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A B S T R A C T   

To effectively plan and manage the use of agricultural land, it is crucial to identify and evaluate the multiple 
human and environmental factors that influence it. In this study, we propose a model framework to identify the 
factors potentially explaining the use of agricultural land for wheat, maize, and olive grove plantations at the 
regional level. By developing a machine-learning model coupled with a model-agnostic approach, we provide 
global and local interpretations of the most influential factors. We collected nearly 140 variables related to 
biophysical, bioclimatic, and agricultural socioeconomic conditions. Overall, the results indicated that bio-
physical and bioclimatic conditions were more influential than socioeconomic conditions. At the global inter-
pretation level, the proposed model identified a strong contribution of conditions related to drainage density, 
slope, and soil type. In contrast, the local interpretation level indicated that socioeconomic conditions such as the 
degree of mechanisation could be influential in specific parcels of wheat. As demonstrated, the proposed 
analytical approach has the potential to serve as a decision-making tool instrument to better plan and control the 
use of agricultural land.   

1. Introduction 

The current global trends of population growth, accelerated urban-
isation, and environmental changes, which are associated with the 
encroachment of agricultural land (Foley et al., 2011; Radwan et al., 
2019), agricultural land abandonment (Castillo et al., 2021), and agri-
cultural land fragmentation (Gomes et al., 2019; Postek et al., 2019), 
have an influence on food production and food security (Godfray et al., 
2010; Wu et al., 2014). For the coming decades, enhancing and main-
taining food supply will require the efficient use of agricultural land 
(FAO, 2017; Wu et al., 2014). However, multiple factors (e.g. natural 
and environmental) that vary both temporally and spatially determine 
and affect the use of agricultural land (Akpoti et al., 2019; Lambin et al., 
2001; Ndamani and Watanabe, 2017). Thus, more studies are needed to 
better identify and evaluate the factors influencing agricultural land use 
under different cross-scale and geographical contexts. 

Traditionally, empirical and conventional statistical methods such as 
principal component analysis (PCA), clustering methods, regression, 
and other linear approaches have been used to better understand the 
factors influencing land use (Braimoh, 2009; Marcos-Martinez et al., 

2017; Santiphop et al., 2012; Velásquez-Milla et al., 2011). While the 
application of such methods can provide useful information to support 
effective planning and management measures as well as better-informed 
decisions concerning efficient land use, they present some analytical 
limitations. For instance, these statistical methods may not fully capture 
nonlinear behaviour or discard the effects of heterogeneity and spatial 
autocorrelation from the analysis (Cartone and Postiglione, 2020; 
Demšar et al., 2013; Jombart et al., 2008). 

Conversely, machine learning (ML), which is a subfield of artificial 
intelligence (AI), has successfully overcome the limitations of statistical 
methods. Compared to traditional methods, ML is recognised to achieve 
superior or at least equivalent accuracy outcomes (Lima et al., 2015; Ren 
et al., 2020; Shortridge et al., 2016). In turn, ML approaches have many 
advantages, such as the capability to deal with data of different types, 
structures, and quantities (i.e. big data) (Molnar, 2019), being non- 
sensitive to the scale of variables (meaning there is no need for vari-
able normalisation); therefore, it is possible to exploit and combine 
different data resources to model complex nonlinear relationships that 
describe agricultural land-use systems. 

Owing to the great variety of robust algorithms and flexible model 
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structures (e.g. artificial neural networks (ANNs) and random forests 
(RFs)), ML models represent a potential solution to the requirements of 
different land-use modelling applications (Hagenauer et al., 2019). 
Despite the potential advantages, ML algorithms remain mostly under a 
‘black box’ formulation, which means that without further intervention, 
it is not possible to directly interpret or retrace how a model performs 
inference or prediction owing to the many internal weights or structural 
information (Molnar, 2019). Nevertheless, the explainable AI (xAI) has 
recently emerged as an important research area, which proposes 
advanced statistical measures and visualisation tools to enhance the 
interpretability of ML (Carvalho et al., 2019; Molnar, 2019; Murdoch 
et al., 2019). For instance, post-hoc techniques such as model-agnostic 
models have been proposed as interpretability methods to provide ex-
planations about the function underlying the general behaviour of ML 
models (Molnar, 2019; Murdoch et al., 2019; Ribeiro et al., 2016a). The 
main advantage of a model-agnostic approach is its flexibility as it can 
deal with the opacity of any kind of black box ML model and gather 
interpretability, which is a critical aspect when the ML model outcomes 
are used as a basis for decision making (Ribeiro et al., 2016a). Currently, 
there are some examples of model-agnostic interpretation methods that 
are global or local in scope, such as the permutation feature importance 
(PFI), partial dependence plots (PDPs), or local surrogate models (e.g. 
local interpretable model-agnostic explanations (LIME)) (Molnar, 
2019). 

