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A B S T R A C T   

Marine biota is a great source of ecosystem services. Recently, the involvement of marine organisms in 
biotechnological applications has been discovered and become useful for the development of alternative and 
healthy food, natural medicine and cosmetics. The most known ecosystem service is the provision of seafood; 
however, fishery management has to be implemented in order to avoid fishing exploitation, depletion of the sea 
and assure the recruitment by fish larva. This review put in relation the role of zooplankton in the ecosystem and 
its importance in fish recruitment. Zooplankton and fish are close connected; indeed, their prey-predator relation 
is an important factor for fish recruitment. Understanding the dynamic and trophic relation among different 
groups (phytoplankton – zooplankton – fish) and the ecosystem services they give to us, may increase the 
awareness of the importance to preserve marine environments. Furthermore, this relation is also important for 
fish aquaculture practices, as it is discussed in the present review. Further researches on potential zooplankton 
species that may be involved in fish farms may also ameliorate aquaculture services. 

To preserve the seas from fish depletion and to assure seafood provision, it is fundamental to have deep 
knowledge about the ecological connections in the marine environment and to obtain fishery management 
respectful for the environment.   

1. Introduction 

Marine ecosystems are among the most populated habitats in the 
world; their richness is given by an incredible number of marine or-
ganisms that provide us ecosystem services. The Millennium Ecosystem 
Assessment defined “ecosystem services” as “the benefits that people 
obtain from ecosystems”. Ecosystem services are divided into four cat-
egories: supporting, provisioning, regulating and cultural services 
(Millennium Ecosystem Assessment, 2005). 

Ecosystem services are dependent from natural ecosystem functions, 
thus it is important to preserve our planet and its habitats. For example, 
provision of seafood is the most exploited ecosystem service, which is 
result of a combination of primary and secondary production, biogeo-
chemical cycling, food web dynamics, etc (Austen et al., 2011). The 
economic part is also encouraging: it has been estimated that marine 
ecosystem services are valued at $50 trillion per year (Costanza et al., 
2014). 

Marine species mostly used for human benefits are principally known 

in the food industry (Fradique et al., 2010), but they can also assure 
several benefits in different biotechnological applications, such as nu-
traceutical, pharmaceutical or cosmetic industry, as it happens recently 
with further studies on seaweeds (Lee et al., 2020; Miyashita et al., 
2020) and microalgae (Galasso et al., 2019; Matos, 2019). Among 
benthonic organisms, mussels are also used in different sectors, for 
example the anti-inflammatory agent contained in Lyprinol may be 
extracted from a green-lipped mussel originated from New Zeland 
(Benkendorff, 2009). Moreover, sponges and coral are also rich in 
bioactive compounds that could be useful for forward studies and 
development of new human services (Leal et al., 2013; Munro et al., 
1999). 

Ecosystem services offered by marine resources are diverse. For 
example, mangrove ecosystems are important to ensure nursery and 
breeding habitat for many important fish species that can be exploited 
for aquaculture, providing other important services associated with 
habitat functions and protection (Barbier, 2017). 

Activities related to tourism, religion and culture are also strictly 
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connected with extraction and harvesting of natural marine resources. 
Commercial fishing and marine tourism are both highly dependent on 
ecosystems, but marine tourism has been identified as having lower 
impact on the environment and higher monetary value (Bryhn et al., 
2020). Cultural ecosystems services provided by marine resources are 
included in different categories: (1) aesthetic experience, which relates 
with the vision of natural beauties; (2) recreation, as it is noticed sea and 
beaches are considered a holiday location where is possible to practice 
different activities such as swimming, snorkelling or diving; (3) inspi-
ration for art and culture, as many artists use the sea as source of 
inspiration; (4) cultural heritage and identity, such as the identification 
of local connection or family link (Fletcher et al., 2014). 

Unfortunately, anthropogenic impact affects our ecosystems, 
bringing up habitat degradation, pollution, overfishing etc. Due to the 
unsustainable human exploitation of natural resources, ecosystem ser-
vices are limited (Gentry et al., 2020). 

