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Abstract

We propose three iterative methods for solving the Moser-Veselov equation, which arises in the

discretization of the Euler-Arnold differential equations governing the motion of a generalized

rigid body. We start by formulating the problem as an optimization problem with orthogonal

constraints and proving that the objective function is convex. Then, using techniques from

optimization on Riemannian manifolds, the three feasible algorithms are designed. The first one

splits the orthogonal constraints using the Bregman method, whereas the other two methods

are of the steepest-descent type. The second method uses the Cayley-transform to preserve the

constraints and a Barzilai-Borwein step size, while the third one involves geodesics, with the

step size computed by Armijo’s rule. Finally, a set of numerical experiments are carried out to

compare the performance of the proposed algorithms, suggesting that the first algorithm has

the best performance in terms of accuracy and number of iterations. An essential advantage

of these iterative methods is that they work even when the conditions for applicability of the

direct methods available in the literature are not satisfied.
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1. INTRODUCTION

In [29], Moser and Veselov proposed the following equations to discretize the classical Euler-

Arnold differential equations for the motion of a generalized rigid body:

Mk+1 = ωkMkω
T
k

Mk = ωTk J − Jωk,
(1)

where Mk is the angular momentum with respect to the body (here represented by a skew-

symmetric matrix), J is the inertia matrix (symmetric positive definite), and ωk (orthogonal

matrix) is the angular velocity. Rigid body equations arise in several applications, e.g., celestial

mechanics, molecular dynamics, mechanical robotics, and flight control, where they are used

in particular to understand the body–body interactions of particles like planets, atoms, and

molecules. See, for instance, [5, 13, 23, 31, 20, 21] and the references therein.

The main challenge of solving (1) is to find an orthogonal matrix ωk in the second equation,

by assuming that J and Mk are given. Mathematically, the problem consists of finding an

orthogonal matrix X (for convenience, here we use X instead of ω) such that

XJ − JXT = M, (2)

where J is a given symmetric positive definite matrix, and M is a known skew-symmetric

matrix. All the matrices involved are square of order n. The matrix equation (2) is known

as the Moser-Veselov equation and was firstly investigated in [29], where the authors based

their developments on factorizations of certain matrix polynomials. A different approach, but

computationally more efficient, was provided later in [8], where the authors noted that (2)

can be connected with a certain algebraic Riccati equation and, in turn, with the Hamiltonian

matrix

H =

 M/2 I

M2/4 + J2 M/2

 . (3)

We now revisit some results stated in [8], concerning the existence and uniqueness of solutions

of (2).

Theorem 1. For the matrix equation (2):
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1. There exists a solution X ∈ SO(n) (the special orthogonal or rotation group of order n)

if and only if the size of the Jordan blocks associated to the pure imaginary eigenvalues

of H (if any) is even;

2. (2) has a unique solution X ∈ SO(n) if and only if the spectrum of H is pure imaginary

and the size of the Jordan blocks associated to each (nonzero) eigenvalue is even.

From Theorem 1, we can see that the Moser-Veselov equation may have no solution in

SO(n) if the associated Hamiltonian matrix H has any pure imaginary eigenvalue with a

Jordan block of odd size. It is also known that the existence of purely imaginary eigenvalues

in H causes significant difficulties in solving (2). To avoid those situations, as far as we know,

in all the existing algorithms for solving the equation, it is assumed a priori that H does

not admit any pure imaginary eigenvalue (see, [27, Sec. 1.2], [29, Sec. 1.4], and [31, Sec. G]).

Moreover, the algorithms based on solving the associated algebraic Riccati equation require the

strong condition that the matrix M2/4 +J2 must be symmetric positive definite. These issues

have motivated us to investigate methods whose applicability does not require those restrictive

conditions. As we can see later in Sec. 5, the three proposed optimization algorithms produce

special orthogonal solutions, even when M2/4 + J2 is not symmetric positive definite. Those

iterative algorithms may also be used in problems where H has purely imaginary eigenvalues

associated with Jordan blocks of even size (check Theorem 1) but, as will be illustrated later

in Sec. 5, the convergence may slow down.

Problem 2. Let ‖.‖F denote the Frobenius norm, i.e., ‖A‖F :=
√

trace(ATA). The problem

of finding a special orthogonal solution X in (2) can be formulated as an optimization problem

in the following way:

min
X∈SO(n)

∥∥XJ − JXT −M
∥∥2
F
. (4)

In Problem 2, we have chosen the Frobenius norm because its definition in terms of the

trace of a matrix allows us to access the derivatives of the objective function easily, making it

more suitable to handle optimization problems than other norms, like, for instance, spectral or

infinity norms.

The literature on numerical methods for solving non-linear constrained problems, like (4),

is large; see for instance [30, 24, 33, 28, 7]. However, due to the complicated expression of the
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objective function and the large number of constraints arising from the conditions XTX = I

and det(X) = 1, some care must be taken with the choice of the methods.

Techniques from Riemannian geometry for solving optimization problems with orthogonal

constraints have attracted the interest of many researchers in the last decades; see [2, 14], and

the references therein. An essential feature of those techniques is that they allow the transfor-

mation of a constrained optimization problem into an unconstrained one. Moreover, since the

set of orthogonal matrices is a manifold and provided that the objective function satisfies some

smoothness requirements, we can make available tools such as Euclidean gradients, Riemannian

gradients, retractions, and geodesics.