To date, ML models have been successfully applied in a wide range of 
Earth and environmental science studies, for example, in estimating air 
pollution (Ren et al., 2020), predicting dengue importation (Salami 
et al., 2020), modelling coastal fish communities (Lehikoinen et al., 
2019), and predicting marine fish distributions (Zhang et al., 2019). In 
the scientific field of land-use modelling, ML has been mostly used for 
image classification and land use/land cover (LULC) mapping (Abdi, 
2020; Raczko and Zagajewski, 2017), as well as to simulate future LULC 
changes (Gomes et al., 2019; Hagenauer et al., 2019). However, the 
recently developed areas of xAI research and model-agnostic methods, 
which provide the ML model interpretability needed to enhance scien-
tific consistency (Molnar, 2019), have rarely been introduced to agri-
cultural land modelling studies. 

Accordingly, this study explores the use of an ML model coupled with 
a model-agnostic approach to increase the understanding of human and 
environmental factors that can explain the use of agricultural land for 
three cropland plantations relevant to food security and Mediterranean 
basin ecosystems: wheat, maize, and olive groves (FAO, 2018; Loumou 
and Giourga, 2003). Thus, we developed an analytical framework using 
the RF ML algorithm and PFI, PDPs, and LIME model-agnostic methods 
to provide global and local interpretabilities to understand how biocli-
matic, biophysical, and socioeconomic conditions might explain the 
land used for these three cropland plantations. From a quantitative 
methodology perspective, this study demonstrates the usefulness of such 
methods to deal with some of the above-described analytical challenges, 
and provides novel insights into the use of agricultural land at the 
regional scale. 

2. Material and methods 

2.1. Case study and cropland context 

The case study in which the modelling framework was developed is 
the Beja district located in southern Portugal, with an area of approxi-
mately 10,229.05 km2 that covers 11% of Portugal’s mainland terri-
tories (Fig. 1). In 2011, the district had a population of 152,758 
inhabitants, distributed among 14 municipalities and 75 parishes (INE, 
2012). The climate in Beja is influenced by its distance from the coast, 
with a Mediterranean climate characterised by hot and dry summers and 
wet and cold winters. This large predominantly agricultural region in-
cludes a vast landscape of intermingling cultures, such as wheat, olive 
groves, vineyards, and cork oak forests. In addition, in this region, we 

can find an agrosilvopastoral agricultural heritage system named Mon-
tado that has been indicated as a globally important agricultural system 
according to the Food and Agriculture Organization of the United Na-
tions (FAO) (Correia, 1993; Koohafkan, 2016; Muñoz-Rojas et al., 2019). 
The region’s high natural and economic value, in particular to food se-
curity and Mediterranean basin ecosystems, emphasizes the case study 
choice. 

Over the last century, Beja consistently produced increasing amounts 
of wheat due to its ecological–biophysical conditions and parcel struc-
tures. The region is also characterised by an enlargement of olive grove 
plantations, whereby a change from open production to intensive and 
super-intensive production has been witnessed over the past decade due 
to the increased exploitation of water resources following the con-
struction of Alqueva Dam (Viana et al., 2019; Viana and Rocha, 2020). 
Although maize plantations were historically confined to the northern 
regions of Portugal, which are more humid and have a higher water 
availability than the south, they can now be found in Beja as a result of 
the construction of irrigation systems during the past decades. 

2.2. Experimental design 

The model framework was developed to understand the multiple 
factors explaining the land used for wheat, maize, and olive grove 
plantations. The framework includes five main stages: (1) collection and 
pre-processing of spatial data, (2) data multicollinearity diagnosis, (3) 
ML model building, and (4) application of a model-agnostic approach for 
interpretability. The workflow of the process is shown in Fig. 2. 

2.2.1. Data collection and pre-processing 

2.2.1.1. Derivation of the response variable. The spatial locations of 
wheat, maize, and olive groves were obtained from the Portuguese 
Institute for Financing Agriculture and Fisheries (IFAP) (https://www. 
ifap.pt/isip/ows/). The IFAP provides vector 1:10,000 (polygons) 
structured data concerning the Land Parcel Identification System, which 
identifies the limit of parcels of national farming systems and classifies 
agricultural land use (reference data for 2020). This dataset is produced 
by the Portuguese government for the submission of applications for 
community aid and the execution of control actions for farmers. For 
analysis purposes, we generated random points inside the parcel fea-
tures, with a minimum distance of 500 m between them, to avoid 
pseudo-replication and to increase the variance of the training data. A 

Fig. 1. Location of the Beja district in Portugal.  
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total of 721, 218, and 3889 sample presence points were obtained for 
wheat, maize, and olive groves, respectively (Fig. 3). Thus, an equal 
number of real absences were selected and included in the final pre-
sence–absence file. 

