

Artur Duarte Coutinho

FAULT INJECTOR FOR AUTONOMOUS

QUADROTORS

Dissertation in the context of the Master in Informatics Engineering,

Specialization in Software Engineering advised by Prof. Henrique Madeira & Dr.

Naghmeh Ivaki and presented to the Faculty of Sciences and Technology /

Department of Informatics Engineering

June 2021

This page is intentionally left blank.

Faculty of Sciences and Technology

Department of Informatics Engineering

Fault Injector for Autonomous
Quadrotors

Artur Duarte Coutinho

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised Prof. Henrique Madeira & Dr. Naghmeh Ivaki and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

June 2021

This page is intentionally left blank.

Abstract

Presently, there is a constant increase in interest in UAVs due to their versatile capabilities
and the wide array of tasks that have been reinvented with their usage, from delivery ser-
vices to military operations. Ensuring the safety of the missions in which they are involved
is especially important, considering the scalability of these missions and, consequently, the
increase in possible failure scenarios. Although safety is a primary concern, commercial
UAVs do not have complex fault tolerance capabilities that are available in manned air-
craft. As a result, the possible benefits that UAVs may bring in the future, are hindered
by the lack of uniform safety regulations and the means to define them.

This work intends to address the stated issue, by providing insight on the design and im-
plementation of a fault injection tool to be used for the assessment of the fault-tolerant
mechanisms and systems in place in autonomous quadrotors, covering all the steps neces-
sary to provide such assessment. The tool is expected to aid said assessment, by providing
a simulated, yet realistic, environment that may be used to gauge commercial UAVs. It is
our goal to create a tool that supports a multitude of distinct UAVs and their respective
software, in order to centralize and uniformize safety assessment techniques.

We also aim to show the effectiveness of the fault injector in the evaluation of fault tolerance
processes and fault-tolerant mechanisms in drones. This is accomplished by making use of
self-implemented faults, within the defined environment, and their respective analysis.

Keywords

Autonomous Quadcopter, Safety, Fault Tolerance, Fault Model, Fault Injection

iii

This page is intentionally left blank.

Resumo

Actualmente, dadas as capacidades que os UAVs possuem e a grande variedade de missões
que foram reinventadas com o uso dos mesmos, desde serviços de entrega a operações mil-
itares, o interesse neles tem aumentado. Assegurar a segurança de missões que envolvem
UAVs é especialmente importante, dada a escalabilidade destas missões e, consequente-
mente, o aumento de possíveis cenários de falha. Apesar disto, os UAVs comerciais não
dispõem, em geral, das capacidades necessárias para tolerar possíveis falhas, ao contrário
de aviações tripuladas. Isto implica que os possíveis benefícios que os UAVs podem trazer
no futuro são prejudicados pela falta de regulamentos de segurança uniformes e dos meios
para defini-los.

Este trabalho pretende resolver o problema previamente apresentado, desenvolvendo uma
ferramenta de injecção de falhas num sistema de quadricópteros autónomos e demonstrando
todos os passos necessários para a sua utilização na avaliação do impacto das falhas em
drones. É esperado que a ferramenta auxilie esta avaliação, providenciando um ambiente
simulado, mas realista, que possa ser usado para medir a eficácia de UAVs comerciais.
O nosso objectivo é criar uma ferramenta que suporte uma vasta quantidade de modelos
de UAVs diferentes, e os seus respectivos software, de modo a que se possa centralizar e
uniformizar um conjunto de tácticas de avaliação de segurança.

Pretendemos também demonstrar a eficácia do injector de falhas desenvolvido na avaliação
de processos e mecanismos de tolerância a falhas em drones. Isto é realizado usando uma
variedade de falhas, implementadas por nós dentro do ambiente definido, e a análise das
mesmas.

Palavras-Chave

Quadricóptero Autónomo, Segurança, Tolerância de Falhas, Modelo de Falhas, Injeção de
Falhas

v

This page is intentionally left blank.

Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Introduction to Drones . 4
2.2 Dependability of UAV Systems . 5
2.3 Safety of UAVs . 8
2.4 Risk Analysis of UAVs . 9
2.5 Safety Assessment of UAVs . 11

3 Objectives and Approach 14
3.1 Objectives . 14
3.2 Research Approach . 15

4 Context 17

5 System under Assessment 20
5.1 Preparation of the SUA and its Environment 20
5.2 Simulated Environment . 22

5.2.1 Flight Control Software . 22
5.2.2 Simulator . 23
5.2.3 High-level environment representations 24

5.3 Fault Model . 25

6 Tool Implementation 29
6.1 Conceptualization . 29
6.2 Implementation . 35

6.2.1 Tool Interface . 35
6.2.2 Fault Injections Implementation . 42

7 Experimental Setup 45
7.1 Flight Mission . 45
7.2 Testing Model . 46
7.3 Experimenting Process . 47

8 Result Analysis 48
8.1 Runs Comparison . 48
8.2 Flight Controller Innate Failsafe . 50

9 Conclusion 52

A Gathered Results 59

vii

This page is intentionally left blank.

Acronyms

DoS Denial of service. 11

ROS Robot Operating System. 20, 21, 23, 24

SUA System Under Assessment. 1, 14, 22, 46, 48

UAS Unmanned Aircraft System. 2, 4, 6, 7, 9, 10, 17, 52

UAV Unmanned Aerial Vehicle. 1, 2, 4, 5, 8–12, 17, 21, 24

ix

This page is intentionally left blank.

List of Figures

2.1 Example Drone Build [1] . 4

3.1 Representation of the planned research approach 16

4.1 Generic Representation of a U-space environment 18
4.2 U-space services: Strategic Phase . 18
4.3 U-space services: Tactical phase . 19
4.4 BUBBLES’s 8 Work Packages . 19

5.1 PX4 High-Level Software Architecture Diagram [2] 22
5.2 Drone flying in a basic world in Gazebo . 23
5.3 High Level Representation of the Communication between N Quadcopters . 24
5.4 High Level Diagram of our Simulated Environment 25

6.1 Figma Project Screen . 29
6.2 Prototype Landing Screen . 30
6.3 Prototype Failures Type Choice Screen (none chosen) 31
6.4 Prototype Failures Type Choice Screen (option chosen) 31
6.5 Prototype Options Screen . 32
6.6 Prototype Specific Failure Screen . 32
6.7 Prototype GPS Failure Data Input Screen 33
6.8 Prototype Mission Details Screen . 33
6.9 Prototype Environmental Details Screen (hazard options) 34
6.10 Prototype Environment Details Screen . 34
6.11 Prototype Campaign Confirmation Screen 35
6.12 Prototype Workflow . 36
6.13 QtCreator Project Screen . 36
6.14 Tool Landing Screen . 37
6.15 Tool Flight Controller Definition Screen . 38
6.16 Tool UAV Model Definition Screen . 38
6.17 Tool Mission and Environmental Details Screen 39
6.18 Failures Definition Screen . 41
6.19 Random GPS Values Injection Screen . 41
6.20 Campaign Overview Screen . 42
6.21 Campaign Progress Screen (campaign running) 43
6.22 Campaign Progress Screen (campaign aborted) 43
6.23 Campaign Results Screen . 44

7.1 Reference Run X and Y axis trajectory . 46

8.1 Freeze type logged trajectories: a) 5s Duration b) 45s Duration 49
8.2 Delay type logged trajectories: a) 5s Duration b) 45s Duration 50

xi

Chapter 0

8.3 Fixed type logged trajectories: a) 5s Duration b) 45s Duration 50

xii

This page is intentionally left blank.

List of Tables

2.1 Article Summary for Section 2.4 . 9
2.2 Article Summary for Section 2.5 . 13

5.1 Simulators analyzed . 20
5.2 Flight Control Software analyzed . 21
5.3 Information on the exploitable instances . 27
5.4 Practical information on the exploitable instances 28
5.5 Fault Model . 28

7.1 Results Classification . 47

A.1 GPS Freeze Injection Duration 5 Test Results 59
A.2 GPS Fixed Injection Duration 5 Test Results 59
A.3 GPS Delay Injection Duration 5 Test Results 60
A.4 GPS Freeze Injection Duration 15 Test Results 60
A.5 GPS Fixed Injection Duration 15 Test Results 60
A.6 GPS Delay Injection Duration 15 Test Results 61
A.7 GPS Freeze Injection Duration 45 Test Results 61
A.8 GPS Fixed Injection Duration 45 Test Results 61
A.9 GPS Delay Injection Duration 45 Test Results 62

xiv

This page is intentionally left blank.

Chapter 1

Introduction

Presently, there is a constant increase in interest in UAVs [3], due to their versatile capa-
bilities and the wide array of tasks and applications that have been reinvented with their
usage, from delivery services [4] to military operations [5]. Although they have brought
modern solutions to various areas, they have also brought serious concerns regarding safety
(and also security and privacy) issues. Laws, regulations, and standards that deal with
these issues in UAVs have yet to be properly defined and implemented due to the recency
of these vehicles, their quick growth in the last couple of years and their versatility.

Although fixed-wing UAVs are also sought, mostly for aerial surveys, rotatory-wing UAVs,
particularly quadrotors, are the ones that have been increasing in representation through-
out the world. This is due to the flexibility in movement that a rotatory-wing system
presents. Even though this type of UAV is sought for many applications, a great amount
of those applications will require a group of collaborative autonomous UAVs in order to
accomplish their missions. Assuring the safety of these vehicles is especially important
considering the fact that an increase in the applications and quantity of vehicles involved,
will also lead to an increase in the number of possible failure scenarios, with consequent
increase of safety issues.

In general, two main methods can be used to increase the dependability of these systems
towards faults: fault avoidance and fault tolerance. Unfortunately, due to the growing
complexity of computer-driven systems in the last years, fault avoidance processes are
usually not enough [6], and as such, in order to maintain systems dependable (i.e., more
focused on safety in this work), it is necessary to use fault tolerance processes/techniques.

To further verify and validate the effectiveness of the existing fault tolerance
processes/techniques and the newly proposed ones in autonomous quadcopters,
this work aims to provide insight into the definition and development of a fault
injection technique/tool and all the necessary steps to achieve it. These steps
include: i) definition and characterization of the system under assessment (SUA) and its
environment (i.e., context and scope of the work); ii) identification and characterization of
failure scenarios; iii) creation of a representative and possibly complete fault model (i.e.,
including both generic and SUA’s specific faults); iv) design and implementation of fault
injection technique and tool that can be served in diverse types of quadcopters.

The rest of this document is organized as follows. Chapter 2 provides the reader with the
background information necessary to understand the remaining chapters. It provides an
explanation on the dependability and safety related concepts that were deemed essential
and insight on other works that share similar goals or topics as ours. In Chapter 3, we

1

Chapter 1

present the principal objectives for our work and the followed approach in order to achieve
them. Chapter 4 provides some general context, based on real applications, which the work
uses as a basis. These applications are based on project BUBBLES, a project targeting
the formulation and validation of a concept of separation management for UAS in the
U-space. Chapter 5 is dedicated to explaining the decisions made in regard to the chosen
representative environment – the reasoning behind the choice of software and a detailed
view on the simulated UAV components. It also covers the failure scenarios identified
in the context of our environment, as well as present the fault model developed from
said scenarios. Chapter 6 offers an in-depth explanation of the tool’s conceptualization
and implementation, while making use of a great amount of visual support. Chapter 7
introduces the reader to the experiment and metrics used to validate the faults implemented
in conjunction with the fault injector. In Chapter 8, we analyze the results obtained from
the experiment presented and validate the implemented faults. Lastly, Chapter 9 presents
our conclusions and expectations for the future.

2

This page is intentionally left blank.

Chapter 2

Background and Related Work

2.1 Introduction to Drones

The Oxford Dictionary of English describes a drone as a remote-controlled pilotless aircraft
[7], or in other words, as an unmanned aerial vehicle (UAV). As UAVs cannot fully
operate by themselves, they are only a component within a more extensive system, the
unmanned aircraft system (UAS). Although the UAV can be differentiated from the
UAS, a great amount of works use these terms interchangeably. The UASs are made up
of the following four principal components [8]:

• A UAV, composed by both hardware - namely a body, a power supply, a flight
controller board and the necessary actuators - and software - mainly the flight stack
which can be composed by a firmware, a middleware and an operating system;

• A control station from which the pilot interacts with the UAV to control it;

• A communication equipment required to establish communication between the UAV
and the control station;

• Payloads (e.g., sensors, GPS, etc.) added to the UAV that may vary depending on
the tasks to be accomplished.