Thus, to avoid the complete depletion of marine environments and to 
have functional ecosystem services along time, it is necessary to preserve 
and to adopt sustainable uses of the environment. The Marine Strategy 
Framework Directive suggests the use of biological indicators to recog-
nize stressed ecosystems, in order to facilitate the process of restoration 
(Hattam et al., 2015). 

In the following sections, the importance of zooplankton groups and 
their contribution in ecosystem services is mentioned through the 
description of zooplankton ecological roles and its impact on fish 
recruitment and fishery management. 

2. Zooplankton contribution in marine ecosystems and 
aquaculture 

The term “plankton” was attributed in 1884 by Hensen to indicate 
organisms randomly disposed in the space (Hensen, 1884); further, the 
plankton distribution was assumed as uniformly distributed in space 
(Lussenhop, 1974). Studying the physical structure of lakes, expert 
limnologists noticed a vertical and horizontal distribution for the 
zooplankton that is appliable on every environment, and Hutchinson in 
the 50 s developed different patterns of distribution: clumps, swarms or 
aggregates (Hutchinson, 1953). Zooplankton is directly connected to 
higher trophic levels, thus knowing how its distribution influences the 
entire ecosystem and the interactions with other planktonic organisms 
(Pinel-Alloul et al., 1988) may be helpful to understand ecological 
models related to other planktonic groups (Pinel-Alloul et al., 1988). 
Perissinotto and McQuaid (1992) found a connection between diurnal 
vertical migration of zooplankton and fish feeding habits. The stomach 
content of Kreffrichthys anderssoni, local fish of the Prince Edward Ar-
chipelago (South Africa), showed the presence of the euphausiid 
Euphausia vallentini, Microcalanus pygmaeus and the copepod Rhincalanus 
gigas. Kreffrichthys anderssoni spend the daytime 300–400 m below the 
surface, shifting to the upper 50–100 m at nigh time, when zooplankton 
is in surface water (Perissinotto and McQuaid, 1992). It is clear that the 
vertical migration of zooplankton influences fish migration and food 
availability. 

Zooplankton presence affects the ecosystem dynamics (Bruce et al., 
2006). Zooplankton have a position as grazers for algae and bacteria, 
influencing their community population (Lehman and Sandgren, 1985; 
Sterner, 2009), but they also provide phytoplankton with nitrogen and 
phosphorous (Hudson et al., 1999; Hudson and Taylor, 1996; Lehman 
and Sandgren, 1985; Sterner, 2009; Urabe et al., 1995) having a perfect 
cycle of nutrient recycling. 

Furthermore, zooplankton have a crucial role in the efficiency of the 
Biological Carbon Pump (BCP) that regulates the atmospheric carbon 
dioxide levels (Kwon et al., 2009; Parekh et al., 2006). Cavan et al. 
(2017) underline the roles of zooplankton in improving the effectiveness 
of the BCP through the control of particles export by grazing, by frac-
tioning large and fast sinking particles in slower ones and moving Par-
ticulate Organic Carbon (POC) to depth via diel vertical migration 

(Cavan et al., 2017). 
Zooplankton has also a strong effect on biomass stocks of other 

planktonic groups, in fact zooplankton can alter the concentration of 
prey populations (by consumption) and predator populations (by being 
consumed), consequently having effects on fish biomass (Vanni, 2002). 

The predominant anthropogenic disturbance for fish is the bottom 
trawling practice. However, it has also strong impact on the biogeo-
chemical cycling of carbon and nutrient. Dissolved and particulate nu-
trients may be transferred from benthic to pelagic systems, favouring the 
occurrence of algal blooms (Pilskaln et al., 1998). This increase of pri-
mary productivity could have significant effects for eutrophication of 
the water column, causing stress for the marine communities, such as 
zooplankton (Dounas et al., 2007). 

