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Abstract—The exact calculation of all-terminal reliability is
not feasible in large networks. Hence estimation techniques and
lower and upper bounds for all-terminal reliability have been
utilized. We propose using an ordered subset of the mincuts
and an ordered subset of minpaths to calculate an all-terminal
reliability upper and lower bound, respectively. The advantage
of the proposed approach results from the fact that it does
not require the enumeration of all mincuts or all minpaths as
required by other bounds. The performance of the algorithm is
compared with the first two Bonferroni bounds, for networks
where all mincuts could be calculated. The results show that the
proposed approach is computationally feasible and reasonably
accurate. Thus allowing one to obtain bounds when it not possible
to enumerate all mincuts or all minpaths.

Index Terms—All-terminal network reliability; Bonferroni
bounds; Network availability; Network reduction

I. INTRODUCTION

According to [1] reliability is the “probability that an item
will perform a required function under stated conditions for
a given time interval”. In communication networks, edges
may fail, and are either in operational or failed state. The
two terminal reliability is the probability that two specific
nodes remain connected by at least one path [2]. The more
general problem of calculating the probability that a set of
K nodes remain connected is equally difficult; when K is
equal to all the nodes in the graph, this is designated as the
all-terminal reliability. The problem of determining the all-
terminal reliability of a network is a well known NP-hard
combinatorial problem [3], [4].

This work was motivated by the need to calculate the all-
terminal availability for a potential smart grid communications
network (designated netvkk in Table I) to be installed in
parallel to the California Power Grid. The availability of a
network (or system) is related to the fraction of time the
network or system is considered to be in its up state. In
this work the network will be considered in its up state if

every node can communicate with every other node. Reliability
is a measure of how long the network is continuously in
its up state, performing its intended function (for example
ensuring communication between all its nodes). Therefore a
network with frequent but very short outages may have a low
reliability (if the target time for flawless service is larger than
the average network up time) while having a high availability
(if the down time is very small compared with the up time).
For historical reasons, we adopt the usual designations in
the literature: two-terminal reliability, k-terminal reliability, all
terminal reliability - which in fact coincide with the definition
of two-terminal availability, k-terminal availability, all terminal
availability, respectively.

The exact calculation of the all-terminal reliability is not
feasible for large networks and so several approximations
to the calculation of the all-terminal reliability have been
proposed. One approach to this problem is the estimation of
all-terminal reliability using Monte Carlo simulation which
can be very precise, but at the cost of a high computational
effort [5]. Furthermore, special care must be taken under rare
event scenarios [6]. In [7] the authors use an artificial neural
network for estimation of the all-terminal network reliability.
They considered both networks with identical and variant
link reliability, and conclude their approach could be used
for network design at a reasonable computational cost. An
artificial neural network was also used by Altiparmak et. al
[8] to calculate the all-terminal reliability of a network with
identical edges probabilities. The authors improved earlier
approaches to the calculation of the all-terminal reliability
of a network using the artificial neural network methodology.
Three estimation techniques, crude Monte Carlo and the more
sophisticated Permutation Monte Carlo and Merge Process,
are considered in [9] and compared with their proposed Cross-
Entropy method. The authors of [9] conclude that the Cross-
Entropy method is the fastest of all three techniques.
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The classical approach to calculating upper and lower
bounds for network reliability is to consider minpaths, while
for calculating upper and lower bounds for the network unreli-
ability mincuts are used [10]. A cutset is defined as a minimal
subset of components whose failure implies system failure [4].
A mincut is a cutset that does not contain another cutset. A
pathset is defined as a minimal subset of components whose
operation implies system operation [4]. A minpath is a pathset
that does not contain another pathset.

In the case of two terminal reliability a minpath coincides
with a minimum path, that is a path without cycles between
the two specific nodes. In the case of all-terminal reliability a
minpath is a spanning tree, and the number of spanning trees
can be very large even for small networks.

In a network where nodes do not fail, and considering
the system operational state is defined by all nodes being
able to communicate, a cutset is a set of edges that when
simultaneously in the failed state, ensures at least a pair of
nodes can no longer communicate; similarly a pathset is a set
of edges that when simultaneously in operational state, ensure
all network nodes are able to communicate.

