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Abstract

In this work we study two matrix rank minimization problems, which lead to two new notions of

matrix rank. In the first one, our goal is to minimize the rank of a complex matrix whose absolute

values of the entries are given. We call this minimum the phaseless rank of the matrix of the entrywise

absolute values. In the second, the rank minimization is performed over complex matrices whose

entries have prescribed arguments. In this case, the minimum is named as the phase rank of the matrix

of phases or arguments. Regarding phaseless rank, we extend a classic result of Camion and Hoffman

and connect it to the study of amoebas of determinantal varieties and of semidefinite representations

of convex sets. As a result, we prove that the set of maximal minors of a matrix of indeterminates

forms an amoeba basis for the ideal they define, and we attain a new upper bound on the complex

semidefinite extension complexity of polytopes, dependent only on their number of vertices and facets.

We also highlight the connections between the notion of phaseless rank and the problem of finding

large sets of complex equiangular lines or mutually unbiased bases. The main contributions on phase

rank are a new and simpler characterization of the 3×3 case, more specifically that the coamoeba of

the 3×3 determinant is completely characterized by the condition of colopsidedness, and a simple

upper bound on the phase rank dependent only on the dimensions of the matrix.





Resumo

Nesta tese estudamos dois problemas de minimização de característica matricial, que dão origem eles

próprios a dois novos conceitos de característica matricial. No primeiro deles, pretendemos determinar

a característica mínima de todas as matrizes complexas cujos valores absolutos das entradas são

dados. Este mínimo é chamado característica sem fase da matriz dos valores absolutos. No segundo,

a minimização da característica restringe-se às matrizes complexas cujos argumentos estão fixos.

Neste caso, o mínimo é designado por característica de fase da matriz dos argumentos. Relativamente

à característica sem fase, generalizamos um resultado clássico de Camion e Hoffman que pode

ser reinterpretado em termos de amibas de variedades determinantais e ligado às representações

semidefinidas de conjuntos convexos. Em particular, provamos que o conjunto dos menores maximais

de uma matriz de variáveis constitui uma base da amiba do ideal por eles definido, além de obtermos

um novo majorante para a complexidade de extensão complexa semidefinida de polítopos, dependente

apenas dos seus números de vértices e facetas. Enfatizamos também as relações entre o conceito de

característica sem fase e os problemas das linhas equiangulares complexas e das mutually unbiased

bases. Quanto à característica de fase, os principais contributos desta tese são uma nova e mais simples

caracterização do caso 3× 3, nomeadamente que a coamiba do determinante 3× 3 é totalmente

determinada pela condição de colopsidedness, e um majorante simples para a característica de fase

que depende apenas das dimensões da matriz.
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Introduction

Minimizing the rank function over a matrix set defines a rank minimization problem (RMP). RMPs

arise in many research areas, from system control to image reconstruction, and are mostly difficult

optimization problems (NP-hard), essentially due to the non-convex nature and discontinuity of the

rank function. Even when the feasible set is an affine subspace of matrices, considered to be the

simplest case, RMPs remain, in general, highly difficult [63].

In this work, we study two distinct rank minimization problems. In the first one, discussed in

Chapter 1, we minimize the rank of a complex matrix whose absolute values of the entries are given.

We call this minimum the phaseless rank of the matrix of the entrywise absolute values, denoted by

rankθ (A). In the second, analyzed in Chapter 4, the rank minimization is performed over complex

matrices whose entries share the arguments or phases. In this case, the minimum is named as the

phase rank of the matrix of phases or arguments, represented by rank phase(A).

The study of phaseless rank can be traced back to [15], by Camion and Hoffman, where the

problem of characterizing A ∈ Rn×n
+ for which we have rankθ (A) = n is solved. In that paper,

the question is seen as finding a converse for the diagonal dominance, a sufficient condition for

nonsingularity of a matrix. This result was further generalized in [48], where a lower bound is derived

for rankθ (A) for general A, and some special cases are studied, although the rank itself is never

formally introduced. While the result of Camion and Hoffman is well known, there was little, if any,

further developments in minimizing the rank of a matrix over an equimodular class. This problem has,

however, resurfaced in recent years under different guises in both the theory of semidefinite lifts of

polytopes and amoebas of algebraic varieties. In this work we build on the work of these foundational

papers, deriving some new results and highlighting the consequences they have in those related areas.

Phase rank, in turn, can be seen as a dual version of phaseless rank. In fact, in the latter, the

entrywise absolute value matrix is given and we seek a phase assignment for which the rank is

minimum, whereas in the former, the matrix of phases/arguments is specified and we look for positive

numbers that, when multiplied by those phases, achieve the minimum rank. Alternatively, phase rank

can be introduced as an extension to complex matrices of the notion of sign rank, a well-established

topic in matrix theory. Phase rank also provides a natural way of studying an important example of

coamoebas of algebraic varities, specifically the coamoebas of determinantal varieties. While the

notion of phase rank is new, it is a natural extension of several previous works. Besides the extensive

work on sign rank, there are also antecedents to our study of the complex case in what is called the ray

1
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nonsingularity problem: when is every matrix with fixed given phases invertible? This question has

been exploited and essentially solved for in a series of papers at the turn of the millenium [44, 49, 53]

and has seen a few subsequent developments. In this work we will relate this new notion of phase rank

with the results in these adjacent topics, and advance towards an understanding of the basic properties

of this quantity.

This thesis is organized in the following way. Chapter 1 covers the phaseless rank and contains

five sections. In Section 1.1, we introduce formally the notions of phaseless and signless ranks and

show some relations between them and other rank notions found in the literature. In Section 1.2, we

relate the notion of phaseless rank with questions in amoeba theory and semidefinite representability

of sets, providing motivation and intuition to what follows. In Section 1.3, we revisit a result of

Camion and Hoffman, reproving it in a language well-suited to our needs, and drawing some simple

consequences. Section 1.4 covers our extensions and complements to this classic result. Finally, in

Section 1.5, we draw implications from those results to those of the connecting areas. Those include

proving that the maximal minors form an amoeba basis for the variety they generate and giving an

explicit semialgebraic description for those amoebas, as well as deriving a new upper bound for the

complex semidefinite rank of polytopes in terms of their number of facets and vertices. This chapter

content is essentially that of [32] (submitted and currently under revision for publication) with only

minor changes done to adapt it to the thesis structure.

Chapter 2 uses the case of the 4×4 matrices of phaseless rank at most 2, the first for which the

results of Chapter 1 do not give a full characterization, to introduce several tools and techniques to

numerically approximate and certify the phaseless rank of matrix. We use tools from optimization to

extract certificates of membership or non-membership, and explore how well they work on this case.

In Chapter 3, we discuss some related open questions and report our efforts towards addressing

them. We discuss in some detail three of these projects: studying the complexity of phaseless rank

computations, in Section 3.1; in Section 3.2, inquiring into when do we have full-dimensionality of

the set of n×m nonnegative matrices with phaseless rank at most k, for given integers n, m and k; and,

to close this chapter, in Section 3.3, some phaseless rank variants are proposed and the link between

phaseless rank and the geometric problem of finding large sets of equiangular lines is highlighted.

Finally, Chapter 4 is dedicated to the study of phase rank. In Section 4.1, this quantity is motivated

and formally defined, and a brief history of the precursors of this definition is presented. Then, in

Section 4.2, we introduce the necessary background about both sign rank and coamoebas, two classic

objects intrinsically related to phase rank, and explain that relationship. Section 4.3 makes a review

of the literature on ray nonsingularity, presenting the relevant results to our work. In section 4.4 we

present what is known for the only non-trivial square cases of nonmaximal phase rank, the 3×3 and

the 4×4 matrices. In particular we show a new and simpler characterization of the 3×3 case, by

proving that the coamoeba of the 3×3 determinant is completely characterized by the condition of

colopsidedness. In Section 4.5 we briefly explore when are the phase ranks typical. Lastly, in Section

4.6, we extend two lower bounds from sign rank to phase rank, by slightly adapting its proofs and
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give a basic upper bound, derived from simple considerations. This chapter will form the basis of a

forthcoming paper, still in preparation.

Throughout this work we will use Rn×m
+ and Rn×m

++ to denote the sets of n×m real matrices with

nonnegative and positive entries, respectively. We will also use S n, S n
+, S n(C) and S n

+(C) to

denote, in this order, the sets of n×n real symmetric matrices, n×n real positive semidefinite matrices,

n×n complex hermitian matrices and n×n complex positive semidefinite matrices.





Chapter 1

Phaseless rank

1.1 Notation, definitions and basic properties

Given a matrix in Rn×m
+ , we define its phaseless rank as the smallest rank of a complex matrix

equimodular with it.

Definition 1.1.1. Given A ∈ Rn×m
+ , the set of matrices equimodular with A is denoted by

Ω(A) = {B ∈ Cn×m : |B|= A i.e., |Bi j|= Ai j,∀i, j}

and its phaseless rank is defined as

rankθ (A) = min{rank(B) : B ∈ Ω(A)}.

Equivalently, the phaseless rank of A ∈ Rn×m
+ can be written as

rankθ (A) = min{rank(A◦B) : B ∈ Cn×m, |Bi j|= 1,∀i, j},

where ◦ represents the Hadamard product of matrices. It is obvious that rankθ (A)≤ rank(A), and it

is not hard to see that we can have a strict inequality.

Example 1.1.2. Consider the 4×4 derangement matrix,

D4 =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

5



6 Phaseless rank

We have rank(D4) = 4 and, for any real θ , the matrix
0 1 1 1

1 0 ei(θ+π) ei(θ+ 2π

3 )

1 eiθ 0 ei(θ+ π

3 )

1 ei(θ− π

3 ) ei(θ− 2π

3 ) 0


has rank 2. Since this matrix has as entrywise absolute values the entries of D4, rankθ (D4)≤ 2, and in

fact we have equality. With some extra effort one can show that up to row and column multiplication

by complex scalars of absolute value one, and conjugation, this is the only element in the equimodular

class of D4 with rank less or equal than two.

If we restrict ourselves to the real case, we still obtain a sensible definition, and we will denote

that quantity by signless rank.

Definition 1.1.3. Let A ∈ Rn×m
+ .

rank± (A) = min{rank(B) : B ∈ Ω(A)∩Rn×m}.

Equivalently, this amounts to minimizing the rank over all possible sign attributions to the entries

of A. By construction, it is clear that rankθ (A)≤ rank± (A)≤ rank(A) for any nonnegative matrix A

and all inequalities can be strict.

Example 1.1.4. Let us revisit Example 1.1.2, and note that the signless rank of D4 is 4. Indeed, if we

expand the determinant of that matrix, we get an odd number of nonzero terms, all 1 or −1, so no

possible sign attribution can ever make it sum to zero. Thus, rankθ (D4)< rank± (D4) = rank(D4).

On the other hand, if we consider matrix

B =

2 1 1

1 2 1

1 1 2


it is easy to see that rank(B) = 3 but that flipping the signs of all the 1’s to −1’s drops the rank to 2,

as the matrix rows will then sum to zero, so we have rankθ (B) = rank± (B)< rank(B). If we want

all inequalities to be strict simultaneously, it is enough to make a new matrix with D4 and B as its

diagonal blocks.

A short remark at the end of [15] points to the fact that the problem seems much harder over the

reals, due to the combinatorial nature it assumes in that context. In fact, the signless rank is essentially

equivalent to a different quantity, introduced in [36], denoted by the square root rank of a nonnegative

matrix. In fact, by definition, rank± (A) = rank√ (A◦A) or, equivalently, rank√ (A) = rank± ( ◦√A),

where ◦ is the Hadamard product and ◦√A is the Hadamard square root of A. As such, the complexity

results proved in [23] for the square root rank still apply to the signless rank, implying the NP-hardness
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of the decision problem of checking if an n×n nonnegative matrix has signless rank equal to n. The

proof of that complexity result relies on the combinatorial nature of the signless rank and fails in the

more continuous notion of phaseless rank (in fact we will see the analogous result to be false for the

phaseless rank), offering some hope that this later quantity will prove to be easier to work with. We

will focus most of our attention in this latter notion.

The connection to the square root rank can actually be used to derive some lower bounds for both

rank± and rankθ .

Lemma 1.1.5. Let A ∈ Rn×m
+ and r = rank(A◦A). Then, rank± (A)≥

√
1+8r−1

2 and rankθ (A)≥
√

r.

Proof. The basic idea is that if we take a matrix B equimodular with A and a minimal factorization

B =UV ∗, and let ui and v j be the i-th and j-th rows of U and V , respectively, we have

⟨uiu∗i ,v jv∗j⟩= |⟨ui,v j⟩|2 = |bi j|2 = a2
i j.

Now all the uiu∗i and v jv∗j come from the space of real symmetric matrices of size rank± (A), if we are

taking real matrices B, and complex hermitian matrices of size rankθ (A), if we are taking complex

matrices B. Since the real dimensions of these spaces are, respectively,
(rank± (A)+1

2

)
and rankθ (A)2,

and they give real factorizations of A◦A, we get the inequalities

rank(A◦A)≤
(

rank± (A)+1
2

)
and rank(A◦A)≤ rankθ (A)2,

which, when inverted, give us the intended inequalities.

This result is known in the context of semidefinite rank, and is included here only for the purpose

of a unified treatment. An additional very simple property that is worth noting is that a nonnegative

matrix has rank one if and only if it has signless rank one, if and only if it has phaseless rank one.

This simple fact immediately tells us that the matrices D4 and B in Example 1.1.4 have phaseless rank

2, since we have proved it is at most 2 and those matrices have rank greater than one.

Besides the problem of computing or bounding the phaseless rank, we will be interested in the

geometry of the set of rank constrained matrices. In order to refer to them we will introduce some

notation.

Definition 1.1.6. Given positive integers k,n and m we define the following subsets of Rn×m
+ :

Pn×m
k = {A ∈ Rn×m

+ : rankθ (A)≤ k},

Sn×m
k = {A ∈ Rn×m

+ : rank± (A)≤ k},

and

Rn×m
k = {A ∈ Rn×m

+ : rank(A)≤ k}.
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It is easy to see that these are all semialgebraic sets. Moreover, the set Rn×m
k is well understood,

since it is simply the variety of matrices of rank at most k, defined by the k+1-minors, intersected

with the nonnegative orthant. It is also not too hard to get a grasp on the set Sn×m
k , as this is the

union of the variety of matrices of rank at most k with all its 2n×m possible reflections attained by

flipping the signs of a subset of variables, intersected with the nonnegative orthant. In particular, we

have a somewhat simple algebraic description of both these sets, and they have the same dimension,

k(m+n− k).

For Pn×m
k , all these questions are much more difficult. Clearly we have Rn×m

k ⊆ Sn×m
k ⊆ Pn×m

k ,

which gives us some lower bound on the dimension of the space, but not much else can be immediately

derived.

The relations between all these sets are illustrated in Figure 1.1, where we can see a random

2-dimensional slice of the cone of nonnegative 3×3 matrices (in pink) with the corresponding slice of

the region of phaseless rank at most 2, highlighted in yellow, while the slices of the algebraic closures

of the regions of signless rank at most 2 and usual rank at most 2 are marked in dashed and solid lines,

respectively. Note that Figure 1.1 suggests P3×3
2 is full-dimensional. In fact, Pn×n

k is full-dimensional

in Rn×n
+ for any k ≥ n+1

2 . This observation follows from Corollary 1.4.12.

Fig. 1.1 Slice of the cone of nonnegative 3×3 matrices with P3×3
2 , S3×3

2 and R3×3
2 highlighted

1.2 Motivation and connections

The concept of phaseless rank is intimately connected to the concept of semidefinite rank of a matrix,

used, for instance, to study semidefinite representations of polytopes and amoebas of algebraic

varieties. In this section we will briefly introduce each of those areas and establish the connections, as

those were the motivating reasons for our study of the subject.
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1.2.1 Semidefinite extension complexity of a polytope

The semidefinite rank of a matrix was introduced in [34] to study the semidefinite extension complexity

of a polytope. Recall that given a d-polytope P, its semidefinite extension complexity its the smallest k

for which one can find A0,A1, . . . ,Am ∈ S k such that

P =

{
(x1, . . . ,xd) ∈ Rd : ∃xd+1, . . . ,xm ∈ R s.t. A0 +

m

∑
i=1

xiAi ≽ 0

}
.

In other words, it is the smallest k for which one can write P as the projection of a slice of the cone

of k× k real positive semidefinite matrices. In order to study this concept one has to introduce the

notion of slack matrix of a polytope. If P is a polytope with vertices p1,..., pv and facets cut out by the

inequalities ⟨a1,x⟩ ≤ b1, ..., ⟨a f ,x⟩ ≤ b f , then we define its slack matrix to be the nonnegative v× f

matrix SP with entry (i, j) given by b j −⟨a j, pi⟩.

Additionally, the semidefinite rank of a nonnegative matrix A ∈ Rn×m
+ , rankpsd (A), is the smallest

k for which one can find U1 . . . ,Un,V1, . . . ,Vm ∈ S k
+ such that Ai j = ⟨Ui,Vj⟩. By the main result in

[34] one can characterize the semidefinite extension complexity of a d-polytope P in terms of the

semidefinite rank of its slack matrix.

Proposition 1.2.1. The semidefinite extension complexity of a polytope P is the same as the semidefinite

rank of its slack matrix, rankpsd (SP).

For a thorough treatment of the positive semidefinite rank, see [23]. As noted in [33, 46], one can

replace real positive semidefinite matrices with complex positive semidefinite matrices and everything

still follows through. More precisely, if one defines the complex semidefinite extension complexity of

P as the smallest k for which one can find B0,B1, . . . ,Bm ∈ S k(C) such that

P =

{
(x1, . . . ,xd) ∈ Rd : ∃xd+1, . . . ,xm ∈ R s.t. B0 +

m

∑
i=1

xiBi ≽ 0

}
,

and the complex semidefinite rank of a matrix A ∈ Rn×m
+ , rankCpsd (A), as the smallest k for which

one can find U1 . . . ,Un,V1, . . . ,Vm ∈ S k
+(C) such that Ai j = ⟨Ui,Vj⟩, the analogous of the previous

proposition still holds.

Proposition 1.2.2. The complex semidefinite extension complexity of a polytope P is the same as the

complex semidefinite rank of its slack matrix, rankCpsd (SP).

The study of the semidefinite extension complexity of polytopes has seen several important recent

breakthroughs, and has brought light to this notion of semidefinite rank. It turns out that the notions

of signless and phaseless rank give a natural upper bound for these quantities.

Proposition 1.2.3 ([23, 46]). Given a nonnegative matrix A, we have rankCpsd (A)≤ rankθ (
◦√A) and

rankpsd (A)≤ rank± ( ◦√A).
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The proof of this result is essentially the one we used in Lemma 1.1.5, as factorizations of an

equimodular matrix with ◦√A give rise to semidefinite factorizations to A by taking outer products of

the rows of the factors. This bound is particularly important in the study of polytopes, since it fully

characterizes polytopes with minimal extension complexity.

Proposition 1.2.4 ([33, 36]). Given a d-polytope P, we have that its complex and real semidefinite

extension complexities are at least d +1. Moreover, they are d +1 if and only if rankθ (
◦
√

SP) = d +1

and rank± ( ◦
√

SP) = d +1, respectively.

The characterization of minimal real semidefinite extension complexity in terms of the signless

rank of ◦
√

SP was used to determine which polytopes have minimal real semidefinite extension

complexity in R3 and R4 [35, 36], while the characterization of the minimal complex semidefinite

extension complexity in terms of the phaseless rank of the same matrix yielded an interesting property

on the complexity of polygons [33]. One of the main motivations for us to study the phaseless rank

comes precisely from this connection.

1.2.2 Amoebas of determinantal varieties

Another way of looking at phaseless rank is through amoeba theory. Amoebas are geometric objects

that were introduced by Gelfand, Kapranov and Zelevinsky in [30] to study algebraic varieties. These

complex analysis objects have applications in algebraic geometry, both complex and tropical, but are

notoriously hard to work with. They are the image of a variety under the entrywise logarithm of the

absolute values of the coordinates.

Definition 1.2.5. Given a complex variety V ⊆ Cn, its amoeba is defined as

A (V ) = {Log|z|= (log |z1|, . . . , log |zn|) : z ∈V ∩ (C∗)n}.

Deciding if a point is on the amoeba of a given variety, the so called amoeba membership problem,

is notoriously hard, making even the simple act of drawing an amoeba a definitely nontrivial task.

Other questions like computing volumes or even dimensions of amoebas are also hard. A slightly

more algebraic version of this object can be defined by simply taking the entrywise absolute values,

and omitting the logarithm.

Definition 1.2.6. Given a complex variety V ⊆ Cn, its algebraic or unlog amoeba is defined as

Aalg(V ) = {|z|= (|z1|, . . . , |zn|) : z ∈V}.

