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Abstract: Mammography is the primary medical imaging method used for routine screening and
early detection of breast cancer in women. However, the process of manually inspecting, detecting,
and delimiting the tumoral massess in 2D images is a very time-consuming task, subject to human
errors due to fatigue. Therefore, integrated computer-aided detection systems have been proposed,
based on modern computer vision and machine learning methods. In the present work, mammogram
images from the publicly available Inbreast dataset are first converted to pseudo-color and then used
to train and test a Mask R-CNN deep neural network. The most common approach is to start with a
dataset and split the images into train and test set randomly. However, since there are often two or
more images of the same case in the dataset, the way the dataset is split may have an impact on the
results. Our experiments show that random partition of the data can produce unreliable training, so
the dataset must be split using case-wise partition for more stable results. In experimental results, the
method achieves an average true positive rate of 0.936 with 0.063 standard deviation using random
partition and 0.908 with 0.002 standard deviation using case-wise partition, showing that case-wise
partition must be used for more reliable results.

Keywords: mammography; computer-aided detection; breast mass; mass detection; mass segmentation;
Mask R-CNN; dataset partition

1. Introduction

In 2020, there were 2.3 million new cases of brest cancer in the world [1]. That
makes it the most common malignant tumor affecting women, accounting for a total of
11.7% of all cancer cases diagnosed. It is also the fifth leading cause of cancer mortality,
with 685,000 deaths worldwide [1]. Among women, breast cancer is responsible for 1 in
4 cancer cases and 1 in 6 cancer-related deaths [1].

Despite these worrying figures, mortality from breast cancer is relatively low. In gen-
eral, the disease has a good prognosis if the tumours are diagnosed in the early stages.
About 90% of women with breast cancer are well five years after the original diagno-
sis [2]. However, due to the high incidence, this illness ranks first among all causes of
cancer-related deaths in the female population. Mortality due to breast cancer has been
decreasing continuously and consistently for several years. Early screening, that allows
for the diagnosis of carcinomas at increasingly earlier stages, is one of the most important
factors for the success of treatment and consequent reduction of mortality [3].

The present paper describes a method to detect and segment breast masses, based
on a popular deep learning model known as Mask R-CNN. This model has been used
before, with good results, by researchers such as Min et al. [4]. However, the focus of the
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present paper is a comparison to determine the importance of splitting the dataset properly,
in order to avoid overfitting of the data. Experiments were performed splitting the images,
to create the test set, randomly and by case. While this seems to be a small detail, in
data preparation, it may have a significant impact on the results. The dataset used is the
publicly available INbreast [5]. Experiments show that the method has competitive results
compared to state-of-the-art methods. Additionally, division of the dataset by case instead
of by image leads to more stable training procedures.

The paper is organized as follows: Section 2 explains in more detail what a mam-
mogram image is and how computer aided detection can facilitate the diagnosis process.
Section 3 presents a short survey of the state of the art related to detection and segmenta-
tion of masses from mammograms using deep learning. Section 4 describes methods to
detect and segment tumoral masses. Section 5 contains a summary of the experiments and
the results. Section 6 gives a brief discussion with comparison of results. Section 7 draws
conclusions and highlights possible future research directions.

2. Mammography Images

Mammography has long been considered the most effective diagnostic imaging test
for the early detection of breast cancer. The exam is simple and non-invasive. It must
be performed routinely, in asymptomatic women (screening), or for diagnosis, being a
fundamental tool in the detection of lesions in early stages, allowing a favorable prognosis
and an increase in the success rate of treatments [6].

The imaging technique most used in the screening and diagnosis of breast cancer is
X-ray mammography. It is a fast, low-cost technique with high spatial resolution. The basic
views performed in a mammography exam are the Craniocaudal view (CC) and the
Mediolateral Oblique view (MLO). Both are performed for each breast, up to a total of
four images per patient. The main signs of breast cancer are the masses and clusters of
microcalcifications, so the analysis of a mammographic image begins with the search for
these types of formations.