Figure 2.1: Example Drone Build [1]

There is no global standard for classification of UAVs. Depending on the functional context
or the characteristics that the UAVs have, they can be classified into a myriad of categories.

4

Background and Related Work

For instance, the U.S. Department of Defense has issued a standardized classification for the
UAVs used by the diverse branches of the U.S. military as follows: Micro, Mini, Tactical,
Medium Altitude, and High Altitude UAV systems [9].

Even if there is no global standard for classification for each specific individual UAV, one
can still separate UAVs into two main categories, fixed-wing and rotary-wing. Fixed-
wing UAVs use their engine and propeller to generate forward thrust and their wings to
manipulate the air pressure generated below them [10]. Due to the nature of fixed-wing
aircrafts, this type of UAVs has to stay in a constant forward motion and, therefore, is
unable to stay stationary while in flight. The ability to stay stationary while in flight
is essential to many missions, which is why rotary-wing UAVs have been increasing in
popularity and use. Rotary-wing UAVs manage to stay in the air due to their rotor based
flight. The rotors present in the UAV supply it with propulsion and control, pushing the air
down and providing it the ability to achieve vertical motion. By increasing or decreasing
the thrust of the rotors one can achieve control over the vertical motions of the UAV. In
order to achieve vertical motion without lateral motion, when the UAV has multiple rotors,
all rotors must have the same increase or decrease of rotations per minute (RPM),
otherwise, the UAV will generate rotational force, torque. By being aware of the torque
of a UAV and how to manipulate it, one can accurately drive in a lateral motion. The way
a pilot can do this depends on how many rotors the UAV has. In the case of quadcopters,
by changing the RPM of two rotors that are opposite to each other, the UAV will generate
torque, rotating in one direction [11].

2.2 Dependability of UAV Systems

The dependability of a system is the main aspect that should be assured upon in order
to avoid unwanted failure scenarios [12]. Dependability cannot be described as a single
attribute, as there are several aspects that contribute to it. According to [13], dependability
involves the following attributes:

• Availability: the systems and services should be mostly available, with very little
or no down time;

• Reliability: the systems should behave as expected, with very few errors;

• Safety: the systems do not pose unacceptable risks to the environment or the health
of users;

• Confidentiality: data and other information should not be divulged without intent
and authorization;

• Integrity: data should not be modified without intention and authorization.

• Maintainability: maintainability of systems hardware and services should not be
difficult or excessively expensive.

Software faults can be classified in physical and human-made faults [14]. In [15], we can
find some widely accepted definitions for the two classes previously mentioned:

• Physical faults: adverse physical phenomena, either internal (physic-chemical disor-
ders: threshold changes, short-circuits, open-circuits. . .) or external (environmental
perturbations: electro-magnetic perturbations, temperature, vibration, etc.).

5

Chapter 2

• Human-made faults: imperfections, defects, flaws, or bugs that do not occur but
are instead introduced during the conceptualization, design, development (including
maintenance), or configuration of systems. If not found, they will later manifest
themselves as errors, which possibly turn into failures [13]. Human-made faults can
be grouped in:

– Design faults: committed either a) during the system initial design (broadly
speaking, from requirement specification to implementation) or during subse-
quent modifications, or b) during the establishment of operating or maintenance
procedures.

– Interactions faults: inadvertent or deliberate violations of operating or main-
tenance procedures.

Hardware faults fall into the physical class and both are usually used interchangeably as
terms. This is due to the lack of complex variety on what can be considered a physical fault.
Software faults, however, although most commonly associated with design faults, can have a
varying range of origins, and as such can be further cataloged into other classes. According
to the Orthogonal defect classification (ODC) [16], software faults can be categorized into
the following classes:

• Function faults: incorrect or missing implementation that requires a design change
to correct the fault.

• Algorithm faults: incorrect or missing implementation that can be fixed without
the need of design change, but this kind of faults requires a change of the algorithm.

• Timing/serialization faults: missing or incorrect serialization of shared resources.
Certain mechanisms must be implemented to protect this kind of fault from happen-
ing, such as MUTEX used in operation systems.

• Checking faults: missing or incorrect validation of data, incorrect loop, or incorrect
conditional statement.

• Assignment faults: values assigned incorrectly or not assigned.

Although the previously presented faults are the most prevalent designations of system
faults that can be encountered, since the main objective of our work is to have realistic
simulations and obtain results that can be applied to real scenarios, we mostly refer to
failures to classify exploits and faulty states. Consequently, classifications like the Orthog-
onal defect classification are not frequently used in our work and are instead occasionally
referenced to provide insight into the faulty state being presented. It is important to re-
inforce that while faults are flaws present in the system, only once these faults generate
erroneous behavior that is propagated throughout the system and cause an unpredictable
state do they turn into failures. Due to the immaturity of our research area, there is not
an official failure classification for drones. Our classification is based on our research into
the main exploitable aspects of a UAS and it is as follows:

• Software Failure: any failure caused by an internal fault in a software module.

• Communication Failure: any failure caused by the loss of communication within
the UAS.

• Artificial Intelligence Failure: any failure caused by erroneous AI behavior.

6

Background and Related Work

• Security Attack: any failure caused by third-party attacks to any component of
the UAS.

Some of the articles that mirror our choice on failure classification would be the article
presented in [17] that evaluates the performance of UAV-based sensor networks under
cyber-attacks, the research done in [18] which reinforces important issues in UAV com-
munication networks and the wide variety of risk assessment works presented in section
2.4.

Every process that during the conceptualization or implementation of a system contributes
to the previously mentioned attributes of dependability and, as a result, minimizes the
number of existing faults can be considered a fault avoidance process/technique. Some
examples would be standards, software quality assurance techniques/tools, and best prac-
tices for programming [19]. Even after considering fault avoidance processes and applying
them in the most flawless way possible, the likelihood of bug-free software is very low due
to the increase of software complexity in the latest years. Therefore, after trying to avoid
as many faults as possible, one must think about how to tolerate those that will inevitably
exist within a program.

With the increase in complexity of systems, fault tolerance quickly became one of the
key aspects to take into consideration when writing software. Instead of trying to fully
eliminate faults from the software, fault tolerance methods try to achieve dependability
through having a system that is able to function, in normal conditions, alongside said faults.
Since both fault avoidance and fault tolerance methods try to increase the dependability
of a system, there is a considerable overlap of what these two methodologies aim for. Even
though this is the case, the main aspect that we must consider in order to distinguish
between the two is how they achieve their intended goal. While fault avoidance prevents
the occurrence of faults by design and construction, fault tolerance provides the intended
service in spite of faults occurring, for instance by redundancy [15].

In order to verify the tolerance of a system against faults, specific testing/evaluation tech-
niques must be used. Among these techniques, fault injection stands out as one of the
oldest ones, dating back to the early 70s [20]. Fault injection consists of either the pur-
poseful exploitation of existing vulnerabilities or injecting faults through, for example,
code mutation in a controlled environment. Through a controlled environment, one can
frequently accurately and reliably determine fault coverage. This is important; as it allows
developers and engineers to observe and evaluate the extent of damage said fault could
have on the system while under normal working conditions.

Due to multiple factors such as higher cost systems and higher interest in fault tolerance,
the industry had to adapt to provide effective and efficient fault injection tools. Hardware
fault injection has become an inefficient way of testing fault tolerance for many systems,
mostly due to the risk it carries of damaging real systems and the lack of need for testing
at such a detailed level that this type of injection provides. Software fault injection does
not carry the physical risks that hardware fault injection does, however it is more limited,
as it is unable to inject faults into locations that are inaccessible to the software and is
more oriented towards implementation details [21].

The fault injection types previously mentioned have both more advantages and disadvan-
tages to them than the ones mentioned. The realm of robotics is the main focus of this
work and in this context the factors mentioned are crucial. With the increase cost of de-
velopment and the extensive testing a system should be subject to, damaging real systems
could have severe consequences. As robots have both hardware and software components,
in order to fully test them as a system it is not viable to only look at their implementation.

7

Chapter 2

According to what was said previously, simulation-based fault injection is potentially the
best alternative to test fault tolerance in robots, as it is possible to simulate the system
while achieving maximum controllability and without intruding on the real system. As
such, we believe this to be the most suitable fault injection type for our project. The
quality of results when using this method is volatile, as it depends on how faithful the
models used are, nevertheless it is still one of the most affordable and customizable types
of fault injection [22]. Besides the ones mentioned, there are other types of fault injection,
such as emulation-based or hybrid ones [23]. These tend to be considered more specific
and experimental, mostly due to the lack of research when compared to hardware, software
and simulation-based ones.

2.3 Safety of UAVs

To provide better automated services to the general population, ensuring the safety of
UAVs operations is especially important. A remarkable characteristic of these operations
is their scalability. The bigger the amount of drones present in said operations is, the higher
the risk of failure and the potential damage that can be caused. The smooth integration
of UAVs within civilian airspace relies on the ability to demonstrate that their operation
would at least present a level of safety comparable to human-piloted aircraft.

In order to make this comparison possible, the work presented in [24] introduces an em-
pirical analysis on safety objectives based on human-pilot aircraft activity. This analysis
takes into consideration hazards present in both manned and unmanned aircrafts, and his-
torical data of both on board fatality risks and ground fatality risks. In regard to on board
fatality risks, the work states that within the analyzed data, 56% of midair collisions by
human-piloted aircrafts were fatal but only 1% resulted in fatalities on the ground. They
present a theory that states that although UAVs could exceed the midair collision accident
rate by a significant margin, the number of fatalities would still be within an acceptable
safety standard, due to the lack of an on board pilot. Regarding ground fatality, the article
deduces that it is difficult to set an objective comparison between manned and unmanned
vehicles. This is mostly due to the existence of UAVs that are physically incapable of
causing fatalities due to their size (e.g. micro air vehicles). The article ends the first
chapter by stating that fatality based analysis lead to certain limitations. Fatality as a
metric does not reflect the occurrence of a hazard but only its consequence. The work gives
the example of an accident that causes the death of eight people against eight individual
accidents with each causing an individual death. Although the number of fatalities is the
same, the higher risk rate present in the second case is not reflected in said number.

The article’s chapter 2 addresses the impact that specific safety objectives would have on
UAV operations and design. Concerning UAV operations, the authors establish a necessity
for population density thresholds, above which UAVs would not be permitted to operate.
It is also stated that although not directly violating safety objectives, operations at higher
altitudes would generate a larger affected region for potential damage, making them more
unpredictable. The impact on the design of UAVs systems is mostly addressed through
illustrative examples but the authors distinctly mention that in order to increase the re-
liability of the systems, critical components must achieve a high level of redundancy and
assurance.

8

Background and Related Work

2.4 Risk Analysis of UAVs

We decided to address a few select works that in some way target topics that are relevant to
future chapters. Some of the topics and themes include, but are not limited to: UAV risk
analysis applied to safety and/or security and fault injection on simulated or real UAVs.
A summary of the articles referenced in this section can be seen in table 2.1.

Table 2.1: Article Summary for Section 2.4

Article Authors General Objective

Safety Risk Assessment
for UAV operation [25]

Wackwitz, Kay
Hendrick, Boedecker

Present a four-phase
model of a UAS safety
risk assessment

Qualitative and Quantitative Risk
Analysis and Safety Assessment
of Unmanned Aerial Vehicles
Missions Over the Internet [26]

ALLOUCH, Azza,
et al

Conduct detailed studies
on UAV safety assessment
at both qualitative and
quantitative levels

Preliminary Risk
Assessment for Small
Unmanned Aircraft Systems [27]

BARR, Lawrence C.
, et al

Present the development of
two preliminary risk analysis
approaches for small
unmanned aircraft systems

Operational issues
and assessment of risk
for light UAVs [28]

G. Guglieri
F. Quagliotti
G. Ristorto

Provide a comprehensive
insight for mission feasibility
and operational implications
in a set of a realistic
applications cases

Threat and Risk
Assessment Methodologies
in the Automotive Domain [29]

Georg Macher
Eric Armengaud
Eugen Brenner
Christian Kreiner

Examines threat
and risk assessment
techniques that are
available for the
automotive domain and
presents an approach to
classify cyber-security threats

The Vulnerability of UAVs to
Cyber Attacks - An Approach
to the Risk Assessment [30]

HARTMANN, Kim
STEUP, Christoph

Demonstrate developed
scheme for the risk
assessment of UAVs
based on provided services
and communication
infrastructures

We started by analyzing [25], which was written with the objective of providing UAS
operators with guidelines which can be followed in order to write a documented safety
risk assessment and a manual of operations, both of which will have to be presented in
the future by certain pilots to the European Aviation Safety Agency (EASA). This article
presents a four-phase model of a UAS safety risk assessment. These four phases are:

• Safety Hazard Identification

• Safety Risk Assessment

• Safety Risk Mitigation

• Safety Documentation

9

Chapter 2

The methodologies presented for Hazard Identification are as follows:

• Reactive: Involves analysis of past outcomes or events. Hazards are identified through
investigation of safety occurrences.