Assuming that all minpaths or mincuts can be enumerated,
the all-terminal network reliability is difficult to calculate
because it requires the calculation of a union of events. The
calculation of an union of events can be solved by decompos-
ing it into a union of disjoint events (disjoint products) whose
probability can then be added. Since the first algorithm for
the calculation of a sum of disjoint products was proposed by
Abraham [11], several other algorithms have been proposed
for solving this problem. Locks [12] and [13] proposed a new
ordering of the minpaths seeking to reduce the number of
resulting disjoint products. A note revising the explanation
of the used Boolean inversion technique used in the previous
algorithms was made in [14]. Additional forms of arranging
the minpaths are proposed in [15], [16]. An efficient algorithm
is proposed by Heidtmann [17] which considers the inversion
of products of variables, instead of inverting single variables as
done in previous works. An alternative method for calculating
the probability of a union of events is proposed in [18], and
compared with [12], [13], [17]. In [19] a new approach is
proposed for pre-processing minpaths, but the authors also
acknowledge that there are cases where the proposed pre-
processing will not be able to reduce the number of disjoint
products.

In [10] several approaches can be found for calculating
network reliability. The most basic approach is based on
state space enumeration. The pivotal decomposition formula,
also known as link factoring, allows one to successively
decompose the problem in two smaller problems, but can result
in state space enumeration. However a good selection of the
edges for factoring can significantly reduce the computational
requirements of this approach [10]. It is worth also mentioning
the well-known factoring theorem that leads to an exponential,
in time, algorithm for the calculation of the network reliability
proposed by Moskowitz [20], [2].

Two general approaches for calculating all-terminal relia-

bility bounds are Bonferroni bounds [10], [21] and the Esary-
Proschan bounds approximation [22]. The latter approaches
are impractical for the evaluation of real large scale networks
due to the fact that they need to calculate all the minpaths
or mincuts which are in themselves NP-complete problems.
A more recent approach proposed by Sebastio et al [23]
computes the two-terminal reliability bounds using an binary
decision diagram for representing the reliability graph. The
latter authors also developed a new search heuristic that selects
only the most important minpaths or mincuts for reducing the
upper and lower reliability gap, in an iterative procedure. A
procedure for reducing the upper and lower reliability gap
iteratively has also been proposed by Won et. al [24] in the
context of all-terminal reliability problem. In this work the
authors proposed a greedy factoring process. The bounds are
updated by a network factoring procedure, first selecting the
edges in the network then enumerating all the states of the
selected edges and finally evaluating the all-terminal relia-
bility of the subnetworks associated with states. The greedy
approach in the latter work is focused on how the selected
branches, see [24], of the initial network are chosen, the latter
authors proposed six greedy methodologies all of then using
a minimum spanning tree or a mincut set, for starting of the
factoring process that is recursively applied.

The main contribution of this work is an algorithm to calcu-
late all-terminal reliability upper and lower bounds, which uses
an ordered subset of the mincuts to calculate the reliability
upper bound and an ordered subset of pathsets to calculate
the reliability lower bound. Hence the proposed approach (as
the algorithm in [23] for calculating two-terminal reliability
bounds) does not need to enumerate all mincuts or minpaths
and generally obtains bounds with the desired accuracy in a
reasonable amount of time.

This article is organized as follows. In the next section a
brief review on reliability bounds is presented. In section III
an algorithm for the calculation of the all-terminal network
availability bounds, is presented. The results of the algorithm
are discussed in section IV followed by the conclusions.

II. BRIEF REVIEW ON ALL-TERMINAL RELIABILITY
BOUNDS

Consider an undirected network, represented by an undi-
rected graph G = (N,E), where N = {v1, v2, . . . , vn} is the
set of nodes and E = {e1, e2, . . . , em} is the set of edges,
where n is the number of nodes and m the number of edges.
Each edge is an unordered pair of different elements belonging
to N . An edge e has a probability of being operational given
by pe. We assume nodes do not fail and that edges fail
independently. This represents random failure scenarios. The
minpaths are designated by Pi, i = 1, 2, . . . , r where r is the
number of spanning trees; the mincuts are designated by Cj ,
j = 1, 2, . . . , u, where u is the number of mincuts.