The three methods presented in this work evolve on the orthogonal manifold and belong to

the family of line search methods on manifolds described in [2, Ch. 4]. They are iterative and

feasible (or constraint-preserving), in the sense that, starting with a matrix X0 ∈ SO(n), all

the iterates Xk also stay in SO(n).

The major contributions of this work are:

• the development of three effective algorithms for solving Problem 2 and in turn the

matrix equation (2) (i.e., the Moser-Veselov equation), that do not require the condition

M2/4 + J2 > 0;

• a detailed discussion on the properties of the optimization problems, including convexity

issues;

• a novel approach for solving the unconstrained optimization problems arising in each

iteration of the Bregman splitting algorithm and a discussion about the reasons that led

the MATLAB’s fminunc function to give unsatisfactory results in some circumstances;

• a novel relative residual capable to infer about the quality of the computed solution of

the Moser-Veselov equation;

• careful modifications on existing algorithms for solving optimization problems with or-

thogonal constraints, to make them suitable for our particular problems.

In the next section, we derived a workable expression to the objective function of Problem 2.

Sec. 3 presents the three algorithms proposed in this paper. In Sec. 4, numerical issues of the
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algorithms are discussed, and, in Sec. 5, a selection of experiments are carried out to illustrate

the performance of the algorithms. In Sec. 6, some conclusions will be drawn.

2. Rewriting the Objective Function

Let us denote by F (X) :=
∥∥XJ − JXT −M

∥∥2
F

the objective function arising in (4). Using

the properties of the trace of a matrix and attending that JT = J and MT = −M , we have

(detailed calculation is omitted):

F (X) = trace
(
(XJ − JXT −M)T (XJ − JXT −M)

)
= 2 trace

(
JXTXJ

)
− 2 trace(XJXJ) + 4 trace(MXJ)− trace(M2). (5)

Now, if we take into account the orthogonality of X, that is, XTX = XXT = I, then F (X)

can be simplified to (a different notation is used):

F̃ (X) = −2 trace
(
(JX)2

)
+ 4 trace(XJM) + 2 trace(J2)− trace(M2), (6)

which is the restriction of F (X) to the orthogonal group O(n), that is, F (X) = F̃ (X), for

any X ∈ O(n), but, in general, F (X) 6= F̃ (X), if X /∈ O(n). Hence, the problem (4) may be

simplified to:

min
X∈SO(n)

F̃ (X) = −2 trace
(
(JX)2

)
+ 4 trace(XJM) + α, (7)

where α := 2 trace(J2)− trace(M2).

If xij denotes the entry (i, j) of the matrix X, then both F (X) defined in (5) and F̃ (X)

in (6) are differentiable functions in Rn2

, because they are quadratic polynomials in the n2

variables xij . In the following lemma we show that F (X) is convex in the set of all n × n

matrices with real entries Rn×n, that is:

F (tX1 + (1− t)X2) ≤ tF (X1) + (1− t)F (X2), (8)

for any t ∈ [0, 1] and X1, X2 ∈ Rn×n.

Lemma 3. The function F (X) given in (5) is convex in Rn×n.
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Proof. Let us denote f(X) := ‖XJ−JXT −M‖F . Attending that the Frobenius norm satisfies

the triangle inequality, we have

f (tX1 + (1− t)X2) =
∥∥∥(tX1 + (1− t)X2) J − J (tX1 + (1− t)X2)

T −M
∥∥∥
F

=
∥∥t(X1J − JXT

1 ) + (1− t)(X2J − JXT
2 )−M

∥∥
F

=
∥∥t(X1J − JXT

1 ) + (1− t)(X2J − JXT
2 )− (t+ 1− t)M

∥∥
F

=
∥∥t(X1J − JXT

1 −M) + (1− t)(X2J − JXT
2 −M)

∥∥
F

≤ t
∥∥X1J − JXT

1 −M
∥∥
F

+ (1− t)
∥∥X2J − JXT

2 −M
∥∥
F

= tf(X1) + (1− t)f(X2), (9)

for all t ∈ [0, 1] and X1, X2 ∈ Rn×n. Consider the scalar function g(y) = y2. Since f(X) ≥ 0,

for any X ∈ Rn×n, and g is non-decreasing in [0,+∞[, we conclude that F (X) = g(f(X)) is

convex.

Similarly, we could show that F̃ (X) is convex in Rn×n. Note, however, that the constraints

of the optimization problem (7) are non-convex, that is, for P, Q ∈ SO(n) and t ∈ [0, 1], in

general tP + (1− t)Q /∈ SO(n), which makes the problem much more difficult.

Now, we use the rules for the derivatives of the trace function (see, for instance, [25, Ch.

10]) to obtain the expressions of the Euclidean gradients (derivatives with respect to X) of

those functions:

∇F (X) = 4XJ2 − 4JXTJ − 4MJ (10)

∇F̃ (X) = −4JXTX − 4MJ. (11)

The Riemannian gradients in the orthogonal manifold can be defined by:

gradF (X) = ∇F (X)XT −X∇F (X)T (12)

grad F̃ (X) = ∇F̃ (X)XT −X∇F̃ (X)T . (13)

We recall that these Riemannian gradients belong to the orthogonal group’s tangent space,

which is the set of skew-symmetric matrices (see, for instance, [14]).

