that has this technology installed [22].

Chapter 2

As for the architecture, ODL is divided into three layers, as we can see in Figure 2.2

Network
;gﬂ!g?:;‘::; "“:;:::'s network applications, orchestration, and services
and services
OpenDaylight APls (REST)
OPEN
Controller network service functions extensions *
platform
Southbound Servico Absir yaica
interfaces & other standard vendor-specific
protocols protocols (ONF, IETF, ..) interfaces J
Data plane

elements (virtual
i l l l
Figure 2.2: ODL Architecture, adopted from [22]

The control platform is the central part of this architecture, and this layer is respon-
sible for understanding the Base Network Service Functions (BNSF), Platform Network
Service Functions (PNSF) and Service Abstraction Layer (SAL). This layer also enables
communication with external applications so that networks can be programmed through
the northbound [22].

The communication interfaces created by the southbound protocols are in charge of main-
taining secure and efficient communication. This support provided by ODL is done through
plugins such as OpenFlow, Border Gateway Protocol (BGP), Path Computation Element
Protocol (PCEP) and NETCONF [22].

In the application layer, we find the services and applications that monitor the controller
and the network. We can find algorithms for the most diverse things in this component,
from analysis to traffic to rule implementations. This communication is guaranteed through
APIs, as mentioned before.

Since one of this study’s objectives is to implement policies through user intentions, we
must look at what this technology offers us. Network Intent Composition (NIC) provides
the controller with the ability to obtain tools to manage and control network resources
through intentions or policies. These intentions are obtained in the controller through
the northbound interface, which, instead of traditional flow rules, offers more general and
abstract semantics [21].

Open Network Operating System (ONOS) offers a control layer for a SDN network, pro-
viding control tools to manage network components and run software to provide commu-
nication services [23]. The ONOS platform includes [24]:

e Set of applications that act as extensible, modular and distributed SDN controller

e Configuration, management and implementation of new software, hardware and ser-
vices

e Architecture in scale

The kernel, central services and ONOS applications are written in Java, as is the ODL.

As we can see in Figure 2.3, applications communicate with high-level intentions for what
they program hardware. The northbound interface deals with applications and resolving

Technologies, Literature and Related Work

policy conflict and in turn, implementing them. The Distributed Core takes care of per-
formance and management issues. As for Southbound, it is responsible for the structure
and configuration of the network [30].

ONOS Distributed Architecture

Adapters Adapters

Protocols Protocols

Figure 2.3: ONOS Architecture, adopted from [30]

When it comes to intents, ONOS has a subsystem called Intent Framework. This subsystem
allows applications to indicate network control requests in the form of policy mechanisms.
Although this tool already provides a set of predefined intents, the framework is designed
to add other intents [25].

After analysing the controllers presented, the study related to Policies Based Networking
Management follows how these systems work.

2.1.2 Policies Based Networking Management

Policies are like a set of rules and services that define the criteria for access and resource
use. Each rule is composed of a set of conditions and their actions. The first set defines
when the rule is applicable, and as soon as it is active, it generates a set of actions to be
implemented. Policies Based Networking Management (PBNM) works as a manager that
separates the rules that control the system from its functionality. As a result, this system
reduces maintenance costs as well as improves runtime flexibility [26].

The research done by the author Vijay Varadharajan, present in [38] is constituted by
an architecture based on policies in SDN context using the ONOS controller. This archi-
tecture is run on the SDN controller as an application. The policy servers connected to
the respective controller consist of five main components: Repositories, Policy Manager,
Policy Evaluation Engine, Policy Enforcer, and Handle Creator. The repositories consist
of two sets: topology and policy repository. The first contains all network topology in-
formation, and the second stores all policies in expression form. These expressions are
stored in JavaScript Object Notation (JSON) modulation language and specify a range
of attributes associated with flow and the entities of SDN, such as Flow Attributes, Au-
tonomous System Domain Attributes, Switch Attributes, Host Attributes, among others.
The Policy Manager is the main component of the policy manager and, as the name sug-
gests, manages each operation of the system. Policy Evaluation Engine is responsible for

Chapter 2

assessing network traffic and checking which policies are related to flow. If policies need
to be implemented, the policy enforcer is responsible. Finally, the Handle Creator creates
the necessary handles for the controller using the policy manager. The purpose of these
handles is to check the package’s authenticity and apply the policies on the network.

In Machado’s work [13], the author introduces a policy authorisation framework for SDN
using a high-level language. This study focuses on policies targeted at the Quality of Ser-
vice (QoS). By interpreting Service Level Agreements (SLA), the system extracts Service
Level Objectives (SLO), which are considered requirements for assessing the network’s per-
formance. This framework is composed of two levels, Business and Infrastructure, where
the first write the SLA in natural language and intentions and the second specifies the
technical characteristics of the services. At the business level, we find components such as
Policy Analyser, which uses natural language processing that, through regular expressions
stored in the policy repository, matches the high-level expression, suggesting classes of QoS
that most identify with their SLA. The refinement process of this system is divided into
two phases, Bottom-up and Top-down. In the first phase, the process collects information
from the network through OpenFlow, i.e., the best configurations for the SLA. With this
collection, it is possible to frame which policies the high-level operator can apply. The
second phase converts the high-level objectives extracted from the SLA and translates
them into achievable objectives, SLO. If the operator does not accept any of the system’s
suggestions, creating policies and implementing them is also possible.

Douglas Comer and Adib Rastegarnia presented a framework, Open Software Defined
Framework (OSDF) [7]. This system offers a high-level API that allows network users to
configure and monitor the network to provide QoS. In addition, OSDF has mechanisms
to analyse conflicts between policies to prevent two or more policies from conflicting when
applied to the same targets. This framework’s architecture consists of four components:
Policy Storage Module, Policy Conflict Detection Module, Policy Parser Module and High-
level network operation services. The first component configures and monitors the network
based on high-level policies and consists of several services: Flow Rule, Topology, Region
and Configuration. Policy Storage Module is responsible for storing network policies that
can be listed, updated and removed. Policy Parser Module is responsible for reviewing
policies and generating a set of flow rules. This module consists of three sub-modules:
Path Selection Service, Traffic Selector Builder and Network Regions Parser. Finally, Pol-
icy Conflict Detection Module detects conflicts between active policies. This module is
composed of sub-modules: Policy Conflicts Detection Service and Policy Conflicts Recom-
mend Service. This study has a chapter dedicated to the detection and solution of conflicts
since it is essential. As for detection, the authors use details from flow rules such as layer
2-4 addresses, action and priority. Through these details, the conflicts have been classified
into five types:

1. Redundancy: a r, rule is redundant if there is another r, rule that corresponds to
the same packet space, i.e. a more general r, rule with the same action.

2. Shadowing: a r, rule conflicts with 7, if 7, matches the same packet space as r,
but has a different action and a higher priority than r,.

3. Generalisation: a ry, rule conflicts with r, if 7, matches a subset of r, and r, has
a higher priority and a different action compared to 7.

4. Correlation: a ry rule correlates with another r, rule if r, packet space intersects
with 7, packet space, but r, action differs.

Technologies, Literature and Related Work

5. Overlap:a r, rule overrides another r,, rule if r, matches the same address space as
y
ry and both its actions are the same.

The authors have implemented a high-level recommendation algorithm to advise network
managers to resolve conflicts as far as conflict resolution is concerned. Each type of conflict
has its solution:

¢ Redundancy: remove the policy with the lowest priority and whose address space
is a subset of another policy.

e Shadowing: remove the shadowed policy, has the lowest priority, and the address
space is a subset of another policy.

e Generalisation: remove the policy that has a more general address space and up-
date the address space conditions.

e Correlation: update the policy address space by lower priority, remove the standard
items, and insert the updated policy into the system.

e Overlap: remove both policies from the system and then insert a new one composed
by merging both address spaces.

A system of policies called Policy-based Managers Coordination (PobMC), was created in
the [15] study. The system policies are formulated according to the event-condition-action
(ECA) rule. As long as an event occurs, there is an action taken as long as the condition
is true. This framework is essentially made up of five elements:

1. Policy Refinement Process: this process is responsible for elaborating a graphical
structure of the high-level objectives that the system can address. This process checks
each type of policy during policy execution where the priority of execution is analysed
to reduce potential errors.

2. Dynamic Conflict Resolver Process: this process’s role is to decide to authorise
each policy and apply logic to reach a decision. It checks the state of the system to
see if it is necessary to apply the action. "if condition then Action"

3. Policy Verification: this process is dependent on the logical separation of adap-
tation and functional logic. With this, the adaptation layer is verified without the
actor layer being verified.

4. Context Monitor: this process’s objective is to monitor the environment, verifying
structural and behavioural changes.

5. Self-Coordinator: central component of the system that coordinates all actions
during the execution time. All decisions made in previous processes are verified in
this component.

In addition to these elements, a repository and policy compiler are found in this architec-
ture.

The research presented in the previous study [15] was further developed on the issue of con-
flict management between policies. Abdehamid Abdelhadi Mansor presented a statistical
analysis technique to resolve policy conflict [14|. Two classes of conflict were considered:
static and dynamic. The policy compiler uses the first class to detect specification errors

Chapter 2

and reduce runtime conflicts between rules where the event and condition are matched.
The second class detects and controls potential conflicts between policies that are not de-
tected in the previous class through runtime meta-information. Therefore, the conflicts
were divided into four categories where for each category, we can find static or dynamic
classes.

1. Internal policy conflict: if there is an incompatibility between policies associated
with the same functions

2. Foreign policy conflict: when the combination of functions in isolation does not
present conflict but contains policies that, in coexistence, conflict.

3. Conflict of policy space: when there is more than one policy space managing the
same set of issues, exposing different policies.

4. Conflict of functions: when a user obtains a set of incompatible functions.

However, the authors focus on static policy analysis.

Based on these categories, the classification of several expected conflicts has been intro-
duced into the system. Conflict mode: when there is a triple overlap between the set
of actions and targets. All the subjects and targets with different policies to implement
must be identified to resolve this conflict. Inconsistency: when there is a policy of obli-
gation but no policy of authorisation. The subject, target and authorisation policy must
be determined to apply each conflicting powers policy to avoid this conflict. Multiple
Manager’s Conflicts: overlapping areas related to resource sharing. To resolve this type
of conflict, authorisation must be given to allow managers to implement policies if they
cause no conflict.

After presenting the study on controllers and policy management systems, the concepts of
intelligent algorithms in the context of networks data are introduced.

