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Abstract: In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids
are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity.
They are a large family, presenting several classes based on their basic structure. Flavonoids have the
ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are
formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and
a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties.
In addition, flavonoids have several applications in the food industry as preservatives, pigments,
and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However,
flavonoids application for industrial purposes implies extraction processes with high purity and
quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield
and being environmentally friendly. This review presents the most abundant natural flavonoids,
their structure and chemical characteristics, extraction methods, and biological activity.

Keywords: antioxidants; bioactive compounds; extraction methods; natural sources; structure

1. Introduction

Flavonoids are secondary metabolites that are very abundant in plants, fruits, and
seeds, responsible for the color, fragrance, and flavor characteristics. In plants, flavonoids
perform many functions like regulating cell growth, attracting pollinators insects, and
protecting against biotic and abiotic stresses [1]. For instance, plant flavonoids can op-
erate as signal molecules, UV filters, and reactive oxygen species (ROS) scavengers and
have several functional roles in drought, heat, and freezing tolerance [2–4]. In humans,
these compounds are associated with a large range of health benefits arising from their
bioactive properties, such as anti-inflammatory, anticancer, anti-aging, cardio-protective,
neuroprotective, immunomodulatory, antidiabetic, antibacterial, antiparasitic, and an-
tiviral properties [5–7]. However, flavonoids’ chemical structure, particularly hydroxy
groups’ presence, influences humans’ bioavailability and biological activity [8]. Flavonoids
possess a basic 15-carbon flavone skeleton, C6-C3-C6, with two benzene rings (A and
B) linked by a three-carbon pyran ring (C). The position of the catechol B-ring on the
pyran C-ring and the number and position of hydroxy groups on the catechol group of the
B-ring influence the flavonoids’ antioxidant capacity [9]. The functional hydroxy groups in
flavonoids can donate electrons through resonance to stabilize free radicals and mediate
antioxidant protection [10]. Based on the structure of the flavonoids, they can be classified
into six major classes, flavan-3-ols, flavones, flavonols, flavanones, isoflavones, and antho-
cyanins [10]. Due to their remarkable antioxidant characteristics, flavonoids are used in the
food, cosmetic, and pharmaceutical industries [11]. However, the industrial use of these
antioxidants implies extraction processes with high purity and quality. Therefore, several
procedures for the extraction of flavonoids have been explored, and in recent years more
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environmentally friendly extraction methods and strategies that achieve high yields have
been developed [1].

2. Natural Occurrence of Flavonoids
2.1. Flavonoids Biosynthesis, Structure, and Classification

Flavonoids are included in the large family of phenolic compounds or polyphenols and
comprise more than 6000 different structures [10]. In plants, flavonoids are derived from
two biosynthetic pathways, the phenylpropanoid, which produces the phenylpropanoid
skeleton (C6-C3), and the polyketide that produces blocks for polymeric C2 units [12].
The enzyme chalcone synthase catalyzes the formation of the 2′-hydroxychalcone scaf-
fold, scientific name (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (Figure 1), from
p-coumaroyl CoA and malonyl CoA, which are then used in several enzymatic steps to
produce other flavonoids [13]. Several factors, such as environmental conditions (e.g., light,
water availability, and temperature), hormones (e.g., jasmonic acid), and physical injuries,
influence the expression of the genes involved in flavonoid biosynthesis leading to changes
in their availability [14].
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Almost all flavonoids present a C6-C3-C6 structure containing two benzene rings, A
and B, connected by a heterocycle pyrene ring (C) that contains oxygen. Flavonoids can
be divided into two major categories depending on the degree of central heterocyclic ring
saturation [5]. For example, anthocyanidins, flavones, flavonols, and isoflavones present a
C2=C3 unsaturation, whereas flavanones, dihydroflavonols, and flavan-3-ols are examples
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of saturated flavonoids (Figure 1). Although this classification is the most common one,
flavonoids can also be classified based on molecular size, primarily due to the prevalence
of biflavonyls in gymnosperms. Another important point regarding flavonoid structure is
the degree of substituents on the A and B rings, such as hydroxy, alkyl, and methoxy.