In the next section, we propose three algorithms to solve (2).
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3. Algorithms

There is a vast literature on methods for optimizing functions on the orthogonal group or,

more generally, on the Stiefel manifold (e.g., [1, 14, 15, 19, 22, 26, 35, 36]). Among those

methods, we have selected three state-of-the-art ones that we believe to be well suited for our

specific objective function. The first algorithm (Section 3.1) splits the orthogonal constraints

in a Bregman’s style [6, 32] and is based on the SOC algorithm proposed by Lai and Osher in

[22, Alg. 2]. Our second algorithm (Section 3.2) is inspired in the feasible method developed

by Wen and Yin in [35, Alg. 2], which uses a retraction — the Cayley transform — instead

of geodesics. It is a line search method and, to find the appropriate step size, the method of

Barzilai-Borwein (BB) [4] is used. The third algorithm involves line search techniques, namely

the Armijo’s rule, and is based on a proposal by Abrudan et al. in [1, Table II]. It is of steepest

descent type and involves geodesics, more specifically matrix exponentials.

3.1. Algorithm Based on Bregman Splitting

The SOC Algorithm [22, Alg. 2] applied to Problem 2 is summarized in the following steps:

1. Choose a positive scalar r and a starting matrix X0. Set P0 = X0 and B0 = 0;

2. While “not converge” do

(a) Xk = argmin
X

F (X) +
r

2
‖X − Pk−1 +Bk−1‖2F , where F (X) is defined by (5);

(b) Yk ← Xk +Bk−1;

(c) Compute the singular value factorization: Yk = UDV T ;

(d) Pk ← UV T ;

(e) Bk ← Bk−1 +Xk − Pk.

A drawback of this algorithm is the requirement of solving the (unconstrained) optimization

problem in Step 2(a). Let us write down the corresponding objective function in terms of the

trace. Set Gk(X) := r
2‖X−Pk−1 +Bk−1‖2F and Ck = −Pk−1 +Bk−1. After a few calculations,

we have

Gk(X) =
r

2

(
trace(XTX) + 2 trace(CTk X) + trace(CTk Ck)

)
. (14)

Hence, the objective function in Step 2(a) is Fk(X) := F (X) + Gk(X), where F (X) denotes

the function given in (5), and the associated unconstrained optimization problem may be
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formulated as

min
X
Fk(X) = min

X
2 trace

(
JXTXJ

)
− 2 trace(XJXJ) + 4 trace(MXJ)−

trace(M2) +
r

2

(
trace(XTX) + 2 trace(CTk X) + trace(CTk Ck)

)
, (15)

where Ck, J,M are given square matrices of order n, J and M are, respectively, symmetric

positive definite and skew-symmetric, and r is a positive parameter. By a similar argument to

the one used in Lemma 3, we can show that, for each k, Gk(X) in (14) is convex, and the same

is valid to the objective function Fk(X). This is a very useful property because it guarantees

that local minima are global as well.

Since each iteration k of the above SOC algorithm requires the solution of a convex un-

constrained optimization problem of the form (15), whose objective function changes for each

k, according to the entries of the matrix Ck, a possible approach to solve each one is to use

the MATLAB’s function fminunc, which is based on quasi-Newton and trust region methods.

More precisely, fminunc is based, by default, on the Broyden, Fletcher, Goldfarb, and Shanno

quasi-Newton method, which is also know as the BFGS method (check [30, Sec. 8.1] and the

references therein). However, if the gradient ∇F(Xk) is provided, then fminunc switches to a

trust region method based on the proposals of Coleman and Li [10, 11].

We have solved many unconstrained problems of the form (15) using fminunc but, despite

the convexity, the results were not so good as expected, either in terms of speed of convergence

or in terms of accuracy. We learnt from our experiments that fminunc (without gradient and

with the default tolerance of 10−6) is reliable only for very small size problems (say, n ≤ 5). As

n increases, we observed that in some iterations k of the SOC algorithm, fminunc was unable

to minimize F(Xk). It displayed warnings like “local minimum possible” or “solver stopped

prematurely”. Recall that finding the minimum of (15) in all the iterations is necessary to

guarantee the convergence of the SOC algorithm. For a given fixed k, let X
(i)
k denotes the

i-th iteration generated by fminunc when applied to the minimization F(Xk). An interesting

fact we have observed was that, as i increased, F(X
(i)
k ) decreased quite fast to values lower

than 10−6, while the components of the gradient vector ∇F(X
(i)
k ) decreased in a slow fashion

towards zero. This implies that fminunc involves a large number of iterations to guarantee

that the norm of the gradient is lower than a fixed tolerance and hence that X
(i)
k satisfies (up
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to that tolerance) the first-order necessary conditions. Recall that, if X∗ is a local (or global)

minimizer of and F (which is continuously differentiable), we must have ∇F(X∗) = 0.

However, if the gradient function ∇F (check (16)) is provided to fminunc and the tolerance

is set to 10−5, we see that its performance improves and, as shown later in Section 5, for

equations of small size (say, n ≤ 15), the usage of fminunc can be viewed as a possible

approach to make the SOC algorithm effective.