2.2.1.2. Derivation of the explanatory variables. Variables (factors) with 
probable explanatory relevance were selected based on relevant litera-
ture (e.g., Akpoti et al., 2019; Kourgialas, 2021; Li et al., 2018; Petit 
et al., 2011; Valayamkunnath et al., 2020); however, the initial dataset 
depended on data availability. Briefly, multiple variables were obtained 
and divided into (i) agricultural socioeconomic statistical data, which 
provide a current comprehensive information framework for the agri-
cultural sector in the region; and (2) environmental data (bioclimatic 
and biophysical), which provide basic information on climate and the 
physical environment. The entire dataset encompassed 138 variables 
(both categorical and continuous). Table 1 presents a summary of the 
variables included in this study and their metadata (full data in Table A1 
in the Appendix). It is worth noting that digital terrain model (DTM) 
data were used to compute the slope, and drainage network data were 
used to calculate the drainage density (km/km2). In addition, land cover 
data and road networks were used to compute the Euclidian distance to 
waterbodies, urban areas, and roads. Socio-economic data was collected 
at the parish level and rasterized at a 100 m resolution. Therefore, all 
original data were resampled to a common spatial resolution of 100 m to 
match the climate data resolution and 1:25,000 variable minimum 
mapping unit (1 ha). 

2.2.2. Modelling procedures 
The first stage of our model approach encompassed a preliminary 

statistical analysis, during which we diagnostic the variables multi-
collinearity by calculating the variance inflation factor (VIF) (Dohoo 
et al., 1997; Lin, 2008). We calculated the VIF using the ‘usdm’ library in 
R statistical software, which excluded highly correlated variables from 
the initial set (n = 138) through a stepwise procedure (Naimi et al., 
2014). Any variable with a VIF of > 5 was excluded from the model 
(James et al., 2013; Johnston et al., 2018). The VIF was calculated for 
each cropland individually and the final number of included variables 
was 42 for wheat, 25 for maize, and 44 for olive groves (see Table A2 in 
the Appendix). 

The second stage involved building the ML model using the RF al-
gorithm. Several studies have demonstrated that RF exhibits very similar 
performance or performs better than other ML algorithms (see Al-Fugara 
et al., 2020; Li et al., 2016; Wu et al., 2019; Yang et al., 2016). 
Furthermore, the RF algorithm has been described as robust in terms of 
fitting capacity during training and validation procedures, even with a 
small number of sample points (Luan et al., 2020; Moghaddam et al., 
2020; Qi, 2012). We performed RF using the ‘RandomForest’ library in R 
statistical software (Liaw and Wiener, 2002) without pre-tuning the 
number of trees (n = 500) and setting the number of variables in the 
subset of each node to 

̅̅̅
n2

√
(Probst and Boulesteix, 2018). Each cropland 

was modelled separately. Due the RF model structures is important to 
tune and validate it. Therefore, we used k-fold cross-validation (k = 10) 
to enhance the model reliability and avoid overfitting (Meyer et al., 
2018). We chose a data split of 70% for training and 30% for testing 
instead of an 80%–20% split due to the low number of presences for 
maize (2 1 8) and wheat (7 2 1) (Meyer et al., 2018). 

2.2.3. Model-agnostic approach for interpretability 
The third stage involved interpretability of the ML model by using 

the model-agnostic approach to extract the post-hoc explanations. The 
model-agnostic approach provides an explanation based on the different 
behaviours of fitted complex models (e.g. RF algorithm), presenting 
information at the global level (i.e. what the model learned from the 
input variables) and at the local level (i.e. the rationales that the model 
provides for each estimate). Depending on the purpose of the analysis, 
different methods can be used jointly for global or local interpretability 
of the same model. In this study, we applied two methods for global 
interpretability and one method for local interpretability. The global 
interpretation was implemented using the following methods:  

(a) The PFI method, which is commonly used to measure the increase 
in model performance error after a variable is permuted (i.e. 
randomly shuffled) (Molnar, 2019; Winkler et al., 2015). Spe-
cifically, this method allowed us to understand which variables 
contributed to the underlying ML model outcomes and quantify 
their importance scores. In this study, we computed both the area 
under the curve (AUC) and the R2 value, and used the latter for 
the variable importance analysis. 

Fig. 2. Workflow of the modelling process.  

Fig. 3. Sample points spatial location. The sample size among the three crop 
plantations depicts the importance in terms of the territorial presence and 
spatial distribution of each crop plantation. 
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(b) The PDPs method, which depicts the explanatory variables’ 
overall relationship with the response variable (variable expla-
nation probability) by imposing all occurrences to have the same 
variable value and measuring the marginal or average effect for 
this value on the model response (Apley and Zhu, 2016; Goldstein 
et al., 2013; Molnar, 2019). Therefore, it indicates the marginal 
effects of variables on the model outcomes, thereby identifying 
the threshold value at which these variables are likely to explain 
the land used for a specific cropland plantation. 

