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ABSTRACT

KEYWORDS: ab initio potential energy surfaces, inelastic vibrational excitations,

vibrational charge transfer, nonadiabatic coupling matrix elements,

differential cross section

Nonadiabatic phenomena are ubiquitous in nature. The dynamics of proton-molecule colli-

sions often evolve on highly coupled electronic potential energy surfaces leading to inelastic

and charge transfer processes. In this thesis, we have investigated the quantum dynamics of

energy transfer processes involving the inelastic vibrational excitations and the vibrational

charge transfer collisions in the H+ + CO and the H+ + O2 systems on our newly obtained

quasi-diabatic ab initio potential energy surfaces for collision energies 0-30 eV and com-

pared the collision attributes with the earlier theoretical results as well as the available state-

to-state experimental data obtained from the molecular beam study and H+/H energy-loss

spectra.

We have described the computational details of the ab initio potential energy surfaces at

the configuration interaction level of accuracy employing the correlation consistent polar-

ized valence triple zeta basis sets.

We report the details of time-independent quantum dynamics calculations for the inelas-

tic vibrational excitations and vibrational charge transfer processes under the framwork of

vibrational close-coupling rotational infinite order sudden approximation.
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To the best of our knowledge the present ab initio global adiabatic and quasi-diabatic

potential energy surfaces for the ground and the first excited electronic states for the H+ +

CO system are being presented perhaps for the first time in the literature. The present theo-

retical results are found to be in good agreement with those of experiments for the inelastic

vibrational excitations and they are in overall qualitative agreement for charge transfer chan-

nel in the experimental trend. It is suggested that quantitative agreement between theory and

experiment can be achieved by modelling the dynamics as a three- and four-state process.

For the H+ + O2 system. quantum dynamics with the two-state (the ground and the first

excited electronic states) coupling yields results in general agreement with the experiments.

Significant improvement is achieved when the dynamics is carried out with four-state (the

ground and the lowest three excited electronic states) coupling. However, some quantitative

agreement between theory and experiment is still lacking, which can be settled through an

elaborate and more refined (over a fine mesh of molecular orientation) computations within

the VCC-RIOSA framework.

A summary of the present study is given at the end with the concluding remarks and the

future direction of research followed by bibliography.
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CHAPTER 1

INTRODUCTION

The proton is one of the simplest positive ions and its interactions with simple molecules

are of fundamental importance in several areas of chemical and molecular physics and as-

trophysics. Being eletronically structureless and positively charged it can easily deform the

electronic cloud of the target molecule, thereby influencing the involvement of low-lying

excited electronic state surfaces in the overall energy transfer processes.

Ion-molecule collisions occur dominantly in the interstellar spaces leading to the for-

mation of many bound molecular ions. Bound protonated molecular ions like H+
3 , N2H+,

HCO+, HOC+, HCS+, etc have been identified in the interstellar media (Herbst, 2001).

On the other hand, the protons delivered by the solar flare enter the Earth’s ionosphere

with mean kinetic energy (KE) of ∼1-2 KeV. These protons loose most of their KE by

various inelastic processes, and finally reach the region of the stratosphere where they in-

teract with several diatomic and polyatomic molecules in the KE range 0-100 eV (Niedner-

Schatteburg and Toennies, 1992), yielding mostly elastic/inelastic and/or charge transfer

processes. There have also been studies (Crutzen, Isaken, and Reid, 1975) which suggest

that protons from the solar flare can deplete the stratosphere ozone by upto 15%. As a result,

the proton-molecule interaction has been the subject of many experimental and theoretical

studies, and a wealth of varied experimental information on inelastic vibrational (also rota-

tional) and vibrational charge transfer excitations has become available over the years using

the molecular beams and the proton energy-loss spectroscopy techniques (Udseth, Giese,



and Gentry, 1974; Hermann, Schmidt, and Linder, 1978; Krutein and Linder, 1979; Gi-

anturco, Gierz, and Toennies, 1981; Noll and Toennies, 1986; Niedner, Noll, Toennies, and

Schiler, 1987; Niedner-Schatteburg and Toennies, 1992). The focus has been on collision

energies in the range 0-30 eV where extensive vibrational-rotational excitations of the tar-

get molecules occur along with possible vibrational charge transfer processes. There have

been several experimental studies on proton collisions with diatomic and polyatomic targets

such as H2, N2, O2, CO, NO, HF, HCl, CH4, SF6, etc leading to an interesting finding of

marked selectivity for vibrational excitations in apparently similar molecules. For example,

the vibrational excitation of N2 by H+ collisions is similar to that observed in CO and NO,

while it is larger in H2 and even larger in O2, within similar collision energy range (Niedner-

Schatteburg and Toennies, 1992; Hermann, Schmidt, and Linder, 1978; Krutein and Linder,

1979; Gianturco, Gierz, and Toennies, 1981). One also observes certain mode-selective

vibrational excitaion patterns in polyatomic molecules (Niedner-Schatteburg and Toennies,

1992). This intriguing observation can be explained mostly due to the participation of ex-

cited electronic states.

Proton-molecule interactions operate over a wide range of distances. For example, even

when the proton is at a large distance from the molecule it can interact with it through

the long-range tail of the interaction potential expressed in terms of charge-polarizability,

charge-quadrupole, charge-dipole, etc. At shorter distances, the valence forces dominate the

interactions, where it can strongly deform the electron cloud of the target molecule. As a re-

sult, the low-lying excited electronic potential energy surfaces (PESs) start interacting with

the ground electronic state (GS) PES. Therefore, the dynamics of proton-molecule collisions

quite often evolves on the coupled electronic PESs involving the GS and the low-lying ex-

cited electronic state (ES) PESs, thereby leading to the breakdown of the Born-Oppenheimer
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(BO) approximation. The treatment of the breakdown of the BO approximation and the dy-

namics on coupled PESs pose quite challenging and involved tasks and is one of the con-

temporary theoretical problems (General Discussion, 2004). In the present study we have

focussed on the following two dominant collision outcomes: the elastic/inelastic vibrational

(rotational) excitations (IVE) of the diatom,

H+ + BC(v , j ) −→ H+ + BC(v ′, j ′) (1.1)

and the vibrational charge transfer (VCT) process,

H+ + BC(v , j ) −→ H(2S) + BC+(v ′′, j ′′) (1.2)

where (v, j) denote the initial vibrational and rotational quantum numbers of BC and (v′, j′)

and (v′′, j′′) denote the final vibrational and rotational quantum numbers of BC and BC+,

respectively. Below, we review till date the experimental and theoretical studies carried out

on the proton-diatom systems mostly for low and moderate collision energies in the range,

0-30 eV.

1.1 Review on experimental studies

Perhaps, the first experimental investigations on the proton-diatom systems were done by

Udseth and coworkers (Udseth, Giese, and Gentry, 1974) at Elab = 12 eV and θcm = 15◦,

but their energy resolution was too low to resolve the individual vibrational transitions.

Early experimental studies were reported on the IVE processes in the H+ + H2 system

in the late 1970’s (Schmidt, Hermann, and Linder, 1976; Hermann, Schmidt, and Linder,
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1978; Schmidt, Hermann, and Linder, 1978) at collision energies in the laboratory frame,

Elab = 5 − 30 eV, where they reported the state-resolved differential cross sections (DCS)

and the corresponding transition probabilities for the vibrational states (P0→v′) and the ro-

tational states (P0j→v′j′) as a function of scattering angle (θlab). The state-resolved colli-

sions attributes on both the IVE and the VCT processes for this system became available

at Elab = 30 eV in 1987 from the experiments of Toennies and coworkers (Niedner, Noll,

Toennies, and Schiler, 1987) in the θlab range 0◦ ≤ θlab ≤ 18◦. The IVE of H2 with v′ ≥ 4

become quite effective to give rise to the VCT processes. Subsequently, Krutein and Linder

(Krutein and Linder, 1979) carried out measurements for the vibrational excitations in N2,

CO and NO at Elab = 30 - 80 eV, and obtained vibrationally state-resolved DCSs at small

θlab values (around the rainbow region) along with the corresponding P0→v′ of vibrational

excitation from the ground vibrational state v = 0 as a function of θlab. They were able to

resolve the v = 0→ v′ = 1(0→ 1) and v = 0→ v′ = 2(0→ 2) excitations in CO and NO,

but only 0 → 1 excitation in N2. The broadening of the proton energy-loss peaks, that is,

Full Width Half maximum (FWHM) of peaks at Elab = 30 eV and θlab = 5◦ follows the fol-

lowing order : NO (155 meV) > CO (110 meV) > N2 (100 meV) > Ne (80 meV), where the

numbers in the parenthesis denote the FWHM values. This feature is due to the rotational

excitations of the target molecules which remained unresolved in the experiments. It was

concluded that the vibrational and rotational inelasticity increases in the order Ne < N2 < CO

< NO. The angular dependence of inelastic excitation by proton impact for v′ = 1 at Ecm =

77 eV follows the order : NO > CO > N2. The average vibrational energy transfer 〈∆Evib〉

follows the same order as that of angular dependency. Experimentally, the asymptotic CT

channel, H + CO+ is endoergic (≈ 0.42 eV) as compared to the asymptotic IVE channel, H+

+ CO (Niedner-Schatteburg and Toennies, 1992). This is evident from the measurements of
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Total differential cross section (TDCS) using proton and hydrogen atom detection at Elab =

30 eV where the CT channel is almost an order of magnitude less probable compared to the

IVE channel and is accessible by Demkov type of coupling (Demkov, 1964)

In the subsequent experiments (Gianturco, Gierz, and Toennies, 1981; Niedner-Schatteburg

and Toennies, 1992) with N2, CO, NO and O2 at Ecm = 9.5 eV, it was found that P0→v′ and

〈∆Evib〉 increased monotonically with θcm in the range, 5◦ ≤ θcm ≤ 21◦, and in the order:

N2 < CO < NO < O2. Noll and Toennies (Noll and Toennies, 1986) did detailed experiments

on the H+ + O2 system for both the IVE and the VCT channels atElab = 23.7 eV in the range

0◦ ≤ θlab ≤ 11◦.They observed a weak rainbow maximum at θlab = 11◦ in the state resolved

total differential cross seciton (TDCS) for the IVE channel by measuring the amount of

scattered protons and two rainbow maxima located around θlab ≈ 1◦ and θlab = 8.5◦ in the

state-resolved TDCS for the VCT channel by measuring the amount of scattered hydrogen

atoms with a suitable detector in their time-of-flight spectra. However from the theoretical

point of view, there were no suitable explanation available as to how large amount of vi-

brational energy transfer, evident from the time-of-flight spectra, takes place in the collision

process in the H+ + O2 system.

1.2 Review on theoretical studies

From the theoretical point of view, the most studied proton-diatom system is the H+ + H2

system. There is an avoided crossing between the first ES and the GS PES. The former

electronic PES correlates to the VCT channel, H(2S) + H+
2 (2Σ+

g ), in the asymptotic limit.

There have been many theoretical studies in the past reporting semi-emprical and ab ini-

tio GS PES for the system along with the quantum dynamics studies for the IVE channel
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(Schinke and McGuire, 1978a,b; Schinke, Dupuis, and Lester, 1980; Gianturco and Ku-

mar, 1995a,b). In the absence of global ab initio PESs for the GS and ESs semiemprical

diatomics-in-molecules (DIM) PESs were obtained for the system (Tully and Preston, 1971;

Ushakov, Nobusada, and Osherov, 2001). Quantum dynamics study for both the IVE and

the VCT processes were reported using the DIM PESs, which were able to predict the exper-

imental data on an average quite satisfactorily at Ecm = 20 eV. However, there were some

serious quantitative discrepancies which could not be resolved. Recently, global ab initio

PESs for the GS and the first ES have been computed and quantum dynamics study predicts

almost all the available experimental data for Ecm ≤ 20 eV in near quantitative agreement

(Saieswari and Kumar, 2007b,c,a, 2008a,c,b,d). It is worthpointing out that another set of

ab initio PESs for the GS and the lowest two ESs have already been obtained by varandas

and coworkers (Viegas, Alijah, and Varandas, 2007).

Interestingly, in the H+ + N2 system, the low-lying excited PESs are found to be well

seperated energetically from the GS PES (Gianturco, Kumar, and Schneider, 1996; Gi-

anturco, Kumar, Ritschel, Vetter, and Zülicke, 1997). However, strong interactions occur

among the excited states, which are assumed to be less significant in the energy transfer pro-

cess in relation to the dynamics on the GS PES. Experiments performed in the Ecm range,

0 - 30 eV, also do not hint any significant amount of the VCT (Krutein and Linder, 1979).

Exact quantum dynamical calculations for the IVE process in the vibrational close cou-

pling rotational infinite-order sudden approximation (VCC-RIOSA) (Schinke and McGuire,

1978a; Parker and Pack, 1978; Gianturco, 1979) framework have been performed using the

GS PES (Gianturco, Kumar, and Schneider, 1996; Gianturco, Kumar, Ritschel, Vetter, and

Zülicke, 1997) which resulted in good agreement with the experiments.
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In the H+ + NO system, there exist a direct curve crossing between the GS PES, asymp-

totically correlating to H+ + NO(X2Π), and the first ES PES, asymptotically correlating to

H(2S) + NO+(X1Σ+), in the collinear collision geometries, which turn out to be an avoided

crossing in off-collinear geometries. There have been ab initio studies on this system but

they have been focussed on the interaction well of the GS PES with a view to characterize

the bound HNO+ and HON+ ions (Loew, Berkowitz, and Chang, 1978; McLean, Loew, and

Berkowitz, 1978; Marian, Bruna, Buenker, and Peyerimhoff, 1977; Perić, Mladenović, Mar-

ian, and Bruna, 1982; Ben Houria, Gritli, Jaidane, Lakdhar, Chambaud, and Rosmus, 2001).

There have been few attempts to study the nonadiabatic interactions between the GS and

the first ES PESs but they were focussed in the neighbhourhood of the conical intersections

(Yarkony, 1989; Manaa and Yarkony, 1992). Very recently, global ab initio PESs including

the nonadiabatic coupling elements for the system have been computed and quantum dy-

namics study have been reported comparing with the experimental data available only for

the IVE channel at Ecm = 9.5 eV which are in good agreement (Saieswari and Kumar,

2008b,d)

The H+ + CO system is an important system from the astrophysics points of view ever

since it was proposed (Klemperer, 1970) that bound molecular HCO+ and HOC+ ions could

be likely source of an unidentified microwave line observed (Buhl and Snyder, 1970) from

the interstellar space. The experimental observation in the laboratory of the rotational spec-

trum of the HCO+ using microwave technique (Woods, Dixon, Saykally, and Szanto, 1975)

confirmed its presence in the interstellar media, and perhaps it was the first polyatomic ion

to be detected in the outer space. Since then, a large number of experimental studies as

well as ab initio structural calculations have been performed to characterize these molecu-

lar ions (for details see ref. Mourik et al. (2000) and references therein). Early ab initio
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studies (Hopkins, Holbrook, Yates, and Csizmadia, 1968; Wahlgren, Pearson, and Schae-

fer III, 1973; Bruna, 1975) on the system reported calculations on proton affinity of CO

molecules and equilibrium structures of HCO+ and HOC+ in the GS at the SCF level of

accuracy which predicted the collinear equilibrium geometry for both the ions. Using a

larger basis set and employing the coupled electron pair approximation (CEPA) and coupled

cluster single and double excitation method with perturbative estimate for connected triples

(CCSD(T)), Botschwina and coworkers (Botschwina, 1989) computed the collinear equilib-

rium geometry parameters of the HCO+ and HOC+ ions. Choosing another large basis set

[6-311+F(3df,2p)] Ma and coworkers reported (Ma, Smith, and Radom, 1992) QCISD(T)

calculations on the equilibrium bond length and the energetics of the HCO+. Martin and

coworkers (Martin, Taylor, and Lee, 1993) computed ab initio quartic force fields for the

HCO+ and the HOC+ ions using coupled cluster methods and basis set of spdf and spdfg

quality. Subsequently, Yamaguchi and coworkers (Yamaguchi, Richards, and Schaefer III,

1994) computed the equilibrium structures of the HCO+ and HOC+ ions employing the

CCSD(T) calculations with another large TZ2P(f,p)+diff basis set. Puzzarini and coworkers

(Puzzarini, Tarroni, Palmieri, Carter, and Dore, 1996) computed the GS PES of HCO+ sys-

tem near equilibrium geometry and they predicted the vibrational and rotational frequencies

using variational calculations. Their study involved complete active space self-consistent

field multireference configuration interaction (CASSCF-MRCI) calculations employing the

cc-pVQZ basis set of Dunning (Dunning, 1989). Recently, using the same basis set and

CCSD(T) method, Mladenović and coworkers (Mladenović and Schmatz, 1998) computed

the three dimensional GS PES for the bound HCO+/HOC+ system. Their study involved

prediction of rovibrational spectrum along with the number and densities of bound vibra-

tional states in the system. In a more recent study, Grunenberg and coworkers (Grunenberg,
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Streubel, Frantzius, and Marten, 2003) have performed CCSD(T)/aug-cc-pVQZ calcula-

tions to obtain total energies, bond lengths, harmonic frequencies etc. for HCO+/HOC+

molecular ions.

There have been also a few early ab initio calculations to construct the potential energy

curves (PECs) for the system. PES for H+ + CO (CO fixed at its equilibrium geometry, req)

as a function of proton approaches for collinear and a few non-collinear geometries were

reported for the ground as well as low-lying excited electronic states by Peyerimhoff and

coworkers (Bruna, Peyerimhoff, and Buenker, 1975). Their study involved SCF calcula-

tions along with restricted configuration interaction (CI) computations for a few geometries.

Subsequently, treating the CO molecule as rigid rotor, the GS PES was computed at the SCF

level and model calculations of vibrational excitations were performed by Gianturco and

coworkers (Gianturco et al., 1980b) using the spherical component of their ab initio PES.

In the case of the H+ + CO system, an avoided crossing between the GS and the first

ES PESs occurs in the asymptotic regions (Niedner-Schatteburg and Toennies, 1992) lead-

ing to the Demkov type of coupling (Demkov, 1964). The charge transfer (CT) chan-

nel, H(2S) + CO+(X2Σ+), is endoergic by ∼ 0.4 eV as compared to the IVE channel,

H+ + CO(X1Σ+). Therefore, it is expected that probability of the CT processes would be

less and that they would be accessible only by the Rosen-Zener-Demkov type of coupling

(Rosen and Zener, 1932; Demkov, 1964). This is confirmed by measurments of total DCS

(Niedner-Schatteburg and Toennies, 1992) for proton and H-atom detection in the H+ + CO

scattering at Elab = 30 eV where the CT was found to be almost an order of magnitude less

probable than the elastic and the IVE processes. This suggests that the IVE process, to a

large extent, would be governed by th GS PES. Recently, a three-dimensional global ab initio
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GS PES was obtained for the system and quantum dynamics study within the framework of

the vibrational close coupling rotational infinite sudden approximation (VCC-RIOSA) was

performed at Elab = 30 eV in our group (Dhilip Kumar and Kumar, 2004) which yielded

results in excellent agreement with those of experiments. However, the involvement of the

first ES PES at this higher collision energy can not be ruled out. Hence, preliminary studies

of CT dynamics were also carried in a restricted geometry including the lowest three ES

PECs along with the GS PEC by our group (Dhilip Kumar, Saieswari, and Kumar, 2006)

and in extended geometry including only the first ES PES by Lin et al. (Lin, Stancil, Li, Gu,

Liebermann, Buenker, and Kimura, 2007).

The CT dynamics (electron capture) has been also studied in the system at very high

collision energies (Ecoll = 10 KeV/u) by Kimura et al. (Kimura, Gu, Hirsch, Buenker, and

Stancil, 2000). They computed the GS as well as the first and the second ES PECs with

CO fixed at its equilibrium geometry for the collinear and perpendicular approaches of H+

using the MRCI method and employing the cc-pVTZ basis set. They also computed electron

capture cross section and the DCSs for these molecular orientations along with the averaged

DCS and compared the results with the experimental results of Gao et al. (Gao, Johnson,

Hakes, Smith, and Stebbings, 1990).

In the H+ + O2 system, for the collinear and perpendicular geometries, there are di-

rect curve crossings between the GS PES, asymptotically correlating to the IVE channel,

H+ + O2(X3Σ−g ) and the first ES PES, asymptotically correlating to the VCT channel,

H(2S) + O+
2 (X2Πg). These crossing become avoided crossing in all off-collinear geome-

tries, thus leading to a conical intersection (Domcke, Yarkony, and Köppel, 2004) between

the respective PESs in the full dimensional nuclear configuration space. The GS and the first
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ES PESs are strongly coupled via the Landau-Zener-Stuckelberg type of coupling (Landau,

1932; Zener, 1932; Stuckelberg, 1932). There have been many ab initio studies on this

system but only in restricted geometries which could qualitatively explain some of the ex-

perimental observation like anomalous vibrational excitations in the system (Gianturco and

Staemmler, 1981; Vazquez, Buenker, and Peyerimhoff, 1986) in terms of intermediate for-

mation of O+
2 through the CT process. Full three-dimensional global PESs for both the GS

and the first ES became available from two different groups (i) Grimbert et al. (Grimbert,

Lassier-Givers, and Sidis, 1988) and Schneider et al. (Schneider, Zülicke, DiGiacomo, Gi-

anturco, Paidarová, and Polák, 1988), where the former obtained the diabatic PESs needed

for the dyanmics study by modelling the projected valence bond approach and the latter ob-

tained the same using semi-empirical DIM approach. Quantum dynamics on these two sets

of PESS qualitatively agree with the experiments (Sidis, Grimbert, Sizun, and Baer, 1989;

Gianturco, Palma, Semprini, Stefani, and Baer, 1990).

1.3 Scope of the thesis

Quantum dynamics study on highly coupled electronic PESs is one of the contemporary and

main theoretical challenges today. On the coupled electronic PESs the Schrödinger equation

for nuclear motion can be written down either in an adiabatic or a diabatic representation of

the wavefunction. In principle, one can carry out dynamics in the adiabatic representation.

However, one generally faces the following difficulties in computations: (i) the magnitudes

of nonadiabatic coupling terms grow very large over small regions of nuclear configurations

near avoided crossings, (ii) they become singular at conical intersections, and (iii) it is gen-

erally difficult to deal with them since they are expressed in terms of KE operators and are
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vectors in nature. Therefore, one makes an attempt to carry out the dynamics in a diabatic

representation where one assumes that the electronic wavefunctions are independent of the

nuclear coordinates or are almost independent (weakly varying functions) of nuclear coor-

dinates. In this representation, the nonadiabatic coupling terms in the KE are transformed

into the easily handled coupling potential terms which are scalar in nature.

Although the adiabatic representation of the wavefunction is unique, a unique transfor-

mation from the adiabatic to a diabatic representation and vice-versa does not exist for a

multidimensional collision problem, except for the diatomic case. For a multidimensional

case the nonadiabatic coupling terms cannot be made exactly zero. However, they can be

made vanishingly small for a (quasi) diabatic representation. Therefore, different sets of

quasi-diabatic PESs may correspond to the unique set of adiabatic PESs. There have been

several attempts and suggestions to create quasi-diabatic PESs along with discussion about

their exactness in the literature (For example, see (General Discussion, 2004) and references

therein). Ab initio procedures have also been proposed to generate the quasi-diabatic PESs,

and they have been used recently in studying the photodissociation dynamics on the cou-

pled electronic PESs and successfully explaining the experimental observation for the H2S

system (Simah, Hartke, and Werner, 1999). In the present study, we adopt the ab initio

procedures to generate the quasi-diabatic PESs for the considered system. In chapter 2, we

briefly describe the adiabatic representation and the breakdown of BO approximation. We

also briefly review the methods of diabatization including the ab initio procedures.

In the time-independent framework of the Schrödinger equation, the quantum dynam-

ics of nuclear motion can be performed using the full close-coupling methods. However,

they becomes computationally expensive at higher energies. However, one can still carry
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out quantum dynamics by invoking some physically valid assumptions and approximations.

One of the most valid treatments is the vibrational close-coupling rotational infinite order

sudden approximation (VCC-RIOSA). Since the scattering studies in the present study are

in the range of 20 - 30 eV, we believe that the studies carried out in the VCC-RIOSA frame-

work would capture the physics of the collisions quite meaningfully and efficiently. The

validity of the VCC-RIOSA has been numerically tested at higher collision energy end and

the details are given in the Appendix A. In chapter 3, the close-coupling method is described

briefly followed by the discussion on the inclusion of effective approximation leading to the

VCC-RIOSA framework. The details of the various working equations are also described

there.

As noted above, a proper theoretical understanding of the IVE and the VCT mechanisms

are still lacking for the H+ + CO and the H+ + O2 systems. In fact, accurate ab initio de-

scriptions of the electronic PESs and the associated couplings are still not available for these

systems and therefore elaborate theoretical studies are desirable from both ab initio struc-

tural and quantum dynamics points of view. The present study focuses on a full theoretical

understanding of energy transfer processes of IVE and VCT channels in collisions of H+

with CO and O2 molecules for collision energy range Ecm=0 - 30 eV. Our objective is to

examine the dynamics of vibrationally-rotationally inelastic and vibrational charge transfer

processes from the first principles of quantum mechanics. In this thesis, we report new re-

sults on the dynamical attributes obtained from employing the VCC-RIOSA methodologies,

and compare them with the available experimental results.

For the H+ + CO system ab initio PES has become available only for the GS and the-

oretical attempts have been made to predict only the collision attributes of IVE channel by
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carrying out dynamics on the GS PES. In chapter 4, we present the details of ab initio

PESs for the GS and the first ES along with the quantum dynamics results. We compare the

computed collision attributes for the system with those of experiments which have become

available from the experiments at Ecm = 28.96 eV.

For the H+ + O2 system, marked differences exist in the topologies of the available qua-

sidiabatic PESs. Fig. 1.1 shows some salient characteristics of the GS and the first ES PESs

used in earlier calculations of Schneider et al. (1988), Grimbert et al. (1988) and Saieswari

Figure 1.1: Comparison of PECs (left) as a function of R for γ = 45◦ at req computed
by Grimbert et al. (1988), Schneider et al. (1988) and Saieswari and Kumar (2009) and as
a function of R for γ = 0◦, 45◦ and 90◦ (right) computed by Grimbert et al. (1988) and
Saieswari and Kumar (2009)

and Kumar (2009). The available PECs have been reproduced in Fig. 1.1(left) as a function

of R (distance of proton/hydrogen from the center of mass of diatom) from the internuclear

distance of the diatom (r) fixed at its equilibrium value (req) and angular approach (γ) of

45◦ of proton/hydrogen. Note that the req values obtained/used are slightly different in the
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early calculations and the calculations of Saieswari and Kumar which was determined to be

2.293a◦. (Expt.value, req(O2) = 2.286a◦, (Huber and Herzberg, 1979)). The PECs obtained

by model projected valence bond (Grimbert, Lassier-Givers, and Sidis, 1988) and the semi-

empirical DIM (Schneider, Zülicke, DiGiacomo, Gianturco, Paidarová, and Polák, 1988)

and MRCI (Saieswari and Kumar, 2009) are shown in Fig. 1.1 (left). The 33A′′ PEC is not

available from the calculations of Grimbert et al.. For the sake of comparison the energy

of 23A′′ is arbitrarily set equal to 1.0a◦ at R = 7.0a◦. It is important to note that the ES

PECs differ drastically. The first ES PEC (23A′′) of Grimbert et al. remains repulsive while

in the DIM and the ab initio calculations it shows an avoided crossing with the 33A′′ state.

Although the avoided crossing is present in the DIM calculations it differs significantly in

comparison with the ab initio calculations. From the interactions, it is clear that the 33A′′

state is also expected to play a role in the dynamics.

We further compare the adiabatic PECs of the GS and the first ES of Grimbert et al.

and the corresponding ab initio PECs of Saieswari and Kumar in Fig. 1.1 (right) for γ =

0◦.45◦ and 90◦ with r = req. Here again for the sake of comparison, the energy correspond-

ing to the channel H+ + O2(X3Σ−g ) is set equal 1.0 a.u. at R = 7.0a◦. For γ = 0◦ and 90◦

there is a direct curve crossing which becomes an avoided crossing for γ = 45◦. The cor-

responding quasidiabatic PECs obtained in the calculations are also shown for γ = 45◦.

One can see that the PECs in the two sets look similar except the associated character of

avoided crossing for the 2 3A′′ state (originating from the interaction of 3 3A′′) seen in the

ab initio calculations. In the ab initio calculations for the 2 × 2, (that is, involving only the

GS and the first ES) the computed PESs and the associated nonadiabatic couplings showed

quite an irregular behaviour (in the regions of avoided crossing with low-lying ESs). How-

ever, the quantum dynamics was performed by strictly modelling a 2×2 coupled process by
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smoothening the irregular behaviour of the PESs and the obtained results for the collision

attributes were similar to the results obtained using earlier model projected valence bond

PESs (Sidis et al., 1989) and the semi-empirical DIM PESs (Gianturco et al., 1990).

From the analysis of the interactions between the GS and the ESs, it is clear that 3 3A′′

state is also expected to play a role in the dynamics. In fact, the third ES 4 3A′′ also lies

energetically close to the second ES 3 3A′′ and exhibits avoided crossing with it. At the

experimental collision energy of 23 eV all these states are expected to play a role in influ-

encing the collision dynamics. Therefore, there is a need (i) to look into the details of the

topologies of ab initio PESs (ii) to examine the role of these ESs in influencing the IVE and

the VCT processes.

In continuation of the earlier ab initio studies, in chapter 5, we first obtain the quasidia-

batic PESs for the GS and the first ES but without smoothening the behaviour of NACMEs

and analyse the quantum dynamics comparing the results with that of experiments. However,

the analysis of the coupling and dynamics results suggests that at least two more low-lying

ESs would also be involved in influencing the collision dynamics at the experimental col-

lision energy of Ecm = 23 eV. Therefore, in chapter 6, a new set of extensive ab initio

computations for the 4-state (the GS and the three lowest ESs) adiabatic PESs are reported.

The corresponding 4-state quasidiabatic PESs and the coupling potential matrix is also ob-

tained. Quantum dynamics results are improved considerably by the inclusion of two more

ESs in the calculations. The detailed analysis and results are presented there.

A summary with conclusions of the present work along with future direction of the

research is given in chapter 7 and followed by Appendix and bibliography.
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CHAPTER 2

BORN-OPPENHEIMER APPROXIMATION AND

QUASIDIABATIZATION PROCEDURE

In this chapter, we briefly review the break down of the Born-oppenheimer (BO) approx-

imation and the need to move from the adiabatic representation to a quasi-diabatic repre-

sentation. The discussion on the various diabatization procedures suggested in the literature

(Köppel, Domcke, and Cederbaum, 1984; Heumann, Weide, Duren, and Schinke, 1992;

Sidis, 1992; Pacher, Cederbaum, and Köppel, 1993; Romero, Aguilar, and Gadea, 1999;

Baer, 2002a,b; Child, 2002; Worth and Robb, 2002; Adhikari and Billing, 2002; Vibok,

Halasz, Vertesi, S.Suhai, Baer, and Toennies, 2003; Köppel, 2004; Baer, Vertesi, Halasz, Vi-

bok, and Suhai, 2004; Baragan, Errea, Macias, Mendez, Rabadan, Riera, Lucas, and Aguilar,

2004; Vertesi, Bene, Vibok, Halasz, and Baer, 2005) is also reviewed.

2.1 The breakdown of Born-Oppenheimer approximation

The validity of the adiabatic and the BO approximation in the nuclear configuration space

has been well discussed and documented in the literature (Smith, 1969; Baer, 1975; Mead

and Truhlar, 1982; Köppel, Domcke, and Cederbaum, 1984; Handy and Lee, 1996; Balakr-

ishnan, Kalyanaraman, and Sathyamurthy, 1997; Adhikari and Billing, 2002; Baer, 2002a,b;

Mahapatra and Köppel, 2002; General Discussion, 2004; Jasper, Zhu, Nangia, and Truhlar,

2004). Hence, we briefly summarize here only the necessary details of it.



The time independent Schrödinger equation is given by

ĤtotΨ = EΨ (2.1)

where E is the total energy of the system, Ψ is the total wavefunction and Ĥtot is the total

Hamiltonian given as

Ĥtot = T̂n + Ĥel (q,Q) (2.2)

where T̂n is the nuclear KE operator (= − 1
2M
∇2
Q,M being the reduced mass of the system

and ∇2
Q is the Laplacian operator) and Ĥel (q,Q) is the electronic Hamiltonian, which is a

function of both the electronic coordinates q and nuclear coordinates Q.

The total wavefunction (Ψ) can be expanded as

Ψ =
N∑

i=1

ψi (Q)φi (q,Q) (2.3)

where
{
ψi (Q)

}
and

{
φi (q,Q)

}
are the set of orthogonal nuclear and real electronic wave-

functions, respectively. The orthogonality condition for the real electronic wavefunctions is

defined as

〈
φi (Q)

∣∣φj (Q)
〉

=

∫
φ∗i (q,Q)φj (q,Q) dq = δij (2.4)

Using Eq. (2.3) in Eq. (2.1), multiplying it from left by the electronic wavefuntion φ∗j (q,Q)

and integrating over the electronic coordinates q we result in (Baer, 2002b; Mead and Truh-
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lar, 1982)

− 1

2M

{
∇2
Qψj (Q) + 2

N∑

i=1

~Fji (Q) ~∇Qψi (Q) +
N∑

i=1

Gji (Q)ψi (Q)

}

+
N∑

i=1

Uji (Q)ψi (Q) = Eψj (Q) j = 1, 2, 3, ....., N (2.5)

where

~Fji (Q) =

〈
φj (Q)

∣∣~∇Q

∣∣ φi (Q)

〉
=

∫
φ∗j (q,Q) ~∇Qφi (q,Q) dq (2.6)

are the first order nonadiabatic coupling matrix elements (NACME) which are vector quan-

tities.

Gji (Q) =

〈
φj (Q)

∣∣∇2
Q

∣∣ φi (Q)

〉
=

∫
φ∗j (q,Q)∇2

Qφi (q,Q) dq (2.7)

are the second order NACME values and are scalar quantities, and

Uji (Q) =

〈
φj (Q)

∣∣Ĥel (q,Q)
∣∣ φi (Q)

〉

=

∫
φ∗j (q,Q) Ĥel (q,Q)φi (q,Q) dq (2.8)

are the adiabatic electronic (eigen) enegies which are also scalar quantities. The matrix form
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of Eq. (2.5) is given by

− 1

2M




∇2
Q1̂ + 2




~F11
~F12 . . . ~F1N

~F21
~F22 . . . ~F2N

...
... . . . ...

~FN1
~FN2 . . . ~FNN



~∇Q +




G11 G12 . . . G1N

G21 G22 . . . G2N
...

... . . . ...
GN1 GN2 . . . GNN











ψ1

ψ2
...
ψN


+




U11 U12 . . . U1N

U21 U22 . . . U2N
...

... . . . ...
UN1 UN2 . . . UNN







ψ1

ψ2
...
ψN


 = E1̂




ψ1

ψ2
...
ψN


 (2.9)

Since ~∇Q is antihermitian and φi’s are real electronic wavefunctions we have

~Fji (Q) = −~Fij (Q)

~Fii (Q) = 0

(2.10)

Using Eq. (2.4) and Eq. (2.10) in Eq. (2.9) we get

− 1

2M




∇2
Q1̂ + 2




0 ~F12 . . . ~F1N

−~F21 0 . . . ~F2N
...

... . . . ...
−~FN1 −~FN2 . . . 0



~∇Q +




G11 G12 . . . G1N

G21 G22 . . . G2N
...

... . . . ...
GN1 GN2 . . . GNN











ψ1

ψ2
...
ψN


+




U11 0 . . . 0
0 U22 . . . 0
...

... . . . ...
0 0 . . . UNN







ψ1

ψ2
...
ψN


 = E1̂




ψ1

ψ2
...
ψN


 (2.11)

Thus, in the adiabatic representation (that is, using the set of ψi (Q)’s and ψi (q,Q)’s)

the potential matrix becomes diagonal and the nuclear kinetic energy matrix becomes non-

diagonal due to the non-zero nature of the first order and the second order NACME values.

These NACME values can be considered to be negligible if the PESs involved in our study

are well seperated energetically from each other. The Gji (Q) generally have a very small

magnitude and can be neglected (Smith, 1969). From the Hellman-Feynman relation, the
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~Fji (Q) is given by

〈
φj (Q)

∣∣∣~∇Q

∣∣∣φi (Q)
〉

=

〈
φj (q,Q)

∣∣∣∂Ĥel∂Q

∣∣∣φi (q,Q)
〉

Uii − Ujj
(2.12)

Thus, if the energy gab Uii − Ujj is very large, then the NACME values become very small

and can be safely neglected in computations. Invoking the BO approximation, in which the

electronic and nuclear motions are decoupled, that is,

~∇Qφi (q,Q) = ~∇Qφi (q; Q) = 0

~∇2
Qφi (q,Q) = ~∇2

Qφi (q; Q) = 0,

(2.13)

the electronic wavfunction (φi (q,Q)) is assumed to be parametrically dependent on the

nuclear coordinates (φi (q; Q)). Using Eq. (2.13) in Eq. (2.11) and assuming that the energy

gab between the PESs involved are reasonably large, leads to the simplest form given below

− 1

2M
∇2
Qψi + Uiiψi = Eψi (2.14)

whereUii are the adiabatic energies mentioned in Eq. (2.11). The details of the compuations,

in generating these adiabatic ab initio PESs for the H+ + CO and the H+ + O2 systems are

described in chapter 4, chapter 5 and chapter 6, respectively.

