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Highlights 

· Object-directed grasp representations at different levels of abstraction. 

· Stimuli (tool-hand) invariant grasps/tool affordances decoded from left PPC. 

· Viewpoint invariant grasps decoded from bilateral PPC, left LOTC, and left PMv. 
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Abstract 

When we see a manipulable object (henceforth tool) or a hand performing a grasping 

movement, our brain is automatically tuned to how that tool can be grasped (i.e., its affordance) 

or what kind of grasp that hand is performing (e.g., a power or precision grasp). However, it 

remains unclear where visual information related to tools or hands are transformed into abstract 

grasp representations. We therefore investigated where different levels of abstractness in grasp 

information are processed: grasp information that is invariant to the kind of stimuli that elicits it 

(tool-hand invariance); and grasp information that is hand-specific but viewpoint-invariant 

(viewpoint invariance). We focused on brain areas activated when viewing both tools and hands, 

i.e., the posterior parietal cortices (PPC), ventral premotor cortices (PMv), and lateral 

occipitotemporal cortex/posterior middle temporal cortex (LOTC/pMTG). To test for invariant 

grasp representations, we presented participants with tool images and grasp videos (from first or 

third person perspective; 1pp or 3pp) inside an MRI scanner, and cross-decoded power vs. 

precision grasps across (i) grasp perspectives (viewpoint invariance), (ii) tool images and grasp 

1pp videos (tool-hand 1pp invariance), and (iii) tool images and grasp 3pp videos (tool-hand 3pp 

invariance). Tool-hand 1pp, but not tool-hand 3pp, invariant grasp information was found in left 

PPC, whereas viewpoint-invariant information was found bilaterally in PPC, left PMv, and left 

LOTC/pMTG. These findings suggest different levels of abstractness – where visual information 

is transformed into stimuli-invariant grasp representations/tool affordances in left PPC, and 

viewpoint invariant but hand-specific grasp representations in the hand network.  

 

Keywords: fMRI, hands, parietal cortex, prehension, tools 
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1. Introduction 

We can immediately and effortlessly recognize how to appropriately grasp any manipulable 

object (henceforth tool) in our environment (e.g., with a power grasp for a hammer or a precision 

grasp for a pencil), or what kind of grasping movement our own or someone else’s hand is 

performing (e.g., power or precision grasp). That is because when we see a tool or a hand, our 

brain automatically infers how that tool can be grasped (i.e., the tool’s affordance; Grèzes, 

Tucker, Armony, Ellis, & Passingham, 2003; Masson, Bub, & Breuer, 2011; Tucker & Ellis, 

1998), or what kind of grasp posture that hand has (Bracci, Caramazza, & Peelen, 2018), from the 

visual information entering our retinae. However, for us to be able to recognize a specific grasp-

type across different stimuli, viewpoints, and/or distances despite very different retinal input 

patterns, the grasp representations must be invariant to the visual features. It is therefore 

necessary for the brain to process grasp representations at different levels of abstractness by 

transforming lower-level visual information into invariant (e.g., stimuli or viewpoint invariant) 

grasp representations. However, it remains unclear where in the human brain such 

transformations take place. Here we therefore used cross-decoding to investigate where we could 

find stimulus (tool-hand) and viewpoint-invariant grasp information. 

Since invariant grasp representations are activated by both hands and tools separately, 

they are likely located in one of the brain areas that are activated by observing both hands and 

tools, i.e., posterior parietal cortices (PPC; centered around the anterior intraparietal sulcus 

[aIPS], including the anterior part of the inferior parietal lobules [IPL], superior parietal lobules 

[SPL], and the somatosensory area), posterior middle temporal gyri/lateral occipitotemporal 

cortex (LOTC/pMTG), and ventral premotor cortices (PMv) (for tools see Almeida et al., 2017; 

Chao, Haxby, & Martin, 1999; Garcea, Kristensen, Almeida, & Mahon, 2016; Ishibashi, Pobric, 
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Saito, & Lambon Ralph, 2016; Lee, Mahon, & Almeida, 2019; Lewis, 2006; Mahon et al., 2007; 

Ruttorf, Kristensen, Schad, & Almeida, 2019); for hands see: Bracci, Cavina-Pratesi, Ietswaart, 

Caramazza, & Peelen, 2012; Bracci, Ietswaart, Peelen, & Cavina-Pratesi, 2010; Bracci & Peelen, 

2013). Consistently, these tool-hand overlap regions seem to represent functional tool-hand 

interactions (Bracci, Cavina-Pratesi, Connolly, & Ietswaart, 2016; Bracci & Op de Beeck, 2016; 

Bracci & Peelen, 2013), and are recruited during observed, planned, and executed grasp actions 

and tool use in humans and non-human primates (Castiello, 2005; Gallivan & Culham, 2015; 

Gallivan & Goodale, 2018; Ishibashi et al., 2016; Johnson-Frey, 2004; Lewis, 2006). 

In non-human primates, visual-motor neurons coding for observed and executed grasp 

actions have been reported in ventral premotor area F5 (of which a small subset also code for 

viewpoint invariant grasps; Caggiano et al., 2011) and in PPC (Baumann, Fluet, & Scherberger, 

2009; Murata et al., 1997; Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; Raos, Umiltá, 

Murata, Fogassi, & Gallese, 2006; Schaffelhofer, Agudelo-Toro, & Scherberger, 2015; Taira, 

Mine, Georgopoulos, Murata, & Sakata, 1990). In humans, however, observed grasp actions 

recruit LOTC/pMTG in addition to PPC and PMv (Caspers, Zilles, Laird, & Eickhoff, 2010). 

Consistently, viewpoint-invariant hand information have been found in human left LOTC/pMTG 

(Bracci et al., 2018), and visual-motor information in LOTC/pMTG and PPC (Oosterhof, Tipper, 

& Downing, 2012). We therefore expect to be able to decode viewpoint-invariant grasp 

information from PPC, PMv, and LOTC/pMTG. 

