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Audio Features for Music Emotion 
Recognition: a Survey 

Renato Panda, Ricardo Malheiro and Rui Pedro Paiva 

Abstract— The design of meaningful audio features is a key need to advance the state-of-the-art in Music Emotion Recognition 
(MER). This work presents a survey on the existing emotionally-relevant computational audio features, supported by the music 
psychology literature on the relations between eight musical dimensions (melody, harmony, rhythm, dynamics, tone color, 
expressivity, texture and form) and specific emotions. Based on this review, current gaps and needs are identified and strategies 
for future research on feature engineering for MER are proposed, namely ideas for computational audio features that capture 
elements of musical form, texture and expressivity that should be further researched. Finally, although the focus of this article is 
on classical feature engineering methodologies (based on handcrafted features), perspectives on deep learning-based 
approaches are discussed. 

Index Terms—affective computing, music emotion recognition, audio feature design, music information retrieval 

——————————   �   —————————— 

1 INTRODUCTION

usic Emotion Recognition (MER) is attracting in-
creasing interest from the Music Information Re-

trieval (MIR) research community. In fact, as pointed out 
by David Huron nearly 20 years ago, “music’s preeminent 
functions are social and psychological”, and so “the most 
useful retrieval indexes are those that facilitate searching 
in conformity with such social and psychological func-
tions. Typically, such indexes will focus on stylistic, mood, 
and similarity information” [1].  

There is already a significant corpus of research on dif-
ferent aspects of MER, e.g., classification using symbolic 
files [2], single-label classification using raw audio excerpts 
[3-5], multi-label classification [6-7], dimensional ap-
proaches using regression [8, 9], music emotion variation 
detection [10, 11], lyrics-based MER [9], bimodal/multi-
modal approaches [2, 4], following either classical hand-
crafted feature design and machine learning [5] or deep 
learning [10] approaches, with specific MER datasets, e.g., 
[5, 8, 11]. Nevertheless, several limitations and problems 
still need to be addressed [5].  

Most recent studies have devoted their attention to the 
MER problems above, datasets and improved machine 
learning techniques, while applying already existing audio 
features developed in other contexts, such as speech recog-
nition or music genre classification.  

On the other hand, in a previous work [5], we sustained 
that features specifically suited to emotion detection are 
needed to narrow the so-called semantic gap [12] and their 
lack hinders the progress of research on MER. In that work, 
we designed and implemented novel acoustic features, tar-
geting particularly music expressivity and texture, which 
led to 9% classification improvement (F1-score). Hence, 

 
1 http://www.music-ir.org/mirex/ 

this study supports the argument that, to further advance 
the audio MER field, research needs to focus on what we 
believe is its main, crucial, and current problem: to capture 
the emotional content conveyed in music through better 
designed audio features.   

This perspective might as well be transversal to most 
MIR problems, as pointed out in [13], where the authors 
affirm that ”stagnation on most MIR task results is already 
acknowledged by MIR community”. There, the first hy-
pothesis raised is that “MIR approaches should perhaps be 
more musical knowledge-intensive” since, currently, 
mostly generic approaches are followed based on “the ap-
plication of information retrieval solutions for music, with-
out relying on musically meaningful features” [13]. As 
Pedro Domingos boldly states, “at the end of the day, some 
machine learning projects succeed and some fail. What 
makes the difference? Easily the most important factor is 
the features used” [14].   

State-of-the-art solutions are still unable to accurately 
solve simple problems, such as classification with few 
emotion classes (e.g., four to five). This is supported by 
both existing studies [5, 15] and the small improvements 
observed in the 2007-2019 Music Information Retrieval 
Evaluation eXchange (MIREX)1 Audio Mood Classification 
task, an annual comparison of MER algorithms. There, the 
best algorithm achieved 69.8% accuracy in a task compris-
ing five categories. Moreover, this score has remained sta-
ble for several years, which calls for methods that help 
breaking the so-called “glass ceiling” [12]. 

Given the crucial importance of emotionally-relevant 
audio features for MER, our goal in this survey is threefold: 
• to summarize the most significant knowledge on the 

relations between music and emotion; this review is 
structured according to eight musical dimensions 
(melody, harmony, rhythm, dynamics, tone color, ex-
pressivity, texture and form) and sets the ground to 
identify needs in the design of emotionally-relevant 
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audio descriptors; 
• to review the current computational audio features 

that are relevant for MER, particularly the ones avail-
able in different open-access audio frameworks, e.g., 
Marsyas, MIR Toolbox, PsySound and Essentia; 

• to unveil possible directions for future research on the 
topic of feature engineering for MER (based on the 
above reviews and the identified research needs), as 
a key effort to break the glass ceiling on audio MER. 

Over the years, other authors have offered surveys on 
Music Emotion Recognition. The most recent we are aware 
of is the one by Yang et al., from 2018 [15]. Other reviews 
have been published already several years ago, e.g., the 
one from 2012 by Yang and Chen [16] or erlier, e.g., [17]. 
The common characteristic between all of them is that they 
provide broad MER reviews, tackling topics such as emo-
tion paradigms, approaches for the collection of ground-
truth data, types of MER problems (e.g., single-label, 
multi-label or music emotion variation detection) and 
overviewing different MER systems. On the contrary, ra-
ther than providing a broad but less specific survey, our 
approach is to offer an updated, deep and specific review 
on one key MER problem: the design of emotionally-rele-
vant audio features, something that deserved only a some-
what shallow overview in the abovementioned works. 

 To further clarify the focus of this survey, it is im-
portant to mention that approaches based on deep learning 
techniques are out of the scope of this article, since the 
breadth of this topic would probably merit a survey in it-
self. Nevertheless, possible research directions on deep 
learning for MER are briefly discussed. For the same rea-
son, features based on other modalities, e.g., symbolic or 
lyrics features, are not covered either. Regarding symbolic 
features, since some current approaches establish a bridge 
between the audio and the symbolic MER domains by in-
tegrating an audio transcription stage into the feature ex-
traction stage (as discussed in Section 4,  e.g., [5]), possible 
research directions on the exploitation of symbolic features 
on MER are also briefly discussed.  

To summarize, this survey is focused on emotionally-
relevant audio features for MER, covering both low-level 
(e.g., spectral features, MFCC, etc.), perceptual (e.g., 
rhythm clarity, modality, articulation, etc.) and high-level 
semantic features (e.g., genre, danceability, etc.) [18, 19]. 

This paper is organized as follows. Section 2 overviews 
the relations between music and emotion, which are de-
tailed in Section 3. There, we describe specific associations 
between each of the eight musical dimensions and differ-
ent emotions. Section 4 reviews the existing emotionally-
relevant computational audio features, organizing them by 
musical dimension. Section 5 discusses the gaps and needs 
to advance the study of audio feature design for MER and 
points directions for future research. Finally, Section 6 con-
cludes the article. 

2 MUSIC AND EMOTION: OVERVIEW 
Music has been with us since prehistoric times, serving as 
a language to express our emotions. This is regarded as 
music’s primary purpose [20] and the “ultimate reason 
why humans engage with it” [21]. 

Our analysis of the relations between music and emo-
tions is structured according to the fundamental musical di-
mensions usually presented in the musicology literature. 
Musical dimensions are typically organized into four to 
eight different categories (depending on the author, e.g., 
[22, 23]), each representing a core concept. Here, we em-
ploy an eight-category organization comprising: melody, 
harmony, rhythm, dynamics, tone color (or timbre), ex-
pressivity, musical texture and musical form. 

The organization of these dimensions is not strict. Many 
musical features are somehow interconnected and may in-
teract and touch other dimensions. Thus, it can be argued 
that some of them could be placed in different musical cat-
egories. In any case, through this organization, we can un-
derstand: i) where features related to emotion belong; ii) 
which features can be extracted from audio signals with 
the existing algorithms; iii) and thus, which musical di-
mensions may lack computational models to extract audio 
features relevant to emotion. 

The relations between music and emotions have been 
debated for millennia, with associations between modes 
and emotions found in ancient texts, from Indian, Middle 
Eastern (e.g., Persian), and far eastern (e.g., Japanese) tra-
ditions [21]. Natya Shastra (Nāṭya Śāstra), an ancient San-
skrit Hindu text describing performance arts, estimated to 
have been written somewhere between 500 B.C. and 500 
A.D. [24] suggests elements such as modes and musical 
forms as able to express particular emotions. 

In ancient Greece, Plato advocated that “good rhythm 
wait upon good disposition, […] the truly good and fair 
disposition of the character and the mind” [25]. In addi-
tion, Plato considered harmony as capable of moving the 
listener, arguing that both “rhythm and harmony find their 
way to the inmost soul and take strongest hold upon it” 
[25]. Aristotle supported the same ideas, stating that 
“rhythms and melodies contain representations of anger 
and mildness, and also of courage and temperance” [26], 
while different harmonies could range from relaxing to 
“violently exciting and emotional” [26]. 

Scientific studies focusing on the relations between mu-
sic and emotions started more than a century ago. One of 
these early examples is a study by Hevner, where the au-
thor evaluated the influence of musical factors such as 
rhythm, pitch, harmony, melody, tempo and mode to each 
of the eight emotion clusters earlier proposed by her [27]. 
Along with such studies, music psychologists have pro-
posed different emotion paradigms (e.g., categorical or di-
mensional) and related taxonomies (e.g., [27, 28]).  

Up to this day, this research problem is still far from 
completely solved. Nevertheless, several contemporary re-
search works had already identified possible correlations 
or in some cases causal associations between specific mu-
sical elements and emotions. One of the most widely ac-
cepted is mode: major modes are frequently related to 
emotional states such as happiness, whereas minor modes 
are often associated with sadness or anger [29]; simple, 
consonant, harmonies are usually happy, pleasant or re-
laxed. On the contrary, complex, dissonant, harmonies re-
late to emotions such as excitement, tension or sadness, as 
they create instability in a musical piece [4]. Many other 
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musical elements have been related to emotion, namely, 
e.g., timing, dynamics, articulation, timbre, pitch, interval, 
melody, harmony, tonality, rhythm, mode, loudness, vi-
brato or musical form [4, 30]. 

Over the last decades, several associations have been 
identified, relating specific emotional responses to the mu-
sical dimensions described above. The next section details 
the most relevant findings in this area. For some musical 
elements, the research can be somewhat contradicting, 
which can be caused by many factors, from different re-
search methodologies to differences in the scope of the 
studies (e.g., induced or perceived emotion, significant dif-
ferences in methodologies, population, and others). This is 
also caused by the complexity of the topic and indicates 
that further research is needed. 

Most of the associations that we describe below pertain 
to music emotion perception2 or transmission, since most 
studies tackled that problem. Still, some studies do not 
clearly state whether their findings concern perceived or 
induced emotion. 

 3 RELATIONS BETWEEN MUSICAL DIMENSIONS 
AND EMOTIONS 

In this section we review the known relations between the 
eight musical dimensions and different emotions.  