In the adiabatic picture, if there exists an avoided crossing or a direct crossing between

two PESs for certain nuclear configuration space, then the (adiabatic) energy gap (Uii − Ujj)

becomes reasonably small for the former case but it becomes zero for the latter case. Thus,

it leads to very high magnitude or even singularities in the first order NACME values (see

Eq. (2.12)). Hence, handling these first order NACME values, which are also vector quan-
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tities, becomes extremely difficult computationally. When PESs are strongly coupled the

nuclear and electronic motions can not be decoupled, thereby leading to the breakdown of

BO approximation

~∇Qφi (q; Q) 6= 0

∇2
Qφi (q; Q) 6= 0

(2.15)

To overcome this problem one can choose a set of real wavefunctions
{
ψ̃i (Q)

}
’s and

{
φ̃i (q,Q)

}
’s which vary as little as possible with respect to the nuclear coordinates. Such

type of wavefunctions are called diabatic wavefunctions. The adiabatic and diabatic wave-

functions are related by a unitary transformation matrix A (defined in the next section) as

{ψi (Q)} = A†
{
ψ̃i (Q)

}

{
φ̃i (q,Q)

}
= A {φi (q,Q)}

(2.16)

On following the same algebra mentioned above, with these diabatic wavefuntions, Eq.

(2.6), Eq. (2.7) and Eq. (2.8) get modified as

~̃Fji (Q) =
〈
φ̃j (Q)

∣∣∣~∇Q

∣∣∣ φ̃i (Q)
〉

=

∫
φ̃∗j (q,Q) ~∇Qφ̃i (q,Q) dq (2.17)

G̃ji (Q) =
〈
φ̃j (Q)

∣∣∇2
Q

∣∣ φ̃i (Q)
〉

=

∫
φ̃∗j (q,Q)∇2

Qφ̃i (q,Q) dq (2.18)
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Ũji (Q) =
〈
φ̃j (Q)

∣∣∣Ĥel (q,Q)
∣∣∣ φ̃i (Q)

〉

=

∫
φ̃∗j (q,Q) Ĥel (q,Q) φ̃i (q,Q) dq (2.19)

Since the diabatic electronic wavefunctions are assumed to be (nearly) independent with

respect to nuclear motion

~∇Qφ̃i (q; Q) ∼= 0

∇2
Qφ̃i (q; Q) ∼= 0

(2.20)

Also, the set
{
φ̃i (q,Q)

}
are real (diabatic) electronic wavefunctions, therefore, the con-

dition in Eq. (2.10) also holds for them. Using the above two conditions, we find that

all the matrix elements of
{
~̃Fji (Q)

}
and

{
G̃ji (Q)

}
are (nearly) zero, whereas the po-

tential matrix
{
Ũji (Q)

}
remains non-diagonal, since the diabatic electronic wavefunctions

{
φ̃i (q,Q)

}
are not the eigenfunctions of the electronic Hamiltonian

(
Ĥel

)
. Hereafter, let

{
Ũji

}
be denoted as

{
V d
ji

}
. Hence, Eq. (2.9) takes the following form




− 1

2M
∇2
Q1̂ +




V d
11 V d

12 . . . V d
1N

V d
21 V d

22 . . . V d
2N

...
... . . . ...

V d
N1 V d

N2 . . . V d
NN











ψ̃1

ψ̃2
...
ψ̃N


 = E1̂




ψ̃1

ψ̃2
...
ψ̃N


 (2.21)

Thus, in the diabatic representaion
({
ψ̃i (Q)

}
’s and

{
φ̃i (q,Q)

}
’s
)

, the potential matrix

becomes non-diagonal due to the presence of the coupling terms V d
ij and the nuclear kinetic

energy matrix becomes diagonal.

In the adiabatic representation, the couplings between (among) the electronic states ap-

pear in the nuclear kinetic energy part (as vectors), whereas in the diabatic representation
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the same coupling is transformed to the potential energy part (as scalars). Hence, for com-

putational convenience, the dynamics is performed on these diabatic PESs.

2.2 Diabatization procedures

Although the adiabatic representation ({ψi (Q)} ’s and {φi (q,Q)} ’s) is unique, a unique

transformation from the adiabatic to a diabatic representation and vice-versa does not exist

for a multidimensional collision problem except for the diatomic case. For a 2×2 case,

where two electronic states are coupled, the transformation matrix A is given by

A =




cos (α (Q)) sin (α (Q))

− sin (α (Q)) cos (α (Q))


 (2.22)

where α (Q) is called as the mixing angle which describes the mixing between the two

electronic states involved and is a function of nuclear coordinates. For a 2×2 case, the

adiabatic electronic wavefunction and the diabatic electronic wavefunctions are related as

described in Eq. (2.16), that is,



φ̃i (q,Q)

φ̃j (q,Q)


 =




cos (α (Q)) sin (α (Q))

− sin (α (Q)) cos (α (Q))






φi (q,Q)

φj (q,Q)


 (2.23)

Using Eq. (2.23) in Eq. (2.16) and following the algebra, we have the relation

〈
φi (q,Q)

∣∣∣~∇Q

∣∣∣φj (q,Q)
〉

= ~∇Q (α (Q)) =

(
∂α (Q)

∂Q

)
(2.24)
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Thus mixing angle can be obtained in principle by the integration of the first order NACME

values with respect to the nuclear coordinates {Q},

α (Q) = αQ0 +

∫ Q

Qref

〈
φi (q,Q)

∣∣∣~∇Q′

∣∣∣φj (q,Q)
〉
dQ′

= αQ0 +

∫ Q1

Q1ref

〈
φi (q,Q)

∣∣∣∣
∂

∂Q′1

∣∣∣∣φj (q,Q)

〉
dQ′1+

∫ Q2

Q2ref

〈
φi (q,Q)

∣∣∣∣
∂

∂Q′2

∣∣∣∣φj (q,Q)

〉
dQ′2 + . . . (2.25)

The relation between the adiabatic potential matrix {Uii}’s and the diabatic potential matrix

{
V d
ij

}
’s for the 2×2 case is given as

(
V d
ii V d

ij

V d
ji V d

jj

)
= A†

(
Uii 0
0 Ujj

)
A (2.26)

On further solving the above equation we obtain the relation

V d
ii = Uii cos2 (α (Q)) + Ujj sin2 (α (Q))

V d
jj = Uii sin

2 (α (Q)) + Ujj cos2 (α (Q))

V d
ij = V d

ji = (Uii − Ujj) cos (α (Q)) sin (α (Q))

(2.27)

The above procedure, which is mainly applicable for a 2×2 case, can be extended for an

N×N case, where N electronic states are coupled. A detailed discussion of the N×N case

has been discussed recently by Vertesi et al. (Vertesi, Bene, Vibok, Halasz, and Baer, 2005),

where the N-state adiabatic-to-diabatic transformation have been applied to three- and five-

state ab initio calculations for the H + H2 system. For polyatomic systems, where there exist

more than one nuclear degrees of freedom, the integral in the above equation is not path

independent (Mead and Truhlar, 1982; Baer, 2002b). Therefore, the diabatic states can not
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be defined uniquely and the coupling matrix elements cannot be made exactly zero for all

nuclear geometries.

The derivatives ~∇Q (α (Q)) and
〈
φi (q,Q)

∣∣∣~∇Q

∣∣∣φj (q,Q)
〉

in Eq. (2.24) can be ob-

tained by numerical differentiation using the finite difference method (Galloy and Lorquet,

1977; Desouter-Lecomte, Galloy, Lorquet, and Vaz Pires, 1979; Hirsch, Bruna, Buenker,

and Peyerimhoff, 1980; Werner and Meyer, 1981; Buenker, Hirsch, Peyerimhoff, Bruna,

Römelt, Bettendorf, and Petrongolo, 1982; Werner, Follmeg, and Alexander, 1988; Werner,

Follmeg, Alexander, and Lemoine, 1989)

(
∂α (Q)

∂Q

)
∼= α (Q0 + ∆Q)− α (Q0 −∆Q)

2∆Q
(2.28)

〈
φi (q,Q)

∣∣∣~∇Q

∣∣∣φj (q,Q)
〉
∼= 1

2∆Q
〈φi (Q0 + ∆Q) |φj (Q0 −∆Q)〉 (2.29)

where ∆Q is the small increment in the nuclear coordinates. The overlap matrix in Eq.

(2.29) can be evaluated in complete analogy to transition matrix elements between the wave-

functions with nonorthogonal orbitals. That is, in this procedure, the orbitals are determined

at the reference geometry, then the calculations are performed at the displaced geometries.

The transition density matrices between the states at the reference geometry and the dis-

placed geometries are then obtained. In using this method, one should choose ∆Q in such

a way that the calculated coupling matrix elements are numerically converged. This proce-

dure has been employed in the nonadiabatic studies for He-CN collision (Werner, Follmeg,

and Alexander, 1988; Werner, Follmeg, Alexander, and Lemoine, 1989) and for photodis-

sociation of H2S (Heumann, Weide, Duren, and Schinke, 1992; Simah, Hartke, and Werner,

1999). Once the NACME values are obtained as a function of all the nuclear coordinates
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{Q}, the mixing angle can be obtained by integrating them numerically as described in Eq.

(2.25) (Top and Baer, 1977; Baer and Beswick, 1979; Baer, 1983; Köppel, Domcke, and

Cederbaum, 1984).

The computation of (quasi)diabatic potential matrix in the above procedure is based

on the apriori information on the NACME values which demand further computational re-

quirements. Therefore, it is desirable to use a direct diabatization scheme that avoids the

computation of the NACMEs completely. These methods are either based on diagonaliza-

tion of some property matrix (Werner and Meyer, 1981; Heumann and Schinke, 1994) or

on an analysis of the CI vectors (Desouter-Lecomte, Dehareng, and Lorquet, 1987; Werner,

Follmeg, and Alexander, 1988; Pacher, Cederbaum, and Köppel, 1988; Werner, Follmeg,

Alexander, and Lemoine, 1989; Hirsch, Buenker, and Petrongolo, 1990; Petrongolo, Hirsch,

and Buenker, 1990; Kozin and Jensen, 1994)

In earlier studies, the mixing angle (α (Q)) was obtained from the coefficients of the

CI vectors of the adiabatic wavefunctions. For example, in the case of A + BC collisions

having Σ − Π electronic states, these will be crossing in the collinear geometries. For the

off-collinear geometries the Σ-state will correlate with A′ state (we call it as 1A′), while the

degeneracy of the Π-state will be lifted resulting into A′ + A′′ (we call it as 1A′′and 2A′).

The 1A′ and 2A′ electronic states will have avoided crossing for off-collinear geometries. If

the adiabatic electronic wavefunctions of 1A′ and 2A′ are represented as

φ1 =
∑

k

c1
kζ

1
k

φ2 =
∑

k

c2
kζ

2
k

(2.30)

where ck’s and ζk’s are the CI coefficients and configuration state functions (CSF), respec-
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tively. φ1 and φ2 will have contributions of CSFs describing the 1A′ and 2A′ states, and one

can obtain the mixing angle from the ck’s of either wavefunctions. For an example, using φ1

wavefunction α can be obtained as

α = sin−1

[∑
k′ (c

1
k)

2

∑
k (c1

k)
2

] 1
2

(2.31)

Note that in the numerator the summation is over the coefficients of configurations belonging

to 1A′ only and that α is also a function of nuclear geometry.

An improvement in this procedure has been proposed recently (Simah, Hartke, and

Werner, 1999), where it is assumed that the CI vectors representing the diabatic states are

approximately geometry independent, which implies that the change of orbitals as function

of geometry can be neglected This condition is met by the invariance of the CI/MRCI en-

ergies with respect to the unitary transformation among the active orbitals to minimize the

geometry dependence of the orbitals Following the generalization of the method proposed

by Domcke and Woywod (Domcke and Woywod, 1993), this was achieved for a 2×2 case

by maximizing the overlap |〈φi (Q′) |φi (Q)〉|2 + |〈φj (Q′) |φj (Q)〉|2 for all pairs of active

orbitals i, j at a considered geometry Q with those in a neighborhood geometry Q′ using a

2×2 Jacobi rotation technique (Simah, Hartke, and Werner, 1999). In an alternative way,

one can achieve the unitary transformation for the active orbitals as

T = S
(
S†S

)−1
2 (2.32)

where Sij = 〈φi (Q) |φj (Q′)〉 is the overlap matrix of the active orbitals at the two geome-

tries. It has been found (Simah, Hartke, and Werner, 1999) that for the 2×2 case the two
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methods yield identical results.

One can also achieve diabatization via block diagonalization of a generalized Fock ma-

trix (Domcke, Woywod, and Stengle, 1994). Considering a case of M states with resulting

diabatic electronic wavefunctions denoted as φ̃m which are constructed in basis of N config-

uration state function (CSF) as

φ̃m =
N∑

l

dlmχ̃l (2.33)

for m = 1, . . .M, where d is an N×M matrix and it is related to corresponding coefficient

matrix c of the adiabatic electronic wavefunctions through the transformation d = cA. A

is an M×M matrix which can be determined from the condition that d remains as close

as possible to the matrix dref at a reference geometry at which the adiabatic and diabatic

wavefunctions become identical. The unitary matrix A can be obtained from the relation,

A = B
(
B†B

)−1
2 (2.34)

with B = c†dref . This procdure is closely related to the block diagonalization of Pacher et

al. (Pacher, Cederbaum, and Köppel, 1988).

This procedure was applied for the photodissociation of H2S on electronically coupled

PESs by computing the quasidiabatic PESs and the coupling potentials and quantum dynam-

ics using the quasidiabatic potential matrix was able to explain the experimental observa-

tions (Simah, Hartke, and Werner, 1999). It is also worth pointing out here that Balint-Kurti

et al. (see in: General Discussion (2004)) have also recently computed the quasidiabatic

PECs corresponding to the five lowest adiabatic PECs in O3 system using the same proce-

dure. Recently, a new set of quasidiabatic potential matrix (2 × 2) was also obtained for
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the H+ + H2 system and quantum dynamics yielded results in near quantitative agreement

settling some long-standing discrepancies between theory and experiments (Saieswari and

Kumar, 2007c,a, 2008c).

In our present study, we have employed the above ab initio procedure (see Eq. (2.34)) to

compute diabatic potential matrix and/or mixing angle (Simah, Hartke, and Werner, 1999;

Heumann, Weide, Duren, and Schinke, 1992) using the MOLPRO 2002.6 software (Werner,

Knowles, Schütz, Lindh, Celani, Korona, Rauhut, Manby, Amos, Bernhardsson, Bern-

ing, Cooper, Deegan, Dobbyn, Eckert, Hampel, Hetzer, Lloyd, McNicholas, Meyer, Mura,

Nicklaβ, Palmieri, Pitzer, Schumann, Stoll, Stone, Tarroni, and Thorsteinsson, 2002). The

relevant details in computing the mixing angle and quasidiabatic potentials are described in

the chapters 4, 5 and 6.
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CHAPTER 3

THE TIME INDEPENDENT QUANTUM DYNAMICS

STUDY - THE VCC-RIOSA SCHEME

In this chapter we briefly review the details of the full close-coupling method and the use of

rotational infinite-order sudden approximation. The details of calculations of collision at-

tributes in the quantum dynamics study is also discussed in brief followed by the application

of VCC-RIOSA scheme for the ion-molecule collision.

3.1 The full close-coupling method

In principle, one can study the quantum dynamics of the system in the time-independent

formulation of scattering theory with full close-coupling approach. In patricular, to describe

the interaction between a diatomic molecule and an atom and the dynamics of the IVE and

the VCT channels, the standard Jacobi coordinates are used as shown in Fig. 3.1, where

r is the vector joining the diatom BC and R is the vector connecting the c.m of the di-

atomic molecule BC and the atom A and γ is the angle between the vectors R and r and the

relationship among R, r and γ is γ = cos−1 (R.r).

The Schrödinger equation subjected to solve is

ĤtotΨ (R, r,q) = EΨ (R, r,q) (3.1)



Figure 3.1: Jacobi coordinates

where

Ĥtot = − ~2

2µABCR2

∂

∂R

(
R2 ∂

∂R

)
+

L2

2µABCR2
+ V (R, r, γ,q) + Ĥ0

BC (r,q) (3.2)

whereR, r and γ are the nuclear Jacobi coordinates, q is the electronic coordinate, Ψ (R, r,q)

is the total scattering wavefunction which is a function of nuclear and electronic coordinates,

µABC is the atom-molecule reduced mass

µABC =
(mB +mC)mA

mA +mB +mC

(3.3)

L is the orbital angular momentum of the atom relative to the molecule, and

L̂2|lml〉 = l (l + 1) ~2|lml〉 (3.4)

in which l is orbital angular momentum quantum number and ml is the projection of L onto

the space fixed axes and |lml〉 are the eigen functions of L̂2 operator. V (R, r, γ,q) is the

atom-molecule interaction potential, which vanishes at infinite separation R and Ĥ0
BC (r,q)
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is the unperturbed Hamiltonian for the diatomic molecule BC and is given by

Ĥ0
BC (r,q) = − ~2

2µBCr2

∂

∂r

(
r2 ∂

∂r

)
+

I2

2µBCr2
+ Ĥe

BC (r,q) (3.5)

where I is the rotational angular momentum of the diatom BC, and

Î2|jmj〉 = j (j + 1) ~2|jmj〉 (3.6)

in which j is the rotational angular momentum quantum number and mj is the projection of

I onto the space-fixed axes, and |jmj〉 are the eigen functions of Î2 operator. Ĥe
BC (r, q) is

the electronic Hamiltonian of the diatom BC and depends on all the electronic coordinates

q

Ĥe
BC (r,q) = T̂e (q) + V̂en (r,q) + V̂ee (r,q) (3.7)

where T̂e (q) is the kinetic energy operator of the electrons, V̂en (r,q) is the electron-nuclei

coulomb interaction potential operator, V̂ee (r,q) is the electron-electron coulomb interac-

tion potential operator. The eigenfunction of the Ĥ0
BC (r,q) can be represented as the di-

rect products of electronic (|n〉), rotational (|jmj〉) and vibrational (|vj〉) wavefunctions

(Alexander, 1982; Hougen, 1970)

|njv〉 = |n〉 |jmj〉 |vj〉 (3.8)

On substituting the Eq. (3.8) in Eq. (3.5) and solving for the vibrational part in each elec-
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tronic state, we get

Ĥ0
BC (r,q) |vj〉 =

(
− ~2

2µBCr2

∂

∂r

(
r2 ∂

∂r

)
+
j (j + 1) ~2

2µBCr2
+ V n

BC (r)

)
|vj〉

= εnvj |vj〉 (3.9)

where εnvj is the eigenvalue corresponding to the rovibrational energies and V n
BC (r) is the

adiabatic potential energy curve for the diatom BC in its nth electronic state.

The total angular momentum (J) for the system is given as the sum of the orbital angular

momentum (L) and the rotational angular momentum (I)

J = I + L (3.10)

The eigenfunctions |jlJM〉 of the total angular momentum (J) are obtained by the direct

product of the rotational wavefunction of the diatomic molecule BC (|jmj〉) which are the

eigenfunctions of the Î2 operator and orbital wavefunction (|lml〉) which are the eigen-

functions of the L̂2 operator. They are coupled by the Clebsch-Gordan coefficients and are

represented as

|jlJM〉 =
∑

mj

∑

ml

c (jlJ ;mjmlM) |lml〉 |jmj〉 (3.11)

where c (jlJ ;mjmlM) are the Clebsch-Gordan coefficients and M is the projection of J

onto space-fixed axes. It is convenient to expand the total scattering wavefunction Ψ (R, r,q)

in terms of product of the eigenfunctions |jlJM〉 of the total angular momentum (J) and the

vibrational wavefunction |vj〉 and the electronic wavefunction |n〉 of the diatomic molecule

BC (Arthus and Dalgarno, 1960; Balint-Kurti, 1975; Alexander, 1982; Alexander and Corey,
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1986)

Ψ (R, r,q) =
∑

J,M

∑

n,j,v,l

kJ,Mn,v,j,l (3.12)

where

kJ,Mn,v,j,l =
1

R

∑

n′

∑

v′,j′,l′

fJ,nvjln′v′j′l′ (R) |n′〉 |v′j′〉 |j′l′JM〉 (3.13)

Using Eq. (3.12) and Eq. (3.13) in Eq. (3.1) and on following the algebra leads to the

full close-coupled equations for R-dependent coefficients fJ,nvjln′v′j′l′ (R) in which n, v, j and

l represents the fixed asymptotic initial state and n′, v′, j′ and l′ represents the final state

(Arthus and Dalgarno, 1960; Pack, 1974; Parker and Pack, 1978).

(
d2

dR2
− l′ (l′ + 1)

R2
+ k2

n′v′j′

)
fJ,nvjln′v′j′l′ (R)

=
2µABC

~2

∑

n′′

∑

v′′j′′l′′

〈j′′l′′JM |Vn′′v′′j′′n′v′j′ (R, γ)| j′l′JM〉 fJ,nvjln′′v′′j′′l′′ (R) (3.14)

where

Vn′′v′′j′′n′v′j′ (R, γ) = 〈v′′j′′ |Vn′′,n′ (R, r, γ)| v′j′〉 (3.15)

and

Vn′′,n′ (R, r, γ) =
〈
n′′
∣∣∣V̂ (R, r, γ,q)

∣∣∣n′
〉

(3.16)

are the matrix elements of the interaction potential operator on the electronic wavefunction

over all the electronic coordinates q. The diagonal terms corresponds to the interaction PES

of the electronic states involved, while the nondiagonal terms represent the diabatic coupling

between them. The wave vector k2
n′v′j′ is defined as

k2
n′v′j′ =

2µABC
~2

(
E − εn′v′j′

)
(3.17)
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where E is the collision energy and εn′v′j′ are the rotational-vibrational energies of the diatom

BC in the n′ electronic state and can be obtained from Eq. (3.9).

The close-coupled equations (Eq. (3.14)) are propagated into the asymptotic region

where all the terms vanish except the centrifugal part of the potential l′(l′+1)
R2 . The close-

coupled (Eq. (3.14)) are solved subjected to the boundary condition

fJ,nvjln′v′j′l′ (R)
R→0−−−→ 0

fJ,nvjln′v′j′l′ (R)
R→∞−−−→ (kn′v′j′)

− 1
2

{
δnn′δvv′δjj′δll′ exp

[
−i
(
knvjR−

lπ

2

)]

− SJn′v′j′l′←nvjl exp

[
i

(
kn′v′j′R−

l′π

2

)]}
(3.18)

where SJn′v′j′l′←nvjl are the elements of scattering matrix (S-matrix) and are related to the

transition matrix (T-matrix) by

T Jn′v′j′l′←nvjl = δnn′δvv′δjj′δll′ − SJn′v′j′l′←nvjl (3.19)

As the collision energy is increased, the size of the coupled equations increases very rapidly

because of the (2l + 1) (2j + 1)) multiplicity in the asymptotic states. Therefore, it is im-

portant to make reasonable physically valid (sudden) approximation. The history of various

quantum sudden approximation has been reviewed elsewhere (Arthus and Dalgarno, 1960;

Khare, 1977; Parker and Pack, 1978; Schinke and McGuire, 1978b; Gianturco, 1979; Kouri,

1979). Therefore, we briefly summarize the working principles of the VCC-RIOSA frame-

work in the next section.
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3.2 The infinite-order sudden approximation(IOSA)

Although the quantum dynamics of a system can be studied with full close-coupling ap-

proach, in principle, it still remains a prohibitive task computationally, patricularly for

the experimental (moderate and high) collision energy range, where the number of close-

coupled equations becomes too large to solve. At a typical collision energy of 10 eV and

considering the interaction potential to be short ranged (∼ 100 a◦), one estimates the col-

lision time to be of the order of a few sub-femtoseconds which is almost three orders of

magnitude less compared to a typical rotational period of a diatom, which is of the order of

picoseconds. Thus at relatively high collision energies the rotational motion of the target di-

atom can be considered to be nearly frozen, that is, the projectile effecively sees a molecule

with no rotational angular momentum. This physical situation allows the complete decou-

pling of rotational and orbital angular momenta resulting in enormous simplification in the

coupled equations which is usually referred to as the sudden or the rotational "infinite-order-

sudden" (RIOS) approximation.

If the rotational spacing in a molecule is small as compared to the collision energy, then

change in the initial and final wavevectors (with respect to the rotational states) is negligible,

that is,

k2
nvj′ − k2

nvj =
2µABC

~2

(
εnvj − εnnj′

) ∼= 0 (3.20)

and

εnvj = εnv +Bn
v j (j + 1) ~2 (3.21)

Bn
v is the rotational constant. Under this approximation one can replace j in Eq. (3.21)

with an effective value j. In that case, one has two choices for j, that is, either j = (initial)
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j or j = (final) j′. One may choose j = j which assumes that the elastic component in

each set of coupled equations has the correct energy. However, in the sudden approximation

one replaces knvj with knv for all the rotational states. This assumption is called energy or

centrifugal sudden. This implies that the rotational distortion can be (safely) neglected and

vibrational-rotational wavefunction of the target molecule |vj〉 can be replaced by |v〉 which

can be obtained by solving Eq. (3.9) with j = 0.

Furthermore, the centrifugal potential l(l+1)
R2 is replaced by an effective centrifugal po-

tential
l(l+1)
R2 for a given total angular momentum J . Here again, one has two reasonable

choices for l, that is, either l = (initial) l or l = (final) l′. It has been shown that both the

choices of l lead to identical results for degeneracy-averaged cross sections (Khare, 1977;

Parker and Pack, 1978; Schinke and McGuire, 1978a). Thus, with the combination of cen-

trifugal sudden and infinite order sudden approximation, the close-coupling equations are

modified. The coupled equations in the vibrational close-coupling rotational inifinite order

sudden approximation (VCC-RIOSA) can be written as

(
d2

dR2
− l
(
l + 1

)

R2
+ k2

n′v′j

)
fnvjln′v′ (R; γ)

=
2µABC

~2

∑

n′′

∑

v′′

Vn′′v′′,n′v′ (R, γ) fnvjln′′v′′ (R; γ) (3.22)

where the wavevector k2
n′v′j

is defined as

k2
n′v′j =

2µABC
~2

(
E − εn′

v′j

)
(3.23)

The function fnvjln′v′ (R; γ) depend on the γ angle only parametrically through the anisotropy

of the potential matrix Vn′′v′′,n′v′ (R, γ), so that the Eq. (3.22) can be solved at fixed value
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of γ. This yields the angle dependent S-matrix Sjln′v′←nv (γ) parameterized by the effective

quantum numbers l, j and defined by the standard boundary conditions in Eq. (3.18). Hence,

now the T-matrix elements takes the form

T jln′v′←nv (γ) = δnn′δvv′ − Sjln′v′←nv (γ) (3.24)

Since the S-matrix elements in the ion-molecule systems are known to show a strong γ

dependency because of anisotropy existing in the interaction potential, patricularly at small

l, the T-matrix elements are normally expanded in terms of Legendre polynomials (Schinke

and McGuire, 1978a) at each l as

T jln′v′←nv =
∑

λ

Alλ
(
jnv → n′v′

)
Pλ (cos γ) (3.25)

Using the orthogonality of the Legendre polynomials, it can be shown that the expansion

coefficients Alλ would be determined by a set of linear equations

N∗∑

λ=0

Alλ
(
jnv → n′v′

) N∑

i=1

Pλ (cos γi)Pλ′ (cos γi) =

N∑

i=1

T jln′v′←nv (γi)Pλ (cos γi)

(3.26)

where N is the total number of γ values considered and

λ, λ′ = 0, 2, 4, . . . , N∗;N∗ ≤ 2 (N − 1) (3.27)
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for the homonuclear system (B2), and

λ, λ′ = 0, 1, 2, 3, . . . , N − 1;N∗ = N (3.28)

for the heteronuclear systems (BC).

At higher collision energies vibrational excitations are expected to become the domi-

nant processes in proton-molecule collisions. Rotational transition resolution in the H+/H

energy-loss spectroscopy still pose challenging problems. Therfore, comparision between

the experiment and theory is often made for the cross-sections summed over the final rovi-

brational states. Therefore, we summarize below the working formulae for the degeneracy

averaged rotationally-summed cross sections. For their detailed derivations see the refer-

ence (Parker and Pack, 1978; Schinke and McGuire, 1978a) and references therein. The

rotationally-summed differential cross section are obtained as

dσ

dω

(
jnv → n′v′

)
=
∑

λ

(2λ+ 1)−1 dσ
λ

dω

(
jnv → n′v′

)

dσλ

dω

(
jnv → n′v′

)
=

1

4k2
n′v′j

∣∣∣∣∣∣
∑

l

(
2l + 1

)
Pl (cos θc.m)Alλ

(
jnv → n′v′

)
∣∣∣∣∣∣

2

.

(3.29)

Here θc.m is the c.m scattering angle and k2
n′v′j

denotes the wavevector in Eq. (3.22). Note

that the rotationally-summed cross sections depend on the initial rotational state j (= j)

through the wavenumber knvj only, and the dynamical information on the strength of a

j → j′ transition is transformed to the Clebsch-Gordon coefficients. The differential cross

sections including the individual rotational transitions are given by

dσ

dω
(jnv → j′n′v′) =

∑

λ

(2λ+ 1)−1C2 (jλj′; 000)
dσλ

dω

(
jnv → n′v′

)
(3.30)
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where C2 (jλj′; 000) are the Clebsch-Gordon coefficients and dσλ

dω

(
jnv → n′v′

)
is defined

in Eq. (3.29). The calculations are generally performed with rotational quantum number

j = 0 of the target atom. The DCS for any nvj → n′v′j′ can be performed from j =

0, nv → n′v′j′ transition as

dσ

dω
(jnv → j′n′v′) =

(
knv,j=0

knvj′

)2∑

j′′

C2 (jj′′j′; 000)

dσ

dω
(j = 0, nv → j′n′v′) (3.31)

Similarly, the rotationally-summed integral cross sections are obtained as

σ
(
jnv → n′v′

)
=
∑

λ

(2λ+ 1)−1 σλ
(
jnv → n′v′

)

σλ
(
jnv → n′v′

)
=

π

k2
n′v′j

∑

l

(
2l + 1

) ∣∣∣Alλ
(
jnv → n′v′

)∣∣∣
2

(3.32)

One can also obtain the orientation-dependent integral cross section as

σ
(
jnv → n′v′; γ

)
=

π

k2
n′v′j

∑

l

(
2l + 1

) ∣∣∣T jlnv→n′v′ (γ)
∣∣∣
2

(3.33)

from which one further obtains a useful angle-dependent quantity called opacity function

for each partial wavel l as

σl
(
jnv → n′v′; γ

)
=

π

k2
n′v′j

(
2l + 1

) ∣∣∣T jlnv→n′v′ (γ)
∣∣∣
2

(3.34)

All the above computed quantities are discussed in detail in the respective chapters.
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3.3 Application of VCC-RIOSA in ion(atom)-molecule col-

lisions

The decoupling scheme discussed above and their possible failure because of strong dynami-

cal mixing between rotational and vibrational excitation channels in the case of ion-molecule

interaction with heavy ions have been extensively discussed by Gianturco (Gianturco, 1979).

However, this scheme has been widely used to study a number of ion-molecule collision sys-

tems, and it has been shown to be reliable in most of the cases, particularly in the collision

energy range 10 eV - 100 eV. Interestingly, the VCC-RIOSA scheme has been reported to

work well for energies as low as Ecm = 3.7eV for the H+ + H2 system (McGuire, 1976;

Schinke and McGuire, 1978a). It has been argued that the presence of interaction well in

the system also helps in increasing the local velocity of the projectile (H+) in the vicinity of

the diatom.

At moderate collision energies in the range 10-30 eV, the dynamics study of proton col-

lisions with H2 (Schinke and McGuire, 1978a; Saieswari and Kumar, 2007c,a, 2008c), N2

(Gianturco, Kumar, Ritschel, Vetter, and Zülicke, 1997; Gianturco, Kumar, and Schneider,

1996) and CO (Dhilip Kumar and Kumar, 2004) have been treated under the VCC-RIOSA

scheme yielding results in very good agreement with experiments. Dynamics studies on the

H+ + O2 (Sidis, Grimbert, Sizun, and Baer, 1989; Gianturco, Palma, Semprini, Stefani, and

Baer, 1990; Saieswari and Kumar, 2007b, 2008a) were also carried out under this scheme.

Also, there are several other collision systems and their quantum dynamics studies have been

studied under this scheme. For the reference of earlier studies, see (Parker and Pack, 1978).

Other atom-molecule systems have been also studies, for example, the collision of H with

D2 (Zhang, Zhang, Kouri, and Baer, 1987), collision of O with HO2 (Varandas and Szich-
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man, 1998), collision of H with CO (Balakrishana, Yan, and Dalgarno, 2002) and collision

of H with SiO (Derouich, 2006) have been studied under the VCC-RIOSA scheme.
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CHAPTER 4

NONADIABATIC DYNAMICS ON THE TWO COUPLED

ELECTRONIC PESs : THE H+ + CO SYSTEM

In this chapter, we study the dynamics of the IVE, H+ + CO (X1Σ+, v = 0) −→ H+ +

CO (X1Σ+, v ′), and the VCT, H+ + CO (X1Σ+, v = 0) −→ H (2S) + CO+ (X2Σ+, v ′′),

processes. The experimental and theoretical data available on the H+ + CO collision system

till date have been reviewed already in detail in chapter 1. Here, we focus on the present

study by discussing the newly generated global ab initio PESs of the GS and the first ES

and their topological characteristics. We also present briefly the details of the ab initio

diabatization procedure used and the corresponding quasi-diabatic PESs computed in the

present study. We have performed time-independent quantum dynamics study within the

VCC-RIOSA framework at the experimentally reported collision energies, Ecm = 9.5 eV

and 28.96 eV and compared our results with those of experiments and the earlier theoretical

studies. We also provide new complementary state-to-state theoretical data for the VCT

channel at Ecm = 9.5 eV.

4.1 Present focus

Since there have not been any previous structural ab initio and quantum dynamics studies

involving the GS PES and the first ES PES, we pay our attention to ab initio computations

of these PESs as well as to their interaction properties such as mixing angle (α), coupling



potential
(
V d

12

)
and nonadiabatic coupling matrix elements (NACME). We also examine

the role of the other low-lying excited electronic states in influencing the overall collision

dyanmics of the system relevent to proton energy-loss experiments in the collision energy

rangeEcm = 9.5−30 eV, where the experiments (Krutein and Linder, 1979) reveal very little

amount of inelastic vibrational excitations of CO as only the v = 0 → v′ = 1 excitation is

observed along with very small amount of the v = 0→ v′ = 2 excitation. At these collision

energies the involvement of the second and third ESs cannot be ruled out completely, and

one also observes rich nonadiabatic interactions among the higher ESs patricularly for closer

approach of H+. However, in the present study, we assume that only the GS (1 2A′) and the

first ES (2 2A′) PESs are primarily involved in the dynamics. Therefore, hereafter, in the

present study, we refer to 2 2A′ state as the first excited state.

As pointed out earlier in chapter 3, at these collision energies (9.5 - 30 eV) the colli-

sion time becomes much shorter than the rotational period of the diatom. Therefore, one

can make physically valid assumption that the relative orientations of the diatom and the

projectile are fixed. In such a situation, the nonadiabatic couplings arising from the ra-

dial (vibrational-translational) motions become important. Considering that the couplings

arising from rotations would be small, the nonadiabatic couplings arising from the Σ − Π

interactions have not been considered in the present study, only the coupling arising from

the radial (r, R in the Jacobi coordinates) motions are considered.

4.2 Ab initio adiabatic PESs

Ab initio calculations for the system have been carried out in the Jacobi coordinates (see

Fig. 3.1 of Chapter 3) at the multireference internally contracted configuration interaction
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(MRCI) level of accuracy (Werner and Knowles, 1988; Knowles and Werner, 1988, 1992)

for the GS and the first ES. The MRCI calculations refer to only the single and double

excitations in the configuration interaction calculations and they were carried out to obtain

the three-dimensional PESs as a function of r, R and γ on the set of grid points. The grid

for γ was kept at the interval of 15◦, that is, γ = 0◦ − 180◦(15◦). The typical grid points for

γ = 0◦, 90◦ and γ = 180◦ were set as follows

• for γ = 0◦, R = 1.4− 2.0(0.2), 2.1− 4.2(0.1), 4.4− 6.0(0.2), 7.0− 10.0(1.0), 12.0−
20.0(2.0)

• for γ = 90◦, R = 0.2−2.0(0.2), 2.1−4.2(0.1), 4.4−6.0(0.2), 7.0−10.0(1.0), 12.0−
20.0(2.0)

• for γ = 180◦, R = 2.1− 4.2(0.1), 4.4− 6.0(0.2), 7.0− 10.0(1.0), 12.0− 20.0(2.0)

• for each γ, r = 1.5− 3.2(0.1)

The numbers in the parenthesis indicate the increments in the given intervals. γ = 0◦ and

γ = 180◦ signify the approaches of H+ towards the oxygen and the carbon atom of the CO

molecule, respectively

We present now some of the computational details of ab initio calculations. At the

Hartree-Fock (HF) level, the chosen basis set produced 74 contracted molecular orbitals

(MO) and they were listed out as 33a1, 17b1, 17b2, 7a2 in the C2v point group and 50a′, 24a′′

in the Cs point group. Note that for the collinear and the perpendicular (γ = 0◦, 180◦ and 90◦)

geometries the calculations were performed using the C2v point group, and for all off-

collinear geometries the calculations were done in the Cs point group for the singlet spin

symmetry employing Dunning’s cc-pVTZ basis set (Dunning, 1989) using the MOLPRO

software (Werner, Knowles, Schütz, Lindh, Celani, Korona, Rauhut, Manby, Amos, Bern-

hardsson, Berning, Cooper, Deegan, Dobbyn, Eckert, Hampel, Hetzer, Lloyd, McNicholas,

Meyer, Mura, Nicklaβ, Palmieri, Pitzer, Schumann, Stoll, Stone, Tarroni, and Thorsteinsson,
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2002). The valence MOs in these point groups are 5a1, 2b1, 2b2 and 7a′, 2a′′, respectively.