In addition to motor-dominant and visual-motor neurons, monkey PPC have visual-

dominant neurons that code for visual three-dimensional object properties (Baumann et al., 2009; 

Murata et al., 1997, 2000; Raos et al., 2006; Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997; 

Schaffelhofer & Scherberger, 2016; Taira et al., 1990). This makes the monkey, and by extension 

human, PPC a likely area for visual information to be transformed into invariant grasp 
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representations. In humans, the left PPC plays a particularly important role for tool-related grasp 

processing (Buchwald, Przybylski, & Króliczak, 2018; Ogawa & Imai, 2016; Orban, 2016; Orban 

& Caruana, 2014; Peeters, Rizzolatti, & Orban, 2013), and we therefore expect to be able to 

decode stimulus (tool-hand) invariant representations from left PPC. Nevertheless, since 

differences between power and precision grasps have been found in all neural overlap areas 

during action planning and/or execution (Ariani, Wurm, & Lingnau, 2015; Begliomini, Wall, 

Smith, & Castiello, 2007; Buchwald, Przybylski, & Króliczak, 2018; Cavina-Pratesi et al., 2018; 

Di Bono, Begliomini, Castiello, & Zorzi, 2015; Fabbri, Strnad, Caramazza, & Lingnau, 2014; 

Ogawa & Imai, 2016), we decided to test for stimuli invariance in all overlap areas. 

Taken together, the previous literature demonstrates that brain areas with tool- and hand-

related neural overlap (i.e., PPC, PMv, and LOTC/pMTG) are associated with observed, planned, 

and executed grasp actions and tool use. However, it remains unclear to what extent these areas 

process stimuli (tool-hand) invariant and/or viewpoint-invariant grasp representations. To test 

this, we presented participants with tool images and grasp videos from first (1pp) or third (3pp) 

person perspectives in an fMRI scanner, and used cross-classification to decode power vs. 

precision grasps across (i) viewpoints (viewpoint invariance), (ii) across tool images and grasp 

1pp videos (tool-hand 1pp invariance), and (iii) across tool images and grasp 3pp videos (tool-

hand 3pp invariance). We found tool-hand (1pp) invariant grasp information in left PPC, and 

viewpoint-invariant grasp information in bilateral PPC, left PMv, and left LOTC/pMTG, 

suggesting different levels of grasp-related abstractness. 

2. Materials and Methods 

Materials and data are available at https://doi.org/10.17605/OSF.IO/4ZF7P. 

2.1. Participants 
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Sixteen participants (M = 21 years, SD = 4.7, 12 females) were recruited from the Faculty 

of Psychology and Educational Sciences of the University of Coimbra. Sample size was based on 

previous studies with similar techniques (e.g., Gallivan, Adam McLean, et al. 2013; Chen, 

Garcea, and Mahon 2016; Gallivan et al. 2016; Ogawa and Imai 2016; Chen et al. 2018). This 

study was not pre-registered. All exclusion criteria (head motion exceeding voxel size 3 mm; 

strong scanner artifacts/distortions present) were established prior to data analysis, and we report 

all manipulations and measures in the study. Due to excessive head motion and/or scanner 

artifacts, we excluded data from all runs for one (female) participant, from the last three runs for 

one participant, and from the last two runs for another participant. Thus, 15 participants were 

used for statistical analyses. All participants had normal or corrected to normal vision, were right 

handed, gave written informed consent, and received course credits for their participation. The 

study adhered to the Declaration of Helsinki and was approved by the Ethical Committee of the 

Faculty of Psychology and Educational Sciences at the University of Coimbra.  

2.3. Stimuli and procedure 

The study consisted of a localizer experiment (6 runs with a total of 546 volumes 

per participant) and a main experiment (13 runs across two sessions with a total of 2535 volumes 

per participant). Stimulus delivery and response collection was controlled using “A Simple 

Framework” (Schwarzbach, 2011) based on the Psychophysics Toolbox in Matlab R2014a (The 

MathWorks Inc., Natick, MA, USA). Stimuli were presented on an Avotec projector with a 

refresh rate of 60 Hz, and viewed by the participants through a mirror attached to the head coil 

inside the bore of the MR scanner. 

For the localizer experiment we used a blocked design, where participants passively 

viewed grey-scaled images (400 x 400 pixel-size) of tools, hands, animals, famous places, and 

phase-scrambled versions of each object category. Each object category was pseudo-randomly 
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presented block-wise (with 12 consecutive images á 500 ms) twice per run, each phase-scrambled 

object category was presented once per run, each block was separated by 6 s fixation periods, and 

each run began and ended with a 16 s fixation period (adapted from Fintzi & Mahon, 2014; see 

also Almeida et al., 2017; Lee et al., 2019). Thus, each object category condition used 12 blocks 

in total for the univariate analyses.  

In the main experiment, we used a mixed design (Figure 1A). During each run, 

participants were pseudo-randomly presented with two blocks of grey-scaled static (power or 

precision) tool images, two blocks of grey-scaled (power or precision) grasp videos filmed from a 

first-person perspective (1pp), and two blocks of grasp videos filmed from a third-person 

perspective (3pp). Each run began and ended with a 10 s fixation period, and the blocks were 

separated by 8 s fixation periods throughout each run. The tool-image blocks contained a random 

mix of 16 tools, out of which eight required a power and eight required a precision grasp when 

used. Moreover, each block per run had a different set of tool exemplars, totaling 32 different tool 

images per run (see Figure S1 for all tool images). Similarly, the grasp-video blocks contained a 

random mix of 16 videos with eight videos where the hand performed a power grasp and eight 

where a precision grasp was performed. A female and male actor was used to create two equal 

sets of exemplar grasp videos recorded from 1pp and 3pp. First and third person grasp videos 

were recorded at the same time, and thus depicted the same exact grasp from different 

viewpoints. In all videos, the hand started on the table, moved up to perform a tool-specific grasp 

mid-air, and was then put down on the table. The tool-specific grasps depicted the typical grasps 

for using those tools (e.g., palmar grasp for a hammer), but were not pantomiming tool use (i.e., 

not hammering a nail). Thus, every single grasp was uniquely matched to the size and shape of its 

target tool.  Importantly, participants were not told that each grasp video matched the appropriate 

grasp of a specific tool presented in the tool-image blocks. Instead, the participants were 
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instructed to press a button whenever they detected a catch trial (i.e., tool chimeras in tool blocks 

or non-grasping hand movements in grasp-video blocks) that was presented randomly two times 

in each block. The tool chimeras consisted of a combination of two tools, and the non-grasping 

movements consisted of a rotating hand with an open palm. The purpose of this task was to keep 

participants awake while attending to all stimuli. Each block therefore contained 18 trials with 

1.5 s stimuli presentations (eight power, eight precision, and two catch trials) separated by 1.5 s 

fixation periods for a 54 s block duration. In sum, each of the six tool/grasp conditions was 

repeated 16 times for each of the 13 runs (208 in total), and after removing false alarm trials (i.e., 

when participants incorrectly pressed the button), there was on average 15.9 (SE = 0.02) 

repetitions of each tool/grasp condition per run that was used to create run-wise beta maps for the 

multivariate analysis. 