3.1 Melody and Emotion 
TABLE 1 

RELATIONS BETWEEN MELODIC ELEMENTS AND EMOTIONS. 
ME Value Associated emotions 

Pitch 

High Surprised, angry, fearful, happy 
[33] and others [32]; increased 
tense arousal [32] 

Low Sad, bored, pleasant, increased 
valence [32]; sad, tender [33] 

Pitch 

variation 

Large Happy, active, surprised [32]; 
happy [33] 

Small Angry, bored, disgusted [32]; 
angry [33] 

Pitch range 
Wide Joyful, fearful, scary [32]; happy, 

fearful [33] 
Narrow Sad [32]; sad, tender [33] 

Melodic 

intervals 

Large Powerful [34] 
Minor 2nd Melancholic [34], sad [33] 
Perfect 4th, major 
6th, minor 7th 

Carefree [32]; happy (perfect 4th) 
[33] 

Perfect 5th Carefree, active [32], happy [33] 
Octave Carefree, positive, strong [32] 

Melodic 

direction 
and contour 

Ascending Happy, fearful, surprised, angry, 
tense [32]  

Descending Sad, bored, pleasant [32]  

Melodic 

movement 

Stepwise motion Dull melodies [35]  
Intervallic leaps 
or skips 

Exciting melodies [35] 

Stepwise and 
skipwise leaps 

Peaceful melodies [35] 

 
2 Emotion in music can be regarded as: i) perceived, as in the emotion an 

individual identifies when listening; ii) induced or felt, regarding the emo-
tional response a user feels when listening, which can be different from the 

Melody can be defined as a horizontal succession of 
pitches (perceptual correlate of fundamental frequency), 
perceived by listeners as a single musical line.  

Given its central role in a musical piece, being (one of) 
the most memorable elements in a song, associations be-
tween melodic cues and emotions are expected and sug-
gested since Plato. Some of the strongest relations are 
found between wider melodic ranges (pitch ranges) and 
energetic emotions such as joy [31] or fear [32], while nar-
row ranges are associated with lower arousal emotions, 
e.g., sadness, melancholy or tranquility [32]. Other melodic 
elements, such as ascending versus descending melodic 
contours, have been studied and related to several emo-
tions [27]. However, some of these are disputed in other 
studies, arguing that the relation is more complex and in-
volves interactions with other elements such as rhythm 
and modes [32]. These findings have been observed in 
cross-cultural studies, where listeners have also associated 
joy with simpler melodies and sadness with more complex 
ones [31], even when exposed to unfamiliar tonal systems. 

Table 1 summarizes the known relations between mel-
ody and emotion. There, ME stands for Musical Element. 

3.2 Harmony and Emotion 
If melody is said to be the horizontal part of music, har-
mony refers to its “vertical” aspect, i.e., the sound pro-
duced by the combination of various pitches (notes or 
tones) in chords. 

TABLE 2  
RELATIONS BETWEEN HARMONY AND EMOTIONS. 

ME Value Associated emotions 

Harmonic 

perception 

(harmonic 

intervals) 

Consonant 

(simple) 

Normally associated with positive 

emotions, e.g., happy [33], serene and 

dignified [27], pleasant, tender [32] 

Dissonant 

(complex) 

Associated mostly with negative 

emotions: vigorous, sad [27][33], 

unpleasant, tense, fearful, angry [32] 

High-pitched Happy, more active/powerful [32]  

Low-pitched Sad, less powerful [32] 

Harmony 

(tonality) 

Tonal In joyful, dull or peaceful melodies, 

pleasant [32] 

Atonal In angry melodies [32][33] 

Using chromatic 

scales 

In sad and angry melodies [32] 

Harmony 

(mode) 

Major Positive emotions, e.g., happy, 

serene, tender [32]; happy [33] 

Minor Negative emotions, e.g., sad, 

disgusted and angry [32]; sad [33] 

 
Harmony, together with rhythm and melody, was 

thought as able to elicit emotions since ancient times. Con-
sonant harmonies are usually associated with happiness, 
tranquility, serenity, while dissonant complex harmonies 
are related with negative emotional states, e.g., tension and 
sadness, due to the instability they create in the piece [4]. 

In addition, major modes have been frequently related 
with positive emotions (e.g., happiness), while minor 

perceived one; iii) or transmitted, representing the emotion that the per-
former or composer aimed to convey [8]. 

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on November 26,2020 at 17:18:50 UTC from IEEE Xplore.  Restrictions apply. 



1949-3045 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2020.3032373, IEEE
Transactions on Affective Computing

4 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,  MANUSCRIPT ID 

 

modes are linked to negative ones (e.g., sadness) [32]. 
Some authors such as Cook et al. have tried to further un-
derstand this affective response to major/minor chords 
and resolved/unresolved chords, concluding that this 
emotional association is “neither due to the summation of 
interval effects nor simply arbitrary, learned cultural arti-
facts, but rather that harmony has a psychophysical basis 
dependent on three-tone combinations” [36]. 

The relations between harmony and emotion are sum-
marized in Table 2. 

3.3 Rhythm and Emotion 
TABLE 3 

RELATIONS BETWEEN RHYTHM AND EMOTION. 
ME Value Associated emotions 

Tempo 

Fast Several, among which happy, 

graceful, vigorous, pleasant, 

active, angry, fearful, energy 

arousal and tension arousal [32]; 

happy, anger, fear  [33]; high 

arousal, e.g., happy, stressful, 

amusing [39] 

Slow Several, among which serene, 

dreamy, dignified, serious, 

tranquil, sentimental, dignified, 

sad, peaceful [32]; sad, tender 

[33] 

Tempo 

and Note 

Values 

High tempo (150 

bpm) and sixteenth 

notes 

High arousal: happy, amusing, 

expressive, stressful [39] 

Moderate to fast 

tempo (120 or 150 

bpm) and sixteenth 

notes 

Surprised [39] 

Slow to moderate 

tempo (90 bpm) and 

whole and half notes 

Sad, boring, relaxing, 

expressionless [39] 

Rhythm 

Types 

Regular/smooth Happy, glad, serious, dignified, 

peaceful, majestic [32]; happy, 

anger  [33] 

Irregular/rough Amusing, uneasy [32] 

Complex Angry [32] [33] 

Varied Joyful [32]; fear [33] 

Firm Dignified, vigorous, sad, 

exciting3 [27], sad [32]  

Flowing/fluent Happy, dreamy, graceful, serene 

[27], gay [32] 

Rests 

After tonal closure (a 

sequence which 

starts and ends in the 

same key) 

Lower tension [32] 

After no tonal closure Higher tension than observed if 

after tonal closure [32] 

 
Rhythm represents the element of “time” in music, the pat-
terns of long and short sounds and silences found in music. 
 

3 Sometimes opposite emotions are associated to the same musical ele-
ment, even in the same study, as found here. In this specific case, Hevner 
used 142 listeners to associate types of rhythm (firm or flowing) to 8 emo-
tion clusters. Both “sad” and “exciting” clusters were related with firm 

Rhythm, together with melody and harmony, is one of 
the dimensions most associated to the emotional expres-
sion in music. In fact, some authors consider it the most 
important one, e.g., [37, 38]. Rhythm elements, such as the 
augmentation of tempo (from 90 to 150 bpm), has been 
shown to increase happiness and surprise measures (i.e., 
induce) [39], while decreasing sadness. In the study, the 
authors used two groups of words to study different emo-
tion types: 3 “basic emotions” where users reported what 
they felt (i.e., induced emotion) on a scale of 1 to 8; and 4 
“descriptive words” (tension, expressiveness, amusement 
and attractiveness) to classify (i.e., perceived emotion) the 
musical piece on a scale of 1 to 5.  

In addition to tempo, the rhythmic unit of a piece has 
also been shown to influence the emotional message of a 
song. As an example, variations “of the rhythm of the mel-
ody without altering the musical line, harmonics or beat” 
[39], such as changes from whole and half notes (theme) to 
eighth or sixteenth, as well syncopated notes, were associ-
ated with specific emotions. Similar studies have sup-
ported the idea that rhythm is somehow influencing the 
emotional information in music, e.g., [40]. 

The associations between rhythm and emotion are sum-
marized in Table 3, based on the reviews presented in [32, 
33, 41], as well as the other mentioned papers. 

3.4 Dynamics and Emotion 
TABLE 4 

RELATIONS BETWEEN DYNAMICS AND EMOTION. 
ME Value Associated emotions 

Dynamic 

levels 

(forte, 

piano, etc.) 

High/Loud Excited, triumphant, strong/powerful, 

tense, angry, energy arousal and 

tension arousal [32]; happy, anger [33] 

Low/Soft Melancholic, peaceful, solemn, fearful, 

tender, sad, lower intensity, higher 

valence [32]; sad, fear, tender [33] 

Accents 

and 

changes in 

dynamic 

levels 

Large Fearful [32] [33] 

Small Happy [33], pleasing, active [32] 

Rapid 

variations 

Playful, pleading, fearful [32] 

No changes Sad, peaceful, dignified, happy [32] 

Crescendo, 

decrescendo, 

accelerando, 

ritardando 

Said to be useful to describe 

perceptual and emotional processes 

[44]; anger (accelerando) [33] 

 
Dynamics represents the variation in loudness or softness 
of notes in a musical piece. 

The influence of dynamics, namely loudness and loud-
ness variations, in music emotions (both induced and per-
ceived) have been studied by some researchers, some of 
which relate them with specific emotion states. Empiri-
cally, an association of loud music (high intensity) with 
powerful and intense emotions such as joy, anger or ten-
sion seems logical. In contrast, soft music is mostly linked 
to calm, serene or sad music. Such associations have been 
verified by several researchers [42, 38, 43]. Variations in 

rhythm, although the associated weight was lower than the remaining two 
clusters (dignified and vigorous). 
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loudness over a musical piece have also been studied. 
Namely, larger variations are usually more negative [43], 
while smaller variations are more positive [32]. 

Table 4 summarizes the associations between dynamics 
and emotion. 

3.5 Tone Color and Emotion 
Tone color (or timbre) is related to lower level elements 
and properties of the sound itself, e.g., amplitude and spec-
trum, essential to differentiate instruments and voices.  

Several sound properties have been associated with 
emotional states. A rounder amplitude envelope is related 
with negative emotions such as disgust, sadness or fear [38, 
32], while a sharper one gives rise to positive emotions 
such as happiness or surprise [32], with some authors also 
linking it to fear [38]. The number of harmonics has also 
been studied, where a lower number is associated with 
boredom, happiness or sadness [32], while a high number 
of harmonics is usually related with emotions with high 
arousal and negative valence, e.g., anger, disgust, fear [32]. 

The tone color of specific instruments has also been sus-
pected to carry emotional expression cues. In fact, compos-
ers and movie and marketing directors select specific in-
struments to express distinct emotions. This idea has been 
supported by studies such as [45]. In this respect, Hailstone 
et al. state that “timbre (instrument identity) inde-
pendently affects the perception of emotions in music after 
controlling for other acoustic, cognitive, and performance 
factors” [46]. These works highlight the importance of 
spectral centroid (brightness) as a “significant component 
in music emotion”. Moreover, spectral centroid deviation, 
spectral shape, attack time and even/odd harmonic ratio 
were all considered relevant [45]. 

