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ABSTRACT 

Liquefaction-related phenomena are a major concern for modern societies, at least in 

seismically active zones, due to their massive destructive potential, capable of causing great 

economic losses, social disruption and loss of life. Although the great development of 

numerical tools in recent years has extended the possibilities of performance-based design, 

it has also revealed the need for more reliable constitutive models, capable of simulating the 

mechanisms involved in these complex phenomena. In this thesis, a bounding surface 

plasticity model is implemented into the finite element code FEMEPDYN, developed at the 

University of Coimbra, and applied to the simulation of liquefaction-related phenomena 

induced by cyclic loading and observed in element laboratory tests and centrifuge 

experiments. 

In the first part of this thesis, the outcome of an extensive laboratory testing programme 

performed on Hostun sand is presented, including results of bender element tests, as well as 

of drained and undrained monotonic triaxial compression and extension tests, allowing for 

the characterisation of the monotonic response of Hostun sand within the very small to large 

strain range. The effects of the void ratio, consolidation stress state and stress path on the 

measured response are discussed. Moreover, a state-parameter approach is used in 

conjunction with critical state soil mechanics concepts to characterise the distinctive states 

of the response of sand, namely the undrained instability, phase transformation, peak stress 

ratio, and critical states. The stress-dilatancy characteristics of sand are also investigated. In 

addition, results of a series of drained and undrained cyclic triaxial tests carried out on Hostun 

sand are used to assess the key aspects of its cyclic response, including the reduction of the 

secant shear stiffness and concurrent increase in damping ratio with strain amplitude, the 

generation of excess pore water pressure with cyclic loading and the undrained cyclic 

resistance. 

The second part of this thesis includes a comprehensive description of a bounding surface 

plasticity model proposed in the literature and adopted in the present study. To increase the 

overall flexibility and expand the modelling capabilities of the constitutive model, two 

modifications are introduced to its formulation. Attention is subsequently given to its 

implementation into the finite element code FEMEPDYN. The operations required in each 

step of the stress integration scheme are thoroughly described, giving particular emphasis to 

the operations required by the co-existence of the two yield surfaces of the constitutive 

model. Validation exercises comprising the simulation of both element laboratory tests and 

centrifuge experiments and the comparison of the obtained results with those reported in 

the literature are presented afterwards. 
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The third and final part of this thesis starts with the calibration of the constitutive model 

against the results of element laboratory tests performed on Hostun sand during the first 

stage of the research. Subsequently, the ability of the constitutive model to reproduce the 

response of Hostun sand measured in the laboratory is explored in detail, enabling to 

characterise the merits and pitfalls of the constitutive model. Its performance is further 

evaluated by simulating two dynamic centrifuge experiments presented in the literature 

concerning the performance of shallow foundations resting on saturated deposits of Hostun 

sand subjected to dynamic loading causing liquefaction. The obtained results suggest that the 

numerical tool is able to capture accurately important aspects of the sand-structure 

interaction observed in the centrifuge experiments, such as the generation of large excess 

pore pressures in sand induced by the applied dynamic loading and consequent alteration of 

the input motion due to the reduction of sand’s stiffness and increase in material damping, 

as well as the progressive accumulation of large structural settlement with dynamic loading. 

Furthermore, the impacts of both densification and closely spaced high-capacity vertical 

drains on the mitigation of liquefaction effects seem also adequately captured in the 

numerical analysis. 
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RESUMO 

Os fenómenos associados a liquefação são uma preocupação para as sociedades modernas, 

nomeadamente quando localizadas em zonas sísmicas ativas, devido ao seu enorme potencial 

de destruição, capaz de provocar elevados prejuízos económicos, alteração ao normal 

funcionamento da sociedade e perda de vidas humanas. Apesar do grande desenvolvimento 

de ferramentas numéricas verificado nos últimos anos ter aumentado as possibilidades do 

uso do dimensionamento baseado no desempenho das estruturas na prática, este progresso 

também evidenciou a necessidade do desenvolvimento de modelos constitutivos mais 

robustos, capazes de simular os mecanismos envolvidos neste tipo de fenómenos. Nesta tese, 

um modelo baseado na teoria bounding surface plasticity é implementado no código de 

elementos finitos FEMEPDYN, desenvolvido na Universidade de Coimbra, e utilizado para a 

simulação de fenómenos associados a liquefação induzida por carregamentos cíclicos e 

observada ensaios elementares de laboratório e ensaios de centrifugadora. 

Na primeira parte desta tese, são apresentados os resultados obtidos num extenso programa 

de ensaios elementares realizados sobre a areia de Hostun, incluindo ensaios de bender 

elements e ensaios triaxiais de compressão e de extensão drenados e não drenados, os quais 

permitem a caracterização da resposta monotónica da areia de Hostun no domínio das muito 

pequenas a grandes deformações. Os efeitos do índice de vazios, do estado de tensão na 

consolidação das amostras e da trajectória de tensão na resposta medida no laboratório são 

aí discutidos. Para além disso, é utilizada uma metodologia com um parâmetro de estado em 

conjunto com conceitos de mecânica dos solos de estado crítico para caracterizar estados 

distintos da resposta de areias, nomeadamente os relativos a instabilidade em condições não 

drenadas, a transformação de fase, ao valor de pico do rácio de tensão e ao estado crítico. As 

características da relação entre o estado de tensão e a dilatância de areias são também 

investigadas. Para complementar, são utilizados resultados obtidos em ensaios triaxiais 

cíclicos em condições drenadas e não drenadas sobre a areia de Hostun para caraterizar os 

aspectos principais da sua resposta cíclica, incluindo a redução da rigidez secante ao corte 

acompanhada do aumento do amortecimento com o nível de extensão, a geração de pressões 

de água nos poros com o carregamento cíclico e a resistência cíclica não drenada. 

A segunda parte da tese inclui uma descrição detalhada do modelo baseado na teoria 

bounding surface plasticity proposto na bibliografia e adotado neste estudo. Para aumentar 

a versatilidade do modelo, assim como as suas capacidades de modelação, são introduzidas 

duas modificações na sua formulação. De seguida, apresenta-se a implementação do modelo 

no código de elementos finitos FEMEPDYN. As operações necessárias em cada passo do 

método de integração são descritas em detalhe, dando especial atenção às operações 

requeridas pela coexistência de duas superfícies de cedência no modelo constitutivo. São 
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finalmente apresentados exemplos de validação, incluindo a simulação de ensaios de 

laboratório elementares e de centrifugadora, comparando-se os resultados obtidos neste 

estudo com os que estão descritos na bibliografia. 

A terceira e última parte da tese começa por descrever a calibração do modelo constitutivo 

utilizando os resultados dos ensaios de laboratório elementares realizados sobre a areia de 

Hostun durante a primeira fase do trabalho de investigação. De seguida, a capacidade do 

modelo para reproduzir a resposta medida no laboratório é explorada em detalhe, permitindo 

a caracterização das capacidades e limitações do modelo constitutivo. O seu desempenho é 

posteriormente avaliado através da simulação de dois ensaios dinâmicos de centrifugadora, 

cujos resultados são apresentados na bibliografia, acerca do desempenho de fundações 

superficiais assentes em depósitos saturados de areia de Hostun quando sujeitas a ações 

dinâmicas causando liquefação. Os resultados obtidos sugerem que a ferramenta numérica é 

capaz de prever, de forma adequada, aspectos importantes da interação solo-estrutura 

observados nos ensaios de centrifugadora, tais como a geração de pressões de água nos poros 

elevadas no depósito de areia devido ao carregamento dinâmico e a consequente alteração 

da acção dinâmica aplicada na base do modelo devido à redução da rigidez ao corte da areia 

e aumento do amortecimento material, bem como a progressiva acumulação de elevados 

assentamentos estruturais com o carregamento dinâmico. Para além disso, os impactos da 

densificação da areia e da introdução de uma malha densa de drenos verticais de alta 

capacidade na mitigação dos efeitos de liquefação também parecem ser adequadamente 

simulados na análise numérica. 
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s Deviatoric stress tensor 

t Time; thickness 

tarr Time of arrival 

tlag Time lag 

T Pseudo time; period 

u Pore pressure 

v Velocity 

vp Compression wave velocity 

vs Shear wave velocity 

V Volume 

W Energy 

We,max Maximum elastic stored energy 

 

Subscripts 

0 Initial value 

1 
Along the major principal direction; related to the primary yield surface of the present 
BSPM 

2 
Along the intermediate principal direction; related to the secondary yield surface of the 
present BSPM 

3 Along the minor principal direction 
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a Along the axial direction 

av Average value 

c In triaxial compression 

cell Related to the triaxial cell (laboratory testing) 

cons Value immediately after consolidation 

cs Critical state value 

da Double amplitude 

e In triaxial extension; elastic 

eq Equivalent 

f Fluid phase 

i Related to an interface element (numerical modelling) 

init Initial (i.e. immediately after sample preparation) 

liq Value corresponding to the onset of liquefaction 

lim Limit value 

m Related to the membrane 

max Maximum value 

min Minimum value 

n General integer; normal 

p Peak value 

q Deviatoric value 

r Along the radial direction 

red Reduced value 

ref Reference value 

res Residual value (i.e. corresponding to a null shear stress) 

s Solid phase; shear 

sa Single amplitude 

sec Secant value 

ss Sub-step 

tan Tangent value 

v Volumetric; vertical 

w Related to water 

x Along the x-axis 

y Along the y-axis 

z Along the z-axis 
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Superscripts 

‘ Effective stress 

* Modified value 

b Related to the bounding surface of the present BSPM 

c Related to the critical surface of the present BSPM 

d Related to the dilatancy surface of the present BSPM 

e Elastic 

ep Elasto-plastic 

new New value (to be used in the following sub-step increment) 

p Plastic 

SR Value at the last shear reversal for the present BSPM 

UI Related to undrained instability state 
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Chapter 1 INTRODUCTION 

1.1 Background 

The term “liquefaction” has been employed to designate a variety of distinctive, though 

related phenomena, involving the generation of excess pore water pressure in saturated soils 

under undrained or partially undrained conditions, either due to static and/or dynamic 

loading. 

According to Kramer (1996), liquefaction-related phenomena can be essentially categorised 

into “flow liquefaction” and “cyclic mobility”. The former phenomenon occurs when a static 

or dynamic solicitation brings the soil to an unstable state, from which its shear strength 

suddenly reduces to a magnitude smaller than that required to maintain static equilibrium. 

Once triggered, the produced flow failure is driven by static shear stresses, with a rapid 

development of large deformations. Figure 1.1a illustrates the occurrence of this 

phenomenon during an undrained element laboratory test. It is apparent that, although the 

unstable state may be induced by either monotonic or cyclic loading (point B or D, 

respectively), once such point is reached, a monotonic decrease of the deviatoric stress is 

observed (up to point C), concurrently with a rapid development of large deformations. Since 

failure is induced by monotonic shear stresses, this phenomenon has been also termed as 

“static liquefaction” by some authors (e.g. Jefferies and Been, 2006). As highlighted by these 

authors, although failures induced by this phenomenon are typically catastrophic, not only 

due to its sudden initiation, but also due to the high speed at which failure progresses and 

large distances over which liquefied soil often moves, its occurrence has been only observed 

for soils in very loose states. 

Conversely, cyclic mobility (often also referred to as “cyclic softening”, “cyclic liquefaction” or 

simply “liquefaction”) is characterised by static shear stresses that are lower than the shear 

strength of the liquefied soil. Eventual periods of instability, characterised by effective 

stresses close to zero, and continuous accumulation of permanent deformations caused by 

both static and cyclic shear stresses are typically observed during the occurrence of this type 

of phenomenon (Kramer, 1996). This is illustrated in Figure 1.1b, where the application of 

cyclic loading results in a gradual increase in excess pore water pressures and, consequently, 

reduction of soil’s strength and stiffness to very low values and accumulation of large 

deformations. 

On gently sloping ground or flat ground adjacent to water, cyclic mobility may result in “lateral 

spreading”, which may severely damage embankments, bridges, buried lifelines and 

waterfront structures (e.g. Okamura et al., 2001). In level ground deposits of saturated sand, 

due to the absence of static horizontal shear stresses, which could induce significant lateral 
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deformations, a chaotic ground movement is typically observed (Kramer, 1996). Moreover, in 

such case (often termed as “level-ground liquefaction”), large surface settlements are 

commonly observed concurrently with the application of cyclic loading (typically seismically-

induced), as well as after its cessation, as a result of the upwards flow of water resulting from 

the migration and/or dissipation of excess pore water pressures (Coelho, 2007). Note that, 

although effects of brittle failures associated with flow liquefaction are usually far more 

severe – as illustrated by the flow-liquefaction type of failure of Fort Peck Dam, in Canada, in 

1938 (e.g. Jefferies and Been, 2006), and more recently in 2016 and 2019, respectively, of 

Fundão and Brumadinho tailing dams, in Brazil (Morgenstern et al., 2016; Robertson et al., 

2019) – , cyclic mobility can occur in a wider range of soils and site conditions than flow 

liquefaction. Moreover, note that, in the present thesis, the term liquefaction will be used to 

include both flow liquefaction and cyclic mobility. 

  

  
Figure 1.1 – Illustration of liquefaction-related phenomena (adapted from Kramer, 1996): (a) flow 

liquefaction and (b) cyclic mobility. 

Awareness of the severe damaging nature of liquefaction-related phenomena has mainly 

developed from earthquake-induced failures developed during the major events occurred in 
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March of 1964 in Alaska, U.S., and June of 1964 in Niigata, Japan (Ishihara, 1993; Towhata, 

2008). As a consequence of these strong motion events, formation of sand boils, subsidence 

of wide areas and tilting and collapse of structures built-on shallow foundations (Figure 1.2), 

among other occurrences, were observed, resulting in great economic losses and causing 

long-term disruption of society. 

(a) (b) 

  

Figure 1.2 – Illustration of liquefaction-induced damage during the 1964 Niigata earthquake 
(photos from National Geophysical Data Centre, U.S. Department of Commerce): (a) collapse of 

the Showa Bridge and (b) tilting of Kawagishi-Cho apartment buildings. 

Despite the research effort made since the occurrence of those events to understand the 

fundamental mechanisms of liquefaction-related phenomena, to develop tools to evaluate 

the liquefaction potential of a given site and to enhance the use of different techniques to 

mitigate the risk and consequences of the phenomena, liquefaction-induced damage has 

been recurrently observed in major earthquakes around the world in the last decades. 

Remarkable examples of liquefaction-induced damage include post-earthquake failure of 

Lower San Fernando Dam in 1971, as well as many other earthquake-induced liquefaction 

events, such as: the 1983 Nihonkai-Chubu earthquake, the 1989 Loma Prieta earthquake, the 

1995 Kobe earthquake, the 1999 Izmit earthquake, the 1999 Chi-Chi earthquake, the 2010 

Canterbury earthquake, the 2011 Christchurch earthquake and the 2011 Great East Japan (or 

Tōhoku) earthquake. As highlighted by Coelho (2007), this may indicate that understanding 

of liquefaction is still limited and/or design procedures and mitigation technique are not 

properly applied. 

Scientific understanding on the conditions required to the onset of flow liquefaction and cyclic 

mobility, their development and effects, as well as mitigation, was initially developed based 

on undrained element laboratory tests (e.g. Seed and Lee, 1966; Peacock and Seed, 1968; 

Castro, 1969; Seed and Idriss, 1970a; Finn et al., 1971; Ishihara and Li, 1972; Lee and Albaisa, 

1974; De Alba et al., 1975; Ishihara and Yasuda, 1975; Sladen et al., 1985; Tatsuoka et al., 

1986a; Toki et al., 1986; Nagase and Ishihara, 1988; Alarcon-Guzman et al., 1988). More 

recently, dynamic centrifuge experiments have contributed to the understanding of 

mechanisms governing the field performance, while also providing data to the calibration, 

verification and further development of numerical tools. In particular, it is worth mentioning 

the several large international collaborative research projects using this modelling technique 
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undertaken during the last three decades, such as the VErification of Liquefaction Analysis by 

Centrifuge Studies (VELACS) (Arulanandan and Scott, 1993) and the CANadian Liquefaction 

EXperiment (CANLEX) (Byrne et al., 2000; Robertson et al., 2000), among others. Moreover, 

it is of particular relevance for the present study the research projects undertaken at the 

University of Cambridge, United Kingdom (U.K.), where dynamic centrifuge experiments were 

performed to assess the performance of shallow foundations built on liquefiable sand 

deposits when subjected to earthquake loading (Coelho, 2007; Marques et al., 2014a). As 

detailed later, the results of two of these dynamic centrifuge experiments were employed as 

benchmark for the evaluation of the modelling capabilities of an advanced constitutive model 

implemented into a Finite Element (FE) code during the research study presented in this 

thesis. 

Naturally, the adequate simulation of complex dynamic phenomena, such as those involving 

liquefaction, requires the use of advanced constitutive models capable of simulating the 

highly non-linear soil response observed under such situations. Among the several 

frameworks existing in the literature, two-surface plasticity is certainly noteworthy, given the 

great number of models based on this framework recently proposed in the literature (e.g. 

Manzari and Dafalias, 1997; Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 

2004; Dafalias et al., 2004; Taiebat and Dafalias, 2008; Loukidis and Salgado, 2009; Taborda 

et al., 2014; Woo and Salgado, 2015). This framework uses the distance from the current 

stress point to its projection on the so-called bounding and dilatancy surfaces to quantify the 

plastic modulus and the flow rule, respectively. Moreover, the concept of the state parameter 

(Been and Jefferies, 1985) is explicitly used in conjunction with the principles of Critical State 

Soil Mechanics (CSSM), as established by Schofield and Wroth (1968), to predict accurately 

the occurrence of key features of the response of soil using a single set of model parameters. 

Indeed, these constitutive models have been successfully applied to the simulation of cyclic 

soil response under general loading conditions (e.g. Taiebat et al., 2007; Andrianopoulos et 

al., 2010; Taborda, 2011; Tsaparli et al., 2016). 

1.2 Finite element code FEMEPDYN 

The main numerical tool used during the research presented in this thesis was the finite 

element (FE) code FEMEPDYN, which has been continuously developed at the University of 

Coimbra over the last two decades (Almeida e Sousa, 1999; Venda Oliveira, 2000; Grazina, 

2009). In particular, the last author developed a dynamic (DYN) module, which, in conjunction 

with the main code (FEMEP), allows for the simulation of dynamic response of both dry (one-

phase) and saturated (two-phase) materials, in the latter case considering a fully coupled 

flow-deformation response. More specifically, a complete formulation “ds – df – u” (where 

“d” and “u” designate displacement and pore pressure degrees of freedom, respectively, 

while the superscripts “s” and “f” designates solid and fluid phases, respectively) of the 

equation of motion is implemented into the FE code, meaning that the displacement of both 
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solid and fluid phases and pore pressure are computed concurrently (Zienkiewicz et al., 1999; 

Grazina, 2009). Note that this formulation is often referred to as “u – w – p“ (Zienkiewicz et 

al., 1980). Moreover, several robust time-integration schemes are implemented into the FE 

code, including the generalised- algorithm (Chung and Hulbert, 1993), which is capable of 

filtering the high-frequencies modes of vibration without affecting significantly the low 

frequency response (Grazina, 2009). The fundamental aspects behind the formulation 

implemented into FEMEPDYN, as well as the basic aspects concerning the validation of the 

formulation to the simulation of dynamic soil response are comprehensively presented in 

Grazina (2009) and, therefore, omitted from this thesis. In addition, a detailed description 

about the structure of the code and its integration with other tools (such as pre- and post-

processors) can also be found in Grazina (2009). Therefore, only alterations performed to the 

code will be presented in this thesis. 

The dynamic capabilities added by Grazina (2009) were applied to the simulation of the 

performance of retaining structures built on sand deposits under dynamic loading. While 

highlighting the potential of the code to replicate the response of saturated porous media 

under dynamic loading, the obtained results revealed that the elasto-plastic constitutive 

models available in FEMEPDYN could not capture accurately key aspects of the response of 

sand under dynamic loading, such as the generation of large excess pore water pressures with 

dynamic loading, the strong reduction in stiffness and concurrent increase in hysteretic 

damping, the occurrence of phase transformation and onset of liquefaction. 

1.3 Main objective and scope of research 

The main objective of the research was to expand the modelling capabilities of a finite 

element (FE) code developed at the University of Coimbra in order to reproduce accurately 

liquefaction-related phenomena observed in centrifuge experiments. 

With this main objective, the research programme was essentially divided into three parts. In 

the first part, an extensive element laboratory testing programme was carried out on Hostun 

sand. Besides the identification of the key aspects of both monotonic and cyclic responses of 

sand, this experimental programme intended to provide reliable data for the calibration of 

the constitutive model subsequently employed in the numerical simulation of the dynamic 

centrifuge experiments. In fact, as explained in more detail in the following section, a series 

of dynamic centrifuge experiments concerning the response of shallow foundations built on 

saturated deposits of Hostun sand when subjected to dynamic loading causing liquefaction 

were performed at the Schofield Centre, University of Cambridge, U.K., as part of a 

collaboration between the University of Cambridge and the University of Coimbra. Given the 

lack of field monitoring data concerning liquefaction-related phenomena, as well as 

difficulties inherent to the characterisation of natural/intact sandy soils, the availability of 

centrifuge test data was considered particularly valuable for the present research work. 

Therefore, a significant effort was made to obtain a large amount of reliable element 
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laboratory test data, which was used as reference for the calibration of the constitutive model 

and, consequently, bridged the gap between centrifuge and numerical modelling. 

The second part of the research consisted of the identification of an advanced constitutive 

model capable of simulating key aspects of cyclic sand response. Among the vast number of 

constitutive models available in the literature, a two-surface bounding surface plasticity 

model (BSPM) initially formulated by Manzari and Dafalias (1997) and later extended by 

Papadimitriou and Bouckovalas (2002) and Taborda et al. (2014) was chosen, due to its 

extensive ability to simulate cyclic sand response under a wide range of strain amplitudes. 

Moreover, this constitutive model is characterised by a great flexibility and by having a 

modular structure (Taborda et al., 2014), allowing for its extension with relatively low effort. 

In effect, this aspect was considered important in the present work, since an inherent fabric 

anisotropy formulation proposed in the literature (Williams, 2014) was added to the 

formulation of the constitutive model to improve its ability to simulate the response of sand 

under loading conditions other than triaxial compression. Having selected the constitutive 

model, the following task comprised its implementation into FEMEPDYN. A robust explicit 

integration scheme with automatic sub-stepping and error control was selected, due to its 

ability to deal with the integration of the highly non-linear elasto-plastic constitutive models. 

Subsequently, the implementation was extensively validated by comparing the results of 

simulations of element laboratory tests and centrifuge experiments obtained by the newly 

implemented constitutive model with those published in the literature (Taborda, 2011; 

Williams, 2014). 

The third part of the research work focused on the characterisation of the ability of the 

constitutive model to replicate important aspects of the monotonic and cyclic response of 

Hostun sand. Specifically, after calibration of the constitutive model for Hostun sand against 

the element laboratory test data obtained in the first part of this research, its ability to 

replicate element laboratory test results was firstly examined. Subsequently, the 

performance of the constitutive model was investigated in the context of boundary-value 

problems. This included the numerical simulation of two dynamic centrifuge experiments 

concerning sand-structure interaction and the occurrence of liquefaction-related phenomena 

under dynamic loading. 

1.4 Synergies with other research programmes 

As part of a Seismic Engineering Research Infrastructures for European Synergies (SERIES) 

Transnational Access Use Agreement, a dynamic centrifuge testing programme was 

undertaken by the PhD candidate Andreia Silva Marques using the Turner Beam Centrifuge 

facility at the Schofield Centre, University of Cambridge, U.K. More specifically, following the 

previous research work developed by Coelho (2007) in this field, this study was designed to 

assess the influence of the bearing pressure induced by the shallow foundation in the 

underlying Hostun sand deposit on the performance of the sand-structure system, the 
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potential interaction effects between neighbouring shallow foundations and the efficiency of 

different techniques to the mitigation of liquefaction effects: narrow densified zones and 

their combination with high-capacity vertical drains. As detailed in Coelho et al. (2010) and 

Marques et al. (2014a), the research project aimed at enhancing the understanding of the 

fundamental mechanisms governing the performance of neighbouring shallow foundations 

resting on sand deposits under dynamic loading causing liquefaction, providing insight into 

the most effective liquefaction measures and assisting in the development of numerical tools 

capable of reproducing the phenomena observed in this type of problems. This last point is 

undoubtedly of great importance, since the development of robust numerical tools can 

contribute to broaden the use of a performance-based design and risk analysis in current 

geotechnical engineering practice and, therefore, to reduce the vulnerability of the society to 

this type of phenomena (Coelho et al., 2017). Furthermore, after properly validated and 

calibrated, numerical tools can be used to extend the experimental findings and, therefore, 

to study the applicability and efficiency of innovative solutions. 

The accurate numerical simulation of the response observed in centrifuge experiments 

requires, however, the availability of reliable experimental data on the materials used in those 

experiments. This means that, by providing reliable data for the calibration of constitutive 

models, element laboratory testing is a fundamental tool to bridge the gap between 

centrifuge and numerical data. With this objective, and given the time and funding limitations, 

a collaboration was established between the present PhD research programme and the PhD 

research programme undertaken by Andreia Silva Marques. While an extensive element 

laboratory testing programme on Hostun sand was carried out by the author, centrifuge 

experiments were performed at the University of Cambridge by Andreia Silva Marques 

(Marques et al., 2012a, 2012b, 2012c, 2014a, 2014b, 2014c, 2015). The obtained sets of 

experimental data were subsequently shared between both authors, with different numerical 

tools being subsequently used by the authors to simulate the dynamic centrifuge 

experiments. 

1.5 Layout of the thesis 

This thesis is essentially composed of three different parts, each one describing different 

stages of the research programme. The first part comprises Chapter 2 and Chapter 3, which 

present, respectively, the results of the element laboratory tests performed to characterise 

the monotonic and cyclic responses of Hostun sand. The second part, consisting of Chapter 4 

and Chapter 5, includes a comprehensive description of the selected constitutive model, as 

well as of the numerical algorithms required to implement the constitutive model into the FE 

code. This part concludes with validation exercises. Finally, the third (and last) part, which 

includes Chapter 6, Chapter 7 and Chapter 8, details the calibration of the constitutive model 

against the results of element laboratory tests performed in the first part of this research 
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programme, followed by the application of the constitutive model to the simulation of both 

element laboratory tests and centrifuge experiments. 

In more detail, Chapter 2 presents the results of bender element tests, as well as of drained 

and undrained monotonic triaxial compression and extension tests performed on Hostun 

sand. The tested material, used equipment, experimental procedures and main principles 

used for the interpretation of the response measured in the laboratory are firstly described. 

Afterwards, the results of bender element tests are presented, allowing for the 

characterisation of the maximum (i.e. at very small strains) shear modulus of Hostun sand. 

The results of the monotonic triaxial compression and extension tests are subsequently 

presented. A state parameter approach, in conjunction with CSSM concepts, is used to 

characterise the distinctive states of the monotonic response of Hostun sand within the 

medium to large strain range are assessed, namely the undrained instability, phase 

transformation, peak stress ratio and critical states. Furthermore, the experimental data is 

used to examine a stress-dilatancy relationship often incorporated in constitutive models. 

Chapter 3 presents the results of drained and undrained cyclic triaxial tests on Hostun sand. 

After describing the main patterns of the undrained cyclic response of sand, emphasis is given 

to the evaluation of the influence of the void ratio, isotropic consolidation stress and cyclic 

stress ratio on the measured undrained response. The experimental data is subsequently 

used to evaluate key aspects of the undrained cyclic response of Hostun sand, such as excess 

pore water pressure build-up with cyclic loading, evolution of both normalised secant shear 

modulus and damping ratio with strain amplitude, as well as the occurrence of cyclic mobility. 

Lastly, the results of drained cyclic triaxial tests are presented, allowing for the 

characterisation of the main patterns of the volumetric strain evolution with cyclic loading. 

Chapter 4 describes the two-surface bounding surface plasticity model (BSPM) implemented 

into FEMEPDYN and used for the simulation of the dynamic centrifuge experiments 

performed on deposits of Hostun sand. Particular attention is firstly given to the fundamental 

aspects of the two-surface plasticity framework. Subsequently, the complete set of 

constitutive equations are presented in the three-dimensional stress space. With the purpose 

of enhancing the ability of the constitutive model to replicate anisotropic response of sand, 

an inherent fabric anisotropy formulation proposed in the literature is described and its 

incorporation into the formulation of the constitutive model is discussed. 

Chapter 5 describes the explicit stress point algorithm with automatic sub-stepping and error 

control used to integrate the constitutive model. After providing an overview of the 

integration scheme, the operations required in each step of the integration process are 

detailed, including: the initialisation of the state parameters, the detection of a shear reversal, 

the computation of an elastic trial, the intersection of the elastic trial effective stress path 

with one or the two yield surfaces of the constitutive model, the detection of an elasto-plastic 

unloading, the computation of elasto-plastic response, the activation of an additional yield 
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surface and the correction of yield surface drift. Subsequently, attention is given to the 

validation of the implementation. Given the lack of theoretical or analytical solutions, the 

strategy consists of comparing the results obtained when using FEMEPDYN with those 

obtained by a validated finite element code. This includes the simulation of different types of 

element laboratory tests, as well as of two different dynamic centrifuge experiments involving 

liquefaction-related phenomena, to provide evidence on the successful implementation of 

the constitutive model and, therefore, to ensure the reliability of the results obtained in the 

subsequent stages of this research. 

Chapter 6 presents the calibration of the constitutive model for Hostun sand against the vast 

amount of element laboratory test results obtained in the first part of this research. After 

describing the main aspects of the calibration strategy, its application to Hostun sand is 

detailed. The model parameters defining clear features of the response of sand, such as 

stiffness at very small strains and the critical state, are firstly calibrated. Subsequently, the 

calibration process focuses on the model parameters that, despite having a numerical nature, 

control known physical features of the response of sand, including the phase transformation 

state, the peak stress ratio state, the stress-dilatancy relationship and the reduction of shear 

modulus under shearing. Lastly, trial-and-error procedures are employed to calibrate the 

model parameters lacking physical meaning, including model parameters related to the 

plastic hardening modulus, as well as to the shearing-induced fabric and inherent fabric 

anisotropy components of the constitutive model. Having completed the calibration process, 

the values obtained for the several model parameters are compared with those proposed in 

the literature for other sands (Taborda, 2011; Williams, 2014), with the main differences 

between the sets of model parameters being discussed. 

Chapter 7 focuses on the evaluation of the ability of the constitutive model to replicate key 

aspects of the monotonic and cyclic response of Hostun sand observed in the element 

laboratory tests. Starting with the application of the constitutive model to the simulation of 

drained and undrained monotonic triaxial compression and extension tests, the ability of the 

model to capture the effects of the initial void ratio, effective stress state at consolidation and 

stress path direction on the modelled monotonic response of sand are firstly assessed. 

Subsequently, the results of the simulations of undrained and drained cyclic triaxial tests are 

compared with those registered in the laboratory. Due to its relevance to the study of 

liquefaction-related phenomena, particular emphasis is given to the evaluation of the ability 

of constitutive model to reproduce adequately the evolutions of excess pore water pressure, 

secant shear stiffness and hysteretic damping with cyclic loading observed in the laboratory, 

as well as to the ability to replicate the undrained cyclic resistance curves inferred from 

experimental data. In addition, a detailed investigation of the impact of the alterations 

introduced to the formulation of the constitutive model originally proposed by Taborda 

(2011) and Taborda et al. (2014) on its modelling capabilities is undertaken. 
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Chapter 8 is dedicated to the characterisation of the performance of the constitutive model 

in the context of boundary-value problems involving liquefaction-related phenomena. More 

specifically, the results of two dynamic centrifuge experiments concerning the performance 

of adjacent shallow foundations resting on saturated deposits of Hostun sand subjected to 

dynamic loading causing liquefaction are used as benchmark for finite element analyses. An 

overview of the centrifuge testing programme, including its background, main objectives and 

most relevant characteristics of the experiments, is firstly provided. Subsequently, focus is 

given to the first centrifuge experiment. After describing the experimental results, the main 

aspects of the numerical analysis are detailed and the results of the performed FE analysis are 

compared with those measured in the experiment. The ability of the numerical tool to 

replicate the main mechanisms identified in the experiment, including the key aspects of 

sand-structure interaction under dynamic loading, are assessed. The impact of the hydraulic 

conductivity of the deposit of Hostun sand on the obtained settlements, particularly in the 

zone of the model in between the two adjacent foundations, is explored by performing an 

additional FE analysis considering a simple hydraulic model proposed in the literature, which 

describes the evolution of the hydraulic conductivity with the excess pore pressure ratio. The 

second part of this chapter is dedicated to the numerical reproduction of the second 

centrifuge experiment, which, contrary to the first one, included measures to mitigate the 

effects of liquefaction. After providing an overview of the experimental results and describing 

the main aspects of the FE analysis, the numerical results are compared with those registered 

in the experiment. In this case, particular emphasis is given to the ability of the numerical tool 

to predict accurately the impact of the liquefaction measures on the performance of the sand-

structure system under dynamic loading. 

Finally, Chapter 9 summarises the main results and conclusions of the research study 

presented in the previous chapters and provides guidelines for future research on the 

numerical simulation of liquefaction-related phenomena. 

Two additional aspects are noteworthy. Firstly, given the broad range of topics discussed in 

this thesis, ranging from laboratory testing to constitutive modelling and finite element 

simulations of centrifuge experiments, rather than condensing the literature review in an 

inevitably eclectic chapter, it is introduced at the start of each chapter of this thesis (or during 

the discussion of the methodologies and results obtained in the present research). When 

compared to the perhaps more conventional structure of having an introductory chapter 

solely dedicated to literature review, the adopted strategy tends to make the topics under 

discussion easier to follow, avoiding the need for jumping from a given chapter to another to 

get insight into the topic under discussion. In addition, it is hoped that this structure improves 

the consistency of each chapter, by making it as complete as possible. Secondly, it is important 

to note that part of the element laboratory test results on Hostun sand presented in this thesis 

have already been published in a scientific journal (Azeiteiro et al., 2017a). Although further 

details on the adopted experimental procedures and obtained results are provided in this 
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thesis, the most relevant experimental findings are similar to those presented in Azeiteiro et 

al. (2017a). Nevertheless, note that, since the work was developed as part of the present 

research, citation to this paper is considered unnecessary. 
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Chapter 2 LABORATORY CHARACTERISATION OF THE MONOTONIC RESPONSE OF 

HOSTUN SAND 

2.1 Introduction 

In recent years, state-parameter approaches (Been and Jefferies, 1985) have been 

increasingly used in conjunction with critical state soil mechanics (CSSM) concepts (Roscoe et 

al., 1958; Schofield and Wroth, 1968) to establish constitutive models capable of reproducing 

the response of sand under general loading conditions (Manzari and Dafalias, 1997; 

Papadimitriou and Bouckovalas, 2002; Ling and Yang, 2006; Manzanal et al., 2011; Taborda 

et al., 2014), as well as for the interpretation of site investigation data in sand (e.g. Been et 

al., 1986, 1987; Carriglio et al., 1990; Yu, 1994; Konrad, 1998). Indeed, the state-parameter 

concept appears to be an effective form of predicting the occurrence of relevant features of 

the response of sand, such as phase transformation and strain softening after a peak-stress-

ratio state, for a wide range of densities and stress states (e.g. Been and Jefferies, 1985; 

Ishihara, 1993; Klotz and Coop, 2001; Murthy et al., 2007; Stamatopoulos, 2010). 

Furthermore, it has been suggested that the capabilities of a model to reproduce the response 

of sand can be improved by considering a state-dependent dilatancy (e.g. Manzari and 

Dafalias, 1997; Gajo and Wood, 1999; Li and Dafalias, 2000; Yang and Li, 2004). 

In this chapter, the key features of the monotonic response of air-pluviated Hostun sand are 

assessed by employing a state-parameter approach – i.e. by using the difference between the 

current void ratio and void ratio at critical state (CS) corresponding to the current mean 

effective stress (Been and Jefferies, 1985). With this purpose, results of an extensive 

laboratory testing programme performed on air-pluviated Hostun sand are firstly presented. 

This includes both bender element (BE) and triaxial testing on samples prepared to different 

initial void ratios and consolidated under various isotropic and anisotropic stress states, 

allowing for the characterisation of the response of Hostun sand within the small to large 

strain range. After the prediction of the critical state (CS), the occurrences of distinctive states 

of the response of Hostun sand, such as the undrained instability state (UIS), phase 

transformation state (PTS) and peak stress ratio state (PSRS), are examined as a function of 

the state parameter. In addition, the stress-dilatancy response of Hostun sand is investigated. 

It is important to note that the vast majority of the experimental results presented in this 

chapter has already been published by the author and his supervisors in a scientific journal 

(Azeiteiro et al., 2017a). While further details on the experimental results are provided in this 

thesis, the outline of this chapter and most relevant findings are similar to those presented in 

Azeiteiro et al. (2017a). Note, however, that the work published in this paper was developed 
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as part of the present PhD research. As such, it is considered as original work in the present 

thesis and, therefore, citation to the paper is considered unnecessary. 

In addition, it should be noted that, although involving the propagation of shear waves 

through a sample and, therefore, cyclic loading, it was decided to include the results of BE 

tests in this chapter (rather than in the following chapter, which focus on the cyclic response 

of Hostun sand). The main reason for this choice is related to the importance of these results 

to the characterisation of the distinctive states of the response of Hostun sand, as detailed 

later. 

In terms of structure, the first part of this chapter focuses on the characterisation of the tested 

material. After presenting the main physical properties of Hostun sand, assessed by 

identification tests, a literature review on the experimental studies previously performed on 

this sand is provided. Subsequently, in Section 2.3, attention is given to the laboratory test 

apparatus and experimental procedures, while the methods used for the interpretation of the 

obtained experimental results are described in Section 2.4. The experimental results are 

presented in the following two sections. Specifically, Section 2.5 is dedicated to the 

presentation of the bender element test results, which allow for the characterisation of the 

shear modulus of Hostun sand at small-strains. Complementary, Section 2.6 focuses on the 

response of Hostun sand within the medium to large strain range. Besides the presentation 

of the drained and undrained triaxial compression (TC) and triaxial extension (TE) test results, 

the key features of the response of sand are assessed. Finally, Section 2.7 summarises the 

main results and conclusions concerning the monotonic response of Hostun sand. 

2.2 Hostun sand 

2.2.1 Physical properties 

All tests in this experimental programme were performed on a washed and selected fraction 

of Hostun sand, which is a fine-grained, sub-angular to angular, siliceous sand (Flavigny et al., 

1990). This sand is obtained by sieving the material extracted from a natural deposit in 

Hostun, Drôme, Rhône-Alpes, Southeast of France (Desrues, 1998). The particle size 

distribution (PSD) of Hostun sand used in the present study, which was evaluated by the 

traditional sieving method, is depicted in Figure 2.1, along with those used in other 

experimental research programmes, which will be described in the following section. It can 

be observed that slightly different gradations have been used in different experimental 

programmes. 
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Figure 2.1 – Particle-size distribution curve of Hostun sand. 

In the present study, Hostun sand is uniformly graded between sieve no. 20 (0.850 mm) and 

sieve no. 200 (0.075 mm) of American Society for Testing and Materials (ASTM) series, with 

more than 50 % of the material passing through the ASTM sieve no. 40 (0.425 mm), while 

being retained by the ASTM sieve no. 60 (0.250 mm). The mean grain size, D50, is about 

0.34 mm, the coefficient of uniformity, Cu, is approximately 1.43 (Equation 2.1) and the 

coefficient of curvature, Cc, is close to 0.96 (Equation 2.2), enabling to classify the material as 

poorly graded sand (SP), according to Unified Soil Classification System (USCS), proposed by 

ASTM. 

Cu =
D60

D10
≈

0.362

0.253
≈ 1.43 (2.1) 

Cc =
(D30)

2

D10 × D60
≈

(0.297)2

0.253 × 0.362
≈ 0.96 (2.2) 

where D10, D30 and D60 are the grain sizes corresponding to 10 %, 30 % and 60 % of material 

passing through sieves of ASTM series, respectively. 

Moreover, by applying the water pycnometer test method described in ASTM D854-02 

(ASTM, 2002), it was concluded that the density of soil particles, Gs, is 2.64. In addition, the 

standard test methods defined in ASTM D4253-00 (ASTM, 2006a) and ASTM D4254-00 (ASTM, 

2006b) were applied to determine the minimum and maximum void ratios, with values of 

emin ≈ 0.66 and emax ≈ 1.00 being obtained, respectively. It should be noted that, by using 

the multiple sieving pluviation technique, introduced by Miura and Toki (1982) and described 
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in Section 2.3.1.2, smaller values for the void ratio than that obtained by applying ASTM 

D4253-00 (ASTM, 2006a) were measured. Furthermore, it was observed that, by tapping the 

mould after sand pluviation, it would be possible to compact even more the sand and, 

therefore, to obtain smaller void ratios. In particular, by performing a series of tests where 

sand was pluviated in a mould with known dimensions by using the multiple sieving pluviation 

technique and subsequently subjected to vibration by tapping the mould, void ratios as low 

as 0.61 were obtained. Nevertheless, in order to use a standard as reference and, 

consequently, enable comparisons with other experimental programmes on this sand 

reported in the literature, the minimum void ratio of emin ≈ 0.66, determined according to 

ASTM D4253-00 (ASTM, 2006a), is adopted. 

Table 2.1 compares the physical properties of Hostun sand used in the present study with 

those reported in the literature for other experimental programmes. As expected, due to the 

use of slightly different gradations, some discrepancies can be observed between the values 

reported in the literature and those obtained in the present study. Nevertheless, the observed 

discrepancies seem small enough to allow for comparisons between experimental results 

obtained by different researchers. 

Table 2.1 – Physical properties of Hostun sand. 

Institution (a) Grain size PSD Density 
 D50 (mm) Cu ( ) Cc ( ) Gs ( ) emin ( ) emax ( ) 

UC 
(present study) 

0.34 1.43 0.96 2.64 0.66 1.00 

INPG 0.32(c)–0.36(b) 1.70(c)–1.88(b) 1.00(b) 2.65(b),(c) 0.63(c) 0.96(c) 
ENTPE 0.38(d),(e) 1.90(d),(e) 0.97(d),(e) 2.65(d) 0.62(e) 0.96(e) 
ENPC 0.35(f)–0.38(g) 1.57(f) 1.06(f) 2.65(f),(g) 0.66(f),(g) 1.00(f),(g) 
US 0.34(h) 1.87(h) 0.97(h) 2.65(h) 0.65(h) 1.04(h) 
TUD 0.36(i) 1.43(i) 1.11(i),(*) 2.64(i) 0.65(i) 1.03(i) 
UCam 0.35(j)–0.42(k) 1.59(k)–1.90(j) 1.00(k)–1.11(j) 2.65(j),(k) 0.55(j) 1.01(j)–1.07(k) 

(a) UC: University of Coimbra; INPG: Grenoble Institute of Technology; ENTPE: École Nationale des 
Travaux Publics de l’État; ENPC: École Nationale des Ponts et Chaussées; US: University of Stuttgart; 
TUD: Technical University of Dresden; UCam: University of Cambridge. 
(b) Flavigny et al. (1990); (c) Desrues et al. (1996); (d) Doanh (1997); (e) Doanh et al. (2012); (f) Benahmed 
(2001); (g) De Gennaro et al. (2004); (h) Schanz and Vermeer (1996); (i) Lauer and Engel (2005); (j) Mitrani 
(2006); (k) Stringer (2008). 
(*) Estimated from the PSD curve presented in the reference. 

It is also interesting to compare the physical properties of Hostun sand with those exhibited 

by other reference sands, which have been used in liquefaction research projects over the 

past few decades. With that purpose, Figure 2.2 compares the PSD of Hostun sand with those 

exhibited by Leighton Buzzard sand (Been et al., 1991), Nevada sand (Arulmoli et al., 1992), 

Ottawa sand (Murthy et al., 2007) and Toyoura sand (Verdugo and Ishihara, 1996), while Table 

2.2 summarises their main physical characteristics. It can be observed that, although Hostun 

sand has a similar PSD to that exhibited by Ottawa sand, the grain shapes of those sands are 

different, resulting in completely different minimum and maximum void ratios. Conversely, 
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the minimum and maximum void ratios of Hostun sand are similar to those obtained for 

Leighton Buzzard and Toyoura sands, despite the slightly coarser gradation of Hostun sand. 

Possible impacts of these differences on the main features of the response of sand will be 

discussed later. 

 
Figure 2.2 – Comparison of the particle-size distribution curve of Hostun, Leighton Buzzard, 

Nevada, Ottawa and Toyoura sands. 

Table 2.2 – Comparison of the physical properties of Hostun, Leighton Buzzard, Nevada, Ottawa 
and Toyoura sands. 

Sand Reference 
Grain size Grain shape Density 

D50 (mm) Cu ( )  Gs ( ) emin ( ) emax ( ) 

Hostun Present study 0.34 1.43 
Subangular 
to angular 

2.64 0.66 1.00 

Leighton 
Buzzard 

Been et al. 
(1991) 

0.12 1.50 
Subangular 
to angular 

2.65 0.66 1.01 

Nevada 
Arulmoli et al. 
(1992) 

0.17 2.00 
Rounded to 
subrounded 

2.67 0.51 0.89 

Ottawa 
Murthy et al. 
(2007) 

0.39 1.40 Rounded 2.65 (b) 0.48 0.78 

Toyoura 
Verdugo and 
Ishihara (1996) 

0.17 1.70 
Subangular 
to angular 

2.65 0.6 0.98 

(a) Okamura et al. (2001); (b) Yamamuro and Lade (1997). 

2.2.2 Overview of previous experimental studies on Hostun sand 

Hostun sand has been extensively used in research projects conducted at French institutions 

since the early 1980’s, with its use being broadened to other European institutions during the 
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last two decades. In particular, due its close location to the natural deposit, this sand was 

originally used as a reference material at the Grenoble Institute of Technology (INPG), France. 

As part of an international workshop held at Case Western Reserve University (CWRU), 

Cleveland, Ohio, United States, in late 80’s, which aimed at assessing the predictive capability 

of constitutive models for sand, Hostun sand was tested both in a cubic cell device at INPG 

and in a hollow cylinder torsional apparatus at CWRU (e.g. Bianchini et al., 1989; Lanier et al., 

1989; Bianchini et al., 1991). In addition, a large amount of drained and undrained biaxial and 

triaxial tests were carried out by the non-profit association Alliance of Laboratories in Europe 

for Education, Research and Technology (ALERT) “Geomaterials”, hosted and financially 

supported by INPG, for the study of strain localisation during shearing (e.g. Desrues et al., 

1996; Desrues, 1998; Mokni and Desrues, 1999; Desrues and Viggiani, 2004; Desrues and 

Georgopoulos, 2006). It is also noteworthy the study of the response of very loose Hostun 

sand, conducted as part of a collaboration between the Laval University, Quebec, Canada, 

and INPG, intending to establish the undrained instability line for Hostun sand (e.g. Konrad et 

al., 1991; Konrad, 1993). 

Further research on the undrained response of very loose sand was carried out at École 

Nationale des Travaux Publics de l'État (ENTPE), Lyon, France. In particular, the influence of 

the type of consolidation and previous strain history on the undrained instability state and 

minimum undrained strength of Hostun sand under monotonic triaxial compression and 

extension loading was assessed (e.g. Doanh et al., 1997; Doanh and Ibraim, 2000; Finge et al., 

2006; Doanh et al., 2012). Other experimental studies undertaken at this French university 

included the anisotropy of Hostun sand at small strains (e.g. Ezaoui et al., 2007). 

Hostun sand was also used at École Nationale des Ponts et Chaussées (ENPC), Paris, France, 

for studying the influence of the inherent anisotropy created by different methods of sample 

preparation on its monotonic response (e.g. Benahmed, 2001; Benahmed et al., 2004), as well 

as the influence of different loading paths (e.g. De Gennaro et al., 2004). 

Since the 1990’s, Hostun sand has also been used as a reference material in other well-known 

European universities out of France. For instance, the monotonic response of Hostun sand 

was examined at the University of Stuttgart, Germany (e.g. Schanz and Vermeer, 1996), and 

used for the validation of constitutive models, such as Hardening Soil model (Schanz et al., 

1999) and Hardening Soil Small Strain model (Benz, 2007). Similarly, true triaxial test data (e.g. 

Wood et al., 2007) and hollow cylinder torsional test data (e.g. Ibraim et al., 2011) on Hostun 

sand obtained at the University of Bristol, United Kingdom (U.K.), were used for the 

verification of critical state models (Gajo and Wood, 1999; Jafarzadeh et al., 2008; Russell and 

Muir Wood, 2010). Additionally, bender element tests have also been performed at the 

University of Bristol to study the inherent and stress-induced anisotropy of Hostun sand 

(Sadek and Lings, 2007; Escribano and Nash, 2015). 
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In terms of hydro-mechanical response of Hostun sand, two experimental programmes on 

the capillary pressure-saturation relationship (also known as soil-water characteristic curves) 

are of particular relevance: one undertaken at the University of Weimar, Weimar, Germany, 

using a modified pressure plate apparatus and large scale column tests (e.g. Lins and Schanz, 

2005; Lins et al., 2007; Lins, 2009) and another one carried out at the Technical University of 

Dresden (TUD) using a newly-developed triaxial device (e.g. Lauer and Engel, 2005). 

Hostun sand has also been recently adopted as model sand in centrifuge experiments at the 

University of Cambridge (UCam), U.K. (e.g. Mitrani, 2006; Stringer and Madabhushi, 2013a, 

2013b; Chian et al., 2014; Li and Bolton, 2014; Marques et al., 2014a, 2014b; Tsinidis et al., 

2015; Adamidis and Madabhushi, 2018). These studies highlighted the need for high quality 

element laboratory testing on this material to assist the interpretation of the obtained 

centrifuge test results and to be used for the calibration of advanced constitutive models and 

subsequent numerical simulation of the centrifuge experiments. 

In the next sections, the experimental results obtained in the present study will be presented. 

This includes a large set of drained and undrained element laboratory tests on samples of 

Hostun sand prepared using a single method of sample reconstitution and covering a wide 

range of initial density and stress conditions. Whenever relevant, results obtained in other 

research programmes mentioned in this section will be presented with the purpose of 

corroborating or extending the experimental findings. 

2.3 Laboratory test apparatuses and experimental procedures 

2.3.1 Triaxial tests 

2.3.1.1 Apparatuses 

Conventional monotonic triaxial compression tests with increasing mean stress (MTC p↑) 

were conducted using an electro-mechanical triaxial system manufactured by ELE 

International using 100-mm-diameter cylindrical samples with a height/diameter ratio close 

to 2 (Figure 2.3a). Conversely, monotonic compression tests with decreasing mean stress 

(MTC p↓), as well as monotonic extension tests with decreasing and increasing mean stress 

(MTE p↓ and MTE p↑, respectively) were performed using a more versatile and fully 

computer-controlled hydraulically operated triaxial apparatus of the type developed by 

Bishop and Wesley (1975), designed for 38-mm-diameter specimens with a height/diameter 

ratio close to 2 (Figure 2.3b). Both triaxial cells were designed for a maximum working cell 

pressure of 1000 kPa. 
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a) 

 

 b) 

 

Figure 2.3 – Triaxial apparatuses used in the present study: (a) electro-mechanical triaxial cell and 
(b) hydraulically operated Bishop and Wesley (1975)’s stress path cell. 

In the electro-mechanical triaxial system, the constant-rate axial motion of the pedestal of 

the triaxial cell, imposing the axial load on the sample, was controlled by a motorised system, 

which was run manually using a digital keypad installed in the front panel of the load frame. 

Moreover, bladder-type air-water interchange cylinders connected to manual air pressure 

regulators were used to establish the cell pressure, as well as back pressure (i.e. sample’s 

internal pore water pressure, measured and controlled at the base) up to about 700 kPa. Note 

that this maximum working pressure of 700 kPa was dictated by the capacity of the 

compressed air system (rather than by the capacity of the triaxial cell). Note also that an 

additional water line connection to the top of the sample, whose pressure was also applied 

by an air-water interchange cylinder connected to a manual air pressure regulator, was used 

during the saturation stage to establish a differential sample’s internal pore water pressure 

between the base and top of the sample and, consequently, to induce water flow through the 

sample. This saturation strategy facilitated the removal of air bubbles from voids of the tested 

sample. Moreover, standard instrumentation was used, including a submersible 10 kN-range 

load cell, a 1000 kPa-range cell pressure transducer and two 1000 kPa-range pore pressure 

transducers, one of which connected to the base pedestal and the other one connected to 

the top cap. In addition, a 100 cm3-capacity volume gauge and an externally mounted 50 mm-

range linear variable displacement transducer (LVDT) were used to measure changes in 

sample’s volume and axial displacement, respectively. The data provided by the different 

instruments was acquired by a data acquisition system and subsequently transferred to a 

computer. 
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Figure 2.4 – Schematic illustration of the hydraulically operated Bishop and Wesley (1975)’s stress 

path cell (adapted from Pedro, 2013). 

With respect to the hydraulically-actuated stress path cell, the pedestal was mounted at the 

top of a loading ram, which was connected to a piston and to a water pressure chamber at its 

bottom (Figure 2.4). By changing the pressure in the water pressure chamber, a vertical 

movement of the loading ram was induced allowing for the application of axial load to the 

sample. Two alternative systems were used to control the ram line. For strain-controlled tests, 

a constant rate of strain pump (CRSP) was used to apply a constant flow of water to the 

pressure chamber and, therefore, to induce a constant-rate axial motion of the pedestal. 

Conversely, for stress-controlled tests, a bladder-type air-water interchange cylinder 

connected to an air pressure regulator was used to control the ram pressure. In both cases, 

an automated data acquisition and control system enabled a computer control of the rate of 

axial displacement or load applied to the sample. Moreover, in order to allow for extension 

testing, a flexible sleeve was used to connect the top cap to an adjustable reaction head. The 

remaining equipment was similar to that used in the electro-mechanical triaxial cell system, 

with air-water interchange cylinders connected to air pressure regulators being used to 

control independently the cell and the internal pore water pressure at the base and top of 
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the sample. The only difference consisted of the use of the automated data acquisition and 

control system to control the air pressure regulators through a computer, rather than 

manually control them. The instrumentation consisted of 1000 kPa-range pore pressure 

transducers, a submersible 5 kN-range load cell, an externally mounted 25 mm-range LVDT 

and a 50 cm3-capacity volume gauge. The software TRIAX, developed at the University of 

Durham (Toll, 1993), was used to record and monitor all devices, as well as to control the 

different stages of the tests. This software offers a very large flexibility, with the user being 

allowed to define up to 100 test stages, as well as conditional equations, which trigger specific 

actions (such as to move from a given test stage to another or to stop the test when a given 

condition is reached). Furthermore, it includes calibration facilities, assisting a frequent 

calibration of the instruments. 

Further details on these two type of triaxial apparatuses and their operations can be found in 

Bishop and Henkel (1962), Bishop and Wesley (1975) and Head (1994), while a discussion 

about the role of triaxial testing in the characterisation of the stiffness and strength of soil 

can be found, for example, in Head (1998). 

2.3.1.2 Experimental procedures 

Air-pluviation of dry sand was used to prepare all samples. This technique usually results in 

homogeneous samples in clean uniform sands (as it is the case of Hostun sand), with relatively 

uniform void ratio distribution, at least when compared with compaction techniques, such as 

moist tamping (e.g. Vaid and Negussey, 1988; Benahmed et al., 2004). Moreover, this 

technique is well-known for its good repeatability, which ensures that results obtained for 

different tests can be compared (e.g. De Gennaro et al., 2004; Coelho, 2007). In addition, since 

one of the main objectives of the present experimental study was to produce reliable data to 

be used in the calibration of constitutive models and, subsequently, in the numerical 

simulation of centrifuge experiments, it was considered to be fundamental to use the same 

technique applied in centrifuge modelling, which was air-pluviation, as described, for 

example, in Marques et al. (2014a, 2014b, 2015). 

At this point, it is perhaps important to note that, apart from brief references, the evaluation 

of the effect of the method of sample preparation on the monotonic and cyclic response of 

sand is beyond the scope of the present study. Vast information on this topic can be found in 

the literature (e.g. Oda, 1972; Mulilis et al., 1977; Tatsuoka et al., 1979; Miura and Toki, 1982; 

Tatsuoka et al., 1986c; Ishihara, 1993; Zlatovic and Ishihara, 1997; Vaid and Sivathayalan, 

2000; Papadimitriou et al., 2005). 

Different initial relative densities can be obtained by varying the rate and/or the height of 

pouring. The former aspect is typically seen as the most influential, with higher rates of 

pouring resulting in looser arrangements. According to Miura and Toki (1982), this can be 

explained by larger number of collisions between falling particles (interference effects), which 

result in larger energy dissipation and, therefore, inhibit particles from finding the most stable 
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(and, therefore, most compact) arrangement. Conversely, when grains fall apart from each 

other, the number of collisions decrease and, consequently, the stored energy is used to find 

a more stable position for the grains. In relation to the height of pouring, Vaid and Negussey 

(1984) observed that larger kinematic impact energies during air pluviation are generally 

associated with higher fall heights, leading to compaction and, therefore, denser 

arrangements. 

a) 

 

 b) 

 

c) 

 

 d) 

 

Figure 2.5 – Sample set-up: (a) air-pluviation of loose sand using a miniature container; (b) air-
pluviation of dense sand by applying the multiple sieve technique; (c) detachable mould 

supporting the sample; and (d) application of vacuum after disassembly the mould. 
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To prepare loose and moderately loose sand samples, the rate of pouring was controlled by 

the size and number of openings of a miniature container (Figure 2.5a). Moreover, in order 

to ensure homogeneity of samples, the height of pouring (corresponding to the height of the 

mould) was kept as constant as possible by raising the container during pluviation of sand. 

Regarding dense sand samples, the multiple sieving pluviation technique, described in Miura 

and Toki (1982), was employed (Figure 2.5b). In this case, the height of pouring was observed 

to have little impact on the obtained density of the sample. Both techniques were regularly 

tested to ensure reproducibility. The density of the produced samples was methodically 

confirmed from mass and volume measurements after preparation. 

In order to sustain the sample during air-pluviation, a detachable mould was used (Figure 

2.5c). Moreover, a small suction of about 5 to 10 kPa was used to extract the air existing 

between the membrane and the internal walls of the mould and, therefore, to prevent 

sample’s shape imperfections. Once the top porous stone and top cap were carefully placed 

and the membrane ends sealed with o-rings, a small suction (once more, of about 5 to 10 kPa) 

was applied to the sample through the top cap (Figure 2.5d). This value was deemed 

sufficiently low to avoid disturbance of the samples, while ensuring stability of the sample 

during the subsequent preparation stages. The perspex cylinder was finally placed and the 

triaxial cell filled with water. Note that, although Figure 2.5 refers to sample’s set-up in the 

Bishop and Wesley (1975)’s stress path cell, similar procedures were employed to prepare 

samples to be tested in the electro-mechanical triaxial cell. Naturally, the containers used in 

the air-pluviation procedures and their openings had to be specifically designed for each 

sample size. 

After reducing the suction of the sample to zero, while simultaneously increasing the cell 

pressure to about 15 kPa, water was allowed to flow through the sample, by prescribing a 

small differential pressure between the top and base of the sample of about 5 kPa. At least 

250 cm3 (corresponding approximately to ten times the capacity of the volume gauge of the 

stress path cell) of de-aired water was circulated at this stage. Subsequently, the back and cell 

pressures were concurrently increased at a very slow rate until desired values were obtained. 

At this stage, water was allowed to percolate through the sample once more, by prescribing 

a differential pressure between its bottom and its top of about 5 kPa. This procedure was 

undertaken until a Skempton’s B-value (i.e. the ratio of the induced pore water pressure due 

to the change of cell pressure under undrained condition) typically above 0.98 was measured, 

which usually took about 1 day. 

The samples were subsequently consolidated, typically by increasing the cell pressure, while 

maintaining the back pressure constant. This stage was considered finished when stabilisation 

of the volume change occurred. Afterwards, the piston was slowly raised, while maintaining 

the cell and back pressures constant. As the contact between the top cap and the adjustable 
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reaction head was established, typically observed by a very small deviatoric stress, the 

shearing phase was performed. 

As mentioned before and illustrated in Figure 2.6, samples were sheared by applying different 

total stress paths. Specifically, a first series of ten drained and nine undrained monotonic 

triaxial compression tests with increasing mean stress (DMTC p↑ and UMTC p↑, 

respectively) were performed on samples isotropically consolidated (IC) to 25, 50, 80, 135, 

200, and 500 kPa in the electro-mechanical triaxial cell. In this case, a constant axial strain 

increment of about 6% per hour, which was slow enough to allow pore water pressure 

changes to equalise throughout the sample, was applied. To evaluate the impact of the 

effective stress at consolidation and stress path on the measured response, a second series 

of four drained monotonic triaxial compression tests with decreasing mean stress (DMTC p↓) 

were performed on either isotropically consolidated (IC) or anisotropically consolidated (K0C) 

samples to a mean effective stress of 80 kPa by using the Bishop and Wesley (1975)’s stress 

path cell. In this series of tests, the radial effective stress was reduced while maintaining the 

effective axial stress constant, which implied increasing the ram pressure at a similar rate at 

which the cell pressure was decreased and maintaining the back pressure constant (as 

required in a drained test). A smaller axial strain rate of about 0.5% per hour was required in 

these tests to control adequately the concurrent variations of ram and cell pressures. 

 
Figure 2.6 – Illustration of the total stress paths followed in each type of monotonic triaxial test 

performed. 

By using once more the Bishop and Wesley (1975)’s stress path cell, a complementary series 

of four drained monotonic triaxial extension tests with increasing mean stress (DMTE p↑) 

and one drained monotonic triaxial extension tests with decreasing mean stress (DMTE p↓) 

were performed on samples either IC or K0C to a mean effective stress of 80 kPa. Finally, a 

series of four undrained monotonic triaxial extension tests with decreasing mean stress 
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and 80 kPa. An axial strain rate of approximately 2% per hour was deemed adequate to 

control the test and obtain accurate instrument measurements. 

In all cases, tests were stopped when the piston reached its maximum displacement, pore-

water pressure dropped sufficiently for cavitation to occur, or a visible shear band developed 

in the sample. Further details on the laboratory testing programme are provided in 

Section 2.6.2. 

2.3.1.3 Main advantages and limitations of triaxial testing 

Although hollow cylinder torsional shear testing is becoming more popular (Nakata et al., 

1998; Yoshimine et al., 1998; O’Kelly and Naughton, 2009; Araújo Santos, 2015), triaxial 

testing still remains the reference type of test used to obtain data for the calibration of 

advanced constitutive models, usually supplemented with bender element or resonant 

column testing (e.g. Papadimitriou and Bouckovalas, 2002; Loukidis and Salgado, 2009). When 

compared to the former type of test, triaxial tests are usually preferred due to their low cost, 

widespread availability of this equipment in geotechnical laboratories, simpler procedures to 

prepare samples and to control the equipment and monitoring system, as well as due to the 

very large past experience. Furthermore, although a large number of experimental studies 

have been performed since 1960’s using this equipment, including to study liquefaction-

related phenomena, it is still possible to conduct innovative experimental studies, as 

demonstrated, for instance, by the triaxial testing programme conducted by Azeiteiro et al. 

(2012), Coelho et al. (2013) and Azeiteiro et al. (2017b) on the effect of a singular large- 

amplitude peak cycle within uniform cyclic loading on the cyclic mobility resistance of sand. 

However, on the contrary to hollow cylinder torsional shear testing, triaxial testing cannot be 

used to investigate independently the effect of the magnitude of the intermediate principal 

effective stress, ’2, and the effect of the direction of the principal effective stresses on the 

response of soil, the latter aspect typically characterised by the orientation of the direction 

of the maximum principal effective stress to the direction of deposition (e.g. Yoshimine et al., 

1998). Note that the influence of these aspects is discussed in Section 4.3.3. 

Furthermore, even if cyclic direct simple shear tests may reproduce more accurately the 

seismic loading occurring in the field than cyclic triaxial tests, at least for level ground deposits 

with no soil-structure interaction, which would make the former type of test attractive to 

study liquefaction-related phenomena, the fact that the strains imposed on the sample in 

direct simple shear tests are usually highly non-uniform and that lateral stresses are unknown 

hampers a more generalised use of direct simple shear tests (Ishihara, 1996). It does not 

mean, however, that stresses and strains are uniform in samples subjected to triaxial tests. In 

fact, formation of shear bands and stress concentration zones are commonly observed in 

triaxial tests. An interesting study on strain localisation on Hostun sand during triaxial 

shearing was carried out by Professor Jacques Desrues and his co-workers (e.g. Desrues et al., 

1996; Desrues and Georgopoulos, 2006) by using computed tomography. Moreover, an 
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overview of the currently available test apparatus and procedures particularly suitable for 

studying liquefaction-related phenomena is provided by Ishihara (1996). 

2.3.2 Bender element tests 

Bender element (BE) tests were firstly introduced to soil testing by Shirley and Hampton 

(1978) and Shirley (1978). Later, Dyvik and Madshus (1985) compared values of the maximum 

(i.e. at very small strains) shear modulus, Gmax, estimated from results of bender elements 

and resonant column tests on clay under a wide range of stress states, concluding that a 

remarkable agreement between both sets of data was obtained. Although it has become clear 

that the interpretation of BE elements is not straightforward (e.g. Viggiani and Atkinson, 1995; 

Jovicic et al., 1996; Santamarina and Fam, 1997; Lee and Santamarina, 2005; Alvarado and 

Coop, 2012), due to its simplicity, relatively low cost and potential for determining stiffness 

anisotropy, the use of bender element testing to characterise the small-strain response of soil 

has become increasingly popular over the last decades (Clayton, 2011).  

The bender element consists of two thin piezo-ceramic plates, bonded rigidly together, with 

a conductive metal between them and electrodes on their outer surfaces, typically coated 

with an epoxy resin to allow operations in the presence of water (Figure 2.7). As a voltage is 

applied to this element, it tends to bender, generating a shear wave in the soil in which the 

element is embedded. Moreover, when subjected to distortion, this type of element 

generates voltage, which can also be recorded. Therefore, by using a pair of bender elements 

and adequate devices to generate the input signal and record the transmitted and received 

signals, it is possible to estimate the travel time of the generated shear wave, t, and, given 

that the distance between the tips of bender elements, L, is known, to compute the velocity 

of the shear wave, vs = L/t, and, by knowing the mass density of the material, , the shear 

modulus, G =  vs
2, corresponding to the direction of wave propagation and particle 

vibration under analysis. Note that, according to Dyvik and Madshus (1985), shear strains 

imposed by bender element testing are below 10-5 and, therefore, the estimated shear 

modulus is relevant for the very small strains (Clayton, 2011). Note also that, although other 

configurations are possible (e.g. Pennington et al., 1997; Alvarado, 2007; Clayton, 2011), the 

typical set-up for triaxial testing consists of having the BE installed at the top and bottom of 

the sample, resulting in vertically propagated waves with horizontal polarisation. 

 
Figure 2.7 – Illustration of a bender element (Clayton, 2011). 
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In the present study, bender elements of the Dyvik and Madshus (1985)’s type, with a width 

of about 7.5 mm, a thickness of about 1.5 mm and protruding about 4.0 mm in height into 

the sample, were installed in the Bishop and Wesley (1975)’s stress path cell, simply by 

replacing the pedestal and the top cap by similar pieces modified at Imperial College London 

to incorporate the elements (Figure 2.8a). A TTi TG1010 function generator was used to 

generate the input signal. Specifically, a single sine pulse was adopted for the input signal, 

since it has been shown to give reliable time measurements, while enabling a good control of 

the input frequency and, therefore, wavelength (e.g. Blewett et al., 2000; Viana da Fonseca 

et al., 2009; Clayton, 2011). This signal was sent to the transmitter bender element, mounted 

at the top cap, as well as to a Tektronix TDS220 digital storage oscilloscope, to be recorded. 

The vertically propagated wave with horizontal polarisation was then detected by the receiver 

bender element, which was mounted at the pedestal and connected to the oscilloscope. Both 

transmitted and received signals were displayed simultaneously by the oscilloscope and then 

transferred to a computer for interpretation. The software WaveStarTM, also developed by 

Tektronix (Tektronix, 1998), was used to visualise and store the signals in digital format. The 

data was subsequently post-processed by the author, as detailed in Section 2.4.2. It should 

be noted that, as recommended by Lee and Santamarina (2005), adequate shielding and 

grounding of electronic cables, leak-free connections and, as much as possible, noise-free 

equipment (which included turning off the air conditioning during the performance of the 

bender element measurements) were used to prevent electromagnetic coupling and 

minimise electrical noise. 

a) 

 

 b) 

 

Figure 2.8 – Bender elements testing: (a) pedestal and top cap of the stress path cell incorporating 
the bender elements and (b) overview of all devices used to perform the bender element tests. 

Before testing Hostun sand, a preliminary test was performed to determine the time lag of 

the system. With that objective, the tips of the transmitter and the receiver bender elements 

were placed in direct contact, with the elements perfectly aligned, and a sine pulse was 

generated. By testing sequentially frequencies of the input signal varying from 1 to 10 Hz, it 

was concluded that the maximum time lag was as low as 0.012 ms. As shown by Pedro (2013), 

the time lag increases significantly as the alignment of the bender elements diverges from 0° 

(i.e. from the correct alignment), with this author registering a time lag increase greater than 
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50% when bender elements were positioned with their axes at 30°. Similar observations were 

made by Lee and Santamarina (2005). Therefore, to minimise this source of error, guidelines 

were drawn in the pedestal, mould and top cap to ensure an adequate positioning of the top 

cap after sand pluviation (i.e. to ensure a correct alignment of the top bender element in 

relation to the bottom one). Apart from this detail, moderately loose and dense specimens of 

Hostun sand were prepared and saturated using exactly the same procedures described in 

the previous section for triaxial tests. In this case, a back pressure of 200 kPa was used during 

the saturation stage, as well as during the subsequent drained isotropic compression (DIC) 

stage, which, providing the maximum working pressure of about 700 kPa, enabled the 

application of a maximum isotropic effective stress to the samples of 500 kPa, as detailed 

below. 

The samples were gradually consolidated to several different isotropic effective stresses (as 

detailed later), with a loading rate of 3 kPa per minute. At each effective stress level, the 

increase in stress was temporarily paused and single sine pulses with a peak-to-peak 

amplitude of 20 V and varying frequencies (from 1 to 10 kHz) were transmitted to the probes, 

with all responses being recorded. Note that the performance of readings of several signals 

having different frequencies assisted the identification of near field effects, generally 

recognised by a deflection of the received waveform before the effective arrival of the shear 

wave (e.g. Sanchez-Salinero et al., 1986; Jovicic et al., 1996). Note also that, as recommended 

by Sanchez-Salinero et al. (1986) and Alvarado and Coop (2012), at least one of the applied 

frequencies resulted in a wavelength, , smaller than half of the travel distance of the shear 

wave, in order to minimise near field effects. For instance, for the densest sample subjected 

to the highest confining stress of 500 kPa, a shear wave velocity of vs ≈ 324.0 m/s was 

estimated from the bender element measurements. Since a frequency of f = 10 kHz was 

applied, then  = vs/f ≈ 324.0/10000.0 ≈ 32.4 mm. Assuming that the travel distance of the 

shear wave can be estimated by the initial height of the sample subtracted by its height 

reduction during DIC loading and by the protrusion of the bender elements, a value of about 

76.5 mm is obtained, which is, indeed, greater than twice the wavelength (2  ≈

2× 32.4 mm ≈ 64.8 mm). 

