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Abstract

After the development of Deepface and DeepID methods in 2014, deep learning methods
for image recognition has dramatically improved the state-of-the-art performance on Deep
Convolutional Neural Networks (DCNNs) and reshaped the research landscape of image
processing and data analysis. In spite of rapid improvement in deep learning algorithms, it
still has various challenges like adjustment of appropriate loss function and optimization
strategy to handle large scale problems in many computer vision applications including Face
Rcéognition (FR) and Handwritten Digit Recognition (HDR). This thesis focus on these
challenges and their better solution.

For both computer vision tasks, there are some advanced approaches based on the Convo-
lutional Neural Network (CNN) that are able to learn image features via the softmax loss,
but softmax can only learns those separable features that are considered not discriminative
enough. A number of modifications set to boost up the discriminative power of the softmax
and normally used for encouraging the separability of image features, but these modifications
are not suitable for the intra-class variation. On this concern multiplicative angular margin,
additive angular margin and additive cosine margin has been introduced to restrict the bound-
ary closer to the weight vector of each class but the random selection of marginal values is
again a big issue in multiplicative angular margin and additive angular margin. As a solution
on this issue, we present a novel approach to handle these problems via presenting an additive
parameter relative to multiplicative angular margin for DCNNs and reformulate the softmax
loss through combined angular margin and additive margin. Moreover, an automatically
fine-tuning is offered to adjust the additive parameter as a seedling element growing in
the result of marginal seed. Experimental results on additive parameter demonstrate that
our approach is better than numerous current state-of-the-art approaches using the similar
network architecture and benchmarks.

On the other hand, there is no doubt Stochastic Gradient Descent (SGD) avoid spurious
local minima and touch those that generalize well, but it decelerates the convergence of
regular gradient descent. For linear convergence in strongly convex functions, numerous



variance reduction algorithms have been intended, but only few of them are suitable to train
DCNN:s. A simple modification offered by recently deigned Laplacian Smoothing Gradient
Descent (2018) dramatically reduces the optimality gap in SGD and applicable to train
DCNNs. Motivated by Léplacian Smoothing Stochastic Gradient Descent (LS-SGD) and
inspired from the additive parameter, we adopt this simple modification of gradient descent
and stochastic gradient descent to design a novel strategy assembled with a modified form
of softmax and LS-SGD. Our approach expresses a flexible learning job with adjustable
additive margin and is flexible to amend with SGD and LS-SGD.

Keywords:

Additive Parameter, Angular Margin, Deep Convolutional Neural Networks, Image Recogni-
tion, Softmax Loss.



Table of contents

List of figures
List of tables

1 Introduction

1.1 Artificial Neural Networks . . . . ... .. ... ... ...........
1.2 ImageRecognition . .. ... ........ ... ... ...,
1.2.1 FaceRecognition . . . ... ... .. ... ... ... .. ......
1.2.2 Handwritten Digit Recognition . . . . . ... ... .........
1.3 Motivation and Objectives . . . . ... ... ... ... ..........
14 MainContribution . ... ..... ... ... ... . . . .. . ...
1.5 RoadMap . . . ... ... ... e e
2 Literature Review and Related Work
2.1 BriefLiteratureReview . . . . . . . ... ... ... ... .. .. .. ...
22 RelatedWork . ... .. ... ... ... . ... ...
2.2.1 Deep Hypersphere Embedding . . .. ... .............
222 lLargeMarginCosineLloss . .. ... ................
2.2.3 Additive AngularMarginLoss . . . ... ..............
2.24 Laplacian Smoothing GradientDescent . . . .. ..........
3 Methodology
3.1 AngularSoftmax ............ .. .. .. ...
3.1.1 ModificationinSofmax . ... ...................
3.1.2 AdditiveParameter . . . . ... ... ... .. ... .. ...,
3.1.3 SignificantImpact . ... ... ... ... . ... ...

4 Applications
4.1 FaceRecognition . ... ... ... ... . ... ...,

ix

14
14
21
22
24
26
28

30
30
31
33
36

38



Table of contents viii
411 ImplementationDetails. . . . ... ... .............. 40

412 ResultsandAnalysis . . ....................... 42

4.2 Handwritten Digit Recognition . . . . . ... ... ............. 48
42.1 ImplementationDetails. . ... ................... 49

422 ResultsandAnalysis . . ....................... 52

5 Conclusion and Future Work 56
51 Conclusion . . . . . o i it it e e e e e e e e e e e e e e 56

5.2 Ruature Work . . . . . o it e e e e e e e e e e e e e e e 57
References 59
Publications 67



List of figures

1.1
1.2

1.3

1.4

2.1
2.2

2.3

4.1

Face Identification vs. Face Verification . ... ...............
General representation of initial process consisting on face detection to locate
the face area in the image, face alignment to normalize that cropped human
face, feature extraction to extract the features from the human face and face
recognition to execute the process of face matching. . . . ... ... .. ..
Data after pre-processing through face detector and alignment used as train-
ing data pass in deep FR system. Initially FR handle recognition difficulty
before starting the training and testing tasks. There are different CNN ar-
chitectures, loss functions and gradient decent approaches used to extract
deep feature during training process. In testing phase, the face matching
approaches are used in the feature classificationtask. . ... ........
Examples of digits with different pattern, shape & style and the corresponding
recognized digit. . . ... ... ... ... ...

Andrew’s explanation [81] on neural networks topological cheatsheet. . . .
The Basic Residual block used in ResNet [29]. A residual block is considered
as a function of X where X is the input and F(X) is the function on X and X is
added to the output of F(X), given that output F(X) has the same dimension
tothatof X. . . . . . . . .. .. e
The decision margins of the different types of sofmax available in related
work for binary classification case. The the grey areas are the decision
margins and dashed line denotes the decision boundary. . . . . ... .. ..

The DCNNs framework for performance evaluation of modified softmax loss
with the additive parameter functions, the epoch represents the transfer of the
trained model molded from the CASIA for testing over testing faces from
LFWand YTE. . .. . . . .. .. . . . . i

27



List of figures X

42

43

44

4.5
4.6

4.7

4.8

4.9

4.10

4.11

4.12

Evaluation results (on y axis) on LFW dataset corresponding to the 24

developed models (onxaxis). . .. ... .. ...t unnn.. 43
Evaluation results (on y axis) of FR on YTF dataset corresponding to the 24
developed models (onxaxis). . ... ... ... ... . 44
Accuracy on LFW and YTF datasets by means of additive parameter with
different margin values m € {1,2,3,4,5}. . ... ... ... .. ...... 45
ROC plot of the FPR on x — axis versus the TPRony—axis. ... ... .. 45

Margin wise comparison of Additive Parameter (AP) and SphereFace (SF) on
LFW and YTF dataset. The angular margin values are taken from the positive
integers m € {1,2,3,4}, used in both methods to improve the performance

Of DCNN. . . . . . e e e e e 47
The testing results on LFW and YTF using additive parameter, A-softmax
andCosFace. . ... .. .. ... ... ... 48
Samples of handwritten digits from (training and testing patterns) the MNIST
Dataset. . . . . . . . . e e e 49

A flow chart represents a process of HDR using deep convolutional neural
networks for performance evaluation supervised by the modified softmax loss. 50
Training using SGD and LS-SGD. Accuracy (%) is taken on vertical axis

corresponding to 50 epochs on horizontal axis. . .............. 52
Loss using SGD and LS-SGD. Loss is taken on vertical axis corresponding
to 50 epochs on horizontalaxis. . ...................... 53

Testing accuracy on randomly selected models 1, r2, r3, ..., r10. . ... 54



List of tables

2.1

2.2

3.1
3.2

4.1

4.2

43
44
45

4.6

4.7

Performance summery (accuracy (%)) of DCNN over LFW dataset using
different methods, architectures and loss function. . . . . ... .......
The decision boundaries in binaryclasses. . . . . ... ...........

The values of additive parameter € corresponding to the positive integer m.
Comparison of the angular softmax loss with the corresponding margin
values. It is clear that, in our proposed approach, there is no need to select
the random values of additive margin as used in ArcFace and CosFace. . . .

A summary of publicly available training dataset CASIA-WebFace used for

training and LFW and YTF fortesting. ... ... .............
CNN architectures with different convolutional layers. Each convolution

unit contain multiple convolution layers and residual units as summarized in

second column. where the brackets, for example [3 x 3,128] x 4 denotes 4

cascaded convolution layers with 128 filters of size 3 x 3, with stride 2 and

FCis the fully connectedlayer. . . . . . ... ................
The accuracy on LFW using € with the different margin values. . . . . . . .
The accuracy on datasets YTF using € with the different margin values.

A summary of testing accuracy (%) on LFW and YTF dataset with the latest

state-of the-arttechniques. . . . . ... ... ... .. ...........
Convolutional layers structure for neural network. The notation Convl1.x,
Conv2.x, Conv3.x and Conv4.x represents the convolutional units containing

multiple convolution layers and FC1 is the fully connected layer. . . . . . .
Recognition loss (%) on MNIST dataset using a unit softmax loss. . . . . .

35

41

51
55



Chapter 1

Introduction

Deep leaming or deep structured learning is a part of a very larger family of machine
learning methods constructed via Artificial Neural Networks (ANNs). Deep learning is an
ambiguous word, as it has gone over and done with several altered meanings during the years.
A comprehensive, modern definition can be found in Goodfellow’s book Deep Learning [23]
and Skansi’s book Introdution to Deep Learning [73]. There, it is defined as the decomposi-
tion of complex concepts into simple ones and the recombination into new complex concepts.
A procedure therefore has to found a hierarchy of concepts. A visualization of hierarchy
would be a multi-layered graph and can be called “Deep” in a graph theory context [10, 11].

The image recognition system is the labeling process practical to a segmented object of a
scene, that system commonly requires basic feature extraction. In computer vision, the deep
learning methods attain significant importance in advanced research on image recognition. In
recent times, deep learning-based pattern recognition techniques have established extremely
promising results in various computer vision applications. In deep learning, every individual
level learns to transform the input data into some extent further abstract and compound
representation. The raw input data may be a matrix of pixels in image recognition task, the
layer one abstract the pixels and applicable to encode the edges, the next layer or the layer two
may compose and capable to encode arrangements of the edges, the layer three may encode
eyes and nose; and the layer four may be referring to recognize that the image contains
that face. The recognition task initiate with the dataset into training stage, that containing
random projection and extraction of the features with different architectures, optimization
strategies, activation functions and loss functions used to extract discriminative deep feature.
The important role in deep feature learning is to design a suitable loss function and gradient
decent strategy to attain state-of-the-art performance. However, there are many types of loss
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function exists for DCNNs, but the softmax and the modified form of softmax considered
more appropriate to handle image recognition tasks. Specially for face recognition and
handwritten digit recognition, the performance of angular form of softmax and marginal
angular form of softmax are better than the other forms of softmax.

In this study, we discussed the marginal based angular forms of softmax and the present
study offer a supervision signal for discriminative image features through a modification in
angular softmax to boost up the power of loss function. The present work includes two main
applications of the image recognition via DCNNs. The overall focus is to model appropriate
marginal angular softmax, as well as to adjust with the network and make it stable for the
gradient decent and implement the constructed model on face recognition system and also
make it applicable for the handwritten digit recognition.

This chapter is on brief introduction of the structure of artificial neural networks and
image recognition system. In this chapter, we discuses about the artificial neural network and
its applications in section 1.1 and a brief study on introduction to image recognition system
is included in section 1.2, the subsections 1.2.1 and 1.2.2 contains basic introduction of both
applications, Face Recognition (FR) and Handwritten Digit Recognition (HDR) systems
respectively. The section 1.3 consists on the motivation and objectives of the main problem
and a brief introduction of our proposed strategy to handle the challenges in recognition
system is included in the section 1.4. The section 1.5 consists on the outline of this thesis. In

next section, we have to look on artificial neural networks.