A summary of the relations between tone color and 
emotion is presented in Table 5. 

 
TABLE 5 

RELATIONS BETWEEN TONE COLOR (TIMBRE) AND EMOTION. 
ME Value Associated emotions 

Amplitude 

envelope 

Round Disgusted, bored, potent, fear, 
sadness [32] 

Sharp Pleasant, happy, surprised, active, 
angry [32]; angry [33] 

Spectral 

envelope (no. 

harmonics) 

Low Bored, happy, pleasant, sad [32] 
High Active, angry, disgusted, fearful, 

potent, surprised [32] 

Spectral 

characteristics 

(e.g., spectral 

centroid, etc.) 

Positive 
correlation 

Positive emotions: happy, heroic, 
comic, joyful [45, 47] 

Negative 
correlation 

Negative emotions: sad, scary, shy, 
depressed [45, 47] 

3.6 Expressivity and Emotion 
Expressive techniques in music encompass several orna-
ments and features that are used by both composers (to en-
rich their pieces) and performers (to express their emotions 
at specific moments). Both parts have been studied and re-

 
4 From [50], showing only results based on listeners ratings, where sig-

nificant correlations (p<0.05) were observed. The indicated associations 
can be either positive or negatively correlated. 

lated with specific emotional states. As an example, stac-
cato articulation is normally associated with higher inten-
sity and energetic [32], mostly negative as with fear and 
anger [38]. On the other hand, legato is associated with 
softness [32] and sadness [38].  Similar research has been 
conducted regarding vibratos and emotion expression, ob-
serving that “singing an emotional passage influences 
acoustic features of vibrato when compared with isolated, 
sustained vowels” [48]. To assess this, classical singers 
were asked to sing passages of their preference containing 
both high and low levels of emotion. The analysis of the 
recordings shows significant changes in vibrato character-
istics such as frequency modulation rate and extent. 

Regarding emotion expression by the performer, some 
studies highlighted that artists typically use different orna-
ments, such as accentuating specific notes considered 
happy, whereas not doing the same for sadness [49]. In ad-
dition, Timmers and Ashley studied the usage by flute and 
violin performers of specific ornamentations such as trills, 
turns, mordente, arpeggio and others, when they intended 
to express one of four specific affect terms (happiness, sad-
ness, anger and love), and how these emotions were per-
ceived by listeners [50]. The accuracy between intended 
versus rated emotions was lowest for happiness. The per-
formers employed more complex ornamentations for an-
gry and the least complex for sadness. 

Table 6 summarizes the main relations between expres-
sivity and emotion. 

TABLE 6 
RELATIONS BETWEEN EXPRESSIVITY AND EMOTION. 
ME Value Associated emotions 

Articulation 

Legato Soft [32], tender, sad [32][33]  

Staccato Intense, energetic, active, 

fearful, angry [32]; happy [33] 

Ornamentation4 

Single 

appoggiatura 

[pos.] Flute: lovely, sad [50] 
[neg.] Flute: happy, angry [50] 

Double 

appoggiatura 

[neg.] Violin: sad [50] 

Trill [pos.] Flute: angry [50] 
[neg.] Flute: lovely, sad [50] 

Turn [pos.] Violin: happy [50] 
Mordent No significant correlation was 

observed [50] 
Slide No significant correlation was 

observed [50] 
Arpeggio [pos.] Flute: angry [50] 

[neg.] Flute: lovely, sad [50] 
Substitute [pos.] Violin: sad [50] 

Vibrato 

Higher frequency 

modulation (FM) 

rate + higher FM 

extent + lower 

modulation 

variability  

Observed when classical 

singers sang “more emotional 

passages”5 (as opposed to 

neutral songs) [48]; 

Happy (medium-fast rate, 

medium extent) [33] 

Higher mean F0 + 

higher mean 

intensity 

Observed in “more emotional 

passages” [48] 

5 As explained earlier, no specific emotions were selected, instead sub-
jects were asked to sing “emotional passages” of their preference and the 
voice signals were analyzed. 
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3.7 Texture and Emotion 
Musical texture refers to the way the rhythmic, melodic 
and harmonic information produced by musical instru-
ments and voices is combined in a musical composition. It 
is thus related to the combination and relations between 
the musical lines or layers (one or more instruments with 
the same role) in a song. 

Fewer studies have been conducted regarding musical 
texture and emotions and of these some contain contradict-
ing results. In one of the oldest studies, Kastner and 
Crowder evaluated the emotional differences between 
monophonic (melody only) and homophonic textures 
(melody with block chords accompaniment) by children 
aged three to twelve. In that study, the unaccompanied 
version (monophonic) was rated as more positive [51]. A 
similar result was observed by Webster and Weir, where 
nonharmonized melodies were considered happier [52]. 
However, further studies attempting to replicate Kastner 
and Crowder’s findings observed exactly the opposite re-
sult. There, not only children but also adult subjects con-
sidered monophonic sounds as less happy than accompa-
nied ones [53, 54]. A possible explanation to this contra-
dicting results are the different versions of “dense tex-
tures” used in each [55], where very basic/simple chords 
and a single instrument were used in the studies observing 
negative emotions, while the others used more complex 
(and thus, with higher density) accompaniments taken 
from published songbooks. These differences may influ-
ence greatly other musical dimensions (e.g., harmony) 
making it harder to correctly compare the results. 

Polyphonic textures, containing several voices, have 
also been explored recently, suggesting that music with a 
higher number of voices is perceived as more positive. 
Such musical excerpts were rated as “sounding more 
happy, less sad, less lonely, and more proud” [55]. 

Although further studies are required to better under-
stand exactly how musical texture influences emotion, the 
existing ones have demonstrated that it can indeed influ-
ence emotion in music either directly or by interacting with 
other features such as tempo and mode [55].  

Table 7 summarizes the associations found between 
musical texture and emotions. 

 
TABLE 7 

RELATIONS BETWEEN TEXTURE AND EMOTION. 
ME Value Associated emotions 

Texture 

type 

Monophonic More positive [51] and 
happier [52] than homophonic 

Homophonic Happier [53, 54] than 
monophonic. 

Number of 

layers and 

density 

Music with higher 
number of voices 
(polyphonic) 

“more happy, less sad, less 
lonely, and more proud” [55]  

3.8 Form and Emotion 
Musical form or musical structure refers to the overall 
structure of a musical piece and describes the layout of a 
composition as divided into sections. 

Some studies have investigated possible relations be-
tween musical form and emotion. It seems that forms with 

lower complexity are associated with positive emotions 
[56] such as relaxation, joy or peace [31]. On the contrary, 
higher complexity forms usually result in more negative 
emotions such as sadness [31], which can be higher in 
arousal (e.g., aggressive) or lower (e.g., melancholy) de-
pending on the dynamism (high or low, respectively) [56]. 

Some researchers explored the relation between emo-
tion and form by changing the order of sections (in classical 
music) but no relevant results were obtained [57, 58]. 

The few associations found between musical form and 
emotions are presented in Table 8. 

 
TABLE 8 

RELATIONS BETWEEN FORM AND EMOTION. 
ME Value Associated emotions 

Form 

complexity 

Low Positive emotions [56], Joy, 
peace, relaxation [31] 

High Sadness [31] 

High complexity and 
low dynamism 

Depression, melancholy [56] 

High complexity and 
high dynamism 

Aggressiveness, anxiety [56] 

3.9 Interactions between Musical Dimensions 
As described in the previous sections, each musical ele-
ment may influence distinct emotional expressions. In fact, 
emotional content in music is not defined exclusively by a 
single element but is built by the merging and interaction 
of several factors. Beyond studying associations concern-
ing musical dimensions and emotions independently, 
these interactions between several musical dimensions and 
the associated emotional responses have also been studied 
and reviewed, e.g., [59, 60].  

Such works unveil interesting indirect relations and in-
teractions regarding the variation of specific elements and 
the corresponding emotional changes, as well as possible 
interactions between elements, resulting in different emo-
tional states. One example is the interaction between 
tempo and mode [60]: high tempo and minor mode results 
in only high arousal, while the same high tempo, but with 
major mode, results in high arousal and positive valence. 

Several other authors have studied possible interac-
tions, such as mode and tempo [37], the influence of pitch 
height, intensity and tempo in valence [42], the influence 
of rhythm, melodic contour and melodic progression in 
happy music [32] or interactions between tempo, texture 
and mode [52]. 

4 COMPUTATIONAL AUDIO FEATURES IN MER 
In general terms, a feature is a characteristic part of some-
thing. Features help to distinguish one thing from another, 
by providing the essential descriptive primitives by which 
individual objects or works may be identified [61]. 

In musical terms, features may be characteristic of a mu-
sical work, of a movement, of a composer, of a very specific 
musical dimension, of a genre, and so forth. As Huron 
states, “what constitutes a feature depends on the scope of 
our gaze” [61]. For illustration, features can be employed 
to represent any aspect that is relevant to the identification 
of a song, from the chords, to abstract statistics regarding 
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physical aspects of the sound wave, rhythm information 
and others. Summing it up, the goal of feature extraction is 
to reduce the information of songs to descriptors that can 
accurately describe them [15]. 

Over the last decades, several algorithms have been 
proposed to extract information from audio signals. These 
features have been developed to solve a myriad of prob-
lems, from speech recognition, to content-based retrieval, 
indexing, and fingerprinting. More recently, a few works 
studied how the human perception of music characteristics 
(e.g., tempo) correlates with these audio descriptors, e.g., 
[62], [63]. It was observed that some features, “in particular 
those related to loudness, timbre, harmony, and rhythm 
show high correlations with perceived emotions” [63]. 
Still, such studies are usually carried with small datasets or 
specific genres and further research is needed. 

Nowadays, most of these feature extraction algorithms 
are implemented in state-of-the-art audio frameworks, 
commonly employed in most MIR studies. In this survey, 
we have reviewed the emotionally-relevant features from 
4 common audio frameworks (Marsyas [64], MIR Toolbox 
(MIR TB) [65], PsySound [66] and Essentia [67]), based on 
the identified relations between different musical elements 
and emotions (as discussed in Section 3). The available 
frameworks vary greatly in many aspects, from user-
friendliness to computational efficiency or the number of 
implemented algorithms. Some are aimed to research, re-
quiring specific environments (e.g., MATLAB), while oth-
ers are designed with performance in mind, more suited to 
be used in industry. For an in-depth review, see [68, 69]. 

In the following, we catalog the audio features that have 
been proposed in the literature over the years and are now 
available in these frameworks, organizing them according 
to the musical dimensions to which they are closest. Be-
sides these frameworks, which implement most of the 
state-of-the-art audio features, in a recent work, we have 
contributed with a set of emotionally-relevant audio fea-
tures, comprising mostly expressivity and musical texture 
feature [5]. As will be discussed, those features are notice-
ably underrepresented in the discussed audio frameworks. 