Considering this definition, it is clear how it relates to the notion of phaseless rank by way of

determinantal varieties. These and their corresponding ideals are a central object in both commutative

algebra and algebraic geometry, and a great volume of research has been focused on studying them.

Given positive integers n,m and k, with k ≤ min{n,m}, we define the determinantal variety Y n,m
k as the
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set of all n×m complex matrices of rank at most k. It is clear that this is simply the variety associated

to In,m
k+1, the ideal of the k+1 minors of an n×m matrix with distinct variables as entries.

Example 1.2.7. In Figure 1.2 we consider the amoeba of the variety V defined by the following 3×3

determinant:

det

1 x y

x 1 z

y 0 1

= 1− x2 + xyz− y2 = 0.

Fig. 1.2 A (V ) and Aalg(V ) of a determinantal variety.

Note that directly from the definition of amoeba, we have that the locus of n×m matrices of

phaseless rank at most k is an algebraic amoeba of a determinantal variety, more precisely,

Pn×m
k = Aalg(Y

n,m
k ).

Example 1.2.8. The blue region in Example 1.2.7 is exactly the region of the values of x,y and z for

which

rankθ

1 x y

x 1 z

y 0 1

≤ 2.

This is not totally immediate, since in the phaseless rank definition we are allowed to freely choose

a phase independently to each entry of the matrix, which includes the 1’s and also the possibility

of different phases for different copies of the same variable, which is not allowed in the amoeba

definition. However, since multiplying rows and columns by unitary complex numbers does not

change absolute values or rank, we can make any phase attribution into one of the right type, and the

regions do coincide.
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More generally, computing the phaseless rank of a matrix corresponds essentially to solving

the membership problem in the determinantal amoeba, so any result on the phaseless rank can

immediately be interpreted as a result about this fundamental object in amoeba theory. Also on the

interconnectedness between amoebas and phaseless rank, see Proposition 5.2 from [25], which, in our

language, states that the intersection of a fixed number of compactified hyperplane amoebas is empty

if and only if the phaseless rank of a specific nonnegative matrix is maximal.

1.3 Camion-Hoffman’s Theorem

In this section we set to revisit Camion-Hoffman’s Theorem, originally proved in [15]. The main

purpose of this section is to set the ideas behind this result in a language and generality that will be

convenient for our goals, highlighting the facts that will be most useful, and introducing the necessary

notation. For the sake of completeness a proof of the theorem is included. The main idea behind

the proof is the simple observation that checking for nonmaximal phaseless rank is simply a linear

programming feasibility problem, i.e., checking if a nonnegative matrix has nonmaximal phaseless

rank amounts to checking if a specific polytope is nonempty. Here, by nonmaximal phaseless rank we

mean that the phaseless rank is less than the minimum of the matrix dimensions.

Inspired by the language of amoeba theory ([61]) we introduce the notion of lopsidedness. Simply

put, a list of nonnegative numbers is lopsided if one is greater than the sum of all others. It is easy to

see geometrically, that a nonlopsided list of numbers can always be realized as the lengths of the sides

of a polygon in R2. Interpreting it in terms of complex numbers we get that a list of nonnegative real

numbers {a1, . . . ,an} is nonlopsided if and only if there are θk ∈ [0,2π] for which ∑
n
k=1 akeθki = 0.

This is enough to give us a first characterization of nonmaximal phase rank.

Lemma 1.3.1. Let A ∈ Rn×m
+ , with n ≤ m. Then, rankθ (A) < n if and only if there is λ ∈ Rn

+ with

∑
n
i=1 λi = 1 such that, for l = 1, . . . ,m, {A1lλ1, . . . ,Anlλn} is not lopsided.

Proof. First note that rankθ (A) < n if and only if there exists a matrix B with Bkl = Akleiθkl for all

k, l, such that rank(B)< n. This is the same as saying that the rows of B are linearly dependent, and

so there exists a nonzero complex vector z = (z1, . . . ,zn) such that ∑ |z j| = 1 and ∑
n
k=1 Aklzkeiθkl =

0, for l = 1, . . . ,m. By the observation above, this is equivalent to saying that, for l = 1, . . . ,m,

{A1l|z1|, . . . ,Anl|zn|} is not lopsided.

The previous result tells us essentially that rankθ (A)< n if and only if we can scale rows of A

by nonnegative numbers in such a way that the entries on each of the columns verify the generalized

triangular inequalities. The conditions for a matrix A ∈ Rn×m
+ , with n ≤ m, to verify rankθ (A) < n
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can now be simply stated as checking if there exists λ ∈ Rn such that

Ai jλi ≤ ∑k ̸=i Ak jλk, j = 1, . . . ,m, i = 1, . . . ,n

λi ≥ 0, i = 1, . . . ,n

∑
n
i=1 λi = 1.

We have just observed the following result.

Corollary 1.3.2. Given A ∈ Rn×m
+ , with n ≤ m, deciding if rankθ (A) < n is a linear programming

feasibility problem.

Note that this gives us a polynomial time algorithm (on the encoding length) for checking

nonmaximality of the phaseless rank. Equivalently, this gives us a polynomial time algorithm to solve

the amoeba membership problem for the determinantal variety of maximal minors.

We are now almost ready to state and prove a version of the result of Camion-Hoffman. We need

only to briefly introduce some facts about M-matrices.

Definition 1.3.3. An n×n real matrix A is an M-matrix if it has nonpositive off-diagonal entries and

all its eigenvalues have nonnegative real part.

The class of M-matrices is well studied, and there are numerous equivalent characterizations for

them. Of particular interest to us will be the following characterizations.

Proposition 1.3.4. Let A ∈ Rn×n have nonpositive off-diagonal entries. Then the following are

equivalent.

i A is a nonsingular M-matrix;

ii There exists x ≥ 0 such that Ax > 0;

iii The diagonal entries of A are positive and there exists a diagonal matrix D such that AD is strictly

diagonally dominant;

iv All leading principal minors are positive;

v The diagonal entries of A are positive and all leading principal minors of size at least 3 are

positive;

vi Every real eigenvalue of A is positive.

Remark 1.3.5. Characterizations ii, iii, iv and vi can be found in Theorem 2.3 of [7] and v in Corollary

2.3 of [60].
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Finally, recall that given A ∈ Cn×n, its comparison matrix, M (A), is defined by M (A)i j = |Ai j|,
if i = j, and M (A)i j =−|Ai j|, otherwise.

Theorem 1.3.6 (Camion-Hoffman’s Theorem). Given A ∈ Rn×n
+ , rankθ (A) = n if and only if there

exists a permutation matrix P such that M (AP) is a nonsingular M-matrix.

Proof. Let the entries of A be denoted by ai j, 1 ≤ i, j ≤ n. By Corollary 1.3.2, rankθ (A) = n, if and

only if the linear program

Mλ ≤ 0, λ ≥ 0,
n

∑
i=1

λi = 1

is not feasible, where

M =


M1

M2
...

Mn

 , with Mi =


a1i −a2i . . . −ani

−a1i a2i . . . −ani
...

...
. . .

...

−a1i −a2i . . . ani

 for i = 1, . . . ,n.

By Ville’s Theorem, a simple variant of Farkas’ Lemma, this is equivalent to the existence of y ≥ 0

such that yT M > 0. Furthermore, since yT M is in the convex cone generated by the rows of M, then,

by Carathéodory’s Theorem, yT M can be written as a nonnegative combination of n rows of M. Let us

call y′T M′ to this representation of yT M, where M′ is a submatrix of M containing exactly n rows of

M and y′ ≥ 0.

We first observe that each column of M′ has exactly one nonnegative entry and all components

of y′ should be positive. Furthermore, if two rows of M′ come from the same Mi, the components

of y′T M′ will not be all positive. So, there are n! possibilities for M′, given by M′T = M (AP), for

some permutation matrix P. But then, the existence of y′ ≥ 0 such that M (AP)y′ > 0 is equivalent to

M (AP) being a nonsingular M-matrix by Proposition 1.3.4, concluding the proof.

Note that, while equivalent, this is not the original statement of Camion-Hoffman’s result. This

precise version can be found, for example, in [13], as a corollary of a stronger result. The way it is

originally stated, Camion-Hoffman’s Theorem says that, if A is an n× n matrix with nonnegative

entries, every complex matrix in the equimodular class of A, Ω(A), is nonsingular if and only if there

exists a permutation matrix P and a positive diagonal matrix D such that PAD is strictly diagonally

dominant. Proposition 1.3.4 immediately gives us the equivalence of both statements. We also

highlight Proposition 5.3 from [25], where the authors rediscover Camion-Hoffman’s Theorem in an

amoeba theory context.

Example 1.3.7. Let us see how Camion-Hoffman’s Theorem applies to a 3×3 matrix. Let X ∈ R3×3
+

have entries [xi j]. We want to characterize P3×3
2 , that is to say, when is rankθ (X)≤ 2. By Camion-

Hoffman’s Theorem, this happens if and only if for every permutation matrix P ∈ S3, we have that

M (XP) is not a nonsingular M-matrix. By Proposition 1.3.4, checking if M (XP) is a nonsingular

M-matrix amounts to checking if its determinant is positive (since it is a 3×3 matrix).
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Hence, rankθ (X)≤ 2 if and only if det(M (XP))≤ 0 for all P ∈ S3. There are 6 possible matrices

P giving rise to 6 inequalities. For P equal to the identity, for example, we get

det

 x11 −x12 −x13

−x21 x22 −x23

−x31 −x32 x33

≤ 0,

which means

x11x22x33 − x11x23x32 − x12x21x33 − x12x23x31 − x13x21x32 − x13x22x31 ≤ 0.

It is not hard to check that any other P will result in a similar equality, where one monomial of the

terms of the expansion of the determinant of X appears with a positive sign, and all others with a

negative sign.

This can be very useful to understand the geometry of the phaseless rank, as seen in a slightly

more concrete example.

Example 1.3.8. Building from Example 1.3.7, let us characterize the nonnegative values of x and y

for which the circulant matrix 1 x y

y 1 x

x y 1


has phaseless rank less than 3. Computing the six polynomials determined in that example, we find

that they collapse to just four distinct ones:

1− x3 − y3 −3yx, −1+ x3 − y3 −3yx, −1− x3 + y3 −3yx, −1− x3 − y3 − yx.

For nonnegative x and y, the last one is always negative, so it can be ignored. Furthermore, the other

three factor each into a linear term and a nonnegative quadratic term, which can also be ignored, so

we are left only with the three linear inequalities

1− x− y ≤ 0, −1+ x− y ≤ 0, −1− x+ y ≤ 0.
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Fig. 1.3 Region where the 3×3 nonnegative circulant matrices have nonmaximal rankθ

In Figure 1.3 we can observe the region. Note that the only singular matrix in that region is that

for which x = y = 1, highlighted in the figure, every other one has usual rank equal to three. It is not

hard to check that the signless rank drops to two on the boundary of the region.

1.4 Consequences and extensions

In this section, we derive some new results and strengthen some old ones, based on both Camion-

Hoffman’s result and, more generally, the underlying idea of using linear programming theory to study

the phaseless rank.

1.4.1 The rectangular case

While we now have a full characterization for square matrices with nonmaximal phaseless rank, we are

interested in extending it to more general settings. In this section we will study the case of rectangular

matrices. Note that since transposition preserves the rank, we might restrict ourselves always to the

case of A ∈ Rn×m with n ≤ m for ease of notation. The simplest question one can ask is when does

such a matrix have nonmaximal phaseless rank, i.e., when is rankθ (A)< n?

Denote by AI , where I is a set of n distinct numbers between 1 and m, the n×n submatrix of A of

columns indexed by elements of I. It is clear that if A has phaseless rank less than n so does AI , since

the submatrices BI of a complex matrix B that is equimodular with A and has rank less than n will be,

themselves, equimodular to the matrices AI and have rank less than n. The reciprocal is much less

clear, since the existence of singular matrices equimodular with each of the AI does not seem to imply

the existence of a singular matrix globally equimodular with A, since patching together the phases

attributions to different submatrices is not trivial. Surprisingly, the result does hold.

Proposition 1.4.1. Let A ∈ Rn×m
+ , with n ≤ m. Then, rankθ (A)< n if and only if rankθ (AI)< n for

all I ⊆ {1, . . . ,m} with |I|= n.
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Proof. By the above discussion, the only thing that needs proof is the sufficiency of the condition

rankθ (AI)< n for all I, since it is clearly implied by rankθ (A)< n. Assume that the condition holds.

Then, by Lemma 1.3.1, for each AI there exists λ I ∈ Rn
+ with coordinate sum one, such that for each

column l ∈ I, {A1lλ
I
1 , . . . ,Anlλ

I
n} is not lopsided.

Given any x ∈ Rn
+, denote by Lop(x) the set of y ∈ Rn

+ with coordinate sum one such that

{x1y1, . . . ,xnyn} is not lopsided. This is simply the polyhedral set

Lop(x) =
{

y ∈ Rn
+,

n

∑
i=1

yi = 1 : xiyi ≤ ∑
k ̸=i

xkyk, i = 1, . . . ,n
}

and, in particular, is convex.

Let a j denote the jth column of A. The convex sets Lop(a j), for j = 1, ...,m, are contained in the

hyperplane of coordinate sum one, an n−1 dimensional space. Furthermore, by assumption, any n of

them intersect, since for any I = {i1, . . . , in}, we have λ I ∈
⋂

j∈I Lop(a j). By Helly’s Theorem, we

must have
m⋂

j=1

Lop(a j) ̸= /0,

which means that we can take λ in the intersection, which will then verify the conditions of Lemma

1.3.1, proving that rankθ (A)< n.

This shows that we can reduce the n×m case to multiple n× n cases, so we can still apply

Camion-Hoffman’s result to study this case.

Example 1.4.2. Consider the family of 3×4 matrices parametrized by x− y+1 x− y+1 x+1 1

1− x −x+ y+1 1− y x+ y+1

1− y 1− x 1 x− y+1

 .

If we want to study the region where the phaseless rank is two, it is enough to look at the four 3×3

submatrices and use the result of Example 1.3.7 to compute the region for each of them, which are

shown in Figure 1.4. The red pentagonal region is the region where the matrix is nonnegative, while

the colored region inside is the region of nonmaximal rank for each of the submatrices.

Fig. 1.4 Region of nonmaximal phase rank for each 3×3 submatrix
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By Proposition 1.4.1 we then can simply intersect the four regions to observe the region where the

phaseless rank of the full matrix is at most 2. The result is shown in Figure 1.5

Fig. 1.5 Region of nonmaximal phase rank for the full matrix

1.4.2 Geometric implications

From Camion-Hoffman’s Theorem and Proposition 1.4.1 one can also derive results on the geometry

of the sets Pn×m
n−1 , of the n×m matrices of nonmaximal phaseless rank. More precisely, we are

interested in the semialgebraic descriptions of such sets, and their boundaries.

Recall that Pn×m
k is always semialgebraic by the Tarski-Seidenberg principle, since it is the

projection of a semialgebraic set. However the description can in principle be very complicated.

For the square case, Theorem 1.3.6 together with Proposition 1.3.4 give a concrete semialgebraic

description of Pn×n
n−1 . Recall that Theorem 1.3.6 states that

Pn×n
n−1 =

⋂
P∈Sn

{A ∈ Rn×n
+ : M (AP) is not a nonsingular M-matrix}.

Let deti(X) denote the i-th leading principal minor of matrix X . The characterizations of M-matrices

given in Proposition 1.3.4 then allow us to write this more concretely as

Pn×n
n−1 =

⋂
P∈Sn

n⋃
i=3

{A ∈ Rn×n
+ : deti(M (AP))≤ 0},

which is a closed semialgebraic set, but not necessarily basic. For the n×m case, we just have to

intersect the sets corresponding to each of the n×n submatrices, so we can still write Pn×m
n−1 explicitly

as an intersection of unions of sets described by a single polynomial inequality.

Note that when n = 3 the unions have a single element, which trivially gives us the following

corollary.

Corollary 1.4.3. The set P3×m
2 is a basic closed semialgebraic set, for m ≥ 3.
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It is generally not true that we can ignore the size 3 minor when testing a matrix for the property

of being a nonsingular M-matrix. However, in our particular application we can get a little more in

this direction.

Corollary 1.4.4. For any A ∈ R4×4
+ , we have rankθ (A) < 4 if and only if det(M (AP)) ≤ 0 for all

permutation matrices P ∈ S4. In particular, P4×m
3 is a basic closed semialgebraic set for all m ≥ 4.

Proof. By Theorem 1.3.6, rankθ (A) = 4 if and only if, for some P, M (AP) is a nonsingular M-matrix,

which implies, by Proposition 1.3.4, that all its leading principal minors are positive, including its

determinant. This shows that if det(M (AP))≤ 0 for all permutation matrices P then rankθ (A)< 4.

Suppose now that det(M (AP))> 0, for some P. We have to show that that this implies rankθ (A)=

4. There exist three different permutation matrices P1, P2 and P3, distinct from P such that

det(M (AP1)) = det(M (AP2)) = det(M (AP3)) = det(M (AP))> 0.

Namely, P1, P2 and P3 are obtained from P by partitioning its columns in two pairs and transposing the

columns in each pair. If we denote the entries of AP by bi j, i, j ∈ {1,2,3,4}, we get the four matrices

M (AP),M (AP1),M (AP2) and M (AP3) as presented below in order:
b11 −b12 −b13 −b14

−b21 b22 −b23 −b24

−b31 −b32 b33 −b34

−b41 −b42 −b43 b44

 ,


b12 −b11 −b14 −b13

−b22 b21 −b24 −b23

−b32 −b31 b34 −b33

−b42 −b41 −b44 b43

 ,


b13 −b14 −b11 −b12

−b23 b24 −b21 −b22

−b33 −b34 b31 −b32

−b43 −b44 −b41 b42

 ,


b14 −b13 −b12 −b11

−b24 b23 −b22 −b21

−b34 −b33 b32 −b31

−b44 −b43 −b42 b41

 .

One can now easily check that det(M (AP)) can be written as

b41det3(M (AP3))+b42det3(M (AP2))+b43det3(M (AP1))+b44det3(M (AP)),

which, since all bi j are nonnegative, means that at least one of the size 3 leading principal minors must

be positive. By Proposition 1.3.4, the corresponding matrix must be a nonsingular M-matrix, since it

has both the 3×3 and the 4×4 leading principal minors positive.

This shows that if det(M (AP)) > 0 for some permutation matrix, then Camion-Hoffman’s

Theorem guarantees that rankθ (A) = 4, completing the proof.

Remark 1.4.5. One can extract a little more information from the proof of Corollary 1.4.4. For

checking whether a 4×4 nonnegative matrix A has phaseless rank less than four, we just need to check
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detM (AP)≤ 0 for all permutation matrices P. In addition, we also know that each determinant is

obtained from four different permutation matrices, leaving only six polynomial inequalities to check.

More concretely, if A has entries ai j, and perm(A) denotes the permanent of A, we just have to

consider the inequalities:

2(a12a23a34a41 +a11a24a33a42 +a14a21a32a43 +a13a22a31a44)−perm(A)≤ 0,

2(a13a22a34a41 +a14a21a33a42 +a11a24a32a43 +a12a23a31a44)−perm(A)≤ 0,

2(a12a24a33a41 +a11a23a34a42 +a14a22a31a43 +a13a21a32a44)−perm(A)≤ 0,

2(a14a22a33a41 +a13a21a34a42 +a12a24a31a43 +a11a23a32a44)−perm(A)≤ 0,

2(a13a24a32a41 +a14a23a31a42 +a11a22a34a43 +a12a21a33a44)−perm(A)≤ 0,

2(a14a23a32a41 +a13a24a31a42 +a12a21a34a43 +a11a22a33a44)−perm(A)≤ 0.

Unfortunately, Corollary 1.4.4 does not extend beyond n = 4. From n = 5 onwards, the condition

that det(M (AP))≤ 0 for all permutation matrices is stronger than having phaseless rank less than n,

as shown in the next example.

Example 1.4.6. Consider the matrices

A =


7 4 9 10 0

9 2 3 0 3

3 10 6 4 8

0 4 1 6 4

0 3 3 10 2

 and P =


1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 .

We have that rankθ (A)< 5, by Lemma 1.3.1, since no column is lopsided. However, det(M (AP))=

3732 > 0, so it does not verify the determinant inequalities for all permutations matrices.