The all-terminal reliability R(G) and its complement the
all-terminal unreliability, U(G) = 1 − R(G), are given by



Eq. (1) and (2), respectively:

R(G) = Pr(P1 ∪ P2 ∪ · · · ∪ Pr) (1)
U(R) = Pr(C1 ∪ C2 ∪ · · · ∪ Cu) (2)

Equation (1), expanded using the principle of inclusion-
exclusion, can be written as an alternating sum of terms. Let

Sw =
∑

i1<i2<···<iw

Pr (Pi1Pi2 · · ·Piw) (3)

we can write [21], [10]:

R(G) ≤ S1, R(G) ≥ S1−S2, R(G) ≤ S1−S2 +S3, . . . (4)

Similarly, from equation (2), let

Tw =
∑

i1<i2<···<iw

Pr (Ci1Ci2 · · ·Ciw) (5)

we can write [21], [10]:

U(G) ≤ T1, U(G) ≥ T1−T2, U(G) ≤ T1−T2 +T3, . . . (6)

Equations (4) and (6) are termed the Bonferroni bounds [21],
[10]. The number of elements in Si is equal to

(
r
i

)
and even

for i = 3, if r is large, the number of elements can be too high
to allow S3 to be calculated in a reasonable amount of time
(a similar observation can be made for Ti). From a practical
point a view, bounds (4) are more effective when the pe are
small and (6) when the pe are large.

In real networks, considering the edges have high proba-
bility of being operational, the first two Bonferroni Bounds
in Eq. (6) will be designated by RB

U = 1 − T1 and RB
L =

1 − (T1 − T2), and will be shown in section IV to result in
very close bounds.

The Esary-Proschan lower and upper bounds are given
by [10]:

REP
U = 1−

r∏
i=1

[1− Pr(Pi)] (7)

REP
L =

u∏
i=1

[1− Pr(Ci)] (8)

In this case to have both upper and lower bounds, one needs
to enumerate all minpaths and all mincuts. Here we develop
a new set of bounds based on a novel iterative procedure.

III. A NEW PROCEDURE FOR THE CALCULATION
ALL-TERMINAL RELIABILITY BOUNDS

Note, that the calculation of a union of events, can be
obtained as the sum of the probability of disjoint events:

R(G) = Pr(P1 ∪ P2 ∪ · · · ∪ Pr) (9)
= Pr(P1 ∪ P̄1P2 ∪ · · · ∪ P̄1P̄2 · · · , P̄r−1Pr)(10)
= Pr(P1) + Pr(P̄1P2) + · · ·+ (11)

Pr(P̄1P̄2 · · · , P̄r−1Pr) (12)

where P̄j represents the complement of event Pj . One can
iteratively define a dynamic lower bound for the all-terminal
reliability:

• RL1
(G) = Pr(P1),

• RL2
(G) = RL1

(G) + Pr(P̄1P2),
• · · ·
• RLi(G) = RLi−1(G) + Pr(P̄1P̄2P̄3 · · · P̄i−1Pi).

and similarly a dynamic lower bound for the network unreli-
ability using mincuts:
• UL1

(G) = Pr(C1),
• UL2

(G) = UL1
(G) + Pr(C̄1C2),

• · · ·
• ULi(G) = ULi−1(G) + Pr(C̄1C̄2C̄3 · · · C̄i−1Ci).

resulting in a dynamic upper bound for the all-terminal with
reliability: RUi(G) = 1− ULi(G).

In the bound calculations each new term of order i,
(P̄1P̄2P̄3 · · · P̄i−1Pi) or (C̄1C̄2C̄3 · · · C̄i−1Ci) can be ex-
pressed as a sum of disjoint products, by an iteration (the
i-th) of Abraham’s algorithm [11] or any of its improved
versions [12], [13], [14], [17]. Having obtained this sum of
disjoint products the corresponding probability can easily be
calculated.

Considering that we wish to obtain fast converging bounds,
it seems a good strategy to include the minpaths by decreasing
order of occurrence. Using the same reasoning, a similar
approach is used regarding the calculation of the network
unreliability, that is, mincuts should be generated in decreasing
order of their probability.

Hence, the central ideas of the procedure are:
• Generating minpaths iteratively, by decreasing probabil-

ity, to obtain an increasing lower bound for the all-
terminal reliability.

• Generating mincuts iteratively, by decreasing probability,
in order to obtain a decreasing upper bound for the all-
terminal reliability.

• Leveraging the iterative nature of the algorithms for
calculating the sum of disjoint products.