There are different types of breast abnormalities. The abnormalities that can be seen
in mammograms include masses, calcifications, asymmetry, or breast distortion. However,
the breast masses, which are areas of thicker tissue that show in the mammography, are the
most important sign of the illness. The analysis of mammogram images is a difficult task,
even for trained radiologists. The main challenges are due to the different breast patterns,
variations of color and shape of the tumoral masses, their possible locations, and different
sizes possible. This variability often makes the abnormalities difficult to detect, segment,
and classify.

The huge number of mammograms that can be generated and need to be analyzed
during breast cancer screening programs require a significant workload, which often leads
to fatigue and consequently errors of the radiologists that have to process and analyze
hundreds or thousands of medical images over several days in a row. Therefore, Computer-
Aided Detection (CAD) systems have been proposed, with the aim of assisting technicians
and radiologists in the task, facilitating the process and contributing to lowering the
probability of generating false negatives and false positives. CAD systems are used as a
second opinion in the interpretation of mammograms, by the radiologists, contributing for
more confidence in the diagnosis. However, such CAD systems need to operate at high
levels of precision and accuracy. They must be robust, both to false positives and false
negatives. A false positive can lead to unnecessary further testing, while a false negative
can lead to further complications which might have been avoided.

The tumoral masses are volumes of abnormal density. Mammogram images are
only an incomplete description of the 3D structure of the mass. The masses show in
2D mammography images with a high variability of shapes, sizes and locations. Most
of the times they are difficult to distinguish from the background, even for experienced
technicians. Existing CAD systems and modern detection and segmentation models
have shown promising results, but the problem is still subject to heavy research. Training
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machine learning algorithms is also a challenge per se, for there are not many large datasets,
containing Full Field Digital Mammograms (FFDM), annotated by experts and available
for general use. This poses additional difficulties for developing modern CAD systems.

Recent developments in methods based on Deep Learning (DL) can contribute to
develop robust solutions to undertake these problems. Particularly, the methods that use
Convolutional Neural Networks (CNNs) to automatically learn a relevant hierarchy of
features directly from inputting images. The topic has been subject to heavy research and
there have been important developments. However, most developments are just in the
specific area of detection, where the result is a bounding box [7], or in the specific area of
region segmentation, to tell the region of interest from the background [8,9]. Nonetheless,
there are also a number of important developments proposing a completely integrated
system, able to detect and segment tumoral masses in the pipeline with minimal human
intervention. The most common approaches still deal with two-dimensional images.
Three-dimensional approaches have already been studied [10–12], and even stereoscopic
approaches [13]. However, the state-of-the-art CAD systems are mostly based on 2D
methods and trained on datasets consisting of 2D images. This makes the methods of pre-
processing the images and partitioning the datasets a very important and still open issue.

3. Related Work

Tumor mass detection and segmentation in mammogram images have been subject to
heavy research in recent years. One of the latest techniques to be applied is DL machine
models, namely CNNs. CNNs have been applied in different medical image analysis with
success. The review focuses on research papers that use the publicly available database
INbreast, or other databases, for training and testing, having the focus on implementa-
tion of CNNs to address the issues of detection and/or segmentation of breast masses
in mammograms.

3.1. Detection of Tumoral Masses

Many modern object detection models have achieved good performance in object
detection and segmentation tasks. Nonetheless, those tasks still remain a challenge when
detecting breast tumor masses in medical images, due to the low signal-to-noise ratio and
the variability of size and shape of masses.

Dhungel et al. [14] presented an architecture that contains a cascade of DL and Random
Forest (RF) classifiers for breast mass detection. Particularly, the system comprises a cascade
of multi-scale Deep Belief Network (m-DBN) and a Gaussian Mixture Model (GMM) to
provide mass candidates, followed by cascades of Region-based Convolutional Neural
Network (R-CNNs) and RF to reduce false positives.

Wichakam et al. [15] proposed a combination between CNNs for feature extraction
and Support Vector Machines (SVM) as the classifiers to detect a mass in mammograms.
Choukroun et al. [16] presented a patch based CNN for detection and classification of
tumor masses where the mammogram images are tagged only on a global level, without lo-
cal annotations. The method classifies mammograms by detecting discriminative local
information from the patches, through a deep CNN. The local information is then used to
localize the tumoral masses.