2.2 Machine Learning in network management

ML is an area of computer science that consists of building algorithms that can learn
from data and generalize to unseen data. These algorithms work by building models from
specific inputs in order to make choices without following static instructions [16].

This section focuses on a brief introduction to the area of ML and where it can be found
in the context of networks. First, therefore, we will introduce some necessary concepts,
which will be applied in section 2.2.2.

2.2.1 Machine Learning-concepts

Before classification models can be applied, it is sometimes necessary to pre-process the
data, as they may contain, for example, redundant features not relevant to the study.
When we analyse a dataset, we find a wide range of features, with differences in value
ranges for each one. These differences can affect the model’s prediction, so changing their
values on a common scale is necessary. In section 2.2.2, standardisation algorithms are
used to improve the model’s performance. The standardisation process is sometimes not
enough to get the best performance from a classifier. Some features are more useful for

10

Technologies, Literature and Related Work

classification than others, which leads us to another type of data pre-processing, feature
selection. Since there are more important and decisive features for classification than
others, we should select the smallest set of attributes needed to distinguish between class
members and others outside the class. Selecting the type and number of features has a
big impact on the effectiveness and performance of the ML algorithms [11]. This type of
pre-processing is used in most of the ML articles mentioned in the section 2.2.2. Related
to feature selection are feature reduction methods, which measure the correlation between
features. Highly correlated features are redundant and add little to the performance of the
classifiers. Eliminating such redundant features is important since it reduces computing
costs without having a significant loss of information [2].

Once the data processing is complete, we can pass the classification where, for this context,
the intelligent algorithms are divided into three categories: Supervised Machine Learning,
Unsupervised Machine Learning and Reinforcement Machine Learning. These are the three
areas mentioned in the articles studied 2.2.2 and are explained in the following paragraph.

Starting with Supervised Machine Learning requires a set of data with the assigned classes,i.e.
the data need to be labelled. These models learn from the labelled data set, and then
through these, they predict future events. There is a division between training and test-
ing. For the former, data entry is a known data set with the corresponding labels, where
the model learns through relationships between them to predict the test set then [17].
Unlike the first classification category, Unsupervised Machine Learning does not require a
labelled data set or training set. The main objective is to explore the patterns between
the data and predict the results. In this model, we supply the data to the system and ask
for relationships between them, based on the characteristics, to group them to make sense
[18]. Like Unsupervised Machine Learning, the last classification category does not need
labelled data and works based on an agent’s "education". The algorithm will penalise the
agent if he fails and will reward him for performing the function. Reward and penalty are
the basis of these models because they allow determining the agent’s exemplary behaviour
in a specific context [17].

2.2.2 Related Work

In this section, all research carried out in the context of ML applied to data from networks
is mentioned. In addition, research has been done in the context of traffic classification
and network optimisation.

Rating traffic is a crucial step when it comes to providing network QoS. By being able
to classify, we become aware of the network traffic profile, and in turn, we can provide
efficient and fast solutions [3].

In Raikar’s work [27], the author introduces a system model that describes the integration
of SDN with supervised ML models for classifying network traffic. The architecture of
this system is composed of four layers: Decision and Control Layer, Feature Extraction
Layer, Data Acquisition Layer and a common layer to all where the model of ML for
traffic classification is located. The controller chosen for the system was POX, and the
algorithms for the classification were Naive Bayes, Support Vector Machine (SVM) and
Nearest centroid. These algorithms were applied to the training and testing set to classify
network traffic and finally compared to the results. The network topology was created
by mininet. The three classes studied to classify traffic was HT'TP, mail and streaming.
Tepdump was the tool chosen by the authors to capture data from the network. In the
pre-processing, the netmate was used to obtain the flow statistics and label. Some of the

11

Chapter 2

study’s features were source IP, source port, destination IP, destination port, protocol,
total fpackets, total volume and total bpackets. The classification results were positive,
exceeding 90 per cent in the three models applied, highlighting the SVM and Naive Bayes.

As in the previous study, the authors, Zhong Fan and Ran Liu, present, besides supervised
learning approaches, unsupervised algorithms to classify traffic [11]. The presented model
classifies the traffic through its statistics, such as flow duration, packet length, segment
size, times and port numbers. With this intelligent method of classification, the aim is to
reduce computational costs. Applying the model was necessary to have a dataset composed
of Web, Mail, Bulk, Services, P2P, Multimedia, Database and Attack classes. Before
classifying these classes, the authors apply feature selection filters like the Information
Gain Attribute Evaluation from WEKA. After selecting essential features, algorithms like
SVM and k-means were chosen to classify. For each rating model, the performance was
calculated using the F-measure formula. The model SVM obtained better results than
k-means for the eight classes under study. Even when new data sets were inserted, the
accuracy for Web, Mail and Services remained above 90 per cent, however Bulk, P2P and
Database had a steeper decline from the previously rated test set.

An application SDN for network traffic monitoring and classification, using algorithms of
ML, is presented by Pedro Amaral [2]. This application collects data through an Open-
Flow switch, which uses mirrors to capture data and send it to the controller. The data
set used was tagged and generated under conditions controlled by a host. The features
chosen for classification were: Packet size, Packet timestamp, Inter-arrival time, Source
and Destination Mac, Source and Destination IP, Source and Destination Port, Flow Du-
ration, Byte Count and Packet Count. In addition, it was necessary to normalise the data
because it has very different characteristics with values in different scales. For this pur-
pose, StandardScaler was the chosen algorithm. Another critical point was the correlation
between features, and for that, it was chosen Principle Component analysis (PCA), to find
the main components. The classification algorithms present in the study are supervised,
namely: Random Forests, Stochastic Gradient Boosting and Extreme Gradient Boosting.
The results were quite encouraging and similar among the three types of models, with re-
sults above 90 per cent for some classes. With this, it can be concluded that data obtained
through SDN mechanisms are adequate for traffic classification.

A method of ML to classify the network traffic in partnership with SDN architectures is
presented by Mohammad Reza Parsaei [29]. Since the network switches are connected to
a central controller, the traffic classification protocol is identified based on the application
layer. The controller used by the authors was the Floodlight. This system is compassed of
two phases:

1. Offline phase: This phase is responsible for collecting data on the controller and for
building the training set and model

2. Online Phase: Through the data from the offline phase, it classifies the network
traffic.

As for the selected features in the offline phase: Source and Destination IP, Transport
Layer port in Source and Destination, Transport Layer protocol in flow and backflow.
The chosen algorithms for the online phase traffic classification are Feed-forward Neural
Network, Multilayer Perceptron, Naive Bayes and Levenberg-Marquardt Algorithm. The
study classes for this system were FTP, HTTP, Messages and Streaming. As for the
previous classes’ accuracy, the algorithms showed promising results, above 95 per cent,
with the Naive Bayes algorithm standing out with 97.6 per cent.

12

Technologies, Literature and Related Work

Once the study for traffic classification is concluded, the research on Network Optimization
in SDN begins.

The system, Machine Learning Routing Computation (MLRC), based on SDN is created
by Sebastian Troia, in order to apply models of ML to optimize network configurations [37].
The controller chosen for this system was the ONOS. REST APIs capture traffic matrices
every 5 seconds and train the model to keep it updated. This model aims to classify
these matrices using a supervised algorithm which in turn is trained with optimal routing
solutions. These solutions were obtained through the Net2Plan tool. The architecture of
MLRC is divided into four sub-modules:

1. Data collection: Every 5 seconds are extracted from the traffic matrix switches.

2. Model training: The system’s main component, where the algorithm is trained with
the help of the Net2Plan tool. In this sub-module, the model learns how to classify
traffic matrices that share the same routing configuration. The algorithm chosen was
Logistic Regression.

3. Classification model: Responsible for classifying the traffic matrix. The output of
this module is the ideal routing.

4. Routing computation: Converts the classification model output into flow rules to
implement on switches.

This whole process is done in about 80 milliseconds, which leads us to conclude that we
can apply ML to SDN to optimise it.

In Changhe Yu work [39], the author introduces a framework that uses a new mechanism
based on deep reinforcement learning, Deep Deterministic Policy Gradient (DDPG) to op-
timise routing in SDN. This framework uses a mechanism, DDPG Routing Optimization
Mechanism (DROM), to perform global control and management. Agents interact with the
environment through three signals: state, action, and reward. Thus, by receiving the state
of the network from the SDN, it activates the agent responsible for decision making and
takes on a strategy, and in turn, the corresponding policies are implemented. The main
objective of the DROM is to find the optimal action 'a’ according to an entry state ’s’ to
maximise a reward 'r’. With this, it is possible to optimise the maintenance and manage-
ment of the network. The type of ML chosen by the authors was policy-based reinforcement
learning, DDPG, where there was a combination of two methods, Deep Q-Network (DQN)
and Deterministic Policy Gradient (DPG). DDPG generate strategic functions through
neural networks and form an efficient and stable control model. This system’s results have
shown good convergence and effectiveness compared to existing routing solutions, which
leads us to conclude that it is a good solution to be applied.

Neural networks are used by the framework, Neurote [6]. This framework comprises three
essential modules: Traffic Matrix Estimator, Traffic Matrix Predictor and a Traffic Routing
Unit. The first component is responsible for defining the traffic matrix and the interfaces
with the rest of the components. The second component is in charge of estimating future
network traffic from past and present traffic data. This component uses neural networks
Long short-term memory (LSTM) and Recurrent neural network (RNN) where for each
algorithm, the data is divided into training phase and test phase. The training phase is
supervised and uses the backpropagation algorithm, where weights are changed until the
error falls below the chosen threshold. The test phase focuses on the choice of optimal
routes based on the previously predicted matrix. This component is based on supervised

13

Chapter 2

learning using Deep Feed Forward Neural Network to combine traffic requirements with
routing paths.

Supervised learning models are the central resource of the framework created by the author
Li Yanjun [12] to propose an optimal routing solution. This system’s architecture comprises
three layers: Input, Dynamic routing, which contain the system logic and output. The
input consists of the network topology information and the Current Network State (CNS)
and QoS. The output is the ideal path from the source node to the destination. As for
the main layer, a heuristic algorithm is built to route the flow through the minimum load
path based on the network’s current state. This algorithm is used to train the neural
network and thus provides heuristically similar results directly and independently. The
implemented ML approach achieved almost as good results as the heuristic algorithm.
However, it showed faster times when executed.