2.4 MRI acquisition 

MRI data were collected with a 3T MAGNETOM Trio whole body MR scanner (Siemens 

Healthineers, Erlangen, Germany) with a 32-channel receive-only head coil across two sessions 

(one structural run, six localizer runs, five runs for the main experiment in the first session, and 

eight runs for the main experiment in the second session). The interval between sessions varied 

from a few days up to four weeks. Structural MRI data were acquired using a T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) sequence (repetition time (TR) = 1900 

ms, echo time (TE) = 2.32 ms, slice thickness = 0.9 mm, flip angle = 9 degrees, field of view 

(FoV) = 256 x 256, matrix size = 256 x 256, bandwidth (BW) = 200 Hz/px, GRAPPA 

acceleration factor 2). Functional MRI (fMRI) data were acquired using a T2*-weighted gradient 

echo planar imaging (EPI) sequence (TR = 2000 ms, TE = 22 ms, slice thickness = 2.3, FoV = 

256 x 256, matrix size = 96 x 96, flip angle = 90 degrees, BW = 1578 Hz/px, GRAPPA 

acceleration factor 3). Each image volume consisted of 40 contiguous transverse slices recorded 
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in interleaved slice order oriented parallel to the line connecting the anterior commissure to the 

posterior commissure covering the whole brain. 

2.5. Preprocessing and statistical analysis of fMRI data 

2.5.1. Preprocessing  

We used SPM12 (Welcome Trust Centre for Neuroimaging, London, UK), run in Matlab R2017b 

(Mathworks, Inc., Sherborn, MA, USA), for processing and analysis of structural and functional 

data. Prior to preprocessing, functional volumes were manually inspected for anomalies (e.g., 

artifacts) with in-house software (DataZ 9D). The structural and functional images were 

reoriented to approximate MNI space with SPM12 after slice-time correction. The functional data 

were slice-time corrected to the first slice using a Fourier phase-shift interpolation method. 

Functional images from both sessions were realigned to the first volume of the first session using 

7th degree b-spline interpolation so that all functional images were in the same individual space, 

and to correct for head motion. Structural images were coregistered to the first functional images. 

Functional data were normalized to MNI anatomical space using a 12-parameter affine 

transformation model in DARTEL (Ashburner, 2007), and down-sampled to 3 mm3 voxel size 

prior to applying an 8 mm and 3 mm FWHM Gaussian filter for univariate and multivariate 

analyses, respectively.  

2.5.2. Univariate analyses  

For within-subject modeling, a General Linear Model (GLM) with restricted maximum 

likelihood estimation was used. The GLM design matrix for the localizer experiment consisted of 

8 regressors of interest (tools, animals, hands, places, and phase scrambled versions of each 

object category), and head motion (six parameters) as nuisance regressors. All regressors except 

for head motion were convolved with the “canonical” hemodynamic response function as defined 

in SPM12. The high-pass filter had a cut-off at 256 s, and the autocorrelation model was global 
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AR (1). Model estimations from each participant were taken into second-level random-effects 

analyses (one-sample t-tests) to account for inter-individual variability, and used to define regions 

of interest for the multivariate analysis. 

2.5.3. Regions of interest definitions  

A univariate conjunction contrast (hands > animals ∩ tools > animals; Figure 2) was used to

identify group and individual peak-coordinates for regions engaged by both hands and tools. We 

used the conjunction of hands and tools because we wanted to extract shared patterns within the 

two categories, and assumed the peak conjunction-coordinates would be an optimal starting 

point. However, for the viewpoint invariant cross-classifications we also used the hand-network 

(hands > animals) since the viewpoint invariant analysis only contained hands. We used the 

category animals as baseline because (i) animals are known to engage different areas than hands 

and tools, and (ii) using another object category instead of phase scrambled images allowed us to 

focus on high-level category-specific information related to hands and tools. Regions of interest 

(ROIs) were defined in two steps similar to the steps proposed by (Oosterhof et al., 2012): Firstly, 

we created group-level spheres with 12 mm radius (with MarsBaR; Brett, Anton, Valabregue, & 

Poline, 2002) centered on the group’s univariate peak-voxel coordinates. Secondly, we created 

individual-level spheres with 15 mm radius centered on each individual’s univariate peak-voxel 

coordinates but within the group-level spheres (Figure 2). To test how stable effects are across 

ROI size, we additionally created individual-level spheres with 12 mm radius (Figure S2). All 

ROIs were defined based on the localizer experiment to avoid circularity, used to extract the 

individually most relevant beta values from the main experiment to account for individual 

variability in anatomy, and used for the multivariate analysis. To control for low-level motion or 

other visual similarities between the two grasp perspectives, we used anatomically defined V1 
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and V5/MT regions (Jülich SPM Anatomy Toolbox v.3.0; Eickhoff, Heim, Zilles, & Amunts, 

2006; Eickhoff et al., 2007, 2005). 

2.5.4. Multivariate classification analyses  

The GLM design matrix for the main experiment consisted of 8 regressors of interest (power 

tools, precision tools, power grasps 1pp, precision grasps 1pp, power grasps 3pp, precision grasps 

3pp, catch tools, catch grasps), and head motion (six parameters) as nuisance regressors. For each 

experimental condition, both blocks were used to estimate beta values, which resulted in one beta 

map per condition per run (i.e., 13 beta maps per condition per participant). The software used for 

multivariate analysis of the fMRI data was CoSMoMVPA (Oosterhof, Connolly, & Haxby, 

2016). The multivariate classification analyses used a leave-one-run-out cross-validation 

procedure to train a linear discriminant analysis (LDA) classifier to discriminate between z-score 

normalized beta patterns of two experimental conditions. We estimated each voxel’s z-score 

(across runs) on the training data, and applied the parameters to the test data to remove noise, and 

thus improve cross-classification performance (Misaki, Kim, Bandettini, & Kriegeskorte, 2010), 

while keeping training and testing data independent. We used an LDA classifier with shrinkage 

because it has performed favorably compared to other classifiers when used on visual object 

information (Mandelkow, de Zwart, & Duyn, 2016; Misaki et al., 2010). The LDA classifier used 

shrinkage that regularized the matrix by adding the identity matrix scaled by one percent of the 

mean of the diagonal elements as implemented by CoSMoMVPA Toolbox (Oosterhof et al., 

2016; Oosterhof, Wiestler, Downing, & Diedrichsen, 2011). The standard leave-one-run-out 

cross-validation procedure ensured that training and testing data was kept completely 

independent. That is, for each iteration in the cross-validation procedure, the training pair from 

modality A (e.g., a power and precision grasp video) that was in the same run as the testing pair 

from modality B (e.g., a power and precision tool image) was always omitted. Thus, the LDA 
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classifier was trained on 11 pairs (omitting one possible training pair) from modality A, and 

tested on one pair from modality B for each of the 13 cross-validation iterations. More precisely, 

the LDA classifier was trained to discriminate between power vs. precision within modality A 

and tested within modality B, then trained on modality B and tested on modality A, and finally 

averaged across direction for the cross-classification accuracy (Figure 1B). 