To deal with smaller tolerances and equations involving matrices with larger size, we propose

a different approach, which is described next. As we will see later, this approach seems to be

very promising, either in terms of accuracy and computational cost.

We start by finding the zeros of the gradient of F(X) (here, to simplify the notation, we

omit the subscript k). We note that the expression of F(X) is non-linear and involves n2

variables.

A few calculations lead to the following expression to the gradient of the objective function

F(X):

∇F(X) = 4XJ2 − 4JXTJ − 4MJ + r(X + C). (16)

We know that local minima of F(X) are among the zeros of its Euclidean gradient. Since F

is convex, those local minima (if any) will be global as well. Therefore, we need to investigate

the solutions of the matrix equation ∇F(X) = 0, which is equivalent to

X(4J2 + rI)− 4JXTJ = 4MJ − rC. (17)

An easy way of solving (17) is achieved by performing vectorization. Let vec(.) stand for the

operator that stacks the columns of a matrix n× n into a long vector of size n2 × 1, and let ⊗

denote the Kronecker product. It is well-known that vec(AY B) = (BT ⊗A) vec(Y ) and that

vec(AT ) = Π vec(A), (18)

where Π is the commutation (or permutation) matrix of order n2 × n2 (check [25, Ch. 7, Sec.
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9.2]). Applying the vec operator to (17) yields

vec
(
X(4J2 + rI)

)
− 4 vec(JXTJ) = vec(4MJ − rC) ⇐⇒(

(4J2 + rI)⊗ I
)

vec(X)− 4(J ⊗ J) vec(XT ) = vec(4MJ − rC) ⇐⇒(
(4J2 + rI)⊗ I

)
vec(X)− 4(J ⊗ J)Π vec(X) = vec(4MJ − rC) ⇐⇒[

(4J2 + rI)⊗ I − 4(J ⊗ J)Π
]

vec(X) = vec(4MJ − rC). (19)

Note that (19) corresponds to a linear system of type

Ax = b,

where A := (4J2 + rI) ⊗ I − 4(J ⊗ J)Π is an n2 × n2 matrix, x := vec(X), and b :=

vec(4MJ − rC). The vectorization approach is very useful to understand the theory of the

matrix equation (17). If A is non-singular, a unique solution to (17) is guaranteed. Otherwise,

if A is singular, (17) may have infinitely many solutions or no solutions. In the numerical

examples we have considered (including the ones to be shown in Section 5), the matrix A

encountered was always non-singular.

It turns out, however, that solving (17) through the linear system Ax = b would require

O(n6) operations, which is prohibitive, especially if n large. This has motivated us to look for

less expensive methods for solving (17).

Since J is assumed to be non-singular, a right multiplication of the matrix equation (17)

by J−1 yields

X(4J + rJ−1)− 4JXT = 4M − rCJ−1. (20)

Setting Y := XT , A1 := −4J , A2 := 4J+rJ−1, and A3 := 4M −rCJ−1, (20) can be rewritten

in the form

A1Y + Y TA2 = A3, (21)

which is a Sylvester-type equation. An effective method to solve (21) may be found in [34,

Alg. 3.1], which is based on the so-called QZ decomposition. Do not confuse (21) with the

more easily to handle classical Sylvester matrix equation A1X + XA2 = A3. Although the

QZ decomposition is quite expensive, it can be performed in O(n3) operations. Hence, it is

possible to solve (17) and the Step 2(a) of the SOC algorithm efficiently by O(n3) operations,

which is the typical cost for problems involving matrix-matrix products.
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Algorithm 3.1 Bregman splitting algorithm to solve the Moser-Veselov equation (2).

1: Choose a positive scalar r and a starting matrix X0 ∈ SO(n);

2: P0 ← X0; B0 ← 0;

3: J1 ← J−11 ; A1 ← −4J ; A2 ← 4J + rJ1;

4: k ← 1;

5: while “not converge” do

6: A3 ← 4M − r(Bk−1 − Pk−1)J1;

7: Solve A1Xk +XT
k A2 = A3 for Xk, using [34, Algs. 3.1];

8: Xk ← XT
k ;

9: Yk ← Xk +Bk−1;

10: Compute the SVD Yk = UDV T and set Pk ← UV T ;

11: Compute the SVD Xk = UDV T and set Xk ← UV T ;

12: Bk ← Bk−1 +Xk − Pk;

13: k ← k + 1.

A drawback we have noticed when performing experiments with a direct application of

the algorithm of [22], to solve the Moser-Veselov equation, was the poor feasibility of the

approximation obtained when compared to the other algorithms to be addressed in the next

sections. That is, denoting by X̃ the approximation obtained for the solution, we have observed

that the value ‖X̃T X̃ − I‖F was not close enough to zero. To overcome this issue, we project

Xk onto the orthogonal group by computing its singular value decomposition (SVD). Provided

that (21) has a unique solution Y∗, that means that X∗ = Y T∗ is the unique minimizer of the

objective function in (15).

Algorithm 3.1 summarizes the main steps of the Bregman splitting algorithm to solve the

Moser-Veselov equation, (2). The next subsection presents two alternative approaches for

solving this problem.