Once the study about the area of ML applied to network data and policy management
systems is finished, it remains to be seen how to capture the user’s request. For this
purpose, the investigated virtual assistants are presented.

2.3 Virtual Assistants

There are several types of virtual assistants around us. Today the name Alexa or Siri
leads us to think almost automatically about voice virtual assistants. This is the type of
virtual assistant chosen, for which more in-depth research will be done and consequently
implemented in the system. Since it will be necessary to develop new features on the
system, we have to look at open source assistants.

SUST Al [36] is an open-source virtual assistant capable of interacting with the user through
voice, using a API. This virtual assistant allows us to add more features to allow the user
greater control over it; that is, it allows us to add, edit and remove skills. This type
of assistant supports Linux, Android and iOS and can be integrated with speakers and
vehicles. SUSI has its language; however, JavaScript can be a possibility to manipulate
the assistant. As for dedicated devices, SUSI does not lack any yet. It also allows to
transform the user’s data into JSON format and manipulate it according to its intention.

SEPIA Framework [35] means server-based, extensible, personal and intelligent assistant
that consists of a Java server and a client that can run on various platforms such as Android,
i0OS, Windows, Linux and Mac. The server is based on the REST architecture, and the
clients use the HI'TP protocol to communicate. It is on the server that the understanding of
natural language, dialogue management and intention is done. The client handles speech
recognition and converts the voice into text, sending it to a SEPIA server to interpret
and present the result to the user through text, which can be in JSON. SEPIA and the
already implemented services allow us to create our commands like the previously spoken
technologies.

Of the virtual assistants studied, the most relevant was Mycroft Al [20]. Mycroft Al is an
open-source virtual assistant that allows modifying, create and view code. This assistant
gives the user freedom to have control over the system. Unlike other technologies like Alexa,
Siri and Google Home, it only captures the voice after triggered. This virtual assistant can
be found on various systems, from Raspberry Pi, Windows, Android and Mac. Besides
these platforms, there are also dedicated devices, Mark 1 and Mark 2. Mycroft works
by intents, once awakened, the user expresses the intention before the system, trying to
interpret the intention and find the appropriate Skill. These abilities can be installed or

14

Technologies, Literature and Related Work

removed by users and can be easily updated to expand functionality. In addition to these
advantages, Mycroft has the particularity of transforming the user’s request into JSON
format, which is useful for implementing the system. The Adapt Intent Parser is an open-
source software [1]| that creates a data structure through natural language. This structure
is composed of three parameters:

1. User request
2. Probability of trust

3. Entities involved
An example of the structure created can be seen in Figure 2.4.
nuil,

"joan jett",
e": "MusicIntent"”,

EE— 1
b put on",

rd": "pandora"

Figure 2.4: Adapt intent parser - data structure, adopted from [1]

This structure facilitates the way that we identify user intent through voice commands.

2.4 Conclusion

This chapter presented an investigation about the possible technologies/tools to be used
to develop the project and explained some important concepts. Starting with the SDN
controllers, after introducing the concepts, we realised that this technology brings advan-
tages concerning traditional networks, once it allows to have centralised control, separate
the control plane from the data and make the network programmable. Two solutions were
presented, ODL controller and ONOS. Of these, the ODL controller stood out more for
its feature offering and documentation. From the literature analysed on PBNM, I con-
cluded that importance should be given to the pre-processing part of the policies, that is,
validation and conflict handling, for the system to work properly.

In what concerns the area of ML in a network management context, some concepts were
introduced, namely, concepts that were present in the research on traffic optimisation and
classification. In this context, it should be highlighted that most of the models applied
were supervised and also, when compared to the other types of models, they were the ones
that obtained better results.

Of the open-source virtual assistants analysed, all of them presented similarities in char-
acteristics. However, the one that offered better documentation and answered most of the
problems was Mycroft [20]. Therefore, this virtual assistant was analysed in more detail
and tested to validate it for use.

15

Chapter 3

Methodology & Work Plan

This chapter will present the methodology chosen for this project’s development and all
the planning done in the first and second semesters.

3.1 Methodology

For the elaboration of this work, the methodology follows the waterfall model. This model
argues that activity should only start after the previous one has been completed and
verified. However, it may be necessary to get some details right in earlier phases, which
allows us to go back and modify what is necessary. The model begins with a study on
the various themes addressed by this thesis as virtual assistants, controllers SDN, network
managers using policies and ML applications to a data network, preferably using SDNs.
After the search, all knowledge gained at this stage is applied to the implementation of
the components. Finally, the methodology ends with the tests on the implemented system
and the analysis of the individual test results, as we can see in Figure 3.1.

[
(1wt }—
=
(o]

Figure 3.1: Methodology

3.2 Work plan

In this chapter, we detail the work plan created, which was divided into two semesters.

16

Methodology & Work Plan

3.2.1 First Semester

During the first semester, the objectives focused on studying systems and technologies
related to the subject of the dissertation. In an initial phase, research on policy systems
and applications of ML to data from networks was done. Virtual assistants and SDN
controllers were studied in more detail as they will be essential components of the system.
Mycroft and ODL were the technologies selected for testing. For the former, the tests
focused on creating skills and handling the user’s request so that the output was in the
desired modelling language. For ODL, together with the mininet, features were tested to
assess whether the controller functions would be sufficient. As a preliminary work, traffic
classification was the first topic to be advanced. Techniques of ML were applied to a data
set in order to classify traffic. The report was followed over time, gaining more attention
in the final straight. The Figure 3.2 demonstrates this whole process.

ks Sptembor_ october | November_|December 2021

Research]

Technologies study]

Technologies test]

Preliminary work]

Report O

Figure 3.2: Work plan for the first semester

3.2.2 Second Semester

The planned work, Figure 3.3, and the executed work, Figure 3.4, are presented for the
second semester. I adopted the strategy of presenting two graphs (planned and executed)
because there were tasks that became more critical for the development of the project,
which led to greater dedication of time.

R 7 B

Intent Structure

State Machine _

Implementation(HLP)]

Implementation(Monitoring)]

Integration]

Testing]
Results analysis []
Report .

Figure 3.3: Work plan for the second semester-planned

T 1 T B e

Intent Structure

Intent State Machine _

Implementation(HLP) _

Integration]

Testing]

Results analysis []

Report]

Figure 3.4: Work plan for the second semester-implemented

17

Chapter 3

Initially, I started by defining the system design—this step started by defining the intents
structure and life cycle (Intent State Machine). Compared with the time that I had planned
for these steps, I ended up dedicating more time than expected, since both the structure
of intents and the state machine would influence the operation of the system, and as
such, it was necessary to investigate all possible cases to create concise and comprehensive
structures. After defining the system logic, the implementation was changed, and we
started to implement only the policy insertion phase in the system (Implementation(HLP)),
leaving the monitoring phase for future work (Implementation(Monitoring)). This decision
was made in agreement with the Faculty’s and the company’s Advisors since defining the
previous steps correctly was essential for the rest of the project. In the implementation
phase of the policy management system, we applied the logic defined in the system design
(validation, conflicts, compilation and installation), leaving out the monitoring. Finally,
integrating the system as a whole, we started the testing phase and the analysis of results.
The report gained focus in the final phase of the project.

3.3 Conclusion

In the initial part of this project, everything went as planned with no big surprises. How-
ever, as we entered the second phase of the project, new ideas emerged that made perfect
sense to create, and much time was spent on making the policy management system con-
sistent. The intent modelling framework is an essential step for interpreting the system
as it allowed us to define a concise structure that could adapt to any intent and interpret
the request so that the system could understand it in a generalised way. In addition to
this structure, the need arose to create a state machine representing the life cycle of intent
from creation to installation and subsequent monitoring. Naturally, these structures suf-
fered changes as I progressed, and with the help of the supervisors, the company and the
university, all kinds of possibilities were discussed to make this state machine as complete
as possible.

Dedicating time to system design ended up influencing the time that I had reserved for the
monitoring phase where I would apply concepts of ML. In the fortnightly meetings with
the supervisors, this subject was discussed, and in syntony, with the company, we decided
that defining the structure of intents and the state machine was an important step and
that it would make all the sense to dedicate most of the time to this phase because it would
be the basis of the implementation. In conclusion, the implementation plan for the second
semester was based on the creation of a policy system from its creation to its installation,
leaving for future work the monitoring phase where the ML algorithms would be applied.

18

Chapter 4

System Design

This chapter presents the requirements and system architecture as well as the explanation
of each component. In addition to the architecture, the structure of an intent, state diagram
and mapping table are presented. Finally, the chapter closes with the use cases.

4.1 Requirements & Architecture

In the first stage, it was necessary to establish which requirements the system should meet.
To this end, the table 4.1 was drawn up, using the MoSCoW model [19], which indicates
the requirements with the highest priority and which are of interest to the study. To
understand the states of this method:

e Must: Critical to the system

e Should: Essential but not necessary

e Could: Desirable but not necessary

e Won’t: Less critical
Code | Requirement MoSCow | Who
R1 User must be able to indicate request to the system MUST User

“R2 The system must recognise the user’s request SHOULD | System

R3 The system should respond to user actions MUST System
R4 The system must be able to implement the user’s request SHOULD | System
R5 The system must be able to detect conflicts between different user actions SHOULD | System
R6 The system must be able to optimise the network SHOULD | System
R7 The system must be able to negotiate with the user MUST System /User
R8 The system must be able to detect anomalies in the network COULD System
R9 The system must be capable of alerting the user in the event of a malfunction | COULD System

Table 4.1: MoSCoW method

The system’s architecture seeks to meet the requirements presented to implement high-
level policies from network users and monitor these policies and the network, optimising
if necessary. Figure 4.1 indicates the different logical components of the system and how
they interact.

19

Chapter 4

Virtual Assistant Folicy Input Stage Policy Repaository

Palicy Runtime
Enforcer

-~

L 4
TestBed

SDMN Controller

A

¥
o

Infrastructure

S

Figure 4.1: System overview

The system architecture is designed to operate in a business context, where the user inter-
acts with the assistant using his equipment (e.g. computer). Therefore, the architecture
modules are explained in the following section.

To capture the user’s commands, the virtual assistant is the component responsible for
maintaining communication between the system and the user. After being activated, the
user saves the user’s intention and forwards it to the system to validate and implement it.
The assistant is in charge of associating the policy with the user’s intention and converting
the high-level language into a machine language, sending it to the component where it will
be analysed.

The policy repository is the component responsible for storing all existing policies in the
system as a database.