The group’s median classification accuracies were statistically tested with non-parametric 

Monte Carlo sampling by comparing the probability of each true accuracy to its group level null-

distribution with 10,000 null accuracies created by randomly shuffling the condition labels. 

Condition labels were randomly shuffled within runs prior to running the classification analysis, 

and iterated 10,000 times per participant to create a participant-by-iterations matrix, from which 

the median accuracies across participants were used to create a group-level null-distribution. The 

p-value was computed by counting the number of median accuracies in the null-distribution that 

were greater than the true median accuracy, divided by the total number of median accuracies in 

the null-distribution. We used median instead of mean to avoid the group results to be driven by 

few extreme values, and FDR correction (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 

2001) with a false discovery rate (q < 0.05) to correct for multiple comparisons of all tests within 

each analysis type, i.e., four tests for tool-hand 1pp, four tests for tool-hand 3pp, and ten tests for 

viewpoint-invariant analyses. 

The multivariate searchlight analyses (Kriegeskorte, Goebel, & Bandettini, 2006) used a 

whole-brain grey-matter mask created by summing each participant’s segmented grey matter 

masks. The searchlight analyses used 15 mm spheres with an LDA classifier with shrinkage to 

create a mean accuracy map for each participant. The individual accuracy maps for each 

searchlight analysis were entered into a non-parametric one-sample t-test to obtain group 

statistics, corrected for multiple comparisons using threshold-free cluster enhanced (Smith & 
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Nichols, 2009), statistically tested against a Monte Carlo sampled null-distribution created by 

randomly flipping the signs of the original voxel values for 100,000 iterations, and converting the 

resulting p-values to z-values as implemented in CoSMoMVPA Toolbox (Oosterhof et al., 2016). 

There are important differences between the searchlight and ROI analyses to be aware of when 

interpreting the results. Firstly, the searchlight does not take individual differences in anatomy 

into account (i.e., each sphere is averaged across individuals at the same spatial position rather 

than based on individual peak coordinates). Secondly, the searchlight as implemented in 

CoSMoMVPA statistically tests mean group values rather than median values as used in the ROI 

analysis. Thirdly, for computational speed, the searchlight permutations randomly flip the signs 

of the individual accuracies for its non-parametric tests instead of shuffling labels and rerunning 

the analysis as for the ROI analyses. Fourthly, the searchlight analysis has to correct for more 

comparisons. These four differences make the searchlight less sensitive than the ROI analyses, 

which is important to consider when interpreting the differences between searchlight and ROI 

results. 

3. Results 

3.1. Behavioral results  

The high hit rate (i.e., correctly pressing a button during catch trials; M = 90%, SE = 6%) 

and low false alarm rate (i.e., mistakenly pressing the button during non-catch trials; M = 0.7%, 

SE = 0.1%) suggest that participants indeed paid attention to the tool images and grasp videos of 

interest during the main experiment.  

3.2. fMRI results 

3.2.1. Univariate localizer results  

A localizer experiment was used to pinpoint the tool-hand conjunction and hand peak-

coordinates for subsequent multivariate region of interests (ROI) analyses. The conjunction 
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contrast (hands > animals ∩ tools > animals, FWE p < 0.05 cluster corrected) revealed significant 

BOLD signal change in the left PPC (peak t-value = 8.50, MNI coordinate = [-39 -39 45]; 

centered around aIPS, and extending across the anterior inferior and superior parietal cortices, 

and along the posterior border to the secondary somatosensory area), the right PPC (peak t-value 

= 5.78, MNI coordinate = [39 -42 63]), left LOTC/pMTG (peak t-value = 6.04, MNI coordinate = 

[-54 -66 -3]), and left PMv (peak t-value = 6.04, MNI coordinate = [-48 6 30]) (Figure 2).  

The hands > animals contrast (FWE p < 0.05 cluster corrected) showed BOLD signal 

change in left PPC (peak t-value = 11.67, MNI coordinate = [-36 -39 45]; centered around aIPS, 

and extending across the anterior inferior and superior parietal cortices, and along the posterior 

border to the secondary somatosensory area), the right PPC (peak t-value = 9.39, MNI coordinate 

= [51 -27 42]), left LOTC/pMTG (peak t-value = 11.50, MNI coordinate = [-48 -57 6]), right 

LOTC/pMTG (peak t-value = 9.91, MNI coordinate = [51 -57 3]), left PMv (peak t-value = 8.53, 

MNI coordinate = [-48 3 21]), and right PMv (peak t-value = 8.48, MNI coordinate = [54 12 27]). 

For completion, the tools > animals contrast (FWE p < 0.05 cluster corrected) revealed 

significant BOLD signal change in the left PPC (peak t-value = 9.44, MNI coordinate = [-39 -39 

45]; centered around aIPS, and extending across the anterior inferior and superior parietal 

cortices to the dorsal occipital cortex, and along the posterior border to the secondary 

somatosensory area), the right PPC (peak t-value = 6.47, MNI coordinate = [48 -18 36]), left 

LOTC/pMTG (peak t-value = 6.78, MNI coordinate = [-45 -69 -6]), left PMv (peak t-value = 

5.38, MNI coordinate = [-48 6 30]), and left fusiform gyrus (peak t-value = 6.03, MNI coordinate 

= [-27 -66 12]). 

3.2.2. Multivariate classification results  

Here we show cross-classification results averaged across directions for more power, but 

there were no significant differences between directions for any analysis-type or ROI with one 
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exception (viewpoint invariant, hand-based, left PMv, exact p = 0.014; all other ROIs exact p > 

0.066), and there was no difference between directions for any searchlight analysis.  