Many of the features are extracted repeatedly for 
smaller excerpts (analysis windows) of the entire audio 
clip, returning series of data. These frame-level features are 
usually integrated using statistical moments such as mean, 
standard deviation, skewness and kurtosis, as well as max-
imum and minimum, before being used with machine 
learning techniques. 

4.1 Melody Features 
In this section we describe the audio features that capture 
information primarily related with melody and its compo-
nents, as summarized in Table 9. 

Pitch 
Pitch represents the perceived fundamental frequency of a 
sound. It is one of the three major auditory attributes of 
sounds, along with loudness and timbre. Pitch (as an audio 
feature) typically refers to the fundamental frequency of a 
monophonic sound signal and can be calculated using var-
ious techniques. One common method to calculate pitch, 
employed in Marsyas, MIR Toolbox and Essentia is the 

YIN algorithm [70]. PsySound3 also implements Swipe 
and Swipe′ algorithms proposed by Camacho [71]. 

 
TABLE 9 

MELODY FEATURES. 
ME Feature Available in 

Pitch 

Pitch 
Marsyas, MIR TB, 

PsySound3, Essentia 

Virtual Pitch Features PsySound3 

Pitch Salience MIR TB, Essentia 

Predominant Melody F0 Essentia 

Pitch Content Marsyas (unconf.) 

Pitch variation MIDI Note Number stats [5] 

Pitch range Register Distribution [5] 

Melodic intervals n.a. n.a. 

Melodic direction 
and contour 

Note Smoothness stats  [5] 

Melodic movement Ratios of Pitch Trans. [5] 

Virtual Pitch Features  
Ernst Terhardt et al. proposed an algorithm to extract vir-
tual pitch, which is related to the psychoacoustics and 
modelling of the perceived pitch [72]. The PsySound3 
framework implements this algorithm. 

Pitch Salience 
The perception of pitch, in particular its salience, is a com-
plex idea that can be roughly explained as how noticeable 
(that is, strongly marked) is the pitch in a sound, and was 
proposed as a quick measure of tone sensation. Pure tones 
have an average pitch salience value close to 0 whereas 
sounds containing several harmonics in the spectrum have 
higher salience values. Different approaches have been 
proposed to extract pitch salience, e.g., [73]. This feature is 
present in the MIR Toolbox and Essentia.  

Predominant Melody F0 
Several authors have proposed algorithms to estimate the 
fundamental frequency (F0) of the predominant melody in 
both polyphonic and monophonic music audio signals. 
This is still an open research problem, and most of the au-
dio frameworks do not include polyphonic audio melody 
F0 extractors. Still, some of the proposed algorithms are 
nowadays available as separate tools, e.g., the MELODIA 
algorithm [73], provided in Essentia. 

Pitch content 
Tzanetakis proposed a set of simple features extracted 
from folded and unfolded pitch histograms (in the folded 
pitch histogram all notes are mapped to a single octave) to 
describe pitch information [64]:  
• FA0: Amplitude of the maximum peak of the folded 

histogram;  
• UP0: Period of the maximum peak of the unfolded his-

togram;  
• IPO1: Pitch interval between the two most prominent 

peaks of the folded histogram;  
• SUM: The overall sum of the histogram.  

Although the author described these features in his PhD 
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thesis about the Marsyas framework, the current docu-
mentation seems to ignore them. Due to this we could not 
confirm that the framework is able to extract them. 

MIDI Note Number (MNN) statistics 
Panda et al. [5] proposed 6 statistics based on the MIDI 
note number of each note: MIDImean, i.e., the average 
MIDI note number of all notes, MIDIstd (standard), 
MIDIskew (skewness), MIDIkurt (kurtosis), MIDImax (max-
imum) and MIDImin (minimum).  

These features rely on the melody transcription of the 
original audio waveform. In that work, the authors em-
ployed the works by Salamon and Gómez [73] and Dress-
ler [74] to estimate predominant fundamental frequencies 
as well as saliences. The resulting pitch trajectories are then 
segmented into individual MIDI notes following the work 
by Paiva et al. [75]. 

Register Distribution 
This class of features proposed in [5] indicates how the 
notes of the predominant melody are distributed across 
different pitch ranges. Each instrument and voice type 
have different ranges, which in many cases overlap. The 
authors selected 6 classes, based on the vocal categories 
and ranges for non-classical singers. The resulting metrics 
are the percentage of MIDI note values in the melody that 
are in each of the following registers: Soprano (C4-C6), 
Mezzo-soprano (A3-A5), Contralto (F3-E5), Tenor (B2-A4), 
Baritone (G2-F4) and Bass (E2-E4).  

In addition, the authors also propose the register distri-
bution per second, as the ratio of the sum of the duration 
of notes with a specific pitch range (e.g., soprano) to the 
total duration of all notes.  

Note Smoothness (NS) statistics  
Also related to the characteristics of the melody contour, 
Panda et al. [5] propose a note smoothness feature as an 
indicator of how close consecutive notes are, i.e., how 
smooth is the melody contour. To this end, the difference 
between consecutive notes (MIDI values) is computed. The 
usual 6 statistics are also calculated. 

Ratios of Pitch Transitions 
In Panda et al. [5], the abovementioned extracted MIDI 
note values are used to build a sequence of transitions to 
higher, lower and equal notes.  

The obtained sequence marking transitions to higher, 
equal or lower notes is summarized in several metrics, 
namely: Transitions to Higher Pitch Notes Ratio, Transi-
tions to Lower Pitch Notes Ratio and Transitions to Equal 
Pitch Notes Ratio. There, the ratio of the number of specific 
transitions to the total number of transitions is computed.  

4.2 Harmony Features 
In this section we describe the audio features that capture 
information primarily related with harmony and its com-
ponents (Table 10). 

Inharmonicity 
The inharmonicity feature is based on number of partials 
that are not multiples of the fundamental frequency. Inhar-
monicity influences the timbre perception of a given 
sound. One approach to compute this was proposed by 

Peeters et al. [76] and is implemented in Essentia. The MIR 
Toolbox measures the inharmonicity as the amount of en-
ergy outside the ideal harmonic series, which presupposes 
that there is only one fundamental frequency [65].  

 
TABLE 10 

HARMONY FEATURES. 
ME Feature Available in 

Harmonic 

perception 

(harmonic 

intervals) 

Inharmonicity MIR TB, Essentia 

Chromagram Marsyas, MIR TB, 

Essentia 

Chord Sequence Essentia 

Harmony 

(tonality) 

Tuning Frequency Essentia 

Key Strength MIR TB, Essentia 

Key and Key Clarity MIR TB, Essentia 

Tonal Centroid Vector MIR TB 

HCDF PsySound3 

Sharpness PsySound3 

Harmony (mode) Modality MIR TB, Essentia 

 

Chromagram 
The chromagram (implemented in Marsyas, MIR Toolbox 
and Essentia) is used to estimate the energy distribution 
along pitch classes. It consists of a 12-dimension vector, 
one for each note, from A to G# (12 semitone pitch classes), 
with the respective intensities in each of these classes based 
on the spectral peaks of the waveform. It is also known as 
Harmonic Pitch Class Profile (HPCP) [65]. 

Chord Sequence 
Extracting chords from an audio signal is a complex task, 
for which researchers have yet to propose robust solutions. 
The existing methods to estimate this are still experi-
mental, based on pitch class profiles [77]. Essentia imple-
ments an algorithm based on this research, able to compute 
the sequence of chords in a song. Such algorithm calculates 
the best matching major or minor triad and outputs the re-
sult as a string (e.g., A#, Bm, G#m, C). The existing imple-
mentation is marked as experimental and requires further 
work before being usable. 

Tuning Frequency 
The tuning frequency (available in Essentia) is an estima-
tion of the exact frequency (in Hz) on which a song is 
tuned. It is used as an intermediary step for HPCP calcula-
tion and key estimation but can also be applied for classi-
fication tasks such as western vs. non-western music [77]. 

Key Strength 
Key strength (MIR Toolbox and Essentia) consists in the 
computation of the strength of each possible key candidate 
to be the key of a given song (e.g., outputting scores be-
tween 0 and 1, or -1 to 1). The algorithm is based on the 
cross-correlation of the chromagram [77].  

Key and Key Clarity 
These features (implemented in the MIR Toolbox and Es-
sentia) give a broad estimation of tonal center positions 
and their respective clarity. This is based on peak picking 
in the key strength curve. There, the best key(s) is given by 
the peak abscissa, while the key clarity is the key strength 
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associated with the best keys, i.e., the key ordinate [65].  

Tonal Centroid Vector (6 dimensions) 
In the MIR Toolbox, the tonal centroid is represented as a 
6-dimensional feature vector. It corresponds to a projection 
of the chords along circles of fifths, of minor thirds and of 
major thirds [78]. It is based on the Harmonic Network or 
Tonnetz, which is a planar representation of pitch rela-
tions, where pitch classes having close harmonic relations 
such as fifths, major/minor thirds have smaller Euclidean 
distances on the plane. By calculating the Euclidean dis-
tance between successive analysis frames of tonal centroid 
vectors, the algorithm detects harmonic changes such as 
chord boundaries from musical audio.  

Harmonic Change Detection Function 
PsySound3 implements the Harmonic Change Detection 
Function (HCDF), which is a method for detecting changes 
in the harmonic content of musical audio signals proposed 
by Harte et al. [78]. It can be interpreted as the flux of the 
tonal centroid, as in the distance between the harmonic re-
gions of successive frames [78]. 

Sharpness 
Sound can be subjectively rated on a scale from dull to 
sharp, and sharpness algorithms attempt to model this. 
PsySound3 implements several algorithms [66], which are 
essentially weighted centroids of specific loudness.  

Modality 
Several algorithms exist to estimate modality, i.e., major vs. 
minor, returning either a binary label, e.g., major / minor, 
or a numerical value, e.g., between -1 (minor) and 1 (major) 
[65]. In the MIR Toolbox and Essentia, the typical strategies 
use the estimated strength of each key and consist of: 
• the difference between the strength of the strongest 

major and minor keys 
• the sum of all the differences between each major key 

and its relative minor key pair.  

4.3 Rhythm Features 
In this section we describe the audio features that capture 
information primarily related with rhythm and its compo-
nents (Table 11). 

Beat Spectrum 
The beat spectrum (MIR Toolbox) has been proposed as a 
measure of acoustic self-similarity as a function of time lag. 
It is computed from the similarity matrix, obtained by com-
paring the spectral similarity between all possible pairs of 
frames from the original audio signal [79]. 