Furthermore, in plants, flavonoids may be found in the free form (aglycones) or
linked to sugars. Actually, these glycosylated flavonoids are most common, and, for
example, the glycosylated anthocyanidins are recognized as an essential class of flavonoids,
anthocyanins. In fact, anthocyanidins are light-sensitive and are found linked to sugars. The
most abundant form of flavonoid glycosides is O-glycosides, but C-glycosides can also be
found [10]. Glycosylation enhances solubility, distribution, and metabolism by facilitating
transport through the membrane, and methylation increases the entry of flavonoids into
the cells and protect them [10].

2.1.1. Anthocyanins

Anthocyanins are responsible for a flower’s colors, from pink to blue, but they are also
present in leaves, fruits, and roots. They are prevalent in angiosperms, although their occur-
rence in gymnosperms has also been reported [15]. Anthocyanins are also recognized for
their biological properties, which, together with their bright color, make them interesting
additives for food preparations [16,17]. From a chemical point of view, and as mentioned
above, anthocyanins are the anthocyanidins O-glycosides. Anthocyanidins (Figure 1),
highly oxidized 2-aryl-3-hydroxychromenylium, are also colored pigments, although less
stable, and consequently few examples are found in nature, the most widespread deriva-
tives being cyanidin, responsible for red to magenta colors, delphinidin, responsible for
purple to blue colors, and pelargonidin, responsible for orange to pink colors (Figure 2).
This color differentiation may be associated with one of the main rules of these flavonoids
in plants, which is to attract animals for pollination, and different colors attract different
animals. In addition, the presence of a sugar moiety promotes some changes in color
brightness. The most common sugar is glucose with a β-linkage, but galactose, rhamnose,
and xylose are also found. Moreover, these sugar moieties can have acyl substituents,
highlighting cinnamic acyl derivatives, such as caffeic, ferulic, and p-coumaric acids, due
to these phenolic acid rules in plants’ antioxidant activity.
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2.1.2. Flavanones and Dihydroflavonols

Flavanones, 2-arylchroman-4-ones (Figure 1), are obtained through the isomerization
of 2′-hydroxychalcones by a ring closure, which produces a stereogenic center at carbon
C-2. Therefore, naturally occurring flavanones are optically active and mainly with a (2S)
stereogenic configuration as in the case of naringenin (Figure 3), a common scaffold among
the natural flavanones [15]. Many natural flavanones are also linked to sugars, usually in
the form of 7-O-glycosides, but several examples present prenyl side chains [18].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 18 
 

 

O

Cyanidin

OH

OH

OH

HO

OH

O

Delphinidin

OH

OH

OH

HO

OH

OH

O

Pelargonidin

OH

OH

HO

OH

O

Seranin

OH

OH

OH

O
HO

HO
OH

O

OH

O
OH

OH
HO

O

OH

O

Hyacinthin

OH

OH

OH

HO

O
OH

OH
HO

O

O

O

HO

Figure 2. Examples of representative anthocyanidins and anthocyanins. 

2.1.2. Flavanones and Dihydroflavonols 
Flavanones, 2-arylchroman-4-ones (Figure 1), are obtained through the isomerization 

of 2′-hydroxychalcones by a ring closure, which produces a stereogenic center at carbon 
C-2. Therefore, naturally occurring flavanones are optically active and mainly with a (2S) 
stereogenic configuration as in the case of naringenin (Figure 3), a common scaffold 
among the natural flavanones [15]. Many natural flavanones are also linked to sugars, 
usually in the form of 7-O-glycosides, but several examples present prenyl side chains 
[18]. 

 
Figure 3. Examples of representative flavanones and dihydroflavonols. 

Dihydroflavonol, 2-aryl-3-hydroxychroman-4-one (Figure 1), biosynthesis involves 
an oxidative hydroxy group addition at flavanones’ C-3 position, which is the reason why 
they are often designated as 3-hydroxyflavanones. One of the most common derivatives 
that is also the primary scaffold for several other naturally occurring dihydroflavonols is 
taxifolin (Figure 3). These flavonoids are also found linked to sugars, an important exam-
ple being astilbin, which shows remarkable anti-inflammatory activity [19] and is linked 
to other groups, such as prenyl and methoxy groups. 

  

Figure 3. Examples of representative flavanones and dihydroflavonols.