After first loading, a first unloading, a reloading and a second unloading phases were applied, 

with a similar loading rate to that used during first loading. During these phases, bender 

element measurements were also conducted at several different isotropic effective stresses, 

as detailed later. 

2.4 Principles used in the interpretation of laboratory test results 

2.4.1 Triaxial tests 

Triaxial test results were interpreted in terms of the conventional invariants of stress – mean 

effective stress,  p′ = (′a + 2 ′r) 3⁄ , and deviatoric stress,  q = ′a − ′r (where ’a and ’r 
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are, respectively, the axial and radial effective stresses) – and conventional strain invariants 

– volumetric strain,  v = a + 2 r, and deviatoric strain,  q = 2 (a − r) 3⁄  (where a and r 

are, respectively, the axial and radial strains). 

As suggested by Been and Jefferies (2004), to improve the accuracy of the estimation of 

relevant features of sand (such as the critical state, which is typically only mobilised for very 

large deformations of the samples), strains were computed using the current dimensions of 

the sample, rather than its initial dimensions (i.e. the large-strain definition was used). This 

means that, for each instant of time, axial strain increment was calculating by employing 

a = −H/Hi, where Hi is the current height of the sample and H is its variation, measured 

by the LVDT, while volumetric strain increment was estimated by using v = −V/Vi, where 

Vi is the current volume of the sample and V is its variation, measured by the volume gauge. 

The axial strain, a, and volumetric strain, v, at a given instant of time were obtained by 

integrating all previous a and v, respectively. 

In addition, assumptions about the evolution of the cross-sectional area of the sample over 

which axial load acts during triaxial testing are required to compute axial stresses from axial 

load measurements. As often suggested in the literature (e.g. Been and Jefferies, 2004), in 

the present study, it was assumed that the sample deforms as a right-circular cylinder 

throughout loading (i.e. it was assumed that the cross-section perpendicular to the vertical 

axis of the sample remains constant through its height). Based on this assumption, the change 

in the cross-sectional area of the sample can be estimated using Equation 2.3. 

Vi+1 = Vi + V ⟺
Vi+1

Vi
=

Vi

Vi
+

V

Vi
⟺

Ai+1 Hi+1

Ai Hi
= 1− v ⟺ 

Ai+1(Hi + H)

Ai Hi
= 1 − v ⟺

Ai+1

Ai

(1− a) = 1 − v ⟺ Ai+1 = Ai  
1− v

1− a
 

(2.3) 

where Ai and Ai+1 are the cross-sectional areas of the sample at two consecutive instants of 

time, at which measurements were registered. 

As highlighted in the literature (e.g. La Rochelle et al., 1988; Klotz and Coop, 2002; Been and 

Jefferies, 2004), even when lubricated pedestal and top plate are used to reduce the friction 

between the ends of the sample and the equipment, samples are often observed to 

barrel/bulge and, consequently, the cross-sectional area in the middle of the sample is often 

greater than given by Equation 2.3. In addition, as pointed out by Desrues et al.(1996), even 

if it cannot be observed from the outside, strain localisation (also termed as shear band) is 

often observed to develop within the sample and, therefore, the proposed area correction is 

seldom accurate, particularly at large strains. Nevertheless, as also highlighted by the 

previous group of authors, unless sophisticated techniques are used (as, for example, 

computed tomography), it is difficult to find a consistent deformation pattern that can 

provide a more accurate area correction. Therefore, Equation 2.3 is, in general, considered 

satisfactory. 
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Particular evidence of non-uniform strain conditions are observed in triaxial extension tests, 

where strain localisation inevitably occurs in the form of sample necking (e.g. Roscoe et al., 

1964; Lam and Tatsuoka, 1988; Yamamuro and Lade, 1995). Under such conditions, test 

results seem to be unreliable at large strains, even when more sophisticated area corrections 

than that given by Equation 2.3 are applied (Yamamuro and Lade, 1995). In fact, in the present 

experimental testing programme, regardless of the drainage conditions, sample necking was 

recurrently observed in all performed triaxial extension tests, as axial strains reached 8 to 

10 % (Figure 2.9). It was, therefore, decided to disregard test data obtained for axial strains 

larger than 10 %. As detailed later, although it prevents the use of triaxial extension test data 

for the characterisation of the critical state of Hostun sand in triaxial extension, the obtained 

results were employed to the characterisation of the phase transformation state and peak 

stress ratio state, which were generally observed to occur before axial strains reached 10 %. 

 
Figure 2.9 – Sample necking in triaxial extension. 

To evaluate the impact of membrane penetration on the obtained triaxial test results, the 

methodology proposed by Baldi and Nova (1984) was employed. According to these authors, 

in a drained triaxial test conducted on a saturated sample with initial volume V0 and initial 

diameter D0, the volume change due to uniquely membrane penetration, Vm, can be 

estimated by Equation 2.4. 

Vm =
1

2

d50

D0
V0 (

'r d50

Em tm
)

1 3⁄

 (2.4) 

where d50 is the mean diameter of the sand grains (which is about 0.34 mm, as described in 

Section 2.2.1), ’r is the radial effective stress applied to the sample and Em and tm are the 

Young modulus and thickness of the membrane, respectively. 
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Furthermore, by using a small-strain approach, the authors suggested that the volumetric 

strain uniquely associated with membrane penetration, Vm, and the corresponding change 

in the void ratio, em, can be estimated by Equation 2.5 and Equation 2.6, respectively. In 

these equations, it is particularly interesting to observe that em is inversely proportional to 

D0, which means that an effective form of reducing undesirable membrane penetration 

effects consists of testing samples with larger diameters. 

v,m =
Vm

V0
=

1

2

d50

D0
(
'r d50

Em tm
)

1 3⁄

 (2.5) 

em = −(e0 + 1) v,m = −(e0 + 1) 
1

2

d50

D0
(
'r d50

Em tm
)

1 3⁄

 (2.6) 

Given that membranes characterised by a Young modulus of Em = 1.4 MPa and having a 

thickness of tm = 0.35 mm were used in the present testing programme, and considering the 

loosest sample tested under drained conditions (having a void ratio after preparation of e0 =

0.89), the maximum changes in void ratio associated with membrane penetration, em, as a 

function of radial effective stress, ’r, were estimated from Equation 2.6. The obtained results 

are depicted in Figure 2.10, where the grey curve refers to 100 mm-diameter samples tested 

in the electro-mechanical triaxial cell, while the black curve refers to 38 mm-diameter 

samples tested in the Bishop and Wesley (1975)’s stress path cell. As expected, it can be seen 

that, for a given value of ’r, the smaller the diameter of the sample, the larger the value of 

em. Nevertheless, it is apparent that the computed values are very small. Specifically, given 

that samples tested in the Bishop and Wesley (1975)’s stress path cell were consolidated to 

radial effective stresses ranging from 60 to 80 kPa, a maximum value of em = 0.0025 is 

expected to have occurred according to Baldi and Nova (1984)’s methodology, which is well 

within the range of experimental uncertainty. Similarly, given that samples tested in the 

electro-mechanical triaxial cell were consolidated under radial effective stresses ranging from 

25 to 500 kPa, any correction to the void ratio would not exceed em = 0.0020. As detailed 

later, changes in the void ratio ranging from 0.037 to 0.124 were measured in the drained 

triaxial tests conducted in the electro-mechanical triaxial cell and, therefore, due to its small 

relevance (smaller than 5%), it was decided to disregard the effect of membrane penetration. 

Note that, according to Lade and Hernandez (1977) and Baldi and Nova (1984), the membrane 

penetration may also affect the pore water pressures measured in undrained triaxial 

compression tests. However, since the initial conditions of the undrained triaxial tests 

performed in the present experimental programme were similar to those of the drained 

triaxial tests, negligible effects of membrane penetration on the registered excess pore water 

pressures are also believed to have occurred under undrained conditions. 



LABORATORY CHARACTERISATION OF THE MONOTONIC RESPONSE OF HOSTUN SAND 

89 
 

 
Figure 2.10 – Maximum change in void ratio due to membrane penetration as a function of the 

radial effective stress estimated from Baldi and Nova (1984)‘s methodology for the present 
experimental programme. 

Similarly, other factors affecting triaxial test data, such as volume changes due to the water 

compressibility or triaxial cell expansion, were considered sufficiently small to be neglected. 

Note that a comprehensive description of these factors is provided in Head (1998). 

2.4.2 Bender element tests 

Having determined the travel time, t, of the shear wave vertically propagating through the 

sample from bender element (BE) measurements, the small-strain (or maximum) shear 

modulus, Gmax, of Hostun sand was computed based on Equation 2.7. 

Gmax =  vs
2 =  

L2

t2  (2.7) 

where  is the density of the sample, vs is the shear wave velocity and L is the travel distance, 

which should be taken as the distance between the tips of the BE, according to Viggiani and 

Atkinson (1995). Note that the tip-to-tip distance was determined by subtracting the 

protrusion of the bender elements from the sample’s initial height, along with the changes in 

sample height during triaxial compression registered by the LVDT mounted on the stress path 

cell. 

Although conceptually simple, the determination of the travel time can be challenging. In 

particular, it is generally argue that distortions in the signal caused by near-field effects (e.g. 

Sanchez-Salinero et al., 1986; Jovicic et al., 1996; Arroyo et al., 2003) and/or electrical noise 

(e.g. Lee and Santamarina, 2005) often mask the arrival of the shear wave, resulting in some 

degree of subjectivity when analysing the obtained BE results. Other factors such as sample 

size effects due to reflections of shear waves at lateral boundaries (Arroyo et al., 2006; 
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Camacho-Tauta et al., 2015) may also contribute to misinterpretation of the obtained results. 

In effect, many authors have reported difficulties in the interpretation of BE results (Viggiani 

and Atkinson, 1995; Jovicic et al., 1996; Arroyo et al., 2003; Clayton et al., 2004; Arroyo et al., 

2006; Yamashita et al., 2009; Clayton, 2011; Camacho-Tauta et al., 2015), with several 

methodologies being proposed in the literature, from simple observation of the shear wave 

waveforms and identification of the instant of arrival of the received wave to more elaborate 

methods involving signal processing. An overview of the available interpretation methods, 

their merits and drawbacks, is presented, for example, in Viana da Fonseca et al. (2009) and 

Yamashita et al. (2009). Indeed, according to these authors, there seems to be no consensus 

about the most appropriate method to be used. 

 
Figure 2.11 – Detection of the arrival time of a shear wave by considering the first significant 

reversal of polarity of the received signal (adapted from Jovicic et al., 1996). 

As suggested by Alvarado (2007) and Viana da Fonseca et al. (2009), in the present study, with 

the objective of minimise subjectivity and increase reliability, two different methods – one of 

them belonging to the time domain (TD), while the other one included in the frequency 

domain (FD) – were employed to analyse BE test data, with the travel times estimated by both 

methods being compared. More specifically, within the TD, the “first arrival” (FA) method 

(also known as “start to start” method), which is characterised by its simplicity and 

widespread use, was employed. By assuming plane waves transmission between transducers 

and no reflected or refracted waves (Arroyo et al., 2006), the method consists on the 

identification of the instant at which the transmitted excitation first arrives to the receiver 

(henceforth referred to as “arrival time”), tarr, which, according to Dyvik and Madshus (1985), 

Viggiani and Atkinson (1995) and Jovicic et al. (1996) corresponds to the first significant 

reversal of polarity of the received signal, identified with an arrow in Figure 2.11. Perhaps, it 

should be noted that different points were considered by other authors (for instance, 

Yamashita et al. (2009) suggested that arrival time should be identified by the point where 
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the received signal crosses the zero voltage line, after the initial deflection). Moreover, it 

should be noted that the arrival time was subsequently subtracted by the time lag, tlag, to give 

the travel time, t, as indicated by Equation 2.8. As mentioned before, tlag was estimated by 

performing a preliminary test, where the tips of the transmitter and the receiver bender 

elements were placed in direct contact, with a value of 0.012 ms being obtained. 

t = tarr − tlag (2.8) 

In the frequency domain (FD), the “phase velocity” method, originally proposed by Mancuso 

et al. (1989) for the interpretation of crosshole test results and later applied by Viggiani and 

Atkinson (1995) to the interpretation of BE test results was selected. Noteworthy, this method 

was comprehensively explored by Alvarado (2007) and Alvarado and Coop (2012), with the 

sole difference that the arrival time was estimated from the phase of the transfer function (as 

detailed below), rather than from the phase of the cross-power spectrum, as originally 

proposed by Mancuso et al. (1989). In the present study, the methodology proposed by 

Alvarado (2007) and Alvarado and Coop (2012) was followed and, therefore, the method is 

described in terms of the transfer function. Specifically, after the transformation of domain 

by using a fast Fourier transform (FFT), the received signal, Ly(f) = FFT(Y(t)), is related to the 

transmitted signal, Lx(f) = FFT(X(t)), through a transfer function, H(f) (Equation 2.9), which 

is assumed to be unique and independent of the type of transmitted signal (Alvarado and 

Coop, 2012). While the gain factor of the transfer function, |H(f)|, given by the ratio of the 

amplitudes of the received to the transmitted signals (Equation 2.10), can be used to identify 

the modes of vibration of the system, the phase of the transfer function, (f) (Equation 2.11), 

indicates the phase delay between the transmitted and received signals across the frequency 

spectrum (Alvarado and Coop, 2012). 

Ly(f) = H(f) Lx(f) ⟺ H(f) =
Ly(f)

Lx(f)
 (2.9) 

|H(f)| = √[Re(H(f))]2 + [Im(H(f))]2 =
|Ly(f)|

|Lx(f)|
=
√[Re(Ly(f))]

2
+ [Im(Ly(f))]

2

√[Re(Lx(f))]2 + [Im(Lx(f))]2
 (2.10) 

 (f) =

{
 
 
 
 
 
 

 
 
 
 
 
 atan [

Im(H(f))

Re(H(f))
]        , Re(H(f)) > 0

atan [
Im(H(f))

Re(H(f))
] +  , Re(H(f)) < 0 and Im(H(f)) ≥ 0

atan [
Im(H(f))

Re(H(f))
] −  , Re(H(f)) < 0 and Im(H(f)) < 0



2
                   , Re(H(f)) = 0 and Im(H(f)) > 0

−


2
                   , Re(H(f)) = 0 and Im(H(f)) < 0

undetermined             , Re(H(f)) = 0 and Im(H(f)) = 0

 (2.11) 
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where Re(H(f)) and Im(H(f)) are, respectively, the real and imaginary components of the 

complex number defining the transfer function for a discrete frequency, f (i.e. H(f) =

Re(H(f)) +  Im(H(f)) i, with i being the imaginary number). Similarly, Re(Lx(f)) and Im(Lx(f)) 

are, respectively, the real and imaginary parts of the transmitted signal, while Re(Ly(f)) and 

Im(Ly(f)) are, respectively, the real and imaginary parts of the received signal. For further 

information on the use of complex numbers in the context of soil dynamics refer to Kramer 

(1996). 

Note that, although by definition (f) varies between - and +, a stacking (also termed as 

unwrapping) algorithm is used to obtain values varying between zero and infinity. In the 

present case, the stacking algorithm suggested by Alvarado (2007) was employed, involving 

the following two steps: 

1. verification that the value of the phase, (f), belongs to the interval [0, 2] by adding 

2 to the obtained value (Equation 2.11) whenever necessary; 

2. verification that the value of (f) obtained for the discrete frequency under analysis 

is greater than that obtained for the previously analysed discrete frequency by 

increasing (f) by an integer multiple of 2 whenever necessary. 

For an ideal unimodal and non-dispersive system, the stacked phase of the transfer function, 

(f), when plotted against the frequency content, would be a straight line passing through 

the origin, with slope (termed as “phase velocity”) being directly proportional to the arrival 

time of the shear wave, tarr, as given by Equation 2.12 (Alvarado and Coop, 2012). 

tarr =
1

2 

𝜕(f)

𝜕f
 (2.12) 

According to these authors, in reality, bender element systems have, in general, a multimodal 

and dispersive nature, which may lead to slope variations and phase reversals. In fact, as 

pointed out by the authors, the system is not perfect and comprises not only the medium 

(which may have several modes of vibration), but also its boundaries and the bender elements 

themselves. Nevertheless, as illustrated in Figure 2.12, for the confining stresses typically 

encountered in geotechnical engineering (typically below 1000 kPa), it is, in general, possible 

to approximate the phase of the transfer function (or, similarly, the phase of the cross-power 

spectrum) by a straight line, at least over a selected frequency interval around the resonant 

frequency (e.g. Viggiani and Atkinson, 1995; Alvarado and Coop, 2012). To distinguish from 

the slope that would be obtained for an ideal unimodal and non-dispersive system, the slope 

of the fitting line is typically termed as “group velocity” and can be employed to estimate tarr 

(Equation 2.12), which, in this case, is typically referred to as “group arrival time” (e.g. Viggiani 

and Atkinson, 1995; Alvarado and Coop, 2012). Note, nevertheless, that, since values of tarr 

obtained when using this method will be compared to those obtained when using the “first 

arrival” method in the present study, the term “group” will be omitted henceforth (i.e. the 

term “arrival time” will be simply used). 
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As also illustrated in Figure 2.12, singularities typically appear at frequencies where gain 

approaches a local minimum. This is typically the case at low frequencies (below 5 kHz), 

resulting in a poor definition of the stacked phase within this frequency range and, 

consequently, in an offset of the stacked curve in relation to the origin (Alvarado and Coop, 

2007, 2012). Nevertheless, as pointed out by these authors, providing that this part of the 

curve is disregarded, this offset from origin should have no influence on the estimated arrival 

time, which is solely a function of the slope of the stacked phase curve, as explained before. 

 
Figure 2.12 – Illustration of the evolutions of the stacked phase and gain of the transfer function 

with frequency obtained from bender element measurements (Alvarado and Coop, 2012). 

2.5 Monotonic response of Hostun sand at small strains 

2.5.1 General aspects 

Although it has been observed that, even at very small strains, the response of soil is typically 

non-linear, for practical purposes and below a strain level of about 10-5 to 10-6, stress-strain 

non-linearity is typically considered small enough to be disregarded (e.g. Clayton and 

Heymann, 2001; Clayton, 2011; Oztoprak and Bolton, 2012). Moreover, despite the fact that 

typical strain range of liquefaction-related phenomena are, in general, well above that elastic 

threshold, as illustrated in Figure 2.13, the characterisation of the shear modulus at very small 

strains, Gmax, is considered very important, since it defines the starting point of the stiffness-

strain curve. This parameter has been often measured by dynamic methods, either by in-situ 

seismic wave tests (such as seismic refraction and crosshole tests) or by laboratory tests (such 

as bender element and resonant column tests). 
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Figure 2.13 – Reduction of stiffness with strain and typical ranges of different dynamic 

phenomena, laboratory and field measurements (adapted from Ishihara, 1996; Clayton, 2011). 

The small-strain shear stiffness of soil has typically been defined as a function of the void ratio, 

f(e), the overconsolidation ratio, OCR, and the mean effective stress, p’, as shown by 

Equation 2.13 (Hardin and Black, 1968). 

Gmax = Cg p'ref f(e) OCRk  (
p′

p'ref

)

ng

 (2.13) 

where Cg, k and ng are soil-dependent parameters and p’ref is the reference pressure (typically 

considered equal to the atmospheric pressure, i.e. p'ref ≈ 101.3 kPa). For sands, several 

experimental studies (e.g. Hardin and Drnevich, 1972a, 1972b; Lo Presti et al., 1997; Zhou and 

Chen, 2005) have shown that OCR has minor influence on Gmax. Therefore, its contribution to 

Gmax is usually neglected by setting k to zero in Equation 2.13, with Gmax being essentially 

related to e and p’. Moreover, for air-pluviated sands, the exponent ng have been found to 

have a small variation, between approximately 0.4 and 0.6 (see, for example, Benz (2007)), 

with a value of 0.50 being employed by many researchers to characterise small-stiffness data 

(Hardin and Black, 1966a, 1968; Oztoprak and Bolton, 2012). With respect to the function of 

the void ratio, f(e), based on the resonant column test results obtained by Hardin and Richart 

(1963) and Hardin and Black (1966) on two materials having very different particle shape – 
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Ottawa sand no. 20-30 having round particles and crushed quartz consisting of angular 

particles – Hardin (1965) and Hardin and Black (1966) proposed the use of Equation 2.14 for 

round-grained sand and Equation 2.15 for angular-grained sand. In the present study, due to 

the sub-angular to angular shape of Hostun sand’s particles (Section 2.2.1), Equation 2.15 was 

adopted. Note that other expressions for f(e) can be found in the literature – refer, for 

example, to Hardin (1978) and Lo Presti et al. (1993). 

For round-grained sand:  f(e) =
(2.17 − e)2

1.0 + e
 (2.14) 

For angular-grained sand:  f(e) =
(2.97− e)2

1.0 + e
 (2.15) 

2.5.2 Bender element testing programme 

Two isotropically consolidated drained isotropic compression (ICDIC) tests, termed as 

ICDIC 0.787/25 and ICDIC 0.653/25, were performed on a moderately loose sample (e0 =

0.787) and on a dense sample (e0 = 0.653), respectively. These tests were used to perform 

BE measurements at different effective stress levels, as detailed below. Table 2.3 summarises 

the initial conditions of both tests, including: the dimensions of each sample after its 

preparation (i.e. initial diameter, Dinit, and initial height, Hinit), as well as the initial travel 

distance of the shear wave, LBE,init (obtained by subtracting the bender element protrusions 

into the sample from the sample’s initial height), and the dry mass after sample’s preparation, 

Minit; the void ratio, e0, and corresponding relative density, Dr,0, the cell and back pressures, 

cell,0 and u0, respectively, and corresponding isotropic effective stress, ’0, before drained 

isotropic compression loading was applied. 

Table 2.3 – Initial conditions of the drained isotropic compression tests during which bender 
element measurements were undertaken. 

Test ID (a) Sample’s preparation (b) 
Soil’s state and stress conditions before 
drained isotropic compression loading 

 Dinit Hinit LBE,init Minit e0  Dr,0 cell,0 u0 '0 

 (mm) (mm) (mm) (g) ( ) (%) (kPa) (kPa) (kPa) 

ICDIC 0.787/25 37.4 80.5 72.6 129.8 0.787 62.5 225.0 200.0 25.0 
ICDIC 0.653/25 37.3 84.7 76.8 147.7 0.653 102.1 225.0 200.0 25.0 

(a) The designation identifies: (1) type of consolidation: isotropic consolidation (IC); (2) type of drainage: drained 
(D); (3) type of loading: isotropic compression (IC); (4) initial void ratio, e0; and (5) initial isotropic effective stress, 

’0 (i.e. first isotropic effective stress level at which BE measurements were undertaken). 
(b) Volume and mass measurements were performed after sample’s preparation. 

In both tests, samples were gradually consolidated to isotropic effective stresses of 25, 55, 

80, 110, 135, 165, 200, 300, 400 and 500 kPa. For each of these effective stress levels, single 

sine pulses with a peak-to-peak amplitude of 20 V and varying frequencies (from 1 to 10 kHz) 

were transmitted to the probes and the obtained responses were recorded. A first unloading 

phase was subsequently performed with bender element measurements being conducted at 

isotropic effective stresses of 500, 400, 300, 200, 135, 80 and 25 kPa. In order to evaluate the 
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effect of overconsolidation, sample was subjected to reloading and a second phase of 

unloading with bender element measurements being once more taken at isotropic effective 

stresses of 25, 80, 135, 200, 300, 400 and 500 kPa. 

2.5.3 Time-domain analysis of the measured waves 

Figure 2.14 depicts the waveforms corresponding to the transmitted and received signals at 

the selected effective stress levels during the first loading of test ICDIC 0.787/25. More 

specifically, for each effective stress level, two sets of transmitted and received signals are 

presented: one set of signals corresponding to f = 4 kHz (represented by dashed curves) and 

the other set of signals corresponding to a selected frequency (represented by solid curves) – 

i.e. the frequency, among those applied to the probes, that seems to have resulted in a 

received signal less affected by near field effects, identified by an initial deflection of the 

waveform before the arrival of the shear wave (Sanchez-Salinero et al., 1986; Jovicic et al., 

1996; Lee and Santamarina, 2005). For clarity of the presentation, the remaining eight 

recorded waveforms (for other input frequencies) are omitted from the figure. Three aspects 

are particularly noteworthy. Firstly, the presentation of signals corresponding to f = 4 kHz for 

all effective stress levels intends to illustrate the modification of the waveforms with isotropic 

effective stress. Other value than 4 kHz could have been selected. Secondly, it is apparent 

that, as the effective stress level increases, higher frequencies are required to minimise near 

field effects (i.e. the selected frequency has a higher value). This could, in fact, be expected, 

since the increase in isotropic effective stress, ’0, likely leads to an increase in the maximum 

shear modulus, Gmax, and, consequently, to an increase in the shear wave velocity, vs (which, 

according to the theory of wave propagation in an isotropic elastic medium, is given by vs =

√G ⁄ , where G is the elastic shear modulus – in this case, assumed equal to Gmax – and  is 

the density of the material). This means that the wavelength,  (which is given by  = vs/f, 

according to the theory of wave propagation in an isotropic elastic medium), is expected to 

increase with the isotropic effective stress, likely increasing near field effects, unless the 

frequency is also increased to counterbalance it (Sanchez-Salinero et al., 1986; Alvarado and 

Coop, 2012). Thirdly, it should be noted that the received signals are displayed in the figure 

with reversed polarity (i.e. sine-type received signals appear inverted in relation to the 

transmitted single sine pulses). Moreover, note that, since the received signal is typically 

strongly attenuated in relation to the transmitted signal, its amplitude is multiplied by a 

constant for clarity of presentation and, consequently, the units of the waveforms are 

arbitrary. 

In general, the first arrival could be identified with a good degree of confidence by the first 

downward deflection of the received signal, as indicated in the figure. As expected, earlier 

arrival times are obtained for higher effective stress levels. 
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Figure 2.14 – Selected first arrivals in time domain during the first loading of test ICDIC 0.787/25. 

Complementary, the waveforms registered during the first loading (black solid curves) are 

compared with those recorded during the first unloading (dashed dark grey curves) for 

identical effective stress levels (25, 80, 135, 200, 300, 400 and 500 kPa) of test ICDIC 0.787/25 

in Figure 2.15. Note that, in the case, only the waveforms corresponding to a selected 

frequency are shown in the figure to ease the presentation. The waveforms registered during 

the first unloading can barely be distinguished from those recorded during the first loading, 

suggesting that, at least for this type of loading, the previous stress history has little influence 

on the shear wave velocity and, consequently, on the maximum shear modulus of sand, as 

expected (see Section 2.5.1). This conclusion seems to be further strengthened by comparing 

the waveforms registered during the first loading and reloading phases of test ICDIC 0.787/25, 

represented, respectively, by black solid curves and dashed dark grey curves in Figure 2.16. 

Once again, it is apparent that very similar waveforms were obtained for these two different 

phases of the DIC test. Similarly, the waveforms recorded during second unloading (not 

shown here for brevity of the presentation) were observed to be very similar to those 

registered during the previous phases of the test (i.e. first loading, first unloading and 

reloading phases). Note that similar results showing minor influence of the previous DIC 
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loading history on the shear wave velocity propagation in sand have been reported in the 

literature (e.g. Hardin and Drnevich, 1972a, 1972b; Lo Presti et al., 1997; Zhou and Chen, 

2005). 

 
Figure 2.15 – Comparison of the waveforms recorded during the first loading with those registered 

during the first unloading of test ICDIC 0.787/25. 
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Figure 2.16 – Comparison of the waveforms recorded during the first loading with those registered 

during reloading of test ICDIC 0.787/25. 

In addition, the waveforms registered during the first loading of test ICDIC 0.653/25 

conducted on a dense sample are depicted in Figure 2.17, along with the selected arrival 

times. Once again, for each effective stress level, two sets of transmitted and received signals 

are presented: one set of signals corresponding to f = 4 kHz (dashed curves) and another set 

of signals corresponding to a selected frequency (solid curves), with the remaining eight 

recorded waveforms (for other input frequencies) being omitted from the presentation. Note, 

nevertheless, that, as for the previous test, to pick up the time instant likely corresponding to 

the arrival of the shear wave for a given effective stress level, all recorded waveforms (with 

frequencies varying from 1 to 10 kHz, as mentioned before) were inspected simultaneously. 

The inferred arrival times are also shown in Figure 2.17. Similar to the previously analysed 

test, it can be seen that the higher the stress level, the earlier the shear-wave arrival takes 

place, as expected. Moreover, as also observed for test ICDIC 0.787/25, the waveforms seem 

to be little affected by the previous stress history, meaning that, for each effective stress level, 

similar waveforms were recorded during first loading, first unloading, reloading and second 

unloading. Although the comparison of the waveforms corresponding to these different 
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phases of this test is omitted from the presentation, the values of the maximum shear 

modulus obtained for the different phases are compared in Section 2.5.5. 

 
Figure 2.17 – Selected first arrivals in time domain during the first loading of ICDIC 0.653/25 test. 

2.5.4 Frequency-domain analysis of the measured waves 

Figure 2.18 illustrates the application of the phase velocity method to the estimation of the 

arrival time of the shear wave for a bender element measurement performed during the first 

loading of test ICDIC 0.787/25 at an isotropic effective stress level of 200 kPa and using an 

input frequency of f = 6 kHz. It can be seen that, although the transmitted signal exhibits 

more than a single frequency of vibration, its predominant frequency is close to the intended 

value (f = 6 kHz). Moreover, it is apparent that the shape of the received signal is similar, in 

terms of frequency content, to that of the transmitted signal. In particular, it can be seen that 

the resonant frequencies of the system (i.e. frequencies at which the Fourier amplitude of the 

received signal reaches a local maximum) seem close to the predominant frequencies of the 

input (i.e. frequencies at which the Fourier amplitude of the transmitted signal reaches a local 

maximum). In terms of stacked phase (Figure 2.18), as discussed in Alvarado and Coop (2012), 

it is apparent that discontinuities occur at frequencies where the gain of the transfer function, 
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|H|, reaches low values (particularly evident, in this case, for f ≈ 3 kHz and f ≈ 11 kHz). 

Furthermore, it can be seen that, due to the poor definition of the received signal at low 

frequencies, the obtained points do not align towards the origin of the plot – an aspect also 

observed by Alvarado and Coop( 2007) and Alvarado and Coop (2012) for other sands. 

Nevertheless, as pointed out by these authors, linear trends appear to be observed for 

sections of the stacked phase curve around the resonant frequencies. Following the 

methodology suggested by these authors, a frequency interval around the first resonant 

frequency (in this particular case, the interval defined by f ≈ 4.2 and 9.3 kHz) was selected 

and the arrival time, tarr, was estimated from the slope of the stacked phase curve over that 

interval (which, in the present study, was obtained by performing a linear regression over the 

selected data). 

 

 
Figure 2.18 – Illustration of the application of the phase velocity method to the estimation of the 

arrival time for test ICDIC 0.787/25 at p’ = 200 kPa: (a) Fourier spectra of the transmitted and 
received signals and (b) stacked phase and gain of the transfer function. 
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The above described methodology was applied to all bender element measurements 

performed during tests ICDIC 0.787/25 and ICDIC 0.653/25. Starting by analysing the results 

obtained during the first loading of the former test, Figure 2.19 depicts the computed stacked 

phase evolutions with frequency for various effective stress levels (25, 80, 135, 200, 300, 400 

and 500 kPa), together with the lines considered for the estimation of the arrival times. Note 

that, for clarity of the presentation, only the results obtained for selected frequencies 

(indicated in the figure for each case) are shown. Moreover, with the purpose of comparing 

the stacked phase evolutions obtained for different effective stress levels, the curves are 

offset to point to the origin of the plot (note that this offset has no impact on the estimation 

of the time arrival, since it is solely related to the slope the curve). It can be seen that, as 

expected, the higher the effective stress level, the milder the slope of the stacked phase 

evolutions with frequency (over the considered interval) and, therefore, the earlier the arrival 

time. 

 
Figure 2.19 – Stacked phase as a function of the frequency for bender element measurements 

performed during the first loading of test ICDIC 0.787/25. 

Similarly, Figure 2.20 depicts the computed evolutions of the stacked phase with frequency 

for several stress levels at which bender element measurements where undertaken during 

the first loading of test ICDIC 0.653/25. Once more, it is apparent that, the higher the effective 

stress level, the higher the frequency required as input to obtain a clean (as possible) signal, 

as well as the higher the resonant frequency of the system and, therefore, the higher the 

frequency interval used for the estimation of the slope of the stacked phase curve. Moreover, 

as observed for test ICDIC 0.787/25, milder slope inclinations are obtained for higher effective 

stress levels. 
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Figure 2.20 – Stacked phase of the transfer function as a function of the frequency for bender 

element measurements performed during the first loading of test ICDIC 0.653/25. 

The arrival times computed using this frequency-domain (FD) method for the first loading of 

test ICDIC 0.787/25 are compared with those previously selected in the time domain (TD) in 

Figure 2.21. As reported in the literature (e.g. Viggiani and Atkinson, 1995; Greening and 

Nash, 2004; Alvarado and Coop, 2012), it can be observed that consistently larger values for 

the arrival time were estimated from the FD method than those computed from the TD 

method. Furthermore, it can be seen that, in some cases (e.g. for effective stresses of 300, 

400 and 500 kPa), the arrival times computed by the FD method are located within the middle 

part of the received sine-type signal, after the crossing of the zero voltage line, and, therefore, 

seem to represent less accurately the arrival time of the shear wave than the values estimated 

from the TD method. 
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Figure 2.21 – First arrivals in time domain (TD) and frequency domain (FD) at the selected stress 

levels, during the first loading of test ICDIC 0.787/25. 

Similarly, the arrival times estimated by applying the TD and FD methods to the interpretation 

of the bender element measurements undertaken during the first loading of test 

ICDIC 0.653/25 test are compared in Figure 2.22. In this case, closer results were obtained by 

the two different interpretation methods, even if a tendency for obtaining later arrival times 

when applying the FD method can be generally observed. 

Since not all results obtained from the FD method seem to accurately represent the arrival 

time of the shear wave, it was decided to adopt the arrival times selected by the TD method 

to compute the shear modulus of Hostun sand at small strains, as detailed in the following 

section. 
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Figure 2.22 – First arrivals in time domain (TD) and frequency domain (FD) at the selected stress 

levels, during the first loading of the ICDIC 0.653/25 test. 

2.5.5 Shear modulus at small strains 

The values of the small-strain shear modulus, Gmax, obtained for the ICDIC 0.787/25 and 

ICDIC 0.653/25 tests during the first loading (1L), the first unloading (1UL), the reloading (2L) 

and the second unloading (2UL) phases are depicted in Figure 2.23. As expected, the 

estimated values of Gmax are higher for the denser sample (ICDIC 0.653/25 test) and increase 

with mean effective stress. Moreover, as mentioned before, for these loading conditions, it 

seems that previous stress history (or, in other words, overconsolidation) has little influence 

on the small-strain response of Hostun sand, and, therefore, Gmax can be essentially related 

to the mean effective stress, p’, and the void ratio, e. Taking that into account, the obtained 

results were used to calibrate the parameters Cg and ng of Equation 2.16, obtained from 

Equation 2.13 (Hardin and Black, 1968) and Equation 2.15 (Hardin, 1965; Hardin and Black, 

1966a). 
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As shown in Figure 2.24, the obtained results present little scatter with a simple least square 

fitting over the bender element data points leading to Cg ≈ 293.0 and ng ≈ 0.49. Indeed, the 

present results are close to those obtained by Hoque and Tatsuoka (2000) when using small-

amplitude cyclic triaxial loading on dry samples of Hostun sand locally instrumented by strain 

gauges, as also shown in the figure. 

 
Figure 2.23 – Values of the small-strain shear modulus estimated by employing the first arrival 

method for tests ICDIC 0.787/25 and ICDIC 0.653/25. 

 
Figure 2.24 – Small-strain shear modulus for Hostun sand. 
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2.6 Monotonic response of Hostun sand at medium to large strains 

2.6.1 General aspects 

Over the last decades, the critical-state soil mechanics (CSSM) framework, established by 

Schofield and Wroth (1968), has been recurrently used as a conceptual framework for 

modelling the response of sand (e.g. Nova and Wood, 1979a; Mróz et al., 1979; Zienkiewicz 

et al., 1985; Pastor et al., 1990; Manzari and Dafalias, 1997; Papadimitriou and Bouckovalas, 

2002; Ling and Yang, 2006; Taborda et al., 2014). The fundamental principle of the CSSM 

framework is that, when sheared, soil reaches a final state, termed as “critical state” (CS), at 

large strains characterised by a unique relationship between void ratio, e, and mean effective 

stress, p’. Moreover, as this state is reached, “soil continues to deform at constant stress and 

constant void ratio”, as defined by Roscoe et al. (1958). While it is well established that the 

critical state line (CSL) is independent of e and p’ (Been et al., 1991; Ishihara, 1993; Verdugo 

and Ishihara, 1996; Riemer and Seed, 1997; Klotz and Coop, 2002; Murthy et al., 2007), its 

independence in relation to the following aspects has been the subject of much discussion: 

▪ drainage conditions (e.g. Casagrande, 1975; Poulos, 1981), with a large number of 

recent studies showing that a unique CSL can be obtained under drained or undrained 

test conditions (e.g. Been et al., 1991; Verdugo and Ishihara, 1996; Riemer and Seed, 

1997; Li and Wang, 1998; Murthy et al., 2007); therefore, although the term “steady 

state” has often been employed to designate the final state of sand response under 

undrained conditions, rather than “critical state”, in the present study, for consistency 

reasons, the term “critical state” (CS) is exclusively used for that purpose; 

▪ stress path, with a number of experimental studies suggesting that the CSL depends 

on the direction of the major principal effective stress in relation to the direction of 

soil deposition and/or on the magnitude of the intermediate principal effective stress 

and, therefore, different CSL are reached, for example, in triaxial extension and triaxial 

compression (Vaid et al., 1990a; Riemer and Seed, 1997; Yoshimine et al., 1998; 

Mooney et al., 1998), while other studies supporting the opposite (Been et al., 1991; 

Yoshimine and Kataoka, 2007); 

▪ initial soil fabric, commonly obtained by using different methods of sample 

preparation, with a number of experimental studies suggesting that, at large strains, 

the effect of the fabric is negligible and, therefore, a unique CSL is reached for samples 

prepared by different methods (Ishihara, 1993; Zlatovic and Ishihara, 1997; 

Papadimitriou et al., 2005; Murthy et al., 2007; Sadrekarimi and Olson, 2012). 

Although the lack of consensus on its uniqueness, the CSL is undoubtedly a very efficient and 

useful form of predicting soil response (Murthy et al., 2007). Therefore, in the present study, 

significant effort was dedicated to its adequate characterisation, based on the results of 

drained and undrained triaxial compression and extension tests. 
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Figure 2.25 – Phase transformation, peak stress ratio and critical states identified from undrained 
shearing and drained constant-p’ shearing in the (a) deviatoric stress – mean effective stress and 

(b) void ratio – mean effective stress (adapted from Manzari and Dafalias, 1997). 

Prior to the CS, at moderate or large strains, two transitory states, termed as phase 

transformation state (PTS) and peak stress-ratio state (PSRS) have been identified as 

distinctive features of the response of sand (Been and Jefferies, 1985; Manzari and Dafalias, 

1997; Murthy et al., 2007; Jefferies and Been, 2006). While the PTS is the state at which the 

response of sand changes from plastic contraction to plastic dilation (i.e. dilatancy is 

temporarily null), the PSRS is related to the mobilisation of the maximum angle of shearing 

resistance (or, equivalently, the maximum stress ratio). These distinctive states are illustrated 

in Figure 2.25, which depicts a typical response of an initially denser-than-critical sample 

when subjected to a drained monotonic constant-p‘ triaxial compression test, as well as to an 

undrained monotonic triaxial compression test with increasing mean stress. 

 
Figure 2.26 – Definition of the state parameter, as proposed by Been and Jefferies (1985). 
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As proposed by Been and Jefferies (1985) and later experimentally supported by several 

authors (e.g. Ishihara, 1993; Klotz and Coop, 2001; Jefferies and Been, 2006; Stamatopoulos, 

2010), the occurrence of both states can be basically related to the density and mean effective 

stress through the use of the state-parameter, , which is given by the difference between 

the current void ratio, e, and the void ratio at critical state, ecs, corresponding to the current 

mean effective stress (Equation 2.17 and Figure 2.26). 

 = e − ecs (2.17) 

It is perhaps important to note that some authors (e.g. Ishihara, 1993; Murthy et al., 2007) 

distinguish between the occurrence of the PTS and another state, termed as quasi-steady 

state (QSS), although differences in shear strengths and mean effective stresses generally do 

not exceed 10 % (Murthy et al., 2007). This latter state is defined as the state at which the 

deviatoric stress, q, reaches a local minimum in undrained shearing (Alarcon-Guzman et al., 

1988). In addition, there is another transitory state of the undrained monotonic response of 

loose sand, termed as undrained instability state (UIS), which is of practical interest. This state 

is characterised by a local maximum of the deviatoric stress and has been associated with the 

onset of “flow liquefaction” (e.g. Sladen et al., 1985; Ishihara, 1993). As mentioned before, 

this liquefaction-related phenomenon is characterised by a sharp reduction of soil’s strength 

to levels below those required to maintain static equilibrium, therefore implying a type of 

failure induced by static shear stresses and rapid development of large deformations (Kramer, 

1996). These distinctive states are schematically illustrated in Figure 2.27. 

  
Figure 2.27 – Distinctive states of the undrained response of sand identified in the (a) deviatoric 

stress – mean effective stress space and (b) deviatoric stress – major principal strain space 
(adapted from Murthy et al., 2007). 

As pointed out by Murthy et al. (2007), both QSS and UIS vanish for tests conducted on 

samples whose initial states are located well below the CSL. As detailed later, due to the use 

of air-pluviation as the method of sample’s preparation, the initial states of all samples tested 
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in the present experimental programme were located below the CSL (i.e. 
0
< 0 as shown in 

Figure 2.26). Consequently, both QSS and UIS were solely observed to occur for three 

samples, hampering an extensive analysis of the occurrence of these two states for Hostun 

sand. For information on the occurrence of these two distinctive states for Hostun sand 

samples prepared by using the moist tamping technique, please refer, for example, to Konrad 

et al. (1991), Konrad (1993), Doanh et al. (1997) and Benahmed (2001). 

Complementary, the stress-dilatancy response of Hostun sand is investigated, since its 

reliable characterisation has been identified as crucial for accurately modelling the stress-

strain response of sand (e.g. Rowe, 1962; Nova and Wood, 1979a; Li and Dafalias, 2000; 

Jefferies and Been, 2006). As detailed later, the obtained experimental data is used to 

investigate the stress-dilatancy relationship proposed by Manzari and Dafalias (1997) and 

incorporated in the constitutive model implemented into the finite element code and used 

for the numerical simulation of the dynamic centrifuge experiments. 

In the following sections, the main characteristics of the triaxial testing programme on Hostun 

sand are firstly presented (Section 2.6.2) and the obtained experimental results are reported 

(Sections 2.6.3 and 2.6.4). Subsequently, the occurrence of the each of the aforementioned 

distinctive states for Hostun sand is examined (Section 2.6.5), followed by the 

characterisation of its stress-dilatancy response (Section 2.6.6). 

Note that, while in this chapter the results of the conducted monotonic triaxial tests are, in 

general, presented together to provide an overall assessment of the monotonic response of 

Hostun sand, the results obtained in each test are individually presented in Appendix A. 

2.6.2 Monotonic triaxial testing programme 

Overall, thirty-two monotonic triaxial compression (TC) and triaxial extension (TE) tests were 

carried out, including: 

▪ fourteen drained monotonic triaxial compression (DMTC) tests, ten of them with 

increasing mean stress (p↑), while the remaining four with decreasing mean stress 

(p↓); 

▪ nine undrained monotonic triaxial compression tests with increasing mean stress 

(UMTC p↑ tests); 

▪ five drained monotonic triaxial extension (DMTE) tests, one of them with decreasing 

mean stress (p↓) and the remaining four with increasing mean stress (p↑); 

▪ four undrained monotonic triaxial extension tests with decreasing mean stress 

(UMTE p↓ tests). 
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Table 2.4 – Initial conditions of the monotonic triaxial compression tests performed. 

Test ID (a) Apparatus (b) 
Sample’s preparation (c) Soil’s state and stress conditions after consolidation 

Loading(d) Dinit Hinit Minit Vcons e0 Dr,0 cell,0 u0 q0 'r,0 'a,0 K0 p'0 
(mm) (mm) (g) (cm3) ( ) (%) (kPa) (kPa) (kPa) (kPa) (kPa) ( ) (kPa) 

ICDMTCp↑ 0.875/50 EMTS 99.6 203.7 2230.4 3.46 0.875 36.9 650.0 600.0 0.0 50.0 50.0 1.0 50.0 DMTCp↑ 
ICDMTCp↑ 0.885/80 EMTS 99.6 202.7 2203.2 6.15 0.885 33.8 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTCp↑ 
ICDMTCp↑ 0.846/200 EMTS 99.6 200.8 2220.3 11.98 0.846 45.2 700.0 500.0 0.0 200.0 200.0 1.0 200.0 DMTCp↑ 
ICDMTCp↑ 0.835/500 EMTS 99.6 200.7 2216.4 23.18 0.835 48.5 680.0 180.0 0.0 500.0 500.0 1.0 500.0 DMTCp↑ 
ICDMTCp↑ 0.829/25 EMTS 99.9 199.1 2250.6 1.55 0.829 50.4 650.0 625.0 0.0 25.0 25.0 1.0 25.0 DMTCp↑ 
ICDMTCp↑ 0.798/80 EMTS 99.9 200.4 2299.4 5.20 0.798 59.5 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTCp↑ 
ICDMTCp↑ 0.804/135 EMTS 99.9 197.5 2252.3 9.04 0.804 57.6 650.0 515.0 0.0 135.0 135.0 1.0 135.0 DMTCp↑ 
ICDMTCp↑ 0.667/25 EMTS 99.9 198.9 2467.4 1.17 0.667 97.9 650.0 625.0 0.0 25.0 25.0 1.0 25.0 DMTCp↑ 
ICDMTCp↑ 0.725/80 EMTS 99.9 202.8 2423.6 6.40 0.725 81.0 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTCp↑ 
ICDMTCp↑ 0.728/135 EMTS 99.9 198.5 2364.4 8.72 0.728 80.1 650.0 515.0 0.0 135.0 135.0 1.0 135.0 DMTCp↑ 
ICDMTCp↓ 0.826/80 B&W SPC 37.0 84.5 130.6 0.61 0.826 51.1 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTCp↓ 
K0CDMTCp↓ 0.797/80 B&W SPC 37.0 78.9 124.2 0.40 0.797 59.8 700.0 640.0 60.0 60.0 120.0 0.5 80.0 DMTCp↓ 
ICDMTCp↓ 0.650/80 B&W SPC 37.0 74.1 127.1 0.33 0.650 103.0 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTCp↓ 
K0CDMTCp↓ 0.672/80 B&W SPC 37.0 77.3 130.9 0.32 0.672 96.6 700.0 640.0 60.0 60.0 120.0 0.5 80.0 DMTCp↓ 
ICUMTCp↑ 0.876/80 EMTS 99.6 200.2 2195.8 5.90 0.876 36.4 650.0 570.0 0.0 80.0 80.0 1.0 80.0 UMTCp↑ 
ICUMTCp↑ 0.868/80 EMTS 99.6 202.7 2212.1 7.07 0.868 38.7 680.0 600.0 0.0 80.0 80.0 1.0 80.0 UMTCp↑ 
ICUMTCp↑ 0.843/135 EMTS 99.6 201.0 2230.5 8.63 0.843 46.1 685.0 550.0 0.0 135.0 135.0 1.0 135.0 UMTCp↑ 
ICUMTCp↑ 0.783/25 EMTS 99.9 202.0 2342.9 1.53 0.783 64.0 650.0 625.0 0.0 25.0 25.0 1.0 25.0 UMTCp↑ 
ICUMTCp↑ 0.801/80 EMTS 99.9 202.3 2315.2 6.33 0.801 58.5 650.0 570.0 0.0 80.0 80.0 1.0 80.0 UMTCp↑ 
ICUMTCp↑ 0.815/135 EMTS 99.9 202.4 2296.5 8.17 0.815 54.5 650.0 515.0 0.0 135.0 135.0 1.0 135.0 UMTCp↑ 
ICUMTCp↑ 0.686/25 EMTS 99.9 204.1 2502.9 1.49 0.686 92.3 650.0 625.0 0.0 25.0 25.0 1.0 25.0 UMTCp↑ 
ICUMTCp↑ 0.751/80 EMTS 99.9 201.1 2369.3 5.31 0.751 73.3 650.0 570.0 0.0 80.0 80.0 1.0 80.0 UMTCp↑ 
ICUMTCp↑ 0.694/135 EMTS 99.9 197.6 2402.5 7.75 0.694 90.1 650.0 515.0 0.0 135.0 135.0 1.0 135.0 UMTCp↑ 

(a) The designation identifies: 1) the type of consolidation – IC or K0 for isotropic or anisotropic consolidation, respectively; 2) the type of drainage – D or U for drained or 
undrained test, respectively; 3) the type of loading – IC for isotropic compression, MTCp↑ for monotonic triaxial compression with increasing mean stress, MTCp↓ for 
monotonic triaxial compression with decreasing mean stress, MTEp↓ for monotonic triaxial extension with decreasing mean stress and MTEp↑ for monotonic triaxial 
extension with increasing mean stress; 4) the void ratio immediately after consolidation; 5) the mean effective stress immediately after consolidation. 
(b) As described in Section 2.3, two different apparatuses were used: B&W SPC refers to Bishop and Wesley (1975)‘s stress path cell, while EMTS refers to the electro-
mechanical triaxial system. (c) Volume and mass measurements were performed after sample’s preparation. (d) See Figure 2.6. 
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Table 2.5 – Initial conditions of the monotonic triaxial extension tests performed. 

Test ID (a) Apparatus (b) 
Sample’s preparation (c) Soil’s state and stress conditions after consolidation 

Loading(d) Dinit Hinit Minit Vcons e0 Dr,0 cell,0 u0 q0 'r,0 'a,0 K0 p'0 
(mm) (mm) (g) (cm3) ( ) (%) (kPa) (kPa) (kPa) (kPa) (kPa) ( ) (kPa) 

ICDMTEp↑ 0.798/80 B&W SPC 36.6 76.4 117.4 0.54 0.798 59.5 250.0 170.0 0.0 80.0 80.0 1.0 80.0 DMTEp↑ 
K0CDMTEp↑ 0.801/80 B&W SPC 36.6 76.0 116.8 0.40 0.801 58.5 250.0 190.0 60.0 60.0 120.0 0.5 80.0 DMTEp↑ 
ICDMTEp↑ 0.652/80 B&W SPC 36.6 76.2 127.6 0.41 0.652 102.5 250.0 170.0 0.0 80.0 80.0 1.0 80.0 DMTEp↑ 
K0CDMTEp↑ 0.652/80 B&W SPC 36.6 78.1 130.8 0.39 0.652 102.3 150.0 90.0 60.0 60.0 120.0 0.5 80.0 DMTEp↑ 
ICDMTEp↓ 0.793/80 B&W SPC 36.6 74.8 115.3 0.48 0.793 60.9 650.0 570.0 0.0 80.0 80.0 1.0 80.0 DMTEp↓ 
ICUMTEp↓ 0.790/25 B&W SPC 36.9 74.9 118.0 0.08 0.790 61.7 650.0 25.0 0.0 25.0 25.0 1.0 25.0 UMTEp↓ 
ICUMTEp↓ 0.799/80 B&W SPC 36.9 75.2 117.3 0.47 0.799 59.0 650.0 80.0 0.0 80.0 80.0 1.0 80.0 UMTEp↓ 
ICUMTEp↓ 0.658/25 B&W SPC 36.9 76.8 130.6 0.09 0.658 100.5 650.0 25.0 0.0 25.0 25.0 1.0 25.0 UMTEp↓ 
ICUMTEp↓ 0.650/80 B&W SPC 36.9 72.3 123.0 0.46 0.650 102.9 650.0 80.0 0.0 80.0 80.0 1.0 80.0 UMTEp↓ 

(a), (b), (c), (d)  See notes below Table 2.4. 
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The initial conditions of the TC and TE tests are summarised in Table 2.4 and Table 2.5, 

respectively, where Dinit, Hinit and Minit are, respectively, the diameter, height and dry mass of 

the sample after preparation; Vcons is the volume change during consolidation; e0 and Dr,0 

are, respectively, the void ratio and the corresponding relative density immediately after 

consolidation (and, therefore, immediately before shearing); cell,0, u0 and q0 are, respectively, 

the cell pressure, the back pressure and the deviatoric stress after consolidation; ’r,0 are ’a,0 

are, respectively, the radial and axial stresses after consolidation; K0 is the ratio of ’r,0 to ’a,0 

(equivalent, in the field, to the coefficient of earth pressure at rest); and, finally, p’0 is the 

mean effective stress immediately after consolidation. It can be observed that samples were 

prepared to very different void ratios, ranging from e0 = 0.650 to e0 = 0.885, and 

consolidated under various isotropic stress states, characterised by p′0 =

25, 50, 80, 135, 200 and 500 kPa, as well as under an anisotropic (i.e. K0) stress state, 

characterised by ′r,0 = 60 kPa and ′a,0 = 120 kPa (which correspond to p′0 = 80 kPa and 

q0 = 60 kPa). 

To aid the presentation of the experimental results, it is important to identify which samples 

are considered “loose”, “moderately loose” and “dense”. Although other criteria could have 

been devised, in the present study, the target void ratio (i.e. planned to be achieved during 

sample preparation), einit,target, is employed, as indicated in Table 2.6. Note that the target void 

ratios, as well as the effective stresses at consolidation were particularly selected to cover the 

initial state of the Hostun sand deposits tested in centrifuge experiments, as detailed later. It 

can be observed that loose samples have relative densities before shearing, Dr,0, below 50 %, 

while dense samples are characterised by values of Dr,0 above 70 %. Moderately loose 

samples are considered those having values of Dr,0 in the range of 50 to 70 %. Note that these 

criteria are also used for samples subjected to cyclic loading (Chapter 3). 

Table 2.6 – Distinction between loose, moderately loose and dense samples adopted in the 
present experimental testing programme. 

Designation Target initial density Density after consolidation (a) 

 einit,target Dr,init,target e0,min e0,max Dr,0 

 ( ) (%) ( ) ( ) (%) 

Loose 0.90 29.4 0.835 0.885 33.8 – 48.5 
Moderately loose 0.81 55.9 0.797 0.829 50.3 – 59.7 
Dense 0.66(1) – 0.69(2) 91.2 – 100 0.650 0.751(3) 73.2 – 102.9 

(a) Minimum and maximum void ratios determined in the laboratory after sample’s preparation, saturation and 
consolidation – see Table 2.4 and Table 2.5. 
(1) Target void ratio for samples tested in the Bishop and Wesley (1975)‘s stress path cell; (2) target void ratio for 
samples tested in the electro-mechanical triaxial system; (3) sample corresponding to test ICUMTCp↑ 0.751/80; 
if this sample would be disregarded, econs,max would be equal to 0.728, which corresponds to Dr,0 of about 80 %. 

 



LABORATORY CHARACTERISATION OF THE MONOTONIC RESPONSE OF HOSTUN SAND 

114 
 

2.6.3 Monotonic triaxial compression test results 

2.6.3.1 Drained monotonic triaxial compression with increasing mean stress 

Figure 2.28 presents the results of the isotropically consolidated drained monotonic triaxial 

compression tests with increasing mean stress (ICDMTC p↑ tests, which correspond to the 

conventional triaxial compression tests). To ease the interpretation of the obtained results, 

the curves corresponding to tests conducted on loose samples (i.e. tests ICDMTCp↑ 

0.875/50, ICDMTCp↑ 0.885/80, ICDMTCp↑ 0.846/200 and ICDMTCp↑ 0.835/500) are 

represented in black, the curves corresponding to tests conducted on moderately loose 

samples (i.e. tests ICDMTCp↑ 0.829/25, ICDMTCp↑ 0.798/80 and ICDMTCp↑ 0.804/135) are 

represented in dark grey, while the curves corresponding to tests conducted on dense 

samples (i.e. tests ICDMTCp↑ 0.667/25, ICDMTCp↑ 0.725/80, ICDMTCp↑ 0.728/135) are 

represented in light grey. Moreover, similar line types are adopted for samples consolidated 

to similar stresses (e.g. dashed line type is used for tests performed on samples consolidated 

to p′0 = 25 kPa, namely tests ICDMTCp↑ 0.829/25 and ICDMTCp↑ 0.667/25). Note also that 

the adopted sign convention implies that compressive strains and stresses are positive, while 

extensive strains and stresses are negative; in addition, volumetric contraction is positive, 

while volumetric expansion/dilation is negative. 

The strong effect of the initial (i.e. immediately after consolidation) void ratio and isotropic 

consolidation stress on the monotonic response of sand can be clearly observed in Figure 

2.28. Starting by comparing the responses of samples consolidated to the same effective 

stresses (e.g. tests ICDMTCp↑ 0.885/80, ICDMTCp↑ 0.798/80 and ICDMTCp↑ 0.725/80), it 

is clear that, as expected, higher peak deviatoric stresses are mobilised during shearing by the 

initially denser samples at lower axial strains (Figure 2.28a). Specifically, a peak deviatoric 

stress of qmax ≈ 304.2 kPa was mobilised by the sample having e0 = 0.725 (i.e. test 

ICDMTCp↑ 0.725/80) at an axial strain of a ≈ 7.0 %, while a smaller value of qmax ≈

255.1 kPa was reached at a ≈ 9.5 % by the sample having e0 = 0.798 (i.e. test 

ICDMTCp↑ 0.798/80) and an even smaller value of qmax ≈ 237.9 kPa at a ≈ 13.1 % was 

registered for the sample having e0 = 0.885 (i.e. test ICDMTCp↑ 0.885/80). Indeed, initially 

denser samples not only tend to mobilise larger deviatoric stresses during shearing, but also 

larger stress ratios,  (i.e. larger ratios of the deviatoric stress, q, to the mean effective stress, 

p’), as clearly observed in Figure 2.28b. Interestingly, when the tests were stopped, the stress 

ratios measured in tests ICDMTCp↑ 0.885/80, ICDMTCp↑ 0.798/80 and ICDMTCp↑ 

0.725/80 were fairly similar ( ≈ 1.36− 1.38), suggesting that, irrespective of the initial 

density of the samples, similar stress conditions tend to be reached at the end of the tests, as 

stated by the CSSM framework. 
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Figure 2.28 – ICDMTC p↑ test results: (a) stress-strain response; (b) stress ratio evolution with 

axial strain; (c) volumetric strain evolution with axial strain; and (d) void ratio evolution with mean 
effective stress. 

Furthermore, by observing Figure 2.28b, it can be concluded that initially denser samples tend 
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2.28c). Moreover, the rate at which the volumetric strain, v, evolves with axial strain at the 

later stages of loading is also higher for initially denser samples than for initially looser 

samples. Finally, it is apparent in Figure 2.28d that larger variations of the void ratio, e, 

during shearing were obtained for the initially denser samples (i.e. e is larger for test 

ICDMTCp↑ 0.725/80 than for test ICDMTCp↑ 0.798/80 and much larger than for test 

ICDMTCp↑ 0.885/80). This aspect also seems to agree well with the CSSM framework, 

according to which samples closer to the CSL (which, in this case, are the loosest samples, 

since all samples show dilative response after initial contraction), when subjected to the same 

confining stress, need to contract less to reach a CS condition. 

Insight into the influence of the initial effective stress state on the monotonic response of 

sand is provided by comparing the results of tests ICDMTCp↑ 0.875/50 (where p′0 = 50 kPa), 

ICDMTCp↑ 0.885/80 (where p′0 = 80 kPa), ICDMTCp↑ 0.846/200 (where p′0 = 200 kPa) 

and ICDMTCp↑ 0.835/500 (where p′0 = 500 kPa), even if the initial void ratios of these 

samples were slightly different. As it can be seen in Figure 2.28a, considerably larger 

deviatoric stresses were mobilised by samples consolidated to higher effective stresses. This 

does not mean, however, that these samples mobilise larger stress ratios. In effect, the 

analysis of Figure 2.28b suggests that samples consolidated to higher effective stresses 

(namely, those corresponding to tests ICDMTCp↑ 0.835/500 and ICDMTCp↑ 0.846/200) 

tend to mobilise slightly smaller stress ratios than those consolidated to lower effective 

stresses (specifically, tests ICDMTCp↑ 0.885/80 and ICDMTCp↑ 0.875/50). Similar 

experimental findings were, for example, reported by Verdugo and Ishihara (1996). In 

addition, samples consolidated to higher effective stresses tend to contract more during the 

earlier stages of loading, as it can be seen in Figure 2.28c. During the later stages of loading, 

however, it seems that the influence of the confining stresses on the volumetric response is 

less important than the effect of the initial density. In fact, for the initial conditions tested in 

the present experimental programme, the effect of the initial mean effective stress on 

volumetric response of sand response seems to be more limited than the effect of the initial 

density of the sample. 

In relation to the characterisation of the CS, two aspects are particularly noteworthy. First, as 

pointed out before, even the initially loosest samples (i.e. tests ICDMTCp↑ 0.875/50, 

ICDMTCp↑ 0.885/80, ICDMTCp↑ 0.846/200 and ICDMTCp↑ 0.835/500) are observed to 

dilate after an initial contraction, with their e – p’ path moving upwards after an initial 

deflection to the right downwards side (Figure 2.28d). Therefore, the CSL in the e – p’ path is 

located above the initial state of all samples (i.e. all samples are initially denser-than-critical, 

as further detailed later). The second aspect worth highlighting is that, despite the large axial 

strains achieved in these tests, a complete stabilisation of both q – a and v – a responses 

seems to have been only attained for the loosest sample (i.e. test ICDMTCp↑ 0.885/80). For 

the sample submitted to the largest confining stress (i.e. test ICDMTCp↑ 0.835/500), the 

variation of v at the final stages of the test seems to be negligible (i.e. it seems practically 
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stabilised). However, q seems to be still evolving. As pointed out by Been and Jefferies (2004), 

this variation of q despite constant volume conditions may be a detrimental consequence of 

the approximate nature of the expression used to correct the cross-sectional area of the 

sample during loading (Equation 2.3) and, therefore, to estimate the axial stress from the 

measured load. As shown later, conditions close to CS seem also to have been attained at the 

end of test ICDMTCp↑ 0.835/500. 

2.6.3.2 Drained monotonic triaxial compression with decreasing mean stress 

Figure 2.29 compares the results of two isotropically consolidated drained monotonic triaxial 

compression tests with decreasing mean stress (ICDMTC p↓ tests, represented by dotted 

lines) – one of them conducted on a moderately loose sample (i.e. test ICDMTCp↓ 0.826/80, 

in dark grey) and the other one conducted on a dense sample (i.e. test ICDMTCp↓ 0.650/80, 

in light grey) – with the results obtained in two tests of the same type conducted on 

anisotropically consolidated samples (K0CDMTC p↓ tests, represented by solid lines) – one 

of them conducted on a moderately loose sample (i.e. test K0CDMTCp↓ 0.797/80, in dark 

grey) and the other one conducted on a dense sample (i.e. test K0CDMTCp↓ 0.672/80, in 

light grey). Additionally, the results obtained for test ICDMTCp↑ 0.798/80 test (represented 

by a very dark grey dashed line) are also shown in the figure, to gain insight into the effect of 

the stress path on the monotonic response of Hostun sand, as discussed below. 

Similar to what was observed for the ICDMTC p↑ tests, denser samples (compare, for 

instance, the results of test ICDMTCp↓ 0.650/80 with those of test ICDMTCp↓ 0.826/80 or, 

alternatively, results of test K0CDMTCp↓ 0.672/80 with those of test K0CDMTCp↓ 0.797/80) 

tend to mobilise larger deviatoric strains and stress ratios during shearing, as well as to exhibit 

stiffer and more dilatant responses. Nevertheless, at large strains, the responses of both sets 

of samples seem to be characterised by similar deviatoric stresses, as also observed for the 

ICDMTC p↑ tests. 

Regarding the effect of the type of consolidation (isotropic or anisotropic), the responses 

registered for the initially denser samples (i.e. tests ICDMTCp↓ 0.650/80 and 

K0CDMTCp↓ 0.672/80), can be compared, since their initial void ratios are very similar. It is 

clear in Figure 2.29a that significantly larger deviatoric stresses were mobilised during 

shearing by the anisotropically consolidated sample (i.e. test K0CDMTCp↓ 0.672/80), even 

though similar-shaped curves seem to have been obtained for both tests. In terms of stress 

ratio evolution with axial strain (Figure 2.29b), similar responses were measured up to an axial 

strain level of about 12 %. From that point, the responses are observed to deviate, with the 

stress ratio – axial strain response measured in test ICDMTCp↓ 0.650/80 approaching that 

registered in test ICDMTCp↓ 0.826/80 and, at greater axial strains, the response measured 

in test ICDMTCp↑ 0.798/80. In addition, it can be observed in Figure 2.29c that very similar 

volumetric strain – axial strain responses were measured in both ICDMTCp↓ 0.650/80 and 

K0CDMTCp↓ 0.672/80 tests, suggesting that the type of consolidation has little effect on this 
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aspect of sand response. Interestingly, the void ratio – mean effective stress paths (Figure 

2.29b) registered in both tests seem also to have a similar shape. To sum up, it seems that the 

type of consolidation has little effect on the stress ratio – axial strain path, as well as on the 

volumetric response, while affecting the maximum deviatoric shear stress that can be 

mobilised. 

  

  
Figure 2.29 – ICDMTC p↓, K0CDMTC p↓ and ICDMTC p↑ test results: (a) stress-strain response; 
(b) stress ratio evolution with axial strain; (c) volumetric strain evolution with axial strain; and 

(d) void ratio evolution with mean effective stress. 

Finally, it is interesting to compare the response obtained for samples tested under different 

stress paths (i.e. tests ICDMTCp↓ 0.826/80 and ICDMTCp↑ 0.798/80), even if the initial void 

ratios of these samples were not exactly identical and sizes of the samples were different. In 

relation to the latter aspect, according to a series of ICDMTCp↑ test results reported by 

Jefferies and Been (2006) on dry-pluviated Ticino sand, samples with smaller sizes tend to 
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exhibit slightly stiffer responses from the start of shearing up to the peak stress than those 

exhibited by samples with larger sizes and, consequently, a smaller tendency to contract 

during the early stages of loading. In this case, however, it can be observed that a considerably 

softer response was measured in test ICDMTCp↓ 0.826/80 in relation to that registered in 

test ICDMTCp↑ 0.798/80(Figure 2.29a and b), which is likely the consequence of the larger 

initial void ratio of sample subjected to the former test, as well as different stress path applied 

in these two tests. Moreover, as expected, it can be seen that the strength mobilised in the 

former test is substantially smaller than mobilised in the latter test. Although these 

conclusions have been drawn based on very limited experimental data (only two tests), it is 

noteworthy that similar findings were reported by Vaid and Sasitharan (1992) on water-

pluviated Erksak sand. 

2.6.3.3 Undrained monotonic triaxial compression with increasing mean stress 

Figure 2.30 presents the results of the isotropically consolidated undrained monotonic triaxial 

compression tests with increasing mean stress (ICUMTC p↑ tests). Once again, the curves 

corresponding to loose samples (i.e. tests ICUMTCp↑ 0.876/80, ICUMTCp↑ 0.868/80 and 

ICUMTCp↑ 0.843/135) are represented in black, the curves corresponding to moderately 

loose samples (i.e. tests ICUMTCp↑ 0.783/25, ICUMTCp↑ 0.801/80 and ICUMTCp↑ 

0.815/135) are represented in dark grey and, finally, the curves corresponding to dense 

samples (i.e. tests ICUMTCp↑ 0.686/25, ICUMTCp↑ 0.751/80 and ICUMTCp↑ 0.694/135) 

are represented in light grey. 

Similar to what was observed when analysing the results of ICDMTC p↑ tests, Figure 2.30 

show that both void ratio and isotropic effective stress at consolidation have a clear effect on 

the measured response. In relation to the former aspect, it can be observed in the detail of 

Figure 2.30e (by comparing, for example, the results obtained for tests ICUMTCp↑ 0.868/80, 

ICUMTCp↑ 0.801/80 and ICUMTCp↑ 0.751/80) that denser samples tend to generate 

smaller positive excess pore water pressures, u, during the earlier stages of loading, when 

compared to looser samples. In fact, this is in a remarkably good agreement with the results 

obtained under drained conditions, where initially denser samples are observed to contract 

less than initially looser samples during the earlier stages of loading. As a result, the reduction 

of the mean effective stress during this initial stage is more limited for denser samples, with 

their effective stress path in q – p’ space showing a lesser tendency to bend to the left (i.e. to 

the direction of p' = 0) than the stress paths corresponding to looser samples (detail of Figure 

2.30a). Note that, in tests ICUMTCp↑ 0.686/25, ICUMTCp↑ 0.751/80 test and 

ICUMTCp↑ 0.783/25, p’ increased from the start until the end of loading, meaning that the 

increase in the total mean stress, p, was constantly greater than the increase in pore water 

pressure, u. Conversely, for all remaining tests, a decrease in p’ was observed in the earlier 

stages of loading, followed by an increase until the end of the test (Figure 2.30a). As suggested 

by Ishihara et al. (1975), the point at which the effective stress path is reversed can be 
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associated with the occurrence of the phase transformation phase (PTS), as discussed later in 

more detail. 

In addition, it can be seen that denser samples tend to exhibit significantly stiffer stress-strain 

responses (Figure 2.30b), as well as to mobilise higher stress ratios during shearing than those 

mobilised by looser samples (Figure 2.30d), as also observed under drained conditions. 

  

  

 
Figure 2.30 – ICUMTC p↑ test results: (a) effective stress path; (b) stress-strain response; 

(c) excess pore water pressure build-up; and (d) stress ratio evolution with axial strain. 
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consolidation are slightly different. In the earlier stages of loading, samples subjected to 

higher confining stresses seem to show stiffer stress-strain responses (detail of Figure 2.30b), 

while generating greater positive excess pore water pressures (detail of Figure 2.30c). These 

effects seem, however, to vanish at large strain levels. 

Moreover, it is interesting to observe that the loosest samples (ICUMTCp↑ 0.876/80, 

ICUMTCp↑ 0.868/80 and ICUMTCp↑ 0.843/135 tests) exhibit stress-strain responses termed 

as “flow liquefaction with limited deformation” (Ishihara, 1993), which are characterised by a 

temporary drop in the deviatoric shear stress accompanied by a considerable accumulation 

of axial strain, a tendency reverted as response of sand changes from contractive to dilative. 