Beat Location 
Different beat tracking algorithms have been proposed 
over time. These algorithms estimate the beat locations in 
an input signal. The Essentia framework implements sev-
eral beat tracker and rhythm extractor functions, e.g., the 
multi-feature beat tracker, which extends the idea of meas-
uring the level of agreement between a committee of dif-
ferent beat tracking algorithms in a song-by-song basis 
[80]. Marsyas implements IBT, a real-time/off-line tempo 
induction and beat tracking system based on a competing 

multi-agent strategy that considers parallel hypotheses re-
garding tempo and beats [81]. 

 
TABLE 11 

RHYTHM FEATURES. 
ME Feature Available in 

Tempo 

Beat Spectrum MIR TB 

Beat Location Marsyas, Essentia 

Onset Time MIR TB, Essentia 

Event Density MIR TB 

Average Duration of Events MIR TB 

Tempo Marsyas, MIR TB, 
Essentia 

PLP Novelty Curves Essentia 
HWPS Marsyas 

Tempo 

and Note 

Values 

Metrical Structure MIR TB 
Metrical Centroid and Strength MIR TB 

Note Duration statistics [5] 

Note Duration Distribution [5] 

Ratios of Note Duration Transitions [5] 

Rhythm 

Types 

Rhythmic Fluctuation MIR TB 

Tempo Change MIR TB 

Pulse / Rhythmic Clarity MIR TB, Essentia 

Rests n.a. n.a. 

Onset Time 
Another way of determining the tempo is based on the 
computation of an onset detection curve, showing the suc-
cessive bursts of energy corresponding to the successive 
pulses [76]. Peak picking is automatically performed on the 
onset detection curve, to show the estimated positions of 
the note onsets. This feature is provided by the MIR 
Toolbox and Essentia. In the case of the MIR Toolbox, its 
onset function is able to return the onset times using any 
of the following options: peaks, valleys, attack phase and 
release phase [65]. 

Event Density 
This feature (MIR Toolbox) estimates the “speed” of a song 
based on the average number of events in a given time win-
dow, i.e., the number of note onsets per second [65]. 

Average Duration of Events 
In the MIR Toolbox, the duration of events (e.g., a note) can 
also be estimated from its envelope. One possible approach 
to estimate this was proposed by Peeters et al. [76]. It con-
sists in detecting attack and release phases and measuring 
the time (in seconds) between them when the amplitude is 
at least 40% of the maximum. 

Tempo 
Several algorithms have been proposed to estimate tempo 
[19], i.e., the speed of a given musical piece, usually indi-
cated in beats per minute (BPM). This feature, available in 
Marsyas, the MIR Toolbox and Essentia through different 
alternative algorithms, is typically estimated by detecting 
periodicities from the onset detection curve [65].  

Predominant Local Pulse (PLP) Novelty Curves 
Grosche and Muller introduced a mid-level representation 
for capturing dominant tempo and predominant local 
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pulse even from music with weak non-percussive note on-
sets and strongly fluctuating tempo [82]. Essentia imple-
ments this feature. While the PLP curve does not represent 
high-level information such as tempo, beat level or location 
of onset positions, it serves as a tool that may be used for 
tasks such as beat tracking, tempo and meter estimation.  

Harmonically Wrapped Peak Similarity (HWPS) 
Tzanetakis described a set of rhythmic content features cal-
culated with recourse to the Beat Histograms of a song, 
which proved useful for musical genre classification [64]: 
• A0, A1: relative amplitude of the first (A0), and second 

(A1) histogram peak; 
• RA: ratio of the amplitude of the second peak divided 

by the amplitude of the first peak; 
• P1, P2: Period of the first and second peak in BPM; 
• SUM: histogram sum (indication of beat strength) 
Subsequently, HWPS, a feature following similar princi-
ples has been proposed and integrated into Marsyas to cal-
culate harmonicity by taking “into account spectral infor-
mation in a global manner” [83].  

Metrical Structure 
This feature provides a detailed description of the hierar-
chical metrical structure by detecting periodicities from the 
onset detection curve and tracking a broad set of metrical 
levels [65]. This extractor is used to calculate the meter-
based tempo estimation in the MIR Toolbox. 

Metrical Centroid and Strength 
These functions provide two descriptors derived from the 
above metrical analysis performed in the MIR Toolbox: 
• Dynamic metrical centroid: estimation of the metrical 

activity, based on the computation of the centroid of 
the selected metrical level [65]; 

• Dynamic metrical strength: an indicator of the clarity 
and strength of the pulsation. Estimates whether a 
“clear and strong pulsation, or even a strong metrical 
hierarchy is present”, or if the opposite is true, where 
“the pulsation is somewhat hidden, unclear” [65] or a 
complex mix of pulsations. 

Note Duration statistics 
Panda et al. propose note duration statistics (the same six 
ones, as proposed for the melody dimension), based on the 
duration of each note [5]. 

Note Duration Distribution 
Moreover, note duration distribution features are also pro-
posed in [5]: Short Notes Ratio, Medium Length Notes Ra-
tio and Long Notes Ratio. Similarly, the authors compute 
the note duration distribution per second, for each of the 
three duration classes defined. 

Ratios of Note Duration Transitions 
Finally, Panda et al. also propose ratios of note duration 
transitions [5], namely, Transitions to Longer Notes Ratio, 
Transitions to Shorter Notes Ratio and Transitions to Equal 
Length Notes Ratio.  

Rhythmic Fluctuation 
This feature (present in the MIR Toolbox) estimates the 
rhythm content of an audio signal. This estimation is based 
on spectrogram computation transformed by auditory 

modeling followed by spectrum estimation in each band 
[84], i.e., the rhythmic periodicity along auditory channels.  

Tempo Change 
An indicator of tempo change over time is estimated by 
computing the difference between successive values of the 
tempo curve in the MIR Toolbox. This feature is expressed 
independently from the choice of a metrical level by com-
puting the ratio of tempo values between successive 
frames and is expressed in logarithmic scale (base 2) [65]. 

Pulse / Rhythmic Clarity 
This feature (implemented in the MIR Toolbox and Essen-
tia) estimates the “rhythmic clarity”, an indicator of the 
clarity and strength found in the beats estimated by tempo 
estimation algorithms. Distinct heuristics exist to this esti-
mation. The most common uses the autocorrelation curve 
that is computed during tempo estimation [65]. Essentia 
computes an approximate metric calling it beats loudness.  

4.4 Dynamics Features 
In this section we describe the audio features that capture 
information primarily related with dynamics and its com-
ponents (Table 12). 

TABLE 12 
DYNAMICS FEATURES. 

ME Feature Available in 

Dynamic 

levels (forte, 

piano, etc.) 

RMS Energy Marsyas, MIR TB, 

Essentia 

Low Energy Rate Marsyas, MIR TB 

Sound Level PsySound3 

Instantaneous Level, Freq. 

and Phase 

PsySound3 

Loudness PsySound3, Essentia 

Timbral Width PsySound3 

Volume PsySound3 

Sound Balance MIR TB, Essentia 

Note Intensity statistics [5] 

Note Intensity Distribution [5] 

Accents and 

changes in 

dynamic 

levels 

Ratios of Note Intensity 

Transitions 

[5] 

Crescendo and Decrescendo 

metrics 

[5] 

Root-Mean-Square (RMS) Energy 
The RMS energy (implemented in Marsyas, the MIR 
Toolbox and Essentia) is used to measure the power of a 
signal over a window, or global energy. This is usually 
computed by taking the root-mean-square (RMS) [64]. It 
roughly describes the loudness of a musical signal. 

Low Energy Rate 
Low energy rate (available in Marsyas and the MIR 
Toolbox) measures the percentage of frames with less-
than-average energy [64]. This metric estimates the tem-
poral distribution of energy, in order to understand if this 
energy remains constant between frames or if some frames 
are more contrastive than others. 

Sound Level 
This descriptor (present in PsySound3) corresponds to the 
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power sum of the spectrum for each time window, ex-
pressed in decibel. At a higher level, when appropriately 
calibrated, this represents the unweighted sound pressure 
level of the signal in each analysis window [66]. 

Instantaneous Level, Frequency and Phase  
These features (implemented in PsySound3) consist in ap-
plying a Hilbert transform to the audio waveform, result-
ing in three different outputs: the instantaneous level, in-
stantaneous frequency and instantaneous phase. The in-
stantaneous level can be regarded as the sound pressure 
level derived from the Hilbert transform [66]. 

Loudness 
Sound loudness is the subjective perception of the intensity 
of a sound. This metric is measured in sones, where a dou-
bling in sones corresponds to a doubling of loudness [66]. 
Several loudness metrics have been proposed over the 
years, which are available in PsySound3 and Essentia. 

Timbral Width 
Timbral width (PsySound3) is one of six measures of tim-
bre proposed by Malloch in a method called loudness dis-
tribution analysis [85]. Timbral width can be regarded as 
“a measure of the fraction of loudness that lies outside of 
the loudest band, relative to the total loudness” [85].  

Volume 
Volume refers roughly to the perceived “size” of the 
sound, or the auditory volume of pure tones. This concept 
was first studied by Stevens [86] and, later on, Cabrera [87] 
developed a computational volume model for arbitrary 
spectra, which was integrated into PsySound3. In his work, 
Cabrera proposes two diotic volume models. The first uses 
a weighted ratio between the binaural loudness and sharp-
ness, which is the specific loudness centroid on the Bark 
scale. A second and better performing model uses a sim-
pler centroid to overcome limitations in the method of 
sharpness calculation selected by the authors [87]. 

Sound Balance 
Sound balance can be estimated through the Maximum 
Amplitude Position to Total Envelope Length Ratio (Max-
ToTotal and MinToTotal), provided in the MIR Toolbox 
and Essentia. This is a metric to understand how much the 
maximum amplitude (peak) in a sound envelop is off the 
center. To this end, the ratio between the index of the max-
imum (or minimum) value of the envelope of a signal and 
the total length of the envelope is computed. If the peak 
amplitude is found close to the beginning (e.g., decre-
scendo sounds), this ratio will be close to 0. A value of 0.5 
means that the peak is close to the middle and near 1 if at 
the end of the sound (e.g., crescendo sounds) [69]. 

Note Intensity statistics 
Panda et al. compute the usual 6 statistics based on the me-
dian pitch salience of each note [5]. 

Note Intensity Distribution 
In addition, Panda et al., 2018 propose note intensity dis-
tribution features [5]. This class of features indicates how 
the notes of the predominant melody are distributed across 
three intensity ranges, leading to the following features: 
Low Intensity Notes Ratio, Medium Intensity Notes Ratio 

and High Intensity Notes Ratio. The same features are also 
computed per second. 

Ratios of Note Intensity Transitions 
Panda et al., 2018 also propose ratios of Note Intensity 
Transitions: Transitions to Higher Intensity Notes Ratio, 
Transitions to Lower Intensity Notes Ratio and Transitions 
to Equal Intensity Notes Ratio [5]. 

Crescendo and Decrescendo (CD) metrics 
Panda et al. identify notes as having crescendo or decre-
scendo based on the intensity difference between the first 
and the second half of the note [5]. From these, the authors 
compute the number of crescendo and decrescendo notes 
(per note and per second). In addition, they compute se-
quences of notes with increasing or decreasing intensity, 
computing the number of sequences for both cases (per 
note and per sec) and the length of crescendo sequences in 
notes and in seconds, using the 6 usual statistics. 