Dihydroflavonol, 2-aryl-3-hydroxychroman-4-one (Figure 1), biosynthesis involves
an oxidative hydroxy group addition at flavanones’ C-3 position, which is the reason why
they are often designated as 3-hydroxyflavanones. One of the most common derivatives
that is also the primary scaffold for several other naturally occurring dihydroflavonols is
taxifolin (Figure 3). These flavonoids are also found linked to sugars, an important example
being astilbin, which shows remarkable anti-inflammatory activity [19] and is linked to
other groups, such as prenyl and methoxy groups.

2.1.3. Isoflavones

Isoflavones, 3-aryl-4H-chromen-4-ones (Figure 1), are obtained from flavanones through
a rearrangement that promotes 2,3-aryl migration, followed by a dehydrogenation. Al-
though it is commonly said in the literature that the designation isoflavonoids results from
the isolation of other compounds, such as isoflavanones or isoflavans, isoflavones remain
the most common in nature. Isoflavones’ occurrence is still restricted to a few subfamilies
of the Leguminosae family [20]; nevertheless, important estrogenic activity is attributed
to these metabolites [21], and some medicinal plants’ anti-inflammatory properties are
a result of their richness in isoflavones [22]. The most common scaffold is daidzein and
genistein (Figure 4), which are also found linked to sugars, although there are only a few
examples [15].
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2.1.4. Flavones and Flavonols

Flavones, 2-aryl-4H-chromen-4-ones, and flavonols, 2-aryl-3-hydroxy-4H-chromen-4-
ones (Figure 1), are obtained through dehydrogenation of flavanones and dihydroflavonols,
respectively. Flavones are widespread and are the most representative class of flavonoids,
moreover if it is considered that flavonols are 3-hydroxyflavones. Due to their prevalence
in nature, along with their recognized biological activities, flavones have gathered the
interest of scientists [23]. According to their substitution pattern and their large distribution,
flavones are further subdivided into classes, such as O-methylated, C-methylated, and
isoprenylated, among others [15]. Among the flavonoid family, flavones are the ones that
occur both as O- and C-glycosides, being the most spread aglycones the apigenin and the
luteolin (Figure 5).
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The first isolated O-glycoside was apiin, an apigenin 7-apiosylglucoside (Figure 5),
and since its isolation, several derivatives have been uncovered. Although examples with
other sugar moieties are found, glucose is the most common, and the flavone preferable
O-glycosylation site is C-7. Interesting is the fact that more than one sugar unit can be
attached, even in cases of C-glycosides, as can be seen in carlinoside, a luteolin 6-glucoside-
8-arabinoside (Figure 5).

The most prevalent flavonol is quercetin (Figure 5), for which several biological
properties have been established [24], and which occurs both in the aglycone and O-
glycoside forms. O-glycosylation occurs at C-3, which is the case of rutin (Figure 5),
probably the most widespread flavonol glycoside in the plant kingdom [15].

2.2. Sources of Flavonoids

Flavonoids can be found in several beverages and foods, like wine, beer, and tea, but
fruits, vegetables, flowers, and seeds are the sources with the highest amounts of natural
flavonoids [25]. However, the amount of these compounds depends on several factors,
such as plant cultivar/genotype, growing environment conditions, soil characteristics,
harvest, and storage.

Flavonols that comprise, for example, quercetin, kaempferol, fisetin, isorhamnetin,
and myricetin are abundant in green leaves, fruits, and grains [26,27] (Figure 6). For
instance, lettuce, cranberry, apple, peaches, and red pepper are rich in quercetin and
kaempferol [3,28]. Spinach leaves have high amounts of rutin, spinacetin glycosides, and
patuletin glycosides, while broccoli, kale, endive, potatoes, onions, grapes, and tomatoes
contain more kaempferol 3-O-glycosides [3]. Myricetin can be found in nuts, berries, tea,
and also red wine [3,29].
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Flavones are among the most important flavonoids and are represented by lute-
olin, apigenin, sinensetin, isosinensetin, nobiletin, tangeretin, galangin, and chrysin [26]
(Figure 6). These compounds can be mainly found in leaves, flowers, and fruits as glu-
cosides of apigenin, luteolin, and diosmetin [27]. For instance, celery is rich in apigenin
7-O-glycoside, and the glycosides of luteolin and apigenin are abundant in several citrus
fruits, green and red peppers, lettuce, broccoli, olive oil, cacao, oregano, thyme, rosemary,
peppermint, and parsley [3].