• Proactive: Involves analysis of existing or real-time situations during drone operation.

• Predictive: Data gathered is used to identify possible negative future outcomes or
events during drone operation.

In regard to Risk Assessment, the article succinctly states that risks should be categorized
in relation to their probability of happening, their severity in the case that they do happen
and a joint evaluation of both previously mentioned characteristics. Methodologies for
Risk Mitigation are also presented, namely:

• Corrective actions: Actions with an immediate effect for the safety hazard.

• Preventive actions: Actions that have a long-term effect on the safety hazard to
mitigate the risk to an acceptable level.

The article [25] also demonstrates how to use the introduced guidelines through an illus-
trative use case. The article is also a good starting point if the reader wishes to learn more
about the topic as it presents a well written summary on the main aspects that relate to
safety risk assessment of UAVs.

Still on the topic of risk analysis, [26] provides a combination of qualitative and quantitative
analysis to identify hazards and risks that can occur when drones are tele-operated over the
internet. Their qualitative analysis makes use of the combination of two safety standards in
order to identify system limits and hazardous conditions, along with their possible causes
and their consequences. The functions that put the safety of the UAV in jeopardy are
also identified and through them, a performance level – a value that dictates how high the
performance of the safety related control needs to be – is calculated. Their quantitative
analysis however, applies a method based on Bayesian networks with the objective of
analyzing the relationships between the risk of drone crashes and their causes. Although
this analysis makes use of collected civil UAV accidents and expected probabilities of
occurrence of crashes associated with UAVs, the authors do not provide real use cases in
their scenario analysis but instead use illustrative scenarios.

The authors of [27] follow a similar approach to the previous article. Their objective is to
present the development of two preliminary risk analysis approaches for small UAS. These
two approaches – a Standard Safety Risk Management Assessment and a Probabilistic
Model-Based Risk Assessment – also operate at qualitative and quantitative levels. The
first approach makes use of uses cases collected from the industry and an analysis on
UASs mishaps in order to identify current hazards. The hazards are then subjected to
a qualitative risk assessment based on operational complexity, population density, vehicle
weight and configuration. After this, the hazards are then tabulated according to their
severity and likelihood, and both tables are added in a risk matrix. Using this matrix, a
determination of the probability of an errant quadrotor striking a person on the ground,
as a result of loss of control caused by flight control system component failures, is then
done in five operational environments: remote, rural, suburban, urban and congested. In
their second approach, they make use of a Bayesian Belief approach in order to model a
UAS operational environment. Through the application of an object-oriented capability

10

Background and Related Work

software, the authors populate their model and provide a test scenario visualization through
the simulation of a loss of control, which propagates a failure state throughout the simulated
UAV’s propulsion and navigation systems.

Although there are certain risk assessment models that are more widely used, there is a lack
of an accepted objective model throughout the research community. This is mostly due
to the difficulty in providing a general model, given the amount of different scenarios an
UAV can go through and the risks that can originate from such scenarios. The authors of
[28] present two different methods for risk assessment that, for the most part, focus on the
damage caused by the drone in the case that a failure happens. Meanwhile, [29] presents
a new method, derivative from two already existing approaches, that is aimed towards
the needs of an analysis of security threats during conceptualization phases. The work
presented in [30] demonstrates a developed scheme for risk assessment based on provided
services and communication infrastructures. They aim to evaluate how environmental,
communication links, sensors, data storage and fault handling mechanisms risks affect a
set of UAVs in regard to integrity, confidentiality and availability.

2.5 Safety Assessment of UAVs

In regards to UAV exploitation, the author of [31] performs a series of planned attacks –
DoS, Wireless Injection and Video Capture Hijack – to a physical drone in order to show
the effect of miniaturization on a commercial drone. The purpose of the work is to show
the ease with which one can remotely access a drone and as such, the author does not
write about the UAVs software in detail nor presents a representative fault model.

In [32], the authors present, in a succinct way, a multi-layered security framework that
can potentially be implemented in order to protect drones against specific vulnerabilities.
It is verified that the vulnerabilities explored – through buffer-overflow attack, DoS and
Address Resolution Protocol Cache Poison attack – are, in fact, present in the commercial
UAV used. As a complement to the framework, the work also presents three algorithms
that can, in theory, mitigate the effects that the explored vulnerabilities can have on
the UAV. Unfortunately, these algorithms are not implemented and demonstrated in a
practical setting and, as such, no comparison is made between the UAV’s performance
while on faulty behavior versus the UAV equipped with the proposed framework.

The authors of [33] aim to demonstrate through a security assessment – namely, a De-
Authentication attack - that anyone with access to a computer could potentially take
down a drone. They also dedicate a chapter to discuss some prevention methods for
the aforementioned attack. After detailing the way in which the attack was performed,
the work evaluates the vulnerabilities found using the stride and dread models. As with
the previous work by Hooper, Michael, et al, although the authors share ways in how
prevention methods could be implemented, without the implementation of such methods
their efficiency is not validated.

As with the previous articles regarding exploitation, the authors of [34] aim to assess the
security of commercially available drones. They present four security vulnerabilities found
in two drones and exploit them through a series of attacks – De-Authentication attack,
File Transfer Protocol Service Attack, Radio Frequency Replay Attack and a Custom
Made Controller Attack. The work has a chapter dedicated to countermeasures but lacks
a demonstration of said countermeasures, and as such, their efficiency is not proven.

The four previous works focus on performing exploitation tactics on a real UAV, in [35]

11

Chapter 2

however, the authors present a fault detection architecture used to enhance analysis capa-
bilities for critical safety properties and reduce costs of related UAV systems using Hard-
ware in the Loop (HITL) simulation. They make use of a fault injection manager to inject
faults that are carried for yaw, pitch, roll and wind speed parameters. HITL simulation is
an useful compromise, as it allows to use real systems in simulated scenarios. This method
is still limited by the available drones, but presents less risks than experiments under real
conditions.

The work presented in [36] varies from the ones previously shown as its experiments are
performed in a fully simulated environment. The authors analyze the effects of GPS
spoofing effect on UAVs through a series of tests. Their Software in the Loop simulator
models all necessary hardware and allows them to alter values such as noise in sensors or
wind speed. The trajectory used in the experiments which consists of a takeoff, a two lap
horizontal line and a landing, could be harmful if done in a real environment. However,
in a simulated environment even in the event of an unpredictable failure, no harm can be
caused. The authors of [37] also make use of a simulated environment and propose the use
of a support vector machine classification algorithm for the fault diagnosis of an octorotor
after simultaneous or successive motors failures. The implementation of the algorithm is
accompanied by its validation through the presentation of two scenarios. The scenarios
are based on simulating motors failures on a real octorotor UAV by using fault injection.

Whilst it is not focused on safety but on security risk assessment, the authors of [38] focus
on exploring terrestrial to aerial communication and securing it. They present countermea-
sures to protect communication from eavesdropping and jamming, and provide numerical
results in order to demonstrate the effectiveness of some of said countermeasures.

We believe that the inherent limitations that a real system has are reflected on the lack
of variety of exploitation tactics found in the literature. Although we presented works in
which there are instances of simulation based testing being used, we consider that there
is still a lack of works that provide a throughout insight on safety risk assessment and
results validation, applied to a simulated environment. In table 2.2, a summary of the
most relevant articles mentioned in this section is shown.

12

Background and Related Work

Table 2.2: Article Summary for Section 2.5

Article Environment Used Exploitation
method

Failure
Type

ARDrone corruption [31] Real UAV
scenario

DoS, Wireless
Injection and Video
Capture Hijack

Securiy
Attack

Securing commercial wifi
based uavs from common
security attacks[32]

Real UAV
scenario

DoS, buffer-overflow
attack and ARP
Cache Poison Attack

Security
Attack

A Security Assessment for
Consumer WiFi Drones [33]

Real UAV
scenario

De-Authentication
attack

Security
Attack

Assessing and exploiting
security vulnerabilities of
unmanned aerial vehicles [34]

Real UAV
scenario

De-Authentication
attack, FTP Service
Attack, RF Replay
Attack and a Custom
Made Controller Attack

Security
Attack

Fault tolerance system for
UAV using hardware in
the loop simulation [35]

HITL simulation

Inject faults that are
carried for yaw,
pitch, roll and wind
speed parameters

Software
Failure

Effects of GPS
spoofing on unmanned
aerial vehicles [36]

SITL simulation GPS Spoofing Security
Attack

Fault Diagnosis and
Fault Tolerant Control
of an Octorotor
UAV using motors
speeds measurements [37]

SITL simulation
Inject faults that
recreate
motor failures

Software
Failure

13

Chapter 3

Objectives and Approach

This chapter addresses the objectives determined for the duration of our work and the
approach taken for each individual goal.

3.1 Objectives

As was briefly mentioned in Chapter 1, the principal objective of this work is the
design and implementation of a fault injection technique and tool that can be
used to assess the safety aspect of diverse types of autonomous quadcopters.
In order to achieve this objective, some groundwork is necessary and several goals needed
to be reached, namely:

• Definition and characterization of the SUA and its environment (i.e., context and
scope of the work);

• Identification and characterization of failure scenarios;

• Creation of a representative and possibly complete fault model (i.e., including both
generic and SUA’s specific faults);

The built environment must be able to fully recreate a working autonomous quadrotor and
all the components associated with it. To fulfil this, a research on the available tools to
recreate UAV behaviour was done. Due to a lack of detailed works on individual software,
an objective choice on which software was the most appropriate was sometimes not possible.
In these cases, after some research, we concluded that several options were valid as they
aimed to achieve the same goal through different methods. During the fault identification
phase it was taken into consideration that this work mainly focus on safety assessment
and as such, the shown faults are not representative of all the identified faults but instead
of all the faults we believe to be relevant to the topic at hand. The representative fault
model presents the identified faults in a concise manner, providing direct characterization
and descriptions.

We aimed to implement the faults present in the fault model (Table 5.5), and implement
a tool that manages their presence within the code. We had also intended to perform a
risk analysis of said faults, but later discarded this objective, as we believed it to not be
in accordance with the practical nature of our work.

14

Objectives and Approach

Depending on the complexity implementing the exploits may have, it may not be possible
to implement all of them. Once the tool is implemented, we intend to perform experiments
in a more organized and efficient way. The experiments will relate to the assessment of the
system, and will be planned and executed during the end of our work’s cycle.

3.2 Research Approach

Our initial objective was the identification of all components involved in an autonomous
quadrotor and building a representative model that could recreate the functionalities of
said components. The identification of all the components was accomplished throughout
the first phase of our work and led to the writing of section 2.1. With the intent of building
an accurate model, we performed a research on the available software for the simulation
of quadrotors as shown in section 5.1. We started by choosing a simulator that had the
capacity of physically representing a drone. As a simulator is only capable of representing
a drone but not provide its software capabilities, we had to select a flight control software
that could function in parallel with our simulator. A more detailed explanation on each
software can be found in sections 5.2.1 and 5.2.2.

After building the representative system we had to create a fault model for it. Generally,
the fault model is a concise presentation of faults that represent the applied fault injection
method. With safety assessment in mind, we analyzed the various software modules of our
flight control software with the purpose of finding instances where the software could be
exploited. The results of the initial analysis and the developed fault model are explained
in detail in section 5.3.

Following this, we had planned to perform a risk analysis on the identified faults by applying
the risk assessment model, the DREAD model. As mentioned in the previous section, we
later found that this objective did not correspond to the practical nature intended for our
work.

As such, the step that followed the development of the fault model, was the conceptual-
ization of our fault injection tool. We accomplished this by making use of a web-based
prototyping tool, Figma.