Zooplankton species are widely used as live feed for farmed fish. Fish 
feed is one the main expensive cost in aquaculture (Lupatsch et al., 
2001), but the most important as well: quality and quantity of feed 
directly affect growth and, indirectly, maturation and mortality in fish 
(Wotton, 1990). Therefore, it is possible to alleviate this cost by utilizing 
live-feed. Traditional live-feed products are rotifers (e.g., Brachionus 
spp.) and brine shrimp (Artemia spp.), both with non-marine origins, 
thus they sometimes need added enrichment before use (Hansen, 2017). 

Copepods represent an important alternative live-feed in marine fish 
production, as they improve survival, growth and development of fish 
larvae (Hansen, 2017). Biochemical profile of copepods and their size 
range make them appropriate feed for fish farm larvae (Hansen, 2017). 
It has been demonstrated that in lakes zooplankton is fundamental as 
food for young fish, which represents an important element in human 
diet (Mavuti, 1990). This is a suitable example of ecosystem service and 
how the ecological role is related to the ecosystem service. 

2.1. Main contributions of zooplankton long time series 

Oceans are unpredictable environments and their physical and 
chemical conditions are continuously changing. To collect reliable data 
about these variables, it is important to follow a long time-series 
approach and to have replicates of physical, biological and chemical 
measurements collected during the years and perform statistical analysis 
(Valdés et al., 2007). 

Long-term series is the best way to have reliable information 
(Beaugrand et al., 2003; Omori et al., 1994; Perry et al., 2004) about the 
status of an ecosystem, considering the combined effect of anthropo-
genic pressure on biota (Serranito et al., 2016). 

Valdés et al. (2007) showed that long repeated time-series samplings 
of zooplankton increase the likelihood to detect changes in the envi-
ronment (Valdés et al., 2007). The time-series from 1992 to 2007 in the 
Northern and Western coast of Spain studied the responses of 
zooplankton to environmental conditions, such as temperature, distri-
bution and water column stratification. Through the years, the seasonal 
cycle of zooplankton populations has been observed to change with 
temperature (Edwards and Richardson, 2004; Greve et al., 1996). 
Indeed, zooplankton species distribution also have been affected by 
global warming (Southward et al., 1995). 

Long time-series study can be utilized in fishery management to 
assess or to predict the presence of fish stocks in relation with the 
presence of zooplankton. Mackas et al. (2013) analysed zooplankton 
data between 1990 and 2010. The sampling points are in the Strait of 
Georgia, sites rich in salmon and herring. The community composition 
of zooplankton included abundance of large copepods, euphausiids and 
amphipods, and non-crustacean gelatinous predators such as chaeto-
gnaths, hydromedusae, and siphonophores. From this time-series anal-
ysis, Mackas et al. (2013) discovered a big fluctuation in zooplankton 
biomass during the 20 years: in the very early 1990s and 1999–2002 the 
biomass of zooplankton was at the maximum, while minimum biomass 
was showed in 1994–1995 and 2004–2007 with a following recovery of 
the average biomass in 2008–2010. In the years 2005 and 2007 the ef-
fect of lower zooplankton biomass affected largely an impoverished 
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growth and survival of juvenile salmon and herring (Mackas et al., 
2013). The abundance of fish stocks is not only dependent on 
zooplankton abundance, but it is also a potential factor. 

Specific zooplankton species are indicated as bioindicators sensitive 
to disturbances within the natural environments. For this reason they 
are also called “sentinels of environmental changes and pressures” 
(Beaugrand et al., 2010; Legendre and Rivkin, 2005; Richardson, 2008). 
The Marine Strategy Framework Directive assumes that zooplankton can 
identify environmental changes and anthropogenic invasion in the na-
ture, such as addition of chemicals (Serranito et al., 2016). Since 
zooplankton is very sensitive to changes, the response to the disturbance 
will appear in a short-time respect for the higher trophic level. The short 
response and their ubiquity make them potential bioindicators for 
different wet areas all over the world (Serranito et al., 2016). A case 
study conducted in Toulon Bay in the Mediterranean presents a times- 
series approach from 2002 to 2013. The aim of the study was to quan-
tify the biomass abundance of copepods and to evaluate the possibility 
to use them as bioindicators for chemicals in the environment. Results 
showed a great abundance of species from fam. Oithonidae was present 
in the bay, and these organisms possess characteristics to be considered 
as bioindicators of anthropogenic pollution present in the Bay (Serranito 
et al., 2016). 