As mentioned before, the state at which the local maximum of deviatoric stress occurs is 

termed as undrained instability state (UIS), with its characterisation being performed later. 

Lastly, although excess pore water pressures do not appear to stabilise completely in any test, 

the variations of excess pore water pressure measured at the end of the ICUMTCp↑ 0.876/80 

and ICUMTCp↑ 0.868/80 tests seem fairly modest. Indeed, their q – a responses seem 

practically stabilised and, therefore, the conditions at the end of these tests are considered 

representative of the CS. Although slightly larger variations of stresses and excess pore water 

pressure seem to occur at the end of the other test performed on a loose sample (i.e. 

ICUMTCp↑ 0.843/135 test), the conditions at the end of this test do not seem far from CS, as 

also explored in more detail later. 

2.6.4 Monotonic triaxial extension test results 

2.6.4.1 Drained monotonic triaxial extension with increasing and decreasing mean stress 

Figure 2.31 compares the results of two isotropically consolidated drained monotonic triaxial 

extension tests with increasing mean stress (ICDMTE p↑ tests, represented by dotted lines) 

– one of them performed on a moderately loose sample (i.e. test ICDMTEp↑ 0.798/80, in 

dark grey) and the other one performed on a dense sample (i.e. test ICDMTEp↑ 0.652/80, in 

light grey) – with the results obtained in two tests of the same type conducted on 

anisotropically consolidated samples (K0CDMTEp↑ tests, represented by solid lines) – one of 

them conducted on a moderately loose sample (i.e. test K0CDMTEp↑ 0.801/80, in dark grey) 

and the other one conducted on a dense sample (i.e. test K0CDMTEp↑ 0.652/80, in light 

grey). Note that the adopted sign convention means that the deviatoric stress, q, and, hence, 

the stress ratio, , are, in this case, negative, as well as the axial strain, a. In relation to the 

volumetric strains, similar to the monotonic triaxial compression tests, a positive sign means 

volumetric contraction of the sample, while a negative sign means volumetric 

expansion/dilation. Note that, as mentioned before, although samples have been generally 

tested until larger strain levels, sample’s necking was observed to occur at a ≈ −10.0 % and, 

therefore, obtained test data is only presented up to that point. The only exception consists 

of test K0CDMTEp↑ 0.652/80, which had to be stopped earlier (at a ≈ −4.3 %), due to the 
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development of negative (i.e. suction-type) pore water pressures, which could not be 

accurately measured. 

 
 

 

 
Figure 2.31 – ICDMTE p↑ and K0CDMTE p↑ test results: (a) stress-strain response; (b) stress ratio 

evolution with axial strain; (c) volumetric strain evolution with axial strain; and (d) void ratio 
evolution with mean effective stress. 
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TE loading would have continued (and measurements would be reliable for such large strains 

induced by this type of loading). Moreover, as also observed in TC, initially denser samples 

tend to contract less during the earlier stages of loading and to show a higher rate of 

volumetric dilation during the later stages of loading (Figure 2.31c). 

When comparing the responses of isotropically and anisotropically consolidated samples (e.g. 

those measured in tests ICDMTEp↑ 0.798/80 and K0CDMTEp↑ 0.801/80), it is observed that 

larger peak deviatoric stresses are exhibited by the anisotropically consolidated samples, 

although similar stress ratios seem to be mobilised throughout loading. Furthermore, it is 

apparent that, although anisotropically consolidated samples tend to contract more during 

the earlier stages of loading, the rate at which dilation occurs in the subsequent stages of 

loading is similar. 

In addition, Figure 2.32 compares results of four tests performed on samples prepared to 

similar void ratios and consolidated under the same isotropic effective stress (′0 = 80 kPa), 

however, each of them subjected to a different total stress path (namely, DMTCp↑, 

DMTCp↓, DMTEp↑ or DMTEp↓). Note that, since drained conditions were imposed in these 

tests (i.e. u = 0), the effective stress path is identical to the total stress path imposed. Note 

also that, to ease the comparison between the results, the axial strains, deviatoric stresses 

and stress ratios obtained for DMTEp↑ and DMTEp↓ tests are, in this case, considered 

positive. 

In Figure 2.32a, it can be seen that, regardless of applying TC or TE loading to the sample, 

much higher deviatoric stresses were mobilised in the tests with increasing mean stress (i.e. 

tests ICDMTCp↑ 0.798/80 and ICDMTEp↑ 0.798/80) than in the tests with decreasing mean 

stress (i.e. test ICDMTCp↓ 0.826/80 and ICDMTEp↓ 0.793/80). Taking into account that the 

stress ratios,  ≈ q/p′, mobilised in these four tests, although not exactly similar, are not very 

different (Figure 2.32b), it could be, in fact, expected that samples sheared with continuously 

decreasing p’ mobilise smaller values of q than those sheared with continuously increasing p’, 

as observed in Figure 2.32a. These results agree well with those reported by Bianchini et al. 

(1991) for dense Hostun sand. By comparing results obtained in a hollow cylinder torsional 

apparatus and in a cubic cell device, these authors concluded that samples subjected to stress 

paths similar to DMTEp↓ tend to exhibit less-resistant responses than samples subjected to 

stress paths similar to DMTCp↑, as observed here. Moreover, in terms of stress ratio 

evolution with axial strain (Figure 2.32b), the obtained results suggest that the stress ratios 

mobilised by samples submitted to TE are smaller than those exhibited by samples under TC. 

A similar trend is reported in the literature for other sands (e.g. Vaid et al., 1990; Lade, 2006; 

Loukidis and Salgado, 2009). Note that, as detailed later, the fact that smaller values of  are 

mobilised in TE than in TC does not imply, however, that the critical state friction angle, ’CS, 

in TE is lower than in TC. In effect, some experimental studies on pluviated sands (e.g. Vaid et 
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al., 1990; Lade, 2006) suggest that the critical state friction angle, ’CS, in TE is similar to that 

mobilised in TC. This topic is further discussed in Section 2.6.5.1. 

  

  
Figure 2.32 – Influence of the stress path on moderately loose samples tested under drained 

conditions: (a) stress-strain response; (b) stress ratio evolution with axial strain; (c) volumetric 
strain evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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(i.e. ICDMTCp↑ 0.798/80 and ICDMTEp↑ 0.798/80 tests) tend to contract more during the 

earlier stages of loading than those submitted to stress paths with decreasing mean stress 

(i.e. ICDMTCp↓ 0.826/80 and ICDMTEp↓ 0.793/80 tests). 
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2.6.4.2 Undrained monotonic triaxial extension with decreasing mean stress 

The final series of monotonic tests performed consisted of isotropically consolidated 

undrained monotonic triaxial extension with decreasing mean stress (ICUMTE p↓ tests), with 

the obtained results being depicted in Figure 2.33. 

  

  
Figure 2.33 – ICUMTE p↓ test results: (a) effective stress path; (b) stress-strain response; (c) excess 

pore water pressure build-up; and (d) stress ratio evolution with axial strain. 

Similar to UMTCp↑, it can be observed (particularly in the detail of Figure 2.33c) that looser 

samples consolidated under higher effective stresses (in this case, sample corresponding to 

test ICUMTEp↓ 0.799/80) tend to generate greater positive excess pore water pressures, u, 

during the earlier stages of loading than those prepared to denser states (i.e. corresponding 

to test ICUMTEp↓ 0.650/80), as well as to those consolidated under smaller effective stress 

(i.e. corresponding to test ICUMTEp↓ 0.658/25). Moreover, it can be observed in Figure 2.33c 
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that looser samples tend to start developing negative excess pore water pressures at higher 

strain levels (in terms of absolute magnitude) and at lower rates than those measured for 

denser samples. Still regarding Figure 2.33c, it is apparent that, as discussed before, the 

density of the samples appear to have a stronger impact on their volumetric response (which, 

under undrained conditions, its reflected on the generation of excess pore water pressures) 

than the effective stress at consolidation (for instance, the discrepancies between the 

responses measured in tests ICUMTEp↓ 0.790/25 and ICUMTEp↓ 0.799/80 seem much 

smaller than those observed between results of test ICUMTEp↓ 0.799/80 and test 

ICUMTEp↓ 0.650/80). Furthermore, as observed for TC, looser samples tend to exhibit softer 

stress-strain responses (Figure 2.33b).  

As a consequence of its greater tendency to generate positive excess pore water pressures 

(or, at least, smaller negative excess pore water pressures) during the earlier stages of 

loading, the effective stress path of looser samples (i.e. corresponding to tests 

ICUMTEp↓ 0.790/25 and ICUMTEp↓ 0.799/80) are observed to bend more to the left (i.e. to 

the direction of p' = 0) than those corresponding to denser samples (i.e. those corresponding 

to tests ICUMTEp↓ 0.658/25 and ICUMTEp↓ 0.650/80), as shown in the detail of Figure 

2.33a. Furthermore, as expected, looser samples tend to exhibit softer stress-strain responses 

than those exhibited by denser samples (Figure 2.33b). As also expected, the effective 

stresses at consolidation also affect the stress-strain response, particularly during the earlier 

stages of loading, with stiffer responses being observed for samples consolidated to higher 

stresses, as it is apparent in the detail of Figure 2.33b. 

To further extend the interpretation of the experimental results, Figure 2.34 compares results 

of tests performed on similarly prepared moderately loose samples consolidated to a mean 

effective stress of 25 or 80 kPa, two of them subjected to ICUMTCp↑ (namely, tests 

ICUMTCp↑ 0.783/25 and ICUMTCp↑ 0.801/80), while the remaining two subjected to 

ICUMTEp↓ (namely, tests ICUMTEp↓ 0.790/25 and ICDMTEp↓ 0.793/80). Note that the 

total stress paths imposed in these tests (MTCp↑ and MTEp↓) are the most conventional in 

triaxial testing (involving only the variation of the axial stress, while keeping the radial stress 

constant). 

When comparing the results obtained for TC and TE tests performed on samples consolidated 

to the same effective stress (e.g. tests ICUMTCp↑ 0.801/80 and ICUMTEp↓ 0.799/80), it is 

apparent that, although smaller positive excess pore water pressures were generated in the 

TE test (Figure 2.34e), when compared with that developed in the TC test, a higher reduction 

of the mean effective stress was obtained for the TE test (Figure 2.34a), as expected due to 

the reduction of mean stress applied during shearing and observed for other sands in other 

experimental testing programmes (e.g. Miura and Toki, 1982; Yoshimine et al., 1998). 

Moreover, a softer response can be observed for the TE test (Figure 2.34b), with similar 

results being also reported for very loose Hostun sand by Doanh et al. (1997). Finally, in a 
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good agreement with the results obtained under drained conditions (Figure 2.32b), smaller 

stress ratios were mobilised in TE than in TC, as reported for other sands (e.g. Vaid et al., 

1990; Lade, 2006; Loukidis and Salgado, 2009). 

  

  
Figure 2.34 – Influence of the stress path on moderately loose samples tested under undrained 
conditions: (a) effective stress path; (b) stress-strain response; (c) excess pore water pressure 

build-up; and (d) stress ratio evolution with axial strain. 

2.6.5 Distinctive states of the response of sand 

2.6.5.1 Critical state 

Although a significant number of tests were conducted, critical state conditions appear to be 

only attained in four tests, specifically for tests ICDMTCp↑ 0.885/80, ICDMTCp↑ 0.835/500, 

ICUMTCp↑ 0.876/80 and ICUMTCp↑ 0.868/80. For the remaining tests, clear signs of 

stresses and volumetric strain stabilisation – for drained shearing – or stresses and pore water 

pressure stabilisation – for undrained shearing – are not visible and, consequently, the 

conditions at the end of those tests cannot be considered representative of CS. 

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

q
 (

kP
a)

p' (kPa)

ICUMTCp↑ 0.783/25

ICUMTCp↑ 0.801/80

ICUMTEp↓ 0.790/25

ICUMTEp↓ 0.799/80

a)

0

50

100

0 50 100

0

200

400

600

800

1000

1200

1400

0 4 8 12 16 20
q

 (
kP

a)

a (%)

ICUMTC 0.783/25/p↑ - UC

ICUMTC 0.801/80/p↑ - UC

ICUMTE 0.79/25/p↓ - UC

ICUMTE 0.799/80/p↓ - UC

b)

ICUMTEp↓ 

0.790/25

0

50

100

0 0.5 1

-600

-500

-400

-300

-200

-100

0

100

0 4 8 12 16 20


u 

(k
P

a)

a (%)

ICUMTCp↑ 0.783/25

ICUMTCp↑ 0.801/80

ICUMTEp↓ 0.790/25

ICUMTEp↓ 0.799/80

c)

-50

0

50

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20


=

 q
 /

 p
' (

 )

a (%)

ICUMTCp↑ 0.783/25

ICUMTCp↑ 0.801/80

ICUMTEp↓ 0.790/25

ICUMTEp↓ 0.799/80

d)

0

0.7

1.4

0 1 2



LABORATORY CHARACTERISATION OF THE MONOTONIC RESPONSE OF HOSTUN SAND 

128 
 

 
Figure 2.35 – Prediction of the critical state line for Hostun sand. 

The void ratio, e, – mean effective stress, p‘, data at the end of all drained and undrained 

triaxial compression (TC) tests conducted on initially loose and moderately loose specimens 

are summarised in Table 2.10 (presented at the end of this chapter for convenience) and 

illustrated in Figure 2.35. For those tests where CS conditions were not attained (unfilled 

markers), arrows indicate the directions of the paths at the instant when those tests were 

stopped. It can be observed that, although TC tests were performed on samples consolidated 

to stress as low as 25 kPa, it was not possible to obtain data representative of CS at stresses 

below 100 kPa. According to Klotz and Coop (2002), this difficulty may arise from the 

incompleteness of tests, as a consequence of the premature occurrence of barrelling and 

strain localisation when samples are sheared under lower confining stresses. This problem 

seems to be particularly evident when pluviation is used to prepare samples, since it is 

practically impossible to prepare initially looser than critical state samples at stress levels in 

the range of 0 – 1000 kPa (as it was the case of the present study) and, consequently, the 

critical state line in this range can only be reached by drained triaxial tests on dilatant samples 

(Been et al., 1991). 

As proposed by Li and Wang (1998), a power law was used to define the critical state line 

(CSL): 

ecs = (ecs)ref −  ln (
p'

p'ref

)



 (2.18) 

where (ecs)ref,  and  are fitting parameters, which were estimated by a least-square 

regression. Due to the aforementioned difficulty in obtaining CS data at low stresses, the void 
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ratio under zero effective stress, (ecs)ref, was constrained by the maximum void ratio, emax, as 

proposed by Riemer et al. (1990) and also assumed in subsequent studies (e.g. Klotz and Coop, 

2002; Murthy et al., 2007). By employing this approach, values of 1.00, 0.07 and 0.36 were 

estimated for (ecs)ref,  and , respectively, with the resulting critical state line (CSL) being 

depicted in Figure 2.35. 

The obtained CS data were subsequently compared with other results of TC tests on Hostun 

sand presented in the literature (Table 2.7, where eend test and p’end test are, respectively, the 

void ratio and mean effective stress obtained at the end of each test). It can be seen in Figure 

2.36 that the additional data found in the literature plot very close to the CSL proposed in this 

paper, independently of the sample preparation method and drainage conditions. 

Additionally, Figure 2.36 presents the CSL proposed for Toyoura sand (Verdugo and Ishihara, 

1996), Leighton Buzzard sand (Been et al., 1991) and Ottawa sand (Murthy et al., 2007). 

Interestingly, as previously discussed by Klotz and Coop (2002b), it was found that the CSL 

proposed for sands with identical particle shape (namely, Hostun, Toyoura and Leighton 

Buzzard sands, as indicated in Table 2.2) plot very close to each other for values of p’ within 

the range of 100 to 1000 kPa, despite having different particle size distributions (Figure 2.2). 

Conversely, although presenting similar particle size distributions, the CSL proposed for 

Ottawa sand is located far below that suggested for Hostun sand. This suggests that particle 

shape has a major influence on the CSL of sand (particularly on the value of (ecs)ref), at least 

for uniformly graded fine to medium fine sands, as suggested by Cho et al. (2006). 

Table 2.7 – Characteristics of TC tests performed on Hostun sand at other institutions and used for 
comparing with the critical state data obtained in the present experimental programme. 

Test ID (a) 
Method 

of prep.(b) 
e0 p'0 0

 (c) eend test p'end test 
Institution Reference 

( ) (kPa) ( ) ( ) (kPa) 

ICDMTCp↑ 0.867/600 AP 0.867 600.0 -0.030 0.820 933.4 INPG (*) 
Mokni and 

Desrues (2013) 

ICUMTCp↑ 0.895/300 AP 0.895 300.0 0.000 0.895 205.3 INPG (*) 
Mokni and 

Desrues (2013) 
ICUMTCp↑ 0.970/279 MT 0.970 279.0 0.072 0.970 22.0 INPG (*) Konrad (1993) 
ICUMTCp↑ 0.922/772 MT 0.922 772.0 0.063 0.922 60.1 INPG (*) Konrad (1993) 
ICDMTCp↑ 0.918/100 MT 0.918 100.0 -0.009 0.908 173.5 ENPC (**) Benahmed (2001) 
ICDMTCp↑ 0.910/200 MT 0.910 200.0 0.001 0.887 345.1 ENPC (**) Benahmed (2001) 
ICDMTCp↑ 0.899/400 MT 0.899 400.0 0.013 0.859 682.3 ENPC (**) Benahmed (2001) 
ICUMTCp↑ 0.919/100 MT 0.919 100.0 -0.008 0.919 103.9 ENPC (**) Benahmed (2001) 
ICUMTCp↑ 0.910/200 MT 0.910 200.0 0.001 0.910 154.1 ENPC (**) Benahmed (2001) 
ICUMTCp↑ 0.898/400 MT 0.898 400.0 0.012 0.898 216.3 ENPC (**) Benahmed (2001) 
(a) The designation is identical to that presented in Table 2.4 (see note below that table). 
(b) Method of sample preparation: air pluviation (AP) or moist tamping (MT) 
(c) 

0
= e0 − ecs, as defined by Been and Jefferies (1985). 

(*) Grenoble Institute of Technology (INPG); (**) École Nationale des Ponts et Chaussées (ENPC). 
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Figure 2.36 – Comparison of the proposed critical state line (CSL) with results presented in the 

literature. 

The CS strength in TC and in TE, identified, respectively, by subscripts “c” and “e”, is quantified 

by the corresponding stress ratio Mc,e
c = qcs/p'cs, where qcs and p’cs are, respectively, the 

deviatoric stress and mean effective stress at critical state. Figure 2.37 presents the q – p’ data 

obtained at the end of shearing for loose and moderately loose specimens. The four data 

points, which were considered representative of the CS, are distinguished by using filled 

markers. Based on these CS points, the critical strength in TC, Mc
c, was estimated as 1.265, 

which corresponds to a CS friction angle, ' c
c, of approximately 31.5°. With respect to the CS 

in TE, it is difficult to obtain a reliable estimation from the obtained results, since test data 

measured after the occurrence of necking were disregarded. Several experimental studies 

have shown that the friction angle in TE, ' e
c  , is close to that in TC, ' c

c, or slightly greater 

(typically up to a maximum of ' e
c = ' c

c + 2°) for pluviated sands (Vaid et al., 1990a; Lade, 

2006). In the present study, a stress ratio of Me
cs ≈ 0.911 was considered, corresponding to 

' e
c = ' c

c + 1° ≈ 31.5° + 1° ≈ 32.5° and to a ratio of Me
c/Mc

c of about 0.72, which is within 

the typical 0.67 – 0.75 range for silica sands (Loukidis and Salgado, 2009). Note that, although 

qcs – p’cs data in TE is defined by a negative slope, which means that, to be formally correct, 

Me
c = qcs/p'cs should take a negative value, Me

c  is taken here as positive to comply with the 

constitutive equations presented in Chapter 4. In constitutive modelling, a tensor typically 

introduces the effect of the loading direction on the modelled response and, therefore, these 

model parameters are considered positive. Note also that the q – p’ data points corresponding 

to the end of TE tests (limited to an axial stress of -10 %, due to sample’s necking, as 
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mentioned before) are also plotted in Figure 2.37. It can be seen that these points do not plot 

far from the adopted CS strength line in extension. 

 
Figure 2.37 – Critical state strength of Hostun sand in compression and in extension. 

2.6.5.2 Peak stress ratio state 

The occurrence of a peak (or bounding) stress ratio either in TC or in TE, Mc,e
b , can be related 

to the current value of the state parameter, b, through the following equation (Wood et al., 

1994): 

Mc,e
b = Mc,e

c − kc,e
b  b (2.19) 

where kc,e
b  is a set of positive material parameters (one value for TC and another for TE). Note 

that this relationship has been incorporated in several constitutive models for sand, including 

in that described in Chapter 4, which was proposed by Manzari and Dafalias (1997) and 

extended by Papadimitriou and Bouckovalas (2002) and Taborda et al. (2014). Note also that, 

to comply with the terminology used in the constitutive model, the superscript “b” is 

preferred to “PSRS”. Additionally, note that, with the purpose of improving the modelling 

response, some authors have replaced the linear dependency on the state parameter by an 

exponential dependency (e.g. Li and Dafalias, 2000). The results obtained in the present study, 

however, do not suggest that there could be any substantial gain in accuracy by introducing 

a modification of that type to Equation 2.19. 

For each monotonic triaxial test conducted in this experimental programme, 
c
b (or 

e
b) was 

identified from test data, as well as the corresponding mean effective stress, p’b, and void 

ratio, eb. Subsequently, based on Equation 2.18, the void ratio at critical state, ecs, 
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corresponding to the same mean effective stress (i.e. for p' = p'b) was computed, allowing 

for the calculation of b = eb − ecs . The 
c,e
b  – b data obtained from the results of all 

monotonic triaxial tests performed in this experimental programme are presented in Figure 

2.38. It can be observed that, irrespective of the type of consolidation, of the drainage 

conditions and of the stress path followed in each test, the experimental results are well 

represented by an equation of the form of Equation 2.19. By employing the least square 

method, the fitting parameters of Equation 2.19 were estimated as kc
b ≈ 2.81 for TC and ke

b ≈

1.44 for TE, as also indicated in the figure. Note that, in TE, the slope obtained by linear 

regression is slightly lower than that commonly assumed in constitutive modelling ke
b =

(Me
cs/Mc

cs) kc
b ≈ (0.911/1.265) × 2.81 ≈ 2.02 (Papadimitriou and Bouckovalas, 2002). Note 

also that, rather than Mc,e
b  and Mc,e

c , which represent positive model parameters (as detailed 

in Chapter 4), the experimental results are presented in the figure in terms of 
c,e
b  and 

c,e
c  to 

comply with the adopted sign convention, where stress ratio in triaxial compression takes 

negative value (i.e. 
e
b and 

e
c  are negative). 

 
Figure 2.38 – Peak stress ratio as a function of the state parameter. 
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volumetric strain, v
p, and increment of plastic deviatoric strain, q

p, as indicated by 

Equation 2.20. 

D =
dv

p

dq
p ≈

v
p

q
p (2.20) 

Assuming that the soil response can be decoupled into elastic and plastic components, D can 

be expressed by Equation 2.21. 

D ≈
v

p

q
p ≈

v − v
e

q − q
e
 (2.21) 

where v and q are, respectively, the total volumetric and total deviatoric strain 

increments, while v
e and q

e, are their respective elastic components. 

Moreover, by employing an isotropic hypoelastic formulation to describe the elastic response 

of soil and assuming that the deviatoric and volumetric responses are independent from each 

other, Equation 2.21 can be further developed, as shown by Equation 2.22, where triaxial 

conditions are assumed. 

D ≈
v − v

e

q − q
e
≈

v −
p'
Ktan

q −
q

3 Gtan

 (2.22) 

where p’ and q are the mean effective stress and deviatoric stress increments, respectively, 

while Gtan and Ktan are the tangent shear and bulk moduli, respectively. 

Further assuming that Gtan and Ktan can be approximated by their respective small-strain 

values, Gmax and Kmax, Equation 2.23 can be written. 

D ≈
v −

p'
Ktan

q −
q

3 Gtan

≈
v −

p'
Kmax

q −
q

3 Gmax

 (2.23) 

Note that, as discussed by Loukidis and Salgado (2009), this simplification is acceptable when 

results from drained tests are used. According to these authors, since strains induced in sand 

during triaxial loading are mostly of plastic nature, the value of D is expected to be primarily 

affected by the total volumetric and deviatoric strain increments, v and q, respectively, 

and, therefore, to depend only to a limited extent on the elastic volumetric and deviatoric 

strain components, v
e and q

e, respectively. Conversely, under undrained conditions, since 

v ≈ 0.0, D is more dependent on v
e ≈ (p'j+1 − p'j) Ktan⁄ ≈ (p'j+1 − p'j) Kmax⁄  and, 

therefore, inaccurate values of D can be obtained when adopting this simplification. This 

undesirable situation is avoided, in the present study, by using solely drained triaxial 

compression test data to estimate the dilatancy coefficient, D (and, therefore, to characterise 

the stress-dilatancy response of Hostun sand, as detailed in Section 2.6.6). Note that a similar 

approach was followed by Been and Jefferies (2004) when examining the stress-dilatancy 
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response of Erksak sand, as well as by Loukidis and Salgado (2009) when characterising the 

stress-dilatancy responses of both Toyoura and Ottawa sands. 

Given that only Gmax was calibrated against bender element test results, the value of Kmax was 

obtained using Equation 2.24, derived from the theory of isotropic elasticity. 

 Kmax =
2 (1+ )

3 (1− 2)
Gmax (2.24) 

where a constant Poisson’s ratio, , equal to 0.18, as proposed by Hoque and Tatsuoka (2000) 

for Hostun sand, was assumed. Note, however, that this does mean that Kmax remains 

constant during shearing. In effect, since Gmax (Equation 2.16) depends on the current values 

of the void ratio, e, and mean effective stress, p’, Kmax is expected to evolve throughout 

loading. 

Lastly, in order to compute Equation 2.23, a forward-difference first-order approach, similar 

to that outlined by Been and Jefferies (2004), was employed. In this approach, both Gmax and 

Kmax are assumed to remain constant over each time step (i.e. from a given instant j to the 

subsequent instant j+1), as shown by Equation 2.25. 

 D ≈
v −

p'
Kmax

q −
q

3 Gmax

≈
(vj+1

− vj
) −

p'j+1 − p'j
Kmax

(qj+1
− qj

) −
qj+1 − qj

3 Gmax

 (2.25) 

It is perhaps important to note that, while frequently used for the numerical modelling of 

response of sand, the use of an isotropic hypoelastic formulation, where both shear and bulk 

moduli are a function of the mean effective stress (see Equation 2.16), implies the laws of 

thermodynamics are not observed and non-conservative results may be obtained. Please 

refer to Houlsby et al. (2005) for further details on this topic. 

Having identified the PTS from the local minimum of p’ for undrained test data and from the 

point at which D ≈ 0 for drained test data, the stress ratio at PTS (also termed as dilatancy 

stress ratio) and represented by Mc,e
d  (where the subscripts “c” and “e” refer to TC and TE, 

respectively, and the superscript “d” is preferred to “PTS” to comply with the terminology 

used in the constitutive model described in Chapter 4) was plotted against the corresponding 

value of the state parameter, d, as shown in Figure 2.39. Note also that, rather than Mc,e
d  and 

Mc,e
c , which represent positive model parameters, the experimental results are presented in 

the figure in terms of 
c,e
d  and 

c,e
c  to comply with the adopted sign convention, where stress 

ratio in triaxial compression takes negative value (i.e. 
e
d and 

e
c  are negative). Although some 

scatter exists, particularly in TE, the obtained results suggest that, irrespective of the type of 

consolidation, of the drainage conditions and of the stress path followed in each test, the 

stress ratio at PTS can be satisfactorily described by Equation 2.26, proposed by Manzari and 

Dafalias (1997) and incorporated in the constitutive model used in the present study (Chapter 

4). 



LABORATORY CHARACTERISATION OF THE MONOTONIC RESPONSE OF HOSTUN SAND 

135 
 

Mc,e
d = Mc,e

c + kc,e
d  d (2.26) 

where kc,e
d  is a set of positive material parameters (one value for TC and another for TE). 

Having applied least square regressions over available test data, kc
d = 0.94 and ke

d = 0.20 

were obtained for TC and TE, respectively. Note that, as observed for the PSRS, in TE, a value 

lower than that commonly assumed in constitutive modelling ke
d ≈ (Me

c/Mc
c) kc

d = (0.911/

1.265) × 0.94 ≈ 0.67 (Papadimitriou and Bouckovalas, 2002) was found. 

 
Figure 2.39 – Stress ratio at phase-transformation state as a function of the state parameter. 
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observed in terms of axial strains (Figure 2.40b). Specifically, the PTS is observed to occur at 

axial strains of about 0.2 – 0.4 % greater than those corresponding to the occurrence of the 

QSS. With respect to the UIS, it is apparent in Figure 2.40 that it occurs during the earlier 

stages of loading (i.e. at axial strain levels smaller than those corresponding to the QSS and 

PTS). In particular, the UIS is observed to occur at axial strains of 0.23, 0.30 and 0.37%, 

respectively for tests ICUMTCp↑ 0.876/80, ICUMTCp↑ 0.868/80 and ICUMTCp↑ 0.843/135. 

  

  
Figure 2.40 – Occurrence of the undrained instability, quasi-steady and phase transformation 

states in undrained shearing: (a) effective stress path; (b) stress-strain response; (c) excess pore 
water pressure build-up; and (d) stress ratio evolution with axial strain. 
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it is interesting to note that the obtained value is similar to that reported by Ishihara (1993) 

for moist-tamped Toyoura sand (p′UI p′0⁄ = 0.61) and by Murthy et al. (2007) for slurry-

deposited Ottawa sand (p′UI p′0⁄ = 0.60). This does not mean, however, that the UIS is either 

independent of the material tested or independent of the method of sample preparation. In 

effect, Murthy et al. (2007) obtained a higher ratio for moist-tamped Ottawa sand (p′UI p′0⁄ =

0.66). In order to evaluate the influence of the method of preparation on the occurrence of 

the UIS for Hostun sand, the ICUMTCp↑ tests performed on moist-tamped samples at the 

Grenoble Institute of Technology (INPG) and at the École Nationale des Ponts et Chaussées 

(ENPC) and used to confirm the position of the CSL in the e – p’ space (Section 2.6.5.1) were 

examined once more, with the obtained p’UI – p’0 points being indicated in Table 2.8 and 

plotted in Figure 2.41. 

Table 2.8 – Characteristics of ICUMTC p↑ tests performed on Hostun sand at other institutions 
and used for comparing with the results obtained in the present experimental programme. 

Test ID (a) 
Method 

of prep.(b) 
e0 p'0 0 

(c) eend test p'end test 
Institution Reference 

( ) (kPa) ( ) ( ) (kPa) 

ICUMTCp↑ 0.970/279 MT 0.970 279.0 0.072 0.970 22.0 INPG (*) Konrad (1993) 
ICUMTCp↑ 0.922/772 MT 0.922 772.0 0.063 0.922 60.1 INPG (*) Konrad (1993) 
ICUMTCp↑ 0.919/100 MT 0.919 100.0 -0.008 0.919 103.9 ENPC (**) Benahmed (2001) 
ICUMTCp↑ 0.910/200 MT 0.910 200.0 0.001 0.910 154.1 ENPC (**) Benahmed (2001) 
ICUMTCp↑ 0.898/400 MT 0.898 400.0 0.012 0.898 216.3 ENPC (**) Benahmed (2001) 
(a) The designation is identical to that presented in Table 2.4 (see note below that table). 
(b) Method of sample preparation: air-pluviation (AP) or moist tamping (MT) 
(c) 

0
= e0 − ecs, as defined by Been and Jefferies (1985). 

(*) Grenoble Institute of Technology (INPG); (**) École Nationale des Ponts et Chaussées (ENPC). 
 

 
Figure 2.41 – Mean effective stress at the undrained instability state as a function of the mean 

effective stress at consolidation. 
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As indicated in the figure, a higher p′UI p′0⁄  ratio of about 0.70 (rather than 0.57) was obtained 

for moist-tamped samples of Hostun sand, suggesting that, contrarily to what was observed 

within the large strain range, the method of sample preparation influences the response of 

sand within small to medium strain range. 

2.6.5.5 Summary of the results of the monotonic triaxial tests performed 

Table 2.9 summarises the initial conditions and main results in terms of distinctive states of 

the response of Hostun sand obtained for all monotonic triaxial compression tests performed. 

Similarly, Table 2.10 indicates the initial conditions and main results of all monotonic triaxial 

extension tests performed. In these tables, the quantities e, p’, q,  and  are, respectively, 

the void ratio, mean effective stress, deviatoric stress, stress ratio and state parameter; the 

subscripts “0” and “end” refer to test data values at the start and at the end of the test, while 

the superscripts “UI”, “d” and “b” refer to values registered at the undrained instability state, 

at the phase transformation state and at peak stress ratio state, respectively. 
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Table 2.9 – Summary of the initial conditions and results obtained for all monotonic triaxial compression tests performed. 

Test ID (a) Consolidation UIS PTS PSRS End of the test 
 e0 p'0 0 p'UI qUI p'd qd d d p'b qb b b eend p'end qend end 
 ( ) (kPa) ( ) (kPa) (kPa) (kPa) (kPa) ( ) ( ) (kPa) (kPa) ( ) ( ) ( ) (kPa) (kPa) ( ) 

ICDMTCp↑ 0.875/50 0.875 50.0 -0.071 – – 84.6 105.3 1.244 -0.070 102.9 149.2 1.447 -0.040 0.902 102.3 145.9 1.426 
ICDMTCp↑ 0.885/80 0.885 80.0 -0.050 – – 138.9 176.9 1.273 -0.049 162.8 237.6 1.458 -0.023 0.918 154.2 210.0 1.362 
ICDMTCp↑ 0.846/200 0.846 200.0 -0.064 – – 336.4 414.0 1.231 -0.061 379.5 533.1 1.404 -0.035 0.881 360.3 473.2 1.313 
ICDMTCp↑ 0.835/500 0.835 500.0 -0.040 – – 867.7 1109.2 1.278 -0.043 927.8 1284.0 1.383 -0.027 0.842 871.2 1109.6 1.274 
ICDMTCp↑ 0.829/25 0.829 25.0 -0.129 – – 40.3 47.6 1.181 -0.124 57.3 87.7 1.528 -0.084 0.909 56.1 79.0 1.409 
ICDMTCp↑ 0.798/80 0.798 80.0 -0.138 – – 130.4 152.4 1.169 -0.130 169.3 253.0 1.493 -0.086 0.874 162.7 224.1 1.377 
ICDMTCp↑ 0.804/135 0.804 135.0 -0.118 – – 218.1 250.6 1.149 -0.108 275.6 407.8 1.479 -0.067 0.883 258.0 340.1 1.318 
ICDMTCp↑ 0.667/25 0.667 25.0 -0.291 – – 37.9 41.6 1.098 -0.285 67.5 122.8 1.816 -0.227 0.774 61.2 97.0 1.586 
ICDMTCp↑ 0.725/80 0.725 80.0 -0.211 – – 125.4 137.3 1.095 -0.202 183.3 298.2 1.626 -0.158 0.847 164.5 220.1 1.338 
ICDMTCp↑ 0.728/135 0.728 135.0 -0.195 – – 216.4 245.5 1.135 -0.183 308.1 506.3 1.642 -0.137 0.813 265.7 364.2 1.370 
ICDMTCp↓ 0.826/80 0.826 80.0 -0.109 – – 49.3 47.8 0.970 -0.129 40.5 63.1 1.557 -0.059 0.896 40.7 63.0 1.549 
K0CDMTCp↓ 0.797/80 0.797 80.0 -0.139 – – – – – – 58.6 93.6 1.597 -0.094 0.902 59.8 91.5 1.530 
ICDMTCp↓ 0.650/80 0.650 80.0 -0.286 – – – – – – 34.4 69.7 2.002 -0.255 0.864 42.0 54.7 1.303 
K0CDMTCp↓ 0.672/80 0.672 80.0 -0.264 – – – – – – 51.9 102.4 1.938 -0.213 0.881 59.1 90.2 1.526 
ICUMTCp↑ 0.876/80 0.876 80.0 -0.059 51.0 43.2 29.7 36.9 1.241 -0.079 170.4 236.5 1.387 -0.039 0.876 535.1 694.1 1.297 
ICUMTCp↑ 0.868/80 0.868 80.0 -0.067 47.8 41.6 28.5 35.6 1.251 -0.087 229.6 312.3 1.360 -0.038 0.868 721.8 888.1 1.230 
ICUMTCp↑ 0.843/135 0.843 135.0 -0.079 74.2 60.5 49.2 56.6 1.151 -0.103 288.9 383.7 1.328 -0.055 0.843 874.1 1101.6 1.260 
ICUMTCp↑ 0.783/25 0.783 25.0 -0.175 – – 23.9 17.7 0.742 -0.176 550.3 753.3 1.368 -0.089 0.783 1030.0 1361.4 1.322 
ICUMTCp↑ 0.801/80 0.801 80.0 -0.135 – – 55.5 61.1 1.101 -0.143 494.1 677.4 1.371 -0.075 0.801 962.7 1246.8 1.295 
ICUMTCp↑ 0.815/135 0.815 135.0 -0.108 – – 118.6 120.5 1.016 -0.111 785.4 1063.4 1.354 -0.039 0.815 1014.5 1340.7 1.322 
ICUMTCp↑ 0.686/25 0.686 25.0 -0.272 – – 23.1 24.4 1.056 -0.273 1228.5 1959.7 1.595 -0.142 0.686 1326.9 2075.0 1.564 
ICUMTCp↑ 0.751/80 0.751 80.0 -0.185 – – 78.8 18.4 0.234 -0.185 1018.1 1582.4 1.554 -0.089 0.751 1223.4 1789.6 1.463 
ICUMTCp↑ 0.694/135 0.694 135.0 -0.229 – – 121.0 107.3 0.887 -0.232 1305.6 1980.2 1.516 -0.131 0.694 1306.0 1979.9 1.516 

(a)  See note below Table 2.4. 
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Table 2.10 – Summary of the initial conditions and results obtained for all monotonic triaxial extension tests performed. 

Test ID (a) 
Consolidation PTS PSRS End of the test 

e0 p'0 0 p'd qd d d p'b qb b b eend p'end qend end 
( ) (kPa) ( ) (kPa) (kPa) ( ) ( ) (kPa) (kPa) ( ) ( ) ( ) (kPa) (kPa) ( ) 

ICDMTEp↑ 0.798/80 0.798 80.0 -0.138 205.8 -190.2 -0.924 -0.130 257.6 -269.1 -1.039 -0.116 0.796 246.1 -249.0 -1.012 
K0CDMTEp↑ 0.801/80 0.801 80.0 -0.135 314.3 -293.1 -0.933 -0.118 369.3 -376.1 -1.002 -0.105 0.793 355.5 -352.2 -0.991 
ICDMTEp↑ 0.652/80 0.652 80.0 -0.284 238.6 -240.7 -1.009 -0.262 407.5 -497.1 -1.210 -0.224 0.681 341.2 -392.7 -1.151 
K0CDMTEp↑ 0.652/80 0.652 80.0 -0.284 375.3 -384.9 -1.026 -0.251 (*) (*) (*) (*) 0.642 505.9 -581.6 -1.150 
ICDMTEp↓ 0.793/80 0.793 80.0 -0.143 60.1 -60.6 -1.008 -0.151 57.0 -69.0 -1.204 -0.131 0.822 57.2 -68.4 -1.196 
ICUMTEp↓ 0.790/25 0.790 25.0 -0.167 20.3 -16.6 -0.819 -0.170 43.9 -49.3 -1.125 -0.158 0.790 289.0 -301.0 -1.041 
ICUMTEp↓ 0.799/80 0.799 80.0 -0.137 49.3 -51.6 -1.047 -0.147 65.5 -72.7 -1.110 -0.141 0.799 283.9 -284.7 -1.003 
ICUMTEp↓ 0.658/25 0.658 25.0 -0.300 22.7 -15.7 -0.692 -0.301 (*) (*) (*) (*) 0.658 241.1 -267.4 -1.109 
ICUMTEp↓ 0.650/80 0.650 80.0 -0.286 63.9 -54.3 -0.849 -0.291 (*) (*) (*) (*) 0.650 253.4 -271.7 -1.072 

(a) See note below Table 2.4. (*) When the test was stopped, the stress ratio was still increasing. 
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2.6.6 Stress-dilatancy characteristics 

A fundamental aspect of soil response is its well-known tendency to change volume when 

sheared, a characteristic termed as “dilatancy”. Based on the postulate of Rowe (1962) that, 

for soil, the mobilised stress ratio is strongly dependent on the plastic strain increments (or, 

in other words, on the dilatancy, D), several expressions have been proposed in the literature 

to describe the stress-dilatancy relationship for soils. Among them, it is of particular interest 

in the present work to examine the stress-dilatancy relationship introduced by Manzari and 

Dafalias (1997) – Equation 2.27, which is incorporated in the constitutive model used in the 

present study (described in Chapter 4). 

 D = A0 (
c,e
d − ) (2.27) 

where A0 is a model parameter. This equation states a direct dependence of the dilatancy, D, 

on the difference between the current stress ratio, , and the stress ratio at the phase 

transformation state (PTS), 
c,e
d   (Section 2.6.5.3). Since this latter parameter depends on the 

current state of sand, as suggested by Equation 2.26 and clearly corroborated by the 

experimental data presented in Figure 2.39, it can be concluded that Equation 2.27 introduces 

D as a state-dependent quantity. 

 
Figure 2.42 – Stress-dilatancy relationship computed from ICDMTCp↑ tests. 

Figure 2.42 shows the stress-dilatancy curves obtained from the available ICDMTCp↑ data. It 

seems that Equation 2.27 can be used to describe adequately the stress-dilatancy response 

of both loose and dense samples when considering  A0 = 1.0, at least until 
c
b (i.e. the 

inversion point of the curve) is reached. 
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2.7 Summary and conclusions 

An extensive laboratory testing programme was performed on air-pluviated samples of 

Hostun sand to assess its monotonic response under a wide range of strains. In particular, a 

series of bender element tests were performed on moderately loose and dense samples 

subjected to drained isotropic compression to estimate the shear modulus of Hostun sand at 

very small strains. Two different methods of interpretation, one in the time domain (TD) and 

the other in the frequency domain (FD), were described in detail and employed to estimate 

the arrival time of the shear wave. The obtained results seem to indicate that, when sand is 

subjected to this type of loading, the previous stress history has little influence on the 

estimated arrival time, with similar results being obtained for first loading, unloading and 

reloading, for a given stress level. This suggests that the shear modulus of sand can be 

primarily related to the void ratio and mean effective stress. The results computed by both 

methods were subsequently compared. It was concluded that, in general, larger values for 

the arrival time were estimated from the FD method than those computed from the TD 

method, as typically reported in the literature (e.g. Viggiani and Atkinson, 1995; Greening and 

Nash, 2004; Alvarado and Coop, 2012). In some cases, however, the results obtained by the 

FD method seem excessively large, with the computed arrival times being located within the 

middle part of the received sine-type signal, after the crossing of the zero voltage line. Due to 

this, the results computed by the TD method were preferred to those estimated from the FD 

method and used to calibrate a well-known expression proposed in the literature, where the 

shear modulus at very small strains is related to the current values of the void ratio and mean 

effective stress. 

Within the medium to large strain range, a series of drained and undrained monotonic triaxial 

compression (TC) and triaxial extension (TE) tests were conducted on samples prepared to 

different initial void ratios, consolidated under various isotropic and anisotropic stress states 

and sheared under the four different stress paths commonly applied in a stress-path cell. The 

obtained results were firstly presented and the impacts of the initial density, effective stress 

state at consolidation and stress path on the measured response were assessed. Starting with 

tests conducted under drained conditions, it was concluded that, as expected, initially denser 

samples tend to mobilise larger peak deviatoric stresses during the earlier stages of loading. 

At later stages of loading, however, the mobilised deviatoric stress tends to be solely 

influenced by the mean effective stress at consolidation and, therefore, independent of the 

initial density, as postulated by the critical state soil mechanics (CSSM) framework. Indeed, in 

a good agreement with this framework, similar stress ratios were measured at large strains 

irrespective of the initial density of the sample and effective stresses at consolidation. 

Furthermore, it was noted that initially denser samples consolidated under lower effective 

stresses tend to contract less during the earlier stages of loading, as well as to start dilating 

at lower strain levels, as also expected. During the later stages of loading, it appears that the 

effect of the initial density on the volumetric response of sand is significantly more important 
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than the effect of the effective stresses at consolidation, with initially denser samples tending 

to exhibit higher rates of dilation. 

With respect to the influence of the stress path, and still in terms of drained conditions, it was 

concluded that, as expected, samples subjected to stress paths with decreasing mean stress 

(MTCp↓ or MTEp↓) tend to exhibit considerably lower strength than those tested under 

increasing mean stress (MTCp↑ or MTEp↑). Interestingly, in terms of stress ratio mobilised 

at large strains, small differences were observed between values obtained in MTCp↓ and 

MTCp↑ tests, as well as between MTEp↑ and MTEp↓ tests. In effect, the most significant 

differences in terms of stress ratio were observed when comparing results of TC (either 

MTCp↑ or MTEp↑) with TE (either MTEp↑ or MTEp↓), with samples subjected to TC 

tending to mobilise larger stress ratios than those subjected to TE, as reported in the literature 

for other sands (e.g. Vaid et al., 1990; Lade, 2006; Loukidis and Salgado, 2009). Regarding the 

volumetric response, it was apparent that samples subjected to stress paths with increasing 

mean stress tend to contract more during the earlier stages of loading and start dilating at 

greater axial strains than those submitted to stress paths with decreasing mean stress. 

In terms of undrained response, the experimental results suggest that, as expected, denser 

samples and/or samples consolidated under lower effective stresses tend to generate lesser 

positive excess pore water pressures during the earlier stages of loading and, therefore, to 

exhibit lesser compliant effective stress paths than those exhibited by looser samples and/or 

samples consolidated under higher effective stresses. In addition, denser sample tend to 

exhibit stiffer stress-strain responses, as well as to mobilise higher peak stress ratios during 

shearing than those mobilised by looser samples, as also observed under drained conditions. 

Regarding the effect of the effective stress at consolidation on the stress-strain response, it 

was observed that samples subjected to higher confining stresses exhibit stiffer stress-strain 

responses during the earlier stages of loading. This effect seemed, however, to vanish during 

the later stages of loading. 

Further insight into the response of Hostun sand was obtained by using a state parameter 

approach in conjunction with the critical state framework to assess the distinctive states of 

its monotonic response, with particular focus being placed on the critical state (CS), the peak 

stress ratio state (PSRS), the phase transformation state (PTS), as well as on the undrained 

instability state (UIS) and quasi-steady state (QQS). In particular, results of DMTCp↑ and 

UMTCp↑ on loose samples were used for the prediction of the critical state line (CSL). 

Additional test data found in the literature was used to corroborate the proposed CSL, which 

appears to be independent of the sample preparation method and drainage conditions. 

Moreover, as suggested by some authors (e.g. Verdugo and Ishihara, 1996; Li and Wang, 

1998), a curved shape for the CSL in the e – ln p’ space seems to describe more accurately the 

experimental data than a linear shape. 
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In addition, it was concluded that, irrespective of the initial void ratio of the samples, effective 

stresses at consolidation, drainage conditions and stress-path direction, the PSRS and the PTS 

of Hostun sand, identified from the experimental results, appear to be very well described by 

simple linear state-dependent relationships. Interestingly, despite the complexity associated 

with the estimation of the PTS under drained conditions, involving a significant number of 

assumptions to estimate the dilatancy, the results of the PTS under drained conditions are 

remarkably similar to those obtained under undrained conditions, particularly in TC. In 

relation to the UIS, it was highlighted that this state was only observed to occur in three of 

the thirteen undrained monotonic triaxial compression (UMTC) tests performed and, 

therefore, further investigation on this aspect may be require in the future. Nevertheless, 

having correlated the mean effective stress at UIS, p’UI, with the mean effective stress 

immediately after consolidation, p’0, for the available UMTC test data, and compare it with 

other UMTC test results obtained for moist-tamped Hostun sand published in the literature, 

it was concluded that the occurrence of this state may depend on the method of sample 

preparation, as observed for other sands in other studies published in the literature (Murthy 

et al., 2007). In relation to the QSS, it was observed that its occurrence in the q – p’ space is 

practically coincident with that of the PTS, with only slightly differences being observed in 

terms of strains at which these two states occur. 

Lastly, it was found that the dilatancy deduced from drained triaxial compression (DMTC) 

tests conducted on both loose and dense samples can be adequately related to the difference 

between the current stress ratio and that at the PTS, as proposed in the literature (Manzari 

and Dafalias, 1997). This is a particularly important conclusion, since the equation used to 

describe the stress-dilatancy response is incorporated in the constitutive model used in the 

present study (Chapter 4). 

In conclusion, the results obtained in this first stage of the research work seem to highlight 

the importance of characterising the response of sand over the full strain range. In particular, 

it appears that accurate predictions of the small-strain stiffness and of the critical state are 

crucial to assess other aspects of the response of sand. Moreover, it is noteworthy that the 

extensive experimental programme presented here provides not only a solid framework for 

interpreting the response of sand under general loading conditions (as observed, for instance, 

in centrifuge experiments presented in Chapter 8), but also reliable data for the calibration of 

the constitutive model used in the present research (Chapter 6) and for the assessment of its 

performance (Chapter 7). 
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Chapter 3 LABORATORY CHARACTERISATION OF THE CYCLIC RESPONSE OF 

HOSTUN SAND 

3.1 Introduction 

An extensive laboratory testing programme using a stress-path cell was carried out to 

characterise the cyclic response of air-pluviated Hostun sand. Samples were prepared to 

different initial void ratios, consolidated under various isotropic effective stress states and 

subjected to several different deviatoric stress oscillations, to evaluate the impact of these 

aspects on the measured response. Particular relevance was given to the characterisation of 

main aspects of the cyclic response of Hostun sand under undrained conditions, in particular 

of its resistance to cyclic mobility. In addition, drained test data were used to inspect aspects 

of the evolution of volumetric strain with cyclic loading. 

As mentioned before, the element laboratory tests carried out as part of this thesis intended 

to: (1) assist the interpretation of centrifuge experiments performed on loose and dense 

deposits of air-pluviated Hostun sand; (2) provide data for the calibration of advanced 

constitutive models, capable of simulating liquefaction-related phenomena; (3) provide data 

for the characterisation of the ability of those constitutive models to reproduce the main 

features of the cyclic response of sand. 

In the first part of this chapter, a literature review on previous element laboratory testing 

programmes designed to study cyclic mobility of sand is provided. Subsequently, the main 

characteristics of the material and equipment used in the present experimental programme 

are briefly described, as well as the procedures employed to prepare and perform the 

laboratory tests. Particular emphasis is given to the description of the additional procedures 

required to carry out cyclic triaxial tests in relation to those employed in the monotonic 

triaxial compression and extension tests. The main characteristics of the performed tests are 

summarised in the following section. 

The undrained cyclic response of Hostun sand is comprehensively characterised in 

Section 3.5. Specifically, the experimental results are firstly presented in Section 3.5.1, given 

particular attention to the characterisation of the main patterns of the undrained cyclic 

response of sand, as well as to the evaluation of the influence of the void ratio, isotropic 

confining stress and magnitude of cyclic loading on the measured response. The experimental 

data is subsequently used to evaluate important aspects of the undrained cyclic response of 

sand, namely the evolution of the secant shear modulus and damping ratio with strain 

amplitude (Section 3.5.3), the resistance to cyclic mobility (Section 3.5.2), and the excess pore 

water pressure generation with cyclic loading (Section 3.5.4). 
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The drained cyclic response of Hostun sand is discussed in Section 3.6. In particular, the 

results of three drained cyclic triaxial tests are presented and the main trends of the response 

of Hostun sand are analysed. Finally, Section 3.7 summarises the main experimental results 

and present some conclusions regarding the cyclic response of Hostun sand. 

Note that, while in this chapter the results of the cyclic triaxial tests are, in general, presented 

together to provide an overall assessment of the cyclic response of Hostun sand, the results 

obtained in each cyclic triaxial test are individually presented in Appendix B. 

3.2 Use of triaxial testing to investigate cyclic mobility 

One of the first triaxial testing programmes designed to study the mechanisms and factors 

influencing the onset of cyclic mobility was carried out by Seed and Lee (1966). As discussed 

by the authors, although a pure shear stress oscillation cannot be imposed in a horizontal 

plane of a sample during an undrained cyclic triaxial test, as typically idealised for a level 

ground deposit subjected to earthquake-induced loading (Figure 3.1), this condition seems to 

be applied in a 45° plane of the sample, providing that isotropic consolidation is used. This 

aspect is illustrated in Figure 3.2, where it can be observed that the shear stresses acting on 

a 45° plane of the sample are equal to half of the deviatoric stress oscillation applied to the 

sample (i.e. q / 2). Moreover, since loading is applied under undrained conditions, the 

authors argued that the effective stress changes occurring during cyclic loading are mainly 

the result of the excess pore water pressure build-up, as typically observed in centrifuge 

experiments. Based on these arguments, Seed and Lee (1966) concluded that undrained cyclic 

triaxial tests could be employed to study cyclic mobility. 

 
Figure 3.1 – Idealised stress conditions in a level ground deposit subjected to earthquake loading 

(adapted from Ishihara, 1996). 
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Figure 3.2 – Stress conditions imposed in a 45° plane in an isotropically consolidated undrained 
cyclic triaxial test (adapted from Ishihara, 1996). 

Although it was not mentioned by Seed and Lee (1966), it is important to note that the use of 

isotropic consolidation, rather than anisotropic consolidation (which typically characterises 

more accurately the field conditions), is not very problematic when studying liquefaction-

related phenomena. In fact, results of dynamic centrifuge experiments on level ground 

deposits of sand suggest that the total horizontal stresses within the sand deposit tend to 

increase concurrently with the application of dynamic loading, with total isotropic stress 

conditions being typically observed as liquefaction approaches (e.g. Ishihara and Li, 1972; 

Ishihara, 1996; Coelho, 2007). As discussed by this latter author, what seems more 

questionable is the use of non-confined lateral boundaries in cyclic triaxial tests, which do not 

seem to represent accurately the conditions in the field (Figure 3.1). Furthermore, it has been 

also observed in dynamic centrifuge experiments that volumetric deformations occur during 

dynamic excitation of the level ground deposit and, therefore, fully undrained conditions do 
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not seem to represent accurately the conditions observed in this type of problems. According 

to Coelho (2007), partially drained conditions seem more appropriate to characterise the 

response of level ground deposits of sand under dynamic loading, at least when there is no 

sand-structure interaction. Indeed, although attempts have been made to simulate partially 

drained conditions in triaxial testing, the available techniques do not seem to provide 

satisfactory results (Yamamoto et al., 2010) and, therefore, fully-undrained conditions are 

typically employed to study cyclic mobility of sand. 

The outcome of the pioneer work of Seed and Lee (1966) suggested that the number of 

loading cycles required to the onset of cyclic mobility was mainly affected by the relative 

density of the sample, the confining pressure and the magnitude of the deviatoric stress 

oscillation. More specifically, the authors concluded that fewer loading cycles to the onset of 

cyclic mobility were required as samples were initially looser, consolidated under higher 

effective stresses and subjected to larger deviatoric stress oscillations. 

Further research on the fundamental aspects of cyclic mobility by means of triaxial testing 

was undertaken in the following years by several authors (e.g. Castro, 1969; Finn et al., 1971). 

Concurrently, simple shear testing programmes designed to study this phenomenon were 

also undertaken (e.g. Peacock and Seed, 1968; Finn et al., 1971), also contributing to the 

understanding of the phenomenon. In an attempt to summarise the findings derived from 

these laboratory testing programmes, as well as from observations provided by case histories, 

and to make these findings useful for design practice, Seed and Idriss (1970a) and Seed and 

Idriss (1971) proposed a simplified (i.e. semi-empirical) procedure to evaluate the 

earthquake-induced liquefaction potential of a site. In this approach, the earthquake-induced 

loading, characterised by an equivalent uniform cyclic stress ratio (CSR), is compared against 

the liquefaction resistance of sand, defined by the uniform cyclic stress ratio required to cause 

liquefaction in a given number of loading cycles (termed as “cyclic resistance ratio” (CRR) by 

the authors). According to the initial proposal (Seed and Idriss, 1970a), this latter quantity can 

be inferred from results of cyclic triaxial tests or simple shear tests performed using uniform 

loading conditions. 

For clarity, in the present study, the designation “cyclic stress ratio” (CSR) is used to define 

the applied uniform cyclic solicitation, which, under triaxial loading conditions, can be 

determined as (e.g. Ishihara, 1996): 

 CSR =
|q|

2 p′0
 (3.1) 

where |q| is the applied deviatoric stress oscillation, while p’0 is the mean effective stress 

before the start of shearing (i.e. immediately after consolidation). Conversely, the designation 

“cyclic resistance ratio” (CRR) is used to characterise the cyclic stress ratio inducing cyclic 

mobility in a given number of loading cycles, Nliq. The curves obtained when plotting CRR 

against Nliq are designated as undrained cyclic resistance curves. 
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A critical step in stress-based approaches to evaluate liquefaction potential consists of the 

estimation of a uniform shear stress time-history (characterised by a uniform shear stress 

oscillation and a given number of loading cycles) causing an effect in sand similar to that 

resulting from the irregular time-history pattern of the earthquake-induced shear stresses. 

Based on laboratory test data on Monterey sand, a weighting procedure defining the 

equivalent effects of different shear stress levels was developed by Seed et al. (1975a). 

Alternatively, the authors proposed to estimate the equivalent number of uniform stress 

cycles based on the earthquake magnitude. Although the proposed methodology had been 

developed based on a limited number of observations and involved a considerable number 

of simplifications that may not represent reality accurately (e.g. Ishihara and Yasuda, 1972, 

1975; Azeiteiro et al., 2017b), it represented a great effort to summarise the main aspects 

influencing the occurrence of cyclic mobility. Specifically, it stated the liquefaction potential 

of a deposit as a function of the physical characteristics of sand, the state of sand (typically 

characterised by the relative density and effective stresses) and the intensity and duration of 

the earthquake motion. This procedure has been refined over the past decades to incorporate 

later experimental findings and to enable the use of field test data to predict liquefaction 

resistance (e.g. Youd et al., 2001; Idriss and Boulanger, 2004, 2006; Boulanger and Idriss, 

2014). 

Recognising that the liquefaction resistance of sand is also affected by other factors not 

included in the original Seed and Idriss (1970) and Seed and Idriss (1971)’s procedure (such 

as the method of sample preparation, prestraining, overconsolidation and time effects), and 

assuming that those factors are likely to have similar influences on both cyclic strength and 

stiffness and, consequently, only slight influence on cyclic strain, Dobry et al. (1982) proposed 

a cyclic strain approach as an alternative to the cyclic stress approach. Along the same lines 

of the earlier proposed methodology, the earthquake-induced loading, characterised, in this 

case, by an equivalent uniform cyclic shear strain loading, is compared with the liquefaction 

resistance of sand, evaluated by the cyclic shear strain required to cause liquefaction in a 

given number of loading cycles. According to the authors, the great advantage of the strain-

based approach over the stress-based approach consists of circumventing the need for 

characterising the influence of some of the abovementioned factors, which require detailed 

knowledge of the geological and seismic history of the site (e.g. sand’s fabric and prestraining) 

by characterising adequately the shear modulus of sand. Specifically, the authors pointed out 

that the shear modulus of sand at small strains, Gmax, which can be directly measured in the 

field through shear-wave velocity measurements (e.g. crosshole tests) and is included in the 

estimation of the earthquake-induced shear strain, would already incorporated many aspects 

that influence excess pore water pressure build-up with cyclic loading (e.g. density of the 

deposit of sand, mean effective stress at a given depth, sand’s fabric and prestraining, among 

other factors). Moreover, the authors suggested that, by performing cyclic triaxial tests with 

constant cyclic strain amplitude (i.e. where shear reversals are controlled by a strain 
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condition), rather than cyclic triaxial tests with constant cyclic stress amplitude (i.e. where 

load reversals are controlled by a stress condition), it would be possible to evaluate the ratio 

of excess pore water pressure build-up as a function of the cyclic shear strain applied in the 

test irrespective of the method of sample preparation and isotropic effective stress at 

consolidation, as observed in the laboratory. This approach, however, also implies the 

decomposition of the irregular shear strain time-history of a given earthquake in order to find 

an equivalent uniform loading. 

Based on the assumption made by Nemat-Nasser and Shokooh (1979) that pore water 

pressure generation can be uniquely related to the cumulative energy dissipated per unit 

volume of soil up to the onset of liquefaction, energy-based procedures for the evaluation of 

liquefaction potential of sand have been developed (e.g. Davis and Berrill, 1982; Berrill and 

Davis, 1985; Law et al., 1990; Figueroa et al., 1994; Kokusho, 2013). According to Liang et al. 

(1995), when compared to alternative stress- and strain-based approaches, energy-based 

methods have the strong advantage of accounting for both induced shear stress and strain, 

thus avoiding the need to decompose the irregular shear stress (or strain) time histories to 

find an equivalent uniform loading. The first laboratory testing programme particularly 

designed to assess the suitability of the energy concept to the evaluation of liquefaction 

potential was undertaken by Simcock et al. (1983). By performing a series of undrained cyclic 

triaxial tests, the authors observed that energy dissipation continuously increased as excess 

pore water pressure were generated. Further evidence on the satisfactory relationship 

between these quantities was presented by Towhata and Ishihara (1985). Based on results of 

torsional shear tests using different loading patterns, the authors concluded that the 

relationship between the excess pore water pressure build-up and dissipated energy per unit 

volume is unique throughout the entire test, being independent of the stress path followed 

in each test. A similar conclusion was drawn by Baziar and Sharafi (2011) and Kokusho (2013) 

when analysing results of undrained hollow cylinder cyclic torsional tests and undrained cyclic 

triaxial tests, respectively. The laboratory testing programme performed by Figueroa and his 

co-workers (Figueroa et al., 1994; Liang et al., 1995; Dief and Figueroa, 2007) is also 

noteworthy. These authors concluded that the energy required to the onset of liquefaction – 

known as capacity energy – was practically independent of the loading pattern used (uniform 

and non-uniform) and type of test performed (torsional cyclic shearing and centrifuge 

experiments). These results seemed to be confirmed by a study undertaken by Polito et al. 

(2013), where cyclic triaxial tests using three different uniform loading shapes (sinusoidal, 

triangular and rectangular), as well as two irregular patterns where performed. More 

recently, Azeiteiro et al. (2017b) extended the experimental findings by comparing the results 

of undrained cyclic triaxial tests including a large-amplitude singular peak loading cycle – a 

type of loading characteristic of shock-type earthquakes (Ishihara and Yasuda, 1975) – with 

those obtained using uniform loading conditions. Although sand samples were subjected to 

loading patterns that would have been deemed equivalent by conventional stress-based 
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methods, the authors observed that the number of cycles required to trigger liquefaction 

strongly depended on the amplitude and location of the peak cycle within the loading history. 

Conversely, the obtained experimental results suggested that, irrespective of the loading 

conditions, a unique relationship existed between the accumulation of dissipated energy per 

unit volume, computed using stress and strain measurements, and the observed residual pore 

water pressure build-up for all tests, throughout the entire cyclic loading application. 

Therefore, the authors concluded that conventional laboratory tests using uniform loading 

conditions can be employed to the evaluation of liquefaction resistance, providing that 

energy principles are used to interpret the laboratory test results. 

It is perhaps important to clarify that the use of these semi-empirical methodologies is beyond 

the scope of the present study. The main intention of the cyclic triaxial testing programme on 

Hostun sand is to characterise important aspects affecting its cyclic response, such as the 

initial relative density of the specimens and the effective stresses at consolidation, and to 

provide reliable data for the calibration of a bounding surface plasticity model to be used in 

the numerical modelling of liquefaction-related phenomena observed in centrifuge 

experiments. 

It is also important to note that, although cyclic simple shear tests may represent more 

accurately the field conditions observed in level ground deposits subjected to earthquake 

loading causing cyclic mobility, concerns about non-uniformity of strain distribution – with 

several authors attempting to minimise the influence of the rigid boundary conditions on the 

obtained results by developing new plane-strain apparatus (e.g. Desrues et al., 1985; 

Tatsuoka et al., 1986b; Alshibli et al., 2004) – and the impossibility of measuring the lateral 

stresses developed during the test have made triaxial testing a preferable tool for the 

experimental characterisation of the cyclic response of sand. Moreover, although the 

advantages of cyclic torsional shearing on hollow cylinder samples are becoming widely 

recognised (Nakata et al., 1998; Yoshimine et al., 1998; O’Kelly and Naughton, 2009; Araújo 

Santos, 2015), enabling to assess important aspects of the response of sand which cannot be 

investigated in triaxial testing, such as the independent influence of the value of the 

intermediate principal effective stress and the direction of the principal effective stress 

directions on the soil response, triaxial testing still remains the reference type of test used to 

obtain data for the calibration of advanced constitutive models, namely when supplemented 

with bender element and/or resonant column testing (e.g. Papadimitriou and Bouckovalas, 

2002; Loukidis and Salgado, 2009). The main reasons for this comprise the low cost of triaxial 

tests in relation to hollow cylinder torsional shear tests, widespread availability of this 

equipment in geotechnical laboratories, simpler procedures to prepare samples and to 

control the equipment and monitoring system, as well as due to the very large past 

experience. 
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Two additional aspects are noteworthy. First, there seems to exist a lack of consensus in the 

literature about the most appropriate criterion used to define the onset of cyclic mobility. The 

moment at which the ratio of the excess pore water pressure to the initial effective vertical 

stress reaches 1.0 was initially proposed by Seed and Lee (1966). However, as pointed out by 

Ishihara (1996), in some cases (e.g. in dense sand), the excess pore water pressure is observed 

to stop building-up for values close, yet not equal, to the initial effective confining stress, 

which invalidates the use of the criterion introduced by Seed and Lee (1966). Therefore, the 

authors refer to the development of 5 % double amplitude axial strain as the most 

appropriate criterion to define the onset of liquefaction. Still according to Ishihara (1996), 

more important than the specific criterion selected in a given experimental study is to clearly 

state it, to enable the appropriate comparison with other experimental studies. Secondly, 

although modern apparatus enable the use of high-frequency loading, as those typically 

observed in the field during an earthquake event, the possible development of highly non-

uniform pore water pressures in the sample under such fast loading conditions and the ability 

to measure these at the sample boundaries raises concerns over its use (Coelho, 2007). 

Therefore, lower loading frequencies have been commonly used in triaxial testing, with the 

effect of the changing of frequency on the obtained results being generally negligible 

(Tatsuoka et al., 1986a). 

3.3 Laboratory test apparatus and experimental procedures 

3.3.1 Material and equipment used 

All tests included in this laboratory testing programme were performed on Hostun sand, 

whose main physical characteristics were previously described in Section 2.2.1. Indeed, the 

distinctive aspects of its monotonic response were comprehensively characterised in the 

previous chapter. 

Similar to the monotonic triaxial compression tests with increasing mean stress, as well as to 

the triaxial extension tests with increasing or decreasing mean stress, cyclic triaxial tests were 

performed using a fully computer-controlled hydraulic triaxial apparatus of the Bishop and 

Wesley (1975) type, designed for 38 mm diameter specimens. The main characteristics of the 

equipment were described in Section 2.3.1.1. It is perhaps important to highlight that, by 

using either a constant rate of strain pump (CRSP) or a bladder-type air-water interchange 

cylinder connected to an air pressure regulator, it was possible to induce, respectively, strain-

controlled or stress-controlled loading. The former type of control was particularly important 

during the later stages of the undrained cyclic triaxial tests, where samples typically exhibited 

a highly non-linear hysteretic response, which would be difficult to register with adequate 

definition when imposing stress-controlled loading (particularly at very low stresses, where 

the slope of the stress-strain response is typically very flat). This does not mean, however, 

that load reversals were controlled by a strain condition. In fact, load reversals were, in 

general, dictated by a stress condition, as detailed later. In addition, it is also important to 
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note that, in order to apply extension loading conditions, a flexible sleeve was used to connect 

the top cap to an adjustable reaction head. 

Standard instrumentation was also used in this series of tests, comprising pore-water 

pressure transducers, a submersible load cell, an externally mounted linear variable 

displacement transducer (LVDT) and a volume gauge. The software TRIAX, developed at the 

University of Durham (Toll, 1993), was used to record and monitor all devices, as well as 

control the different stages of the tests. This software enables a full-automatic control of the 

test, with different stages being triggered by control equations that are continuously updated 

through data acquisition (e.g. axial strain is continuously updated based on displacement 

measured by the LVDT mounted on the stress path cell). 

3.3.2 Experimental procedures 

Air-pluviation of dry sand was used once more to prepare samples with a height/diameter 

ratio close to 2. As pointed out in Section 2.3.1.2, besides the advantages generally recognised 

for this technique, such as producing samples with relatively uniform void ratio distribution 

in depth and having a good repeatability, its selection was also dictated by the fact that this 

same technique was employed in centrifuge tests used as benchmark in the present work 

(Chapter 8). Moreover, as also described in detail in Section 2.3.1.2, different relative 

densities were attained by varying the rate and height of pouring. Specifically, for moderately 

loose samples, a miniature container was used, with the rate of pouring depending on the 

number and size of the openings. The height of pouring, which also affects the obtained 

relative density, was kept approximately constant during sample preparation by raising the 

container while pouring the sand, ensuring the uniformity of the specimens in height. In 

relation to dense samples, the multiple sieving pluviation technique described by Miura and 

Toki (1982) was used. Mass and volume measurements after sample’s preparation were 

undertaken to determine the density of the produced samples. 

After preparation, samples were saturated by flowing de-aired water through the sample, 

always at very small effective stresses, until a Skempton’s B-value above 0.98 was measured 

in all tests. Subsequently, samples were isotropically consolidated to effective stresses of 25, 

80 or 135 kPa, before drained or undrained cyclic loading was applied. The choice of these 

three different effective stress levels was related to the initial effective stress state of the 

centrifuge models, where Hostun sand was employed as model material. More specifically, 

these effective stresses intended to replicate the mean effective stresses of shallow, middle 

and deep levels of the deposits of Hostun sand subjected to centrifuge tests, as discussed in 

detail in Chapter 8. 