Once the conceptualization phase was over, we then started the implementation phase.
During this phase we simultaneously worked on the implementation of faults - mainly
GPS faults - and the implementation of the previously conceptualized interface. The tool
was built using the integrated development environment (IDE)Qt Creator, which allowed
us to efficiently recreate the imagined interface.

After implementing the tool and a variety of faults, we performed an array of experiments
to validate the implemented elements. The results gathered from these experiments were
then analyzed, so that a conclusion regarding the effectiveness of the tool could be drawn.
A representation of the research approach taken is reflected in image 3.1. The objectives
encapsulated in a blue box were accomplished during the first phase of our work, while the
ones encapsulated in an orange box were accomplished during the second phase.

15

Chapter 3

Figure 3.1: Representation of the planned research approach

16

Chapter 4

Context

This work is being developed as an offshoot of project BUBBLES, which is a project
targeting the formulation and validation of a concept of separation management for UAS
in the U-space.

The U-space can be described as a safe and secure airspace that is designed to facilitate any
kind of routine mission for a large numbers of drones. To achieve this goal, new services and
specific procedures will need to be properly researched and proven. A generic representation
of the U-space can be seen in figure 4.1. The represented U-space station can provide a
series of services in order to enable safe operations between the UAVs present in the U-
space. These services can be divided between a strategic phase and a tactical phase.
While the former provides services related to the creation and authorization of flight plans
for each individual UAV, the latter provides services that monitor the current state of
the U-space and that simulate future states. Both phases are respectively represented in
figures 4.2 and 4.3.

Currently the BUBBLES programme is divided into 8 work packages:

• WP1 - Project management & coordination

• WP2 - Concept definition & refinement

• WP3 - ConOps definition & classification

• WP4 - Separation minima & methods

• WP5 - Concept validation

• WP6 - Safety, Performance and Interoperability

• WP7 - Performance monitoring

• WP8 - Communication, dissemination & exploitation

The relations between these packages is depicted in figure 4.4. Our work acts as a sup-
plement to work package 5, by providing the BUBBLES project with UAS flight trials in
a controlled research environment in which the fault occurrence is accelerated using fault
injection. As such, we aim to provide a detailed planning of the experiments for testing the
tool and accurate tests, in order to supplement the research done in regard to the evaluation
of the impact of the different types of faults that may affect the different elements of the

17

Chapter 4

system. This experimental assessment will allow a realistic definition of failure parameters
and fault impact, which will be used in BUBBLES in the models for risk assessment and
safety evaluation. To accomplish this, we scheduled meetings with important members of
the project in order to better adapt to its needs.

Figure 4.1: Generic Representation of a U-space environment

Figure 4.2: U-space services: Strategic Phase

18

Context

Figure 4.3: U-space services: Tactical phase

Figure 4.4: BUBBLES’s 8 Work Packages

19

Chapter 5

System under Assessment

This chapter will present the preparation of the system under assessment and its environ-
ment, as well as a compilation of viable research exploits in the form of a fault model.

5.1 Preparation of the SUA and its Environment

In this section, we go through some of the various options available to date that allow
the assembly of simulation environments for drones, as well as the flight control software
chosen for our intended purposes.

Robot Operating System, shortened as ROS, is an important tool in robot software de-
velopment, as it supplies developers with a wide array of tools for automating vehicle
control and data management. Therefore, although not a hard requirement when want-
ing a functional simulator, for research and development purposes, ROS compatibility is
a must. Luckily, due to the open-source nature of many of these simulators, nowadays,
most of them are able to work alongside ROS either due to official updates, or community
contributions.

Table 5.1: Simulators analyzed

Simulator Purpose Supports
ROS

System
requirements

Supported
Drone Types

Supports
multiple
drones

ARGoS Large-scaled Swarms Research
and Development Yes Lightweight Small sized

wheeled Yes

Webots Validating AI Algorithms
Robotics Educational Tool Yes Mediumweight Wheeled and

humanoid Yes

CoppeliaSim
Motion Planning
Robotics Educational Tool
Virtual Reality Drone Research

Yes Mediumweight Wheeled, humanoid
and flying Yes

Gazebo Drones and Sensors Research done
on Realistic Environments Yes Mediumweight Wheeled and

flying Yes

jMAVSim Accessible Simulator aimed
at assessing Quadcopter Behaviour Yes Lightweight Flying Yes

AirSim AI Algorithms Research
on highly visually Realistic Simulations Yes Hardweight Flying Yes

Since we required our simulator to simulate quadcopter behavior, CoppeliaSim, Gazebo,
jMAVSim and AirSim are the ones that accomplish this initial requirement. We decided
to cut AirSim due to its steeper system requirements and jMAVSim due to its simplicity
and lack of features. The choice between Gazebo and CoppeliaSim will be dependent on
the compatibility both have with the available selection of flight control software.

20

System under Assessment

Although an environment with just a simulator and ROS is possible, depending on the
libraries used, in order to build the most accurate and reliable environment, we decided to
use a flight control software that will be active alongside ROS. The flight control software
component can be considered an extension of the functions provided by ROS, to the point
that some of the presented options are packages found within ROS. This specific type of
software provides certain UAV models with advanced routines and functionalities, which
in turn allows the simulated UAVs to further replicate real behaviour. Our goal was to
choose a software that supports both ROS and either Gazebo or CoppeliaSim.

Table 5.2: Flight Control Software analyzed

Flight Control Software ROS Compatible Gazebo Compatible CoppeliaSim Compatible
PX4 Yes Yes No
Ardupilot Yes Yes No
Rotors Yes Yes No
Hector Quadrotor Yes Yes No

Many of these software have already reached a state where they can all achieve, generally
speaking, the same tasks. As such, many of the arguments that can be made in order to
favour one over another, do not mention the features of the software itself, and instead
focus on licensing, ease of use, hardware requirements, or other aspects not related to the
capabilities of the software. Hector and Rotors are considered outdated when compared
to PX4 or Ardupilot as development has ended a few years ago and in general, are not
considered good options for simulations with the intent of research and real testing due to
the lack of features. For that purpose, it is recommended to use packages interfacing stacks
such as PX4 or Ardupilot, as those are the software used in most physical drones. Choosing
between PX4 and Ardupilot was a tough choice, especially in a simulated environment, as
a lot of arguments used are related to real world uses. We ended up choosing PX4 for our
environment, but both options aligned with our requirements and intended goals.

We also used the ground station software, QGroundControl, in order to supplement our
environment. A ground station is typically a software application that can communicate
with a desired set of UAVs via wireless telemetry. It displays real-time data on the UAVs
performance and position allowing the user to be aware of this information in a more
succinct way. Although we initially intended to use this software to upload missions and
specific behaviours to our simulated drones, we later discovered that QGroundControl’s
API was severely lacking and as such, could not be used from within our tool. We still
used this software to validate our fault implementation while the tool was not finished, but
its initial role ended up being fulfilled by DroneKit.

DroneKit allows developers to create diverse apps that can be ran in conjunction with a
drone. These apps can enhance a wide variety of the drone’s characteristics (e.g. autopilot).
It can also be used as a ground station app, which is our main interest. DroneKit is
compatible with vehicles that communicate using the MAVLink protocol - this includes
the vehicles used by our flight controller. It is also a cross-platform application, a highly
valuable characteristic for us. [39]

Additional information regarding simulators and ground station software can found in
[40] and [41]. Although it is not possible to dictate a clear superior simulator due to
the wide array of objectives and to a substantial amount of overlapping capabilities that
each simulator presents, both articles present a wider variety of simulators than the one
presented in table 5.1 and briefly explain their purposes and features.

21

Chapter 5

5.2 Simulated Environment

In this section the various choices in regard to the chosen software are presented and
explained. We also discuss some illustrative representations of the SUA.

5.2.1 Flight Control Software

As previously stated, our environment will be based on PX4, an open-source autopilot
system oriented towards inexpensive and accessible autonomous aircraft. PX4 is physically
based on two main layers: the flight stack, which mainly functions as a flight control system,
and the middleware, a general robotics layer that can support a multitude of autonomous
robots, providing internal/external communications and hardware integration.

The diagram shown below (Figure 5.1) provides a detailed overview of the building blocks
of PX4. The top part of the diagram contains middleware blocks, while the lower section
shows the components of the flight stack.

Figure 5.1: PX4 High-Level Software Architecture Diagram [2]

22

System under Assessment

The actual number of connections between the modules is not portrayed accurately, as
there are many more. Only the most relevant ones are demonstrated in the diagram, as
portraying every connection would lessen the diagram’s readability. In truth, some data
can be accessed from most of the modules.

Modules communicate with each other through a publish-subscribe message bus named
uORB. The use of the publish-subscribe scheme means that [2] :

• The system is reactive — it is asynchronous and will update instantly when new data
is available

• All operations and communication are fully able to happen in parallel

• A system component can consume data from anywhere in a thread-safe fashion

5.2.2 Simulator

As mentioned in section 5.1, for our simulation software we chose Gazebo, which is an open-
source 3D robotics simulator. Gazebo’s rise in usage and popularity was due to an increase
in the usage of robotic vehicles with outdoor oriented goals. As such, it was developed
with the intent of giving the user the ability to accurately reproduce environments that
may be traversed by said robots. Gazebo excels at portraying complex bodies through
a combination of simple geometric shapes and joints. These joints connect the shapes
together allowing them to perform dynamic motions [42].

A focal point for our work is Gazebo’s wide library of sensors. In order to accurately
simulate a quadrotor, being able to replicate the wide array of information that the drone
needs is essential. The simulator also provides its users with the ability to create their own
models and share them publicly. This allows the community to rapidly increase the public
repertoire of available robots.

Figure 5.2: Drone flying in a basic world in Gazebo

In [43] the authors present a system that integrates both ROS and the Gazebo simulator.
They also simulate different scenarios, mainly based on the flight of a simulated quadro-
tor. Through the use of various sensors - Inertial Measurement Unit, Barometric Sensor,

23

Chapter 5

Ultrasonic Sensor, Magnetic Field Sensor and GPS Receiver - and the implementation of
a dynamics model based on flight dynamics, motor dynamics and thrust calculation, the
simulator is able to accurately replicate a real UAV, as proved by validation experiments
performed in the article.

5.2.3 High-level environment representations

Figures 5.3 and 5.4 succinctly represent at a higher level the relation between the various
elements of the environment. Figure 5.3, in specific, demonstrates the possibility of having
a N number of quadcopters being simulated in parallel. Through mavros, a ROS package,
it is also possible for these quadcopters to be simulated in different computers, as long as
the proper communication channel is set up.

Figure 5.3: High Level Representation of the Communication between N Quadcopters

In figure 5.4 a more visual representation of the elements necessary to simulate a single
quadcopter is shown. It is possible to observe the full PX4 Architecture Diagram, as
shown in figure 5.1, as well as the most relevant elements of Gazebo simulator and a ROS
communication Node similar to the ones shown in figure 5.3. In the Gazebo section, it is
possible to observe elements such as:

• Models for the UAV, the environment and the sensors, these allows us to
accurately simulate these elements;

• The positioning system, which allows us to portray the notion of coordinates and
distance;

• The actuator plugins, which receive commands from PX4 based on the processed
sensory data and applies them to the simulated actuator components.

Within the figure we also point out an array of faults that might be used to exploit the
system. Their categorization is as follows:

• Communication faults, faults that target the MAVLink communication channel
between PX4’s MAVLink module and its respective ROS node.

24

System under Assessment

• Command faults, faults that target commands issued by the State Machine module
(e.g. abort command).

• Environmental/Sensors/PS faults, faults that target the data gathered by the
sensors and corrupt it.

• Mission faults, faults that target the mission on cache whilst it is being read,
possibly affecting trajectory.

• Sensors/PS data transformation faults, faults that target the data gathered by
the sensors whilst it is being processed.

• Estimator faults, faults that target the processed data once it is sent to the modules
that control the drone’s movement.

Figure 5.4: High Level Diagram of our Simulated Environment

5.3 Fault Model

In order to create our fault model we started by analyzing each software module represented
in figure 5.1 individually. As our focus relates to safety assessment, for this initial approach
we already had a preconceived idea of which type of exploits we wanted. As such, the shown
exploit possibilities are not all the ones that were found, but instead all the ones that we
believe adhere to our topic of research.