We now turn our attention to the boundary of the set Pn×n
n−1 , which we will denote by ∂Pn×n

n−1 . For

n ≤ 4, the explicit description we got in Corollary 1.4.3 and Corollary 1.4.4 immediately guarantees us

that the positive part of the boundary is contained in the set of matrices A such that det(M (AP)) = 0

for some permutation matrix P. In particular this tells us that ∂Pn×n
n−1 ∩Rn×n

++ ⊆ Sn×n
n−1, for n ≤ 4,

the set of signless rank deficient matrices since det(M (AP)) = 0 implies det(M (AP)P−1) = 0 and

M (AP)P−1 is simply A with the signs of some entries switched. What is less clear is that exactly the

same is still true for all n.

Proposition 1.4.7. If A ∈ ∂Pn×n
n−1 ∩Rn×n

++ , then det(M (AP)) = 0 for some permutation matrix P.

Proof. Suppose A ∈ ∂Pn×n
n−1 ∩Rn×n

++ . Since Pn×n
n−1 is closed, rankθ (A) < n and there must exist a

sequence Ak of matrices such that Ak → A and every Ak is nonnegative and has phaseless rank n.
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By Camion-Hoffman’s result this implies that for every k we can find a permutation matrix

Pk ∈ Sn such that M (AkPk) is a nonsingular M-matrix or, equivalently, such that all eigenvalues of

M (AkPk) have positive real part. Note that since there is a finite number of permutations, there exists

a permutation matrix P such that Pki = P for an infinite subsequence Aki , and that M (AkiP) have all

eigenvalues with positive real part.

Since eigenvalues vary continuously, and M (AkiP)→ M (AP), we must have that all eigenvalues

of M (AP) have nonnegative real part, so M (AP) is an M-matrix. It cannot be a nonsingular M-matrix,

as that would imply that rankθ (A) = n. Therefore, M (AP) must be singular, i.e., det(M (AP)) = 0,

as intended.

So, in spite of needing the smaller leading principal minors to fully describe the region, the

boundary of Pn×n
n−1 will still be contained in the set cut out by the determinants of the comparison

matrices of the permutations of the matrices, even for n > 4. In the next example we try to illustrate

what is happening.

Example 1.4.8. Consider the slice of the nonnegative matrices in R5×5
+ that contains the identity, the

all-ones matrix and the matrix in Example 1.4.6, all scaled to have row sums 1. By what we saw

in Example 1.4.6, we know that in this slice the set of nonnegative matrices, the set of matrices of

phaseless rank less than 5 and the set of matrices A verifying M (AP) ≤ 0 for all P are all distinct.

This can be seen in the first image of Figure 1.6, where we see the sets in light blue, green and yellow,

respectively, and the three special matrices mentioned as black dots.

Fig. 1.6 A slice of the cone of 5×5 nonnegative matrices, with the nonmaximal phaseless rank region
and its basic closed semialgebraic inner approximation highlighted

In the second image of the same figure we can see the zero sets of the 120 different determinants

of the form det(M (AP)) and check that the extra positive boundary points of P5×5
4 do indeed come

from one of them.
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1.4.3 Upper bounds

In Proposition 1.4.1 we have shown that for an n×m matrix, with n ≤ m, to have phaseless rank less

than n it was enough to check all its n×n submatrices. A natural question is to ask if a matrix has

phaseless rank less than k if and only if the same is true for all its k× k submatrices, for any positive

integer k. This is false, as was shown by Levinger ([48]).

Theorem 1.4.9 ([48]). Let A = mIn + Jn, where m is an integer with 1 ≤ m < n−2, and In and Jn are,

respectively, the n×n identity and all-ones matrices. Then, rankθ (A)≥ m+2.

Note that it is not hard to see that all (m+2)× (m+2) matrices of the matrix A constructed above

have phaseless rank at most m+1, so this is indeed a counterexample.

So a perfect generalization of Proposition 1.4.1 is impossible, but we can try to settle for a weaker

goal: discovering what having all k× k submatrices with phaseless rank less than k allows us to

conclude about the phaseless rank of the full matrix. This program was carried out in the same paper

[48], where the following result was derived.

Proposition 1.4.10 ([48]). Let A ∈ Rn×m
+ , with n ≤ m. If all k× k submatrices of A have nonmaximal

phaseless rank, for some k ≤ n, then

rankθ (A)≤ m−
⌊

m−1
k−1

⌋
.

In this section we use Proposition 1.4.1 to improve on this result. The result we prove is virtually

the same, except that we can replace the m in the bound with the smaller n, obtaining a much better

bound for rectangular matrices.

Proposition 1.4.11. Let A ∈ Rn×m
+ , with n ≤ m. If all k × k submatrices of A have nonmaximal

phaseless rank, for some k ≤ n, then

rankθ (A)≤ n−
⌊

n−1
k−1

⌋
.

Proof. Let M be an k×m submatrix of A. By Proposition 1.4.1 the matrix M, has nonmaximal rank.

Hence, for every k×m submatrix M, we can find BM ∈ Ω(M) with rank less than k. Moreover, we are

free to pick the first row of BM to be real, since scaling an entire column of BM by eθ i does not change

the rank or the equimodular class.

Consider then k×m submatrices Mi of A, i = 1, . . . ,
⌊n−1

k−1

⌋
all containing the first row,which we

assume nonzero, but otherwise pairwise disjoint. We can then construct a matrix B by piecing together

the BMi’s, since they coincide in the only row they share, and filling out the remaining rows, always

less than k−1, with the corresponding entries of A.

By construction, in that matrix B we always have in the rows corresponding to BMi a row different

than the first that is a linear combination of the others, and can be erased without dropping the rank of
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B. Doing this for all i, we get that the rank of B has at least a deficiency per Bi, so its rank is at most

n−
⌊

n−1
k−1

⌋
,

and since B is equimodular with A, rankθ (A) verifies the intended inequality.

Note that by setting k = n we recover Proposition 1.4.1, so we have a strict extension of that result.

Setting k = 2, we get that if all 2×2 minors have phaseless rank 1 so does the matrix, which is an

obvious consequence of the observation already made in Section 1.1 that rankθ (A) = 1 if and only if

rank(A) = 1. For every k in-between we get new results, although not necessarily very strong. They

are, however, enough to get some further geometric insight. We say that rankθ (A) = k is typical in

Rn×m
+ if there exists an open set in Rn×m

+ for which all matrices have phaseless rank k.

An interesting question is the study of minimal typical ranks, which in our case corresponds to

ask for the minimal k for which Pn×m
k has full dimension. We claim that if k is typical, then we must

have k ≥
⌈

n+m−
√

(n−1)2+(m−1)2

2

⌉
. Take the map which sends each matrix in (C∗)n×m to its entrywise

absolute value, in Rn×m
++ . The image under this map of the variety of complex matrices with no zero

entries and of rank at most k is Pn×m
k ∩Rn×m

++ , which is full-dimensional if and only if k is at least the

minimal typical phaseless rank. Note that we can assume that every matrix in the domain has real

entries in the first row and column, since row and column scaling by complex numbers of absolute

value one preserve both the rank and the entrywise absolute value matrix. The real dimension of

the variety of complex matrices of rank at most k with real first row and column is 2(n+m− k)k,

twice the number of complex degrees of freedom, minus m+n−1, the number of entries forced to

be real. This difference should be at least n×m, the dimension of Pn×m
k ∩Rn×m

++ , since the map is

differentiable. Thus, we must have

2(n+m− k)k−n−m+1 ≥ nm,

which boils down to

k ≥

⌈
n+m−

√
(n−1)2 +(m−1)2

2

⌉
,

because k is a positive integer.

Corollary 1.4.12. For Rn×m
+ , with 3 ≤ n ≤ m, the minimal typical phaseless rank k must verify⌈

n+m−
√

(n−1)2 +(m−1)2

2

⌉
≤ k ≤

⌈
n+1

2

⌉
.

Proof. The lower bound comes from the above dimension count. To prove the upper bound, note

that the 3×3 all-ones matrix has phaseless rank 1 (less than three), and any small enough entrywise

perturbation of it also has phaseless rank less than 3, since it will still have nonlopsided columns.

This means that the n×m all-ones matrix, and any sufficiently small perturbation of it, have all
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3×3 submatrices with nonmaximal phaseless rank, which implies, by Proposition 1.4.11, that their

phaseless rank is at most
⌈n+1

2

⌉
. Hence, there exists an open set of Rn×m

+ in which every matrix has

phaseless rank less or equal than that number, which implies the smallest typical rank is at most that,

giving us the upper bound.

For m much larger than n the bound is tight, since the lower bound converges to
⌈n+1

2

⌉
.

1.5 Applications

1.5.1 The amoeba point of view

Many of the results developed in the previous sections have nice interpretations from the viewpoint

of amoeba theory. Here, we will introduce some concepts and problems coming from this area of

research and show the implications of the work previously developed.

As mentioned before, checking for amoeba membership is a hard problem. Even certifying that a

point is not in an amoeba is generally difficult. To that end, several necessary conditions for amoeba

membership have been developed. One such condition is the nonlopsidedness criterion. In its most

basic form, this gives a necessary condition for a point to be in the amoeba of the principal ideal

generated by some polynomial f , A ( f ).

Let f ∈C[z1, . . . ,zn] and a ∈Rn. By writing f as a sum of monomials, f (z) = m1(z)+ . . .+md(z),
define

f{a} := {|m1(a)|, . . . , |md(a)|}.

It is clear that in order for a to be the vector of absolute values of some complex root of f , the vector

f{a} cannot be lopsided, as it must cancel after the phases are added in. We then define

Nlop( f ) = {a ∈ Rn : f{a} is not lopsided}.

It is clear that A ( f )⊆Log(Nlop( f )), but the inclusion is generally strict. One immediate consequence

of Example 1.3.7 is the following.

Proposition 1.5.1. Let f = det(X) be the cubic polynomial in variables xi j, i, j = 1,2,3. Then

A ( f ) = Log(Nlop( f )).

So, the above proposition gives us an example where nonlopsidedness is a necessary and sufficient

condition. There is a general result from amoeba theory that gives sufficiency in some cases: for any

polynomial whose support forms the set of vertices of a simplex, it holds that A ( f ) = Log(Nlop( f )) .

This follows from [25] (see, for instance, Theorem 3.1 of [71] for details). This result is not contained

in that family, since the 3×3 determinant is not simple, i.e., its Newton polytope is not a simplex, it is

actually the direct sum of two triangles.
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Another interesting example that we can extract from our results concerns amoeba bases. Purbhoo

shows, in [61], that the amoebas of general ideals can be reduced in a way to the case of principal ideals,

since A (V (I)) =
⋂

f∈I A ( f ). The problem is that this is an infinite intersection, which immediately

raises the question if a finite intersection may suffice. This suggests the notion of an amoeba basis,

introduced in [66].

Definition 1.5.2. Given an ideal I ⊆ C[z1, . . . ,zn], we call a finite set B ⊂ I an amoeba basis for I if it

generates I and it verifies the property

A (V (I)) =
⋂
f∈B

A ( f )

while any proper subset of B does not.

Unfortunately, amoeba bases may fail to exist and in fact very few examples of them are known.

In [56] it is proved that varieties of a particular kind, those that are independent complete intersections,

have amoeba bases, and it is conjectured that only union of those can have them (see [56, Conjecture

5.3]). Proposition 1.4.1 gives us a new example of such nice behavior:

Corollary 1.5.3. Let X be an n×m matrix of indeterminates. The set of maximal minors of X is an

amoeba basis for the determinantal ideal they generate.

Note that this is just another result in a long line of results about the special properties of the

basis of maximal minors of a matrix of indeterminates, notoriously including the fact that they

form a universal Groebner basis, as proved in [8]. For 3× n matrices we actually have that the

nonlopsidedness of the generators is enough to guarantee the amoeba membership, an even stronger

condition.

All other results automatically translate to amoeba theory, and some have interesting translations.

We provide explicit semialgebraic descriptions for the amoeba of maximal minors, adding one example

to the short list of amoebas for which such is available, as pointed out in [56, Question 3.7]. Moreover,

Proposition 1.4.7 implies that the boundary of the amoeba of the determinant of a square matrix of

indeterminates is contained in the image by the entrywise absolute value map of the set of its real

zeros, while Corollary 1.4.12 states some conditions for full dimensionality of the amoeba of the

variety of bounded rank matrices.

1.5.2 Implications on semidefinite rank

As we saw before, upper bounds on the phaseless rank will immediately give us upper bounds on

the complex semidefinite rank. One can use that to improve on some results in the literature, and

hopefully to construct examples.

For a simple illustration, recall the following result proved in [46], that gives sufficient conditions

for nonmaximality of the complex semidefinite rank of a matrix.



26 Phaseless rank

Proposition 1.5.4 ([46]). Let A ∈ Rn×m
+ . If no column of ◦√A has a dominant entry (i.e., if every

column of ◦√A is not lopsided), then rankCpsd (A)< n.

We remark that the assumption in the previous result is just a sufficient condition for rankθ (
◦√A)<

n, which implies rankCpsd (A)< n, by Proposition 1.2.3. This observation easily follows from applying

Lemma 1.3.1 to ◦√A. This means that Proposition 1.5.4 is just a specialization of the following more

general statement.

Proposition 1.5.5. Let A ∈ Rn×m
+ . If rankθ (

◦√A)< n, then rankCpsd (A)< n.

One can check whether rankθ (
◦√A)< n by using both Proposition 1.4.1, if the matrix is not square,

and Theorem 1.3.6. More generally, Proposition 1.2.3 dictates that every upper bound for rankθ (
◦√A)

is an upper bound for rankCpsd (A). Thus, we have the following corollary of Proposition 1.4.11.

Corollary 1.5.6. Let A∈Rn×m
+ , with n≤m. If all k×k submatrices of ◦√A have nonmaximal phaseless

rank,

rankCpsd (A)≤ n−
⌊

n−1
k−1

⌋
.

One can actually improve on both these results by removing the need to consider the Hadamard

square root. To do that, we need an auxiliary lemma, concerning the Hadamard product of matrices:

Lemma 1.5.7. Let A∈Rn×n
+ and α ≥ 1. If rankθ (A) = n, then rankθ (A◦α) = n, where A◦α is obtained

from A by taking entrywise powers α .

Proof. By Theorem 1.3.6, rankθ (A) = n if and only if there exists a permutation matrix P such that

M (AP) is a nonsingular M-matrix, which is equivalent to saying that the minimum real eigenvalue of

M (AP) is positive, according to Proposition 1.3.4, i.e., σ(AP)> 0.

But then, Theorem 4 from [22] guarantees precisely that we must have

σ(A◦αP) = σ((AP)◦α)≥ σ(AP)α > 0,

proving that rankθ (A◦α) = n.

By specializing α = 2 and applying the previous lemma to the Hadamard square root of A we get

the following immediate corollary.

Corollary 1.5.8. Let A ∈ Rn×n
+ . If rankθ (A)< n, rankθ (

◦√A)< n.

This can be used to get a simpler upper bound on the complex semidefinite rank, testing submatri-

ces of A instead of its square root.

Corollary 1.5.9. Let A ∈ Rn×m
+ , with n ≤ m. If all k× k submatrices of A have nonmaximal phaseless

rank,

rankCpsd (A)≤ n−
⌊

n−1
k−1

⌋
.
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This can be used to derive simple upper bounds on the extension complexity of polytopes. Recall

that for a d-dimensional polytope, P, its slack matrix, SP, has rank d +1 and its complex semidefinite

rank is the complex semidefinite extension complexity of P. Since every (d +2)× (d +2) submatrix

of SP has rank d+1, it also has phaseless rank at most d+1. Thus, by applying the previous corollary

we obtain the following result.

Corollary 1.5.10. Let P be a d-dimensional polytope with v vertices and f facets, and m = min{v, f}
then

rankCpsd (SP)≤ m−
⌊

m−1
d +1

⌋
.

For d = 2, for example, this gives us an upper bound of
⌈2n+1

3

⌉
for the complex extension

complexity of an n-gon, which is similar asymptotically to the 4
⌈n

6

⌉
bound derived in [37] and slightly

better for small n (note that that bound is valid for the real semidefinite extension complexity, and so

automatically for the complex case too). Of course it is just linear, so it does not reach the sublinear

complexity proved by Shitov in [68] even for the linear extension complexity, but it is applicable in

general and can be useful for small polytopes in small dimensions. Moreover, it is, as far as we know,

the only non-trivial bound that works for polytopes of arbitrary dimension. As a last remark, we note

that such lift can explicitly can be constructed. This can easily be done from an actual rank m−
⌊m−1

d+1

⌋
matrix that is equimodular to the Hadamard square root of the slack matrix, and such matrix can, with

a small amount of work, be explicitly constructed from our results.





Chapter 2

The set of 4×4 matrices of phaseless rank
at most 2

In Chapter 1 we gave a complete characterization of Pn×m
n−1 , for m ≥ n−1. We also know that Pn×m

1

is always trivial. This means that the simplest case that we are yet to cover is P4×4
2 . This is a full

dimensional set, i.e., it has dimension 16 (see Table 3.1) and it makes sense to try to characterize

membership in it and its borders. In this section we present some of the efforts we carried out towards

that goal. This is meant as a case study, so that we can explore general techniques that might be used

to tackle any of the outstanding cases, or at least derive some numerical intuition on them.

Given a 4×4 nonnegative matrix, even if all its 3×3 submatrices have nonmaximal phaseless

rank, this does not guarantee the full matrix has phaseless rank less than 3. An example can be

obtained directly from Theorem 1.4.9, by setting n = 4 and m = 1:
2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

 .

This means that checking membership in P4×4
2 is likely more delicate than the nonmaximal case.

Below we study a simple family of matrices to better illustrate the difficulties involved.

Example 2.0.1. Let

A(x) =


x 1 1 1

1 x 1 1

1 1 x 1

1 1 1 x


and S = {x ≥ 0 : A(x) ∈ P4×4

2 }. On the one hand, S is nonempty and contains {0,1}, because

rankθ (A(0)) = 2 (see Example 1.1.2) and rankθ (A(1)) = 1. On the other hand, 2 ̸∈ S, as we just saw.

In fact, S ⊆ [0,2[, as explained below.

29
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If rankθ (A(x))≤ 2, the same holds for all its 3×3 submatrices. A characterization for P3×3
2 is

derived in Example 1.3.7. It follows that all 3×3 submatrices of A(x) have phaseless rank at most 2

if and only if

x3 ≤ 2+3x, 0 ≤ 3x+ x3, 0 ≤ 2+ x+ x3

x2 ≤ 3+2x, 0 ≤ 1+2x+ x2, 0 ≤ 3+ x2.

This set of inequalities can be replaced with a single one, namely 0 ≤ x ≤ 2. Thus, if x lies outside

of this interval, we immediately deduce rankθ (A(x))> 2, i.e., A(x) is not in P4×4
2 .

Now consider

B(x) =


x 1 1 1
1 x 1

2

√
3+2x2 − x4 + 1

2 (1− x2)i 1
2

√
3+2x2 − x4 − 1

2 (1− x2)i
1 − 1

2

√
3+2x2 − x4 − 1

2 (1− x2)i − 1
2 x(1− x2)+ 1

2 x
√

3+2x2 − x4i −i
1 − 1

2

√
3+2x2 − x4 + 1

2 (1− x2)i i − 1
2 x(1− x2)− 1

2 x
√

3+2x2 − x4i

 ,

with 0 ≤ x ≤
√

3 so that the argument in the square root is nonnegative. It is not hard to see that B(x)

has rank 2 and |B(x)|= A(x). Thus, [0,
√

3]⊆ S.

We have shown [0,
√

3]⊆ S ⊆ [0,2[. Regarding the interval ]
√

3,2[, it is unclear if it intersects S.

As we have seen above, even a simple family of matrices presents some difficulties. Characterizing

P4×4
2 in terms of polynomial equalities and inequalities seems to be challenging. We can try to focus

instead on certifying specific matrices, that is, given A ∈ R4×4
+ , how can one check if it is in P4×4

2 ?

For convenience and due to repeated use, we state the following remark.

Remark 2.0.2. Any complex matrix M ∈ Cn×m such that rank(M) ≤ k can be factorized as M1M2,

where M1 ∈ Cn×k and M2 ∈ Ck×m, or as (X1 + iY1)(X2 + iY2), with X1,Y1 ∈ Rn×k and X2,Y2 ∈ Rk×m.

Thus, any A ∈ Pn×m
k can be written as |(X1 + iY1)(X2 + iY2))|, with X1,Y1 ∈ Rn×k and X2,Y2 ∈ Rk×m.

According to it, A ∈ P4×4
2 if and only if the system A = |(X1+ iY1)(X2+ iY2))| is solvable for some

X1,Y1 ∈ R4×2 and X2,Y2 ∈ R2×4. In alternative, A ∈ P4×4
2 if and only if there is a complex matrix

M ∈ C4×4 whose 3×3 minors vanish and A = |M|.