In the case of undrained shearing, two different loading stages were defined. In the earlier 

stage of the test, a stress-controlled loading was imposed by varying the deviatoric stress 

between desired minimum and maximum values at a constant rate. More specifically, the 

deviatoric stress variation with time was determined in forehand to result in a loading 
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frequency of 1.5 cycles/h. For instance, in order to impose a deviatoric stress oscillation of 

±40 kPa, a deviatoric stress rate of 1.5 × 4 × 40 = 240 kPa/h was specified. Note that data 

registered by the different instruments were continuously acquired by a data logger and 

transferred to the computer, enabling a control of the test based on updated values of stress 

and strain quantities. In addition, it should be noted that, in order to estimate the axial stress 

from the measured axial force, the software employed a cross-sectional area correction 

identical to that previously defined by Equation 2.3 (in which the sample is assumed to deform 

as a right-circular cylinder throughout loading). As the axial strain reached 0.3 %, the control 

of the test was switched from stress- to strain-control. As mentioned before, this alteration 

intended to enable a well-defined depiction of the response of sand at relatively large strains, 

typically characterised by a highly nonlinear hysteretic stress-strain response as sample 

approached liquefaction. The value of 0.3 % was established based on the results of earlier 

experimental studies on the response of sand performed by Coelho (2007), as well as by the 

author (e.g. Azeiteiro et al., 2017b). Note, nevertheless, that, in these tests, load reversals 

were always controlled by a stress condition (namely, loading was reversed as the maximum 

deviatoric stress amplitude was reached either in triaxial compression or in triaxial extension). 

The tests were stopped when large values of double axial strain amplitude, a,da (i.e. the sum 

of the axial strain amplitude in triaxial compression and in triaxial extension), were measured, 

typically 5 % for moderately loose samples and 2 % for dense sands. 

With respect to the drained cyclic triaxial testing, all performed tests were conducted on 

moderately loose samples. Moreover, although these tests were stress-controlled, the 

criterion used for triggering load reversals differ from one of the tests to the remaining ones. 

Specifically, while, in one of these tests, the load reversals were triggered when reaching a 

given axial strain amplitude, in the remaining tests the load reversals were dictated by a given 

deviatoric stress amplitude, as detailed later. These tests were stopped when a given number 

of loading cycles were completed. 

Note that both undrained and drained cyclic tests were performed by applying conventional 

cyclic triaxial loading with increasing mean stress in triaxial compression and decreasing mean 

stress in triaxial extension (Figure 2.6). A study on the effect of other types of cyclic triaxial 

loading on the response of sand was reported by Coelho et al. (2013). 

3.4 Testing programme 

Overall, thirteen isotropically consolidated undrained cyclic triaxial (ICUCT) tests were 

performed on moderately loose (e0 = 0.77− 0.83, corresponding to Dr,0 ≈ 50− 67%) and 

dense (e0 ≈ 0.65, corresponding to Dr,0 ≈ 102 %) samples of Hostun sand consolidated under 

effective stresses of 25, 80 and 135 kPa. 
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Table 3.1 – Main characteristics of the undrained cyclic triaxial tests performed. 

Test ID (a) 
Sample’s preparation (b Sample’s state and stress conditions after consolidation Applied cyclic loading 
Dinit Hinit Minit Vcons e0 Dr,0 cell,0 u0 q0 p'0 0 |q| CSR Nliq 

(c) 
(mm) (mm) (g) (cm3) ( ) (%) (kPa) (kPa) (kPa) (kPa) ( ) (kPa) ( ) ( ) 

ICUCT 0.821/25/13 36.6 76.4 116.5 0.09 0.821 52.5 550.0 525.0 0.0 25.0 -0.136 13.0 0.260 27.0 
ICUCT 0.777/25/18 36.6 77.3 120.8 0.09 0.777 65.5 550.0 525.0 0.0 25.0 -0.181 18.0 0.360 8.0 
ICUCT 0.771/80/32 36.9 76.2 120.6 0.49 0.771 67.3 650.0 570.0 0.0 80.0 -0.165 32.0 0.200 57.0 
ICUCT 0.803/80/36 36.6 73.8 113.1 0.50 0.803 58.0 650.0 570.0 0.0 80.0 -0.133 36.0 0.225 43.0 
ICUCT 0.832/80/42 36.6 77.0 116.0 0.61 0.832 49.5 550.0 470.0 0.0 80.0 -0.104 42.0 0.263 8.0 
ICUCT 0.804/80/48 36.6 76.4 117.1 0.46 0.804 57.7 650.0 570.0 0.0 80.0 -0.132 48.0 0.300 4.0 
ICUCT 0.773/80/56 36.6 75.5 117.6 0.52 0.773 66.6 650.0 570.0 0.0 80.0 -0.162 56.0 0.350 2.0 
ICUCT 0.805/135/40 36.6 86.5 131.9 0.86 0.805 57.0 650.0 515.0 0.0 135.0 -0.117 40.0 0.148 66.0 
ICUCT 0.830/135/54 36.6 75.1 113.1 0.70 0.830 50.0 650.0 515.0 0.0 135.0 -0.092 54.0 0.200 32.0 
ICUCT 0.793/135/67.5 36.6 72.5 111.4 0.68 0.793 60.7 650.0 515.0 0.0 135.0 -0.129 67.5 0.250 3.0 

ICUCT 0.651/80/43 36.6 75.6 126.6 0.42 0.651 102.4 650.0 570.0 0.0 80.0 -0.285 43.0 0.269 78.0 
ICUCT 0.652/80/72 36.6 74.9 125.5 0.39 0.652 102.6 650.0 570.0 0.0 80.0 -0.284 72.0 0.450 21.0 
ICUCT 0.652/80/88 36.8 73.5 124.3 0.37 0.652 102.7 650.0 570.0 0.0 80.0 -0.284 88.0 0.550 45.0 

(a) The designation identifies: 1) the type of consolidation – IC for isotropic consolidation; 2) the type of drainage –U for undrained conditions; 3) the type of loading – CT for 

cyclic triaxial; 4) the void ratio immediately after consolidation, e0; 5) the mean effective stress immediately after consolidation, p’0; (6) the deviatoric stress oscillation, |q|, 
applied in the test. 
(b) Volume and mass measurements were performed after sample’s preparation. 
(c) In the present study, cyclic mobility was considered to be initiated as ru,res = ures ′v,0⁄ ≥ 0.95, as detailed later. 
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Table 3.2 – Main characteristics of the drained cyclic triaxial tests performed. 

Test ID (a) 
Sample’s preparation (b) Sample’s state and stress conditions after consolidation Load reversal Test stop 

Dinit Hinit Minit Vcons e0 Dr,0 cell,0 u0 q0 p'0 0 |a| |q| Ntot 
(mm) (mm) (g) (cm3) ( ) (%) (kPa) (kPa) (kPa) (kPa) ( ) (%) (kPa) ( ) 

ICDCT 0.773/80/1 36.8 79.7 125.7 0.52 0.773 64.7 650.0 570.0 0.0 80.0 -0.163 1.0 – 100.0 
K0CDCT 0.811/80/30 36.6 75.7 115.7 0.38 0.811 54.1 250.0 190.0 60.0(*) 80.0(*) -0.125 – 30.0(**) 10.0 
ICDCT 0.820/135/81 36.7 72.4 110.2 0.69 0.794 51.4 650.0 515.0 0.0 135.0 -0.102 – 81.0 10.0 

(a) The designation identifies: 1) the type of consolidation – IC or K0 for isotropic or anisotropic consolidation, respectively; 2) the type of drainage – D for drained conditions; 
3) the type of loading – CT for cyclic triaxial; 4) the void ratio immediately after consolidation; 5) the mean effective stress immediately after consolidation; (6) the axial strain 

oscillation, |a| , or deviatoric stress oscillation, |q|, applied in the test (in any case, an identical absolute value was imposed in triaxial compression and in triaxial 
extension, meaning that two-way symmetric cyclic loading conditions were used). 
(b) Volume and mass measurements were performed after sample’s preparation. 
(*) The radial and axial effective stresses at consolidation were ′r,0 = 60.0 kPa and ′a,0 = 120.0 kPa, respectively, resulting in a mean effective stress and in a deviatoric 
stress at consolidation of p′0 = 80.0 kPa and q0 = 60.0 kPa, respectively. 
(**) In this test, a deviatoric stress oscillation from qmin = q0 − q = 60.0− 30.0 = 30.0 kPa to qmax = q0 + q = 60.0+ 30.0 = 90.0 kPa, and vice-versa, was applied. 
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The main characteristics of these tests are summarised in Table 3.1, including: the initial 

diameter, Dinit, height, Hinit, and dry mass, Minit, of the sample measured after preparation; 

the volume change during consolidation, Vcons; the void ratio, e0 and the corresponding 

relative density, Dr,0, the cell pressure, cell,0, the back pressure, u0, the deviatoric stress, q0, 

and the mean effective stress, p’0, before the start of shearing (i.e. immediately after 

consolidation); the state parameter, 
0
= e0 − ecs (according to the critical state line 

proposed for Hostun sand in Chapter 2); the deviatoric stress oscillation, |q|, the applied 

cyclic stress ratio (CSR) – as defined by Equation 3.1 – and the number of loading cycles 

required to the onset of cyclic mobility, Nliq. 

Similarly, Table 3.2 summarises the main characteristics of the three drained cyclic triaxial 

(DCT) tests performed on moderately loose samples, two of them isotropically consolidated 

(IC) and remaining one anisotropically consolidated (K0C). 

Still regarding Table 3.1 and Table 3.2, note that: 

- the Bishop and Wesley (1975)‘s stress path cell was used to test all samples and, 

therefore, this information is omitted from both tables; 

- with the exceptions of test ICDCT 0.773/80/1, where the load reversal was triggered 

as an axial strain amplitude of 1 % was reached, and test K0CDCT 0.811/80/30, where 

the deviatoric stress was varied in between 30 and 90 kPa, in all remaining tests, 

symmetric deviatoric stress oscillations (i.e. identical deviatoric stress amplitude in 

triaxial compression and in triaxial extension) were imposed. 

3.5 Undrained cyclic response 

3.5.1 Overview of obtained results 

3.5.1.1 Main patterns of the undrained cyclic response of Hostun sand 

Figure 3.3 presents the results of test ICUCT 0.832/80/42, which illustrates the typical 

undrained cyclic response of Hostun sand observed in the present laboratory testing 

programme. It can be seen that, as expected, there is an increase in excess pore water 

pressure, u, in each loading cycle, N (Figure 3.3c), which results in a progressive reduction 

of the mean effective stress, p’, with cyclic loading (Figure 3.3a), as well as softening of the 

(average) deviatoric stress, q, – axial strain, a, response in each loading cycle (Figure 3.3b). 

As the phase transformation line is crossed and the effective stress path approaches zero 

(Figure 3.3a), a significant accumulation of axial strains occur (Figure 3.3d), leading to a 

degraded hysteresis type stress-strain response (Figure 3.3b). This suggests that Hostun sand 

is effectively susceptible to cyclic mobility. 

It is also interesting to observe that, during the first five cycles of loading, excess pore water 

pressure increases during triaxial compression (TC) loading, with the opposite trend being 

observed during unloading and, subsequently, during triaxial extension (TE) loading (Figure 



LABORATORY CHARACTERISATION OF THE CYCLIC RESPONSE OF HOSTUN SAND 

158 
 

3.3c). A tendency for positive excess pore water pressure generation is, once more, observed 

as stress reversal occurs and unloading and TC loading is applied. Note, however, that, from 

the 5th loading cycle onwards, a different excess pore water pressure evolution pattern is 

observed. In effect, during this loading cycle, the effective stress path is observed to reverse 

during triaxial extension (point P1 in Figure 3.3a), which, as established by Ishihara et al. 

(1975), suggests that the phase transformation (PT) line has been crossed and, therefore, the 

response of sand changes from plastic contraction to plastic dilation. Once it occurs, excess 

pore water pressures and axial strains are observed to decrease at a higher rate until the 

effective stress path is reversed (point P2). Subsequently, as unloading is applied, significant 

positive excess pore water pressure develops, with the mean effective stress being observed 

to reduce at a higher rate than in the previous loading cycles (i.e. a more compliant effective 

stress path is observed in Figure 3.3a). This tendency is, however, reverted once the PT line is 

crossed in triaxial compression (point P3), with excess pore water pressures being observed 

to decrease until the temporarily maximum deviatoric stress is reached (point P4). As 

unloading and, subsequently, TE loading is applied, pore water pressure starts increasing once 

again, with the mean effective stress strongly reducing, until the PT line is crossed in triaxial 

extension (point P5). A strong decrease in the excess pore water pressure is observed with 

further triaxial extension loading until the temporarily minimum deviatoric stress is reached 

(point P6). This double-frequency phenomenon of the transient excess pore water pressures 

– as termed by Coelho (2007) – was firstly explained by Ishihara et al. (1975) and has been 

shown to occur also in other element laboratory tests, such as torsional shear tests (Ishihara, 

1985, 1996). 

It is worth mentioning that some authors (e.g. Nemat-Nasser and Tobita, 1982) suggest that 

the strong change in sand response after crossing the PT line is due to significant changes in 

fabric occurring during plastic dilation. Based on that, some constitutive models, including 

those based on bounding surface plasticity framework (e.g. Papadimitriou and Bouckovalas, 

2002; Dafalias and Manzari, 2004; Taborda et al., 2014), incorporate a fabric tensor, which 

allows for the replication of the change in the response of sand observed once the PT line is 

crossed and stress path is reversed. This topic is further explored in Chapter 4. 

In addition, it should be noted that the fact that PT line was firstly crossed in TE is consistent 

with the smaller stress ratio amplitudes characterising the location of the PT line in TE than in 

TC, as observed for monotonic loading conditions and as discussed in Chapter 2. 
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Figure 3.3 – Test ICUCT 0.832/80/42: (a) effective stress path; (b) stress-strain response; (c) excess 

pore water pressure build-up; and (d) axial strain evolution with the number of loading cycles. 

3.5.1.2 Influence of the void ratio 

Figure 3.4 compares the results of tests ICUCT 0.832/80/42 and ICUCT 0.651/80/43, which 

were conducted on moderately loose (e = 0.832) and dense (e = 0.651) samples. In these 

tests, samples were consolidated under the same isotropic effective stress (′0 = 80 kPa) and 

sheared under similar deviatoric stress oscillations (|q| = 42 kPa and |q| = 43 kPa, 

respectively), meaning that similar cyclic stress ratios were applied to these samples. It is 

apparent that the void ratio has a strong influence on the undrained cyclic response of sand. 

While the looser sample (i.e. subjected to test ICUCT 0.832/80/42) required only about 8 

loading cycles to the onset of cyclic mobility, characterised by temporarily very low effective 

stresses and accumulation of large axial strains, a much larger number of loading cycles (of 

about 78) were required to initiate cyclic mobility in test ICUCT 0.651/80/43, conducted on 

the denser sample (note that the number of loading, N, axis is presented in logarithmic scale, 

to aid the visualisation of both looser and denser samples responses in the same plot). In 

effect, it can be seen that the excess pore water pressure generated in each loading cycle is 
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significantly smaller in the latter test, when compared with that developed in the former test, 

therefore, resulting in smaller rates of average effective stress reduction and axial strain 

accumulation in each loading cycle. Nevertheless, it is perhaps important to highlight that, as 

observed in centrifuge experiments (e.g. Coelho, 2007), as well as in the field (e.g. Youd et al., 

2001, 2004), both loose and dense sand samples may be subjected to cyclic mobility, although 

its effects (particularly in terms of axial strain accumulation) appear to have a clearly different 

magnitude in moderately loose and dense sand. This topic is further explored in Chapter 8. 

  

  

 
Figure 3.4 – Influence of the void ratio on the undrained cyclic response of Hostun sand: 

(a) effective stress path; (b) stress-strain response; (c) excess pore water pressure build-up; and 
(d) axial strain evolution with the number of loading cycles. 
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(e = 0.793 – 0.832), though consolidated under different isotropic effective stress states 

(′0 = 25, 80 and 135 kPa, respectively) and subjected to different deviatoric stress 

oscillations (|q| ≈ 13, 42 and 67.5 kPa, respectively). Note, nevertheless, that similar cyclic 

stress ratios (|q| (2 p'0)⁄ ≈ 0.250 − 0.263) were used in these tests and, therefore, the 

influence of the isotropic confining stress on the undrained cyclic response of sand can be 

examined. It is apparent in the figure that the lower the isotropic effective stress at 

consolidation, the greater the number of loading cycles required to the onset of cyclic mobility 

(i.e. to generate large excess pore water pressures in the sample and, consequently, periods 

of instability characterised by very low effective stresses and rapid accumulation of large 

strains). 

  

  

 
Figure 3.5 – Influence of the isotropic consolidation stress on the undrained cyclic response of 

Hostun sand: (a) effective stress path; (b) stress-strain response; (c) excess pore water pressure 
build-up; and (d) axial strain evolution with the number of loading cycles. 
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Interestingly, in the ICUCT 0.793/135/67.5 test, a very soft response in triaxial extension was 

measured during the first loading cycle, resulting in a severe mean effective stress reduction 

of more than 40 % of the initial value. A similar response was observed in other tests 

(specifically, tests ICUCT 0.804/80/48 and ICUCT 0.773/80/56), suggesting that the cyclic 

response of Hostun is highly anisotropic, with much softer response being observed in triaxial 

extension than in triaxial compression. Similar experimental observations were reported by 

Coelho (2007), when analysing the results of ICUCT tests on Leighton Buzzard sand. 

3.5.1.4 Influence of the cyclic stress ratio 

Figure 3.6 compares the results of tests ICUCT 0.771/80/32, ICUCT 0.832/80/42 and 

ICUCT 0.773/80/56, performed on samples prepared to similar void ratios (e = 0.771 −

 0.832) and consolidated to the same isotropic effective stress state (′0 = 80 kPa). Different 

deviatoric stress oscillations were, however, used in these tests and, therefore, the cyclic 

stress ratios applied to the samples were different: |q| (2 p'0)⁄ ≈ 0.20 for test 

ICUCT 0.771/80/32, |q| (2 p'0)⁄ ≈ 0.263 for test ICUCT 0.832/80/42 and, lastly, 

|q| (2 p'0)⁄ ≈ 0.35 for test ICUCT 0.773/80/56. 

A very strong influence of applied cyclic stress ratio on undrained cyclic resistance of sand can 

be observed. In particular, it is apparent that the higher the cyclic stress ratio, the lesser the 

number of loading cycles required to the onset of cyclic mobility, as expected. In the case of 

test ICUCT 0.773/80/56, the PT line was crossed during the first loading cycle in triaxial 

extension, resulting in a strong reduction of the mean effective stress once the effective stress 

path was reversed. In this test, at the end of the first loading cycle, excess pore water 

pressures close to the initial effective stress and, therefore, effective stresses close to zero 

were measured. Conversely, in tests ICUCT 0.771/80/32 and ICUCT 0.832/80/42, a greater 

number of loading cycles were required to reach such low effective stresses (57 and 8 loading 

cycles, respectively). 
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Figure 3.6 – Influence of the applied cyclic stress ratio on the undrained cyclic response of Hostun 
sand: (a) effective stress path; (b) stress-strain response; (c) excess pore water pressure build-up; 

and (d) axial strain evolution with the number of loading cycles. 
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ratio (i.e. ru = u ′v,0⁄ = 1.0) has been initially proposed by Seed and Lee (1966) as an 

appropriate criterion, the fact that such high value is not always observed in some laboratory 

tests conducted on dense to very dense sand has led to the selection of other criteria in 

several other experimental studies. In particular, the development of 5 % double amplitude 

(i.e. between two consecutive stress reversals) axial strain (i.e. a,da = 5.0 %) has been often 
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used to define the onset of cyclic mobility (e.g. Ishihara, 1996). The major drawback of this 

criterion consists of the fact that cyclic tests conducted on dense samples are often stopped 

before such large value of a,da is reached (as it was the case of some tests carried out in the 

present laboratory testing programme, as discussed later) and, therefore, two different 

criteria (one for moderately loose and another for dense sand) are, in such case, required to 

define the onset of cyclic mobility. In addition, it should be noted that, when test results are 

interpreted using energy principles (as it will be performed later), a criterion based on excess 

pore water pressures is considered more adequate, since this quantity (more specifically, its 

residual value, which corresponds to a null shear stress) seems to be strongly correlated to 

the accumulation of dissipated energy per unit volume, regardless of the initial state of the 

samples, as well as shape of applied cyclic load (Figueroa et al., 1994; Liang et al., 1995; Polito 

et al., 2013; Kokusho, 2013; Azeiteiro et al., 2015, 2017b). 

Figure 3.7 illustrates the application of two different criteria to define the onset of cyclic 

mobility for test ICUCT 0.832/80/42. Specifically, one of the criteria assumes that cyclic 

mobility occurs as a,da ≥ 5.0 % is firstly observed (Figure 3.7d), while the other criterion 

considers the generation of ru,res ≥ 0.95 as threshold (Figure 3.7c). Note that the use of 

ru,res ≥ 0.95, rather than ru,res = 1.0, is justified by the fact that the latter was not observed 

in all undrained cyclic triaxial (UCT) tests performed in the present experimental study and, 

therefore, could not be employed to all test data. In fact, it is apparent that, even for very 

large values of a,da, of about 7.7 %, the maximum value of ru,res registered during this test was 

approximately 0.95. Moreover, note that, due to the difficulty in reaching ru,res = 1.0, values 

slightly below unit has been employed in other experimental studies reported in the literature 

(e.g. Okada and Nemat-Nasser, 1994). 
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Figure 3.7 – Illustration of the application of two different criteria to define the onset of cyclic 

mobility for test ICUCT 0.832/80/42: (a) effective stress path; (b) stress-strain response; (c) excess 
pore water pressure build-up; and (d) axial strain evolution with the number of loading cycles. 

Further insight into the impact of these two different criteria on the evaluation of the 

undrained cyclic resistance of Hostun sand is provided in Figure 3.8. In this figure, the cyclic 

resistance ratio (CRR), as defined by Equation 3.1, is plotted against the number of loading 

cycles to the onset of cyclic mobility, Nliq, obtained for all tests performed on moderately loose 

samples consolidated under an isotropic effective stress of 80 kPa (i.e. samples subjected to 

tests ICUCT 0.771/80/32, ICUCT 0.803/80/36, ICUCT 0.832/80/42, ICUCT 0.804/80/48 and 

ICUCT 0.773/80/56 – see Table 3.1). The data points obtained when employing the criterion 

a,da = 5.0 % are displayed in grey, while the data points obtained when using ru,res = 0.95 

are represented in black. It is apparent that very similar results were obtained when using 

both criteria. The only slight discrepancies are observed for tests where cyclic mobility was 

induced in very few loading cycles (i.e. tests ICUCT 0.804/80/48 and ICUCT 0.773/80/56). 
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Moreover, as also shown in Figure 3.8, both sets of data may be satisfactorily approximated 

by power relationships of the form of that given by Equation 3.2 (e.g. Idriss and Boulanger, 

2006): 

CRR = a  Nliq
−b (3.2) 

where a and b are material parameters. It can be seen that the resulting curves are practically 

coincident, at least within the range of 10 ≤ Nliq ≤ 100. 

 
Figure 3.8 – Impact of the application of two different criteria to the prediction of the undrained 

cyclic resistance of moderately loose samples of Hostun sand consolidated to p’0 = 80 kPa. 

In terms of dense Hostun sand, Figure 3.9 depicts the results of test ICUCT 0.651/80/43, 

conducted on a sample having e0 = 0.651 and consolidated to p′0 = 80.0 kPa. The application 

of the criterion ru,res = 0.95 is illustrated in Figure 3.9c, with Nliq = 78.0 being obtained. With 

respect to the criterion a,da = 5.0%, it can be observed that such level of double amplitude 

axial strain was not measured, even though about 62 additional loading cycles have been 

applied after ru,res = 0.95 was registered, with large excess pore water pressures remaining 

to be registered. In effect, the increase in double amplitude axial strain occurs at a much 

smaller rate than that observed for moderately loose Hostun sand, with a,da being only about 

3.5 % after more than 140 loading cycles. This means that, if a criterion based on a,da would 

be used in the present experimental programme to define the onset of cyclic mobility, 

different thresholds would have to be used for moderately loose and dense Hostun sand. 

Conversely, the criterion ru,res = 0.95 can be applied to both moderately loose and dense 

Hostun sand and, therefore, was preferred in the present study. 
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Figure 3.9 – Illustration of the application of two different criteria to define the onset of cyclic 

mobility for test ICUCT 0.651/80/43: (a) effective stress path; (b) stress-strain response; (c) excess 
pore water pressure build-up; and (d) axial strain evolution with the number of loading cycles. 

Having defined the criterion employed to define the onset of cyclic mobility, Figure 3.10 

depicts the values of the cyclic resistance ratio (CRR) against the number of loading cycles, 

Nliq, obtained for all ICUCT tests conducted in the present experimental programme. Note 

that these values are also indicated in Table 3.1. As widely reported in the literature (e.g. Seed 

and Idriss, 1970a; Tatsuoka et al., 1986c; Ishihara, 1996; Jefferies and Been, 2006; Idriss and 

Boulanger, 2006), for a given cyclic stress ratio, the looser the sample and the higher the 

effective stress at consolidation, the lesser the number of loading cycles required to induce 

cyclic mobility. Moreover, the larger the cyclic stress ratio applied in the test, the lesser the 

number of loading cycles required to the onset of cyclic mobility. 

Additionally, power relationships of the form of Equation 3.2 were employed to approximate 

the four different sets of data, namely: (1) moderately loose samples consolidated to p′0 =

25 kPa; (2) moderately loose samples consolidated to p′0 = 80 kPa; (3) moderately loose 

samples consolidated to p′0 = 135 kPa and (4) dense samples consolidated to p′0 = 80 kPa. 
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The obtained curves are also depicted in Figure 3.10. Naturally, the robustness of the 

proposed relationships is expected to increase with the number of points available for the 

regression, which means that the curve obtained for moderately loose samples consolidated 

to p′0 = 80 kPa is probably the most reliable, since five data points were used for the 

regression. For moderately loose samples consolidated to either p′0 = 25 or 135 kPa, only 

two data points were available. Moreover, although three data points were available for 

dense samples consolidated to p′0 = 80 kPa, only two of these were considered for the 

regression. As it can be seen in the figure, the values of CRR inferred from tests 

ICUCT 0.652/80/72 and ICUCT 0.652/80/88 do not appear to be consistent. In particular, it is 

apparent that the value obtained for the latter test would result in an unlikely very steep 

regression curve and, therefore, it was decided to remove it from the regression. In fact, as 

discussed later, the rate of excess pore water pressure increase observed in this test for values 

of ru,res above 0.80 is significantly smaller than those registered for the other two tests 

conducted on dense samples (i.e. tests ICUCT 0.651/80/43 and ICUCT 0.652/80/72). 

 
Figure 3.10 – Undrained cyclic resistance of Hostun sand inferred from ICUCT test data. 

Although it would be interesting to compare the undrained cyclic resistance curves obtained 

in the present experimental programme with those obtained in other research programmes 

on Hostun sand, there seems to exist scarcity of published data on this aspect of the response 

of Hostun sand. The most relevant experimental study on this aspect is probably that reported 

by De Gennaro et al. (2004). Similar to the present laboratory testing programme, these 

authors presented results of UCT tests conducted on air-pluviated Hostun sand. In the study 

reported by De Gennaro et al. (2004), however, samples prepared to higher void ratios, 

specifically in the range of 0.866 – 0.910, and isotropically consolidated to p′0 = 400 kPa were 

tested. Moreover, although results of tests using one-way deviatoric stress oscillations (i.e. 

applying cyclic loading only in triaxial compression or only in triaxial extension) are presented 

by De Gennaro et al. (2004), only the test results obtained using cyclic two-way symmetric 
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deviatoric stress reversals are presented here, to allow for a direct comparison with the 

results obtained in the present laboratory testing programme. In addition, note that, although 

the criterion used to define the onset of cyclic mobility by De Gennaro et al. (2004) was the 

observation of a,da = 5.0 %, this seems to have little impact when analysing the undrained 

cyclic resistance of moderately loose Hostun sand (and likely of loose Hostun sand), as 

discussed before. The results obtained by De Gennaro et al. (2004) are compared with those 

obtained in the experimental programme in Figure 3.11. Consistently, the curve obtained by 

De Gennaro et al. (2004), obtained for looser samples consolidated under an higher mean 

effective stress, plots below those obtained in the present study. 

 
Figure 3.11 – Comparison of the undrained cyclic resistance of Hostun obtained in the present 

experimental programme with that reported by De Gennaro et al. (2004). 

In addition, the undrained cyclic resistance of Hostun sand was compared to those exhibited 

by two other reference sands, namely Toyoura and Ottawa sands. Note that the main physical 

properties of these sands were described in Section 2.2.1. Moreover, critical state lines (CSL) 

proposed in the literature for Toyoura sand and Ottawa sands were compared to that 

proposed in the present study for Hostun sand in Section 2.6.5.1. As a brief summary, it was 

found that, despite having noticeable differences in their particle size distributions, the CSL 

proposed for sands having similar particle shape (namely, Hostun and Toyoura sands) plot 

close to each other. Conversely, although presenting similar particle size distributions, the CSL 

proposed for Ottawa sand is located far below that suggested for Hostun sand. It is perhaps 

also important to note that, when comparing the undrained cyclic resistance of sand, 

additional difficulties arise from the fact that, contrarily to the critical state (as per definition), 

it depends on the initial state of the sample (i.e. on the void ratio and mean effective stress 

at consolidation), as well as on the technique used to prepare the samples and type of loading 

(e.g. Ishihara, 1996). Some criteria were, therefore, establish to ensure the comparison of the 

undrained cyclic resistances inferred from test data performed under similar conditions. In 
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particular, based on the data obtained in the present experimental programme and data 

available in the literature, the following criteria were considered in this comparative study: 

▪ method of sample preparation: air pluviated sand samples; 

▪ relative density of the sample: between 45 and 70 %; 

▪ consolidation: isotropic effective stress of 100 kPa; 

▪ cyclic loading conditions: undrained cyclic triaxial loading with two-way symmetric 

deviatoric stress reversals. 

For the reason explained before, the criterion employed to define the onset of cyclic mobility 

was not considered relevant. Nevertheless, it should be clarified that in both experimental 

studies on Toyoura sand (Toki et al., 1986) and Ottawa sand (Shen et al., 1978), a,da = 5.0% 

was adopted as criterion. In relation to the choice of comparing resistance curves obtained 

for p′0 = 100 kPa, it might seem inconsistent, since the present experimental testing 

programme do not contemplate tests performed on samples consolidated under such mean 

effective stress (rather to 25, 80 and 135 kPa). However, reliable data found in the literature 

for both Toyoura and Ottawa sands verifying the three remaining criteria listed above were 

only obtained from tests performed on samples consolidated to p′0 = 100 kPa. Due to the 

qualitative nature of this comparative study, it was considered preferable to use data on 

Toyoura and Ottawa sands obtained for p′0 = 100 kPa and estimate an undrained cyclic 

resistance curve corresponding to p′0 = 100 kPa for Hostun sand. As illustrated in Figure 3.12, 

by simply employing a weighted average procedure, a resistance curve corresponding p′0 =

100 kPa was obtained from those corresponding to p′0 = 80 kPa and p′0 = 135 kPa. 

 
Figure 3.12 – Estimation of the undrained cyclic resistance of loose Hostun sand corresponding to 

p’0 = 100 kPa. 

The comparison between the undrained cyclic resistance of Hostun, Ottawa and Toyoura 

sands is provided in Figure 3.13. Note that neither the curve proposed for Ottawa sand (Shen 

et al., 1978), not that proposed for Toyoura sand (Toki et al., 1986) is accompanied by an 
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equation and, therefore, it is not possible to ascertain whether a power law (Equation 3.2) 

was used to define the proposed curves by the authors. It can be observed that, among the 

three sands, Hostun sand appears to be the most resistant, at least for loading histories 

comprising five to thirty loading cycles. Note that, as highlighted by Ishihara (1996) and 

investigated by Azeiteiro et al. (2012) and Azeiteiro et al. (2017b), the majority of the 

earthquakes is likely to have a significant number of cycles within this range (of five to thirty 

loading cycles). Providing that the undrained cyclic resistance of sand can be defined as the 

cyclic stress ratio producing cyclic mobility in twenty loading cycles, as suggested by Ishihara 

(1996), a value of 0.222 is obtained for Hostun sand, a value in between 0.209 and 0.168 for 

Ottawa sand, depending on its relative density (45 or 65%, respectively) and, finally, a value 

of 0.128 is obtained for Toyoura sand (which is almost half of that obtained for Hostun sand), 

as also shown in the figure. Note that, although the particle size distribution of Toyoura sand 

is finer than those corresponding to Hostun and Ottawa sands, any particular conclusion on 

possible correlations between these aspects based solely on these results would be merely 

speculative. 

 
Figure 3.13 – Comparison of the undrained cyclic resistance of Hostun, Ottawa and Toyoura sands. 

Finally, it is important to note that many other factors not considered in the present 

experimental programme have been shown to influence the undrained cyclic resistance of 

sand, particularly: 

- Sample preparation method: air-pluviated samples are typically less resistant than 

moist-tamped samples (e.g. Tatsuoka et al., 1986a; Ishihara, 1996); the discrepancies 

between the resistance of moist-tamped and air-pluviated samples seem, however, 

more appreciable under undrained cyclic triaxial loading than under undrained cyclic 

torsional shear loading (Tatsuoka et al., 1986a). 

- Initial shear stress ratio (typically denoted by the quantity  = /′v,0): a large 

number of researchers (e.g. Seed and Lee, 1966; Vaid and Chern, 1983) have dedicated 
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significant effort to study this aspect, by using either the simple shear or triaxial 

apparatus. The experimental results were summarised by Seed (1981) and Rollins and 

Seed (1990), suggesting that the effect of  = /′v,0 on the cyclic resistance varies 

with the relative density of the material, with larger number of loading cycles being 

typically required to produce cyclic mobility on relatively loose to dense sand, while 

the opposite trend being observed for very loose sands, particularly when  > 0.2−

0.3. Further investigation on this topic has been performed more recently (e.g. Hosono 

and Yoshimine, 2004; Pan and Yang, 2017). While confirming that compressional static 

shear stress applied in the triaxial apparatus (i.e.  = (′a,0 − ′r,0)/2 with ′a,0 >

′r,0) and in the simple shear apparatus has typically a beneficial impact on cyclic 

mobility (apart from very loose sands subjected to  > 0.2− 0.3), these studies have 

also revealed that extensional static shear stress applied in the triaxial apparatus (i.e. 

 = (′a,0 − ′r,0)/2 with ′a,0 < ′r,0) tend to reduce cyclic mobility resistance. As 

highlighted by Hosono and Yoshimine (2004), these results may, however, depend on 

the degree of anisotropy of the material and, therefore, further investigation seems 

to be required. 

- Overconsolidation: several authors (e.g. Ishihara and Takatsu, 1979) have suggested 

that overconsolidated sands tend to exhibit larger undrained cyclic resistance than 

normally-consolidated sands. 

- Stress paths applied by different laboratory equipment: early studies undertaken by 

Peacock and Seed (1968) suggested that the undrained cyclic resistance of sand is 

smaller under simple shear loading than under triaxial loading. These results seem to 

be confirmed by Vaid and Sivathayalan (1996). On the contrary, experimental results 

reported by Finn et al. (1971) suggested that similar undrained cyclic resistances are 

obtained by both tests. More recently, Hosono and Yoshimine (2004) conducted a 

series of tests to investigate the undrained cyclic resistance of dry-deposited Toyoura 

sand under simple shear conditions using a hollow cylinder torsional shear apparatus 

and compare it with that predicted when using a triaxial test device. According to the 

authors, the use of the hollow cylinder equipment allows for the accurate application 

of a constant volume condition, while also enabling stress and strain measurements 

in the lateral boundaries of the specimen. The obtained results indicate that the 

undrained cyclic resistance of isotropically-consolidated samples under triaxial 

conditions is slightly smaller than that of anisotropically-consolidated (K0 = 0.5) 

samples under simple shear conditions, providing that no initial shear stress ratio is 

applied (i.e.  = 0.0). The apparent inconsistent results of the aforementioned 

research studies suggest that further investigation on this topic is required. 

- Non-uniform versus uniform loading conditions: experimental results on Coimbra 

sand carried out by Azeiteiro et al. (2012) and Azeiteiro et al. (2017b) suggest that the 

number of cycles to the onset of cyclic mobility is strongly dependent on both the 
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magnitude and location of the peak load cycles; therefore, the cyclic resistance of sand 

is strongly dependent on the loading pattern, with an evaluation being required in 

each case. 

- Multidirectional loading versus unidirectional loading: experimental studies reported 

by Nagase and Ishihara (1988) using the simple shear test apparatus and Coelho et al. 

(2013) using a triaxial stress-path cell suggest that lesser number of loading cycles are 

required to the onset of cyclic mobility when multidirectional loading is applied. 

3.5.3 Secant shear modulus and damping ratio evolutions with strain amplitude 

3.5.3.1 Basic concepts 

Due to their importance to the interpretation and analysis of wave propagation phenomena, 

the characterisation of the evolution of both secant shear modulus and damping ratio with 

strain amplitude has been the subject of many research studies. In effect, while the shear 

modulus can be related to the velocity at which shear waves propagate through a given 

deposit, the damping ratio is a measure of the energy dissipated through hysteresis. 

Starting with the shear modulus, several experimental studies have shown that, within the 

very small strains (typically below 10-5 to 10-6), this property can be considered independent 

of the shear strain level for most practical applications (e.g. Vucetic, 1994; Clayton and 

Heymann, 2001; Clayton, 2011; Oztoprak and Bolton, 2012). As presented in Chapter 2, 

results of bender element tests were used in the present study to characterise the maximum 

(i.e. at small strains) shear modulus, Gmax, of Hostun sand, as a function of the void ratio and 

mean effective stress. 

Conversely, as the shear strain amplitude increases above that limit, which was termed as 

“linear cyclic threshold shear strain” and denoted as tl by Vucetic (1994), sand typically 

exhibits a non-linear hysteretic response, with the shear modulus being highly depend on the 

applied shear strain level (e.g. Seed and Idriss, 1970b; Hardin and Drnevich, 1972b; Iwasaki et 

al., 1978; Kokusho, 1980; Lo Presti et al., 1997; Darendeli, 2001; Benz, 2007). Within such 

strain range, it has been customary to use the secant shear modulus, Gsec, to characterise the 

evolution of stiffness of sand during cyclic loading. As schematically illustrated in Figure 3.14, 

Gsec corresponds to the slope of the line connecting the two tips of a given stress-strain loop, 

providing an indication of the average stiffness exhibited by the material during a given 

loading cycle. 
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Figure 3.14 – Schematic representation of the strain-dependency of the secant shear stiffness 
modulus under cyclic loading exceeding the very small strain domain for three distinct strain 

amplitudes (adapted from Taborda, 2011). 

As also illustrated in Figure 3.14, flatter stress-strain loops are typically obtained as larger 

shear strain amplitudes are applied, meaning that the magnitude of Gsec is typically observed 

to reduce with shear strain amplitude, . To illustrate such strain-dependency, Gsec –  curves 

characterising different types of materials (such as sand, clay, gravel) have been proposed in 

early studies on this subject. It was later acknowledged that it would be preferable to present 

Gsec as a percentage of the value of Gmax, as illustrated in Figure 3.15. In fact, as highlighted 

by Taborda (2011), this normalisation allows for an independent evaluation of the aspects 

influencing the magnitude of the shear modulus at very small strains, Gmax, and those 

influencing its reduction with further straining (i.e. Gsec / Gmax). 

  
Figure 3.15 – Stiffness reduction curves: (a) secant shear modulus with shear strain amplitude and 
(b) normalised secant shear modulus with shear strain amplitude (adapted from Taborda, 2011). 
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Another crucial aspect of the response of sand within the small to large strain range is the 

capacity to dissipate energy when sheared, which has been typically quantified by the 

damping ratio,  – Equation 3.3 (Kramer, 1996). 

 =
1

4 
 

W

We,max
 (3.3) 

where W and We,max are, respectively, the energy dissipated and maximum elastic stored 

energy during a given loading cycle. As illustrated in Figure 3.16, the former quantity 

corresponds to the area enclosed by the stress-strain loop and is defined by Equation 3.4. 

Conversely, the latter quantity is associated with the shaded area in Figure 3.16a, defined by 

the undeformed state, the point of shear reversal (p, p) and its corresponding image on the 

horizontal axis (p, 0), as mathematically described by Equation 3.5. 

 W = ∫′ d = ∫   d (3.4) 

 We,max =
1

2
 p p

=
1

2
 Gsec p

2 (3.5) 

where  and  are, respectively, the shear strain and shear stress. 

Note that, contrary to the secant shear modulus, the damping ratio tends to increase with 

the shear strain level. 

 
Figure 3.16 – Definition of damping ratio using concepts of energy dissipated and maximum elastic 

stored energy during a given stress-strain loop. 

Several experimental studies focused on obtaining representative secant shear stiffness and 

damping ratio curves for different materials. For sand, the works of Seed and Idriss (1970b), 

Vucetic and Dobry (1991), Ishibashi and Zhang (1993) and Darendeli (2001) are particularly 

noteworthy. The outcome of these four different proposals is provided in Figure 3.17. It 

should be pointed out that Seed and Idriss (1970b) proposed lower, mean and upper bounds 

for both normalised secant shear modulus and damping ratio, to account for the scatter 

observed in the extensive experimental data collected and analysed by the authors, including 
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results from different laboratory tests (specifically, resonant column, cyclic triaxial, cyclic 

simple shear and cyclic torsional shear tests) performed on samples consolidated under mean 

effective stresses ranging from about 20 to 400 kPa, as well as results from in situ wave 

velocity tests. Note, nevertheless, that, to ease the visualisation, only the mean bound is 

depicted in the figure. Regarding the curves proposed by Vucetic and Dobry (1991), which 

were inferred from simple shear, triaxial and resonant column test data and described solely 

as a function of the plastic index, PI, those depicted in Figure 3.17 correspond to PI = 0 %, as 

typically observed for clean sands. In terms of the curves proposed by Ishibashi and Zhang 

(1993) and Darendeli (2001), for comparison purposes and following the strategy adopted by 

Taborda (2011) when reviewing and comparing these different proposals, the following 

characteristics were assumed: mean effective stress of p' = 100 kPa, a plasticity index of PI =

0 %, an overconsolidation ratio of OCR = 1.0, a frequency of loading of f = 1 Hz and a number 

of loading cycles of N = 10 (note that these three last characteristics are only required when 

plotting the curves proposed by Darendeli (2001)). It can be observed that, apart from the 

normalised secant shear stiffness reduction curve proposed by Ishibashi and Zhang (1993), 

which plots above the remaining curves, similar curves are obtained from all remaining 

proposals (Figure 3.17a). In terms of damping ratio (Figure 3.17b), curves are observed to plot 

in a narrow band for shear strain levels below 1 %. Perhaps more importantly, these studies 

suggest that the normalised secant shear modulus reduction and damping ratio curves for 

sand are primarily affected by the mean effective stress at consolidation, even though the 

overconsolidation ratio, the frequency of loading and the number of loading cycles may also 

have influence on the obtained relationships. 

  
Figure 3.17 – Comparison of: (a) stiffness reduction curves and (b) damping ratio curves proposed 

in the literature for sand (adapted from Taborda, 2011). 
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3.5.3.2 Methodology adopted to compute the secant shear modulus and damping ratio 

Although both secant shear modulus, Gsec, and damping ratio, , evolutions with shear strain 

amplitude, , can be computed from results of undrained cyclic triaxial tests with stress-

controlled shear reversals (as those performed in the present study), difficulties arise from 

the fact that the measured stress-strain loops are rarely closed, as shown in Figure 3.18a. A 

numerical procedure is, therefore, required to compute these quantities for each stress-strain 

loop. In the present study, the following approach, which is similar to that outlined by Taborda 

et al. (2016) and Azeiteiro et al. (2017b), was employed: 

1) Isolate each half-cycle stress-strain loop, as shown in Figure 3.18a. 

2) Create a symmetric image of each half-cycle stress-strain loop about its centre. 

3) Centre each half-cycle stress-strain loop and its corresponding mirror image at the 

origin of the stress-strain space (i.e. move each half-loop in such a way that its two 

tips are located at equal horizontal and vertical distances to the origin); at this point, 

two closed stress-strain loops are defined by original and mirrored half-cycle stress-

strain loops (Figure 3.18b). 

4) For each closed stress-strain loop: 

4.1) estimate the area enclosed by each loop using a trapezoidal approximation – 

Equation 3.6, which assumes undrained triaxial loading conditions and gives 

the energy dissipated per unit volume per loading cycle, W; divide the 

obtained value by two, in order to account for only half stress-strain loop; 

4.2) estimate the area of the triangle defined by the undeformed state, the peak 

deviatoric stress and axial strain and its corresponding image on the horizontal 

axis, which corresponds to the maximum elastic stored energy, We,max 

(Equation 3.7, which also assumes undrained triaxial loading conditions); 

4.3) determine the damping ratio corresponding to each closed stress-strain loop, 

 (Equation 3.3). 

5) Sum the two values of  corresponding to each of the two half loops in order to obtain 

a measure of the damping ratio per loading cycle. 

 W = ∫ d = ∫ q da

𝑘

≈∑
1

2

k−1

i=1

(q(i) + q(i+1))(a
(i+1) − a

(i)) (3.6) 

 We,max =
1

2
qp a,p (3.7) 

Note that in Equations 3.6 and 3.7, a and q are, respectively, the axial strain and deviatoric 

stress, with the subscript “p” referring to a peak value of these quantities; k is the total 

number of points in which the stress-strain loop is discretised (only in Equations 3.6). 
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Figure 3.18 – Example of application of the methodology used to estimate the damping ratio for 

ICUCT 0.832/80/42 test: (a) original deviatoric stress – axial strain loop, (b) closed deviatoric stress 
– axial strain loops using mirror centred images of the original half-loops. 

Moreover, the secant shear modulus, Gsec, was estimated for each half stress-strain loop by 

computing the slope of the line connecting the two tips of the half loop, which, under triaxial 

loading conditions can be described by Equation 3.8. 

Gsec =
q

3 q
=

q

2 (a − r)
 (3.8) 

where q defines the deviatoric stress change (i.e. from peak in triaxial extension to peak in 

triaxial compression or vice-versa), while q, a and r define the corresponding change in 

deviatoric, axial and radial strains. 

For convenience, the computed secant shear modulus is normalised by the maximum (i.e. 

small-strain) shear modulus, Gmax. As discussed in Chapter 2, for sand, this quantity can be 

essentially related to the current value of the void ratio, e, and mean effective stress, p’, with 

Equation 3.9 being proposed for Hostun sand based on results of bender element tests (see 

Section 2.5.5). Under undrained shearing, while e remains constant (providing that water can 

be considered incompressible), p’ is evolving throughout loading and, consequently, Gmax 

does not remain constant during a given loading cycle. A consistent approach is, therefore, 

required to compute a value for Gmax that can be considered representative of each half 

stress-strain loop. Although other strategies could have been devised, in the present study, 

the residual mean effective stress (i.e. corresponding to zero deviatoric stress) measured in 

each half stress-strain loop was used for the computation of Gmax. 

Gmax = Cg p'ref f(e) (
p′

p'ref

)

ng

≈ 293 × 101.3 ×
(2.97− e)2

1 + e
× (

p′

101.3
)

0.49

 (3.9) 
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Furthermore, it should be noted that, in the present study, rather than as a function of single 

amplitude shear strain, , the evolutions of both Gsec / Gmax and  are examined as a function 

of single amplitude axial strain, a,sa, which was estimated as half of double amplitude axial 

strain a,da, measured in each loading cycle. Note, nevertheless, that, since under undrained 

triaxial loading conditions the volumetric strain increment, v, remains practically null, 

deviatoric strain increment, q, is approximately equal to axial strain increment, a, as 

shown in Equations 3.10 and 3.11, and, therefore, it follows that  ≈ 3/2 a,sa. 

v ≈ 0 ⟺ a + 2 r ≈ 0 ⟺ r ≈ −1/2 a (3.10) 

q = 2/3  = 2/3(a − r) ⟺ q ≈ 2/3(a + 1/2 a) ≈ a (3.11) 

3.5.3.3 Main patterns under undrained cyclic triaxial loading 

Figure 3.19 depicts the deviatoric stress, q, – axial strain, a, loops measured in each loading 

cycle, N, of test ICUCT 0.832/80/42. The corresponding normalised secant shear modulus, 

Gsec / Gmax, and damping ratio, , evolutions with single amplitude axial strain, a,sa, are 

presented in Figure 3.20. The following aspects are particularly noteworthy: 

- the q –a loops registered during the three initial loading cycles are not fully closed 

(Figure 3.19); the opening is particularly evident for the first loading cycle and, 

according to Matasović and Vucetic (1993), may explain the tendency to obtain a 

greater value for  during the first loading cycle than during the subsequent ones 

(Figure 3.20b); these authors suggested to disregard the value of  obtained for the 

first loading cycle – a strategy also adopted in the study presented in the following 

section; note that, even under drained conditions, the number of loading cycles has 

been observed to have an important impact on  (e.g. Kokusho, 1980; Vucetic and 

Dobry, 1991; Darendeli, 2001), with N = 10 being often adopted to establish damping 

ratio curves; in terms of Gsec / Gmax, it is apparent that the value of this quantity 

increases from the first loading cycle to the subsequent two loading cycles; this seems 

consistent with the tendency of sand to exhibit a stiffening unloading-reloading 

response under effective stress paths below the phase transformation line 

(Papadimitriou and Bouckovalas, 2002); 

- as expected, the axial strain amplitude induced in the samples in this type of test are 

relatively large from the start of loading (at least, much larger than those imposed in 

small-strain measurements); as a result, relatively low values of Gsec / Gmax (in this 

case, below 30 %) and relatively large values of  (in this case, above 20 %) are 

obtained from the start of the test; 

- as observed in other experimental studies involving undrained cyclic shearing (e.g. 

Matasović and Vucetic, 1993; Wang and Kuwano, 1999; Elgamal et al., 2005),  tends 

to drop substantially during the later stages of loading (in this test, after reaching a 

value for a,sa of about 0.5 %); according to Matasović and Vucetic (1993), this 
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tendency arises from the so-called “S-shaping” of the stress-strain curve, which 

develops as a result of dilative response of sand, once the phase transformation line 

is crossed; as also pointed out by these authors, although the concepts of dissipated 

energy per unit volume per loading cycle, W (Equation 3.4), and of maximum elastic 

stored energy per loading cycle, We,max (Equation 3.5), remain valid under such 

circumstances, the concept of damping ratio, as defined by Equation 3.3, might not 

retain its validity, since it was derived under the assumption that the hysteresis stress-

strain loop is elliptical, as implied by viscous damping and detailed in Kramer (1996); 

due to this, in what follows, the values of  obtained after reaching the peak (which 

corresponds approximately to the moment at which S-shaping of the stress-strain loop 

starts to become evident) are disregarded. 

   

   

  

 

Figure 3.19 – Test ICUCT 0.832/80/42: stress –strain response measured in each loading cycle. 
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Figure 3.20 – Test ICUCT 0.832/80/42: evolution of the (a) normalised secant shear modulus and 
(b) damping ratio with single amplitude axial strain inferred from laboratory test results. 

3.5.3.4 Influence of the initial state on the evolution of the normalised secant shear stiffness 

and damping ratio with strain amplitude 

Figure 3.21 depicts the evolution of both Gsec / Gmax and  with a,sa computed from the results 

of tests ICUCT 0.821/25/13 and ICUCT 0.832/80/42. Note that, in these tests, samples 

prepared to similar void ratios were consolidated under different mean effective stresses, 

respectively of 25 and 80 kPa, while being sheared under similar cyclic stress ratios (CSRs), as 

indicated in the figure. 

  
Figure 3.21 – Impact of the mean effective stress at consolidation on the evolution of: 

(a) normalised secant shear modulus and (b) damping ratio with single amplitude axial strain. 

It can be seen that, for a given single amplitude axial strain, the higher the mean effective 

stress at consolidation, the larger the normalised secant shear modulus – a trend also 

observed in other experimental studies (e.g. Ishibashi and Zhang, 1993; Darendeli, 2001). 
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were obtained in test ICUCT 0.832/80/42 than in test ICUCT 0.821/25/13. Moreover, it is 

apparent that the peak value was mobilised at a larger axial strain amplitude in the former 

test. Note, however, that, during the early stages of loading, it seems that, for a given axial 

strain amplitude, larger values of damping ratio were mobilised in the test where the sample 

was consolidated under the smaller mean effective stress (i.e. in test ICUCT 0.821/25/13), 

with similar observations being reported in the literature (e.g. Ishibashi and Zhang, 1993; 

Darendeli, 2001). 

With the purpose of evaluating the impact of the void ratio on the evolution of both Gsec / Gmax 

and  with a,sa, Figure 3.22 compares the results obtained for tests ICUCT 0.832/80/42 and 

ICUCT 0.651/80/43, where a moderately loose sample and a dense sample, respectively, were 

consolidated under the same isotropic effective stress of 80 kPa and sheared under similar 

deviatoric stress oscillations (and, therefore, similar CSRs). It can be observed that similar 

reductions of normalised secant shear stiffness with strain amplitude were obtained for both 

tests, suggesting that the influence of the void ratio on this aspect of cyclic sand response is 

negligible, as reported in the literature (e.g. Darendeli, 2001). With respect to the evolution 

of  with a,sa, it can be observed that the magnitudes of  obtained during the early stages of 

test ICUCT 0.832/80/42 (particularly for the second and third loading cycles) are similar to 

those obtained for test ICUCT 0.651/80/43 (for values of a,sa of about 0.1 %). At larger strains, 

larger peak values are mobilised in the later stages of the former test, conducted on the looser 

sample. Note, however, that this might arise from the inappropriateness of using viscous 

damping concepts to describe the cyclic response of sand under such large strains (as 

discussed before). In fact, the void ratio has been generally reported to have a very limited 

impact on the damping ratio of sand (e.g. Darendeli, 2001). Therefore, the results presented 

herein need to be considered carefully and further testing would be advisable. 

  
Figure 3.22 – Impact of the void ratio on the evolution of: (a) normalised secant shear modulus 

and (b) damping ratio with single amplitude axial strain. 
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In conclusion, among the aspects analysed, it seems that the evolution of both Gsec / Gmax and 

 with a,sa is considerably affected by the mean effective stress at consolidation. The 

influence of the void ratio on these aspects of the cyclic response of sand seems to be 

negligible.  

3.5.3.5 Comparison with curves proposed in the literature for sand 

Figure 3.23 compares the Gsec / Gmax and  data points inferred from the results of tests 

ICUCT 0.771/80/32, ICUCT 0.832/80/42 and ICUCT 0.651/80/43 with reference curves 

proposed in the literature for sand (Seed and Idriss, 1970b; Ishibashi and Zhang, 1993; 

Darendeli, 2001). Note that, in this case, the evolutions of both Gsec / Gmax and  are presented 

as a function of single amplitude shear strain, , rather than single amplitude axial strain, a,sa, 

as in the previous section. Note also that, for completeness, the lower, mean and upper 

bounds proposed by Seed and Idriss (1970b) are shown in the figure. 

  
Figure 3.23 – Evolution of: (a) normalised secant shear modulus and (b) damping ratio with single 

amplitude shear strain inferred from UCT tests performed on samples consolidated to p’ = 80 kPa. 
Comparison with curves proposed in the literature. 
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to vary in each cycle, as defined by Equation 3.9, Gsec / Gmax –  data points obtained from the 

present laboratory testing plot very close to the curves proposed in the literature. In terms of 

 –  data points, the agreement is less satisfactory, particularly at large shear strains (close 

to 1 %), likely due to the “S-shaping” of the stress-strain curve, as explained before. Other 

aspects, such as the large plasticity induced in this type of tests from the start of loading and 

the fact that the strain rate was not kept constant during the test (as described in 

Section 3.3.2), might have also contributed to the less satisfactory agreement. Moreover, it is 

important to highlight that the curves proposed in the literature have been, in general, 

established based on wave measurements and data from strain -controlled element 
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laboratory tests (cyclic triaxial, cyclic simple shear and cyclic torsional shear tests) under 

drained conditions. 

3.5.4 Excess pore water pressure build-up with cyclic loading 

3.5.4.1 General aspects 

When studying liquefaction-related phenomena, one of the fundamental aspects requiring 

proper characterisation is the generation of excess pore water pressure with cyclic loading, 

which affects the effective stresses and, consequently, the stiffness and resistance of sand. 

For convenience, it is usual to normalise the excess pore water pressure, u, by the vertical 

effective stress before the start of cyclic loading, ′v,0, which is commonly defined as the 

excess pore water pressure ratio, ru = u ′v,0⁄ , (Ishihara, 1996). 

One of the first attempts to characterise the evolution of ru with cyclic loading was performed 

by Seed et al. (1975b). Based on results of cyclic triaxial tests reported by Lee and Albaisa 

(1974), as well as results of simple shear tests reported by De Alba et al. (1975), Seed et al. 

(1975b) observed that the rate of excess pore water pressure build-up generally falls within a 

narrow band when plotted as a function of normalised number of loading cycles (i.e. ratio of 

the number of loading cycles to that required to the onset of cyclic mobility, N / Nliq), as 

illustrated in Figure 3.24. 

 
Figure 3.24 – Bounds of excess pore water pressure ratio build-up as a function of the normalised 
number of loading cycles obtained from cyclic triaxial tests (Lee and Albaisa, 1974) and from cyclic 

simple shear tests (De Alba et al., 1975). 

To describe the observed experimental trends, Seed et al. (1975b) proposed Equation 3.12. 
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where  is a parameter, for which a value of 0.70 was found to provide an average value of 

the upper and lower bounds of the element laboratory test results by the authors. 

This expression was later altered by Booker et al. (1976), as given by Equation 3.13. 

ru =
2


 asin (

N

Nliq
)

1 2⁄

 (3.13) 

As pointed out by Polito et al. (2008) and Taborda (2011), although the presence of Nliq in 

Equations 3.12 and 3.13 enable to include the effect of important factors on the evolution of 

ru, such as the effect of the void ratio, initial effective stress state and magnitude of cyclic 

loading (as discussed before), it may result in some ambiguities. For instance, it has been 

observed that, for sands with plastic fines, the excess pore water pressure may stop increasing 

when values of ru close to 0.9 are reached, even if very large deformations are measured 

(Ishihara, 1996). Similarly, for dense and very dense sands, large values of ru (close to 1.0), as 

well as of a,da, may not be observed (or require a very large number of loading cycles), 

particularly when samples are consolidated under small confining stresses. This suggests that 

it may be difficult to use a single criterion to define Nliq for different materials, and, therefore, 

to establish equations which may represent accurately the evolution of ru with N for different 

materials. In addition, it should be noted that, since data used to derive Equations 3.12 and 

3.13 were obtained from laboratory tests using uniform loading conditions and it has been 

shown that the response of sand is highly dependent on the stress path, the range of 

application of these equations for non-uniform loading histories may be severely restricted. 

This topic is discussed in Azeiteiro et al. (2017b). 

To overcome these difficulties, several studies have attempted to characterise the evolution 

of excess pore water pressure as a function of the accumulation of energy dissipated per unit 

volume of soil, denoted as W. In effect, since both shear stress and strain are employed in 

the estimation of the energy dissipated per unit volume of soil (Equation 3.6), this quantity 

seems to be independent of the stress path imposed to the soil, as experimentally observed 

in element laboratory tests (Towhata and Ishihara, 1985; Figueroa et al., 1994; Liang et al., 

1995; Baziar and Sharafi, 2011; Kokusho, 2013; Polito et al., 2013; Azeiteiro et al., 2017b), as 

well as centrifuge experiments (Dief and Figueroa, 2007). It seems, therefore, possible to 

predict the generation of excess pore water pressure without the need for converting the 

earthquake-induced irregular shear stress (or strain) time histories into an equivalent uniform 

loading. 

One of the first mathematical models proposed to describe the evolution of the excess pore 

water pressure ratio, ru, with the accumulation of dissipated energy per unit volume, W, was 

proposed by Nemat-Nasser and Shokooh (1979) – Equation 3.14 – in their comprehensive 

paper on the interrelation between both densification and liquefaction with the 
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rearrangement of grains in microscale and, therefore, dissipation of energy. Note that, in this 

equation, ,  and  are model parameters, while Kw is the bulk modulus of the water. 

ru = (
1− W (e0 − emax)

)


( − 1) Kw e0

)

1 (1−)⁄

− 1 (3.14) 

A much simpler power law-type equation was later proposed by Berrill and Davis (1985), 

when introducing an empirical energy-based approach to evaluate liquefaction potential: 

ru =  (
W

′0
)



 (3.15) 

where  and  are model parameters and ’0 is the isotropic effective stress at consolidation 

(note that nothing is mentioned by the authors about how to account for an anisotropic 

consolidation stress state). 

Note that similar equations relating ru to W ′0⁄  or W were proposed by many other 

authors (e.g. Yamazaki et al., 1985; Law et al., 1990; Figueroa et al., 1994; Liang et al., 1995; 

Davis and Berrill, 2001; Polito et al., 2008; Kokusho, 2013). However, in most cases, additional 

dependencies of the model parameters  and  on the relative density, effective stresses at 

consolidation and cyclic stress ratio were introduced to improve the replication of the 

laboratory results. 

At this point, it is perhaps important to note that the main purpose of the present study is 

presenting data obtained from the performed undrained cyclic triaxial tests and, based on the 

available data, assessing the dependency of the relationship between ru and N / Nliq, as well 

as ru and W ′0⁄  on void ratio, mean effective stress and applied stress ratio. The intention 

is neither to evaluate the most accurate expressions proposed in the literature nor to propose 

new expressions. With such objective, a larger amount of experimental data would likely be 

required. 

Moreover, it should be highlighted that, as proposed in several studies (e.g. Towhata and 

Ishihara, 1985; Law et al., 1990; Figueroa et al., 1994; Kokusho, 2013; Azeiteiro et al., 2017b), 

rather than ru, its residual component, ru,res = ures ′v,0⁄ , is considered in the present study. 

As mentioned before, this component corresponds to the excess pore water pressure when 

no deviatoric loading is applied (i.e. q = 0) and, therefore, reflect the permanent alterations 

to the effective stresses acting in the soil (Dobry et al., 1982; Law et al., 1990; Polito et al., 

2008). Conversely, the other component of ru (typically termed as “transitory”) reflects the 

changes in the mean total stress during dynamic loading (Polito et al., 2008) and, therefore, 

is considered less important. As illustrated in Figure 3.25, non-monotonic evolution of ru,res 

with N is obtained once the phase transformation (PT) line (Ishihara et al., 1975) is firstly 

crossed. In particular, it can be observed that, once it occurs, larger values of ru,res are 

consistently measured at the start of each loading cycle (i.e. when starting reloading in triaxial 
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compression) than at the middle of the middle of each loading cycle (i.e. when starting 

reloading in triaxial extension). To smooth the variation of ru,res values during this stage and, 

consequently, to ease the comparison between data obtained from different tests, it was 

decided to use average values of ru,res for each loading cycle – denoted henceforth as ru,res,av 

and represented in the figure by solid black squares. Note that this strategy has been used in 

other studies reported in the literature (e.g. Simcock et al., 1983) and does not seem to affect 

the trends exhibited by the experimental results. 

 
Figure 3.25 – Illustration of the computation of the average values of the residual excess pore 
water pressure ratio evolution with the number of loading cycles for test ICUCT 0.832/80/42. 

3.5.4.2 Residual excess pore water pressure ratio evolution as a function of the normalised 

number of loading cycles 

Figure 3.26a compares the evolution of ru,res,av with N / Nliq inferred from tests 

ICUCT 0.821/25/13, ICUCT 0.832/80/42 and ICUCT 0.793/135/67.5, where samples prepared 

to similar void ratios (e = 0.793 − 0.832) were consolidated to different isotropic confining 

stresses, respectively: '0 = 25, 80 and 135 kPa. Complementary, Figure 3.26b depicts 

ru,res,av – N / Nliq data obtained from tests ICUCT 0.832/80/42 and ICUCT 0.651/80/43, 

respectively performed on a moderately loose and on a dense sample, both of them 

consolidated to '0 = 80 kPa. Note that similar cyclic stress ratios (CSR = |q| (2 p'0)⁄ ≈

0.250 − 0.269) were used in all these tests (Table 3.1). Note also that, to provide a reference, 

Equation 3.12 proposed by Seed et al. (1975b) is plotted in the figure with  = 0.90 (which 

provides the best possible approximation of the available experimental data). It can be seen 

that the evolutions of ru,res,av with N / Nliq obtained from these tests do not differ much from 

each other, regardless of the mean effective stress at consolidation and void ratio of the 

samples. Furthermore, Equation 3.12 proposed by Seed et al. (1975b) seems to describe 

reasonably well the experimental data (particularly during the early stages of loading). This 

suggests that the normalisation of N by Nliq produces the desired objective of obtaining an 
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equation independent of both isotropic effective stress and void ratio at consolidation, as also 

observed by Polito et al. (2008) and Taborda (2011). 

 

 

Figure 3.26 –Influence of (a) the isotropic effective stress at consolidation and of (b) the void ratio 
on the evolution of the average residual excess pore water pressure ratio with the normalised 

number of loading cycles inferred from ICUCT test results. 

In addition, Figure 3.27a compares ru,res,av – N / Nliq data inferred from three UCT tests 

performed on moderately loose samples (e = 0.771 − 0.832), which were isotropically 

consolidated to '0 = 80 kPa and, subsequently, sheared under different cyclic stress ratios: 

CSR ≈ 0.200 for test ICUCT 0.771/80/32, CSR ≈ 0.225 for test ICUCT 0.803/80/36 and CSR ≈

0.263 for test ICUCT 0.832/80/42. Complementary, Figure 3.27b depicts the results inferred 

from three other UCT tests conducted on dense samples (e = 0.651 − 0.652), also 

consolidated to '0 = 80 kPa and sheared under different cyclic stress ratios. Note that, in 

this second series of tests, larger cyclic stress ratios were imposed, namely: CSR ≈ 0.269 for 

test ICUCT 0.651/80/43, CSR ≈ 0.450 for test ICUCT 0.652/80/72 and CSR ≈ 0.550 for test 

ICUCT 0.652/80/88. By observing both figures, it is apparent that very different ru,res,av – 

N / Nliq curves were obtained for all tests, suggesting that the evolution of ru,res,av with N / Nliq 

is strongly dependent on the CSR imposed in each test. In general, it seems that the higher 

the cyclic stress ratio, the larger the rate of ru,res,av increase with N / Nliq during the early stages 

of loading, while the opposite trend appears to be observed when cyclic mobility approaches 

(i.e. when N / Nliq approaches 1.0). This aspect can be more clearly observed in Figure 3.27b 

than in Figure 3.27a, possibly due to the greater differences in terms of cyclic stress ratios 

applied to the dense samples (within the range of 0.269 to 0.550, as mentioned before). 

Indeed, it seems evident that it is not possible to describe accurately the evolution of ru,res,av 
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with N / Nliq inferred from all tests using Equation 3.12 Seed et al. (1975b) with a single value 

for . This aspect is illustrated in both figures by plotting Equation 3.12 with  = 0.90. 

  
Figure 3.27 – Influence of the applied cyclic stress ratio on the evolution of the average residual 

excess pore water pressure ratio with the normalised number of loading inferred from ICUCT test 

results performed on a) moderately loose and b) dense samples consolidated to ’0 = 80 kPa. 

Similar conclusions are obtained when analysing ru,res,av – N / Nliq data obtained from UCT tests 

conducted on samples prepared to similar void ratios (e = 0.777 − 0.830) and isotropically 

consolidated to 25 kPa and 135 kPa, respectively shown in Figure 3.28a and b. This is 

particular evident when comparing results obtained for tests having larger differences in 

terms of applied cyclic stress ratios (i.e. results of test ICUCT 0.821/25/13 with those of test 

ICUCT 0.777/25/18 and results of test ICUCT 0.805/135/40 with those of test 

ICUCT 0.793/135/67.5). Once again, it is apparent that Equation 3.12 (Seed et al., 1975b) 

when used with a single value for  is not able to describe accurately the available 

experimental data. 
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Figure 3.28 – Influence of the applied cyclic stress ratio on the evolution of the average residual 
excess pore water pressure ratio with the normalised number of loading cycles inferred from 

ICUCT tests performed on moderately loose samples consolidated to: a) ’0 = 25 kPa and 

b) ’0 = 135 kPa. 

3.5.4.3 Residual excess pore water pressure ratio evolution as a function of the energy 

dissipated per unit volume 

Having applied the methodology described in Section 3.5.3.2, the accumulation of dissipated 

energy per unit volume, W, during cyclic loading was estimated from the stress-strain 

histories measured in the laboratory. The obtained values were, subsequently, normalised by 

the isotropic effective stress at consolidation, ’0, and plotted against ru,res,av. Starting by 

analysing the effect of the isotropic stress at consolidation and void ratio of the samples on 

the relationship of ru,res,av – W ′0⁄ , Figure 3.29 shows that this relationship seems to be 

practically independent of the initial state of the soil. Therefore, a single curve, in this case 

computed from Equation 3.15 (Berrill and Davis, 1985), appears to describe reasonably well 

the available experimental data. Similar findings were reported by Kokusho (2013) when 

examining results of stress-reversal-controlled undrained cyclic triaxial tests conducted on 

moist-tamped Futtsu beach sand samples prepared to three different initial relative densities 

(30, 50 and 70%). 
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Figure 3.29 – Influence of (a) the isotropic effective stress at consolidation and of (b) the void ratio 
on the evolution of the average residual excess pore water pressure ratio with the normalised 

accumulation of dissipated energy per unit volume inferred from ICUCT test results. 

Conversely, as shown in Figure 3.30 and , it seems that the CSR applied in each test has a 

considerable influence on the obtained evolution of ru,res,av with W ′0⁄ . In particular, it 

seems that the larger the stress ratio, the smaller the rate of ru,res generation with W ′0⁄ . 

Consequently, the experimental data cannot be accurately described by a single curve, as also 

illustrated in the figure. Similar observations are obtained when inspecting the results of tests 

where samples were isotropically consolidated to 25 kPa and 135 kPa (not shown here for 

brevity). As suggested in the literature (e.g. Figueroa et al., 1994), a better description of the 

results would likely be obtained by making one of the model parameters dependent on CSR. 
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Figure 3.30 – Influence of the applied cyclic stress ratio on the evolution of the average residual 

excess pore water pressure ratio with the normalised accumulation of dissipated energy per unit 
volume inferred from ICUCT test results performed on a) moderately loose and b) dense samples 

consolidated to ’0 = 80 kPa. 

 
 

Figure 3.31 – Influence of the applied cyclic stress ratio on the evolution of the average residual 
excess pore water pressure ratio with the normalised accumulation of dissipated energy per unit 
volume inferred from ICUCT test results performed on moderately loose samples consolidated to: 

a) ’0 = 25 kPa and b) ’0 = 135 kPa. 
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3.6 Drained cyclic response 

Three drained cyclic triaxial (DCT) tests were performed on moderately loose samples of 

Hostun sand (e = 0.773 − 0.820), with the main objective of obtaining experimental data 

relevant to the characterisation of the ability of the constitutive model to replicate the 

volumetric strain response of Hostun sand under drained cyclic loading. In two of these tests, 

the loading reversals were controlled by maximum and minimum values of the deviatoric 

stress, namely a deviatoric stress oscillation of q = ±81 kPa was specified for test 

ICDCT 0.820/135/81 test, while q = ±30 kPa was used for test K0CDCT 0.811/80/30 (which 

implied that, in this test, q was varied in between 60 and 90 kPa). Both tests were stopped 

when 10 loading cycles were completed. Conversely, in the third test, identified as test 

ICDCT 0.773/80/1, an axial strain oscillation of a = ±1.0 % was imposed, with 100 loading 

cycles being applied. 