2.2. Impacts of gelatinous zooplankton on ecosystem services 

Zooplankton include also gelatinous organisms, which is represented 
by the phyla Cnidaria, Ctenophora and Chordata. Jellyfish (Cnidaria) 
have positive impacts for the ecosystems services: they are widely used 
in Asian food industry but also in other continents (Graham et al., 2014) 
and in pharmaceutical industry. The extraction of collagen is already 
used for the production of cosmetic products (Patwa et al., 2015). 

From the ecological side, gelatinous zooplankton are key species for 
particular fish, such as blue fin tuna in Mediterranean (Cardona et al., 
2012). Moreover, they also contribute to the nutrient recycling trans-
ferring nutrients to the benthic organisms through release of faecal 
pellets or decomposition of the entire body (Henschke et al., 2016; 
Sweetman and Chapman, 2015). Nevertheless, gelatinous zooplankton 
are well-known for the formation of dense species gathering called 
“bloom” that could be repetitive during the years and could have con-
sequences for human health, as it happened in South Italy (Salento 
seacoast) where jellyfish blooms caused skin burnt and the total cost for 
emergency medical aid was around 400,000€/5 years services (De 
Donno et al., 2014). Consequently, blooms provoke damages in tourism 
and economy (Boero, 2013; Kim et al., 2012; Kontogianni and Emma-
nouilides, 2014). 

Jellyfish and ctenophores (Ctenophora) are both predators for 
zooplankton and juvenile fish stage (Boero, 2013; Purcell and Arai, 
2001). The presence of blooms indicates a fall in the good ecosystem 
status or anthropogenic pressure due to overfishing and depletion of 
predators of gelatinous zooplankton. This can bring up an over-
population of gelatinous zooplankton which will impact drastically the 
fish recruitment (Lynam et al., 2004, 2005; Schneider et al., 1998). One 
of the most harmful species is the invasive species Mnemiopsis leidyi 
(Shiganova et al., 2006) which disrupted the Black Sea ecosystem at all 
trophic levels and affected fisheries. Mnemiopsis leidyi is native to estu-
aries and bays along temperate and subtropical coastal waters of North 
and South America. Since the early 1980s Mnemiopsis leidyi has pene-
trated in new areas such as Black Sea Caspian Sea North and Baltic Sea 
trough ballast waters contained in commercial ships (Shiganova et al., 
2019). 

The abundance of gelatinous zooplankton can affect also the clog up 
of fishery nets, aquaculture fish mortality, or obstruction of cooling 
systems of coastal desalination, nuclear and coalfired power plants 
(Graham et al., 2014). It happened during blooms of the jellyfish Aurelia 
spp., which provoked clogging cooling water intakes at coastal power 
plants, causing mortality of aquaculture species, and interfering with 

fisheries and tourism (Dong et al., 2010; Purcell, 2012; Richardson et al., 
2009). 

Pelagia noctiluca blooms, usually present in the Eastern Atlantic and 
the Mediterranean Sea, are very large and they interfere with several 
marine human activities, such as tourism and fishing (Canepa et al., 
2014). This species is one of the most common stinging jellyfish, as also 
one of the primary cause of fish mortality in fishing farms. Similar cases 
of gill disorders and caged fish mortality events have been reported in 
Northern Europe (Rodger et al., 2011). 

3. Influence of the zooplankton on fish stocks 

The fishery management processes must be sustainable and ecolog-
ical, to avoid the depletion of fish abundance due to overfishing and 
wrong fishery policy. 

It is important to consider the effects of environmental changes and 
stressors on stock recruitment. To provide future stocks may be useful 
combining the use of biological indicators and recruitment models 
(Pershing et al., 2005). Zooplankton are used as indicators of environ-
mental conditions, which reflect on the ecosystem status and also in the 
living component, giving us information about the abundance of pred-
ators like fish (Sherman et al., 2002). Zooplankton organisms occupy a 
crucial position in the food chain, thus they have effects also on fish 
stocks and fish recruitment (Fig. 1). Variation of the biomass abundance 
of zooplankton could trigger a cascade effect that reflect also on the fish 
stock. 