1.1 Artificial Neural Networks

Artificial neural networks (ANNs) are considered as computational models encouraged
by biological neural networks, that applicable to approximate commonly unknown functions.
Habitually, they are motivated by the actions of neurons and the signals that they transfer
between input, processing, and output from the brain [100]. However, the goal of neural
networks is not to model the human brain, the neural network research is fundamentally
based on and driven through engineering and mathematical disciplines rather than biological
brain function. To build a machine learning or deep learning algorithm, we have to define a
model, a cost-function and a procedure to optimize, that befit the assembly of the data. A
learning algorithm is built to approximate the given function f, for classification, f maps an
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input x to a class y.

The learning algorithm determined f with weight w such that

y= f(xw). (1.1)

Where, f be a composite function of any number of functions f;, with i =1,2,3,...,n
such that '

f=faofa10 --ofsofrofi. (1.2)

This representation of the structure is known as network, where f; represents the first
layer or input layer, f> denotes the second layer, and so on. The final layer f, is called
the output layer. There are n — 1 hidden layers are between input and output layers, these
layers are called hidden layers, as their performance is only implicitly constrained through
the training data, such as the data do not show the desired output for each of those layers.
Where n be the number of layers, that defines the depth of the network. This modest chain
structure of the complex structure is only one potential mode to build a network and was first
introduced in 1958 by Frank Rosenblatt [66]. Presently, there are several kinds of ANNs
(brief study is included in the section 2.1), the most famous are Feedforward, Regulatory
feedback, Radial basis function and Recurrent neural network. In which the feedforward
is the simplest type of ANNSs, having different sub types, the convolutional neural network
(CNN) or ConvNet is the largely used network composed from feedforward, constructed of
one or more convolutional layers. There are many units in each layer that act parallel and
each unit denotes a vector-to-scalar function. Maximum units described as accepting a vector
of inputs x, and W be the mapping from x to z with bias b, to transformation, that can be
model as

z=WTlx+b. (1.3)

The activation function of a node describes output of that node given by input. An
activation function g(z) is applied element-wise on z. The unit design is an active area of
research and is not yet held by final guiding theoretical principles.

g(z) = activation(0,z). (1.4)
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There are many types of activation functions, Rectified linear unit (ReLU) [53], Leaky
ReLU [51], and Parametric rectified linear unit (PReLU) [28] are favorable for image recog-
nition task [95]. The information in a NN propagates in a forward direction via input nodes,
by hidden-layers into the output node, that is called forward propagation. For training
task, forward propagation can continue until it yields a cost in an output node. The back-
propagation system permits the information from the cost to flow backward by the network
in order to calculate the gradient. The back-propagation system generates the gradient of
scalar z with respect to one of x in the graph, similarly next gradient with esteem to the
next parent of z in the graph. This process repeated backward over the graph until x is reached.

A learning procedure needs a metric with which to evaluate the distance between two
function, that metric is called loss function in neural networks, and the important problem
in the neural network architectures is to explore appropriate loss functions. A number of
techniques has been proposed by modifying the loss function to improve the performance
of DCNNs, where the Euclidean loss and softmax loss gain a significant importance in
development of deep feature learning and tendency towards learning with robust features is to
emphasize DCNNs with extra discriminative information. A brief overview of loss functions
is addressed in next chapter, that also addressing some special cases of multiplicative angular
margin via adjusting the margin to integer value and with decimal values of margin, that
could be adjustable with the convolutional layers to train the model.

1.2 Image Recognition

Image Recognition is the automatic and programmed recognition of regularities and
patterns in data. Image recognition is mainly related to AI [9], with modern world applications
such as knowledge discovery databases and data mining. In current era of computer vision,
image recognition using deep learning methods has achieved top scores on many tasks
including FR and HDR. However, the deep learning methods have enabled rapid progress
in many other applications, but for performance evaluation of the deep process, researchers
commonly adopt these two main applications to evaluate their results. As our main focus is
to build an appropriate deep learning approach for image recognition, therefor we also use
these two main applications for better and fair comparison with already existing techniques.
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In this section, we briefly introduce these two applications. The next subsection 1.2.11is a
brief overview of FR system using deep CNN.

1.2.1 Face Recognition

The FR system consists on multiple phases and considered as multipart problem of
identifying and verifying people in an image or video by face. The task is trivially performed
through the humans, even under the varying light and when faces changed via means of
age or obstructed with accessories or facial hair. Yet, FR is remained a multifaceted and
challenging computer vision problem for decades. Biometric approaches are castoff for either
one of two purposes, identification or verification. In identification, the main objective is to
identify the individual human face based on comparison of the face features collected against
a data-set of previously collected samples of the human faces. In other words, a system that
is designed for the purpose of identification will answer the question: "Who is the sub ject?".

(d). Face Verification (1:1 matching)

(e). Face Verification (1:1 matching)

O, Face identification (1: N matching)

Fig. 1.1 Face Identification vs. Face Verification

On the other hand, in the verification applications, we wish to verify about the human
face whether the human face is the person that they claim to be, that is done through the
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validating the collected human face features against a previously collected human face feature
sample for the individual face. Biometric approach designed for verification could answer
the question: "Is the subject who he says he is"?. The Fig. 1.1, explaining the Identifi-
cation vs. Verification task, (a) represents the identification (1 : N matching), a matching
of one face of a girl from the data set of boys and girls, while (b) and (c) displays the
one boy and one girl from the many boys and many girls. The (d) and (c), represents ver-
ification (1 : 1 matching), a boy from his own faces and a girl from her own faces respectively.

In the terms of testing procedure, FR system can be estimated under open-set or closed-set
protocols. In closedset FR protocol, the testing images are predefined in the available training
data set. It is normal to classify testing human face images to the given face identities. In
this situation, face verification is equal to execution of the identification for a pair of human
faces respectively. Thus, closedset FR can be well addressed as a classification problem
and features are predictable to be separable. In open-set FR protocol, the testing images are
generally disjoint from the training date set, that makes FR system more challenging task.
Meanwhile it observed impossible to categorize faces to known identities in training data set,
which need to face mapping to a discriminative feature space. In that case, face identification
may be noticed as accomplishment of human face verification between the probe face and
every image identity in the Gallery.

The FR system frequently described as a process that initially involves following four
steps;

(a). Face Detection: Take the input image, locate the face area in the image and cropped or
mark with the dots or bounding box.

(b). Face Alignment: Take the cropped face, normalize that cropped human face to be
consistent with the available dataset.

(c). Face Feature Extraction: Take the normalized face and extract the features from the
human face that can be further used for the face recognition task.

(d). Face Recognition: On the bases of feature extraction, FR execute the process of face
matching counter to the different known faces already existing in the prepared dataset.

That system might have a distinct program or module for each step or could combine
some or all steps together into a single procedure. Fig. 1.2 representing the overall structure
of FR system.
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Feature
Extraction

F
(=

Face ID

sl

Feature
Matching

Face Alignment
vV

Inputimage Face Detection

Fig. 1.2 General representation of initial process consisting on face detection to locate
the face area in the image, face alignment to normalize that cropped human face, feature
extraction to extract the features from the human face and face recognition to execute
the process of face matching.

In present work, we focus on the deep FR module as an application to evaluate the perfor-
mance of loss function. The deep FR is categorized as human face identification and human
face verification. In both scenario, a set of the known subjects is primarily join up in the
system Gallery, and during the the time of testing, a new subject Probe is obtained. The face
verification considered to estimates one — to — one similarity concerned between the Probe
and Gallery to express whether the both face images are of the similar subject. However in
face identification, it is applicable to computes one — to — many similarity to regulate the
specific identity related to the Probe. In case, when Probe appears in the Gallery identities,
this is referred to as closed-set identification and in the case, when the Probe include those
who are not in the Gallery, that is called open-set identification. The FR system consists of
human face processing, deep feature extraction and facial matching, that can be seen in the
Fig. 1.3, where faces in training data is localize via face detector and aligned to normalized
canonical coordinates, then forward to CNN for feature extraction. There are different loss
function with gradient descent are use to extract discriminative deep feature during training
process and human face matching methods are used to face feature classification task when
the deep feature from the human faces of testing data are extracted.

The loss function and gradient descent are used with the deep CNN to judge the perfor-
mance of any neural network and play an important role in CNN training. DCNN produces
a huge loss, if the neural network does not perform sound using the present parameter set-
ting. Practically, FR methods achieve high performance, the significant part in deep feature
learning is to design a suitable loss function to attain state-of-the-art performance. Intended
loss functions are described on the bases of Euclidean distance, angular margin and softmax
loss. The softmax loss function is normally used for encouraging the separability of facial
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Feature Extraction
% [D Loss Function
W‘: i & Gradient Descent
s . ¢
Feature Extraction Face Matching | L
@ Pre processed

Pre processed I
Training data Deep Face Recognition System Testing data

Fig. 1.3 Data after pre-processing through face detector and alignment used as
training data pass in deep FR system. Initially FR handle recognition difficulty
before starting the training and testing tasks. There are different CNN architectures,
loss functions and gradient decent approaches used to extract deep feature during
training process. In testing phase, the face matching approaches are used in the
feature classification task.

features. For outstanding performance on FR system, the modern research is to train DCNNs
based on softmax approaches and triplet loss approaches. A brief literature review of image
recognition with different, stable and adjustable loss function is included in next chapter. An
introduction to another application is given in next subsection.

1.2.2 Handwritten Digit Recognition

The HDR System includes interpretation and reception of digits written by human via a
machine. Due to the dissimilarity, variation and difference in pattern and shape of handwritten
digits [52], it is very difficult for an automatic machine to understand the handwritten digits.
Handwritten digit Recognition has an extensive area of advanced research due to its massive
applications like automatic cheques processing in bank, billing and for automatic postal
service. The human writing styles are naturally differing in pattern and shape from person to
person that makes HDR a challenging task. The Fig. 1.4 representing some examples of the
handwriting digits and the recognized digits as results.

The HDR system frequently described as a process that involves following main steps;

(a). Pre-processing: Pre-processing contains five steps, size normalization and centering,
interpolating missing points, smoothing, angle alteration and resampling of points.
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q—gs,r-os,/41,&-—»6,‘{-«»4,?—»8,5—%5,
%-48,0—00,{—96,747,444,545,848,

0037371444424, 73,8 ~0,
444,‘4 1,343,7—}7,6—)6,4-&4,7-—»7,-2-»2,
747,942,545,2*2,0»0,9»9,8’48,

Fig. 1.4 Examples of digits with different pattern, shape & style and
the corresponding recognized digit.

(b). Segmentation: In segmentation phase, the individual characters of an image are sepa-
rated or we can say, this module applicable to segments the image into isolated charac-
ters.

(c). Digit’s Feature Extraction: The key purpose of feature extraction stage is to extract
that pattern which is most pertinent for classification.

(d). Classification and Recognition: On the bases of feature extraction, artificial neural
network based classifiers compare the input feature with existing pattern in the prepared
dataset and find out the appropriate matching.

DCNNEs architecture is renowned for the extraction of complex features and the important
problem in the neural network architectures is to explore appropriate loss functions. A loss
function is incredibly simple method of evaluating how the algorithm models the dataset.
Most deep learning processes use some sort of loss function in the process of optimization, or
to search the appropriate weights for given data. Several techniques with motivated concepts
and structure are presented during the last two years by introducing angular margin margin
for the recognition tasks.

In the both above mentioned applications, the selection of loss function play a vital role
to handle the difficulty and to improve the performance of complete architecture. Keeping
this point, we focus to model a appropriate, suitable and adjustable loss function for image
recognition tasks.
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1.3 Motivation and Objectives

In resent time, the image recognition received a blooming interest and attention from the
scientists and industrial researchers as well as from the modern student’s community. The
interest from students and general public is frequently due to the modern development in
mobile technology, internet shopping, robotics and security issues, that increased the demand
for useful applications as well as for advanced security systems. To construct numerous artifi-
cial systems, including above mentioned applications, accurate, perfect and robust automated
image recognition systems, algorithms, methods and techniques are required. The main aim
of this research is to design a better and reliable technique for image recognition system
bases on the adjustment, reforming and amendment in different steps of CNNs including ad-
justment of appropriate loss function and optimization strategy to handle large scale problems.