Equivalently, we can try to solve instead the equations√
∑

1≤i, j≤4
(Ai j −|(X1 + iY1)(X2 + iY2)|i j)2 = 0,

for X1,Y1 ∈ R4×2 and X2,Y2 ∈ R2×4, in the former case, and, in the latter one,√
∑

1≤i, j≤4
|m(M)i j|2= 0,
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with respect to M ∈ C4×4 such that |M|= A, and where m(M)i j denotes the 3×3 minor associated to

the submatrix of M obtained by deleting its row i and column j.

2.1 Numerical membership testing

We explore these two approaches numerically. This can be done by minimizing numerically, for each

A ∈ Rn×m
+ , the functions √

∑
1≤i, j≤4

(Ai j −|(X1 + iY1)(X2 + iY2)|i j)2,

over X1,Y1 ∈ R4×2, X2,Y2 ∈ R2×4, or √
∑

1≤i, j≤4
|m(M)i j|2

over M ∈ C4×4 such that |M|= A.

Observe that zero is a global minimum for both optimization problems if and only if A is in P4×4
2 .

Notice, however, the difference between the two of them: in the former, the goal is to find a matrix

in P4×4
2 which is as close to A as possible, in terms of the absolute values of its entries, while in the

latter we search for a complex matrix equimodular with A which is as close to have rank at most 2 as

possible.

We illustrate both approaches with concrete examples.

Example 2.1.1. Let us get back to the matrix from Example 2.0.1,

A(x) =


x 1 1 1

1 x 1 1

1 1 x 1

1 1 1 x

 ,

and let S = {x ≥ 0 : A(x) ∈ P4×4
2 }, as before. Having in mind what was said in Example 2.0.1, the

numerical membership testing can be restricted to x ∈ [0,2]. The two optimization problems to solve

are, for each x ∈ [0,2],

min
X1,Y1,X2,Y2

√
∑

1≤i, j≤4
(A(x)i j −|(X1 + iY1)(X2 + iY2)|i j)2

and

min
B:|B|=A(x)

√
∑

1≤i, j≤4
|m(B)i j|2 = min

B:|Bi j|=1,∀i, j

√
∑

1≤i, j≤4
|m(A(x)◦B)i j|2.

Note that these are highly nonconvex and thus very hard optimization problems. We numerically

minimized both of them for several values of x using the Mathematica command NMinimize and



32 The set of 4×4 matrices of phaseless rank at most 2

Fig. 2.1 Numerical solution to the first optimization problem, on the left, and to the second one, on the
right, on a logarithmic scale.

plotted the attained results, shown in Figure 2.1. Note that due to the nature of the methods there is

no guarantee that the global optimum has been achieved, but these are rigorous upper bounds on the

true minimum. The results are highly affected by the algorithm picked for performing the numerical

minimization. Among the numerical algorithms provided by Mathematica, namely Nelder-Mead,

Differential Evolution, Simulated Annealing and Random Search, the last one appears to be one which

yields the best results. Hence, this was the method chosen for generating all the figures presented in

this section.

The first plot suggests clearly that S = [0,
√

3] (see Example 2.0.1), while the second one shows

that at least in this case the second approach is not reliable (as [0,
√

3]⊆ S). From this moment forward

we will therefore focus on the first of the approaches.

Example 2.1.2. Let us consider a slice of P4×4
2 with a two-dimensional affine space,

M(x,y) = A0 +A1x+A2y,

where A0, A1 and A2 are 4×4 real matrices and x and y are real variables. We want to study the set

T = {(x,y) : M(x,y) ∈ P4×4
2 }.

For generating random slices we chose the defining matrices A0,A1 and A2 in the following

way. When choosing A0, we generated random real numbers for the entries of X1, Y1, X2 and Y2

and considered A0 = |(X1 + iY1)(X2 + iY2)|, guaranteeing the choice of an interior point of P4×4
2 .

Furthermore, we picked

A1 =


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

−A0,

and picked the entries of A2 independently random. This set-up implies, for instance, that T is

nonempty, because it contains both the point (0,0) and a neighborhood of it. Moreover, the point
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Fig. 2.2 Points (x,y) for which M(x,y) is numerically in P4×4
2 , in darker green, and for which all 3×3

submatrices of M(x,y) have nonmaximal phaseless rank, in lighter green.

(1,0) is not in T , as the associated matrix,

M(1,0) =


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

 ,

is not in P4×4
2 . We then plotted T using the same method as in the previous example: for each (x,y)

we minimized the square root of the sum of the squared entries of M(x,y)−|(X1 + iY1)(X2 + iY2)|,
where the minimization variables are the entries of X1, Y1, X2 and Y2. Finally, the point (x,y) will

appear on the plot if the numerical optimum value of

min
X1,Y1,X2,Y2

√
∑

1≤i, j≤4
(M(x,y)i j −|(X1 + iY1)(X2 + iY2)|i j)2

is less than a predefined threshold, which in this case we took as 10−8. A sample slice of P4×4
2 is

illustrated in Figure 2.2.

It is safe to say that the darker region represents matrices that are either in P4×4
2 or at least very

close to it. However, in non-convex functions (like the one we are trying to minimize), we might

obtain a local minimum and not necessarily the global one. As a result, the lighter region might

contain points whose matrices belong to P4×4
2 .
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Fig. 2.3 Points (x,y) for which M(x,y) is numerically in P4×4
2 , in darker green, and for which all 3×3

submatrices of M(x,y) have nonmaximal phaseless rank, in lighter green.

Example 2.1.3. As a last example, we will apply the same method as in the previous example to a

more structured slice of P4×4
2 . Let

M(x,y) =


x y 1 1

1 x y 1

1 1 x y

y 1 1 x

 ,

a circulant matrix in two variables. In this case, it is not hard to guess what presumably is the boundary

of the set T = {(x,y) : M(x,y) ∈ P4×4
2 }, highlighted in red in Figure 2.3. It is defined by branches of

the curves y2 −2x−1 = 0, x2 −2y−1 = 0, y2 +2x−1 = 0 and x2 +2y−1 = 0.

2.2 Numerical certificates of non-membership

In the previous section we explored how to create numerical certificates that give evidence of member-

ship in a region of bounded phaseless rank. We noted that not finding a certificate is, however, not very

strong evidence for non-membership, as it may be a result from the local nature of the optimization

methods employed. To remediate this, we may independently try to certificate non-membership.

There exist some algorithms for outer approximating amoebas in the literature that one could

make use of. Most of the them are, however, devised for amoebas of hypersurfaces, i.e, amoebas

of varieties whose associated ideals are principal, of the form A ( f ) := A (V ( f )). Following the

notation in Chapter 1,

P4×4
2 = Aalg(Y

4,4
2 ),



2.2 Numerical certificates of non-membership 35

where Y 4,4
2 is the set of all 4× 4 complex matrices of rank at most 2, which has codimension 4.

Regarding the algorithms for approximation of amoebas of hypersurfaces, we emphasize Forsgård

et al. [28] approach (Theorem 6.1), which is mostly based on Purboo’s result of the lopsided

approximation for A ( f ) (Theorem 1 from [61]). A different approach is taken in [72], and allows

tackling general amoebas. The approach proposed in this section is similar to the one they propose,

but is derived from first principles and tailored to the specific case we are interested in.

Let us write P4×4
2 membership as the feasibility of a real polynomial system. Take A=

[
ai j

]
1≤i, j≤4 ∈

R4×4
+ . A is in P4×4

2 if and only if there exists a complex matrix Z =
[
zi j
]

1≤i, j≤4 of rank at most 2 and

|zi j|= ai j, for 1 ≤ i ≤ 4,1 ≤ j ≤ 4. So we need to search for a matrix Z ∈ C4×4 such that all its 3×3

minors vanish and

|zi j|2 = a2
i j, for 1 ≤ i ≤ 4,1 ≤ j ≤ 4.

By writing each zi j = xi j + iyi j, where xi j and yi j are real variables, and expanding each minor into its

algebraic form (as a complex number), one can rewrite the problem of membership of A in P4×4
2 as a

feasibility problem for a specific polynomial system:

Is there X =
[
xi j

]
1≤i≤4,1≤ j≤4 and Y =

[
yi j

]
1≤i≤4,1≤ j≤4 in R4×4 such that the real and imaginary

parts of each 3×3 minor of X + iY vanish and

x2
i j + y2

i j −a2
i j = 0 for i, j = 1, . . . ,4?

Let IA ⊂ R[xi j,yi j : 1 ≤ i, j ≤ 4] be ideal generated by the polynomials in this system. The Real

Nullstellensatz (see Theorem A.1.11) ensures that either A is in P4×4
2 or there are polynomials G ∈ IA

and a sum of squares H ∈ R[xi j,yi j : 1 ≤ i, j ≤ 4] such that

G+H +1 = 0.

The Real Nullstellensatz provides a certificate for proving membership in the complement of

P4×4
2 , which is not necessarily easy to obtain. In practice, we must search for such a certificate only

for some bounded (low) degrees of H, which means we can only derive sufficient conditions for non-

membership. Moreover, the numerical nature of the methods we will employ does not immediately

provide exact certificates but only offer evidence for their existence, with extra work being needed to

turn them into rigorous proofs.

Example 2.2.1. Let A =


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

, which we know is not in P4×4
2 . We wish to prove there is

no complex matrix Z of rank at most 2 such that |Z|= A, entrywise speaking, by exhibiting a Real

Nullenstellensatz certificate. We start by simplifying the real polynomial system. Because row and

colum scaling do not change the rank of a complex matrix, we assume every entry in the last row and
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column of Z to be real and positive. This allows us to reduce the number of real variables from 32 to

18. The simplified polynomial system is shown below.

The real and imaginary parts of each 3×3 minor of

Z =


x11 + iy11 x12 + iy12 x13 + iy13 1

x21 + iy21 x22 + iy22 x23 + iy23 1

x31 + iy31 x32 + iy32 x33 + iy33 1

1 1 1 2


must vanish and

x2
ii + y2

ii −4 = 0 for i = 1, . . . ,3 and x2
i j + y2

i j −1 = 0 for i, j = 1, . . . ,3, and i ̸= j.

Let gi j = x2
i j + y2

i j −A2
i j, i, j = 1, . . . ,3, and fi j

re, fi j
im denote, in this order, the real and imaginary

parts of the minor associated to the submatrix obtained by deleting row i and column j of Z, for

i, j = 1, . . . ,4.

For instance,

g11 = x2
11 + y2

11 −4,

f11
re =−x22 + x23 + x32 −2x23x32 − x33 +2x22x33 +2y23y32 −2y22y33,

f11
im =−y22 +2x33y22 + y23 −2x32y23 + y32 −2x23y32 − y33 +2x22y33.

In practice, a Real Nullenstellensatz certificate for the current example means finding polynomials

hi j, i, j = 1, . . . ,3, hre
i j ,h

im
i j , i, j = 1, . . . ,4, and si, i = 1, . . . ,k, ∈ R[xi j,yi j : 1 ≤ i, j ≤ 3] such that

∑
1≤i, j≤3

hi jgi j + ∑
1≤i, j≤4

hre
i j fi j

re + ∑
1≤i, j≤4

him
i j fi j

im +
k

∑
i=1

s2
i +1 = 0,

where k is a nonnegative integer.

Example 2.2.2. Let

M(x,y) =


x y 1 1

1 x y 1

1 1 x y

y 1 1 x

 ,

the matrix from Example 2.1.3. In Figure 2.4, as before, the darker region represents points (x,y) for

which M(x,y) is numerically in P4×4
2 , and the lighter one the points and for which all 3×3 submatrices

of M(x,y) have nonmaximal phaseless rank. Regarding the dots, the gray ones show points for which

at least one of the 3×3 submatrices of M(x,y) has maximal phaseless rank (and thus not in P4×4
2 ).
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Fig. 2.4 Numerical Real Nullstellensatz certificates for M(x,y).

The red ones represent points for which we were able to find a numerical certificate of the form

∑
1≤i, j≤3

hi jgi j + ∑
1≤i, j≤4

hre
i j fi j

re + ∑
1≤i, j≤4

him
i j fi j

im +
k

∑
i=1

s2
i +1 = 0,

where i, j = 1, . . . ,3 and each term of the sum has degree 4 (and thus not in P4×4
2 , in a numerical sense,

according to the Real Nullstellensatz). Here, gi j, fi j
re and fi j

im are constructed as in the previous

example with Ai j = M(x,y)i j. For the green dots we were not able to find such a certificate. In this

case, no conclusion can be made, as we are imposing that each term has degree 4, which does not

exclude the existence of certificates of higher degree. For the considered point grid, as hoped, the

numerical certificate testing agrees with the numerical membership testing: points for which no

certificate was found (green ones) lie inside the numerical approximation for {(x,y) : M(x,y) ∈ P4×4
2 },

whereas the certificated points (red ones) belong to the lighter region.

This fact was observed in all our numerical tests, hence we conjecture that the approximation

might actually be tight, i.e., that the answer to the following question is affirmative.

Question 2.2.3. Let X and Y be 4×4 matrices of indeterminates and A ∈R4×4
+ . Furthermore, let I be

the ideal generated by the polynomials X2
i j +Y 2

i j −A2
i j for all 1 ≤ i, j ≤ 4 and the real and imaginary

parts of all 3×3 minors of the matrix X + iY . Is it true that a matrix A is not in P4×4
2 if and only if we

can write −1 as a sum of squares of polynomials of degree at most 2 modulo the ideal I?

More generally, for certifying non-membership in any algebraic amoeba Aalg(V ), one can follow

the approach proposed in [72], by Theobald and de Wolff. Let I :=< f1, . . . , fr > such that fi is of

the form ∑
di
j=1 bi jzα(i, j), with α(i, j) ∈ Nn

0, and mi j be the monomial mi j = zα(i, j) = zα(i, j)1
1 · · ·zα(i, j)n

n .

Define the ideal I∗ ⊂ R[X ,Y ] generated by the polynomials

{ fi
re, fi

im : 1 ≤ i ≤ r}∪{(mre
i j)

2 +(mim
i j )

2 −λ
2α(i, j) : 1 ≤ i ≤ r,1 ≤ j ≤ di},
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where fi
re, fi

im, mre
i j and mim

i j denote the real and imaginary parts of fi and mi j, respectively. Those

can be obtained by writing z j = x j + iy j, where x j and y j are real variables, j = 1, . . . ,n, and then

expanding each fi and mi j. Below, X and Y stand for the variables x j and y j, j = 1, . . . ,n.

Theorem 2.2.4 (de Wolff, Theobald, [72]). Let I :=< f1, . . . , fr > and assume that the set
⋃r

i=1
⋃di

j=1{α(i, j)}
spans Rn. Either a point λ ∈ (0,∞)n is contained in Aalg(V (I)), or there exist polynomials G ∈ I∗ ⊂
R[X ,Y ] and a sum of squares polynomial H ∈ R[X ,Y ] such that

G+H +1 = 0.

Observe that the authors consider the equations

(mre
i j)

2 +(mim
i j )

2 −λ
2α(i, j) = 0,1 ≤ i ≤ r,1 ≤ j ≤ di

instead of

x2
j + y2

j −λ
2
j = 0, j = 1, . . . ,n.

The assumption that
⋃r

i=1
⋃di

j=1{α(i, j)} spans Rn guarantees that the solution set to each is the same.

For I =Y 4,4
2 , the number of generators is 16 and I∗ is generated by 2×16+16×6 polynomials, as

each 3×3 minor of a 4×4 matrix with complex entries has 6 monomials. In addition, the number of

variables amounts to 2×16. Thus, it becomes extremely expensive (computationally) to approximate

P4×4
2 via Theorem 2.2.4.

2.3 Boundary of P4×4
2

Since the set P4×4
2 is semialgebraic, its boundary will be cut minimally by some polynomial equation

R(x1, . . . ,xn) = 0. A possible approach to understand the geometry of P4×4
2 would therefore be to try

to obtain such a polynomial.

Take the map in the beginning of Section 3.2 with n = m = 4 and k = 2:

F : R4×2 ×R4×2 ×R2×4 ×R2×4 −→ R4×4
++

P = (X ,Y,A,B) −→ F(P) = |(X + iY )(A+ iB)|

The first observation is that, since P4×4
2 is closed, it contains all its boundary points. Hence, any

point in ∂P4×4
2 is of the form F(P), for some P. Furthermore, a necessary condition for F(P) to be a

boundary point is that Jacobian of the map at P is rank-deficient (otherwise, F(P) would be an interior

point of P4×4
2 ). In the present case, the Jacobian is a 16×32 matrix and it will be rank-deficient if all

its 16×16 minors vanish.
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Fig. 2.5 Jacobian of F after variable reduction.
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Each of the entries of F(P) will depend on exactly eight variables. For instance, the expression of

F(P)11 is√
(A11Y11 +A21Y12 +B11X11 +B21X12)2 +(A11X11 +A21X12 −B11Y11 −B21Y12)2.

As a result, the Jacobian will exhibit some sparsity, with 24 zeros in each row. Nevertheless, some of

its minors possess complicated expressions, making this approach completely ineffective.

Since the Jacobian is a very large matrix, we perform a reduction of the number of variables so

that we can show it. Assume every entry in F(P) is nonzero. In fact, if any entry of F(P) is zero,

it will be in the boundary of the set of nonnegative matrices, which contains P4×4
2 . Thus, F(P) will

be a boundary point of P4×4
2 if and only if it is in P4×4

2 . We can always scale rows and columns of

F(P) in such a way that its first row and column have ones everywhere, an operation which preserves

phaseless rank. Now we consider a similar scaling for (X + iY )(A+ iB), i.e, with ones in its first row

and column. For simplicity, we assume the 2× 2 minor associated to the first two rows of X + iY

is nonzero. The associated submatrix can then be replaced with an identity matrix if we consider

(X + iY )LL−1(A+ iB), where L is a suitable invertible matrix. Finally, for the first row and column of

(X + iY )(A+ iB) to have ones everywhere their entries must obey some conditions. The simplified

system is shown below.

|(X + iY )(A+ iB)|=

∣∣∣∣∣∣∣∣∣∣


1 0

0 1

X31 + iY31 1−X31 − iY31

X41 + iY41 1−X41 − iY41


[

1 1 1 1

1 A22 + iB22 A23 + iB23 A24 + iB24

]∣∣∣∣∣∣∣∣∣∣
.

We have greatly reduced the number of variables from 32 to 10. When computing the Jacobian of

this new map, seven of its rows will be composed of zeros. These rows correspond to the first row and

column of |(X + iY )(A+ iB)|, which are all ones, and can be removed as they are superfluous. The

reduced Jacobian is presented in Figure 2.5, a 9×10 matrix. This matrix will be rank-deficient if all

its 9×9 minors vanish. This might be useful to derive proofs of membership in the boundary, but

direct computations of the boundary equation seem to be computationally out of reach.



Chapter 3

Further work on phaseless rank

In Chapter 1, we established the connection between the classical results of Camion and Hoffman

on equimodular classes of matrices with the modern developments in the theories of amoebas and

semidefinite extension complexity. This provided a rich field of motivation and applications, and

allowed for interesting and new developments. In Chapter 2, we explored the simplest case for which

we do not have a full geometric characterization, and used it to illustrate a series of tools that one

might use to further expand our characterizations.

However, many other questions remain completely open and are ripe for further explorations. In

the subsequent sections, we describe our endeavours - none fully successful or finished - on answering

each of the four questions below.

1. What can we say about the complexity of computing phaseless rank?

2. While some work was already carried out here on the dimension of these semialgebraic sets,

it should be possible to state more precise results on which values of the phaseless rank are

typical.

3. Can we explore the connection between phaseless rank and the geometric problem of equiangu-

lar lines?

Note that these are not the only remaining questions from this work. Some other questions were

considered but without any work developed that would be sufficiently worthy to include besides what

was already discussed before. One that we have not really explored in length, but that we mention

here for the interest of cataloguing possible future research directions is described below.

We saw that computing phaseless rank can be seen as a rank minimization problem (RMP), since

we want to minimize the rank over a certain set of matrices. Another class of hard optimization

problems is that of phase retrieval problems (PRP), which consist in recovering a vector of unknowns

from phaseless information, namely, the absolute value of some linear measurements. One can

think of phaseless rank as a mix of these two very important classes. In each of these classes, very

41
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effective convex relaxations have been developed. One example of such relaxations for the standard

RMP consists in replacing the rank objective function with the sum of the singular values of the

matrix, the so-called nuclear norm [24, 63]. For the standard PRP there is a similar semidefinite

relaxation, known as the PhaseLift [16]. An important avenue of research would be to try to merge

some of the approaches for these two classes of optimization problems in order to derive an effective

approximation algorithm for phaseless rank.