Responsible for communication between the virtual assistant and the policy repository,
the Policy Input Stage is the component in charge of analysing conflicts so that the user’s
policy does not conflict with some rule already implemented in the network. In case of
success, this component sends the rules to be implemented. On the contrary, if there is a
conflict, this component initiates negotiation with the user. Furthermore, the thresholds
to validate the policies are part of this component, sending to policy runtime enforcer for
analysing and drawing conclusions.

The Policy Runtime Enforcer is responsible for constantly monitoring the network and
creating the request for installation. In this component, information from the network is
collected, analysed, planned, and finally executed. It understands the problem and how to
envisage policy implementation, such as operations and resources. An important factor is
planning, which plays a critical role in accepting policies and why it will be the element
that will govern a possible negotiation with users. In addition to planning, data analysis
is responsible for analysing the previous component thresholds to act if a policy fails.
Algorithms of ML are applied in this module.

TestBed is an API that is in charge of the communication between the system and the
controller SDN. This API receives the installation request from the Policy Runtime En-

20

System Design

forcer and tries to install it in the controller. In this component, all the installation logic is
set, knowing which requests the controller supports or not. Besides installation requests,
there are data collection requests that will be useful to apply ML algorithms and calculate
interesting variables for the study.

SDN controller is in charge of obtaining both the data from the network and implementing
any rules. In addition, the controller communicates with the infrastructure, obtaining the
necessary information to be used for the system to make the changes it wishes.

4.2 Internal system operation

As in section 4.1, we can state that the system consists of two different but connected
components. The first one is responsible for implementing high-level language policies, and
the second one monitors the network to ensure that it is within the defined parameters.
However, one component completes the other so that the system can function.

In the following figures, two interaction diagrams are presented to understand how the
system operates internally.

Figure 4.2 the user interaction with the system is presented in the form of a diagram
generically, adapted to any case of use.

Utilizador Assistant PIS Repository

Send Policies |

I Get Folicies }

ention
Match res

No
Send infent fo PIS }»

Update Policies

l o
n
No Send Input to PRE

Communicate
infent to assistant

P‘M:|(’
No Get data
Verify

Extract data

il

send to SON Implement policie

Figure 4.2: Internal system operation flowchart in a generic interaction - implementation
of high level policies

The user activates the system when he feels the need to apply policies on the network.
The virtual assistant processes the user’s input, checking that the expressed intention is
valid and ready to be sent. If there is any problem in the match of the intention informs
the user, there are two possibilities: end of interaction or need for further action by the

21

Chapter 4

user. It converts it into the desired format and sends it to the input stage policies if it is
valid. In this component, the policy is decomposed to analyse the conflict between policies
to prevent the policy from being implemented and disagree with any existing. In case of
conflict, the system alerts the assistant, alerting the user, as mentioned above. If there is
no conflict, the policy is sent to its execution time, hung where it is analysed to apply this
new rule. Information about the network is extracted and analysed. If an infrastructure
problem prevents the new rule from taking action, the user is alerted again, as in previous
cases. If there is no problem, the new rule is sent to the controller to be implemented on
the network.

In Figure 4.3, a flow chart is shown where you can see the system monitoring process over
the network.

PIS Repository

Get Policies Send Policies

Update Policies

PRE SDN
Plan Analyse
No
.
je—— Verify Get data Extract data
Yes
Send to SDN Implement policie

Figure 4.3: Internal system operation flowchart in a generic interaction - monitoring

The system captures data from the network. This data is analysed using the policy repos-
itory thresholds to see if the rules are being followed. Algorithms of ML are applied to
classify traffic and optimise functions on the network. Then it is planned how the previous
network decisions will be implemented so that the network complies with what has been
implemented. If we see no problem in the implementation, we arrive at success, and it is
implemented.

22

System Design

4.3 Intent Structure

The structure of intents represents all the information coming from the user structured
so that the system can interpret. The system can receive several requests from several
users, so it is necessary to create a structure that can cover as much varied information as
possible. For this, the structure shown in Figure 4.4 was created.

IntentType :
Intent_Target :
Intent_State :
Conditions : [
= Policy Type:
o Constraints:[

s Domains:[
Traffic_Type:
Period:
Name
Bool:
Access:
Performance:

]

Figure 4.4: Intent Structure

For each request, is assigned a type (example: indicates whether the request is to set
priorities or create services), a target (example: what type of network) and a state (based
on the state machine). Besides these three points, policies are defined according to the
user’s wishes, and for each policy, we can have restrictions that can indicate performance
values, type of traffic, who accesses the network, among others that are presented in Figure
4.4.

4.4 Intent State Machine

A state machine was created to understand how the system works and covers the possible
states reached by requests made by the user. This state machine resulted from a more
rigorous investigation to which much of the time of this study was devoted since it defines
how we will approach the problem and deal with it. In Figure 4.5 we can visualise the
result of the state machine.

23

Chapter 4

User
User Action
Action
Conflict Detection
Compilation
Validation
Conflict
Detete O @
Successfully| Conflict Compiled Failed
Validated
Successiully
valdared User Action Compilation
- - error

@

New Intent Updated Intent

No
Conflict (j

No Conflict

Update
Intent

Q

Reguest Assistant

Invalid
Successfully
compiled

Installation

.©‘- | @

[l
INnt Instaled 1 Compiled
1

Invalid

1
1
1
Invalid 1
1
1
1
1

- e mm mm mm mm Request

User assitant
Action

() —
)

Pend User Action

© R]
No solution
Uninstall —© Manitaring
__________ 1

Identify solution

Successfully Monitoring

1
1
1 installed |l' C -Keep- - - -l
1
1

TohE
__/

T \\J

Installed 1 Intent in Practice
= o wf]

User Action

I solution

e = == == -

Infringing
intent

Infringing Intent

1
1
1 1ry to solve
1
1

Figure 4.5: Intent State Machine

As we can see, the state machine is divided into six sections. After the user requests
in the first phase, the validation phase verifies that the request contains all the necessary
information to implement the desired action. If the user has forgotten to mention necessary
information for the request to be implemented or if the information he has provided is
wrong, this phase assigns an invalid status, which will require user interaction. On the
other hand, if the user provides all the necessary information for the request to proceed,
it assigns a valid status and continues to the next phase.

The conflict phase is the second checkpoint of this state machine. Here, the already
validated attempts are subject to a comparison with the requests already implemented
and stored in the database to conclude conflicts. If the request is redundant, or if the new
request consists of information contrary to that already implemented, the conflict phase
assigns a conflict state which will be resolved with the help of the user. If the information
does not conflict, we move on to the compilation section.

When the request reaches the compilation phase, the system tries to convert into rules the
policies that the user wants to implement, i.e., the system converts the high-level language
into a language that can be interpreted by the controller so that it is then possible to
install them. Sometimes the desired information may not be supported by the controller,
or the desired operations may not be operational, and in this case, the compilation phase
gives a compilation error that can be solved with the help of the user. If we can get the
rules to be installed, we move on to the installation phase.

Once the rules are obtained, the next step is to install them on the controller. If the
objectives are supported by the controller and installed, we move on to the monitoring

24

System Design

phase. If the goals are not achievable because they may be offline or nonexistent, the user
is alerted that the application was not installed.

In the final phase, monitoring consists of a cycle that constantly checks if the existing
requests in the database are being fulfilled or if any violation has occurred. If any non-
compliance occurs, the system, through intelligent algorithms, tries to identify how to
solve the problem without human intervention automatically. To make this possible, the
area of ML enters this phase, whereby capturing data from the network, the system tries
to identify patterns in order to validate existing policies and intervene if necessary. If
the intelligent algorithms do not identify a solution that corrects the problem, the user is
alerted.

In Figure 4.6 we can visualise how the cycle of an event works from creation to installation.

Get intents

with same Check
New Intent Intent_Target Conflicts Install
Validation Check Compile

Duplicate

Figure 4.6: Installation process

4.5 Mapping table

To create a rule about any device or service on the network, it needs to know which IP
is assigned on the network. However, it would be inappropriate for the user to know all
the IPs and still have to indicate them to the system every time he went to the system to
implement something. Having this problem, creating a mapping table that assigns names
to all the hosts on the network was necessary. An example of this table can be seen in
Figure 4.7.

one 192.168.2.1
four 192.168.2.4

Figure 4.7: Mapping table

With the mapping done, the user does not have to know the IP range of the hosts to which
they want to apply rules but rather the names of the respective hosts, facilitating how they
interact with the assistant.

4.6 Use cases

In this section, the use cases implemented in the system are introduced. The use cases that
are presented were designed in order to explore the possible scenarios presented in section
4.4, illustrating the most common cases in a business environment. Integrating virtual
assistants with network management systems enables network functionalities without the
user having specific knowledge in the area.

25

Chapter 4

In the figure 4.8 we can visualise the use cases diagram that responds to the requirements
mentioned in section 4.1.

Create a service

Perfomance
User

Figure 4.8: Use cases diagram

The use case presented in the diagram is divided into two sub-use cases that control the
access and performance of the new service. To better understand this, the 4.2 table is
presented.

Name Create a new service

The user is able to request the creation of a new service through the virtual assistant. The latter will

Description check if all necessary information to describe the service is present and if not it will request it from
the user. Afterwards, it will try to configure the new service on the network
-User
-Virtual Assistant

Actors -SDN Controller

-Network elements

-Devices connected to the network

-There is a database that identifies the different devices connected to the network

-The network is operating under normal conditions

-There may be services already running(optional)

-The virtual assistant is deployed and available

-The SDN controller is already running and connected to the network

-There are already multiple devices connected to the various network switches
oo The service is accepted and is configured on the network

. The user requests the creation of a new service

. The virtual assistant asks the user to provide a name for the service

. The user provide the service name

. The virtual assistant asks the user who can access the service

. The user provide the hosts that can access

. The virtual assistant asks the user if he wants to define a performance for the service

. The user provides the performance that the service will support

. The virtual assistant asks the user if he wants the service to have internet access

. The user indicates if he wants the service to access the Internet

. The virtual assistant acknowledges that if has the necessary information to specify the service

. The virtual assistant performs conflict analysis

. The virtual assistant starts the compilation process

. The virtual assistant creates the new service

. The order successfully completes all the necessary steps from its creation to installation.