In addition, local interpretation was implemented via:  

(a) The LIME method, which trains a local surrogate model (a simple 
model such as a decision tree model) to reconstruct the inter logic 
workings around the individual observation (i.e. the local po-
tential interactions occurring) (Ribeiro et al., 2016b). Formally, 
the LIME interpretability constraint is defined as: 

explanation(x) = argming∈GL(f , g, πx)+Ω(g) (1)  

where the explanation model (x) is the model(g), for example, a 
generalised linear model, which minimises the loss (L) using the mean 
squared error, which measures how close the explanation is to the pre-
diction of the original model (f), for example, a RF model while keeping 
the model complexity Ω(g) low (e.g. using the minimum of features). 
Value (G) is the number of possible explanations, for example, all 
possible general linear models. The proximity measure πx defines the 
size of the neighbourhood considered for the explanation around 
instance x. In practice, LIME only optimises the loss part, and the user 
has to determine the complexity, for example, by selecting the maximum 
number of features that the linear regression model may use. Therefore, 
it is possible to understand whether variables that increase the expla-
nation probability either support or contradict the explanation for a 
given parcel. Locally, the behaviour of the ML model might be different 
because the outcomes rely linearly or monotonically on some variables, 

instead of having a complex dependence on them; therefore, local 
interpretability might be more accurate than global interpretability 
(Ribeiro et al., 2016b). 

In this study, PFI and PDPs were performed using the ‘varim’ and 
‘pdp’ packages (Greenwell, 2017; Probst and Janitza, 2020) of R version 
4.0.2 statistical software, respectively, while the ‘lime’ package was 
used to implement the LIME method (Pedersen and Benesty, 2019). 

3. Results 

The RF modelling outputs were examined for global interpretation 
using the PFI method. Fig. 4a–c presents the 10 most influential vari-
ables in explaining the land used for wheat, maize, and olive groves. For 
each cropland, the list of variable importance was distinctive. Although 
5 of the 10 variables were the same for the explanation, they presented 
importance scores quite differently. Overall, the model results indicate 
that bioclimatic and biophysical variables provided a more significant 
explanation, while socioeconomic variables were less important and did 
not seem to affect the model significantly. 

The most influential variables (with an importance score of > 50) in 
explaining land use for wheat plantations were drainage density (V136) 
and slope (V134), while those for maize plantations were slope, soil type 
(V132), drainage density, and the ombrothermic index anomaly for 
humid years (V131). In the case of land used for olive grove plantations, 
all 10 most influential variables had an importance score of > 50, but the 
mean minimum temperature of the coldest month (V118), draining 
density, and ombrothermic index of the summer quarter (V124) were 
the top three most important. 

The PDP method was also used to provide a global interpretation. 
Fig. 5 presents the response curves for the first six most influential 
variables and their probability of explaining the land used for wheat 
plantations. In particular, each plot shows that the probability of land 
being used for wheat plantations increased on average: (i) by 0.4 as the 
drainage density increased up to 5 km/km2, after which the probability 
did not change; (ii) by 0.4 as the slope increased up to 30%, after which 

Table 1 
Summary of the variables included in the model.  

Category Code Variable Scale/Resolution Year Data Source 

Socio- 
economic 

V1-V55 Agricultural holdings (type of tenure, legal form, type of 
land use, livestock, with irrigable area) 

1:25,000Parish 
statistical unit 

2019 Statistics Portugal (2019) 

V56-V61 Agricultural types of machinery 
V62 Familiar agricultural population 
V63-V89 Sole agricultural holders (Age group, with 65 and more 

years old, female sex, level of education) 
V90-V110 Utilised agricultural area 
V111-V112 Irrigable area (ha) of agricultural holdings and AWU  

Bioclimatic V113-V114 Mean temperature of the warmest and the coldest month 
of the year 

100 m 1960–1990 Monteiro-Henriques et al. (2016) 

V115-V116 Annual positive temperature and positive precipitation 
V117-V118 Mean maximum and minimum temperature of the 

coldest month 
V119 Simple continentality index, or annual thermal 

amplitude 
V120-V121 Thermicity índex and compensated thermicity índex 
V122 Annual ombrothermic índex 
V123 Ombrothermic index of the warmest bimonth of the 

summer quarter 
V124-V125 Ombrothermic index of the summer quarter and the 

summer quarter plus the previous month 
V126-V127 Positive precipitation (for dry and humid years) 
V128-V129 Ombrothermic index (for dry and humid years) 
V130-V131 Ombrothermic index anomaly (for dry and humid years)   

Biophysical V132 Soil type 1:25,000 Static over 
time 

DGADR (https://www.dgadr.gov.pt/) 
V133 Soil capacity 
V134 Slope IGEOE (http://www.igeoe.pt/cigeoesig/) 
V136 Drainage density 
V137- 
V138-V135 

Distance to urban, roads, and water bodies DGT (2018) and OpenStreetMap 
(https://www.openstreetmap.org/)  
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the probability did not change; (iii) by 0.25 as positive precipitation for 
humid years increased up to 800 mm, after which the probability did not 
change; (iv) by 0.20 as the mean temperature of the coldest month of the 
year increased, with a positive impact up to 4.5 ◦C, whereas the variable 
effect reduced quickly at > 5 ◦C before the probability increased again 
by 0.20 at > 5.5 ◦C; (v) by 0.18 as the annual positive temperature 
increased (the variable effect reduced quickly after 1900 ◦Cx10); and 
(vi) by 0.16 as the ombrothermic index anomaly for humid years 
increased up to 0.36, after which the variable affect was negligible. 