The results of tests K0CDCT 0.811/80/30 and ICDCT 0.820/135/81 tests are shown in Figure 

3.32. Note that, in the former test, the sample was anisotropically consolidated to an axial 

effective stress of 'a,0 = 120 kPa and a radial effective stress of 'r,0 = 60 kPa, which 

correspond to a mean effective stress of p'0 = 80 kPa and a deviatoric stress of q0 = 60 kPa. 

Conversely, in the latter test, the sample was consolidated under an isotropic confining stress 

state characterised by p'0 = 135 kPa. It can be seen that, in both tests, a much larger axial 

and contractive volumetric strain accumulation was measured during the first loading cycle 

than during the remaining ones. Moreover, in the case of test ICDCT 0.820/135/81, where 

two-way symmetric deviatoric loading conditions were applied, the accumulation of both 

axial and volumetric strains during the first loading cycle in triaxial extension are significantly 

greater than those measured in triaxial compression. These aspects seem to agree well with 

the experimental observations under undrained conditions, where larger excess pore water 

pressures and, consequently, larger mean effective stress reductions were typically measured 

during the first loading cycle, especially in triaxial extension, than during the subsequent 

loading cycles. 

Furthermore, it is apparent that contractive volumetric strain accumulation with a 

progressive smaller rate was measured in test ICDCT 0.820/135/81 until the end of the 5th 

loading cycle. During the subsequent loading cycles, the volumetric strain practically stabilises 

or reduces slightly. This aspect is particularly evident in Figure 3.32d, which depicts the 

evolution of the residual volumetric strain (i.e. the volumetric strain corresponding to a null 

deviatoric stress) with the number of loading cycles. Similar experimental observations were 

reported by López-Querol and Coop (2012) when testing air-pluviated Dogs Bay sand. With 

respect to the axial strains, after reaching a double amplitude axial strain of about a,da ≈

0.36% during the first loading cycle, the axial strain accumulation seems to be slightly reduced 

during the subsequent loading cycles (Figure 3.32b). 
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Figure 3.32 – Tests K0CDCT 0.811/80/30 and ICDCT 0.820/135/81: (a) stress-strain response; 

(b) axial strain evolution with the number of loading cycles; (c) volumetric strain evolution with 
the axial strain; and (d) volumetric strain evolution with the number of loading cycles. 

Regarding test K0CDCT 0.811/80/30, due to the application of a large initial deviatoric stress 

and one-way cyclic loading in triaxial compression, the response seems to be characterised 

by different patterns from that observed in test ICDCT 0.820/135/81. In particular, it can be 

observed that, as expected, the response is much softer during the first quarter of the first 

loading cycle (i.e. during primary loading in triaxial compression), than during the remaining 

part of the test, simply characterised by a set of unloading and reloading cycles. Consequently, 

a larger accumulation of axial strains occurs during the first loading cycle than during the 

remaining loading cycles. 

In addition, Figure 3.33 presents the results obtained for test ICDCT 0.773/80/1, where an 

axial strain oscillation of ±1.0 % was imposed during 100 loading cycles. It is interesting to 
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observe that the response in triaxial extension is much softer than that in triaxial 

compression. More specifically, it can be seen that, while the maximum deviatoric stress 

measured in triaxial compression reaches 184 kPa during the first loading, gradually 

increasing up to 313 kPa during the subsequent loading cycles, the deviatoric stress in triaxial 

extension never reaches a value smaller than -58 kPa. This strong anisotropic soil response 

has also been observed under undrained conditions, being particularly evident in tests 

ICUCT 0.804/80/48, ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5, where cyclic mobility was 

triggered in few loading cycles after a very strong reduction of effective mean stress in triaxial 

extension (Figure 3.5 and Figure 3.6). 

  

  
Figure 3.33 – Test ICDCT 0.773/80/1: (a) stress-strain response; (b) deviatoric stress evolution with 

the number of loading cycles; (c) volumetric strain evolution with the axial strain; and (d) 
volumetric strain evolution with the number of loading cycles. 
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two different aspects of the volumetric strain response can be observed: (1) the sample 

exhibits a monotonic increase in the residual volumetric strain and (2) a double frequency 

phenomenon (similar to that observed for the excess pore water pressure when samples 

approach cyclic mobility) is observed for volumetric strain (which is particularly evident in the 

detail of Figure 3.33d). In relation to the former aspect, a plausible explanation resides on the 

fact that the shear reversals were governed by reaching 1 % of axial strain, rather than by a 

given value of deviatoric stress, implying a gradual increase in deviatoric stress oscillation 

(and, therefore, in mean effective stress oscillation) with loading. With respect to the double 

frequency phenomenon of the volumetric strains, it is likely to occur as a result of the crossing 

of the phase transformation line, which defines the change from plastic contraction to plastic 

dilation. Figure 3.34 seems to confirm this aspect, with test ICDCT 0.773/80/1 test being the 

only one where the phase transformation state line appears to be crossed. Note that, 

although both the phase transformation state (PTS) and the peak stress ratio state (PSRS) 

lines depicted in Figure 3.34 were characterised based on monotonic test data 

(Sections 2.6.5.2 and 2.6.5.3), they should retain their validity for cyclic loading. 

 
Figure 3.34 – Drained cyclic triaxial tests: stress ratio as a function of the state parameter. 
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relevance to the characterisation of main features of sand observed in liquefaction-related 

phenomena, such as the generation of excess pore water pressure with cyclic loading, the 

consequent reduction in stiffness and increase in hysteretic damping, the occurrence of phase 

transformation and the onset of cyclic mobility. Complementary, a set of three drained cyclic 

triaxial tests was used to inspect some aspects of the volumetric strain response of Hostun 

sand under drained cyclic loading and to provide additional valuable data for model 

calibration. 

The results of undrained cyclic triaxial (UCT) tests confirmed that air-pluviated Hostun sand 

(having the physical characteristics identified in the present laboratory testing programme) is 

effectively susceptible to cyclic mobility. Specifically, it was observed that, irrespective of the 

relative density, initial effective stress state and applied cyclic stress ratio, all samples 

exhibited a more or less pronounced tendency to generate excess pore water pressure when 

subjected to undrained cyclic shearing, resulting in a progressive reduction of the mean 

effective stress in each cycle, as well as significant softening of their stress-strain response. 

Eventually, effective stresses close to zero were reached in all tests, leading to a degraded 

stress-strain response, with large strain accumulation being measured. Moreover, as 

suggested in previous investigations on the undrained cyclic response of sand (Ishihara et al., 

1975; Nemat-Nasser and Tobita, 1982; Papadimitriou et al., 2001), the experimental results 

suggest that the response of sand is significantly affected by the first crossing of the phase 

transformation (PT) line and subsequent loading reversal. Once it occurs, a more compliant 

response of Hostun sand (i.e. a greater reduction in mean effective stress than that measured 

in the previous loading cycles) is typically observed. 

In addition, due to the relatively large number of laboratory tests performed, it was possible 

to examine independently the effect of the initial void ratio, isotropic confining stress and 

cyclic stress ratio (CSR) on the undrained cyclic response of Hostun sand. As expected, it was 

concluded that the looser the sample, the higher the effective stress at consolidation and the 

higher the CSR applied, the greater the tendency to generate large excess pore water 

pressures in each loading cycle and, therefore, the lesser the number of loading cycles 

required to the onset of cyclic mobility. The accumulation of axial strains seems to be 

particularly affected by the void ratio of the samples, with a higher rate of accumulation of 

double amplitude axial strains being observed for looser samples. 

Subsequently, important aspects of the undrained cyclic response of sand were characterised, 

including the evolution of excess pore water pressure with cyclic loading, the reduction in 

secant shear stiffness and concurrent increase in damping ratio with strain amplitude, as well 

as the undrained cyclic resistance. Particular emphasis was given to the characterisation of 

the impact of the initial void ratio, isotropic confining stress and cyclic stress ratio on these 

aspects of the cyclic response. Starting with the undrained cyclic resistance, the impact of 

using different criteria to define the onset of cyclic mobility proposed in the literature was 



LABORATORY CHARACTERISATION OF THE CYCLIC RESPONSE OF HOSTUN SAND 

198 
 

firstly assessed. Based on the available experimental data, it was shown that similar 

undrained cyclic resistance curves – i.e. cyclic resistance ratio, CRR, – number of loading cycles 

to the onset of cyclic mobility, Nliq, curves – were obtained for moderately loose samples (e =

0.771 − 0.832) of Hostun sand when considering a double amplitude axial strain of 5 % or a 

residual excess pore water pressure ratio of 0.95. However, given the slow rate of axial strain 

accumulation observed in tests performed on dense samples (e = 0.651 − 0.652) of Hostun 

sand, the former criterion was not suitable for defining the onset of liquefaction in those tests. 

Therefore, it was decided to adopt the observation of a residual excess pore water pressure 

ratio of 0.95 as a cyclic mobility criterion. Having established that, the undrained cyclic 

resistance of Hostun sand was characterised. More specifically, undrained cyclic resistance 

curves were proposed for moderately loose Hostun sand samples consolidated under 

isotropic effective stresses of 25, 80 and 135 kPa, as well as for dense samples consolidated 

under isotropic effective stress of 80 kPa. As widely reported in the literature (Seed and Idriss, 

1970a; Tatsuoka et al., 1986c; Ishihara, 1996; Jefferies and Been, 2006; Idriss and Boulanger, 

2006), the undrained cyclic resistance curve of dense Hostun sand plots above and is 

characterised by a steeper (average) slope than that of moderately loose Hostun sand. 

Moreover, the smaller the isotropic effective stress at consolidation, the greater the 

undrained cyclic resistance, meaning that the curve corresponding to moderately loose 

Hostun sand consolidated under an isotropic effective stress of 25 kPa, plots above the curve 

corresponding to 80 kPa and even more above than that corresponding to 135 kPa. Further 

insight into the undrained cyclic resistance of Hostun sand was provided by comparing the 

curves obtained in the present laboratory testing programme with those proposed in the 

literature for Ottawa sand (Shen et al., 1978) and Toyoura sand (Toki et al., 1986). It was 

shown that undrained cyclic resistance of Hostun sand appears to be greater than those 

exhibited by both Ottawa and Toyoura sands. 

Subsequently, the evolution of the secant shear stiffness, normalised by the maximum (i.e. at 

very small strains) shear modulus, as well as of damping ratio with axial strain amplitude were 

examined. After describing the methodology used to compute these quantities for each 

stress-strain loop, the curves obtained from each test were compared. Starting with the 

normalised secant shear stiffness, it was observed that the void ratio has a minor influence 

on this aspect of cyclic response of Hostun sand. Conversely, the experimental data suggests 

that the mean effective stress at consolidation has an important effect on the stiffness 

degradation with strain. In particular, it was observed that the larger the effective mean stress 

at consolidation, the larger the secant shear modulus, for a given strain level. These findings 

seem to agree well with those obtained in previous studies on this topic (Seed and Idriss, 

1970b; Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993; Darendeli, 2001). With respect 

to the evolution of damping ratio with strain, the obtained results suggest that the 

relationship between these quantities is mainly affected by the mean effective stress under 
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which samples were consolidated, with larger values being mobilised for samples 

consolidated under smaller mean effective stresses. 

The final aspect of the undrained cyclic response of Hostun sand studied was the evolution of 

the average residual excess pore water pressure ratio, ru,res,av, with the normalised number of 

loading cycles, N / Nliq, as well as with the normalised energy dissipated per unit, W ′0⁄ . In 

relation to the ru,res,av – N / Nliq relationship, it seems to be practically independent of the void 

ratio of the samples and isotropic effective stress at consolidation. However, a strong 

dependency on the CSR seems to exist. In particular, it was observed that, the larger CSR 

applied to the sample, the higher the rate of generation of ru,res,av during the early stages of 

loading, while the opposite trend appears to be observed as cyclic mobility approaches (i.e. 

as N / Nliq approaches 1.0). Similarly, the relationship between ru,res,av and W ′0⁄  seems to 

be practically independent of the void ratio and isotropic confining stress, though dependent 

on the CSR applied. 

Lastly, the results of three drained cyclic triaxial tests on moderately loose samples of Hostun 

sand (e = 0.773 − 0.820) were used to investigate the volumetric strain response of Hostun 

sand under cyclic loading. As expected, samples exhibit a tendency to contract (i.e. to develop 

contractive volumetric strains) when subjected to cyclic loading. Moreover, it was observed 

that the volumetric strains measured during the first loading cycle were consistently larger 

than those registered during the subsequent loading cycles. In effect, a similar tendency was 

observed under undrained conditions, with samples tending to generate larger excess pore 

water pressures during the first loading cycle than during the subsequent ones. Interestingly, 

in one of the tests, the stress path seemed to cross temporarily the phase transformation line 

– as identified in the previous chapter – both in triaxial compression and triaxial extension, 

resulting in a double frequency phenomenon of volumetric strains. This resembled the 

pattern of the excess pore water pressure evolution with undrained cyclic loading, where a 

double frequency phenomenon was also observed after the crossing of the phase 

transformation line. Finally, the results of the drained cyclic triaxial tests seemed to indicate 

that the response of Hostun sand is significantly softer in triaxial extension than in triaxial 

compression, as also observed in undrained cyclic triaxial tests. 
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Chapter 4 A BOUNDING SURFACE PLASTICITY MODEL FOR SAND 

4.1 Introduction 

To simulate adequately the highly non-linear monotonic and cyclic responses of sand, several 

advanced elasto-plastic constitutive models have been proposed in the literature, such as 

those based on nested yield surfaces (e.g. Prévost, 1977; Yang and Elgamal, 2007), generalised 

plasticity (e.g. Pastor et al., 1990; Ling and Yang, 2006), and bounding surface plasticity (e.g. 

Manzari and Dafalias, 1997; Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 

2004; Dafalias et al., 2004; Taiebat and Dafalias, 2008; Loukidis and Salgado, 2009; Taborda 

et al., 2014; Woo and Salgado, 2015). In particular, the latter ones have known the greatest 

development in recent years (Taborda, 2011). 

Bounding surface plasticity was first developed for metal plasticity (Dafalias and Popov, 1975; 

Krieg, 1975), being later introduced to soil mechanics by Mróz et al. (1979) and Dafalias 

(1986). While retaining the basic elements of classical plasticity (such as a conventional yield 

surface, a plastic potential function and hardening/softening rules), bounding surface 

plasticity models relate the plastic hardening modulus to the distance from the current stress 

point to its projection on the bounding surface (Dafalias, 1986). This allows for a better 

reproduction of the highly non-linear pre-failure response of soil (Loukidis and Salgado, 2009). 

A two-surface bounding surface plasticity model for sand using explicitly concepts from 

critical state soil mechanics (CSSM), as established by Schofield and Wroth (1968), was firstly 

proposed by Manzari and Dafalias (1997). This model employs a small kinematic yield surface 

to determine the onset of plasticity, as well as three other surfaces, termed dilatancy, 

bounding and critical, which model the occurrence of three distinctive states of the response 

of sand. More specifically, the dilatancy surface determines the change from plastic 

contraction to plastic dilation – i.e. the phase transformation state, as defined by Ishihara et 

al. (1975). The bounding surface is related to the occurrence of a maximum peak stress ratio. 

Finally, the critical surface determines the onset of failure – i.e. the point from which sand 

deforms under constant volume and stress, according to the principles of CSSM. Furthermore, 

the positions of the dilatancy and bounding surfaces are associated with the state parameter, 

 (Been and Jefferies, 1985), enabling the model to capture the effect of sand’s initial state 

(characterised by the mean effective stress and void ratio) on its shear response using a single 

set of model parameters (Manzari and Dafalias, 1997). 

Due to its flexibility and modular structure, the original model proposed by Manzari and 

Dafalias (1997) has been modified and extended over the last two decades (Papadimitriou 

and Bouckovalas, 2002; Dafalias and Manzari, 2004; Dafalias et al., 2004; Taiebat and Dafalias, 

2008; Loukidis and Salgado, 2009; Andrianopoulos et al., 2010a; Li and Dafalias, 2012; 
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Taborda et al., 2014; Woo and Salgado, 2015). Unfortunately, not all newly developed 

versions of the constitutive model have incorporated alterations and/or additional 

components included in earlier versions and, therefore, the constitutive model did not 

progress steadily towards a more complete constitutive relationship capable of simulating the 

response of sand under general loading conditions. Therefore, as pointed out by Taborda 

(2011), each version of the model may be a better option for a specific boundary value 

problem to be analysed. 

With the objective of simulating the cyclic response of sand over a wide range of strains, 

Taborda (2011) selected the model proposed by Papadimitriou and Bouckovalas (2002) as a 

starting point and extended that model. In particular, three alterations were introduced by 

Taborda (2011): 1) a modification in the shape of the critical state line (CSL) in the void ratio 

– mean effective stress space; 2) a more sophisticated formulation of the plastic hardening 

modulus with additional dependences on the void ratio and elastic stiffness; and 3) an 

additional low-stress yield surface, which limits the detrimental effects of the numerical 

integration of the constitutive model on the computation time when effective stresses are 

very low. As detailed in Taborda (2011) and Taborda et al. (2014), these alterations resulted 

in an inherently more versatile model than the original version of Papadimitriou and 

Bouckovalas (2002), with the prediction of liquefaction-related phenomena for a wide range 

of densities being improved. Due to its great modelling capabilities, flexibility and numerical 

stability, the version of the model proposed by Taborda (2011) and summarised by Taborda 

et al. (2014) was a natural choice for a starting point. Indeed, this version has been used to 

replicate not only laboratory tests, as the most of the remaining versions, but also to model 

centrifuge experiments, meaning that there is a large availability and diversity of numerical 

data which can be used to validate the implementation of the constitutive model into a Finite 

Element (FE) code. 

The formulation proposed by Taborda et al. (2014) is presented in Section 4.2. Particular 

attention is given firstly to the fundamental aspects related to the two-surface bounding 

surface plasticity framework (Section 4.2.1), with the constitutive equations being presented 

afterwards in multiaxial stress space (Section 4.2.2 to 4.2.6). In order to increase further the 

ability of the model to reproduce the response of sand under general loading conditions, a 

series of alterations to the original formulation are discussed in Section 4.3. 

4.2 Original formulation 

4.2.1 Fundamental concepts 

The constitutive model proposed by Taborda et al. (2014) is an extended version of the model 

proposed by Papadimitriou and Bouckovalas (2002), which followed an early version of 

Manzari and Dafalias (1997). These models use concepts of both bounding surface plasticity 

(Dafalias, 1986) and CSSM (Schofield and Wroth, 1968) frameworks to describe the 
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mechanical response of sand under general loading conditions. In accordance with CSSM, a 

unique CSL in the void ratio, e, – mean effective stress, p’, space is employed by these models. 

A linear expression in the e – ln p’ space (Equation 4.1) was initially proposed by Manzari and 

Dafalias (1997) and also adopted by Papadimitriou and Bouckovalas (2002). 

eCS = (eCS)ref −   ln (
p′

p′ref
) (4.1) 

where p’ref is a reference pressure (usually taken as the atmospheric pressure, i.e. p′ref ≈

101.3 kPa), (eCS)ref is the void ratio at critical state (CS) when p′ = p′ref and  is the slope of 

the CSL in the e – ln p’ space. 

However, based on experimental evidence demonstrating that such form does not reproduce 

satisfactorily the observed CSL for a wide range of stresses (e.g. Been et al., 1991; Verdugo 

and Ishihara, 1996), Taborda et al. (2014) adopted a power law (Equation 4.2), as originally 

proposed by Li and Wang (1998). According to Taborda et al. (2014), the power law form 

improves the prediction of the deformation level required for very dense sand to reach the 

critical state. 

eCS = (eCS)ref −  (
p′

p′ref
)



 (4.2) 

where (eCS)ref is now the void ratio at critical state when p′ = 0 and  is an additional model 

parameter defining the curvature of the CSL. 

 
Figure 4.1 – Definition of the state parameter, , as proposed by Been and Jefferies (1985). 

Moreover, these models use explicitly the uniqueness of a CSL through the use of the state 

parameter,  (Been and Jefferies, 1985), which is given by the distance between the current 

void ratio, e, and void ratio at critical state, ecs, corresponding to the current mean effective 

stress, p’ (Equation 4.3). 
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  = e − eCS = e − (eCS)ref +  (
p′

p′ref
)



 (4.3) 

As illustrated in Figure 4.1, the sign of the state parameter indicates whether the material is 

in a denser-than-critical state ( < 0) or in a looser-than-critical state ( > 0), with its 

magnitude providing a measure of how far the material’s state is from the critical state. 

Indeed, as discussed before (Section 2.6.5), the use of the state parameter concept seems to 

provide an efficient form of predicting distinctive states of the response of sand (e.g. phase 

transformation and peak stress ratio states) for a wide range of initial void ratios and effective 

stress states. Based on this experimental observation, this concept has been extensively used 

in constitutive modelling to efficiently address the simulation of the effect of the initial state 

of sand on its response under both monotonic and cyclic loading by using a single set of model 

parameters (e.g. Jefferies, 1993; Manzari and Dafalias, 1997; Gajo and Wood, 1999; Manzanal 

et al., 2011). 

The main principles behind the incorporation of the state parameter concept in the 

formulation of a bounding surface plasticity model (BSPM) were explained by Manzari and 

Dafalias (1997) by considering the typical response of an initially denser-than-critical sample 

(
0
< 0) when subjected to drained monotonic constant-p‘ triaxial compression test, as well 

as to an undrained monotonic triaxial compression test with increasing mean stress. As 

schematically illustrated in Figure 4.2, under drained constant-p‘ shearing, the sample tends 

to exhibit an initially contractive response, meaning that the void ratio will move downwards 

from point A0 (initial state) to point Ad (path represented by a grey line in Figure 4.2a). From 

this point, and as shearing progresses, a dilative response will be observed, with the void ratio 

moving upwards, from point Ad towards point Ac, located on the CSL, where e = eCS and, 

therefore,  = 0. According to the CSSM, from this point onwards the sample will deform 

under constant volume and effective stress. Analysing now the effective stress path in the 

deviatoric stress, q, – mean effective stress, p’, space (represented, once more, by a grey line 

in Figure 4.2b), it can be observed that the point moves initially upwards, passes point Ad, 

where  = q p′⁄ = Mc
d and the response changes from contractive to dilative, and reaches a 

peak position at point Ab, where  = Mc
b. With further shearing, the point eventually moves 

downwards to the critical state point Ac, where  = Mc
c. Conversely, under undrained 

shearing, since the volume of the sample remains constant throughout loading, the path in 

the e – ln p’ space is horizontal (represented by a black line in Figure 4.2a). In this case, due 

to the initial tendency of the initially denser-than-critical sample to contract under shearing, 

an initial reduction of p’ is observed, with the path in the e – ln p’ space moving to the left 

from point A0 (initial state) to point A’d. With further undrained shearing, the path in the e – 

ln p’ space will be reverted, eventually reaching the CSL at point A’c. Regarding the effective 

stress path in the q – p’ space (which is represented by a black curve in Figure 4.2b), a 

qualitatively similar response to that observed under drained conditions is obtained: after 
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reaching point A’d, where  = Mc
d and a minimum in the mean effective stress is observed, 

the stress path will tend to reach a peak position, characterised by  = Mc
b, eventually 

experiencing softening until critical state (characterised by  = Mc
c) is reached. 

  
Figure 4.2 – Idealised response of an initially denser-than-critical sample when subjected to a 

drained monotonic constant-p‘ triaxial compression test and to an undrained monotonic triaxial 
compression test: (a) in the e – ln p’ space and (b) in the q – p’ space. 

Qualitatively different responses are usually observed for an initially looser-than-critical 

sample (
0
> 0). Specifically, as illustrated in Figure 4.3, when subjected to a drained 

constant-p’ triaxial compression test, the sample tends to exhibit a contractive response 

throughout loading, in which case no reversal point is observed in the e – ln p’ path (Figure 

4.3a). Moreover, initially looser-than-critical samples usually do not experience softening, 

meaning that the deviatoric stress typically increases until CS conditions are reached, as 

illustrated in Figure 4.3b. Similarly, when subjected to an undrained triaxial compression test 

with increasing mean stress, a continuous reduction of mean effective stress is commonly 

observed until CS conditions are reached (black curve in Figure 4.3b). 

According to Manzari and Dafalias (1997), this typical response of an initially looser-than-

critical sample may, however, not be observed in every case. In particular, the authors 

suggested that, when the initial state of the sample is very close to the CSL (i.e. the value of 

 at the start of the test, although positive, is very small), the initial contraction may be large 

enough for the path in the e – ln p’ path to cross the CSL, either under drained or undrained 

shearing (Figure 4.4a). In such case, a dilative response is subsequently observed to bring the 

state back to the CSL. In the q – p’ plane (Figure 4.4b), the undrained response is characterised 

by a substantial reduction of the mean effective stress in the earlier stages of loading until a 

minimum value is reached (where  = Mc
d). A subsequent increase of the mean effective 

stress is observed until critical state conditions are reached (where  = Mc
c.). Under drained 
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constant-p’ shearing, the effective stress path is typically observed to increase until reaching 

the CS. 

  
Figure 4.3 – Idealised response of an initially much-looser-than-critical sample when subjected to a 

drained monotonic constant-p‘ triaxial compression test and to an undrained monotonic triaxial 
compression test: (a) in the e – ln p’ space and (b) in the q – p’ space. 

  
Figure 4.4 – Idealised response of an initially slightly-looser-than-critical sample when subjected to 
a drained monotonic constant-p‘ triaxial compression test and to an undrained monotonic triaxial 

compression test: (a) in the e – ln p’ space and (b) in the q – p’ space. 

To capture these typical responses of sand, three particular surfaces (whose projections on 

the q – p’ plane are straight lines) were proposed by Manzari and Dafalias (1997): the 

dilatancy surface (where the stress ratio is given by  = Mc
d), the bounding surface 

(characterised by  = Mc
b) and the critical surface (where  = Mc

c). While the superscripts are 

related to the name of the surfaces – “d” for dilatancy, “b” for bounding and “c” for critical – 

the subscript “c” refers to triaxial compression. Along the same lines, a subscript “e” is used 
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to characterise the stress ratio in triaxial extension. As it can be concluded from what was 

previously described, the dilatancy surface is associated with the phase transformation state 

– i.e. state at which the response of sand changes from plastic contraction to plastic dilation 

and, therefore, dilatancy is temporarily null. Regarding the bounding surface, it is related to 

the mobilisation of a maximum stress ratio (or, in other words, a maximum angle of shear 

resistance), marking a change from strain-hardening to strain-softening response. Finally, the 

critical surface is associated with the mobilisation of critical state conditions. Apart from the 

critical surface, which is basically characterised by a set of positive model parameters, Mc
c for 

triaxial compression and Me
c  for triaxial extension, or, in a compact notation, Mc,e

c , the 

positions of the dilatancy and bounding surfaces are not fixed in the stress space. In effect, 

these surfaces depend on the state parameter (as mathematically described below), which is 

continuously evolving during shearing. According to Manzari and Dafalias (1997), this 

dependency enables an adequate simulation of the main features of sand response using a 

single set of model parameters for a wide range of initial void ratios and stress states. 

Based on a proposition made by Wood et al. (1994) (see also Section 2.6.5.2), Manzari and 

Dafalias (1997) proposed a linear dependency of the position of the bounding surface, Mc,e
b , 

on the position of the critical state surface, characterised by Mc,e
c , through the state 

parameter, , as indicated by Equation 4.4. 

Mc,e
b = Mc,e

c + kc,e
b  ⟨−⟩ (4.4) 

where kc,e
b  is a set of positive model parameters (one value for compression, kc

b, and one value 

for extension, ke
b) and the Macaulay brackets  ⟨ ⟩ define the mathematical operation: ⟨A⟩ = A 

when A > 0, while ⟨A⟩ = 0 when A ≤ 0. The introduction of this operation is the main 

difference to the initial proposal of Wood et al. (1994). Essentially, it is used to prevent the 

occurrence of Mc,e
b < Mc,e

c  (i.e. to prevent the bounding surface to be located below the 

critical state surface) for looser-than-critical samples ( > 0), which, according to Manzari 

and Dafalias (1997), could potentially result in an unrealistic change in the stress-strain 

response from hardening to softening. Note, however, that the introduction of the Macaulay 

brackets is not consensual, since not all subsequent versions of the constitutive model use 

them to restrict the position of the bounding surface to one side of the critical state surface 

(e.g. Li and Dafalias, 2000; Dafalias and Manzari, 2004; Loukidis and Salgado, 2009). 

An interesting aspect of this formulation, which distinguishes this constitutive model from 

others based on the same framework (e.g. from that proposed by (Li, 2002)), is that the stress 

state can momentarily step outside the bounding surface (even though this surface is termed 

“bounding”), since no persistence condition is imposed. As this happens, a negative plastic 

hardening modulus – which is proportional to the distance between the current stress state 

and the bounding surface, as detailed later – will be obtained, triggering softening response 

and eventually moving the stress state back to the bounding surface. According to Manzari 
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and Dafalias (1997), this is an efficient form of simulating the softening response observed for 

denser-than-critical samples. 

Similarly, the position of the dilatancy surface, Mc,e
d , is also linearly dependent on the position 

of the critical surface, Mc,e
c , through the state parameter,  (Equation 4.5). This dependency 

ensures that the constitutive model conforms to the principles of the CSSM. In fact, since 

dilatancy is proportional to the distance between the current effective stress state and its 

projection on the dilatancy surface, as mathematically detailed later, it is crucial that the 

position of the dilatancy surface coincides with the position of the critical surface when critical 

state conditions are reached, as defined by Equation 4.5, where Mc,e
d = Mc,e

c  when  = 0 and, 

therefore, e = eCS. 

Mc,e
d = Mc,e

c + kc,e
d   (4.5) 

where kc,e
d  is a new set of positive model parameters. 

Contrary to the formulation proposed for the bounding surface, the equation governing the 

position of the dilatancy surface, as introduced by Manzari and Dafalias (1997), does not make 

use of the Macaulay brackets. Consequently, the dilatancy surface can occupy either a lower 

position than critical surface when the sample is denser than critical ( < 0) or a higher 

position when the sample is looser than critical ( > 0). 

Moreover, as also pointed out by Manzari and Dafalias (1997), it is interesting to note that 

the projection of the dilatancy surface on the q – p’ plane can be associated with the phase 

transformation line (PTL), as proposed by Ishihara et al. (1975). In fact, since dilatancy is 

proportional to the distance between the current effective stress state and its projection on 

the dilatancy surface, as already mentioned before, the dilatancy and, consequently, the 

incremental plastic volumetric strain is null when the current effective stress point is on that 

surface (i.e. v
p = 0). Under undrained conditions, since the total volumetric strain remains 

null throughout loading (i.e. v = 0), it follows that the incremental elastic volumetric strain 

is also null when the effective stress point is on the dilatancy surface (i.e. v = v
e + v

p =

0 ⇔ v
e = 0). Assuming that the volumetric and distortional responses can be analysed 

independently of each other, it follows that the mean effective stress increment (p′ = K v
e, 

where K is the bulk modulus) is also null for an effective stress point lying on the dilatancy 

surface. Moreover, due to the change in the modelled response from plastic contraction to 

plastic dilation as the dilatancy surface is crossed, the effective stress path is reversed with 

further loading, meaning that a point of minimum mean effective stress is therefore observed 

when the dilatancy surface is crossed in undrained shearing, as defined by the PTL (Ishihara 

et al., 1975). 

It is perhaps important to note that an exponential form has been used by other authors to 

describe the dependence of the dilatancy and bounding surfaces on critical surface through 

the state parameter (e.g. Li and Dafalias, 2000; Dafalias and Manzari, 2004; Li and Dafalias, 
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2004; Loukidis and Salgado, 2009). Based on the large amount of experimental data obtained 

in the present study, the potential benefits of using a more elaborated form for Equations 4.4 

and 4.5 are discussed in Chapter 6, where the calibration of the present constitutive model 

for Hostun sand is presented. 

According to the principles of classical plasticity, the model also employs a yield surface, which 

defines a small elastic region within the stress space (or, in other words, which separates 

purely elastic from elasto-plastic response). As shown in Figure 4.5, Manzari and Dafalias 

(1997) proposed an open wedge-type yield surface in the q – p’ space, with its apex at the 

origin (Equation 4.6). 

F = − ± m = q−  p′ ±m p′ = 0 (4.6) 

where  and m are both stress ratios, the former locating the slope of the bisector of the 

wedge and the latter controlling the opening of the wedge. The sign ± is used to characterise 

the top and bottom limits of the wedge, as illustrated in Figure 4.5, meaning that the total 

opening of the wedge is 2 m p’. 

 
Figure 4.5 – Overview of the surfaces employed by the model in the q – p’ space. 

It is perhaps noteworthy that, according to the classical plasticity terminology, the term 

“back-stress ratio” is used to designate , since it is basically a state parameter associated 

with the recent loading history (Manzari and Dafalias, 1997). This term is recurrently adopted 

in the present study. In addition, it should be noted that, although the initial version of the 

model proposed by Manzari and Dafalias (1997) assumed the existence of both kinematic and 

isotropic hardening of the yield surface, associated with  and m, respectively, it was 

acknowledged by the authors that a constant and small value for m (in the order of 0.01 Mc,e
c  

to 0.05 Mc,e
c ) can be used in most practical situations. Consequently, the isotropic hardening 

has been, in general, disregarded in the majority of the more recent versions of this 
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constitutive model, including in the version proposed by Papadimitriou and Bouckovalas 

(2002) and further elaborated by Taborda (2011) and Taborda et al. (2014). 

As recognised by Manzari and Dafalias (1997), due to the open shape of the yield surface, the 

model predicts only elastic response when a constant stress ratio loading is applied (e.g. when 

simulating a drained isotropic compression test). However, as added by the authors, under 

confining pressures within the range of practical interest for Geotechnical engineering (i.e. 

not causing crushing of particles), this type of loading usually results in relatively small strains. 

Therefore, the authors suggested that the additional complexity associated with the 

introduction of a cap to the yield surface, as proposed for example by Li (2002), or a more 

elaborated shape for the yield surface, as proposed for example by Taiebat and Dafalias 

(2008), does not compensate the little improvement that it would bring to the model. Along 

the same lines, the version of the model proposed by Papadimitriou and Bouckovalas (2002) 

and further extended by Taborda (2011) and Taborda et al. (2014) also uses the open wedge-

type yield surface described by Equation 4.6. 

It is perhaps important to note that, to reduce the complexity of the stress integration process 

(e.g. to avoid the need for a drift correction, whose concept is explained in detail in the next 

chapter), the constitutive model proposed by Andrianopoulos et al. (2010b) adopts a 

vanished elastic region, meaning that the yield surface is reduced to a line (rather than being 

a wedge) intercepting the origin of the q – p’ space. This simplification implies, however, that 

the constitutive model does not include a back-stress ratio, which, as highlighted before, has 

the important role of characterising the recent loading history. Moreover, the inexistence of 

a yield surface has the additional inconvenience of requiring the definition of a mapping rule 

of the current effective stress point on the model surfaces different from that originally 

proposed by Manzari and Dafalias (1997), which has been shown to be simple and numerically 

stable, as recognised by Andrianopoulos et al. (2010b). 

In the next sections, the constitutive model proposed by Taborda et al. (2014) will be detailed. 

Note that, although triaxial conditions were used here to present the fundamental concepts 

of the constitutive model, a multiaxial (3D) formulation is required to solve general boundary-

value problems and, therefore, the following section will describe the constitutive model in 

this form. In 3D stress-strain space, all components of the effective stress tensor, ’, need to 

be considered (Equation 4.7). Note that this tensor can be decomposed into its volumetric 

and deviatoric components, termed as mean effective stress, p’ (Equation 4.8), and deviatoric 

stress, s (Equation 4.9), respectively. 

′ = [

′xx xy xz

yx ′yy yz

zx zy ′zz

] =
1

3
tr′ I+ dev′ = p′ I + s (4.7) 

where: 



A BOUNDING SURFACE PLASTICITY MODEL FOR SAND 

211 
 

 p′ =
1

3
tr′ =

′xx + ′yy + ′zz

3
 (4.8) 

 s = dev′ = ′ −
1

3
tr′ = ′ − p′I = [

′xx − p′ xy xz

yx ′yy − p′ yz

zx zy ′zz − p′

] (4.9) 

where “tr” denotes the trace of a tensor (see definition below) and “dev” the deviatoric part 

of a tensor (characterised by a null trace). The second-order identity tensor, I, is given by: 

 I = [
1 0 0
0 1 0
0 0 1

] (4.10) 

Furthermore, as shown in Figure 4.5 and indicated by Equation 4.4 to 4.6, the present model 

is formulated in terms of stress-ratio-related quantities. In the multiaxial formulation, the 

stress ratio tensor, r (Equation 4.11), replaces the triaxial quantity , while the back-stress 

ratio tensor,  (Equation 4.12), replaces the scalar . 

 r =
s

p′
=

[
 
 
 
 
 
 
′xx − p′

p′

xy

p′

xz

p′

yx

p′

′yy − p′

p′

yz

p′

zx

p′

zy

p′

′zz − p′

p′ ]
 
 
 
 
 
 

 (4.11) 

  = [

xx xy xz

yx yy yz

zx zy zz

] (4.12) 

In addition, due to its frequent use, it is important to introduce at this point the tensorial 

operation termed as the trace product between two second-order tensors, which is denoted 

by “:” and defined as: 

 a : b = tr(a b) =∑aij bij

i, j

 (4.13) 

Moreover, the Euclidian norm, ‖ ‖2, of a second-order tensor a is defined by Equation 4.14. 

 ‖a‖2 = √a : a = √tr(a a) (4.14) 

Note that, since all second-order tensors used in the constitutive model are symmetric (i.e. 

axy = ayx, axz = azx and ayz = azy for a second-order tensor a), only six components need to 

be defined and, therefore, it is usual to represent the tensors as arrays (i.e. a = {axx   ayy   

axy   azz   axz   ayz}
T
). 

4.2.2 Non-linear elastic response 

For the elastic part of the model, an isotropic hypoelastic formulation is adopted. The elastic 

strain increment, e, is decoupled into its volumetric, v
e, and deviatoric, ee, components 
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(Equation 4.15), which can be related to the mean effective stress increment, p’ (Equation 

4.16), and to the deviatoric stress increment, s (Equation 4.17), respectively. 

e = [

xx
e 

xy
e 

xz
e


yx
e yy

e 
yz
e


zx
e 

zy
e zz

e

] =
1

3
tre I+ dev e =

1

3
v

e I+ ee (4.15) 

where: 

v
e = tre = xx

e + yy
e + zz

e =
p′

Ktan
 (4.16) 

ee =

[
 
 
 
 
 xx

e −
1

3
v

e 
xy
e 

xz
e


yx
e yy

e −
1

3
v

e 
yz
e


zx
e 

zy
e zz

e −
1

3
v

e

]
 
 
 
 
 

=
s

2 Gtan
 (4.17) 

where Ktan and Gtan are the tangent bulk and tangent shear moduli, respectively. 

In the early version of Manzari and Dafalias (1997), a power law was employed to obtain 

variations of Ktan and Gtan with p’. However, all subsequent versions of the model have used 

different expressions for the calculation of the elastic moduli, in order to include the 

recognised influence of other properties in the small strain response of sand, such as the void 

ratio (e.g. Richart et al., 1970; Hardin, 1978). In particular, based on the well-established 

hysteretic model of Ramberg and Osgood (1943), Papadimitriou and Bouckovalas (2002) 

introduced a non-linear hysteretic response, where Gtan is obtained by applying a reduction, 

T, to the maximum shear modulus, Gmax, as indicated by Equation 4.18. 

Gtan =
Gmax

T
 (4.18) 

with Gmax being given by Equation 4.19 (Hardin, 1978): 

Gmax = Cg p'ref  
1

0.3+ 0.7 e2 √
p′

p′ref
 (4.19) 

where Cg is a model parameter and p’ref is the reference pressure, which was already 

introduced when defining the CSL (Equation 4.2). 

The scalar reduction factor, T (Equation 4.20), depends on the distance, 
ref
r  (Equation 4.21), 

in the deviatoric stress ratio plane between the current stress ratio, r, and that corresponding 

to the last shear reversal point, rSR. 

 T = 1+  (
1

a1
− 1) (


ref
r

N 
1

)

−1

≤ 1+  (
1

a1
− 1) (4.20) 

with: 
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ref
r = √

1

2
 ‖r − rSR‖2 = √

1

2
√(r− rSR):(r− rSR) (4.21) 

where a1 and 1 are positive scalars, whose physical meaning will be described later, and  is 

a model parameter having a value greater than 1, with  = 2 being employed by 

Papadimitriou and Bouckovalas (2002), as well as by Taborda (2011) and Taborda et al. (2014) 

in all numerical simulations. Additionally, N is a state parameter, which takes initially the value 

of 1.0 but changes to 2.0 when a shear reversal is firstly detected, as originally proposed by 

Masing (1926). 

According to Papadimitriou and Bouckovalas (2002), shear reversals (SR) occur whenever the 

distance, 
ref
e  (Equation 4.22), in deviatoric shear strain plane between the current deviatoric 

strain, e, and that corresponding to the last shear reversal point, eSR, is observed to decrease 

during a given solicitation – i.e. whenever 
ref

e0 > 
ref

e0+e
 is detected, where 

ref

e0  is the distance 

corresponding to the deviatoric strain before the solicitation, e0, and 
ref

e0+e
 is the distance 

corresponding to the deviatoric strain after the solicitation, e0 + e. As noted by 

Papadimitriou and Bouckovalas (2002), a shear reversal point can be different from a loading 

reversal point, which is often characterised by the trace product between the gradient of the 

yield surface, 𝜕F 𝜕′⁄ , and the effective stress increment that would occur if the response 

would be elastic, ′e, as detailed later. 


ref
e = √

1

2
 ‖e − eSR‖2 = √

1

2
√(e− eSR):(e− eSR) (4.22) 

By assuming  = 2, it is apparent that the upper limit of T (Equation 4.20) is reached when 

 
ref
r = N 

1
, remaining constant with further loading (i.e. with further increase of 

ref
r ). 

According to Papadimitriou and Bouckovalas (2002), this means that the positive scalar 1 can 

be essentially interpreted as a threshold stress ratio above which any further reduction of the 

overall shear stiffness of the material is predominantly related to plasticity. Therefore, the 

authors suggested evaluating 1 by Equation 4.23. 


1
= a1  (

Gmax
SR

p′SR ) 1
 (4.23) 

where p′SR and Gmax
SR  are, respectively, the mean effective stress and maximum shear modulus 

at last shear reversal (SR), a1 is a model parameter also used in Equation 4.20 and 1 is a model 

parameter, which can be physically associated with the cyclic threshold shear strain, tc, found 

by Vucetic (1994), above which irreversible strains become dominant, typically in the range 

of 6.5 × 10-5 to 2.5 × 10-4 for non-plastic sands and silts (Papadimitriou and Bouckovalas, 

2002). 
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To gain further insight into the role of the positive scalars a1 and 1, the non-linear elastic 

formulation proposed by Papadimitriou and Bouckovalas (2002) is applied to the numerical 

simulation of two drained cyclic constant-p’ triaxial tests on samples having identical initial 

void ratio, e0 = 0.80, and consolidated under the same mean effective stress of p’0 =

100.0 kPa (Figure 4.6). Note that, in these simulations, Gmax (Equation 4.18) remains constant 

troughout loading, since p’ is kept constant during this type of test and, providing that a small-

strain approach is considered, the void ratio, e, is also kept constant (i.e. e =

(1.0+ e0) v
e = (1.0+ e0) p′ Ktan⁄ = 0). Consequently, the variation of the tangent shear 

modulus, Gtan, during loading is solely a function of the evolution of the scalar reduction 

factor, T (Equation 4.20). In relation to the model parameters, values of 7000.0, 1.5 × 10-4 

and 2.0 are adopted for B, 1 and , respectively, with the only difference between the two 

simulations consisting of the value adopted for the model parameter a1: while a1 = 0.40 is 

used in one of the simulations, a1 = 0.80 is employed in the other simulation. Before 

presenting the obtained numerical results, it should be noted that, for triaxial conditions, the 

amplitude of the deviatoric stress is given by |q| = √3 2⁄ ‖s‖2 = √3 2⁄ √s : s = |′a − ′r|, 

where 'a and 'r are, respectively, the axial and radial effective stresses registered in the test. 

Similarly, the deviatoric strain amplitude is given by |q| = √2 3⁄ ‖e‖2 = √2 3⁄ √e : e =

2 3⁄ |a − r| = 2 3⁄ ||, where a and r are, respectively, the axial and radial strains 

registered in the test and  is the shear strain amplitude. 

  
Figure 4.6 – Numerical simulation of two drained cyclic constant-p’ triaxial tests using the small-

strain non-linear hysteretic model: (a) stress-strain response and (b) reduction of the tangent 
shear modulus with shear strain. 

Figure 4.6a depicts the stress-strain response of both samples, while Figure 4.6b presents the 

corresponding evolution of the tangent shear modulus reduction, Gtan Gmax⁄ = 1 T⁄ , with 

deviatoric strain. It can be observed that both samples are initially sheared until a deviatoric 

strain of q
(1) = 0.75 × 10-4 is obtained – point 1 in the figure. A shear reversal is applied at 
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that point, with both samples being subsequently sheared until a similar amplitude of 

deviatoric strain in triaxial extension, q
(2) = −0.75 × 10-4, is registered – point 2 in the figure. 

At this point, an additional shear reversal is applied, with the samples being eventually 

sheared beyond q,1 = 2 3⁄ 
1
= 1.0 × 10-4 in triaxial compression. Overall, it is apparent that 

the larger the value of the model parameter a1, the stiffer the stress-strain response 

registered in the test. In fact, Figure 4.6b shows that a1 controls the rate of the tangent shear 

modulus reduction up to the point at which the amplitude of the deviatoric strains reaches 

q,1 = 2 3⁄ 
1
. From that point, it can be observed that the tangent shear modulus ceases to 

degrade, with a constant tangent shear modulus equal to its minimum value (i.e. Gtan =

Gmax [1+  (1 a1⁄ − 1)]⁄ , according to Equations 4.18 and 4.20) being registered for further 

shearing. It can, therefore, be concluded that 1 defines a threshold strain amplitude, above 

which no further reduction of the tangent shear modulus occurs, as highlighted by 

Papadimitriou and Bouckovalas (2002). 

In Figure 4.6a, it is also interesting to note that deviatoric strains are not completely recovered 

when loading is removed (i.e. when q = 0), meaning that irreversible strains may be obtained 

when no plasticity occurs. As pointed out by Papadimitriou and Bouckovalas (2002) and 

Taborda (2011), this means that the constitutive model does not include a region of true 

elastic response, although the term elastic has been used for this component of the 

constitutive model and will be also adopted in the present study. As also mentioned by the 

aforementioned authors, when non-linear cyclic elasticity is used, as in the present 

constitutive model, the term paraelastic would be more appropriate, as originally suggested 

by Hueckel and Nova (1979). In addition, it is perhaps important to note that, contrary to what 

Figure 4.6a may suggest, due to the hypoelastic form of Gmax (Equation 4.19), the proposed 

formulation may also produce small irreversible strains in closed shear stress cycles. This 

aspect is not observed in Figure 4.6a, since Gmax is kept constant during the simulations, as 

explained before. 

Assuming a constant Poisson’s ratio, , the tangent bulk modulus, Ktan, is obtained from the 

theory of elasticity (Equation 4.24). 

Ktan =
2 (1+ )

3 (1− 2 )
Gtan (4.24) 

Finally, it is important to note that, although the present formulation was adopted by Taborda 

(2011) without any particular modification, the author mentioned that small values may be 

obtained for Gtan when the mean effective stress is very low  (e.g. when simulating 

liquefaction-related phenomena), which may potentially affect the stability of the numerical 

analysis. Indeed, due to the dependence of the plastic hardening modulus on Gtan, as detailed 

in Section 4.2.3.6, this aspect may be even more problematic. To alleviate this problem, 

Taborda (2011) suggested to lower limit Gmax by using an additional model parameter, 

defining a minimum value for the mean effective stress, p’min, as indicated by Equation 4.25. 
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Alternatively, it is possible to apply a lower limit directly the tangent shear modulus, Gtan, by 

using a model parameter with such purpose, Gmin, as shown by Equation 4.26. 

Gmax = Cg p'ref  
1

0.3+ 0.7 e2 √
p′

p′ref
≥ Cg p'ref  

1

0.3+ 0.7 e2 √
p′min

p′ref
 (4.25) 

Gtan =
Gmax

T
≥ Gmin (4.26) 

4.2.3 Plastic response 

4.2.3.1 Introduction 

According to the plasticity theory – refer, for example, to Potts and Zdravkovic (1999) for 

further details –, the plastic strain increment,  p, is given by the so-called flow rule (Equation 

4.27): 

 p = [

xx
p 

xy
p 

xz
p


yx
p yy

p 
yz
p


zx
p 

zy
p zz

p

] =  
𝜕P

𝜕′
 (4.27) 

where  is the plastic multiplier, which controls the magnitude of the increment of the plastic 

strains, and 𝜕P 𝜕′⁄  is the gradient of the plastic potential, which defines the direction of the 

plastic strain increment in the multiaxial strain space. 

Moreover, according to the general principles of plasticity, during plastic straining, the 

effective stress point must remain on the yield surface – i.e. the so-called “consistency 

condition” must be satisfied (Equation 4.28): 

F =
𝜕F

𝜕′
 : ′ +

𝜕F

𝜕k
 : k = 0 (4.28) 

where 𝜕F 𝜕′⁄  is the gradient of the yield surface to the effective stress state and 𝜕F 𝜕k⁄  is the 

gradient of the yield surface to the state parameters. Note that, to keep the presentation 

general, the state parameters controlling the size and/or position of the yield surface are, at 

this point, generally represented by k. Moreover, note that, in this thesis, the term “state 

parameter” is used to designate any internal variable responsible for the evolution of the yield 

surface (which is often referred to as “hardening parameter” in the literature), as well as any 

other internal variable controlling the evolution of the elastic moduli and plastic potential. 

Complementary, taking into account that the incremental effective stresses, ’, are related 

to the incremental elastic strains, e, by the elastic constitutive matrix, D, and assuming that 

the incremental total strains, , can be decomposed into its elastic and plastic components, 

it can be written (Equation 4.29): 

′ = [

′xx xy xz

yx ′yy yz

zx zy ′zz

] = D : e = D : (− p) = D : −   D : 
𝜕P

𝜕′
 (4.29) 
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By using Equation 4.28 in conjunction with Equation 4.29, it is possible to define explicitly the 

plastic multiplier, , as given by Equation 4.30. 

𝜕F

𝜕′
 : D : −  

𝜕F

𝜕′
 : D : 

𝜕P

𝜕′
+
𝜕F

𝜕k
 : k = 0 ⟺ 

 =

𝜕F
𝜕′

 : D : 

𝜕F
𝜕′

 : D : 
𝜕P
𝜕′

+ A
 

(4.30) 

where A is the plastic hardening modulus, which depends on the state parameters affecting 

the yield surface, k, and their particular evolution, k, during plastic loading (Equation 4.31). 

A = −
1


 
𝜕F

𝜕k
 : k (4.31) 

Moreover, as detailed later, the present model assumes strain hardening/softening plasticity, 

meaning that k is related to p. In such case, Equation 4.31 can be written as Equation 4.32 

(Potts and Zdravkovic, 1999). 

A = −
1


 
𝜕F

𝜕k
 : 
𝜕k

𝜕
p  : p (4.32) 

Moreover, similar to the majority of strain hardening/softening constitutive models, there is 

a linear relationship between k and p (i.e. 𝜕k 𝜕
p⁄ = Ck = constant), allowing for A to 

become independent of the unknown plastic multiplier, , and, therefore, determinant when 

Equation 4.27 is substituted in Equation 4.32, as shown by Equation 4.33 (Potts and 

Zdravkovic, 1999). 

A = − 
𝜕F

𝜕k
 : 
𝜕k

𝜕
p  : 

𝜕P

𝜕′
= −Ck  

𝜕F

𝜕k
 : 
𝜕P

𝜕′
 (4.33) 

Along the lines of two-surface plasticity framework introduced by Krieg (1975) and later 

adapted by Manzari and Dafalias (1997), the gradient of the plastic potential, 𝜕P 𝜕′⁄ , and the 

plastic hardening modulus, A, depend on the distances between the current effective stress 

point and its projection on the dilatancy and bounding surfaces, respectively. Therefore, it is 

necessary to extend the formulation of these model surfaces to the multiaxial (3D) stress 

space (Section 4.2.3.2), before introducing the procedure (termed as mapping rule) used to 

estimate the projection of the current effective stress point on those surfaces (Section 

4.2.3.3). After defining the gradient of the yield surface (Section 4.2.3.4), as well as the 

gradient of the plastic potential (Section 4.2.3.5), the plastic hardening modulus is defined 

(Section 4.2.3.6). 

4.2.3.2 Model surfaces in the multiaxial stress space 

In Section 4.2.1, it was explained how the constitutive model employs three particular 

surfaces (dilatancy, critical and bounding surfaces) to predict the distinctive states of sand 

response, as well as a yield surface to define a small elastic region within the stress space. To 

ease the understanding of their particular role in the model, these surfaces were presented 
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in the q – p’ space in Section 4.2.1. In order to use the constitutive model in boundary value 

problems, it is, however, necessary to extend their formulation to the multiaxial (3D) stress 

state, as presented in this section. 

 
 

Figure 4.7 – Schematic representation of model surfaces and mapping rule in (a) the multiaxial 
stress space and in (b) the normalised deviatoric stress ratio plane. 

The shapes of all model surfaces in multiaxial stress space are schematically presented in 

Figure 4.7a. Starting with the yield surface, it can be seen that its previous open wedge-type 

shape in the q – p’ plane is replaced by an open cone in multiaxial space, also having its apex 

at the origin of the stress space. The intersection of the yield surface with a normalised 

deviatoric stress ratio plane (i.e. a normalised plane perpendicular to the hydrostatic axis) is 

a circle with centre defined by  (Figure 4.7b). As in the q – p’ space, its opening (i.e. its radius 

in multiaxial stress space) depends on the parameter m and increases with the mean effective 

stress, p’. Equation 4.34 defines the yield surface in the multiaxial stress space. 

 F = ‖s − p′ ‖2 −√
2

3
 m p′ = √(s− p′ ) : (s− p′ ) − √

2

3
 m p′ = 0 (4.34) 

Unlike the yield surface, as shown in Figure 4.7b, the intersections of the dilatancy, critical 

and bounding surfaces with a normalised deviatoric stress ratio plane are generally non-

circular. The positions of these three surfaces in the generalised stress space, Md,c,b (Equation 

4.35), are determined based on their positions in triaxial compression, Mc
d,c,b (Equations 4.4 

and 4.5), as well as on an interpolation function g (Equation 4.36), which was proposed by 

Papadimitriou and Bouckovalas (2002). The interpolation function g is a function of the 

modified Lode’s angle,  (Equation 4.37), as well as of cd,c,b, defining the ratio between the 

stress ratios in triaxial extension and in triaxial compression (Equation 4.38). 

 Md,c,b = g(, cd,c,b) Mc
d,c,b (4.35) 
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 g(, cd,c,b) =
2 cd,c,b

1+ cd,c,b

2  −  
1− cd,c,b

2  cos(3)
− [

1+ cd,c,b

2
+ 

1− cd,c,b

2
 cos(3)] (4.36) 

 cos(3) = (
3 √3

2
 

J3

(J2)
3 2⁄
) (4.37) 

 cd,c,b =
Me

d,c,b

Mc
d,c,b (4.38) 

where J2 = 1 2⁄ r̄ : r̄ and J3 = 1 3⁄ r̄ : r̄ : r̄ = det r̄ are, respectively, the modified second and 

third invariants of the effective stress. Note that the term modified is used to emphasise the 

use of the radial tensor, r̄ = r− ., in the definition of the Lode’s angle, , rather than the 

more conventional use of the current deviatoric stress tensor, s (see, for example, Potts and 

Zdravkovic, 1999). Moreover, note that the present formulation results in a modified Lode’s 

angle of  = 0 for triaxial compression and  =  3⁄  for triaxial extension. As expected, when 

 = 0, it follows that g(, cd,c,b) = 1 and, consequently, Md,c,b = Mc
d,c,b. As also expected, 

when  =  3⁄ , it follows that g(, cd,c,b) = cd,c,b, guaranteeing that Md,c,b = Me
d,c,b. For any 

other loading conditions (e.g. plane strain), intermediate values of  are obtained, meaning 

that cd,c,b < g(, cd,c,b) < 1 and Me
d,c,b < Md,c,b < Mc

d,c,b. Indeed, it is noteworthy that, to 

ensure the convexity of the model surfaces (i.e. that any line connecting two points located 

inside any of the surfaces does not intersect its boundary), cd,c,b ≥ 0.717 should be employed 

in the numerical analysis (Loukidis and Salgado, 2009). 

By comparing the several different constitutive models originating from the Manzari and 

Dafalias (1997)’s proposal, it can be concluded that the interpolation function is one of the 

components registering a larger number of different formulations (e.g. Manzari and Dafalias, 

1997; Li, 2002; Papadimitriou and Bouckovalas, 2002; Loukidis and Salgado, 2009). In relation 

to the original proposal of Manzari and Dafalias (1997), which makes use of the well-known 

Argyris surface (Argyris et al., 1974), it is argued by Papadimitriou and Bouckovalas (2002) 

that Equation 4.36 allows for a better prediction of the friction angle for non-triaxial 

conditions. As suggested by Taborda (2011), the variation of the critical-state friction angle, 

c, for intermediate values of , may be analysed by using Equations 4.36 together with 

Equations 4.39 (Potts and Zdravkovic, 1999), which is derived from the well-known Mohr-

Coulomb failure criterion. 


c = 

c(, cc) = sin−1 (
2√3 sin(

c
c) g(, cc) cos(−


6 )

3 −  sin(
c
c) − 2 sin(

c
c) g(, cc) sin(−


6 ) 

) (4.39) 

where 
c
c = 

c(0, cc) is the critical-state friction angle in triaxial compression, which can be 

related to Mc
d,c,b, as given by Equation 4.40. 
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Mc
d,c,b =

6 sin(
c
c)

3 −  sin(
c
c) 

 (4.40) 

Figure 4.8 depicts the evolution of the critical-state friction angle, c, with the value of , 

predicted by the present constitutive model, for three different critical-state friction angles 

in triaxial compression (
c
c = 30°, 33° and 36° in Figure 4.8a, b and c, respectively), as well as 

for three different values of cc: 0.70, 0.75 and 0.80. Note that the selected values for c, as 

well as for cc belong to the typical range of values typically observed for silica sands (Loukidis 

and Salgado, 2009). For these values, it can be observed that the present formulation 

generally predicts critical-state friction angles under plane strain conditions, 
PS
c , – for which 

 is typically close to 15°, according to Loukidis and Salgado (2009) – about 4 to 8° greater 

than the value obtained for triaxial compression, which is reasonably consistent with values 

typically measured in the laboratory, e.g. Pradhan et al. (1988) obtained 
PS
c − 

c
c ≈ 5° for 

Toyoura sand. Indeed, it is apparent in Figure 4.8 that the critical-state friction angle in triaxial 

extension, 
e
c , is highly dependent on the value selected for cc, with a range of values 

e
c −


c
c ≈ −1 to 11° being obtained for the values for c and cc under analysis. 

   

 
Figure 4.8 – Evolution of the critical-state friction angle with the modified Lode’s angle for (a) 

c
c =

30°, (b) 
c
c = 33° and (c) 

c
c = 36°. 

4.2.3.3 Distances from the current effective stress point to its projections on the model 

surfaces 

Although other possibilities exist (e.g. Andrianopoulos et al., 2010; Woo and Salgado, 2015), 

a radial projection rule (i.e. using a straight line, which passes through the origin of the stress 

space and has the direction defined by the radial stress tensor, r̄), as originally proposed by 

Manzari and Dafalias (1997), is used to obtain the projections (also termed as “images” by the 

authors) of the current effective stress point on the dilatancy, d, critical, c, and bounding, 

b, surfaces, as illustrated in Figure 4.7. Mathematically, these image stress ratio tensors, 

d,c,b, are described by Equation 4.41. 
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d,c,b = √
2

3
 

d,c,b n = √
2

3
(g(, cd,c,b) Mc

d,c,b −m) n (4.41) 

where n is a traceless (i.e. tr n = 0) and unitary (tr n2 = n : n = 1) stress ratio tensor obtained 

by normalising the radial tensor, r̄ (Equation 4.42). Note that, since tensor n has the same 

direction of tensor r̄, it can be alternatively used it in the definition of the modified Lode’s 

angle, , in which case J2 = 1 2⁄ n : n and J3 = det n. 

 n =
r̄

‖r̄‖2
=

r − 

√(r − ) : (r− )
=

r − 

√2 3⁄  m
=

s − p′ 

√2 3⁄  m p′
 (4.42) 

Having determined d,c,b, the distances in the normalised deviatoric stress ratio plane from 

the current effective stress point to the image points can be obtained from Equation 4.43. 

dd,c,b = (d,c,b − ) : n = √
2

3
 

d,c,b −  : n = √
2

3
(g(, cd,c,b) Mc

d,c,b − m) −  : n (4.43) 

Note that, for convenience, these distances are expressed in terms of back-stress ratio 

tensors, d,c,b. Nevertheless, since r̄ = r − , it would have been possible to write Equation 

4.43 as a function of the stress ratio tensors, rd,c,b, instead. Note also that dd,c,b can take either 

a positive value when the current effective stress point is inside a given surface or a negative 

value when it is outside that surface. 

4.2.3.4 Gradient of the yield surface 

The gradient of the yield surface, which defines the direction of loading, is given by Equation 

4.44: 

𝜕F

𝜕′
=

1

3
 
𝜕F

𝜕p′
 I +

𝜕F

𝜕s
=

1

3
(− : 

s − p′ 

‖s − p′ ‖2
)  I +

s − p′ 

‖s − p′ ‖2
 (4.44) 

which, by using the unit stress ratio tensor, n (Equation 4.42), can be simplified to Equation 

4.45: 

𝜕F

𝜕′
= −

1

3
( : n+ √

2

3
 m)  I + n (4.45) 

From Equation 4.45, it can be observed that the loading direction in the deviatoric stress plane 

is solely defined by tensor n. Therefore, tensor n is often termed “deviatoric loading 

direction”. 

4.2.3.5 Gradient of the plastic potential 

As proposed by Manzari and Dafalias (1997), the gradient of plastic potential, which defines 

the direction of the plastic strain increment, is defined by Equation 4.46: 



A BOUNDING SURFACE PLASTICITY MODEL FOR SAND 

222 
 

𝜕P

𝜕′
=

1

3
 D I+ n (4.46) 

where D is the dilatancy coefficient. 

By comparing Equation 4.45 and 4.46, it can be promptly concluded that this version of the 

model assumes the existence of associated plasticity on the deviatoric plane, since the 

deviatoric components of both 𝜕F 𝜕′⁄  and 𝜕P 𝜕′⁄  are defined by tensor n. Although 

alternative expressions have been proposed for the deviatoric component of the plastic 

potential in the literature (e.g. Dafalias and Manzari, 2004; Loukidis and Salgado, 2009) with 

the objective of improving the prediction of the intermediate principal effective stress ratio 

at critical state under plane strain conditions, the constitutive models proposed by 

Papadimitriou and Bouckovalas (2002) and Taborda (2011) retained the original equation 

(Equation 4.46).  

Regarding the volumetric component, following the general principle of Rowe’s stress-

dilatancy theory (Rowe, 1962) and work done by Roscoe et al. (1958), (Nova and Wood (1979) 

and Nova (1982), Manzari and Dafalias (1997) proposed Equation 4.47 to define D, which 

essentially postulates that the dilatancy coefficient is proportional to the distance from the 

current stress ratio to the dilatancy stress ratio. 

 D = A0 d
d = A0 (

d − ) : n = A0  (√
2

3
 

d −  : n)

= A0  (√
2

3
(g(, cd) Mc

d − m) −  : n) 

(4.47) 

where A0 is a positive model parameter and dd = (d − ) : n defines the distance from the 

current effective stress point to the dilatancy surface (Equation 4.43). By comparing Equation 

4.45 to 4.47, it can be concluded that, unless the condition A0  (√2 3⁄  
d  −  : n) =  : n+

√2 3⁄  m is verified, the model assumes a non-associated flow rule. 

Moreover, due to the positive value of A0, it can be observed that, as conceptually explained 

before (Section 4.2.1), the present formulation guarantees that contractive plastic volumetric 

strains (D > 0) occur when the current effective stress point lies inside the dilatancy surface 

(i.e. dd > 0), changing to dilatant plastic volumetric strains (D < 0) as the dilatancy surface is 

crossed and the effective stress point lies outside that surface (i.e. dd < 0). In order to ensure 

that no plastic dilation occurs in looser-than-critical-state sand (i.e. when  > 0), a restriction 

of D = 0 is introduced when both D < 0 and  > 0 hold true (Manzari and Dafalias, 1997). 

4.2.3.6 Plastic hardening modulus 

The plastic hardening modulus, A, is associated with the distance from the current effective 

stress point to the bounding surface, db, as indicated by Equation 4.48. As pointed out by 
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Manzari and Dafalias (1997), the dependence of A on db is the main underlying concept of 

bounding surface plasticity theory, as introduced by Dafalias and Popov (1975) and Krieg 

(1975) and later applied to soil mechanics by Dafalias (1986). 

 A = p' h db = p' h(b − ) : n = p' h (√
2

3
 

b −  : n)

= A0  (√
2

3
(g(, cb) Mc

b − m) −  : n) 

(4.48) 

where h is a positive scalar parameter, function of state parameters. Since the mean effective 

stress, p’, is also positive (for the present case of a compression-positive sign convention), the 

sign of the plastic hardening modulus is solely related to the sign of db. Specifically, when the 

effective stress point is inside the bounding surface (i.e. db > 0), strain hardening response is 

simulated, changing to strain softening response once the effective stress point lies outside 

the bounding surface (i.e. db < 0). 

Several different formulations have been proposed in the literature to define the scalar h. In 

particular, the original version of the constitutive model proposed by Manzari and Dafalias 

(1997) presents h as a simple function of the distance to the bounding surface, db, in relation 

to a reference distance, dref
b , scaled by a model parameter, h0, as given by Equations 4.49, 4.50 

and 4.51. Note that dref
b  corresponds roughly to the “diameter” of the bounding surface along 

the direction of the tensor n (Manzari and Dafalias, 1997). 

h = h0 hb (4.49) 

hb =
| db |

|dref
b − |db| |

 (4.50) 

dref
b = √

2

3
 (

b + +
b ) = √

2

3
 (g(, cb) Mc

b + g(+ , cb) Mc
b − 2 m) (4.51) 

The formulation of h was extended by Papadimitriou and Bouckovalas (2002) – Equation 4.52 

– to incorporate the effect of the mean effective stress, p’, on the plastic hardening modulus, 

through the term hb (Equation 4.53), as well as the effect of the fabric evolution of sand during 

shearing, described by the term hf (Equation 4.54). 

h = h0 hb hf (4.52) 

hb = (
p′

p′ref
)

−1

 
| db |

〈dref
b − |db|〉

 (4.53) 

hf =
1+ ⟨F : I⟩2

1 + ⟨F : n⟩
 (4.54) 

where the exponent  is a model parameter taking values between 0.5 and 1.0 (Papadimitriou 

and Bouckovalas, 2002) and F is a second-order fabric tensor, which can be decomposed into 
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its volumetric, fp, and deviatoric, f, components, as given by Equation 4.55. The term hf can, 

therefore, be rewritten as indicated by Equation 4.56. Note that, to avoid confusion with the 

“inherent fabric tensor”, FA, which will be introduced later, the “fabric tensor” F will be 

henceforth termed as “shearing-induced fabric tensor”. 

F =
1

3
tr F  I+ dev F =

1

3
fp I + f (4.55) 

hf =
1+ ⟨fp⟩

2

1+ ⟨f : n⟩
 

(4.56) 

As mentioned by Papadimitriou and Bouckovalas (2002), due to the use of the Macaulay 

brackets both in the numerator and in the denominator of Equation 4.56, hf can only take 

positive values, meaning that the sign of the plastic hardening modulus is, in effect, solely 

dictated by the sign of db, as mentioned before. Furthermore, the Macaulay brackets in the 

denominator implies that the deviatoric part of the shearing-induced fabric tensor f only 

affects hf when it has a similar direction to the deviatoric loading tensor, n. Since f will only 

evolve during plastic dilation and in the opposite direction of the tensor n, as detailed later 

(Section 4.2.4), it means that f only affects hf when a loading reversal is triggered after a 

dilative phase of plastic deformation. This is particularly intended to replicate the faster 

decrease of the mean effective stress upon shear reversal in undrained cyclic shearing once 

phase transformation line is crossed, observed in the laboratory (Chapter 3). Moreover, as 

highlighted by Papadimitriou and Bouckovalas (2002) and Taborda (2011), the relative 

magnitude of the volumetric and deviatoric components plays an important role in 

determining the value of hf: when it increases (e.g. fp increases and f remains constant), A 

increases (Equation 4.56, 4.52 and 4.48), leading to a decrease in the plastic strain increment 

(Equation 4.30 and 4.27); on the contrary, when the relative magnitude of the volumetric and 

deviatoric components is such that hf reduces (e.g. fp remains constant, while f increases), the 

plastic strain increment is expected to increase. According to Taborda (2011), the magnitude 

of hf can be extremely variable when small values of p’ are reached (which is likely to occur 

when simulating liquefaction-related phenomena). This can result in large oscillations of the 

value of hf, which may affect the stability of the numerical analysis. In order to limit this 

undesirable situation, the author suggested the adoption of lower, hf,min, and upper, hf,max, 

limits to hf: 

hf,min ≤ hf ≤ hf,max (4.57) 

The formulation of h was further extended by Taborda (2011) and Taborda et al. (2014) – 

Equation 4.58 – to account for the effects of the void ratio and elastic stiffness of the material 

on the plastic hardening modulus – terms he (Equation 4.60) and hg (Equation 4.62), 

respectively. Moreover, the authors proposed a modification to the expression defining the 

influence of the distance from the current effective stress point to the bounding surface 

(Equation 4.59 replaces Equation 4.53). According to the authors, the adoption of a power 
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law increases the flexibility of the model, by enabling the reduction rate of the plastic 

hardening modulus during shearing to be adjusted, which may be particularly important when 

simulating flow liquefaction. Note that, in this formulation, h0 remains a model parameter 

and the formulation of the scalar multiplier hf (Equation 4.61) remains equal to that 

introduced by Papadimitriou and Bouckovalas (2002). 

h = hb he hf hg (4.58) 

hb = (
p′

p′ref
)

−1

(
|db|

〈dref
b − |db|〉

)

+1

 (4.59) 

he = h0 (1−  e) ≥ h0 (1−  elim) (4.60) 

hf,min ≤ hf =
1+ ⟨fp⟩

2

1+ ⟨f : n⟩
≤ hf,max 

(4.61) 

hg = Gtan
  (4.62) 

where , ,  and elim are new model parameters, with the latter one introducing a minimum 

value to the scalar multiplier he to avoid eventual negative values for very loose sand (Taborda 

et al., 2014). It is also important to observe that, when the new model parameters ,  and  

are set to 0.0, the formulation proposed by Papadimitriou and Bouckovalas (2002) is 

recovered (Equations 4.52 to 4.56). As highlighted by Taborda et al. (2014), this allows for any 

new feature to be deactivated whenever there is not sufficient experimental evidence to use 

it (i.e. the calibration procedure reveals that the overall performance of the model is not 

sufficiently improved when considering, for example, the effect of the elastic stiffness and/or 

the void ratio on the plastic hardening modulus). Further details on the impact of each of 

these quantities on the magnitude of the plastic hardening modulus can be found in Taborda 

(2011) and Taborda et al. (2014). 