3.2. Two Steepest Descent-Type Algorithms

A successful method to solve optimization problems with orthogonal constraints is the feasi-

ble iterative method developed in [35, Alg. 2]. At each iteration, the skew-symmetric Rieman-

nian gradient (13) is multiplied by a suitable positive number τ (step-size), and transformed
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into an orthogonal matrix by means of the Cayley transformation

Y (τ) =
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X, (22)

where W is the Riemannian gradient and X is an orthogonal matrix. In the iterative procedure,

the orthogonal matrix Y (τ) may be viewed as an improvement of a previous approximation X.

There are many methods available to compute the step-size τ . In [35, Alg. 2], the authors

recommend a non-monotone linear search method, because of its good theoretical properties

regarding the convergence. However, it is not considered here because it has led to poor results

in many experiments carried out (not shown here) with particular Moser-Veselov equations. In

our modified version of the Wen-Yin algorithm [35, Alg. 2], which is presented in Algorithm

3.2, we use, instead, the alternating BB method of [12]:

τk =

 ‖Sk−1‖2F /| 〈Sk−1, Yk−1〉 | if k is odd

| 〈Sk−1, Yk−1〉 |/‖Yk−1‖2F if k is even
, (23)

where Sk−1 := Xk − Xk−1, Yk−1 := gradF (Xk) − gradF (Xk−1) and 〈A,B〉 = trace(ATB)

denotes the Euclidean scalar product.

The second steepest descent-type algorithm addressed here (Algorithm 3.3) is a variation

of the approaches proposed in [26, 1] and we refer the reader to those papers for more technical

details. In a few words, Algorithm 3.3 starts with an initial approximation X0 ∈ SO(n), finds

the skew-symmetric matrix grad F̃ (Xk) (the gradient direction on the manifold), and performs

several steps along geodesics until convergence. We recall that geodesics on SO(n) (i.e., curves

giving the shortest path between two points in the manifold) can be defined through the matrix

exponential as:

G(t) = G(0) eµS ,

where S ∈ Rn×n is a skew-symmetric matrix and µ is a real scalar. In Algorithm 3.3, the

positive scalar µk controls the length of the “tangent vector” and, in turn, the algorithm’s

overall convergence. To find an almost optimal µk, the algorithm uses the Armijo’s step-size

rule [33, Sec.1.3].
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Algorithm 3.2 Algorithm to solve the Moser-Veselov equation (2) inspired on the steepest

descent-type method of Wen&Yin [35]. The matrix functions F̃ (X) and ∇F̃ (X) are defined,

respectively, in (6) and (11).

1: Choose τ > 0 and a starting matrix X0 ∈ SO(n);

2: f0 ← F̃ (X0); G0 ← ∇F̃ (X0);

3: W0 ← G0X
T
0 −X0G

T
0 ;

4: k ← 1;

5: while “not converge” do

6: Yk ← (I + 0.5τWk−1)−1(I − 0.5τWk−1)Xk−1;

7: Xk ← Yk;

8: fk ← F̃ (Xk) and Gk ← ∇F̃ (Xk);

9: Wk ← GkX
T
k −XkG

T
k ;

10: Sk ← Xk −Xk−1;

11: Nk ←Wk −Wk−1;

12: if k is even then

13: τ ← trace(STk Sk)/| trace(STk Nk)|

14: else

15: τ ← | trace(STk Nk)|/ trace(NT
k Nk).

4. Numerical Issues

This section addresses some numerical issues associated with the implementation of the

three algorithms proposed so far to solve the Moser-Veselov equation.

4.1. Convergence

Assuming that all the pure imaginary eigenvalues (if any) of the 2n × 2n matrix (3) have

Jordan blocks with even size, the existence of at least a solution in SO(n) of the Moser-Veselov

equation is guaranteed (check Theorem 1). Provided that a careful choice of the starting matrix

X0 is made, one of those solutions may be obtained by the three proposed algorithms. We

recall that finding an initial guess X0 that minimizes the number of iterations in iterative

methods for solving equations is, in general, a challenging problem. However, steepest-descent
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Algorithm 3.3 Algorithm to solve the Moser-Veselov equation (2) inspired on the steepest

descent-type methods of Manton [26] and Abrudan [1]. The matrix functions F̃ (X) and∇F̃ (X)

are defined, respectively, in (6) and (11).

1: X0 ∈ SO(n) is an initial guess;

2: µ1 ← 1;

3: δ ← 1;

4: τ ← tol;

5: k ← 0;

6: while δ > τ do

7: Zk ← ∇F̃ (Xk)XT
k −Xk∇F̃ (Xk)T ;

8: zk ← 0.5 trace(ZkZ
T
k );

9: Pk ← expm(−µkZk);

10: Qk ← PkPk;

11: while F̃ (Xk)− F̃ (QkXk) ≥ µkzk do

12: Pk ← Qk;

13: Qk ← PkPk;

14: µk ← 2µk;

15: while F̃ (Xk)− F̃ (QkXk) < 0.5µkzk do

16: Pk ← expm(−µkZk);

17: µk ← 0.5µk;

18: Xk+1 ← PkXk;

19: δ ← ‖Xk+1 −Xk‖F ;

20: k ← k + 1;

21: X ← Xk.

algorithms combined with suitable methods for computing the step size have good convergence

properties (see [4] for the BB method and [33, Sec. 1.3.2] for the Armijo’s method). They have

linear convergence, but, in contrast to Newton-type methods, in general, it is easier to find an

X0 for which the iterative sequence generated by the method converges.