Fig. 6 displays the response curves for the first six most influential 
variables and their probability of explaining the land used for maize 
plantations. In particular, each plot shows that the probability of land 
being used for maize plantation increased on average: (i) by 0.8 as the 
slope increase up to 10%, after which the probability did not change; (ii) 
by 0.5 when the soil type was classified as “A” (incipient soils - modern 
non-limestone alluvisols of medium texture); (iii) by 0.6 as the drainage 
density increased up to 8 km/km2, after which the probability did not 
change; (iv) by 0.6 as the ombrothermic index anomaly for humid years 
increased up to 0.34, after which the probability did not change; (v) by 
0.4 as the ombrothermic index of the summer quarter plus the previous 

month increased up to 0.6, after which the variable effect reduced 
quickly, and the probability increases by 0.2 at > 0.7 ◦C; and (vi) by 0.3 
when the soil capacity was classified as “Ee” (very severe limitations). 

Fig. 7 presents the response curves for the first six most influential 
variables and their threshold value probability of explaining the land 
used for olive grove plantations. In particular, each plot shows that the 
probability of land being used for olive grove plantations increased on 
average: (i) by 0.3 as the mean minimum temperature of the coldest 
month increases up to 6 ◦C, after which the probability did not change; 
(ii) by 0.3 as the draining density increased up to 8 km/km2, after which 
the variable affect reduced; (iii) by 0.25 as the ombrothermic index of 
the summer quarter increased up to 0.3, after which the variable affect 
reduced quickly; (iv) by 0.16 as the ombrothermic index anomaly for 
humid years increased up to 0.35, after which the variable affect 
reduced; (v) by 0.2 as positive precipitation for humid years increased 
up to 1000 mm, after which the probability did not change; and (vi) by 
0.15 when the soil type was classified as “Ex” (incipient soils – lithosols 
of xeric regime climates, of schist or greywacke). 

The LIME method was employed to provide local interpretability (an 
explanation at the parcel level). Table 2 lists the best probability of four 
cases for each cropland (each case is a single parcel) and the top five 
variables that supported or contradicted the local explanation. Although 
most of the variables supported the explanation for single parcels used 
for wheat and olive groves, some variables contradicted the explanation 
(in parcel case #424 for wheat, and parcel cases #2138, #2534, and 
#2608 for olive groves). For maize, none of the top five variables con-
tradicted this explanation. In general, for each cropland in the analysis, 
the top five variable sets were similar, although they weighted quite 
differently. 

Fig. 8 displays eight cases, whereby the explanation probability of a 
parcel was used for wheat plantations. It can be seen that slope (V134), 
soil type (V132), agricultural holdings with agricultural combine 
harvester machinery (V53), and drainage density (V136) supported the 
highest (largest positive weight) explanation probability. In particular, 
when the slope was < 3.35% and the drainage density was between 2.85 
km/km2 and 3.93 km/km2, there was a higher probability that a parcel 
was used for wheat plantation. At the local level, agricultural holdings 
with agricultural combine harvester machinery increased the probabil-
ity, specifically > 28 pieces of combine harvester machinery increased 
the probability of wheat plantations in all eight single parcels. 

Fig. 9 presents eight cases and the five most influential variables 
explaining the parcels used for maize plantations. It can be seen that 
slope (V134) and drainage density (V136) supported the explanation 
probability. In particular, when the slope was < 2.24% and the drainage 
density was < 2.64 km/km2, there was a higher probability that a parcel 
was used for maize plantations. In addition, autonomous (legal form) 
utilised agricultural areas (V91) of ≤ 3213 ha and areas of permanent 
crops with fresh fruit plantations (V98) of < 86 ha increased the prob-
ability of maize plantations in all eight single parcels in the analysis. 

Fig. 10 shows eight cases and the most influential variables 
explaining the parcels used for olive groves plantation. It can be seen 
that when the mean minimum temperature of the coldest month (V118) 
was ≤ 4.99 ◦C and the drainage density (V136) was between 3.09 km/ 
km2 and 4.10 km/km2, the probability of a parcel being used for olive 
grove plantations increased. In addition, the area of permanent crops 
(V97) of > 5568 ha increased the probability explanation. However, 
agricultural holdings with < 662 (number) poultry (V6) and ≤ 10% of 
sole agricultural holders with a level of education outside the agricul-
tural/forestry field (V79) contradicted the explanation. The variables 
explaining the parcels used for olive groves did not remain constant in 
all eight parcel cases in the analysis. 