Still regarding the multitude of formulations proposed for the plastic hardening modulus, it is 

perhaps important to note that a slightly different equation for the scalar multiplier hb was 

introduced by Dafalias and Manzari (2004), in relation to those proposed by Manzari and 

Dafalias (1997), Papadimitriou and Bouckovalas (2002) and Taborda et al. (2014) – 

Equations 4.50, 4.53 and 4.59, respectively – , which, in fact, have a similar form. Specifically, 

based on earlier propositions made by Dafalias (1986), the scalar multiplier hb proposed by 

Dafalias and Manzari (2004) is inversely proportional to the difference between the current 

back-stress ratio tensor, , and a discrete memory tensor, denoted as in. (Equation 4.63). 

The latter quantity takes the value of  at the start of the loading process, as well as once a 

stress reversal is detected. As this occurs, the distance ( − in) : n becomes null, rendering 

an infinite scalar multiplier hb and, consequently, an infinite plastic hardening modulus, A. 

Although the authors argued that this particular form allows for more accurate simulations of 

experimental data, they also acknowledged that overshooting issues may occur when 

simulating boundary-value problems, mainly due to the occurrence of small loading cycles in 
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a general loading path. It is perhaps unsurprising that more recent versions proposed by 

Dafalias and his co-authors (e.g. Taiebat and Dafalias, 2008) had abandoned this form and 

reverted to a form similar to that included in the original Manzari and Dafalias (1997)’s 

proposal. 

hb = (
p′

p′ref
)

−1/2

 
1

(− in) : n
 (4.63) 

4.2.4 State parameter evolution laws 

For both non-linear elastic and plastic components of the model, state parameters (besides 

the effective stress state, ’, and the void ratio, e) are required to define the constitutive 

relationship. Since these internal variables evolve, in general, with straining, it is necessary to 

prescribe particular evolution laws for each variable, termed “hardening laws” (Potts and 

Zdravkovic, 1999). 

For the non-linear elastic part of the model (Section 4.2.2), the stress state, the strain state 

and the void ratio at last shear reversal, ’SR, SR and eSR, respectively, as well as the scaling 

factor N are required to identify eventual shear reversals (Equation 4.22) and to determine 

the scalar reduction factor T (Equation 4.20). Note that eSR is not directly included in Equation 

4.20, however it is necessary to determine the maximum shear modulus at last shear reversal, 

Gmax
SR , affecting the value of the scalar quantity 1 (Equation 4.23). The hardening laws for all 

these state parameters consist solely of updating their values whenever a shear reversal is 

detected. 

Regarding the plastic component of the formulation (Section 4.2.3), there are two state 

parameters: the back-stress ratio tensor, , which defines the location of axis of the yield 

surface in the multiaxial stress space (Equation 4.34), and the shearing-induced fabric tensor, 

F, which introduces the effect of the evolution of sand’s fabric during shearing on the plastic 

hardening modulus through the plastic multiplier hf (Equation 4.61). Starting with , 

according to the general principles of plasticity, its hardening law must ensure that the 

consistency condition (Equation 4.28) is satisfied. It is, therefore, necessary to determine the 

partial derivative of the yield function to the back-stress ratio tensor, 𝜕F 𝜕⁄ , as given by 

Equation 4.64. Using Equations 4.31, 4.48, 4.58 and 4.64, the evolution of the axis of the yield 

surface, , can be explicitly presented as indicated by Equation 4.65. 

 
𝜕F

𝜕
=

𝜕

𝜕
(‖s − p′ ‖2 −√

2

3
 m p′) = −p′

s − p′ 

‖s − p′ ‖2
= −p′ n (4.64) 

  = −
 A

𝜕F
𝜕

=  h(b − ) =  hb he hf hg (
b − ) 

(4.65) 
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For the shearing-induced fabric tensor, two independent hardening rules were established by 

Papadimitriou and Bouckovalas (2002) for the evolution of the isotropic, fp (Equation 4.66), 

and deviatoric, f (Equation 4.67), components of the tensor. 

 fp = H v
p (4.66) 

 f = −H ⟨−v
p⟩ [C n+ f] (4.67) 

where C and H are model parameters. As pointed out by the Papadimitriou and Bouckovalas 

(2002), although both components depend on the incremental plastic volumetric strain, v
p, 

the use of the Macaulay brackets in Equation 4.67 implies that f only changes when plastic 

dilation (i.e. v
p < 0) occurs. Moreover, due to the negative sign used in Equation 4.67 

(before the model parameter H), it can be concluded that, when f evolves, it occurs in the 

opposite direction of the tensor defined by [C n+ f]. Therefore, at a given moment of loading 

history, if the magnitude of f is non-zero and f starts evolving due to the occurrence of plastic 

dilation, then f and, consequently, [C n+ f] will be reduced until f = −C n is obtained and, 

therefore, f = 0, or until a change in the loading direction, n, occurs. It can, therefore, be 

concluded that C establishes a maximum value for the norm of f. 

According to Papadimitriou and Bouckovalas (2002), an appropriate value for C is given by the 

maximum value ever recorded by fp (Equation 4.68). 

 C = max |fp
|

2

 (4.68) 

Since C defines the maximum norm of f, as previously explained, this means that the 

denominator in Equation 4.61, defining the scalar of hf, is limited to 1 +max |fp
|

2

, which 

corresponds to the maximum value ever obtained by the numerator. As pointed out by 

Taborda (2011), although Equation 4.68 eliminates the need for an additional model 

parameter, it introduces a new state parameter in the analysis. In effect, whenever fp changes, 

it is necessary to check whether the newly computed value of |fp
|

2

 is larger than the current 

value of C and, if true, update the parameter C. 

In relation to the model parameter H, which controls the rate of the evolution of both 

isotropic and deviatoric components of the shearing-induced fabric tensor and is often 

referred to as shearing-induced “fabric index”, Papadimitriou and Bouckovalas (2002) 

suggested that it can be related to sand’s initial conditions through Equation 4.69. 

 H = H0 (
′1,0

p′ref
)

−

⟨−
0
⟩ (4.69) 

where H0 and  are new positive model parameters, while ′1,0 and 0 are the initial values 

of the major principal effective stress and state parameter, respectively. It is interesting to 

note that the use of the Macaulay brackets in this equation implies that the effect of fabric 

evolution during shearing is only simulated when sand is initially in a denser-than-critical state 
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(i.e. when 
0
< 0); otherwise, H is null and, consequently, f and fp do not evolve during 

loading. Furthermore, this equation states that, for a given sand, the initially denser it is (i.e. 

the larger the negative value of 0) and the lower the initial major principal effective stress 

applied to it, the greater the value of H and, consequently, the faster the rate at which fp and 

f develop (Equation 4.66 and 4.67, respectively) with the plastic volumetric strain increment, 

v
p. Indeed, as mentioned by Papadimitriou and Bouckovalas (2002), the fact that H depends 

on ′1,0 and not on the initial mean effective stress, p’, intends to account for the dependency 

of fabric evolution on both initial confinement and initial stress anisotropy. 

As pointed out by Taborda (2011), under low effective stresses (e.g. close to the ground 

surface), Equation 4.69 may result in very large values for H, which may have a detrimental 

impact on the computation. To prevent this from happening, Taborda (2011) suggested the 

introduction of a upper limit for H (Equation 4.70). 

 H ≤ Hmax (4.70) 

4.2.5 Additional low-stress yield surface 

In the present constitutive model, both non-linear elastic and plastic response depend on the 

current stress ratio, r. Specifically, the distance between r and its value at last shear reversal, 

rSR, in the deviatoric stress ratio plane is employed to determine the scalar reduction, T 

(Equation 4.20), of the tangent shear modulus. Similarly, the dilatancy coefficient and plastic 

hardening modulus depend on the distance from r to its projection on the dilatancy and 

bounding surfaces (Equation 4.47 and 4.48, respectively). As mentioned by Taborda et al. 

(2014), while being useful, this normalisation of the deviatoric stress tensor, s, by the mean 

effective stress, p’, can result in a loss of accuracy in situations where effective stresses are 

very low, e.g. when simulating liquefaction-related phenomena. To prevent this from 

happening, the authors introduced an additional yield surface, termed as secondary yield 

surface, which establishes a lower limit value for the mean effective stress, p’YS (Equation 

4.71). Note that the subscript “2” is used to distinguish this secondary yield surface from the 

original yield surface (henceforth termed primary yield surface), which was previously defined 

by Equation 4.34. 

F2 = p′YS − p′ = 0 (4.71) 

In order to keep the formulation of the secondary yield surface as simple as possible, p’YS, is 

considered a model parameter, rather than a state parameter. Therefore, the plastic 

hardening modulus associated with this additional surface is null (i.e. 𝜕F2 𝜕k2⁄ = 0 ⟹ A2 =

0, where k2 represents generically a set of state parameters associated with the secondary 

yield surface), meaning that perfect plasticity is assumed (Potts and Zdravkovic, 1999). 

Moreover, an associated flow rule is adopted, which means that the gradient of the plastic 

potential, 𝜕P2 𝜕′⁄ , coincides with the gradient of the yield function 𝜕F2 𝜕′⁄ , as indicated by 

Equation 4.72. 
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𝜕P2

𝜕′
=
𝜕F2

𝜕′
=

1

3
 
𝜕F2

𝜕p′
 I +

𝜕F2

𝜕s
= −

1

3
 I (4.72) 

where I is the second-order identity tensor. 

Similar to what was previously presented for the primary yield surface, when the current 

effective stress point activates the secondary yield surface, the plastic strain increment 

associated with that plastic mechanism, 2
p, is given by Equation 4.73. 

2
p = [

2,xx
p


2,xy
p 

2,xz
p


2,yx
p 2,yy

p


2,yz
p


2,zx
p 

2,zy
p 2,zz

p

] = 2 
𝜕P2

𝜕′
 (4.73) 

where 2 is now the plastic multiplier associated with the secondary yield surface, which is 

given by Equation 4.74 when only this surface is active. 

2 =

𝜕F2

𝜕′  : D : 

𝜕F2

𝜕′
 : D : 

𝜕P2

𝜕′
+ A2

 (4.74) 

with D being the elastic constitutive matrix and A2 = 0, as explained before. 

Note, however, that, for models having two yield surfaces, the effective stress point may 

activate individually any of the yield surfaces or both simultaneously. In the latter situation, 

the equations employed to determine the incremental plastic strains need to be modified 

(Potts and Zdravkovic, 1999; Taborda et al., 2014). Specifically, the plastic strain increment, 

p, and effective stress increment, ′, are given by Equation 4.75 and 4.76, respectively. 

p = 1
p + 2

p = 1 
𝜕P1

𝜕′
+ 2 

𝜕P2

𝜕′
 (4.75) 

′ = D : e = D : (− p) = D : − 1  D : 
𝜕P1

𝜕′
− 2  D : 

𝜕P2

𝜕′
 (4.76) 

where all quantities associated with the primary yield surface are now denoted by the 

subscript “1”, while those associated with the secondary yield surface are denoted by the 

subscript “2”. 

Furthermore, when both plastic mechanisms are active, the stress state must remain on both 

yield surfaces, meaning that Equations 4.77 and 4.78 need to be satisfied simultaneously. 

F1 =
𝜕F1

𝜕′
 : ′ +

𝜕F1

𝜕k1
 : k1 = 0

⟺
𝜕F1

𝜕′
 : D : − 1  

𝜕F1

𝜕′
 : D : 

𝜕P1

𝜕′
− 2 

𝜕F1

𝜕′
 :  D : 

𝜕P2

𝜕′
− 1 A1 = 0 

(4.77) 

F2 =
𝜕F2

𝜕′
 : ′ +

𝜕F2

𝜕k2
 : k2 = 0

⟺
𝜕F2

𝜕′
 : D : − 1  

𝜕F2

𝜕′
 : D : 

𝜕P1

𝜕′
− 2 

𝜕F2

𝜕′
 :  D : 

𝜕P2

𝜕′
− 2 A2 = 0 

(4.78) 
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where: 

A1 = −
1

1
 
𝜕F1

𝜕k1
 : k1 (4.79) 

A2 = −
1

2
 
𝜕F2

𝜕k2
 : k2 (4.80) 

It can be observed that Equations 4.77 and 4.78 depend linearly on the plastic multipliers 1 

and 2. (Equations 4.81 and 4.82). Therefore, it can be written as: 

1 L11 + 2 L12 = T1 (4.81) 

1 L21 + 2 L22 = T2 (4.82) 

where: 

L11 =
𝜕F1

𝜕′
∶ D ∶

𝜕P1

𝜕′
+ A1 (4.83) 

L12 =
𝜕F1

𝜕′
∶ D ∶

𝜕P2

𝜕′
 (4.84) 

L21 =
𝜕F2

𝜕′
∶ D ∶

𝜕P1

𝜕′
 (4.85) 

L22 =
𝜕F2

𝜕′
∶ D ∶

𝜕P2

𝜕′
+ A2 (4.86) 

T1 =
𝜕F1

𝜕′
∶ D ∶  (4.87) 

T2 =
𝜕F2

𝜕′
∶ D ∶  (4.88) 

It is possible to solve this system of linear equations by substitution, resulting in Equations 

4.89 and 4.90. 

1 =
L22 T1 − L12 T2

L11 L22 − L12 L21
 (4.89) 

2 =
L11 T2 − L21 T1

L11 L22 − L12 L21
 (4.90) 

Since this secondary yield surface does not make use of any state parameter, there is no need 

to specify any additional hardening law for the constitutive model. Nevertheless, as pointed 

out by Taborda (2011) and Taborda et al. (2014), when the secondary yield surface is active, 

the resulting plastic volumetric strain increment, 2,v
p = 2,xx

p + 2,yy
p + 2,zz

p , should be 

employed in the computation of the evolutions of the isotropic, fp, and deviatoric, f, 

components of the shearing-induced fabric tensor. In general, it can be written: 

 fp = H (1,v
p + 2,v

p ) (4.91) 

 f = −H ⟨−1,v
p − 2,v

p ⟩ [C n+ f] (4.92) 
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where 1,v
p  and 2,v

p  are the plastic strain increment associated with the primary and 

secondary yield surfaces, respectively, and C and H are given by Equations 4.68 and 4.69, 

respectively. 

In relation to the back-stress tensor , as it is uniquely related to the primary yield surface, 

its evolution is solely associated with the plastic multiplier associated with the primary yield 

surface, as given by Equation 4.93 (which is identical to Equation 4.65). 

  = 1 hb he hf hg (
b − ) (4.93) 

4.2.6 Summary of the original model formulation and parameters 

The key ingredients of the present constitutive model include: 

- non-linear cyclic elasticity, which has been shown to play a crucial role on the accurate 

simulation of the response of sand at relatively small amplitudes (Papadimitriou and 

Bouckovalas, 2002); 

- dependence of the stress ratio at phase transformation (i.e. dilatancy stress ratio), as 

well as peak (or bounding) stress ratio on the state parameter, , proposed by Been 

and Jefferies (1985), allowing for a satisfactory prediction of the response of sand for 

a wide range of initial void ratios and effective stress states using a single set of model 

parameters (Manzari and Dafalias, 1997); in addition, the use of the state parameter 

concept ensures compatibility with CSSM, as established by Schofield and Wroth 

(1968), since both dilatancy and bounding stress ratios coincide with the critical state 

ratio when  = 0 at critical state (Manzari and Dafalias, 1997; Dafalias et al., 2006); 

- as postulated by the bounding surface plasticity framework (Dafalias, 1986), the 

plastic hardening modulus is related to the distance from the current effective stress 

point to its projection on the bounding surface, allowing for a better prediction of the 

highly non-linear pre-failure response of sand (Loukidis and Salgado, 2009); moreover, 

when used in conjunction with a small yield surface and kinematic hardening plasticity 

(as it is the case), it allows for an accurate prediction of the accumulation of 

irrecoverable strains during cyclic loading, which would be difficult to capture when 

using a constitutive model formulated within the classical elasto-plasticity framework 

(Potts and Zdravkovic, 1999); 

- the dilatancy coefficient is proportional to the distance from the current effective 

stress point to its projection on the dilatancy surface; 

- dependence of the plastic modulus on an empirical index describing the effect of 

fabric evolution during shearing; as pointed out by Papadimitriou and Bouckovalas 

(2002), due to this dependency, the constitutive model is able to replicate the 

continuously stiffening unloading-reloading response observed in drained and 

undrained shearing under successive loading cycles of relatively small amplitude; 

more importantly, as highlighted by the authors, the introduction of this fabric-related 
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index allows for the simulation of a more compliant (i.e. softer) response of sand once 

the phase transformation line is crossed and the stress path is reversed, as observed 

in the laboratory (Ishihara et al., 1975). 

The equations of the constitutive model proposed by Taborda et al. (2014), as well as its 

model parameters are summarised in Table 4.1. Note that the numbering of the equations 

indicated in the table refer to those previously presented in this chapter. 

Table 4.1 – Summary of the formulation of the model and its parameters. 

Description  Constitutive equation Parameters 

Non-linear cyclic elasticity 

Small-strain shear 
modulus at small 
strains 

(4.25) 

Gmax = Cg p'ref  
1

0.3+ 0.7 e2 √
p′

p′ref

≥ Cg p'ref  
1

0.3+ 0.7 e2 √
p′min

p′ref
 

Cg, p’ref, p’min 

Tangent shear 
modulus 

(4.26) Gtan =
Gmax

T
≥ Gmin Gmin 

  where:  

 (4.20)  T = 1 +  (
1

a1
− 1) (


ref
r

N 
1

)

−1

≤ 1+  (
1

a1
− 1)  

 (4.21) 
ref
r = √1 2⁄ √(r− rSR):(r− rSR)  

 (4.23) 
1
= a1  (

Gmax
SR

p′SR ) 1
 a1, 1 

Tangent bulk 
modulus 

(4.24) Ktan =
2 (1+ )

3 (1 − 2 )
Gtan  

Model surfaces 

Critical state line in 
the e – p’ space 

(4.2) eCS = (eCS)ref −  (
p′

p′ref
)



 (eCS)ref, ,  

Critical state ratio (4.35, 4.38) Mc = g(, cc) Mc
c   with    cc = Me

c Mc
c⁄  Mc

c, Me
c  

Dilatancy stress 
ratio 

(4.5, 4.35, 
4.38) 

Md = g(, cd) Mc
d   with    cd = Me

d Mc
d⁄    and 

Mc
d = Mc

c + kc
d    and   Me

d = Me
c + ke

d  
kc

d, ke
d 

Bounding stress 
ratio 

(4.4, 4.35, 
4.38) 

Mb = g(, cb) Mc
b   with    cb = Me

b Mc
b⁄    and 

Mc
b = Mc

c + kc
b ⟨−⟩   and   Me

b = Me
c + ke

b ⟨−⟩ 
kc

b, ke
b 
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Table 4.1 – Summary of the formulation of the model and its parameters. 

Description  Constitutive equation Parameters 

Interpolation 
function 

(4.36) 

 g(, cd,c,b) =
2 cd,c,b

1+ cd,c,b

2
 − 

1 − cd,c,b

2
 cos(3)

− [
1+ cd,c,b

2
+ 

1 − cd,c,b

2
 cos(3)] 

 

Modified Lode’s 
angle 

(4.37) cos(3) = (
3 √3

2
 

J3

(J2)
3 2⁄
)  

Primary YS (4.34) F1 = √(s− p′ ) : (s− p′ ) − √2 3⁄  m p′ = 0 m 

Secondary YS (4.71) F2 = p′YS − p′ = 0 p’YS 

Gradients of the yield surfaces (YS) 

Associated with 
the primary YS 

(4.45) 
𝜕F1

𝜕′
= −

1

3
( : n+√

2

3
 m)  I+ n  

  where:  

 (4.42)  n =
r− 

√2 3⁄  m
=

s− p′ 

√2 3⁄  m p′
  

Associated with 
the secondary YS 

(4.72) 
𝜕F2

𝜕′
= −

1

3
 I  

Gradients of the plastic potentials 

Associated with 
the primary YS 

(4.46) 
𝜕P

𝜕′
=

1

3
 D I + n  

  where:  

 (4.47) D = A0 d
d A0 

 (4.43) 
dd = (d − ) : n = √2 3⁄ 

d −  : n

= √2 3⁄ (g(, cd) Mc
d − m) −  : n 

 

Associated with 
the secondary YS 

(4.72) 
𝜕P2

𝜕′
= −

1

3
 I  

Plastic hardening modulus 

Associated with 
the primary YS 

(4.48, 4.58) A1 = p' hb he hf hg d
b  

  where:  

 (4.59) hb = (
p′

p′ref
)

−1

(
|db|

〈dref
b − |db|〉

)

+1

 ,  

 (4.60) he = h0 (1−  e) ≥ h0 (1−  elim) h0, , elim 
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Table 4.1 – Summary of the formulation of the model and its parameters. 

Description  Constitutive equation Parameters 

 (4.61) 
hf,min ≤ hf =

1 + ⟨fp⟩
2

1 + ⟨f : n⟩
≤ hf,max 

hf,min , hf,max 

 (4.62) hg = Gtan
   

  with:  

 (4.43) 
db = (b − ) : n = √2 3⁄ 

b −  : n

= √2 3⁄ (g(, cb) Mc
b − m) −  : n 

 

 (4.51) 
dref

b = √2 3⁄  (g(, cb) Mc
b + g(+ , cb) Mc

b

− 2 m) 
 

Associated with 
the secondary YS 

 A2 = 0  

Hardening rules 

Back-stress ratio 
evolution 

(4.65)   = 1 hb he hf hg (
b − )  

Shearing -induced 
fabric tensor 
evolution 

(4.66)  fp = H v
p  

 (4.67)  f = −H ⟨−v
p⟩ [C n+ f]  

  where  

 (4.69, 4.70)  H = H0 (
′1,0

p′ref
)

−

⟨−
0
⟩ ≤ Hmax H0, , Hmax 

 (4.68)  C = max |fp|
2
  

 

It can be observed that the constitutive model requires a total of twenty-five parameters and 

six optional parameters (p’min, Gmin, emin, hf,min, hf,max and Hmax represented in grey in Table 

4.1), which were introduced by Taborda (2011) to increase the numerical stability of the 

constitutive model when simulating boundary-value problems. As discussed in Chapter 6, 

reference values may be used for these six additional model parameters. In addition, as 

proposed by Papadimitriou and Bouckovalas (2002), the number of model parameter may be 

reduced by considering the following two simplifications: ke
d = kc

d (Me
c Mc

c⁄ )  and ke
b =

kc
b (Me

c Mc
c⁄ ). Note that these simplifications imply that cd = cb = cc. The suitability of these 

simplifications are also discussed in Chapter 6, based on experimental data obtained for 

Hostun sand. 

In addition, Table 4.2 presents the meaning of each model parameter. Once more, note that 

the optional model parameters (p’min, Gmin, emin, hf,min, hf,max and Hmax), defining either lower 
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or upper limits to the values of constitutive parameters, are represented in grey. Moreover, 

note that values that have been proposed in the literature for the model parameters are 

discussed in Chapter 6, where the calibration of the constitutive model for Hostun sand is 

presented. 

Table 4.2 – Model parameters: meaning and typical range for sand (after Papadimitriou and 
Bouckovalas, 2002; Taborda, 2011). 

Parameter Meaning 

Cg Constant of the elastic shear modulus at small strains 

p’ref 
Reference pressure (typically assumed as equal to the atmospheric pressure, with a 
value of 101.3 kPa) 

p’min Lower limit for the mean effective stress  

 
Non-linearity of the elastic shear modulus 

a1 

1 Strain limit for the reduction of the elastic shear modulus 

Gmin Lower limit for the tangent shear modulus 

 Poisson’s ratio 

(eCS)ref Interception of the CSL with the p’-axis in the e – p’ space 

 Slope of the CSL in the e – p’ space 

 Curvature of CSL in the e – p’ space 

Mc
c Critical state strength in triaxial compression 

Me
c  Critical state strength in triaxial extension 

kc
d 

Effect of the state parameter on the stress ratio at phase transformation in triaxial 
compression 

ke
d 

Effect of the state parameter on the stress ratio at phase transformation in triaxial 
extension 

kc
b Effect of the state parameter on the peak stress ratio in triaxial compression 

ke
b Effect of the state parameter on the peak stress ratio in triaxial extension 

m Opening of the primary yield surface 

p’YS Lower limit value for the mean effective stress 

A0 Dilatancy coefficient 

 
Non-linearity of the effect of the current mean effective stress on the plastic hardening 
modulus associated with the primary yield surface 

 
Non-linearity of the effect of the distance from the current effective stress point to the 
boundary surface on the plastic hardening modulus associated with the primary yield 
surface 

h0 Constant of the plastic hardening modulus associated with the primary yield surface 

 
Effect of the void ratio on the plastic hardening modulus associated with the primary 
yield surface 
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Table 4.2 – Model parameters: meaning and typical range for sand (after Papadimitriou and 
Bouckovalas, 2002; Taborda, 2011). 

Parameter Meaning 

elim 
Lower limit of the void ratio influence on the plastic hardening modulus associated with 
the primary yield surface 

 
Effect of the tangent elastic shear modulus on the plastic hardening modulus associated 
with the primary yield surface 

hf,min 
Lower limit for the influence of the shearing-induced fabric tensor on the plastic 
hardening modulus associated with the primary yield surface 

hf,max 
Upper limit for the influence of the shearing-induced fabric tensor on the plastic 
hardening modulus associated with the primary yield surface 

H0 Shearing-induced fabric index constant 

 Effect of the major principal effective stress on the shearing-induced fabric index  

Hmax Upper limit for the shearing-induced fabric index 

 

4.3 Modifications to the formulation proposed by Taborda et al. (2014) 

4.3.1 Introduction 

As mentioned before, a large number of extended versions of the original model proposed by 

Manzari and Dafalias (1997) can be found in the literature (e.g. Papadimitriou and 

Bouckovalas, 2002; Dafalias and Manzari, 2004; Dafalias et al., 2004; Taiebat and Dafalias, 

2008; Loukidis and Salgado, 2009; Andrianopoulos et al., 2010; Li and Dafalias, 2012; Taborda 

et al., 2014; Woo and Salgado, 2015). A review of those proposals suggests that the ability of 

the model to simulate the response of sand for loading conditions other than triaxial 

compression seems greatly improved when an inherent fabric anisotropy component is 

introduced to the constitutive relationship (Dafalias et al., 2004; Loukidis and Salgado, 2009; 

Woo and Salgado, 2015). In particular, and as detailed later, this component allows for the 

replication of different sand’s responses as the direction of the major principal effective stress 

to the vertical axis of the sample is changed – a feature of sand’s response widely observed 

in the laboratory, which is not captured by the constitutive model proposed by Taborda 

(2011) and Taborda et al. (2014). In effect, a research project aiming at extending the version 

of the constitutive model proposed by Taborda et al. (2014) to incorporate an inherent fabric 

anisotropy component was recently carried out at Imperial College London (Williams, 2014). 

As part of that project, it was concluded that the ability of the constitutive model to replicate 

hollow cylinder torsional shear test results on sand is greatly improved when this additional 

component is used, as also detailed later. Due to the short duration of the research project, 

it was, unfortunately, not possible to further explore the impact of the inherent fabric 

anisotropy component on the simulation of the response of sand under general loading 

conditions, such as those found in boundary value problems. It was, therefore, considered 
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important to introduce an inherent fabric anisotropy component in the present constitutive 

model and further evaluate its impact on the modelled response. In Section 4.3.3, three 

particular formulations proposed in the literature (Dafalias et al., 2004; Loukidis and Salgado, 

2009; Williams, 2014) are presented. As explained in detail, although the three formulations 

make use of similar concepts, the formulation proposed by Williams (2014) is the only one 

among them which complies with the principles of CSSM and, therefore, it was selected to be 

incorporated in the present version of the model. Note that, due to the modular structure of 

the constitutive model, it is relatively simple to introduce new components to the formulation 

without the need to reformulate, at least completely, other components, as highlighted by 

Taborda et al. (2014). 

In addition, as detailed in Section 4.3.2, it was deemed important to introduce a more general 

constitutive equation for the computation of the shear modulus at small strains, Gmax, 

allowing for the use of the vast majority of the equations reported in the literature for sands. 

The new equations and required model parameters are summarised in Section 4.3.4. 

4.3.2 Small-strain shear modulus 

The small-strain shear stiffness, Gmax, of a given material is generally defined as a function of 

the void ratio, f(e), the overconsolidation ratio, OCR, and the mean effective stress, p’, as 

shown by Equation 4.94 (Hardin and Black, 1968). 

Gmax = Cg p'ref f(e) OCRk (
p′

p′ref
)

ng

 (4.94) 

where Cg, k and ng are model parameters. For sands, several experimental studies (e.g. Hardin 

and Drnevich, 1972; Lo Presti et al., 1997; Zhou and Chen, 2005; Azeiteiro et al., 2017) have 

shown that OCR has a minor influence on Gmax (as discussed in more detail in Section 2.5.5). 

Therefore, its effect is usually neglected, with Gmax being essentially related to e and p’. 

Regarding the function of the void ratio, f(e), based on the experimental results performed 

by Hardin and Richart (1963) and Hardin and Black (1966) on a round-grained sand (Ottawa 

sand no. 20-30) and on an angular-grained sand (crushed quartz), Equation 4.95 and Equation 

4.96 were proposed by Hardin (1965) and Hardin and Black (1966). 

Round-grained sand: 

 f(e) =
(2.17− e)2

1.0 + e
 

(4.95) 

Angular-grained sand: 

 f(e) =
(2.97− e)2

1.0 + e
 

(4.96) 

An alternative expression for Equation 4.96 was later presented by Hardin (1978) – Equation 

4.97. According to this author, Equations 4.96 and 4.97 give very similar results when the void 

ratio is in the range of 0.4 to 1.2, with the solely advantage of the latter equation being its 



A BOUNDING SURFACE PLASTICITY MODEL FOR SAND 

238 
 

simplicity. Note that Equation 4.97 was included in the version of the constitutive model 

proposed by Papadimitriou and Bouckovalas (2002) and also adopted by Taborda et al. (2014) 

to introduce the effect of the void ratio on shear modulus at small strains (Equation 4.25). 

 f(e) =
1.0

0.3+ 0.7 e2
 (4.97) 

More recently, Lo Presti et al. (1993) also suggested an alternative form for this function 

(Equation 4.98). 

 f(e) = e−x (4.98) 

where the exponent x is a material constant. Note that different values for x can be found in 

the literature, such as 0.8 for Kenya carbonate and Ticino sands (Fioravante, 2000) and 1.3 for 

Toyoura sand and Quiou carbonate sand (Lo Presti et al., 1993, 1997). A relation between the 

value of x and the shape of the sand particles was not established in any of these references. 

Table 4.3, which is mostly extracted from Benz (2007), presents the outcome of several 

experimental studies on the characterisation of the shear modulus of sand at small strains, 

where Equation 4.94 was used to describe the experimental data. 

Table 4.3 – Parameters for the evaluation of the shear modulus of sand at small strains using 
Equation 4.94 (after Benz, 2007). 

Sand tested and reference 
D50 (1) 
(mm) 

UC (2) 
( ) 

Cg 
( ) 

f(e) 
( ) 

ng 
( ) 

Ham river sand (sub-angular) 
(Kuwano and Jardine, 2002) 

0.27 1.67 720 - 810 
(2.17− e)2

1.0+ e
 0.50 

Hostun sand (sub-angular) 
(Hoque and Tatsuoka, 2000) 

0.31 1.94 800 
(2.17− e)2

1.0+ e
 0.47 

Hostun sand (sub-angular) 
(Azeiteiro et al., 2017a) (3) 

0.33 1.40 293 
(2.97− e)2

1.0+ e
 0.49 

Kenya carbonate sand (sub-
rounded) (Fioravante, 2000) 

0.13 1.86 1010 - 1290 e−0.8 0.45 - 0.52 

Ottawa sand (rounded to sub-
rounded) (Carraro et al., 2003) (3) 

0.38 1.43 611 
(2.17− e)2

1.0+ e
 0.44 

Ottawa sand no.20-30 (rounded) 
(Hardin, 1965; Hardin and Black, 
1966a) 

0.72 1.20 690 
(2.17− e)2

1.0+ e
 0.50 

Quiou carbonate sand (Lo Presti 
et al., 1997) 

0.75 4.40 710 e−1.3 0.62 

Silica sand (angular) (Zhou and 
Chen, 2005) (3) 

0.14 1.6 206 
(2.97− e)2

1.0+ e
 0.51 

0.34 3.1 211 
(2.97− e)2

1.0+ e
 0.505 

Silica sand (sub-angular) (Tika et 
al., 2003) 

0.20 1.10 800 
(2.17− e)2

1.0+ e
 0.50 

0.20 1.70 620 
(2.17− e)2

1.0+ e
 0.50 
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Table 4.3 – Parameters for the evaluation of the shear modulus of sand at small strains using 
Equation 4.94 (after Benz, 2007). 

Sand tested and reference 
D50 (1) 
(mm) 

UC (2) 
( ) 

Cg 
( ) 

f(e) 
( ) 

ng 
( ) 

0.32 2.80 480 
(2.17− e)2

1.0+ e
 0.50 

Silica sand (Wichtmann and 
Triantafyllidis, 2004) 

0.55 1.80 275 
(1.46− e)2

1.0+ e
 0.42 

Silver Leighton Buzzard sand 
(sub-rounded) 

0.62 1.11 820 - 1300 
(2.17− e)2

1.0+ e
 0.44 - 0.53 

Ticino sand (sub-angular) 
(Tatsuoka and Hoque, 2004) 

0.50 1.33 610 - 640 
(2.17− e)2

1.0+ e
 0.44 - 0.53 

Ticino sand (sub-angular) (Lo 
Presti et al., 1993) 

0.54 1.50 710 
(2.27− e)2

1.0+ e
 0.43 

Toyoura sand (sub-angular) 
(Iwasaki et al., 1978) (3) 

0.16 1.46 900 
(2.17− e)2

1.0+ e
 0.40 

Toyoura sand (sub-angular) 
(Tatsuoka and Hoque, 2004) 

0.16 1.46 710 - 870 
(2.17− e)2

1.0+ e
 0.41 - 0.51 

Toyoura sand (sub-angular) 
(Kokusho, 1980) 

0.19 1.30 840 
(2.17− e)2

1.0+ e
 0.41 - 0.51 

Toyoura sand (sub-angular) 
(Chaudhary et al., 2004) 

0.19 1.56 840 - 1040 
(2.17− e)2

1.0+ e
 0.50 

Toyoura sand (sub-angular) (Lo 
Presti et al., 1997) 

0.22 1.35 720 e−1.3 0.45 

(1) D50: mean diameter of the particles; (2) UC: coefficient of uniformity; (3) Not presented in Benz (2007). 
 

It is interesting to note that, in most published studies, either Equation 4.95 or Equation 4.96 

was employed to characterise f(e). Moreover, it can be observed that not only the values of 

2.17 (included in the numerator of Equations 4.95) and of 2.97 (included in the numerator of 

Equation 4.96) have been employed to describe f(e); for instance, Lo Presti et al. (1993) 

adopted a value of 2.27 for Ticino sand, while Wichtmann and Triantafyllidis (2004) used 1.46 

to characterise the influence of the void ratio on Gmax for Silica sand. In addition, it is apparent 

that, although ng = 0.50 has been adopted in the majority of the studies, values in the range 

of 0.41 to 0.62 have also been reported in the literature. Therefore, to increase the flexibility 

of the constitutive model, it was decided to replace Equation 4.19 by a more general equation 

for Gmax, consisting of Equation 4.94 with k = 0.0, as shown by Equation 4.99, together with 

Equation 4.100. Note that the adoption of k = 0.0 (i.e. the disregard for the effect of OCR) is 

justified by the fact that the constitutive model has been essentially developed to address the 

simulation of the response of sand under cyclic loading. Note also that two additional model 

parameters are introduced: the exponent ng, which replaces the previously constant value of 

0.50, and the model parameter mg, which usually takes the value 2.17 or 2.97, according to 

most data published in the literature (Table 4.3). Finally, it is noteworthy that Loukidis and 

Salgado (2009) also adopted Equations 4.99 and 4.100 to describe Gmax, with the only 
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difference residing on the fact that these authors considered mg = 2.17 (i.e. mg was 

considered a model constant, rather than a model parameter). 

Gmax = Cg p'ref f(e) (
p′

p′ref
)

ng

 (4.99) 

with: 

 f(e) =
(mg − e)

2

1.0 + e
 (4.100) 

4.3.3 Inherent fabric anisotropy 

4.3.3.1 Experimental evidence on anisotropic sand response 

There is experimental evidence that the response of sand depends on the angle  of the major 

principal effective stress, '1, to the axis of the sample (Figure 4.9), as well as on the 

magnitude of the intermediate principal effective stress, '2, in relation to the magnitudes of 

the major and minor principal effective stresses, '1 and '3, respectively, which is typically 

characterised by the intermediate principal effective stress ratio  b = ('2 − '3) ('1 − '3)⁄ . 

  
Figure 4.9 – Definition of the direction of the major principal effective stress to the axis of the 

sample in hollow cylinder torsional shear tests (adapted from Yoshimine et al., 1998). 

Figure 4.10 compares the results of two isotropically consolidated undrained monotonic 

triaxial compression tests with increasing mean stress (ICUMTC p↑) – characterised by  =

0.0° and b = 0.0 – with those obtained in two isotropically consolidated undrained monotonic 

triaxial extension tests with decreasing mean stress (ICUMTE p↓) – characterised by  =

90.0° and b = 1.0 – performed by Yoshimine et al. (1998) on samples of dry-deposited 

Toyoura sand prepared to similar initial void ratios (e0 = 0.861 − 0.866) and consolidated 

under isotropic effective stresses of ′0 = 100.0 or 500 kPa. 
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Figure 4.10 – Isotropically consolidated undrained monotonic triaxial compression and extension 
tests on Toyoura sand samples having similar initial conditions: (a) effective stress path and (b) 

stress-strain response (Yoshimine et al., 1998). 

It can be observed that, irrespective of the initial effective stress, more compliant effective 

stress paths were registered in the ICUMTE p↓ tests than in the ICUMTC p↑ tests (Figure 

4.10a). Furthermore, it is apparent that significantly softer stress-strain responses were 

measured in triaxial extension than those exhibited in triaxial compression (Figure 4.10b). 

Similar results were reported by other authors, such as Vaid et al. (1990) on water-pluviated 

Ottawa sand, Vaid and Thomas (1995) on water-pluviated Fraser River sand and Riemer and 

Seed (1997) on moist-tamped samples of Monterey sand. 

Further experimental evidence on the effect of  and b on the undrained response of sand 

has been collected by performing torsional shear tests using the hollow cylinder apparatus. 

Note that, contrary to the triaxial equipment, the hollow cylinder apparatus allows for an 

independent control of  and b, which means that the influence of each of these aspects on 

the material response can be individually investigated. One of the most comprehensive 

experimental studies on this topic was undertaken by Yoshimine et al. (1998) on dry-

deposited Toyoura sand. Figure 4.11 depicts the results of three different torsional shear tests 

performed by those authors on samples prepared to similar void ratios (e0 = 0.821 − 0.825) 

and consolidated under an isotropic effective stress of ′0 = 100.0 kPa. In these three tests, 

the intermediate principal effective stress ratio was kept constant, with a value of b = 0.5, 

while the direction  of the major principal effective stress to the vertical axis of the sample 

was varied from 15 to 75°. It can be seen that more compliant effective stress paths (Figure 

4.11a) and softer stress-strain responses (Figure 4.11b) are registered as value of  is 

increased from 15 to 75° (i.e. as the direction of the major principal effective stress tended to 

the horizontal plane, which corresponds to the bedding plane of the reconstituted sample). 
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Figure 4.11 – Undrained hollow cylinder torsional shear tests with constant b = 0.5 on Toyoura 

sand samples having similar initial conditions: (a) effective stress path and (b) stress-strain 
response (Yoshimine et al., 1998). 

  
Figure 4.12 – Undrained hollow cylinder torsional shear tests with constant  = 45° on Toyoura 

sand samples having similar initial conditions: (a) effective stress path; (b) stress-strain response 
(Yoshimine et al., 1998). 

In addition, the authors performed a series of undrained torsional shear tests where the value 

of b was varied, while keeping  = 45°. The results of three of these tests performed on 

samples prepared to similar void ratios (e0 = 0.853 − 0.861) and consolidated to ′0 =

100.0 kPa are presented in Figure 4.12. It can be observed that the larger the value of b, the 

higher the reduction of the mean effective stress with shearing, as well as the lower the shear 

stress mobilised in the test. These results seem to agree well with those obtained by the same 

authors when using the triaxial cell (Figure 4.10). In effect, as the values of  and b are 

increased, as it happens when changing from triaxial compression ( = 0.0° and b = 0.0) to 

triaxial extension ( = 90.0° and b = 1.0), a more compliant and softer response was 

exhibited by the samples, with the results of the hollow cylinder torsional shear tests enabling 
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to extend the findings and conclude that both  and b play a role in the observed response. 

Note that similar experimental results were reported, for example, by Nakata et al. (1998) on 

air-pluviated Toyoura sand and Uthayakumar and Vaid (1998) on Fraser River sand. 

According to Yoshimine et al. (1998), the different responses obtained when varying  and/or 

b may be attributed to the anisotropic nature of the sample. In fact, as highlighted by the 

authors, both in the laboratory and in the field, the gravitational field under which sand 

structure is formed tends to induce an anisotropic sand fabric, with particles preferentially 

orientated towards horizontal directions (i.e. to form a horizontal bending plane). Therefore, 

the mechanical response of sand tends to be stiffer and more resistant when the direction of 

loading is perpendicular to the bedding plane of the sand particles than when a similar loading 

is applied parallel to the bedding plane. 

4.3.3.2 Motivation for incorporating an inherent fabric anisotropy component in the 

formulation of the bounding surface plasticity model 

The original formulation of the model accounts for anisotropic sand response by defining 

different dilatancy, bounding and critical stress ratios in triaxial compression, Mc
d, Mc

b and Mc
c, 

respectively, and in triaxial extension, Me
d, Me

b and Me
c , respectively, and interpolating their 

values for other loading conditions through the use of the interpolation function g (Equation 

4.36), which depends on the modified Lode’s angle,  (Equation 4.37). Therefore, the 

constitutive model has been shown to capture satisfactorily the response of sand under 

different loading conditions, such as in triaxial compression, in triaxial extension and in direct 

simple shearing (Papadimitriou et al., 2001; Papadimitriou and Bouckovalas, 2002; Taborda, 

2011; Williams, 2014).  

Further insight into the ability of the constitutive model to predict the response of sand under 

other loading conditions than triaxial shearing and direct shearing was provided by Williams 

(2014). This author carried out a series of simulations of undrained hollow cylinder torsional 

shear tests using the version of the BSPM implemented by Taborda (2011) into the Imperial 

College Finite Element Program (ICFEP), which was chosen as a starting point in the present 

study. Based on the obtained results, Williams (2014) concluded that the constitutive model 

was unable to capture the effect of the direction of the major principal effective stress to the 

vertical axis of the sample, characterised by the quantity , on the modelled response, 

contradicting the experimental evidence. This is illustrated in Figure 4.13, which compares 

the results of numerical simulations performed by Williams (2014) with the experimental data 

obtained by Uthayakumar and Vaid (1998) on water-pluviated samples of Fraser river sand 

prepared to similar initial void ratios (e0 ≈ 0.905) and subjected to the isotropic confining 

stress of ′0 = 200.0 kPa. While the experimental data suggests that the response of sand 

changes drastically when  is increased from 0 to 90°, with larger excess pore water pressures 

being generated and softer stress-strain response being registered, identical responses were 
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modelled, irrespectively of the value of . Note that, in these tests, b = 0.5 was kept constant 

throughout loading. 

  
Figure 4.13 – Numerical simulation of undrained hollow cylinder torsional shear tests with 

constant b = 0.5 on Fraser River sand using the original version of the model (Williams, 2014). 

A significant improvement on the modelled response was obtained when an inherent fabric 

anisotropy formulation was incorporated in the constitutive model. This is illustrated in Figure 

4.14, which compares the results of a new series of numerical simulations performed by 

Williams (2014) using the modified version of the constitutive model with those obtained in 

the laboratory (Uthayakumar and Vaid, 1998). It is noticeable that, by having an inherent 

fabric anisotropy component, the constitutive model is able to predict the main trends 

observed in the laboratory. Note that details on the proposed formulation are provided later. 

  
Figure 4.14 – Numerical simulation of undrained hollow cylinder torsional shear tests with 

constant b = 0.5 on Fraser River sand using a modified version of the model incorporating an 
inherent fabric anisotropy component (Williams, 2014). 
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A further motivation for incorporating an inherent fabric anisotropy component in the 

formulation of the constitutive model is related to its inability to predict accurately highly 

anisotropic sand response observed in some undrained cyclic triaxial tests (Taborda, 2011). 

This is illustrated in Figure 4.15, which compares the results of a numerical simulation of an 

undrained cyclic triaxial test on a dense sample Leighton Buzzard Fraction-E sand sample 

carried out by Taborda (2011) with those obtained in the laboratory by Coelho (2007). It is 

apparent that the constitutive model is unable to replicate the very soft response in triaxial 

extension observed during the first loading cycle. As a result, the constitutive model 

noticeably overpredicts the number of loading cycles required to the onset of cyclic mobility. 

According to Taborda (2011), the introduction of an inherent fabric anisotropy component 

may significantly improve the ability of the constitutive model to reproduce this considerably 

more compliant response in triaxial extension than that observed in triaxial compression. In 

fact, at least under monotonic loading conditions, the incorporation of an inherent fabric 

anisotropy component has been shown to improve the accuracy of bounding surface 

plasticity models to replicate anisotropic sand response (e.g. Dafalias et al., 2004; Loukidis 

and Salgado, 2009; Li and Dafalias, 2012; Papadimitriou et al., 2014). 

  
Figure 4.15 – Simulation of an undrained cyclic triaxial test on a dense sample of Leighton Buzzard 

Fraction-E sand using the original version of the model (Taborda, 2011). 

Taking into account that a similar highly anisotropic response was also exhibited by samples 

of Hostun sand when subjected to undrained cyclic shearing (Chapter 3) and that the 

constitutive model will be applied to the simulation of dynamic centrifuge experiments 

performed on Hostun sand (Chapter 8), it was deemed important to include this additional 

component in the constitutive relationship. 
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4.3.3.3 Inherent fabric anisotropy formulations proposed in the literature for constitutive 

models based on the bounding surface plasticity framework 

A bounding surface plasticity model explicitly accounting for the effect of inherent fabric 

anisotropy on the response of sand was proposed by Dafalias et al. (2004). These authors 

introduced a second-order symmetric inherent fabric tensor FA, which analytically describes 

the orientation of sand particle distribution in the 3D stress space. By assuming transverse 

isotropy on the horizontal xz plane (which coincides with the plane of the deposition of the 

particles), the authors defined FA in the form of Equation 4.101. 

FA = [

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

] = [
1/2 (1− a) 0 0

0 a 0
0 0 1/2 (1− a)

] (4.101) 

where the scalar a is a measure of the orientation of particle distribution and varies from 0.0 

to 1.0. As described by the authors, a = 0.0 corresponds to the case where particles “lie” 

entirely on the horizontal plane, while the other extreme value, a = 1.0, represents a fabric 

formation where particles are oriented parallel to the vertical y-direction and tightly packed 

along xx- and zz-direction. Furthermore, a = 1/3 corresponds to a statistically isotropic 

orientation of particles (i.e. there is no preferred orientation of particle distribution). 

According to the authors, due to the existence of the gravitational field, the most common 

case corresponds to a preferential orientation of particles towards horizontal directions, 

meaning that, typically, 0.0 < a < 1/3. 

In order to introduce the effect of the inherent fabric anisotropy on the mechanical response 

of sand, the inherent fabric tensor, FA, was related to the deviatoric loading direction tensor, 

n, defining the scalar-valued anisotropic state parameter, AF (Equation 4.102). 

AF = g(, ca) FA : n (4.102) 

where g is the interpolation function (Equation 4.36), which is a function of the modified 

Lode’s angle,  (Equation 4.37), and of ca, which is given by ca = |AF,e AF,c⁄ | (i.e. the absolute 

ratio of the value of AF in triaxial extension, AF,e, to its value in triaxial compression, AF,c). 

It is perhaps important to note that, while FA remains constant throughout loading, AF may 

vary due to changes in the deviatoric loading direction tensor, n, and, consequently, also in 

the modified Lode’s angle, . This aspect is illustrated in Figure 4.16, which depicts a typical 

variation of AF with  and b for radial monotonic loading (i.e. loading starting from r = 0 and 

at constant , such as monotonic TC or TE). Note that, under such loading conditions, Equation 

4.102 (which has a tensorial form) can be written solely as a function of scalar quantities, as 

given by Equation 4.103 (Dafalias et al., 2004). Moreover, note that to elaborate Figure 4.16, 

it was assumed that ca = cc = 0.72 and a = 0.29, a set of values that will be used for the 

numerical simulation of the response of Hostun sand, as detailed in Chapter 6. 



A BOUNDING SURFACE PLASTICITY MODEL FOR SAND 

247 
 

AF = g(, ca)
3

2
√

3

2

cos2a −
1
3
(1 + b)

(b2 − b+ 1)
1/2

(a−
1

3
) (4.103) 

 
Figure 4.16 – Variation of the anisotropic state parameter AF with  and b for radial monotonic 

loading (adapted from Dafalias et al., 2004). 

In this figure, it is interesting to observe that AF increases with both  and b, from its minimum 

value in TC (characterised by  = 0.0° and b = 0.0) to its maximum value in TE (characterised 

by  = 90.0° and b = 1.0). 

Having defined the anisotropic state parameter AF, Dafalias et al. (2004) proposed a relocation 

of the critical state line (CSL) in the e – p’ space as a function of AF. Specifically, rather than 

being a model parameter, the interception of the critical state line (CSL) with the e-axis is now 

a function of AF, as indicated by Equations 4.104 and 4.105. 

eCS = (eCS)A  −  (
p′

p′ref
)



 (4.104) 

(eCS)A = (eCS)ref exp (−AF) (4.105) 

where (eCS)ref defines now the CSL at p′ = 0.0 and AF = 0.0. Note that, since AF is expected 

to increase from TC to TE, as shown in Figure 4.16, the minus sign of AF in Equation 4.105 

implies that the CSL in TC is, in general, located above the CSL in TE (i.e. the value of (eCS)ref 

is expected to be larger for the former case). 

This relocation of the CSL affects the value of the state parameter  (Equation 4.3) and, 

consequently, the positions of the bounding and dilatancy surfaces (given by Equation 4.4 and 

Equation 4.5, respectively). Therefore, both the dilatancy coefficient (Equation 4.47) and the 

plastic hardening modulus (Equation 4.48) are altered by the shift of the CSL, addressing the 

change in the contractiveness and stiffness, as observed experimentally. For instance, for an 

initially looser-than-critical sample (i.e.  > 0), when AF increases (due to an increase of  

and/or b – Figure 4.16), a downward relocation of the CSL occurs (Equation 4.105) and a larger 
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value of  is obtained. Since the position of the dilatancy surface is directly proportional to  

(Equation 4.5), the larger value of  results in a larger value of Mc,e
d  (i.e. in an upwards 

relocation of the dilatancy surface) and, consequently, a more contractive response is 

simulated under drained conditions (or, similarly, a higher tendency to generate excess pore 

water pressures is simulated under undrained conditions), as typically observed in the 

laboratory. Furthermore, since the position of the bounding surface is proportional to - 

(Equation 4.4), a smaller value of Mc,e
b  (i.e. a lower position for the bounding surface) is 

obtained when AF is increased and, consequently, a softer stress-strain response is simulated, 

as typically observed in laboratory. 

It is important to note that, despite allowing for a more accurate simulation of the intended 

response, this relocation of the CSL implies a departure from CSSM principles, according to 

which the CSL is unique and independent of loading mode and direction. Even though there 

seems to be a lack of consensus on this subject, with some experimental studies suggesting 

that the CSL depends on the loading direction and mode (e.g. Vaid et al., 1990b; Riemer and 

Seed, 1997; Mooney et al., 1998; Loukidis and Salgado, 2009), while other studies suggesting 

that the CSL is unique (Been et al., 1991; Yoshimine and Kataoka, 2007), this relocation of the 

CSL undoubtedly involves a profound alteration to the fundamentals of the constitutive 

model, as originally established by Manzari and Dafalias (1997). 

Moreover, having concluded that the effect of the relocation of the CSL on the plastic 

hardening modulus, A, was not sufficiently effective, Dafalias et al. (2004) decided to 

introduce an additional dependency of the plastic hardening modulus, A, on the scalar-valued 

anisotropic state parameter, AF. Specifically, as shown by Equation 4.106, a new scalar 

multiplier, hA, which is a function of the current value of AF, as well as of its value in TC and 

TE, was proposed by Dafalias et al. (2004). 

hA = 1 + kA − kA

(AF,e−AF) (AF,e−AF,c)⁄
 (4.106) 

where kA is a new positive model parameter. Note that, since AF = AF,c in TC, it follows that 

hA = 1.0, meaning that no influence of hA on A is simulated under such loading conditions. 

On the contrary, in TE, since AF = AF,e, it follows that hA = kA. Since, in general, the response 

of sand is softer in TE than in TC, the model parameter kA is expected to take a value smaller 

than 1.0 (Dafalias et al., 2004). Moreover, for other loading conditions than TC and TE, 

intermediate values of hA are obtained by Equation 4.106, as typically observed in the 

laboratory. 

A similar inherent fabric anisotropy formulation was proposed by Loukidis and Salgado (2009). 

In particular, it makes use of the inherent fabric descriptor (Equation 4.101) introduced by 

Dafalias et al. (2004), as well as the same definition for the anisotropic state parameter AF 

(Equation 4.102). A modification was, however, introduced by the authors to the equation 
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defining the interception of the CSL with the void ratio-axis, in order to set TC as the reference 

loading condition (Equation 4.107 replaces Equation 4.105). 

(eCS)A = (eCS)ref exp (AF,c − AF) (4.107) 

where (eCS)ref defines now the CSL at p′ = 0.0 and AF = AF,c (i.e. the interception of the CSL 

in TC). 

In addition, the authors modified the expression defining the additional influence of AF on the 

plastic hardening modulus through the plastic multiplier hA (Equation 4.108 replaces Equation 

4.106). 

hA = exp [(
AF,c − AF

AF,c − AF,e
)

1.25

 ln(kA)] (4.108) 

where kA is a model parameter, which, as mentioned before, takes values in the range of 

0.0 < kA ≤ 1.0. 

Figure 4.17 compares the variation of hA with AF obtained when using the formulation 

proposed by Dafalias et al. (2004) – Equation 4.106 – and the one proposed by Loukidis and 

Salgado (2009) – Equation 4.108 – , assuming, once more, radial monotonic loading and using 

ca = cc = 0.72, a = 0.29 and kA = 0.8. It can be seen that very similar variations of the value 

of hA with AF are indeed obtained by the two formulations. 

 
Figure 4.17 – Plastic multiplier hA as a function of the anisotropic state parameter AF for radial 

monotonic loading. 

Conversely, Figure 4.18 shows that the variation of hA with kA, for a given value of AF, obtained 

from Equations 4.106, proposed by Dafalias et al. (2004), is very different from that given by 

Equations 4.108, introduced by Loukidis and Salgado (2009). The former formulation results 

in identical values for hA either when kA = 0.0 or kA = 1.0 and, in general, a non-monotonic 

variation between these extreme values of kA. Conversely, the formulation proposed by 
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Loukidis and Salgado (2009) defines a monotonic increase of hA with kA, which brings more 

flexibility to the calibration process, as discussed in more detail by Williams (2014). 

  
Figure 4.18 – Evolution of the plastic multiplier hA with the model parameter kA for several values 

of the anisotropic state parameter AF and for radial monotonic loading, according to the 
formulations proposed by (a) Dafalias et al. (2004) and (b) Loukidis and Salgado (2009). 

Further insight into the ability of both formulations to simulate anisotropic response of sand 

was provided by Williams (2014). The author integrated each of the aforementioned 

formulations with the constitutive model proposed by Taborda et al. (2014) and carried out 

simulations of undrained hollow cylinder torsional shear tests, whose experimental results 

were reported by Uthayakumar and Vaid (1998). Based on the obtained results, Williams 

(2014) concluded that a reasonable match between numerical and experimental results is, in 

general, possible when using any of the formulations, with slightly better results being 

typically obtained when using the formulation proposed by Loukidis and Salgado (2009), in 

relation to that proposed by Dafalias et al. (2004). The author noticed, however, that, in some 

situations, due to the relocation of the CSL, a monotonic reduction of the mean effective 

stress throughout loading is obtained for initially denser-than-critical samples. This modelled 

response seems to contradict experimental observations and one of the fundamental 

concepts of the constitutive framework, according to which this type of response is only 

predicted for initially looser-than-critical samples (Section 4.2.1). To overcome this limitation, 

the author decided to replace Equation 4.107 by Equation 4.109. This latter equation specifies 

a continuously evolution of the CSL position with the distance in the normalised deviatoric 

plane from the current effective stress point to the critical state line, dc. 

(eCS)A = (eCS)ref exp (vA  
〈dc〉

dref
c (AF,c − AF)) (4.109) 
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where dref
c  is a reference distance to the CSL (Equation 4.110) and vA is a new model 

parameter, which controls the magnitude of the effect of the anisotropic state parameter on 

the CSL. 

dref
c = √

2

3
 (

c + +
c ) = √

2

3
 (g(, cc) Mc

c + g(+, cc) Mc
c − 2 m) (4.110) 

Note that the use of the Macaulay brackets in Equation 4.109 guarantees that the relocation 

of the CSL is only performed when the effective stress point is inside the critical surface. As 

the effective stress point moves beyond that surface (i.e. dc < 0.0), the CSL remains fixed in 

the e – p’ space (i.e. (eCS)A = (eCS)ref  is set to persist until CS conditions are reached). More 

important, this new formulation ensures that a unique CSL exists (i.e. that the final position 

of the CSL is independent of the inherent fabric and loading direction), as postulated by CSSM. 

As detailed by Williams (2014), the proposed alteration (Equation 4.109) appears to overcome 

the aforementioned limitation of predicting a continuous reduction of the mean effective 

stress with shearing for initially denser-than-critical samples subjected to undrained torsional 

shear loading. Indeed, the author concluded that this new formulation, when coupled with 

the additional influence of AF on the plastic hardening modulus proposed by Loukidis and 

Salgado (2009) – Equation 4.108 –, improves the ability of the model to reproduce the effect 

of  and b on the modelled response of sand, particularly observed in hollow cylinder 

torsional shear tests. 

Interestingly, updated inherent fabric anisotropy formulations have been recently proposed 

by Dafalias and his co-workers (Li and Dafalias, 2012) and by Salgado and his co-workers (Woo 

and Salgado, 2015). In both proposals, the uniqueness of the critical state is reassumed. This 

is performed by specifying an evolution to the inherent fabric anisotropy towards a critical 

state value. As this critical state value is attained, the effect of the anisotropic state 

parameter, AF, on the position of the critical state line vanishes (i.e. the final position of the 

critical state line is obtained). These principles seem to be similar to those introduced by 

Williams (2014). It should, however, be noted that, rather than having a CSL moving in the e 

– p’ space, in these latest formulations proposed by Li and Dafalias (2012) and Woo and 

Salgado (2015), its position is fixed in that space, as in the original model of Manzari and 

Dafalias (1997), as well as subsequent versions of Papadimitriou and Bouckovalas (2002) and 

Taborda et al. (2014). A new line, termed “dilatancy state line” (DSL), whose position depends 

on the anisotropic state parameter, AF, is introduced in the formulations proposed by Li and 

Dafalias (2012) and Woo and Salgado (2015) to define the value of the state parameter, , 

and, consequently, to define the positions of the dilatancy and bounding surfaces (i.e. the DSL 

replaces the CSL in its role of defining the value of ). Therefore, in practice, the strategy used 

by Li and Dafalias (2012) and Woo and Salgado (2015) is similar to that employed by Williams 

(2014), consisting of relocating the line against which  is determined as AF evolves. 
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4.3.3.4 Adopted formulation 

In the present study, the inherent fabric anisotropy formulation proposed by Williams (2014) 

was chosen to be added to the bounding surface plasticity model proposed by Taborda et al. 

(2014) and implemented into FEMEPDYN . While noticeable advantages over this formulation 

have not been found in the most recent formulations proposed by Li and Dafalias (2012) and 

Woo and Salgado (2015), the fact that the formulation proposed by Williams (2014) was 

implemented into the Imperial College Finite Element Code (ICFEP), using the model proposed 

by Taborda et al. (2014) as the main constitutive platform, presents a major advantage for 

the implementation validation process, since results obtained by the two different finite 

element codes can be directly compared. 

The new constitutive equations are summarised in the following section. Nevertheless, for 

future reference, it is important to clarify at this stage that the introduction of a new plastic 

multiplier hA in the definition of the plastic hardening modulus, A, implies that Equation 4.58 

is replaced by Equation 4.111. 

h = hA hb he hf hg (4.111) 

where hb, he, hf and hg have been previously defined by Equations 4.59, 4.60, 4.56 and 4.62, 

respectively, while hA is given by Equation 4.108 (re-written below for clarity). 

hA = exp [(
AF,c − AF

AF,c − AF,e
)

1.25

 ln(kA)] (4.112) 

Moreover, note that the influence of the scalar-valued anisotropic state parameter, AF 

(Equation 4.102), on the position of the CSL is given by Equation 4.109 (also re-written below 

for clarity). 

(eCS)A = (eCS)ref exp (vA  
〈dc〉

dref
c (AF,c − AF)) (4.113) 

4.3.4 Summary of the new constitutive equations and model parameters required 

Table 4.4 summarises the new constitutive equations introduced by the alteration to the 

computation of the shear modulus at small strains (Section 4.3.2) and by the incorporation of 

an inherent fabric anisotropy formulation (Section 4.3.3). To assist the presentation of these 

newly introduced equations, some equations already included in the original formulation are 

also presented in the table. The grey colour is used to distinguish these equations from the 

newly introduced equations. Similarly, the model parameters already included in the original 

version of the model are also shown in grey, while the new model parameters are presented 

in black. It can be observed that five new model parameters are required in the modified 

version, two of these to characterise the shear modulus at small strains while the remaining 

are used to introduce the inherent fabric tensor and its effect on the CSL and on the plastic 

hardening modulus. It should be highlighted that the inherent fabric anisotropy formulation 
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can be deactivated by adopting a = 1.0/3.0 (i.e. by considering an isotropic inherent fabric 

tensor) or, alternatively, by cancelling the effect of the anisotropic state parameter AF on the 

CSL (vA = 0.0) and on the plastic hardening modulus (kA = 1.0). 

Table 4.4 – Summary of the new equations introduced to the formulation of the constitutive 
model and new model parameters required. 

Description  Equation Parameters 

Non-linear cyclic elasticity 

Small-strain shear 
modulus at small 
strains 

(4.99, 4.100) 

Gmax = Cg p'ref

(mg − e)
2

1+ e
(

p′

p′ref
)

ng

≥ Cg p'ref

(mg − e)
2

1 + e
(

p′min

p′ref
)

ng

 

Cg, mg, ng, 
p’ref, p’min 

Model surfaces 

Critical state line 
in the e – p’ space 

(4.104) eCS = (eCS)A  −  (
p′

p′ref
)



 ,  

  where:  

 
(4.109) (eCS)A = (eCS)ref exp (vA  

〈dc〉

dref
c (AF,c − AF)) (eCS)ref, vA 

 

(4.43) 

dc = (c − ) : n = √
2

3
 

c −  : n

= √
2

3
(g(, cc) Mc

c −m) −  : n 

 

 

(4.110) 

dref
c = √

2

3
 (

c + +
c )

= √
2

3
 (g(, cc) Mc

c + g(+, cc) Mc
c

− 2 m) 

 

Plastic hardening modulus 

Associated with 
the primary YS 

(4.48, 4.111) A1 = p' hA hb he hf hg d
b  

  where:  

 (4.108) hA = exp [(
AF,c − AF

AF,c − AF,e
)

1.25

 ln(kA)] kA 

 (4.59) hb = (
p′

p′ref
)

−1

(
|db|

〈dref
b − |db|〉

)

+1

 ,  

 (4.60) he = h0 (1−  e) ≥ h0 (1−  elim) h0, , elim 

 (4.61) 
hf,min ≤ hf =

1 + ⟨fp⟩
2

1 + ⟨f : n⟩
≤ hf,max 
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Table 4.4 – Summary of the new equations introduced to the formulation of the constitutive 
model and new model parameters required. 

Description  Equation Parameters 

 (4.62) hg = Gtan
   

 (4.43) 
db = (b − ) : n = √2 3⁄ 

b −  : n

= √2 3⁄ (g(, cb) Mc
b − m) −  : n 

 

 (4.51) dref
b = √2 3⁄  (g(, cb) Mc

b + g(+ , cb) Mc
b − 2 m)  

Inherent fabric anisotropy 

Inherent fabric 
tensor 

(4.101) FA = [
1/2 (1− a) 0 0

0 a 0
0 0 1/2 (1− a)

] a 

Anisotropic state 
parameter 

(4.102) AF = g(, ca) FA : n  

 

4.4 Summary and conclusions 

In this first part of this chapter, the formulation of a bounding surface plasticity model (BSPM), 

as proposed by Taborda et al. (2014), was presented. Particular emphasis was firstly given to 

the fundamental concepts of the framework. Subsequently, and given the modularity of the 

constitutive model, each component of the model was comprehensively described, with 

differences between the constitutive equations of the model proposed by Taborda et al. 

(2014) and those included in other models based on the same framework (e.g. Manzari and 

Dafalias, 1997; Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 2004; Taiebat 

and Dafalias, 2008; Loukidis and Salgado, 2009; Andrianopoulos et al., 2010b) being outlined. 

The second part of this chapter focused on the expansion of the formulation proposed by 

Taborda et al. (2014). A more general constitutive equation for the shear modulus at small 

strains was introduced to encompass the vast majority of the equations reported in the 

literature for sands, including that proposed for Hostun sand (Chapter 2). In addition, with 

the objective of improving the ability of the constitutive model to simulate the response of 

sand for loading conditions other than triaxial compression, an inherent fabric anisotropy 

component was added to the constitutive model. In particular, it was shown that this 

component brings additional flexibility to the model, by enabling the replication of different 

sand response as the angle  of the major principal effective stress, '1, to the axis of the 

sample is changed – a feature of sand response widely observed in the laboratory, which is 

not captured by the constitutive model proposed by Taborda et al. (2014). Among several 

other similar formulations proposed in the literature for constitutive models based on the 

two-surface plasticity framework (Dafalias et al., 2004; Loukidis and Salgado, 2009; Li and 

Dafalias, 2012; Woo and Salgado, 2015), the formulation proposed by Williams (2014) was 

selected to be incorporated in the present constitutive model, due to its compliance with the 
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principles of CSSM and the fact that it does not imply profound alterations to the formulation 

proposed by Taborda et al. (2014). 
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Chapter 5 IMPLEMENTATION OF A BOUNDING SURFACE PLASTICITY MODEL INTO 

A FINITE ELEMENT CODE AND ITS VALIDATION 

5.1 Introduction 

In finite element analysis (FEA), the constitutive model holds a key role in two different 

moments (Potts and Zdravkovic, 1999; Taborda, 2011): (1) the determination of the tangent 

stiffness matrix of each element of the mesh, given the current stress and strain states, which 

is subsequently assembled into a global tangent stiffness matrix; and (2) the determination 

of the stress change corresponding to a given strain increment for each Gauss point. While 

the first operation consists essentially of implementing the equations of the constitutive 

model, as presented in the previous chapter, the second operation requires the use of a stress 

integration scheme. 

Both implicit and explicit stress integration schemes can be found in the literature. As detailed 

by Potts and Zdravkovic (1999), the main difference between these two types of integration 

schemes consists of the strategy used to compute the plastic strains. In explicit schemes, the 

strain increment is divided into small sub-step strain increments, which are assumed 

proportional to the total strain increment. The ordinary differential constitutive equations are 

numerical integrated over each sub-step strain increment, typically using either a Euler, a 

modified Euler or a Runge-Kutta method. By following this approach, the plastic strains are 

estimated based on the stress state evaluated at the beginning of each sub-increment and at 

a temporary updated stress state. The size of each sub-step can be automatically chosen to 

restrain the integration error to a value smaller than a given tolerance. Conversely, when an 

implicit scheme is used, the plastic strains are calculated based on the stress state 

corresponding to the end of the increment. Since the stress state at the end of the increment 

is not known in advance, an elastic predictor is firstly used to give an estimation of the final 

stress state. An iterative algorithm is subsequently used to relocate the stress state back to 

the yield surface, ensuring that, as convergence is achieved, the plastic strains over the 

increment are calculated from the plastic potential and plastic multiplier corresponding to 

the end of the increment. 

Implicit integration schemes, such as the return mapping algorithm (e.g. Borja and Lee, 1990; 

Borja, 1991; Zhang, 1995; Rouainia and Wood, 2001), have become popular due to its 

unconditionally stable integration of elastoplastic models employed in the simulation of 

monotonic loading and appreciable convergence. However, their application to highly non-

linear constitutive laws used in conjunction with the simulation of cyclic loading has been 

proven very difficult, since the iterative process inherent to this type of methods may not 
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converge (e.g. Büttner and Simeon, 2002; Luccioni et al., 2001). Furthermore, these methods 

typically require the use of a consistent tangent operator and second-order derivatives of the 

yield function and plastic potential with respect to the state parameters, which might be 

difficult to obtain analytically for complex models (Luccioni et al., 2001; Hiley and Rouainia, 

2008). Consequently, simplifications of the constitutive relationship might be required, with 

a detrimental impact on the ability of the constitutive model (e.g. Manzari and Nour, 1997). 