Flavanols, or flavan-3-ols, comprise catechin, epicatechin, epicatechin gallate, gal-
locatechin, epigallocatechin, and epigallocatechin gallate [30] (Figure 6). Flavanols are
found in high concentration in Camellia sinensis, tea plant, as (-)-epigallocatechin gallate,
(-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epicatechin, tea consumption being
one of the most important sources of these flavonoids [31]. In addition, fruits like apples,
red grapes, peaches, mangoes, pears, plums, nectarines, and raspberries are very rich in
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(+)-catechin, (-)-epicatechin, and (-)-epigallocatechin. Cocoa and red wine are good sources
of catechins [3,28].

Flavanones, also known as dihydroflavones, are an important class of flavonoids
widely found in citrus fruits (Figure 6). For instance, flavanone glycosides, like naringin,
naringenin, and naringenin 7-O-neohesperidoside, can be found in grapefruits, hesperidin,
hesperetin, and hesperetin 7-O-rutinoside in oranges, mandarins, limes, and lemons, and
eriocitrin, eriodictyol, and eriodictyol 7-O-rutinoside in lemons [27,28].

Isoflavones have a stricter distribution in plants, being predominantly produced in
legumes [32]. Genistin, glycitin and daidzin glycosides, and malonylated isoflavones are
particularly found in soybeans [3] (Figure 6). Lupin, fava beans, and kudzu roots also
contain genistin. Small quantities of isoflavones are present in common beans, peanuts,
and chickpeas [32].

Anthocyanins are the flavonoids responsible for the blue, purple, red, and orange
color of several flowers, leaves, and fruits. This class of compounds is commonly present
as glycosides of anthocyanidins, such as cyanidin, pelargonidin, delphinidin, peonidin,
petunidin, and malvidin [17,28] (Figure 6). For example, cranberries, blueberries, raspber-
ries, bilberries, strawberries, blackberries, plums, grapes, cherries, and sweet potatoes have
high amounts of anthocyanins [3]. Vegetables such as red cabbages, red turnips, and purple
sweet potatoes are rich in acylated anthocyanins. In addition, black beans and purple corn
have cyanidin 3-O-glucoside [27]. The blue color of some flowers is due to delphinidin,
while orange color is associated with pelargonidin [17].

Natural flavonoids can be extracted and used in the food industry instead of synthetic
compounds to improve food quality. In recent years, the restriction imposed on the
use of some synthetic antioxidants, such as the case of butylated hydroxyanisole (BHA),
butylated hydroxytoluene (BHT), and propyl gallate, increased the interest in natural
flavonoids mostly due to their capacity to retard oxidative degradation of lipids, improve
the quality and nutritional value of food, and reduce toxicity [33]. Flavonoids can be used
as food preservatives, preventing lipid oxidation and protecting vitamins and enzymes,
inhibitors of microbial growth in foodstuffs, additives in human dietary supplements
and animal feeds, flavorings, and colorants (e.g., anthocyanins) [33]. Some flavonoids
also inhibit fungal spore germination and have been proposed to be used as a fungal
pathogen control agent in some foodstuffs [34]. Flavonoids are very versatile, displaying
photochemical properties that can be used to protect beverages against light-induced
color deterioration [35]. Since flavonoids are natural compounds with low toxicity, very
abundant in plants, and inexpensive, their increased use as food additives in place of
synthetic preservatives will contribute to the food industry’s sustainability.

3. Extraction, Isolation, and Characterization of Flavonoids

The use of antioxidants from natural sources in the food, cosmetic, and pharmaceutical
industries involves comprehensive know-how of the extraction processes suitable for
obtaining high purity and quality extracts. Therefore, it is crucial to design new extraction
methodologies or improve old ones.

The solubility of flavonoids in different solvents varies, so the solvents are chosen
according to flavonoids’ polarity. For instance, aglycones highly alkylated are preferably
extracted with ethyl acetate. It should be emphasized that toxic solvents, such as benzene
and chloroform, early used [36], are not recommended and may even be forbidden. On the
other hand, more polar aglycones such as hydroxylated ones and glycosides are preferably
extracted with acetone, alcohol, water, or mixtures of these solvents [36,37].