The pseudo-code for the proposed algorithm can be found
in Algorithm 1. The algorithm starts with an undirected
connected (otherwise R(G) = 0) graph and in order to
reduce the size of the problem, the network is pruned of all
the spurs (or pendants); a series reduction is also performed
to remove all edges incident in nodes of degree two [25].
This last modification may also result in the need to make
parallel reductions. The reduction procedure is repeated until
all network nodes are at least of degree three. The edges
probability of being operational are dully adjusted and a reli-
ability correction factor (Ω in Algorithm 1) is also calculated
as explained in [25]. Using this procedure, some networks
can be completely reduced, like in the case of the abilene
network [26] where R(G) = Ω, while in other networks, like
pioro40 [26], no reduction is possible and Ω = 1.

In order to iteratively obtain the minpaths, by increasing
probability, a k spanning trees enumeration algorithm is used.
The probability of a spanning tree being operational, Pi, is
given by

∏
e∈Pi

pe. Similarly the probability of all the edges
in cutset Ci being simultaneously in failed state is given by∏

e∈Ci
(1− pe). It is well known that these metrics can trans-



formed into additive metrics, using logarithms. For pathset
enumeration we define the cost of edge e, cpe = − log pe, and
for cutset enumeration we define the cost cce = − log(1− pe).
The cost of the minpath Pi and mincut Ci become cp(Pi) =∑

cpe and cc(Ci) =
∑

cce, respectively. Therefore, generating
spanning trees and mincuts by increasing cost corresponds
to generating spanning trees in order of decreasing total
probability (of all edges in the spanning tree being operational)
and to generating cuts by decreasing probability (of every edge
in the cut being in failed state), respectively.

In step 6 of Algorithm 1 the mincuts are generated it-
eratively by decreasing cost (that is by decreasing order of
unreliability) using the algorithm proposed by Vazirani and
Yannakakis [27]. The algorithm proposed by Kapoor and
Ramesh [28] for the iterative generation of spanning trees by
increasing cost, was used in step 11 of Algorithm 1.

For updating U ′L and R′L algorithm KDH88, proposed
in [17], was used in steps 7 and 12 of Algorithm 1, re-
spectively. This algorithm was selected for two reasons: ac-
cording to its author it is more efficient than the algorithms
in [11], [12], [15], and in [18] it was also verified that
this algorithm did perform better than [13]. Moreover, the
performance KDH88 is not strongly dependent on the order
of the pathset/cutset, hence avoiding the need of ordering the
i− 1 pathset/cutset before making them disjoint with the i-th
pathset/cutset.

Therefore, Algorithm 1 iteratively reduces the width of the
bounds using the generated mincuts and k-trees in conjugation
with a min-sum of disjoint product algorithm.

Algorithm 1 has several stop conditions. The first stop
condition holds when the difference between the upper and
lower bound achieves the desired error, ∆ – this should be
the main stopping condition of the algorithm. The second stop
condition is satisfied if the used CPU time exceeds cpumax – in
the experiments we considered cpumax = 3600 seconds. The
third stop condition is of a topological nature. The first part of
the third condition is related with the intersection of the current
mincut with the spanning tree with higher probability of being
operational, the first k-tree – see step 15 of Algorithm 1. If the
this intersection results in a set with a size equal to the floor
of the average degree, k, this implies the following mincuts
will not contribute significantly to the diminishing of the upper
bound due to the fact that the mincut reliability will be very
small. In fact, it was observed that U ′L, in most cases, did
not change significantly after considering the first few cuts.
The second part of the third stop condition tests if the first
mincut, the one the largest probability, is contained in the
current generated k-tree – see step 18 of Algorithm 1. If the
latter condition is met it implies that the following spanning
trees (namely in networks with varying edges probability) will
not contribute significantly to increase the lower bound due to
the fact that their contribution to the reliability bound will be
very small. In this case a large number of spanning trees would
be required to effectively increase R′L.

Algorithm 1 Algorithm for the determination of the reliability
bounds.
Require: A connected undirected graph G = (N,E), the

edges reliability, the width of the interval between the
bounds (∆), cpu time limit (cpui ∧ cpumax ≥ 1).

Ensure: Returns the obtained reliability lower and upper
bounds: RL and RU .

1: Make pendant, series and possibly parallel reductions of
the network, creating a network G′, G′ = (N ′, E′), N ′ ⊆
N , E′ ⊆ E, with corrected edges probability of being
operational, where the multiplicative conditioning factor
is Ω : R(G) = ΩR(G′).