3.2. Segmentation of Tumoral Masses

A fundamental stage in typical CAD systems is the segmentation of masses. Most
popular segmentation approaches are based on pre-delimited Regions Of Interest (ROI) of
the images.

Dhungel et al. [17] proposed the use of structured learning and deep networks to
segment mammograms—specifically, using a Structured Support Vector Machine (SSVM)
with a DBN as a potential function. In a first stage, the masses are manually extracted; then,
a DBN is used to detect the candidates and a Gaussian Mixture Model classifier performed
the segmentation step.
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In [18,19], two types of structured prediction models are used, combined with DL
based models as potential functions, for the segmentation of masses. Specifically, SSVM and
Conditional Random Field (CRF) models were combined with CNNs and DBNs. The CRF
model uses Tree Re-Weighted Belief Propagation (TRW) for label inference, and learning
with truncated fitting. The SSVM model uses graph cuts for inference and cutting plane
for training.

However, these methods [17–19] have some limitations due to their dependence on
prior knowledge of the mass contour. Zhu et al. [20] proposed an end-to-end trained
adversarial network to perform mass segmentation. The network integrates a Fully Convo-
lutional Network (FCN), followed by a CRF to perform structured learning.

Zhang et al. [21] proposed a framework for mammogram segmentation and classifica-
tion, integrating the two tasks into one model by using a Deep Supervision scheme U-Net
model with residual connections.

Liang et al. [22] proposed a Conditional Generative Adversarial Network (CGAN)
for segmentation of the tumoral masses in a very small dataset using only images with
masses. The CGAN consists of two networks, the Mask-Generator and the Discriminator.
The Mask-Generator network uses a modified U-Net, where the feature channels between
low level feature layers are discarded, and the ones between high level feature layers are
preserved. For the Discriminator network, a convolutional PatchGAN classifier is used.
As a condition to achieve CGANs, an image sample with its ground truth is added into
the Mask-Generator.

3.3. Detection and Segmentation of Masses

The approaches described above focus either on detection or on segmentation of
the masses. However, there are also approaches that address both problems in a pipeline
system. Pipeline techniques have recently received increasing attention in machine learning.
A pipeline is created, so that successive transformations are applied on the data, the last
being either a model training or prediction operation. The pipeline model is regarded as a
block, connecting each task in the sequence to the successor and delivering the result at the
end [23].

Sawyer Lee et al. [24] compare the performance of segmentation-free and
segmentation-based machine learning methods applied to detection of breast masses.
Rundo et al. [25] use genetic algorithms in order to improve the performance of seg-
mentation methods in medical magnetic resonance images. Tripathy et al. [26] perform
segmentation using a threshold method on mammogram images, after enhancing contrast
using the CLAHE algorithm.

Some systems that integrate both detection and segmentation stage still require
manual rejection of false positives before the segmentation stage, as happens in [27,28].
Dhungel et al. [27], presented a two-stage pipeline system for mass detection and segmen-
tation. Specifically, they adopted a cascade of m-DBNs and GMM classifier to provide mass
candidates. The mass candidates are then delivered to cascades of deep neural nets and
random forest classifiers, for refinement of the detection results. Afterwards, segmenta-
tion is performed through a deep structured learning CRF model followed by a contour
detection model.

Al-antari et al. [28] presented a serial pipeline system designed for detection, segmen-
tation, and classification, also based on DL models. A YOLO CNN detector is implemented
for mass detection. The results of the YOLO detector are then fed to an FCN to perform
segmentation. The result is then fed to a basic deep CNN for classification of the mass as
benign or malign.