Besides the solvents, the methodologies are also critical. The conventional methods,
although less green, are still used chiefly because they employ low-cost equipment. From
these, frequently used are maceration and Soxhlet extraction as they do allow the isolation
of flavonoids, but they also present several disadvantages, including the use of a large
quantities of solvents, long extraction times, and high energy consumption [1,38]. Fur-
thermore, these conventional techniques require several subsequent purification steps to
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obtain the pure compound, so more and more scientists are developing new approaches
to extract more efficiently the secondary metabolites. The so-called unconventional tech-
niques or green extraction methods include mainly ultrasound-assisted extraction (UAE),
microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), and pressurized
liquid extraction (PLE) [1,38–41], but a few other techniques have also been developed and
are being used, such as enzyme-assisted extraction (EAE), matrix solid-phase dispersion
(MSPD) [38], pulsed electric field (PEF) [40], and solid-state fermentation (SSF) [42], among
others [38,40].

The unconventional extraction techniques present more advantages (e.g., lower con-
sumption of organic solvents and extraction time) when compared to conventional tech-
niques and are very effective in the extraction of flavonoids from several types of natural
matrices [43,44]. The UAE technique is based on the application of ultrasounds in the
kilohertz range (20–100) that move through the solvent, causing cavitation bubbles. When
the cavitation bubbles burst at the surface of the samples, damage to the cell wall leads to
cell disruption or disintegration. It, therefore, enhances the penetration of solvents into the
cells, improving the release of compounds [39–41]. In the MAE technique, the application
of nonionizing electromagnetic waves with frequencies between 300 MHz to 300 GHz
induces disruption or changes in the structure of sample cells [41,44]. The extraction solvent
must be polar to absorb microwave energy. This extraction method involves increasing
temperature and pressure, resulting in solute separation from the sample, followed by
solute released to the solvent and solvent diffusion through the sample [39–41].

Besides the above-mentioned methods, SFE attracts several scientists because it uses
a fluid above its critical pressure and temperature, increasing its solvation power and,
consequently, the compounds’ solubility. Moreover, separating the extract from the solvent
is usually straightforward, involving decreasing the pressure and release of the solvent to
the atmosphere. At the same time, the extract is collected in a vessel. Supercritical carbon
dioxide (scCO2) is the fluid mainly used to extract phenolic compounds. It has a mild critical
pressure (74 bars) and low critical temperature (31 ◦C), and is considered safe because it is
nonflammable, noncorrosive, environmentally friendly, and inexpensive. scCO2 has been
used in the extraction of phenolic compounds [45], although its combination with ethanol
increases the extraction of flavonoids [46].

Finally, we can highlight PLE, a process that employs high pressure to maintain the
solvent in the liquid state at temperatures above its boiling point but below the critical point,
consequently increasing the compounds’ extraction [47]. Literature analysis indicates that
flavonoids can be extracted using mixtures of water and ethanol at temperatures between
40 to 80 ◦C and pressures around 100 bar [48].

Although this review does not provide a detailed analysis of these methodologies, it
seems evident that they have been applied with some success to extract flavonoids; usually,
a mixture of flavonoids is obtained. Some experiments suggest that UAE and MAE do not
improve flavonoid extraction [49], leading us believe that the most crucial aspect is the
solvent used in the extraction. In this regard, it seems there is consensus that deep eutectic
solvents (DES) are highly recommended to improve flavonoid extraction [50]. Moreover,
these solvents can be employed to target specific flavonoids [51].