This analysis allowed us to select an initial batch of instances which we believe might
wield interesting results through fault exploitation. In order to facilitate understanding,
the batch is divided in two tables, 5.3 and 5.4. The former states in which module of the
PX4 architecture each instance of possible exploitation can be found, within said module
in which file, a brief description of the exploit’s aim, as well as a classification of the
exploitation using the failure types we present in section 2.2. The latter gives a more
practical insight on each exploit stating how to cause the exploit, which variable within

25

Chapter 5

the file respectively specified in table 5.3 is mainly responsible for carrying pertinent data,
the range of said variable and what’s the end purpose of the function we are altering.

Together, the tables have 9 different columns with each representing a specific point that
we found relevant to best summarize each exploitable instance. In a summarized manner,
the meaning of each column is as follows:

• ID - a numerical attribute given in order to better identify each case;

• Module - the PX4 software module that will need to be modified;

• File name - the file, inside the module, that will need to be modified;

• What can we achieve - the intended goal of this exploit;

• How do we achieve it - simplified description of which values to alter inside the
file;

• Type of Problem - type of failure that the exploit means to represent, this can be
either a Software failure, a Communication Failure, an Artificial Intelligence Failure
or a Sensor Spoof;

• Variable to Alter - which variable carries the most relevant data in accordance to
our goal, more code besides this one variable will need to change, but this one is of
most relevance;

• Range of variables - which range of values can the variable mentioned previously
take;

• What does the function return - purpose of the function that will be modified
and what does it send to other module, either as a value or as a message.

In some cases the column Type of Problem presents more than one type of failure per
case. This is due to the possibility of recreating the same failure outcome through a
different type of exploit.

By making use of the information demonstrated in tables 5.3 and 5.4, we were able to
formulate our fault model, as shown in table 5.5. The fault model summarizes the definition
of each planned fault injection by presenting a brief description of said fault, as well as
classifying them using Orthogonal defect classification and our failure type classification
presented in section 2.2.

26

System under Assessment

Table 5.3: Information on the exploitable instances

ID Module File name What can we achieve Type of Problem

1 Camera Control Camera_trigger.cpp Modity distance detection capability
Software failure
or
Sensor Spoof

2 GPS GPS.cpp Report wrong GPS values to device
Software failure
or
Sensor Spoof

3 Sensors Hub Vehicleacceleration.cpp Alter published
vehicle acceleration Software failure

4 Sensors Hub Vehicleairdata.cpp Alter published
barometer values Software failure

5 Sensors Hub Vehicleangularvelocity.cpp Alter published vehicle
angular acceleration Software failure

6 Sensors Hub Vehiclegpsposition.cpp Alter published gps data Software failure
7 Sensors Hub Vehicleimu.cpp Alter published inertia values Software failure

8 Sensors Hub Vehiclemagnetometer.cpp Alter published
magnetometer values Software failure

9 Position &
Attitude Estimator EKF2Selector.cpp Alter published vehicle

global and local position Software failure

10 Position &
Attitude Estimator EKF2.cpp Alter published attitude, odometry

and wind estimate values Software failure

11 Attitude Control Mc_att_control.cpp Alter published rate setpoints Software failure

12 Autonomous Flight Geofence.cpp Make it so the system
does not know it is inside a geofence

Software failure
or
Communication Failure

13 Autonomous Flight Navigator_main.cpp Purposefully generate scenarios
where traffic is incorrectly verified

Software Failure
or
Artificial Inteligence Failure

14 State Machine Calibration_routines.cpp Return incorrect drone
orientation (when drone is still)

Software failure
or
Communication Failure

15 State Machine Preflightcheck.cpp Initiate takeoff even
with module failures

Software failure
or
Communication Failure

27

Chapter 5

Table 5.4: Practical information on the exploitable instances

ID How do we achieve it Variable to Alter Range of Variable What does the function return

1 Alter distance values at
update_distance function current_position 2D Vector limited by the

world’s maximum coordinates

No hard values but
changes last_shoot_position
to an improper value

2 Alter _report_gps_pos
values at run() function report_gps_pos Range of float variable but soft limit of:

Latitude: -90 to 90 | Longitude: -180 to 180 Publishes GPS values

3 Alter v_acceleration
value at run() function v_acceleration

3D Vector with range of float variable,
since vehicle acceleration is related to
physical capabilties, soft limit related
to hardware

Publish v_acceleration value

4 Alter varied barometer
values at run() out.rho Range of float variable, soft limit equal to

maximum atmospheric pressure value on earth Publish atmospheric pressure

5 Alter v_angular_acceleration
value at run() function

v_angular_acceleration
and v_angular_velocity

3D Vector with range of float
variable, since vehicle acceleration
is related to physical capabilties,
soft limit related to hardware

Publish v_angular_acceleration
and v_angular_velocity

6 Alter gps data at
publish() function gps_output Range of float variable but soft limit of:

Latitude: -90 to 90 | Longitude: -180 to 180 Publish GPS values

7 Alter data at run() function imu PX4 struct that contains multiple attributes Publish inertia measure

8 Alter magnetometer_data
value at publish() fuction out.magnetometer_ga 3D Vector with range of float variable,

soft limit related to hardware Publish magnetometer data

9 Alter values at their
respective publish functions

local_position &
global_position

PX4 struct that contain public attributes
related to the vehicle
https://px4.github.io/Firmware-Doxygen/d4
/d36/structvehicle__local__position__s.html

Publish positions

10 Alter data values at their
respective publish functions

att.q & odom &
wind_estimate

att.q: Takes a quaternion
odom: Range of float for position
and linear velocity | Takes a quaternion
wind_estimate: 2D Vector with range
of float variable for wind velocity

Publish attitude, odometry
and wind estimation data

11 Alter rate setpoints
values at run() function v_rates_sp

3D Vector with range of
float variable roll, pitch and
yaw values soft limited by hardware

Publish rate setpoint for
roll, pitch and yaw

12
Alter the checkAll() function
in order to set up wrong geofence
infraction return values

inside_fence inside_fence: True or False Returns a bool; false means
geofence violation

13

By altering the check traffic
function, it is possible to make
it so the drones ignore possible
collision scenarios

vcmd.command

Enum type variable that can
receive a range of commands
https://px4.github.io/Firmware-Doxygen/d7
/d94/vehicle__command_8h_source.html

Publish commands to
change drone behaviour

14
Alter detect_orientation
function in order to return
the wrong orientation

return value
(enum variable)

Return value: ORIENTATION_ERROR ;
ORIENTATION_TAIL_DOWN ;
ORIENTATION_NOSE_DOWN ;
ORIENTATION_LEFT ;
ORIENTATION_RIGHT ;
ORIENTATION_UPSIDE_DOWN ;
ORIENTATION_RIGHTSIDE_UP

Enum variable value
that dictates drone orientation

15
Alter preflight check
function in order to
ignore possible failures

failed Failed: True or False Returns preflight check
report as a boolean

Table 5.5: Fault Model

ID Fault Title Fault Class Failure Type
1 Send wrong distance values to the device N/A Security Attack
2 Send wrong gps data to the device N/A Security Attack
3 Alter published vehicle acceleration Assignment fault Software failure
4 Alter published barometer values Assignment fault Software failure
5 Alter published vehicle angular acceleration Assignment fault Software failure
6 Alter published gps data Assignment fault Software failure
7 Alter published inertia values Assignment fault Software failure
8 Alter published magnetometer values Assignment fault Software failure
9 Alter published vehicle global and local position Assignment fault Software failure
10 Alter published attitude, odometry and wind estimate values Assignment fault Software failure
11 Alter published rate setpoints Assignment fault Software failure
12 Make it so the system does not know it is inside a geofence Checking fault Software failure
13 Purposefully generate scenarios where traffic is incorrectly verified N/A Artificial Intelligence Failure
14 Return incorrect drone orientation (when drone is still) Checking fault Software failure
15 Try to initiate takeoff even with module failures Checking fault Software failure

28

Chapter 6

Tool Implementation

This chapter offers an in-depth explanation of the tool’s conceptualization - in the form of
an interface prototype - and its implementation. The implementation section approaches
both the current stage of the product, the tools used to implement it and what was changed
within the PX4 software itself.

6.1 Conceptualization

As mentioned, before starting the implementation of our tool, we began a conceptualization
phase that manifested itself as a Prototype UI. We accomplished this by making use of
a web-based prototyping tool, Figma. Figma focuses on providing an accessible way of
designing fluid prototypes that can mimic the intended product. Figure 6.1 is an example
of how our Figma’s work environment looked like throughout the conceptualization phase.

Figure 6.1: Figma Project Screen

In figure 6.2, we can observe our intended landing page. Here the user can select the flight
controller under assessment that he wishes to use and advance to the next page. In the
next page the user must choose one of the failures types presented. The available choices
are based on the failure types introduced in section 2.2. This can be observed in figure
6.3. Once the user chooses a failure type, the button highlights and an option to advance

29

Chapter 6

the injection process appears. Choosing a failure type also unlocks a new button that was
intended to be used to showcase the architecture of the system under assessment and more
specifically, the module that the selected failure would be targeting. This button and the
previously mentioned details can be observed in figure 6.4.

Figure 6.2: Prototype Landing Screen

At any time the user can choose to either return to a previous screen to redo a choice, by
pressing the arrow icon, or open the options menu, by pressing the gear icon. The options
menu was intended to be a simple screen where the user can configure relevant paths and
alter the language of the tool. It can be observed in figure 6.5.

Advancing from the failure type choice screen provides the user with the option of choosing
a specific failure to simulate. Again, once the user enters the screen every option starts by
being greyed out but once the user makes a choice and presses the button corresponding
to one of the available options, the option highlights and the user is allowed to proceed.
This is reflected in figure 6.6.

The next screen was intended to reflect the choice previously done and would change
accordingly. The example provided in figure 6.7 shows that choosing a GPS failure provides
the user with options to inject GPS values according to a random range of values or fixed
values. The screen was intended to encompass every available injection option for the
specified failure. For the presented example, this means that the screen was supposed
to handle different types of GPS injections (e.g. GPS freeze value, GPS random value,
GPS fixed value). We later decided against this and the final product instead has different
screens for each individual injection possible.

The two following screens relate to how the simulated drone and world will behave. The
first screen, seen in figure 6.8, also provides a way to define the fault injection interval. In
said screen the user can define which mission is intended to be run by the simulated drone,
the temporal interval in which the fault injection will occur, and the allowed temporal
deviation for the simulated faulty runs. The allowed deviation is based on the reference run,
which means that if a simulated faulty run current run-time is superior to the established
reference run run-time plus the defined deviation, it is considered that the run failed beyond
recovery and it is then aborted. After defining the mission details it is possible to then

30

Tool Implementation

Figure 6.3: Prototype Failures Type Choice Screen (none chosen)

Figure 6.4: Prototype Failures Type Choice Screen (option chosen)

31

Chapter 6

Figure 6.5: Prototype Options Screen

Figure 6.6: Prototype Specific Failure Screen

32

Tool Implementation

Figure 6.7: Prototype GPS Failure Data Input Screen

define the environmental details as shown in figure 6.9 and figure 6.10. Here the user
could select a drone model and some hazards that would affect the simulated world. A big
oversight that was later fixed in the developed tool is the lack of an option for selecting
a specific gazebo world. The option to select a gazebo world also eliminated the need for
environmental hazards in the interface as these could be directly defined in the world’s file.

Figure 6.8: Prototype Mission Details Screen

The last planned screen for a single fault campaign definition can be seen in figure 6.11.
At the time we considered this screen valid for its purpose but it was severely redesigned
in the final product. For the final product the information that is relevant to the campaign
is shown before the experiments start, so that the user can validate the decisions made
throughout the campaign definition. After validating and advancing to the following screen,

33

Chapter 6

Figure 6.9: Prototype Environmental Details Screen (hazard options)

Figure 6.10: Prototype Environment Details Screen

34

Tool Implementation

the user is presented with a field that provides pertinent information on the campaign’s
progress (e.g. which run the campaign is on, each individual run’s progress). These changes
can be observed in figures 6.20 and 6.21.

Figure 6.11: Prototype Campaign Confirmation Screen

In figure 6.12 a simplistic workflow chart of the interface prototype can be observed.

6.2 Implementation

The current section is divided into a subsection that explains the fault injector’s current
interface and another subsection that addresses the changes made to the flight controller
software and how these changes allow the tool to systematically inject faults.