The 1a1, 2a1 MOs in the C2v and 1a′, 2a′ MOs in the Cs are treated as core orbitals. At the

HF level, the ground state electronic configurations are 5a1, 1b1, 1b2 and 6a′, 1a′′ for the C2v

and the Cs geometries, respectively. Note that all the MOs are doubly occupied accounting

for 14 electrons for the triatomic [HCO]+ system. For the MRCI calculations (Werner and

Knowles, 1988; Knowles and Werner, 1988, 1992) the two doubly occupied core orbitals

were frozen, that is, they were excluded from the excitations. Thus, 4 core electrons were

kept frozen and only the 10 valence electrons were considered in the single and the dou-

ble excitations and we refer this to MRCI and, hereafter, we report only the MRCI values

for the system. The number of active orbitals for the C2v and the Cs point groups were

7a1, 2b1, 2b2 and 7a′, 8a′, 9′, 2a′′, respectively. The number of external orbitals for the two

symmetries were 63 : (25a1 + 15b1 + 15b2 + 7a2) for the C2v and (41a′ + 22a′′) for the

Cs. The threshold value of energy was kept at 0.32 × 10−3 hartrees. The CI wavefunction

consists of 520 CSFs in the reference space, 5292 CSFs in N electron internal space, 8292

CSFs in N-1 electron internal space and 8412 CSFs in N-2 electron internal space. The total

number of contracted configurations is 223986, out of this internal configurations is 1436

singly external configurations is 137096 and doubly external configurations is 85454 and of

uncontracted configurations is 4405136. These details are for the collinear geometry (C2v

point group). For off-collinear geometries (Cs point group), the CI wavefunction consists

of 2744 CSFs in the reference space, 5292 CSFs in N electron internal space, 8820 CSFs in

N-1 electron internal space, 12852 CSFs in N-2 electron internal space. The total number

of contracted configurations is 448260, out of which, the number of internal configurations

is 2744 and of the singly and the doubly external configuration are 279692 and 165824 and

total number of uncontracted configuration are 4405136.
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Before we present and discuss the results it would be worthwhile to compare the com-

puted parameters for the diatoms CO(CO+) with those obtained from the experiments. The

comparisions are reported for the CO and the CO+ molecules in Table 4.1. The various

symbols used in these tables have been explained there. One can see that almost all the

experimental data have been predicted quite well.

Table 4.1: Comparision of computed molecular properties of CO and CO+ with experi-
ments. req is equilibrium bond distance. D0 is the dissociation energy in the GS. I.P is the
ionization potential. ∆E0→1

rot is the energy of first rotational excitation, j = 0 → j = 1
expressed in milli eV in the GS. ∆E0→1

vib is the energy of first vibrational excitation,
v = 0 → v = 1 in the GS. ∆E0→1

elec is the energy of first electronic excitation from v = 0 of
the GS to v′ = 0 of the first ES and D is the dipole moment for the GS expressed in atomic
units.

CO(1Σ+)
req(bohr) D0(eV) I.P(eV) ∆E0→1

rot (meV) ∆E0→1
vib (eV) ∆E0→1

elec (eV) D(a.u)
Present 2.147 10.825 13.68 0.39 0.2635 6.0457 0.07255
Mulliken and Ermlera 2.1357 11.09
Mizushimab 14.0 0.48 0.266 5.898
Hagstrum and Tatec 9.6 14.1
Stogryn and Stogrynd -0.044
Huber and Herzberge 2.1325 11.108 14.0 0.48 0.2691

CO+ (2Σ+)
Present 2.123 8.1665 27.1890 0.485 0.2677 2.574 -1.029
Huber and Herzberge 2.1077 9.9 27.90 0.49 0.2745
Reddy and Viswanathf 8.33

aExpt : Mulliken and Ermler (1977)
bExpt : Mizushima (1975)
cExpt : Hagstrum and Tate (1941)
dExpt : Stogryn and Stogryn (1966)
eExpt : Huber and Herzberg (1979)
fExpt : Reddy and Viswanath (1990)

In order to further test the quality of the generated PESs, we compare the collinear equi-

librium geometry properties of the bound molecular ions, HCO+ and HOC+, in terms of

bond distances at their respective minima in the global GS PES in Table 4.2 along with

the earlier theoretical and experimental values. The highest level of computations involve

CCSD(T) calculations employing cc-pVQZ basis set (Martin, Taylor, and Lee, 1993; Mlade-

nović and Schmatz, 1998). The latter authors generated the semi-global GS PES in order to
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Table 4.2: Equilibrium geometry (collinear) data for the bound HCO+ and HOC+ ions. The
bond distances are in Å.

HCO+ (γ = 180◦) HOC+ (γ = 0◦)
rHC rCO rHO rCO

Martin et al. (1993) 1.0930 1.1080 0.9900 1.1579
Mladenović and Schmatz (1998) 1.0935 1.1086 0.9904 1.1579
Grunenberg et al. (2003) 1.0912 1.1066 0.9891 1.1553
Dhilip Kumar and Kumar (2004) 1.0898 1.1056 0.9889 1.1563
Present 1.1018 1.1082 0.9882 1.1532
Woods (1988) (Expt) 1.0972 1.1047 0.9750 1.1570

characterize the potential wells corresponding to stable HCO+ and HOC+ isomers. More

recent calculations have been done at CCSD(T)/aug-cc-pVQZ and cc-pVTZ levels (Grunen-

berg, Streubel, Frantzius, and Marten, 2003; Dhilip Kumar and Kumar, 2004). It is gratify-

ing to note that the present calculations predict the bond distances of these collinear isomers

in good agreement with the existing theoretical and experimental data (data in the present

work printed in bold in Table 4.2) thus lending credence and confidence to the present ab

initio computations. We further compare our results with those of the theoretical results

obtained by Bruna et al. (1975) in Table 4.3 in terms of the location of minima for collinear

approaches of H+ towards CO. Both results are matching very well.

Table 4.3: Calculated minimum energy geometries for H+−CO. rm is the distance between
the atoms of the diatom, Rm is the distance between the center of mass of the diatom and
the proton, γ is the angle between rm and Rm, ε is the well depth.

rm(Å) Rm(Å) γ(deg) ε(eV)
Bruna et al. (1975) 1.11 1.56 0 6.26

1.17 1.47 180 5.46
Present 1.153 1.482 0 4.87

1.108 1.735 180 6.56

We present the adiabtic PECs for the GS (red) and the first ES (blue) for three molecular

orientations γ = 0◦, 90◦, 180◦ in Fig. 4.1 as a function of R at req = 2.13a◦. The symmetry
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Figure 4.1: The adiabatic GS and first ES PECs for γ = 0◦, 90◦and180◦ as a function of R
for r = req = 2.13a◦.
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designations of the GS and ES PECs are 1 1Σ+ and 2 1Σ+ for collinear orientations (C∞v)

and 1 1A′ and 2 1A′ for off-collinear orientations (Cs), respectively. As one can see from

Fig. 4.1, there is a hump at R = 4.4a◦ for γ = 180◦ which is missing in other two angles

and also for R > 10a◦ both the GS and first ES PECs run parallel to each other with very

small energy gap. In the asymptotic regions, the GS correlates with the H+ + CO(X1Σ+)

while the first ES correlates with the H(2S)+CO+(X2Σ+). Therefore, the IVE and the VCT

channels for the system are :

H+ + CO(X1Σ+, v = 0, j = 0) −→ H+ + CO(X1Σ+, v ′, j ′) IVE channel (4.1)

H+ + CO(X1Σ+, v = 0, j = 0) −→ H(2S) + CO+(X2Σ+, v ′′, j ′′) VCT channel (4.2)

Since the GS and the first ES lie very close to each other energetically for R > 10a◦ it

suggests that the ES is accessible from the GS by Rosen-Zener-Demkov type of coupling

(Demkov, 1964; Nakamura, 1996; Rosen and Zener, 1932). The experimentally reported

(Niedner-Schatteburg and Toennies, 1992) value for the endoergicity of the two asymptotic

channels is ∼ 0.42 eV. We compare this value with those of experiment and earlier theoret-

ical data in Table 4.4. The theoretical values are obtained for R = 20a◦, r = req = 2.13a◦

Table 4.4: Comparision of endoergicity of VCT process relative to IVE process with exper-
imental as well as theoretical data

R (bohr) req (bohr) γ(deg) endoergicity(eV)
Expta 0.42
Present 20 2.13 90◦ 0.1439
Kimura et al. (2000) 20 2.13 90◦ 0.14

aNiedner-Schatteburg and Toennies (1992)

and γ = 90◦ and appears to be somewhat underestimating.

At short distances R < 5a◦ and at req, there exists a coupling between the first ES and
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second ES of Σ symmetry for γ = 180◦ but not for γ = 0◦ and γ = 90◦. The sharp peak

visible in γ = 180◦ is due to an avoided crossing of the first ES with second ES. However,

this coupling appears to be not present or negligible for other angles and becomes important

for proton approaches towards the C-end of the CO molecules (γ = 180◦). We now show

in Fig. 4.2 the adiabatic GS and the ES PECs for γ = 0◦, 90◦, 180◦ as a function of r for

R fixed at 3a◦ and 5a◦. The symmetry designations remains the same as that of previous

Fig. 4.1. The bottom figure is shown for R = 5a◦ so that the hump in the ES PEC can be

highlighted. For γ = 0◦, the hump appears at shorter distance, (R = 3a◦). These humps

again arise because of the avoided crossings of the first ES and the second ES. Interestingly,

no such coupling appears to exist for γ = 90◦. The coupling between the GS and the first

ES appears to be important either for small approaches of H+ and mostly for larger values

of r. This aspect will be further discussed a little later.

Kimura et al. (2000) had also computed the GS and the first ES of Σ or A′ symmetries for

these three molecular orientations using Dunning’s cc-pVTZ (Dunning, 1989) basis set and

MRDCI method (Kimura, Gu, Hirsch, Buenker, and Stancil, 2000). We compare our results

with theirs in Fig. 4.3 and observe that both the results match rather closely except a few

noticeable deviations as can be seen in Fig. 4.3. One among the reasons for this difference

could be attributed to the difference in the selection of configurations or the difference in the

optimization of orbitals in their computation. Another small deviation is that for γ = 90◦,

the endoergicity computed in the present calculations appears to be slighly overestimating

than that obtained by them. Their PECs for the first ES also show the sign of avoided

crossing with the second ES as a function of R at r = req.

The ab initio adiabatic PESs for the GS (11Σ+) and the first ES (21Σ+) for the system are
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Figure 4.2: The adiabatic GS and first ES PECs for γ = 0◦, 90◦ and 180◦ as a function of r
at R fixed at 3a◦ and 5a◦. The energy is in atomic units and r is in the units of bohr
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Figure 4.3: Comparision between our adiabatic GS and first ES PECs for γ =
0◦, 90◦ and 180◦ as a function of R at r = req = 2.13a◦. The available PECs of Kimura
et al. (2000) have also been reproduced.
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shown in for γ = 0◦, 90◦, 180◦ in Fig. 4.4. Here we are able to get a full three-dimensional

view of the PESs as a function of R and r for a fixed value of γ. The GS and the first ES

asymptotically correlate to H+ + CO(X1Σ+) and H(2S) + CO+(X2Σ+) channels, respec-

tively. To further illustrate the characteristics of the PESs we have shown the corresponding

contour plots in Fig. 4.5. The GS PES exhibits a deep interaction well for all γ values while

the first ES PES shows mostly a repulsive behaviour with a ridge suggesting the existence of

avoided crossing with the second ES (31Σ+) PES. The two PESs have been again displayed
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Table 4.5: The local energy minima of the adiabtic GS PES and the well depth at each local
minima relative to the asymptotic products is listed out as a function of Jacobi coordinates
(R, r, γ).

γ r R Adiabatic GS Energy (a.u) Well deptha (eV)
0◦ 2.2 2.8 -113.317665 4.788091185
15◦ 2.2 2.8 -113.317419 4.781397525
30◦ 2.2 2.6 -113.315359 4.725344925
45◦ 2.2 2.5 -113.309201 4.557785745
60◦ 2.2 2.3 -113.296959 4.224680925
75◦ 2.2 2.2 -113.279291 3.743934645
90◦ 2.2 2.2 -113.262659 3.291377925
105◦ 2.2 2.4 -113.263764 3.321444975
120◦ 2.13 2.7 -113.290738 4.055407515
135◦ 2.13 2.9 -113.325219 4.993635525
150◦ 2.1 3.1 -113.355590 5.820030435
165◦ 2.1 3.2 -113.375529 6.362570625
180◦ 2.1 3.3 -113.382035 6.539599429

arelative to asymptotic energy limit,E = −113.14169693 a.u, corresponding to H++CO(X1Σ+, r = req)
products.

in Fig. 4.6 but as a function of R and γ with r fixed at req = 2.13a◦. The corresponding

contour plots are shown in Fig. 4.7. From the adiabatic PESs, we tabulate local minima

and their location as a function of γ in Table 4.5 and the minimum energy is plotted in Fig.

4.8 against γ. The well depth is relative to asymptotic product of the IVE channel. We can

see that HCO+ is the most stable isomer corresponding to γ = 180◦, followed by HOC+,

corresponding to γ = 0◦ for the interconversion process. The transition state isomer of this

process lies at γ = 97.2◦, possessing the electronic energy of -113.261 a.u and the energy

difference between this least stable isomer and the most stable isomer is computed to be

3.29 eV.
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4.3 Asymptotic interaction potential

The long range interaction potential Vas for the H+ + CO system is modelled and obtained

in terms of multipolar expansion terms which is given below

Vas (R, r; γ) ∼ µ(r)

R2
P1(cos γ) +

Q(r)

R3
P2(cos γ)− α0(r)

2R4
− α2(r)

2R4
P2(cos γ) (4.3)

where Vas is the asymptotic potential, µ(r) is the dipole moment of CO,Q(r) is the quadrupole

moment of CO, α0(r) and α2(r) are the polarizability components of CO, P1, P2 are the

Legendre polynomials. All thes above mentioned properties are computed using MOLPRO

(Werner, Knowles, Schütz, Lindh, Celani, Korona, Rauhut, Manby, Amos, Bernhardsson,

Berning, Cooper, Deegan, Dobbyn, Eckert, Hampel, Hetzer, Lloyd, McNicholas, Meyer,

Mura, Nicklaβ, Palmieri, Pitzer, Schumann, Stoll, Stone, Tarroni, and Thorsteinsson, 2002)

with cc-pVTZ basis set and MRCI level of theory as a function of bond distance (r) of CO

and the computed values are fitted with a quartic polynomial given below

f(r) = a0 + a1(r − req) + a2(r − req)2 + a3(r − req)3 + a4(r − req)4 (4.4)

where req = 2.132a◦ is the equilibrium bond distance of CO and a0, a1, a2, a3, a4 are the

unknown coefficients and are tabulated in the Table 4.6. For the VCT process, H(2S)+

CO+ (12Σ+), only the polarizability component of th H atom (α0 = 2.7372922a.u) was

used to generate asymptotic potentials. Thes are then matched with the respective ab initio

electronic energy to get long range PESs which are subjected to the computation of vibra-

tional coupling matrix elements.
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Table 4.6: Values of coefficients (a.u) used in Eq. (4.4) for the prediction of µ, Q, α0 and α2

as a function of r

f a0 a1 a2 a3 a4

µ 0.057 -0.6636 0.0008 0.1337 -0.0054
Q -1.46 1.03 0.40 - -
α0 13.19 5.52 1.74 -0.35 -0.33
α2 3.66 8.28 3.32 -0.24 -0.42

4.4 Ab initio quasi-diabatic PESs

An adiabatic-to-diabatic transformation has been made for the sake of computational con-

venience for the dynamics study. In the diabatic representation the nuclear KE operator T̂

becomes diagonal and potential energy operator V̂ becomes nondiagonal which are nondi-

agonal and diagonal, respectively, in the adiabatic representation. The diabatization pro-

cedures, their exactness and their associated advantages for numerical computations have

been discussed and documented in the literature in detail (Smith, 1969; Mead and Truhlar,

1982; Sidis, 1992; Pacher, Cederbaum, and Köppel, 1993; Adhikari and Billing, 2002; Baer,

2002a,b; Child, 2002; Worth and Robb, 2002; Jasper, Zhu, Nangia, and Truhlar, 2004; Köp-

pel, 2004; Vertesi, Bene, Vibok, Halasz, and Baer, 2005). A general discussion on it has

been recently published (General Discussion, 2004). The nonadiabatic coupling matrix ele-

ments (NACME) in the KE operator (T̂ ) are of the form

〈
φa1

∣∣∣∣
∂l

∂ql

∣∣∣∣φa2
〉

(4.5)

where l = 1 (first order NACME) or 2 (second order NACME). The kets |φa1〉 and |φa2〉

represent the real electronic wavefunctions of the two involved adiabatic electronic states

and q stands for the Jacobi coordinate as mentioned in Fig. 3.1 of Chapter 3. The terms
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with l = 2 are mostly smaller in magnitude and are generally ignored in the dynamical

calculations. In the present calculations they have been ignored.

For the two-state coupling, the transformation from an adiabatic representation with

electronic wavefunctions φa1,2 to a diabatic representation characterized by the electronic

wavefunctions φd1,2 is achieved by the unitary transformation,



φd1

φd2


 =




cosα sinα

− sinα cosα






φa1

φa2


 (4.6)

where α is the mixing angle describing the mixing between the two adiabatic electronic

states and is a function of R, r and γ. Using Eq. (4.6), the matrix elements of Ĥel in the

diabatic representation are given by

V d
11 =

〈
φd1

∣∣∣Ĥel

∣∣∣φd1
〉

= V a
1 cos2 α + V a

2 sin2 α

V d
22 =

〈
φd2

∣∣∣Ĥel

∣∣∣φd2
〉

= V a
1 sin2 α + V a

2 cos2 α

V d
12 =

〈
φd1

∣∣∣Ĥel

∣∣∣φd2
〉

= (V a
1 − V a

2 ) cosα sinα

(4.7)

where φd1,2 are the (real) electronic wavefunction of the two coupled states in the diabatic

representation and their corresponding potential values are given by V d
11 and V d

22. V a
1,2 are

the potential energy values in the adiabatic representation whose corresponding electronic

wavefunctions are given by φa1,2. The coupling between the two states in the diabatic repre-

sentation is given by V d
12 and V d

12 = V d
21.

In the diabatic representation one sets the condition that the first order NACME, that

is, assuming a one dimensional case, q = R,
〈
φd1
∣∣ d
dR

∣∣φd2
〉

= 0 (or it becomes vanishingly

small in case of quasidiabatic states). Therefore, using (4.6) one arrives at the following
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relation:
〈
φa1

∣∣∣∣
d

dR

∣∣∣∣φa2
〉

=
dα

dR
. (4.8)

The mixing angle α can be obtained by integration of first order NACME values

α(R) = αRref +

∫ R

Rref

〈
φa1

∣∣∣∣
d

dR′

∣∣∣∣φa2
〉
dR′ (4.9)

where αRref is chosen to be zero atR = Rref , assuming that the adiabatic and diabatic repre-

sentation become identical at Rref . In the case of multidimensional problem the integration

involves a contour integral over the coordinates.

Other approximate methods (see Simah, Hartke, and Werner (1999) and references

therein) have also been suggested which avoid direct computation of NACME and where

α is obtained fromt the CI coefficients of the electronic wavefunctions. An improvement

has also been suggested in this scheme by determining the (quasi)diabatic wavefunctions

(and the corresponding CI vectors) so that they vary as little as possible as a function of

geometry. This condition is met by using the invariance of the MRCI energies with respect

to unitary transformation among the active orbitals so that the geometry dependence of the

orbitals is minimized. This is accomplished by maximizing the overlap for all the pairs of

active orbitals at Rref with those at neighbourhood geometry R′ using the Jacobi rotation

technique. In this paper, we adopt this procedure. We have used MOLPRO (version 2002.6)

software (Werner, Knowles, Schütz, Lindh, Celani, Korona, Rauhut, Manby, Amos, Bern-

hardsson, Berning, Cooper, Deegan, Dobbyn, Eckert, Hampel, Hetzer, Lloyd, McNicholas,

Meyer, Mura, Nicklaβ, Palmieri, Pitzer, Schumann, Stoll, Stone, Tarroni, and Thorsteins-

son, 2002) to compute α for the 2×2 case, involving the 1 1A′ (GS) and the 2 1A′ (ES) states

with Rref = 16a◦ (for a fixed γ) as a function of R and parametrically dependent on r.
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First we analyse the nonadiabatic effects between the electronic states in terms of the

nonadiabatic coupling matrix elements (NACME). Mathematically, it is denoted as
〈
φa1

∣∣∣ ∂l∂ql
∣∣∣φa2
〉

where the kets |φa1〉 and |φa2〉 represent the adiabatic electronic wavefunctions of the two in-

volved electronic states, q stands for the nuclear coordinates, that is, R and r and where

l = 1 (first order NACME), and l = 2 (second order NACME). The second order NACMEs

are generally very small in magnitude and are mostly ignored in the dynamics calculations.

The first order NACME is computed between GS and ES by the numerical differentiation

using the finite difference method,
〈
φa1

∣∣∣∣ ddR
∣∣∣∣φa2
〉

= 1
2∆R
〈φa1 (R◦ + ∆R) |φa2 (R◦ −∆R)〉,

where ∆R is the small increment, taken as ∆R = 0.0002a◦ in our computation, as function

of R, keeping r and γ fixed. Thus, we obtained the first order NACME as a function r and

R for a fixed value of γ. As an illustration, we show the computed first order NACME as a

function of R in Fig. 4.9 alone for a fixed r = req = 2.13a◦ for those three molecular orien-

tation. We also compare the computed NACME values with those of Kimura et al. (2000).

Our first order NACME for 90◦ is actually little higher than those of Kimura et al. (2000)

whereas for other two angles the difference is not so pronounced between present NACME

values and that of Kimura et al. (2000). Overall, present work values are overestimated than

that of Kimura et al. (2000) for all three orientations. Fig. 4.10, illustrates the variations

of the NACME values as a function of r and R for γ = 0◦, 90◦ and 180◦. They are high

at small r values for 0◦, and in the case of 90◦, they are high at r = 2.5a◦ and roughly at

R ≈ 6a◦ and in 180◦ orientation, they are small everywhere between GS and first ES. For

the entire r range, when R exceeds 10a◦, the surface becomes flat and reaches the values of

zero, indicating that both adiabatic and diabatic surfaces coincides in these regions.

It is important to note that the α can be obtained from the knowledge of NACME values

((4.9)). Alternatively, α can also be obtained using the ab initio procedure (Simah, Hartke,
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et al. (2000). The R are in bohr units and first order NACME

〈
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in a.u.

and Werner, 1999). It is worthwhile to point out that both procedures gave almost identical

results. The computed values of mixing angle using the ab initio procedure are displayed as

a function of r and R for γ = 0◦, 90◦ and 180◦ in Fig. 4.11. The mixing angle surfaces

show a gaussian type of shape reaching perfectly flat when R > 10a◦ for the entire range of

r and the changes in α happen only when R < 10a◦. The region where α assumes the value

of zero means that in those region, both adiabatic and diabatic PESs merge together. Hence,

we can expect the difference in adiabtic and diabatic PECs below R = 10a◦.

Once α is known the corresponding (quasi) diabatic potential matrix can be obtained

using Eq. (4.7). In Fig. 4.12, we show and compare the diabatic PECs with those of

adiabatic PECs for the GS and the ES for req for three molecular orientations as a function of

R. The Fig. 4.12 shows that the diabatic curves are sandwhiched between the two adiabatic
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Figure 4.10: First-order NACME between the GS and the first ES PESs as a function R
and r for γ = 0◦, 90◦ and 180◦ orientations. The R and r are in bohr units and the NACME
values are in a.u.

curves in all three cases and as we move from 0◦ to 180◦ we can see the extent of deviation

from the adiabatic curve and is largest in 180◦. At long range of R, both adiabatic and

diabatic energies become equal in all three cases.

After the detailed analysis of the diabatic PECs, it is time to take a look at the diabatic

PESs for three cases and they are shown in Fig. 4.13. Both the adiabatic and quasidiabatic

PESs look similar except the deviations in energies in certain regions. Also, there is no

crossing between these two diabatic surfaces as it happened in their adiabatic counterpart in
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Figure 4.11: The mixing angle as a function R and r for γ = 0◦, 90◦and180◦ orientations
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the entire range of r andR for a fixed γ. In Eq. (4.7), V d
12 = V d

21 is the coupling potential (off-

diagonal elements in 2 × 2 potential energy matrix in the diabatic representation) betwenn

the GS PES and the ES PES. This coupling potential is a function ofR and r, parametrically

dependent on γ and is measure of influence of GS PES over the ES PES or vice versa. In

Fig. 4.14, we show the coupling potential surfaces for γ = 0◦, 90◦, 180◦ as a function of r

and R for a fixed value of γ. From the Fig. 4.14, it is found that coupling potential range

for 180◦ in the z-axis is from 0.15a.u to -0.25a.u, unlike the other two cases wherein it is

from 0.15a.u to -0.1a.u. This means that influence of GS PES over ES PES or vice versa

is more in the case of 180◦. Even though the magnitude of coupling potential is very small

compared to the actual potential energy of individual electronic states, this can be taken as

an evidence of existence of nonadiabatic effect between the two electronic states.

4.5 Vibrational coupling matrix elements
(
Vvv′/v′′(R; γ)

)

Before we present the results of quantum dynamics it would be desirable to analyse some of

the computed vibrational coupling matrix elements (VCMEs) which have strong bearing on

both the IVE, H+ + CO(v = 0) −→H+ + CO(v′) and the VCT, H+ + CO(v = 0) −→H(2S)

+ CO+(v′′) channels. They are defined as Vvv′/v′′(R; γ) = 〈χv(r)|V in(R, r, γ)|χv′/v′′(r)〉

where χv(r) represents the initial vibrational wavefunction of the diatom CO/CO+, and

χv′/v′′(r) represent the final vibrational wavefunction of the diatom CO/CO+ respectively.

v refers to the initial vibrational state of a diatom and v′ and v′′ refer to the final vibra-

tional state of CO/CO+ respectively. V in(R, r, γ) = V (R, r, γ) − V (R = ∞, r, γ) and is

2 × 2 quasidiabatic potential matrix where the diagonal elements, V d
11 and V d

22, stand for

the interaction potential for the GS and the first ES, respectively and they tend to zero in
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Figure 4.15: Vibrational coupling matrix elements (Vvv′) for the IVE channel, H+ + CO(v =
0) −→ H+ + CO(v′), as a function of R for γ = 0◦, 90◦, 180◦. Elastic channel V00 (left
panel) and Inelastic channel V0v′ (right panel). See the text

the asymptotic limit. V d
12(= V d

21) are the coupling potential which also tend to zero in the

asymptotic limit.
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In Fig. 4.15, we show the computed VCME as a function of R for γ = 0◦, 90◦ and 180◦

for both elastic (left panel) and inelastic (right panel) vibrational excitation channels. From

the Fig. 4.15, we can easily see that the vibrational coupling matrix elements for elastic

channels V00 (left panel) is relatively large, smooth and shows a deep attractive well when

compared to that of inelastic channels V0v′ (right panel). This means that the vibrationally

elastic channel will be the strongest in the IVE process The magnitude of VCMEs follow

the order : V01 > V02 > V03 and this trend is found for all angular approaches and the higher

order inelastic channels such as V04, V05, V06 etc are so small that they are not included in

the Fig. 4.15. The trend in Vvv′ shows that vibrational inelasticity in this system is rather

small in accordance with the experimental observation of (Gianturco, Gierz, and Toennies,

1981; Krutein and Linder, 1979).

In Fig. 4.16, we show the computed VCMEs (Vvv′′) for VCT channel as a function of

R for γ = 0◦, 90◦ and 180◦ for the cases V00 (left) and V0v′′ (right). The VCT V00 channel

shows stronger coupling with the translation motion of H+ than those of VCT V0v′′ channels

and it is almost of the same order of magnitude as that of the IVE V00 channel. Unlike in the

case of IVE channel (see Fig. 4.15), the VCT V00 channel does not show any deep attractive

well but rather a repulsive and an exponential decaying curve in γ = 0◦ and γ = 90◦ and

a exponential decaying curve with a hump in-between for 180◦. The VCT V0v′′ channel

(right panel) show weak coupling with translational mode of H+ as indicated by their small

values which follows the trend V01 > V02 > V03, indicating that the probability of coupling

with (v′′ = 0) level of CO+ by H+ from (v = 0) level of CO is the highest, followed by

(v′′ = 1) and (v′′ = 2) and so on. The coupling strength is reduced from VCT V00 to VCT

V01, V02, V03 by roughly 20 times and even more for higher order VCT channels which is

highly insignificant. This trend is observed in all the angular approaches and higher order
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Figure 4.16: Vibrational coupling matrix elements (Vvv′′) for the VCT channel, H+ +
CO(v = 0) −→ H(2S) + CO+(v′′), as a function of R for γ = 0◦, 90◦, 180◦. VCT channel
V00 (left panel) and VCT channel V0v′′ (right panel)

VCT channels such as V04, V05, V06, etc. are so small that they are not included in the Fig.

4.16.
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Figure 4.17: Vibrational coupling matrix elements (Vv′v′′) in the vibrational manifold of
charge transfer channel, H+ + CO(v′) � H(2S) + CO+(v′′), as a function of R for γ =
0◦, 90◦, 180◦. The reversible arrow denotes that process can occur in both directions

.

In Fig. 4.17, we show the computed VCMEs (Vv′v′′) in the vibrational manifold of charge

transfer channel as a function of R for γ = 0◦, 90◦ and 180◦. We see larger magnitude for

V23, V12, V01 with following order: V23 > V12 > V01 and they survive upto a larger value of

R for all three orientations. Also, we can see that VCMEs values are less for 90◦ by almost
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10 times, when compared with other two collinear orientations, and they are still following

the same order of magnitudes. This is because vertical impact of H+ is not able to produce

sufficient amount of vibrational excitation of CO when compared with sidewise impact.

The order of magnitude means that relative populations of CO in v = 2 level is more than in

v = 1 and v = 0 levels and excitation from v = 2 to v = 3 of CO+ is more intense. In other

words, the incoming H+ couples strongly with CO in v = 2 level. Similarly, excitation from

v = 1 and v = 0 of CO to v = 2 and v = 1 of CO+ takes place. The VCMEs of other

channels V02, V03, V13 are very weak in all three orientations, indicating that the excitations

from heavily populated v = 0 and v = 1 levels of CO to v = 2 and v = 3 of CO+ are

relatively lower and it dies down immediately as a function of R. V01, V02, V03, V12, V13, V23

follows overall pattern found in the VCMEs in the vibrational manifold of the charge transfer

channel and hence, higher order of channels such V04, V14, V24 etc. are not mentioned in the

discussion either because they are too weak or they also follow the same order of VCMEs

mentioned above. We must keep in mind that all VCMEs discussed here are much smaller

than the VCMEs discussed in earlier cases, meaning that pure elastic, inelastic and VCT

channels still couples strongly with the incoming H+.

4.6 Quantum dynamics within the VCC-RIOSA approach

The details of the vibrational close-coupling rotational infinite-order sudden approximation

has been discussed in detail in chapter 3. Here, we briefly present only the necessary

equation. In the diabatic representation, the two coupled nuclear schrödinger equations in

the Jacobi coordinates (defined in (see Fig. 3.1 of Chapter 3) for the A+(A) + BC(BC+)
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system can be written as

[
− ~2

2µABC

∂2

∂R2
+

~2

2µABC

l(l + 1)

R2
+ V d

11(R, r; γ)− ~2

2µBC

∂2

∂r2

+
~2

2µBC

j(j + 1)

r2
+ VBC(r)

]
ψ̃1(R, r; γ) + V d

12(R, r, γ)ψ̃2(R, r; γ) = 0 (4.10)

[
− ~2

2µABC

∂2

∂R2
+

~2

2µABC

l(l + 1)

R2
+ V d

22(R, r; γ)− ~2

2µBC

∂2

∂r2

+
~2

2µBC

j(j + 1)

r2
+ VBC+(r)

]
ψ̃2(R, r; γ) + V d

21(R, r, γ)ψ̃1(R, r; γ) = 0 (4.11)

where µABC is the atom-molecule reduced mass, µBC is the reduced mass of the diatom,

l(l + 1)~2 is the orbital angular momentum of the atom A+(A) relative to the diatomic

molecule BC(BC+), j(j + 1) is the rotational angular momentum of the diatom, VBC

and V +
BC are the diatomic potentials of BC and BC+, respectively. when ψ̃1(R, r; γ) and

ψ̃2(R, r; γ) are expanded in translational and vibrational functions for a fixed r, one fi-

nally arrives at the vibrational close-coupled equation (Eq. (3.22)) (within the VCC-RIOSA

framework) as described in chapter 3. Their numerical solutions with proper boundary con-

ditions yield the required S-matrix and T-matrix elements which finally give the required

dynamical quantities.

In order to have converged cross section in the range of experimental collision energy

Ecm, 9.5 eV - 28.96 eV, 10 vibrational levels of the target diatom (CO) and CO+ were

included in the vibrational close-coupling equations. Since the experiments hint very low

IVE and the VCT, only 10 vibrational levels for each CO and CO+ were considered so

as to achieve numerically converged results for atleast lower vibrational excitations of the

diatoms. The coupled channel equations were solved by the sixth-order Numerov method
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for thirteen equally spaced orientations with γ values between 0◦ and 180◦ for each partial

wave (l). The maximum partial wave, lmax, for the most dominant vibrationally elastic

excitations at Ecm = 9.5 eV and 28.96 eV was 600 and 1200, respectively.

4.6.1 Dynamics at Ecm=9.5 eV

In this section, we compare the computed dynamical quantities with those of the existing

experiments (Gianturco, Gierz, and Toennies, 1981). The state-to-state experimental data

are available only for the IVE process at collision energy Ecm = 9.5 eV. We have computed

the various dynamical attributes at this energy and compared them with those available from

experiments. There does not seem to be any earlier quantum dynamics study at this collision

enery.

4.6.1.1 The orientation opacities

The VCC-RIOSA coupling scheme provides an important insight into the dynamics through

the angle-dependent opacities defined in Eq. (3.34). This will provide useful information

about steric effect in relation to the potential interaction and dynamical coupling for both

the IVE and the VCT channels. We show in Fig. 4.18 the angle-dependent opacity func-

tions for the rotationally-summed vibrational excitations v = 0 → v′ = 0, v = 0 → v′ =

1, v = 0 → v′ = 2 for the IVE channel, H+ + CO(v = 0) −→ H+ + CO(v′) (left column)

and for the rotationally-summed vibrational excitations v = 0 → v′′ = 0, v = 0 → v′′ =

1, v = 0 → v′′ = 2 for the VCT channel, H+ + CO(v = 0) −→ H(2S) + CO+(v′′) (right

column) as a function of contributing angular momenta (l) (in the units of ~) at the colli-

sion energy of Ecm = 9.5 eV. In the IVE channel, order of magnitude of opacity functions
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Figure 4.18: Opacity function (Eq. (3.34)) as a function of partial wave, l (in the units of
~) for three excitations, v = 0 → v′ = 0, v = 0 → v′ = 1, v = 0 → v′ = 2 for the
IVE channel, H+ + CO(v = 0) −→ H+ + CO(v′) (left panel) and for three excitations,
v = 0 → v′′ = 0, v = 0 → v′′ = 1, v = 0 → v′′ = 2 for the VCT channel, H+ +
CO(v = 0) −→ H(2S) + CO+(v′′) (right panel) at the collision energy of Ecm = 9.5 eV
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follows v = 0 → v′ = 0 > v = 0 → v′ = 1 > v = 0 → v′ = 2 for all the three orien-

tations and qualitatively follow the experimentally observed trend of vibrational inelasticity

from the transition probability measurements P0→v′ (Gianturco, Gierz, and Toennies, 1981).

The magnitude of opacity function for 90◦ is less in comparision with that for 0◦ and 180◦

and survives only upto l = 300. The vibrational elasticity/inelasticity is highly favoured

when H+ approaches CO towards either C-end or O-end of CO and less favoured when H+

approaches vertically towards the cm of CO molecule. In the VCT channel, the opacities

are an order of magnitude less than those of the IVE channel and they follow the order :

v = 0→ v′′ = 0 > v = 0→ v′′ = 1 > v = 0→ v′′ = 2 for all three molecular orientations

and the magnitude in the case of 90◦ is higher when compared with 0◦ and 180◦. The charge

transfer processes are more favourable when H+ approaches perpendicularly towards the

center of mass of CO. Overall, the vibrational elasticity/inelasticity is highly favoured and

charge transfer is less favoured for all approaches.