Fig. 4. Ten most influential variables and respective importance score in 
explaining wheat (a), maize (b), and olive grove (c) plantations. See Table A1 in 
the Appendix for further details of the variables. 
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4. Discussion 

4.1. An ML and model-agnostic approach for agricultural land modelling 

The modelling outcomes revealed the relationship between the use of 
agricultural land and environmental and socioeconomic conditions, 
showing that for each cropland under analysis, the explanatory factors 
varied significantly. At the global interpretability level, the results 
showed a highly dominant explanation of drainage density to the land 
used for wheat, maize, and olive grove plantations. However, the same 
variable not only exhibited different importance scores for the model 
interpretability of each cropland, but also presented different threshold 
values. For instance, in wheat plantations, the probability increased for a 
drainage density threshold value up to 5 km/km2, whereas in maize and 
olive grove plantations, the explanation increased for a threshold up to 
8 km/km2. Overall, the model results emphasise that a high drainage 
density (>3.5 km/km2) (Shankar and Mohan, 2006) is an important 
condition explaining the land used for these three crop plantations. 

These findings agree with those of other studies, which highlighted the 
importance of highly drained soils for the rooting depth of crops (Akpoti 
et al., 2019). 

In addition, the slope could increase the explanation regarding wheat 
and maize plantations; however, the threshold values were substantially 
different (up to 30% for wheat and 10% for maize). Indeed, the slope of a 
plantation is a crucial factor for crop growth because it not only affects 
the vegetation structure but also the internal soil water drainage (Akpoti 
et al., 2019; Marcos-Martinez et al., 2017). Moreover, the mean mini-
mum temperature of the coldest month explained most of the land used 
for olive grove plantations. For instance, exposure to cold temperatures 
is linked to the optimal differentiation of flower buds and the reduction 
of parasites and pathogens in olive trees (De Melo-Abreu et al., 2004; 
Rallo and Cuevas, 2017). 

At the local interpretability level, the outcomes highlighted that 
socioeconomic factors became relevant, with differences observed with 
regard to variable explanation probability. For instance, the degree of 
mechanisation had a significant probability of supporting the 

Fig. 5. Response curves for the six most influential variables and their probability of explaining the land used for wheat plantations. See Table A1 in the Appendix for 
further details of the variables. 

Fig. 6. Response curves for the five most influential variables and their probability of explaining the land used for maize plantations. See Table A1 in the Appendix 
for further details of the variables. 
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explanation regarding wheat plantation in the eight parcels analysed 
(Ismail and Abdel-Mageed, 2010). Therefore, the outcome of the anal-
ysis indicates that, while environmental factors such as drainage density 
or slope were important for globally explaining the plantations of the 
three croplands in the study area, socioeconomic factors became equally 
important at the parcel level. These findings are consistent with those of 
other studies (Akpoti et al., 2019; Marcos-Martinez et al., 2017; Santi-
phop et al., 2012; Thenkabail, 2003). 

The results of this study showed that the ML and model-agnostic 
methods could capture the complex interactions between the human-
–environmental processes influencing agricultural land use. The iden-
tification of the main variables that can explain the use of agricultural 
land for wheat, maize, and olive grove plantations helps to fill the 
knowledge gap for modelling these croplands, especially in southern 
Portugal. Therefore, in geographical regions with conditions similar to 
those of Mediterranean basins, such factors could be used to better 
characterise the suitable agricultural areas (Akpoti et al., 2019; Marcos- 
Martinez et al., 2017). 

From a methodological point of view, our study suggests that the 

developed approach presents a high potential for use as an analytical 
method in the field of agricultural land systems. For example, the level 
of interpretability provided by the applied approach provides a refer-
ence for land suitability analysis (Akpoti et al., 2019). Certainly, the 
potential of such an approach deserves further development and testing 
for other spatiotemporal phenomena of land use to support planning 
strategies and more efficient and targeted land policies (e.g. research on 
the driving forces of LULC changes (Aburas et al., 2019)), and/or to 
anticipate and manage upcoming land changes due to variations in 
environmental and socioeconomic factors (Baessler and Klotz, 2006; 
Santiphop et al., 2012). 