6.2.1 Tool Interface

The tool was implemented using the integrated development environment (IDE) Qt Cre-
ator. Qt Creator is known for its cross-platform utility, multi-language support and its
ability to simplify GUI application development. These were all appealing aspects to us,
as we did not want our injector to be limited by operative systems. An example of Qt
Creator’s interface can be seen in figure 6.13.

In figure 6.14 we can observe the current landing screen with the options tab open. Here
the user can start the definition of a new campaign, or upload a previously saved campaign.
A campaign can be saved after the definition process, as shown in figure 6.20, and be reused
at a later date. In the upper bar it is possible to observe three different tabs – Options,
Tools and Help. The Options tab is used to define relevant paths (e.g. flight controller
installation folder or the mission folder), to change the tool language and to change flight
controller specific options. Currently, we have two specific settings for PX4 hooked to our
tool – being able to change the simulated drone’s max speed and the flight controller’s
GPS Failsafe activation delay - the latter allows the user to bypass the flight controller’s
GPS error detection for a certain period of time. The Tools tab is used to access additional

35

Chapter 6

Figure 6.12: Prototype Workflow

Figure 6.13: QtCreator Project Screen

36

Tool Implementation

features (e.g. imbued mission planner or world builder) and the Help tab is used to access
information related to the tool. At the moment, the Tools and Help tab functionalities
are not implemented, but we already provide tips throughout the campaign definition and
simulation to guide the user. Pressing the “Define a new Campaign” button takes the user
to the next screen.

Figure 6.14: Tool Landing Screen

The following screen, shown in figure 6.15, starts the campaign definition process by having
the user choose the flight controller under assessment. It is possible to see that although not
identical, the screen was based on the prototype interface since it presents some similarities
with the screen shown in figure 6.2. As was previously defined, we are currently only
working with PX4, but we may expand the available flight controllers in the future and as
such, our tool takes that into account. We also present the user with a campaign definition
workflow that can be highlighted in order to see the available tip for the current page.
Selecting a flight controller advances the user to the next screen.

After defining the flight controller under assessment, the user must choose the drone model
that will be simulated, as seen in figure 6.16. The list of available drones is dependent on
which drones are supported by the flight controller. Currently, we have three options
available – the 3DR Iris+, the 3DR Solo and the Typhoon H480. By default, the tool
defines the 3DR Iris+ as the drone under assessment, but this can be changed through the
drop-down list. After selecting the desired drone, the user can advance to the following
screen by pressing the “Next” button. Although not shown, every button highlights when
hovered on and provides a tip on what its function is.

In the Mission and Environmental Details screen, seen in figure 6.17 the user can choose
a mission plan, select a gazebo world and define the allowed deviation from the reference
run. As the option to plan missions in the tool is not currently implemented, the missions
need to be written externally. The missions follow theMavlink Plain-Text File Format
that can be found at [44]. As previously addressed, we intended to use QGroundControl

37

Chapter 6

Figure 6.15: Tool Flight Controller Definition Screen

Figure 6.16: Tool UAV Model Definition Screen

38

Tool Implementation

to provide support (e.g. generate and upload missions) but found its API to be severely
lackluster and as such, switched to the simpler DroneKit, which is compatible with vehicles
using the MAVLink protocol and presents a much more accessible API. Although missions
need to be written externally, since our intention is to provide support to the BUBBLES
project we wrote a script that converts BUBBLES GPS coordinates JSON files into valid
mission files. The Gazebo worlds must also be written externally, but a wide variety of
examples are already provided with the flight controller. Gazebo also has a wide array of
tutorials available on its website [45], as well as an active community that constantly creates
content to provide help to both beginners and advanced users. As previously explained
during section 6.1, the defined deviation allows users to define a time limit that injection
runs must oblige. Filling every field allows the “Next” button to appear and the user can
then proceed with the campaign definition process.

Figure 6.17: Tool Mission and Environmental Details Screen

In the following screen, shown in figure 6.18, the user can configure the injection campaign.
Here it is possible to define the number of runs the campaign will have, define which faults
will be injected and verify which faults are being injected. The faults that can be injected
are divided into three categories. The fault type has the highest hierarchy and is based on
the failures types introduced in section 2.2. Each type has a set of targets, with the one
highlighted in figure 6.18 being a GPS failure. Finally, for each fault type and fault target
combination there are a number of fault sub-types. Currently, only faults that target the
GPS module are implemented. Faults that target the GPS can be either interpreted as
a software failure or a security attack, depending on the context. In order to reflect this
we have scenarios for both available in the tool’s interface, but the implementation behind
them is the same.

The available faults are classified as follows:

• Software Failures:

– Fixed values: The GPS values are maintained at a fixed value defined by the

39

Chapter 6

user.

– Delayed values: The GPS values are delayed using a time delay specified by
the user.

– Freeze values: The GPS values are maintained at a fixed value defined by the
values present in the GPS when the fault injection started.

– Random value inside a range: The GPS values are set to random values
inside a range defined by the user.

– Min/Max value: The GPS values are set to the maximum or minimum value
of the variables that hold them depending on the user’s choice.

• Security Attacks:

– Random Longitude: Tampers the longitude reading with a random value in
a valid range of values (-180 to 180).

– Random Latitude: Tampers the latitude reading with a random value of a
valid range of values (-90 to 90).

– Random Position: Tampers the position readings with random valid values
on the three axes (latitude, longitude and altitude).

– GPS delay: Does not tamper the GPS values, but delivers them with a certain
delay (defined by the user).

– Force UAV landing: Tampers the altitude values with (slightly) higher values
than the real one, trying to force an unplanned landing.

– Hijack with a second UAV: Tampers the position readings with values from
another drone trajectory, on the three axes (latitude, longitude and altitude)

– Hijack with attacker’s specified position: Tampers the position readings
with values from static position given by the attacker, on the three axes (lati-
tude, longitude and altitude).

For each combination of type, target and sub-type there is a different screen for the user
to input the relevant data. This screen is accessed through the “Set input values” button
and is inaccessible whenever one of the three fields is empty. These screens are simplistic
but we found that it was better to have one screen for each possible combination rather
than to have one screen for each possible target as was mentioned in the previous section.
A possible input screen can be seen in figure 6.19. In this case, it is the screen used for a
GPS Software Failure using an interval of random values. After defining at least one fault
a button that allows the user to advance appears. Advancing to the next screen marks
the end of fault campaign definition and the user can now see an overview of the relevant
decisions done throughout the definition of the campaign as seen in figure 6.20.

In this screen, it is possible to return to the first screen, start the injection campaign or
save the campaign in a file for future use. To use the file in subsequent sessions, the user
only needs to upload the file using the button in the landing screen, as previously stated.
Initiating the campaign starts the simulator with the respective chosen drone and world.
The reference run is always ran first, with the following runs corresponding to the number of
runs defined in the campaign. Besides the simulator, the tool also remains open providing
helpful information related to the campaign’s progress - this can be seen in figure 6.20.
During the campaign, it is possible to abort it, cancelling all future runs that have not yet
been ran. It is also possible to pause the campaign in between runs – in the case the user
wants to pay closer attention to some information that is being displayed - using the “Halt
run” button. After the campaign has ended or has been forcibly terminated, new buttons

40

Tool Implementation

Figure 6.18: Failures Definition Screen

Figure 6.19: Random GPS Values Injection Screen

41

Chapter 6

Figure 6.20: Campaign Overview Screen

appear which allow the user to return to the first screen, see some simple graphs about the
campaign or save the log files of the faulty runs, as seen in figure 6.22. The reference run’s
log file is always saved so that the user can analyze it later. The log files are generated
by PX4 and must be analyzed using an external tool provided by the company [46]. The
result graphs can be seen by pressing the “See result graphs” button which takes the user
to the screen shown in figure 6.23. The screen only shows the trajectory of the reference
run and the trajectory of a random faulty run. They are a very superficial way of resuming
the campaign as they don’t take anything into consideration besides the trajectory. This
means that even if the drone received wrong values; it is possible that they don’t affect its
trajectory as the case presented shows.

6.2.2 Fault Injections Implementation

To accomplish the fault injection process, our tool invokes the simulated elements (e.g.
world and drone), as well as the mission to be ran, as daemons (background processes).
This allows the environment elements to be centralized in the tool, without the need to
directly open additional programs. To convert the user’s input into values that could affect
the flight controller, we made some changes to its software.

To maximize compatibility we sought to do the least intrusive alterations possible. Our
solution was to convert the user’s input into a configuration file, that is then read by a newly
added function. The data read by this function is then saved, and used in the publishing
function present in the sensors module. The publishing function had to be changed so that
the GPS values could be replaced by the values present in the configuration file whenever
the injection interval was valid.

Besides the changes mentioned, we also added a new type of message to the software that
allows the sensors module to know when the drone has started to fly. This is important

42

Tool Implementation

Figure 6.21: Campaign Progress Screen (campaign running)

Figure 6.22: Campaign Progress Screen (campaign aborted)

43

Chapter 6

Figure 6.23: Campaign Results Screen

since the injection window is relative to the moment the drone takes off and not to the
moment the simulation starts.

44

Chapter 7

Experimental Setup

This chapter provides an insight on how the experiments were used to validate the im-
plemented GPS failures. The experimental setup is strongly based on the experiments
performed in [36]. The experiments were done using the implemented tool and the gener-
ated logs were then analyzed by PX4’s log analyzer [46].

7.1 Flight Mission

As previously mentioned, the flight mission is closely based on the mission executed in
[36], with the main difference being the height of flight - ours being 5 meters instead of 1.5
meters. The mission has a total distance of 130 meters and can be split into three main
stages:

• Takeoff : From the drone’s initial position, it moves vertically to the first waypoint,
at 5m of altitude.

• Horizontal Line: After takeoff, always at the same height, the drone flies 30m
forward in a straight line, and then goes back to the first waypoint’s position. This
is done two times.

• Landing: When the Horizontal Line’s second lap ends, the drone lands on the same
position from where it took off.

The mission takes around 60 seconds to be completed, at a maximum speed of 5 meters
per second, from the moment the drone is armed to the moment it is disarmed. This speed
is configurable through the tool, but 5 m/s is PX4’s default value. No hard value was set
for the allowed mission deviation, meaning the missions could potentially run indefinitely.
In one occasion the mission was aborted manually as it went over 15 min with no sign of
recovery.

Figure 7.1 gives an overview of the drone’s trajectory during the reference run. This image
was generated by the previously mentioned log analyzer tool [46].

45

Chapter 7

Figure 7.1: Reference Run X and Y axis trajectory

7.2 Testing Model

To replicate the effect of a GPS Failure on the SUA, the implemented faults are present
in the sensors hub module. The GPS data is calculated by the GPS driver and then sent
to the sensors hub, where the values are tampered with. Figure 5.1, although being the
latest published architecture image, does not show the mentioned connection properly as
there is no arrow pointing from the GPS driver to the sensor hub. The official GitHub [47]
however, properly defines this connection.

Our testing model is defined by three key aspects: trigger, duration and type. The
trigger is timed based and is the same throughout all test runs. In every run, the fault is
injected 20 seconds after the drone has taken off. The injection duration varies between 5,
15 and 45 seconds. The type is divided into three categories:

• Freeze Value, position values read when the injection starts are given during the
injection’s duration.

• Fixed Value, position values are equal to a valid and fixed GPS location.

• Delay Value, position values stay the same but are sent with a delay.

We believe that these 3 fault types best summarize the implemented faults.

46

Experimental Setup

7.3 Experimenting Process

The experimenting process was done as follows: a fault injection file is prepared using our
tool and together with the previously written mission file, both are uploaded to the drone.
Each different combination of fault injection duration and fault injection type can be done
in one campaign as the tool allows a number of runs to be set. After each campaign
ended, the logs were saved locally and later analyzed. This was done for each possible
combination.

In order to get valid results, PX4’s GPS Failsafe activation delay had to be set to the
maximum value - 100 seconds - or else the flights would be aborted. The existence of a
failsafe shows that the flight controller is prepared to handle unexpected values but our
scenarios assume that the failsafe has the highest possible delay value, either by human
manipulation or software failure. However, we briefly provide an insight on what the
expected values are when the flights are under the influence of the lowest failsafe activation
value.