3.1. Interactions between zooplankton and fish recruitment 

Commercial fisheries are dependent on fish stocks, which are sup-
ported by the bottom of the food chain (Nixon et al., 1986): primary 
production assures the carbon production which will provide abundance 
in zooplankton biomass, the prey-resource for larval stages of fish 
(Sherman et al., 2002). 

The correlation between zooplankton and fish recruitment was 
already discussed in the 80s. Studying the biomass abundance of 
zooplankton in the North Sea, it appeared to have a huge decline during 
the same period in which the abundance of commercial fish was 
diminishing (Reid, 1984). The decline of zooplankton which occurred 
due to climate change, could be also a suitable explanation for reduction 
in stocks, since low food availability may be critical for fishery (Reid, 
1984). Additionally, detailed studies showed that the decrease in stocks 
for herring and mackerel was also due to a period of overfishing and a 
consequential impoverished recruitment (Reid, 1984). Pershing et al. 
(2005) studied zooplankton community patterns in the Gulf of Maine 
(Atlantic Ocean - east coast of North America) and their relation with the 
recruitment of determined fish stocks. Researches suggested that 
changes in those patterns could influenced on a large-scale the ecosys-
tems, with consequentially changes on the services they can provide to 
humans (Pershing et al., 2005). Further investigations identified strong 
physical changes in the Gulf of Maine that could be stressors for the fish 
stocks. 

Besides, shifts in zooplankton community abundance co-occurred 
with lower fish recruitment abundance. It is not conclusive saying that 
fish recruitment is only influenced by zooplankton biomass, but among 
the varieties of factors, high prey abundance present in the timing of fish 
spawning will increase the recruitment (Beaugrand et al., 2003; Cush-
ing, 1990; Hjort, 1914; Platt et al., 2003). 

The Barents Sea is another important area to find commercial fish 
stocks. In the mid-1980s and mid-1990s the stock of Mallotus villosus, 
known as capelin, faced a severe decline in recruitment, due to the 
strong predation exert by young herring on capelin larvae. Since capelin 
are a key species of the Barents Sea ecosystem, their decrease influences 
the higher trophic level which include cod, harp seals, and guillemots 
(Dalpadado et al., 2002). 

Among those years the zooplankton biomass has also showed 
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variations (Skjoldal and Rey, 1989) possible due to differences in hori-
zontal transportation and big predation pressures. These variations may 
be signals for further changes in the ecosystem, as studies demonstrated 
some interactions among cod (Gadus morhua), herring (Clupea harengus), 
and capelin and between fish and zooplankton (Bogstad and Mehl, 1997; 
Dalpadado and Skjoldal, 1996; Gjøsæter, 1998; Ponomarenko and Yar-
agina, 1979). Zooplankton is the major nutriment in capelin and herring 
diets (Dalpadado et al., 2002), while cod consume krill, amphipods, 
shrimps (Pandalus borealis), capelin, herring, polar cod (Boreogadus 
saida), redfish (Sebastes spp.), cod, and haddock (Melanogrammus 
aeglefinus) (Bogstad and Mehl, 1997; Ponomarenko and Yaragina, 
1979). 

The Barents Sea food chain is characterized by few dominant species, 
they could be resumed such as: diatom → krill → capelin → cod. Shifts 
among different trophic levels are the proof of the strength of these 
biological interactions and how they can easily change the ecosystem 
status (Dalpadado et al., 2002). 

An interesting example of the negative influence of gelatinous 
zooplankton on fish recruitment is given by the case study conducted in 
the Black Sea. In the time-series observations during 1960–2001 the 
Black Sea faced significant changes that affected the ecosystem health 
that appeared weak and less stable (Grishin et al., 2007). 