Nowadays, flavonoid characterization is mainly achieved using nuclear magnetic
resonance (NMR) and mass spectrometry (MS), with the significance of MS enlarged
with the development of liquid chromatography techniques coupled with MS. However,
some crucial structural characterization can also be achieved by infrared spectroscopy
and ultra-violet (UV) absorption spectroscopy data [43], which is also important in liquid
chromatography analysis. Concerning the importance of the MS fragmentation analysis,
several publications detailed flavonoid fragmentation [52,53] from which some main frag-
ments can be highlighted (Figure 7A). Most of them involved cleavage of the heterocyclic
ring, which allowed the identification of the substituents in the flavonoid nucleus. The
typical fragmentation joined with UV data is the basis of several studies involving the
establishment of the flavonoid profile of several extracts. Important information concerning
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flavones and flavonols was recently published [54]. Furthermore, these data types are also
being gathered on the less studied isoflavones [55,56].
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Flavonoid structure elucidation using NMR is most common and allows the identifi-
cation of the different scaffolds mainly due to the heterocyclic ring protons and carbons’
typical chemical shifts [57]. For example, isoflavones can be differentiated by H-2 and
C-2 chemical shifts, which differ from those of H-3 and C-3 chemical shifts of flavones
(Figure 7B). Furthermore, the flavanone nucleus without the C2=C3 carbon–carbon double
bond also presents typical chemical shifts that allow their identification (Figure 7B) [43].

4. Metabolism and Biological Activity of Flavonoids
4.1. Metabolism and Bioavailability

The knowledge of the content of flavonoids in foods is not enough to provide the infor-
mation of their bioefficacy in human health [7,58]. This is because flavonoid bioavailability
is low due to restrictions in absorption, modifications throughout the gastrointestinal tract
caused by microorganisms, chemical and mechanical effects, and rapid excretion [58].

Most of flavonoids, except flavanols, present as glycosides in food, and glycosylation
influences absorption. Only flavonoid aglycones and some glucosides can be easily ab-
sorbed in the small intestine [58]. Most of flavonoid glucosides must be deglycosylated
in the small intestine before absorption, but the rate of deglycosylation depends on the
structure and position of the sugar substitution [59]. The flavonoids not deglycosylated
are hydrolyzed by enzymes in the colon and reabsorbed or eliminated in feces [60,61]. The
flavonoids absorbed are conjugated in the liver cells by glucuronidation, sulfation, and
methylation [60]. From the liver, some metabolites are distributed in the blood (delivered
to target tissues and organs where they exert their bioactivity). In contrast, others are
secreted into the bile and undergo enterohepatic recirculation, or they can be eliminated by
urine [60,62].

The bioavailability of flavonoids depends on their class but is, in general, very low.
For instance, isoflavones are reported as the most bioavailable flavonoid, more absorbed in
the intestine, while other flavonoids, such as galloylated catechins and anthocyanins, are
poorly absorbed [7,59,62].
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4.2. Biological Activities

Scientific evidence has shown that flavonoids induce several health benefits in humans,
and a diet rich in these compounds can help prevent some chronic diseases [6,7,25].

Flavonoids present several properties, but the one related to the ability to scavenge
free radicals and act as antioxidants is indubitably the most relevant. Within flavonoids
classes, the antioxidant capacity varies depending on the type of functional group and its
arrangement around the nuclear structure [61]. The number and position of the hydroxy
groups in the catechol B-ring and their position on the pyran C-ring influence the free
radical scavenging ability [9]. The functional hydroxy group of the structure can donate
an electron and hydrogen to a radical through resonance, stabilize them, and originate a
relatively stable flavonoid radical [4].

The antioxidant action mechanisms of flavonoids can be by the (a) direct scavenging
of ROS, (b) inhibition of ROS formation through the chelation of trace elements (e.g.,
quercetin has iron-chelating and iron-stabilizing properties), or inhibition of the enzymes
that participate in the generation of free radicals (e.g., glutathione S-transferase, microsomal
monooxygenase, mitochondrial succinoxidase, NADH oxidase, and xanthine oxidase),
and (c) activation of antioxidant defenses (e.g., upregulation of antioxidant enzymes with
radical scavenging ability) [11,28,61]. A combination of some of these mechanisms, for
example, radical scavenging action with suppression of some enzyme functions, may also
occur [11]. Most of the flavonoids appear as glycosides, and the number and position of
connections with the sugar affect the antioxidant properties of the flavonoid [60]. However,
aglycone forms have a higher antioxidant capacity, but their availability is lower.

In addition to antioxidant properties, many other actions of flavonoids are described,
such as anti-inflammatory, anticancer, cardioprotective, antimicrobial, and antiviral (Figure 8).