In our specific case, we have observed through many experiments (some of them will be
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shown in Sec. 5) that X0 = I is a reasonable choice for the three proposed algorithms, in the

sense that it leads to convergence towards a special orthogonal solution. Experiments where

X0 has been taken as a randomized special orthogonal matrix will be considered in Sec. 5, but

with a slower convergence; see Figures 3 and 4.

4.2. Computational Cost

The three proposed algorithms require O(n3) operations, which, as written before, is ac-

ceptable for algorithms involving matrix computations. However, this information is vague,

and we shall give a more sharp estimate of the cost. Namely, we need to find the coefficient of

n3 in the polynomial giving the total number of operations. As usual, the terms in n2 and n

are ignored.

In terms of computational cost by iteration, the Bregman splitting Algorithm 3.1 is, in

general, the most expensive while Algorithm 3.2 is the cheapest. However, Algorithm 3.1

converges, in general, faster, attaining the same accuracy of the other two algorithms in much

fewer iterations (see Section 5).

Algorithm 3.1: The cost is mainly determined by the cost of solving a Sylvester-type equation

of the form (21) and the computation of two Singular Value Decompositions (SVD). Solving

(21) involves about 76n3 operations (66n3 for the QZ algorithm and 10n3 for the remaining

calculations; see [34]), and each SVD involves about 22n3 operations by the method of Golub

and Reinsch [16]. Note that while each iteration includes two SVD, the quite expensive QZ

decomposition is just required one time because A1 and A2 are fixed during all the iterations.

Algorithms 3.2 and 3.3: The objective functions considered in the steepest descent-type

algorithms involve the computation of the trace of matrix products. The efficient computation

of trace(AB) does not require matrix-matrix products. Instead, it can be carried out through

the formula:

trace(AB) =
∑
i,j

(A ◦BT )(i,j), (24)

where the operator ◦ denotes the Hadamard product, i.e., the entry-wise product. If A and

B are matrices of order n, the direct computation of the matrix product AB needs O(n3)

operations, while the trace at (24) just requires O(n2). However, as far as we know, the trace
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of a product of three or four matrices requires the computation of one matrix-matrix product

which costs 2n3 operations.

Hence, the evaluation of the objective function F̃ (see its expression in (6)) involved in the

steepest descent type algorithms requires 4n3 operations (two matrix-matrix products), while

its computation inside the cycles requires only 2n3; the product JM needs to be computed

just one time as the algorithm runs.

Each iteration of the Algorithm 3.2 requires the computation of a Cayley transform, which

corresponds to solving a multiple right-hand side linear system of the form AX = B, which

costs about 8n3/3. Concerning Algorithm 3.3, one exponential of a skew-symmetric matrix

is required in each iteration. In [9], a scaling and squaring algorithm designed specifically for

exponentials of a skew-symmetric matrix is proposed, with an overall cost of 2(16/3 + s)n3,

where s stands for the number of squarings. Alternatively, one can use the general algorithm

available through the function expm of MATLAB, which implements the scaling and squaring

algorithm of [3]. Its cost is O(n3), and we refer the reader to [3] for the detailed expression

of the computational cost. We note that, in the particular case n = 3, the exponential of a

skew-symmetric matrix can be computed by the well-known Rodrigues’s formula, at the cost

of just one matrix-matrix product.

4.3. Residual Estimates

Let us consider the residual function

R(X) := XJ − JXT −M (25)

and assume that X̃ is an approximation to the exact solution X of the Moser-Veselov equation

obtained by a certain numerical algorithm. Hence, X̃ = X + ∆, for some matrix ∆ of order n.

In the numerical computations of solutions of matrix equations, it is, in general, difficult to

estimate the absolute error ‖∆‖ = ‖X − X̃‖ or the relative error ‖∆‖/‖X‖, where ‖.‖ stands

for a given subordinate matrix norm. Thus, the authors work instead with relative residuals

to check the quality of the approximation X̃ and the numerical stability.

An obvious definition for the relative residual of the Moser-Veselov equation would be

‖R(X̃)‖/‖X‖. (26)
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However, as pointed out in [17, Sec. 5] (see also [18, Problem 7.15]) for the matrix equation

Xp = A (i.e., for computing the matrix pth root of A), this definition may not be appropriate

in some situations. This has motivated us to propose a definition for the relative residual in

the style of what is suggested in [17, 18].

With respect to the residual function given in (25), we have

R(X̃) = (X + ∆)J − J(X + ∆)T −M

= XJ + ∆J − JXT − J∆T −M

= ∆J − J∆T .

By vectorization and attending to some properties of the Kronecker product, we have

vec
(
R(X̃)

)
= vec(∆J)− vec(J∆T )

= (J ⊗ I) vec(∆)− (I ⊗ J) vec(∆T )

= (J ⊗ I − (I ⊗ J)Π) vec(∆),

where Π is the permutation matrix of order n2 × n2 (check (18)). Denoting C := J ⊗ I − (I ⊗

J)Π ∈ Rn2×n2

, we have

vec
(
R(X̃)

)
= C vec(∆).