4.6.1.2 Rotationally-summed total differential cross section

In the scattering experiments, all the measurements were carried out in the laboratory frame

of reference, while in the theory, the computation are performed in the center of mass fram

of reference. Hence, to compare experimental data with the theory we have to convert

experimental data available in laboratory frame to center of mass frame of reference using

the relation given in Eq. (4.12)

sin θc.m =
sin θlab
m2

(
m1 cos θlab +

√
m2

2 −m2
1 sin2 θlab

)
(4.12)
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where m1 is the mass of proton and m2 is the mass of diatom. In the present case, m1 = 1.0

a.m.u, m2 = 28 a.m.u. In quantum calculations, scattering properties such as total differen-

tial cross section, state-selective differential cross section, transition probability etc. exhibit

a lot of oscillatory structures as a function of θcm, which mostly arises from the constructive

and destructive interferences of the partial waves l. Such undulatory structures could not

be resolved in the experiments (Niedner, Noll, Toennies, and Schiler, 1987). Therefore, we

smoothed our data for the sake of clarity by folding them with a Gaussian distribution (Eq.

4.13) in the same way as it was achieved in the earlier theoretical calculations of Baer et al.

(Baer, Niedner-Schatterburg, and Toennies, 1989)

dσ

dω

(
θ
)

=

∫ θ+∆θ

θ−∆θ

exp

[
−
(
θ − θ

)2

2σ2
θ

]
dσc

dω
(θ) dθ (4.13)

where ∆θ = 1.0◦, σθ = 0.33◦, dσc

dω
is the calculated values of the TDCSs or DCSs. The

assumed uncertainity in the related experiments was 0.5◦, and it is the value at full width at

half maximum (FWHM) in the energy-loss spectra (Noll and Toennies, 1986).

We show in Fig. 4.19 smoothed TDCS, computed by summing up rotationally-summed

vibrational state-selective differential cross sections for the IVE, H+ + CO(v = 0) −→H+ +

CO(Σv′) and the VCT, H+ + CO(v = 0) −→ H(2S) + CO+(Σv′′) channels at Ecm = 9.5 eV

as a function of scattering angle θcm(deg). The TDCS is smoothed using Eq. 4.13 for both

the channels with the parameters given above. The numbers on the ordinate in Eq. 4.13 is to

be intperpreted as powers of 10. The TDCS difference between the two channels is roughly

estimated to be 0.27 Å2/sr till θcm reaches 20◦. The rainbow maximum occurs between the

range 19◦ − 20◦ in both the IVE and the VCT channels. Unfortunately, we are not able to

verify this through the comparision with experimental data as they are not available at this
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collision energy.
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4.6.1.3 Rotationally-summed state-selective differential cross section (DCS)

Mathematically, rotationally summed DCS is defined in Eq. (3.29). The computed and

smoothed (using Eq. 4.13) state-selected rotationally-summed DCS have been plotted in

Fig. 4.20 for the IVE (right) and VCT (left) channel for the first six states as a function of

scattering angle θcm. The numbers in the ordinate of Fig. 4.20 denote powers of 10. The

elastic cross section(red), v = 0 → v′ = 0 and first charge transfer cross section(red), v =

0 → v′′ = 0 have been well seperated from the rest of the cross sections in both the cases.

Unfortunately again, there are no experimental data available for these to be compared with

the present theoretical data. Still we can make out some judicious conclusion from the plots

just by a close look at it. First of all, they are close spaced to each other as the vibrational

state increases from 0 to 6 and the primary rainbow maximum below θcm = 20◦ emerges

to appear more and more strongly as we move from v = 0 → v = 6. At large scattering

angle, oscillation begin to appear because of the construcive and destructive interference of

partial waves. In each case, the order of DCS from top to bottom exactly follows the pattern

of increasing vibrational states and in VCT channel, DCS for v′′ = 4 and v′′ = 5 appear to

cross each other at small θcm values. Note the enhancement of primary rainbow maxima in

the VCT channel for v = 0→ v′′ = 2, v = 0→ v′′ = 3, v = 0→ v′′ = 4, v = 0→ v′′ = 5.

This enhancement is also seen but to a lesser extent in IVE channel wherein the DCS for

v = 0 → v′ = 1 transition remain almost flat, thus making it insensitive to the variation of

scattering angle θcm in the range 10◦ − 25◦. The DCS in charge transfer channel decreases

rapidly at larger scattering angle θcm than the inelastic channel where DCSs decrease slowly

with the increase of scattering angle θcm.
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Figure 4.20: The computed state-selective rotationally summed DCS for IVE and VCT
channels at Ecm = 9.5 eV as a function of scattering angle θcm(deg) for the first six states
and the numbers in the ordinate are the powers of 10. There is no experimental data available
to compare with at this collision energy

4.6.1.4 Transition Probability

Following the earlier theoretical calculations (Baer, Niedner-Schatterburg, and Toennies,

1989), the relative transition probabilities for the IVE processes were obtained from the
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Figure 4.21: State-selective transition probability for IVE (left) for the first three states
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as a function of scattering angle θcm at the collision energy Ecm = 9.5 eV. The transition
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rotationally-summed DCSs as

P0→v′ (θcm) =

dσ
dω

(0→ v′)
∣∣∣
θcm∑

v′
dσ
dω

(0→ v′)
∣∣∣
θcm

(4.14)
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and that for the VCT processes obtained as

P0→v′′ (θcm) =

dσ
dω

(0→ v′′)
∣∣∣
θcm∑

v′′
dσ
dω

(0→ v′′)
∣∣∣
θcm

(4.15)

Note that in the above two formulae, the summmation term in the denominator involves

taking the sum of state-selected rotationally-summed DCSs upto the highest vibrational level

and the numerator refers to the DCS for a patricular vibrational state. The relative transition

probability, P0→v′ (θcm), for the IVE channel is shown in Fig. 4.21 (left) as a function of

θcm for first three vibrational states v = 0 → v′ = 0, v = 0 → v′ = 1, v = 0 → v′ = 2 for

which the experimental data are available upto θcm = 21◦ (Gianturco, Gierz, and Toennies,

1981). The transition probability for elastic process v = 0→ v′ = 0 decays very quickly in

this range and the theoretical values gives good agreement with the experiments. The two

inelastic processes v = 0 → v′ = 1 and v = 0 → v′ = 2 begin from zero at θcm = 0◦

and slowly rise up, reaching roughly 0.1 and 0.5 respectively. The magnitude for inelastic

process is generally very small as compared to that of elastic processes as evident from the

Fig. 4.21 (left). The Fig. 4.21 (right) shows the transition probability, P0→v′′ , for the VCT

channel as a function of θcm for first three vibrational states v = 0 → v′′ = 0, v = 0 →

v′′ = 1, v = 0 → v′′ = 2 for which the experimental dat are not available at this collision

energy. The first VCT channel,v = 0 → v′′ = 0, is more probable when compared to the

other two VCT channels, v = 0→ v′′ = 1 and v = 0→ v′′ = 2.

4.6.1.5 Average vibrational energy transfer

We analyze and compare the computed avergae vibrational energy transfer values ∆Evib

(eV) as a function of θcm with those of experiments (Gianturco, Gierz, and Toennies, 1981)
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Figure 4.22: The computed average vibrational energy transfer ∆Evib (eV) for the IVE (left)
and the VCT (right) as a function of scattering angle θcm at the collision energy Ecm = 9.5
eV. The theoretical values gives excellent agreement with the experiments (Gianturco, Gierz,
and Toennies, 1981) for the IVE channel and no experimental data are available at this
collision energy for VCT channel

in Fig. 4.22. The average vibrational energy transfer ∆Evib (θcm) for both IVE and VCT

channels is computed using Eq. (4.16)

∆Evib (θcm) =
∞∑

v′=0

P0→v′(θcm)∆E(0→ v′)

∆Evib (θcm) =
∞∑

v′′=0

P0→v′′(θcm)∆E(0→ v′′)

(4.16)

where ∆E(0→ v′) and ∆E(0→ v′′) are the energy differences of the vibrational levels of

CO and CO+ respectively. P0→v′(θcm) and P0→v′′(θcm) are the rotationally-summed vibra-

tional state-selected transition probabilites for the IVE and the VCT processes. In the IVE

channel, the computed average vibrational energy transfer give excellent agreement with

experimental data in Fig. 4.22 (left). In the case of the VCT channel, we show only our

computed data points for ∆E(0→ v′′) in Fig. 4.22 (right) as there are no experimental data

available for this channel at the collision energy of 9.5 eV.
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4.6.1.6 Integral cross section
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Figure 4.23: The computed integral cross section σ(Å2/sr) for the IVE and the VCT as a
function of vibrational energy levels at the collision energy Ecm = 9.5 eV. The two curves
run parallel to each other with a crossing at higher vibrational levels.The integral cross
section for the IVE process is of higher magnitude than VCT process. Note that the numbers
on the Y-axis indicate powers of 10.

Table 4.7: VCC-RIOSA state-to-state integral cross section (absolute values) for the IVE
channel, H+ + CO(v = 0) −→ H+ + CO(v′) and the VCT channel, H+ + CO(v = 0) −→
H(2S) + CO+(v′′) at the Ecm = 9.5 eV.

v′(v′′) Integral cross section (Å2)
IVE VCT

0 69.727 14.715
1 2.581 1.021
2 0.869 0.372
3 0.397 0.217
4 0.201 0.145
5 0.144 0.117
6 0.106 0.111

Σv′(v′′) 74.025 16.698

The state-to-state integral cross sections (ICS) for the IVE and the VCT channels at

Ecm = 9.5 eV have been shown in Fig. 4.23. Note that the numbers on the ordinate inidcate
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powers of 10. Both the curve goes almost parallel to each other and at higher vibrational

state, there is a crossing between the two. Note that the ics reduces drastically after the

v′ = 0 or v′′ = 0 state as indicated in the Table 4.7 in which we list out vibrational statewise

magnitude of integral cross section upto v = 6 for both the channels. The abnormally

high value for v = 0 tell us that the the elastic collisions in the IVE channel and the first

charge transfer collisions in the VCT channel dominate. For higher vibrational states the

magnitudes of excitations for both the IVE (0 → v′) and the VCT (0 → v′′) channels

become very low and the 0 → v′ excitations become slightly more probable than 0 → v′′

excitations.

4.6.2 Dynamics at Ecm=28.96 eV

In this section, we compare the computed dynamical quantities with those of the existing

experiments (Niedner-Schatteburg and Toennies, 1992; Krutein and Linder, 1979). The

state-to-state experimental data are available only for the IVE process at collision energy

Ecm = 28.96 eV. We have computed the various dynamical attributes at this energy and

compared them with those available from experiments. There does not seem to be any

earlier quantum dynamics study at this collision enery.

4.6.2.1 The orientation opacities

The angle-dependent opacity function defined in Eq. (3.34) for both the IVE and the VCT

channels have been shown in Fig. 4.24 at Ecm = 28.96 eV for the first three excitations,

namely, v = 0 → v′ = 0, v = 0 → v′ = 1, v = 0 → v′ = 2 (IVE) and v = 0 → v′′ =

0, v = 0 → v′′ = 1, v = 0 → v′′ = 2 (VCT). The maximum value of l required for the
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Figure 4.24: Opacity function (Eq. (3.34)) as a function of partial wave, l (in the units of
~) for three excitations, v = 0 → v′ = 0, v = 0 → v′ = 1, v = 0 → v′ = 2 for the
IVE channel, H+ + CO(v = 0) −→ H+ + CO(v′) (left column) and for three excitations,
v = 0 → v′′ = 0, v = 0 → v′′ = 1, v = 0 → v′′ = 2 for the VCT channel, H+ +
CO(v = 0) −→ H(2S) + CO+(v′′) (right column) at the collision energy of Ecm = 28.96 eV
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numerical convergence is lmax = 800 for γ = 0◦, 180◦ and lmax = 500 for γ = 90◦. The

inelastic excitations, v = 0→ v′ = 1 and v = 0→ v′ = 2 are favoured in γ = 0◦ than γ =

90◦, 180◦ orientations. The charge transfer excitations, v = 0 → v′′ = 1, v = 0 → v′′ = 2

show almost equal probability in all three orientations but the opacities survive only for less

number of partial waves.

4.6.2.2 Rotationally-summed total differential cross section

Based on the similar arguments given in subsection 4.6.1.2 on page 80, we retrieved ex-

perimental data (Niedner-Schatteburg and Toennies, 1992) available for forward scattering

(below θlab < 20◦) in the laboratory frame to center-of-mass frame using Eq. 4.12. We

smoothed our total differential cross section data using (4.13) for both the IVE and the VCT

processes, The total differential cross sections were computed by summing up the state-

selected rotationally-summed differential cross sections for the transition from the lowest

vibrational state (v = 0) to highest vibrational state (v′) of CO or (v′′) of CO+ as a function

of θcm. In order to avoid the undulatory oscillatory structures arising from the construc-

tive and destructive interferences of large number of partial waves (l), We smoothed our

total differential cross section data using (4.13) for both the IVE and the VCT processes In

molecular beam experimental results, such oscillatory (noisy) behaviour as function of θlab

was not resolved due to low resolving power of the apparatus and hence the experimental

data appear as a smooth function of θlab. Since in experiments the state-to-state DCSs cannot

be obtained on an absolute scale, they are reported on an arbitrary scale. In the calculations

the DCSs values are obtained on an absolute scale. Therfore, the experimental data can be

normalized with respect to the theoretical data. The experimental data for the IVE process

were normalised with respect to the datum point at θcm = 9.3881◦. In Fig. 4.25, we plot
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Figure 4.25: The computed TDCS for IVE, H+ + CO(v = 0) −→ H+ + CO(Σv′), and VCT,
H+ + CO(v = 0) −→ H(2S) + CO+(Σv′′), channels at Ecm = 28.96 eV as a function of
scattering angle θcm(deg). The numbers in the ordinate are the powers of 10. The experi-
mental data (Niedner-Schatteburg and Toennies, 1992) along with error bars for few points
for charge transfer process is shown for IVE(◦) and VCT(•) at this collision energy. The
experimental data were normalized at θcm = 9.3881◦.

both the theoretical and the experimental data together at Ecm = 28.96 eV for both the IVE

and the VCT channels. The numbers on the ordinate indicate the powers of 10. On an aver-
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age, the theoretical data predict the observed behaviour of the TDCS for both the channels

qualitatively well. However, there exist some noticeable discrepancies. One among them is

that the rainbow maximum for the IVE channel. In theoretical data it lies slightly away from

the experimental rainbow maximum located at θcm = 9.3881◦ and appear less pronounced

and weak than that of the experiment. For VCT channel, our theoretical values are overes-

timating the experimental data for entire scattering angle range. There is a weak rainbow

maximum in the experimental data for the VCT channel roughly around θcm ≈ 10◦ which

appear to be almost absent in the theoretical TDCSs curve. This clearly indicates that the

modelling the dynamics as a two-state process is not sufficient and one must include the

higher ESs in the calculations for better theoretical predictions of charge transfer process.

4.6.2.3 Rotationally-summed state-selected differential cross section (DCS)

The computed and smoothed (using Eq. 4.13) state-selected rotationally-summed DCSs

have been plotted as a function of θcm(4◦ − 16◦) in Fig. 4.26 (left) for the IVE channel

at Ecm = 28.96 eV for the first six vibrational states, v = 0 → v′ = 0, v = 0 → v′ =

1, v = 0 → v′ = 2, v = 0 → v′ = 3, v = 0 → v′ = 4, v = 0 → v′ = 5. The

experimental data (Krutein and Linder, 1979) are available for forward scattering only for

θlab < 13◦ for first three vibrational states, v = 0 → v′ = 0(×), v = 0 → v′ = 1(•), v =

0 → v′ = 2(N) and they have been reproduced along with the theoretical data in Fig.

4.26 (left). The errorbars (uncertainity in experimental data) are also shown in three sets of

data. The experimental data in θlab are converted into θcm using Eq. 4.12 and normalized

with respect to the theoretical datum at θcm = 9.3881◦. The rainbow maximum seen in

the elastic excitation (v = 0 → v′ = 0) in the experimental data is pronounced. The

theoretical curve (red) appears to predict the experimental data quite well. However, the
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Figure 4.26: The computed state-selective rotationally summed DCS for IVE and VCT
channels at Ecm = 28.96 eV as a function of scattering angle θcm(deg) for the first six states
and the numbers in the ordinate are the powers of 10. The experimental data (Krutein
and Linder, 1979) are available along with error bars for the IVE channel for first three
states,v = 0 → v′ = 0(×), v = 0 → v′ = 1(•), v = 0 → v′ = 2(N), and the experimental
data are normalised at θcm = 9.3881◦. There is no experimetal data available for VCT
channel Ecm = 28.96 eV.

rainbow maximum appears to be weakly predicted. As far as other two excitations are

concerned, v = 0 → v′ = 1, v = 0 → v′ = 2, the present calculations predicts fairly well

the experimental data points in the entire region of θcm. Interestingly, first three computed

curves fall within the experimental bars shown on each of three sets of experimental data.

The other excitations v = 0 → v′ = 3, v = 0 → v′ = 4, v = 0 → v′ = 5 for which no
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experimental data points are available are also shown in Fig. 4.26(left). Their magnitudes

are very low. The right panel of Fig. 4.26 shows the state-selected DCSs for for the first

six excitations for the VCT processes : v = 0 → v′′ = 0, v = 0 → v′′ = 1, v = 0 →

v′′ = 2, v = 0 → v′′ = 3, v = 0 → v′′ = 4, v = 0 → v′′ = 5. Unfortunately, there

are no experimental data available for the VCT to compare with. There is a well marked

developement of primary rainbow maxima in the lower order excitations between the range

θcm = 5◦ − 10◦, namely, v = 0→ v′′ = 2, v = 0→ v′′ = 3, v = 0→ v′′ = 4.

4.6.2.4 Transition probability

The transition probabilities for IVE and VCT processes are computed using the rotationally

summed state-selective DCSs using Eq. (4.14) and Eq. (4.15) on page 85 and page 86.

In Fig. 4.27, we show the computed and experimental transition probability for IVE, P0v′

and VCT, P0v′′ , channel at Ecm = 28.96 eV as function θcm(deg). The computed data are

smoothed using Eq. 4.13 on page 81 and experimental data (Krutein and Linder, 1979) are

expressed in center of mass frame of reference using the Eq. 4.12 on page 80 from the lab-

oratory frame of reference. Surprisingly, our computed magnitudes of transition probability

for IVE channel (Fig. 4.27(left)), H+ + CO(v = 0) −→ H+ + CO(Σv′), agree very well

with the experimental data for v = 0→ v′ = 0(×), v = 0→ v′ = 1(•), v = 0→ v′ = 2(N)

excitations. This can be judged from the fact that the computed values are lying within the

limits of errorbars in all the three excitations. In the inelastic excitations the transition prob-

ability increases monotonically as a function of scattering angle θcm whereas, for elastic

excitations it decreases steeply with θcm. A noted discrepancy arises beyond scattering an-

gle θcm > 11◦ where there is a slight mismatch between theory and experiment in all three

excitations. In the case of VCT channel (Fig. 4.27(right)), H+ + CO(v = 0) −→ H(2S)
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Figure 4.27: The computed transition probability P0v′/v′′ for IVE and VCT channels at
Ecm = 28.96 eV as a function of scattering angle θcm(deg) for the first three states. The
experimental data (Krutein and Linder, 1979) are available along with error bars for the IVE
channel for first three excitations, v = 0 → v′ = 0(×), v = 0 → v′ = 1(•), v = 0 → v′ =
2(N). There is no experimetal data available for VCT channel and hence we show the plots
in full range.

+ CO+(Σv′′), there is no experimental information available, hence we plot only our com-

puted data alone with full range of scattering angle for first three excitations, v = 0→ v′′ =

0, v = 0 → v′′ = 1, v = 0 → v′′ = 2. The first charge transfer transition decreases mono-

tonically rapidly as function of scattering angle whereas, second and third charge transfer

excitations increase slowly and reaches a moderate values in transition probability P0v′′at
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very high scattering angle.

4.6.2.5 Average vibrational energy transfer
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Figure 4.28: The computed average vibrational energy transfer ∆Evib (eV) for IVE (left)
and VCT (right) as a function of scattering angle θcm at the collision energy Ecm = 28.96
eV. The theoretical values gives excellent agreement with the experimental data with error
bars (Krutein and Linder, 1979) for the IVE channel and no experimental data are available
at this collision energy for VCT channel

The average vibrational energy transfer ∆Evib (θcm) for both IVE and VCT channels is

computed using Eq. (4.16) on page 87. The average vibrational energy transfer ∆Evib (eV)

for both IVE and VCT channels have been shown in Fig. 4.28. The theoretical values and

experimental values (Krutein and Linder, 1979) agree well within the experimental error as

indicated by error bar in the case of elastic/inelastic channel Fig. 4.28(left). The average

vibrational energy transfer increase almost linearly with scattering angle θcm in the plotted

region and is of the order of milli electron volts. In the case of VCT channel, there is no

experimental data available, hence we show only our computed results in Fig. 4.28(right),

from which we can see that initally the mean vibrational energy transfer increases slowly
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and at θcm ≈ 15◦, there is an abrupt increase of mean vibrational energy till θcm ≈ 20◦ and

then it levels off after that. This kind of feature exists for the inelastic channel but is of less

order of magnitude. This feature suggests that in certain range of scattering angle, energy

transfer in the colllision dynamics is quite strong, especially in the processes involving the

electron transfer.

4.6.2.6 Intergral cross section

The rotationally summed state-to-state ICS is computed using Eq. (3.32) on page 41 and in

Fig. 4.29, we show the computed ICS as a function of vibrational states for IVE and VCT

channel at Ecm = 28.96 eV. The ICS values on the ordinate denotes the powers of 10. We

can see IVE channel lying above the VCT channel and there is a flipping between IVE and

VCT at slightly higher vibrational states. At v = 0, ICS is highest for both the channels,

drastically reducing from v = 1 onwards and at higher v′/v′′ states, ICS becomes too small

(almost zero). This indicates that elastic and first charge tranfer process have got maximum

ICS, making them the dominant processes in any collisional events. The absoulte values of

Table 4.8: VCC-RIOSA state-to-state integral cross section (absolute values) for the IVE
channel,H+ + CO(v = 0) −→ H+ + CO(v′) and the VCT channel, H+ + CO(v = 0) −→
H(2S) + CO+(v′′) at the Ecm = 28.96 eV.

v′(v′′) Integral cross section (Å2)
IVE VCT

0 48.609 14.871
1 1.967 1.068
2 0.528 0.384
3 0.224 0.240
4 0.147 0.162
5 0.088 0.119
6 0.096 0.123
7 0.076 0.096

Σv′(v′′) 51.735 17.062
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Figure 4.29: The computed integral cross section σ(Å2/sr) for IVE and VCT as a function
of vibrational energy levels at the collision energy Ecm = 28.96 eV. The two curves run
parallel to each other with a crossing at slightly higher vibrational levels and intially the
integral cross section for IVE process is of higher magnitude than VCT process. Note that
the numbers on the Y-axis indicate powers of 10.

ICS, obtained directly from the computation is tabulated in Table 4.8 for both the channels.

The last entry in the Table 4.8 denotes the sum of state-to-state ICS to give a single ICS for

the entire process at the collison energyEcm = 28.96 eV. They are estimated to be 51.735Å2

and 17.062Å2 for IVE and VCT channel respectively.

4.6.3 Dynamics : A comparision between 9.5eV and 28.96eV

We are going to discuss about how the scattering properties are influenced by the change of

collision energy. Below we will compare one by one different scattering properties.
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4.6.3.1 Rotationally-summed state-selective differential cross section (DCS)

Now that we have total differential cross sections and state-to-state differential cross section

for two different collision energies we compare them in Fig. 4.30. In Fig. 4.30(a), we
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(a) The computed TDCS for IVE, H+ + CO(v =
0) −→ H+ + CO(Σv′), and VCT, H+ + CO(v =
0) −→ H(2S) + CO+(Σv′′), channels at Ecm =
28.96 eV and Ecm = 9.5 eV as a function of scat-
tering angle θcm(deg).
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(b) The computed rotationally summed state-to-state
DCS for IVE, H+ + CO(v = 0) −→ H+ + CO(Σv′),
and VCT, H+ + CO(v = 0) −→H(2S) + CO+(Σv′′),
channels at Ecm = 28.96 eV and Ecm = 9.5 eV as a
function of scattering angle θcm(deg).

Figure 4.30: A comparision between the TDCS and DCS at two different collision energies.

compare TDCS for Ecm = 28.96 eV and Ecm = 9.5 eV for IVE, H+ + CO(v = 0) −→ H+ +

CO(Σv′) and for VCT, H+ + CO(v = 0) −→H(2S) + CO+(Σv′′), as a function of scattering

angle θcm(deg). The Fig. 4.30(a) shows that the TDCS corresponding to Ecm = 28.96 eV is
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characterized by the the presence of primary and secondary rainbow maxima even though

their exact location differs from that predicted by the experiments (Niedner-Schatteburg and

Toennies, 1992), but in the case of Ecm = 9.5 eV, this feature of primary and secondary

rainbow maxima are absent in their corresponding TDCSs curves. Moreover, it shows that

magnitudewise TDCS curves of Ecm = 28.96 eV lie above that of Ecm = 9.5 eV. The cross

sectional difference between the IVE and VCT channel for Ecm = 9.5 eV is fairly constant

as a function of scattering angle θcm(deg) whereas, for Ecm = 28.96 eV, it changes with

θcm(deg) in the shown range of scattering angle from θcm = 0◦ to θcm = 20◦.

In Fig. 4.30(b), we compare rotationally summed stat-to-state differential cross sections

for for Ecm = 28.96 eV and Ecm = 9.5 eV for IVE, H+ + CO(v = 0) −→ H+ + CO(Σv′)

and for VCT, H+ + CO(v = 0) −→ H(2S) + CO+(Σv′′), channels as a function of scattering

angle θcm(deg) for the first three vibrational states in each case. The Fig. 4.30(b) shows that

individual DCS for first three transition for IVE channel, v = 0 → v′ = 0, v = 0 → v′ =

1, v = 0→ v′ = 2, respectively forEcm = 28.96 eV lie above that ofEcm = 9.5 eV. Similarly,

the individual DCS for first three transition for VCT channel, v = 0 → v′′ = 0, v = 0 →

v′′ = 1, v = 0 → v′′ = 2, respectively for Ecm = 28.96 eV lie above that of Ecm = 9.5 eV.

The first charge transfer process v = 0 → v′′ = 0 in 9.5 eV and 28.96 eV lie very close to

each other than any other processes below θcm = 10◦ though if looked closely shows that

28.96 eV lies above 9.5 eV. A very weak rainbow maxima occurs in the state-to-state DCS

for both IVE and VCT channels at Ecm = 28.96 eV (except in v = 0 → v′′ = 2 where it is

strong) and is absent in both the channels at Ecm = 9.5 eV (except in v = 0→ v′′ = 2 where

rainbow occurs at large θcm).The DCS for Ecm = 28.96 eV decays very quickly compared

to 9.5 eV where it is almost flat at larger scattering angles.
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4.6.3.2 Transition probability
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Figure 4.31: The computed transition probability P0→v′/v′′ for IVE channel, H+ + CO(v =
0) −→ H+ + CO(v′) for the first three excitations, v = 0 → v′ = 0, v = 0 → v′ = 1, v =
0 → v′ = 2, and VCT channel, H+ + CO(v = 0) −→ H(2S) + CO+(v′′), for the first three
excitations, v = 0 → v′′ = 0, v = 0 → v′′ = 1, v = 0 → v′′ = 2 at Ecm = 28.96 eV and
Ecm = 9.5 eV as a function of scattering angle θcm(deg).

In Fig. 4.31, we compare the transition probability P0→v′/v′′ for IVE channel, H+ +

CO(v = 0) −→ H+ + CO(v′) for the first three excitations, v = 0 → v′ = 0, v = 0 →

v′ = 1, v = 0 → v′ = 2, and VCT channel, H+ + CO(v = 0) −→ H(2S) + CO+(v′′),

for the first three excitations, v = 0 → v′′ = 0, v = 0 → v′′ = 1, v = 0 → v′′ =
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2 at Ecm = 28.96 eV and Ecm = 9.5 eV as a function of scattering angle θcm(deg). The

transition probability P0→v′ for the elastic channel and the same for the first charge transfer

channel P0→v′′ keeps on decreasing at Ecm = 28.96 eV more than at Ecm = 9.5 eV as a

function of scattering angle θcm. This suggests that at low energy collisions, elastic and

first charge transfer process contribute more to the over all collisional events that at high

energy collisions. The transition probability P0→v′ of inelastic collisions and the same for

the second and third CT channel P0→v′′ keeps on increasing at Ecm = 28.96 eV more than

at Ecm = 9.5 eV as a function of scattering angle θcm. This suggests that at high collision

energy, vibrational excitations and electron capture of higher order are more probable to

occur than at low collision energy. Hence to obtain either higher order inelastic process or

electron capture along with vibrational excitation in H+ + CO system one needs to increase

the incident kinetic energy (KE) of H+ and allow it to hit the target CO molecule at high θcm

and whereas to obtain either elastic excitation alone or electron capture with no vibrational

excitation, one needs to decrease the incident KE of H+ and allow it to collide the target

CO molecule at small θcm. For any given incident KE of H+, the probability of higher order

exciation or electron capture will keep on decreasing as function of θcm.

4.6.3.3 Average vibrational energy transfer

In Fig. 4.32, we show average vibrational energy transfer ∆Evib (eV) for IVE channel, H+ +

CO(v = 0) −→H+ + CO(v′) and VCT channel, H+ + CO(v = 0) −→H(2S) + CO+(v′′), at

Ecm = 28.96 eV and Ecm = 9.5 eV as a function of scattering angle θcm(deg). As previously

mentioned the mean vibrational energy is computed by summing up product of all the state-

to-state transition probabilites P0→v′/v′′ and change in energy of adjacent vibrational energy

levels of CO and CO+. Hence the quantity as a function of scattering angle is suggestive of
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Figure 4.32: The computed average vibrational energy transfer ∆Evib (eV) for IVE channel,
H+ + CO(v = 0) −→ H+ + CO(v′) and VCT channel, H+ + CO(v = 0) −→ H(2S) +
CO+(v′′), at Ecm = 28.96 eV and Ecm = 9.5 eV as a function of scattering angle θcm(deg).
Note the jump in Ecm = 28.96 eV.

amount of energy transfer during the collision processes. The Fig. 4.32 explicitely shows

that such energy transfer can be influenced by the incident collision energy of H+. At Ecm

= 28.96 eV, there is quantum leap in the amount of energy transfer in both IVE and VCT

processes in certain θcm range, as shown by vertical rise of curve between θcm = 15◦ − 22◦,

even though the quantum leap in the case of VCT process is far higher than IVE process.

This quantum leap actually comes from the incident KE of H+ which is also higher. But

in the case of Ecm = 9.5 eV collision, this kind of quantum leap in the energy transfer is

about to develop but not developed enough to be recognized easily in both the channels even

though both curve starts rising up as function of θcm. In 9.5 eV also, energy transfer involved

is higher in the case of VCT rather than IVE channel. In summary, as a rule of thumb, we

propose that as the incident collision energy increases the mean vibrational energy transfer

also increases with VCT processes consuming higher proportion of incident KE than IVE
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processes as suggested by Fig. 4.32.

4.6.3.4 Integral cross section

The rotationally summed state-to-state integral cross section (Å2) for both IVE and VCT

channels at 9.5 eV and 28.96 eV have been shown in Fig. 4.33 as a function of vibrational

quantum number of both CO and CO+. We can see quickly that the ICS for the VCT channel

atEcm = 28.96 eV andEcm = 9.5 eV almost remain the same which gives us the impression

that the change in collision energy does not affect the ICS values. But the change in collision

energy Ecm indeed the influence the magnitudes of IVE channel as can be verified from the

Fig. 4.33 in which the ICS at Ecm = 9.5 eV is higher in magnitude than that at Ecm = 28.96

eV. This suggests that in the slow collision, H+ comes into contact with the target molecule

CO over a wide area for elastic/inelastic process, as reflected in the high value of ICS at

Ecm = 9.5 eV. All this information have been summarized in the Table 4.9 which shows

Table 4.9: VCC-RIOSA state-to-state integral cross section (absolute values) for the IVE
channel,H+ + CO(v = 0) −→ H+ + CO(v′) and the VCT channel, H+ + CO(v = 0) −→
H(2S) + CO+(v′′) at the Ecm = 28.96 eV and Ecm = 9.5 eV.

v′(v′′)
Integral cross section (Å2)
9.5 eV 28.96 eV

IVE VCT IVE VCT
0 69.727 14.715 48.609 14.871
1 2.581 1.021 1.967 1.068
2 0.869 0.372 0.528 0.384
3 0.397 0.217 0.224 0.240
4 0.201 0.145 0.147 0.162
5 0.144 0.117 0.088 0.119
6 0.106 0.111 0.096 0.123
7 0.140 0.098 0.076 0.096∑
v′(v′′) 74.311 17.055 51.735 17.062

that elastic collision for IVE is highest at 9.5 eV and first charge transfer for VCT is almost

105



0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

2

Vibrational levels

σ
( Å
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Figure 4.33: The computed VCC-RIOSA state-to-state integral cross section σ(Å2) for IVE
channel, H+ + CO(v = 0) −→ H+ + CO(v′) and VCT channel, H+ + CO(v = 0) −→
H(2S) + CO+(v′′), at Ecm = 28.96 eV and Ecm = 9.5 eV as a function of scattering angle
θcm(deg). Note that ICS for the VCT channel for 28.96 eV and 9.5 eV remains the same and
Y-ordinates are powers of 10

the same at bothe collision energies. Numerically, ICS at 9.5 eV is at higher side for IVE

channel than at 28.96 eV. If looked at total ICS given as the last entry, it suggest that ICS for

IVE at 9.5 eV is higher that that at 28.96 eV and the same for VCT is almost the same sum

at the both collision energies, 17.055 and 17.062, respectively.

4.7 Summary

In the present study, we have generated new global ab initio adiabatic PESs for the GS

and the first ES of the H+ + CO system using Dunning’s cc-pVTZ basis set at the MRCI

(with the single and double excitation) level of accuracy. Comparisons of various computed

diatomic data for CO and CO+ and the equilibrium data of the bound HCO+ and HOC+ ions
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with those of experiments and high level ab initio calculations available for these ions lends

credence to the accuracy of the present ab initio calculations. The various characteristics

and topologies of the adiabatic PESs have been analysed in detail. The corresponding quasi-

diabatic PESs and the coupling between them are also obtained using the ab initio procedure

at the same level of accuracy. The nonadiabatic interactions have been analysed in detail in

terms of NACME and the coupling potentials.

We have analysed in detail the quantum dynamics of collision energy transfer processes

in the H+ + CO collisions within the framework of the VCC-RIOSA decoupling scheme.

The quantum dynamics has been carried out at Ecm = 9.5 eV and at Ecm = 28.96 eV for

which experimental data are available for the IVE channel. Only one data set is available

from the experiment for the VCT channel at Ecm = 28.96 eV, and that is for the total DCS

for the VCT channel. Modelling the dynamics as a two-state process at these energies we are

able to predict almost all the experimental data for the IVE channel at these two collision

energies quite accurately, except for some noticeable discrepancies. The predicted TDCS

for the VCT channel overestimates the experimental valuesat Ecm = 28.96 eV.

We believe that the present ab initio and quantum dynamics study is perhaps the first

study which reports the dynamics on the coupled PESs and the results for the various col-

lision attributes and their comparisons with those of available experimental results. From

the ab initio analysis of the nonadiabatic interactions it is suggested that atleast two more

low lying third and fourth ESs would also be involved in the collision dynamics. The sec-

ond ES, which asymptotically correlates to the VCT channel, H(2S) + CO+(X2Σ+), would

be further coupled through nonadiabatic interactions to the third and the fourth ESs. Since

the GS which asymptotically correlates to the IVE channel, H+ + CO(X1Σ+), lies quite
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seperated energetically with respect to the third and fourth ESs and its nonadiabatic cou-

pling with them is expected to be less. Therefore, if the dynamics is carried out on 4 × 4

coupled electronic state we expect (a) the IVE attributes would be mostly be the same as it is

observed for the present 2× 2 coupled electronic state with minor variations and (b) that the

flux entering into the first CT channel would be further partitioned effectively into the sec-

ond and the third CT channels through their nonadiabatic coupling strengths; thus leaving

reduced magnitudes for the first VCT collision attributes. Therefore, we believe that alleast

3× 3 or 4× 4 coupled electronic states quantum dynamics calculations would improve the

theoretical results considerably in comparison with experiments.
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CHAPTER 5

NONADIABATIC DYNAMICS ON THE TWO COUPLED

ELECTRONIC PESs : THE H+ + O2 SYSTEM

In this chapter, we study the dynamics of the IVE, H+ + O2(X 3Σ−g , v = 0) −→ H+ +

O2(X 3Σ−g , v
′), and the VCT, H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+

2 (X 2Πg, v
′′), pro-

cesses. A brief review on the experimental and the theoretical studies carried out on the H+

+ O2 system till date has been given in chapter 1. In this chapter, we discuss the newly

generated global ab initio potential energy surfaces of the GS and the next higher three ESs

and their topological characteristics. We also present briefly the details of ab initio diabati-

zation procedure used and the corresponding quasi-diabatic PESs computed in the present

study. We have performed a time-independent quantum dynamics study within the VCC-

RIOSA framework at the experimentally reported collision energies, Ecm = 9.5 eV and

Ecm = 23 eV and compared the results with those of experiments as well as those of the

earlier theoretical studies to test the suitability of the two-state diabatic PESs in explaining

the experimental behaviour.