The solution proposed in this study is helpful to solve the difficuit task of robust face
recognition, object recognition, handwritten digit recognition and action recognition tasks
and is applicable to improve the performance of structure of CNN for other many computer
vision tasks, such an impact would be of countless scientific importance in modern deep
learning approaches and would be valuable for researchers and developers from academic
and industrial community.

The main objectives of this work listed below:

(a). To summarize the process of image recognition and model a proper strategy to improve
the performance of deep convolutional neural network for image recognition.

(b). To minimize the loss or error to train large scale data set via adjusting a proper loss
function, parameters and gradient descent strategy.

1.4 Main Contribution

The original involvement of this contribution is to investigate the proper and suitable
parameters for the marginal softmax loss function and modification based on the anguler
and additive margin in DCNNs to enhance the performance of the recognition system. The
softmax loss function is normally used for encouraging the separability of image features.
For outstanding performance of image recognition system, the modern research is to train
DCNNs based on angular margin, additive angular margin and additive cosine margin. We
present a novel approach to handle the random selection of marginal values via presenting
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an additive parameter relative to multiplicative angular margin for DCNNs and reformulate
the softmax loss through combined angular margin and additive margin. Moreover, an
automatically fine-tuning is offered to adjust the additive parameter as a seedling element
growing in the result of marginal seed. Furthermore, inspired by Laplacian Smoothing
Stochastic Gradient Descent and encouraged from our proposed additive parameter, we adopt
that simple modification of gradient descent and stochastic gradient descent to design a novel
system assembled with a modified softmax and LS-SGD.

This study focus on the following two main challenges and better solutions on these
challenges.

Challenge 1

For effective and accurate discriminating performance, a number of modifications set to
boost up the discriminative power of the softmax loss but it is not good for the intra-class
variation. On this concern researcher proposed a scale parameter generating gradients to the
separated samples for intra-class variance. All these approaches are based on the similar
strategy for maximizing inter-class variance and minimizing intra-class variance. Introducing
different margin to restrict the boundary closer to the weight vector of each class, we can
adopt multiplicative angular margin, additive angular margin and additive cosine margin.
In the case of marginal loss function, the problem is to adjust the additive marginal values
appropriately by the use of integer values and decimal margin values.

Strategy to handle:

We present a novel approach to handle the first issue described above via presenting an
additive parameter relative to multiplicative angular margin for DCNNs and reformulate
the softmax loss through combined angular margin and additive margin. Moreover, an
automatically fine-tuning is offered to adjust the additive parameter as a seedling element
growing in the result of marginal seed.

Challenge II

On the other hand, there is no doubt SGD avoid spurious local minima and touch those
that generalize well, but it decelerates the convergence of regular gradient descent. The
performance of SGD to improve the power of algorithm remains of interest, particularly to
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optimize nonconvex function.
Strategy to handle:

. For the second task, we adopt a bit similar modification offered by Laplacian Smoothing
Gradient Descent (LS-SGD) to design a novel strategy assembled with a modified angular
softmax and LS-SGD that dramatically reduces the optimality gap in SGD.

To evaluate the performance of our methodology, we experiments on two major image
recognition applications and concluded on the basis of experiments that our approach is
better than numerous current state-of-the-art approaches. To evaluate for Face Recognition,
we train the model on publically available dataset CASIA-WebFace and our experiments on
famous benchmarks YouTube Faces (YTF) and Labeled Face in the Wild (LFW) achieve
better performance. Also the performance of the model is evaluated for handwritten digit
recognition, experimental results demonstrate a state-of-the-art performance on famous
database of handwritten digits the Modified National Institute of Standards and Technology
(MNIST) database.

The conclusion highlights of this work are summarized below.

(a). This study presents a novel mode towards additive and angular margin softmax loss
by offering an additive parameter controlled over multiplicative angular margin, that is
more effective for DCNNs to learn highly discriminative features.

(b). The proposed model is trainable, extremely easy to implement and is appropriate for the
larger amount of margin. Experimental results on additive parameter demonstrate that
our approach is better than numerous current state-of-the-art approaches.

(c). Our approach expresses a flexible learning job with adjustable additive margin and is
flexible to amend with SGD and LS-SGD.

1.5 Road Map

The rest of the dissertation is consisting on literature review and related work, methodol-
ogy and its applications, concluding remarks and references.
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The brief literature review and related work is presented in Chapter 2 of the thesis. This
chapter is divided into two sections. In first section, we discussed about the neural archi-
tectures, methods and algorithm, that are modeled during the last few years. A summery
on neural networks and methods based on the loss functions is included in first part of the
chapter. The second part of the chapter is based on the most relevant related research and
strategy behind latest models.

An efficient technique for image recognition is proposed in Chapter 3 of this study.
This chapter containing the modified form of loss function. We explain the modeling of
our proposed approach based on the modification on the loss function, the angular form is
discussed with the margin values and margin strategy is presented. An automatic adjustment
of the seedling element as the result of angular marginal seed is offered. An analysis on
mathematical formulation, compression with margin base methods and significant impact is
included in the same chapter.

The Chapter 4 contain two famous computer vision application. We implement our
proposed methodology on Face Recognition (FR) and Handwritten Digit Recognition (HDR)
systems. The complete process for FR and HDR is described in this chapter with implemen-
tation details, experiments, there results and analysis. For FR, we train our model on publicly
available face dataset CASIA WebFace and evaluate the performance of proposed approach
on famous benchmarks YouTube Faces (YTF) and Labeled Face in the Wild (LFW). For
HDR, the performance is evaluated on famous database of handwritten digits the Modified
National Institute of Standards and Technology (MNIST) database.

The Chapter 5 of this study contain conclusion from the proposed work and some future
directions.



Chapter 2

Literature Review and Related Work

The present chapter is organized for the brief literature review and related work. This
chapter is divided into two sections, in first section 2.1, we discuss about the neural archi-
tectures and methods, that are modeled during the last few years. A summery on neural
networks and methods based on the loss functions is included in first part of this chapter. The
second section 2.2 of the chapter is based on the most relevant related research and strategy
behind latest methods.

2.1 Brief Literature Review

In the present era of Artificial Intelligent (AI), Deep Convolutional Neural Networks
(DCNNs) have remarkable improvement in the state-of-the-art performance in numerous
computer vision tasks [1, 5, 8, 37, 47, 48, 62, 69, 84, 98] including object recognition, face
recognition, speech recognition and hand-written digit recognition. Modemn digital world
is full of shapes, design and patterns, moreover these patterns can be physically viewed,
recognized or derived using mathematical tools with algorithms.

Recognition system is being conventionally associated to the field of Al in which compu-
tational mathematics plays a major role in the development and enhancement of methods
and algorithms. An appropriate ideal and better recognition approach would contemplate
classification matters as well as representation and demonstration. Day by day AI appli-
cations facing challenges owing to large amount of complex data structures, on the other
hand neural network refining deeper and complex architecture. The famous networks are
shown in Fig. 2.1. A perceptron is a very simple model of the neuron that take the inputs
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from the data, take some operation, applies through activation and forward to the output layer.

All the nodes are fully connected in the Feed forward neural network (NN), the activation
streams from the input layer to the output layer, without back loops, there is one hidden
layer between input and output. The Residual basis feed forward (RBF) are feed forward
neural network and it use a radial-basts mode as activation for the substitute of the logistic
function. the Deep feed forward (DFF) neural networks open a new direction towards deep
learning, there are just FFNNs, but with more than one hidden layers. The Recurrent Neural
Networks (RNN) present many kinds of recurrent-cells. The first NN of this category is
called Jordannetwork [43], where the every hidden cell received it’s own output after fixed
interval. Long or short term memory LSTM [6], presents a memory — cell, that can process
data with the time gaps. The RNNs may process the texts by “keeping in mind” the ten
previous words, while LSTM networks referred to process video frame ‘“keeping in mind”
the something that occurred before many frames. The network LSTM are widely applicable
for the handwritten digits and speech recognition.

Gated Recurrent Units (GRUs) are similar to LSTMs with different gating units and
are less resource consumer as compaied to LSTMs [16]. The Auto-Encoders (AE) [50]
represented for classification, clustering and feature compression. The AE is capable to
train data without supervision and known to compress features, while Vibrational Auto-
Encoders (VAEs) [21] compress probabilities instead of features. Although AEs are cool,
but sometimes, instead to judge the most robust features, they just adapt to input data that is
an example of overfitting, and Denoising Auto-Encoders (DAEs) [83] add a bit of noise on
the input cells and randomly switch bits in input, and Sparse Auto-Encoders (SAE) reveal
some hidden grouping patters [64]. Like the above, the Markov Chains (MC) [3], Hopfield
Networks (HN)[7], Boltzmann Machines (BM), Restricted Boltzmann Machines (RBM) and
Deep Belief Network (DBNs) are also deals traditionally. The most commonly applied to
analyzing visual imagery, the Deep Convolutional Network (DCN) or deep convolutional
neural network (DCNN) currently are stars of ANN, most commonly applied to analyzing
visual imagery the pooling layers or feature convolution cells and kernels are serving different
jobs [69], convolution kernels process input data and pooling layers simplify that data and
reducing unnecessary features [71]. Naturally castoff for the image recognition and operate
on the small subset of image (roughly about 20x20pixels ). On the image, there is input
sliding window slide on the image, pixel by pixel. That prepossessed data is forward to
convolution layers, first layer referred to detects gradients, second layer for lines, third layer
for shapes, and so on to the scale of specific objects. Deconvolutional Networks (DNs) are
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DCNs overturned network, for object recognition task, DN takes cat image, and yields a
vector such as [car : 1, dog : 0, horse : 0]. A model, Deep Convolution Inverse Graphics
Network (DCIGN) [35] aims to learn an interpretable representation of images, disentangled
with respect to 3-dimensional structure and viewing transformations such as depth rotations
and lighting variations. Generative Adversarial Network (GAN), a network represents a
large family of double networks [24], that are composed from discriminator and generator.
The activation functions are replaced by threshold levels in Liquid-state machine (LSM),
while Extreme Learning Machine (ELM) [93] is an attempt to reduce complexity behind
FF networks and Echo-state Network (ESN) [63] is a subtype of recurrent networks with a
special training approach. Deep residual network (DRN) is a kind of RNN, while kohonen
network (KN) and Support Vector Machine (SVMs) [61] are working as traditional way and
not always considered to be a neural network. Neural Turing Machines (NTMs)[26], a new
class of recurrent neural networks which decouple computation from memory by introducing
an external memory unit, get results, enhance them but the actual decision path is typically
hidden.

For learning predictive simulations used for complex tasks frequently needs very large
amounts of annotated data. For instance, the Convolutional Neural Networks (CNNs) are
large in dimension and naturally contain more parameters than the training samples, that
raises a number of challenges. Due to the nonintrusive and ordinary characteristics, the image
recognition has become a prominent biometric modern technique for identity authentication
and has been extensively used in many modern areas of technology, such as military, finance,
language translation and security [89]. In image recognition tasks, Face Recognition (FR)
and Handwritten Digit Recognition (HDR) are the main applications discussed in recent
years for performance evaluation of DCNNSs.