Regarding hand-tool invariant grasp-specific information in conjunction-based ROIs, we 

show that neural patterns in left PPC allowed for above chance classification of power vs. 

precision properties across object categories (i.e., training on tool images and testing on grasp 

1pp videos and vice-versa) (Figure 3A). The tool-hand 1pp invariant cross-classification accuracy 

was significantly higher than chance for left PPC (Mdn = 55.4%, p = 0.006, one-tailed), but not 

for any other ROIs (all p > 0.246, one-tailed). The accuracy for left PPC was significantly higher 

than left LOTC/pMTG (Wilcoxon signed ranks test: z = 1.97, exact p = 0.048, two-tailed) and 

left PMv (Wilcoxon signed ranks test: z = 2.27, exact p = 0.021, two-tailed), but not right PPC 

(Wilcoxon signed ranks test: z = 1.70, exact p = 0.091, two-tailed). There were no tool-hand 1pp 

accuracy differences between other ROIs (all exact p > 0.309, two-tailed). Contrarily, the tool-

hand 3pp invariant cross-classification accuracies were not above chance in any ROI (all p > 

0.244, one-tailed), and there were no differences between ROIs (all exact p > 0.444, two-tailed). 

There was no difference between tool-hand 1pp and 3pp accuracies (all exact p > 0.086, two-

tailed). Taken together, the results show that hand-tool (1pp) invariant grasp-type information 

was extracted from left PPC.  

Regarding viewpoint-invariant grasp-specific information in conjunction-based ROIs, we 

found that neural patterns from left LOTC/pMTG allowed for classifying power vs. precision 

grasps across viewpoints (Figure 3A). The viewpoint invariant cross-classification accuracy was 

significantly higher than chance for left LOTC/pMTG (Mdn = 53.8%, p = 0.011, one-tailed), but 

not for any other ROI (all p between 0.096 and 0.099, one-tailed). There were no viewpoint-

invariant accuracy differences between ROIs (all exact p > 0.303, two-tailed). However, since 

viewpoint invariance pertain to hands only, and because Bracci et al. (2018) found that viewpoint 
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invariance was specific to their hand-based ROI, we tested for viewpoint invariance in all hand-

based areas (Figure 3B). The viewpoint invariant accuracy for hand-based ROIs was significantly 

higher than chance for left PPC (Mdn = 57.7%, p = 0.0001, one-tailed), left LOTC (Mdn = 

57.7%, p = 0 [i.e., all 10 000 null permutations were below 57.7%], one-tailed), left PMv (Mdn = 

53.8%, p = 0.014, one-tailed), and right PPC (Mdn = 53.8%, p = 0.016, one-tailed), but not in any 

other ROI (all p > 0.298, one-tailed). There were no viewpoint-invariant accuracy differences 

between ROIs (all exact p > 0.059, two-tailed). Furthermore, there was no significant differences 

in viewpoint-invariant accuracy between conjunction- and hand-based ROIs (all exact p > 0.349, 

two-tailed). Taken together, the results show that viewpoint invariant grasp information was 

extracted from bilateral PPC, left LOTC, and left PMv. 

However, contrary to the tool-hand decoding, the viewpoint invariant decoding could 

potentially have been influenced by low-level motion or other visual similarities, because both 

conditions were of identical hands performing identical grasps but from different viewpoints. To 

control for this possibility, we tried to decode viewpoint invariance from anatomically defined 

V1 and V5/MT. We were indeed able to decode viewpoint invariance from left V1 (Mdn = 

53.8%, p = 0.008) but not from right V1 (Mdn = 50%, p = 0.31), left V5/MT (Mdn = 48.1%, p = 

0.72) or right V5/MT (Mdn = 51.9%, p = 0.09), which suggests that there is some low-level 

similarity between first and third viewpoints that potentially could have influenced the viewpoint 

invariant decoding.  

Lastly, we did a whole-brain searchlight procedure to test for tool-hand (1pp and 3pp) and 

viewpoint invariant information (Figure 3C). There were no significant clusters of tool-hand (1pp 

or 3pp) invariant cross-classification after correcting for multiple comparisons (see Figure S3 for 

uncorrected median accuracy maps). However, a relatively large cluster of viewpoint invariant 
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cross-classification accuracy was found in left LOTC/pMTG, and a smaller cluster in right 

middle frontal cortex. 

4. Discussion 

Tool and hand stimuli have been shown to engage a set of grasp-related regions within the 

PPC (centered around the aIPS, and including the anterior part of the inferior parietal lobules, 

superior parietal lobules, and the somatosensory area), left PMv, and left LOTC/pMTG. Here, we 

investigated whether these regions processed (power or precision) grasp-type information at 

different levels of abstractness (from hand-specific but viewpoint invariant to stimuli-unspecific 

hand-tool invariant information). As expected, we found hand-tool invariant grasp-type 

information in left PPC. However, this was only true when participants observed grasps being 

performed from first person perspective. In contrast, we found hand-specific but viewpoint-

invariant grasp-type information in bilateral PPC, left PMv, and left LOTC/pMTG. 

4.1. Tool-hand invariance 

We were only able to decode power vs. precision properties across tool images and grasp 

videos from left PPC. Overall, these results show that at some point in the processing of grasp 

related information, representations are abstracted away from the visual features of the tools and 

effectors. According to our data, these representations seem to relate to grasp type (i.e., precision 

and power grasps), and may serve as a bridge between different effectors and different aspects of 

tools (perhaps differences in the properties of different exemplars of the same tool) – i.e., 

between what the system gathers about a tool that constrains the possible functional grasps, and 

the knowledge of how the effectors may interact with those tools (Sakreida et al., 2016; Valyear, 

Cavina-Pratesi, Stiglick, & Culham, 2007; Valyear, Gallivan, McLean, & Culham, 2012).  
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Interestingly, cross-decoding between images of tools and videos of grasps was only 

observed for those grasps that were shown from a first-person perspective, but not when shown 

from a third-person perspective. This is consistent with the suggestion that visuospatial 

information for object-directed actions need to be coded within an egocentric frame of reference, 

while visual information for object recognition need to be coded within an allocentric frame of 

reference (Jeannerod, 2001). This may suggest that these tool-hand invariant representations, 

albeit abstract, pertain to how an individual should act and implement a functional grasp on a 

target tool, serving as a guide for the interactions between our own effectors and the target tool. 

One possible conclusion from our data, then, is that at some point in the system, and at a more 

abstract representational level, processing of first and third person perspectives are separate – that 

is, processing our own interactions with tools is not equivalent to, or perhaps not even similar to 

processing someone else’s interactions with tools. Alternatively, it could simply be that first 

person perspectives show stronger effects during relatively passive observation than third person 

perspectives (but note that paired tests did not reveal a significant accuracy difference between 

1pp and 3pp for left PPC). 