Alternatively, explicit schemes, such as the forward Euler or Runge-Kutta methods (Sloan, 

1987; Sloan et al., 2001), have been shown to be robust and efficient, especially when using 

an automatic sub-stepping procedure and including a drift correction procedure (e.g. Potts 

and Ganendra, 1994; Potts and Zdravkovic, 1999; Luccioni et al., 2001). Moreover, these 

methods have the main advantage of being much more straightforward to implement into a 

FE code and can easily be applied to the integration of constitutive models having a highly 

non-linear elastic component and more than one active yield surface (Potts and Zdravkovic, 

1999; Hong et al., 2012), which is the case of the present constitutive model. Indeed, most of 

the operations required by an explicit integration scheme are common to any constitutive 

model. Therefore, once implemented, the integration scheme can be used for any other 

constitutive model that may be implemented into the FE code in the future. Due to these 

advantages, Potts and Zdravkovic (1999) highlighted that a robust approach is to use a sub-

stepping scheme with automatic error control. The bounding surface plasticity model (BSPM) 

proposed by Taborda (2011) and Taborda et al. (2014) is also integrated using this 

methodology within the Imperial College Finite Element Program (ICFEP). Additional reports 

in the literature seem to indicate that explicit integration schemes with automatic sub-

stepping and error control have been typically preferred over semi-explicit and implicit 

schemes for bounding surface plasticity models (Zhao et al., 2005; Andrianopoulos et al., 

2010b; E-Kan and Taiebat, 2014; Xu and Zhang, 2015; Vilhar et al., 2018). 

Although very attractive due to the abovementioned advantages, it should be noted that 

explicit integration schemes are only conditionally stable. In fact, due to the assumption that 

strains vary proportionally during a given increment, small strain increments may be required 

to keep the error within a negligible magnitude. This aspect seems, however, to be greatly 

enhanced by the introduction of a sub-stepping technique with automatic error control, such 

as that proposed by Sloan (1987) and Sloan et al. (2001). In addition, it is noteworthy that the 

use of an explicit scheme requires additional operations when compared to those typically 

required by an implicit scheme. Specifically, it is necessary to find the intersection of the stress 

path with the yield surface, when the stress path moves from a purely elastic state (i.e. from 

the elastic region) to an elasto-plastic state (i.e. on the yield surface). Furthermore, a drift of 

the effective stress point from the yield surface may be observed at the end of an elasto-

plastic increment. A drift correction scheme is, therefore, required to bring the stress back to 

the yield surface. Nevertheless, some methods have been proposed in the literature to 
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overcome these drawbacks of the explicit integration schemes, allowing for a robust 

integration of the constitutive relationship (e.g. Sloan, 1987; Potts and Gens, 1985; Potts and 

Zdravkovic, 1999; Sloan et al., 2001). 

Given the above, it was decided to adopt the explicit modified forward Euler scheme with 

automatic sub-stepping and error control introduced by Sloan (1987) and Sloan et al. (2001) 

to integrate the present BSPM into FEMEPDYN. The operations required by this scheme are 

described in Section 5.2. Similar to the structure adopted in the finite element code, the 

presentation of the integration scheme is kept as comprehensive as possible, to allow its 

general application to any other constitutive model. Note, however, that the particular 

application of the integration scheme to the BSPM developed in Chapter 4 is detailed in 

Appendix C. In addition, note that implicit schemes will not be further elaborated in this 

thesis. For details on algorithms included in this class of integration schemes, refer, for 

example, to Ortiz and Simo (1985), Ortiz and Simo (1986), Borja and Lee (1990), Borja (1991), 

Manzari and Nour (1997), Rouainia and Wood (2001), Borja et al. (2001), Borja et al. (2003). 

The second part of this chapter, comprising Section 5.3, focuses on the validation of the 

implementation. Due to its importance in ensuring the reliability of the developed numerical 

tool, a significant effort was placed on this task. A large number of numerical simulations was 

performed, with the obtained results being subsequently compared with reference data. This 

included numerical simulations of different element laboratory tests, as well as the simulation 

of dynamic centrifuge experiments, one of them considering the response of a level deposit 

of fully saturated deposit of loose sand subjected to cyclic mobility and a second one including 

soil-structure interaction under dynamic loading. 

Once the validation routine is completed, a brief summary and some conclusions are 

presented in Section 5.4. 

Note that, in what follows, the conventional finite element representation for tensors is 

adopted. In particular, due to their symmetrical form, second-order tensors are represented 

by an array, as shown by Equation 5.1, 5.2 and 5.3 for the effective stress state, {’}, strain 

state, {}, and identity tensor, {I}, respectively. Note that the same applies to all stress- and 

strain-related tensors (such as the deviatoric stress, {s}, stress ratio, {r}, and deviatoric strain, 

{e}, tensors), incremental stress and strain tensors (such as the effective stress increment, 

{’}, and strain increment, {}, tensors), state parameter tensors (such as the back-stress 

ratio tensor, {}, and deviatoric component of the shearing-induced fabric tensor, {f}), 

gradients of the yield and plastic potential, {𝜕F/𝜕′} and {𝜕P/𝜕′}, respectively, as well as 

other tensorial quantities of the constitutive model (such as the deviatoric loading direction 

tensor, {n}). Moreover, for computational convenience, fourth-order tensors, such as the 

elastic stiffness tensor, [D], are represented by a matrix (Equation 5.4). Note that, when 

adopting this form of representation, [D] is usually referred to as elastic constitutive matrix. 
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{′} = {′xx   ′yy   xy   ′zz   xz   yz}
T
 (5.1) 

{} = {xx   yy   xy   zz   xz   yz}
T
 (5.2) 

{I} = {1.0   1.0   0.0   1.0   0.0   0.0}T (5.3) 

[D] =

[
 
 
 
 
 
 
Dxxxx Dxxyy Dxxxy Dxxxz Dxxxz Dxxyz

Dyyxx Dyyyy Dyyxy Dyyzz Dyyxz Dyyyz

Dxyxx Dxyyy Dxyxy Dxyzz Dxyxz Dxyyz

Dzzxx Dzzyy Dzzxy Dzzzz Dzzxz Dzzyz

Dxzxx Dxzyy Dxzxy Dxzzz Dxzxz Dxzyz

Dyzxx Dyzyy Dyzxy Dyzzz Dyzxz Dyzyz]
 
 
 
 
 
 

 (5.4) 

Finally, note that the conventional soil mechanics sign convention is used in the present 

thesis, meaning that compressive stresses and strains are taken as positive. 

5.2 Explicit stress integration 

5.2.1 Overview of an explicit stress integration scheme 

Having computed the total strain increment, {}, for each Gauss point, the stress integration 

algorithm is used to estimate the corresponding effective stress increment, {′}. With such 

objective, it is initially assumed that the material behaves elastically and, consequently, the 

effective stress increment, {′} = {′e}, can be determined by integrating the elastic 

constitutive matrix, [D], over {} (Equation 5.5). 

{′} = [D] {} (5.5) 

For the present constitutive model, since [D] is not constant, rather a function of the current 

effective stress state, {′}, among other state parameters, an integration procedure is 

required to calculate {′} using Equation 5.5. Among other possibilities – see, for example, 

Sloan et al. (2001) – , the modified forward Euler scheme with automatic sub-stepping and 

error control is selected, as suggested for example by Potts and Zdravkovic (1999). As detailed 

in Section 5.2.2, this scheme involves the division of the total strain increment, {}, into sub-

step strain increments, {ss}, which have the same direction of the former, yet may have 

smaller magnitude. Furthermore, the magnitude of each {ss} is automatically controlled to 

keep the error resulting from the approximations required by the integration procedure 

below a user-defined tolerance. By using this approach, Equation 5.5 is replaced by Equation 

5.6. Note that, in this equation, [D{′n−1}] is used instead of [D], to highlight its dependency 

on the current (i.e. at the beginning of the sub-step) effective stress state, {′n−1}, and, 

consequently, the implicit nature of the stress-strain relation. Moreover, note that, for the 

present constitutive model, [D({′n−1})] is also a function of the current void ratio, e, as well 

as of the following set of elastic state parameters: effective stresses and void ratio at last 

shear reversal, {′SR} and eSR, respectively, as well as scaling factor N. With respect to the void 

ratio, its evolution is a function of the total volumetric strain, which is assumed to be known 

at the start of each sub-step increment. Due to this, and to simplify the presentation, the 
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dependency of [D] on e is not represented (although considered in the algorithm, as detailed 

in Section 5.2.7). Regarding {′SR}, eSR and N, these quantities are assumed to remain constant 

over a given sub-step increment, being only updated, if necessary, at the start of it, as detailed 

in Section 5.2.4. 

{′n} = [D({′n−1})] {ss} (5.6) 

Having determined effective stress increment for the current sub-step increment,  {′n}, an 

estimation of the current stress state, {′n}, can be obtained by adding  {′n} to the stress 

state at the beginning of the sub-step, {′n−1}, as indicated by Equation 5.7. 

{′n} = {′n−1} + {′n} (5.7) 

At this point, the initial assumption of purely elastic response (also known as “elastic trial”) 

should be checked. If the recently determined effective stress point, {′n}, lies within both 

the primary and secondary yield surfaces of the constitutive model (i.e. if both 

F1({′n}, {n}) ≤ YTOL and F2({′n},  p′ys) ≤ YTOL conditions hold true, where {n} is current 

the back-stress tensor (which remains constant during elastic trial), p’YS is the lower limit of 

the mean effective stress and YTOL is a very small positive user-defined yield function 

tolerance, usually in the range of 10-6 to 10-12), then {′n} is accepted. On the contrary, when 

F1({′n}, {n}) > YTOL and/or F2({′n},  p′ys) > YTOL, then elasto-plastic response should be 

considered, meaning that the initial assumption of purely elastic response is not acceptable. 

In such case, additional operations are required to compute {′n}, as detailed below. 

 
Figure 5.1 – Transition from purely elastic to elasto-plastic response (adapted from Potts and 

Zdravkovic, 1999). Note that the yield surface adopted in the present constitutive model plots as 
an open wedge in q – p’ plane. 

A typical situation where the effective stress point at the beginning of the sub-step, {′n−1}, 

is located inside the primary and secondary yield surfaces (i.e. F1({′n−1}, {}) < −YTOL and 

q
 (

kP
a)

p' (kPa)

{ 'n}={'n−1}+{'n}

F1 ({ 'n},{n}) = 0

F1 ({ 'n},{n}) = 0
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F2({′n−1},  p′ys) < −YTOL), but lies outside the primary yield surface at the end of the sub-

step increment (i.e. F1({′n}, {n}) > YTOL) is illustrated in Figure 5.1, where, as presented in 

Chapter 4, the primary yield surface is plotted as an open wedge (i.e. the elastic region is the 

shaded area within the two dashed dark grey lines corresponding to F1({′n}, {n}) =

−YTOL). When this situation happens, it is necessary to determine the effective stress state 

corresponding to the intersection of the stress path with the primary yield surface. In other 

words, it is necessary to find the portion  of the sub-step strain increment, {ss}, which 

moves the initial stress state, {′n−1}, to the primary yield surface, as given by Equation 5.8. 

Note that, in this equation, a more generic notation is employed. Specifically, since a similar 

situation where the effective stress point moves outside the yield surface may involve the 

secondary yield surface, the active yield surface condition is generically denoted as F (rather 

than by F1 or F2) and the set of state parameters is generically denoted as {kn} (rather than by 

{n} or  p′ys). In addition, it is noteworthy that, in this equation, a value of  = 0.0 would 

indicate that the initial stress state would be already on the yield surface (primary or 

secondary) at the beginning of the sub-step increment, meaning that the response would be 

elasto-plastic from the beginning of the sub-step increment. Conversely,  = 1.0 would mean 

that, after the elastic trial, the effective stress state, {′n} would lie on the active yield surface 

(i.e. the response would be purely elastic over the entire sub-step increment). In effect, when 

a transition from purely elastic to elasto-plastic response occurs during a given sub-step 

increment, as illustrated in Figure 5.1, the value of  should belong to the range ]0.0, 1.0[. 

 F({′n−1} +  [D{′n}] {ss}, {kn}) = 0.0 (5.8) 

Among other algorithms that have been proposed in the literature to solve Equation 5.8 

(Sloan, 1987; Potts and Zdravkovic, 1999), which is non-linear, Sloan et al. (2001) suggested 

the use of the Pegasus method introduced by Dowell and Jarratt (1972). As pointed out by 

Sloan et al. (2001), this algorithm is unconditionally convergent and does not required the use 

of second-order derivatives. Moreover, it is possible to accelerate its convergence rate by 

reducing the initial search interval of , as suggested by Hong et al. (2012), resulting in a very 

efficient method. Due to these advantages, this method was selected to implement into 

FEMEPDYN, with its formulation being described in Section 5.2.5.1. 

It may happen that one or both yield surfaces are already active at the beginning of the sub-

stress increment (i.e.  F({′n−1}, {kn−1}) ≤ YTOL), and the yield tolerance is exceeded at the 

end of the sub-step increment (i.e.  F({′n−1} + {′n}, {kn}) > YTOL). In such case, two 

alternative situations may have occurred: (a) the response is elasto-plastic over the entire 

sub-step increment (Figure 5.2a); or (b) unloading occurred first and, with further straining, 

the effective stress point has crossed the elastic region and has moved beyond the other 

projection of the yield surface (Figure 5.2b). 
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Figure 5.2 – Elasto-plastic loading (a) without a loading reversal and (b) with a loading reversal 

(adapted from Potts and Zdravkovic, 1999). 

While  is null in situation (a), its value is different from 0.0 in the situation (b). Therefore, it 

is necessary to identify which situation (a) or (b) has occurred. This can be done by checking 

whether an elasto-plastic unloading occurred during the sub-step increment. With that 

purpose, the strategy proposed by Potts and Zdravkovic (1999) and Sloan et al. (2001) was 

adopted. Note that, although other strategies to distinguish loading from unloading exist, the 

adopted methodology has been shown to be consistent with the sub-stepping stress 

integration scheme (Papadopoulos and Taylor, 1995; Luccioni et al., 2001). In this approach, 

the angle  between the active yield surface gradient, {𝜕F({′n−1}, {kn−1})/𝜕′}, and the trial 

effective stress increment, {′n} = {′n
e
}, as given by Equation 5.9, is firstly computed. 

cos  =
{
𝜕F({′n−1}, {kn−1})

𝜕′
} : {′n}

‖{
𝜕F({′n−1}, {kn−1})

𝜕′
}‖

2

‖{′n}‖2

 (5.9) 

where ‖ ‖2 refers to the Euclidian norm of a second-order tensor, defined as ‖{a}‖2 =

√{a}: {a} = √axx
2 + ayy

2 + azz
2 + 2 axy

2 + 2 axz
2 + 2 ayz

2 for a second-order tensor {a} =

{axx ayy axy azz axz ayz}T. 

Based on the obtained value for , the occurrence of elasto-plastic unloading is evaluated. 

Specifically, when  is smaller or equal to 90.0° (and, therefore, cos  ≥ 0.0), it is assumed 

that elastic-plastic unloading has not occurred. In such case, the response is elasto-plastic 

over the entire sub-step increment, with  being set to 0.0. On the contrary, when  is greater 

than 90.0° (and, therefore, cos  < 0.0), elasto-plastic unloading has occurred. A strategy is 

subsequently required to determine the value of . As pointed out by Potts and Zdravkovic 

(1999), when a sub-stepping scheme is employed, a simple approach would consist of 

q
 (

kP
a)

p' (kPa)
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restarting the sub-step increment with a successive smaller sub-step strain increment until an 

effective stress point lying inside both yield surfaces would be found (i.e. until a purely elastic 

response would be obtained). Having found this point, the calculation would proceed as 

usual, until an effective stress point lying outside of the yield surface being eventually found. 

At this point, however, the stress path would depart from the elastic domain and, therefore, 

the problem would be analogous to that described before (Figure 5.1), with several possible 

numerical algorithms being used to solve Equation 5.8, as mentioned before. In the present 

study, this strategy was deemed unnecessary. In fact, providing that the initial search interval 

of  is properly computed, the Pegasus method can be applied to unambiguously compute , 

without the need for reducing the sub-step strain increment, as detailed in Section 5.2.5.2. 

Having determined , the purely elastic portion of the sub-step strain increment is given by 

{n
e} =  {ss}. The remaining portion of the sub-step strain increment, (1.0− ) {ss}, is 

associated with elasto-plastic response. It is, therefore, necessary to integrate the elasto-

plastic constitutive matrix, [Dep], over that portion of the sub-step strain increment, as well 

as over the remaining portion of the total strain increment that has not yet been integrated, 

together denoted by {ep} in Equation 5.10. Note that [Dep] is a function of the effective 

stress state, {′}, as well as of all elastic and plastic state parameters of the constitutive 

model. Moreover, note that, contrary to the elastic state parameters (i.e. {′SR}, eSR and N), 

the plastic state parameters of the present constitutive model (i.e. the back-stress ratio 

tensor, {}, the isotropic and deviatoric components of the shearing-induced fabric tensor, fp 

and {f}, respectively, as described in Chapter 4) – may vary during an elasto-plastic sub-step 

increment. Therefore, as shown in Equation 5.10, it is convenient to represent the 

dependency of [Dep] on the effective stress state, {′}, as well as on the state parameters 

associated with the yield surfaces and with the gradients of the plastic potentials, generically 

represented as {k} and {m}, respectively. 

{′} = [Dep({′}, {k}, {m})] {ep} (5.10) 

Similar to the integration of the elastic constitutive matrix (Equation 5.5), a sub-stepping 

modified forward Euler scheme is used to solve Equation 5.10, which should, in such case, be 

written as Equation 5.11 (where {ss
ep} is the elasto-plastic sub-step strain increment). This 

scheme guarantees that the errors resulting from the approximations made during the 

evaluation of the effective stress increment and evolution of state parameters remain below 

a user-defined tolerance, as detailed in Section 5.2.2. 

{′n} = [Dep({′n−1}, {kn−1}, {mn−1})] {ss
ep} (5.11) 

As the integration of the elasto-plastic constitutive matrix is concluded, the effective stresses, 

plastic strains and sets of state parameters are updated, as given by Equation 5.12 to 5.15, 

respectively. 

{′n} = {′n−1} + {′n} (5.12) 
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{n
p} = {n−1

p } + {n
p} (5.13) 

{kn} = {kn−1} + {kn} (5.14) 

{mn} = {mn−1} + {mn} (5.15) 

where {′n−1} and {n−1
p }, {kn−1} and {mn−1} represent, respectively, the effective stresses, 

plastic strains and state parameters associated with the yield surfaces and with the gradients 

of the plastic potentials at the beginning of a given sub-step increment. 

At this point, two additional verifications are required. Firstly, if a single yield surface was 

active at the beginning of the sub-step increment, it is necessary to check whether the 

effective stress point did not move outside of the initially non-active yield surface. If that 

happens, then it is necessary to estimate the portion of the sub-step strain increment that 

results in an effective stress point lying on the newly activated yield surface. This problem is 

similar to that occurring during the elastic trial, when the stress path intersects one yield 

surface. Therefore, the Pegasus method (Dowell and Jarratt, 1972) is also employed to solve 

this problem, as detailed in Section 5.2.6.2. In addition, it is necessary to verify that the 

effective stress point does not lie outside of the active yield surface(s) at the end of the sub-

step increment. In fact, due to the approximate nature of the integration scheme used to 

solve Equation 5.10, it may happen that the combination of final stresses and state 

parameters does not satisfy one (or both) yield condition(s) (i.e. F1({′n}, {n}) > YTOL 

and/or F2({′n},  p′ys) > YTOL may occur). This situation is usually referred to as “yield 

surface drift” (Potts and Zdravkovic, 1999; Sloan et al., 2001). In this case, a correction should 

be applied to bring the effective stress point back to the yield surface. Among the several 

different iterative methods proposed in the literature (e.g. Potts and Gens, 1985; Crisfield, 

1991; Potts and Zdravkovic, 1999; Sloan et al., 2001; Hong et al., 2012), an extension of the 

one proposed by Sloan et al. (2001) was implemented into FEMEPDYN, as presented in 

Section 5.2.6.3. 

Having finally obtained the correct effective stresses, plastic strains and state parameters, a 

new sub-step increment is applied until the total strain increment, {}, is fully applied. 

5.2.2 A modified forward Euler integration scheme with automatic sub-stepping 

and error control 

The application of the well-known modified forward Euler approximation to the explicit stress 

integration of elasto-plastic constitutive relationships was originally proposed by Sloan 

(1987). An updated version of that approach was presented by Sloan et al. (2001). As 

mentioned by the authors, this scheme is very attractive, since it attempts to control the 

errors arising from the estimation of the effective stress change and state parameter 

evolution by using a measure of those errors to automatically divide the strain increment into 

smaller or greater sub-steps. More specifically, in this scheme, a pseudo time, Tn, belonging 

to the range 0.0 ≤ Tn ≤ 1.0, is defined, with Tn = 0.0 and Tn = 1.0 denoting the beginning 
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and the end of the integration process, respectively. The evolution of Tn is controlled by the 

pseudo-time step, Tn, which belongs to the range 0.0 < Tn ≤ 1.0. This quantity is used to 

divide the strain increment, {}, into a series of smaller sub-step strain increments, {ss}, 

as given by Equation 5.16. This means that the integration is performed between the pseudo 

time Tn−1 and Tn = Tn−1 + Tn, where the subscripts “n – 1” and “n” denote the start and the 

end of sub-step n, respectively. It is initially assumed that a single sub-step increment is 

sufficient to perform the integration and, therefore, Tn is initially set to 1.0. As detailed later, 

accurate integration of the stress-strain relationship may require more than a single sub-step 

increment and, in such case, the integration process may need to be repeated using a reduced 

value of Tn, determined based on the error obtained in a rejected sub-step. 

{ss} = Tn {} (5.16) 

Since, in the present study, this method was employed during both elastic trial and elasto-

plastic response (i.e. to solve both Equation 5.5 and 5.10), a distinction is subsequently made 

between the sub-step strain increment used during elastic trial, {ss}, and the sub-step strain 

increment used during elasto-plastic response, {ss
ep}, which is given by Equation 5.17. Note, 

nevertheless, that the same principle applies: the initial increment is sub-divided into smaller 

sub-step strain increments, {ss
ep}, by using a pseudo-time step, Tn

ep (where the superscript 

“ep” refers to elasto-plastic). Note also that, since sub-stepping in the plastic region should 

not move the effective stress point back to the elastic region, the strain increment associated 

with elasto-plastic response, {ep}, is given by the sum of the portion of the total strain 

increment that has not yet been integrated (i.e. (1.0− Tn−1) {}) with the remaining portion 

of the current sub-step strain increment, (1.0− ) {ss} = (1.0− )Tn {}. 

{ss
ep} = Tn

ep{ep} = Tn
ep [(1.0− Tn−1) + (1.0− ) Tn] {} (5.17) 

Given the effective stress state at the beginning of a given sub-step increment, {′n−1}, as 

well as sets of state parameters associated with the yield surfaces and with the gradients of 

the plastic potentials at the beginning of that sub-step increment, denoted as {kn−1} and 

{mn−1}, respectively, a first-order approximation of the effective stress change, {′n
(1)
}, can 

be obtained by Equation 5.18a for purely elastic response (i.e. during elastic trial), or, 

similarly, by Equation 5.18b for elasto-plastic response. Furthermore, in the latter case, a first 

order estimation of the plastic strain change, {n
p (1)}, can be computed by Equation 5.19 and 

the evolution of the set of state parameters associated with the yield surfaces, {kn
(1)}, by 

Equation 5.20. Note that, to keep the presentation general, it is assumed that the evolution 

of {kn
(1)} depends on {n

p (1)}. This is not the case of perfect plasticity (as considered for the 

secondary yield surface of the present constitutive model), where the set of state parameters 

remains constant. It is, however, the case of strain hardening/softening plasticity (which is 

the case of the primary yield surface of the present constitutive model) and work 

hardening/softening plasticity, which depend on the accumulated plastic work and, 
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therefore, on the plastic strains. Further details on this topic are discussed in Potts and 

Zdravkovic (1999). In addition, note that, although the set of parameters associated with the 

gradients of the plastic potentials, {m}, also evolves during sub-stepping, for simplicity of the 

presentation, its evolution is omitted from the set of equations shown below. In effect, as 

detailed later, {m} is not required by the “consistency condition” (according to which the 

effective stress point should remain on, at least, one of the yield surfaces during elasto-plastic 

response) and, therefore, can be considered less important to the presentation of this 

integration scheme. 

{′n
(1)} = [D({′n−1})] {ss} (5.18a) 

{′n
(1)} = [Dep({′n−1}, {kn−1}, {mn−1})] {ss

ep} (5.18b) 

{n
p (1)} = ({′n−1}, {kn−1}, {mn−1}, {ss

ep}) {
𝜕P({′n−1}, {mn−1})

𝜕′
} (5.19) 

{kn
(1)} = {k({n

p (1)})} (5.20) 

where  ({′n−1}, {kn−1}, {mn−1}, {ss
ep}) and {𝜕P({′n−1}, {mn−1})/𝜕′} are, respectively, the 

plastic multiplier and gradient of the plastic potential. 

Using the above quantities, the effective stress state, {′n
(1)} (Equation 5.21), as well as plastic 

strains, {n
p (1)} (Equation 5.22), and set of state parameters, {kn

(1)} (Equation 5.23), during 

elasto-plastic response, are temporarily updated. 

{′n
(1)} = {′n−1} + {′n

(1)
} (5.21) 

{n
p (1)} = {n−1

p } + {n
p (1)} (5.22) 

{kn
(1)} = {kn−1} + {kn

(1)} (5.23) 

Additionally, the newly-computed effective stress state, {′n
(1)}, is used to update the elastic 

constitutive matrix, [D({′n
(1)})]. Similarly, during elasto-plastic response, the elasto-plastic 

constitutive matrix, [Dep({′n
(1)}, {kn

(1)}, {mn
(1)})], is updated using {′n

(1)}, {kn
(1)} and {mn

(1)}. 

A second-order forward Euler approximation is subsequently obtained using the updated 

quantities, as indicated by Equation 5.24 to 5.26. 

{′n
(2)
} = [D({′n

(1)})] {ss} (5.24a) 

{′n
(2)
} = [Dep({′n

(1)}, {mn
(1)}, {kn

(1)} )] {ss
ep} (5.24b) 

{n
p (2)} = ({′n

(1)}, {kn
(1)}, {mn

(1)}, {ss
ep}) {

𝜕P({′n
(1)}, {mn

(1)})

𝜕′
} (5.25) 

{kn
(2)} = {k({n

p (2)})} (5.26) 
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A more accurate modified forward Euler approximation of the effective stress change, {′n}, 

plastic strain evolution, {n
p}, and state parameter evolution, {kn} for the current sub-step 

increment can now be obtained by Equation 5.27 to 5.29. 

{′n} =
{′n

(1)
} + {′n

(2)
}

2
 (5.27) 

{n
p} =

{n
p (1)} + {n

p (2)}

2
 (5.28) 

{kn} =
{kn

(1)} + {kn
(2)}

2
 (5.29) 

Furthermore, as discussed by Sloan (1987) and Sloan et al. (2001), since the local truncation 

error associated with the first-order forward Euler approximation (i.e. Equations 5.21 to 5.23) 

and modified second-order forward Euler approximation (i.e. Equations 5.27 to 5.29) are of 

order O(Tn
2) and O(Tn

3), respectively, the local error in effective stress change, E, can be 

estimated from Equation 5.30, while the local error in computation of the state parameter 

evolution, Ek, can be approximated by Equation 5.31. 

E ≈
1

2
({′n

(2)
} − {′n

(1)
}) (5.30) 

Ek ≈
1

2
({kn

(2)} − {kn
(1)}) (5.31) 

Thus, the relative error in the modified forward Euler approximation of the effective stresses, 

R, and set of state parameters, Rk, can be obtained from Equations 5.32 and 5.33, 

respectively. A maximum relative error, R, can, therefore, be computed using Equation 5.34. 

 R ≈
1

2

‖({′n
(2)
} − {′n

(1)
})‖

2

‖{′n−1} + {′n}‖2

 (5.32) 

 Rk ≈
1

2

‖({kn
(2)} − {kn

(1)})‖
2

‖{kn−1} + {kn}‖2
 (5.33) 

 R = max{R, Rk} (5.34) 

where ‖ ‖2 refers to the Euclidian norm of a second-order tensor, as defined before. 

This error is used to decide whether the current sub-step increment is accepted or not. 

Specifically, this error is checked against a user-defined tolerance, SSTOL, which is typically in 

the range of 10-2 to 10-5, according to Sloan (1987) and Potts and Zdravkovic (1999). If  R =

max{R, Rk} > SSTOL, then the current sub-step increment is rejected and a new iteration is 

performed using a reduced pseudo-time step, Tn
new (Equation 5.35).  

Tn
new =  Tn (5.35) 

Note, however, that the choice of the Tn
new is not arbitrary. On the contrary, the reduction 

factor  can be related to the maximum relative error obtained in the present iteration, R, 
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and the one expected to be obtained in the next iteration, Rnew, as indicated by Equation 5.36. 

Moreover, considering that newR  should be smaller or equal to SSTOL, an upper limit for  can 

be defined (Equation 5.37). 

 Rnew ≈ 
2 R (5.36) 

  ≤ √
SSTOL

R
 (5.37) 

Although it would be possible to use this upper limit to determine the value of  and, 

therefore, the value of Tn
new to be used in the following sub-step increment, a conservative 

choice for this value has been proposed by several authors (Sloan, 1987; Potts and Zdravkovic, 

1999; Sloan et al., 2001), to minimise the number of rejected sub-step increments. In 

particular, the latter authors proposed to reduce the value computed by Equation 5.37 by a 

value of 0.9. In addition, to avoid excessive the oscillations in the pseudo-time step, the 

authors suggested limiting its reduction to 0.1. Both conditions are indicated in Equation 5.38. 

  = max{0.9 √
SSTOL

R
, 0.1} (5.38) 

Finally, to add extra control to the procedure, a minimum pseudo-time step, Tn,min, can be 

used, as indicated by Equation 5.39. This condition enforces that the integration of the 

constitutive model is performed, even when an error smaller than SSTOL is not attained. A 

value of Tn,min = 10−4 was suggested by Sloan et al. (2001), while a less conservative value 

of Tn,min = 10−3 was used by Andrianopoulos et al. (2010a) when applying this procedure to 

integrate a bounding surface plasticity model. It should be mentioned that, in general, this 

condition is very rarely invoked. In fact, it was added essentially for robustness of the 

algorithm (Sloan et al., 2001). 

Tn+1 = max  { Tn,Tn,min} (5.39) 

Having defined Tn+1, the integration procedure is repeated from Equation 5.16, now using 

Tn = Tn+1. 

When the current sub-step increment is accepted (which, in general, means that R =

max{R, Rk} ≤ SSTOL), the effective stresses, plastic strains, and state parameters are 

updated, as given by Equation 5.40 to 5.42, respectively. 

{′n} = {′n−1} + {′n} (5.40) 

{n
p} = {n−1

p } + {n
p} (5.41) 

{kn} = {kn−1} + {kn} (5.42) 

As mentioned before, at this point of the stress integration, some additional verifications are 

required. Specifically, when this procedure is applied to the initial estimation of purely elastic 
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response (i.e. to integrate the elastic constitutive matrix, [D({′})]), it is necessary to verify 

whether the updated effective stress state, {′n} (Equation 5.40) in conjunction with the set 

of state parameters, {kn} (which do not change during purely elastic loading), is located inside 

or on the yield surfaces of the constitutive model – i.e. for a two-yield surface model, whether 

both F1({′n}, {k1, n}) ≤ YTOL and F2({′n}, {k2, n}) ≤ YTOL conditions hold true. If that is not 

the case, then the intersection with yield surface(s) need to be determined. Conversely, when 

this procedure is applied to the estimation of the elasto-plastic response (i.e. to integrate the 

elasto-plastic constitutive matrix, [Dep({′}, {k}, {m})]), two additional verifications should be 

performed. Firstly, supposing that only the primary yield surface is active during a given sub-

step increment, which is typically the case of the present constitutive model, it should be 

checked whether the updated effective stress state, {′n}, remains inside the secondary yield 

surface (i.e. F2({′n}, {k2, n}) ≤ YTOL). If that is not the case, then a procedure is necessary to 

estimate a reduction to the pseudo-time step, Tn, which results in an effective stress point 

located at the intersection between both yield surfaces. The second verification to be 

performed during elasto-plastic response concerns the possible occurrence of yield surface 

drift. In fact, due to the approximations inherent to the numerical algorithm, it can happen 

that the updated effective stress state, {′n}, is located outside of the active yield surface(s), 

violating one of the fundamental principles of the elasto-plasticity theory (i.e. the consistency 

condition). In such case, a procedure is required to bring the effective stress point back to the 

active yield surface(s). 

Having performed the aforementioned verifications, the pseudo time can be finally updated 

(Equation 5.43). 

Tn = Tn−1 + Tn (5.43) 

If Tn = 1.0, then the integration is complete. Otherwise, the integration must proceed with a 

new sub-step increment. Similar to the situation where the sub-step increment fails, the size 

of the new pseudo-time step, Tn+1, can be defined by Equation 5.38 and 5.39. However, in 

this case, an upper limit to this quantity should be set to allow for a better control of the 

numerical procedure. Specifically, as proposed by Sloan et al. (2001), when the previous sub-

step increment failed, no increase of Tn+1in relation to Tn should be permitted. On the 

contrary, when the previous sub-step increment was successful, Tn+1 is allowed to be 

greater than Tn. Nevertheless, the growth in Tn+1 is limited to a value 10% greater than 

Tn. These conditions are indicated by Equation 5.44a and 5.44b, respectively. In addition, it 

should be guaranteed that the new pseudo-time step does not exceed 1.0 at the end of the 

following sub-step increment (i.e. Tn + Tn+1 ≤ 1.0, as indicated by Equation 5.45). 
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If the previous sub-step increment or the one before the previous failed, then:  

  = min{0.9 √
SSTOL

R
, 1.0} 

(5.44a) 

otherwise: 

  = min{0.9 √
SSTOL

R
, 1.1} 

(5.44b) 

Tn+1 = min{ Tn,  1.0− Tn} (5.45) 

5.2.3 Initialisation of the elastic and plastic state parameters 

Before starting the integration procedure, it is necessary to initialise the elastic and plastic 

state parameters of the constitutive model. For the present bounding surface plasticity 

model, the non-linear elastic component depends on the effective stress state, strain state 

and void ratio at a reference state, respectively {′SR}, {SR} and eSR. As suggested by 

Papadimitriou and Bouckovalas (2002), this reference state is initially set to coincide with the 

initial state, as indicated by Equation 5.46, 5.47 and 5.48. Moreover, as detailed in the 

following section, it is updated whenever a shear strain reversal occurs. The subscript “SR” is, 

therefore, used to refer to “last shear reversal”. In addition, the elastic component of the 

model uses a scaling factor, N. This value is initially set to 1.0. Once the first shear strain 

reversal is detected, the value of this scalar quantity is changed to 2.0, remaining constant 

thereafter. 

{′0
SR} = {′0} = {′xx,0   ′yy,0   xy,0   ′zz,0   xz,0   yz,0}

T
 (5.46) 

{0
SR} = {0} = {0.0   0.0   0.0   0.0   0.0   0.0}T (5.47) 

e0
SR = e0 (5.48) 

Regarding the plastic state parameters of the bounding surface plasticity model, the back-

stress tensor, {}, which defines the axis of the primary yield surface, is set to coincide with 

the initial stress ratio tensor, as given by Equation 5.49. 

{0} = {r0} = {
′xx,0 − p′0

p′0
   

′yy,0 − p′0
p′0

   
xy,0

p′0
   

′zz,0 − p′0
p′0

   
xz,0

p′0
   

yz,0

p′0
}

T

 (5.49) 

Furthermore, since the previous cyclic shearing history is unknown at the start of the analysis, 

both isotropic and deviatoric components of shearing-induced fabric tensor, as well as the 

constant C, required to determine the evolution of its deviatoric component, are initially set 

to be null, as given by Equation 5.50, 5.51 and 5.52, respectively. 

fp,0 = 0.0 (5.50) 

{f0
} = {0.0   0.0   0.0   0.0   0.0   0.0}T (5.51) 

C0 = 0.0 (5.52) 
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Although the shearing-induced fabric index, H, is constant throughout the analysis, it needs 

to be set independently to each Gauss point, since it depends on the material’s initial state, 

as indicated by Equation 5.53: 

 H = H0 (
′1,0

p′ref
)

−

〈−
0
〉 ≤ Hmax (5.53) 

where ’1,0 is the initial major principal effective stress and 0 is the initial value of the state 

parameter. 

In relation to the inherent fabric tensor, FA, which quantifies the anisotropy related to the 

orientation of sand particle distribution in 3D stress space, it is considered a material 

constant, rather than a state parameter. Consequently, similar to the shearing-induced fabric 

index, H, it is only required to set its value at the start of the analysis, based on the value of 

the model parameter a (Equation 5.54). 

{FA} = {
1

2
(1 − a)   a   0.0   

1

2
(1− a)   0.0   0.0}

T

 (5.54) 

5.2.4 Detection of a shear strain reversal and update of the elastic state 

parameters 

Since the present model includes a non-linear cyclic (i.e. hysteretic) component, a check for 

the occurrence of a shear strain reversal is performed in every sub-step increment, before 

determining the tangent elastic shear and bulk moduli, Gtan and Ktan, respectively. Note that 

these quantities are used to compute the elastic constitutive matrix, [D({′})], during elastic 

trial, as well as the the elasto-plastic constitutive matrix, [Dep({′}, {k})], during elasto-plastic 

response. 

According to the methodology proposed by Papadimitriou and Bouckovalas (2002), the 

distance 
ref
e  (Equation 5.55) between the current deviatoric strain, {e} = {} − 1.0/3.0 v{I}, 

and the deviatoric strain at last shear reversal point, {eSR} = {SR} − 1.0/3.0 v{I}, measured 

in the deviatoric strain plane, is used to detect the occurrence of a shear strain reversal. 


ref
e = √

1

2
‖{e} − {eSR}‖2 = √

1

2
√({e} − {eSR}):({e} − {eSR})

= √
1

2

√
  
  
  
  
  
  
  
  
 

[(xx −
1

3
v) − (xx

SR −
1

3
v

SR)]
2

+

[(yy −
1

3
v) − (yy

SR −
1

3
v

SR)]
2

+

[(zz −
1

3
v) − (zz

SR −
1

3
v

SR)]
2

+

2[xy − xy
SR]

2
+ 2[xz − xz

SR]2 + 2[yz − yz
SR]

2

 

(5.55) 
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where: 

v = xx + yy + zz (5.56) 

v
SR = xx

SR + yy
SR + zz

SR (5.57) 

More specifically, this distance is evaluated using both the strain state at the beginning of the 

sub-step increment, {n}, and the strain state at the end of that sub-step increment, {n−1} +

{ss} = {n−1} + Tn {}, with the values of 
ref
e = √

1

2
‖{en−1} − {eSR}‖2 and 

ref
e+e =

√
1

2
‖{en−1} + Tn {e} − {eSR}‖2 being computed, respectively. If 

ref
e > 

ref
e+e, then the 

occurrence of a shear strain reversal is flagged and the effective stresses, strains and void 

ratio at last shear reversal, {′SR}, {SR} and eSR, respectively, are updated with their values at 

the beginning of the sub-step increment. In addition, the scaling factor N is set to 2.0. Note, 

however, that in case the current sub-step increment is rejected and, consequently, the sub-

stepping needs to be restarted (as detailed in Section 5.2.2), the changes in the values of the 

elastic state parameters are reverted (i.e. the previous values of these quantities are re-

assigned). Naturally, this implies a temporary storage of the values of the elastic state 

parameters before performing this check. 

As pointed out by Taborda (2011), since the value determined by Equation 5.55 is always non-

negative, particular attention should be given to the situation in which the norm of the 

deviatoric part of the strain increment, denoted by e (Equation 5.58), is larger than 
ref
e . In 

such situation, a shear reversal may not be detected by using solely the aforementioned 

methodology.  

e = √
1

2
‖Tn {e}‖2 = √

1

2
Tn √{e}:{e}

= √
1

2
Tn √exx

2 + eyy
2 + ezz

2 + 2exy
2 + 2exz

2 + 2eyz
2 

(5.58) 

For instance, supposing the initial strain state {n−1} = {0.0   0.0   0.01   0.0   0.0   0.0}T, the 

strain state at last shear reversal {SR} = {0.0   0.0   0.0   0.0   0.0   0.0}T, the strain increment 

{ss} = {0.0   0.0   -0.03   0.0   0.0   0.0}T and a pseudo-time step Tn = 0.75, the distances 


ref
e  and 

ref
e+ewould be, respectively, given by: 


ref
e = √

1

2
‖{en−1} − {e

SR}‖2 = √
1

2
√2 (0.01 − 0.0)2 = 0.01 (5.59) 
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ref
e+e = √

1

2
‖{en−1} + Tn {e} − {eSR}‖2 = √

1

2
√2 (0.01 − 0.75 × 0.03 − 0.0)2

= 0.0125 

(5.60) 

Since 
ref
e < 

ref
e+e, a shear reversal would not be indicated, even though a purely deviatoric 

strain increment with the opposite direction of the current purely deviatoric strain state had 

been applied. Note, however, that, in this case, e > 
ref
e ., as shown below: 

e = √
1

2
‖Tn {e}‖2 = √

1

2
√2 (0.75× 0.03)2 = 0.0225 > 0.01 (5.61) 

It is, therefore, clear that an additional verification is required for these particular situations. 

In the present study, a methodology similar to that proposed by Taborda (2011) is employed. 

Specifically, a reduction to the sub-step strain increment, R Tn {}, where R is a positive 

number smaller than 1.0, is applied until a value of R e = R e (Equation 5.62) smaller than 


ref
e  is found. 

R e = √
1

2
‖R Tn {e}‖2 = √

1

2
R Tn √{e}:{e} = R e (5.62) 

As this condition is verified, 
ref
e+R e (Equation 5.63) is used to detect the occurrence of a shear 

reversal (which occurs if 
ref
e > 

ref
e+R e). 


ref
e+R e = √

1

2
‖{en−1} + R Tn {e} − {eSR}‖2

= √
1

2
√({en−1} + R Tn {e} − {eSR}):({en−1} + R Tn {e} − {eSR})  

(5.63) 

Furthermore, as mentioned by Taborda (2011), care must be taken to prevent the detection 

of false shear reversals, which may result in overshooting (i.e. in the computation of a stiffer 

response than the one that should have been registered). To minimise the occurrence of such 

undesirable phenomenon, the author suggested to introduce a very small tolerance, RTOL, 

which determines whether the shear strain reversal detection is undertaken or not. More 

specifically, when e ≤ RTOL, the algorithm used to detect the occurrence of a shear reversal 

is not performed. Note that a value of 10-7 for RTOL was deemed appropriate for all 

calculations performed in the present study. 



IMPLEMENTATION OF A BOUNDING SURFACE PLASTICITY MODEL INTO A FINITE ELEMENT CODE AND ITS 

VALIDATION 

274 
 

5.2.5 Elastic trial 

5.2.5.1 Yield surface intersection 

As suggested by Sloan et al. (2001) and described in Section 5.2.1, during the elastic trial, the 

Pegasus method (Dowell and Jarratt, 1972) is employed to solve the yield surface intersection 

(Equation 5.8). As pointed out by the authors, this method is a modification of the well-known 

“false position” method (also known as “regula falsi” method). While keeping the two main 

merits of the original method of being unconditionally convergent and non-requiring the use 

of derivatives, it appears to show a superior rate of convergence. Indeed, as suggested by 

suggested by Hong et al. (2012), the convergence rate can be further enhanced when 

reducing the size of the search interval of the method. In such case, prior to the application 

of the Pegasus method, a proper set of values (inf) and (sup), which locate, respectively, the 

current effective stress state inside the yield surface (i.e.  F({′n−1} + 
(inf) 

[D({′n})] {ss}, {kn}) < −YTOL), and outside of it (i.e.  F({′n−1} + 
(sup) 

[D({′n})] {ss}, {kn}) > YTOL) are defined by using the following procedure, which is similar 

to that outlined by Hong et al. (2012): 

1) Enter with the sub-step strain increment, {ss}, effective stresses and set of state 

parameters at the beginning of the increment, {′n−1} and {kn−1}, respectively. 

Initialise the lower and upper limits for the Pegasus method to (inf) = 0.0 and (sup) =

1.0, respectively, as well as the value of an auxiliary variable 
save

= 
(sup) = 1.0. 

2) Apply the modified forward Euler scheme to estimate the effective stress change, 

{′n}, corresponding to  (sup) [D({′n})] {ss}. Note that the plastic state 

parameters remain constant during the integration of the elastic constitutive matrix 

(i.e. under purely elastic response) and, therefore, {kn} = {kn−1} at this stage. 

Determine the corresponding value of the yield function: F({′n−1} + {′n}, {kn}). 

3) If F({′n−1} + {′n}, {kn}) > YTOL, then the effective stress point is located outside 

the yield surface. In such situation, the search interval can be reduced. Update 
save

=


(sup) and reduce the upper limit of the search range to (sup) = 0.9 (sup). Return to 

step 2). 

Else, if F({′n−1} + {′n}, {kn}) < −YTOL, then the effective stress point is located 

inside the yield surface. Therefore, the actual value of (sup) can be used as the lower 

limit for the search range of the Pegasus method (i.e. (inf) = 
(sup)). The value of  

corresponding to the previous iteration defines the upper limit of the input range for 

the Pegasus method (i.e. (sup) = 
save

). Move to step 4). 

Else, if |F({′n−1} + {′n}, {kn})| ≤ YTOL, then the yield surface intersection was 

found. Set (inf) = 
(sup). 

4) Exit with the input range for the Pegasus method: [(inf), (sup)]. 
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Having defined its input range, the Pegasus method, originally proposed by Dowell and Jarratt 

(1972) and adapted by Sloan et al. (2001) to the estimation of the yield surface point is 

applied. This method consists of the following sequence of operations: 

1) Enter with the sub-step strain increment, {ss}, effective stresses and set of state 

parameters at the beginning of the increment, {′n−1} and {kn−1}, respectively, the 

input range for the Pegasus method, [(inf), (sup)], and a maximum number of 

iterations for this scheme, Niter,max. 

2) Apply the modified forward Euler scheme to estimate the effective stress change, 

{′n}, corresponding to  (inf) [D({′n})] {ss}, as well as to  (sup) [D({′n})] {ss}. 

Determine the corresponding values of the yield function: F(inf) = F({′n−1} + 
(inf) 

[D({′n})] {ss}, {kn}) and F(sup) = F({′n−1} + 
(sup) [D({′n})] {ss}, {kn}). 

3) If the number of iterations, Niter, is smaller than the maximum allowed, Niter,max, (i.e. 

Niter < Niter,max), then compute a new value for  by linear interpolation:  = 
(sup) −

F(sup) ((sup) − 
(inf)) (F(sup) − F(inf))⁄ . Apply, once again, the modified forward Euler 

scheme to estimate the effective stress change, {′n}, corresponding to 

 [D({′n})] {ss}, and determine the corresponding value of the yield function: F =

F({′n−1} +  [D({′n})] {ss}, {kn}). 

Else, if Niter = Niter,max, then the maximum number of iterations were reached. Print 

an error message and stop. 

4) If |F| ≤ YTOL, then the intersection with the yield surface was found. Move to step 5). 

Otherwise, set new values and proceed to a new iteration: 

a) if F F(sup) < 0.0, which means that an effective stress point inside the elastic region 

was found when using  {ss}, while a point outside the elastic region was found 

when using (sup) {ss}, then set (inf) =  and F(inf) = F; the values of (sup) and 

F(sup) remain unchanged; 

b) otherwise, set (sup) =  and F(sup) = F, while scaling down the value of F(inf) by 

the factor F(sup) (F(sup) + F)⁄  to prevent the retention of an end-point (Dowell and 

Jarratt, 1972), note that this strategy is the only difference between the Pegasus 

method and its precedent false position method (Dowell and Jarratt, 1972); note 

also that, in this case, (inf) remains unchanged. 

5) Exit with the portion of the sub-step strain increment that is purely elastic, , as well 

as with the effective stress state lying on the yield surface, {′n−1} +  

[D({′n})] {ss}. 

Three additional notes should be provided. Firstly, it should be highlighted that, for a 

constitutive model employing two yield surfaces, a transition from purely elastic to elasto-

plastic response is considered to occur in any of the three different situations listed below: 
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i) Activation of the primary yield surface: 

F1({′n−1}, {k1, n−1}) < −YTOL and F1({′n−1} + {′n}, {k1, n}) > YTOL in 

conjunction with F2({′n−1} + {′n}, {k2, n}) ≤ YTOL. 

ii) Activation of the secondary yield surface: 

F2({′n−1}, {k2, n−1}) < −YTOL and F2({′n−1} + {′n}, {k2, n}) > YTOL in 

conjunction with F1({′n−1} + {′n}, {k1, n}) ≤ YTOL. 

iii) Activation of both yield surfaces: 

F1({′n−1}, {k1, n−1}) < −YTOL and F1({′n−1} + {′n}, {k1, n}) > YTOL in 

conjunction with F2({′n−1}, {k2, n−1}) < −YTOL and F2({′n−1} + {′n}, {k2, n}) >

YTOL. 

However, note that in any of the three aforementioned cases, the effective stress point is 

inside both yield surfaces at the beginning of the increment. 

Secondly, due to the co-existence of two yield surfaces, it can happen that the trial elastic 

stress path intersects both primary and secondary yield surfaces. In such a case, two 

independent computations (one for each yield surface) should be performed. Depending on 

the positions of the yield surfaces and on the followed stress path, the intersection may occur 

firstly with the primary yield surface or with the secondary yield surface or, even, with both 

yield surfaces concurrently. To assess which surface is firstly intersected, the norm of the 

effective stress increment moving the initial effective stress point to the primary yield surface 

– i.e. ‖{′n, 1}‖2
= ‖

1
 [D({′n})] {ss}‖2

= 
1
 ‖[D({′n})] {ss}‖2 – can be compared 

with the norm of the effective stress increment moving the initial effective stress point to the 

secondary yield surface – i.e. ‖{′n, 2}‖2
= 

2
 ‖[D({′n})] {ss}‖2 – where 1 and 2 have 

a similar meaning to that of . The smallest value indicates which yield surface is intersected 

first, with the corresponding effective stress increment (i.e. {′n, 1} or {′n, 2}) and value of 

 (i.e. 1 or 2) being used in the subsequent stage of the analysis. Naturally, it may also 

happen that ‖{′n, 1}‖2
= ‖{′n, 2}‖2

, meaning that the trial effective stress path intersects 

both yield surfaces simultaneously. The computation of the norm of the effective stress 

increment, ‖{′n}‖2 is indicated in Equation 5.64. 

‖{′n}‖2 = √{′n}:{′n}

= √′xx
2
+ ′yy

2
+ ′zz

2
+ 2′xy

2
+ 2′xz

2
+ 2′yz

2
 

(5.64) 

Finally, a third note is related to the convergence of the process. According to the author 

experience, convergence is usually attained in less than 5 iterations. 

5.2.5.2 Detection of an elasto-plastic unloading 

As described in Section 5.2.1, a purely-elastic to elasto-plastic transition may also occur when 

an effective stress point initially lying on one or on both yield surfaces (i.e. F({′n−1}, {k}) ≤
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YTOL) is subjected to an effective stress path that initially moves the point to the interior of 

the yield surface and, with further straining, moves the point to the exterior of one of the 

yield surface (i.e.  F({′n−1} + {′n}, {k}) ≤ YTOL). As also mentioned, following the 

methodology proposed by Potts and Zdravkovic (1999) and Sloan et al. (2001), to identify the 

occurrence of such situation, the angle  between the active yield surface gradient, 

{𝜕F({′n−1}, {k})/𝜕′}, and the elastic effective stress increment, {′e}, is computed by 

Equation 5.9. When  is greater than 90.0° (and, therefore, cos  < 0.0), an elasto-plastic 

unloading is flagged. 

It should be highlighted that, for the present constitutive model, which employs two yield 

surfaces, an elasto-plastic unloading followed by a transition from purely elastic to elasto-

plastic response is considered to occur in any of the situations listed below: 

i) elasto-plastic unloading from the primary yield surface: |F1({′n−1}, {k1, n−1})| ≤ YTOL 

and cos 1 < 0.0, with subsequent activation of the primary and/or secondary yield 

surface, F1({′n−1} + {′n}, {k1, n}) > YTOL and/or F2({′n−1} + {′n}, {k2, n}) >

YTOL, respectively; 

ii) elasto-plastic unloading from the secondary yield surface:  |F2({′n−1}, {k2, n−1})| ≤

YTOL and cos 2 < 0.0, with subsequent activation of the primary and/or secondary 

yield surface, F1({′n−1} + {′n}, {k1, n}) > YTOL and/or F2({′n−1} +

{′n}, {k2, n}) > YTOL, respectively; 

iii) elasto-plastic unloading from both primary and secondary yield surfaces: 

|F1({′n−1}, {k1, n−1})| ≤ YTOL and cos 1 < 0.0, as well as |F2({′n−1}, {k2, n−1})| ≤

YTOL and cos 2 < 0.0, with subsequent activation of the primary and/or secondary 

yield surface, F1({′n−1} + {′n}, {k1, n}) > YTOL and/or F2({′n−1} +

{′n}, {k2, n}) > YTOL, respectively. 

where: 

cos 1 =

{
𝜕F1({′n−1}, {k1, n−1})

𝜕′
} : {′e}

‖{
𝜕F1({′n−1}, {k1, n−1})

𝜕′
}‖

2

‖{′e}‖2

 (5.65) 

cos 2 =

{
𝜕F2({′n−1}, {k2, n−1})

𝜕′
} : {′e}

‖{
𝜕F2({′n−1}, {k2, n−1})

𝜕′
}‖

2

‖{′e}‖2

 (5.66) 

Note that it may happen that an effective stress point lying on the primary yield surface and 

inside the secondary yield surface at the start of the sub-step increment (i.e. 

|F1({′n−1}, {k1, n−1})| ≤ YTOL and F2({′n−1}, {k2, n−1}) < −YTOL) moves to the outside of 
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the secondary yield surface during the elastic trial (i.e. F1({′n−1} + {′n}, {k1, n}) < −YTOL 

and F2({′n−1} + {′n}, {k2, n}) > YTOL). This does not necessarily mean the occurrence of 

an elasto-plastic unloading. In effect, to be considered an elasto-plastic unloading, the angle 

1 between the primary yield surface gradient, {𝜕F1({′n−1}, {k1, n−1})/𝜕′}, and the elastic 

effective stress increment, {′e}, should be greater than 90.0 (i.e. cos 1 < 0.0), as described 

above. The same principles are valid for a similar situation involving a trial effective stress 

path departing from the secondary yield surface and crossing of the primary one. 

Having detected the occurrence of an elasto-plastic unloading, it is necessary to evaluate the 

portion of the sub-step increment that is purely elastic (i.e. the portion of the strain increment 

corresponding to a stress path inside both yield surfaces). This situation is similar to that 

described in the previous section, with the additional complexity that the effective stress 

point may cross the yield surface(s) more than once, due to the use of a yield surface 

tolerance, YTOL, as illustrated in Figure 5.3. Nevertheless, as pointed out by Sloan et al. 

(2001), to ensure that the Pegasus method finds the correct crossing, it should be sufficient 

to find an input range [(inf), (sup)] which satisfies the following condition: F1({′n−1} + 
(inf) 

[D({′n})] {ss}, {kn}) < −YTOL and  F2({′n−1} + 
(inf) [D({′n})] {ss}, {kn}) < −YTOL, 

in conjunction with  F1({′n−1} + 
(sup) [D({′n})] {ss}, {kn}) > YTOL and/or  F2({′n−1} +


(sup) [D({′n})] {ss}, {kn}) > YTOL. As detailed in the previous section, prior to the 

application of the Pegasus method and following the strategy proposed by Hong et al. (2012), 

a numerical scheme is used to define a proper set of values for (inf) and (sup), which 

correspond to an effective stress point inside both yield surfaces and outside of at least one 

of the yield surfaces (i.e. which satisfies the aforementioned condition). Therefore, although 

other strategies could have been devised (see, e.g., Potts and Zdravkovic, 1999), in the 

present study, the Pegasus method was also applied to determine the yield surface 

intersection after the detection of an elasto-plastic unloading. 
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Figure 5.3 – Elasto-plastic unloading (adapted from Sloan et al., 2001). 

5.2.6 Elasto-plasticity 

5.2.6.1 Elasto-plastic constitutive matrix 

The computation of the plastic multipliers associated with the primary and secondary yield 

surfaces, 1 and 2, respectively, as well as the computation of the elasto-plastic constitutive 

matrix, [Dep], depend on the active yield surfaces. Therefore, prior to the computation of 

these quantities, it is necessary to assess whether a single or both yield surfaces are active at 

the beginning of each elasto-plastic sub-step increment. Following the strategy described by 

Hong et al. (2012) and given the effective stress state after elastic trial or after a successful 

elasto-plastic sub-step increment, {′}, as well as current values of the sets of plastic state 

parameters, {k1} and {k2}, one of the following three different situations may occur: 

1) When |F1({′}, {k1})| ≤ YTOL and F2({′}, {k2}) < −YTOL: only the primary yield 

surface is active and, therefore, IYIELD = 1. Using the current values of the elastic 

constitutive matrix, [D({′})], gradient of the primary yield surface, {𝜕F1({′}, {k1})/

𝜕′}, gradient of the plastic potential associated with the primary yield surface, 

{𝜕P1({′}, {m1})/𝜕′}, and the current sub-step strain increment associated with 

elasto-plastic response, {ss
ep}, the plastic multiplier associated with the primary yield 

surface, 1, can be determined by: 

1 =
({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {ss
ep}

({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {
𝜕P1({′}, {m1})

𝜕′
} + A1

 (5.67) 

{ 'n}+{'e}

{ 'n−1}

∂F({ 'n−1},{kn−1}) / ∂ '



{ 'e}

{ 'n−1}+ [D{ 'n}]{ss}
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where {m1} is a set of state parameters defining the evolution of the plastic potential 

associated with the primary yield surface and A1 is the plastic hardening modulus 

associated with the primary yield surface. 

In this case, the plastic multiplier associated with the secondary yield surface, 2, is 

set to 0.0. The elasto-plastic constitutive matrix, [Dep] = [Dep({′}, {k1}, {m1})], can 

be determined by (Potts and Zdravkovic, 1999): 

[Dep({′}, {k1}, {m1})]
= [D({′} )]

−
[D({′} )] {

𝜕P1({′}, {m1})
𝜕′

}  ({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )]

({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {
𝜕P1({′}, {m1})

𝜕′
} + A1

 
(5.68) 

2) When F1({′}, {k1}) < −YTOL and |F2({′}, {k2})| ≤ YTOL: only the secondary yield 

surface is active and, therefore, IYIELD = 2. Using the current values of [D({′})], 

gradient of the secondary yield surface, {𝜕F2({′}, {k2})/𝜕′}, gradient of the plastic 

potential associated with the secondary yield surface, {𝜕P2({′}, {m2})/𝜕′}, and 

{ss
ep}, the plastic multiplier associated with the secondary yield surface, 2, can be 

determined by (Potts and Zdravkovic, 1999): 

2 =
({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {ss
ep}

({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {
𝜕P2({′}, {m2})

𝜕′
} + A2

 (5.69) 

where {m2} is a set of state parameters defining the evolution of the plastic potential 

associated with the secondary yield surface and A2 is the plastic hardening modulus 

associated with the secondary yield surface. In this case, the plastic multiplier 

associated with the primary yield surface, 1, is set to 0.0. The elasto-plastic 

constitutive matrix, [Dep] = [Dep({′} , {k2} , {m2})], can be determined by (Potts and 

Zdravkovic, 1999): 

[Dep({′} , {k2} , {m2} )]
= [D({′} )]

−
[D({′} )] {

𝜕P2({′}, {m2})
𝜕′

} ({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )]

({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {
𝜕P2({′}, {m2})

𝜕′
} + A2

 
(5.70) 

3) When |F1({′}, {k1})| ≤ YTOL and |F2({′}, {k2})| ≤ YTOL: both primary and 

secondary yield surfaces may be active. Using the current values of [D({′})], 

{𝜕F1({′}, {k1})/𝜕′}, {𝜕P1({′}, {m1})/𝜕′}, {𝜕F2({′}, {k2})/𝜕′}, {𝜕P2({′}, 
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 {m2})/𝜕′} and {ss
ep}, the plastic multipliers associated with the primary and 

secondary yield surfaces are determined by (Potts and Zdravkovic, 1999): 

1 =
L22 T1 − L12 T2

L11 L22 − L12 L21
 (5.71) 

2 =
L11 T2 − L21 T1

L11 L22 − L12 L21
 (5.72) 

where: 

L11 = ({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {
𝜕P1({′}, {m1})

𝜕′
} + A1 (5.73) 

L12 = ({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {
𝜕P2({′}, {m2})

𝜕′
} (5.74) 

L21 = ({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {
𝜕P1({′}, {m1})

𝜕′
} (5.75) 

L22 = ({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {
𝜕P2({′}, {m2})

𝜕′
} + A2 (5.76) 

T1 = ({
𝜕F1({′}, {k1})

𝜕′
})

T

[D({′} )] {ss
ep} (5.77) 

T2 = ({
𝜕F2({′}, {k2})

𝜕′
})

T

[D({′} )] {ss
ep} (5.78) 

In most cases, 1 > 0.0 and 2 > 0.0 are obtained, meaning that both yield surfaces 

are effectively active. In such case, IYIELD = 3 and the elasto-plastic constitutive 

matrix, [Dep] = [Dep({′}, {k1}, {m1}, {k2} , {m2})] is determined by (Potts and 

Zdravkovic, 1999): 

[Dep({′}, {k1}, {m1}, {k2} , {m2})]
= [D({′} )]

−
[D({′} )]


[{
𝜕P1({′}, {m1})

𝜕′
} ({b1})

T

+ {
𝜕P2({′}, {m2})

𝜕′
} ({b2})

T] [D({′} )] 

(5.79) 

where: 

 = L11 L22 − L12 L21 (5.80) 

({b1})
T = L22 {

𝜕F1({′}, {k1})

𝜕′
} − L12 {

𝜕F2({′}, {k2})

𝜕′
} (5.81) 

({b2})
T = L11 {

𝜕F2({′}, {k2})

𝜕′
} − L21 {

𝜕F1({′}, {k1})

𝜕′
} (5.82) 
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However, it may happen that either 1 > 0.0 and 2 ≤ 0.0 or 1 ≤ 0.0 and 2 > 0.0 

are obtained from Equation 5.71 and 5.72, respectively, meaning that one of the 

plastic mechanism is eventually not activated. For instance, this may happen when the 

secondary yield surface is temporarily activated during a given sub-step increment to 

prevent the mean effective stress to reach a value smaller than that defined by the 

model parameter p’YS, with this yield surface being eventually deactivated in a 

subsequent sub-step increment. As this happens, IYIELD = 1 is flagged and 

Equation 5.67 is used to re-compute 1, while 2 is set to 0.0. Moreover, in such case, 

the elasto-plastic constitutive matrix is also re-computed using Equation 5.68. 

Similarly, if 1 ≤ 0.0 and 2 > 0.0 are obtained from Equation 5.71 and 5.72, IYIELD =

2 is flagged and Equation 5.69 is used to re-compute 2, while 1 is set to 0.0. In this 

case, Equation 5.70 is used to re-compute the elasto-plastic constitutive matrix. 

5.2.6.2 Activation of an additional yield surface 

As briefly mentioned in Section 5.2.1, when a single yield surface is active during a given 

elasto-plastic sub-step strain increment, {ss
ep}, it is necessary to check whether the obtained 

effective stress state, {′n}, remains inside or on the non-active yield surface at the end of 

the sub-step increment. If that is not the case, then the sub-step increment should be 

reduced,  {ss
ep}, with  0.0 <  < 1.0, to bring the effective stress point back to that yield 

surface. Therefore, the value of  should be that resulting in an effective stress point lying on 

both yield surfaces:  

|F1({′n−1} +  [Dep({′n}, {kn}, {mn})] {ss
ep}, {k1, n})| ≤ YTOL (5.83) 

⌊F2({′n−1} +  [Dep({′n}, {kn}, {mn})] {ss
ep}, {k2, n})⌋ ≤ YTOL (5.84) 

Note that, as explained in the previous section, [Dep] = [Dep({′n}, {k1, n}, {m1, n})] when only 

the primary yield surface is active during a given sub-step increment, while [Dep] =

[Dep({′n} , {k2, n} , {m2, n})] when only the secondary yield surface is active during the sub-

step increment. Nevertheless, to keep the presentation more general, the notation [Dep] =

[Dep({′n}, {kn}, {mn})] is used in Equation 5.83 and 5.84. Note also that, apart from the fact 

that the elasto-plastic constitutive matrix, [Dep({′n}, {kn}, {mn} )], is employed here, rather 

the elastic constitutive matrix, [D({′n})], this problem is very similar to the one occurring 

during elastic trial, when the elastic effective stress path crosses the yield surfaces. Therefore, 

the Pegasus method (Dowell and Jarratt, 1972) can also be employed to solve this problem, 

using a methodology similar to that described in Section 5.2.5.1. 

5.2.6.3 Correction of yield surface drift 

5.2.6.3.1 Initial considerations 

At the end of each sub-step increment, the combination of obtained effective stresses, {′n}, 

and set of state parameters, {k1, n} and {k2, n}, may not verify one or both active yield 
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conditions, a phenomenon usually referred to as yield surface drift. The extent of the violation 

depends on the non-linearity of the constitutive model, as well as on the accuracy of the 

integration scheme (Sloan et al., 2001). 

According to Potts and Gens (1985), the effects of violating the yield surface are cumulative 

and should, therefore, be corrected before the application of a new sub-step increment. 

Moreover, by performing a comparative study on the accuracy of several different methods 

available in the literature to correct yield surface drift, these authors concluded that more 

accurate predictions are obtained when the total strain increment remains unchanged during 

the correction process. Based on that assumption, which is consistent with the displacement-

based finite element procedure, Potts and Gens (1985) proposed a new method, which has 

been shown to be robust and accurate (Potts and Zdravkovic, 1999). In Section 5.2.6.3.2, the 

method introduced by Potts and Gens (1985) is described for the case in which a single yield 

surface is active. By applying the same principles, an extension of the method to the case in 

which two yield surfaces are simultaneously active is presented in Section 5.2.6.3.3. 

5.2.6.3.2 When a single yield surface is active 

Considering {′prov} and {kprov} the effective stresses and set of state parameters associated 

with the active yield surface obtained at the end of a given elasto-plastic sub-step increment, 

the method seeks a new combination of effective stresses, {′cor} = {′prov} + {′cor}, and 

state parameters, {kcor} = {kprov} + {kcor}, where {′cor} and {kcor} are corrections to the 

values obtained at the end of the elasto-plastic sub-step increment, satisfying the yield 

condition (Equation 5.85). 

|Fcor({′cor}, {kcor})| ≤ YTOL (5.85) 

Taking into account that any change in effective stresses, {′cor}, results in an associated 

change in elastic strains, {cor
e }, Equation 5.86 can be written. 

{cor
e } = [D({′cor} )]

−1{′cor} (5.86) 

where [D({′cor} )] is the elastic constitutive matrix evaluated at the corrected effective stress 

state. 

In order to keep the sub-step total strain increment unchanged, the change in the elastic 

strains, {cor
e }, must be balanced by an equal and opposite change in the plastic strains, 

{cor
p }, as shown by Equation 5.87. 

{cor
p } = −{cor

e } ⟺ {cor
p } = −[D({′cor} )]

−1{′cor} (5.87) 

Since {cor
p } is proportional to the gradient of plastic potential, {𝜕P({′cor}, {mcor})/𝜕′}, as 

given by Equation 5.88, it follows that {′cor} can be written as indicated by Equation 5.89. 
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{cor
p } = cor  {

𝜕P({′cor}, {mcor})

𝜕′
} (5.88) 

{′cor} = −cor [D({′cor} )] {
𝜕P({′cor}, {mcor})

𝜕′
} (5.89) 

where cor is the correction to be applied to the plastic multiplier and {mcor} = {mprov} +

{mcor} is the corrected set of state parameters of the gradient of the plastic potential. 

Furthermore, for a constitutive model belonging to the category of strain hardening/softening 

plasticity, as it is the case of the present bounding surface plasticity model, the changes in the 

state parameters, {kcor}, are related to the changes in the plastic strains, {cor
p }, as given by 

Equation 5.90. 

{kcor} = {kcor({cor
p })} = cor {kcor ({

𝜕P({′cor}, {mcor})

𝜕′
})} (5.90) 

In addition, since the new combination of effective stresses, {′cor} = {′prov} + {′cor}, and 

state parameters, {kcor} = {kprov} + {kcor}, must verify the yield condition (Equation 5.85), 

it is possible to expand it as Taylor’s series, as shown by Equation 5.91, where the second-

order and higher-order terms are neglected. Note that the condition defined by the 

combination of Equation 5.91 with Equation 5.85, according to which the effective stress must 

remain on the yield surface during elasto-plastic loading, is typically known as “consistency 

condition”. 

Fcor = Fprov + {
𝜕F({′cor}, {kcor})

𝜕′
}

T

{′cor} + {
𝜕F({′cor}, {kcor})

𝜕k
}

T

{kcor} (5.91) 

where Fprov and Fcor are the values of the yield surface before and after the drift correction, 

and {𝜕F({′cor}, {kcor})/𝜕′} and {𝜕F({′cor}, {kcor})/𝜕k} are the gradients of the yield surface 

to the effective stresses and plastic state parameters, respectively.  

By combining Equation 5.89, 5.90 and 5.91, setting Fcor = 0.0 and rearranging, Equation 5.92 

is obtained. 

cor = Fprov

(

 
 
{
𝜕F({′cor}, {kcor})

𝜕′
}

T

 [D({′cor} )] {
𝜕P({′cor}, {mcor})

𝜕′
} −

{
𝜕F({′cor}, {kcor})

𝜕k
}

T

{kcor ({
𝜕P({′cor}, {mcor})

𝜕′
})}

)

 
 

⁄  (5.92) 

Therefore, to evaluate cor, the values of the gradients of the yield surface to the effective 

stresses and plastic state parameters, {𝜕F({′cor}, {kcor})/𝜕′} and {𝜕F({′cor}, {kcor})/𝜕k}, 

respectively, the gradient of the plastic potential to the effective stresses, 

{𝜕P({′cor}, {mcor})/𝜕′}, and the elastic constitutive matrix, [D({′cor} )], are required. 

Clearly, a problem arises from the dependency of these quantities on the effective stresses, 
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{′cor} = {′prov} + {′cor}, state parameters, {kcor} = {kprov} + {kcor}, and state 

parameters of the gradient of the plastic potential, {mcor} = {mprov} + {mcor}, which are 

being the quantities being pursued, resulting in a complex implicit problem. Nevertheless, 

according to Potts and Gens (1985), since the sub-stepping tolerance (SSTOL) is usually set to 

a very small value (typically in the range of 10-2 to 10-5), yield surface drift is seldom observed 

and, when it occurs, it is usually very small. Therefore, the authors suggested evaluating, as a 

first approximation, the gradients of the yield surface and plastic potential, as well as the 

elastic constitutive matrix using the values of the effective stress state, as well as the sets of 

state parameters controlling the evolution of the yield surfaces and plastic potential 

corresponding to the beginning of the elasto-plastic sub-step increment, {′n−1}, {kn−1}.and 

{mn−1}, or to its end, {′n}, {kn} and {mn}. In this latter case, Equation 5.92 can be replaced 

by Equation 5.93. 

cor = Fprov

(

 
 
{
𝜕F({′n}, {kn})

𝜕′
}

T

 [D({′cor} )] {
𝜕P({′n}, {mn} )

𝜕′
} −

{
𝜕F({′n}, {kn})

𝜕k
}

T

{kcor ({
𝜕P({′n}, {mn} )

𝜕′
})}

)

 
 

⁄  (5.93) 

Having determined cor by using Equation 5.93, corrected plastic strains, {cor
p }, the corrected 

effective stresses, {′cor}, and set of state parameters, {kcor}, can be estimated using 

Equations 5.88, 5.89 and 5.90, respectively. 