5.1 Present focus

Just recently, global ab initio adiabatic PESs for the GS and the first ES of the H+ + O2

system were reported (Saieswari and Kumar, 2007b, 2008a) along with the corresponding

quasidiabatic PESs. The obtained NACME and the mixing angle values obtained using the



ab initio procedures showed quite an irregular behaviour in certain regions of the nuclear

configurations. The irregular behaviour was indicative of existence of an avoided crossings

with other low-lying (the third) ES with the second ES. However, in that study, it was as-

sumed that only the GS and the first ES would be involved and the dynamics can be modelled

mostly as a two-state process, and any further influence coming from the third ES would be

rather small. This assumption was primarily based on the fact that the molecular beam ex-

periments did not hint of any detection of electronically excited O+
2 molecules. Therefore,

the irregular behaviour (other than originating from the genuine interactions from the GS

and the first ES) was smoothed and then the time-independent quantum dynamics was per-

formed within the VCC-RIOSA framework to study the IVE and the VCT channels. The

obtained results were almost similar to the earlier theoretical results which were obtained

using the semi-empirical PESs. Thus, using the smoothed two-state coupled ab initio PESs

the improvement achieved in the quantum dynamics calculations was little. A preliminary

analysis in terms of PECs as a function of R for a fixed value of r = req and γ showed that

at least two more ESs (the third and the fourth ESs) could also be involved in influencing

the dynamics of the IVE and the VCT channels at Ecm = 23 eV. However, their relative

roles could not ascertained. Also it was not clear whether the smoothing of the quasidia-

batic PESs had the bearing on the dynamics outcome. Therefore, we have undertaken an

extensive ab initio study to compute the adiabatic and the corresponding quasidiabatic PESs

(with the coupling potential matrix) for the 4×4 coupled electronic state, that is, the GS and

the three lowest lying ESs. First, we would like to test whether smoothing of PESs had any

significant role and/or the 2 × 2 state coupling could largely represent the dynamics of the

IVE and the VCT channels. Therefore, from the obtained 4 × 4 coupling potential matrix

we just take out the 2×2 sub-matrix involving only the GS and the first ES and carry out the
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quantum dynamics. In this chapter, we present the computational details of the 4 × 4 state

ab initio calculations along with the some salient features of the GS and the first ES PESs

and also analyse the quantum dynamics results obtained using the 2 × 2 potential matrix.

The other characteristic details of the 4× 4 potential matrix and the corresponding quantum

dynamics are given and discussed in the following chapter (chapter 6).

5.2 Ab initio PECs

Ab initio computations have been performed in the Jacobi coordinates (see Fig. 3.1 of

Chapter 3) for the triplet spin symmetry using the MOLPRO 2002.6 package (Werner,

Knowles, Schütz, Lindh, Celani, Korona, Rauhut, Manby, Amos, Bernhardsson, Bern-

ing, Cooper, Deegan, Dobbyn, Eckert, Hampel, Hetzer, Lloyd, McNicholas, Meyer, Mura,

Nicklaβ, Palmieri, Pitzer, Schumann, Stoll, Stone, Tarroni, and Thorsteinsson, 2002). For

the collinear (γ = 0◦) and the perpendicular (γ = 90◦) approaches the calculations were

performed in the C2v point groups while for off-collinear approaches they were carried out

in the Cs point group. The computations were done for the four lowest electronic states with

B1 and A2 (C2v) and A′′ (Cs) symmetries. Dunning’s cc-pVTZ basis set (Dunning, 1989)

was employed for the H and the two O atoms of the system resulting in 74 contracted wave

functions (MOs). The break-ups were (50a′+24a′′) for the Cs and (33a1+17b1+17b2+7a2)

for the C2v (collinear case, γ = 0◦) and (27a1 + 13b1 + 23b2 + 11a2) for C2v (perpendicular

case, γ = 90◦). The lowest two orbitals 1a′, 2a′ were treated as the core orbitals and next

seven orbitals 3a′ − 9a′ and 1a′′, 2a′′ were treated as the valence orbitals in the Cs. In the

C2v, 1a1, 2a1 were the core orbitals and 5a1 + 2b1 + 2b2 + 0a2 are the valence orbitals for

γ = 0◦, and 1a1 and 1b2 were the core orbitals and 4a1 + 1b1 + 3b2 + 1a2 were the valence
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orbitals for γ = 90◦. The arrangement of the electrons in various orbitals at the reference

geometry taken at R = 16a◦ for both the Cs and C2v point group is tabulated in Table 5.1,

with the number of electrons given in parenthesis. For γ = 0◦, the GS PES is of A2 sym-

metry, corresponding to 3Σ− in the C∞v group and the first ES PES of B1, corresponding to

3Π. For γ = 90◦, the GS PES is of B1 symmetry and the first ES PES of A2 symmetry. In

the Multi-configuration self consistent field (MCSCF) computations (Werner and Knowles,

1985; Knowles and Werner, 1985) the 1a′ − 2a′ orbitals remained frozen with the four core

electrons and 3a′ − 9a′ and 1a′′ − 2a′′ remained active for the remaining 12 electrons for

the Cs geometry. In the C2v group, for γ = 0◦, the 1a1 − 2a1 are the core orbitals and

3a1 − 7a1,1b1 − 2b1,1b2 − 2b2 were the active orbitals for the remaining 12 electrons and

for γ = 90◦, the 1a1, 1b2 are the core orbitals and 2a1 − 5a1,1b1,2b2 − 4b2,1a2 were the

valence orbitals for the 12 electrons for both the A2 and the B1 symmetries. Typically, the

wavefunction consist of 1722 Configuration state functions (CSFs) with 2324 slater deter-

minants for all the four electronic states with equal weightage of 0.25 for the Cs geometry.

For the C2v symmetry, roughly 858 CSFs with 1140 slater determinants for γ = 0◦, and

861 CSFs with 1162 slater determinants for γ = 90◦, were involved in the computation pro-

cess at the MCSCF level. The convergence in MCSCF level is very sensitive to number of

wavefunctions in the primary configuration space (p-space) and therefore, it was advisable

to accomodate sufficient number of wavefunctions by increasing or decreasing the p-space.

In the Multi-reference internally contracted configuration interaction (MRCI) calculations

(Werner and Knowles, 1988; Knowles and Werner, 1992, 1988), which involved only the

single and the double excitations, the wavefunctions in the reference space amounted to 686

configurations consisting of 1722 CSFs for the four states in the Cs; Those in N electron

internal space consisted of 1470 configurations with 3402 CSFs and N-1 and N-2 internal
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space consisted of 2304 configuration with 9828 CSFs and 2550 configurations with 21306

CSFs, respectively. The total number of contracted configurations was 642952 which in-

cluded total number of internal configurations, 1722, and total number of signly and double

external configurations which were 309582 and 331648 respectively and total number of

uncontracted configurations is 21477678. For the C2v and for γ = 0◦, the reference space

consisted of 382 configuration with 858 CSFs including 1470 N electron internal configu-

ration with 3402 CSFs, 2304 N-1 electron internal configuration with 9828 CSFs and 2549

N-2 electron internal configurations with 21305 CSFs. The total number of contracted con-

figurations was 326572 which included 858 internal configurations, 154806 singly external

configurations and 170908 double external configurations and the total number of uncon-

tracted configurations was 10744181 and for γ = 90◦, the reference space consisted of 343

configuration with 861 CSFs including 1470 N electron internal configuration with 3402

CSFs, 2304 N-1 electron internal configuration with 9828 CSFs and 2535 N-2 electron in-

ternal configurations with 21271 CSFs. The total number of contracted configurations was

322036 which includes 861 internal configurations, 154771 singly external configurations

and 166404 double external configurations and the total number of uncontracted configura-

tions was 10721927. The accuracy limit set for the convergence in MCSCF and MRCI level

was 0.32 × 10−6 hartrees and the improvement of the computed values of energy from HF

level to MRCI level for three orientations such as γ = 0◦, 45◦, 90◦ at req is summarized in

the Table 5.2. The energies computed with multi-reference configuration interaction includ-

ing single and double excitations with the correction for higher order excitations in terms of

Davidson’s correction (Jenson, 1999) is referred to as MRDCI and it is also listed there. The

convergence at the MRCI level is not as difficult as at the MCSCF level and can be achieved

by simply increasing the number of iteration. If the convergence was achieved in the MC-

114



Table 5.2: Comparision of electronic energies for three molecular orientations at different
levels of methodologies at re

γ = 0◦ γ = 45◦ γ = 90◦

R = 3.0a◦ R = 2.6a◦ R = 2.0a◦
HF -149.65151103 -149.66013373 -149.46972008

MCSCF -149.90909165 -149.95310848 -149.87223377
MRCI -150.24093219 -150.28011292 -150.21297843

MRDCI -150.26350817 -150.30212861 -150.23734711

SCF level then there was a greater likelihood that convergence would be reached smoothly

in the MRCI level, too, though it was not always true in other cases as it had happened in

the two-state diabatic PESs computation of the H+ + CO system for γ = 180◦ orientation

because of the involvement of further low-lying excited states.

The ab initio MRCI computations involving the GS and the three lowest ESs of (3Σ−/3Π),

(3B1,
3 A2) and 3A′′ electronic states were carried out on the following grid in the Jacobi co-

ordinates (Fig. 3.1):

• for γ = 0◦, R = 2.0− 7.0(0.2), 8− 15(1.0)

• for γ = 15◦, R = 1.2− 7.0(0.2), 8− 15(1.0)

• for γ = 45◦, R = 0.8− 7.0(0.2), 8− 15(1.0)

• for γ = 75◦, R = 0.2− 7.0(0.2), 8− 15(1.0)

• for γ = 90◦, R = 0.2− 7.0(0.2), 8− 15(1.0)

• for each γ, r = 1.5− 3.5(0.1)

• γ = 0◦ − 90◦(15◦)

The numbers in the parenthesis are the increments in the given intervals and the distances

are expressed in bohr. Before proceeding to describe the computation of the PECs for this

system, O2 was optimized at the MRCI level of theory using Dunning’s cc-pVTZ basis set

(Dunning, 1989) to give the best value for equilibrium bond length, req = 2.2934a◦. and this
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value is used throughout for req. Some of the molecular properties of O2 and O+
2 relevent to

this study have been summarized in the Table 5.3. All the computed properties agree quite

well the available experimental values for the diatomic species.

Table 5.3: The computed molecular properties of O2 and O+
2 are compared with the experi-

mental values. req is the equilibrium bond length, Eeq is the electronic energy at equilibrium
bond length, D◦ is the dissociation energy, P.A is the proton affinity relative to asymptote
H+ + O2(X3Σ−g ), I.P is the ionization potential, ∆E0→1

rot is the energy of first rotational
excitation, ∆E0→1

vib is the energy of first vibrational excitation and ∆Eelec is the energy
of first electronic excitation, O2(1∆g ← 3Σ−g ), O+

2 (4Πu → 2Πg), O+
2 (2Πu → 4Πu) and

O+
2 (4Σ−g → 4Πu). All properties are computed using MRCI level of accuracy and cc-pVTZ

basis set.

O2(3Σ−g ) O+
2 (2Πg) O+

2 (4Πu) O+
2 (4Σ−g )

Theory Expta Theory Exptb Theory Exptb Theory Exptb

req(Å) 1.2132 1.21 1.1221 1.1227 1.39 1.38 1.29 1.28
Eeq(a.u) -150.10 -149.68 -149.53 -149.45
D◦ (eV) 4.76 5.08 6.55 6.48 2.596 2.544
I.P (eV) 11.58 12.6 23.69 24.2 19.74 17.59
P.A (eV) 4.85 4.38c

∆E0→1
rot (meV) 0.35 0.36 0.41 0.42 0.269 0.274 0.312 0.319

∆E0→1
vib (eV) 0.191 0.193 0.23 0.233 0.125 0.128 0.142 0.148

∆Eelec (eV) 0.99 0.98 3.95 4.08 0.975 2.15 2.066

aGianturco, Gierz, and Toennies (1981)
bHuber and Herzberg (1979)
cBohme (1975)

The corresponding quasidiabatized PESs and the 4 × 4 coupling potential matrix using

the ab initio procedures were obtained in the same manner as described in chapter 2. We

used Rref = 16a◦ at which both the adiabatic and quasidiabatic PESs become identical. For

the construction of quasidiabatic PESs for a patricular r, the diabatic PESs were obtained as

a function ofR for a fixed value of r. Although one obtains the quasidiabatic potential matrix

directly from the ab initio computations and there is no need to compute for the NACMEs,

yet we have computed them for the sake of understanding of the coupling dynamics. The

NACME values were obtained in a similar manner using the same step-size as described in
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chapter 4.

As mentioned above, we wish to carry out in this chapter quantum dynamics study using

only the 2× 2 coupled state. Therefore, we present and analyse only the GS and the first ES

PESs and their couplings. It is important to note that this 2 × 2 coupled potential matrix is

simply taken out from the 4× 4 coupled potential matrix.

The adiabatic PECs for γ = 0◦ and γ = 90◦ as a function of R and r (in bohr units) have

been shown in Fig. 5.1. As we can see, there is direct curve crossing between the GS and the

first ES PECs for both the angles as a function of R (left panel, r = req) and r (right panel,

R = 4a◦) because they are of different symmetries. The GS PEC is 1 3Σ− and the first ES

PEC is 1 3Π, for γ = 0◦ and GS PEC being 1 3B1 and first ES PEC being 1 3A2, in the case

of γ = 90◦. The asymptotic correlations of the GS and the first ES PECs are H+ + O2(3Σ−g )

(the IVE channel) and H(2S) + O+
2 (3Πg) (the first VCT) respectively. From Fig. 5.1, it

can be seen that the first charge transfer (electron capture) process is exoergic relative to the

inelastic process. The computed value of exoergicity is 2.02 eV and agree fairly well with

the experimental value ∆E = +1.52 eV (Niedner-Schatteburg and Toennies, 1992). Since

the charge transfer channel is highly exoergic it is expected to be probable.

Since the two states are of different symmetries there is no coupling between them along

the radial coordinates (R, r). These crossings turn into avoided crossings for off-collinear

geometries (Cs point group) where the degeneracy of Π state is lifted into A′ and A′′ states,

and the Σ− state correlates to A′′ state, making it as the GS with triplet spin symmetry.

Again, there exists no coupling between the A′ and the A′′ along the radial coordinates

(R, r) in the Cs geometry. Therefore, we show PECs of the A′′ symmmetry and show

them for γ = 15◦, γ = 45◦, γ = 75◦ in Fig. 5.2. The adiabatic (solid) and quasidiabatic
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Figure 5.1: Ab initio adiabatic PECs of the GS and the first ES for γ = 0◦and 90◦ orientations
as a function of R for a fixed r = req = 2.293a◦ (left panel) and as a function of r (right) for
a fixed R = 4.0a◦ (right panel). Note the presence of crossings between the two electronic
states of different symmetries in all four cases.

PECs (dashed) are shownas a function of R at r = req = 2.293a◦ (left panel) and as

a function of r at R = 4.0a◦ (right panel). It can be seen that both the adiabatic and

diabatic curves tend to merge for R > 6a◦ implying that at large R the quasi-diabatic matrix

becomes almost diagonalized. The hump seen in the upper adiabatic curve indicates that

the 2 3A′′ state is involved in the landau-zener type of coupling (Landau, 1932; Zener, 1932)

with the 3 3A′′ state, with the coupling being strengthened at γ = 45◦ orientation. The

asymptotic correlations of the entrance channel is H+ + O2(3Σ−g ) and of the charge transfer

is H(2S)+O+
2 (2Πg) for all the three orientations. The calculated energy differences between

118



0 2 4 6 8
−150.3

−150.2

−150.1

−150

−149.9

−149.8

R(a◦)

E
ne

rg
y

(a
.u

)

γ = 15◦

H(2S)+O+
2

(
2Πg

)

H++O2(3Σ−
g )

1 3A′′

2 3A′′

req = 2.293a◦

1.5 2 2.5 3 3.5
−150.2

−150.15

−150.1

−150.05

−150

r(a◦)

E
ne

rg
y

(a
.u

)

γ = 15◦

1 3A′′

2 3A′′

R = 4a◦

0 2 4 6 8
−150.3

−150.2

−150.1

−150

−149.9

−149.8

R(a◦)

E
ne

rg
y

(a
.u

)

γ = 45◦

H(2S)+O+
2

(
2Πg

)

H++O2(3Σ−
g )

1 3A′′

2 3A′′

req = 2.293a◦

1.5 2 2.5 3 3.5
−150.2

−150.15

−150.1

−150.05

−150

r(a◦)

E
ne

rg
y

(a
.u

)

γ = 45◦

1 3A′′

2 3A′′

R = 4a◦

0 2 4 6 8
−150.3

−150.2

−150.1

−150

−149.9

−149.8

R(a◦)

E
ne

rg
y

(a
.u

)

γ = 75◦

H(2S)+O+
2

(
2Πg

)

H++O2(3Σ−
g )

1 3A′′

2 3A′′

req = 2.293a◦

1.5 2 2.5 3 3.5
−150.2

−150.15

−150.1

−150.05

−150

−149.95

r(a◦)

E
ne

rg
y

(a
.u

)

γ = 75◦

1 3A′′

2 3A′′

R = 4a◦

Figure 5.2: Ab initio adiabatic (solid) and diabatic (dashed) PECs of the GS and the first ES
for γ = 15◦, 45◦, 75◦ as a function of R for a fixed r = req = 2.293a◦ (left panel) and as a
function of r for a fixed R = 4.0a◦ (right panel). Note the presence of avoided crossings in
the adiabatic curves and crossings in the quasi-diabatic curves in both the right and the left
panels and the asymptotic relationships at large R. A small shallow well is present in the
upper adiabatic curves and is slightly seen for γ = 75◦.
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Table 5.4: The calculated energy difference
∆E between the first H/O+

2 channel and the
H+/O2 channel at req and at R = 15a◦ for
various γ values.

γ ∆E (eV)
0◦ 1.701
15◦ 1.788
30◦ 1.789
45◦ 1.790
60◦ 1.792
75◦ 1.793
90◦ 1.721

Table 5.5: The computed well depth (eV)
present in first ES PEC at req = 2.293a◦
at different γ for off-collinear geometries.
The earlier reported computed values is about
roughly 1 eV (Staemmler and Gianturco,
1985). R (bohr) is the location at which shal-
low well exists.

γ R Well depth
0◦ 6.8 0.01
15◦ 4.6 0.67
30◦ 4.8 0.27
45◦ 5.0 0.15
60◦ 4.6 0.20
75◦ 3.8 0.54
90◦ 5.8 0.02

the first VCT channel and the entrance channel at req and at R = 15a◦ is given in Table 5.4

as a function of γ. This angular dependent energy differences at R = 15a◦ will become

angular independent quantity at R = ∞ (exoergicity or endoergicity) and this turns out to

be 2.02 eV as stated above. It is worth pointing out here that there exists a shallow well

in the first ES adiabatic PEC that may support the charge transfer complex [O+
2 · · ·H]. The

well depth and its location on the first ES PECs is summarized in the Table 5.5. The depth

is the highest at 15◦, followed by 75◦ and lowest at 0◦.

5.3 Ab initio PESs

Now, we present the adiabatic and quasi-diabatic PESs for the two electronic states as a

function of R, r, γ and analyse their characteristics.

The computation of PESs at extended or shortened r was a herculean task because of

the convergence problems both at the MCSCF and the MRCI levels. They arose due to

the involvement of further low lying excited states. These difficulties can be sorted out
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Figure 5.3: Ab initio smoothed adiabatic PESs of the GS (1 3Σ−/1 3B1) and the first ES
(1 3Π/1 3A2) for γ = 0◦and 90◦ orientations as a function of R and r. Note the presence of
crossings between the two electronic surfaces of different symmetries.
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by using p-space, restrict, maxiti cards judiciously both in the reference geometry as well

as in the displaced geometries. On an average, 870 ab initio points have been computed

involving the lowest four electronic states. Table 5.6 lists the total number of ab initio data

points calculated on the grid of R, r for a fixed γ. The grid details of PESs had already

Table 5.6: The number of ab initio points per electronic state for all γ values and the grand
total computed using cc-pVTZ basis set and MRCI level of accuracy for the H + O2 system.

γ Points/surface
0◦ 748
15◦ 836
30◦ 836
45◦ 880
60◦ 946
75◦ 946
90◦ 946

Total 6138

been given in the section 5.2, yet we briefly mention those details here for the sake of

convenience. The griding along R coordinate depends upon the γ, and for example, for

γ = 90◦, R = 0.2 − 7.0(0.2), 8 − 15(1.0) and for a patricular γ, r = 1.5 − 3.5(0.1) and

γ = 0◦ − 90◦(15◦). The numbers in the parenthesis denote the increments in bohr in the

stated interval and γ is measured in degrees and R and r are measured in bohr.

We show the adiabatic GS and the first ES PESs for γ = 0◦(collinear geometry) and γ =

90◦(perpendicular geometry) in Fig. 5.3. Since there exists no radial coupling between the

GS (1 3Σ−/1 3B1) and the first ES (1 3Π/1 3A2) there is no quasidiabatization, and therefore

no quasidiabatic PESs are shown here. There exists direct surface crossing in both the

orientations.The asymptotic correlations along R coordinate for the GS and the first ES are

H+ + O2(3Σ−g ) (IVE channel) and H(2S) + O+
2 (3Πg) (VCT channel), respectively.

Now, we present the adiabatic PESs for the GS and the first ES for γ = 15◦, 45◦, 75◦
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Figure 5.4: Ab initio adiabatic (left panel) and the corresponding quasi-diabatic (right panel)
as a function of R and r for γ = 15◦,γ = 45◦ and γ = 75◦. Note that there exists avoided
crossings in the adiabatic PESs (left panel) which are replaced by direct surface crossings in
the diabatic PESs (right panel).

in Fig. 5.4 (left panel) along with the corresponding quasi-diabatic PESs in Fig. 5.4 (right

panel). Since these orientations belong to the Cs point group, the spectroscopic term sym-

bols for the adiabatic GS PES and first ES PES are 1 3A′′ and 2 3A′′, respectively. For each

γ, we deonte the corresponding quasi-diabatic PESs by Vd
11 and Vd

22 (where d stands for dia-
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batic). There is a direct surface crossing giving rise to ambiguity in determining the GS PES

and first ES PES. The suffix 11 and 22 denote the index in the diabatic matrix. The asymp-

totic correlations along R coordinate for the GS PES and first ES PES are H+ + O2(3Σ−g )

(IVE channel) and H(2S) + O+
2 (2Πg) (VCT channel). The electron capture channel (VCT)

is highly exoergic with respect to the entrance channel (IVE).

Fig. 5.5 shows the adiabatic GS and the first ES PES as a function of R and γ but for

r = req. There is a minimum in the GS PES around γ = 45◦. The first ES PES are mostly

repulsive exhibiting a shallow well at far extended r and it is responsible for promoting the

charge transfer process over inelastic process. After R = 8a◦, both surfaces remain flat and

the asymptotic correlations also remain the same. The energy gap at the asymptotic region

remain fairly constant as a function of γ at r = req = 2.293a◦.

So far we have discussed adiabatic and quasi-diabatic PESs as function of R, r and γ

and analysed their various characteristics. Now we analyse the locations of local minimum

of energy in the GS PES as a function of γ. The details are summarized in Table 5.7 along

with the well depths at each location relative to asymptotically seperated products. Table

5.7 shows that the local minimum in the collinear approach of H+ occurs when bond length

of O2 is at equilibrium distance and when the approach moves from the collinear to off-

collinear and finally to perpendicular, the local minimum occurs at stretched bond distance

and shorter R. From the Table 5.7, it is clear that the global minimum in the GS PES as

a function of R, r and γ would be located around γ = 45◦. In other words, we fitted

the adiabatic GS energy tabular data corresponding to the minimum as a function of γ and

from the cubic splined curve obtained the value of γ for which the global minimum was

predicted. In other words, the minimum energy path was fitted as a function of γ and the
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Figure 5.5: Ab initio adiabatic GS and the first ES PESs as a function of γ and R at r =
req = 2.293a◦.

result is shown in Fig. 5.6. Note that the potential is symmetric about γ = 90◦ and the

data points for 90◦ ≤ γ ≤ 180◦ are obtained by symmetry in Fig. 5.6. From the fitting we

obtained the equilibrium geometric configurations of [HO2]+ molecule in the GS PES and

the results are summarized in Table 5.8 along with earlier theoretical results. We get the

following equilibrium geometries : r = 2.4a◦, R = 2.6a◦ and γ = 42.7◦. We would like to

highlight three sets of earlier ab initio calculations which were focussed purely on the equi-

librium geometry of the [HO2]+. These calculations reported the equilibrium structure data

in the valence coordinate. Therefore, we also converted our data in the Jacobi coordinates

to the valence coordinates. Raine and Schaefer III (1984) carried out systematic study with

extended basis set calculations and we have listed their data obtained with their "Ext III" cal-

culations. Further high level ab initio calculations were carried out by Robbe et al. (2000)

to describe the potential well using quartic force field. They also computed various spectro-

scopic constants along with the equilibrium structure parameters. It is also worth pointing
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out here that ultra refined ab initio calculations around the equilibrium geometry have been

reported recently by Huang and Lee (2008) predicting fundamental vibrational frequencies

and spectroscopic constants. This set of data obtained using "TQ5+rel+ACPF/QZ" calcu-

lations is also listed in the Table 5.8.It is gratifying to note that the equilibrium geometry

parameters obtained in the present study are in very good agreement with the high level cal-

culations. This lends credence to our ab initio computations and to the quality of ab initio

PESs. Robbe et al. (2000) had found a barrier for the proton migration for isomerization

([O · · ·O · · ·H]+ ←→ [H · · ·O · · ·O]+) in a T-shaped structure. This is also seen in the

Table 5.7: The local energy minima of the adiabtic GS PES and the well depth at each local
minima relative to the asymptotic products is listed out as a function of Jacobi coordinates
(R, r, γ).

γ r R Adiabatic GS Energy (a.u) Well deptha (eV)
0◦ 2.293 3.0 -150.241483 3.783106977
15◦ 2.293 3.0 -150.253092 4.098987867
30◦ 2.3 2.8 -150.273583 4.656547977
45◦ 2.4 2.6 -150.280342 4.840460367
60◦ 2.4 2.4 -150.266552 4.465234467
75◦ 2.4 2.2 -150.237020 3.661668747
90◦ 2.4 2.0 -150.218255 3.151073097

arelative to asymptotic energy limit, E = −150.1024493 a.u, corresponding to H+ + O2(X3Σ−g , r = req)
products.

Table 5.8: Computed equilibrium geometry parameters in the valence coordinates of the
[HO2]+ ion in the GS (13A′′).

Theory r(O−O)/(Å) r(O− H)/(Å) α(O−O− H)/(deg)
This work 1.269 1.009 113.24

Earlier worka 1.22 0.995 111.54
Earlier workb 1.215 0.985 111.0
Earlier workc 1.237 1.007 118.8
Earlier workd 1.237 1.024 112.695
Earlier worke 1.24 1.005 111.39

avan Lenthe and Ruttink (1978)
bRaine and Schaefer III (1984)
cRobbe, Monnerville, Chambaud, Rosmus, and Knowles (2000)
dHuang and Lee (2008)
eSaieswari and Kumar (2008a)
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Figure 5.6: The splined minimum energy pathway of adiabatic GS showing minimum and
maximum peaks during the interconversion process, HOO+ 
 OOH+

present calculations in Fig. 5.6. Since we are primarily interested in the dynamics we do not

analyse these details any further.

5.4 Coupling PESs and NACME

We now analyse NACMEs and the 2 × 2 coupling potential which has been just taken out

from the 4 × 4 coupled potential matrix. We show the coupling potential (left panel) and

the corresponding NACMEs (right panel) as a function of nuclear coordinates, R and r, for

γ = 15◦, γ = 45◦ and γ = 75◦ in Fig. 5.7. The NACME values were obtained in the same
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Figure 5.7: Coupling PESs (right panel) and NACME (left panel) as a function ofR and r for
a fixed γ. Since there is no radial couplings for the collinear and perpendicular geometries,
coupling potential and NACME are not applicable to these orientations.
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Figure 5.8: Coupling potential and NACME as a function of γ and R at r = req = 2.293a◦.
The γ range begins with 15◦ and ends with 75◦ because there is no radial couplings for 0◦

and 90◦.

manner as described earlier in section 4.4 of chapter 4. The coupling potential, V d
12 = V d

21

shows a lot of irregularity in the smallerR regions because of the involvement of second and

third excited states in the four-state computations. One can see that for γ = 15◦ and 45◦ there

is higher degree of irregularity for small R values as a function of γ, as with respect to what

is seen for γ = 75◦. This suggests that the nonadiabaticity is larger for small γ values or

when the proton approaches towards the collinear geometries. One common feature found

in all three cases is that coupling potential surfaces are smooth and reach almost zero for

R > 6a◦ where the adiabatic and quasi-diabatic PESs merge together. This behaviour is

also reflected in the NACME values (right panel) for all angles. Fig. 5.8 shows another

view of the coupling potential (left) and the NACME (right) as a function of γ and R but at

r = req = 2.293a◦. The NACME values (right panel) in Fig. 5.7 as a function of R and r

and in Fig. 5.8 as a function of γ and R at r = req = 2.293a◦ show sharp changes at some

R and r values across the (R, r) and the (γ,R) plane. The values range from -1 a.u to -1.5

a.u in all the three cases. There are sharp variations at places where the NACME change
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from negative to positive values or vice versa. Such places are avoided crossings between

the GS and the first ES. Other variations patricularly for further small R values indicate the

nonadiabatic interactions arising from the third and the fourth ES.

5.5 Asymptotic interaction potential

The long range interaction potential Vas for the H+ + O2 system is modelled and obtained

in terms of multipolar expansion terms which are given below

Vas (R, r; γ) ∼ Q(r)

R3
P2(cos γ)− α0(r)

2R4
− α2(r)

2R4
P2(cos γ) (5.1)

where Vas is the asymptotic long range potential, Q(r) is the quadrupole moment, α0(r) and

α2(r) are the dipole polarizability components and the Pi’s are Legendre polynomials. In

order to model the long range asymptotic interactions for quantum dynamics calculations

we have computed the Q(r), α0(r) and α2(r) as a function of internuclear distance (r) of

O2(X3Σ−g ) and fitted them with the following functional form in Eq. (5.2)

x(r) =
N∑

i=0

Cx(i)

(
1

r

)i
(5.2)

where x stands for Q(r) or α0(r) or α2(r). Cx are the coefficients used in the fitting and

are listed out in the Table 5.9. These coefficients are used to generate asymptotic PESs

correlating to the IVE channel, H++O2(X3Σ−g ). For the VCT channels, H(2S)+O+
2 (X2Πg),

H(2S) + O+
2 (X4Πu) and H(2S) + O+

2 (X4Σ−g ) the polarizability components of the H-atom

(α0 = 2.7372922 a.u) are used to generate the asymptotic potentials. These computed

asymptotic potentials have been connected smoothly to the respective interaction potentials

130



Table 5.9: Values of coefficients (in a.u) used in Eq. (5.2) for the generation of Q,α0 and α2

as a function of r of O2.

C(i) Q α0 α2

C(0) 0.95× 102 0.71× 102 0.63× 102

C(1) −0.20× 104 −0.37× 103 −0.48× 103

C(2) 0.18× 105 0.80× 103 0.12× 104

C(3) −0.88× 105 −0.95× 103 −0.16× 104

C(4) 0.26× 106 0.70× 103 0.12× 104

C(5) −0.47× 106 −0.33× 103 −0.60× 103

C(6) 0.53× 106 1.00× 102 0.18× 103

C(7) −0.33× 106 −0.19× 102 −0.35× 102

C(8) 0.88× 105 1.00× 101 0.38× 101

C(9) −0.91× 10−1 −0.18

in order to obtaine the global PESs for all γ. The coupling PESs become zero for all r for

R > 15a◦.

5.6 Vibrational coupling matrix elements
(
Vvv′/v′′(R; γ)

)

The definition of VCMEs is given in chapter 4. The angle dependent VCMEs for the

IVE channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT channel, H+ + O2(v =

0) −→ H(2S) + O+
2 (v ′′) were computed as a function of R for all γ values. In order

to get numerically converged results for the vibrational excitations upto v′(v′′) = 10 of

O2(X3Σ−g )/O+
2 (X2Πg), 20 vibrational wavefunctions were included for both the diatoms.

The ab initio PESs points were spline interpolated over a fine meshgrid in the two dimen-

sional plane of (R, r) for a fixed γ. Essentially, the strength of the VCMEs indicate the

extent of coupling of vibrational states within an electronic state or vibrational states of

different electronic states with the incoming translational mode of the projectile H+(H).

The computed VCMEs are shown in Fig. 5.9 for both the channels as function of R for
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Figure 5.9: Vibrational coupling matrix elements (VCME) as a function of R for γ =
15◦,γ = 45◦ and γ = 75◦ for the IVE (V0v′) channel H+ +O2(v = 0) −→ H+ +O2(v ′) (left
panel) and the VCT (V0v′′) channel H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′) (right panel).
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different γ. Before we make comparision with the experimental results it would be desirable

to analyse some of the computed VCMEs which have strong bearing on both the processes.

Since the experiments were performed with O2 in its ground vibrational state we show the

Vvv′(v′′) with v = 0 where v′ and v′′ refer to the vibrational states of O2 and O+
2 (X2Πg).

For the IVE channel (left panel) the coupling for the vibrationally elastic channel, V00, that

is, for O2(v = 0) → O2(v′ = 0), is the largest and shows a deep attractive well before

becoming repulsive at smaller R values. All other excitations remain mostly much smaller

comparatively and they show their strengths again for small R following the order : V00 >

V01 > V02 > V03 · · · . The existence of attracive well makes the H+ to approach much

smaller R values thereby making the IVE process quite effective following the said order

above. On the contrary V00 in the VCT channel shows purely a repulsive behaviour. In this

channel also the V0v′′ follows the order : V00 > V01 > V02 > V03 · · · suggesting the same

order for VCT. In fact, this qualitative ordering is seen in the experiments at Ecm = 23 eV

(Niedner-Schatteburg and Toennies, 1992).

The VCMEs for the mixed channels, for the VCT, H+ + O2(v ′) −→ H(2S) + O+
2 (v ′′)

are shown in Fig. 5.10 for the three molecular orientations as a function of R. It is evident

from the magnitudes of Vv′v′′ that they follow the order : V00 > V01 > V02 > V13 > V03 >

V12 > V23 for all three orientations. Interestingly, the coupling with first excited state of O2

and third excited state of O+
2 is stronger than that with first excited state of O2 and second

ecited state of O+
2 . The magnitude of Vv′v′′ for γ = 45◦ is little higher than the other two

orientations.
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Figure 5.10: The vibrational coupling matrix elements (Vv′v′′) for the VCT as a function
of R for γ = 15◦, 45◦ and 75◦ orientations for the mixed channels, H+ + O2(v ′) −→
H(2S) + O+

2 (v ′′).

5.7 Quantum Dynamics

The quantum dynamics was performed within the VCC-RIOSA framework, which appears

to be quite valid for collision energies in the range Ecm = 9.5 − 23 eV. The details of the

VCC-RIOSA framework are given in chapter 3 and chapter 4. Here we briefly provide the

computation details of the dynamics. In order to have converged cross sections in the range

of experimental collision energiesEcm = 9.5−23 eV, 20 vibrational levels of O2(X3Σ−g ) and

20 vibrational levels of O+
2 (X2Πg) were included in the vibrational close-coupling (VCC)
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equations. They were solved by the sixth-order Numerov method for 7 equally spaced ori-

entations with γ values between 0◦ and 90◦ for each partial wave (l). The maximum partial

waves lmax for the vibrationally elastic channel at Ecm = 9.5 eV and at Ecm = 23 eV was

600 and 900, respectively.

5.7.1 Dynamics at Ecm=9.5 eV

In this section, we compare the computed dynamical quantities with those of the experimen-

tal results (Gianturco, Gierz, and Toennies, 1981). The state-to-state experimental data are

available only for the IVE process at the collision energy Ecm = 9.5 eV. We have computed

the various dynamical properties at this energy using the 2 × 2 coupled-state potential ma-

trix which have been taken out from the 4× 4 coupled state potential matrix and compared

them with those available from the experiments. There does not seem to be any quantum

dynamical study at this collision energy using either the 2×2 or the 4×4 coupled electronic

states.

5.7.1.1 The orientation opacities

The VCC-RIOSA angle-dependent opacity function as defined in Eq. (3.34) in chapter 3 is

shown in Fig. 5.11 as a function of partial waves (l) (in the units of ~) for the IVE channel,

H+ + O2(v = 0) −→ H+ + O2(v ′) for γ = 0◦, γ = 45◦ and γ = 90◦ collisions (left

panel) and the VCT channel (right panel), H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′). Note

that for γ = 0◦ (collinear) and γ = 90◦ (perpendicular) (right panel) collisions. Since no

radial coupling exists between two electronic states for γ = 0◦ and γ = 90◦, the GS and

the first ES remain uncoupled. The IVE is totally governed by the dynamics on the GS
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only. The angle (steric) dependent opacity function speaks about the amount of excitation

of different vibrational states of O2 and O+
2 molecules during the collisions. The formula

for opacity function, Eq. (3.34), involves the modulus square of the steric dependent T-

matrix. From Fig. 5.11, it is easy to conclude that the amount of vibrational excitation

differs greatly from the IVE channel to the VCT channel, with former being 1000 times

higher than the latter, especially for γ = 45◦ and γ = 75◦ orientations. For the IVE channel,

only elastic collisions (v = 0 → v′ = 0) remains the most dominant of all the collisions

for all the three approaches. Considering the magnitudes of the opacity functions, the order

of vibrational excitations for the IVE channel is as follows : v = 0 → v′ = 0 > v =

0 → v′ = 1 > v = 0 → v′ = 2 > v = 0 → v′ = 3. The amount of elastic excitation

decreases from γ = 0◦ to γ = 90◦ with collinear approach of H+ ion favouring the elastic

excitation more than the off-collinear approaches. The opacity function is converged only

when the contributing number of partial waves (l) reaches 500 while for the VCT channel

this value is just around l ≈ 200. Roughly, the order of vibrational excitations follow the

order : v = 0 → v′′ = 1 > v = 0 → v′′ = 2 > v = 0 → v′′ = 0 > v = 0 → v′′ = 3.