2: k ← baverage node degree of G’c
3: i← 1, cutstop ← 0, treestop ← 0, cpu1 ← 0
4: while ((R′U − R′L) < ∆/Ω) ∧ (cpui < cpumax) ∧

(cutstop = 0 ∨ treestop = 0) do
5: if cutstop = 0 then
6: generate the i-th cutset, Ci, using an iterative mincut

enumeration algorithm
7: update U ′L, calculating iteratively the min-sum of

disjoint products
8: update R′U : R′U ← (1− U ′L)
9: end if

10: if treestop = 0 then
11: generate the i-th pathset, Pi, using a k-shortest span-

ning tree enumeration algorithm
12: update R′L, calculating iteratively the min-sum of

disjoint products
13: end if
14: if i 6= 1 then
15: if Ci ∩ P1 = k then
16: cutstop ← 1
17: end if
18: if C1 ⊂ Pi then
19: treestop ← 1
20: end if
21: end if
22: i← i + 1 and then gets cpui

23: end while
24: RL ← ΩR′L
25: RU ← Ω(1− U ′L)

IV. RESULTS AND DISCUSSION

The availability ae of an edge e is the fraction of the time
that edge e is operational, and has a value in [0.0,1.0]. The
probability of an edge being operational is in fact the edge
availability. So the bounds for all-terminal reliability described
in the previous section, are in fact bounds for the all-terminal
availability, that is the fraction of time that every node is able
to communicate with every other node.

Here, the results of the algorithm presented in section III
are compared with the Bonferroni bounds, calculated using
the mincuts. The mincuts were generated using the algorithm
proposed in [29], taking into account the notes in [30].



The networks used for testing the proposed algorithm are
from the SNDlib [26] with the exception of netvkk (repre-
senting a possible communication network for the California
power grid). The California power grid consists of over three
thousand sub-stations. The minimum distance between two
sub-stations is 1.2 miles, the maximum is 1074 miles, and on
average is 310 miles [31]. Given the availability performance
of fiber optic cable, calculated according to Eq. (13), and
the distances between all sub-stations, it is unlikely that a
communication network build in parallel to the existing power
network (like netvkk for the California power grid) should
meet the 99.999% availability recommended by the U.S.
Department of Energy (DOE) [32].

All the results were obtained using a Intel(R) Core(TM)
i7-3520M CPU @ 2.90GHz processor laptop with 8G of
RAM. The width of the interval between the bounds (∆) was
considered equal to 1E-4 and 1E-5, which ensures 4 and 5
digits in common, respectively, between the upper and lower
bounds (unless one of the other stop conditions is attained).
The edge availability ae was calculated using the following
equation[33]:

ae = 0.99987de/(250×1.6093) (13)

where de is the distance between the two end nodes of edge
e in the network (calculated assuming that the coordinates
of the nodes correspond to their GPS locations). In Eq. (13)
the value 1.6093 converts miles to km. Structural properties
of the networks studied (all from the SNDlib [26], with the
exception of netvkk) are presented in Table I. In Tables I and II
the total number of spanning trees of the original networks
and of the reduced networks (where all nodes have at least
degree 3) are presented, respectively. The number of spanning
trees was calculated using the determinant of the Kirchhoff’s
matrix, after removing one column and row, using the LU
decomposition [34], [35]. As can be seen in Tables I and II the
number of spanning trees can be very large. In fact, Cayley
[36] demonstrates that for a complete graph the number of
distinct trees with N vertices is exactly NN−2.