In the early 1990s, succeeding the primer of the modemn Eigenface method used for FR
and detection via determining the variance of image in a collection of face images, the study
of image recognition became popular [82]. In early 2000s, FR gave rise to local-feature-based
image recognition. Gabor feature based classification[44] and Face description with local
binary patterns [2], as well as their high-dimensional extensions [101], succeeded robust per-
formance over some invariant possessions of the local filtering. Unluckily, handcrafted image
features suffered from a lack of particularity and solidity. In early 2010s, the learning-based
local descriptors were presented for the image recognition community [14, 40] , where the
local filters was learned for well particularity, and the encoding codebook is learned for better
compactness. Although promoting from the robust learning ability, CNNs also have to face
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the crucial problems of overfilling. Significant effort such as large-scale training data [68],
ImageNet classification with deep CNNs [34], data augmentation [34, 78], regularization
[25, 30, 74, 85] and stochastic pooling [96] has been put to address on this issue. In 2014,
DeepFace [80] and DeepID [55] attained the significant improvement and achieved the
state-of-the-art accuracy on famous benchmark Labeled Face in the Wild (LFW) [31], ap-
proaching performance on the unconstrained condition for the first time ( Human: 97.53% vs.
DeepFace: 97.35%). Since then, research concentration has moved to deep-learning-based
approaches, and the accuracy was histrionically boosted to above 99.80% in just three years.

Before 2017, the Euclidean-distance-based loss function played an important role, but
after that the angular-margin-based loss functions as well as feature and weight normalization
considered favorable[89]. It is observed that, although a number of loss share similar basic
idea, the new one is frequently premeditated to assist the training procedure by means of
easier parameter or sample selection. A modern trend towards feature learning with even
stronger image features is to reinforce CNNs with more discriminative information. Naturally,
the learned features of image are good if intra-class compactness and inter-class separability
are instantaneously maximized [18, 47, 48, 88]. While this may not be easy due to the
inherent large intra-class variations in many responsibilities [48], the solid representation
ability of CNNs sorts it possible to learn invariant features on the road to this direction. A
number of techniques has been proposed by modifying the loss function to improve the
performance of DCNNSs [4, 45, 47, 60, 70, 751, where the Euclidean loss and softmax loss
gain a significant importance in development of deep feature learning and tendency towards
learning with robust features is to emphasize DCNNs with extra discriminative information.

In present era, the Deep CNNs architecture is renowned for the extraction of complex
features and the important problem in the neural network architectures is to explore appro-
priate loss functions. A number of CNN architectures are proposed in the last few years,
including, GoogLeNet [78], VGGNet [72], AlexNet [34] and ResNet [29]. The performance
of FR system is important in terms of high specification devices and mobile devices, nor-
mally researcher evaluate the performance of loss functions on ResNet [4] and MobileNet
[31] architectures. The ResNet represents a standard DCNN architecture with deep struc-
ture and extremely used in research and demanding computer vision tasks. The ResNet
architecture is made with building blocks of residual units, that are demonstrated in Fig.
2.2. The ResNet unit learns a mapping between inputs and outputs using residual connections.
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Fig. 2.2 The Basic Residual block used in ResNet [29]. A residual block is consid-
ered as a function of X where X is the input and F(X) is the function on X and X is
added to the output of F(X), given that output F(X) has the same dimension to that
of X.

The development in the performance in image recognition was pragmatic along with the
line of growing depth of the CNN architectures such as GoogLeNet [79] and ResNet [29].
Though, it is initiate that after certain depth, the performance of CNN tends to saturate on
the way to mean accuracy, i.e., more depth has practically no effect over performance [29].
At the same time, applications in the large scale image recognition would be prohibitive due
to the need of high computational resources for deep architectures.

In recent days, scientists are also working over the additional aspects of the CNN model
like loss functions and optimizers. One of the main mechanism done in this field contains
the progress of suitable loss functions, specifically designed for image recognition. Early
job towards loss functions contain Center-Loss [91] and Triplet-Loss [70] that motivated on
reducing the distance between the positive sample and current sample and rise the distance
for the negative ones, thus closely linking to image recognition. Present modern well-known
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| Year | Method | Loss Function | Architecture Training Set | Acc (%) |
2014 DeepFace [80] Softmax Alexnet Facebook 97.35
2014 DeepID2 [75] Contrastive Alexnet CelebFaces+ 99.15
2015 FaceNet[70] Triplet GoogleNet24 Google 99.63
2015 DeepID3[76] Contrastive VGGNetl0 CelebFaces+ 99.53
2015 Baidu [46] Triplet CNN-9 Baidu 99.77
2015 VGGface[56] Triplet VGGNet-16 VGGface 98.95
2015 Light-CNN [94] Triplet light CNN MS-Celeb-1M 98.8
2016 Center Loss [91] Center Lenet CASIA-WebFace 99.28
2016 L-Softmax [48] L-Softmax VGGNet-18 | CASIA-WebFace 98.71
2017 | Range Loss [102] Range VGGNet-16 | CASIA-WebFace | 99.52
2017 NormFace [87] Contrastive ResNet-28 CASIA-WebFace 99.19
2017 VMF loss [27] vMF ResNet-27 MS-Celeb-1M 99.58
2017 | Marginal Loss [20] Marginal ResNet-27 MS-Celeb-1M 99.48
2017 | SphereFace [47] A-Softmax ResNet-64 | CASIA-WebFace | 99.42
2018 CCL [57] Centerlnvariant ResNet-27 CASIA-WebFace | 99.12
2018 AMS [86] AMS ResNet-20 | CASIA-WebFace | 99.12
2018 Ring loss [103] Ring ResNet-64 MS-Celeb-1M 99.50
2018 CosFace [88] CosFace ResNet-64 CASJA-WebFace 99.33
2019 | L2-Softmax [59] L2-Softmax ResNet-101 MS-Celeb-1M 99.78
2019 ArcFace [19] ArcFace ResNet-100 MS-Celeb-1M 99.83
2019 | Our approach [58] | Modified Softmax ResNet-36 | CASIA-WebFace | 99.58

Table 2.1 Performance summery (accuracy (%)) of DCNN over LFW dataset using
different methods, architectures and loss function.

loss functions like Soft-Margin-Softmax [42], Range-Loss [102], Congenerous-Cosine [49],
Minimum-Margin Loss for deep FR [90], L2-Softmax Loss [60], Large-Margin Softmax
Loss [48], CosFace [88], ArcFace [18] and A-Softmax Loss [47] have exposed capable
performance over lighter CNN models and some over and above results over large CNN
models.

A theoretically attractive angular margin used in A-Softmax [47] have amazing perfor-
mance on face recognition and is introduced to push the classification boundary closer to
weight of each class to encourage the discriminability of features. That famous contribution
offer a new direction for the researchers to focus on different margin to restrict the boundary
closer to the weight vector of each class. Several techniques with motivated concepts and
structure are presented during the last two years by introducing multiplicative angular margin,
additive angular margin and additive cosine margin [48, 88, 18].

For optimization task to train the network with loss function, typically used Stochastic
Gradient Descent [12] is a gradient based optimization processes circumvent spurious local
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minima, but it slows down the convergence of regular gradient descent [69, 54]. Numerous
stimulating variance reduction techniques [17, 33] have been proposed for strongly convex
functions to recover the linear convergence rate, but not appropriate to train DCNNs. Lapla-
cian Smoothing Stochastic Gradient Descent [54] is beneficial to reduce noise in SGD and
appropriate to use for training of deep neural network. In spite of rapid improvement in deep
learning algorithms, it still has various challenges including adjustment of appropriate loss
function and optimization strategy to handle large scale problems.

2.2 Related Work

The rise in the performance of algorithms for image recognition is apparent along the line
of rising depth of the network architectures such as ResNet {29] and GoogLeNet [79]. It
is observed in average modern network architectures, that after definite and certain depth,
the network’s performance has a tendency to saturate towards mean accuracy, i.e., more
and more depth has practically no effect over performance [29]. Parallel to this, a large
scale application of image recognition system would be expensive owing to the need of
high computational resources for deep architectures. Thus, in recent time, to better the
performance, the computer vision community are also working on the other phases of the
CNN model like loss functions and optimizers, etc. The primary and foremost works done in
this area consist on the development of suitable and appropriate loss functions. Initial works
towards loss functions include Triplet Loss {70] and Center Loss [91] which concentrated
on decreasing the distance between the positive sample and the current sample and rise the
distance for the negative ones, thus closely linking to human recognition.

Modem research in deep learning approaches on loss function and optimization strategy
[5. 8, 37,47, 60, 54, 84, 98] play a important role in deep recognition system to improve the
performance of network. Naturally, softmax loss is considered good to optimize inter-class
difference and effective to stabilize un-normalized vector to a probability distribution, that’s
why classification loss functions for DCNNs are habitually constructed by softmax loss.
Mostly, loss function is modified using the original softmax loss [47, 48, 60, 70, 75, 98] and
the optimizer is adjusted on the base of gradient based optimization techniques [54, 67, 99].
If x; and y; be the input feature and its labels respectively then the simple form of original
softmax loss Lg for N number of training samples is given as
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Lg= I%Zi(-—logi%) 2.1

The notation f; is the j-th element corresponding to the class vector f. The softmax

loss attained good results on its modified form, the angular-margin and cosine-margin loss

[18, 47, 88] has been designed to learned features theoretically separable with angular

distance. That work on sofmax loss with adjustment on angular discriminative strategy

is considered beneficial for classification task to improve the performance of DCNNs for
recognition system and has been discussed in next subsections.

2.2.1 Deep Hypersphere Embedding

To model a proper expression designed for the modified softmax loss, we initially define
input feature x; and the label y;, and recall the original softmax loss, where f; represent
the j-th element (and j € [1;k], for k class) of the class score vector f, for N number of
training samples. In DCNN:S, f referred to the output of a fully connected layer, therefore
fi= Wij,- +bjand f, = Wy,.T xi +bj, where x; be the training sample, W; and Wy, be the
Jj-th and y;-th column of W respectively. This modification used in softmax, we obtain

Wi Txitby,

L;=—log (2.2)

)Y jveTxH'bf .
If 6; be the angle between W; and x, then we can write the angular form of the softmax as

Wy 111l lcos(By,.i)+by,
Zje“WjT”||XiHcos(6j,i)+bj s

Li=—log V0<L@6ilrm. (2.3)

As stated above, via normalizing ||W;|| = 1, V j in every iteration and zero the biases.
Then we have the modified softmax loss, that is

1 ellxillcos(8y;,)+0
Lmodified—Softmax = 35 %i ( —log T e|1x.-||cos(9j,i)+o) : (2.4)
Though by using modified softmax loss, we can learn features by means of angular
boundary, these features are not still necessarily discriminative. Meanwhile angles can be
used as the distance metric, that is normal to join angular margin to learned features to boost
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up the discrimination power.

Instead of model a new kind of loss function and assembling a weighted mixture with softmax
loss, SphereFace [47] introduced a more natural technique to learn the angular margin. As the
above analysis shows that the decision boundaries greatly effect on the feature distribution,
thus the SphereFace use this basic concept to operate decision boundaries to launch angular
margin.

Let’s assume the learned feature x, from the class 1, is given and the angle between x
and W is 6;, this is known that for the modified softmax, cos(8;) > cos(8,) is required to
correctly classify x. But what will be happen if we have cos(m8;) > cos(6,), for m =2
adopted to properly classify x? In actual fact, it is making the decision supplementary
stringent than previous and for class 1 the decision boundary is cos(m6;) = cos(8,), in the
same way, if require cos(m8,) > cos(6) to proper classification of features from the class 2
and the decision boundary for this class is cos(m8,) = cos(6;), as discussed in SphereFace
[47]. From angular margin point of view, appropriate classification of x from identity 1 needs
6 < %, ‘whereas properly classifying x from identity 2 needs 6, < -?nl. Thus, by directly
reformulating the equation (2.4) based on this idea, the modified softmax loss can be written
as

e| xil[cos (maﬁ i)
) . (2.5)

1

Langular = sz ( - log e||x,-||cos(m8y‘. ) + zj e||x,-||cos(0_,~,i)

In order to get a rid of its restriction and make optimizable for DCNNs, SphereFace,
introduced monotonically decreasing angle function. A-Softmax has robust requirements
for a precise classification with m > 2, that makes an angular classification margin between
learned features for the different classes, that loss not only to imposes discriminative power
of the learned features through angular margin, but also reduces a novel hypersphere inter-
pretation.