3.1 Phaseless rank complexity

Here, we address the problem of how hard it is to decide if A ∈ Rn×m
+ is in Pn×m

k algorithmically,

in a deterministic sense and not by means of approximations. Note that such an algorithm enables

one to check if rankθ (A) = k, by deciding if A is in Pn×m
k but not in Pn×m

k−1 . Recall that, according to

the Tarski-Seidenberg theorem [10], Pn×m
k is semialgebraic, which means it is definable in terms of

polynomial equalities and inequalities.

More specifically,

Pn×m
k is set of all ai j ∈ R,1 ≤ i ≤ n,1 ≤ j ≤ m, such that

ai j ≥ 0 and ∃xi j,yi j ∈ R s.t. x2
i j + y2

i j = a2
i j and

rank
[
xi j + iyi j

]
1≤i≤n,1≤ j≤m ≤ k i.e.,

Pn×m
k is a projection of the semialgebraic set of all ai j,xi j,yi j ∈ R,1 ≤ i ≤ n,1 ≤ j ≤ m, such that

ai j ≥ 0 ,x2
i j + y2

i j = a2
i j and rank

[
xi j + iyi j

]
1≤i≤n,1≤ j≤m ≤ k, i.e, the real and imaginary parts of all

(k+1)× (k+1) minors of
[
xi j + iyi j

]
1≤i≤n,1≤ j≤m vanish.

While finding a polynomial characterization for Pn×m
k is likely hard, it is always (theoretically)

possible. This can be done with any quantifier elimination method, such as the Cylindrical Algebraic

Decomposition (CAD) algorithm. According to Theorem 4.1 from [34], originally published in

[64], there exists a quantifier elimination method that produces a semialgebraic description for the

projection of any semialgebraic set.

As an example, this semialgebraic description for P4×4
2 is of the form

I⋃
i=1

Ji⋂
j=1

{hi j(x)△i j0},

where △i j ∈ {>,≥,=, ̸=,≤,<}, hi j(x) are real polynomials of degree at most 28832K and I ≤
288512K , Ji ≤ 28832K , with K a constant.
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Alternatively, for deciding whether A ∈Rn×m
+ is in Pn×m

k , one could resort to the certificate derived

from Real Nullstellensatz, discussed in Section 2.2. There, we analyze the particular case of P4×4
2 , but

the reasoning can be generalized for Pn×m
k without great difficulty. The corresponding real polynomial

system is the following:

A ∈ Rn×m
+ is in Pn×m

k if and only if there exist X =
[
xi j

]
1≤i≤n,1≤ j≤m and Y =

[
yi j

]
1≤i≤n,1≤ j≤m in

Rn×m such that the real and imaginary parts of each (k+1)× (k+1) minor of X + iY vanish and

x2
i j + y2

i j −a2
i j = 0 for i = 1, . . . ,n and j = 1, . . . ,m.

Let IA ⊂ R[xi j,yi j : 1 ≤ i ≤ n,1 ≤ j ≤ m] be, again, the ideal generated by the above polynomials.

The Real Nullstellensatz states that either A is in Pn×m
k or there are polynomials G ∈ IA and a sum of

squares H ∈ R[xi j,yi j : 1 ≤ i ≤ n,1 ≤ j ≤ m] such that

G+H +1 = 0.

Since the certificate includes finding a sum of squares polynomial, whose degree is not known

beforehand, there is the need to introduce a maximum value for its degree. We then search for a sum of

squares decomposition whose degree is at most the fixed bound. If no sums of squares decomposition

is found under these conditions, one accepts that A ∈Rn×m
+ is in Pn×m

k . Real Nullstellensatz certificates

can be obtained via Semidefinite Programming if we fix the degree a priori [57] (see A.1). Typically,

the degree bounds that guarantee the existence of a certificate, if there is any, are very large. For

instance, Roy and Lombardi [51] propose a bound which is a tower of five exponentials, dependent

on, among other quantities, the number of polynomial generators and the number of variables. For the

particular case of P4×4
2 the referred bound is

22

(
23432

+(48+1)2
32

×32×1632
)
.

Due to the huge size of the bounds involved, both methods presented before are impracticable.

Still, the advantage of Real Nullstellensatz over any quantifier elimination method is that, if one is

lucky enough, one might be able to obtain a certificate in which the sums of squares has a degree

much lower than the degree bound.

Finally, in terms of computational complexity, can we claim that deciding if rankθ (A) < k is

NP-hard? For instance, for k = n the answer is negative: checking whether rankθ (A) < n, for any

A ∈ Rn×m
+ , n ≤ m, can be verified in polynomial time (Corollary 1.3.2). Conversely, in [36], the
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authors prove the NP-hardness of checking if the signless rank of any matrix of the form

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

0 0 1 . . . 0 a3
...

...
...

. . .
...

...

0 0 0 . . . 1 an−1

1 1 1 . . . 1 0


,

where a1, . . . ,an are positive integers, is less than n. This is somehow surprising: a priori, one

could expect that, for fixed A ∈ Rn×m
+ , deciding if rankθ (A) < k would be harder than deciding if

rank± (A)< k, since we are enlarging the feasible set of the optimization problem, but it turns out not

to be the case for k = n.

3.2 Full-dimensionality of Pn×m
k

In this section we revisit the minimal typical phaseless rank problem. For a fixed matrix dimension

n×m, the minimal typical phaseless rank equals the minimum k for which Pn×m
k is full dimensional.

We will try to find this number computationally. For that purpose, we consider the map

F : Rn×k ×Rn×k ×Rk×m ×Rk×m −→ Rn×m
++

P = (X ,Y,A,B) −→ F(P) = |(X + iY )(A+ iB)|

It is clear that the image of F is Pn×m
k , so F is a parametrization of Pn×m

k . Now take any P. If the

Jacobian of the map at P is full rank, the inverse function theorem guarantees there are neighborhoods

around P and F(P) for which F is surjective. This proves F(P) is an interior point of Pn×m
k and, thus,

Pn×m
k is full dimensional. Our goal is, then, to look for points at which the Jacobian is full-rank, if

they exist.

The above procedure was converted into a Mathematica code. F is a vectorial function with n×m

coordinates and whose variables are the entries of X ,Y,A and B. Since the number of such variables

is 2× k× (n+m), the Jacobian of F is an (n×m)× (2× k× (n+m)) matrix. Hence, it will be full

rank if its rank equals min(n×m, 2× k× (n+m)). For fixed n,m and k, the code generates random

real values for the variables of F and it computes the rank of the Jacobian evaluated at the generated

numbers. If the rank is maximal, we know Pn×m
k is full dimensional. A few iterations of the code

might be required, as we cannot make sure the rank will be maximal on the first attempt.

A straightforward observation is that if Pn×m
k is full dimensional so is Pn′×m′

k , for all k ≤ n′ ≤ n

and k ≤ m′ ≤ m. Using the aforementioned fact, the code can be improved in the following way. First,

for any k, we find the largest n, nk, for which Pn×n
k is full dimensional. For nk−1 < n ≤ nk, k is the

minimum l for which Pn×n
l is full dimensional. Now, for fixed k and n, we search for the largest
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m, mn,k, for which Pn×m
k is full dimensional. For mn,k−1 < m ≤ mn,k, k is the minimum l for which

Pn×m
l is full dimensional. The computational results can be seen in Table 3.1 and match the lower

bound from Corollary 1.4.12 for the minimum typical phaseless rank. Hence, based on the numerical

evidence available, we propose the following conjecture:

Conjecture 3.2.1. For Rn×m
+ , with 3 ≤ n ≤ m, the minimal typical phaseless rank equals⌈

n+m−
√

(n−1)2 +(m−1)2

2

⌉
.

❍❍❍
❍❍❍n

m
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
9 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
12 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6
13 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
14 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7
15 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
16 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
17 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
18 6 7 7 7 7 7 7 7 7 7 8 8 8 8
19 7 7 7 7 7 7 7 8 8 8 8 8 8
20 7 7 7 7 8 8 8 8 8 8 8 8
21 7 7 8 8 8 8 8 8 8 8 8
22 8 8 8 8 8 8 8 8 9 9
23 8 8 8 8 8 9 9 9 9
24 8 8 9 9 9 9 9 9
25 9 9 9 9 9 9 9
26 9 9 9 9 9 9
27 9 9 9 10 10
28 9 10 10 10
29 10 10 10
30 10 10
31 10

Table 3.1 For each (n,m), minimum k for which Pn×m
k is full dimensional. Only the upper triangular

part is shown, as the table is symmetric, due to the fact that rankθ (A) = rankθ (AT ).

3.3 Variants of phaseless rank

Recall that, given A ∈ Rn×m
+ , its phaseless rank is defined as

rankθ (A) = min{rank(B) : B ∈ Ω(A)}.

Instead of taking the whole equimodular class as the feasible set of this optimization problem, one

can opt for minimizing the rank over some of its subsets, which gives rise to phaseless rank variants.

In this sense, the signless rank is itself a variant of phaseless rank, since the feasible set consists only
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of reals matrices in the equimodular class. Other natural variants arise if one shortens the original

feasible set to those of hermitian or positive semidefinite matrices in the equimodular class. These last

two quantities will be of particular interest to us and we will call them, respectively, hermitian and

psd-phaseless rank:

Definition 3.3.1. Let A ∈Rn×n
+ be a symmetric matrix. Its hermitian-phaseless rank and psd-phaseless

rank are defined as

rankθ
herm(A) = min{rank(B) : B ∈ Ω(A) and B is hermitian}

rankθ
psd(A) = min{rank(B) : B ∈ Ω(A) and B ≽ 0}.

Their real versions we call, in this order, hermitian and psd-signless rank.

Definition 3.3.2. Let A ∈ Rn×n
+ be a symmetric matrix. Its hermitian-signless rank and psd-signless

rank are defined as

rank± herm(A) = min{rank(B) : B ∈ Ω(A)∩Rn×n and B is symmetric}

rank± psd(A) = min{rank(B) : B ∈ Ω(A)∩Rn×n and B ≽ 0}.

By comparing the corresponding feasible sets, we infer the following list of inequalities for these

quantities.

rankθ (A)≤ rankθ
herm(A)≤ rankθ

psd(A), rank± (A)≤ rank± herm(A)≤ rank± psd(A)

rankθ
herm(A)≤ rank± herm(A), rankθ

psd(A)≤ rank± psd(A).

Note that these ranks can all be different.

Example 3.3.3. Let

A =

1 1 1

1 1 1
2

1 1
2 1

 .

Since no column of A is lopsided, rankθ (A) = 2.

Moreover,∣∣∣∣∣∣∣
1 1 1

1 1 1
2 eit1

1 1
2 e−it1 1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1 1 1

1 −1 1
2 eit1

1 1
2 e−it1 1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1 1 1

1 1 1
2 eit1

1 1
2 e−it1 −1

∣∣∣∣∣∣∣=−5
4
+Cos[t1]≤−1

4
< 0,

∣∣∣∣∣∣∣
1 1 1

1 −1 1
2 eit1

1 1
2 e−it1 −1

∣∣∣∣∣∣∣=
11
4
+Cos[t1]≥

7
4
> 0,
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∣∣∣∣∣∣∣
−1 1 1

1 −1 1
2 eit1

1 1
2 e−it1 1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
−1 1 1

1 1 1
2 eit1

1 1
2 e−it1 −1

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
−1 1 1

1 −1 1
2 eit1

1 1
2 e−it1 −1

∣∣∣∣∣∣∣=
5
4
+Cos[t1]≥

1
4
> 0, and

∣∣∣∣∣∣∣
−1 1 1

1 1 1
2 eit1

1 1
2 e−it1 1

∣∣∣∣∣∣∣=−11
4
+Cos[t1]≤−7

4
< 0.

This shows that rankθ
herm(A) = 3. Finally, because

∣∣∣∣∣∣∣
1 1 1

1 1 1
2 eit1

1 1
2 e−it1 1

∣∣∣∣∣∣∣ is always negative, there is no

B ≽ 0 such that |B|= A, i.e., rankθ
psd(A) = ∞.

An interesting problem that arises is to characterize, for each n ≥ 2, the set of symmetric matrices

A ∈ Rn×n
+ that have finite psd-phaseless rank. In other words, to characterize the set

{|B| : B is an n×n positive semidefinite matrix}.

Proposition 3.3.4. For n = 2,3, rankθ
psd(A)< ∞ is equivalent to saying that A is positive semidefinite.

Proof. Let Z and W be complex positive semidefinite matrices, hence having real nonnegative diagonal

elements. We can always multiply any of their columns by a complex number of absolute value one

and the respective row by its conjugate, operation which will preserve both positive semidefiniteness

and the entrywise absolute value matrix. Hence, we can assume that both the first columns and rows

of Z and W have real nonnegative entries, i.e., we have

Z =

[
z11 z12

z12 z22

]
and W =

w11 w12 w13

w12 w22 w23

w13 w23 w33

 ,

where only w23 is potentially a non-real number, every other number is a nonnegative real. Since

|Z| = Z, we conclude that the entrywise absolute value matrix is positive semidefinite. All 2× 2

submatrices of |W | are thus also positive semidefinite, and it is enough to show that det(|W |)≥ 0 to

conclude that |W | is positive semidefinite, according to Sylvester’s criterion. But

det(|W |) = w11w22w33 +2w12w13|w23|−w22w2
13 −w11|w23|2 −w33w2

12

is clearly greater or equal than

det(W ) = w11w22w33 +2w12w13Re(w23)−w22w2
13 −w11|w23|2 −w33w2

12

because Re(w23)≤ |w23|. Therefore, det(|W |)≥ det(W )≥ 0 and |W | ≽ 0, as intended.
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It turns out that for n = 4 one can find examples of positive symmetric matrices that have finite

psd-phaseless rank but are not themselves positive semidefinite.

Example 3.3.5. Consider the 4×4 positive real symmetric matrix

A =


1

√
2
3

1√
3

√
2
3√

2
3 1

√
2
3

1√
3

1√
3

√
2
3 1

√
2
3√

2
3

1√
3

√
2
3 1

 .

This matrix is not positive semidefinite. To check that just note that its determinant is negative.

However, the matrix

Ã =


1

√
2
3

1√
3

√
2
3√

2
3 1

√
2
3 e−i π

6 1√
3
e−i π

6

1√
3

√
2
3 ei π

6 1
√

2
3 e−i π

6√
2
3

1√
3
ei π

6

√
2
3 ei π

6 1


is positive semidefinite and satisfies |Ã|= A. In fact, Ã has rank 2, so rankθ

psd(A) = 2.

3.3.1 Equiangular lines

A set of n lines in the vector space Rd or Cd is called equiangular if all the lines intersect at a single

point and every pair of lines makes the same angle. Without loss of generality, we admit that each line

passes through the origin of the vector space. Since each line is a one-dimensional subspace, it can be

represented by a unit vector, vi, i = 1, . . . ,n, with ||vi||= 1. Moreover, the condition that every pair of

lines makes the same angle is equivalent to imposing the constraint |⟨vi,v j⟩|= α , for all 1 ≤ i, j ≤ n

s.t. i ̸= j, where α , a constant between zero and one, is the cosine of the common angle.

Let V denote the matrix whose column i is vi, i = 1, . . . ,n, and Aα
n denote the n×n matrix with

ones on the diagonal and α’s everywhere else. We have |V ∗V | = Aα
n , in the complex case, and

|V TV |= Aα
n , in the real case. It is not hard to see that an equiangular set of n lines with common angle

arccosα exists in Rd (resp. Cd) if and only if there is a real (resp. complex) positive semidefinite

matrix B of rank at most d such that |B|= Aα
n . This immediately relates the existence of equiangular

lines to psd-phaseless rank and psd-signless rank.

Proposition 3.3.6. For 0 ≤ α ≤ 1, rankθ
psd(Aα

n ) (resp. rank± psd(Aα
n )) is the smallest dimension d

for which there exists an equiangular set of n lines in Cd (resp. Rd) with common angle arccosα .

This proposition easily follows from the equalities below.

rankθ
psd(A) = min{rank(B) : B ∈ Ω(A), B ≽ 0}= min{k : X∗X ∈ Ω(A), X ∈ Ck×n},

rank± psd(A) = min{rank(B) : B ∈ Ω(A)∩Rn×n, B ≽ 0}= min{k : XT X ∈ Ω(A), X ∈ Rk×n}.
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Bounding the maximum number of real equiangular lines for a given dimension has long been a

popular research problem. Classically, we want bounds on the absolute maximum number of such

lines (denoted by N(d)) or on the maximum number for a given common angle arccos(α) (denoted

by Nα(d)). A somewhat thorough survey on this type of results can be found in [19], while further

reading on the real case can be seen in [39], [42], and [47]. The most general bound for N(d), known

as the absolute bound, was proved by Gerzon:

Theorem 3.3.7 (Gerzon [47]). For every d ≥ 2,

N(d)≤ d(d +1)
2

,

and if equality holds then d = 2,3, or d +2 is the square of an odd integer.

This bound can be rewritten in terms of the psd-signless rank. In fact, since rank± psd(Aα
n ) is the

smallest dimension d for which there exists an equiangular set n lines in Rd with common angle

arccosα , it follows from Theorem 3.3.7 that

n ≤ N(rank± psd(Aα
n ))≤

rank± psd(Aα
n )(rank± psd(Aα

n )+1)
2

,

which implies, for any positive integer n and 0 ≤ α < 1,

rank± psd(Aα
n )≥

√
1+8n−1

2
.

Conversely, Gerzon’s bound can be recovered using the above inequality. For a fixed d, and because

N(d) is attained for some α , say αd , we have

rank± psd
(

Aαd
N(d)

)
≥

√
1+8N(d)−1

2
.

By rearranging the inequality in terms of N(d) and using the fact that rank± psd
(

Aαd
N(d)

)
≤ d, we obtain

N(d)≤
rank± psd

(
Aαd

N(d)

)(
rank± psd

(
Aαd

N(d)

)
+1

)
2

≤ d(d +1)
2

.

Theorem 3.3.8 (Gerzon - rank reformulation). For any positive integer n and 0 ≤ α < 1,

rank± psd(Aα
n )≥

√
1+8n−1

2
.

Note that, for 0 ≤ α < 1, Gerzon’s bound is a particular case of the basic dimension bound for the

signless rank presented in Lemma 1.1.5:

rank± psd(Aα
n )≥ rank± (Aα

n )≥
√

1+8r−1
2

, where r = rank(Aα
n ◦Aα

n )
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Because det(Aα
n ◦Aα

n ) = 0 implies α =±1, then, for 0 ≤ α < 1, rank(Aα
n ◦Aα

n ) = n. Note that the rank

reformulation lower bound uses only the signless rank, and makes no use of the positive semidefinite

requirement.

In [19] one can find a brief overview of other existing bounds for Nα(d) for specific values of α .

The same ideas as above allow a translation from these bounds into bounds of the psd-signless rank of

certain matrices Aα
n . More interestingly, bounds on the psd-signless rank immediately translate into

bounds for the problem of equiangular lines.

Regarding the complex equiangular lines case, it has seen a flurry of recent developments due

to its connection to quantum physics (see for instance [4],[38],[65],[67]). The maximum number of

complex equiangular lines in Cd , denoted by NC(d), is bounded from above by d2:

Proposition 3.3.9 ([31]). NC(d)≤ d2.

Additionally, it is conjectured that NC(d) = d2 for all d ≥ 2 [74]. When such a maximum set of

d2 lines exists, one can construct a symmetric, informationally complete, positive operator-valued

measure (SIC-POVM), an object that plays an important role in quantum information theory. Recent

developments in the construction of large sets of complex equiangular lines can be found in [40] and

[41]. Again, the upper bound for NC(d) can be restated in terms of the psd-phaseless rank:

Proposition 3.3.10 (Proposition 3.3.9 - rank reformulation). For any positive integer n and 0 ≤ α < 1,

rankθ
psd(Aα

n )≥
√

n.

This proposition also follows from Lemma 1.1.5. To illustrate this strategy of turning lower

bounds on phaseless rank into upper bounds on the number of equiangular lines, we present a simple

result derived from our basic bounds on phaseless rank.

Proposition 3.3.11. For α < 1
d , NC

α (d) = d.

Proof. Fix d and let α < 1
d . Observe that one can write NC

α (d) as

max{n : rankθ
psd(Aα

n )≤ d}.

Because Aα
d+1 is strictly diagonally dominant and is a submatrix of any Aα

n for n > d, we have

rankθ
psd(Aα

n )≥ rankθ (Aα
n )≥ d +1

for any n > d. Since Aα
d is positive semidefinite and has rank d, the result follows.