TABLE I
NETWORK TOPOLOGICAL INFORMATION OF THE ORIGINAL NETWORKS

Network Nodes Edges
Number of

spanning trees

polska 12 18 5161

atlanta 15 22 2.0607E4

newyork 16 49 1.4538E10

nobel-germany 17 26 1.0995E5

geant 22 36 2.6454E7

france 25 45 1.2042E9

nobel-eu 28 41 1.6883E8

pioro40 40 89 5.0612E20

germany50 50 88 4.5872E19

netvkk 54 70 3.7803E9

ta2 65 108 1.6901E22

TABLE II
NETWORK TOPOLOGICAL INFORMATION FOR REDUCED NETWORKS

Network Nodes Edges
Number of

spanning trees

polska 10 16 2501

atlanta 7 11 192

newyork 15 47 6.2391E5

nobel-germany 7 12 320

geant 10 21 3.8208E4

france 11 21 3.8909E4

nobel-eu 16 26 4.72554E5

pioro40 40 89 5.0612E20

germany50 39 73 9.0786E16

netvkk 14 26 4.8851E5

ta2 36 69 4.3905E15

Note, that a wide range of networks was studied from sparse
networks like polska to denser networks like newyork. It is
also possible to observe, in Table II, that the network reduction
proposed by Shooman [25] reduces the number of spanning
trees. Nevertheless, even with this reduction the number of
spanning tress in the network can be very large. The calculated
Bonferroni bounds for the networks are presented in Table III,
without using the pendant and series reductions proposed by
Shooman [25].

It is possible to observe in Table III that as the density of the
network increases, for instance from polska to newyork, the
time to calculate Bonferroni bounds also increases. One of the
most important steps in the calculation of Bonferroni bounds is
the determination of all the cutsets. As can be seen in Table III
for larger and denser networks (pioro40, germany50 and ta2)
it is not possible to calculate all the mincuts due to memory
exhaustion. Using the procedure for network reduction in [25]
the time for the calculation of Bonferroni bounds diminishes
and the accuracy slightly improves in some cases, as can be
seen in Table IV.

While, the time for computation of the Bonferroni bounds

TABLE III
BONFERRONI BOUNDS FOR SEVERAL NETWORKS WITH NO NETWORK

REDUCTION

Network RB
L RB

U Time(s)

polska 0.99999999 0.99999999 0.50

atlanta 0.99995341 0.99995341 1.11

newyork 0.99998801 0.99998801 1164.6

nobel-germany 0.99999999 0.99999999 2.12

geant 0.99999469 0.99999469 648.72

france 0.99992549 0.99992561 183.42

nobel-eu 0.99999953 0.99999953 485.20

pioro40 - - -

germany50 - - -

netvkk 0.99935935 0.99935954 1115.1

ta2 - - -



TABLE IV
BONFERRONI BOUNDS FOR SEVERAL NETWORKS WITH NETWORK

REDUCTION

Network RB
L RB

U Time(s)

polska 0.99999999 0.99999999 0.18

atlanta 0.99995341 0.99995341 0.03

newyork 0.99998801 0.99998801 517.85

nobel-germany 0.99999999 0.99999999 0.02

geant 0.99999469 0.99999469 0.48

france 0.99992557 0.99992557 0.58

nobel-eu 0.99999953 0.99999953 10.26

pioro40 - - -

germany50 - - -

netvkk 0.99935954 0.99935954 2.71

ta2 - - -

TABLE V
BOUNDS FOR SEVERAL NETWORKS WITH NETWORK REDUCTION USING

ALGORITHM 1 WITH AN ERROR ∆ = 1E − 5

Network RL RU Time(s)

polska 0.99999994 0.99999999 0.28

atlanta 0.99995334 0.99995363 0.02

newyork 0.99998042 0.99998801 3210.66

nobel-germany 0.99999996 0.99999999 0.02

geant 0.99999363 0.99999469 0.04

france 0.99991582 0.99992559 0.09

nobel-eu 0.99999907 0.99999953 0.19

pioro40 0.98902399 0.99999999 3600

germany50 0.99992589 0.99999999 3600

netvkk 0.99935952 0.99935954 3.41

ta2 0.99312439 0.99860466 3600

TABLE VI
BOUNDS FOR SEVERAL NETWORKS WITH NETWORK REDUCTION USING

ALGORITHM 1 WITH AN ERROR ∆ = 1E − 4

Network RL RU Time(s)

polska 0.99991850 0.99999999 0.25

atlanta 0.99990241 0.99995363 0.02

newyork 0.99991225 0.99998801 168.34

nobel-germany 0.99990433 0.99999999 0.01

geant 0.99993909 0.99999469 0.04

france 0.99988254 0.99992559 0.05

nobel-eu 0.99995338 0.99999953 0.07

pioro40 0.98902399 0.99999999 3600

germany50 0.99992589 0.99999999 3495.65

netvkk 0.99927854 0.99935954 0.04

ta2 0.99312439 0.99860466 3600

decreases dramatically using network reduction, for networks
with a high number of edges the number of mincuts is so large
that (2N−1 − 1, for complete graphs) the time and memory
needed to retrieve all the mincuts becomes infeasible.