These conditions favoured the outburst of gelatinous zooplankton 
Mnemiopsis leidyi and jellyfish Aurelia aurita. Since 1988 until the late 
1990s, Mnemiopsis leidyi has the control on the zooplankton biomass, its 
favourite prey, affecting also the stocks of some abundant commercial 
fish species (Grishin et al., 2007). 

The decrease of fish stocks in the early 1990s was mainly affected by 
overfishing due to unregulated fisheries, even though the presence of the 
invasive non-indigenous species Mnemiopsis leidyi negatively contrib-
uted as food competitor of planktivorous fish (Daskalov, 2003, 2002). 
The outburst of gelatinous zooplankton also produces indirect effect on 
the ecosystem, leading to the increase in phytoplankton and detritus 
with a consequential reduced water quality, hypoxia and negative ef-
fects on fishes and other organisms (Grishin et al., 2007). 

In order to avoid further increases in mortality rates for juveniles and 
to substantially reduce the number of juveniles by overfishing vessels, 
the European Union provides the Council Regulation (EC) N. 1967/2006 
of 21 December 2006. This regulation determines the minimum landing 
sizes of certain marine organisms (Annex III) (European Commission, 
2006). In this way, the selectivity of fishing gear should correspond as 
closely as possible to the minimum landing size established for a certain 
species or group of species caught by that gear. Gears should be adapted 
base on the fishing zone: for example, part of the coastal zone should be 
reserved for selective fishing gears used by small-scale fishermen, in 
order to protect nursery areas and sensitive habitats and enhance the 
social sustainability of Mediterranean fisheries. Management plans may 
also include measures to monitor the fishing effort, in order to safeguard 

the sustainability fisheries in the Mediterranean Sea (European Com-
mission, 2006). In light of this close relation between zooplankton 
communities and fish stocks, it is important to apply an approach in 
fishery management that recognize and include the knowledge of the 
status of the ecosystem. 

4. Zooplankton as primary fish feed source 

Fish, like other animals, need a nutritional diet rich in protein con-
tent for optimizing growth and reproduction (Weatherley and Gill, 
1983); they cannot synthesize essential amino acids (EAAs) (Ketola, 
1982), thus they need to keep it from external sources (Taipale et al., 
2018). 

For example, eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) are required in the juvenile stage of fish – as well as mammals and 
birds – for growth, eye and brain tissue development and immunity 
function (Tocher, 2010). The omega-3 fatty acids EPA and DHA are 
synthesized only by few phytoplankton taxa such as dinoflagellates, 
golden algae, diatoms, and cryptomonads (Galloway and Winder, 2015; 
Taipale et al., 2016), thus fish assimilates those biomolecules through 
the consumption of zooplankton which feed on phytoplankton or con-
verting the precursor of fatty acid, the α-linolenic acid (Taipale et al., 
2018). 

Zooplankton groups are characterized by different feeding prefer-
ences and metabolism; cladocerans prefer phytoplankton species 
abundant in EPA (e.g., Daphnia magna) whereas copepods prefer 
phytoplankton species rich in DHA, indeed copepods present abundance 
of DHA, such as Eudiaptomus (Taipale et al., 2018). DHA is highly pre-
sent in many aquatic food webs (Strandberg et al., 2015) because of the 
great assumption by copepods and the predation of copepods by fish. 

A common procedure in fish aquaculture is to add microalgae to 
culture system of zooplankton prey for fish larvae (Tamaru et al., 1994). 
The most popular microalgae used for feeding zooplankton for aqua-
culture purposes are Nannochloropsis oculate, Tetraselmis suecica, Pavlova 
lutheri and Isochrysis sp., which are PUFAs-rich and they enrich 
zooplankton in DHA (Nichols et al., 1989). 

Nutritional quality of phytoplankton has a cascade effect along the 
food chain, influencing through zooplankton all the trophic web (Brett 
and Müller-Navarra, 1997; Elser et al., 2000; Müller-Navarra et al., 
2000). Thus, in fishery management it should be mandatory to consider 
always the trophic relation between phytoplankton, zooplankton and 
fish, in order to have an efficient stock and make a better use of fishery 
resources (Waya et al., 2017). 