4.5 Tone Color Features 
In this section we describe the audio features that capture 
information primarily related with tone color (timbre) and 
its components (Table 13). 

 
TABLE 13 

TONE COLOR (TIMBRE) FEATURES. 
ME Feature Available in 

Amplitude 

envelope 

Attack/Decay Time MIR TB, Essentia 

Attack/Decay Slope MIR TB 

Attack/Decay Leap MIR TB 

Zero Crossing Rate Marsyas, MIR TB, Essentia 

Spectral 

envelope (no. 

harmonics) 

Spectral Flatness Marsyas, MIR TB, Essentia 

Spectral Crest Factor Marsyas 

Irregularity MIR TB 

Tristimulus Essentia 

Odd-to-even 

harmonic energy 

ratio 

Essentia 

Spectral 

characteristics 

(e.g., spectral 

centroid) 

Spectral Centroid Marsyas, MIR TB, 

PsySound3, Essentia 

Spectral Spread MIR TB, PsySound3, Essentia 
Spectral Skewness MIR TB, PsySound3, Essentia 
Spectral Kurtosis MIR TB, PsySound3, Essentia 
Spectral Entropy MIR TB, Essentia 

Spectral Flux Marsyas, MIR TB, Essentia 

Spectral Rolloff Marsyas, MIR TB, Essentia 

High-frequency 

Energy 

MIR TB, Essentia 

Cepstrum 

(Real/Complex)  

PsySound3 

Energy in 

Mel/Bark/ERB Bands 

MIR TB, PsySound3, Essentia 

MFCCs Marsyas, MIR TB, Essentia 

LPCCs Marsyas, Essentia 

Linear Spectral Pairs Marsyas 

Spectral Contrast Essentia 

Roughness MIR TB, PsySound3, Essentia 

Spectral and Tonal 

Dissonance 

PsySound3 
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Attack/Decay Time 
One of the aspects influencing tone color is the sound en-
velope, which can be divided into four parts: attack, decay, 
sustain and release. Several descriptors can be extracted 
from it, mostly related with the attack phase, i.e., from the 
starting point of the envelope until the amplitude peak is 
attained. One of these descriptors is the attack time (pre-
sent in the MIR Toolbox and Essentia), which consists in 
the estimation of temporal duration of the various attack 
phases in an audio signal [76]. The MIR Toolbox is also able 
to compute the decay time. 

Attack/Decay Slope 
The attack slope (available in the MIR Toolbox) is another 
descriptor extracted from the attack phase [76]. It consists 
on the estimation of the average slope of the entire attack 
phase, since its start to the peak. The MIR Toolbox is also 
able to extract the same information from the decay phase, 
related to its decrease slope [65].  

Attack/Decay Leap 
The attack leap is a simple descriptor related to the attack 
phase. In the MIR Toolbox, it consists in the estimation of 
the amplitude difference between the beginning (bottom) 
and the end (peak) of the attack phase [65]. As with the 
previous features, the MIR Toolbox outputs a similar de-
scriptor related with the decay phase. 

Zero Crossing Rate (ZCR) 
The Zero Crossing Rate (Marsyas, MIR Toolbox Essentia) 
represents the number of times the waveform changes sign 
in a window (crosses the x-axis). It can be used as a simple 
indicator of change of frequency or noisiness. As an exam-
ple, heavy metal music, due to guitar distortion and heavy 
percussion, will tend to have much higher zero crossing 
values than classical music [64]. Sometimes the ZCR deriv-
ative is also computed, representing the absolute value of 
the window-to-window change in zero crossing rate.  

Spectral Flatness 
The spectral flatness (Marsyas, MIR Toolbox, Essentia) in-
dicates whether the spectrum distribution is smooth or 
spiky, i.e., estimates to which degree the frequencies in a 
spectrum are uniformly distributed (noise-like) [65]. It is 
usually computed as the ratio between the geometric mean 
and the arithmetic mean [76]. Marsyas adopts a different 
approach, proposed in [88], calculating the spectral flat-
ness in different spectral bands.  

Spectral Crest Factor (SCF) 
The spectral crest factor [88] is a measure of the "peakiness" 
of a spectrum and is inversely proportional to the spectral 
flatness measure. It is commonly used to distinguish noise-
like from tone-like sounds due to their different spectral 
shapes, where noise-like sounds have lower spectral crests. 
In Marsyas, the SCF is computed as the ratio of the maxi-
mum and mean spectrum powers of a subband. 

Irregularity 
Irregularity, also known as spectral peaks variability, is the 
degree of variation of the amplitude of successive spectral 
peaks [65]. This feature is present in the MIR Toolbox. 

 

Tristimulus 
The tristimulus feature [76], implemented in Essentia, 
quantifies the relative energy of partial tones by three pa-
rameters that measure the energy ratio of the first partial 
(tristimulus1), second, third and fourth partials (tristimu-
lus2) and the remaining (tristimulus3). 

Odd-to-even Harmonic Energy Ratio 
The odd-to-even harmonic energy (Essentia) ratio “distin-
guishes sounds with predominant energy at odd harmon-
ics (such as clarinet sounds) from other sounds with 
smoother spectral envelopes (such as the trumpet)” [76]. 

Spectral Moments: Centroid, Spread, Skewness and 
Kurtosis 

The four spectral moments (implemented in the MIR 
Toolbox, PsySound and Essentia) are useful measures of 
spectral shape [76]. The spectral centroid (also available in 
Marsyas) is the first moment (mean) of the magnitude 
spectrum of the short-time Fourier Transform (STFT). 

The spectral spread represents the standard deviation 
of the magnitude spectrum. Thus, it is a measure of the dis-
persion or spread of the spectrum. 

Spectral skewness is the third central moment of the 
magnitude spectrum and it is a measure of its symmetry. 

Finally, in simple terms, spectral kurtosis, or the fourth 
central moment of the magnitude spectrum, captures in-
formation about existing outliers. 

Spectral Entropy 
The spectral entropy of a signal is a measure of its spectral 
power distribution, based on Shannon entropy [89] from 
the information theory field. This feature is implemented 
in the MIR Toolbox and Essentia.  

Spectral Flux 
Spectral flux (Marsyas, MIR Toolbox, Essentia) is a meas-
ure of the amount of spectral change in a signal, i.e., the 
distance between the spectra of successive frames [64]. 
Spectral flux has also been shown by user experiments to 
be an important perceptual attribute in the characteriza-
tion of the timbre of musical instruments [90]. 

Spectral Rolloff 
Spectral rolloff (Marsyas, MIR Toolbox, Essentia) is often 
used as an indicator of the skewness of the frequencies pre-
sent in a window. According to Tzanetakis [64], the spec-
tral rolloff is defined as the frequency R_t below which 
85% of the magnitude distribution is concentrated. The 
percentage varies among authors, but 85% is the current 
default value for most frameworks. 

High-frequency Energy 
Several algorithms have been proposed to estimate the 
high-frequency content in a signal. Brightness (also called 
high-frequency energy) is one of such algorithms, imple-
mented in the MIR Toolbox. This typically consists in fix-
ing a minimum frequency value and measuring the 
amount of energy above that frequency [65]. The Essentia 
framework implements a different algorithm, named high-
frequency content (HFC), to measure the amount of high-
frequency energy from the signal spectrum. HFC is com-
puted by applying one of the several algorithms, e.g., [91].  
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Cepstrum (Real / Complex) 
The cepstrum is the result of taking the inverse Fourier 
transform of the logarithm of the estimated spectrum of a 
signal [92]. It can be regarded as a measure of the rate of 
change in the different spectral bands. Cepstral analysis 
has applications in fields such as pitch analysis, echo de-
tection and human speech processing, by providing a sim-
ple way to separate formants (due to filtering in the vocal 
tract) from the vocal source [93]. Cepstral analyzers are 
available in PsySound3. 

Energy in Mel/Bark/ERB Bands 
In audio signal processing, it is often important to decom-
pose the original signal into a series of audio signals of dif-
ferent frequencies (i.e., low to high-frequency channels), 
enabling the study of each channel separately. This is in-
spired by the human cochlea, which can be regarded as a 
filter bank, distributing the frequencies into critical bands. 
Several scales have been proposed, each one using a par-
ticular range of frequencies, e.g., the Mel, Bark or Equiva-
lent rectangular bandwidth (ERB) scales [94]. The energy 
in the Mel/Bark bands is computed in the MIR Toolbox 
and in Essentia. The energy in the ERB bands is computed 
in the same two frameworks, as well as PsySound3.  

Mel-Frequency Cepstral Coefficients (MFCC) 
MFCCs [95] are another measure of spectral shape. The fre-
quency bands are positioned logarithmically on the Mel 
scale and cepstral coefficients are then computed based on 
the Discrete Cosine Transform of the log magnitude spec-
trum. Typically, only the first 13 cepstral coefficients are 
usually returned by audio frameworks. These 13 coeffi-
cients are mostly used for speech representation but 
Tzanetakis states that “the first five coefficients are ade-
quate for music representation” [64]. This descriptor is pro-
vided by Marsyas, the MIR Toolbox and Essentia. 

Linear Predictive Coding Coefficients (LPCC) 
Linear predictive coding is used in speech research to rep-
resent the spectral envelope of a digital speech signal in 
compressed form, using to this end information of a linear 
predictive model [96]. LPCCs, available in Marsyas and Es-
sentia, represent the cepstral coefficients derived from lin-
ear prediction and have been used in a wide range of 
speech applications, such as speech analysis, encoding and 
speech emotion recognition [96]. 

Linear Spectral Pairs (LSP) 
Linear Spectral Pairs (available in Marsyas) are an alterna-
tive representation of linear prediction coefficients (LPC) 
for transmission over a channel. LSPs have several proper-
ties (e.g., smaller sensitivity to quantization noise) that 
make them superior to direct quantization of LPCs. Thus, 
LSPs are useful in speech recognition and coding [97].  

Spectral Contrast 
The octave-based spectral contrast is a feature proposed by 
Jiang et al. [98] to represent the spectral characteristics of 
an audio signal, specifically the relative spectral distribu-
tion. According to the authors, the feature has been tested 
in music type classification problems, demonstrating a 
“better discrimination among different music types than 
mel-frequency cepstral coefficients (MFCC)” [98], which is 

one of the features typically used in such problems. It is 
implemented in Essentia. 

Roughness (Sensory Dissonance) 
Sensory dissonance, also known as roughness, is related to 
the beating phenomenon that occurs whenever a pair of si-
nusoids are close in frequency [99]. This feature is imple-
mented in Marsyas, the MIR Toolbox and Essentia using 
different algorithms, the method by Sethares, which esti-
mates total roughness by averaging all dissonance esti-
mates across all possible peak pairs of the spectrum [100]. 