In [29], the authors address detection, segmentation, and classification in a multi-task
CNN model enabled by cross-view feature transferring. With an architecture built upon
Mask R-CNN, the model enables feature transfer from the segmentation to the classification
task to improve the classification accuracy.
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Min et al. [4] presented a method for sequential mass detection and segmentation
using pseudo-color mammogram images as inputs to a Mask R-CNN DL framework.
During the training phase, the pseudo-color mammograms are used to enhance contrast
of the lesions, compared to the background. That boosts the signal-to-noise ratio and
contributes to improving the performance of the model in both tasks. The model comprises
a Faster R-CNN object detector and an FCN for mask prediction. The method used for the
experiments performed in the present work was based on the same framework. However,
Min uses 5-fold cross validation, and this is not used in the present work.

4. Materials and Methods

The experiments were performed using an implementation of a Mask R-CNN to detect
and segment tumoral masses in the INbreast dataset.

4.1. Database

The dataset used in the present study is obtained from INbreast, a publicly avail-
able full-field digital mammographic database with precise ground truth annotations [5].
The resolution of each image is 2560 × 3328 or 3328 × 4084 pixels, and they are in Digital
Imaging and Communications in Medicine (DICOM) format. The confidential information
was removed from the DICOM file but a randomly generated patient identification keeps
the correspondence between images of the same patient. The database includes examples of
normal mammograms, mammograms with masses, calcifications, architectural distortions,
asymmetries, and images with multiple findings. For each breast, both CC and MLO views
were provided. Among the 410 mammograms from 115 cases in INbreast, 107 contain one
or more masses. There is a total of 116 benign or malignant masses. The average mass size
is 479 mm2. The smallest mass has an area of 15 mm2, and the biggest one has an area of
3689 mm2.

The dataset is very small for training modern deep learning models, which require a
large number of samples for proper training. However, large datasets are rare because of
the difficulty in obtaining good quality medical images. Medical images require highly
qualified people to provide the ground truth. There are also many privacy concerns because
of the sensitive information they carry. Therefore, such images are rare and very important.
Sometimes, the datasets are also imbalanced, with just a small number of samples showing
a particular but important condition. Bria et al. [30] address the problem of class imbalance
in medical images. A common technique is to use data augmentation, adding copies
of some images with a transformation such as mirroring or rotation [31]. The present
approach applies data augmentation through a random transformation, as described in
Section 4.3.

4.2. Data Pre-Processing

One important step to start image processing is to tell the region of interest from the
background. This can be done based on threshold methods [32]. Militello et al. use a
different approach, based on quartile information [33], to distinguish epicardial adipose
tissue from the background in medical cardiac CT scans. In the present work, the same
procedure as in [4] was adopted. To prepare the images, the breast region is extracted using
a threshold value to crop away the redundant background area. Specifically, and since
the intensity of the background pixels of the INbreast mammograms is zero, the region
where the pixels have a non-zero intensity value is extracted as the breast region [4,34]. The
mammogram image is then resized to one fourth of the original image size. Afterwards, it
is normalized to 16-bit. The normalized image is finally padded into a square matrix.

After cropping and normalization, the mammogram is converted to pseudo-color
mammogram (PCM), in order to enhance the areas of thicker masses. The gray images were
also changed to colour RGB images, which have the ability to convey colour information.
In this way, the red, green and blue channels are filled respectively with the grayscale
mammogram (GM), and two images generated by the Multi-scale Morphological Sifting
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(MMS) algorithm [4]. The images generated by MMS and the GM are linearly scaled to
8-bit. Therefore, a PCM RGB image comprises a GM in the first (R) channel, the output
image of the MMS transform scale 1 into the second (G) channel and the MMS transform
scale 2 in the third (B) channel.

The MMS makes use of morphological filters with oriented linear structuring elements
to extract lesion-like patterns. The MMS can enhance lesion-like patterns within a specified
size range. To deal with the size variation of breast masses, the sifting process is applied in
two scales.

The result is that a relatively smaller mass in the size range of scale 1 will have
higher intensity in the second channel. Therefore, this is interpreted as a higher amount
of green, and it tends to yellow on the PCM image. Figure 1a shows an example of a
yellowish mass. A relatively larger size mass will have higher components in the range of
scale 2, and therefore that will be interpreted as more of the blue component. The result
is that it will tend to purple on the PCM image. This result is exemplified in Figure 1c.
This transformation enhances the masses, which are then easier to differentiate from the
background. As in [4], better results were achieved using PCM rather than using GM, so
PCM was used for this work.