Inflammation occurs in response to several causes, such as a tissue physical injury or
trauma, chemical exposure, and microbial infection. Usually, the inflammation process is
rapid and self-limiting, but in some cases, prolonged inflammation periods contribute to the
development of several chronic or degenerative disorders like cancer, diabetes, cardiovascu-
lar and neurodegenerative diseases, and obesity [8]. In an inflammatory process, flavonoids
can act as: (a) antioxidants scavenging ROS or reducing free radical accumulation, (b) in-
hibitors of the activity of regulatory enzymes (e.g., protein kinases and phosphodiesterase)
and transcription factors related to the control of mediators involved in the inflammatory
process, and (c) modulators of the activity of the immune cells (e.g., inhibition of cell
activation, maturation, signaling transduction, and secretory processes) [8,11].

Both genetic and environmental factors exert an important role in the inflamma-
tion process. Several studies have demonstrated that an active lifestyle together with a
healthy diet, rich in fruits and vegetables as well as non-processed and low-sugar foods,
prevent inflammatory diseases [8]. Some flavonoids, such as flavonols (e.g., quercetin,
rutin, and morin), flavanones (e.g., hesperetin and hesperidin), flavanols (e.g., catechin),
isoflavones (e.g., genisten), and anthocyanins (e.g., cyanidin) have been demonstrated to
exhibit anti-inflammatory functions during in vitro and in vivo experiments and in clinical
studies [6,63].
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4.2.1. Anti-Inflammatory Action
4.2.2. Anticancer Action

The anti-inflammatory properties of flavonoids also have an important impact on
cancer development. These compounds exert their activity by inactivating carcinogen,
inducing apoptosis, triggering cell cycle arrest, and inhibiting angiogenesis [27]. Flavonoids
have been reported to inhibit tumor cell proliferation by inhibition of ROS formation
and repression of the enzymes xanthine oxidase, cyclooxygenase-2, and 5-lipoxygenase,
implicated in tumor promotion and development [63].

Flavonoids exert a wide range of anticancer effects. For instance, the flavonoids isorham-
netin and acacetin can inhibit the proliferation of human breast cancer [8]. Kaempferol pos-
sesses antiproliferative and apoptosis activity in human osteosarcoma and breast (MCF-7),
stomach (SGC-7901), and lung (A549) carcinoma cells [26]. Genistein has shown potential
to reduce different types of cancer, such as breast, prostate, and ovarian [64]. This flavonoid
induces breast cancer cell cycle arrest at the G2/M phase, followed by ROS-dependent
apoptosis [64]. Other isoflavones, like daidzein, also induce apoptosis in breast cancer
MCF-7 cells due to ROS production [65]. Naringenin can reduce ROS production and
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increase the activity of superoxide dismutase, catalase, and glutathione in cancer cells [66].
This flavanone has the potential to suppress metastasis and proliferation of MG-63 osteosar-
coma cells [67]. Hesperidin can reduce the cell cycle progression in osteosarcoma MG-63
cells and induce apoptosis in several cancer cells like breast, ovary, prostate, and colon
cancer cells [67]. Moreover, hesperidin displays antitumor and hepatoprotective effects
against the development of hepatocellular carcinoma [67].

Epigallocatechin-3-gallate, a major flavonoid constituent in green tea, seems to be
involved in cell growth arrest and death in prostate cancer [26]. Quercetin induces cell
cycle arrest and growth inhibition on several malignant tumor cell lines in vitro, such
as leukemia, colon, breast, and ovarian cancer cells [11]. Apigenin and luteolin change
ROS signaling and induce apoptosis in several ovarian cancer cell lines (A2780, OVCAR-3,
and SKOV-3) [68]. Cyanidin inhibits the proliferation and induces apoptosis of human
epithelial colorectal adenocarcinoma cells (Caco-2) [69].