Our tool-hand invariant finding is consistent with previous literature showing that tool 

processing is left lateralized in PPC (Almeida, Fintzi, & Mahon, 2013; Almeida et al., 2017; 

Buchwald et al., 2018; Castiello, 2005; Culham & Valyear, 2006; Gallivan & Culham, 2015; 

Gallivan & Goodale, 2018; Garcea et al., 2016; Gerbella, Rozzi, & Rizzolatti, 2017; Ishibashi et 

al., 2016; Jacobs, Danielmeier, & Frey, 2010; Johnson-Frey, 2004; Kristensen, Garcea, Mahon, & 

Almeida, 2016; Lewis, 2006; Mahon, Kumar, & Almeida, 2013; Rizzolatti & Matelli, 2003; 

Sakreida et al., 2016; Valyear et al., 2007, 2012). Specifically, it has been shown that left PPC (in 

particular SMG) is engaged during tool action observation (Peeters et al., 2013; Peeters et al., 

2009), contain stable tool affordances (Sakreida et al., 2016), and if damaged produces deficits in 
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tool use and pantomiming (Almeida et al., 2018; Buxbaum, Kyle, Grossman, & Coslett, 2007; 

Goldenberg & Hagmann, 1998; Sunderland, Wilkins, Dineen, & Dawson, 2013).  

Although some studies have been able to decode grasp-type not only in PPC, but also 

premotor (Buchwald et al., 2018; Di Bono et al., 2015; Gallivan, McLean, et al., 2013; Turella, 

Rumiati, & Lingnau, 2020) and LOTC areas (Ariani et al., 2015; Fabbri et al., 2014; Gallivan, 

McLean, et al., 2013; Turella et al., 2020), their methods differed from ours in important ways. 

First, they all decoded grasps during action planning and/or execution, while we did so during 

stimulus observation, which gives our study a greater focus on automatic sensorimotor 

transformation processes without top-down motor influences. Secondly, some of them decoded 

grasps more directly without abstracting away from lower-level visual or motor features. 

Interestingly, two studies that tried to cross-decode invariant grasps across tool-use pantomiming 

and tool images while thinking about the tool’s function (Chen et al., 2018), and tool-use 

pantomiming across left hand/while seeing tool words and right hand while seeing tool images 

(Ogawa & Imai, 2016), only found invariant tool-actions in left PPC.  

These tool-hand invariant grasp representations are at the top of the dorsal “vision for 

action” hierarchy, and are likely extracted from stimulus properties analogous to the kinds of 

neural processes found in monkey PPC. More specifically, invariant grasp representations in 

human PPC are likely extracted from neurons similar to those found in monkey intraparietal 

sulcus (AIP) and IPL that are sensitive to visual properties such as object 3D shape, orientation, 

size, and hand grip (Baumann et al., 2009; Murata et al., 1997, 2000; Raos et al., 2006; Sakata et 

al., 1997; Schaffelhofer & Scherberger, 2016; Taira et al., 1990), and that code for specific grasp 

types (Schaffelhofer et al., 2015); while further informed by object texture, weight, and shape 

from inferotemporal cortex (Almeida et al., 2013; Cavina-Pratesi, Kentridge, Heywood, & 

Milner, 2010; Gallivan, Cant, Goodale, & Flanagan, 2014; Garcea et al., 2016; Kristensen et al., 
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2016; Lee et al., 2019; Lowe, Rajsic, Gallivan, Ferber, & Cant, 2017; Mahon et al., 2013); object 

identity (Almeida et al., 2013; Almeida, Mahon, & Caramazza, 2010; Mahon et al., 2013), and 

information related to biological/non-biological motion (Beauchamp, Lee, Haxby, & Martin, 

2002), grasping/tool actions (Bracci et al., 2018; Fabbri, Stubbs, Cusack, & Culham, 2016; 

Gallivan, Chapman, McLean, Flanagan, & Culham, 2013; Gallivan et al., 2015; Gallivan, 

McLean, et al., 2013; Valyear & Culham, 2010; Vingerhoets & Clauwaert, 2015), and action 

knowledge (Oosterhof et al., 2012; Vingerhoets, 2008; Wurm & Caramazza, 2019; Wurm & 

Lingnau, 2015) from left LOTC/pMTG. According to the FARS model, the extracted affordances 

are then relayed from monkey PCC to F5 (analogous to human PMv), which is responsible for 

selecting and executing the appropriate grasp (Fagg & Arbib, 1998; Schaffelhofer & Scherberger, 

2016). Consistently, we were only able to decode tool-hand invariant representations from left 

PPC, but not from PMv or left LOTC/pMTG. The lack of tool-hand invariant decoding in PMv 

could relate to its more prominent role in planning and executing grasps (Gallivan, McLean, et 

al., 2013; Schaffelhofer & Scherberger, 2016) rather than sensorimotor transformations. The PMv 

might therefore not be as involved in tasks like ours that relied on observation without motor 

planning and execution. Although the left LOTC/pMTG has been suggested to process a wide 

variety of tool and action-related information (for review see Lingnau & Downing, 2015), we 

were not able to find support for tool-hand invariant information here either. The lack of tool-

hand invariant grasp information is similar to Gallivan et al. (2013), who were unable to find 

cross-effector (tool-hand) information in left LOTC/pMTG, but different from Turella et al. 

(2020) that found cross-effector (left-right hand) information in LOTC/pMTG. Although it is 

unclear what underlies this difference, perhaps the invariant information in LOTC/pMTG only is 

hand-specific, which is consistent with our viewpoint invariant decoding in LOTC/pMTG. 

However, the precise role of LOTC/pMTG needs further investigation. 
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4.2. Viewpoint invariance 

Additionally, we were able to decode power vs. precision grasp properties across 

viewpoints in mainly hand-related areas such as bilateral PPC, left PMv, and left LOTC/pMTG, 

which suggest that shared neural representations within these regions relate to viewpoint-

invariant, but hand-specific, grasp information. Being able to extract viewpoint invariant hand 

posture and movements are necessary for us to understand what a hand is doing (whether 

grasping or communicating) because the same posture/movement is visually dissimilar from 

different viewpoints. Our viewpoint invariant findings extend previous findings where viewpoint 

invariant visual-motor neurons were reported in monkey F5 (Caggiano et al., 2011), visual-motor 

information within first and third person perspectives separately (across viewpoint was not 

tested) in human PPC and LOTC/pMTG, and within first person perspective in PMv (Oosterhof 

et al., 2012), viewpoint-invariant hand-posture information in left LOTC/pMTG (Bracci et al., 

2018), and effector-independent information in PPC, PMv, and LOTC/pMTG (Turella et al., 

2020). The main reason we found viewpoint invariant representations where others did not could 

simply be because they did not test the same areas the same way we did. Specifically, Bracci et 

al. (2018) only performed ROI analysis on left LOTC, Caggiano et al. (2011) only recorded from 

neurons in PMv, and Oosterhof et al. (2012) only tested within but never across viewpoints. It is 

possible they would have found the same as us had they performed the same tests in the same 

regions as us. 