4.1. Use of zooplankton in fish farming 

Aquaculture is nowadays one of the most exploited sectors around 
the world (FAO, 2018) and this phenomenon is co-occurring with 

Fig. 1. Illustration of the aquatic food chain.  
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dramatical decrease of functionality of our ecosystems and habitat 
changes due to anthropogenic exploitation of natural resources, envi-
ronmental pollution and spread of invasive species (Naeem et al., 2012). 

Feed used for aquaculture releases an amount of organic matter, 
nutrients and suspended solids (Edwards, 2015) which may have 
negative impact on the aquaculture but also on the environment, due to 
the discharge of nutrients from the aquaculture implants (Naylor et al., 
2000). Nitrogen and phosphorus are often released in high concentra-
tion causing eutrophication, oxygen depletion and siltation in the 
environment (Burford et al., 2003). To minimize the impacts of nutri-
ents, several countries are developing Integrated Multi-Trophic Aqua-
culture (IMTA) systems, which imply the wastewaters for cultivation of 
macro- and microalgae. In this way, aquaculture wastewater will pro-
vide the right amount of nutrients (ammonia, nitrite, nitrate, dissolved 
organic nitrogen and phosphate) discharged (Abe et al., 2002; Converti 
et al., 2006; Soletto et al., 2005). 

Studies demonstrate that it is possible to employ microalgae to 
remove nutrients from aquaculture wastewaters (Gao et al., 2016; 
Lefebvre et al., 2004). Bioremediation with microalgae is ecological and 
low-cost (Mulbry et al., 2008). The most valid candidates to utilize for 
aquaculture bioremediation wastewater are Tetraselmis suecica and 
Dunaliella tertiolecta (Borges et al., 2005; Michels et al., 2014). 

Due to the high market demand, is emerging the need to have the 
highest yields achieved with the least nutrient loading. In semi-intensive 
fishpond systems, cereals are often replaced by complex fertilizers that 
increase the natural productivity of fish (Kaushik, 1995; Pechar, 2000; 
Potužák et al., 2007; Tacon, 1996) without compromising fish flesh 
quality (Dickson et al., 2016). Unfortunately, traditional fish feeds are 
often made from fishmeal and oil, and the use of such ingredients is 
unsustainable (Welker et al., 2014), thus their use has been reduced in 
the last decade (Tacon and Metian, 2015). 

There are many alternative sources available, which are not only 
comparatively cheaper but are nutritionally enriched. For example, 
poultry by-product meal (Bureau et al., 1999; Rawles et al., 2006) may 
be included in the feed of carnivorous fish species such as rainbow trout 
because of its relatively high protein content and lower price compared 
to fishmeal (Shapawi et al., 2007). Therefore, some microalgae (e.g., 
Spirulina) are rich in amino acids and omega-3 and omega-6 fatty acids, 
which make them potential natural replacement of fishmeal, adding 
nutritional value and benefits to animal health (Hodar et al., 2020). 
Zooplankton organisms can contribute to the growth of fish economi-
cally important: they support the nutrient flows between phytoplankton 
and fish (Howick and Wilhm, 1984), are source of amino acids, protein, 
fatty acids, lipids, enzymes and minerals (Watanabe et al., 1983) and 
they are rich in protein and carbohydrate-poor, while using cereal feed 
the uptake of protein is lower (Tóth et al., 2020). 

The implication of live feed in aquaculture may be risky considering 
mortality probability of specimen, but it is also one of the most profit-
able venture (Khan et al., 2020). Moreover, due to their nutritional 
properties, zooplankton organisms are the feeding source more appre-
ciated by fish larvae (Rønnestad et al., 1999). Due to their high nutri-
tional value, zooplankton has been exploited in fish farms. Hassan et al. 
(2020) evaluated the growth performance of European sea bass 
(Dicentrarchus labrax) in relation with replacement of zooplankton 
biomass in fish diet. The experiment was carried out replacing 
zooplankton biomass in commercial fishmeal with five different con-
centrations (from 25% to 100%). Results showed that fish feed by 100% 
replaced meal gained higher body length, body weight and showed the 
major feed intake (Hassan et al., 2020). 