. The virtual assistant confirms to the user the creation of the new service

Preconditions

Step-by-Step
Sequence

O 00 1 O U= W N

—_ =
= o

== =
T W N

—_
=)

. If the information necessary for the implementation of the service is not available, the user is notified

Alternative 11. If there are conflicts between new requests and existing requests in the database, the user is notified
scenarios 12. If the compilation process fails, the user is alerted
13. If the virtual assistant fails to create the new service, the user is alerted.

Table 4.2: Use case description

The use case presented 4.2, aims to create new network services. This insertion process
touches on several essential points of this project, from the negotiation process of the
service name to the insertion in the network without jeopardising existing services that
have performance dependencies on the network itself.

For a better interpretation of the use case 4.2, a dialogue between the user and the virtual
assistant is presented. The user, through voice commands, can ask the virtual assistant to

26

System Design

create a new service by pronouncing the following sentence:
e User: I would like to create a service

Once the virtual assistant captures this command, the user is asked what the name of the
new service to be inserted(negotiation) is, to which the user can respond as follows:

e Assistant: Sure. What is the name of the service?

User: Name it s2

Assistant: Please name the machines that will have access to the service

User: Provides access to hosts 3 and 6

Assistant: Regarding internet access, does the service need internet access?

User: No, thanks

Assistant: One last question, Do you want to define the performance of the service?

e User: yes please, 4000

4.7 Conclusion

In this chapter, we start by describing the system requirements that gave rise to the
presented architecture. Then, this architecture is presented by six components that interact
with each other. We separated the system logic into two phases based on this architecture:
high-level language policies and monitoring. After creating the logic, we describe the
structure of intent as well as its life cycle. These were two stages to which time was
dedicated since they directly influenced the system’s proper functioning. Next, a mapping
table was presented to make life easier for the user when interacting with the virtual
assistant. Finally, we conclude with the use case, service creation, which involves two sub-
use cases (access control and performance). It was decided to assume as a single use-case
since separate would not make much sense.

27

Chapter 5

Framework

This chapter will explain which components allow the system to function, choosing tech-
nologies for the virtual assistant, databases and controller. The second point is how the
state diagrams were implemented, ending with the implemented use cases.

5.1 Technology selection

The selection of the technologies was an essential step in the development of this project
because it allowed us to dictate which functions we could use to have a complete system.

Starting with the virtual assistants studied in section 2.3 and comparing with the interests
of the project, as the features that the assistant should have (communicate with the user
through voice command, skills handling, conversion from voice command to the appropriate
language), we concluded that the Mycroft Al [20] was the ideal choice and answered most
of our problems. This assistant allows us to create new skills quickly and, with the help
of internal software, Adapt Intent Parser [1], get the information we need in a JSON data
structure, to formulate the user request, sending it for further analysis and implementation.

Once the virtual assistant was chosen, we needed to decide where to store the requests
coming from the user. For this, the Apache CouchDB [8] tool was chosen, a non-relational
database that allows working with JSON files, which turns out to be an added value since
this is the format generated by the virtual assistant. Furthermore, Apache CouchDB is a
technology that allows you to store, edit and remove documents through REST requests
in a simple way. This way, whenever the system validates a request, it is stored in the
database.

To finish the section on the choice of technologies, we have the SDN controller. For this
technology, several solutions were analysed in the 2.1 section. Finally, based on the problem
of this dissertation and analysing the support of the analysed controllers, the controller
ODL-Carbon version was chosen. This controller supports several interest requests to the
study, such as topology, trace hosts, flow management, and network statistics. Since it
answers most of the problems, we proceed with this controller.

Finishing the choice of technologies, we start the explanation of the components shown in
the state diagram 4.5

28

Framework

5.2 Validation stage

As mentioned in section 4.1, responsible for the communication between the virtual assis-
tant, policy repository and the installation component, the Policy Input Stage was one of
the first components to be created. This module is in charge of receiving the user’s request,
starting by validating it. The first phase of the state diagram 4.5 begins the validation. As
we can see in Figure 5.1, an attempt to reach the system can reach two states: validated
or invalid.

Validation

Successfully

Validated

Successfully

Validated
New Intent Updated Intent

Invalid

Invalid
Invalid

|
Figure 5.1: Validation stage

To validate, the system verifies that all the information required to implement the request
is available and feasible. To better understand when an intent reaches an invalid state, an
example is shown in Figure 5.2.

"IntentType": "CreateService",
"Intent_Target": "Service",
"Conditions™: [{ | Missing information
"Policy": "CreateService",
"Constraints":[{
"Domains": [{"

|
1,

"Intent_State": "new intent"}

Figure 5.2: Invalid Intent

For this validation to be possible, a set of minimum requirements (mandatory fields) is
defined for each type of policy, which will be checked whenever they arrive at the system.
So, for example, for this specific case 5.2, to create a service, it is necessary to validate the
service name, who can access it, if there is Internet access and if a performance has been
defined. Once the validated state is reached, the attempt moves on to the conflict phase.

29

Chapter 5

5.3 Conflict stage

In the context of the API- Policy Input Stage, after the validation process and the assign-
ment of a valid state to the intent, the conflict stage starts. As we can visualise in Figure
5.3, and intent when entering this stage can reach two states: conflict or no conflict.

User
. . Action
Conflict Detection
Conflict
Detected o O
Conflict

Mo
Conflict (j

Mo Conflict

Figure 5.3: Conflict stage

To assign these states, we need to get all the policies stored in the database related to the
new policy that arrives in the system. To do so, it was necessary to create a function that,
based on the "IntentType", see section 4.3, returns all the policies already implemented
that are of the same type as the new one in the system. This starts the process of checking
and comparing fields so that no conflicts occur.

To better understand how conflicts are detected, an example of a conflict for the use case
indicated in 4.6 is presented in Figure 5.4, where the user has to be alerted about the
conflict in question.

"IntentType": "CreateService",
“Intent_Target": "Service",
"Conditions™: [{
"Policy": "CreateService",
"Constraints™:[{

h
1

“Intent_State": "new intent'}

"Domains";_[{=

"Perfomance": "4000",
"Acess": ['1","6"],
"Bool": True

"IntentType": "CreateService",
"Intent_Target": "Service",
"Conditions": [{
"Policy": "CreateService",
"Constraints":[{
"Domains”; J{-

"ACESS™ A
"Bool": True

1
1

"Intent_State™: "new intent"}

Figure 5.4: Conflict Intent

The conflict presented is based on the idea that no two services can exist with the same
name. Therefore, when the user inserts a new service, a check is performed, which consists
of obtaining all the services already implemented to verify if the new service’s name already
exists. In short, the conflict phase compares the fields of the new policy with the fields
of policies of the same type in order to check if there is any disagreement regarding, for

30

Framework

instance, redundant names or services sharing the same hosts. With these checks, we will
not have conflicting rules in the system.

Once the validation and conflict phase is over, the application goes on to compilation and
installation.

5.4 Compilation stage

As mentioned in section 4.1, the API- Policy Runtime Enforcer is responsible for creating
requests to install new policies on the network, of which the compilation phase is part. As
soon as the intent is assigned the valid and conflict-free status, it enters the compilation
phase where the high-level language, previously defined through the Intent structure 4.4, is
converted into a language interpretable by the controller. As we can see in Figure 5.5, an
intent entering the compilation phase can reach two states: compiled or failed compilation.

User
Action

Compilation

Compiled Failed

Compilation
error

Successfully
compiled

A

—O

Figure 5.5: Compilation stage

If the controller supports the desired information, i.e. some commands support the user’s
request, it proceeds for installation. However, sometimes, the controller may not support
the request, or the operations may not be available, which leads to a compile failure state.
For example, in Figure 5.6, we visualise the compilation process for a request to create
services with bandwidth limit and Internet access.

"IntentType": "CreateService",
"Intent_Target": "Service”,

"Conditions™: [{ | - |
"Policy": "CreateService”, Compjlation

"Constraints”:[{ "source_ns": 192.168.2.1,
"Domains": [{” "destination_ns""192.168.2.6",
“Name™: "s2", "max_rate™4000
"Perfomance”: "4000",
“Acess™ ['1.6"]
"Bool™: True}]

1

"Intent_State”: "new intent”

Figure 5.6: Compilation of priority Intent

The structure presented on the left side of Figure 5.6, during the compilation phase, is

31

Chapter 5

divided into several requests that will achieve the intent’s goal. One of these requests is
the definition of the bandwidth limit supported by the service, in this case, 4000 Mbit
sec between hosts 1 and 6.

5.5 Installation stage

As mentioned in the 4.1 section, responsible for the communication between the system
and the SDN controller, the installation phase is part of the API-TestBed. This component
dictates which resources the system supports, i.e. which applications can or cannot install.
The information that the user wants to insert in the network arrives from the previous API,
where the data is already in a format supported by the controller, and here the installation
request is made to the ODL. As we can see in Figure 5.7, an intent when entering the
installation stage can reach two states: installed or not installed.

Installation
- 1} 3 E- = mm
Installation I
’ O : Problem I
INot Instaled l

\;—_

Successfully
installed

Figure 5.7: Installation stage

As for the requests supported by this phase, these are:

e Create a new Switch

e Delete a Switch

e Connect the two chosen switch between each other

e Create the chosen number of Network Namespace and connect it to the Switch
e Create and add a flow

e Delete the chosen flow throw the id

e Get all topology from the system

e Get information from all ports in the system

e Create QoS

e Delete QoS

32

Framework

To implement these applications, it was necessary to work with technologies such as Open
vSwitch and Openflow. The former is a switch platform that supports standard manage-
ment interfaces and opens up routing functions for programmatic extension and control.
There are components in the Open vSwitch (OVS) distribution that allow users to create a
virtual network with multiple switches and manage traffic between them using OpenFlow.
In addition, OpenFlow allows network controllers to determine the path of network pack-
ets through a network of switches. In this way, it is possible to implement the use cases
presented in the 4.6 section.

5.6 Monitoring stage

The monitoring phase checks if the existing requests in the database (installed requests) are
being fulfilled or an error. As we can see in Figure 5.8, an intent entering the monitoring
phase can reach three states: intent in practice- the intent is being fulfilled; infringing
intent- the intent was violated; identify a solution- the system tries to find a solution so
that the intent can work properly again.