While fairly simple, this result highlights the usefulness of deriving effective lower bounds to the

phaseless rank, as a means to obtain upper bounds to NC
α (d).
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A related classical concept that can be studied in terms of psd-phaseless rank is that of mutually

unbiased bases in Cd (MUB’s). Two orthonormal bases {u1, ...,ud} and {v1, ...,vd} of Cd are said to

be unbiased if |u∗i v j|= 1√
d

for all i and j. A set of orthonormal bases is a set of mutually unbiased

bases if all pairs of distinct bases are unbiased. It is known that there cannot exist sets of more than

d + 1 MUB’s in Cd , and such sets exist for d a prime power, but the precise maximum number is

unknown even for d = 6, where it is believed to be three (see [21], [6] and [14] for more information

and a survey into this rich research area). To translate this in terms of phaseless rank, consider the

matrix Bk
d defined as the matrix of k× k blocks where the blocks in the diagonal are d ×d identities

and the off-diagonal ones are constantly equal to 1√
d

. The following simple fact is then clear.

Proposition 3.3.12. There exists a set of k mutually unbiased bases in Cd if and only if rankθ
psd(Bk

d) =

d.

As in equiangular lines, lower bounds on the phaseless rank have the potential to give upper

bounds on the maximum number of MUB’s.





Chapter 4

Phase rank

4.1 Notation, definitions, and basic properties

In the previous chapters we studied the problem of minimizing the rank of a complex matrix when we

are given the modulus of the entries but not their phases. This immediately suggests a complementary

problem, that of minimizing the rank when given only the phases of the entries, but not their modulus.

In this chapter we will explore this problem and the notion of phase rank that is associated to it.

We will be interested in phase matrices, that is to say, matrices whose entries are complex numbers

of modulus one. We now want to minimize the rank among all complex matrices who have this

entrywise phases. More precisely, we are interested in the following quantity.

Definition 4.1.1 (Phase rank). Let S1 = {z ∈ C : |z|= 1} and Θ be a phase matrix, i.e., with entries

in S1. We define its phase rank as

rank phase(Θ) = min{rank(M) : M ∈ (C∗)n×m,
Mi j

|Mi j|
= Θi j,∀i, j}.

An alternative way of defining this quantity is

rank phase(Θ) = min{rank(M ◦Θ) : M is a matrix with positive entries },

where ◦ denotes the Hadamard product of matrices.

Example 4.1.2. Let

Θ =

1 1 1

1 i −i

1 1 i

 and M =

1 1 1

1
√

3i −
√

3i

1 3
√

3i

 .

Since rank(M) = 2, rank phase(Θ)≤ 2.

53
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By definition, the matrices that we are considering in our minimization problem have nonzero

entries, since zero does not have a well-defined phase. On could consider generalized phase matrices,

whose entries are allowed to be either complex numbers of modulus one or zero. We can generalize

the notion of phase rank to this larger class by saying that for a generalized phase matrix Θ̄ its phase

rank is the smallest rank of a matrix with the same support as Θ̄ and whose nonzero entries have the

same phase as the corresponding entries of Θ̄. In this chapter, however, we will focus on the phase

ranks of proper phase matrices, and not consider the generalized case.

It is clear by construction that rank phase(Θ) ≤ rank(Θ) is a trivial upper bound on the phase

rank. However, unlike what we were able to do in the phaseless rank case, it is much harder to find

even a trivial lower bound. We will derive lower bounds in Section 4.6, but they result from a much

more involved reasoning than the simple dimensional arguments used in the phaseless rank. This

immediately suggests that the phase rank might be even harder to compute than the phaseless rank.

The rank one case remains trivial, though.

Proposition 4.1.3. For any phase matrix Θ, rank phase(Θ) = 1 if and only if rank(Θ) = 1.

Proof. Since rank phase(Θ)≤ rank(Θ), the result follows immediately if one can show that rank phase(Θ)=

1 implies that rank(Θ) = 1. But if M is the rank one matrix with the same phases as Θ, we have

M = vwt for some complex vectors v and w. Let v̄ and w̄ be the vectors whose entries are the phases

of v and w, respectively. It is trivial to see that Θ = v̄w̄t , which completes the proof.

This means that the simplest nontrivial case is that of determining if a 3×3 matrix has phase rank

two, a case that we will completely characterize in Section 4.3.

A last remark is that we can restrict our study of phase rank to phase matrices whose entries in the

first row and column are all ones. This can be done since multiplying a row or a column of a matrix

by eiθ , for some θ , preserves the rank. This will be done throughout the chapter, in order to simplify

the exposition.

Like in the case of phaseless rank, there is a natural version of phase rank on the reals, the sign

rank. The history on that topic goes back to the work in the 1980s in communication complexity

[1, 58], but has antecedents in older pioneer work on the problem of signsolvability: when is every

matrix with a given generalized sign pattern guaranteed to be invertible, a problem that goes back to

the 1960s (see for instance [43, 52]). This whole area of research has seen a renewed interest in the

last few years in both the mathematical and the computer science communities and several important

developments have appeared [2, 5, 9, 62]. The basic facts of this area will be introduced later in this

chapter.

There are also antecedents to our study of the complex case. The signsolvability problem has

been extended to the complex case to what is called the ray nonsingularity problem: when is every

matrix with the same phases of a given square generalized phase matrix (in that literature named a ray

pattern) invertible? This question has been exploited and essentially solved for (nongeneralized) phase

matrices in a series of papers at the turn of the millenium [44, 49, 53] and has seen a few subsequent
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developments. It seems, however, that the step from nonsingularity to a proper notion of rank has not

ever been taken in the literature. In this chapter we will establish the basics of this notion, connect

it to the existent literature in sign rank and ray nonsingularity and also to the very relevant topic of

algebraic coamoebas. We will also present some basic bounds on phase rank, following the existing

work in these topics. To carry this out, we will start by introducing the relevant notions of the theories

of sign rank and coamoebas.

4.2 Associated concepts

4.2.1 Sign rank

Sign matrices, with ±1 entries, arise naturally in many areas of research. For instance, they are used to

represent set systems and graphs in combinatorics, hypothesis classes in learning theory, and boolean

functions in communication complexity. The minimum rank of a matrix with a given sign pattern has

several important interpretations in these fields and has attracted a high level of interest in the last

decade.

Definition 4.2.1. For a real matrix M with no zero entries, let sign(M) denote the sign matrix such

that (sign(M))i j = sign(Mi j), for all i, j. The sign rank of a sign matrix S is defined as

sign-rank(S) = min{rank(M) : sign(M) = S}.

Sign matrices are instances of phase matrices and it is straightforward to see that sign rank is the

restriction of phase rank to sign matrices:

rank phase(S) = sign-rank(S), for any sign matrix S.

Sign rank computation is typically extended to matrices with entries in {−1,0,1}, which we call

generalized sign matrices, where the zeros in the sign pattern force the corresponding entries to be

zero.

Computing sign rank is hard. More precisely, in [9] it is shown that proving that the sign rank

of an n×m sign matrix is at most k is NP-hard for k ≥ 3. In particular, computing phase rank is

also NP-hard, as the sign rank is the restriction of phase rank to a specific set of matrices. For k = 2

they provide a polynomial time algorithm, which is not obviously generalizable to the complex case,

suggesting a first question.

Question 4.2.2. Is there a polynomial time algorithm to decide if an n×m phase matrix has phase

rank at most 2?
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Checking if a generalized sign matrix has maximal sign rank is an interesting problem on its own,

known also as the signsolvability problem. It is NP-hard [43] and has a very simple characterization,

very similar in spirit to our Lemma 1.3.1.

Lemma 4.2.3 (Remark 1.1. [43]). For an n×m generalized sign matrix S, with m ≥ n, sign-rank(S) =

n if and only if every scaling of its rows by scalars in {−1,0,1} has a unisigned nonzero column, i.e.,

a column that has only zeros and 1’s or −1’s but not both.

In particular, a nongeneralized n×m sign matrix has maximal sign rank if and only if for any

vector x ∈ {−1,1}n either x or −x appears in its columns, which immediately implies that n×m

sign matrices have nonmaximal sign rank for m < 2n−1. Therefore, square n×n nongeneralized sign

matrices cannot be sign-nonsingular for n ≥ 3. In fact, Alon et al [1] show that the maximum sign

rank of an n×n sign matrix is lower-bounded by n
32 and upper-bounded by n

2(1+o(1)).

Since computing sign rank is generally hard, a lot of effort was put into devising effective bounds

for this quantity. For example, a well-known lower bound on the sign rank of an m×n sign matrix is

due to Forster [29]:

Theorem 4.2.4. If S is an m×n sign matrix, then

sign-rank(S)≥
√

mn
||S||

,

where ||S|| is the spectral norm of S.

Alon et al. [2] observed that Forster’s proof argument works as long as the entries of the matrix

are not too close to zero, so we can replace ||S|| with ||S||∗ = min{||M|| : Mi jSi j ≥ 1 for all i, j} =
min{||M|| : sign(M) = S and |Mi j| ≥ 1∀i, j} in the above bound, which constitutes an improvement,

since ||S||∗ ≤ ||S||. Another improvement to Forster’s bound, through a different approach, can be

found in [50] and it is based on the factorization of linear operators (see A.2 for the meaning of γ∗2 (S)

and for details on how to compute this quantity).

Theorem 4.2.5 ([50]). For every m×n sign matrix S,

sign-rank(S)≥ mn
γ∗2 (S)

.

Example 4.2.6. Let

S =



1 1 1 1 −1 1

−1 1 −1 −1 −1 1

−1 1 −1 1 1 1

−1 −1 1 −1 −1 1

1 1 −1 −1 −1 −1

1 −1 −1 −1 −1 1


.
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For this matrix we have
√

mn
||S|| = 1.7990 and mn

γ∗2 (S)
= 2.0261. Thus,

sign-rank(S)≥ 3.

Given a particular sign matrix S, there are not that many tools to upper bound its sign-rank, besides

the ones that are given by any explicit matrix with the given sign pattern. A general bound, based only

on the dimension of the matrix, can be obtained using the probabilistic method.

Theorem 4.2.7 (Theorem 13.3.1 [3]). For any m×n sign matrix S,

sign-rank(S)≤ min{m,n}+1
2

+

√
min{m,n}−1

2
log(max{m,n}).

One can see that the above inequality is not tight. For n = m = 3, for instance, the sign rank of

any sign matrix is at most 2, but the bound only guarantees that it is at most 3. It is believed, however,

that asymptotically this bound is near optimal.

4.2.2 Coamoebas of determinantal varieties

In Section 1.2.2, we talked about the concept of amoeba of an algebraic variety and its connection to

the notion of phaseless rank. Here, we introduce the notion of coamoeba of an algebraic variety, that

will play a similar role in the study of phase rank. Just as what we did to move from phaseless rank to

phase rank, coamoebas are the notion we get when switching the roles of absolute values and phases

in the notion of amoebas.

More precisely, coamoebas are the image of varieties under taking the entrywise arguments, that

is, under the map

Arg : (C∗)n −→ (S1)
n
,z = (z1, . . . ,zn)→

(
z1

|z1|
, . . . ,

zn

|zn|

)
.

We will identify S1 with the interval [0,2π) in the usual way for purposes of plotting.

Definition 4.2.8. Given a complex variety V ⊆ Cn, its coamoeba is the set

coA (V ) = {Arg(z) =
(

z1

|z1|
, . . . ,

zn

|zn|

)
: z ∈V ∩ (C∗)n}.

Coamoebas were introduced by Mikael Passare in talks in the early 2000s as a dual notion to

that of amoebas. There has been a growing body of research on these objects, a small selection of

influential works are [27, 54, 55]. These tend to be harder objects to grasp than amoebas, but many

versions of the results for amoebas hold true for coamoebas.

Example 4.2.9. The simplest example of a coamoeba would be the coamoeba of a line. Consider the

variety in C2 given by y = 1+ x. Its points have the form (z,1+ z), for all z ∈ C, so its coamoeba is
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the set

coA (V ) = {(Arg(z),Arg(1+ z)),z ∈ C}

which is the same as the set

{(θ ,Arg(1+ρeiθ )),ρ ∈ R+,θ ∈ [0,2π)}.

It is easy to see that if θ is constant and in the interval (0,π), then, as ρ varies, the second entry will

vary in (0,θ). If θ is in the interval (π,2π), then the second entry will vary in (θ ,2π). Furthermore,

if θ is zero, the second entry is zero, while if θ is π , it can be either zero or π , depending on ρ . Putting

everything together we obtain the region depicted in Figure 4.1.

Fig. 4.1 Coamoeba of the line y = 1+ x.

When interpreting the figure, one can think of the plotted square as a torus: the left side is

identified with the right side and the bottom with the top.

From the above example one can immediately see that, contrary to amoebas, coamoebas are not

necessarily closed. However, coamoebas share with amoebas the fact that they can be expressed as

the intersection of the coamoebas of all polynomials in the ideal, i.e.,

coA (V (I)) =
⋂
f∈I

coA (V ( f )).

The connection between phase rank and coamoebas is clear and totally analogous to that developed

in Section 1.2.2 for phaseless rank. Recall that given positive integers n,m and k, with k ≤ min{n,m},

we defined the determinantal variety Y n,m
k as the set of all n×m complex matrices of rank at most k,

cut out by the k+1 minors of an n×m matrix of variables. Directly from the definition of coamoeba,

we have that the locus of n×m matrices of phase rank at most k is the coamoeba of the determinantal

variety Y n,m
k . Computing phase rank is therefore a special case of the problem of checking coamoeba

membership.
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Both amoeba and coamoeba membership are hard to check. Similarly to lopsidedness condition for

amoeba membership, there is a necessary condition for coamoeba membership, called colopsidedness

condition ([27],[20],[26]).

Definition 4.2.10. A sequence z1,z2, . . . ,zk ∈ C is colopsided if, when considered as points in R2, 0

is not in the relative interior of their convex hull.

Given a finite multivariate complex polynomial f (z) = ∑α bαzα ∈ C[z1, . . . ,zn], bα ̸= 0, and

φ ∈ (S1)
n, we say that f is colopsided at φ if the sequence(

bα

|bα |
φ

α

)
α

is colopsided.

For S ⊆ R2, we will denote its convex hull by Conv(S). In practice, 0 is in the relative interior of

Conv(S) if it can be written as a convex combination of the points in S with all the coefficients strictly

positive.

It is easy to see the following relation between colopsidedness and coamoebas.

Lemma 4.2.11. If φ ∈ coA (V (I)), then, for any f ∈ I, f is not colopsided at φ .

Proof. Take w ∈V (I)∩ (C∗)n such that Arg(w) = φ and f ∈ I. Since f (w) = 0,

∑
α

bαwα = ∑
α

|w|α |bα |
bα

|bα |
φ

α = 0.

By dividing both sides by ∑α |w|α |bα |, one concludes that 0 is in the relative interior of the convex

hull of
(

bα

|bα |φ
α

)
α

.

Note that the converse statement is, in general, not true. Not being colopsided for any f ∈ I does

not necessarily imply membership in the coamoeba coA (V (I)).

4.3 Nonmaximal phase rank

As mentioned earlier in this chapter, the problem of determining under which conditions is the phase

rank of a generalized phase matrix nonmaximal has been studied previously in the literature, under the

name of ray nonsingularity [53], with a focus mostly on the square case. In this section we will mainly

present a survey of the implications of that work in the study of phase rank, with a few additional

insights.

The first important observation is that we still have a version of Lemmas 1.3.1 and 4.2.3.

Lemma 4.3.1 ([53]). An n×m phase matrix Θ, with m ≥ n, has rank phase(Θ)< n if and only if there

is a scaling of its rows by scalars in S1 ∪{0}, not all zero, such that no column is colopsided.



60 Phase rank

Proof. Suppose rank phase(Θ)< n. This means there exists a matrix M with Mi j = |Mi j|Θi j for all i, j

and rank(M)< n. So the rows of M are linearly dependent, which implies that there are λ1, ...,λn ∈C,

not all zero, such that ∑
n
i=1 λiMi j = 0 for all j. Let Θ̃ be the matrix whose (i, j)th entry is λi

|λi|Θi j if

λi ̸= 0 and zero otherwise. Then, for all j,

n

∑
i=1

|Mi j||λi|Θ̃i j =
n

∑
i=1

λiMi j = 0.

Therefore, if for each j we divide both sides by ∑
n
i=1 |Mi j||λi|, we conclude that zero is in the relative

interior of the convex hull of the entries in column j of Θ̃, i.e., column j of Θ̃ is not colopsided.

Suppose now that there is a row scaling of Θ by scalars λ1, ...,λn in S1 ∪{0}, not all zero, such

that no column is colopsided. This means that 0 is in the relative interior of the scaled columns of Θ,

which implies that for every j = 1, ...,m there are positive numbers mi j such that

n

∑
i=1

mi jλiΘi j = 0.

Hence, the matrix with entries Mi j = mi jΘi j has linearly dependent rows (and thus rank less than n),

which means rank phase(Θ)< n.

Example 4.3.2. Consider the matrix

Θ =

 1 1 1

i ei π

4 ei2 π

3

−i ei 7π

6 ei4 π

3

 .

The convex hulls of the entries in each column are shown in Figure 4.2. Note that 0 is in the convex

hull of the entries in the first column but not in its (relative) interior, so this column is colopsided.

Fig. 4.2 Convex hulls of the entries of the columns of Θ

Scaling a row of Θ by eiθ (θ > 0) corresponds to rotating counterclockwise the points in the

diagrams associated to that row through an angle of θ . If we multiply the second row of Θ by ei π

4 ,
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that is, if we rotate counterclockwise through an angle of π

4 the points in orange, we see that 0 will be

in the interior of all convex hulls (see Figure 4.3).

Fig. 4.3 Convex hulls of the entries of the columns of Θ after scaling the second row by ei π

4 .

The criterion in Lemma 4.3.1 is not necessarily easy to use, as searching for such a noncolopsided

scaling is a nonconvex problem. There is another geometric way of thinking on this criterion. Consider

an n×m phase matrix Θ and suppose that any submatrix obtained by erasing one of its rows has

maximal phase rank (otherwise Θ is phase rank deficient). This is equivalent to asserting that in the

row scalings of Lemma 4.3.1 we only need to use scalars in S1, as we will not zero out any row. Define

Colop(n) = {y ∈ (S1)n : (y1, ...,yn) is colopsided}.

The condition that all row scalings have a colopsided column is then easy to characterize geometrically

using this set.

Proposition 4.3.3. Let Θ be an n×m phase matrix, with m ≥ n, and assume that any submatrix

obtained from Θ by erasing one of its rows has phase rank n−1. Then, rank phase(Θ) = n if and only if

∪m
j=1(Colop(n)/Θ

j) = (S1)n

where Θ j is the j-th column of Θ and the division operation considered is the entrywise division.

Proof. Notice that

Colop(n)/Θ
j = {y ∈ (S1)n : (y1Θ1 j,y2Θ2 j, ...,ynΘn j) is colopsided}

is the set of all nonzero scalings that will make column j colopsided. The union of all such sets is the

collection of all scalings that will make some column colopsided, so if it does not cover the whole set

of possible scalings, there will be a scaling that satisfies the conditions of Lemma 4.3.1.

Example 4.3.4. When computing the phase rank of a phase matrix one may always assume the matrix

first row to be all 1’s. Moreover, since multiplying all scalars by a common scalar in S1 does not

change the colopsidedness of columns, we may also assume that the scalars vector in Proposition
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4.3.3 has the first entry equal to one. For n = 3, we can then think of the elements of Colop(3) as

pairs of angles (see Figure 4.4). Although we usually identify S1 with [0,2π), here we plotted several

fundamental domains to better visualize the pattern and the toric nature of this object. Note further

that the vertices of the hexagons are actually not in Colop(3).

Fig. 4.4 Representation of Colop(3).

Given a 3×m matrix Θ, we can easily check if there is any 2×m submatrix of nonmaximal phase

rank, since that is equivalent to having usual rank 1, by Proposition 4.1.3. So we can see if we are in

the conditions of Proposition 4.3.3, and checking if rank phase(Θ) = n is the same as checking if the

geometric translations of the region in Figure 4.4 by the symmetric of the angles of the columns of Θ

cover the entire space. Let Θ be the matrix from Example 4.3.2. We have to consider the translations

Colop(3)− (π/2,−π/2), Colop(3)− (π/4,7π/6) and Colop(3)− (2π/3,4π/3). We get the regions

shown in the left of Figure 4.5, which do not cover the whole space, so rank phase(Θ)< 3.

Fig. 4.5 Representation of the translations of Colop(3) for two different matrices.

It is not hard to find examples where the translations do cover the entire space. For instance, for

Θ =

1 1 1

1 i ei2 π

3

1 −i ei π

6

 ,

we obtain the region shown in the right of Figure 4.5, that indeed covers the whole space, so this

matrix has phase rank 3.
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Note that, although in the previous example we saw that Colop(3) occupies a large portion of

(S1)3, this ceases to be true as n increases. In fact, if we think of Colop(n) as a subset of [0,2π)n, it is

not hard to compute its volume.

Lemma 4.3.5. For n ≥ 2, the volume of Colop(n) seen as a subset of [0,2π)n is 2nπn.