(a) Small tumor. (b) Mid size tumor.

(c) Large size tumor. (d) Large size tumor with false positives.

Figure 1. Some visual results of automatic detection and segmentation of breast masses. Black and
cyan lines respectively stand for ground truth of the masses and segmentation of the detected regions.
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4.3. The Mask R-CNN Model

The present work applied transfer learning technique. Transfer learning is a common
machine learning procedure where a pre-trained model is used as the basis to create a new
model. In the present work, a pre-trained Mask R-CNN model was used, in order to speed
up the training process. The dataset used is limited in size, thus starting with a pre-trained
model not only speeds up the training process but also increases the chances of success.
The Mask R-CNN is a framework that allows sequential mass detection and segmentation
in mammograms. It integrates a Faster R-CNN object detector with an FCN for mask
prediction. The Faster R-CNN utilizes the Region Proposal Network (RPN) to generate
ROI candidates and then, for each candidate, performs classification and bounding-box
regression. The FCN performs segmentation on the ROI candidates, generating the masks.
During training, a multitasking loss function given by Equation (1) was used:

L = Lcls + Lbbox + Lmsk (1)

where Lcls is the classification loss, Lbbox is the bounding box regression loss, and Lmsk is
the mask loss, defined as the binary cross-entropy loss [35].

To make use of the transfer learning technique, the Mask R-CNN model training
was initialized starting with the pre-trained “mask_rcnn_balloon” model. It consists of a
network that was previously trained for a detection and binary classification problem of
separation of balloons from the background [36].

A deep residual neural network, the ResNet101, was used as the model backbone.
The images are resized into 1024 × 1024 pixels. To expand the number of images, data
augmentation is implemented. Specifically, images are augmented by randomly selecting
one of the available operations, namely, flipping up, down, left, right, and rotations in 90,
180 and 270 degrees. The network is then trained through 10 epochs, with a batch size of 1.
The parameters settings mentioned above are the same as those utilized in [4]. For all the
parameters which were not specified above, the default values in [36] were adopted.

For the experiments, we used Python 3.6 (available at http://www.python.org (ac-
cessed on 1 September 2021)) and ran on an Asus laptop with Intel(R) Core(TM) i7-7500U
CPU @ 2.90 GHz, 16 GB RAM (Coimbra, Portugal).The generation of the pseudo-color
image was implemented in MATLAB 2019b (available at https://www.mathworks.com/
products/matlab.html (accessed on 1 September 2021)) using the same machine.

4.4. Evaluation Method

Experiments on the INbreast dataset were performed using all the 410 images available.
Those 410 images must be split into at least the train and test set. Most of the experiments
in the literature divide the data randomly, for example setting 70% for training, 15% for
validation, and 15% for testing. However, as stated above, there are multiple images of the
same patient and also of the same tumor. Therefore, some authors mention that data must
be split case-wise to avoid contamination of the test and validation sets with images of
patients or cases contained in the training set [16]. To the best of our knowledge, however,
the impact of this possible contamination has not been tested before.

In the present work, different experiments were performed, with case-wise partition
of the dataset and with random split partition. In all cases, the dataset was split into 280 im-
ages for training, 65 images for validation and 65 images for testing. Data augmentation
doubles the number of images. In the case-wise partition, when performing the division, it
was guaranteed that images of the same patient were in the same subset. The division is
based on cases, ensuring that there were no case overlaps between the splits.

For the images with masses, segmentation masks are used as the ground truth, while,
for the images without any masses, their ground truths are the black background.

For the evaluation of the performance of the method, the metrics used were Sensitivity
(S) or True Positive Rate (TPR ) and False Positive Per Image (FPPI) for the mass detection

http://www.python.org
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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task, and the Dice Similarity Index (Dice) for the mass segmentation task. The criteria for
these metrics are defined as follows:

TPR =
TP

TP + FN
(2)

FPPI =
FP

TP + FP
(3)

Dice =
2 × TP

2 × TP + FP + FN
(4)

where TP, FP, and FN represent the number of true positive, false positive and false negative
detections, respectively. The mass is considered to be detected (TP) if the Intersection over
Union (IoU) between the predicted bounding box and ground truth is greater than or equal
to 0.2 [4].