In Fig. 5.12, we show the comparision of opacity function of elastic transition in the IVE

channel (left) and of first VCT process, v = 0 → v′′ = 0 (right) for all orientations. It

is readily seen that the opacity for the elastic process decreases gradually from γ = 0◦ to

γ = 90◦ and vanishes to zero at about 600 partial waves, whereas, the same for first VCT

process v = 0 → v′′ = 0 is relatively very high for γ = 15◦ and less for other orienations

and vanishes to zero at about 200 partial waves. The magnitudes of opacities are higher in

the case of the IVE process than those of the VCT process.
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Figure 5.11: The opacity function as a function of partial waves (l, in the units of ~) for
γ = 0◦,γ = 45◦ and γ = 90◦ for the IVE channel, H+ + O2(v = 0) −→ H+ + O2(v ′) (left
panel) and for γ = 15◦,γ = 45◦ and γ = 75◦ for the VCT channel H+ + O2(v = 0) −→
H(2S) + O+

2 (v ′′) (right panel).
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Figure 5.12: Opacity function for all γ values for the elastic collisions for IVE channel
H+ + O2(v = 0) −→ H+ + O2(v ′) (left) and for first charge transfer collisions for VCT
channel H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′) (right).

5.7.1.2 Rotationally-summed state-selective differential cross section (DCS)

The rotationally-summed total differential cross section (TDCS) and rotationally-summed

state-selective differential cross sections (DCS) have been computed and are shown in Fig.

5.13 as a function of scattering angle θcm atEcm = 9.5 eV, for the IVE channel H++O2(v =

0) −→ H+ + O2(v ′) (left) and the VCT channel H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′)

(right). The computed TDCS and state-to-state DCSs showed a lot of oscillations as a

function of θcm which arose mostly from the constructive and destructive interferences of

contributing partial waves. Such undulatory structures could not be resolved in the exper-

iments.Therefore, we smoothened our data for the sake of clarity by folding them with a

Gaussian distribution dσ
dω

(
θ
)

=
∫ θ+∆θ

θ−∆θ
exp

[
− (θ−θ)

2

2σ2
θ

]
dσc

dω
(θ) dθ with δθ = 1.0◦,σθ = 0.33◦

in the same way as it was achieved in the earlier theoretical calculations (Gianturco, Palma,

Semprini, Stefani, and Baer, 1990) considering the experimental resolution. We report only

such smoothed TDCS and state-selective DCS in Fig. 5.13 upto v′(v′′) = 5 states for
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Figure 5.13: Rotationally-summed total differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for the IVE channel H+ + O2(v = 0) −→
H+ + O2(v ′) (left) and for the VCT channel H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′) (right)
at Ecm = 9.5 eV. The number in the ordinate indicate the powers of 10. There are no
experimental data available to compare with theoretical results at this collision energy.

θcm = 0◦ − 35◦. Unfortunately, there are no experimental data available for the TDCS

and for the state-to-state DCSs to be compared with the theoretical results at this collision

energy. The TDCS computed by summing up the state-to-state DCS upto 20 vibrational
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states of O2 for the IVE and 20 vibrational states of O+
2 for the VCT from v = 0 of O2 have

been shown (red). In the IVE channel, the TDCS and and DCS for v′ = 0 state (blue) runs

almost parallel to each other upto θcm ≈ 7◦ while in the VCT case, the former is largely

seperated from the later throughout the entire range of θcm. A primary rainbow maximum

appears at θcm ≈ 12◦ in the IVE channel while the same appears at θcm ≈ 14.5◦ in the VCT

channel. There are also rainbow structures in both the IVE and the VCT channels at far end

of scattering angle region. In the IVE channel, all the DCS curves show monotonic decrease

with scattering angle which is rather steep in the region upto θcm ≈ 8◦ and somewhat flatter

at higher scattering angles. The individual DCS curves in the VCT channel are jumbled

together.

5.7.1.3 Transition Probability

The relative state-to-state transition probability for IVE process, P0→v′ (θcm) and for VCT

process, P0→v′′ (θcm) have been computed as a function of scattering angle (θcm) from their

respective state-to-state DCS values using the set of formulas given in Eq. (5.3).

P0→v′ (θcm) =

dσ
dω

(0→ v′)
∣∣∣
θcm

vmax∑

v′=0

dσ
dω

(0→ v′)
∣∣∣
θcm

P0→v′′ (θcm) =

dσ
dω

(0→ v′′)
∣∣∣
θcm

vmax∑

v′′=0

dσ
dω

(0→ v′′)
∣∣∣
θcm

(5.3)

The denominator involves the summation over state-to-state DCS upto 20 vibrational states

of O2 and O+
2 molecules and the numerator involves the state-to-state DCS as a function

of θcm for a specific vibrational state and the division between the two gives us the relative
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Figure 5.14: The transition probability for the IVE channel P0→v′(θcm), H+ + O2(v =
0) −→ H+ + O2(v ′), (left) and for the VCT channel P0→v′′(θcm), H+ + O2(v = 0) −→
H(2S) + O+

2 (v ′′) (right) at Ecm = 9.5 eV as a function of θcm. Theory and experiments are
compared only for the IVE channel (Gianturco, Gierz, and Toennies, 1981). No experimen-
tal data are available for the VCT channel.

state-to-state transition probability for the IVE and the first VCT channel. The transition

probability for both the two channels have been shown in Fig. 5.14 for the first five vibra-

tional states along with the experimental data (Gianturco, Gierz, and Toennies, 1981) for
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the IVE channel alone. The agreement between theory and experiment is quite good for

the excitation to higher vibrational states of O2 such as v = 0 → v′ = 2, v = 0 → v′ =

3, v = 0 → v′ = 4 whereas some discrepancies exist for the excitation to states such as

v = 0 → v′ = 0, v = 0 → v′ = 1 and the reason for such discrepancies may be probably

due to the fact that the computation have been performed on the 2 × 2 coupled diabatic

PESs, picked out from 4 × 4 coupled diabatic PESs, and hence we expect an improvement

in the agreement between theory and experiment once all the four coupled PESs have been

incuded in the computation. In the VCT channel (right) where there is no experimental data

available to compare with the theory, P0→v′′ (θcm) for the entire range of scattering angle

for all vibrational excitations does not exceed the values of 0.4. The magnitude of P0→v′′

follows the following order : v = 0 → v′′ = 2 > v = 0 → v′′ = 1 > v = 0 → v′′ =

0 > v = 0 → v′′ = 3 > v = 0 → v′′ = 4 and the most dominant exciation is found to be

v = 0→ v′′ = 2, contrary to our expectations v = 0→ v′′ = 0.

5.7.1.4 Average vibrational energy transfer

The average vibrational energy transfer ∆Evib (θcm) (in eV) is computed for the IVE and

the VCT processes using Eq. (5.4) given below at the collision energy of Ecm = 9.5 eV. It

is just the sum over the product of transition probability at specific vibrational state, and the

corresponding vibrational energy of either O2(v′) or O+
2 (v′′) as the case may be, as a function

of θcm. The number of vibrational levels of the diatoms included in the computation is 20.

The computed average vibrational energy transfer ∆Evib (θcm) for both type of processes

have been shown in Fig. 5.15. The results for the IVE channel is compared with the available

data from the experiments upto θcm = 20◦. The results for VCT channel have been displayed
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Figure 5.15: Average vibrational energy transfer ∆Evib (θcm) (in eV) as a function of scat-
tering angle θcm for the IVE (left) and the VCT (right) channels at Ecm = 9.5 eV. Theory
and experiment (Gianturco, Gierz, and Toennies, 1981) are compared for the IVE channel.

in full range of θcm without any experimental data.

∆Evib (θcm) =
∞∑

v′=0

P0→v′(θcm)∆E(0→ v′)

∆Evib (θcm) =
∞∑

v′′=0

P0→v′′(θcm)∆E(0→ v′′)

(5.4)

The agreement between theory and experiment is fairly good even though there is a large

deviation near θcm ≈ 20◦. In the VCT channel, ∆Evib (θcm) decreases sharply followed by

slight increase as a function of θcm.

5.7.1.5 Intergral cross section

The rotationally-summed state-to-state integral cross section (ICS) is computed using Eq.

(3.32) and is shown in Fig. 5.16 as a function of vibrational quantum number of O2(v′)

for IVE channel (left) and as a function of vibrational quantum number of O+
2 (v′′) for VCT
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Figure 5.16: Rotationally-summed state-to-state integral cross section (σ) for the IVE (left)
and the VCT (right) processes as a function of final vibrational energy levels of O2 and O+

2 ,
respectively at Ecm = 9.5 eV. Note that the ground vibrational state of O2(X3Σ−g ) is the
initial state. The numbers in the ordinate indicate powers of 10.

Figure 5.17: The VCC-RIOSA absolute rotationally-summed state-to-state integral cross
section (σ) for the IVE channel, H+ + O2(v = 0) −→ H+ + O2(v ′), and the VCT channel,
H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′) at the Ecm = 9.5 eV for different vibrational states
of O2(v′) and O+

2 (v′′).

Integral cross section(Å2)
v′(v′′) IVE VCT

0 4381.07 1.42
1 49.95 1.55
2 20.99 1.34
3 11.13 0.74
4 6.11 0.62
5 3.18 0.54
6 1.80 0.49
7 1.38 0.42
8 1.11
9 1.12∑
v′(v′′) 4477.84 7.12

channel (right) at the collision energy of Ecm = 9.5 eV. Note that all the excitations refer

to the excitations from the initial ground vibrational state of O2(X3Σ−g ). The numbers in

the ordinate denote the power of 10. They have also been tabulated in Table 5.17. It shows

that there is a huge difference in the magnitudes of the ICSs between v′ = 0 and v′ = 1
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in the IVE channel. The maximum in ICS occurs for the v′ = 0 (elastic) excitation in the

IVE channel and for the v′′ = 1 excitation in the VCT channel. The vibrationally elastic

collisions are the dominant processes in the former while the collisions corresponding to

v = 0 → v′′ = 1 excitation are dominant in the latter process. ICS shows an exponential

decrease for the IVE and it passes through a maximum followed by a gradual decrease for

the VCT.

5.7.2 Dynamics at Ecm=23 eV

In this section, like the previous section, we will show and compare all the computed scat-

tering properties at Ecm = 23 eV with experiments (Noll and Toennies, 1986) and also

with other theoretical studies performed earlier (Sidis, Grimbert, Sizun, and Baer, 1989; Gi-

anturco, Palma, Semprini, Stefani, and Baer, 1990) along with the possible interpretations

concerning the agreement between theory and experiment.

5.7.2.1 The orientation opacities

The VCC-RIOSA angle-dependent opacity function as defined in Eq. (3.34) in chapter

3 is shown in Fig. 5.18 as a function of partial waves (l) (in the units of ~) for the IVE

channel (left panel), H+ + O2(v = 0) −→ H+ + O2(v ′) for γ = 0◦, 45◦ and 90◦ and the

VCT channel (right panel), H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′) for γ = 15◦, 45◦ and

75◦ orientations at Ecm = 23 eV. The magnitudes of opacities are less as compared with

those at Ecm = 9.5 eV for the IVE channel while the opposite is true in the VCT channel.

Nevetheless, at Ecm = 23 eV, more partial waves (l) are required for the convergence of the

opacity than at Ecm = 9.5 eV. In the IVE channel, the opacity follows the following order
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Figure 5.18: Opacity function as a function of partial waves (l, in the unit of ~) atEcm = 23
eV for γ = 0◦,γ = 45◦ and γ = 90◦ for the IVE channel H+ + O2(X3Σ−g , v = 0) −→
H+ + O2(X3Σ−g , v

′) (left panel), and orientations for the VCT channel H+ + O2(X3Σ−g , v =
0) −→ H(2S) + O+

2 (X2Πg, v
′′) (right panel).
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Figure 5.19: Opacity functions for all γ values at Ecm = 23 eV for the elastic collisions in
the IVE channel H+ + O2(v = 0) −→ H+ + O2(v ′ = 0) (left) and for first charge transfer
collisions in the VCT channel H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′ = 0) (right).

of excitation : v = 0 → v′ = 0 > v = 0 → v′ = 1 > v = 0 → v′ = 2 > v = 0 → v′ = 3.

This suggests the dominance of elastic collisions over inelastic collisions, as it was also the

case atEcm = 9.5 eV. The opacity in the VCT channel follows a different order as compared

to that of the IVE channel for γ = 15◦ and γ = 75◦ orientations, v = 0 → v′′ = 1 > v =

0 → v′′ = 2 > v = 0 → v′′ = 0 > v = 0 → v′′ = 3, and follows a similiar order as

observed for the IVE channel for γ = 45◦, v = 0 → v′′ = 0 > v = 0 → v′′ = 1 > v =

0 → v′′ = 2 > v = 0 → v′′ = 3. We compare in Fig. 5.19 the opacity functions for elastic

(left) and zeroth order charge transfer (right) collision for all the molecular orientations and

the magnitude of opacity decreases with γ, with 0◦ being the highest and 90◦ being the

lowest for the elastic collisions (v = 0 → v′ = 0). The magnitude follows the order :

0◦ > 15◦ > 30◦ > 45◦ > 60◦ > 75◦ > 90◦ and suggests that collinear approach promote

elastic process very much. The magnitude for v = 0 → v′′ = 0 charge transfer collisions

follows the order : 15◦ > 75◦ > 30◦ > 45◦ > 60◦ and suggest that 15◦ orientation promote

the charge transfer (v = 0→ v′′ = 0) collisions very much.
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5.7.2.2 Rotationally-summed state-selective differential cross section (DCS)

The rotationally-summed total differential cross section (TDCS) and rotationally-summed

state-selective differential cross sections (DCS) have been computed as a function of θcm

Ecm = 23 eV for the IVE channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT

channel, H+ +O2(v = 0) −→ H(2S)+O+
2 (v ′′). As discussed earlier (see subsection 5.7.1)

we show here in Fig. 5.20(b) only the smoothed data along with earlier theoretical results

in Fig. 5.20(c) (Gianturco, Palma, Semprini, Stefani, and Baer, 1990) and in Fig. 5.20(d)

(Sidis, Grimbert, Sizun, and Baer, 1989). Note that in these theoretical calculations the same

smoothing procedure was adopted. The experimental data (Noll and Toennies, 1986) are

shown in Fig. 5.20(a). The earlier theoretical and experimental results have been reproduced

from the mentioned references. Note that the earlier theoretical calculations were done on

the 2×2 coupled electronic PESs which were obtained using semiempirical methods. Since

experimental resolution was not sufficient to resolve the rotational excitations it would be

proper to compare the rotationally-summed state-to-state DCS with that of the experimental

state-to-state DCS. The earlier theoretical results also reported only the rotationally-summed

DCS. All the theoretical values are plotted on absolute scale and no normalization was

done. All the three sets of theoretical calculations yield different sizes of DCSs. In the

experiments the measurements of DCSs could be reported only on relative scale. Therefore,

we normalized the experimental data with the present theoretical values with respect to the

theoretical datum value taken at θcm = 11.72◦ (Experimental rainbow maximum for the

TDCS). The existence of the rainbow maximum in the TDCS observed in the experiments

is almost missing in the present calculations and predictions for the individual stat-to-state

DCS appear to closely follow the experimental trend. The results of Gianturco et al. (1990)
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Figure 5.20: Rotationally-summed total differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for IVE channel H+ + O2(v = 0) −→
H+ + O2(v ′) at Ecm = 23 eV along with experimental results (Noll and Toennies, 1986)
and other two earlier theoretical works (Sidis, Grimbert, Sizun, and Baer, 1989; Gianturco,
Palma, Semprini, Stefani, and Baer, 1990). The numbers in the ordinate denote powers of
10. See the text.

predict a rather strong rainbow maximum; The state-to-state DCSs are jumbled together

showing also the existence of the rainbow maximum in the individual curves. The results of

Sidis et al. (1989) appear to be in better agreement with those of experiments. Except for
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(a) (b)

Figure 5.21: Rotationally-summed total differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for the IVE channel H+ + O2(v = 0) −→
H+ + O2(v ′) and the VCT channel H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′ = 0) at Ecm = 23
eV. These results have been reproduced from the earlier theoretical study (Saieswari and
Kumar, 2007b, 2008a, 2009). The numbers in the ordinate denote powers of 10.

the rainbow maximum in the TDCS the present results appear to be mostly similar to those

of Sidis et al.. For the sake of comparision we have reproduced the results of Saieswari

and Kumar (2007b, 2008a, 2009) in Fig. 5.21(a) which were obtained using the 2× 2 state

smoothed coupled PESs (already discussed earlier in section 5.3). Their results show a

pronounced rainbow maximum for the TDCS located at smaller θcm values as compared to

that of a experiments. The existence of rainbow is also seen in the state-to-state DCSs which

are absent in the experiments. The DCSs also appear to be "wavy" in nature. and present

relatively a poor comparision against experiments.

The experimental results for the rotationally-summed TDCS and the rotationally-summed

state-to-state DCSs for the VCT channel are shown in Fig. 5.22(a). The present smoothed

theoretical results are shown in Fig. 5.22(b) and the earlier theoretical results are shown
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Figure 5.22: Rotationally-summed total differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for the VCT channel H+ + O2(v = 0) −→
H(2S) + O+

2 (v ′′ = 0) at Ecm = 23 eV along with experimental results (Noll and Toennies,
1986) and other two earlier theoretical results (Sidis, Grimbert, Sizun, and Baer, 1989; Gi-
anturco, Palma, Semprini, Stefani, and Baer, 1990). The numbers in the ordinate denote
powers of 10. See the text.

in Fig. 5.22(c) (Gianturco, Palma, Semprini, Stefani, and Baer, 1990) and in Fig. 5.22(d)

(Sidis, Grimbert, Sizun, and Baer, 1989). All the theoretical results show smoothed data, and

as discussed earlier, in this case also, the experimental data have been normalised with re-
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spect to the present theoretical datum value of the TDCS at θcm = 9.027◦ (the experimental

rainbow maximum in the TDCS). Here, we see a rainbow maximum in the present calcu-

lations for the TDCS, which is however located at slightly larger θcm values (θcm ∼ 11◦).

Interestingly, there appears to be another rainbow maximum at lower θcm(∼ 5◦). Such a

rainbow is not seen neither in the experiment nor in earlier theoretical calculations. The

results of Gianturco et al. show a pronounced rainbow maximum. The results of Sidis et al.

appears to be able to predict the experimental curve of the TDCS quite satisfactorily. The

trends for the state-to-state DCSs are more or less similar in all the theoretical sets and none

of them appear to predict them well in comparision with those of experiment. However, the

results of Sidis et al. appear to predict the results relatively better. The results of earlier

calculations for the VCT (Saieswari and Kumar, 2007b, 2008a, 2009) obtained from the

smoothed 2× 2 coupled PESs have been reproduced in Fig. 5.21(b). Interestingly, one sees

a broad rainbow maximum centered around θcm ∼ 8◦, close to the experimental rainbow

maximum. However, the DCSs appears to be jumbled together and their behaviour does not

appear to be satisfactory.

5.7.2.3 Transition Probability

The detailed behaviour of the state-to-state transition probability for different processes as

a function of θcm is a good tool to determine the quality of theoretical calculations. The

present computed and the experimental (Noll and Toennies, 1986) state-to-state transition

probabilities are shown in Fig. 5.23 for the IVE channel, H+ +O2(v = 0) −→ H+ +O2(v ′)

(upper left) as well as the VCT channel H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′) (upper right)

at Ecm = 23 eV, along with those of earlier theoretical results (Sidis, Grimbert, Sizun, and

Baer, 1989; Gianturco, Palma, Semprini, Stefani, and Baer, 1990). We have also enlisted
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Figure 5.23: The transition probability, P0→v′(θcm), for IVE (left) and VCT (right) channel
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our present theoretical data for the same in Table 5.10 and in Table 5.11, respectively. For the

IVE channel the experimental data are well predicted by the present and earlier calculations

of Sidis et al. in comparison with those of Gianturco et al.. However, for the VCT channels,

none of the theroretical calculations appear to predict the experimental data well in the entire

region of θcm. It turns out that while one set of theoretical data predicts the experimental

data well in certain region of θcm it fails to do so in another region of θcm.

5.7.2.4 Average vibrational energy transfer

Now, we analyse and compare the average vibrational energy transfer ∆Evib as a function

of θcm for both the IVE and the VCT channels with that obtained from the experiments and

earlier theoretical results. The expression for ∆Evib is defined earlier in Eq. (5.4). Here, we

just mention that for both the IVE channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT

channel, H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′), the number of vibrational energy levels in

the summation was 20, that is, from v = 0 to v′(v′′) = 20.

We can observe the general trend of the average vibrational energy transfer increasing

with the increase of scattering angle and extrapolating to a finite value as θ ∼ 0◦ in Fig.

5.24 (top) for the IVE channel. This shows that for the forward scattering (θcm ∼ 0◦) the

vibrationally elastic channel is the most dominant processes. The computed values in the

present work lie closer to the experimental values than the values obtained by Gianturco

et al.. The trend observed in the VCT channel is different from that in the IVE channel in

Fig. 5.24 (bottom). Eventhough we observe the trend to be the same as that of experiment

at least for θcm = 6◦ − 12◦. it is largely overestimated for small θcm. The theoretical data of

Gianturco et al. (1990) were reported with the scaling factor of 0.66 while comparing their
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Figure 5.24: Average vibrational energy transfer ∆Evib (in eV) as a function of θcm at
Ecm = 23 eV for the IVE (top) and the VCT (bottom) channels along with experimental data
(Noll and Toennies, 1986) as well as earlier theoretical results (Gianturco, Palma, Semprini,
Stefani, and Baer, 1990). Note the scaling factor (×0.66) in the data of Gianturco et al.. See
the text. 157



values with those of experiments. We have just reproduced them from the above reference

and in Fig. 5.24(bottom) they stand scaled by the factor 0.66. Interestingly, if we also scale

our theoretical data by the same scale then the comparison would look almost similar against

the experiments.

5.7.2.5 Intergral cross section
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Å

2
/
sr

)

Ecm = 23eV

0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Vibrational energy levels of O+
2 (v ′′)

σ
v
c
t (

Å
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Figure 5.25: Rotationally-summed integral cross section (σ) for the IVE (top left) and VCT
(top right) processes as a function of vibrational energy levels of O2 and O+

2 respectively at
Ecm = 23 eV and comparision at two collision energies (bottom row). The numbers in the
ordinate indicate powers of 10.

158



Rotationally-summed state-to-state integral cross section (ICS) for both IVE and the

VCT channels are reported in Fig. 5.25 as a function of vibrational levels of target diatomic

molecules O2 and O+
2 at Ecm = 23 eV (top row). The magnitudes of the computed ICS

are compared at Ecm = 9.5 eV and at Ecm = 23 eV for both the processes (bottom row).

There are no previously theoretical and experimental results for the ICS to be compared

with. The ICS for the IVE channel decreases exponentially whereas that of VCT channel

passes through a maximum at v′′ = 1 followed by exponential decay with the magnitude

of IVE process being higher than the VCT process. Also the comparison of the ICSs at

Ecm = 9.5 eV and at Ecm = 23 eV shows that ICSs remains almost the same for both

of these energies in the IVE channel whereas they differ widely in VCT channel, We also

tabulate the absolute values of ICS at the two collision energies in the Table 5.12. We can

conclude that the extent of the VCT is higher at Ecm = 23 eV than that at Ecm = 9.5 eV.

Table 5.12: The VCC-RIOSA absolute state-to-state integral cross section (σ) for the IVE
channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT channel, H+ + O2(v = 0) −→
H(2S) + O+

2 (v ′′) at Ecm = 9.5 eV and Ecm = 23 eV.

v′(v′′)
Integral cross section (Å2)
9.5 eV 23 eV

IVE VCT IVE VCT
0 4381.07 1.42 2671.78 2.14
1 49.95 1.55 59.05 3.14
2 20.99 1.34 18.52 2.75
3 11.13 0.74 10.96 1.74
4 6.11 0.62 6.31 1.20
5 3.18 0.54 4.32 0.96
6 1.80 0.49 3.13 0.78
7 1.38 0.42 2.24 0.68
8 1.11 1.73
9 1.12 1.45∑
v′(v′′) 4477.84 7.12 2779.511 13.39
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5.8 Summary

A new set of global ab initio adiabatic and quasi-diabatic PESs for the lowest four elec-

tronics states of the H+ + O2 system have been obtained at the MRCI level of accuracy

employing the Dunning’s cc-pVTZ basis set in the Jacobi coordinates. The correspond-

ing quasidiabatic PESs have also been computed at the same level of accuracy employing

the ab initio procedure. The non-adiabatic interactions have been analysed in terms of the

magnitudes of NACMEs and the coupling potential matrix elements.

We determined the equilibrium geometrical properties of bound triatomic [HO+
2 ] ion in

the GS and compared them with the earlier theoretical results. Our results are found to be in

excellent agreement with those obtained from earlier high level ab initio calculations which

focussed on the description of the potential well of the GS PES, thus lending credence to

our ab initio calculations.

We have taken out the 2 × 2 quasidiabatic potential matrix (describing the GS and the

first ES and their coupling) out of the 4×4 quasidiabatic potential matrix. We have modelled

the experimentally observed IVE and VCT processes as a two-state process and carried out

quantum dynamics.

We performed quantum dynamics at two different collision energies such as Ecm = 9.5

eV and Ecm = 23 eV using only the coupled GS and first ES PESs along with the associated

coupling potentials within the VCC-RIOSA framework to obtain the five different scatter-

ing properties, namely, Opacity function, Differential cross sections, Transition probability,

Average vibrational energy transfer, Integral cross section. We observe that there is an im-

provement in the computed collision attributes as compared with those of earlier reported

results (Saieswari and Kumar, 2008a, 2007b, 2009) using "smoothed" ab initio quasidia-
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batic coupled PESs. The improvement is much better for the IVE channel as compared to

the VCT channel where the predictions for the former is in good agreement with the ex-

perimental results. However, seriou discrepancies still exist between theory and experiment

for the VCT channel where none of the theoretical results (the present and the earlier two

results) are able to predict the experimental observation quite reliably. It turns out that if a

patricular set of theoretical data is in good agreement in certain range of θcm then it fails to

do so in other range of θcm. It is hoped that discrepancies between theory and experiment

that are found occasionally will be improved upon by the inclusion of two more ES PESs

in the quantum dynamical calculations. In subsequent chapter, we take up the quantum

dynamics on the 4× 4 coupled quasidiabatic potential matrix.
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CHAPTER 6

NONADIABATIC DYNAMICS ON THE FOUR

COUPLED ELECTRONIC PESs : THE H+ + O2 SYSTEM

In this chapter, we study the dynamics of the IVE, H+ + O2(X 3Σ−g , v = 0) −→ H+ +

O2(X 3Σ−g , v
′), and the three VCT, H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+

2 (X 2Πg, v
′′),

H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 4Πu, v

′′′) and H+ + O2(X 3Σ−g , v = 0) −→

H(2S) + O+
2 (X 4Σ−g , v

′′′′) processes. We present all four adiabatic and quasi-diabatic ab

initio PESs and their associated NACMEs and Coupling potentials. We have performed a

time-independent quantum dynamics study within the VCC-RIOSA framework at the ex-

perimentally reported collision energies, Ecm = 9.5 eV and Ecm = 23 eV using these four

coupled PESs and compared the results with those of experiments as well as those of the

earlier theoretical studies, followed by a comparative study at these two collision energies.

6.1 Present focus

In the preceeding chapter, we have discussed the details of the quantum dynamics carried out

on the two-state (2×2) coupled surfaces (the GS and the first ES). This 2×2 coupling matrix

was taken out from the 4× 4 coupling matrix which involved ab initio computations of the

GS and the three lowest ESs. The various characteristics of the GS and the first ES adiabatic

as well as the quasi-diabatic PESs have been already analysed in detail in the chapter 5. The

vibrational coupling matrix elements for these two surfaces have also been analysed there.



As noticed, there is a marked improvement in the quantum calculations as compared to those

of earlier quantum calculations which were obtained by using the smoothened 2×2 coupled

PESs. However, yet discrepancies exist. Therefore, in this chapter we present a thorough

analysis of the characteristics of the involved four electronic states and present and discuss

the quantum dynamics results involving the 4×4 coupled PESs along with the experimental

and earlier theoretical results.

6.2 Ab initio PECs

The details of ab initio computations involving the 4×4 coupled electronic PECs have been

given in chapter 5 and hence we present and discuss the characteristics of GS, the first, the

second and the third ESs together at r = req as a function of R for various γ values.

In Fig. 6.1, we show ab initio adiabatic PECs of GS, the first, the second and the thrid

ESs for collinear (γ = 0◦, C∞v group) and perpendicular approaches (γ = 90◦, C2v group)

of incoming H+ as a function ofRwith r fixed at req = 2.293a◦ (left panel) and as a function

of r at R = 4a◦ (right panel). The spectroscopic designation of the four electronic states in

C∞v group is 1 3Σ−, 1 3Π, 2 3Π and 3 3Π respectively in order of increasing energy at r = req

and R ≈ 3a◦, respectively and is 1 3B1, 1 3A2, 2 3B1 and 3 3B1 respectively in C2v group.

The GS PEC correlates to the IVE channel H+ +O2(3Σ−g ) and the first ES PEC correlates to

the first vibrational charge transfer channel (VCT) H(2S) + O+
2 (2Πg). The second and third

ES PECs correlates to the second charge transfer channel H(2S) + O+
2 (4Πu) and the third

charge transfer channel H(2S) + O+
2 (4Σ−g ), respectively.

A summary of essential molecular properties of O2 and O+
2 of different electronic states
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Figure 6.1: Ab initio adiabatic PECs of GS, the first, the second and the third ESs for γ =
0◦and 90◦ as a function of R for a fixed r = req = 2.293a◦ (left panel) and as a function of r
for a fixed R = 4.0a◦ (right panel). Note the presence of crossings between the lowest two
electronic states of different symmetries.

was already given in Table 5.3. In addition, we present in Table 6.1 vibrational energy level

spacings of of O2(3Σ−g ), O+
2 (2Πg), O+

2 (4Πu) and O+
2 (4Σ−g ) which are used in the quantum

dynamical computations involving four-states.

Note the presence of crossings between the lowest two electronic states of different sym-

metries. Also, the second and third ES PECs exhibit a long-range shallow well for R > 5a◦

even though not seen in Fig. 6.1(left panel). In Fig. 6.1(right panel), there appears crossings

between PECs of symmetries 1 3Σ− and 1 3Π at two places, one at around r = 2a◦ and
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Table 6.1: The computed vibrational energy level spacing ∆Ev+1→v
vib (eV) of O2(3Σ−g ),

O+
2 (2Πg), O+

2 (4Πu) and O+
2 (4Σ−g ) from their corresponding PECs for first 20 states and

∆E1→0
vib transition have been given in bold

∆Ev+1→v
vib (eV) O2(3Σ−g ) O+

2 (2Πg) O+
2 (4Πu) O+

2 (4Σ−g )

1→ 0 0.1913 0.2300 0.1248 0.1420
2→ 1 0.1884 0.2259 0.1224 0.1382
3→ 2 0.1855 0.2218 0.1200 0.1343
4→ 3 0.1827 0.2177 0.1175 0.1304
5→ 4 0.1799 0.2137 0.1150 0.1266
6→ 5 0.1771 0.2097 0.1123 0.1227
7→ 6 0.1743 0.2056 0.1099 0.1188
8→ 7 0.1715 0.2016 0.1074 0.1154
9→ 8 0.1687 0.1976 0.1047 0.1131
10→ 9 0.1659 0.1936 0.1020 0.1100
11→ 10 0.1630 0.1895 0.0993 0.1045
12→ 11 0.1602 0.1855 0.0965 0.0921
13→ 12 0.1573 0.1815 0.0936 0.0137
14→ 13 0.1544 0.1774 0.0906 0.0542
15→ 14 0.1515 0.1734 0.0876 0.0505
16→ 15 0.1485 0.1693 0.0844 0.0381
17→ 16 0.1455 0.1652 0.0812 0.0496
18→ 17 0.1424 0.1611 0.0778 0.0410
19→ 18 0.1392 0.1569 0.0743 0.0441
20→ 19 0.1359 0.1528 0.0707 0.0454

another in the range 3a◦ − 3.5a◦ and an avoided crossing between the PECs of symmetries

2 3Π and 3 3Π in the range 2.5a◦ − 3.0a◦ for γ = 0◦ at R = 4a◦.

The ab initio adiabatic (solid line) and the corresponding quasi-diabatic (dashed line)

PECs of the GS, the first, the second and the third ESs for the three off-collinear orientations

(Cs point group) such as γ = 15◦, γ = 45◦, γ = 75◦, have been shown as a function of R

for a fixed r = req = 2.293a◦ (left panel) and as a function of r for a fixed R = 4.0a◦

(right panel) in Fig. 6.2. The spectroscopic designations of the four electronic states in

this Cs point group are 1 3A′′, 2 3A′′, 3 3A′′ and 4 3A′′ respectively in the increasing order of

energy at R ≈ 3a◦ and at R = 4.0a◦. Note that for R > 8a◦, the asymptotic correlations of

the adiabatic PECs differ from that of γ = 0◦and 90◦ orientations in Fig. 6.2 (right panel).
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Figure 6.2: Ab initio adiabatic (solid line) and quasi-diabatic (dashed line) PECs of GS,
first ES, second ES and third ES for γ = 15◦, 45◦and 75◦ orientations as a function of R
(left panel) for a fixed r = req = 2.293a◦ and as a function of r (right panel) for a fixed
R = 4.0a◦. Note the presence of various crossings and avoided crossings between the PECs
of symmetry 3A′′. The presence of shallow well in the second and third ES PECs as function
of R lends support to the second and third charge transfer processes. See text.

.
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The GS PEC correlates to the first VCT channel H(2S) + O+
2 (2Πg) and the first ES PEC

correlates to the IVE channel, H+ + O2(3Σ−g ). The second and the third ES PECs correlate

to second charge transfer channel H(2S) + O+
2 (4Πu) and the third charge transfer channel

H(2S) + O+
2 (4Σ−g ) respectively. In short, in the collinear and perpendicular approach, GS

PEC correlates to the IVE channel and in the off-collinear approach of H+, it correlates

to the first VCT channel. Unlike the collinear and the perpendicular geometries, the four

state PECs belonging to off-collinear geometries of 3A′′ symmetry show landau-zener type

of coupling (Landau, 1932; Zener, 1932) at lower R values and Rosen-Zener-Demkov type

of coupling (Demkov, 1964; Nakamura, 1996; Rosen and Zener, 1932) at higher R values

where all PECs run parallel to each other. The Landau-Zener coupling appears to be stronger

for γ = 45◦ orientation and occurs around R = 3.2a◦ between the first ES and the second

ES and at R = 3.0a◦ between the second ES and the third ES as a function of R and at

r = 2.7a◦ between the first ES and the second ES and at r = 2.9a◦ between the second ES

and the third ES as a function of r. It is shifted to a smaller R and to a higher r for higher γ

values, with decreasing coupling strength. In quasi-diabatic PECs of Fig. 6.2 (represented

as dashed lines) there are direct curve crossings between the electronic states. All the three

ES PECs exhibit long-range shallow well at extended R regions and their depths relative

to asymptotic products are summarized in Table 6.2 different γ values. The probability of

various processes depend on the depth of these shallow wells which is highest at γ = 15◦

and lowest at both γ = 0◦ and γ = 90◦. The location of well for second VCT process occurs

at higher R than that of other two processes. As stated in preceeding chapter, first VCT

channel is exoergic than the IVE channel by 2.04 eV and is the most probable VCT channel

among all. The second and third VCT channels are endoergic relative to IVE chaanel by 1.96

eV and 4.10 eV respectively. Eventhough endoergic, it still occrs because of the presence of
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Table 6.2: The computed well depth and its location in terms of R coordinate for first VCT,
H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+

2 (X 2Πg, v
′′), second VCT, H+ + O2(X 3Σ−g , v =

0) −→ H(2S) + O+
2 (X 4Πu, v

′′′) and third VCT, H+ + O2(X 3Σ−g , v = 0) −→ H(2S) +
O+

2 (X 4Σ−g , v
′′′′) process given at r = req = 2.293a◦ as a function of γ with the data under

titles O+
2 (2Πg), O+

2 (4Πu) and O+
2 (4Σ−g ) denoting the well depth in eV. The maximum well

depth, its location and the mean well depth for each process is indicated in bold font.

γ R(a◦) O+
2 (2Πg) R(a◦) O+

2 (4Πu) R(a◦) O+
2 (4Σ−g )

0◦ 6.8 0.0148 7.00 0.0097 6.80 0.0136
15◦ 4.6 0.6753 7.07 0.0105 6.70 0.0144
30◦ 4.8 0.2756 7.15 0.0090 6.68 0.0131
45◦ 5.0 0.1465 7.33 0.0073 6.58 0.0122
60◦ 4.6 0.1994 7.51 0.0061 6.45 0.0121
75◦ 3.8 0.5390 7.62 0.0055 6.33 0.0124
90◦ 5.8 0.0186 8.00 0.0050 6.20 0.0128

Mean 5.06 0.2670 7.38 0.0076 6.53 0.0129

shallow well in the corresponding PECs.