4.2. Limitations and recommendations 

Based on our results and the considerations discussed above, we 
recognise that the development and implementation of the proposed 
approach had some limitations. First, some skills and knowledge of 
statistical software and methods were required. Second, although data 
availability has increased in many scientific fields, in this study, data 
related to the multiple factors affecting the use of agricultural land were 
limited to biophysical, bioclimatic, and socioeconomic factors. As such, 
the lacking of data related to for example political or cultural factors 
were a limitation of this study. In fact, having a large amount of data is 
an important element to strengthen the capability of ML modelling 
because it ensures adequate training and validation, thereby preventing 
generalisation problems (Carvalho et al., 2019). However, engaging 
scientific research with spatially explicit data depends on data avail-
ability, which can limit the use of ML models and must be a decisive 
factor to be considered in subsequent studies using such methods. Third, 
not having sufficient and representative sample sizes for the three ana-
lysed crop plantations can be detrimental to the model-agnostic results. 
This was, in fact, a second major constraint of this study, and it depicts 
the limitations associated with such an approach. Moreover, by being a 
model-agnostic approach, different types of explanations and degrees of 
interpretability regarding the factors potentially explaining agricultural 
land use may be obtained (Alvarez-Melis and Jaakkola, 2018; Carvalho 
et al., 2019; Murdoch et al., 2019; Slack et al., 2020). Therefore, the 
results should be interpreted critically by field experts who have 
improved knowledge regarding the underlying functions of agricultural 
land-use systems. Moreover, our findings need to be used at a regional 
scale because of their high spatial variability. Fourth, while this study 
builds upon timely and recent data to provide insights into the 

Fig. 7. Response curves for the five most influential variables and their probability of explaining the land used for olive groves. See Table A1 in the Appendix for 
further details of the variables. 

Table 2 
Four principal cases of each cropland (the four with the best probability) and the 
respective five most influential variables that increased (supported) or decreased 
(contradicted) the explanation. See Table A1 in the Appendix for further details 
of the variables.  

Cropland Case# Probability Top five variables from LIME 

Wheat 539  0.99 Supports: V134, V136, V132, V53, V118 
Wheat 424  0.98 Supports: V132, V136, V53, V134; 

Contradicts: V115 
Wheat 283  0.97 Supports: V134, V132, V53, V115, V98 
Wheat 406  0.96 Supports: V134, V136, V53, V132, V118 
Maize 185  1.00 Supports:V134, V98, V91, V132, V131 
Maize 152  0.99 Supports:V98, V134, V91, V136, V132 
Maize 176  0.99 Supports:V98, V134, V91, V132, V121 
Maize 153  0.99 Supports:V134, V98, V91, V132, V136 
Olive 

groves 
2138  1.00 Supports: V118, V97, V127, V124; 

Contradicts: V6 
Olive 

groves 
6531  0.99 Supports: V118, V136, V133, V124, V127 

Olive 
groves 

2534  0.99 Supports: V118, V136, V124, V95; 
Contradicts: V79 

Olive 
groves 

2608  0.99 Supports: V118, V97, V124, V132; 
Contradicts: V6  
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agricultural land used for wheat, maize, and olive grove plantations at a 
regional scale in a Portuguese district, we acknowledge that more 
studies should be carried out at different scales and across different 
geographic contexts to gain a deeper understanding of the underlying 
factors explaining other important and relevant croplands for global 
food security and ecosystem services (FAO, 2018). Fifth, and last, we 
used the RF ML algorithm, PFI, PDPs, and LIME model-agnostic 
methods, but substantial efforts have already been made in AI and xAI 
research fields, and different algorithms and methods are readily 
available (Carvalho et al., 2019; Molnar, 2019). Therefore, future 
research should focus on comparative studies that could guide new in-
formation and improve interpretation (Brun et al., 2020). 

5. Conclusions 

To comprehensively evaluate the factors that can potentially explain 
the use of agricultural land for wheat, maize, and olive grove planta-
tions, this study implemented an ML and agnostic-model approach 
based on agricultural parcel-data sampled points and biophysical, 

Fig. 8. Most influential variables explaining the parcels used for wheat plantations. See Table A1 in the Appendix for further details of the variables.  

Fig. 9. Most influential variables explaining the parcels used for maize plantations. See Table A1 in the Appendix for further details of the variables.  

Fig. 10. Most influential variables explaining the parcels used for olive groves 
plantation. See Table A1 in the Appendix for further details of the variables. 
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bioclimatic, and socioeconomic variables. We applied global interpret-
able methods and identified that drainage density, slope, soil type, and 
the ombrothermic index anomaly (for humid and dry years) were the 
five most common important variables explaining the use of agricultural 
land for the three crop plantations in the study area. Using the local 
interpretable method, we explored spatial variations and found that 
socioeconomic variables became relevant at the parcel level. For 
instance, factors such as the degree of mechanisation could influence 
specific parcels of wheat. Overall, the analysis outcomes indicated that 
biophysical and bioclimatic conditions were more influential than so-
cioeconomic conditions. As demonstrated, the proposed analytical 
approach may be particularly important for research on agricultural 
land use because it can capture the complex behaviours and underlying 
functions of agricultural land-use systems, thus providing crucial in-
sights that can help solve several problems related to food production, 
social stability, and sustainable land use. We believe that this approach 
is a step towards providing comprehensive assessments of agricultural 
land use, and has the potential to serve as a decision-making tool to 
better plan and control the use of agricultural land. Despite the results 
we have achieved, more studies should be conducted at different scales 
and across different geographic contexts to gain a deeper understanding. 
Further research can be used to analyse the underlying factors 
explaining other important and relevant croplands for global food se-
curity and ecosystem services. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by the Portuguese Foundation for Science 
and Technology (FCT) under Grant [number SFRH/BD/115497/2016]; 
Centre for Geographical Studies—Universidade de Lisboa and FCT 
under Grant [number UIDB/00295/2020 + UIDP/00295/2020]. We 
would like to thank the GEOMODLAB - Laboratory for Remote Sensing, 
Geographical Analysis and Modelling—of the Center of Geographical 
Studies/IGOT for providing the required equipment and software. We 
would also like to thank to the editor and the anonymous reviewers that 
contributed to the improvement of this paper. 