5. Experiments and Results

Six experiments were performed. Three of them use random split partition of the
images. The other three use case-wise partition. Mass detection and segmentation perfor-
mance comparison between experiments are shown in Table 1. Experiments R1, R2 and R3
use random split of the images. Experiments C1, C2 and C3 use case-wise partition. The
hyperparameters and other settings of the model were all the same, so that the results of
the experiments could be compared.

More experiments could be performed for more confidence in the results. However,
the results clearly show that case wise partition of the data seems to provide more stable
results. In C1, C2, and C3, the TPR is very similar and the Dice only differed about 1%.
Using randomly split data, however, the results for TPR varied between 0.875 and an
overoptimistic 1.000 and the Dice varied between 0.857 and 0.885. In addition, R2 and R4
show a larger Dice variance than C1, C2 and C3.

Table 1. Comparison of TPR and Dice metrics between experiments. Experiments R1, R2 and R3 use
a random split of the images. Experiments C1, C2 and C3 use case-wise partition of the images.

Experiment TPR @ FPPI Dice

R1 0.875 @ 1.47 0.885 ± 0.044
R2 0.933 @ 1.35 0.857 ± 0.118
R3 1.000 @ 1.09 0.874 ± 0.097

Average 0.936 @ 1.30 0.872 ± 0.086
STD 0.063 @ 0.19 0.014 ± 0.038

C1 0.909 @ 0.77 0.891 ± 0.050
C2 0.909 @ 1.32 0.880 ± 0.061
C3 0.906 @ 1.33 0.897 ± 0.036

Average 0.908 @ 1.14 0.889 ± 0.049
STD 0.002 @ 0.32 0.009 ± 0.012

The results show that using Mask R-CNN with PCMs, with case-wise dataset partition,
achieves an average TPR of 0.909 at 0.77 FPPI and a Dice of 0.89 with some confidence on
the results as shown in Table 1. The average TPR is 0.936 @ table. 1.30, with a standard
deviation of 0.063 @ 0.19 using a random split of the samples. For case wise partition,
the average is a bit lower, but the standard deviation is also lower: the average TPR is 0.908
@ 1.14 and the standard deviation is 0.002 @ 0.32. Thus, there is much less variation in the
results obtained using case wise partition. As for Dice, using random split, the average
Dice is 0.872 ± 0.086, with a standard deviation of 0.014 ± 0.038. The average Dice for
mass segmentation using case wise partition is 0.889 ± 0.049, with a standard deviation of
0.009 ± 0.012. Therefore, in the case wise experiments, the standard deviation is always
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considerably lower than in the random split partition. Some visual results of detection and
segmentation of breast masses are shown in Figure 1.

6. Discussion

Most medical image analysis applications require object detection, segmentation and
classification. Modern DL models contribute to automation of all the tasks in a pipeline.
Therefore, they are a useful technical solution to address the different tasks in a row.

The Mask R-CNN integrates mass detection and segmentation stages in one pipeline.
Since a very small data set was used and training was initialized with pre-trained weights,
there was no need to train for too long.

A public available dataset, INbreast, was used for evaluating the method. For quanti-
tative analysis, three evaluation metrics, TPR or Recall, FPPI and Dice were utilized.

Case-wise partition was performed on dataset division to prevent images of the same
case from appearing in more than one subset. Otherwise, contamination of the validation
set and test set with images of the same patient could impact the results. This division
by case seemed to have a small positive impact on the results obtained in the test set,
compared to the results obtained when random split was used.

The global performance comparison between this method and several others methods
are shown in Table 2. As the table shows, the results are competitive with the best published
in the literature for the same dataset, and slightly better than other methods that perform
detection and segmentation. Using case-wise partition, the results are also stable.