The assumption of proteins from live food assures a better growth, 
efficient breeding and survival (Mandal et al., 2009). Live food is 
available in the market but it is quite expensive, thus to reduce the 
production costs a good alternative is to cultivate zooplankton species at 
low-costs venture (Khan et al., 2020). Artemia nauplii has been used for 
aquaculture implants for a long time (Agadjihouèdé et al., 2011), but the 
high cost of Artemia nauplii cysts led to search for other species 

(Bhaskaran and Imelda, 2020; Khan et al., 2020). 
Live food that is also recommended for aquaculture is Daphnia magna 

which can be easily cultured with low-cost expenses. Daphnia magna is 
considered a natural source of proteins, vitamins, carbohydrates and 
lipids (Jorge et al., 2016) and with the 45–70% protein content and 
11–27% lipid content (Macedo and Pinto-Coelho, 2001), it represents a 
nutritional food for fish (Khan et al., 2020). Cladocerans in general have 
the advantage of high reproduction rates, wide temperature tolerance 
and the ability to regulate the presence of phytoplankton and organic 
wastes (Khan et al., 2020) and they meet the nutritional requirement of 
fish larvae (Evjemo et al., 2003). Among other species, Brachionus pli-
catilis, Brachionus rotundiformis, Pseudodiaptomus annendeli, Pseudo-
diaptomus serricaudatus and Moina sp. have been discovered as the most 
successfully species to cultivate in small and large scale in the mari-
culture hatchery, as they possess high reproductive rate, short genera-
tion time, and the ability to live and grow in crowded culture conditions 
(Bhaskaran and Imelda, 2020). 

In Taiwan, the calanoid copepod Pseudodiaptomus annandalei is 
commonly used as live feed for commercially important species such as 
grouper larvae (Chen et al., 2006; Lee et al., 2010). This copepod has 
been cultivated successfully in Taiwan in ponds for several decades at 
relatively high densities, in order to have huge disposal of live-feed for 
feeding fish larvae (Blanda et al., 2015). Kar et al. (2017) carried out the 
cultivation of the species Moina micrura, Scapholeberis kingi and Bra-
chionus calyciflorus; the growth and the reproduction of the three species 
were satisfactory to sustain the mass culture and the supply as live feed 
fish (Kar et al., 2017). Moreover, zooplankton organisms are often 
considered as bioindicators to assess the ecosystem quality of fishponds 
(Marbà et al., 2013) and fishery health (Ejsmont-Karabin, 2012; Ersoy 
et al., 2019; Pociecha et al., 2018). 

5. Conclusion 

The present review underlines the importance of ecosystem services 
provided by marine systems. The provision of seafood has crucial 
importance; fish add nutritional value to our daily diet, moreover, 
fishing and aquaculture farms represent economic entrances in different 
countries. Therefore, fishery management has to consider all the 
ecological roles of marine organisms and their trophic connections, in 
order to preserve the environment but also assure fish stocks. The pre-
sent review discusses about the roles of zooplankton in marine systems, 
showing how its presence is essential for the good functioning of the 
ecosystem and fish recruitment. Zooplankton has a pivotal role in the 
food chain since it allows income of nutrient to the lower level and 
guaranteeing food to the upper levels. Malfunctions of each trophic level 
affect even the predator–prey interaction, leading a severe degradation 
of the ecosystem. To avoid the collapse of the food web, it is important to 
preserve zooplankton as it is fundamental for the existence of ecosystem 
services, such as fishery and aquaculture. 

Fish preferred feed items are zooplankton organisms, thus a long- 
time series monitoring of zooplankton is useful to know not only the 
environmental status since zooplankton is also implied as bioindicator, 
but also if the relation predator–prey is efficient to assure fish recruit-
ment. In light of this assumption, it is fundamental to develop public 
policies in fishery management aimed to guarantee sustainable fishing, 
recruitment of fish and the preservation of the environment as well as 
the fishing stock. 
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