Viewpoint invariance in bilateral PPC is a novel finding that likely represents abstract 

grasp-type information on hand-shape properties that inform the different grasp types, and 

provide input to cortical areas that focus on motor preparation and execution (e.g., PMv). These 

hand-shape properties are equivalent but shown from different (first and third person) viewpoints, 

and may therefore draw upon viewpoint invariant 3D information of these effectors. 
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Interestingly, the fact that we could decode viewpoint invariant information bilaterally, but tool-

hand invariant information only from a first person perspective suggest that at least some action-

related properties are not necessarily coded from an egocentric frame of reference. The fact that 

the viewpoint invariance was bilateral in PPC is interesting because grasping is typically 

associated with a bilateral activation in aIPS – areas that produce grasping deficits that affects the 

shaping of the hand when damaged or stimulated (Binkofski et al., 1998; Rice, Tunik, & Grafton, 

2006; Tunik, Frey, & Grafton, 2005). This suggests that the viewpoint invariance relates to hand-

specific grasp properties in bilateral PPC that is not shared with tool representations, while the 

tool-hand invariance is left lateralized because it relates specifically to actions with tools. 

Moreover, Turella et al. (2020) found that bilateral PPC/aIPS contained three levels of 

abstraction, within effector and orientation, within effector across orientation, and across effector 

(left-right hand) and orientation, which suggests that PPC might be a central hub for transforming 

concrete into abstract grasp information. 

Viewpoint invariance in human PMv is also a novel finding, which previously only has 

been shown in visual-motor neurons in monkey F5 (Caggiano et al., 2011). In human PMv, it has 

only been shown possible to decode hand actions (lift vs. slap) within first person perspective 

(Oosterhof et al., 2012). This viewpoint invariance might represent more abstract motor programs 

or action goals and is likely based on information from PPC and LOTC/pMTG. Furthermore, the 

viewpoint invariance in left LOTC/pMTG is clearly the strongest result as demonstrated by the 

ROI and whole-brain searchlight, and replicates previous findings (Bracci et al., 2018), and is in 

line with previous findings that show effector-independent (left-right hand) grasp information in 

LOTC/pMTG (Turella et al., 2020). The left LOTC/pMTG has been involved in many different 

action-related tasks, and it is unclear exactly what the viewpoint invariance represents, but it 

likely relates to a more abstract visual hand shape and/or motion information that is important for 
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action recognition. The whole-brain searchlight also revealed a small and unexpected cluster in 

the right middle frontal gyrus, but since it is not an area that has been previously related to hand 

perception, it is unclear what the significance of this finding is.  

Taken together, our viewpoint invariant findings suggest that viewpoint invariant 

information is processed in several hand-related brain areas associated with action observation 

(Caspers et al., 2010). We are not able to determine whether this viewpoint invariance is decoded 

specifically from visual-motor neurons/representations like previous studies, but that is 

something that can be addressed in future studies.  

4.3. Limitations 

 The viewpoint invariant cross-decoding was derived across hands performing the same 

grasp movements, and could therefore be confounded by motion similarities or other low-level 

visual confounds. In our control analysis, we were indeed able to decode viewpoint invariance in 

left V1 (but not right V1, nor left or right V5/MT), which suggests the presence of some low-

level confounds that in principal could have affected the viewpoint invariant results. The 

viewpoint invariant results should therefore be interpreted with an appropriate amount of caution. 

However, the control analyses did not show significant effects in V5/MT, which seems to suggest 

that the viewpoint invariant decoding in left LOTC was not driven by motion similarity. 

Moreover, the viewpoint invariant decoding in PPC and PMv should not be affected by motion 

similarity, since those areas are not responsive to low-level motion in the same way as V5/MT. It 

is unclear exactly what low-level information was decoded in left V1 (or why not right V1), but 

we think it is unlikely to be driving the viewpoint invariant results. 

Importantly, the tool-hand invariant representations were decoded across completely 

different stimulus material with no discernable similarities in high- or low-level visual features, 
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or motion similarities since the tool images were static, and should therefore be free of both 

motion and other low-level visual confounds. However, it might be that the activation of tool-

hand invariant grasp representations is modulated by the type of tool stimuli used. For example, 

using static tool images, tool motion for manipulation, or camera zoom onto tool as if 

approaching for grasping, could have modulated the classification accuracy in the same or 

different ROIs. Moreover, using tools that were systematically viewed from first or third person 

perspectives would have enabled us to further investigate the abstractness of tool-hand invariant 

representations by comparing classification accuracy for tools and hands from the same 

viewpoint compared to different viewpoints. However, in this study we wanted to keep things 

simple to avoid a too complex design manipulation, but it would be interesting to compare 

different tool stimuli and tool viewpoints in future studies. 

 For our localizer contrasts we used animals as baseline because we wanted to use a 

common and relatively neutral object category. It was important to use a common baseline for 

both tools and hands since we were primarily interested in the conjunction of tools and hands, 

and using different baselines for tools and hands respectively could have created a bias toward 

one of them. Importantly, this choice should not have affected ROI localization nor the 

interpretation of the results, because our tool and hand results match the extensive previous 

literature where many different object categories (including animals) have been used with 

consistent results (for tools see Almeida et al., 2017; Chao, Haxby, & Martin, 1999; Garcea, 

Kristensen, Almeida, & Mahon, 2016; Ishibashi, Pobric, Saito, & Lambon Ralph, 2016; Lee, 

Mahon, & Almeida, 2019; Lewis, 2006; Mahon et al., 2007; Ruttorf, Kristensen, Schad, & 

Almeida, 2019); for hands see: Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Peelen, 2012; 

Bracci, Ietswaart, Peelen, & Cavina-Pratesi, 2010; Bracci & Peelen, 2013). The peak-voxels we 
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used would most likely be similar had we used another object category as baseline, and we do 

therefore not believe that using a different baseline than animals would have changed the 

outcome. 

4.4. Conclusions 

In conclusion, our data suggest that visual information is transformed into tool-hand (1pp) 

invariant grasp-type (power and precision) representations in left PPC, and viewpoint-invariant 

but hand-specific grasp-type representations in bilateral PPC, left LOTC/pMTG, and left PMv. 