Before starting the injection campaigns, a few reference runs were performed as to obtain
reference values. As it is next to impossible to exactly simulate a real scenario due to
external interference (e.g. computer processing power), the initial references runs were
used to define acceptable intervals of deviation. The theoretical values for the defined
mission are, as mentioned, a distance of 130 meters and duration of 60 seconds. The
acceptable deviations gathered from the reference runs were 3.4 meters and 7.7 seconds,
respectively. As a distance deviation is more impactful than a duration deviation, only
the distance deviation is used to define a valid distance margin. However, we still consider
both distance and duration deviation valid ways to deduce that a failure has occurred, as
some fault types have a bigger impact on flight duration rather than flight distance. As
such, arbitrarily we have defined that for duration we will use the total duration of the
mission times 1.5 to define margins. This means that the values that define the normal
margin are a deviation 3.4 meters for distance and a duration lower than 90 seconds. In
essence, any run whose values deviate from the theoretical distance values by less than 3.4
meters or have a duration lower than 90 seconds are considered unaffected by the fault.

Whenever a run’s values, for either duration or distance, go over the defined normal margin,
it is considered that a failure has occurred. To make a better distinction between minor
and major failures, we have also defined a safe margin. The safe margin was arbitrarily
defined as being two times the normal margin - a deviation of 6.8 meters for distance or
a duration higher than 180 seconds. If the run’s deviation values go over the safe margin,
it is considered that a major failure has occurred. However, if they go over the normal
margin but not the safe margin, it is considered that a minor failure has occurred. This
classification is summarized in table 7.1.

Table 7.1: Results Classification

Classification Distance traveled (m) Run Duration (s) Description
Normal 126.6 <= distance <=133.4 0 <= duration <= 90 deviation <= normal margin

Minor Failure 123.2 <= distance <126.6 or
133.4 <distance <= 136.8 90 <duration <= 180 normal margin <deviation <= safe margin

Major Failure distance <123.2 or
distance >136.8 duration >180 deviation >safe margin

47

Chapter 8

Result Analysis

In this chapter, the gathered results, documented in appendix A, are analyzed and used
to validate the implemented GPS faults. The values gathered in the appendix were taken
from the log files generated by PX4. In some occasions, the injected faults compromise
these log files and as such, the data might not reflect the real run. To mitigate this, we
timed each run with an additional external timer but could not gather distance values
in an external manner. For each combination of fault injection duration and type, we
ran 10 experiments. The analysis approaches both the injection duration impact and the
injection type impact. A brief section is also presented to provide some insight into PX4’s
GPS Failsafe mechanism.

8.1 Runs Comparison

To test the SUA under three distinct situations, we enacted GPS Failures with three
different fault values - Freeze, Delay and Fixed. Although similar, these three types can
cover a wide array of scenarios (e.g. Hijack with attacker’s specified position, Force UAV
Landing).

The Freeze type doesn’t allow for much variation, in this case, the GPS values are main-
tained at a fixed value defined by the values present in the GPS when the fault injection
starts. For the Delay type, we chose a delay of 5 seconds. This means that every GPS value
is delivered with a 5 second delay for the duration of the fault injection. Since the timer
for the fault injections is internal, this fault injection ends up lasting longer than expected,
as the 5 second delay is not taken into consideration by the internal clock. Lastly, for the
Fixed type, we inject a fixed coordinate with a latitude value equal to 44 and a longitude
value also equal to 44. This type of experiment could be replaced by a fault type that
provides random values, but we believe that the main aspect we are testing is how the
system handles a sudden change in value.

The Freeze type injection had the most lackluster results. This is expected, as this type
of injection provides the drone with very similar values to the ones it was expecting. The
intended result for this fault type is for the drone to not move during the injection. As such,
a distance deviation within the safe margin is expected paired with an increase in flight
duration similar to the injection duration. The first two freeze campaigns, observable in
A.1 and A.4, present similar results, with the second one even having less detected failures.
The third campaign A.7 however, reliably presents a set of major failures - which include a
run aborted by the flight controller. The flight controller always showed a strong resistance

48

Result Analysis

to this type of injection, and we believe that these campaigns solidify that, as the flight
controller remains mostly unaffected for the two campaigns with smaller durations. Despite
that, for a larger injection duration, the flight controller is not able to handle the values
received and presents erratic behaviour, having a significant distance deviation. In figure
8.1 we present two logged trajectories, arbitrarily picked, from the freeze type injection
runs. Trajectory A corresponds to a run whose fault injection lasted for 5 seconds, while
trajectory B corresponds to a run whose fault injection lasted for 45 seconds. It is possible
to observe that trajectory B presents a considerably higher deviation from the intended
trajectory (figure 7.1) in comparison to the trajectory A.

Figure 8.1: Freeze type logged trajectories: a) 5s Duration b) 45s Duration

For the Delay type injection, the results were as expected. Although we cannot observe a
significant deviation from the planned flight route, its duration is significantly higher than
the theoretical flight duration value - 60 seconds - for each of the delay type campaigns.
When the message delay is active, a loss of communication between the sensors module and
the position estimator module occurs, and subsequently, the drone stops for the duration
of this delay. As previously explained, due to the fault injection interval using the sensors
module’s internal clock and the fault implementation causing a sleep-like effect in said
module, the delay between messages is not taken into consideration by the fault injection
interval. This causes the fault injection to last longer than what was previously planned.

This type was very effective, when taking the defined margins into consideration, seeing
that for a 5 seconds injection duration (table A.3) every run was classified as a minor failure,
and for a 15 and 45 seconds duration (tables A.6 and A.9) every run was considered a major
failure, with the latter causing a run that had to be aborted, as there was a permanent
loss of communication. As done with the previously addressed fault type, in figure 8.2
we present two logged trajectories, from the delay type injection runs, with trajectory A
corresponding to a run whose fault injection lasted for 5 seconds, and trajectory B to a run
whose fault injection lasted for 45 seconds. It is possible to observe that these trajectories
present minor deviations from the intended mission. This is expected however, as this fault
type was meant to target the flight’s duration.

Lastly, for the Fixed type injection, these results were the hardest to analyze. Without
a reliable reference of the drone’s distance deviation, it is difficult to know exactly how
much of the drone’s trajectory was compromised. As this type is the one with the highest
probability of affecting the drone’s trajectory, being unable to know the exact trajectory
might compromise our classification. We arbitrarily chose the coordinate equivalent to a
latitude of 44 and a longitude of 44 for our fixed position.

When considering a fault injection duration of 5 seconds (table A.2), although most runs

49

Chapter 8

Figure 8.2: Delay type logged trajectories: a) 5s Duration b) 45s Duration

are classified as minor failures, the results are still relatively close to the reference values.
However, when taking into consideration the results obtained for a 15 and 45 seconds
duration (tables A.5 and A.8), the distance values registered in the log files round the 5000
kilometers. This is clearly not the actual distance covered by the drone, but since the flight
duration values are considerably superior to the expected value and since we do not expect
the fixed type injection to cause the drone to stay put, we assume that it caused the drone
to significantly deviate from its course. As with the previous types, we present a figure (8.3)
that showcases two of the logged trajectories for this injection type. Likewise, trajectory
A corresponds to a run whose fault injection lasted for 5 seconds, and trajectory B to a
run whose fault injection lasted for 45 seconds. Although we have already stated that the
distances recorded by the log files are not entirely trustworthy, an interesting observation
can be made using these two trajectories. For the flight presented in trajectory A, only the
GPS projection is compromised while the estimated and setpoint trajectories are not. This
causes a contrast to trajectory B, which presents both a compromised GPS projection and
compromised estimated and setpoint trajectories. This observation, in conjunction with
the higher flight duration values, validates our hypothesis that this fault type causes a
significant deviation from the intended travelled distance.

Figure 8.3: Fixed type logged trajectories: a) 5s Duration b) 45s Duration

8.2 Flight Controller Innate Failsafe

As already reported, PX4 contains various failsafes that allow it to detect anomalies within
the system and abort flights that display said anomalies. For demonstrative purposes, we

50

Result Analysis

performed some experiments with the GPS Failsafe activation delay set to its minimum (1
second). In almost every case, a sudden change of value was met with an abort command
that would cause the drone to immediately land. The only exception to this was the freeze
type injection, which was able to remain active for, at most, 2 to 5 seconds. Although
detecting an anomaly aborts the flight, we consider that issuing an instant landing order
instead of returning the drone to the takeoff point can also be prejudicial, as the landing
spot chosen might not safeguard the safety of the people or property around it.

51

Chapter 9

Conclusion

The past chapters demonstrate how this work advances the implementation of a unified
tool for drone flight assessment. Although all objectives were met within an acceptable
margin, we believe that the lack of clear requirements during the conceptualization phase
possibly delayed our implementation - as some architectural conceptualization was done
while implementing the tool. Even so, we believe that the previous chapters validate our
tool’s interface as well as the implemented faults. As the tool currently supports a flight
controller that is available on commercial drones, it is an accessible way to assess said
drones. Furthermore, since we implemented a script that converts BUBBLES coordinate
files into drone missions, this tool can accomplish its role of providing the BUBBLES
project with UAS flight trials in a controlled research environment.

Despite the fact that the objectives were met, a lot can still be done to further improve the
tool. It is possible to expand it by either supporting other flight controllers, or by further
increasing the array of available faults. Since we did not implement every fault present
in our fault model, in the future it can be used as reference material to supplement the
tool.

52

References

[1] MD Faiyaz Ahmed, Mohd Nayab Zafar, and JC Mohanta. Modeling and analysis of
quadcopter f450 frame. In 2020 International Conference on Contemporary Computing
and Applications (IC3A), pages 196–201. IEEE, 2020.

[2] L Meier. Px4 development guide. https://dev.px4.io/master/en/.

[3] Ferran Giones and Alexander Brem. From toys to tools: The co-evolution of techno-
logical and entrepreneurial developments in the drone industry. Business Horizons,
60(6):875–884, 2017.

[4] Sunghun Jung and Hyunsu Kim. Analysis of amazon prime air uav delivery service.
Journal of Knowledge Information Technology and Systems, 12(2):253–266, 2017.

[5] Jessie YC Chen. Uav-guided navigation for ground robot tele-operation in a military
reconnaissance environment. Ergonomics, 53(8):940–950, 2010.

[6] Janick Edinger, Dominik Schäfer, Christian Krupitzer, Vaskar Raychoudhury, and
Christian Becker. Fault-avoidance strategies for context-aware schedulers in pervasive
computing systems. In 2017 IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 79–88. IEEE, 2017.

[7] Angus Stevenson. Oxford dictionary of English. Oxford University Press, USA, 2010.

[8] Abhishek Sharma, Pankhuri Vanjani, Nikhil Paliwal, Chathuranga M Wijerathna
Basnayaka, Dushantha Nalin K Jayakody, Hwang-Cheng Wang, and P Muthuchi-
dambaranathan. Communication and networking technologies for uavs: A survey.
Journal of Network and Computer Applications, page 102739, 2020.

[9] UAS Task Force. Unmanned aircraft system airspace integration plan. Department
of Defense, March, 2011.

[10] Fabio Ruggiero, Vincenzo Lippiello, and Anibal Ollero. Aerial manipulation: A liter-
ature review. IEEE Robotics and Automation Letters, 3(3):1957–1964, 2018.

[11] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. Quadrotor
helicopter flight dynamics and control: Theory and experiment. In AIAA guidance,
navigation and control conference and exhibit, page 6461, 2007.

[12] M Farrukh Khan and Raymond A Paul. Pragmatic directions in engineering secure
dependable systems. In Advances in Computers, volume 84, pages 141–167. Elsevier,
2012.

[13] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE transactions on dependable and
secure computing, 1(1):11–33, 2004.

53

https://dev.px4.io/master/en/

Chapter 9

[14] Algirdas Avizienis. Fault-tolerance: The survival attribute of digital systems. Pro-
ceedings of the IEEE, 66(10):1109–1125, 1978.

[15] Jean-Claude Laprie. Dependable computing and fault-tolerance. Digest of Papers
FTCS-15, pages 2–11, 1985.

[16] Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar, Michael J Halliday, Diane S
Moebus, Bonnie K Ray, and Man-Yuen Wong. Orthogonal defect classification-a
concept for in-process measurements. IEEE Transactions on software Engineering,
18(11):943–956, 1992.