4.2.3. Cardiovascular Protection

Flavonoids can act as cardio-protective agents by controlling oxidative stress (pre-
venting the oxidation of low-density lipoproteins) and inflammation and by inducing
vasodilation and regulating the apoptotic processes in the endothelium [62]. Flavonoids
can interact with lipid metabolism and reduce platelet aggregation, preventing several
cardiovascular diseases [70]. Some studies have demonstrated that quercetin, naringenin,
and hesperetin have vasodilator properties, and naringenin reduces blood pressure and
relaxation of vascular smooth muscles [6,62]. Isoflavones seem to protect against inflamma-
tory vascular diseases, and quercetin has cardio-protective properties against heart injury
and atheroprotective action associated with reducing oxidative stress [8]. Baicalin has been
reported to improve cardiac dysfunction and reduce apoptosis in heart tissue [71]. Chrysin
induces inhibition of platelet function, and genistein has antihypertensive properties [62].
Anthocyanins mitigate the risk of myocardial infarction in humans, improve systolic blood
pressure, and decrease the levels of triglycerides as well as total and LDL cholesterol [72].
In addition, quercetin reduces systolic blood pressure and LDL blood concentration [7].
Several studies with acacetin, a flavone, demonstrated positive effects in the control of
human arrhythmia [6].

4.2.4. Antibacterial Action

Flavonoids can exert several mechanisms of action against bacteria. They can interfere
with lipid bilayers by inducing bacterial membrane disruption and inhibit several processes
such as biofilm formation, cell envelope synthesis, nucleic acid synthesis, electron transport
chain, and ATP synthesis [73]. For instance, catechin, epicatechin and epigallocatechin
gallate, and the flavonol quercetin seem to induce an oxidative burst, increasing ROS
production that increases membrane permeability and damage [74]. Apigenin can desta-
bilize the structure of the membranes by disordering and disorientating the membrane
lipids, leading to membrane leakage [73]. The flavonoids, apigenin, chrysin, naringenin,
kaempferol, quercetin, daidzein, and genistein interfere with biofilm formation, while
the quercetin, luteolin, myricetin, and baicalein inhibit bacterial DNA replication [6,73].
Bacteria ATP synthesis can be inhibited by epigallocatechin gallate and baicalein [75].

4.2.5. Antifungal Action

There are several antifungal mechanisms exerted by flavonoids, such as disruption of
the plasma membrane, induction of several mitochondrial dysfunctions, and inhibition
of cell wall formation, cell division, and RNA and protein synthesis [76]. Apigenin and
baicalein can act as antifungals by controlling ROS species, reducing lipid peroxidation, and
avoiding membrane disruption [6,77]. Some isoflavones, such as glabridin, can inhibit the
synthesis of the main components of fungi cell walls, β-glucans, and chitin [78]. Quercetin
can modulate several mitochondrial functions, like inhibition of oxidative phosphorylation
and modifying of ROS production [79]. Apigenin interferes with the cell cycle, while
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myricetin, kaempferol, quercetin, luteolin, naringenin, and genistein inhibit DNA, RNA,
and protein synthesis [80].

4.2.6. Antiviral Action

Flavonoids can block the binding and penetration of viruses into cells, interfere with
viral replication or translation, and prevent the release of the virus [81]. For instance,
apigenin was demonstrated to be active against several DNA and RNA viruses, herpes
simplex virus types 1 and 2, hepatitis C and B viruses, and the African swine fever virus
by suppressing the viral protein synthesis [82]. Baicalein can impair avian influenza
H5N1 virus replication in humans [83] and luteolin can have an antiviral effect on the
reactivation of HIV-1 [83]. Epigallocatechin gallate exerts an antiviral effect throughout
several steps of the HIV-1 life cycle [83]. Genistein can inhibit HIV infection of CD4 T cells
and macrophages by interfering with HIV-mediated actin dynamics [84]. Kaempferol can
also inhibit HIV replication in target cells [85] and block herpes simplex virus types 1 and 2
by attaching and entering the host cell [84]. The antiviral activity of quercetin, kaempferol,
and epigallocatechin gallate against several influenza virus strains was demonstrated by
Wu et al. [86].

5. Conclusions

In summary, flavonoids are important secondary compounds produced by plants with
several functions related to growth and development and stress protection. The awareness
of the beneficial properties of flavonoids for human health has triggered the increased
consumption and interest in flavonoids’ uses in food processes and for therapeutic uses.
Vegetables, flowers, and seeds are rich in flavonoids, and methodologies to extract these
compounds from these natural sources have been developed to be used for other purposes,
such as food additives and preservatives. The recognition of natural flavonoids as a good,
safer source of antioxidants opens new perspectives to explore more of these compounds,
focusing on new structures using new methodologies and technologies and exploiting
other new natural sources.
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