The assessment of the decision boundaries is presented in Table 2.2, This is from optimiz-
ing the inner product to optimizing the angles from the original softmax to modified softmax,
and from modified softmax loss to SphereFace or A-Softmax, that makes the decision bound-
ary more stringent and more separated. The angular margin rises through the larger m and be
zero form=1.

The SGD used to optimize the model, initially with a very large value of (A) that is equal
to the strategy adopted for optimizing the original softmax. Then steadily reduce the values
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[ Loss | Decision Boundary |
Softmax (W) —Wa)x=b; - b
Modified Softmax [|x||cos(B1 — cos(62) =0

For class 1, ||x||cos(mB — cos(6;) =0

A-Softmax For class 2, ||x||cos(6; — cos(m6,) = 0

Table 2.2 The decision boundaries in binary classes.

during training. A 64-layers ResNet architecture used in SphereFace that offered the angular
softmax loss to learn discriminative human face features with angular margin with different
integer values of m > 0 and achieved the State-of-the-art performance 99.42% on LFW and
95.0% on YTF dataset at m = 4. It indicates that A-Softmax is more appropriate for open-set
FR. Moreover, the challenging learning job defined in SphereFace make a full use of the
superior learning competence of deeper architectures.

2.2.2 Large Margin Cosine Loss

The Large Margin Cosine Loss [88] start by reconsidering the original softmax from a
cosine viewpoint. The softmax separates the features from different classes via maximizing
posterior probability of ground-truth class. Assumed an input feature vector x; with its label
i, the original softmax loss can be reformulated formulated as

1 N
L= N ; —log(p;) (2.6)
1Y ehi
Li=—=Y —log (2.7
Ni=Zl ZJC'=1 e,f

Where p; be the posterior probability for x; being correctly classified. N denotes the num-
ber of training samples and C denotes the number of classes. The f; commonly designated
as activation of the fully-connected layer with weight vector W; and bias b;. If b; = 0, then
f;j for the angle 6; between W; and x, is given by

fi =WiTx=[W;||llxllcos(6;) (2.8)
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For the effective feature learning, norm of W must be necessarily invariable. On this
end, CosFace strategy fixed ||W;|| = 1 through L2 normalization. For testing, normally the
FR score of a testing face pair is calculated according to the cosine similarity between the
two feature vectors, that suggests the norm of feature vector x is not contributing in scoring
function. Therefore, in the training stage, it could be fixed, ||x|| = s, that modification can be
formulated as

1 & cos(By, 1)
L= ﬁzi',—zog————):j oG 2.9

That resulting model learns the features that are separable in angular space, this is refer
in CosFace as the Normalized Softmax Loss (NSL). Though, the features learned via NSL
are not sufficiently discriminative, because NSL just emphasizes accurate classification. To
handle this issue, CosFace also present the cosine margin for the classification boundary,
that is obviously incorporated into cosine formulation of Softmax. Assuming 6; be the
angle between learned feature vector and weight vector of class 1 and class 2, the NSL
forces cos(6;) > cos(6,) for class 1 and similarly for class 2, so the features from the
different classes are correctly classified. For the large margin classifier, it further require
cos(61) —m > cos(6>) and cos(62) —m > cos(6;) for m > 0 to control the magnitude of the
cosine margin and introduce Large Margin Cosine Loss (LMCL) as

e(s cos(8By,,i)~m)
oge(, cos(By,,i)~m) +Zj#yi & €05(8.)

Livc = %zi:—z (2.10)

Where N be the training samples, x; be the i - th feature vector corresponding to ground-
truth class of y;, and W; be the weight of the j -tk class, and 6; be the angle between weight
W; and samples x;. The architecture used in CoseFace [88] is similar to SphereFace [47],
that has 64 convolutional layers and is based on residual units. The scaling parameter s in
LMCL is set to 64 empirically, The DCNN models trained with SGD optimization technique,
with the batch size of 64 on 8 GPUs, that achieved the performance 99.33% on LFW and
96.1% on YTF dataset. It is clear that the model without margin at m = 0 leads to the poorest
performance. As m being increased, the performance is improved consistently on LFW and
YTF datasets, and get saturated at m = 0.35. This demonstrates that by increasing the margin
m, the discriminative power of the learned features can be significantly improved.
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2.2.3 Additive Angular Margin Loss

The center loss penalizes distance between deep features and corresponding class center
in Euclidean space to achieve intra-class compactness. A sofmax loss in SphereFace assumed
the linear transformation in last fully connected layer and can be used as representation of
the class centers in an angular space and penalizes the angles between the deep features and
their corresponding weights in a multiplicative way. A popular line of on this research is to
incorporate the margins in well-established loss functions to maximize face class separability.
The Additive Angular Margin Loss [19] is applicable to obtain highly discriminative features
for the face recognition. Recall the most widely used classification loss, softmax loss, that is
presented as

1 & Ponxithy;
L =——Zlog(m) (2.11)
= i=1€ J

Where x;, denotes the deep feature of the i th sample, belonging to the y; th class. W;
denotes the j th column of the weight W and b; is the bias term. ArcFace use the sim-
ilar strategy like spherface and CosFace, fix the bias bj = 0 and transform the logit as
Wij,- = ||Wj||||xi]|cos(8;), where 6; is the angle between the weight W; and the feature the
x;, and fix the individual weight ||W;|| = 1 via L2 normalization and re-scale the mbedding

feature ||x;|| to s.

s cos(8y,)
) . 2.12)

1
L= ﬁ;—log (e(s cos(6y,)) + Zj9£Yi & cos(6;)

As embedding features are distributed around each feature center on the hypersphere,
ArcFace add additive angular margin m between x; and Wj,.

e(s cos(By,+m))
) . 2.13)

1
Ly = N ;—log(e(s cos(6y,+m)) +Zj#yi 5 cos(8j)

The combination of all of the margin penalties, ArcFace implement SphereFace, CosFace
and ArcFace in a united framework with m;, m, and m3 as the hyper-parameters via adjusting
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the decimal random values.

(2.14)

1 e(s cos(m; By,+my)—m3)
Ly= N Z —log( (s cos(m; 8y, +ma)—m3) cos(8~)) )
i € ! +Ljpy € !

A geometrical comparison on the decision boundaries in the binary classification case
is illustrated in Fig.2.3. The additive angular margin considered as a better geometric at-
tribute as it is clear that angular margin demonstrations the exact correspondence towards
the geodesic distance, that is a representation of the decision boundaries in the case of
binary classification. The ArcFace contend to have a constant linear angular margin value
throughout the entire interval and CosFace and SphereFace have a nonlinear angular margin.
The Additive Angular Margin Loss in case of ArcFace, effectively enhance the discriminative
power of the feature embeddings learned through DCNNs for FR task, its comprehensive
experiments demonstrate that the method consistently outperforms.

These three approaches based on the modification of softmax play a vital role in the field
of computer vision. Considering the remarkable results and achievement of these methods,

Softmax SpherefFace

CosFace ArcFace

Fig. 2.3 The decision margins of the different types of sofmax available
in related work for binary classification case. The the grey areas are the
decision margins and dashed line denotes the decision boundary.
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we adopt a bit similar strategy to improve the performance of DCNNSs, and described in the
next chapter.

2.2.4 Laplacian Smoothing Gradient Descent

" As compared to the data extents, the processors speed is slower in all computer vision
applications based on DCNNs. The SDG is a workhorse for optimizing a large scale learning
of linear classifiers under convex loss functions [12, 13] and executes a parameter update to
each training sample x; with label y; and permitted the processors to access shared memory.
No doubt, SGD is beneficial for gradient-based optimization procedures circumvent spurious
local minima but it decelerates the convergence of conventional gradient descent. To find
the better minima, the Laplacian Smoothing Gradient Descent [54] proposed on the basis of
theoretical explanation of Hamilton-Jacobi partial differential equations, via pre-multiply the
gradient by the inverse of the tri-diagonal circular convolution matrix and is applicable to
reduces the optimality gap in SGD. A carefully modeled positive definite matrix introduced
in LS-SGD and used to smooth the gradient to reduce noise in SGD, applicable to improve
the training of DNNs. The methodology involves multiplication of normal gradient through
the inverse form of a matrix generating from discrete Laplacian or high order generalizations
of Laplacian. In the result of solving a tri-diagonal linear system with the original gradient,
the gradient smoothing can be done by simply pre-multiply the gradient to the inverse of a
matrix A4 for some positive constant ¢ > 0, that tri-diagonal circular convolution matrix is
defined in the following equation.

20+1 -0 0 -« 0 —-c
- 20+1 -0 - O 0
Ag = 0 —-c 20+1 -+ O 0 (2.15)
-0 0 0 -« —0 20+1

If the discrete one-dimensional Laplacian denoted by L and I be the identity matrix, then
I~ 6L = A4 and a forward finite difference D, can be written as as
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o L
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- O
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D,=|0 0 -1 0 O (2.16)
1 0 O 0 -1
The backward finite difference D_ = —Di and D_D, =L, or we can write
As=I1-0oD_D. 2.17)

For better convergence in the existence of a very noisy stochastic gradient, the operator
A7 acts like denoiser. If f;(w) = f(w,x;,y;) be the loss of the given model on training data
{xi,yi}; then LS-SGD can be defined as

Wil = wk — SV f, (WF). (2.18)

Where 7 is the step size and iy is the random sample. The LS-SGD used explicit to relax
the implicit strategy to perform layer-wise gradient smoothing that assistances to sidestep
sharp minima to reach the global minima. That theatrical modification in SGD affectedly
decrease the optimality gap and comfortable to find better minima.



Chapter 3

Methodology

Recent studies on loss functions clearly describing that better normalization is helpful for
improving the performance of image recognition system. Several methods based on different
loss functions have been proposed for this task to obtain discriminative features. An efficient
technique for IR is proposed in Chapter 3 of this thesis. This chapter containing the modified
form of angular softmax loss function. We explain the modeling of angular sofmax based on
the modification on the softmax loss function in section 3.1, the subsection 2.1 containing
the modified form of angular softmax and the subsection 3.1.2 offering a additive parameter
and a proper adjustment of the margin for the loss function, an automatic adjustment of the
seedling element as the result of angular marginal seed is offered in a particular way for
the angular softmax to learn angularly discriminative features. Significant impact of our
proposed method is discussed in subsection 3.1.3.

3.1 Angular Softmax

As concluded in the previous chapter, that the angular form of the softmax loss function is
more suitable to use for recognition system. The literature and the remarks on the literature
presented in section 2.2 has proven that the margin for the angular softmax is flexible for
image recognation tasks. A-Softmax [47] known as SphereFace, is used to compress the intra-
class angular distribution and to increase the inter-class margin. For effective and accurate
discriminating performance, a number of modifications set to boost up the discriminative
power of the softmax loss but it is not good for the intra-class variation. On this concern
researcher proposed a scale parameter [19, 47, 88] generating gradients to the separated
samples for intra-class variance. All these approaches are based on the similar strategy for
maximizing inter-class variance and minimizing intra-class variance. For the marginal loss
function, the concern is to adjust the additive marginal values appropriately by the use of
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integer values and decimal margin values. Proposing a better solution on this matter, we offer
an additive parameter relative to multiplicative angular margin for deep image recognition.
The proposed additive parameter is adjusted in softmax as a seedling element, as it is just
growing in the result of margin seed.