Monitorin
-— - il - = - L=

Keep

Maonitarin
Monitoring m/ :

|

I ™ =l
Solution I v

|

Intent in Practice

Monitoring

Identify solution

Infringing

1ry 10 Solve {/’\\ intent
>

Infringing Intent

-

Figure 5.8: Monitoring stage

This phase was not developed due to the work that was arising and the fact of having to do
further research on the intents structure 4.4 and the state diagram 4.5. Moreover, in ad-
dition to this investigation, the validation, conflict detection, compilation and installation
process ended up taking up much of the time, taking away what I had planned to devote
to this phase. However, the research presented in the literature section 2.2.2 will serve as
a basis (along with future research), for the implementation of this component, in order
to detect anomalies in the network and solve them, with the help of intelligent algorithms,
without user intervention.

5.7 User action

The last component of the state diagram is the user action. In this phase, the virtual
assistant, Mycroft, communicates with the user for any error in the system, from validation
failures, conflicts, compilation, installation and monitoring. As we can see in Figure 5.9,
for this component, there are three different states: Pend User Action- a state where user

33

Chapter 5

intervention is required; Request Assistant- the assistant intervenes to collect information;
Uninstall- uninstalls intent.

User Action
I- = o -
i
! g
i Update
| Intent l
i
1
i
! 0
I Request Assistant l
! 0
S T~ Request
| User assitant
Action l
|
|
| Pend User Action 1
! {
[0
! t
I [
(] Uninstall [

Figure 5.9: User action

The virtual assistant receives several requests from the system (alerts or information about
the state of the attempt) to inform the user and decide what actions to take.

With the state diagram defined and implemented, it was possible to create a scenario that
proves that the user can ask an intelligent assistant to control the network.

5.8 Use cases implementation

In this section, the whole process of the use cases mentioned in section 4.6 is presented.
As mentioned in the mentioned section, the presented use case, service creation, involves
other sub-use cases like network access control, performance definition and Internet access.
Figure 5.10, depicts the process involving this request between the user, the assistant and
the system.

34

Framework

User Assistant System

Communicate to the -)

virtual assistant the » Input processing Vi!ﬁ“;ﬁ;g:”?ﬁ;;‘nd
creation of a service P p .
. ¥

Communicate service | Execute the service
name B Service Name creation process

h.

Inform who can access —i Access Control

¥
r
¥
r

Communicate service
Performance
performance
A

Inform about internet
access Internet access

Send the service
| creation request to the
system

—_—

@< MNotify user

S —

EY

Figure 5.10: Use case - implementation

After pronouncing the service creation request on the assistant, a negotiation process starts
between the two entities to obtain all the necessary information for the service creation.
This information is summarised in the name of the service, who can access it if there is a
bandwidth limit, and finally if there is access to the Internet. After the user indicates all
the information, the assistant starts the service creation process by sending the request to
the system.

As mentioned in section 4.4, the first step of the system is the validation phase, where
the request goes through a set of rules that validate the completion of the fields in the
request. For this use case, the validation phase consists of checking the information about
the service name and who can access it, as these are the minimum mandatory requirements
for creating a service. To do so, it validates if the name field is different from null and
associates the hosts that can access the service with the Internet Protocol (IP)s, present
in the mapping table 4.5, in order to check if they exist. Besides checking these fields, it
validates the internet access and performance variables. If any problem occurs, such as
missing or wrong information, like hosts that do not exist, the user is notified.

Once validated, the conflict phase begins, where a request is made to the database to check

35

Chapter 5

if there are services on the network. If yes, it is necessary to compare the existing services
with the new ones so that no services have the same name. Besides that, it is analysed
if the hosts associated with the service are involved in other services to alert the user.
Finally, if the service name already exists, a conflict is generated that forces the user to
create another service with a different name.

When we enter the compilation phase, we get all the information from the user to know
which requests will be created. First, a topology request is made to API-TestBed, which
returns all the information of hosts and switches involved in the network. In Figure 5.11
we can view an excerpt of the topology request response.

"network-topology": {
"topology": [

"topology-id": "flow:1",
"node": [
{
'node-id": "openflow:187953924712512",
‘opendaylight-topelogy-inventory:inventory-nede-ref": "/opendaylight-inventory:nodes/
opendaylight-inventory:nodelopendaylight-inventory:id="openflow:107953924712512'1",
"termination-point®: [

{

"tp-id": "openflow:187953924712512:13"

"opendaylight-topology-inventory:inventory-node-connector-ref": "/
opendaylight-inventory:nodes/opendaylight-inventory:node
[opendaylight-inventory:id="openflow:107953924712512"]/
opendaylight-inventory:node-connector
[opendaylight-inventory:id="openflow:1087953924712512:13"]"

h

Figure 5.11: Excerpt from the topology request

Once this information is available, a request is made to API-TestBed with information
about the network statistics. This request returns information about the Throughput
between all the links that make up the network every 15 seconds. In Figure 5.12 we can
check which statistics are returned by the APIL.

"openflow:34076490910029:107": {
"BytesReceived": 0,
"BytesTransmitted": 1026,
"Name": "b3-eth7",
"PacketsReceilved": 0,
"PacketsTransmitted": 9,

"PortConnectionDuration": 722,
"PortFeature”: "ten-gb-fd copper”,
"PortNumber": "187",

"PortSpeed”: "10.8 GB/s",
"Throughput": 0.80013680000000000002

Figure 5.12: Statistics captured by API-Testbed

In turn, after knowing the value of this variable for all links, we create a graph (based
on the topology information) with all nodes and assign as the weight between nodes the
variable Throughput. This way, we have a complete graph where the nodes represent the
network hosts and switches and the vertices the Throughput between them. An example
of this graph is shown in Figure 5.13, where the hosts are represented by blue and switches
by yellow.

36

Framework

107953924712512
‘l'__ﬂ21383190?\33iff1\1

34076490910029

Figure 5.13: Topology graph

Based on this graph, we apply the Dijkstra algorithm in order to find the shortest path
between nodes based on the weights assigned to the vertices [9]. This algorithm will return
the best paths between hosts that can access the service to insert it without jeopardising
existing services that have performance dependencies on the network itself. Figure 5.14,
represents the path returned by this algorithm between host 103 and 107.

Figure 5.14: Topology graph - Dijkstra algorithm

Once we know the service route, we verify if there will be Internet access and, if so, we
obtain the best path between the hosts involved in the service and the one that allows
Internet access. Finally, we verify if the user has defined some performance for the service.
If so, the request is created between the hosts present in the service with the maximum
limit set by the user. If no performance was provided, then the service is not limited, being
able to enjoy the maximum network capacity. Having all compiled requests, these are sent
to the API-TestBed, where they are installed. In Figure 5.15 you can see the information
needed to add a flow.

37

Chapter 5

{"switch":"openflow:196100289772364",
"in-port":"101",

"out-port":"12",
"ipv4-src":"192.168.2.1",
"ipv4-dst":"192.168.2.2"}

Figure 5.15: Request to add flows

With this request, the service is created between the hosts that the user wants to access.
For example, in the case of an Internet connection, the connection between the hosts
involved in the service and the host associated with the Internet is created.

As for performance, the request is based on the following information 5.16.

{"source ns":"b1l NS1","destination_ns":"b2_NS2", "max_rate":"4000"}

Figure 5.16: Request to QoS

Knowing the limit set by the user, the service capacity is limited by sending the presented
information to the controller.

5.9 Conclusion

The selected technologies were the first focus of this chapter. This selection resulted in
technologies such as Mycroft, ODL and Apache CouchDB. Next, it was presented how
the implementation of the validation, conflicts, compilation, installation, monitoring and
user action states were faced. For each phase, the possible states were presented, and an
example was given. Finally, the use case was described with the help of a diagram that
explained the interaction between the system components, and it was explained for each
state machine phase how the system approached the user’s intent, with the help of some
images to contextualize.

38

Chapter 6

Experimentation

This chapter aims to present the tests chosen to evaluate the system performance. The
elaboration of these tests considers the implemented functionalities of the system, the user
being able to communicate with the assistant in several ways. In each test instance, the user
was placed in ideal conditions to perform it, and only the necessary information regarding
the interaction with the assistant was transmitted to create the desired environment for
the system evaluation. This test evaluates the functionality of creating a service. The test
consists in putting the user in a situation that leads him to create a service. For that, he
needs to interact with the virtual assistant.

6.1 Creation of the test environment

To apply this test, an environment was created that allows the system to control the
network according to the user’s wishes. This environment was generated with the help of
the software OVS, which through the commands shown in Figure 6.1, allowed the creation
of the hosts and switches on which the new rules will fall.

Create Switch
curl --header "Content-Type: application/json" --request POST --data '{"Switchs";"1", "Name":"b1",
"GW":"192.168.2.156"} http://127.0.0.1:5000/createSW

Connect Switches
curl --header "Content-Type: application/json" --request POST --data '{"NameSwitch1":"b1",
"NameSwitch2":"b2"}' http://127.0.0.1:5000/connSW

Create Hosts

curl --header "Content-Type: application/json" --request POST --data '{"Switch":"b1","Hosts":"3","Flag":"2"}
http://127.0.0.1:5000/create

Figure 6.1: Setting up the environment

Three switches were created, connected and to which three Hosts were assigned to Switch
1 and Switch 2, and a Host to Switch 3 (representing the Internet access). Thus, the
environment was as shown in Figure 6.2.

39

Chapter 6

Figure 6.2: Testing environment

Once created, there are no active services on the network. To prove this, a test is performed,
with the help of the iperf tool, between Hosts 1 and 6 to prove that there are no active
services. Figure 6.3, shows the test between these two Hosts.

sudo ip netns exec b2_NS6 iperf3 -c 192.168.2.1 -p 4001 --cport 4006

iperf3: error - unable to connect to server: No route to host

Figure 6.3: Connection test between Host 1 and 6

Running the server on Host 1, we try to connect the client Host 6 and iperf does not
know the route, as expected. This fact extends to all the Hosts involved in the network.
With this, the user can communicate to the virtual assistant the desire to create a service
between Host 1 and Host 6.

6.2 Create a service

To demonstrate the communication between the user and the virtual assistant, the dia-
logues are presented in text form, where the blue sentences represent the user’s voice input
and the yellow sentences the virtual assistant’s voice output. For example, figure 6.4 shows
two examples of how the user can ask Mycroft to create a service.

40

Experimentation

Figure 6.4: Test-Create a service

Once requested to create the service, the virtual assistant asks the name of the service to
be created. The user can answer in several ways, as we can see in Figure 6.5.

Figure 6.5: Test-Name a service

After providing the service name (sl), the user is asked who can access it. In order to
facilitate the interaction with the user, using the mapping table 4.5, the user can indicate
through the numbers assigned to the network hosts who can access it. For example, figure
6.6 shows some ways of indicating who can access the service.