Proof. A set Γ of n angles (defined up to additions of multiples of 2π) is colopsided (seen as a subset

of (S1)n) if they are all in the same halfspace, i.e., if there is some α ∈ Γ such that every other angle

in Γ is in [α,α +π]. There are n choices for α so we get the volume

n
∫ 2π

0

∫
[α,α+π]n−1

dV dα = 2nπ
n.

This immediately leads to a sufficient condition for nonsingularity, based on this lemma and

Lemma 4.3.1.

Proposition 4.3.6 ([44]). If n ≤ m < 2n−1

n , then rank phase(Θ)< n for every n×m phase matrix Θ.

Proof. Let Θ be an n×m phase matrix. Just note that the volume of ∪m
j=1(Colop(n)/Θ j) is at most

m times the volume of Colop(n). If that is not enough to cover (S1)n, which has volume (2π)n, that

means there is a set of scalars that do not make any column of Θ colopsided. Therefore, by Lemma

4.3.1, the matrix is phase rank deficient. This happens if

m2nπ
n < (2π)n,

which gives us the intended result.

This result was proven in [44] using a similar but distinct argument that used a combinatorial

gadget instead of this one based on volumes. A nice thing about the argument presented here is that it

makes clear that the bound is somewhat conservative: in order to have a n× 2n−1

n phase matrix with

full rank, we would need 2n−1

n translated copies of Colop(n) that covered the entire space without

overlapping in any positive volume set. This is a very restrictive condition. In general, one would

expect that many more copies than this will be needed to actually cover the space. This is, however,

enough to take care of most square cases.

Corollary 4.3.7. For n ≥ 7, no n×n phase matrix has phase rank n.

Proof. Just note that for n ≥ 7, 2n−1

n > n.

In [44] the authors were able to slightly modify this argument to prove that there are also no 6×6

phase matrices with phase rank 6, while in [49] a very long and technical proof was provided to show
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that there are also no 5×5 phase rank nonsingular matrices. For n ≤ 4 such matrices exist and we

will come back to these in the next section.

The rectangular case is still not fully characterized. We know from Lemma 4.2.3 on sign rank that

the n×2n−1 matrix whose columns are all the distinct ±1 vectors starting with a one has sign rank

(and thus phase rank) n, and we just saw that for m < 2n−1

n these do not exist.

Question 4.3.8. What is the smallest m for which there is a n×m phase matrix with phase rank n?

Can one at least find better bounds than 2n−1

n ≤ m ≤ 2n−1?

As explained before, this can be seen as the problem of the minimal number of geometric

translations of a certain set that are needed to cover (S1)n, a type of geometrical problem that tends to

be hard.

4.4 Small square matrices of maximal phase rank

We have seen that for n ≥ 5 every n×n phase matrix has phase rank less than n. So the question of

determining if a square matrix is phase nonsingular is only potentially interesting for n = 2,3,4.

For n = 2, due to Proposition 4.1.3, the phase rank coincides with the usual rank, so the question

is trivial. For n = 3 and n = 4, Lemma 4.3.1 gives a potential way to find if the rank is maximal, but it

involves either finding a scaling with the required properties or proving that one does not exist, and

there is no direct way of doing that. So one would like a simple, preferably semialgebraic, way of

describing the sets of n×n phase matrices of phase rank less than n, for n = 3 and 4.

A sufficient certificate for maximal phase rank is given by the colopsided criterion in coamoeba

theory, as stated in Lemma 4.2.11. This method is already proposed in [53].

Definition 4.4.1. We say that an n×n phase matrix Θ is colopsided if the n×n determinant polynomial

is colopsided at Θ.

By Lemma 4.2.11, if Θ is colopsided, Θ does not belong to the coamoeba of the determinant, i.e.,

it has phase rank n. Let us denote by
−−−−→
det(Θ) the vector of the monomials of the n×n determinant

evaluated at the phase matrix Θ. We are saying that if 0 is not in the relative interior of the convex

hull of
−−−−→
det(Θ) then Θ has phase rank n.

Example 4.4.2. Let

Θ1 =

1 1 1

1 ei 3π

4 e−i π

2

1 e−i π

2 ei 3π

4

 , Θ2 =

1 1 1

1 ei π

2 ei π

2

1 ei π

2 −1

 and Θ3 =

1 1 1

1 ei π

2 ei π

3

1 ei π

3 ei π

2

 .

We have
−−−−→
det(Θ1)= (ei 3π

2 ,e−i π

2 ,e−i π

2 ,−ei 3π

4 ,−ei 3π

4 ,1),
−−−−→
det(Θ2)= (−ei π

2 ,ei π

2 ,ei π

2 ,−ei π

2 ,1,1) and
−−−−→
det(Θ3)=

(−1,ei π

3 ,ei π

3 ,−ei π

2 ,−ei π

2 ,−ei 2π

3 ,−ei π

2 ). Both Θ1 and Θ2 are colopsided, while Θ3 is not (see Figure



4.4 Small square matrices of maximal phase rank 65

4.6). Conv(
−−−−→
det(Θ1)) does not contain 0. Conv(

−−−−→
det(Θ2)) does contain it, but its relative interior does

not. We can immediately conclude that both Θ1 and Θ2 have phase rank 3.

Fig. 4.6 Convex hulls of
−−−−→
det(Θ1),

−−−−→
det(Θ2),

−−−−→
det(Θ3), in this order, where Θ1, Θ2 and Θ3 are the matrices

from Example 4.4.2.

The colopsidedness criterion was proposed in the ray nonsingularity literature, and was noted not

to be necessary in the 4×4 case. In fact, for

Θ =


1 1 1 i

1 1 −1 1

1 −1 1 1

−1 1 1 1

 ,

−−−−→
det(Θ) contains 1,−1, i and −i, so 0 is in the interior of its convex hull. Moreover, in [44] it is shown

that this matrix has phase rank 4.

The question of necessity of the colopsided criterion for phase nonsingularity is not addressed

in the ray nonsingularity literature. In [49], for example, in order to study the 5 × 5 case, the

authors derive an extensive and complicated description for the 3×3 case, without any reference to

colopsidedness. It turns out that, as what happened with lopsidedness in the case of the phaseless rank,

colopsidedness is a necessary and sufficient condition for phase nonsingularity of 3×3 matrices.

Theorem 4.4.3. Given a 3× 3 phase matrix Θ, rank phaseΘ < 3 if and only if the origin is in the

relative interior of the convex hull of
−−−−→
det(Θ).

In terms of coamoeba theory, we are saying that the coamoeba of the variety of singular 3×
3 matrices is characterized by the noncolopsidedness of the determinant. Coamoebas of simple

polynomials are completely characterized by the colopsidedness criterion (see [26]). This is a new

nontrivial example of another hypersurface with the same property, since the 3×3 determinant is not

simple.

In what follows we will present a proof of Theorem 4.4.3, based only on simple results from

linear algebra and convex geometry. We will consider throughout a general 3×3 phase matrix of the
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following form:

Θ =

eiφ1 eiφ2 eiφ3

eiφ4 eiφ5 eiφ6

eiφ7 eiφ8 eiφ9

 .

For this matrix we have

−−−−→
det(Θ) =

(
ei(φ1+φ5+φ9),ei(φ2+φ6+φ7),ei(φ3+φ4+φ8),−ei(φ1+φ6+φ8),−ei(φ2+φ4+φ9),−ei(φ3+φ5+φ7)

)
.

We will prove the equivalence between noncolopsidedness and nonmaximal phase rank for the

3×3 case in two steps. First, we show that nonmaximal phase rank is the same as noncolopsidedness

with one additional condition and, then, that this extra restriction can be removed.

Lemma 4.4.4. Let Θ be a 3×3 phase matrix. Then, rank phase(Θ) < 3 if and only if there exists a

coefficient vector c ∈ R6
++ such that

−−−−→
det(Θ) · c = 0 and c1c2c3 = c4c5c6.

Proof. Let Θ be as above and suppose rank phase(Θ)< 3. One can find a real positive matrix M such

that det(M ◦Θ) = 0, where ◦ represents the Hadamard product. But det(M ◦Θ) can be written as the

dot product

−−−−→
det(Θ) · (M11M22M33,M12M23M31,M13M21M32,M11M23M32,M12M21M33,M13M22M31)

and the entries of the right-hand side vector do satisfy the intended relations.

Conversely, suppose there exist positive coefficients ci, i = 1, . . . ,6, satisfying
−−−−→
det(Θ) · c = 0 and

c1c2c3 = c4c5c6. According to the reasoning above, if we can find a positive matrix M for which

det(M◦Θ)=
−−−−→
det(Θ)·c= 0, with c=(M11M22M33,M12M23M31,M13M21M32,M11M23M32,M12M21M33,M13M22M31),

Θ will have nonmaximal phase rank.

Finding such Mi j’s is equivalent to solving the linear system

M′
11 +M′

22 +M′
23 = c′1, M′

12 +M′
23 +M′

31 = c′2, M′
13 +M′

21 +M′
32 = c′3

M′
11 +M′

23 +M′
32 = c′4, M′

12 +M′
21 +M′

33 = c′5, M′
13 +M′

22 +M′
31 = c′6,

where c′i = logci and M′
i j = logMi j. This is solvable for M′

i j if and only if c′ is in C (A), the column

space of

A =



1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0


,
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or, equivalently, c′ is orthogonal to Null(AT ), the null space of the transpose of A. Since Null(AT )

is spanned by (111 − 1 − 1 − 1)ᵀ, c′ is in C (A) if and only if c′1 + c′2 + c′3 = c′4 + c′5 + c′6, i.e.,

c1c2c3 = c4c5c6, which is guaranteed by our hypothesis.

To get rid of this extra condition on the coefficients we will have to do some extra work. The

following lemma is a simple fact in discrete convex geometry and it will be useful later.

Lemma 4.4.5. Given 3 blue points and 3 red points in R2 \ {(0,0)} such that the origin is in the

relative interior of their convex hull, there is a proper subset of them containing all the blue points

that still has the origin in the relative interior of its convex hull (and similarly for the red points).

Proof. It is sufficient to prove that we can always erase some red points while keeping the origin in

the relative interior, as the statement is clearly symmetric with respect to the colors.

Suppose that there is no triangle with vertices on the six given points containing the origin in its

interior. Then there are two possibilities: either all the points are in a line through the origin, or all the

points are in exactly two lines through the origin. This is a consequence of a theorem of Steinitz [70]

(see Result B in [12]).

If all are in one line, then for each color there must be two red points in the same side of the origin,

so we can drop one without losing the origin in the relative interior of the convex hull. If all are in

exactly two lines then we must have points in each side of the origin on each line, and if we have more

than one point on a side then we can remove one of them. If no red point is redundant, that means that

all the blue points are in the same side of the origin in one of the lines, which means we can drop the

line with only red points and we will still have the origin on the relative interior.

So we can assume that there is a triangle containing the origin in its interior. If there is such a

triangle using a blue point, then we are done, as the set attained by adding any missing blue point to

the vertices of the triangle would have the required properties.

The only remaining case would be if there is a triangle that uses only red points. In that case, if

we take any of the blue points and consider the three triangles it can define with the red points, the

only way that none of them contains the origin in its interior is if the origin is in the interior of the

segment between the blue and a red point. If all the blue points are opposite to different red points,

then the triangle of blue points would contain the origin, if not, then the set of blue points together

with their opposite red points satisfies the intended property.

We are now ready to prove Theorem 4.4.3 by using this convex geometry fact to remove the

extraneous condition on Lemma 4.4.4.

Proof of Theorem 4.4.3. If the origin is not in the relative interior of the convex hull of
−−−−→
det(Θ), this

means the determinant is colopsided at Θ, which implies, by Lemma 4.2.11, that rank phase(Θ) = 3.

So one of the implications is easy.
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We will show that if Θ is not colopsided then there exists a coefficient vector c ∈ R6
++ such that

−−−−→
det(Θ) · c = 0 and c1c2c3 = c4c5c6. By Lemma 4.4.4, this will imply that Θ has nonmaximal phase

rank, giving us the remaining implication.

Suppose Θ is not colopsided. Then, there exists a ∈ R6
++ such that

−−−−→
det(Θ) ·a = 0. If a1a2a3 =

a4a5a6, we are done. Thus, we either have a1a2a3 > a4a5a6 or a1a2a3 < a4a5a6. Without loss of

generality we may assume the first, since switching two rows in the matrix will switch the sets

{a1,a2,a3} and {a4,a5,a6}.

Note that the entries of
−−−−→
det(Θ) can be thought of as points in R2 where the first three are red and

the last three are blue, and their convex hull contains the origin in its relative interior. So, by Lemma

4.4.5, the origin is still in the relative interior of the convex hull if we drop some of the ai’s, i = 1,2,3.

This means that there exists b ∈ R6
+ for which some of the first three coordinates are zero but none of

the last three coordinates is, and such that
−−−−→
det(Θ) ·b = 0.

Now note that every 6-uple of the form cλ = a+λb, λ ≥ 0, will satisfy cλ ∈R6
++ and

−−−−→
det(Θ) ·cλ =

0. Furthermore,

cλ
1 cλ

2 cλ
3 − cλ

4 cλ
5 cλ

6 = (a1 +b1λ )(a2 +b2λ )(a3 +b3λ )− (a4 +b4λ )(a5 +b5λ )(a6 +b6λ )

equals a1a2a3 − a4a5a6 > 0 for λ = 0 but goes to −∞ when λ grows to +∞, since it is a cubic

polynomial on λ with the coefficient of λ 3 being −b4b5b6. Hence, for some λ we have that cλ
1 cλ

2 cλ
3 −

cλ
4 cλ

5 cλ
6 = 0 and there is a vector c with the desired properties.

Example 4.4.6. We saw in Example 4.4.2 that the matrix

Θ3 =

1 1 1

1 ei π

2 ei π

3

1 ei π

3 ei π

2


has a noncolopsided determinant. Therefore, rank phase(Θ3)< 3.

Example 4.4.7. The characterization of nonsingular 3×3 phase matrices given by Theorem 4.4.3 is

very easy to check. In particular, it can be used to visualize slices of the coamoeba associated to the

3×3 determinant, i.e., of the set of phase singular 3×3 phase matrices. In Figure 4.7 are shown, on

the left, the set of triples (t1, t2, t3) for which1 1 1

1 eit1 eit2

1 eit3 ei π

3


has nonmaximal phase rank, and, on the right, its complement.

Since checking if the phase rank of a 3×3 matrix is less or equal than two is so easy, it could

be tempting to think that we might be able to leverage the result into some answer to Question 4.2.2,



4.4 Small square matrices of maximal phase rank 69

Fig. 4.7 Slice of the 3×3 determinant coamoeba and its complement.

that asks for an algorithm to check if an n×m matrix has phase rank at most 2. The problem is that,

contrary to what happened in the phaseless rank case, not even the 3×m case can be easily derived

from the rank of its 3×3 submatrices. In fact, the matrix1 1 1 1

1 1 −1 −1

1 −1 1 −1


has phase rank 3, although all its 3×3 submatrices have sign rank (and thus phase rank) at most 2.

As mentioned before, for 4×4 matrices we have seen that colopsidedness is not necessary for

having phase rank 4. In fact, even generating colopsided examples tends to be hard, but there are some

systematic ways of doing it.

Example 4.4.8. The phase matrix

Θ =


1 1 1 1

1 −1 ei π

4 ei π

4

1 ei π

4 −1 ei π

4

1 ei π

4 ei π

4 −1


is colopsided.

Conv(
−−−−→
det(Θ)) = Conv({ei π

2 ,ei 3π

4 ,−1,ei 5π

4 ,ei 3π

2 })

contains 0, but its (relative) interior does not (see Figure 4.8).
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Fig. 4.8 Convex hull of
−−−−→
det(Θ), where Θ is the matrix from Example 4.4.8.

The underlying idea behind the generation of Example 4.4.8 was the following: we searched for a

3×4 phase matrix for which all 3×3 submatrices are colopsided, namely

Θ =

1 1 1 1

1 −1 ei π

4 ei π

4

1 ei π

4 −1 ei π

4

 .

This means that for every 3× 3 submatrix Θi,
−−−−→
det(Θi) is colopsided, i.e., every point is contained

in some common half-space Hi. Then, having in mind the Laplace expansion formula for 4× 4

determinant along its last row, we can see that
−−−−→
det(Θ) is just the collection of the sets

−−−−→
det(Θi) each

rotated by its complementary entry in the 4×4 matrix. By picking suitable entries we can rotate them

in such a way that all the Hi will coincide and ensure the whole matrix is colopsided. This gives us

a tool to construct colopsided 4×4 matrices from 3×4 matrices where all 3×3 submatrices have

phase rank 3. The problem is that, on the one hand, colopsidedness is not enough to fully characterize

4×4 phase nonsingularity, and, on the other hand, finding 3×4 matrices with this property is also

hard. Thus, the problem of finding such a characterization remains completely open.

Question 4.4.9. Find an effective description of the set of 4×4 phase matrices with phase rank less

than 4.

4.5 Typical ranks

Let us equip S1 with the relative topology (i.e, open sets of C intersected with S1) and (S1)
n×m with

the product topology (the cartesian product of the relative topologies on S1).

Definition 4.5.1. We say that rank phase(Θ) = k is typical in (S1)
n×m if there exists an nonempty open

set in (S1)
n×m for which all matrices have phase rank k. To the minimum such k we call minimal

typical phase rank.
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For instance, in (S1)
3×3 the minimal typical phase rank is 2. It cannot be 1, as a phase matrix has

phase rank 1 if and only if it has rank 1 and the set of such matrices is a zero-measure set. Take, for

instance,

Θ =

1 1 1

1 i −i

1 1 i

 ,

from Example 4.1.2. This matrix has rank 3 and is not colopsided and Conv(
−−−−→
det(Θ))) is a rhombus

with vertices 1, i, −1 and −i (see Figure 4.9). Since perturbing the entries of Θ will continuously

perturb the vertices of Conv(
−−−−→
det(Θ))), there is an open set containing Θ for which

−−−−→
det(Θ) will remain

not colopsided and the rank of Θ will remain 3. By Theorem 4.4.3, every phase matrix in this open set

has phase rank 2.

Fig. 4.9 Convex hull of
−−−−→
det(Θ), where Θ is the matrix from Example 4.1.2.

The minimal typical phase rank in (S1)
n×m, like the minimal typical phaseless rank in Rn×m

+ , is at

least ⌈
n+m−

√
(n−1)2 +(m−1)2

2

⌉
,

because we can adapt the proof of Corollary 1.4.12 for the lower bound by replacing the entrywise

absolute value map with the entrywise argument map. Similar computations to those undertaken in

Section 3.2 suggest that the lower bound is tight.

Question 4.5.2. Is it true that the minimal typical phase rank in (S1)
n×m is given by⌈

n+m−
√

(n−1)2 +(m−1)2

2

⌉
?
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4.6 Bounds for phase rank

4.6.1 Lower bounds

In this section we generalize Theorem 4.2.4 and Theorem 4.2.5, by proving they can be extended

to any phase matrix. The proofs of the generalizations follow the ones of those results, with minor

modifications to adapt them to the complex case.

First, note that if rank phase(Θ) = k, with Θ an n×m phase matrix, there exist U ∈ Ck×n and

V ∈ Ck×m such that Θi j =
⟨ui,v j⟩
|⟨ui,v j⟩| =

u∗i v j
|u∗i v j| , where ui and v j denote, respectively, column i of U and

column j of V , for i = 1, . . . ,n, j = 1, . . . ,m. This follows from phase rank definition and the usual

matrix rank definition as the minimal size of a two-sided matrix factorization. We will start with an

auxiliary lemma.

Lemma 4.6.1. Let Θ be an n×m phase matrix. If there exist ui, v j ∈ Ck, i = 1, . . . ,n, j = 1, . . . ,m,

such that Θi j =
⟨ui,v j⟩
|⟨ui,v j⟩| and ||ui||= ||v j||= 1, then,

m

∑
j=1

( n

∑
i=1

|⟨ui,v j⟩|
)2

≤ n||Θ||2,

where ||Θ|| denotes the spectral norm of Θ.

Proof. For every 1 ≤ j ≤ m, we have

n

∑
i=1

|⟨ui,v j⟩|=
n

∑
i=1

Θi j⟨ui,v j⟩=
〈 n

∑
i=1

Θi jui,v j

〉
.

By Cauchy-Schwarz inequality, as ||v j||= 1, the above quantity is upper bounded by
∣∣∣∣∑

n
i=1 Θi jui

∣∣∣∣.
Therefore,

m

∑
j=1

( n

∑
i=1

|⟨ui,v j⟩|
)2

≤
m

∑
j=1

〈 n

∑
i=1

Θi jui,
n

∑
k=1

Θk juk

〉
= Tr((UΘ)∗UΘ) = Tr(U∗UΘΘ

∗).