3.1.1 Modification in Sofmax

To increase the learn capability of DCNNs through the angular margin approaches for
softmax loss, A-Softmax [47] achieved remarkable progress and has strong geometric ex-
planation towards the discriminative angular distance metric and can be taken as compiler
for discriminative feature on a hypersphere manifold that essentially matches the prior that
images lie on a manifold. In the case of binary-class, the probabilities obtained through the
softmax loss for learned feature vector x, weights w; and base b; of the last fully connected
layer corresponding to class i, are

eW] Tx+by
Proby = e e 3.1)
and
eWQTx-l-bz
Prob, = (3.2)

eWiTx+by + eWaTx+by

The predicted label will be allocated to class 1 if Prob; > Prob; and class 2 if Prob; <
Prob,. This is clear that Wy Tx + b; and WoTx + b, determine the classification result via
comparing Prob; and Prob;, where (Wi — W2)x + by — by = 0 is the decision boundary. If 6;
be the angle between W; and x, then we can rewrite W;Tx+ b; as ||WiT || ||x||cos(6;) + b;. If
normalize the weights W; = 1 and base zero, that is b; = 0, then the final result depends only
on the angles 6; and 6,. Even though this analysis is assembled on binary-calss case, that is
trivial to generalize the analysis for multi-class case. For the period of training, the softmax
loos after modification in weight and base, encourages the features from i-¢h class to have
minor angle 6; as compared to others.
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The softmax take an un-normalized vector function, and stabilizes it to a probability
distribution. The softmax loss is naturally good in optimization of the inter-class difference,
that’s why classification loss functions for deep structures are typically constructed by using
softmax loss. As discussed in the previous chapter, that the original softmax loss can be

written in the shape of angular form, that can be reformulate in cosine form as

o (I, Tllxillcos(8y,.0)+by;)

1
Lsa = —N Zlog<
i

L VO0<6 i<, (3.3)
5 (W77l cos(8,)+5,) ) '

As per the spherface strategy, By fixing the bias b; = 0 and normalize the weight W; =1,
the softmax can be modified as

1 o ([lxillcos(8y,.0))
Lsy = —% 2 log , V0<@;i<m. (3.4)
° N Z <2je(|lxi||cos(e,-,i)) /

That modification based on normalization of features and weights makes the predictions
only be subject to the angle between the feature vector and the weight. One can consider
angle as a distance metric, that is accepted to integrate angular margin for learned features to
enhance the discrimination power.

Angular Margin Softmax Loss is a hypersphere embedding method introduced for
deep structure to learn discriminative face features with angular margin, where the non-
monotonicity of the cosine function has been adjusted by a piece-wise function. By A-
Softmax loss, the learned features generate a discriminative angular distance metric that
can be defined equitant to geodesic-distance on a hypersphere manifold and introduce a
monotonically decreasing function (depending on an angle between weight and features)
Vi(a,) for the modified sofmax loss and has been presented as

1 NCITACS)
v =Ty R < (3.5)
i N i e(Hx,-Hl[Il(Byi))+zj#yie(llxifl\t’1(8j))

The piecewise monotonically decreasing function (g, ) = (=1)*cos(m@) — 2k for % <
6, < w and the integer value m > 1 used for the size of angular margin. The angular
margin becomes larger for larger value of m and the constrained region of the manifold come
to be lesser. For the marginal loss function, the concem is to adjust the additive marginal

values appropriately by the use of integer values and decimal margin values. Proposing a
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better solution on this matter, we offer an additive parameter relative to multiplicative angular
margin for deep face recognition. The proposed additive parameter is adjusted in softmax as
a seedling element, as it is just growing in the result of margin seed.

3.1.2 Additive Parameter

In this section, we are presenting a simple approach for deep feature learning, based on
additive and multiplicative angular margin. Recalling the angular softmax loss offered by the
SphereFace, we reformulate the original softmax loss by considering large-margin softmax
as

1
Ls,, = N Z—log
H

e(Wll||xillcos(m8)+b)
<e ( ) . (3.6)

W ||{]xi||cos(mB)+b) +¥; e(IWllllxillcos(6;)+b)

The integer m represents the angular margin, the 8 is the angle between the weight of last
fully connected-layer W and deep features vector x. A piecewise monotonically decreasing
functiony; defined to remove nonmonotonicity of the function, that can be written as

1
W (0) = m((—l)kcos(me) —2k+ ¢cos(8)) 3.7

The 8 € "7", @] and ¢ is dynamic hyper-parameter used to control weight that further
normalized. To build a cosine layer, we adopt the same implementation used by spherface
for both feature and weight normalization. Then the simple loss can be formulating as

1 (bl2(6)
Lyato) = y L ~los (e(nx,-nw(e» T, elleas@) ) 38)

1

The parameter m can be used for learning an angular-margin between different identities.
We offered an additive parameter €, an automatic adjustment of the seedling element as
the result of angular marginal seed is offered for the angular softmax to learn angularly
discriminative features, that additive parameter in the shape of seedling element € is defined
as

m .
=—-", m21. .
€ 2(m+1)’m"1 (3.9)

It is observed that for all positive integer m, the additive parameter £ € [0.25,0.5), as
illustrated in Table 3.1.
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| Margin (m) | Additive parameter (¢) |

1 0.25
2 0.33
3 0.375
4 0.40
5 0.416

Table 3.1 The values of additive parameter
€ corresponding to the positive integer m.

To develop additive parameter € as a seedling element rising in the result of margin seed
m, we reformulate the monotonically decreasing function y»(8) to make more separated
decision boundary, a monotonically decreasing function y3 is defined as

v3(8) =y2(6)—¢ (3.10)

That modification is more simple to take gradient during the forward and backward
propagation and trivial to optimize the modified softmax loss using stochastic gradient
descent. Finally, a softmax loss based on a seedling parameter £ growing in the result of
multiplicative angular marginal seed m is defined as

ellxillvs(6)
). @3.11)

1
Lyo)=y );""g (e(ux,-n%(a» +¥; elllallcos(8;))

To implement our proposed methodology, we can use any case of the additive param-
eter to modify the loss function, For example, a case of modified softmax is defined by
setting angular margin m = 3, that generate a automatic adjusted additive parameter corre-
sponding to the angular margin. So, if angular margin is m = 3, it produce the fixed value
of additive margin € = 0.375 to generate modified monotonically decreasing parameter
V(e=0375) = [(—1) 1%} cos(0) — 2k] — 0.375. That loss function can be written as

lbillve(8)
ARlIVe(8) 1 . jelleillcoss;

1
LWe(6,3) = ——A-’):qlog (312)
The proposed approach is theoretically slight similar to the original sofmax loss and
computationally it is more appealing and beneficial because of its combined effect of additive
and angular margin and is easily adjustable with both optimization techniques SGD and
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LS-SGD.

If we compare the decision margin of our approach to other margin based methods, it
can be analysis that our methodology is unique. For example, suppose w; and w; are the
weights for the binary-class d; and d, respectively and m, is considered as multiplicative
angular margin and m5 as additive angular margin. The decision boundary in case of softmax
loss is ||wz||cos(82) = ||w1]|cos(61), the boundary depends on the magnitudes of cosine
of angles and weights. A-softmax offer a multiplicative angular margin m; and decision
boundary d in this case is cos(m;6,) = cos(6;) and for dj is cos(m16,) > cos(6;). In
Large margin cosine loss the decision boundary is define with the cosine additive margin
my, for d is cos(6,) — my > cos(6,) and for d is cos(6,;) —my > cos(6;). Our proposed
approach boosts up the power of angular margin and cosine margin via combined effect
multiplicative angular margin m; and cosine additive margin m,. Such that the decision
boundary is cos(m;61) —my > cos(6,) for d and cos(m;6,) — my > cos(6;). Moreover, our
case to adjust the additive margin value m, is based on the selection of multiplicative angular
margin m;, we offer a seedling element as an additive parameter to control the additive

margin.
| Methods | Loss |  Margin |
1 ellx,-“cos(meyi,i)
Sphel'CFaCC ﬁzi - loge“xi”lm:(moyi ,i) +Z .e“*i||’-"’-"(9jv") m E {1,2,3, 4}
7
| cos(By; i)—m
CosFace 7%,z,-(—zog G ) 0<m<045
& (cos(syi ,i)-m) +zje:cos(6 j o)
09<m <1.35
s | cos(m) 8y; +my i)~m: = = s
ArcFace ﬁ)li(—log ( £ ( l? 2) 3) ) 0<m<0.5,
¢* \cos(m1 y; ~my.i)=m3 +Ege e 0<m3<0.35
1 lbillcos(mey, J)—e me {1’2’3 45}
Proposed Approach |  JZ; ( —log e“""i"m‘("‘oyi"')‘e+zje|lxi”w’(9jx")) € = FmiTy’
0.25<e<05

Table 3.2 Comparison of the angular softmax loss with the corresponding margin values.
It is clear that, in our proposed approach, there is no need to select the random values of
additive margin as used in ArcFace and CosFace.
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The Table 3.2 represents a simple comparison of the angular softmax loss with the
corresponding margin values of the different methods adopted for the FR. Mathematical
representation of additive margin shows that the additive margin in the shape of additive
parameter € is dependent on margin m.

3.1.3 Significant Impact

The development of loss function based on margin is categorized into three types; the first
one is multiplicative angular margin used in SphereFace [47], where the margin is merged
into the loss in a multiplicative way. Second is additive angular margin used in ArcFace [18]
incorporated to loss in an additive way, and the third is additive cosine margin CosFace [88]
that is introduced to maximize the margin in angular space.

In additive and angular margin strategy SphereFace use integer values as margin element,
CosFace and ArcFace use decimal numbers as margin. In A-softmax, the margin value m
is multiplied to angle 8, the angular margin value is combined into the loss via multiplica-
tive way. Our approach to manage the margin is significantly different than the A-softmax
strategy, because the margin is enforced by subtracting margin value in an additive way and
the additive margin is adjusted automatically. For the marginal loss function, the issue is to
adjust the additive marginal values appropriately by the use of integer values and decimal
margin values. Our proposed parameter is offering an appropriate adjustment of decimal
values in additive margin, that refinement is proportional to the integer value of angular
margin. A seedling element as an additive parameter is growing automatically as a response
of every altering integer value of angular margin. For example, if m = 3 is an angular margin
seed then the automatically generating seedling element is € = 0.375, substitute to improve
the performance of piecewise decreasing effect of modified softmax loss for optimizing the
similarity. In mathematical model of modified softmax loss represented, the capacity of the
additive parameter is automatically controlled by angular margin, where the angular margin
forced the additive margin to remain in the interval [0.25,0.49].

Our proposed approach is significantly different then SphereFace [47], ArcFace [18] and
CosFace [88] as the loss is based on additive margin and angular margin, that is employed by
subtracting the parameter € from the cos function. A better action is prerequisite after the
inner product of weight vector W and feature vectors x;, which is computationally expensive.
The generating cos function as a result of inner product of weight and feature vector is failed

to learn the similarity feature because of its sinusoidal appearance with two maximum values
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over the interval O to 7. Conceptually the cosine margin is less good then angular margin, but
computationally it is more appealing to achieve results using the monotonically decreasing
parameter to maximize the value of similarity for same classes and minimize the value for
different classes. The additive parameter is significantly effective because of its piece-wise
monotonically decreasing nature over the interval.

The adjustment of additive parameter is simple to take gradient during the forward and
backward propagation and is trivial to optimize the modified softmax loss using Stochastic
Gradient Descent, as the SGD optimization strategy is a pillar for solving a large scale
learning of linear classifiers and perfectly adjusted with the marginal softmax, However,
when training data is too large the convergence of large margin is more difficult than softmax
with small margin. The additive parameter with SGD has the capacity to reduce the resistance
during training a big image data by offering the small additive value € growing in the result
of margin seedm. Because of combined effect of additive and angular margin, our approach
is significantly unique, more efficient and stable to work for deep neural network.

We adopt two different computer vision application to evaluate the proposed strategy
and experimentally prove that the additive parameter approach for angular softmax is more
suitable for recognition systems. In the next chapter, we briefly discussed about the both
applications and analysis.