Figure 6.6: Test-Access a service

In this way, the user indicates the users (User 1 and User 6) without needing to know
the IP, which will later be assigned to the respective users. The next question addresses
Internet access, which can be seen in Figure 6.7.

Figure 6.7: Test-Internet access in service

Once the user indicates whether or not they want the service to access the Internet, the
virtual assistant asks if they wish to indicate the performance of the service. Again, the
user can speak in various ways to the assistant, as can be seen in Figure 6.8

41

Chapter 6

Figure 6.8: Test-Performance in service

Once the request is concluded, it goes to validation (As shown in section 5.2), where the
parameters for creating the service are checked. To test the validation, two examples
are presented. In the first, the user does not indicate which hosts access the service,
answering the remaining questions of the virtual assistant correctly. Thus, the assistant,
when validating the parameters, verifies the absence of the hosts and alerts the user to the
lack of information, see Figure 6.9.

Figure 6.9: Test-Missing parameters

Upon being notified, the user will have to redo the service creation request. For the second
test, the user indicates hosts not present in the network, either because they do not exist or
are inactive. The virtual assistant, when trying to match the IPs with the names, detects
that these do not exist, notifying the user, as shown in Figure 6.10.

Figure 6.10: Test-Unknown users

Once again, when the user is informed that the service users do not exist, he will have to
recreate the request. If the request is validated, it enters the conflict phase (As shown in
section 5.3), where two conflict examples are presented for this test. The first one is when
the user creates a service with the same name as a service already implemented. For this
case, the assistant verifies all the existing services in the network and looks if there is any
with the same name as the new service. If so, it alerts the user of the error, as we can see
in Figure 6.11.

Figure 6.11: Test-Service name already exists

When the virtual assistant notifies the user about the error, the user will reformulate the
request. The second conflict serves more as a warning than an error, that is, if the user,
when creating the service, indicates some host that is present in another service, Mycroft
alerts to that fact, without the request ceasing to be implemented, see Figure 6.12.

42

Experimentation

Figure 6.12: Test-Users involved in other services

Once validated and without conflicts, the request goes to the build phase (As shown in
section 5.4). In this phase, there are several requests made to both the API-TestBed and
the database in order to convert into rules the policies coming from the user. If any of the
requests fails, the compilation phase fails, and there is the need to alert the user, as we
can see in Figure 6.13.

Figure 6.13: Test-Compilation error

When we successfully get the rules compiled, we move on to the installation phase. In this
phase, the rules are sent to API-TestBed, which in turn communicates with ODL to install
them. After they are installed, they are stored in the CouchDB database, and the user
is notified that the application has been successfully installed. The figure 6.14 shows the
case of successfully installed (As shown in section 5.5).

Figure 6.14: Test-Request successfully installed

To analyse whether the service was created with the restrictions made by the user, let us
assume that answered the questions asked by Mycroft as follows:

e Service Name: sl

e Access: host 1 and 6

e Internet Access: Yes

e Performance: yes, 4000

By interpreting this information and bypassing all the processes that constitute the state
machine 4.4, and were talking about earlier, the system creates the service. To test whether
the service has been created between hosts 1 and 6, with Internet access and bandwidth
limit set, we again use the iperf tool, in the same context mentioned above 6.3. Figure 6.15
shows the result of the service created between Host 1 and Host 6, with the bandwidth
limit close to the user-defined value, 4 Mbits/sec.

43

Chapter 6

Connecting to host 192.168.2.1, port 4001
5] local 192.168.2.6 port 4886 connected to 192.168.2.1 port 4801

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

ID]
5]
5]
5]
5]
5]
5]
5]
5]
5]
5]

Interval
0.00-1.
1.00-2.

.00-3.
.08-4,
.00-5.
.00-6.
.00-7.
.00-8.00

.00-9.00

.00-16.00

00
(615}
00
0o
00
6o
(615}

Interval
0.00-160.00
0.00-10.00

SBEC
sec
s5ec
sec
secC
SBEC
sec
SBEC
sec
s5ec

Transfer
1.62 MBytes
573 KBytes
445 KBytes
445 KBytes
509 KBytes
382 KBytes
636 KBytes
318 KBytes
573 KBytes
509 KBytes

Transfer
5.91 MBytes
5.57 MBytes

Bitrate

13.6 Mbits/sec
.69 Mbits/sec
.65 Mbits/sec
.65 Mbits/sec
.17 Mbits/sec
.13 Mbits/sec
.21 Mbits/sec
.61 Mbits/sec
.69 Mbits/sec
.17 Mbits/sec
Bitrate

4.96 Mbits/sec
4.68 Mbits/sec

B

ol WA W

Retr

115
7
63
T4
74
60
83
69
73
T2

Retr
760

Cwnd
5.66
4.24
7.7
18.4
.83
.24
.66
.83
1.41
.66

KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes

sender
receiver

Figure 6.15: Connection test between Host 1 and 6(after service created)

Looking at the average Bitrate, we realise that the bandwidth value is not the same as
the one set by the user but slightly close. However, if we work with values higher than
Mbits/sec, the difference is no longer remarkable. If another host tries to access this service,
it will not recognise the route. To check Internet access, we open the iperf server on Host
7 (representing Internet access) and the client on Host 1 or Host 6, see Figure 6.16.

Connecting to host 192.168.2.7, port 4007
5] local 192.168.2.6 port 4086 connected to 192.168.2.7 port 4007

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

ID]
5]
5]
5]
5]
5]
5]
5]
5]
5]
5]

ID]
5]
5]

Interval
0.00-1.
.00-2.
.08-3.
.08-4.
.08-5.
L00-6.
L00-7.
.00-8.00
.00-9.00
.00-10.00

(616}
(616}
0o
0o
0o
0o
(615]

L=« T = RV B - P N)

Interval
0.00-160.00
0.00-10.00

sec
sec
sec
sec
sec
sec
sSeC
sSeC
sSeC
sec

Transfer
1.87 MBytes
382 KBytes
445 KBytes
445 KBytes
636 KBytes
509 KBytes
445 KBytes
445 KBytes
445 KBytes
573 KBytes

Transfer
6.10 MBytes
5.59 MBytes

Bitrate

15.7 Mbits/sec
3.13 Mbits/sec
.65 Mbits/sec
.65 Mbits/sec
.21 Mbits/sec
.17 Mbits/sec
.65 Mbits/sec
.65 Mbits/sec
.65 Mbits/sec
.69 Mbits/sec
Bitrate

5.11 Mbits/sec
4.69 Mbits/sec

3
3
5
4
&
&
&
4

Retr

113
73
93
63
70
71
78
63
76
66

Cwnd
5.66
18.4
4.24
5.66
19.8
.24
.66
.24
BB
.66

KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes
KBytes

sender
receiver

Figure 6.16: Connection test between Host 6 and 7(Internet Access)

The same happens if we define the client as host 1. As for any host outside the service
that tries to access the Internet, access is denied.

6.3 Conclusion

This chapter describes the tests applied to the developed framework. Initially, it was
detailed how to generate the test environment, with three switches and seven hosts (one
host representing the Internet access). Once the environment was created, it was verified
that there were no active services. Next, the user demonstrated a way to create a service
using the voice assistant, Mycroft. Then, several ways of interacting with the different
questions of the assistant were presented, and, in the end, it was proved that the system

44

Experimentation

could reach any state of the state diagram presented in section 4.4, finally reaching the
success case. Once the service was created, we used, again, the iperf tool to prove its
existence.

45

Chapter 7

Conclusion and Future Work

With the functionalities that virtual assistants have been offering, the horizons where
they can be applied are increasing. This dissertation aims to implement features for a
voice assistant in the context of industrial environments. Furthermore, the user experience
improves through voice interfaces since he does not need to know the area.

The implementation of the project focused on developing a dialogue for the virtual assis-
tant, Mycroft, that allows the user to orchestrate networks. From the dialogue, all the
logic of the implementation of the application was made, from validation processes, con-
flicts and compilation, to the installation and later monitoring. As explained throughout
the document, there was a need to dedicate more time to the design of the system (namely,
the state machine and the intent structure) since a well-defined basis positively influenced
the smooth running of the system. It was necessary to dedicate this time, which eventually
exhausted the time allotted for other stages, which was the case of the time allotted for the
implementation of the monitoring phase. This phase consisted of applying the concepts
studied of ML in the reviewed literature to solve problems on the network without the
need for human intervention. However, the research done will serve for future use.

Looking at the initially proposed objectives, with the help of Mycroft, a voice assistant
based on voice recognition models, we identify the user’s actions. Then, we mapped these
intentions to understand the objective and implement it, and finally, we integrated the
whole system to demonstrate that the functionalities are developed.

A test environment was created, and then the use case of service creation was applied. The
different ways for the user to interact with the system to make the request were presented.
Besides, all the possible causes of failure and success were presented. The presented results
showed that the user could successfully control the network through voice commands,
namely creating services. Advances in this technology bring benefits both to companies,
who see the services Information technology (IT) become more relieved, and users can
enjoy the service more quickly with the assistant’s help.

The presented system can constantly be improved with more features for the user to
orchestrate networks, and it can also be updated with new technologies that make the
system more efficient. Improve the dialogues between the virtual assistant and the user to
make a more user-friendly interface. Implement the monitoring phase, do more research
on optimization algorithms and problem identification in networks, and then implement
these algorithms based on the study done.

46

References

1]

2]

3]

4]

[5]

(6]

7]

8]
19]

[10]

[11]

[12]

[13]

What is the adapt intent parser? https://mycroft-ai.gitbook.io/docs/
mycroft-technologies/adapt, last accessed on 12/2020.

Pedro Amaral, Joao Dinis, Paulo Pinto, Luis Bernardo, Joao Tavares, and Henrique S.
Mamede. Machine learning in software defined networks: Data collection and traffic
classification. Proceedings - International Conference on Network Protocols, ICNP,
2016-December(February 2019):91-95, 2016.

Isaac Ampratwum. An Intelligent Traffic Classification based optimized routing in
SDN-IoT : A Machine Learning Approach, 2020.

Tecnologia: Assistentes virtuais e o futuro da iot. https://transformacaodigital.
com/tecnologia/assistentes-virtuais-e-o-futuro-da-iot/, last accessed on
12/2020.