Spectral and Tonal Dissonance 
PsySound3 computes spectral and tonal dissonance fea-
tures. Dissonance measures the harshness or roughness of 
the acoustic spectrum [66]. The dissonance generally im-
plies a combination of notes that sound harsh or are un-
pleasant to people when played at the same time. 
PsySound3 provides two descriptions of acoustic disso-
nance: “spectral dissonance” which uses all Fourier com-
ponents, and “tonal dissonance” which uses a peak extrac-
tion algorithm before calculating dissonance.  

4.6 Expressivity Features 
In this section we describe the audio features that capture 
information primarily related with expressiveness. As will 
be observed, we are only aware of one feature of this type 
in the analyzed audio frameworks. Hence, we have re-
cently proposed a set of novel features targeting expressiv-
ity features [5]. Table 14 summarizes the available expres-
sivity features. 

TABLE 14 
EXPRESSIVITY FEATURES. 

ME Feature Available in 

Articulation 
Average Silence Ratio MIR TB 

Articulation metrics [5] 

Ornamentation 
Glissando metrics [5] 

Portamento metrics [101] 

Vibrato Vibrato metrics [5, 101, 102] 

Tremolo Tremolo metrics [5] 

Average Silence Ratio (ASR) 
Average Silence Ratio is a feature proposed by Feng et al. 
as an estimation for articulation [3]. It is defined as the ratio 
of silence frames in one-second time windows. According 
to the author “lower ASR means fewer silence frames pre-
sent in musical piece, or legato in articulation, and the 
higher ASR means more silence frames present in musical 
piece, or staccato in articulation”. This feature is imple-
mented in the MIR Toolbox. 

Articulation metrics  
Articulation is a technique affecting the transition or conti-
nuity between notes or sounds. Panda et al. [5] proposed 
an approach to detect legato (i.e., connected notes played 
“smoothly”) and staccato (i.e., short and detached notes). 
Based on their algorithm, all the transitions between notes 
in the song clip are classified and, from them, several met-
rics are extracted such as ratio of staccato, legato and other 
transitions and longest sequence of each articulation type. 

Glissando metrics 
Glissando is another kind of expressive articulation, which 
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consists in the glide from one note to another. It is used as 
an ornamentation, to add interest to a piece and thus may 
be related to specific emotions in music. Panda et al. [5] 
proposed a glissando detection algorithm based on which 
several glissando features are extracted, e.g., glissando 
presence, extent, duration, direction, slope and glissando 
to non-glissando ratio (i.e., the ratio of notes containing 
glissando to the total number of notes). 

Portamento metrics 
Computational models of portamento, the smooth and 
monotonic increase or decrease in pitch from one note to 
the next, were proposed in [101] by using Hidden Markov 
Models in the vibrato-free pitch curve (flatten out). 

Vibrato metrics 
Vibrato is an expressive technique used in vocal and in-
strumental music that consists in a regular oscillation of 
pitch. Its main characteristics are the amount of pitch vari-
ation (extent) and the velocity (rate) of this pitch variation. 
Panda et al. [5] proposed a vibrato detection algorithm 
based on the analysis of F0 sequence of each note, from 
which several features are extracted, e.g., vibrato presence, 
rate, extent, coverage, high-frequency coverage, vibrato to 
non-vibrato ratio and vibrato notes base frequency. Other 
approaches to extract vibrato parameters were proposed, 
such as using filter diagonalization methods [101] or di-
rectly from the spectrogram using predefined vibrato tem-
plates [102]. 

Tremolo metrics 
Tremolo is a trembling effect, somewhat similar to vibrato 
but regarding change of amplitude. Although, in the sur-
vey presented in Section 3, we have not found any relations 
between tremolo and emotion, we decided to extract a 
number of tremolo metrics, based on a tremolo detection 
algorithm, similar to our vibrato detection approach [5]. 
There, the sequence of pitch saliences of each note is used 
instead of the F0 sequence, since tremolo represents a var-
iation in intensity or amplitude of the note. Several tremolo 
features are extracted, e.g., tremolo presence, rate, extent, 
coverage, and tremolo to non-tremolo ratio. 

4.7 Texture Features 
In this section we describe the audio features that capture 
information primarily related with musical texture. To the 
best of our knowledge, none of the features studied or 
found in the analyzed audio frameworks are primarily re-
lated with musical texture. As such, we have recently pro-
posed a set of novel musical texture features in [5], where 
the sequence of multiple frequency estimates was em-
ployed to measure the number of simultaneous layers in 
each frame of the entire audio signal, leading to the fea-
tures summarized in Table 15 and described below. 

 
TABLE 15 

TEXTURE FEATURES. 
ME Feature Available in 

Number of layers 

and density 

Musical Layers statistics [5] 

Musical Layers Distribution [5] 

Ratio of Musical Layers Transitions [5] 

Texture type n.a. n.a. 

Musical Layers statistics 
Panda et al. proposed musical layer statistics [5]. There, the 
number of multiple F0s are estimated from each frame of 
the song clip. The number of layers in a frame is defined as 
the number of obtained multiple F0s in that frame. Then, 
the 6 usual statistics regarding the distribution of the num-
ber of musical layers across frames were computed. 

Musical Layers Distribution 
Additionally, in [5] the number of F0 estimates in a given 
frame is divided into four classes: i) no layers; ii) a single 
layer; iii) two simultaneous layers; iv) and three or more 
layers. The percentage of frames in each class is computed.  

Ratio of Musical Layers Transitions 
Panda et al. [5] proposed these features to capture infor-
mation about the changes from a specific musical layer se-
quence to another. They employ the number of different 
fundamental frequencies in each frame, identifying con-
secutive frames with distinct values as transitions and nor-
malizing the total value by the length of the audio segment 
(in secs). In addition, they also compute the length in sec-
onds of the longest segment for each musical layer. 

4.8 Form Features 
In this section we describe the audio features that capture 
information primarily related with musical form. Extract-
ing musical form and structure information directly from 
the audio signal is more difficult when compared to other 
lower level features (e.g., spectral/timbral statistics). Thus, 
few computational extractors are available today, as pre-
sented in Table 16 and described below.  
 

TABLE 16 
FORM FEATURES. 

ME Feature Available in 

Form Complexity Structural Change [103] 

Organization Levels 
Similarity Matrix MIR TB 

Novelty Curve MIR TB 

Song Elements Higher-Level Form Analysis [104-106] 

Structural Change 
The amount of change of various underlying basis features 
at different time intervals, combined into a meta-feature, 
correlates with the human perception of complexity in mu-
sic [103]. The typical implementation uses chroma, rhythm 
and timbre information and exclusively aims at discover-
ing the quantity of change, illustrating it with a visual au-
dio flower plot [103]. 

Similarity Matrix 
Some approaches estimate musical structure based on the 
similarity between adjacent segments or frames [65]. These 
similarities are often represented using an inter-frame or 
inter-segment similarity matrix, showing the differences 
between all possible pairs of frames from the input audio 
signal. The similarity matrix computation uses a specific 
set of frame statistics (e.g., spectral features) and a distance 
function, to calculate the proximity between each pair of 
frames. As an example, the MIR Toolbox can use MFCCs, 
key strength, tonal centroid, chromagram and others with 
one of several distance functions. 
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Novelty Curve 
Based on the specific musical characteristics of each seg-
ment or frame, obtained for instance with a similarity ma-
trix, a novelty curve can be obtained by comparing the suc-
cessive frames to estimate temporal changes in the song 
[65]. In this novelty curve, implemented in the MIR 
Toolbox, the probability of transitioning to a different state 
over time is represented by the curve peaks. 

Higher-level (HL) Form Analysis 
Modeling the fundamental aspects of musical sections in a 
unified way to identify song elements such as intro, bridge 
or chorus is still and open problem. Some of the most 
promising approaches apply higher-level solutions com-
bining low-level features, statistics and machine learning. 
These include hierarchical semi-markov models [104], con-
vex non-negative matrix factorization, spectral clustering 
[105] and deep learning [106]. 

4.9 Vocal Features 
A few works have studied emotion in speaking and sing-
ing voice [107], as well as the related acoustic features 
[108]. In fact, “using singing voices alone may be effective 
for separating the “calm” from the “sad” emotion, but this 
effectiveness is lost when the voices are mixed with accom-
panying music” and “source separation can effectively im-
prove the performance” [15]. 

To this end, Panda et al. [5] applied the singing voice 
separation approach proposed by Fan et al. [109] (although 
separating the singing voice from accompaniment in an 
audio signal is still an open problem) and the Voice Anal-
ysis Toolkit, a “set of Matlab code for carrying out glottal 
source and voice quality analysis”6 to extract the features 
summarized in Table 17 and described below. 
 

TABLE 17 
VOCAL FEATURES. 

Feature Available in 

All Features from the Vocals Channel [5] 

Voiced and Unvoiced statistics [5] 

Creaky Voice statistics [5] 

All Features from the Vocals Channel 
Besides extracting features from the original audio signal, 
Panda et al. [5] also extracted the previously described fea-
tures from the signal containing only the separated voice.  

Voice and Unvoiced statistics 
In [5], the authors also proposed statistics related to the 
amount of voiced and unvoiced sections in a song. These 
include, among others, the number of voice segments, the 
mean, maximum, minimum, standard deviation, kurtosis 
and skewness of the duration of voice segments, as well as 
the number of voice segments per second. 

Creaky Voice statistics 
Panda et al. [5] computed statistics related with the pres-
ence of creaky voice, “a phonation type involving a low 
frequency and often highly irregular vocal fold vibration, 
[which] has the potential […] to indicate emotion” [110]. 

 
6 https://github.com/jckane/Voice_Analysis_Toolkit 

4.10 High-Level Features 
Finally, frameworks such as the MIR Toolbox and Essentia 
provide a few experimental higher-level features, related 
with complex concepts such as emotion, genre or dancea-
bility. Most, if not all, of these are predictors, combining 
classification algorithms and previously gathered data to 
label the source audio files into a fixed set of tags. A sum-
mary of these predictors is presented in Table 18 and listed 
below. 

TABLE 18 
HIGH-LEVEL FEATURES. 

Feature Available in 

Emotion MIR Toolbox, Essentia 

Classification-based Feat. (genre, etc.) Essentia 

Danceability Essentia 

Dynamic Complexity Essentia 

Emotion 
The MIR Toolbox extracts an emotion descriptor based on 
the analysis of the audio content of a given recording. The 
output is given in two distinct paradigms: a categorical ap-
proach comprising 5 emotions and a 3-dimensional space 
composed of activity (energetic arousal), valence (pleas-
ure-displeasure continuum) and tension (tense arousal). 

The classification process is based on the work by Eerola 
et al. [111] and uses multiple linear regression with the 5 
best performing predictors. Given its reliance on previ-
ously established weights, this extractor is only reliable in 
the MIR Toolbox version (v1.3) where it was initially “cal-
ibrated”. Newer versions output “distorted results” [65]. 