Chapter 4

Applications

In this chapter, we discussed the implementation of our proposed method on two main
computer vision application. We expose the experimental details and results on both appli-
cations also, a analysis of our results with the other modern techniques used for both tasks
are included in this chapter. We implement our proposed methodology on FR and HDR
systems, the complete process for FR is described in section 4.1 with implementation details,
experiments, results and comparison of our proposed approach with the other methods for
face recognition. The second application is addressed in section 4.2. We adopt HDR system
to evaluate the performance of our method, this section offering implementation details for
HDR, containing results and analysis.

4.1 Face Recognition

As because of its natural characteristics, facial recognition has become a prominent biomet-
ric method used for authentication of identity and has been extensively cast-off in numerous
technological zones. We use this application to evaluate the performance of proposed modi-
fied angular softmax loss waith the additive parameter.

For a fair comparison of our results with the modern existing methods we use the similar
publicly available web-collected dataset CASIA-WebFace for training and popular public
available face datasets LFW [31] and YTF [92] for testing purpose, the details about these
benchmarks are summarized in the Table 4.1. The dataset CASIA-Webface [41] is used to
train the framework over convolutional layers supervised by the additive parameter enclosed
in softmax loss. The trained weights generated after training process are evaluated over
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| Datasets | Number of Subjects | Number of Images |

CASIA [41] 10,575 494,414
LFW [31] 5,749 13,233
YTF [92] 1,595 3,425 videos

Table 4.1 A summary of publicly available training dataset
CASIA-WebFace used for training and LFW and YTF for test-
ing.

the test set containing face pairs of LFW and YTF. The complete process of training and
testing framework for performance evaluation of softmax loss functions using DCNNss is
summarized in the Fig.4.1.
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Fig. 4.1 The DCNNs framework for performance evaluation of modified softmax loss
with the additive parameter functions, the epoch represents the transfer of the trained
model molded from the CASIA for testing over testing faces from LFW and YTF.
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4.1.1 Implementation Details

This section is dedicated to designate the experimental setup used for the performance

evaluation of softmax with additive parameter functions for FR system.

(a).

(b).

The implementation particulars are discussed in the following four steps.

Experimental Settings:

A normally MTCNN [97] is used for face detection and alignment in unconstrained
environment, we espoused the same strategy for training data set as well as for testing
images and aligned the faces permitting the detected landmarks. To make similarity
transformation, we take both eyes, nose and both corners of mouth as reference points
and then each RGB images is normalized by subtracting 128 and then dividing with
128 by adopting aligned images of size 112 x 96. A 36 — layer CNN is molded by
reforming ResNet offered by SphereFace, used for reasonable comparison as other
methods practice a bit similar DCNN architecture.

CNN Architecture:

As deeper neural networks are considered more difficult for training purpose and
for numerous visual recognition tasks, the depth of representations having the central
importance. The ResNet [29], have encouraging achievement in many recognition tasks
including the face recognition and the handwritten digit recognition. Motivated by this
offered strategy, we adopt a bit similar residual learning framework to ease the training
of neural networks via modifying the different layers in the architecture. We adjust
the network architecture for FR system by setting the convolutional units containing
multiple convolution layers with output channels via fine-tuned, stable and learnable
size of kernel, the detailed structure is exposed in the Table 4.2. The first columns
denote the layer name (blocks of residual units) and the second columns represent the
output size and filter size of the model. The block in the second column shows a series
of convolutions with the filter size of the convolution and the number of filters used.
The convolution layers are symbolized by a multiplier in the second column and the
layer’s entries in the column are arranged in order.
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| Layer | CNN |
[64 filters of size (3 x 3)] x 1, with stride 2 |
Unitl (3 x 3, 64) N 2]
3x3, 64
[128 filters of size (3 x 3)] x 1, with stride 2 |
Unit2 '(3 x 3, 128) d
3x3, 128
[256 filters of size (3 x 3)] x 1, with stride 2 |
Unit3 i (3 x 3, 256) <3|
3x3, 256
[512 filters of size (3 x 3)] x 1, with stride 2 |
Unit4 [ (3 x 3, 512) <)
3x3, 512
FC 512

Table 4.2 CNN architectures with different convolutional layers. Each
convolution unit contain multiple convolution layers and residual units
as summarized in second column. where the brackets, for example
[3 x 3,128] x 4 denotes 4 cascaded convolution layers with 128 filters of
size 3 x 3, with stride 2 and FC is the fully connected layer.

(c). Training:

In training portion, to attain results for a reasonable assessment with existing state-of-
the-art results, we use publicly available training dataset CASIA-WebFace [41], that has
494,414 images for human faces of 10,575 identities available with noisy labels. As
the margin m is the hyper-parameter in our loss function, we train our model for the
different values of hyper-parameter m. The additive parameter with different values of €
is adjusted in function y3(6,m) to update the loss function for every training, modified
softmax loss and fully connect layer (FC512) is used at the end of DCNN architecture.
The FC512 is transforms the input to a vector of dimension 512. For forward and
backward propagation, we adopt A-softmax strategy by substituting multi-angle formula
instead of direct implementation on marginal cosine expressions. The CNN model is
trained with SGD, the weight parameter is fixed to S5e* for 256 batch size and 0.1 is
fixed as initial learning rate and is divided by 10 at the 10K, 18K and 22K iterations and
run the training to produce 24 epochs. We repeat the training five times taking margin
m=1,2,3,4,5 respectively.
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(d). Testing:

For testing purpose, we use two famous datasets contains faces with large differences
in pose, expression and illuminations. LFW dataset [31] consist on 13,233 images of
5,749 identities and YTF dataset [92] is a data of 1,595 different identities from 3,424
videos. The 24 epoch devolved during every training experiment are tested on LFW and
YTF using 36 layer CNN for different values of margin, we achieve the stat-of-the-art
performance on both benchmarks. In the testing phase, the testing data is fed into
additive parameter softmax to extract deep face features that will use to compute the
similarity to complete face recognition. The face image is obtained by concatenating its
horizontally flipped features with original face features and the thresholder and classifier
are hired for respective goal.

4.1.2 Results and Analysis

After running the model five times for training on CASIA-WebFace, we get 24 epochs
in each trail at different margin values, where m € {1,2,3,4,5} using the monotonically
decreasing function y3 with the additive parameter € € {0.250, 0.333, 0.375, 0.400, 0.416}.
A successful training on CASIA-WebFace exposing that the fine-tuning on softmax with
the additive parameter is significantly attractive, as in all the trails the training accuracy is
better with the minimum data loss. We perform the testing on datasets LFW and YTF to
perceive the effect of different values of margin m. The accuracy on LFW is plotted in Fig.
4.2 and summarized in Table 4.3, while the testing performance of face recognition on YITF
is presented in Fig. 4.3 and summarized in Table 4.4. A bar-chart for better understanding is
portrayed in Fig. 4.4.
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The bar chart in Fig. 4.4 represents the accuracy of the proposed approach at the different
margin values with the additive parameter. The FR performance on LFW is significantly
improve from 97.83% to 99.58%and 92.62% to 95.38% on YTFE. On the view of these results,
it is the matter-of-fact that the proposed approach towards deep face features learning has
state of the arts accuracy on margin m = 3 with additive parameter € = 0.375.
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Fig. 4.4 Accuracy on LFW and YTF datasets by means of additive param-
eter with different margin values m € {1,2,3,4,5}.
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Fig. 4.5 ROC plot of the FPR on x — axis versus the
TPR on y — axis.
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The probability of a binary outcome is portrayed in Fig. 4.5 by receiver operating charac-
teristic (ROC) curve through the plot of the false positive rate (FPR) on x — axis versus the
true positive rate (TPR) on y — axis for a number of different candidate threshold values from
0.0 to 1.0. The above analysis on the bases of our results indicating that while m becomes
larger, the accuracy also becomes better, which shows that stronger discrimination power
get from increasing angular margin, but the accuracy is declined at m = 5 showing that
the largest margin is damaging the stability of model. It is observed that the performance
accuracy of FR on LFW is 99.58% and on YTF is 95.38% corresponding to the margin
m = 3 and additive parameter € = 0.375. That is the best evaluation performance using
additive parameter trained on CASIAWebFace and is significantly better than several other
techniques trained on the same dataset.

The most widely used benchmarks are LFW and used for unconstrained face verifica-
tion on images and videos. From the last few years a number of loss functions professionally
used on these datasets for evaluating the performance. SpherFace have remarkable results on
LFW and YTF using different margin values from 1 to 4. For a fair comparison, a margin
wise comparison of our proposed sotmax using additive parameter and SphereFace on LFW
and YTF dataset is given in Fig. 4.6, that is a clear representation of different margin values
adopted by SphereFace and additive parameter. It can be observed from the Fig. 4.6, that the
performance on both LFW and YTF is better at m = 3 using the additive parameter. The best
results on LFW is 99.58% with the additive parameter at m = 3 and the 99.42% at m = 4 by
SpherFace.

In our model trained on CASIA webFace, we use the same benchmarks LFW and YTF
for reasonable comparison on performance evaluation. As reported in Table 4.5, softmax
based on additive parameter consistently performs better than the current state-of-the-art
approaches on the same datasets. Which shows that an additive parameter along with the
angular margin can particularly improve the discriminative power of deeply learned features,
indicating the effectiveness of approach. The ResNet-64 architecture is used in CosFace
and A-softmax to train CASIAWebFace dataset and for testing of the models both methods
are evaluated on LFW and YTF datasets. As our network architecture is similar to the
architecture of CosFace and A-softmax and also we use the same benchmarks, that’s why we
compare our results with the results of CosFace and A-softmax.

The Fig. 4.7 is presented for better understanding of the testing results on LFW and
YTF via additive parameter, A-softmax and CosFace. Compared with models trained on big
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Fig. 4.6 Margin wise comparison of Additive Parameter (AP) and
SphereFace (SF) on LFW and YTF dataset. The angular margin values
are taken from the positive integers m € {1,2,3,4}, used in both methods
to improve the performance of DCNN.

| Methods | LFW (%) | YTF (%) |
DeepFace [80] 97.35 91.40
Deep FR [56] 98.95 97.30
FaceNet [70] 99.65 95.10
DeepID2+ [77] 99.47 93.20
Softmax + Center Face [91] 99.05 94.40
Triplet Loss [70] 98.70 93.40
CosFace [88] 99.33 96.10
SphereFace [47] 99.42 95.00
Proposed approach [58] 99.58 95.38

Table 4.5 A summary of testing accuracy (%) on LFW
and YTF dataset with the latest state-of the-art techniques.

datasets, our approach is competitive and outstripping enactment in the most of the existing

results as listed in Table 4.5.

Its observed that the softmax with additive parameter on LFW record the accuracy
99.58% at m = 3 that is better than 99.42% at m = 4 via A-sotmax and 99.33% at m = 0.35
via Coseface. Testing accuracy on LFW by our proposed model is better than the testing
accuracy of A-sotmax and CosFace. The recorded values on YTF via additive parameter



4.2 Handwritten Digit Recognition 48

100
[ILFW

IsYTF

98

96

94

92

20 =

Accuracy

88 |-
86

84
82 |-

80
Additive Parameter A-Softmax CosFace

Fig. 4.7 The testing results on LFW and YTF using additive parameter, A-softmax
and CosFace.

at m = 3 is 95.38%, which is also better than 95.0% at m = 4 via SphereFace but smaller
than the 95.61% at m = 0.35 via CosFace. The average existing FR systems achieve high
performance on the big training datasets. While focusing on the stability of the architecture
and concerning to improve the margin strategy, the SpherFace, CosFace and our approach
have the significant enhancement on the trained models on publicly available dataset CAISA-
WebFace, having noisy labels.