From Table 2, it can be seen that the PCMs + Mask R-CNN model, when compared to
single task models, achieves a higher detection performance to [14,16], and outperforms [17,21]
in segmentation. In addition, the model underperforms to a certain degree compared
to [18–20] in segmentation. The reason may be that, in these [18–20], the input training
samples were manually detected ROI masses, and this helped to improve the performance
of segmentation results.

In comparison to Liang et al. [22], the method underperformed in segmentation. One
of the reasons may be that Liang et al. used a very small and imbalanced dataset, consisting
of only images with tumoral masses. In comparison with models which tackle both
detection and segmentation, the model outperformed [27] in both tasks, achieving a similar
sensibility and a higher segmentation performance than [29], and underperformed [28] in
segmentation. For the lower result in comparison to [28], the reason may be that, like as
in [27], they manually excluded all the false positive detections before segmentation. On
the other hand, the PCMs + Mask R-CNN model is a fully automatic model, which can
operate without human input.

Table 2. Performance comparison between PCMs + Mask R-CNN and several other state-of-the-
art methods. The PCMs + Mask R-CNN is marked in bold.

Method Database TPR @ FPPI Dice

Dhungel et al. [14] INbreast 0.87 ± 0.14 @ 0.8 n.a.
Wichakam et al. [15] INbreast n.a. n.a.
Choukroun et al. [16] INbreast 0.76 @ 0.48 n.a.

Dhungel et al. [17] INbreast n.a. 0.88
Dhungel et al. [18] INbreast n.a. 0.90 ± 0.06

Zhu et al. [20] INbreast n.a. 0.9097
Dhungel et al. [19] INbreast n.a. 0.90
Zhang et al. [21] INbreast n.a. 0.85
Liang et al. [22] INbreast n.a. 0.91

Dhungel et al. [27] INbreast 0.90 ± 0.02 @ 1.3 0.85 ± 0.02
Al-antari et al. [28] INbreast n.a. 0.9269

Gao et al. [29] INbreast 0.91 ± 0.05 @ 1.5 0.76 ± 0.03
Min et al. [4] INbreast 0.90 ± 0.05 @ 0.9 0.88 ± 0.10

PCMs+Mask R-CNN INbreast 0.909 @ 0.769 0.891 ± 0.05
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7. Conclusions

An integrated mammographic CAD system based on deep learning is described. It is
capable of simultaneous detection and segmentation of the masses, from mammograms
based on Mask R-CNN. It does not require human intervention to operate.

Experimental results show that the system achieves state-of-the-art competitive per-
formance in detection and segmentation. The results obtained from our experiments show
that data preparation may have a small impact on the performance of the system. Namely,
case-wide partition seems to have a small positive impact on the performance, preventing
the system from overfitting compared to when the dataset is randomly split.

Future work includes tests with other datasets, as well as a study of the application of
the methodology to other similar problems, such as other types of tumors. The method can
also be tested with other medical imaging types and modalities, such as MRI and PET.
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Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer-Aided Detection system
CC Craniocaudal
CGAN Conditional Generative Adversarial Network
CNN Convolution Neural Network
CRF Conditional Random Fields
DBN Deep Belief Network
DL Deep Learning
DICOM Digital Imaging and Communications in Medicine
GM Grayscale Mammogram
GMM Gaussian Mixture Model
Faster R-CNN Faster Region based Convolutional Neural Network
FCN Fully Convolutional Network
FFDM Full Field Digital Mammogram
FPPI False Positive Per Image
FrCN Full Resolution Convolutional Network
IoU Intersection over Union
m-DBN multi-scale Deep Belief Network
MG Mammogram
MLO Mediolateral Oblique
MMS Multi-scale Morphological Sifting
MRI Magnetic Resonance Imaging
MTL Multi-Task Learning
PCM Pseudo-Color Mammogram
PET Positron Emission Tomography
R-CNN Region based Convolutional Neural Network
RF Random Forest
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RGB Red, Green, Blue color model
RPN Region Proposal Network
ROI Region Of Interest
SSVM Structured Support Vector Machine
SVM Support Vector Machine
TPR True Positive Rate
TRW Tree Re-Weighted Belief Propagation
YOLO You-Only-Look-Once
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