The results for the bounds calculated using Algorithm 1
presented in section III and using the network reduction can

TABLE VII
DIFFERENCE BETWEEN THE UPPER AND LOWER BOUND FOR BONFERRONI

CASE AND FOR ALGORITHM 1.

Network ∆B ∆B′ ∆=1E-5 ∆=1E-4

polska 0.0 0.0 5.14E-8 8.15E-05

atlanta 3.32E-9 1.62E-11 2.93E-7 5.12E-05

newyork 1.08E-15 0.0 7.59E-6 7.58e-05

nobel-germany 1.61E-13 0.0 2.92E-8 9.57E-05

geant 6.91E-12 0.0 1.06E-06 5.56E-05

france 1.19E-7 3.90E-13 2.18E-7 4.30E-05

nobel-eu 1.09E-10 0.0 4.58E-7 4.61E-05

pioro40 - - 1.10E-2 1.10E-2

germany50 - - 7.41E-5 7.41E-05

netvkk 1.9E-7 0.0 2.14E-8 8.10E-05

ta2 - - 5.48E-3 5.48E-3

be seen in Table V. Comparing Table V with Table IV it is
possible to observe that the time of execution is in the same
order of magnitude for the two methods. The exceptions
are the newyork network, which is one order of magnitude
higher for the proposed algorithm, and the geant and nobel-eu
networks, which are lower one and two orders of magnitude,
respectively, for the proposed algorithm. It can be seen in
Table V that the proposed algorithm calculates the bounds
for networks pioro40, germany50 and ta2, which can not
be calculated using the method described by Nelson [21] to
compute the Bonferroni bounds.

In Table VII data on the tightness of the bounds is presented
specifically, the difference between the upper and lower bound,
for Bonferroni method without network reduction, ∆B , for
Bonferroni method with network reduction, ∆B′ , and the
corresponding value for the proposed algorithm depending
on ∆. Note that in the case of the germany50 network the
difference between the upper and lower bound is apparently
equal regardless of the ∆ used – in fact the values differ less
than 1E-13.

The tightness of the bounds calculated with Bonferroni
method is generally lower than the obtained with the proposed
algorithm (for the specified error limits of 1E-4 and 1E-5).
Comparing the CPU time as registered in Tables V and VI
we can verify that the CPU time decreases significantly when
∆ = 1E-4, especially in the case of the newyork network;
this CPU time is now less than the CPU time for Bonferroni
bounds. It can also be observed a slight reduction of the CPU
time of the germany50 network, but for pioro40, and ta2 the
CPU time remains equal to the allowed value for cpumax. Note
that although in the ta2 network the required error (1E-5 or
1E-4) was not achieved, the obtained bounds show that the
network availability for this network has only two nines. The
precision achieved by the proposed algorithm is adequate for
the all-terminal availability problem with the exception of the
pioro40 network. In the case of the germany50 network the



results obtained ensured that an availability with four nines is
guaranteed, but possibly more could be obtained. Analysing
the results presented in Table V and Table VI it can be ob-
served that the difference between the upper and lower bound
is diminished by increasing the execution time of Algorithm 1.
The data presented in Table VII also demonstrates that the
proposed algorithm can calculate bounds where Bonferroni
method was unfeasible (for pioro40, germany50 and ta2).

As expected, in the case of netvkk, the all-terminal avail-
ability (see Tables III-VI) even if a perfectly available com-
munication network is assumed within every sub-station, only
achieves three nines quite below the required 99.999% avail-
ability [32].

V. CONCLUSIONS

In this paper we proposed a new algorithm for computing
all terminal reliability bounds for large networks. It was
confirmed that is not possible to use the classic approaches to
calculate availability bounds of large networks with methods
that require all the mincuts or minpaths. We illustrated the
advantages of using a procedure to reduce the network size to
decrease reliability bounds computational time. Nevertheless,
it was verified that the number of spanning trees continues
to be very large making calculation of the reliability bounds
using Bonferroni or the Esary-Proschan bounds infeasible for
large networks.

The performance of the new algorithm was compared with
Bonferroni bounds and it was shown that it can calculate
bounds for networks where Bonferroni bounds are not compu-
tationally feasible. The results show the proposed approach is
computationally feasible and reasonably accurate. Thus allow-
ing one to obtain bounds when it not possible to enumerate
all mincuts or all minpaths.
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