The Essentia library implements a similar feature, clas-
sifying songs in 4 distinct emotions. It contains pre-trained 
models and requires the Gaia library to apply similarity 
measures and classifications on the extracted features [67]. 

Classification-based Features (genre, etc.) 
In a similar way to the emotion descriptor extractor (or pre-
dictor), Essentia also includes Gaia trained models for [67]: 
• musical genre (using 4 different databases) 
• ballroom music classification 
• western / non-western music 
• tonal / atonal 
• danceability 
• voice / instrumental 
• gender (male / female singer) 
• timbre classification 

These musical descriptors work as a typical classifica-
tion problem, by extracting a set of features from the 
source audio signals and feeding them to classification 
models trained with them in other datasets. 

The genre feature is particularly relevant for music 
emotion recognition since some emotions are frequently 
associated with specific genres, as concluded by Laurier 
[4]. The author used automatic genre classification to im-
prove his previous emotion classification results.  

Danceability 
As opposed to the aforementioned danceability extractor 
built as a pre-trained classification model, Streich pro-
posed a low-level audio feature derived from Detrended 
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Fluctuation Analysis (DFA) to characterize audio signals 
in terms of its danceability [112]. 

Dynamic Complexity 
Streich also studied the automated estimation of the com-
plexity of music based on the musical audio signal, propos-
ing a set of complexity descriptors [112]. The proposed al-
gorithms focus on aspects of acoustics, rhythm, timbre, 
and tonality. The Essentia library implements an extractor 
to estimate dynamic complexity, or whether a song con-
tains a high dynamic range. This descriptor consists in the 
average absolute deviation from the global loudness level 
estimate on the dB scale.  

5 DISCUSSION AND RESEARCH DIRECTIONS 

5.1 Feature Analysis along Musical Dimensions 
Table 19 presents the number of described features per mu-
sical dimension.  

TABLE 19 
NUMBER OF AUDIO DESCRIPTORS PER MUSICAL DIMENSION. 

Musical dimension Number of features Percentage of total 

Melody 9 10.6% 
Harmony 10 11.8% 
Rhythm 16 18.8% 
Dynamics 12 14.1% 
Tone Color 25 29.4% 
Expressivity 6 7.1% 
Texture 3 3.5% 
Form 4 4.7% 

Total 85 100% 

As abovementioned, many of these features are frame-
level features, which are normally integrated using statis-
tical moments. This increases the final number of de-
scriptors to several hundred [5] and is especially true for 
tone color features, where some features divide the audio 
signal in bands and output time-series data (e.g., MFCCs). 
As such, and based on the figures in Table 19, we conclude 
that the number of available audio features is very unbal-
anced across musical dimensions. Musical texture, expres-
sivity and form are especially lacking, in contrast to tone 
color, which is the most represented category, mostly due 
to the large set of spectral features available (centroid, etc.). 
In [5], we have contributed to reduce that imbalance by 
proposing emotionally-relevant features, particularly for 
the expressivity and texture dimensions.  

The low number of texture, form and expressivity fea-
tures is not a surprise. We believe this is caused by two 
main reasons: i) on the one hand, the difficulty to create 
robust algorithms to capture such music elements; ii) on 
the other hand, the lack of music psychology studies on the 
relations between emotion and those dimensions, which 
could drive the creation of computational models. 

Regarding the analysis of the importance of specific fea-
tures to emotion recognition, few studies have addressed 
this issue in a systematic way, e.g., [5]. There, the con-
ducted analysis, based on Russell’s emotion quadrants 
[28], suggested that tone color features (particularly spec-
tral features) dominated all quadrants, possibility due to 

their prevalence (as discussed above). Nevertheless, tex-
ture features were in the top5 for quadrant 2 (anxiety quad-
rant, or Q2) and proved relevant for Q1 (happiness), as 
well, helping to improve the classification performance of 
the proposed algorithm. Vibrato was also an important 
feature for Q2. As for Q3 (depression), besides tonal fea-
tures, texture, inharmonicity and tremolo also proved rel-
evant, along with vocal features. Finally, dynamics, texture 
and expressivity features (namely, vibrato) were im-
portant to discriminate Q4 (contentment).  

Besides the lack of texture, form and expressivity fea-
tures, “more features are needed to better discriminate Q3 
from Q4, which musically share some common character-
istics such as lower tempo, less musical layers and energy, 
use of glissandos and other expressive techniques” [5]. 
Thus, in the next section we discuss research directions to 
advance the state-of-the-art in the creation of novel emo-
tionally-relevant features for each musical dimension. 

5.2 Novel Audio Futures: Research Directions  

Form 
Regarding computational models of form complexity, we 
are only aware of one work, which might work as a surro-
gate of musical complexity [103]. Higher-level features to 
capture form types from audio are still missing and some 
recent works have been attacking the problem with higher 
level solutions, e.g., employing machine learning to iden-
tify elements such as verse and chorus [104-106]. 

The impact of other elements of form on emotion, e.g., 
organizational levels (passage, piece, cycle) or song ele-
ments (introduction, chorus, bridges, etc.), should be fur-
ther researched by the music psychology community, de-
spite a few computational models found in the literature 
that might partially capture such information (e.g., similar-
ity matrix and novelty curve).  

Texture 
The texture dimension, as abovementioned, requires fur-
ther music psychology studies to better understand how it 
influences emotion. Nevertheless, the features we pro-
posed in [5] proved relevant, namely the number of musi-
cal layers in the recognition of happy music.  

These features only approximate the actual number of 
layers in a song, hence more advanced computational 
models are needed, probably requiring robust source sep-
aration and instrument recognition in polyphonic music. 
This is an active research problem (e.g., [113]), with great 
advances in the last years due to the application of deep 
learning models, as is the case of the Spleeter library, able 
to perform various types of separation (e.g., vocals, accom-
paniment, drums, bass, and others) [114]. 

Tackling this problem would also serve the creation of 
algorithms for the detection of texture types (monophonic, 
homophonic, polyphonic) and density (thin, thick), for 
which no computational models are known (see Table 15).  

Expressivity 
Regarding expressivity, the music psychologic community 
has offered important inputs to understand its impact on 
emotion. Yet, despite our contributions with several artic-
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ulation (staccato and legato), glissando, vibrato and trem-
olo metrics, this dimension still lacks computational mod-
els, particularly for the detection of ornamentations other 
than glissando and portamento (see Tables 6 and 14). Also, 
the algorithms we proposed were only indirectly evalu-
ated through their impact on emotion classification, and so 
ground truth data on those problems is needed.  

Melody 
As for the other musical dimensions, music psychology re-
searchers have provided a great amount of knowledge that 
could be further exploited to create computational models 
that capture such musical elements.  

Starting with melody, most melodic elements are rea-
sonably covered, as summarized in Table 9. However, fea-
tures for melodic intervals are still missing. Moreover, fur-
ther computational features related to melodic movement, 
direction and contour should be developed. As with many 
other problems in Music Information Retrieval, problems 
such as full or melody transcription are still open, which 
limits the accuracy of current MER systems that rely on 
them. This also applies to computational models of the di-
mensions discussed below (e.g., tonality and rhythm). 

Harmony 
As for harmony, all elements with emotional relevance 
have computational features to capture them (Table 10): 
harmonic perception (e.g., inharmonicity), tonality (e.g., 
tonal centroid vector) and mode (e.g., modality). 

Rhythm 
Regarding rhythm, although most rhythmic elements are 
reasonably covered this dimension is missing computa-
tional features that capture rest characteristics (Table 11). 
Still, higher-level audio features that capture the types of 
rhythm (regular, irregular, complex, fluent, etc.) are still 
missing (see Tables 3 and 11). 

Dynamics 
As for dynamics, all elements have associated features (Ta-
ble 12). Still, computational models to detect the types of 
dynamic levels (forte, piano, etc.) would be beneficial. 

Tone Color 
The tone color dimension is also reasonably well covered, 
particularly regarding spectral characteristics (see Table 
13). Still, as with musical texture, tone color would also 
benefit from accurate instrument recognition in poly-
phonic context. Moreover, this dimension would also ben-
efit from higher-level features on the types of amplitude 
envelope (e.g., round, sharp). 

Vocal Features 
As for vocal features, with the recent advances in areas 
such as source separation, as previously described, new 
paths should be explored. For instance, additional features 
that proved useful for speech emotion should be taken into 
consideration [16]. Moreover, the idea can be extended, 
e.g., by further separating the accompaniment and analyz-
ing each layer in isolation, since they may sometimes carry 
different emotional information [15]. This can be comple-
mented with genre or even lyrical information (natural lan-
guage processing) and integrated with a meta-classifier.  

5.3 Deep Learning Perspectives 
Finally, besides the classical handcrafted feature engineer-
ing approach, deep learning/feature learning techniques 
have attracted great attention in the last years. The most 
notable example is the resurgence of neural network tech-
niques, specifically deep learning, to a myriad of problems, 
fueled by the improvements in computer processing (e.g., 
using graphic processing units). Several MER studies have 
already employed techniques such as convolutional and 
recurrent neural networks [10].  

Despite (so far) slight improvements in classification ac-
curacy, such approaches raise several points that must be 
considered. First, to fully exploit the potential of deep 
learning solutions, massive amounts of good quality data 
are required. Unfortunately, the creation of large MER da-
tasets have been known to be problematic due to the asso-
ciated subjectivity and complexity of data collection [5]. 
Hence, strategies to obtain sizeable and good quality data 
for audio MER are a key need.  

Also, deep learning models are opaque in the sense that 
the extracted features are often difficult to interpret, which 
hinders the possibility to acquire novel knowledge regard-
ing the relations between emotions and the extracted fea-
tures. In fact, “although deep neural networks have exhib-
ited superior performance in various tasks, interpretability 
is always [the] Achilles’ heel” of such approaches, despite 
a few efforts to address it, as surveyed in [115]. Hence, in-
terpretability issues in deep neural networks are another 
important problem to tackle in the future. 

5.4 Audio-based Symbolic Features 
As discussed, some approaches establish a bridge between 
the audio and the symbolic MER domains by integrating 
an audio transcription stage into the feature extraction 
stage. Hence, the approached followed in [5] can be further 
exploited by integrating symbolic (MIDI) features that are 
available in several frameworks, e.g., MIDI Toolbox or 
jSymbolic (cited in [2]).   

6 CONCLUSION 
This article offered a comprehensive review of the current 
emotionally-relevant computational audio features. This 
survey was supported by the music psychology literature 
on the relations between eight musical dimensions (mel-
ody, harmony, rhythm, dynamics, tone color, expressivity, 
texture and form) and specific emotions. From this review, 
we concluded that computational audio features able to 
capture elements of musical form, texture and expressivity 
are especially needed to break the current glass ceiling in 
MER, as shown in [5]. Moreover, the development of such 
computational tools would benefit from further music psy-
chology studies, particularly regarding the actual impact 
of musical form and texture on emotion. We believe this 
article opens several research lines to expand the state-of-
the-art on Music Emotion Recognition. 
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