4.2 Handwritten Digit Recognition

Handwritten Digit Recognition (HDR), is the ability of a machine to interpret and re-
ceive intelligible handwritten digits input from other sources such as photographs, paper
documents, touch-screens and other modern devices. A HDR system handles configuring,
formatting, executes correct segmentation of digits, and finds the most appropriate digit. The
digit recognition task initiate with the dataset into training stage, that containing random
projection and extraction of the features with different architectures and loss functions used



4.2 Handwritten Digit Recognition 49

to extract discriminative deep feature. For the handwritten digit recognition, we fixed the
angular margin to introduce a unit margin softmax loss. The improved alternative form of
softmax is trainable, easy to optimize and stable for usage along with Stochastic Gradient De-
scent and Laplacian Smoothing Stochastic Gradient Descent. For evaluation of the modified
loss, we use a vision application for classification task to recognize hand-written digits (from
0 to 9) using famous benchmark MNIST [38], containing 60,000 training images and 10,000
test images and is well-known for pattern recognition and learning approaches. Few samples
from the dataset MNIST are shown in Fig. 4.8 with different patterns. For the handwritten
digit recognition process, the Fig. 4.9 represents a deep recognition structure for performance
evaluation of loss function.
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Fig. 4.8 Samples of handwritten digits from (training and testing patterns) the
MNIST Dataset.

4.2,1 Implementation Details

In recognition task initiate with the dataset into training stage, that containing random
projection and extraction of the features with different architectures and loss functions used to
extract discriminative deep feature. For optimization task to train the network with loss func-
tion, typically used Stochastic Gradient Descent (SGD) [12] a gradient based optimization
processes circumvent spurious local minima, but it slows down the convergence of regular
gradient descent [69, 54]. Numerous stimulating variance reduction techniques [17, 33] have
been proposed for strongly convex functions to recover the linear convergence rate, but not
appropriate to train DCNNs. Laplacian Smoothing Stochastic Gradient Descent (LS-SGD)
[54] is beneficial to reduce noise in SGD and appropriate to use for training of deep neural
network.
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Modified Softmax
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Additive Parameter
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Fig. 4.9 A flow chart represents a process of HDR using deep con-
volutional neural networks for performance evaluation supervised
by the modified softmax loss.

To enhance the discrimination power of softmax loss function, we propose a special case
of multiplicative angular margin entitled a unit softmax by fixing the margin to integer value
m = 1 with a additive parameter € = 0.25 and setting the convolutional layers to train the
model on MNIST dataset. We build a deep model on MNIST dataset using the proposed
approach, during training phase, A unit softmax monitors the ConvNet to learn deep features
and in the testing phase, the digit features are extracted from the ConvNet to perform charac-
ters recognition. Moreover, we experiments the modified softmax loss with the SGD and
LS-SGD, both optimizer achieved state-of-the-art performance with consistent improvements.

The modified form of the softmax for handwritten digit recognition is defined by setting
angular margin m = 1 and fixing the value of additive margin € = 0.25 to generate modified
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monotonically decreasing parameter We—g.25 = [(—1) Lk] co$(Omin) —2k] —0.25 , where Opin €
[k, (k+ 1) 7). Upgrade the equation by adjusting the proposed parameters, a unit softmax is
given as

L 1 Z 1 e]|xi||WE(9nlin)
We(eminal) - _N i Og e“xine(em,'n)_'_ZjeHx,'”L‘DSGj

4.1)

After the inner product of weight and feature vectors in angular margin approach, a better
action is essential that is computationally expensive. The unit softmax approach is theoreti-
cally slight similar to the original sofmax loss and computationally it is more appealing and
bifacial because of its combined effect of additive and angular margin and it is proficient
to adjust with both optimization techniques SGD and L.S-SGD. The adjustment of a unit
softmax is simple to take gradient during the forward and backward propagation and is trivial
to optimize the modified softmax loss using SGD and LS-SGD.

We adjust the network architecture by setting the convolutional units containing multiple
convolution layers with output channels on the input by adjusting stable and learnable size of
kernel. Motivated by the ResNet [29], we readjust the network architecture by setting the
convolutional units containing multiple convolution layers with output channels on the input
by adjusting stable and learnable size of kernel, the detailed structure is exposed in the Table
4.6 is applicable to use for handwritten digit recognition.

| Layer | CNN Structure
Conv 1.x 3x3,64] x1
Conv 2.x 3x3,64| x3
Conv 3.x 3x3,64(x3
Conv 4.x 3x3,64| x3
FC1 256

Table 4.6 Convolutional layers structure for
neural network.  The notation Convl.x,
Conv2.x, Conv3.x and Conv4.x represents the
convolutional units containing multiple convo-
lution layers and FC1 is the fully connected
layer.

For experiment of a unit softmax with both SGD and LS-SGD optimization strategy, we
begin with a learning rate of 0.1 and divide it by 10 at 10k and 12k iterations to generate 50
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epochs and other default parameters are set for PyTorch implementation on GPU. Begin with
the dataset into training stage that containing random projection and extraction of the features.
In this phase to visualize all digits clearly, each letter in dataset is attentive to displayed
in haphazard style and then respective characters are extracted individually to examine its
assembly and forward to the learning process for training. This process is iterated until all
the objects in the dataset get trained completely.

4.2.2 Results and Analysis

The Fig.4.10 represents the training on the Dataset MNIST using SGD and LS-SGD,
accuracy (is taken on vertical axis) corresponding to 50 epochs (on horizontal axis) and
the Fig. 4.11 represents the loss (on vertical axis) corresponding to 50 epoch (horizontal
axis). Its observed from the Fig. 4.10, that a unit softmax is efficiently work with both the
optimization schemes and the performance of LS-SGD to train data is significantly improved
after the epoch 10 and smoothly exhibits the better heightening as compared to SGD. The
Fig.4.11 exposed that, a unit softmax along with LS-SGD attain the notable results on the
loss during the training instead of SGD. The minimum loss through SGD is 0.434 and as a
result of LS-SGD is 0.384.
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Fig. 4.10 Training using SGD and LS-SGD. Accuracy (%) is taken on
vertical axis corresponding to S0 epochs on horizontal axis.
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Fig. 4.11 Loss using SGD and LS-SGD. Loss is taken on vertical axis
corresponding to 50 epochs on horizontal axis.

For evaluation, we simply construct the final ensemble classifier and use it with the
discriminative feature to predict labels. To generate some clusters, the handwritten digits
with similar structure and vector-value are assembled together under a single label and every
digit feature is analyzed to find the pattern by proposed algorithm.

On both SGD and LS-SGD schemes, the testing accuracy corresponding to randomly
selected models rl1, r2, r3, ..., r10 is shown in Fig.4.12. Testing accuracy is taken on
vertical axis and randomly selected models r1, r2, r3, ..., r10 on horizontal axis. It can be
analyzed that the accuracy on the models generated via LS-SGD is better then the generated
models via SGD.

The training and testing accuracy represents the proficiency of a unit softmax loss to
improve the power of DCNNs along with the both optimization techniques SGD and LS-SGD.
However, the results on training and testing demonstrate the advantage of the smoothed
gradient as compared to stochastic gradient, but there is a minor difference in results of the
modified softmax with SGD and LS-SGD, both optimization schemes are adjustable and
stable for a unit softmax loss and helps to find better minima. However, we discuss only
one case of additive parameter for the handwritten digits but the other cases also effectively
working for digits recognition. The overall focus in this application is to evaluate the re-
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Fig. 4.12 Testing accuracy on randomly selected models
rl, r2, r3, ..., r10.

sults for SGD and LS-SGD, that’s why we discussed only a unit softmax for digit recognition.

The average advanced methods used for handwritten digits resignation are modeled on
the base of softmax loss function and its modified forms. For a fair comparison with the
latest techniques we compare the alternative form of softmax with those methods having the
results on MNIST dataset. However, the profomance of L-Softmax [48] on MNIST dataset
is better then the many approaches, but it use maximum margin values to achieve the rate
0.31. Our results on handwritten digits recognition are better then many other state-of-the-art
techniques.
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| Method | Error Rate |

DropConnect [85] 0.57

CNN [32] 0.53

FitNet [65] 0.51

L-Softmax [48] 0.31t00.40

Maxout [25] 0.45
GenPool [39] 0.31
Unit Softmax with SGD 0.434
Unit Softmax with LS-SGD 0.384

Table 4.7 Recognition loss (%) on MNIST dataset
using a unit softmax loss.

Experimental study summarized in Table 4.7, shows that the loss of a unit softmax is
0.384 with LS-SGD and 0.434 with SGD. It is notable that the results of a unit softmax with
both optimization techniques attains state-of-the-art performance on MNIST.



Chapter 5
Conclusion and Future Work

In this chapter, we include the conclusion of the proposed work and some future directions.

5.1 Conclusion

This presented novel approach towards additive and angular margin softmax loss by of-
fering an additive parameter controlled over multiplicative angular margin, that is more
effective for DCNNs to learn highly discriminative face features. An automatic adjustment
of the seedling element as the result of angular marginal seed is offered in a particular
way for the angular softmax to learn angularly discriminative features. The adjustment of
additive parameter is simple to take gradient during the forward and backward propagation
and is trivial to optimize the modified softmax loss. Because of combined effect of additive
and angular margin, our approach is significantly unique, more efficient, trainable, easy to
optimize and stable for usage for image recognition tasks.

We train the model on publically available dataset CASIA-WebFace and our experiments
on famous benchmarks YouTube Faces and Labeled Face in the Wild achieve better per-
formance than the various state-of-the-art approaches. It is observed that the performance
accuracy of FR on LFW is 99.58% and on YTF is 95.38% corresponding to the marginm =3
and additive parameter € = 0.375. That is the best evaluation performance using additive
parameter trained on CASIAWebFace and is significantly better than several other techniques
trained on the same dataset. A comprehensive description of experiments is included in the
literature to demonstrate that our technique is better than various current state-of-the-art
methods. However, our improved alternative form of softmax is trainable, extremely easy to
implement and is appropriate for the larger amount of margin but still need exactly accurate
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correspondence for largest size of margin.

Moreover, the proposed modification in softmax expresses a flexible learning job with
adjustable additive margin and is flexible to amend with stochastic gradient descent and
laplacian smoothing gradient descent. To enhance the discrimination power of softmax, a
special case of multiplicative angular margin is offered by fixing the margin and setting the
convolutional layers to train the model on famous dataset. Experimental results demonstrate a
state-of-the-art performance on famous database of handwritten digits the Modified National
Institute of Standards and Technology (MNIST) database. The experimental results on
MNIST dataset demonstrated the advantages of our modified softmax loss over the state-
of-the-art alternatives. It can be observed that the loss of the proposed strategy is 0.384
with LSSGD and 0.434 with SGD, its notable that the results of a unit softmax with both
optimizations techniques achieve the state-of-the-art performance compared to the other deep
CNN architectures.

For the both applications discussed in Chapter 4, the proposed model is trainable, ex-
tremely easy to implement and is appropriate for the larger amount of margin. Experimental
results demonstrate that our approach is better than numerous current state-of-the-art ap-
proaches and expresses a flexible learning job.

5.2 Future Work

As it is concluded that, our approach via improved alternative form of softmax is trainable,
extremely easy to implement and is appropriate for the larger amount of margin but still
need exactly accurate correspondence for largest size of margin. To further improve the
discriminative power of the face recognition system and to stabilize the training process, the
exactly accurate correspondence for largest size of margin is required, that will be formed by
constructing more appropriate mathematical formula like our proposed method, that could
handle the computational complexity during training.

In order to stabilize training, we adopted combined margin strategies for modify the
angular softmax, that will suitable for other computer vision tasks, like object recognitions
and human action recognitions. On this concemn, a novel approach for object recognitions
and human action recognitions tasks will generate a promising results via implementation of
our proposed method.
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Other than the main focus on computer vision tasks, the similar modification based on
loss function and gradient descent will be applicable to construct new techniques for speech
recognition and signal processing jobs as well as to build new deep learning algorithm for
solving complex mathematical models based on partial differential equations.
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