[17] Ethan M Puchaty and Daniel A DeLaurentis. A performance study of uav-based
sensor networks under cyber attack. In 2011 6th International Conference on System
of Systems Engineering, pages 214–219. IEEE, 2011.

[18] Lav Gupta, Raj Jain, and Gabor Vaszkun. Survey of important issues in uav com-
munication networks. IEEE Communications Surveys & Tutorials, 18(2):1123–1152,
2015.

[19] Goutam Kumar Saha. Software fault avoidance issues. Ubiquity, 2006(November):1–
15, 2006.

[20] Harlan D Mills. The management of software engineering, part i: Principles of software
engineering. IBM Systems Journal, 19(4):414–420, 1980.

[21] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault injection
techniques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

[22] Alfredo Benso and Paolo Prinetto. Fault injection techniques and tools for embedded
systems reliability evaluation, volume 23. Springer Science & Business Media, 2003.

[23] Jens Guthoff and Volkmar Sieh. Combining software-implemented and simulation-
based fault injection into a single fault injection method. In Twenty-Fifth International
Symposium on Fault-Tolerant Computing. Digest of Papers, pages 196–206. IEEE,
1995.

[24] Reece Clothier and Rodney Walker. Determination and evaluation of uav safety objec-
tives. In Proceedings of the 21st International Conference on Unmanned Air Vehicle
Systems, pages 18–1. University of Bristol, 2006.

[25] Kay Wackwitz and Hendrick Boedecker. Safety risk assessment for uav operation.
Drone Industry Insights, Safe Airspace Integration Project, Part One, Hamburg, Ger-
many, 2015.

[26] Azza Allouch, Anis Koubaa, Mohamed Khalgui, and Tarek Abbes. Qualitative and
quantitative risk analysis and safety assessment of unmanned aerial vehicles missions
over the internet. IEEE Access, 7:53392–53410, 2019.

[27] Lawrence C Barr, Richard Newman, Ersin Ancel, Christine M Belcastro, John V Fos-
ter, Joni Evans, and David H Klyde. Preliminary risk assessment for small unmanned
aircraft systems. In 17th AIAA Aviation Technology, Integration, and Operations
Conference, page 3272, 2017.

[28] Giorgio Guglieri, F Quagliotti, and Gianluca Ristorto. Operational issues and as-
sessment of risk for light uavs. Journal of Unmanned Vehicle Systems, 2(4):119–129,
2014.

54

References

[29] Georg Macher, Eric Armengaud, Eugen Brenner, and Christian Kreiner. Threat and
risk assessment methodologies in the automotive domain. Procedia computer science,
83:1288–1294, 2016.

[30] Kim Hartmann and Christoph Steup. The vulnerability of uavs to cyber attacks-an
approach to the risk assessment. In 2013 5th international conference on cyber conflict
(CYCON 2013), pages 1–23. IEEE, 2013.

[31] Eddy Deligne. Ardrone corruption. Journal in Computer Virology, 8(1-2):15–27, 2012.

[32] Michael Hooper, Yifan Tian, Runxuan Zhou, Bin Cao, Adrian P Lauf, Lanier Watkins,
William H Robinson, and Wlajimir Alexis. Securing commercial wifi-based uavs from
common security attacks. In MILCOM 2016-2016 IEEE Military Communications
Conference, pages 1213–1218. IEEE, 2016.

[33] Joshua Gordon, Victoria Kraj, Ji Hun Hwang, and Ashok Raja. A security assess-
ment for consumer wifi drones. In 2019 IEEE International Conference on Industrial
Internet (ICII), pages 1–5. IEEE, 2019.

[34] Fekadu Lakew Yihunie, Aman Kumar Singh, and Sajal Bhatia. Assessing and exploit-
ing security vulnerabilities of unmanned aerial vehicles. In Smart Systems and IoT:
Innovations in Computing, pages 701–710. Springer, 2020.

[35] Vignesh Kumar Chandhrasekaran and Eunmi Choi. Fault tolerance system for uav
using hardware in the loop simulation. In 4th International Conference on New Trends
in Information Science and Service Science, pages 293–300. IEEE, 2010.

[36] Daniel Mendes, Naghmeh Ivaki, and Henrique Madeira. Effects of gps spoofing on
unmanned aerial vehicles. In 2018 IEEE 23rd Pacific Rim International Symposium
on Dependable Computing (PRDC), pages 155–160. IEEE, 2018.

[37] Majd Saied, Benjamin Lussier, Isabelle Fantoni, Hassan Shraim, and Clovis Francis.
Fault diagnosis and fault-tolerant control of an octorotor uav using motors speeds
measurements. IFAC-PapersOnLine, 50(1):5263–5268, 2017.

[38] Qingqing Wu, Weidong Mei, and Rui Zhang. Safeguarding wireless network with uavs:
A physical layer security perspective. IEEE Wireless Communications, 26(5):12–18,
2019.

[39] DroneKit Team. DroneKit Official Documentation. https://dronekit-python.
readthedocs.io/en/latest/about/overview.html (Jun. 2021).

[40] Aicha Idriss Hentati, Lobna Krichen, Mohamed Fourati, and Lamia Chaari Fourati.
Simulation tools, environments and frameworks for uav systems performance analysis.
In 2018 14th International Wireless Communications & Mobile Computing Conference
(IWCMC), pages 1495–1500. IEEE, 2018.

[41] Aakif Mairaj, Asif I Baba, and Ahmad Y Javaid. Application specific drone simulators:
Recent advances and challenges. Simulation Modelling Practice and Theory, 94:100–
117, 2019.

[42] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages
2149–2154. IEEE, 2004.

55

https://dronekit-python.readthedocs.io/en/latest/about/overview.html
https://dronekit-python.readthedocs.io/en/latest/about/overview.html

Chapter

[43] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar
Von Stryk. Comprehensive simulation of quadrotor uavs using ros and gazebo. In
International conference on simulation, modeling, and programming for autonomous
robots, pages 400–411. Springer, 2012.

[44] MAVLink Core Development Team. MAVLink File Format. https://mavlink.io/
en/file_formats/ (Jun. 2021).

[45] Gazebo Team. Gazebo Tutorials. http://gazebosim.org/tutorials (Jun. 2021).

[46] PX4 Team. PX4 Flight Review. https://logs.px4.io/ (Jun. 2021).

[47] PX4 Team. PX4 Official GitHub. https://github.com/PX4/ (Jun. 2021).

56

https://mavlink.io/en/file_formats/
https://mavlink.io/en/file_formats/
http://gazebosim.org/tutorials
https://logs.px4.io/
https://github.com/PX4/

Appendices

57

This page is intentionally left blank.

Appendix A

Gathered Results

The following tables show the results of all the simulated runs.

Table A.1: GPS Freeze Injection Duration 5 Test Results

Injection
Duration
(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Maximum
Deviation
(m)

Classification

5 72 78 4 Minor Failure
5 74 81 4,2 Minor Failure
5 68 87 3,7 Minor Failure
5 72 80 3,5 Minor Failure
5 69 83 3,5 Minor Failure
5 71 104 3,4 Minor Failure
5 73 80 3,9 Minor Failure
5 72 82 1,5 Normal
5 72 84 1,6 Normal
5 73 94 4 Minor Failure

Table A.2: GPS Fixed Injection Duration 5 Test Results

Injection
Duration

(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Registered
Maximum
Deviation
(m)

Classification

5 73 88 4,5 Minor Failure
5 68 95 4,5 Minor Failure
5 68 81 2,9 Normal
5 72 80 4,5 Minor Failure
5 72 82 4,3 Minor Failure
5 69 84 2,7 Normal
5 71 81 2,6 Normal
5 73 110 4,6 Minor Failure
5 73 80 4,1 Minor Failure
5 74 84 3,1 Normal

59

Chapter 9

Table A.3: GPS Delay Injection Duration 5 Test Results

Injection
Duration

(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Maximum
Deviation
(m)

Classification

5 67 144 3,4 Minor Failure
5 75 138 3,4 Minor Failure
5 70 155 4,1 Minor Failure
5 73 159 4,2 Minor Failure
5 67 155 4 Minor Failure
5 73 140 4,1 Minor Failure
5 72 153 3,4 Minor Failure
5 68 153 3,9 Minor Failure
5 72 157 4 Minor Failure
5 72 150 4,1 Minor Failure

Table A.4: GPS Freeze Injection Duration 15 Test Results

Injection
Duration

(s)

Flight
Duration

(s)

Actual
Flight

Duration
(s)

Maximum
Deviation
(m)

Classification

15 73 83 3,3 Normal
15 76 104 4,1 Minor Failure
15 75 108 4,1 Minor Failure
15 73 85 2,7 Normal
15 73 86 4,2 Minor Failure
15 72 82 1,8 Normal
15 74 80 4,1 Minor Failure
15 73 84 2 Normal
15 68 82 4,3 Minor Failure
15 72 84 4,4 Minor Failure

Table A.5: GPS Fixed Injection Duration 15 Test Results

Injection
Duration

(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Maximum
Deviation
(m)

Classification

15 118 134 5008150 Major Failure
15 156 169 5124270 Major Failure
15 152 184 5499950 Major Failure
15 126 179 5008020 Major Failure
15 122 153 5008030 Major Failure
15 111 168 4684700 Major Failure
15 95 136 4684660 Major Failure
15 126 135 5370070 Major Failure
15 111 154 4585160 Major Failure
15 134 138 5369910 Major Failure

60

Gathered Results

Table A.6: GPS Delay Injection Duration 15 Test Results

Injection
Duration

(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Maximum
Deviation
(m)

Classification

15 70 324 3,4 Major Failure
15 70 350 3,7 Major Failure
15 73 312 4,3 Major Failure
15 96 293 2,7 Major Failure
15 72 337 4 Major Failure
15 68 295 2,7 Major Failure
15 72 292 4,4 Major Failure
15 70 294 3,5 Major Failure
15 72 387 4 Major Failure
15 72 284 4 Major Failure

Table A.7: GPS Freeze Injection Duration 45 Test Results

Injection
Duration

(s)

Flight
Duration

(s)

Actual
Flight

Duration
(s)

Maximum
Deviation
(m)

Classification

45 73 112 13,8 Major Failure
45 70 87 1,2 Normal
45 69 82 12,6 Major Failure
45 74 85 11,6 Major Failure
45 72 92 15,4 Major Failure
45 71 124 3,7 Minor Failure
45 N/A N/A N/A Major Failure
45 69 93 14,9 Major Failure
45 95 85 12 Major Failure
45 69 126 15,4 Major Failure

Table A.8: GPS Fixed Injection Duration 45 Test Results

Injection
Duration

(s)

Flight
Duration

(s)

Actual
Flight

Duration
(s)

Maximum
Deviation
(m)

Classification

45 162 197 13093790 Major Failure
45 188 200 11118120 Major Failure
45 203 241 12154760 Major Failure
45 202 256 11643800 Major Failure
45 127 187 11971130 Major Failure
45 253 312 11402280 Major Failure
45 205 257 11532460 Major Failure
45 164 211 11207410 Major Failure
45 196 196 11486610 Major Failure
45 166 189 11769640 Major Failure

61

Chapter 9

Table A.9: GPS Delay Injection Duration 45 Test Results

Injection
Duration

(s)

Flight
Duration
(s)

Actual
Flight
Duration
(s)

Maximum
Deviation
(m)

Classification

45 75 618 3,9 Major Failure
45 67 433 4,1 Major Failure
45 N/A N/A N/A Major Failure
45 74 559 2,8 Major Failure
45 72 489 4,1 Major Failure
45 72 553 3,1 Major Failure
45 68 565 3,5 Major Failure
45 72 535 4 Major Failure
45 74 556 3 Major Failure
45 71 528 3,8 Major Failure

62

	Introduction
	Background and Related Work
	Introduction to Drones
	Dependability of UAV Systems
	Safety of UAVs
	Risk Analysis of UAVs
	Safety Assessment of UAVs

	Objectives and Approach
	Objectives
	Research Approach

	Context
	System under Assessment
	Preparation of the SUA and its Environment
	Simulated Environment
	Flight Control Software
	Simulator
	High-level environment representations

	Fault Model

	Tool Implementation
	Conceptualization
	Implementation
	Tool Interface
	Fault Injections Implementation

	Experimental Setup
	Flight Mission
	Testing Model
	Experimenting Process

	Result Analysis
	Runs Comparison
	Flight Controller Innate Failsafe

	Conclusion
	Gathered Results