Assistentes virtuais: Como as empresas estao lidando com o avanco dessa tecnologia.
https://digital.consumidormoderno.com.br/assistentes-virtuais-ed242/,
last accessed on 12/2020.

Abdelhadi Azzouni, Raouf Boutaba, and Guy Pujolle. NeuRoute: Predictive Dynamic
Routing for Software-Defined Networks. arXiv, 2017.

Douglas Comer and Adib Rastegarnia. OSDF: A framework for software defined
network programming. CCNC 2018 - 2018 15th IEEE Annual Consumer Communi-
cations and Networking Conference, 2018-Janua(October 2017):1-4, 2018.

Apache couchdb. https://couchdb.apache.org, last accessed on 12/2020.

On the optimization of dijkstra’s algorithm. https://arxiv.org/pdf/1212.6055.
pdf.

Experiential networked intelligence (eni); context-aware policy management gap
analysis. https://www.etsi.org/deliver/etsi_gr/ENI/001_099/003/01.01.01_
60/gr _ENI003v010101p. pdf.

Zhong Fan and Ran Liu. Investigation of machine learning based network traffic clas-
sification. Proceedings of the International Symposium on Wireless Communication
Systems, 2017-August:1-6, 2017.

Yanjun Li, Xiaobo Li, and Osamu Yoshie. Traffic engineering framework with machine
learning based meta-layer in software-defined networks. pages 121-125. Institute of
Electrical and Electronics Engineers Inc., 12 2014.

Cristian Cleder Machado, Juliano Araujo Wickboldt, Lisandro Zambenedetti
Granville, and Alberto Schaeffer-Filho. Policy authoring for software-defined net-
working management. Proceedings of the 2015 IFIP/IEEE International Symposium
on Integrated Network Management, IM 2015, pages 216-224, 2015.

47

https://mycroft-ai.gitbook.io/docs/mycroft-technologies/adapt
https://mycroft-ai.gitbook.io/docs/mycroft-technologies/adapt
https://transformacaodigital.com/tecnologia/assistentes-virtuais-e-o-futuro-da-iot/
https://transformacaodigital.com/tecnologia/assistentes-virtuais-e-o-futuro-da-iot/
https://digital.consumidormoderno.com.br/assistentes-virtuais-ed242/
https://couchdb.apache.org
https://arxiv.org/pdf/1212.6055.pdf
https://arxiv.org/pdf/1212.6055.pdf
https://www.etsi.org/deliver/etsi_gr/ENI/001_099/003/01.01.01_60/gr_ENI003v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/ENI/001_099/003/01.01.01_60/gr_ENI003v010101p.pdf

Chapter 7

[14] Abdehamid Abdelhadi Mansor, Wan M.N.Wan Kadir, Toni Anwar, and Shamsul
Sahibuddin. Analysis of adaptive policy-based approach to avoid policy conflicts. Pro-
ceedings - Asia-Pacific Software Engineering Conference, APSEC, 1:754-759, 2012.

[15] Abdehamid Abdelhadi Mansor, Wan M.N.Wan Kadir, and Hidayah Elias. Policy-
based approach for dynamic architectural adaptation: A case study on location-based

system. 2011 5th Malaysian Conference in Software Engineering, MySEC 2011, pages
171-176, 2011.

[16] An overview of machine learning and its applications. https://www.researchgate.
net/publication/289980169_An_Overview_of_Machine_Learning_and_its_
Applications, last accessed on 12/2020.

[17] An introduction to ml/ai. https://www.cisco.com/c/
dam/m/cs_cz/training-events/webinars/tech-club-webinars/
Artificial-Intelligence-Machine-Learning-Deep-Learning.pdf, last accessed
on 12/2020.

[18] Supervised vs unsupervised vs reinforcement. https://www.aitude.com/
supervised-vs-unsupervised-vs-reinforcement/, last accessed on 12/2020.

[19] Moscow prioritization. https://www.productplan.com/glossary/
moscow-prioritization/, last accessed on 01/2021.

[20] Mycroft. https://mycroft.ai, last accessed on 12/2020.

[21] Network intent composition. https://github.com/opendaylight/nic, last accessed
on 12/2020.

[22] Controlador opendaylight. https://www.gta.ufrj.br/ensino/eel879/trabalhos_
vf_2018_2/opendaylight/, last accessed on 12/2020.

[23] Introduction: What is onos? https://wiki.onosproject.org/display/0ONOS/ONOS,
last accessed on 12/2020.

[24] Onos platform: An overview. https://opennetworking.org/onos/, last accessed on
12/2020.

[25] Intent framework. https://wiki.onosproject.org/display/ONOS/Intent+
Framework, last accessed on 12/2020.

[26] Policy-based mnetwork management. http://www.ittoday.info/Articles/
Policy-Based_Network_Management/Policy-Based_Network_Management.htm,
last accessed on 12/2020.

[27] Meenaxi M. Raikar, S. M. Meena, Mohammed Moin Mulla, Nagashree S. Shetti, and
Meghana Karanandi. Data Traffic Classification in Software Defined Networks (SDN)
using supervised-learning. Procedia Computer Science, 171(2019):2750-2759, 2020.

[28] 94% of businesses will use iot by the end of
2021: Microsoft report. https://theiotmagazine.com/
94-of-businesses-will-use-iot-by-the-end-of-2021-microsoft-report-cf94ad11£173.

[29] Mohammad Reza, Mohammad Javad, Seyed Raouf, and Reza Javidan. Network Traf-
fic Classification using Machine Learning Techniques over Software Defined Networks.
International Journal of Advanced Computer Science and Applications, 8(7), 2017.

48

https://www.researchgate.net/publication/289980169_An_Overview_of_Machine_Learning_and_its_Applications
https://www.researchgate.net/publication/289980169_An_Overview_of_Machine_Learning_and_its_Applications
https://www.researchgate.net/publication/289980169_An_Overview_of_Machine_Learning_and_its_Applications
https://www.cisco.com/c/dam/m/cs_cz/training-events/webinars/tech-club-webinars/Artificial-Intelligence-Machine-Learning-Deep-Learning.pdf
https://www.cisco.com/c/dam/m/cs_cz/training-events/webinars/tech-club-webinars/Artificial-Intelligence-Machine-Learning-Deep-Learning.pdf
https://www.cisco.com/c/dam/m/cs_cz/training-events/webinars/tech-club-webinars/Artificial-Intelligence-Machine-Learning-Deep-Learning.pdf
https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/
https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
https://mycroft.ai
https://github.com/opendaylight/nic
https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2018_2/opendaylight/
https://www.gta.ufrj.br/ensino/eel879/trabalhos_vf_2018_2/opendaylight/
https://wiki.onosproject.org/display/ONOS/ONOS
https://opennetworking.org/onos/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
http://www.ittoday.info/Articles/Policy-Based_Network_Management/Policy-Based_Network_Management.htm
http://www.ittoday.info/Articles/Policy-Based_Network_Management/Policy-Based_Network_Management.htm
https://theiotmagazine.com/94-of-businesses-will-use-iot-by-the-end-of-2021-microsoft-report-cf94ad11f173
https://theiotmagazine.com/94-of-businesses-will-use-iot-by-the-end-of-2021-microsoft-report-cf94ad11f173

References

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

[39]

Mohammed Sameer and Bhargavi Goswami. Experimenting with ONOS scalability
on software defined network. Journal of Advanced Research in Dynamical and Control
Systems, 10(14):1820-1830, 2018.

Wikipedia-software defined networking. https://pt.wikipedia.org/wiki/
Software_defined_networking, last accessed on 12/2020.

What-is-sdn. https://www.ciena.com.br/insights/what-is/What-is-SDN_pt_
BR.html, last accessed on 12/2020.

O que ¢é sdn? entenda o conceito de software defined
network. https://stefanini.com/pt-br/trends/artigos/
entenda-o-conceito-de-software-defined-network, last accessed on 12/2020.

O que sao redes definidas por software (sdn) e quais
as vantagens? https://blogbrasil.westcon.com/
o-que-sao-redes-definidas-por-software-sdn-e-quais-as-vantagens, last

accessed on 12/2020.
Sepia. https://sepia-framework.github.io, last accessed on 12/2020.
Susi. https://dev.susi.ai, last accessed on 12/2020.

Sebastian Troia, Alberto Rodriguez, De Dios, Rodolfo Alvizu, Francesco Musumeci,
and Guido Maier. Machine-Learning-Assisted Routing in SDN-based Optical Net-
works.

Vijay Varadharajan, Kallol Karmakar, Uday Tupakula, and Michael Hitchens. A
policy-based security architecture for software-defined networks. IEEE Transactions
on Information Forensics and Security, 14(4):897-912, 2019.

Changhe Yu, Julong Lan, Zehua Guo, and Yuxiang Hu. DROM: Optimizing the
Routing in Software-Defined Networks with Deep Reinforcement Learning. I[IEEE
Access, 6:64533-64539, 2018.

49

https://pt.wikipedia.org/wiki/Software_defined_networking
https://pt.wikipedia.org/wiki/Software_defined_networking
https://www.ciena.com.br/insights/what-is/What-is-SDN_pt_BR.html
https://www.ciena.com.br/insights/what-is/What-is-SDN_pt_BR.html
https://stefanini.com/pt-br/trends/artigos/entenda-o-conceito-de-software-defined-network
https://stefanini.com/pt-br/trends/artigos/entenda-o-conceito-de-software-defined-network
https://blogbrasil.westcon.com/o-que-sao-redes-definidas-por-software-sdn-e-quais-as-vantagens
https://blogbrasil.westcon.com/o-que-sao-redes-definidas-por-software-sdn-e-quais-as-vantagens
https://sepia-framework.github.io
https://dev.susi.ai

	Introduction
	Goals
	Contributions
	Document structure

	Technologies, Literature and Related Work
	SDN & Policies Based Networking Management
	SDN
	Policies Based Networking Management

	Machine Learning in network management
	Machine Learning-concepts
	Related Work

	Virtual Assistants
	Conclusion

	Methodology & Work Plan
	Methodology
	Work plan
	First Semester
	Second Semester

	Conclusion

	System Design
	Requirements & Architecture
	Internal system operation
	Intent Structure
	Intent State Machine
	Mapping table
	Use cases
	Conclusion

	Framework
	Technology selection
	Validation stage
	Conflict stage
	Compilation stage
	Installation stage
	Monitoring stage
	User action
	Use cases implementation
	Conclusion

	Experimentation
	Creation of the test environment
	Create a service
	Conclusion

	Conclusion and Future Work