Since ||Θ||2 is the greatest eigenvalue of ΘΘ∗, ||Θ||2In×n −ΘΘ∗ is positive semidefinite and

Tr(U∗UΘΘ
∗)≤ Tr(U∗U ||Θ||2In×n) = ||Θ||2

n

∑
i=1

||ui||2 = n||Θ||2,

completing the proof.

We need another result in order to prove the first bound. It is a complex version of Theorem 4.1

from [29]. Its proof, which we omit here, is quite long and exactly the same as in the real case.
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Theorem 4.6.2 ([29]). Let X ⊆ Ck, |X | ≥ k, be a finite set such that all subsets of X with k elements

are linearly independent. Then, there is a nonsingular linear transformation A ∈ Ck×k such that

∑
x∈X

1
||Ax||2

Ax(Ax)∗ =
|X |
k

Ik×k.

We are now ready to generalize Theorem 4.2.4 to the complex case.

Theorem 4.6.3. If Θ is an n×m phase matrix, then rank phase(Θ)≥
√

nm
||Θ|| .

Proof. Let k = rank phase(Θ) ≤ min{n,m}. There exist ui, v j ∈ Ck, i = 1, . . . ,n, j = 1, . . . ,m, such

that Θi j =
⟨ui,v j⟩
|⟨ui,v j⟩| . By perturbing the entries of the u′is, we can assume that none of them lies in any

linear span of k−1 of the other. This will yield small variations on the entries of Θ. Call this new

matrix Θ̃. Θ̃ can be chosen arbitrarily close to Θ, which means that if the inequality holds for Θ̃, it

holds for Θ.

Now we apply Theorem 4.6.2: since n ≥ k and any k of the u′is are linearly independent, there is a

nonsingular linear transformation A ∈ Ck×k such that

n

∑
i=1

ũiũ∗i =
n
k

Ik×k,

with ũi =
Aui

||Aui|| . Consider now ṽ j =
(A∗)−1v j

||(A∗)−1v j||
, so that

⟨ũi, ṽ j⟩
|⟨ũi, ṽ j⟩|

=
⟨ui,v j⟩
|⟨ui,v j⟩|

= Θ̃i j.

For every 1 ≤ j ≤ m, since |⟨ũi, ṽ j⟩| ≤ 1, we have

n

∑
i=1

|⟨ũi, ṽ j⟩| ≥
n

∑
i=1

|⟨ũi, ṽ j⟩|2 = ṽ∗j

( n

∑
i=1

ũiũ∗i

)
ṽ j =

n
k
. (4.1)

Summing the squares of all these inequalities and using Lemma 4.6.1, we get m
(n

k

)2 ≤ n||Θ̃||2,

and the result follows.

Analogously to Theorem 4.2.4, we can replace ||Θ|| with ||Θ||∗ = min{||M|| : Mi jΘi j ≥ 1∀i, j}=
min{||M|| : Mi j

|Mi j| = Θi j and |Mi j| ≥ 1∀i, j} in the above bound.

Theorem 4.2.5 can also be generalized to the complex case. This bound involves the dual norm

of the γ2 norm, also known as the max-norm. A short introduction to these quantities and how to

compute them can be found in the Appendix A.2. For now, recall that for a matrix A ∈ Cn×m we have

γ2(A) = min
{

max
i, j

||xi||l2 ||y j||l2 : XY T = A
}
,
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where {xi}n
i=1 and {y j}m

j=1 are the rows of X and Y , respectively. Therefore, we have

γ
∗
2 (A) = max

B:γ2(B)≤1
|⟨A,B⟩|= max

B:γ2(B)≤1
|Tr(A∗B)|.

Theorem 4.6.4. For any n×m phase matrix Θ,

rank phase(Θ)≥ nm
γ∗2 (Θ)

.

Proof. Let rank phase(Θ) = k and choose ũi and ṽ j, i = 1, . . . ,n, j = 1, . . . ,m, as in the proof of the

previous theorem. Summing the inequalities (4.1) for all j we get

n

∑
i=1

m

∑
j=1

|⟨ũi, ṽ j⟩| ≥ nm
k
.

Matrix B, defined by Bi j = ⟨ũi, ṽ j⟩, has phase pattern equal to Θ̃, and satisfies ∑i, j |Bi j| ≥ nm
k .

Furthermore, γ2(B)≤ 1, because ||ũi||= ||ṽ j||= 1 for any i, j, and

γ
∗
2 (Θ̃) = max

A:γ2(A)≤1
|⟨Θ̃,A⟩| ≥ |⟨Θ̃,B⟩|= ∑

i, j
|Bi j| ≥

nm
k
.

Using the fact that γ∗2 (.) is continuous and by making Θ̃ → Θ,

γ
∗
2 (Θ)≥ nm

k
.

Note that these bounds, being continuous, can only be very rough approximations to the discontin-

uous notion of phase rank, but can in some cases provide meaningful results and have been used in

the real case to prove several results in communication complexity.

Example 4.6.5. Searching randomly for small examples one immediately observes the limitations of

these bounds, as it is very hard to obtain effective bounds.

For instance, the bounds from Theorems 4.6.3 and 4.6.4 for the matrix
1 1 1 i

1 1 −1 1

1 −1 1 1

−1 1 1 1

 ,
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which has phase rank 4, are 1.5751 and 1.6996, respectively. The smallest example that we could find

for which one of the bounds is nontrivial has size 8×8 and is shown below. For

−1 i −1 i i −1 1 1

−1 i i i −i −i −i i

1 i 1 −1 i i −i −1

1 i 1 1 i 1 1 i

1 i −1 i i −i −1 1

−i −i 1 −i i −1 −i −1

−1 i −1 −i i i −1 −i

i −1 i −i 1 −1 −i −1


the bounds values are 1.8383 and 2.0335, so Theorem 4.6.4 guarantees that it has phase rank at least

3. Note that one could maybe conclude the same from checking that some of the 3×3 submatrices

are colopsided, but to attain lower bounds larger than 3 these inequalities are our only systematic tool.

4.6.2 Upper bounds

In terms of upper bounds for phase rank, one could aim for a generalization of Theorem 4.2.7. The

issue lies in the fact that the proof uses the combinatorial nature of a sign matrix, such as the number

of sign changes on each row of the matrix, and it is not obvious how this concept applies to a phase

matrix. We can however use Proposition 4.3.6 to create a very simple upper bound in the style of

Proposition 1.4.11, that we proved for phaseless rank.

Proposition 4.6.6. Let Θ be an n×m phase matrix, with n ≤ m, and k the smallest positive integer

such that m < 2k−1

k . Then rank phase(Θ)≤ n−⌊n−1
k−1⌋.

Proof. Let k satisfy m < 2k−1

k . Then, by Proposition 4.3.6, every k×m submatrix of Θ has phase rank

at most k−1. Hence, for every k×m submatrix Γ, we can find BΓ with the same phases of Γ and rank

less than k. Moreover, we are free to pick the first row of BΓ to have modulus one, since scaling an

entire column of BΓ by a positive integer does not change the rank or the phases.

Consider then k×m submatrices Γi of Θ, i= 1, . . . ,
⌊n−1

k−1

⌋
, all containing the first row but otherwise

pairwise disjoint. We can then construct a matrix B by piecing together the BΓi’s, since they coincide

in the only row they share, and filling out the remaining rows, always less than k − 1, with the

corresponding entries of Θ.

By construction, in that matrix B we always have in the rows corresponding to BΓi a row different

than the first that is a linear combination of the others, and can be erased without dropping the rank of

B. Doing this for all i, we get that the rank of B has at least a deficiency per BΓi , so its rank is at most

n−
⌊

n−1
k−1

⌋
,
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and since B has the same phases as Θ, rank phase(Θ) satisfies the intended inequality.

It seems that the bound derived above is not very strong. Indeed, for a 100×100 matrix we can

only guarantee that the phase rank is at most 91, and for a 1000×1000 matrix that it is at most 929.

We can quantify a little how good this bound is. By inverting the function 2x−1

x we get that k∗, the

smallest k that satisfies the inequality on Proposition 4.6.6 is given by⌈
−

W−1
(
− ln2

2m

)
ln2

⌉
,

where W−1 is one of the branches of the Lambert W function, the inverse of f (x) = xex. Using the

bounds for W−1 derived in [17], one can conclude that k∗ satisfies the inequalities⌈
1+

√
2u+u

ln2

⌉
≥ k∗ ≥

⌈
1+

√
2u+ 2

3 u
ln2

⌉

where u = ln(m)+ ln(2)− ln(ln(2))−1 ≈ ln(m)−0.05966. This means that the best bound we can

expect from Proposition 4.6.6 for an n×n matrix grows as n
(

1− c
log2(n)

)
. Recall that for sign rank

we have that the rank of an n×n matrix is at most n
2(1+o(1)) , so our bound is very far from a result

of that type, that one would expect to be true. It is, however, a first step towards a more meaningful

bound.
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Appendix A

Appendix

A.1 Sums of squares and Semidefinite Programming

In the first part of this appendix, we briefly explain the connection between sums of squares and

semidefinite programmming. We closely follow Chapter 3 from [11] and parts of [18]. Let R[x]n,d :=

R[x1, . . . ,xn]d denote the set of polynomials of reals coefficients of degree d in the n variables x1, . . . ,xn

Definition A.1.1. We say a polynomial p(x) := p(x1, . . . ,xn) ∈ R[x]n,2d is a sum of squares (sos) if it

can be written as the sum of squares of other polynomials, i.e, if there exist q1, . . . ,qm ∈ R[x]n,d such

that

p(x) =
m

∑
k=1

qk(x)
2.

Example A.1.2. Let q(x1,x2) = 4x1
4 +4x1

3x2 −2x1
2x2

2 +10x2
4. Since

4x1
4 +4x1

3x2 −2x1
2x2

2 +10x2
4 = (2x1

2 −3x2
2 + x1x2)

2 +(x2
2 +3x1x2)

2,

q(x1,x2) is a sum of squares.

A combinatorial exercise tells us that, for any polynomial of degree 2d in n variables, its number

of coefficients is
(n+2d

2d

)
, one for each different monomial. Let [x]d := [1,x1, . . . ,xn,x1

2,x1x2, . . . ,xn
d ]T

be the vector all
(n+d

d

)
monomials in x1, . . . ,xn of degree at most d. If p(x) ∈ R[x]n,2d is an sos, take


q1(x)

q2(x)
...

qm(x)

=V [x]d ,
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where V ∈ Rm×(n+d
d ) and whose k-th row contains the coefficients of qk(x). It follows that

p(x) =
m

∑
k=1

qk(x)
2 = (V [x]d)

TV [x]d = [x]d
TV TV [x]d = [x]d

T Q[x]d .

We can now state the following theorem:

Theorem A.1.3 ([11]). A polynomial p(x) ∈ R[x]n,2d is an sos if and only if there exists a positive

semidefinite matrix Q ∈ R(
n+d

d )×(
n+d

d ) such that

p(x) = [x]d
T Q[x]d .

Definition A.1.4. A semidefinite program in standard primal form is written as

minimize ⟨C,X⟩

subject to ⟨Ai,X⟩= bi, i = 1, . . . ,m,

X ≽ 0,

where C,Ai are n× n real symmetric matrices and ⟨X ,Y ⟩ := Tr(XTY ). The positive semidefinite

matrix X is the variable over which the minimization is performed.

YALMIP, SDPT3 and SeDuMi are some examples of software used for solving semidefinite

programs. Deciding if a polyomial is a sum of squares is a semidefinite program. Indeed, if

p(x) = ∑α pαxα := ∑α pαxα1
1 · · ·xαn

n is a polynomial of degree 2d in n variables, where the α’s are

the exponent vectors, belonging to the set A = {(α1, . . . ,αn) : α1 + · · ·αn ≤ 2d, αi ≥ 0,∀i = 1, . . . ,n},

the equation

p(x) = [x]d
T Q[x]d

is equivalent to the conditions

pα = ∑
β+γ=α

Qβγ , Q ≽ 0.

Here, Qβγ denotes the entry of Q in the row associated to the monomial xβ and in the column

associated to the monomial xγ . Thus, p(x) = ∑α pαxα is an sos if and only if the semidefinite program

minimize ⟨O,Q⟩

subject to ⟨Aα ,Q⟩= pα , α ∈ A,

Q ≽ 0

is feasible, where O is the
(n+d

d

)
×
(n+d

d

)
all-zero matrix and the Aα ’s are defined as

Aα

βγ
=

1, β + γ = α

0, otherwise.
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Note that the Aα ’s are symmetric, because β + γ = γ +β , and ⟨Aα ,Q⟩= ∑β+γ=α Qβγ .

Example A.1.5. Consider the polynomial p(x) = x4 +4x3 +6x2 +4x+5, for which we want to find

an sos decomposition. According to Theorem A.1.3, we wish to solve

p(x) =

 1

x

x2


T Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33


 1

x

x2

= Q33x4 +2Q23x3 +(Q22 +2Q13)x2 +2Q12x+Q11

where Q ≽ 0. Because the coefficients of both polynomials must match, the linear constraints to

consider are:

Q33 = 1, 2Q23 = 4, Q22 +2Q13 = 6, 2Q12 = 4, Q11 = 5.

Choosing Q13 = 0, we obtain

Q =

5 2 0

2 6 2

0 2 1

=V TV, V =

 0 2 1√
2

√
2 0√

3 0 0

 ,

which results in the following sos decomposition

p(x) = (2x+ x2)2 +(
√

2+
√

2x)2 +
√

3
2
= (2x+ x2)2 +2(1+ x)2 +3.

It is straightforward to see that any sum of squares in n variables is necessarily nonnegative on

Rn. Moreover, sums of squares decompositions can be used for certifying nonnegativity on particular

subsets of Rn, such as real varieties.

Definition A.1.6. A subset I ⊆ R[x1, . . . ,xn] is an ideal if it satisfies:

i)0 ∈ I.

ii)If f ,g ∈ I, f +g ∈ I.

iii)If f ∈ I and h ∈ R[x1, . . . ,xn], then h f ∈ I.

Definition A.1.7. Let f1, . . . , fs be polynomials in R[x1, . . . ,xn]. Then,

⟨ f1, . . . , fs⟩ :=
{ s

∑
i=1

hi fi : h1, . . . ,hs ∈ R[x1, . . . ,xn]
}
.

Note that ⟨ f1, . . . , fs⟩ is an ideal. It is called the ideal generated by f1, . . . , fs.

Theorem A.1.8 (Hilbert Basis Theorem). Every ideal I ⊆ R[x1, . . . ,xn] has a finite generating set. In

other words, I = ⟨ f1, . . . , fs⟩, for some f1, . . . , fs.
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Definition A.1.9. Let I = ⟨ f1, . . . , fs⟩ ⊆ R[x1, . . . ,xn] be an ideal. The set

VR(I) = {p ∈ Rn : g(p) = 0,∀g ∈ I}= {p ∈ Rn : fi(p) = 0, i = 1, . . . ,s}

is called the real variety associated to I.

Suppose I ⊆R[x1, . . . ,xn] is an ideal and let VR(I) be the corresponding real variety. If a polynomial

f (x) can be decomposed as h(x)+g(x), where h(x) is a sum of squares and g(x) ∈ I, then, for any

p ∈VR(I),

f (p) = h(p)+g(p) = h(p)≥ 0,

i.e., f (x) is nonnegative on VR(I).

Definition A.1.10. Let I ⊆R[x1, . . . ,xn] be an ideal. A polynomial f (x) is said to be a sum of squares

modulo I (sos mod I) if there exists a sum of squares h(x) such that f (x)−h(x) ∈ I.

Real Nullstellensatz, a well-known characterization for empty real varieties, can be restated in

terms of sums squares modulo an ideal.

Theorem A.1.11 (Real Nullstellensatz). Let I ⊆ R[x1, . . . ,xn] be an ideal. Then,

VR(I) = /0 if and only if −1 is sos mod I.

Example A.1.12. Let I = ⟨1−x2−y2, x−2⟩. We have VR(I) = {(x,y)∈R2 : 1−x2−y2 = 0, x−2 =

0}= /0 and

−1− ((x−1)2 + y2 +12) = (1− x2 − y2)+2(x−2) ∈ I,

i.e., −1 is sos mod I.

The issue with finding sums of squares decompositions modulo an ideal for a given polynomial

is that the sos decomposition degree is not known in advance. Typically, the procedure is to fix

that degree and then solve a semidefinite program. For instance, suppose we want to write a given

polynomial f (x) as h(x)+g(x), where h(x) is sos and g(x) ∈ I, with I = ⟨g1 . . . ,gn⟩. If we want h(x)

to have degree at most 2d, we try to find an sos decomposition, through semidefinite programming,

for f (x)−∑
n
i=1 si(x)gi(x), where each si(x)gi(x) has degree at most 2d. Since any ideal has more than

one generating set, this procedure depends on the generating set chosen, which is fixed beforehand.

Definition A.1.13. Let I ⊆R[x1, . . . ,xn] be an ideal. A polynomial f (x) is said to be a sum of squares

modulo I of degree at most 2d if there exists a sum of squares h(x) of degree at most 2d such that

f (x)−h(x) ∈ I.

Note that being an sos modulo an ideal of degree is only a sufficient condition for being an sos

modulo an ideal. However, for 2d large enough, if f is an sos modulo an ideal is also an sos modulo

an ideal of degree at most 2d.



A.2 The γ2 norm 85

As a practical example, suppose we want to prove that a list of polynomial equations gi(x) =

0, i = 1, . . . ,n has no real solutions, i.e, VR(I) = /0, with I = ⟨g1, . . . ,gn⟩. A possible of way doing it is

to keep increasing d until we can find an sos decomposition modulo I of degree at most 2d for −1,

which guarantees the real variety is empty, as stated in Theorem A.1.11.

A.2 The γ2 norm

Here, we provide some background, mostly taken from [50], for understanding the bound involved in

Theorem 4.2.5.

Recall that any linear operator between vector spaces can be represented by a matrix. Given two

norms E1 and E2 on Cn and Cm, respectively, the operator norm ||.||E1→E2 is defined as

||A||E1→E2 = sup
||x||E1=1

||Ax||E2 ,

for each A ∈ Cm×n.

For three normed vector spaces W1, W2 and Z and an operator T : W1 → W2, the factorization

problem deals with representations of the operator T as T = uv, where v : W1 → Z and u : Z →W2,

such that v and u have small norms. For fixed spaces W1 and W2 and T : W1 →W2, the factorization

constant is defined as

γZ(T ) = inf{∥v∥W1→Z∥u∥Z→W2 : uv = T}.

It can be shown that if Z is an Hilbert space, then for any W1 and W2 the factorization constant is

a norm on the space of operators between W1 and W2 [73]. In the case which W1 = ln
1 , W2 = lm

∞ and

Z = l2, the factorization constant is denoted by

γ2(A) = inf{||X ||l2→lm
∞
||Y ||ln

1→l2 : XY = A}.

If A is an m×n matrix, ||A||l2→lm
∞

and ||A||ln
1→l2 turn out to be equal to the largest l2−norm of a

row in A and the largest l2−norm of a column in A, respectively. Thus,

γ2(A) = min{max
i, j

||xi||l2 ||y j||l2 : XY T = A},

where {xi}m
i=1 and {y j}n

j=1 are the rows of X and Y respectively. The dual norm of γ2(A), γ∗2 (A),

which shows up in the bound expression of Theorem 4.2.5, is

γ
∗
2 (A) = max

B:γ2(B)≤1
|⟨A,B⟩|= max

B:γ2(B)≤1
|Tr(A∗B)|.
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The γ2 norm can be written as the solution to a semidefinite program [45]:

γ2(A) =min R s.t.

W =

[
W1 A

A∗ W2

]
≽ 0, diag(W )≤ R.

Hence,

γ
∗
2 (A) = max

B:γ2(B)≤1
|Tr(A∗B)|=

=max |Tr(A∗B)| s.t.

W =

[
W1 B

B∗ W2

]
≽ 0, diag(W )≤ 1.

We can have a better idea of how big is γ∗2 (A) by using the famous Grothendieck’s Inequality. See

for instance [69] for a discussion that gives us the following well-known norm equivalence.

Proposition A.2.1. For any complex matrix A ∈ Cn×m we have

∥A∥l∞→l1 ≤ γ
∗
2 (A)≤ KC

G∥A∥l∞→l1 .

Here, the norm ∥A∥l∞→l1 is given by

∥A∥l∞→l1 = max
|si|,|t j|≤1

∣∣∣∣∑
i, j

Ai jsit j

∣∣∣∣,
and KC

G is the complex Grothendieck’s constant, known to be between 1.338 and 1.4049 (see [59],

section 4).
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