These invariant grasp representations probably reflect information integration at different levels 

of processing, where grasps related to tool use might be restricted to left PPC, and hand-specific 

grasp properties are processed more widely in hand-related areas. 
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Figure captions 

Figure 1. Experimental procedure. (A) Mixed blocked/event-related experimental design. Each 

run consisted of two blocks of tool images, grasp videos were presented from a first and third 

person perspective. Each block included eight power and eight precision tools/grasps, and two 

chimera/non-grasp catch trials. Each trial consisted of 1.5 s stimulus presentation and 1.5 s 

fixation presentation. The task was to detect catch trials (i.e., trials consisting of tool chimeras or 

non-grasping hands). Abbreviations: pow = power trials, pre = precision trials, Ca = catch trials 

(B) A workflow describing the tool-hand (1pp and 3pp) and viewpoint invariant cross-

classification analyses with example stimuli from the three conditions with matching power and 

precision tools and grasps. The LDA classifier is (1) trained to discriminate power vs. precision 

within one modality and tested on the other modality, (2) trained and tested on the modalities in 

the reverse order, and (3) averaged across the two directions for the final cross-classification 

LDA accuracy. 

 

Figure 2. Localizer results. Group-level univariate localizer results showing the conjunction 

(hands > animals ∩ tools > animals), hands > animals, and tools > animals, FWE p < 0.05 cluster 

corrected). The conjunction contrast and hands > animals contrast were used to find peak-voxel 

coordinates for the multivariate region of interest analysis. The tools > animals contrast is shown 

for completion. 

 

Figure 3. Classification results. (A) Summation heat map of individual spheres centered on 

peak voxels from the conjunction contrast, and boxplot graph with conjunction-based cross-

classification results. (B) Summation heat map of individual spheres centered on peak voxels 
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from hands > animals contrast, and boxplot graph with hand-based cross-classification results. In 

the graphs, average (across directions) LDA accuracy is shown on the y-axis, regions of interest 

on the x-axis, and boxplots show median viewpoint and tool-hand (1pp and 3pp) invariant 

classification accuracy. The black horizontal line shows chance-level (50%), colored dots 

indicates outliers, * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and red * FDR q  0.05. FDR corrected 

for all tests within each analysis type (4 x tool-hand 1pp, 4 x tool-hand 3pp, 10 x viewpoint).  (C) 

Whole-brain searchlight results for viewpoint invariant cross-classification. The figure shows 

threshold-free cluster-enhanced z-maps (z ≥ 1.65 = p < 0.05, one-tailed).  

 

Supplemental material captions 

Figure S1. Tool images. All 32 power and precision tool images, and four tool chimera catch 

images, used in the main experiment. 

 

Figure S2. Classification results. (A) Summation heat map of 12 mm individual spheres 

centered on peak voxels from the conjunction contrast, and boxplot graph with conjunction-based 

cross-classification results. (B) Summation heat map of individual spheres centered on peak 

voxels from hands > animals contrast, and boxplot graph with hand-based cross-classification 

results. In the graphs, average (across directions) LDA accuracy is shown on the y-axis, regions 

of interest on the x-axis, and boxplots show median viewpoint and tool-hand (1pp and 3pp) 

invariant classification accuracy. The black horizontal line shows chance-level (50%), colored 

dots indicates outliers, * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and red * FDR q  0.05. FDR 

corrected for all tests within each analysis type (4 x tool-hand 1pp, 4 x tool-hand 3pp, 10 x 

viewpoint).  
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Here we show cross-classification results averaged across direction for more power, but 

there were no significant differences between directions for any analysis-type or ROI with one 

exception (tool-hand 3pp invariant, left LOTC, exact p = 0.027; all other ROIs exact p > 0.081). 

Regarding hand-tool invariant grasp-specific information in conjunction-based ROIs, we show 

that neural patterns in left PPC allowed for above chance classification of power vs. precision 

properties across object categories (i.e., tool images and grasp 1pp videos). The tool-hand 1pp 

invariant cross-classification accuracy was significantly higher than chance for left PPC (Mdn = 

53.8%, p = 0.012, one-tailed), but not for any other ROIs (all p > 0.250, one-tailed). The accuracy 

for left PPC was not significantly higher than any other ROI (all exact p > 0.058, two-tailed). 

There were no other tool-hand 1pp accuracy differences between ROIs (all exact p > 0.657, two-

tailed). The tool-hand 3pp invariant cross-classification accuracies were not above chance for any 

ROI (all p > 0.700, one-tailed), and there was no tool-hand 3pp accuracy differences between 

ROIs (all exact p > 0.333, two-tailed). The tool-hand 1pp accuracy for left PPC was higher than 

the tool-hand 3pp accuracy for left LOTC/pMTG (Wilcoxon signed ranks test: z = 2.45, exact p = 

0.012, two-tailed), but no other differences between tool-hand 1pp and 3pp (all exact p > 0.064, 

two-tailed). Taken together, the results show that hand-tool 1pp invariant grasp-type information 

was found in left PPC.  

Regarding viewpoint-invariant grasp-specific information in conjunction-based ROIs, we 

found that neural patterns from left and right PPC allowed for classifying power vs. precision 

grasps across viewpoints. The viewpoint invariant cross-classification accuracy was significantly 

higher than chance for left PPC (Mdn = 55.4%, p = 0.0083, one-tailed) and right PPC (Mdn = 

53.8%, p = 0.010, one-tailed), but not for any other ROI (all p > 0.315, one-tailed). There were no 

viewpoint-invariant accuracy differences between ROIs (all exact p > 0.311, two-tailed). The 

viewpoint invariant accuracy for hand-based ROIs was significantly higher than chance for left 
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PMv (Mdn = 53.8%, p = 0.014, one-tailed) and right PMv (Mdn = 53.8%, p = 0.015, one-tailed), 

but not for any other ROI (all p > 0.068, one-tailed). There were no viewpoint-invariant accuracy 

differences between ROIs (all exact p > 0.197, two-tailed). Furthermore, there was no significant 

difference for viewpoint-invariant accuracy between conjunction- and hand-based ROIs (all exact 

p > 0.293, two-tailed). Taken together, the results show that viewpoint invariant grasp 

information was extracted from bilateral PPC and bilateral PMv areas. 

  

Figure S3. Searchlight maps. Uncorrected median accuracy searchlight maps. (A) Tool-hand 

(1pp) invariance uncorrected accuracy maps. (B) Tool-hand (3pp) invariant uncorrected accuracy 

maps. Note, these accuracy maps show median values to be more consistent with region of 

interest analyses, but the searchlight analysis as implemented in CoSMoMVPA Toolbox 

statistically tested mean values. 
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