Funding 

This work was supported by the Portuguese Foundation for Science 
and Technology (FCT) under Grant [number SFRH/BD/115497/2016]; 
Centre for Geographical Studies—Universidade de Lisboa and FCT 
under Grant [number UIDB/00295/2020 + UIDP/00295/2020]. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2021.108200. 

References 

Abdi, A.M., 2020. Land cover and land use classification performance of machine 
learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote 
Sens. 57, 1–20. https://doi.org/10.1080/15481603.2019.1650447. 

Aburas, M.M., Ahamad, M.S.S., Omar, N.Q., 2019. Spatio-temporal simulation and 
prediction of land-use change using conventional and machine learning models: a 
review. Environ. Monit. Assess. 191, 1–28. https://doi.org/10.1007/s10661-019- 
7330-6. 

Akpoti, K., Kabo-bah, A.T., Zwart, S.J., 2019. Agricultural land suitability analysis: State- 
of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 
https://doi.org/10.1016/j.agsy.2019.02.013. 

Al-Fugara, A., Pourghasemi, H.R., Al-Shabeeb, A.R., Habib, M., Al-Adamat, R., Al- 
Amoush, H., Collins, A.L., 2020. A comparison of machine learning models for the 
mapping of groundwater spring potential. Environ. Earth Sci. 2020 7910 79, 1–19. 
https://doi.org/10.1007/S12665-020-08944-1. 

Alvarez-Melis, D., Jaakkola, T.S., 2018. On the Robustness of Interpretability Methods, 
in: ICML Workshop on Human Interpretability in Machine Learning (WHI 2018). 
Stockholm, Sweden. 

Apley, D.W., Zhu, J., 2016. Visualizing the effects of predictor variables in black box 
supervised learning models. J. R Stat. Soc. Ser. B Stat. Methodol. 82, 1059–1086. 

Baessler, C., Klotz, S., 2006. Effects of changes in agricultural land-use on landscape 
structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 
115, 43–50. https://doi.org/10.1016/j.agee.2005.12.007. 

Braimoh, A.K., 2009. Agricultural land-use change during economic reforms in Ghana. 
Land Policy 26, 763–771. https://doi.org/10.1016/j.landusepol.2008.10.006. 

Brun, P., Thuiller, W., Chauvier, Y., Pellissier, L., Wüest, R.O., Wang, Z., Zimmermann, N. 
E., 2020. Model complexity affects species distribution projections under climate 
change. J. Biogeogr. 47, 130–142. https://doi.org/10.1111/JBI.13734. 

Cartone, A., Postiglione, P., 2020. Principal component analysis for geographical data: 
the role of spatial effects in the definition of composite indicators. Spat. Econ. Anal. 
1–22 https://doi.org/10.1080/17421772.2020.1775876. 

Carvalho, D.V., Pereira, E.M., Cardoso, J.S., 2019. Machine learning interpretability: a 
survey on methods and metrics. Electronics 8, 832. https://doi.org/10.3390/ 
electronics8080832. 

Castillo, C.P., Jacobs-Crisioni, C., Diogo, V., Lavalle, C., 2021. Modelling agricultural 
land abandonment in a fine spatial resolution multi-level land-use model: an 
application for the EU. Environ. Model. Softw. 136, 104946 https://doi.org/ 
10.1016/j.envsoft.2020.104946. 

Correia, T.P., 1993. Threatened landscape in Alentejo, Portugal: the ‘montado’ and other 
‘agro-silvo-pastoral’ systems. Landsc. Urban Plan. 24, 43–48. https://doi.org/ 
10.1016/0169-2046(93)90081-N. 

De Melo-Abreu, J.P., Barranco, D., Cordeiro, A.M., Tous, J., Rogado, B.M., Villalobos, F. 
J., 2004. Modelling olive flowering date using chilling for dormancy release and 
thermal time. Agric. For. Meteorol. 125, 117–127. https://doi.org/10.1016/j. 
agrformet.2004.02.009. 
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