6.3 Ab initio PESs

We present now ab initio adiabatic PESs for the four electronic states as function of R

and r for the collinear, γ = 0◦ and the perpendicular, γ = 90◦ orientations in Fig. 6.3.

As noted above, these two geometries belong to C∞v and C2v point groups and hence the

spectroscopic designations of the respective electronic states in order of increasing energy

will be 1 3Σ−, 1 3Π, 2 3Π and 3 3Π for the C∞v and 1 3B1, 1 3A2, 2 3B1 and 3 3B1 in the

C2v group at R ≈ 3a◦. The symmetry labellings can flip as function of R. For example,

as seen in Fig. 6.3 at R = 8a◦, the order will be 1 3Π, 1 3Σ−, 2 3Π and 3 3Π and 1 3A2,

1 3B1, 2 3B1 and 3 3B1, respectively. The GS PES correlates to inelastic channel (IVE),

H+ + O2(X 3Σ−g , v = 0) −→ H+ + O2(X 3Σ−g , v
′), and the first ES PES correlates to the

first vibrational charge transfer channel (VCT), H+ + O2(X 3Σ−g , v = 0) −→ H(2S) +
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Figure 6.3: Ab initio adiabatic PESs for γ = 0◦ and γ = 90◦ as a function of r and R.
The symmetry labelling differs due to the point group difference, C∞v and C2v, respectively.
Note that there is direct surface crossing between the GS PES and first ES PES which are of
different symmetry in both cases.
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Figure 6.4: Ab initio adiabatic (left panel) and quasi-diabatic (right panel) PESs for γ =
15◦, 45◦, 75◦ as a function of r and R for four low lying electronic states of symmetries,
1 3A′′, 2 3A′′, 3 3A′′ and 4 3A′′ respectively. Note that there is a direct crossing of two low
lying surfaces of same symmetry, 3A′′.

O+
2 (X 2Πg, v

′′). The second and third ES PESs correlates to second charge transfer channel,

H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 4Πu, v

′′′) and third charge transfer channel,

H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 4Σ−g , v

′′′′) respectively.

For the off-collinear geometries (Cs point group) such as γ = 15◦, 30◦, 45◦, 60◦, 75◦,

the symmetry labels for the four electronic states at R ≈ 3a◦ are 1 3A′′, 2 3A′′, 3 3A′′ and
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4 3A′′, and they are shown in Fig. 6.4 as a function of R and r for γ = 15◦, γ = 45◦ and

γ = 75◦. Asymptotic correlation remain the same here as for the collinear and perpendicular
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Figure 6.5: Ab initio adiabatic GS, first ES PES, second ES PES and third ES PES as a
function of γ and R at r = req = 2.293a◦. Note the large energy gap between the first ES
and second ES PES.

approaches, with each state correlating to either ground or excited states of O2 and O+
2 .

Note that in Fig. 6.4, the adiabatic PESs are shown in the left panel while those of the

quasi-diabatic PESs are displayed in the right panel. There is an avoided crossing in the

adiabatic GS PES and first ES PES in all the three orientations which turn into direct surface

crossing in the quasi-diabatic case as is visible from the Fig.6.4 (right panel). The extent

of interaction can be judged from the study of properties such as coupling potential and

NACME etc. which will be discussed in the following section.

In Fig. 6.5, ab initio adiabatic GS, first ES, second ES and third ES PESs as a function

of γ and R at r = req = 2.293a◦ are shown. Except GS PES, first, second and third ES

PES are repulsive in nature and kind of interaction among them is clearly visible from the
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small hump like structure existing at smaller R values. At large R, all the four PESs remain

almost flat. One last feature worth mentioning is that generally ES PESs quickly falls off and

become flat in Jacobi plane (R, r) than the GS PES because the GS PES has been seperated

far away from the ES PESs energetically.

6.4 Coupling PESs and NACME

Now we present the coupling potentials (V d
mn) (d stands for the diabatic (potential) and m

and n denote the different or same electronic states) and the NACME values as a function

of R and r for γ = 15◦, 45◦ and 75◦. The coupling potentials and the NACME values for

the GS and the first ES have already been discussed in the preceeding chapter. Here, we

first present the coupling potential between the GS and the second ES (V d
13) and the same

between the GS and the third ES (V d
14) in Fig. 6.6. For the coupling of the GS with the first,

the second and third ESs we can make the following observation that, barring the regions of

very small R with highly compressed or enlarged r, their magnitudes generally follow the

following trend : V d
12 > V d

13 > V d
14. V d

12 is displayed in Fig. 5.7. This suggests that the effect

of the second and third ESs coupling with GS would be comparatively small. Similarly, from

Fig. 6.7, we observe that in general, V d
23 > V d

24. V d
34 is displayed in Fig. 6.8(left panel) and

as an illustration we have also shown the corresponding NACME in Fig. 6.8(right panel).

In Fig. 6.9, the same has been plotted as a function of R and r at r = req. Interestingly,

the magnitudes of V d
34 are relatively smaller implying that the coupling between second and

third ESs is comparatively smaller.
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Figure 6.6: Coupling between GS and second ES PESs (left panel) and coupling between
GS and third ES PESs (right panel) as a function of R and r for γ = 15◦, 45◦, 75◦.
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Figure 6.7: Coupling between first ES and second ES PESs (left panel) and coupling be-
tween first ES and third ES PESs (right panel) as a function ofR and r for γ = 15◦, 45◦, 75◦.

174



0
2

4
6

8

1.5
2

2.5
3

3.5

−0.04

−0.02

0

0.02

0.04

0.06

R(a◦)

γ = 15◦

r(a◦)

V
d 3
4
(a

.u
)

2
4

6
8

1.5
2

2.5
3

3.5

0

1

2

3

4

5

6

7

8
γ = 15◦

R(a◦)r(a◦)

N
A

C
M

E
(a

.u
)

0
2

4
6

8

1.5
2

2.5
3

3.5

−0.04

−0.02

0

0.02

0.04

0.06

0.08

R(a◦)

γ = 45◦

r(a◦)

V
d 3
4
(a

.u
)

0
2

4
6

8

1.5
2

2.5
3

3.5

0

1

2

3

4

5

6

7

8

R(a◦)

γ = 45◦

r(a◦)

N
A

C
M

E
(a

.u
)

0
2

4
6

8

1.5
2

2.5
3

3.5

−0.06

−0.04

−0.02

0

0.02

0.04

R(a◦)

γ = 75◦

r(a◦)

V
d 3
4
(a

.u
)

0
2

4
6

8

1.5
2

2.5
3

3.5

−4

−2

0

2

4

6

8

10

R(a◦)

γ = 75◦

r(a◦)

N
A

C
M

E
(a

.u
)

Figure 6.8: Coupling between second and third ES PESs (left panel) and NACME between
second and third ES PESs (right panel) as a function of R and r for γ = 15◦, 45◦, 75◦.
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Figure 6.9: Coupling between second and third ES PESs (left) and NACME between second
and third ES PESs (right) as a function of R and γ for r = req = 2.293a◦.

6.5 Vibrational coupling matrix elements
(
Vvv′′′/v′′′′(R; γ)

)

The angular dependent vibrational coupling matrix elements (VCME) for second VCT chan-

nel (V0v′′′) (left panel) H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 4Πu, v

′′′) and the third

VCT (V0v′′′′) channel (right panel) H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 4Σ−g , v

′′′′)

are presented in Fig.6.10 as a function of R computed using asymptotically extended ab

initio PESs upto R = 50a◦, ab initio PECs and vibrational energy level (lowest 20 lev-

els) of diatomic molecules O2(3Σ−g ), O+
2 (2Πg), O+

2 (4Πu) and O+
2 (4Σ−g ). Actually, it is the

coupling of vibrational mode of the incoming H+ along the reaction coordinate with the

vibrational mode of O2 and is defined as Vvv′′′/v′′′′(R; γ) = 〈χv(r)|V in(R, r, γ)|χv′′′/v′′′′(r)〉,

where V in(R, r, γ) = V (R, r, γ) − V (R = ∞, r, γ) with the superscript in meant for in-

teraction potential and χv(r) and χv′′′/v′′′′(r) are the wavefunction of diatoms of O2(3Σ−g ),

O+
2 (2Πg), O+

2 (4Πu) and O+
2 (4Σ−g ) as a function of r and is computed for each value of

γ over a fine mesh of r. The matrix containing VCMEs for different vibrational states is
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Figure 6.10: The vibrational coupling matrix elements as a function ofR for γ = 0◦,γ = 45◦

and γ = 90◦ orientations for the second VCT (V0v′′′) channel H+ + O2(X 3Σ−g , v = 0) −→
H(2S)+O+

2 (X 4Πu, v
′′′) (left panel) and the third VCT (V0v′′′′) channel H+ +O2(X 3Σ−g , v =

0) −→ H(2S) + O+
2 (X 4Σ−g , v

′′′′) (right panel).
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symmetric matrix and size is 20 × 20 and it is R dependent. We will concentrate on the

magnitude of these matrix elements as a function of R for different γ and is presented in

Fig.6.10. The magnitudes of second and third VCT processes are always lesser than first

VCT process, H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 2Πg, v

′′), and hence incoming

H+ couples more strongly with the first VCT process rather than second or third VCT pro-

cess. The order of coupling with different vibrational energy levels of O+
2 species remain

independent of angular approach of projectile H+ and follows v′′′/v′′′′ = 0 > 1 > 2 > 3.

In the collinear approach the coupling is the strongest and is reduced to about 50% from

secon VCT to third VCT and for off-collinear and perpendicular approach the magnitudes

are similar in both the cases. This suggests that collinear geometry is most favoured geome-

try for second and third VCT processes compared to the other two geometries. It is zero for

all practical purposes for all γ after R = 8a◦ The VCMEs for v′′′/v′′′′ = 2, 3 goes to zero

very quickly at about R ≈ 3a◦ than v′′′/v′′′′ = 0, 1 which falls to zero at around R ≈ 6a◦

The v′′′/v′′′′ = 0 coupling in each case tends to a high value as R decrease relative to other

coupling v′′′/v′′′′ = 1, 2, 3 · · ·

6.6 Quantum dynamics

The quantum dynamics was performed under the VCC-RIOSA approach at Ecm = 9.5 eV

and at Ecm = 23. 20 vibrational levels each of O2(X3Σ−g ), O+
2 (X2Πg), O+

2 (X4Πu), and

O+
2 (X4Σ−g ) species were included in the vibrational close-coupling equations which were

solved (with J = 0) by the sixth-order Numerov method for 7 equally spaced γ values

between 0◦ and 90◦ for each partial wave (l) to obtain the scattering properties at these two

collision energies. We focus only on the IVE and firt VCT channel even though second
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and third VCT channels can be studied which we do not due to the absence of experimental

information.

6.6.1 Dynamics at Ecm=9.5 eV

In this section, we compare the computed dynamical quantities with those of the experimen-

tal results (Gianturco, Gierz, and Toennies, 1981). The state-to-state experimental data are

available only for the IVE process at collision energy Ecm = 9.5 eV. We have computed

the various dynamical properties at this energy using the 4× 4 coupled PESs and compared

them with those available from the experiments. There does not seem to be any quantum

dynamical study at this collision energy.

6.6.1.1 The orientation opacities

The VCC-RIOSA angle-dependent opacity function as defined in Eq. (3.34) in chapter 3 is

shown in Fig. 6.11 as a function of partial waves (l) (in the units of ~). For the IVE channel

(left panel), H+ + O2(v = 0) −→ H+ + O2(v ′) they have been shown for γ = 0◦, γ = 45◦

and γ = 90◦. For γ = 0◦ and γ = 90◦, there is no radial coupling between the IVE and

the VCT channels, and therefore, there are no VCT excitations. The opacities are shown for

the first VCT channel, H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′) for γ = 15◦, γ = 45◦ and

γ = 75◦ orientations (right panel). The steric dependent opacity function speaks about the

amount of excitation of different vibrational states of O2 and O+
2 target molecules during

the collisions as the formula for opacity function, Eq. (3.34), involves the squaring of the

steric dependent T-matrix elements. By just looking at Fig. 6.11, it is easy to conclude that

the amount of vibrational excitation differs greatly from the IVE channel to the first VCT
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Figure 6.11: The opacity function as a function of partial waves (l, in the units of ~) for
γ = 0◦,γ = 45◦ and γ = 90◦ orientations for the IVE channel, H+ + O2(X3Σ−g , v = 0) −→
H+ + O2(X3Σ−g , v

′) (left panel) and for γ = 15◦,γ = 45◦ and γ = 75◦ orientations for the
first VCT channel, H+ + O2(X3Σ−g , v = 0) −→ H(2S) + O+

2 (X2Πg, v
′′) (right panel) at

Ecm = 9.5 eV. 180
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Figure 6.12: The comparision of opacity function among all the molecular orientations for
the elastic collisions for the IVE channel H+ + O2(X3Σ−g , v = 0) −→ H+ + O2(X3Σ−g , v

′)
(left) and for first charge transfer collisions for the first VCT channel H+ + O2(X3Σ−g , v =
0) −→ H(2S) + O+

2 (X2Πg, v
′′) (right) at Ecm = 9.5 eV.

channel. It is being more than 1000 times higher for the IVE channel than for the first VCT

channel, especially for γ = 45◦ and γ = 75◦ orientations. It also leads us to conclude that

elastic collisions (v = 0 → v′ = 0) remains the most abundant of all the collisions for all

the approaches. Considering the magnitudes of the opacities, we arrage the following order

of vibrational excitation in the IVE channel : v = 0 → v′ = 0 > v = 0 → v′ = 1 >

v = 0 → v′ = 2 > v = 0 → v′ = 3. The amount of elastic excitation decreases from

γ = 0◦ to γ = 90◦ with collinear approach of H+ ion favouring the elastic excitation more

than the off-collinear approaches. The opacity function is converged only when the number

of contributing partial waves (l~) reaches 500 while for the VCT channel this value is just

around l ≈ 200, indeed, less number of partial waves needed to get convergence. The order

of vibrational excitation is quite different in the VCT channel and is given for γ = 15◦ in

the decreasing order of excitation for v = 0 → v′′ = 1 > v = 0 → v′′ = 2 > v = 0 →

v′′ = 0 > v = 0→ v′′ = 3. For γ = 45◦ and γ = 90◦, there are not much oscillations in the
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opacity function and order of excitation is different from what is given above for γ = 15◦. In

the IVE process, elastic excitation is the most dominant process while in the VCT process,

v = 0 → v′′ = 1, v = 0 → v′′ = 3 and v = 0 → v′′ = 2 excitation are the most dominant

ones in γ = 15◦,γ = 45◦ and γ = 75◦ respectively. In Fig. 6.12, we show the comparision

of opacity function of elastic, v = 0 → v′ = 0 (left) and first VCT, v = 0 → v′′ = 0

(right) process for all orientations and it is readily seen that the opacity for elastic process

decreases gradually from γ = 0◦ to γ = 90◦ and vanishes to zero at about 600 partial waves,

whereas, the same for first VCT process is relatively very high for γ = 15◦ and less for

other orienations and vanishes to zero at about 200 partial waves. The magnitude of opacity

is higher in IVE process than the VCT process as usual.

6.6.1.2 Rotationally-summed state-selective differential cross section (DCS)

The total differential cross section (TDCS) and state-selective differential cross sections

(DCS) have been computed as a function of scattering angle θcm in center of mass (cm)

frame of reference at the collision energy of Ecm = 9.5 eV, for the IVE channel, H+ +

O2(X 3Σ−g , v = 0) −→ H+ + O2(X 3Σ−g , v
′) and the VCT channel, H+ + O2(X 3Σ−g , v =

0) −→ H(2S) + O+
2 (X 2Πg, v

′′) by employing the 4× 4 coupled PESs. As discussed earlier

in section 5.7, we report only such smoothed TDCS and state-selective DCSs in Fig. 6.13

for the IVE process (left) as well as the first VCT process (right) upto v′(v′′) = 5. avail-

able for the TDCS and the state-to-state DCSs to be compared with the theoretical results

at this collision energy. The TDCS computed by summing up the state-to-state DCSs upto

20 vibrational states of O2(3Σ−g ) and O+
2 (2Πg) have been shown (red) lying above the state-

to-state DCSs in both the channels. In the IVE channel, the TDCS and DCS for the elastic

process, v′ = 0, (blue) run parallel to each other with hardly any numerical differences till

182



0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5

6

Scattering angle (θcm)

d
σ

d
ω

( Å
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Figure 6.13: Rotationally-summed differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for the IVE channel H+ + O2(X3Σ−g , v =
0) −→ H+ +O2(X3Σ−g , v

′) (left) and for the first VCT channel H+ +O2(X3Σ−g , v = 0) −→
H(2S) + O+

2 (X2Πg, v
′′) (right) at Ecm = 9.5 eV. The number in the ordinate indicate the

powers of 10. There are no experimental data available to compare with theoretical results
at this collision energy.
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θcm ≈ 7◦ while in the VCT case, former is highly seperated from the later throughout the

entire range of scattering angle (θcm). The primary rainbow maximum in the TDCS curve

which appeared at θcm ≈ 12◦ in the IVE channel in the two-state quantum dynamical model

in subsubsection 5.7.1.2 is now appeared quenched very much in the four-state quantum

dynamics because of the influence of including two more ES PESs in the calculations. Sim-

ilar is the case with VCT channel too wherein a strong primary rainbow structure was seen

at θcm ≈ 14.5◦ in the two-state quantum dyanmical computation. The quenching of rainbow

in four-state calculation may be the result of competition among the three possible VCT

processes and the dominance of elastic excitation during the scattering events. The presence

of rainbow maxima feature, though of less intense, in the TDCS curve is the result of the

appearence of the same feature in the state-to-state DCS in both the channels. The individual

curves are laid out in the order staring from v′ = 0 to v′ = 5 one below one in Fig. 6.13

in the IVE channel (left) and their lay out in terms of decreasing DCS values are given as

follows : v′ = 0 > v′ = 1 > v′ = 2 > v′ = 3 > v′ = 4 > v′ = 5. All the curves show

monotonic decrease with scattering angle which is rather steep in the region upto θcm ≈ 8◦

and somewhat flatter at higher scattering angles. The individual curves in the VCT chan-

nel are laid out in a way different from IVE channel and the ordering of curves is given as

v′′ = 2 > v′′ = 1 > v′′ = 0 > v′′ = 3 > v′′ = 5 > v′′ = 4 and at θcm = 0◦, this ordering

looks different from the above : v′′ = 1 > v′′ = 5 > v′′ = 0 > v′′ = 2 > v′′ = 3 > v′′ = 4

The TDCS drops sharply below θcm < 10◦ and running almost flat with little variations after

that and state-to-state DCS falls sharply below θcm < 3◦ and then all of them runs closely

spaced with oscillations.
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6.6.1.3 Transition Probability

The relative state-to-state transition probability for IVE process, P0→v′ (θcm) and for VCT

process, P0→v′′ (θcm) have been computed as a function of scattering angle (θcm) from their

respective state-to-state DCS values using the set of formulas given in Eq. (6.1).

P0→v′ (θcm) =

dσ
dω

(0→ v′)
∣∣∣
θcm

vmax∑

v′=0

dσ
dω

(0→ v′)
∣∣∣
θcm

P0→v′′ (θcm) =

dσ
dω

(0→ v′′)
∣∣∣
θcm

vmax∑

v′′=0

dσ
dω

(0→ v′′)
∣∣∣
θcm

(6.1)

The denominator involves the summation over state-to-state DCSs upto 20 vibrational states

of O2(3Σ−g ) and O+
2 (2Πg) molecules and the numerator involves the state-to-state DCS as a

function of scattering angle (θcm) for a specific vibrational state and the division between the

two gives us the relative state-to-state transition probability for the IVE and the first VCT

channel. The transition probabilities for both the channels have been shown in Fig. 6.14

for the first five vibrational states along with the experimental data (Gianturco, Gierz, and

Toennies, 1981) for the IVE channel alone. In the case of first VCT channel, where there is

no experimental data available to compare with the theory. P0→v′′ (θcm) for the entire range

of θcm for first five vibrational excitations in O+
2 (2Πg) ion does not exceed 0.2 and almost

all the excitations the order of excitation reflects the listing of favourable excitaion and have

been given in decreasing order of transition probability magnitude as v = 0 → v′′ = 2 >

v = 0 → v′′ = 1 > v = 0 → v′′ = 0 > v = 0 → v′′ = 3 > v = 0 → v′′ = 4 and

the most dominant exciation is found to be v = 0 → v′′ = 2, contrary to our expectations

v = 0→ v′′ = 0. The probability ratio of most dominant VCT process to elastic process is
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Figure 6.14: The transition probability for the IVE channel (left) P0→v′(θcm), H+ + O2(v =
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are available for VCT channel.

0.2 : 0.8 roughly.
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6.6.1.4 Average vibrational energy transfer

The average vibrational energy transfer ∆Evib (θcm) (in eV) is computed for the IVE and the

first VCT processes using the set of formulas in Eq. (6.2) at the collision energy of Ecm =

9.5 eV. It is just the sum over the product of transition probability at specific vibrational

state, and the corresponding vibrational energy of either O2(v′) or O+
2 (v′′) as the case may

be, as a function of θcm. The number of vibrational levels included in the computation is

20. Theoretically, computed average vibrational energy transfer ∆Evib (θcm) in both type
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Figure 6.15: Average vibrational energy transfer ∆Evib (θcm) in eV as a function of scatter-
ing angle (θcm) for the IVE (left) and the first VCT (right) channels atEcm = 9.5 eV. Theory
and experiment (Gianturco, Gierz, and Toennies, 1981) are compared in the IVE channel

of processes have been shown in Fig. 6.15. The results for IVE channel is compared with

experiments upto scattering angle θcm = 20◦ and the results for VCT channel have been

displayed in full range of θcm without any experimental data.

∆Evib (θcm) =
∞∑

v′=0

P0→v′(θcm)∆E(0→ v′)

∆Evib (θcm) =
∞∑

v′′=0

P0→v′′(θcm)∆E(0→ v′′)

(6.2)
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The agreement between theory and experiment is quite encouraging in this four-state model

relative to the two-state model in subsubsection 5.7.1.4 and it explains the scattering angle

dependency of the average vibrational energy transfer exactly over the specified range in IVE

channel. The average vibrational energy tranfer of VCT process is considerably changed

from the two-state computations in subsubsection 5.7.1.4 and it is found to be here strongly

overestimated compared to the two-state model due to the influence of the ES PESs.

6.6.1.5 Intergral cross section

The rotationally summed state-to-state integral cross section (ICS) is computed using Eq.

(3.32) on page 41 and is shown in Fig. 6.16 as a function of vibrational quantum number of

O2(3Σ−g , v
′) for the IVE channel, H+ + O2(X 3Σ−g , v = 0) −→ H+ + O2(X 3Σ−g , v

′) (left)

and as a function of vibrational quantum number of O+
2 (2Πg, v

′′) for the first VCT channel,

H+ + O2(X 3Σ−g , v = 0) −→ H(2S) + O+
2 (X 2Πg, v

′′) (right) at the collision energy of

Ecm = 9.5 eV. The numbers in the ordinate denote the power of 10. The four-state model

gives us smaller values of ICS for both the IVE and the first VCT channel compared to that

of two-state model. But here, the values for charge transfer channel are not smooth as in

the case of those of the two-state model. We have summarized the absolute data of ICS in

Table 6.17 and it shows a large difference between v′ = 0 and v′ = 1 in the IVE channel

and between v′′ = 2 and v′′ = 3 in the VCT channel. The maximum occurs at v′ = 0

(elastic excitation) in the IVE process and at v′′ = 2 in the VCT process, suggestive of their

dominance in the collisional events. The sum of integral cross sections for the IVE and

the first VCT channel are computed to be at 104.05 and 0.581 respectively, almost close to

the value of ICS for the elastic channel indicating its huge dominance over other inelastic

channels. The Table 6.17 suggests that IVE channels dominate over VCT channels by two
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orders of magnitude.

0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2

Vibrational energy levels of O2(v ′)

σ
iv

e (
Å

2
/
sr

)

Ecm = 9.5eV

0 1 2 3 4 5 6 7
−1.3

−1.2

−1.1

−1

Vibrational energy levels of O+
2 (v ′′)

σ
v
c
t (

Å
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Figure 6.16: Integral cross section (σ) for the IVE, H+ + O2(X 3Σ−g , v = 0) −→ H+ +
O2(X 3Σ−g , v

′) (left) and VCT, H+ + O2(X 3Σ−g , v = 0) −→ H+ + O2(X 2Πg, v
′′) (right)

processes as a function of vibrational energy levels of O2(3Σ−g ) and O+
2 (2Πg) respectively at

Ecm = 9.5 eV. The numbers in the ordinate indicate powers of 10.

Figure 6.17: The VCC-RIOSA absolute state-to-state integral cross section (σ) for the IVE
channel, H+ + O2(X 3Σ−g , v = 0) −→ H+ + O2(X 3Σ−g , v

′) and the VCT channel, H+ +
O2(X 3Σ−g , v = 0) −→ H(2S)+O+

2 (X 2Πg, v
′′) at theEcm = 9.5 eV for different vibrational

states of O2(v′) and O+
2 (v′′).

Integral cross section(Å2)
v′(v′′) IVE VCT

0 100.17 0.0734
1 1.51 0.0738
2 0.68 0.0904
3 0.50 0.0511
4 0.33 0.0650
5 0.24 0.0671
6 0.18 0.0887
7 0.17 0.0715
8 0.14
9 0.13∑
v′(v′′) 104.05 0.581
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6.6.2 Dynamics at Ecm=23 eV

In this section, like the previous section, we will show and compare all the computed scat-

tering attributes with those obtained from experiments (Noll and Toennies, 1986) and also

with other theoretical studies performed earlier (Sidis, Grimbert, Sizun, and Baer, 1989; Gi-

anturco, Palma, Semprini, Stefani, and Baer, 1990) at this collision energy along with the

possible interpretations concerning the agreement between theory and experiment.

6.6.2.1 The orientation opacities

The VCC-RIOSA angle-dependent opacity function as defined in Eq. (3.34) in chapter 3 is

shown in Fig. 6.18 as a function of partial waves (l) (in the units of ~) for the IVE channel,

H+ +O2(v = 0) −→ H+ +O2(v ′) for γ = 0◦, γ = 45◦ and γ = 90◦ orientations (left panel)

and for the VCT channel, H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′) for γ = 15◦, γ = 45◦

and γ = 75◦ orientations (right panel) at Ecm = 23 eV. Note that since there is no radial

coupling between the IVE and the VCT channels for γ = 0◦ and 90◦ there is no opening

for any of the VCT channels for these angles and only the IVE process occur. The opacity

is less at Ecm = 23 eV than that of Ecm = 9.5 eV in the IVE channel while the opposite is

true in the VCT channel. At Ecm = 23 eV, more partial waves (l) are required to converge

the opacity than at Ecm = 9.5 eV with lmax = 800 for IVE process and lmax = 300 for

VCT process. The opacity follows the order of excitation in the IVE channel as given here

: v = 0 → v′ = 0 > v = 0 → v′ = 1 > v = 0 → v′ = 2 > v = 0 → v′ = 3,

suggestive of the dominance of elastic collisions over inelastic collisions, as it is the case at

Ecm = 9.5 eV. The order of opacity in the VCT channel is sensitive to γ and follows the

order, v = 0 → v′′ = 1 > v = 0 → v′′ = 2 > v = 0 → v′′ = 0 > v = 0 → v′′ = 3
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Figure 6.18: The opacity function as a function of partial waves (l, in the units of ~) for
γ = 0◦,γ = 45◦ and γ = 90◦ orientations for the IVE channel, H+ + O2(X3Σ−g , v = 0) −→
H+ + O2(X3Σ−g , v

′) (left panel) and for γ = 15◦,γ = 45◦ and γ = 75◦ orientations for
the VCT channel, H+ + O2(X3Σ−g , v = 0) −→ H(2S) + O+

2 (X2Πg, v
′′) (right panel) at

Ecm = 23 eV.
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Figure 6.19: The comparision of opacity function among all the molecular orientations for
the elastic collisions for IVE channel H+ +O2(X3Σ−g , v = 0) −→ H+ +O2(X3Σ−g , v

′) (left)
and for first charge transfer collisions for the first VCT channel H+ +O2(X3Σ−g , v = 0) −→
H(2S) + O+

2 (X2Πg, v
′′) (right) at Ecm = 23 eV.

for γ = 15◦ alone, the order, v = 0 → v′′ = 3 > v = 0 → v′′ = 2 > v = 0 →

v′′ = 1 > v = 0 → v′′ = 0 for γ = 45◦ and the order v = 0 → v′′ = 2 > v = 0 →

v′′ = 3 > v = 0 → v′′ = 1 > v = 0 → v′′ = 0 for γ = 75◦. This suggests that

higher vibrational charge transfer (0→ v′′) dominates over 0→ 0 process in all three given

orientations. We compare in Fig. 6.19 the opacity functions for the elastic (left) and the

v = 0 → v′′ = 0 VCT (right) collisions for all the molecular orientations. The magnitude

of opacity decreases with γ with the value for γ = 0◦ being the highest and that for γ = 90◦

being the lowest for the elastic collisions (v = 0 → v′ = 0) and the magnitude follows the

order : 0◦ > 15◦ > 30◦ > 45◦ > 60◦ > 75◦ > 90◦. It suggests that collinear approach

promote elastic process very much. The magnitude for v = 0 → v′′ = 0 vibrational charge

transfer collisions follows the order : 15◦ > 75◦ > 30◦ > 45◦ > 60◦ suggesting that they

are dominantly promoted by 15◦ orientations.
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6.6.2.2 Rotationally-summed state-selective differential cross section (DCS)

The rotationally-summed total differential cross section (TDCS) and rotationally-summed

state-selective differential cross sections (DCSs) have been computed as a function of scat-

tering angle θcm at Ecm = 23 eV, for the IVE channel, H+ + O2(X3Σ−g , v = 0) −→

H+ + O2(X3Σ−g , v
′) and the first VCT channel, H+ + O2(X3Σ−g , v = 0) −→ H(2S) +

O+
2 (X2Πg, v

′′). As mentioned earlier in section 5.7 we report here smoothed data for the

DCSs for both the IVE and the first VCT channels. In Fig. 6.20(b) we present our computed

results for the IVE channels. Since the experimental results were reported on a relative scale

we have normalized them with respect to our theoretical datum θcm = 11.72◦ which is on

the absolute scale and such normalized results are displayed in Fig. 6.20(a) (Noll and Toen-

nies, 1986). The earlier theoretical works done by Gianturco et al. (1990) are given in Fig.

6.20(c) and the works done by Sidis et al. (1989) are given in Fig. 6.20(d) for comparison.

By considering the dynamics evolving on the four-state coupled PESs, we achieved re-

markable improvements with respect to that obtained with two-state coupled electronic PESs

and the agreement between theory and experiment. By employing the GS, the first, the sec-

ond and the third ES PESs, we are able to bring about excellent agreement with experimen-

tal results over earlier reported theoretical results at Ecm = 23 eV. The rainbow feature is

clearly visible though of less intensity in the TDCS curve at around θcm ≈ 12◦ which was

completely absent in the two-state model. In the TDCS, the prediction of location of rain-

bow maximum by Gianturco et al. is roughly in agreement with experimental prediction of

θcm = 11.72◦. However, its size appears to be overestimated and for θcm > 12◦ it shows a

greater decline. Also, one see a pronounced rainbow maximum in their state-to-state DCSs

which appears to be nearly absent in the experiments. Their DCSs appear to be jumbled
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Figure 6.20: Rotationally-summed total differential cross section (TDCS) and rotaionally-
summed state-to-state DCS as function of θcm for IVE channel H+ + O2(X3Σ−g , v = 0) −→
H+ + O2(X3Σ−g , v

′) at Ecm = 23 eV along with the experimental and other two earlier
theoretical results (Sidis, Grimbert, Sizun, and Baer, 1989; Gianturco, Palma, Semprini,
Stefani, and Baer, 1990). The numbers in the ordinate denote powers of 10. See the text.

together in contrast to the experimental DCSs. The present data appear more or less similar

to that of Sidis et al.. Both predict the rainbow maximum in the TDCS at higher θcm as com-

pared to the experiments. But the size of the predicted rainbow maximum and its declining
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Figure 6.21: Rotationally-summed total differential cross section (TDCS) and rotationally-
summed state-to-state DCS as function of θcm for the first VCT channel H++O2(X3Σ−g , v =
0) −→ H(2S) + O+

2 (X2Πg, v
′′) at Ecm = 23 eV along with experimental results and other

two earlier theoretical works (Sidis, Grimbert, Sizun, and Baer, 1989; Gianturco, Palma,
Semprini, Stefani, and Baer, 1990). The numbers in the ordinate denote powers of 10. See
the text.

behaviour for larger θcm appear to be similar to that observed in the experiments. Also, the

individual DCSs are well seperated with each other and mostly follow the same order and

trend as seen in the experiment.
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For the charge transfer channel, H+ + O2(X3Σ−g , v = 0) −→ H(2S) + O+
2 (X2Πg, v

′′),

we normalized the experimental data with respect to our theoretical datum value of TDCS

at the experimental rainbow maximum at θcm = 9.0275◦. Typical error estimates of the

experimental data are given by the vertical bars. The rainbow maximum in the present

TDCS occurs at around θcm ≈ 11◦ which is roughly 2◦ away from the rainbow maximum

in the experimental curve and the intensity remains the same in both the case whereas it is

overestimated in the work of Gianturco et al.; Its location and intensity is better estimated in

the work of Sidis et al.. The order of layout of of state-to-state curves in terms of magnitudes

of DCS in the present theory is well reproduced and is given as follows : v′′ = 1 > v′′ =

2 > v′′ = 0 > v′′ = 3 > v′′ = 4 > v′′ = 5 > v′′ = 6 whereas this order is found to be

altered in the other two theoretical works and not in agreement with experimental results.

The TDCS and the DCSs in the experiment tend to a finite value after passing through a

little maximum when θcm goes to zero. This feature is absent in the present work. There

appears to be signatures of rainbow maximum in the experimental DCSs between 6◦ − 12◦

which is well marked for v′′ = 5. All the theoretical sets show the existence of these rainbow

maxima but at varying range of θcm as compared to those of experiments. The state-to-state

DCS falls off steeply between 3◦ ≤ θ ≤ 6◦ in the experiments and this is predicted by the

present work. Hence, overall there is encourgaging results obtained when moving from the

two-state computation to the four-state computation.

6.6.2.3 Transition Probability

The detailed behaviour of the state-to-state probability for different processes as a function

of scattering angle (θcm) is also a good tool to determine the quality of the present theoretical

calculations in predicting the experimental behaviour. The computed state-to-state transition
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Figure 6.22: The transition probability, P0→v′(θcm), for IVE (left) and VCT (right) channel
compared with experiment (Noll and Toennies, 1986) along with earlier theoretical works
(Staemmler and Gianturco, 1985; Gianturco, Palma, Semprini, Stefani, and Baer, 1990).
See the text. 197



probability and experimental values for the IVE channel, H+ +O2(v = 0) −→ H+ +O2(v ′)

(left) as well as the VCT channel H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′) (right) has been

shown in in Fig. 6.22 at Ecm = 23 eV along with the two earlier theoretical results (Sidis,

Grimbert, Sizun, and Baer, 1989; Gianturco, Palma, Semprini, Stefani, and Baer, 1990).

The results of present calculations, Gianturco et al. and Sidis et al. are shown in the top,

middle and bottom panels respectively. The experimental results (Noll and Toennies, 1986)

are also shown in all plots and are denoted as markers, • : v′(v′′) = 0; � : v′(v′′) = 1;

N : v′(v′′) = 2; ∗ : v′(v′′) = 3; � : v′(v′′) = 4; © : v′(v′′) = 5. The present data

for the IVE and the VCT channel have also been tabulated in Table 6.3 and in Table 6.4,

respectively, along with the experimental data.

From the behaviour of the P0→v′(θcm) for the IVE channel in Fig. 6.22(left), one can see

that the elastic process is overestimated by present calculations (top). The earlier work of

Gianturco et al. (1990) (middle) underestimates it whereas that of Sidis et al. (1989) (bot-

tom) predicts well The present computed values are found to be less than the experimental

values for the inelastic processes, for, v′ = 1, v′ = 2 and v′ = 3 excitations. The work of Gi-

anturco et al. (1990) produces larger vibrational inelasticity for v′ = 2 and v′ = 3 excitations

but well predicted by Sidis et al. (1989). The agreement for the present calculations is rather

poor for the P0→v′′(θcm) of the VCT channel relative to the IVE channel shown in Fig. 6.22

(right top). All the curves are underestimated in our calculations whereas in theory done by

Gianturco et al. (1990)(middle), all the inelastic processes closely follow the experimental

behaviour except at small angle regions where the probabilities are reduced considerably but

not for elastic process which remain the dominant process and in work done by Sidis et al.

(1989)(bottom), higher excitation are overestimated and low excitation process (including

elastic) are underestimated and it correctly predicts the population of O+
2
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molecules only at v′′ = 2. Even though there is numerical mismatch the present work

correctly explain the correct ordering of excitation of O+
2 species as set out by the experiment

unlike our two-state model case and hence in that aspect this model stand out as unique to

the earlier one The order of excitation predicted by four-state model is v = 0 → v′′ = 2 >

v = 0 → v′′ = 1 > v = 0 → v′′ = 0 > v = 0 → v′′ = 3 > v = 0 → v′′ = 4 >

v = 0 → v′′ = 5 > v = 0 → v′′ = 6. This work seems to be fitting to v′′ = 4 and

v′′ = 5 excitation more closely than any other, just as the work of Gianturco et al. with less

numerical difference. The difference in probability for most probable excitations v′′ = 1

and v′′ = 2 is very high relative to that of Gianturco et al. and Sidis et al. work and also

shape of the curves for these transitions are not similar to that of experiment. In spite of all

these we have found overall the obtained results are encouraging and worth the attempt over

our previous computation and still it is always advisable to redo the entire computation with

more refined approach and may bring about more accuracy than the current one.