With respect to the spectral norm ‖.‖2, we have∥∥∥vec
(
R(X̃)

)∥∥∥
2
≤ ‖C‖2‖ vec(∆)‖2,

and, by attending that, for any matrix A, ‖ vec(A)‖2 = ‖A‖F , it follows∥∥∥R(X̃)
∥∥∥
F
≤ ‖C‖2‖∆‖F . (27)

Let us suppose that ‖∆‖F ≤ ε‖X‖F , for a certain small value ε. Note that ‖Q‖F =
√
n, for

any orthogonal matrix Q of order n because ‖Q‖2F = trace(QTQ) = trace(I) =
√
n. Then

‖∆‖F ≤ ε
√
n and

‖R(X̃)‖F ≤ ε
√
n‖C‖2,

or, equivalently,

‖R(X̃)‖F√
n ‖C‖2

≤ ε.
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This suggests the following definition for the relative residual:

ρ(X̃) :=
‖R(X̃)‖F√
n ‖C‖2

. (28)

To understand why the relative residual (28) is more meaningful than (26), we shall notice that

solving XJ − JXT = M (ignoring the orthogonal constraint on X) is equivalent to solve the

linear system C vec(X) = vec(M), with C being in general singular, and that the norm of C

must be considered in error analysis, as the expression (28) does.

4.4. Termination Criteria

Several strategies are available to decide when terminating an iterative procedure. At-

tending to the nature of our optimization problem in (4), the sequence generated by F (Xk),

where

F (X) =
∥∥XJ − JXT −M

∥∥2
F
,

must converge to zero. Hence, we can fix a tolerance ε and then iterate while F (Xk) ≥ ε. Note

that, in Algorithms 3.2 and 3.3, F (Xk) is available during the algorithm and does not involve

extra cost.

The typical behavior of methods with linear convergence is to slow down as Xk approaches

stationary points. Often, it may be difficult to detect this phenomenon’s occurrence, so another

condition to stop the cycle must be added. In our implementations of the algorithm, we consider

the classical relative difference

‖Xk −Xk−1‖F
‖Xk‖F

=
‖Xk −Xk−1‖F√

n

as well. Because the algorithms are implemented in finite precision environments, a maximal

number of iterations must be considered to stop iterating. In summary, we fix tolerances ε1,

ε2 and a maximal number of iterations k0 and stop iterating when

‖Xk −Xk−1‖F√
n

< ε2 or k > k0. (29)

5. Numerical Experiments

To evaluate the performance of the proposed algorithms, we have carried out a set of

experiments in MATLAB R2021a (with unit roundoff u ≈ 1.1 × 10−16) in a machine with
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Core i5 (1.60GHz). To terminate the iteration procedure in the algorithms, we have used the

following criteria:

‖Xk −Xk−1‖F /
√
n ≤ tol or k > 1000,

where tol is a prescribed tolerance. The following terminology is used:

• #iter: number of iterations;

• rel-res: relative residual defined in (28);

• F̃ (X): value of the objective function defined in (6);

• ‖ grad F̃ (X)‖F : norm of the Riemannian gradient defined in (13).

We have considered r = 1 in Algorithm 3.1 and τ = 10−3 in Algorithm 3.2. Most of the

Moser-Veselov equations considered in the experiments do not satisfy the condition M2/4 +

J2 > 0 required by direct methods, but the associated Hamiltonian matrix H (see (3)) has no

pure imaginary eigenvalue. Experiment 4 is devoted to the case where H has pure imaginary

eigenvalues.

5.1. Experiment 1

This experiment involves a set of 100 Moser-Veselov equations with randomized matrices

J and M of order 16, plus a set of 100 Moser-Veselov equations with randomized matrices J

and M of order 17, and so on, up to a set of 100 Moser-Veselov equations with randomized

matrices J and M of order 35 and aims at comparing Algorithm 3.1 with Algorithm 3.2 in

terms of #iter, rel-res, F̃ (X) and ‖ grad F̃ (X)‖F , for a tolerance tol = 10−10 and the initial

guess set to X0 = I. The results are displayed through a boxplot with whiskers in Figures 1

and 2. Experiment 1 involves 2000 Moser-Veselov equations and, as expected, there may have

outliers, which are represented by red crosses in the graphs. All of them are finite, i.e., no

NaN’s of Inf’s arose in the calculations. In most of the cases, these outliers reflect difficulties

in the intermediate calculations involved in the algorithms, like the computation of inverses of

ill-conditioned.

A careful inspection of those figures lead us to conclude that Algorithm 3.1 gives the best

results in terms of relative residuals, number of iterations, values of the objective function and
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Figure 1: Comparison between Algorithm 3.1 and Algorithm 3.2 in terms of #iter and rel-res, for a tolerance

tol = 10−10 and X0 = I.

norms of the Riemannian gradient, despite it involves higher computational cost by iteration

than Algorithm 3.2. However, since it requires much fewer iterations, the overall computational

cost is, in general, smaller.

5.2. Experiment 2

This experiment involves 1000 Moser-Veselov equations: 100 equations with randomized

matrices J and M of order 6, plus 100 equations with randomized matrices J and M of order
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Figure 2: Comparison between Algorithm 3.1 and Algorithm 3.2 in terms of F̃ (X) and ‖ grad F̃ (X)‖F , for a

tolerance tol = 10−10 and X0 = I.