6.6.2.4 Average vibrational energy transfer

we computed the average vibrational energy transfer ∆Evib (θcm) as a function of scattering

angle atEcm = 23 eV in the same manner using Eq. (6.2) for the IVE channel, H++O2(v =

0) −→ H+ + O2(v ′) and the VCT channel, H+ + O2(v = 0) −→ H(2S) + O+
2 (v ′′). The

computed ∆Evib along with those of experimental data (Noll and Toennies, 1986) and earlier

theoretical results (Gianturco, Palma, Semprini, Stefani, and Baer, 1990) are shown in Fig.

6.23 for the IVE (top) and the VCT (bottom) channels.

In Fig. 6.23(top) our four-state calculations explain well the angular dependency of the

∆Evib for the IVE channel which increases with the increase of θcm. For forward scattering,
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Figure 6.23: Average vibrational energy transfer ∆Evib (θcm) (in eV) as a function of scat-
tering angle (θcm) at Ecm = 23 eV for the IVE (top) and the first VCT (bottom) channels
along with experimental data (Noll and Toennies, 1986) as well as earlier theoretical work
(Gianturco, Palma, Semprini, Stefani, and Baer, 1990).
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it is almost zero primarily because of the dominance of the vibrationally elastic channel. The

computed values in the present work are lying close to the values obtained by Gianturco et al.

which are twice as large as the experimental ones. Though the numerical agreement seems

to be the same as the two-state model the roughly linear shape of the curve makes us happy

that the computed curve can be made to fit on the experimental one by a constant amount.

The trend observed in the VCT channel is different from that in the IVE channel in

Fig. 6.23 (top). Even though we observe the trend to be the same as that of experiment at

least in the small scattering angles the numerical agreement is not satisfactory and is highly

overestimated relative to both experiment work as well as that of Gianturco et al.

6.6.2.5 Intergral cross section

Rotationally-summed integral cross section (ICS) for the IVE, H+ + O2(X3Σ−g , v = 0) −→

H+ + O2(X3Σ−g , v
′) and the VCT, H+ + O2(X3Σ−g , v = 0) −→ H(2S) + O+

2 (X2Πg, v
′′), is

computed as a function of vibrational energy levels of target diatomic molecules O2 and O+
2

at Ecm = 23 eV in Fig. 6.24. There is no previously reported results from any theoretical

work or experiments to be compared with. The ICS for the IVE channel decreases exponen-

tially whereas that of VCT channel passes through a maximum at v′′ = 1 followed by an

exponential decay. The magnitude of the VCT being is less than that of the IVE process. We

tabulate the absolute values of the state-to-state ICS at the collision energy of Ecm = 23 in

the Table 6.25 for both channels and have found that sum over all vibrational states remain

at 62.90 and 0.988. As usual, the significant process is the elastic one in the IVE channel.
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Figure 6.24: Integral cross section (σ) for the IVE (left) and VCT (right) processes as a func-
tion of vibrational energy levels of O2 and O+

2 respectively at Ecm = 23 eV. The numbers in
the ordinate indicate powers of 10.

Figure 6.25: The VCC-RIOSA absolute rotationally-summed state-to-state integral cross
section (σ) for the IVE channel, H+ + O2(X3Σ−g , v = 0) −→ H+ + O2(X3Σ−g , v

′) and the
VCT channel, H+ + O2(X3Σ−g , v = 0) −→ H(2S) + O+

2 (X2Πg, v
′′) at the Ecm = 23 eV for

different vibrational states of O2(v′) and O+
2 (v′′).

Integral cross section(Å2)
v′(v′′) IVE VCT

0 59.77 0.085
1 1.242 0.173
2 0.672 0.167
3 0.367 0.127
4 0.294 0.091
5 0.187 0.092
6 0.134 0.073
7 0.097 0.063
8 0.078 0.044
9 0.063 0.073∑
v′(v′′) 62.90 0.988

6.6.3 Dynamics : A comparision between 9.5eV and 23eV

In this section, we are going to discuss about how the scattering properties are influenced

by the change of collision energy. Below we will compare one by one different scattering

properties.
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6.6.3.1 The orientation opacities
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Figure 6.26: The comparision of opacity function between Ecm = 9.5 eV and Ecm = 23
eV for the elastic collisions for IVE channel (left) H+ + O2(v = 0) −→ H+ + O2(v ′) for
γ = 0◦, 45◦, 90◦ and for first charge transfer collisions for VCT channel (right) H++O2(v =
0) −→ H(2S) + O+

2 (v ′′) for γ = 15◦, 45◦, 75◦.

The opacity functions are compared at two different collision energies, Ecm = 9.5 eV

and Ecm = 23 eV to see the changes it causes to the functions in Fig. 6.26 for both the

channels. The opacity function is less and survives for large number of contributing partial

waves at Ecm = 23 eV than at Ecm = 9.5 eV for the elastic collisions, v = 0 → v′ = 0 in

the IVE channel. Similar is the case of first VCT channel too, v = 0 → v′′ = 0 where it is

far displaced to right at Ecm = 23 eV for γ = 15◦. At Ecm = 9.5 eV and Ecm = 23 eV, the

opacity follows the order : 0◦ > 45◦ > 90◦ for IVE channel whereas for VCT channel, the

order depends upon the collision energy and is given as 15◦ > 45◦ > 75◦ at Ecm = 23 eV

and as 15◦ > 75◦ > 45◦ at Ecm = 9.5 eV. In general, the number of partial wave required

for convergence is less for the first VCT channel than the IVE channel and independent of

collision energy.
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6.6.3.2 Rotationally-summed state-selective differential cross section(DCS)
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2
/
sr

)

H+ + O2(X3Σ−
g , v = 0)→ H+ + O2(X3Σ−

g , v ′)

 

 

IVE

∑

i

v′(9.5eV)

v′ = 0(9.5eV)

v′ = 1(9.5eV)

v′ = 2(9.5eV)

v′ = 3(9.5eV)∑

i

v′(23eV)

v′ = 0(23eV)

v′ = 1(23eV)

v′ = 2(23eV)

v′ = 3(23eV)

0 5 10 15 20 25 30 35

−2

−1

0

1

2

3

Scattering angle (θcm)

d
σ

d
ω

( Å
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Figure 6.27: The comparision of state-to-state differential cross section (DCSs) and TDCS
between Ecm = 9.5 eV and Ecm = 23 eV for IVE channel (left) H+ + O2(v = 0) −→
H+ + O2(v ′) and for first VCT channel (right) H+ + O2(v = 0) −→ H(2S) + O+

2 (v ′′) as a
function of scattering angle (θcm) (deg).

The state-to-state DCSs and TDCS are compared at Ecm = 9.5 eV and Ecm = 23 eV
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for the IVE and first VCT channel as a function of scattering angle (θcm) (deg) in Fig. 6.27.

The magnitudes of TDCS and DCSs are always high at Ecm = 23 eV relatively than at

Ecm = 9.5 eV for both channels. The rainbow maximum at θcm ∼ 12◦ is well marked in

intensity at Ecm = 23 eV than at Ecm = 9.5 eV. The spacing between the TDCS and DCS

for elastic channel is comparatively larger at Ecm = 23 eV than at Ecm = 9.5 eV. There is a

flipping (cross over) of states of DCSs as a function of scattering angle at Ecm = 23 eV and

no such flipping is observed at Ecm = 9.5 eV for IVE channel. At θcm = 0◦, the magnitude

of DCSs is higher at Ecm = 23 eV than at at Ecm = 9.5 eV except elastic channel where the

DCSs at these two collision energies seems almost similar. Below θcm = 5◦, there is a steep

increase in DCSs as well as TDCS curve at both energies but at higher angle, decrease is

less at Ecm = 23 eV, looking roughly flat than at Ecm = 9.5. The TDCS curve is seperated

from state-to-stae DCS widely at Ecm = 9.5 eV whereas at Ecm = 23 eV this seperation is

less. The rainbow is fully developed in TDCS curve at Ecm = 23 eV and is hardly visible

at Ecm = 9.5 eV at θcm ∼ 10◦. The ordering of states predicted at the two energies differs a

lot as a function of scattering angle and the individual DCS states are more closely packed

at Ecm = 9.5 eV as a group than at Ecm = 23 eV. Upto v′′ = 4, state-to-state DCSs curves

are fully seperated with a wide gab, with DCSs at Ecm = 9.5 eV being at bottom.

6.6.3.3 Transition Probability

The transition probability for the IVE channel (left) P0→v′(θcm), H+ + O2(v = 0) −→

H++O2(v ′) and for VCT channel (right) P0→v′′(θcm), H++O2(v = 0) −→ H(2S)+O+
2 (v ′′)

at Ecm = 9.5 eV and Ecm = 23 eV are compared in Fig. 6.28 as a function of scattering

angle θcm. The angular dependency of transition probability is followed in both channels

approximately at both collision energies and is higher by slight margin at the collision energy

207



0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Scattering angle (θcm)

P
0
→

v
′ (

θ c
m

)

H+ +O2(X3Σ−g ,v = 0)→H+ +O2(X3Σ−g ,v ′)

 

 

IVE

v′ = 0(9.5eV)

v′ = 1(9.5eV)

v′ = 2(9.5eV)

v′ = 3(9.5eV)

v′ = 4(9.5eV)

v′ = 0(23eV)

v′ = 1(23eV)

v′ = 2(23eV)

v′ = 3(23eV)

v′ = 4(23eV)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

Scattering angle (θcm)

P
0
→

v
′′
(θ

c
m

)

H+ + O2(X3Σ−g , v = 0)→ H(2S) + O+
2 (X2Πg,v ′′)

 

 
v′′ = 0(9.5eV)

v′′ = 1(9.5eV)

v′′ = 2(9.5eV)

v′′ = 3(9.5eV)

v′′ = 4(9.5eV)

v′′ = 0(23eV)

v′′ = 1(23eV)

v′′ = 2(23eV)

v′′ = 3(23eV)

v′′ = 4(23eV)

Figure 6.28: The transition probability for the IVE channel (left) P0→v′(θcm), H+ + O2(v =
0) −→ H+ + O2(v ′) and for VCT channel (right) P0→v′′(θcm), H+ + O2(v = 0) −→
H(2S) + O+

2 (v ′′) at Ecm = 9.5 eV and Ecm = 23 eV as a function of scattering angle θcm.
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of Ecm = 9.5 eV than at the collision energy of Ecm = 23 eV for the IVE channel and

remain almost the same at v′ = 4 state. Both energies predict the same conclusion of

highest probability for elastic channel. In the case of VCT channel, the transition probability

never exceeeds 0.3 and higher at Ecm = 23 eV upto θcm = 20◦ for all states and order of

probability remain almost the same at both energies

6.6.3.4 Average vibrational energy transfer
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Figure 6.29: Average vibrational energy transfer ∆Evib (θcm) in eV as a function of scatter-
ing angle (θcm) for inelastic vibrational channel (IVE) (right), H+ + O2(X 3Σ−g , v = 0) −→
H+ + O2(X 3Σ−g , v

′) and vibrational charge transfer (VCT) (left), H+ + O2(X 3Σ−g , v =
0) −→ H(2S) + O+

2 (X 2Πg, v
′′) channels at Ecm = 9.5 eV and Ecm = 23 eV.

Average vibrational energy transfer ∆Evib (θcm) in eV as a function of scattering angle

(θcm) at the collision energy ofEcm = 9.5 eV andEcm = 23 eV for IVE (left) channel, H++

O2(X 3Σ−g , v = 0) −→ H+ +O2(X 3Σ−g , v
′), and VCT (right) channel, H+ +O2(X 3Σ−g , v =

0) −→ H(2S) + O+
2 (X 2Πg, v

′′), have been shown in Fig. 6.29. They are very close together

in the IVE channel and widely apart in the first VCT channel. The angular dependency at

two collision energies remains the same, increase of average vibrational energy transfer with
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increase of scattering angle in the IVE case and decrease with increase of scattering angle,

at both collision energies. The dip in VCT at Ecm = 23 eV is somewhat more steeper than

that at Ecm = 9.5 .

6.6.3.5 Intergral cross section
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Figure 6.30: Integral cross section (σ) for the IVE (left) and VCT (right) processes as a
function of vibrational energy levels of O2 and O+

2 respectively at Ecm = 9.5 eV and Ecm =
23 eV. The numbers in the ordinate indicate powers of 10.

The VCC-RIOSA absolute state-to-state integral cross section (ICS) (σ) for the IVE

channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT channel, H+ + O2(v = 0) −→

H(2S) + O+
2 (v ′′) at Ecm = 9.5 eV and Ecm = 23 eV for different vibrational states of

O2(v′) and O+
2 (v′′) have been shown in Fig. 6.30. The state-to-state discrete values for both

channels at these two collision energies have been summarized in Table 6.5. From the Fig.

6.30 and Table 6.5, we observe that the ICS values as a function of vibrational states for IVE

channel is higher for Ecm = 9.5 eV than Ecm = 23 eV and though the ICS at both energies

at lower states are roughly the same their gab increase with increase in quantum number and
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Table 6.5: The VCC-RIOSA absolute state-to-state integral cross section (σ) for the IVE
channel, H+ + O2(v = 0) −→ H+ + O2(v ′) and the VCT channel, H+ + O2(v = 0) −→
H(2S)+O+

2 (v ′′) at Ecm = 9.5 eV and Ecm = 23 eV for different vibrational states of O2(v′)
and O+

2 (v′′).

v′/v′′
Integral cross section (Å2)

9.5 eV 23 eV
IVE VCT IVE VCT

0 100.17 0.0734 59.77 0.085
1 1.51 0.0738 1.242 0.173
2 0.68 0.0904 0.672 0.167
3 0.50 0.0511 0.367 0.127
4 0.33 0.0650 0.294 0.091
5 0.24 0.0671 0.187 0.092
6 0.18 0.0887 0.134 0.073
7 0.17 0.0715 0.097 0.063
8 0.14 0.078 0.044
9 0.13 0.063 0.073∑
v′(v′′) 104.05 0.581 62.90 0.988

both curves generally decreases as a function of vibrational states. Note that there is big gab

of ICS between v′ = 0 and v′ = 1 and the ICS at v′ = 0 is the maximum at both energies. In

the case of VCT channel, the ICS values for Ecm = 9.5 eV is lower than that at Ecm = 23

eV and it is maximum at v′′ = 1 at Ecm = 23 eV and at v′′ = 2 at Ecm = 9.5 eV. The curve

for 9.5 eV are not smooth whereas that of 23 eV are smooth and keeps on decreasing after

passing through a maximum at v′′ = 1. The summed ICS for IVE channel at Ecm = 9.5 eV

and Ecm = 23 eV is 104.05 and 62.90 and the same for VCT channel is 0.581 and 0.988

respectively.

6.7 Summary

In this chapter, we have presented some of the salient features of the adiabatic and quasi-

diabatic PECs and PESs of the GS and the lowest three excited states and analysed the
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nonadiabatic interactions among them through the strength of the coupling potentials and

NACME behaviour.

The VCC-RIOSA calculations have been performed using the quasi-diabatic 4× 4 cou-

pling potential matrix to study the collision and energy transfer dynamics. A marked im-

provement is achieved in the present four-state quantum dynamics calculation as compared

to that of two-state calculations of the collision attributes such as TDCS and state-to-state

DCS against their experimentally observed trend and behaviour as a function of θcm. How-

ever, some quantitative discrepancies still remain in terms of the location of rainbow maxima

and the relative magnitudes of the state-to-state DCS as a function of θcm. Yet, the discrep-

ancy between theory and experiment exists for the production of transition probability as a

function of θcm; It is more in the case of the VCT channel since none of the theoretical sets

are able to predict them correctly for the entire range of θcm.

At this point, it is desirable to discuss the likely reasons for the discrepancies and pos-

sible measures/suggestions which would improve the quantum dynamical results. It is

worth pointing here that earlier quantum dynamics calculations were carried out within

the VCC-RIOSA framework on the coupled PESs involving the GS and the first ES. The

corresponding quasi-diabatic PESs and the coupling were obtained employing the semi-

empirical diatomics-in-molecules (DIM) method (Gianturco, Palma, Semprini, Stefani, and

Baer, 1990) and the model effective potential procedures based on improved projected va-

lence bond method (Sidis, Grimbert, Sizun, and Baer, 1989).

To the best of our knowledge, the present study reports for the first time in literature ab

initio adiabatic and quasi-diabatic PESs for the four lowest electronic states of 3A′′ sym-

metry. The constructions of the quasi-diabatic PESs have been achieved using the ab initio
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procedure. It is generally debated that since the quasi-diabatic PESs cannot be determined

uniquely and collision attributes such as rainbow maxima crucially depend on the topologies

of these PESs, the origin of the discrepancies may lie on the determination of the quasi-

diabatic potential matrix. However, it is worthwhile to point out here that the ab initio

procedure suggested in the literature and presented in the thesis appears to be quite valid. In

a recent study (Saieswari and Kumar, 2008a, 2007b, 2009) the quantum dynamics was per-

formed for the IVE and the VCT processes in the H+ + H2 system on the two-state coupled

quasi-diabatic PESs under the VCC-RIOSA framework which were determined using the

same ab initio procedure and the results obtained were in excellent agreement with exper-

imental results settling some long-standing discrepancies between theory and experiments

for the system. This lends credence to the ab initio procedure adopted in the present study.

It is true that the quality of both the adiabatic and quasi-diabatic PESs depends crucially

on the quality of the ab initio computations in terms of basis set and the methods adopted

to account for the electron correlation. Comparisons and thereby excellent agreements of

the equilibrium data for the diatoms as well as the bound HO+
2 ion in the GS with those

obtained from ultra high-level calculations give credence to and confidence in the quality of

the present ab initio PESs. Therefore, we believe that the origin of discrepancy does not lie

on the determination of ab intio PESs for the system.

It is clear from the present ab initio calculations that at Ecm = 23 eV atleast three lowest

ESs may be involved along with the GS in influencing the dynamics of the energy transfer

processes. A two-state model involving the GS and the first ES may capture most of the

intricacies of the dynamics but definitely would not be able to predict some of the crucial

quantities like DCS and transition probabilities as a function of θcm. Therefore, quantum

dynamics on the four-state electronically coupled PESs would be desirable and that is what
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has been done in this chapter. It is also likely that VCC-RIOSA framework does not hold

good for the system. However, this would not be the case since it was able to capture

the physics of the collision dynamics quite successfully in the H+ + H2 system. In this

chapter we noted that magnitudes of opacities for the VCT were relatively larger for the

collisions at γ = 15◦, or in other words, collisions for 0◦ ≤ γ ≤ 45◦ would be relatively

richer in VCT processes. The present VCC-RIOSA calculations were done for fixed γ in

the range 0◦ − 180◦ at the interval of 15◦, and the collision attributes were obtained from

the γ-dependent scattering matrices. It could be possible that one needs to include more

orientations averaging so that S-matrix could be properly obtained.

In the case of scattering being described on single electronic state PES, the intensity

and the location of rainbow is mostly indentified with the location and well depth of the

interaction well. For scattering involving multiple electronic states the attributes of rainbow

can not be solely assigned to such patricular interaction well since the final outcome would

be influenced by multiple processes which would average out the results. Therefore, in all

likelyhood, we believe that th origin of discrepancy lies mostly with the need for inclusion of

more γ-dependent VCC-RIOSA calculations and such a theoretical study would be mostly

desirable for further study on this system.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this chapter, we provide concluding remarks regarding previour chapters, patricularly,

chapter 4, chapter 5 and chapter 6, based on the outcome of our theoretical computation

carried out on H+ + CO system using two-state coupled quasi-diabatic ab initio PESs and on

H+ + O2 system using two-state as well as four-state coupled quasi-diabatic ab initio PESs,

followed by future direction of research on this system with the aim of further improvement

or refinement of results.

7.1 Concluding Remarks

In the present study we have undertaken an elaborate ab initio structural and quantum dy-

namics studies to study the energy transfer processes in the H+ + CO and H+ + O2 collision

systems. In patricular, we have studied the IVE and the VCT processes in these systems.

For the H+ + CO system they are : H+ + CO (X1Σ+, v = 0) −→ H+ + CO (X1Σ+, v ′) and

H+ + CO (X1Σ+, v = 0) −→ H (2S) + CO+ (X2Σ+, v ′′), respectively and for the H+ + O2

system they are : H++O2(X 3Σ−g , v = 0) −→ H++O2(X 3Σ−g , v
′) and H++O2(X 3Σ−g , v =

0) −→ H(2S) + O+
2 (X 2Πg, v

′′), respectively.

One of the theoretical hurdles in studying the IVE and the VCT dynamics is that the

collision dynamics evolves on coupled multi electronic PESs. For computational conve-

nience one needs to carry out the dynamics on the corresponding coupled quasi-diabatic



PESs. The determination of quasi-diabatic PESs is not unique, and therefore many proce-

dures have been proposed and their exactness and applicability have been discussed in the

literature. In the present study, we have undertaken an ab initio procedure to describe the

two-state and the four-state electronic coupling and the corresponding coupled potential ma-

trices. This ab initio procedure has been utilized succesfully for studying the dynamics of

H+ + H2 collision system and the photodissociation of H2S. The various aspects of adiabatic

and quasi-diabatic transformations and the different methodologies for their transformation

along with the ab initio procedure have been described in detail in the chapter 2.

One can perform the dynamics in the time-independent formulation of quantum mechan-

ics using the full close-coupling methods. However, at the given range of collision energies,

Ecm = 9.5 − 30 eV the full close-coupling method is not a feasible task computation-

ally. Therefore, some physically valid assumption are invoked and the full close-coupling

method is applied in the framework of the vibrational close-coupling rotational infinite-

order sudden approximation (VCC-RIOSA), which has been used quite successfully in the

past for low and moderate energy collisions. In the present study, we have undertaken

the quantum dynamics study within the VCC-RIOSA framework. The formulation of the

full close-coupling method and the various prescriptions and assumptions which lead to the

VCC-RIOSA have been discussed in detail in the chapter 3.

The ab initio and quantum dynamics results for the H+ + CO system are presented in

chapter 4. The details of the ab initio computations of the adiabatic and quasi-diabatic PESs

involving the GS and the first ES are given there along with the analysis of the nonadiabatic

interactions in terms of the coupling potential and nonadiabatic coupling matrix elements.

To the best of our knowledge these ab initio adiabatic and quasi-diabatic global PESs for the
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two-state coupling suitable for scattering calculations have been obtained for the first time

for the system. We have also analysed the various equilibrium structure properties of the

bound molecular ions, HCO+ and the HOC+, which are formed in the interaction wells of

the GS PES and compared them with those obtained with high level ab initio computations

focussed around describing the interaction well. The various parameters like barrier height

and molecular configurations for the interconversions of HCO+ 
 HOC+ have been com-

puted and compared with earlier theoretical results. Excellent agreement of these computed

data with those obtained from high level ab initio computations ensures the quality of the

newly obtained global PESs for the system.

The quantum dynamics has been performed within the VCC-RIOSA framework using

the two-state coupling potential at the experimental collision energies Ecm = 9.5 eV and

Ecm = 28.96 eV. The dynamics has been examined in details in terms of various collision

attributes such as opacities, DCS, ICS and transition probabilities. Since the present dynam-

ics study happens to be perhaps the first quantum study of the IVE and the VCT processes on

the two-state coupled PESs, extensive comparisons have been made for the computed colli-

sion attributes with those available from the experiment. Over all, there is a good agreement

between the theory and the experiment for the IVE channel. For the VCT channel, although

the theoretical predictions for the collision attributes follows the experimental trend qualita-

tively quite well, the quantitative agreement is still lacking.

We have undertaken quite an extensive and an elaborate ab initio study along with quan-

tum dynamics for the H+ + O2 collision system computing the global adiabatic as well as

quasi-diabatic PESs involving the GS and the three lowest ESs of 3A′′ symmetries. Again,

to the best of our knowledge, thisis perhaps the first ab initio attempt to construct the four-
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state ab initio global PESs for scattering studies. The earlier studies modelled the IVE and

the VCT dynamics as a two-state processes involving the GS and the first ES and the PESs

were constructed using the semi-empirical diatomics-in-molecules method and the model

effective potential procedures based on the improved projected valence bond method. An

ab initio attempt was made recently in our group to construct the two-state PESs. How-

ever, the NACME and the mixing angle showed a lot of irregularities indicating regions

of avoided crossings of the first ES with the second ES. In order to model the dynamics

purely as a two-state process these additional irregularities were smoothed and the global

two-state PESs were obtained. The earlier and recent (in our group) quantum dynamics

calculation with the VCC-RIOSA framework on these set of PESs showed several quan-

titative discrepancies as compared to those of experimental results. Therefore, in order to

test the applicability of the two-state modelling of the dynamics we first studied the quan-

tum dynamics at the experimental collision energies, Ecm = 9.5 eV and Ecm = 23 eV by

taking out the 2 × 2 coupling potential matrix involving the GS and the first ES from the

computed 4 × 4 quasi-diabatic coupling potential matrix. There are some improvements

but not up to the mark in the two-state dynamics calculations. The details of the four-state

ab initio calculations involving the adiabatic PESs, NACMEs, and the quasi-diabatic PESs

and the coupling potentials have been given in chapter 5 along with the dynamics results.

The various characteristics of the PECs/PESs for the GS and the first ESs have also been

analysed and discussed therein. In chapter 5, we also studied the equilibrium structure of

the bound HO+
2 ion in the interaction well of the GS. Excellent agreement between the equi-

librium structure data obtained from the present ab initio calculations and those obtained

from highly refined ab initio calculations around the interaction well lends credence to our

ab initio calculations for the system.
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The various characteristics of the ES PECs/PESs of the H+ + O2 systems and their

nonadiabatic interactions studied in terms of strength of NACMEs and the coupling poten-

tial have been analysed in detail in chapter 6. The details of quantum dynamics within the

VCC-RIOSA framework at the two experimental collision energies are also given therein.

An extensive comparison has been made for the collision attributes obtained in the present

four-state calculations. Significant improvements have been achieved in the four-state calcu-

lations, but some quantitative agreement between theory and experiment is still lacking. The

likely reasons for the disagreement and the suggestions to improve the quality of theoretical

calculations have been discussed in section 6.7 of chapter 6.

7.2 Future direction of research

Our present study shows that there are still some issues which remain unresolved regarding

the dynamics of H+ + CO and H+ + O2 systems. More refined experiments and more elab-

orate quantum mechanical calculations are desirable to address some of the issues described

below.

In H+ + CO system, the experimental data on scattering quantities are not available at

the collision energy of Ecm = 9.5 eV for IVE as well as VCT channel. Hence it would be

desirable to carry out a fresh set of experiments at this collision energy to get the data on

scattering quantities from the futuristic point of view. At Ecm = 28.96 eV, the experimental

data on the VCT channel are not available and hence it would be worthy enough to perform

the experiments for this channel at this collision energy and also at other collision energies

from the point of view of extension of future work. For the VCT channel, the quantitative

agreement between theory and experiment is lacking and it is proposed that quantum dynam-
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ics calculations with further inclusion of other low-lying ESs would improve the theoretical

predictions.

In H+ + O2 system, the experimental data on scattering quantities are not available at

the collision energy of Ecm = 9.5 eV for IVE as well as VCT channel and hence it would

be desirable to carry out a fresh experiments at this collision energy as well as at other

collision energies in the range 0-30 eV. From the theoretical points of view, it is suggested

that inclusion of more angle-dependent VCC-RIOSA calculations patricularly for γ in the

range 0◦ ≤ γ ≤ 45◦ would further improve the dynamics results. This would need further

ab initio calcualtions to generate the four-state PESS for these orientations.
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APPENDIX A

VALIDITY OF VCC-RIOSA IN THE PRESENT

CALCULATIONS

It may be argued whether or not the VCC-RIOSA dynamics is valid and applicable for the

present H+ + CO and H+ + O2 systems, patricularly in view of the fact that for the H+

+ CO system the potential anisotropy would be expressed in terms of long-range charge-

dipole, charge-quadrupole and charge-polarizability interactions. It is generally believed,

and as pointed out earlier in section 3.2, that the schemes of decoupling of angular momenta

would work better for higher collision energies. The experimental results for the IVE and

the VCT channels for the H+ + CO and the H+ + O2 systems are available for Ecm = 28.96

eV and Ecm = 23.0 eV, respectively. Compared to that of H+ + CO system, the long range

interaction potential in the H+ + O2 system is much weaker in the absence of dipole moment

of O2. Therefore, we carried out numerical tests for the validity of the infinite-order sudden

(IOS) approximation in the H+ + CO system at Ecm = 28.96 eV against the coupled state

(centrifugal sudden) (CS) decoupling scheme, (Parker and Pack, 1978) as it was done for

the case of H+ + H2 system for Ecm as low as 3.7 eV.

It may be noted here that a real validation of any decoupling scheme would come from

the comparison of collision attributes against those obtained from the full close-coupling cal-

culations, which however still remain computationally formidable and prohibitive at these

higher collision energies. In atom(ion)-molecule inelastic collisions the dimensionality of

the problem increases from rapid proliferation of quantum channels associated with the



(2j + 1) degeneracy of the energy levels of the rotating target. For the case of the atom-

heteronuclear systems the problem splits up into the even-parity where the number of cou-

pled equation is given by

Neven =

jmax∑

j=0

(j + 1) =
(jmax + 1)(jmax + 2)

2
(A.1)

For the odd-parity the total number is given by

Nodd =

jmax∑

j=0

j =
jmax(jmax + 1)

2
(A.2)

For even the most efficient algorithm, the labour of solving coupled equations goes as the

cube of the number of equations to be solved. Therefore, it is obvious that the computational

problem becomes rapidly intractable even for modest values of jmax.

As a consequence of this, the CS approximation has been extensively studied. It was

called coupled states approximation in its earlier development stage while its simultaneous

and independent introduction by Pack (Parker and Pack, 1978) was called the centrifugal

sudden approximation. Furthere refinements and interpretations of its physical significance

were indeed discussed by many authors in the literature and several computational applica-

tions have also been carried out for atom-diatomic systems. (McGuire, 1976; Schinke and

McGuire, 1978a)

For a purely rigid rotor target interacting with a structureless atom, it is convenient to

write the Hamiltonian in the body-fixed frame (Parker and Pack, 1978)

ĤBF = − 1

2µ

1

R

∂2

∂R2
+

l̂2

2µR2
− 1

2M
∇2
r + V (R, r, γ) (A.3)
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where l̂ is the angular momentum operator for the KE term in the Hamiltonian and − 1
2M
∇2
r

is the KE operator for the diatom. When the above operator is applied to the trial function

expanded over the coupled molecular (rotational) states one sees that it would lead to purely

radial equations on R if it were not for the l̂2 operator. Hence the lack of separation of the

angular part of R is purely kinematic in origin and, in a sense, does not depend on the nature

of the potential, even if the latter provides necessary coupling of radial functions.

In order to obtain the CS approximation, one now introuduces and effective orbital an-

gular momentum eigen value and approximates the centrifugal potential by

l̂2

2µR2
≈ l(l + 1)

2µR2
(A.4)

This is also, of course, a sort of sudden approximation which eventually says that the relative

KE is sufficiently large that the precise values of the centrifugal potential is not important.

Whether this approximation is true or not, depends on how the different turning points for

the different effective potentials are related. If the interaction potential is purely repulsive,

then the rate of change of the turning points with various l is not large and therefore, the

Eq. (A.4) is expected to be valid. For interactions exhibiting attractive wells one might

encounter range of l values which have three turning points, all rapidly changing with l and

therefore the fixed, effective eigenvalues of Eq. (A.4) is not a reliable approximation to that

situation.

In the body-fixed equation one sees that Eq. A.4 provides a substantial simplification of

those coupling matrix elements that are responsible for transitions between different helicity

states,
〈

ΓJMjΩ

∣∣∣l̂2
∣∣∣ΓJMj,Ω±1

〉
≈ 0 (A.5)
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where Γ is the body-fixed angular function and Ω stands for the helicity. J is the total

angular momentum and Ĵ = l̂ + ĵ. Here, one neglects the intermultiplet coupling provided

by the different eigenvalues of l̂2 appearing in the ĤBF . Moreover, it further reduces the

form of the coupling between states with the same helicity index to the following simpler

expansion

〈
ΓJMjΩ

∣∣∣l̂2
∣∣∣ΓJMj,Ω±1

〉
∼ J(j + 1)

∼ [J(j + 1) + j(j + 1)− 2Ω2]

(A.6)

according to whether one chooses Eq. (A.1),(A.2),(A.3) l = J or the exact value of the

diagonal matrix elements. The latter choice slightly complicates the long-range form of the

asymptotic boundary conditions which require now spherical Bessel functions of the order

λ, were λ(λ + 1) = J(J + 1) + j(j + 1) − 2Ω2. The corresponding coupled equations in

the body-fixed frame therefore become

{
d2

dR2
− l(l + 1)

R2
+ k2

jj′

}
GJjΩ
j′Ω (R) = 2µ

∑

j′′

〈
ΓJMj′Ω

∣∣∣V̂
∣∣∣ΓJMj′′Ω

〉
GJjΩ
j′′Ω(R) (A.7)

where R is the distance vector of the projectile from the c.m. of the rigid rotor diatom, k is

the wavevector,G is the translational wavefunction and V̂ stands for the interaction potential

energy operator. The coupling matrix elements on the R.H.S of Eq. (A.7) exhibit now a

simpler structure since they only contain the coupling between different j states via the

interaction potential without the coriolis terms that cause coupling between different helicity

states and that appear in the correct formulations in the correct body-fixed equations in the

close-coupling formulations. Within the CS approximation the full coupling is independent

of l as is zero between the states with different helicity, or different jz-component on the
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chosen axis of quantization. This is therefore the reason why this method is also called "jz-

conserving" approximation of coupled states approximation, in the sense that only coupling

between different rotational states (and not between the substates) is allowed to appear in

the dynamical treatment. It is important to note that the scattering formalism can also be

achieved in the space-fixed frame by a unitary transformation to the corresponding body-

fixed eigenfunctions.

The infinite-order sudden approximation has a long history in the molecular collision

literature (Gianturco, 1979). It can be viewed as an energy sudden approximation to the

results of the CS approximation discussed above. In the latter, in fact, the l̂2 operator is

replaced by an effective eigenvalue form, thereby allowing one to use the closure property

of the complete set of the partial wave expansion to simplify the sum over l and ml. In the

IOSA one further applies the same sort of approximation to the rotational energy. In the case

of atom-rigid rotor diatom collision, ĵ
2

2I
(I is the moment of inertia of the diatom) is replaced

by another effective eigenvalue form j(j + 1). Thus one has k2
jj′ ∼ k2

jJ , for all j′. In this

approximation, one completely decouples the angular momenta and one gets a constant term

within the angular brackets. For example, in the case of linear rovibrator target one sets

{
d2

dR2
− l(l + 1)

R2
+ k2

jj′

}
f lJvv′ (R, r,R) = 2µ

∑

v′′

〈
v′
∣∣∣V̂
∣∣∣ v′′
〉l
J
f lJvv′′ (R, r,R) (A.8)

where new radial functions f now depend parametrically on the space-fixed orientation of R

and r. Since the interaction potential only depends on cos γ = R.r, that is, on their relative

orientation, the IOS wavefunction now becomes diagonal in the new rotational index j.
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A.1 Numerical test calculations on the validity of IOSA in

the H+ + CO system
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Figure A.1: IOS and CS partial cross sections as a function of the total angular momentum
J for the j = 0→ j′ = 0 and j = 0→ j′ = 1 rotational excitations in the H+ + CO system
at 28.96 eV.

In order to test the validity of the IOSA against the CS approximation in the H+ + CO

system we have taken up the case for atom-rigid rotor (that is, considering CO molecule as

a rigid rotor (RR)) collisions involving the GS interaction potential. It is generally expected

that the IOSA would work fairly well for higherEcoll. Since the experimental results for both

the IVE and the VCT channels are available only forEcoll = 28.96 eV, we have undertaken a

numerical test involving the RR calculations at this energy only for the rotational excitations
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in the ground vibrational state, v = 0 of CO. The general argument here is that if IOSA

holds good for the RR in comparison with the corresponding CS calculations, it would also

be valid for the vibrating CO molecule. This implies that the VCC-RIOSA would also hold

good in comparison with the corresponding VCC-CS calcuations. One point of objection

that may arise at this point is whether energy sudden approximation would also be valid for

the CO+ rotational states. However, Ecoll(= 28.96 eV) is quite high in value as compared

to the ionization potential of CO which is 14 eV. Furthermore, considering the asymptotic

limits of the CT channels, H(2S) + CO(X2Σ+) and the IVE channel, H+ + CO(X1Σ+)

which has energy seperation of 0.4 eV, the energy sudden approximation is expected to hold

good for the system.

Rigid rotor IOS and CS calculations were carried out with jmax = 28 for Ecoll = 28.96

eV using the MOLSCAT code (Hutson and Green, 1994). For an illustration in Fig. A.1 we

compare the partial cross section σJ for j = 0 → j′ = 0 and j = 0 → j′ = 1 rotational

excitations. It can be seen that for large impact parameters (larger J) both the IOS and CS

calculations become almost identical while for smaller impact parameters (smaller J) the

IOS appears to slightly overestimate the partial cross section values. Nevertheless, overall

at this Ecoll both the IOS and the CS calculations agree fairly well, thus largely validating

the IOS approximation against the CS approximation.
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