7, and so on, up to 100 equations with randomized matrices J and M of order 15. It illustrates

the performance of Algorithms 3.1 and 3.2 according to the choice of the initial guess X0,

in terms of the number of iterations #iter and of relative residuals rel-res. The results of

Algorithm 3.1 are displayed in Figure 3 and of Algorithm 3.2 in Figure 4, by means of boxplot

graphs with whiskers. We observe that both algorithms perform much better if we take X0 = I

instead of a randomized special orthogonal matrix.
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Figure 3: Relative residual and number of iterations of Algorithm 3.1 according to the choice of the starting

approximation X0 for a tolerance tol = 10−10.

5.3. Experiment 3

Now, we consider the same set of 1000 Moser-Veselov equations as in Experiment 2 (Sec.

5.2) to illustrate Algorithm 3.1, SOC Algorithm + fminunc (i.e., the algorithm described at

the beginning of Sec. 3.1, with Step 2(a) solved using fminunc of MATLAB, where the gradient

(16) is specified in the options mode), Algorithm 3.2 and Algorithm 3.3, in terms of relative

residuals and the number of iterations, for X0 = I and a tolerance tol = 10−5. The results

are displayed in Figure 5. Note that now we are using a larger tolerance than in Experiments
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Figure 4: Relative residual and number of iterations of Algorithm 3.2 according to the choice of the starting

approximation X0 for a tolerance tol = 10−10.

1 and 2. This is because for smaller tolerances both SOC Algorithm+fminunc and Algorithm

3.3 diverge frequently or may require thousands of iterations.

In Figure 6, we compare the computational time of Algorithm 3.1 with SOC Algorithm +

fminunc, where we can see that the latter algorithm requires about 100 times the computational

time of the former. If we decrease the tolerance or increase the size of the matrices, the results

of SOC Algorithm + fminunc get even worse and may have little practical interest. For these

cases, we recommend instead Algorithms 3.1 or 3.2.
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Figure 5: Relative residuals and number of iterations of Algorithm 3.1, SOC Algorithm +fminunc, Algorithm

3.2 and Algorithm 3.3, for X0 = I and tol = 10−5.

5.4. Experiment 4

In this experiment, the goal is to illustrate the behaviour of Algorithms 3.1, 3.2 and 3.3

when the Hamiltonian matrix H (check (3)) has some pure imaginary eigenvalues associated to

Jordan blocks of even sizes. We have taken ten Moser-Veselov equations involving randomized

matrices of order 4 that were carefully chosen to guarantee that H fits the conditions just

mentioned. The results are displayed in Figure 7. While in Experiments 1, 2 and 3, Algorithm

3.1 has performed very well in terms of the number of iterations, now it is the one that gives the
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Figure 6: Comparison between the computational time of Algorithms 3.2 and SOC+fminunc, for X0 = I and

tol = 10−5.

poorest results (1000 iterations in all the ten tests)! For a compromise regarding the relative

residual and the number of iterations, Algorithm 3.2 gives the best results.

5.5. Other experiments and considerations

Experiments with Algorithms 3.1 and 3.2 for Moser-Veselov equations involving random-

ized dense matrices of larger sizes (n = 80, 90, 100, 150, 200) were also performed (not shown

here), for a tolerance tol = 10−10. In terms of the magnitude of the relative residual and of

computational time, we observed a gradual deterioration as the size of the matrices increased.

So, our overall recommendation is that those algorithms are suitable for dense matrices of

small/medium size, say n ≤ 100.

We are not aware of existing algorithms for solving Moser-Veselov equations involving dense

(or sparse) matrices of large size. We leave these investigations for further research.

Methods for solving the optimization problem in (4) hardly give results with relative resid-

uals of order the unit roundoff u ≈ 1.1 × 10−16. That is the price to pay for considering

the objective function as F (X) =
∥∥XJ − JXT −M

∥∥2
F

instead of
∥∥XJ − JXT −M

∥∥
F

, whose

expression is more difficult to handle. In iterative methods implemented in environments in-

volving floating-point arithmetic, as F (X) becomes less than u, its value may stop decreasing.
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Figure 7: Results for Algorithms 3.1, 3.2 and 3.3 when H in (3) has some pure imaginary eigenvalues associated

to Jordan blocks of even sizes; X0 = I and tol = 10−5.

So, it is more reasonable to expect approximations with relative residuals of order
√
u.

6. Conclusions

This paper proposes three algorithms for solving the discrete Euler-Arnold equation for the

generalized rigid body motion estimation: a Bregman splitting (Algorithm 3.1), and two steep-

est descent-based methods (Algorithms 3.2 and 3.3). An essential advantage of these methods

is that they do not require the strong condition M2/4+J2 > 0, in contrast with other methods

existing in the literature. Important numerical issues related to the algorithms, like conver-

gence, computational cost, residual estimates, and termination criteria, have been investigated

in detail. The numerical experiments that have been carried out to evaluate the performance

of the three methods suggest that the Bregman splitting Algorithm 3.1 is promising, at least

for equations where the associated Hamiltonian matrix has no pure imaginary eigenvalue.
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