Due to the adopted simplifications, it may happen that the new combination of {′cor} and 

{kcor} still does not satisfy the yield condition (Equation 5.85). In this case, the correction 

process should be repeated using an improved estimation of cor, until the yield condition is 

satisfied (Potts and Gens, 1985). According to Sloan et al. (2001), an improved estimation of 

cor can be simply obtained by updating [D], {𝜕F/𝜕′}, {𝜕F/𝜕k}, {𝜕P/𝜕′} using {′cor}, {kcor} 

and {mcor} and computing again Equation 5.92. 

5.2.6.3.3 When two yield surfaces are simultaneously active 

When both primary and secondary yield conditions are active, the following conditions should 

be simultaneously satisfied: 

|F1,cor({′cor}, {k1,cor})| ≤ YTOL (5.94) 

|F2,cor({′cor}, {k2,cor})| ≤ YTOL (5.95) 

where: 

{′cor} = {′prov} + {′cor} (5.96) 

{k1,cor} = {k1,prov} + {k1,cor} (5.97) 

{k2,cor} = {k2,prov} + {k2,cor} (5.98) 
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with {′cor} being the correction to the effective stresses, which should now take into 

account the contribution of both plastic mechanisms (Equation 5.99); moreover, {k1,cor} and 

{k2,cor} are the corrections to the sets of state parameters associated with the primary and 

secondary yield surfaces, given by Equation 5.100 and 5.101, respectively. 

{′cor} = −1,cor [D({
′
cor} )] {

𝜕P1({
′
cor}, {m1,cor})

𝜕′
}

− 2,cor [D({
′
cor} )] {

𝜕P2({
′
cor}, {m2,cor})

𝜕′
} 

(5.99) 

{k1,cor} = {k1,cor({cor
p })} = 1,cor {k1,cor ({

𝜕P1({′cor}, {m1,cor})

𝜕′
})} (5.100) 

{k2,cor} = {k2,cor({cor
p })} = 2,cor {k2,cor ({

𝜕P2({′cor}, {m2,cor})

𝜕′
})} (5.101) 

Similar to what was done when a single yield surface is active, Equation 5.94 and 5.95 can be 

expanded as Taylor’s series. Ignoring the second-order and higher terms, the following two 

equations are obtained: 

F1,cor = F1,prov + {
𝜕F1({′cor}, {k1,cor})

𝜕′
}

T

{′cor}

+ {
𝜕F1({′cor}, {k1,cor})

𝜕k
}

T

{k1,cor} 

(5.102) 

F2,cor = F2,prov + {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

{′cor}

+ {
𝜕F2({′cor}, {k2,cor})

𝜕k
}

T

{k2,cor} 

(5.103) 

where F1,prov and F2,prov are the values of the primary and secondary yield surfaces obtained at 

the end of the sub-step increment. Substituting Equations 5.99, 5.100 and 5.101 into 

Equations 5.102, 5.103, and setting F1,cor = 0.0 and F2,cor = 0.0, the two following equations 

are obtained:  

F1,prov − 1,cor {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P1({

′
cor}, {m1,cor})

𝜕′
}

− 2,cor {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P2({

′
cor}, {m2,cor})

𝜕′
}

+ 1,cor {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

{k1,cor ({
𝜕P1({

′
cor}, {m1,cor})

𝜕′
})}

= 0.0 

(5.104) 
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F2,prov − 1,cor {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P1({

′
cor}, {m1,cor})

𝜕′
}

− 2,cor {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P2({

′
cor}, {m2,cor})

𝜕′
}

+ 2,cor {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

{k2,cor ({
𝜕P2({

′
cor}, {m2,cor})

𝜕′
})}

= 0.0 

(5.105) 

These equations can be solved simultaneously to give: 

{
1,cor L11 + 2,cor L12 = F1,prov

1,cor L21 + 2,cor L22 = F1,prov
⟺

{
 

 1,cor =
L22 F1,prov − L12 F2,prov

L11 L22 − L12 L21

2,cor =
L11 F2,prov − L21 F1,prov

L11 L22 − L12 L21

 
(5.106) 

 
(5.107) 

where: 

L11 = {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P1({

′
cor}, {m1,cor})

𝜕′
}

− {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

{k1,cor ({
𝜕P1({

′
cor}, {m1,cor})

𝜕′
})} 

(5.108) 

L12 = {
𝜕F1({

′
cor}, {k1,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P2({

′
cor}, {m2,cor})

𝜕′
} (5.109) 

L21 = {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P1({

′
cor}, {m1,cor})

𝜕′
} (5.110) 

L22 = {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

[D({′cor} )] {
𝜕P2({

′
cor}, {m2,cor})

𝜕′
}

− {
𝜕F2({′cor}, {k2,cor})

𝜕′
}

T

{k2,cor ({
𝜕P2({

′
cor}, {m2,cor})

𝜕′
})} 

(5.111) 

As suggested by Potts and Gens (1985), by evaluating all quantities using the stress state and 

state parameters corresponding to the end of the elasto-plastic sub-step increment, {′n}, 

{kn}.and {mn}, an initial estimation of 1,cor and 2,cor is obtained. Subsequently, the 

corrections to the effective stresses, plastic strains, and sets of state parameters can be 

computed from Equations 5.99 to 5.101. After updating the effective stresses and state 

parameters, both yield conditions (Equations 5.94 and 5.95) are checked. If both are satisfied, 

then the yield surface drift correction is completed. Otherwise, all quantities need to be 

updated and a new iteration is performed. This sequence is repeated until both yield 

conditions are satisfied, which, according to the experience of the author, typically requires 

less than 10 iterations. 
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5.2.7 Summary 

All operations required to integrate an elasto-plastic constitutive model using a modified 

forward Euler integration scheme with automatic sub-stepping and error control are 

summarised in Table 5.1. 

Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 

1 

 

Initialisation of model quantities 

Given the total strain increment, {}; 
Enter with the initial values of: effective stresses, {′n} = {′0}; elastic and plastic strains, 

{n
e} = {0

e} and {n
p} = {0

p
}, respectively; void ratio, en−1 = e0; elastic state parameters, 

{jn} = {j0}; plastic state parameters associated with the primary and secondary yield surface, 

{k1,n} = {k1,0} and {k2,n} = {k2,0}, respectively; plastic state parameters of the gradients of 

the plastic potential associated with the primary and secondary yield surface, {m1,n} = {m1,0} 

and {m2,n} = {m2,0}, respectively. 

Determine the initial positions of the primary and secondary yield surfaces: F1,n({′n}, {k1,n}) 

and F2,n({′n}, {k2,n}). 

2 Elastic trial 

2.1 Initialise variables of the modified forward Euler scheme required to the elastic trial: Tn =
1.0 and Tn = 0.0. Initialise also the variable informing which yield surface is active: IYIELD =
0. 

2.2 If Tn < 1.0, then: 
Determine the sub-step strain increment: {ss} = Tn {}. 
Store the pseudo time at the beginning of the sub-step increment, Tn−1 = Tn. 
Store the effective stresses, elastic strains, void ratio and elastic state parameters at 
the beginning of the sub-step increment: {′n−1} = {′n}, {n−1

e } = {n
e},  en−1 = en and 

{jmem} = {jn−1} = {jn}, respectively. 

Store also the positions of the yield surfaces at the beginning of the sub-step increment, 
F1,n−1 = F1,n and F2, n−1 = F2,n. 

Continue to step 2.3. 
Else: 

Move to step 4. 
End if. 

2.3 Check whether a shear strain reversal occurs. 
If a shear reversal occurs, then: 

Update the elastic state parameters, {jn−1} = {jn}. 

End if. 
Compute the elastic constitutive matrix using the current effective stress state, void ratio and 
state parameters: [D({′n−1})]. 

2.4 Compute the first-order approximation of changes in effective stresses: 

{′n
(1)
} = [D({′n−1})] {ss}. 
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Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 

2.5 Update temporarily the effective stress state: {′n
(1)
} = {′n−1} + {′n

(1)
}. 

Update temporarily the void ratio using a small-strain formulation:  en = en−1 − (1.0+ einit) 
ss,v, where einit is the void ratio of the material at the beginning of the FE analysis and ss,v 

is the volumetric component of the sub-step strain increment. 
Update the elastic constitutive matrix using the newly updated effective stress state and void 

ratio, [D ({′n
(1)
})]. 

2.6 Compute the second-order approximation of changes in effective stresses: 

{′n
(2)
} = [D ({′n

(1)
})] {ss}. 

2.7 Compute the modified forward Euler approximation of changes in effective stresses: 

{′n} = ({′n
(1)
} + {′n

(2)
}) 2⁄ . 

Determine the relative error in the modified forward Euler approximation of the effective 

stresses: R ≈
1

2
‖({′n

(2)
} − {′n

(1)
})‖

2
‖{′n−1} + {′n}‖2⁄ . 

2.8 Compare the obtained relative error R with the tolerance SSTOL. 
If R > SSTOL and Tn > Tn,min, then: 

The sub-step is not successful and a smaller pseudo-time step needs to be used in the 

integration process; compute:   = max  {0.9 √SSTOL R⁄ , 0.1} and Tn
new = max  

{ Tn,  Tn,min}. 

Discard changes in effective stresses, void ratio and elastic state parameters: {′n} =
{′n−1},  en = en−1 and {jn} = {jn−1} = {jmem}, respectively. 

Set Tn = Tn
new and return to step 2.2. 

Else, then: 
The sub-step is considered successful; update the effective stress state: {′n} =
{′n−1} + {′n}; note that, during elastic trial, the plastic state parameters remain 

unaltered: {k1,n} = {k1, n−1}, {k2,n} = {k2, n−1}, {m1,n} = {m1,n−1} and {m2,n} =

{m2, n−1}. 

Compute a new pseudo-time step multiplier: if the previous sub-step increment or the 

one before failed, then:  = min  {0.9 √SSTOL R⁄ , 1.0}; otherwise:  = min  

{0.9 √SSTOL R⁄ , 1.1}. 

Continue to step 2.9. 
End if 

2.9 Update the positions of the primary and secondary yield surfaces: F1,n = F1({′n}, {k1,n}) and 

F2,n = F2({′n}, {k2,n}), respectively. 

Determine the portion  of the sub-step increment, {ss}, which is purely elastic: 
If F1,n ≤ YTOL and F2,n ≤ YTOL, then: 

The response is purely elastic over the entire sub-step increment; thus, set  = 1.0. 
Update the elastic strain increment, {n

e} =  {ss}, and the elastic strains, {n
e} =

{n−1
e } + {n

e}. 
Update the pseudo time Tn = Tn−1 + Tn and determine the new pseudo-time step: 

Tn
new = max  { Tn,  Tn,min}; check that Tn + Tn

new does not exceed 1.0, i.e.: 

Tn
new = min { Tn

new,  1.0− Tn}. 
Set Tn = Tn

new and return to step 2.2. 
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Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 
Else: 

If (F1,n−1 < −YTOL and F1,n > YTOL and F2,n ≤ YTOL) or (F1,n ≤ YTOL and F2,n−1 <
−YTOL and F2,n > YTOL) or (F1,n−1 < −YTOL and F1,n > YTOL and F2,n−1 < −YTOL and 
F2,n > YTOL), then: 

A transition from purely elastic to elasto-plastic response occurs; estimate the 

yield surface intersection by applying the Pegasus method; having computed  
and a new effective stress increment, {′n}, update {′n} = {′n−1} + {′n}, 
{n

e} =  {ss}, {n
e} = {n−1

e } + {n
e} and  en = en−1 − (1.0+ einit)  ss,v; 

update the positions of the primary and secondary yield surfaces: F1,n =

F1({′n}, {k1,n}) and F2,n = F2({′n}, {k2,n}); move to step 3.1. 

Else: 
One or both yield surfaces were active from the beginning of the sub-step 
increment; check whether an elasto-plastic unloading has occurred during the 
current sub-step strain. 
If an elasto-plastic unloading has occurred, then: 

Estimate the yield surface intersection by applying the Pegasus method; 

having computed  and a new effective stress increment, {′n}, update 
{′n} = {′n−1} + {′n}, {n

e} =  {ss}, {n
e} = {n−1

e } + {n
e} and 

en = en−1 − (1.0+ einit)  ss,v; update the positions of the primary and 

secondary yield surfaces: F1,n = F1({′n}, {k1,n}) and F2,n =

F2({′n}, {k2,n}); move to step 3.1. 

Else: 
The response is elasto-plastic over the entire sub-step increment and, 

therefore, set  = 0.0 and reset: {′n} = {′n−1},  en = en−1 and {jn} =

{jn−1} = {jmem}, F1,n = F1,n−1 and F2,n = F2, n−1.; move to step 3.1. 

End if. 
End if. 

End if. 

3 Elasto-plasticity 

3.1 Determine the part of the strain increment that has not yet been integrated: {ep} =
[(1.0− Tn−1) + (1.0 − ) Tn]{}. 

Initialise variables of the modified forward Euler scheme required to the elasto-plastic 
computation: Tn

ep = 1.0 and Tn
ep = 0.0. 

3.2 If Tn
ep < 1.0, then: 

Determine the sub-step strain increment: {ss
ep} = Tn

ep {ep}. 
Store the pseudo time at the beginning of the sub-step strain increment, Tn−1

ep = Tn
ep. 

Store the effective stresses, elastic and plastic strains, void ratio and set of elastic and 
plastic state parameters at the beginning of the sub-step strain increment: {′n−1} =
{′n}, {n−1

e } = {n
e}, {n−1

p } = {n
p}, en−1 = en, {jmem} = {jn−1} = {jn}, {k1,n−1} = {k1,n}, 

{k2,n−1} = {k2,n}, {m1,n−1} = {m1,n} and {m2,n−1} = {m2,n}, respectively. 

Store also the positions of the yield surfaces: F1,n−1 = F1,n and F2, n−1 = F2,n. 
Continue to step 3.3. 

Else: 
Stress integration is completed. Move to step 4. 

End if. 
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Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 

3.3 Check whether a shear strain reversal occurs. 
If shear reversal occurs, then: 

Update the elastic state parameters, {jn−1} = {jn}. 

End if. 
Compute the elastic constitutive matrix using the current effective stress state, void ratio and 
elastic state parameters: [D({′n−1})]. 

Compute the gradients of the primary and secondary yield surfaces: {𝜕F1({′n−1}, {k1, n−1})/

𝜕′} and {𝜕F2({′n−1}, {k2, n−1})/𝜕′}. 

Compute the gradients of the plastic potentials associated with the primary and secondary 

yield surfaces: {𝜕P1({′n−1}, {m1, n−1})/𝜕′} and {𝜕P2({′n−1′}, {m2, n−1})/𝜕′}, respectively. 

Compute the plastic hardening moduli associated with the primary and secondary yield 
surfaces: A1 and A2, respectively. 

3.4 Check the active yield surface(s): 
If |F1| ≤ YTOL and F2 < −YTOL, then: 

Only the primary yield surface is active: IYIELD = 1. 
Else if F1 < −YTOL and |F2| ≤ YTOL, then: 

Only the secondary yield surface is active: IYIELD = 2. 
Else if |F1| ≤ YTOL and |F2| ≤ YTOL, then: 

The effective stress point is at the intersection of both yield surfaces and the actual 
active yield surface(s) should be determined, by following the methodology described 
in Section 5.2.6.1. 

End if. 

Compute the plastic multipliers associated with the primary and secondary yield surfaces, 1 

and 2, respectively, and the elasto-plastic constitutive matrix, [Dep({′n−1}, {k1, n−1}, 

{m1, n−1}, {k2, n−1}, {m2, n−1})], according to the methodology presented in Section 5.2.6.1. 

3.5 Compute the first-order approximation of changes in effective stresses, changes in plastic 
strains and changes in the set of state parameters: 

{′n
(1)
} = [Dep({′n−1}, {k1, n−1}, {m1, n−1}, {k2, n−1}, {m2, n−1})] {ss

ep}; 

{n
p(1)
} = 1 {𝜕P1({′n−1}, {m1, n−1})/𝜕′} + 2 {𝜕P2({′n−1}, {m2, n−1})/𝜕′}; 

{k1,n
(1)} = {k1 ({n

p(1)
})}; 

{k2,n
(1)} = {k2 ({n

p(1)
})}. 

3.6 Update the effective stresses and the sets of state parameters: 

{′n
(1)
} = {′n−1} + {′n

(1)
}; 

{k1,n
(1)} = {k1, n−1} + {k1,n

(1)}; 

{k2,n
(1)} = {k2, n−1} + {k2,n

(1)}. 

Update other model quantities: {𝜕F1 ({
′
n
(1)
}, {k1,n

(1)}) /𝜕′}, {𝜕F2 ({
′
n
(1)
}, {k2

(1)}) /𝜕′}, 

en = en−1 − (1.0 + einit) ss,v
ep , [D ({′n

(1)
})], {m1,n

(1)}, {m2,n
(1)}, {𝜕P1 ({

′
n
(1)
}, {m1,n

(1)}) /

𝜕′}, {𝜕P2 ({
′
n
(1)
}, {m2,n

(1)}) /𝜕′}, 1, 2 and [Dep ({′n
(1)
}, {k1,n

(1)}, {m1,n
(1)}, {k2,n

(1)}, 

{m2,n
(1)})]. 
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Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 

3.7 Compute the second-order approximation of changes in effective stresses, changes in plastic 
strains and changes in the sets of state parameters: 

{′n
(2)
} = [Dep ({′n

(1)
}, {k1,n

(1)}, {m1,n
(1)}, {k2,n

(1)}, {m2,n
(1)})] {ss

ep}; 

{n
p(2)
} = 1 {𝜕P1 ({

′
n
(1)
}, {m1,n

(1)}) /𝜕′} + 2 {𝜕P2 ({
′
n
(1)
}, {m2,n

(1)}) /𝜕′}; 

{k1,n
(2)} = {k1 ({n

p(2)
})}; 

{k2,n
(2)} = {k2 ({n

p(2)
})}. 

3.8 Compute the modified forward Euler approximation of changes in effective stresses, changes 
in plastic strains and changes in the sets of state parameters, respectively: 

{′n} = ({′n
(1)
} + {′n

(2)
}) 2⁄ ; 

{n
p} = ({n

p(1)
} + {n

p(2)
}) 2⁄ ; 

{k1,n} = ({k1,n
(1)} + {k1,n

(2)}) 2⁄ ; 

{k2,n} = ({k2,n
(1)} + {k2,n

(2)}) 2⁄ . 

Determine the relative error in the modified forward Euler approximation of the effective 
stresses and set of state parameters: 

R ≈ ‖
1

2
({′n

(2)
} − {′n

(1)
})‖ ‖{′n−1} + {′n}‖⁄ ; 

Rk,1 ≈ ‖
1

2
({k1,n

(2)} − {k1,n
(1)})‖ ‖{k1,n−1} + {k1,n}‖⁄ ; 

Rk,2 ≈ ‖
1

2
({k2,n

(2)} − {k2,n
(1)})‖ ‖{k2,n−1} + {k2,n}‖⁄ . 

Determine the maximum relative error: R = max{R, Rk,1, Rk,2}. 

3.9 Compare the obtained error R with the tolerance SSTOL. 
If R > SSTOL and Tn

ep > Tn,min
ep, then: 

The sub-step is not successful and, consequently, a smaller pseudo-time step needs to 

be used in the integration process; compute:   = max {0.9 √SSTOL R⁄ , 0.1} and 

Tn
ep,new = max  { Tn

ep,  Tn,min
ep}. 

Discard changes in effective stresses, void ratio and other state parameters: {′n} =
{′n−1},  en = en−1 and {jn} = {jn−1} = {jmem}, {k1,n} = {k1,n−1}, {k2,n} = {k2,n−1}, 

{m1,n} = {m1,n−1} and {m2,n} = {m2,n−1}; restore the positions of the yield surfaces 

corresponding to the beginning of the sub-step increment, F1,n = F1,n−1 and F2,n =
F2,n−1. 

Set Tn
ep = Tn

ep,new  and return to step 3.2. 
Else, then: 

The sub-step is considered successful; update the effective stress state and sets of state 

parameters, respectively: {′n} = {′n−1} + {′n}, {k1,n} = {k1,n−1} + {k1,n}, 

{k2,n} = {k2,n−1} + {k2,n}, {m1,n} and {m2,n}; compute a new pseudo-time step 

multiplier: if the previous sub-step or the one before failed, then:  =

min  {0.9 √SSTOL R⁄ , 1.0}; otherwise:  = min  {0.9 √SSTOL R⁄ , 1.1}; continue to 
step 3.10. 

End if. 
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Table 5.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Stage Description 

3.10 Update the positions of the primary and secondary yield surfaces: F1,n = F1({′n}, {k1,n}) and 

F2,n = F2({′n}, {k2,n}). 

If IYIELD = 1 or IYIELD = 2, then check whether the recently updated effective stress point 
lies inside the non-active yield surface. If the effective stress point lies outside, then estimate 
the reduction, 0.0 <  < 1.0, to be applied to the pseudo-time step to bring the effective 
stress point to the closest yield surface or to the intersection between both yield surfaces. 
Based on the newly-computed values of the effective stress increment, {′n}, as well as 

changes in the sets of state parameters, {k1, n} and {k2, n}, update the effective stress state, 

plastic strains and sets of state parameters: {′n} = {′n−1} + {′n}, {k1,n} = {k1,n−1} +

{k1, n} and {k2,n} = {k2,n−1} + {k2, n}. Update the other state parameters: en, {m1,n} and 

{m2,n}. Re-compute the positions of the primary and secondary yield surfaces: F1,n =

F1({′n}, {k1,n}) and F2,n = F2({′n}, {k2,n}) respectively. Conversely, if the effective stress 

point lies inside the non-active yield surface, set  = 1.0. 

3.11 Check whether yield surface drift has occurred. If it has occurred, then find a new combination 
of effective stresses, {′n}, and state parameters associated with the primary and secondary 

yield surface, {k1,n} and {k2,n}, respectively, that satisfies the yield conditions, as described in 

Section 5.2.6.3. 

3.12 Update the elastic and plastic strains, respectively: {n
e} = {n−1

e } + {ss
ep} − {n

p} and {n
p} =

{n−1
p } + {n

p}. 

Update the pseudo time: Tn
ep = Tn−1

ep +  Tn
ep. Determine the new pseudo-time step: 

Tn
ep,new = max{ Tn

ep,  Tn,min
ep}; make sure that Tn

ep + Tn
ep,new does not exceed 1.0, 

i.e.: Tn
ep,new = min{ Tn

ep,new, 1.0− Tn
ep}.  

Set Tn
ep = Tn

ep,new  and return to step 3.2. 

4 Store the final values of the stress and strain tensors, as well as state parameters 
Store the final values of the effective stress state, {′n}, elastic and plastic strains, {n

e} and 

{n
p} respectively, void ratio, en, elastic state parameters,{jn}, plastic state parameters, {k1,n} 

and {k2,n}, as well as state parameters of the gradients of the plastic potential {m1,n} and 

{m2,n}. 

Exit. 

 

5.3 Validation 

5.3.1 Methodology 

A very important stage of the implementation of a constitutive model consists of its 

validation. This can be done by comparing the results obtained in numerical simulations with 

those obtained from a theoretical or analytical solution or, alternatively, with those obtained 

by a validated code. In the present case, the second alternative was selected, since the 

original formulation of the bounding surface plasticity model (Section 4.2) was implemented 

by Taborda (2011) into the Imperial College Finite Element Program (ICFEP) and a large 

amount of numerical results are available, including results of simulations of element 
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laboratory tests and dynamic centrifuge experiments. It is important to note that ICFEP is a 

well-known code developed at Imperial College London over the last 40 years, with the most 

relevant features for this research being described in Potts and Zdravkovic (1999), Hardy 

(2003), Kontoe (2006) and Taborda (2011). Moreover, it should be noted that ICFEP has been 

successfully applied to the simulation of a large variety of boundary-value problems involving 

complex dynamic phenomena (e.g. Kontoe, 2006; Kontoe et al., 2011; Taborda, 2011; Tsaparli 

et al., 2016; Han et al., 2016). 

With respect to the alterations performed to the formulation of the model developed by 

Taborda (2011) and Taborda et al. (2014) – termed, in what follows, as “original” formulation 

– , the most significant one consisted of the introduction of an inherent fabric anisotropy 

component. As described in Section 4.3.3, the selected inherent fabric anisotropy formulation 

was implemented into ICFEP by Williams (2014), using the constitutive model developed by 

Taborda (2011) and Taborda et al. (2014) as a starting point. Therefore, the validation of this 

additional component of the model was performed by comparing the results obtained by 

FEMEPDYN with those obtained by Williams (2014) when using ICFEP. This includes both 

undrained triaxial extension tests and cyclic direct simple shear tests. 

It is important to note that, at this stage, the main objective of the numerical simulations 

consisted of the validation of the implementation of the constitutive model into FEMEPDYN. 

As such, the numerical results obtained by FEMEPDYN are solely compared with those 

obtained by Taborda (2011) and Williams (2014) when using ICFEP, meaning that no 

comparison is performed with experimental data. Note that the evaluation of the ability of 

the constitutive model to replicate results of element laboratory tests and dynamic centrifuge 

experiments performed on Hostun sand is the main objective of Chapter 7 and Chapter 8, 

respectively. 

5.3.2 Original formulation 

5.3.2.1 Simulation of element laboratory tests 

5.3.2.1.1 Material properties and testing programme 

A wide range of numerical simulations were performed by Taborda (2011) to evaluate the 

ability of the bounding surface plasticity model to replicate element laboratory tests. These 

included simulations of monotonic and cyclic triaxial tests on Leighton Buzzard Fraction-E and 

Nevada sands, as well cyclic direct simple shear tests on Nevada sand. As part of the present 

validation of the implementation of the constitutive model into FEMEPDYN, the aim is not to 

replicate all simulations performed by Taborda (2011), rather to select a range of simulations 

which include: 1) different stress paths (triaxial compression and extension, as well as direct 

simple shear), 2) different drainage conditions (drained and undrained) and 3) different 

material’s initial state (different initial density and stress state). Having that in mind, a first 
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set of simulations included two drained isotropic compression (DIC) tests, four drained and 

four undrained monotonic triaxial compression tests (DMTC and UMTC tests, respectively) on 

samples of Leighton Buzzard Fraction-E sand having different initial void ratios and 

consolidated to different initial isotropic stress states (Table 5.2). Additionally, one undrained 

cyclic triaxial test on Leighton Buzzard Fraction-E sand was simulated, as also indicated in 

Table 5.2, and the results compared to those available in the literature. In order to 

complement the validation of the implementation of the original formulation of the 

constitutive model against element laboratory tests, one undrained cyclic direct simple shear 

(UCDSS) test on Nevada sand, whose initial conditions are presented in Table 5.3, was also 

simulated. 

Table 5.2 – Designation and initial conditions of the monotonic and cyclic triaxial tests on 
Leighton Buzzard sand (Taborda, 2011). 

Type of test Designation (1) 
e0 
( ) 

’0 
(kPa) 

q 
(kPa) 

Drained isotropic compression 
(DIC) 

DIC 0.810/20.0 0.810 20.0 – 
DIC 0.694/20.0 0.694 20.0 – 

Drained monotonic triaxial 
compression (DMTC) 

DMTC 0.813/39.3 0.813 39.3 – 
DMTC 0.816/119.6 0.816 119.6 – 
DMTC 0.695/40.7 0.695 40.7 – 
DMTC 0.696/120.5 0.696 120.5 – 

Undrained monotonic triaxial 
compression (UMTC) 

UMTC 0.820/40.3 0.820 40.3 – 
UMTC 0.818/118.6 0.818 118.6 – 
UMTC 0.694/40.6 0.694 40.6 – 
UMTC 0.688/119.3 0.688 119.3 – 

Undrained cyclic triaxial (UCT) UCT 0.820/119.2/50.0 0.820 119.2 ± 50.0 
(1) The designation identifies (1) type of test; (2) void ratio immediately after consolidation, e0; (3) isotropic 

effective stress immediately after consolidation, ’0, and, when applicable, (4) deviatoric stress oscillation (two-

way symmetrical stress reversal loading), q. 

 

Table 5.3 – Designation and initial conditions of the undrained cyclic direct simple shear tests on 
Nevada sand (Taborda, 2011). 

Type of test Designation (1) 
e0 
( ) 

’h,0 
(kPa) 

’v,0 
(kPa) 

0 
(kPa) 

 
(kPa) 

Undrained cyclic direct 
simple shear (UCDSS) 

UCDSS 0.715/80.0/0.0/7.4 0.715 28.0 80.0 0.0 ± 7.4 

(1) The designation identifies (1) type of test; (2) void ratio immediately after consolidation, e0; (3) vertical 

effective stress immediately after consolidation, ’v,0; (4) shear stress immediately after consolidation, 0; and 

(4) shear stress oscillation, . 

 

The model parameters employed in the present simulations are indicated in Table 5.4. Note 

that values concerning the new features of the constitutive model are also indicated in the 

table. However, these values are only indicated for completeness, since their choice (a =
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0.333, vA = 0.0 and kA = 1.0) imply that the new features of the model are not used in the 

present simulations. 

Table 5.4 – Model parameters for Leighton Buzzard and Nevada sands (Taborda, 2011). 

Model parameter Leighton Buzzard sand Nevada sand 

Non-linear elasticity   
Cg 623.0 164.0 
mg (1) (1) 
ng 0.500 0.500 

 2.000 2.000 
a1 0.500 0.300 

1 5.50 x 10-4 6.50 x 10-4 
p'min 5.0 kPa 10.0 kPa 
Gmin 0.0 kPa 1.0 kPa 

 0.135 0.310 

Model surfaces   
p’ref 101.3 kPa 1000.0 kPa 
(eCS)ref 1.010 0.887 

 0.080 0.140 

 0.350 0.250 
vA 0.000 (2) 0.000 (2) 
Mc

c 1.180 1.290 
Me

c  0.850 0.900 

kc
d 2.140 2.350 

ke
d 1.542  

kc
b 1.920 2.180 

ke
b 1.383  

m 0.065 0.065 
p’YS 1.0 kPa 1.0 kPa 

Plastic hardening modulus   
A0 1.050 1.460 
h0 0.047 1.939 

 0.956 1.214 
elim 0.934 0.818 

 1.000 1.000 

 0.623 1.500 

 0.750 0.000 
kA 1.000 (2) 1.000 (2) 
hf,min 0.100 0.100 
hf,max 100.0 100.0 

Shearing-induced fabric component   
H0 8021.2 314.6 

 2.400 1.590 
Hmax 9.0 x 104 2.0 x 106 
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Table 5.4 – Model parameters for Leighton Buzzard and Nevada sands (Taborda, 2011). 

Model parameter Leighton Buzzard sand Nevada sand 

Inherent fabric anisotropy component 
a 0.333 (2) 0.333 (2) 

(1) For the purpose of validation, Equation 4.25 was employed to the computation of the small-strain shear 
modulus, as proposed in the original formulation of the model. This means that the model parameter mg, which 
is used in Equation 4.99 and 4.100, is not necessary in the present simulations. 
(2) Value concerning a new feature of the model. The chosen value imply that this feature is not used in the 
present simulations. 

 

5.3.2.1.2 General aspects of the numerical simulations 

All tests were simulated using a single hybrid eight noded element and nine Gauss points. In 

the case of the triaxial testing (Figure 5.4a), axisymmetric conditions were considered, with 

the horizontal displacements, dx, being restricted along the left side of the element (axis of 

symmetry) and the vertical displacement, dy, being restricted along the bottom boundary of 

the element. Moreover, the loading was simulated by applying either a vertical displacement 

or normal stresses to the nodes located on the top boundary of the element (i.e. a given value 

was assigned either to dy or Fy), depending on the nature of the test. 

With respect to direct simple shear testing (Figure 5.4b), a plane strain analysis was 

performed. The horizontal and vertical displacements, dx and dy, respectively, of the nodes 

located along the bottom boundary of the element were restricted. Additionally, the vertical 

displacements of the nodes located along the top boundary of the element were tied (i.e. 

conditions of equal vertical displacements were applied to these nodes) to ensure the top 

face of the element remains plane throughout the analysis. Due to the load-controlled nature 

of the test simulated, uniform tangential stresses were applied to the nodes located on the 

top boundary of the element (i.e. a given value was assigned to Fx). Naturally, it would have 

been possible to simulate a strain-controlled test by applying a horizontal displacement (along 

the xx-direction) instead. 

In order to simulate undrained conditions, the displacement, velocity and acceleration 

degrees of freedom of the pore fluid were tied to the ones corresponding to the solid phase 

in the direction perpendicular to that defined by a given boundary. For example, to set the 

left boundary impervious, at each node of this boundary, conditions of equal horizontal 

displacements, velocities and accelerations in the pore fluid and in the solid phase were 

specified. In the case of the top boundary, the vertical degrees of freedom of the pore fluid 

and solid phase were tied. Moreover, as pointed out by Grazina (2009), a very large value was 

assigned to the time step controlling the time integration of the equation of motion, in order 

to induce very small accelerations and velocities, as well as to reduce the influence of the 

inertial forces in the system. 
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Figure 5.4 – Load and displacement boundary conditions for (a) triaxial tests and (b) direct simple 

shear tests. 

5.3.2.1.3 Drained isotropic compression 

In order to simulate drained isotropic compression (DIC) tests, the normal stresses applied to 

the nodes located along the top boundary of the element were identical to the normal 

stresses applied to the nodes belonging to the right boundary. These applied stresses started 

as equal to 20 kPa, being gradually increased up to 1820 kPa. A reduction from 1820 kPa to 

20 kPa was applied afterwards. The only difference in the input data of both simulated tests 

– DIC 0.810/20.0 and DIC 0.694/20.0 (Table 5.2) – consisted of the initial void ratio of the 

samples, with values of 0.810 and 0.694, respectively in the former and latter tests. 

  

 
Figure 5.5 – Numerical simulation of DIC tests: evolution of the (a) void ratio and (b) volumetric 

strain with the mean effective stress. 
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Figure 5.5 compares the results obtained by FEMEPDYN with data available in Taborda (2011). 

It can be observed that, in both simulations, the results obtained by the different FE codes 

agree very well, with the obtained curves being practically coincident. Note that, due to the 

open shape of the yield surface, the constitutive model predicts only elastic response under 

constant stress ratio loading. Moreover, since deviatoric stress remains null (and, therefore, 


ref
r = 0) throughout loading, the reduction of the shear modulus is not activated. As a result, 

the same e – p’ path is followed during primary loading, unloading and reloading. This topic 

will be further explored in Chapter 7. 

5.3.2.1.4 Drained monotonic triaxial compression tests 

Figure 5.6 compares the results of the numerical simulations of four different DMTC tests 

obtained when using FEMEPDYN with data available in Taborda (2011). 

  

  

 
Figure 5.6 – Numerical simulation of DMTC tests: (a) deviatoric stress – axial strain; (b) stress ratio 

– axial strain; (c) volumetric strain – axial strain; and (d) void ratio – mean effective stress. 
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Note that, to simulate the strain-controlled nature of the drained monotonic triaxial 

compression (DTMC) tests, a constant vertical displacement rate was applied to the nodes 

located along the top boundary of the element. Moreover, observe that a perfect agreement 

was reached for all conducted simulations. 

5.3.2.1.5 Undrained monotonic triaxial compression tests 

Similar to the simulation of DMTC, a constant vertical displacement rate was applied to the 

nodes located along the top boundary of the element, reflecting the strain-controlled nature 

of the undrained monotonic triaxial compression (UMTC) tests.  

  

  

 
Figure 5.7 – Numerical simulation of UMTC tests: (a) deviatoric stress – mean effective stress; 

(b) deviatoric stress – axial strain; (c) excess pore water pressure – axial strain and (d) stress ratio – 
axial strain. 
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data was obtained for the earlier stages of loading (i.e. within the small to medium strain 

range). This is particularly noticeable in the details of the stress path and stress-strain 

response included in Figure 5.7a and Figure 5.7b, respectively. For large strains, some 

differences between the two set of data can be observed, particularly in terms of obtained 

deviatoric stress – axial strain response (Figure 5.7b) and excess pore water pressure build-

up with strain (Figure 5.7d). 

In order to clarify whether these discrepancies would arise from the use of different numerical 

precisions in the calculations, the simulation of UMTC 0.818/118.6 test was repeated using 

tighter tolerances in the numerical algorithms used to control the FE analysis. As shown in 

Figure 5.8, the results obtained in this new computation by FEMEPDYN and by ICFEP (Taborda, 

2015) are now in perfect agreement from the beginning to the end of the analysis. 

  

  

 
Figure 5.8 – Numerical simulation of UMTC 0.818/118.6 test using tight numerical tolerances: 
(a) deviatoric stress – mean effective stress; (b) deviatoric stress – axial strain; (c) excess pore 

water pressure – axial strain and (d) stress ratio – axial strain. 
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5.3.2.1.6 Undrained cyclic triaxial test 

A numerical simulation of an undrained cyclic triaxial (UCT) test using tight numerical 

tolerances was performed using FEMEPDYN and the obtained results compared to those 

obtained by ICFEP (Taborda, 2015). In this test, a sample of Leighton Buzzard Fraction-E sand 

having an initial void ratio of 0.820 and consolidated to an isotropic effective stress of 119.2 

kPa was subjected to 4 loading cycles characterised by a deviatoric stress oscillation of ± 50.0 

kPa (Table 5.2). The effective stress path, stress-strain response and evolutions of excess pore 

water pressure ratio and axial strain with the number of loading cycles are shown in Figure 

5.9a) to d), respectively. It can be seen that the results obtained in both simulations are in 

perfect agreement. 

  

  

 
Figure 5.9 – Numerical simulation of test UCT 0.820/119.2/50.0 using tight numerical tolerances: 

(a) deviatoric stress – mean effective stress; (b) deviatoric stress – axial strain; (c) excess pore 
water pressure ratio – number of loading cycles; and (d) axial strain – number of loading cycles. 
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Due to the large availability of data, it was also possible to verify that specific aspects of the 

formulation of the model were correctly implemented into FEMEPDYN. In particular, it is 

shown in Figure 5.10 that the evolutions of the elastic moduli with shearing computed by 

FEMEPDYN and by ICFEP (Taborda, 2015) are in very good agreement. 

  

 
Figure 5.10 – Numerical simulation of test UCT 0.820/119.2/50.0 using tight numerical tolerances: 

evolution of (a) the tangent shear modulus and of (b) the bulk modulus with the number of 
loading cycles. 

 
Figure 5.11 – Numerical simulation of test UCT 0.820/119.2/50.0 using tight numerical tolerances: 

evolution of the norm of the back-stress tensor with the number of loading cycles. 
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Figure 5.12 – Numerical simulation of test UCT 0.820/119.2/50.0 using tight numerical tolerances: 
(a) evolution of the norm of the deviatoric component of the shearing-induced fabric tensor with 
the number of loading cycles; (b) evolution of the volumetric component of the shearing-induced 

fabric tensor and of parameter C with the number of loading cycles. 

Similarly, a very good match was obtained for the evolution of the back-stress tensor,  

(Figure 5.11), isotropic and deviatoric components of the shearing-induced fabric tensor, fp 

and f, as well as parameter C (Figure 5.12). Note that, since xx = zz = −1.0/2.0 yy and 

xy = xz = yz = 0.0 for triaxial conditions, the Euclidian norm of , given, in this case, by 

‖‖2 = √3.0/2.0 |yy|, provide an indication of the evolution of all components of the 

tensor. Similar principles apply for ‖f‖2. 

5.3.2.1.7 Undrained cyclic direct simple shear test 

To complement the validation of the implementation of the original formulation of the 

constitutive model into FEMEPDYN, an undrained cyclic direct simple shear (UCDSS) test on 

Nevada sand was simulated. 

In this test, a sample having initial void ratio e = 0.715 and initially submitted to a vertical 

effective stress of ′v = 80.0 kPa and to a shear stress of  = 0.0 kPa was subjected to 5 

loading cycles characterised by a shear stress oscillation of  = ±7.4 kPa (Table 5.3). 

The numerical results obtained by FEMEPDYN are depicted together with those obtained by 

ICFEP (Taborda, 2011) in Figure 5.13. It can be observed that, in general, a good agreement 

was obtained between both sets of data. A slightly higher rate of decrease of the effective 

vertical stress with shearing was obtained by FEMEPDYN (Figure 5.13a), resulting in a slightly 

earlier activation of the secondary yield surface (at very low effective stresses). As a 

consequence, larger shear strains, , were obtained by FEMEPDYN for the last loading cycle 

than those obtained ICFEP (Taborda, 2011), as observed in Figure 5.13b and d. In fact, due to 

the perfect plasticity associated with the secondary yield surface (Section 4.2.5), strains 
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quickly accumulate once this yield surface is activated and, therefore, small discrepancies in 

the rate of effective stress reduction may considerably affect the strains computed at very 

low effective stresses. Once again, the small discrepancies between both sets of data likely 

arise from differences in the numerical tolerances used in the analysis. 

  

  

 
Figure 5.13 – Numerical simulation of test UCDSS 0.715/80.0/0.0/7.4: (a) shear stress – vertical 
effective stress, (b) shear stress – shear strain, (c) excess pore water pressure ratio – number of 

loading cycles and (d) shear strain – number of loading cycles. 

5.3.2.2 Simulation of dynamic centrifuge experiments 

5.3.2.2.1 Brief description of the main aspects of the simulated centrifuge experiments 

A series of dynamic centrifuge experiments were performed as part of the large collaborative 

research project VELACS – VErification of Liquefaction Analysis by Centrifuge Studies, 

sponsored by the American National Science Foundation (Arulanandan and Scott, 1993). 

Concurrently, an extensive laboratory testing programme was carried out on the materials 
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employed in those centrifuge experiments (Arulmoli et al., 1992), assisting the calibration of 

constitutive models. Therefore, it is unsurprising that the obtained centrifuge results have 

been extensively used during the last years for the evaluation of the performance of advanced 

constitutive models, including those based on the bounding surface plasticity framework (e.g. 

Taiebat et al., 2007; Jeremic et al., 2008; Andrianopoulos et al., 2010b; Taborda, 2011). 

Among the twelve available centrifuge experiments, the “VELACS Model 1 – Level ground 

liquefaction” and the “VELACS Model 12 – Embedded structure in stratified soil layers” were 

numerically modelled by Taborda (2011). As shown in Figure 5.14, the former model consisted 

of a level deposit of saturated loose (Dr = 45 %) Nevada sand with 10.0 m of thickness (in 

prototype scale), which was subjected to horizontal accelerations on its base, specified as 10 

loading cycles with a frequency of 2 Hz and maximum amplitude of 0.25 g. Due to the simple 

geometry and non-existence of a built-on structure, this model was considered to be crucial 

to evaluate the ability of the bounding surface plasticity model to predict the occurrence and 

effects of cyclic mobility in sand (Taborda, 2011). 

 
Figure 5.14 – Side view of the centrifuge VELACS model 1 and location of the monitoring 

instruments (adapted from Taborda, 2011). 

With respect to the second centrifuge experiment “VELACS Model 12 – Embedded structure 

in stratified soil layers” simulated by Taborda (2011), it included a compact prismatic structure 

with 4.0 m of height and 3.0 x 3.0 m2 of area in plan, centred in the centrifuge model and 

partially embedded in a 6.0 m-thick deposit of saturated relatively dense (Dr = 60 %) Nevada 

sand, which was overlaid by a 1.0 m-thick low-permeability deposit of Bonnie silt, as 

illustrated in Figure 5.15. The water level (WL) was located 1.0 m above the surface of the 

Bonnie silt layer. Moreover, the vertical stress applied by the structure to the underlying 
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deposit was estimated to be 150 kPa, while the acceleration time-history applied to the base 

of the centrifuge model was similar to that applied to the VELACS model 1. As pointed out by 

Taborda (2011), due to the presence of the structure, the observed settlements cease to be 

solely a result of the dissipation of excess pore water pressures generated during seismic 

loading (i.e. a result of the consolidation process), as it was the case in VELACS model 1. 

Indeed, as observed by Coelho (2007), the presence of the structure has a profound impact 

on the deformation mechanisms observed in this type of dynamic centrifuge experiments, as 

well as on the pore water pressure build-up and subsequent dissipation. 

 
Figure 5.15 – Side view of the centrifuge VELACS model 12 and location of the monitoring 

instruments (adapted from Taborda, 2011). 

A particular aspect of these centrifuge experiments is that water was used as pore fluid. 

Consequently, a conflict of scaling laws (used to correlate the physical observations in model 

scale to prototype scale) for time arises: the scaling law is 1 / N2 (where N is the ratio of the 

centrifugal acceleration to the acceleration of gravity) for diffusion/consolidation time, while 

a scaling law of 1 / N applies for dynamic time (Table 5.5). This incompatibility between scaling 

laws compromises the extrapolation of the observations from model to prototype scale. To 

prevent this incompatibility from arising, it has been common practice to use a pore fluid N 

times more viscous than the prototype pore fluid (e.g. Madabhushi, 1994, 2004; Coelho, 

2007). In effect, as mathematically detailed in Thusyanthan and Madabhushi (2003), by 

increasing the viscosity by N, the hydraulic conductivity (often referred to as permeability 

coefficient) is increased by the same factor N, which, according to the Darcy law, results in a 

reduction of the seepage velocity by the same factor N. As a result, the scaling laws for 

seepage velocity and consolidation time become 1 and 1 / N, respectively, therefore identical 

to those applicable for velocity and time in a dynamic event (Table 5.5). 
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Despite compromising the extrapolation of the results from model to prototype scale, the use 

of water as a pore fluid does not invalidate the numerical reproduction of the centrifuge 

experiments, providing that the numerical simulations are performed in model scale (i.e. 

using the dimensions indicated in between parenthesis in Figure 5.14 and Figure 5.15). 

Particular attention should, however, be given to the scale of the quantities. Specifically, as 

indicated in Table 5.5, the input accelerations should be N times larger than those intended 

for the prototype, while the duration of the input motion should be N times shorter (i.e. the 

acceleration time-history applied to the centrifuge model should be used in its numerical 

simulation). Furthermore, in order to adequately replicate the flow of water observed in the 

model, the hydraulic conductivity of each material should be scaled by N, as well as the unit 

weight of water. Finally, the unit weights of the materials should also be scaled by N to 

properly estimate the initial stress state. All remaining input values, including the model 

parameters, are independent of the scale at which the centrifuge model is simulated. 

Table 5.5 – Scaling laws used in centrifuge modelling to correlate the physical observations in 
model scale to prototype scale (Madabhushi, 2004). 

Quantity Unit Scaling law 

General scaling laws for slow events   
Length m 1 / N 
Area m2 1 / N2 
Volume m3 1 / N3 
Mass N m-1 s2 1 / N3 
Mass density N m-4 s2 1 
Force N 1 / N2 
Bending moment N m 1 / N3 
Stress N m-2 1 
Strain m m-1 1 
Work and energy N m 1 / N3 
Seepage velocity m s-1 1 / N 
Diffusion / consolidation time s 1 / N2 

Scaling laws for dynamic events   
Time s 1 / N 
Frequency s-1 N 
Displacement m 1 / N 
Velocity m s-1 1 
Acceleration m s-2 N 

As part of the validation of the implementation of the bounding surface plasticity model into 

FEMEPDYN, both VELACS model 1 and 12 were numerically simulated, with the obtained 

results being compared with those obtained by Taborda (2011) when using the original 

version of the constitutive model in ICFEP. At this point, it is perhaps important to highlight 

that, although it is expected to obtain overall similar results to those presented in Taborda 

(2011), it cannot be expected to obtain a perfect match as that obtained when modelling 

element laboratory tests (particularly when using similar numerical tolerances). In fact, it 
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should be noted that, although the constitutive equations implemented into FEMEPDYN are 

expected to be very similar to those implemented into ICFEP, there might exist some 

discrepancies in the numerical algorithms implemented into both codes to integrate those 

equations. Moreover, it should be pointed out that different dynamic formulations of the 

equation of motion are implemented in both codes. Specifically, while a complete formulation 

“ds – df – u” (where “d” and “u” designate displacement and pore pressure degrees of 

freedom, respectively, while the superscripts “s” and “f” designates solid and fluid phases, 

respectively) of the equation of the motion is implemented into FEMEPDYN (Grazina, 2009) 

and is used in the present study, a “ds – u” formulation, which assumes that the acceleration 

of the pore fluid relative to the soil matrix can be neglected (Zienkiewicz et al., 1980), was 

used during the simulations performed by Taborda (2011). Note that, in the literature (e.g. 

Zienkiewicz et al., 1980), the formulation “ds – u” is often designated as “u – p” (with “u” 

being, in this case, the displacement of the solid particles and “p” the pore pressure), while 

the formulation “ds – df – u” is often designated as “u – w – p” (where “w” refers to the 

displacement of the pore fluid). Moreover, note that, although these numerical aspects have 

typically little influence on the obtained results when simulating problems involving simple, 

geometry, loading and boundary conditions (e.g. element laboratory tests), they might have 

a considerable impact on the simulation of dynamic boundary value problems (e.g. Potts and 

Zdravkovic, 1999; Sloan et al., 2001; Taborda, 2011; Woo and Salgado, 2014; E-Kan and 

Taiebat, 2014). 

5.3.2.2.2 Material properties 

In order to characterise the materials employed in these centrifuge experiments (dry-

pluviated Nevada sand no. 120 and slurry-deposited Bonnie silt), a very extensive element 

laboratory testing programme was carried out at The Earth Technology Corporation (Arulmoli 

et al., 1992). This included characterisation tests to determine physical properties and particle 

size distribution, constant head-permeameter tests, resonant column tests, oedometer tests, 

drained and undrained monotonic triaxial compression and extension tests, undrained cyclic 

triaxial tests, drained and undrained monotonic direct simple shear tests and undrained cyclic 

simple shear tests. Based on the large amount of experimental data available, the bounding 

surface plasticity model was calibrated for Nevada sand by Taborda (2011), with the model 

parameters obtained by the author being indicated in Table 5.4. 

With respect to Bonnie silt, a considerable amount of experimental data was available, which 

would also allow the calibration of the bounding surface plasticity model for this material. 

This was, however, considered to be unnecessary by Taborda (2011), with a simpler numerical 

model being selected. In fact, as pointed out by the author, due to the thin thickness of the 

Bonnie silt layer and the fact that the foundation is not built on it, the mechanical response 

of this material is expected to have a small influence on the performance of the foundation 

under dynamic loading, at least when compared with the influence of the deposit of Nevada 
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sand. A cyclic non-linear elastic model using a hyperbolic backbone curve was, therefore, 

selected by Taborda (2011). This model was coupled with the Mohr-Coulomb failure criterion 

in order to limit the shear strength of the material. Unfortunately, a model of this type is not 

available in FEMEPDYN. Although it would have been possible to use also the BSPM to 

replicate the response of the Bonnie silt layer, the additional complexity of that option would 

likely not be offset by an important gain in terms of accuracy. Therefore, it was decided to 

use a linear isotropic elastic model coupled with the Mohr-Coulomb failure criterion to 

describe the response of the thin deposit of Bonnie silt. Naturally, the fact that the 

constitutive model employed in the present study is different from that adopted by Taborda 

(2011) may lead to some discrepancies in the obtained results (strains, effective stresses and 

pore water pressures). Nevertheless, these discrepancies are expected to be limited to zones 

of the model close to or within the Bonnie silt layer. 

 
Figure 5.16 – Reduction of the normalised tangent shear modulus with shear strain amplitude 
under direct simple shear primary loading predicted by the constitutive model employed by 

Taborda (2011) to model the response of Bonnie silt deposit. 

In order to calibrate a linear isotropic elastic model, only two model parameters are required. 

In the present study, values for the (constant) shear modulus, G, and Poisson’s ratio, , were 

defined. Starting with the latter model parameter, since the cyclic non-linear component of 

the constitutive model employed by Taborda (2011) also makes use of a constant Poisson’s 

ratio, the same value was adopted:  = 0.20. In relation to the shear modulus, Figure 5.16 

depicts the normalised reduction of the tangent shear modulus, Gtan / Gmax, with the shear 

strain amplitude, , defined by the cyclic non-linear elastic model used by Taborda (2011) 

under direct simple shearing primary loading. Also shown in the figure is the lower limit cut-

off adopted by the author for the tangent modulus (i.e. Gtan Gmax⁄ ≥ Gmin Gmax⁄ ). It can be 

observed that the lower limit is activated as the shear strains amplitude exceeds about 

0.05 %. Taking into account that significant deformations were observed during the 
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experiment and reasonably well captured in the numerical simulation performed by Taborda 

(2011), it was decided to adopt the smallest value of the tangent modulus (i.e. G = Gmin =

750.0 kPa) in the present study. 

With respect to the model parameters required for the Mohr-Coulomb failure criterion, 

identical values to those adopted by Taborda (2011) were used in the present study: the 

friction angle was set to ′ = 28.0°, while the apparent cohesion was set to c′ = 5.0 kPa. Table 

5.6 resumes the model parameters adopted for Bonnie silt. 

Table 5.6 – Model parameters adopted for Bonnie silt. 

Model parameter Value 

Linear isotropic elasticity  

Gtan (kPa) 750.0 

 ( ) 0.20 

Strength (Mohr-Coulomb failure criterion) 
c’ (kPa) 5.0 

' (°) 28.0 

5.3.2.2.3 VELACS model 1 – Level ground liquefaction 

5.3.2.2.3.1 General aspects of the numerical simulation 

A fully coupled hydro-mechanical dynamic finite element (FE) analysis of VELACS model 1 was 

carried out using FEMEPDYN, assuming 2D plane strain conditions. As mentioned before, the 

numerical simulation was performed in model scale (i.e. considering a 20 cm-thick deposit of 

Nevada sand), due to the incompatible scaling laws between dynamic time and consolidation 

time resulting from the use of water as pore fluid in the experiment. An identical mesh to that 

used by Taborda (2011) was generated in FEMEPDYN, consisting of a single column of 100 

hybrid eight-noded isoparametric quadrilateral elements with 0.002 m of size (corresponding 

to 0.1 m of size in prototype scale). As illustrated in Figure 5.17, each of these hybrid elements 

has four pore pressure degrees of freedom, located at the corner nodes. Moreover, per 

element, nine Gauss points were used to estimate the effective stress changes. 

Furthermore, to reflect the model scale conditions, a gravitational acceleration of 50.0 g =

490.5 m/s2 was used in the numerical simulation, increasing the unit weight of the materials 

(i.e. 
sat,50 g

= 50.0 
sat,1 g

) and of water (i.e. 
w,50 g

= 50.0 
w,1 g

). In addition, the input motion 

was also modified, by scaling up the accelerations by a factor of 50.0 and scaling down its 

duration by the same factor (Figure 5.18). 
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Figure 5.17 – Finite element mesh adopted in the simulation of VELACS model 1. 

 
Figure 5.18 – Horizontal acceleration time-history for VELACS model 1. 

The numerical analysis included two distinct phases: 1) generation of initial stress state 

assuming “greenfield” conditions; 2) application of the dynamic loading and subsequent 

consolidation analysis until the establishment of the hydraulic equilibrium. In relation to the 

first phase, due to the simple geometry of the problem, a K0-procedure was employed. As 

suggested by Taborda (2011), an earth pressure coefficient at rest of K0 = 0.5 was used for 

the deposit of Nevada sand. Regarding the second phase, as reported by Taborda (2011), a 

total of 5000 increments of 0.1 ms (corresponding to 0.05 s in prototype scale) were used to 

simulate the total duration of input signal (0.5 s in model scale, corresponding to 25 s in 
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prototype scale, as shown in Figure 5.18). Similar to what was performed by Taborda (2011), 

the dissipative version of the Newmark time-integration scheme ( = 0.3025 and  = 0.60) 

was used during this phase of the analysis. As detailed by Grazina (2009), these values ensure 

unconditional stability of the method and result in a spectral radius at infinity of  ≈ 0.818 

for a single degree of freedom oscillator. 

  

  
Figure 5.19 – Schematic illustration of tied degrees of freedom for: a) solid displacement degrees 
of freedom and b) pore fluid displacement degrees of freedom and c) pore pressure degrees of 

freedom. 

In terms of boundary conditions, the horizontal acceleration time-history shown in Figure 

5.18, after being appropriately scaled, was applied to the nodes belonging to the bottom 

boundary of the model, while restricting the vertical displacement degree of freedom at these 

nodes (i.e. no vertical accelerations were applied to the model). Moreover, as originally 

proposed by Zienkiewicz et al. (1989) and illustrated in Figure 5.19, one-dimensional response 
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was achieved by tying all degrees of freedom (i.e. displacement of the solid particles in both 

horizontal and vertical direction, displacement of the pore fluid in both horizontal and vertical 

directions and pore pressures) at each level of the mesh. 

In addition, since drainage was only allowed through the ground surface, two additional 

boundary conditions were specified: 1) the flow of water through the lateral and bottom 

boundaries was impeded by tying the displacement degrees of freedom of the pore fluid and 

solid phase in the direction perpendicular to each boundary; and 2) the pore water pressures 

at the corner nodes belonging to the top boundary of the mesh were set to remain null 

throughout the analysis (i.e. a pore water pressure condition was specified for those nodes). 

It is perhaps important to note that, on the contrary to all remaining boundary conditions, 

the hydraulic boundary condition applied to the top boundary of the model in the present 

study (i.e. pore water pressure condition) was different from that used by Taborda (2011). 

Specifically, this author used a precipitation boundary condition, which was characterised by 

the following dual condition (Potts and Zdravkovic, 1999; Taborda, 2011): when the pore 

water pressure, u, was larger than a user-defined value (in the case, ub = 0.0 was used), a 

pore water pressure condition was applied to the node; conversely, when u was smaller than 

ub (meaning tensile pore water pressures, since ub = 0.0), a user-defined flow rate, qb, (in the 

case, qb = 0.0 was selected) was applied. As shown later, since positive (i.e. compression-

type) excess pore water pressures were generated during the application of the dynamic 

loading in every zone of the deposit, being eventually dissipated during the consolidation 

phase, the pore water pressure condition was likely applied during the whole analysis carried 

out by Taborda (2011), meaning that the condition applied to the top boundary condition 

was, in the end, similar to that used in the present study. 

 
Figure 5.20 – Impervious lateral boundary conditions. 
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In relation to the characteristics of the Nevada sand deposit, as already mentioned, the 

original formulation of the bounding surface plasticity model developed by Taborda (2011) 

was used to simulate its response, with the model parameters listed in Table 5.4 being 

adopted. Moreover, as reported by Taborda (2011), the state of the deposit was characterised 

by an initial void ratio of e0 = 0.724 (corresponding to an initial relative density of Dr ≈ 45 %), 

as well as by mass density of Gs = 2.67, resulting in a saturated unit weight under 1 g 

conditions of 
sat, 1 g

= 19.31 kN/m3 (Equation 5.112) and, therefore, in a mass density of  =

1.969 g/cm3 (Equation 5.113). Note that, contrary to the unit weight, the mass density is 

independent of the scale. 


sat, 1 g

=
(Gs + e) 

w, 1 g

1.0 + e
=
(2.67 + 0.724) × 9.81

1.0 + 0.724
= 19.31 kN/m3 (5.112) 

 =


sat, 1 g

g
= 1.969 g/cm3 (5.113) 

In terms of hydraulic properties, the deposit was characterised by a hydraulic conductivity in 

both horizontal and vertical directions of kx, 1 g = ky 1 g = 6.583 × 10−5 m/s for 1 g conditions 

(Taborda, 2011). This value was scaled by N to account for the centrifugal acceleration used 

in this test (i.e. kx, 50 g = ky 50 g = 3.291 × 10−3 m/s was used in the simulation). These values 

were assumed to remain constant throughout the analysis. 

Finally, it was required to define the bulk modulus of the pore fluid. An identical value to that 

reported by Taborda (2011) was used: Kf = 2.2 GPa. There was no need to scale this value. 

5.3.2.2.3.2 Obtained numerical results 

The horizontal acceleration time-histories obtained by FEMEPDYN are compared with those 

reported by Taborda (2011) in Figure 5.21. Note that both sets of results are presented in 

prototype scale. Moreover, to ease the comparison between them, a bandpass filter with 

limit frequencies of 0.10 Hz and 25 Hz (in prototype scale) was applied to the raw data by 

using the software SeismoSignal version 2018 (Seismosoft, 2018). It is apparent that a good 

match between both sets of data was achieved. In particular, it is noteworthy that, at each 

level, a good agreement was reached in terms of the instant of time at which the horizontal 

accelerations are observed to strongly attenuate, suggesting that similar predictions of the 

moment at which cyclic mobility was initiated was obtained in both FE simulations. 
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Figure 5.21 – Computed horizontal acceleration time-histories for VELACS model 1. 
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Furthermore, the evolutions of the excess pore water pressure with time computed by 

FEMEPDYN are depicted in Figure 5.22, together with those reported by Taborda (2011). Once 

more, it can be observed that, in general, a very good agreement between both sets of data 

was reached, with both FE codes predicting a rapid increase of the excess pore water pressure 

to values close to the initial vertical effective stress at every level of the mesh. The only slight 

discrepancy seems related to the rate at which the dissipation of the excess pore water 

pressure occurs after the end of shaking particularly at shallow depths. Nevertheless, both 

sets of data indicate that post-seismic dissipation of excess pore water pressure starts at the 

deeper levels of the deposit (at about t = 13.0 s for y = 2.2 m), being progressively initiated 

at shallower depths (at about t = 19.0 s for y = 8.8 m), as typically observed in centrifuge 

experiments (e.g. Scott, 1986b; Coelho, 2007). 

In addition, Figure 5.23 compares the vertical displacements predicted by FEMEPDYN with 

those registered in the numerical analysis carried out by Taborda (2011) at three different 

levels of the mesh: at the surface (y = 10.0 m), at about one quarter of the total depth of the 

thickness of the deposit (y = 7.4 m) and at a middle depth of the deposit (y = 5.0 m). It can 

be seen that, in general, a very good agreement was reached, with similar rates of settlement 

being predicted by both FE codes at every level. The small discrepancies observed at ground 

surface (y = 10.0 m) for the later stages of the simulation (final 5 s of the simulations) are 

likely a direct consequence of the aforementioned differences registered in terms of rate of 

dissipation of excess pore water pressures during the consolidation phase at shallow depths 

(Figure 5.22). Nevertheless, considering that different formulations of the equation of motion 

and different numerical algorithms are implemented into FEMEPDYN and ICFEP, it can be 

concluded that a remarkably good match between both codes was obtained. 
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Figure 5.22 – Computed excess pore water pressure evolution with time for VELACS model 1. 
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Figure 5.23 – Predicted evolution of vertical displacements with time for VELACS model 1. 
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following the approach outlined by Popescu and Prevost (1993). Specifically, rather than 

150 kPa, it was considered that the vertical stress induced by the structure in the underlying 

deposit of sand was only 63.3 % of this value (i.e. 95.0 kPa). In effect, based on the results of 

a small parametric study involving a 2D plane strain analysis and a 3D analysis, Popescu and 

Prevost (1993) observed that, for the problem under analysis, similar settlements were 

obtained in the two different types of analysis when this correction factor was applied to the 

self-weight of the structure in the 2D plane strain analysis. This means that the mass density 

of the structure, , which is independent of the scale (Table 5.5), was estimated based on the 

weight necessary to apply a vertical stress of 95.0 kPa to the underlying deposit of sand during 

the generation of initial stresses – Equation 5.114 (Taborda, 2011). 

 =


sat, 1 g

g
=

′

g H
=

95.0

9.81 × 4.0
= 2.421 g/cm3 (5.114) 

Furthermore, it is noteworthy that the structure was simulated as a rigid block, with its 

response being described by a linear elastic model with typical stiffness properties of 

aluminium: a shear modulus of G = 25.9 GPa and a Poisson’s ratio of  = 0.35 (Taborda, 

2011). No interface elements were considered between the structure and the surrounding 

soil in the numerical analysis. 

With respect to the deposit of Nevada sand, the bounding surface plasticity model was 

employed to simulate its mechanical response, with identical model parameters to those 

adopted in the previous centrifuge model (Table 5.4). The deposit of Nevada sand was 

characterised by an initial void ratio of e0 = 0.661, corresponding to an initial relative density 

of Dr ≈ 60 %. Thus, the saturated unit weight under 1 g conditions was, in this case, of 


sat, 1 g

= 19.67 kN/m3 (Equation 5.115), resulting in a mass density of  = 2.005 g/cm3 

(Equation 5.116). Moreover, since the hydraulic conductivity is also a function of the void 

ratio (among other parameters), kx, 1 g = ky 1 g = 5.6 × 10−5 m/s (under 1 g conditions) was 

adopted in this simulation. This value was scaled by N to account for the centrifugal 

acceleration used in this test (i.e. kx, 100 g = ky 100 g = 5.6 × 10−3 m/s was employed in the 

simulation). 


sat, 1 g

=
(Gs + e) 

w, 1 g

1.0 + e
=
(2.67 + 0.661) × 9.81

1.0 + 0.661
= 19.67 kN/m3 (5.115) 

 =


sat, 1 g

g
=

19.67

9.81
= 2.005 g/cm3 (5.116) 

In relation to the Bonnie silt, as justified before, an elastic linear model coupled with a Mohr-

Coulomb failure criterion was used to model its response, with the adopted model 

parameters being listed in Table 5.6. Moreover, taking into account that the material was 

placed in the centrifuge model with a water content of about 30 % and that the density of the 

solid particles, Gs, was estimated as 2.67, an initial void ratio of e0 = 0.80 (Equation 5.117), 
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an unit weight under 1 g conditions of 
sat, 1 g

= 18.91 kN/m3 (Equation 5.118) and a mass 

density of  = 1.927 g/cm3 (Equation 5.119) were considered in the numerical simulation 

(Taborda, 2011). 

e = Gs w = 2.67 × 0.30 = 0.80 (5.117) 


sat, 1 g

=
(1.0+w) Gs w, 1 g

1.0+w
=
(2.67 + 0.30) × 2.67× 9.81

1.0 + 0.30
= 18.91 kN/m3 (5.118) 

 =


sat, 1 g

g
=

18.91

9.81
= 1.927 g/cm3 (5.119) 

The hydraulic conductivity of Bonnie silt under 1 g conditions was estimated as kx, 1 g =

ky 1 g = 1.468 × 10−8 m/s, leading to kx, 100 g = ky 100 g = 1.468 × 10−6 m/s after scaling 

(Taborda, 2011). Note that, as expected, the permeability of Bonnie silt is significantly smaller 

than that of Nevada sand (more than three orders of magnitude). 

With respect to the pore fluid, it was only required to specify its bulk modulus, with an 

identical value to that reported by Taborda (2011) being adopted: Kf = 2.2 GPa. 

 
Figure 5.24 – Finite element mesh and selected nodes for plotting results for VELACS model 12. 
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from that employed in the present analysis. Specifically, while in the simulation performed by 

Taborda (2011) a second-order integration was performed by employing 8-noded elements 

having 4 Gauss points, a third-order integration was carried out in the present analysis by 

using 8-noded elements with 9 Gauss points, since it has been suggested to lead to more 

reliable results for isoparametric displacement-based finite element procedures (Bathe, 

1996). 

The first phase of the numerical simulation comprised the generation of the initial effective 

stress state. The methodology used to perform this part of the calculation is described in 

detail in the following section, together with the obtained results. A dynamic FE analysis was 

subsequently performed, comprising a total of 1550 increments of 0.1 ms, resulting in a total 

duration of 0.155 s in model scale (i.e. 15.5 s in prototype scale). Following the strategy 

adopted by Taborda (2011), the dissipative version of the Newmark time-integration scheme 

( = 0.3025 and  = 0.60) was used during this phase of the analysis. As pointed out by 

Taborda (2011), since Rayleigh damping was not employed neither for the soil deposits nor 

for the structure, the numerical damping introduced by Newmark’s method played an 

important key role in the mitigation of the spurious high-frequency oscillations typically 

observed in this type of problems. 

In terms of dynamic boundary conditions, the horizontal acceleration time-history depicted 

in Figure 5.25 was applied to the nodes located along the bottom, as well as to the nodes 

belonging to the lateral boundaries of the FE mesh, in order to replicate the influence of the 

rigid walls of the centrifuge container used in the experiment (Taborda, 2011). Conversely, no 

vertical accelerations were applied and, therefore, the vertical displacement of the nodes on 

the bottom boundary were restricted to achieve equilibrium. 

 
Figure 5.25 – Horizontal acceleration time-history for VELACS model 12. 
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the soil-structure interface. Similarly, the lateral and bottom boundaries of the model were 

considered impermeable, meaning that the pore fluid and solid phase nodal degrees of 

freedom were also tied in the direction perpendicular to each boundary. In addition, to 

simulate the existence of 1.0 m of water level above the ground surface, a value of 9.81 kPa 

was prescribed to every node belonging to the top surface of the Bonnie silt layer. Naturally, 

the position of the water level was also considered during the generation of the initial 

effective stresses, as discussed in the following section. 

5.3.2.2.4.2 Generation of the initial effective stress state 

Due to the existence of the structure, the initial effective stress state cannot be simply 

generated by assuming “greenfield conditions” (Potts and Zdravkovic, 1999), as performed 

for VELACS model 1. Indeed, the accurate replication of the centrifuge test preparation would 

involve the simulation of the following six steps: (1) deposition of Nevada sand until the 

foundation level of the structure (i.e. y = 0.055 m in model scale – Figure 5.24); (2) placement 

of the structure; (3) deposition of the remaining deposit of Nevada sand (i.e. until reaching 

y = 0.06 m in model scale); (4) deposition of the 0.1 m-thick layer of Bonnie silt; (5) saturation 

of the model and subsequent raising of the water level until reaching the final water level of 

y = 0.08 m in model scale; (6) increasing of the centrifugal acceleration. Although modelling 

such a detailed process would be possible, the gain in accuracy would probably be very 

limited, while bringing significant complexity to this phase of the analysis (Taborda, 2011). 

Therefore, the author decided to adopt a simple gravity loading procedure, involving the 

incremental application of body forces to the elements of the mesh, considered weightless at 

the start of the analysis. Concurrently, a hydrostatic pore water pressure profile characterised 

by a linear variation of the pore water pressures from 9.81 kPa at the top of the Bonnie silt 

layer to about 78.48 kPa at the bottom of the Nevada sand deposit was gradually introduced 

in the analysis (Taborda, 2011). 

In the present calculation, since a gravity procedure involving the gradual increase of the body 

forces was not available in FEMEPDYN, it was decided to employ a different strategy, 

consisting of the following three different stages: 

(1) Activation of the elements representing Nevada sand and Bonnie silt deposits; in 

addition, activation of the elements representing the embedded part of the structure 

(i.e. elements of the structure below y = 0.07 m – Figure 5.24); at this stage, the 

constitutive model used for Bonnie silt was assigned to this latter set of elements, 

meaning that a horizontal 1.0 m-thick deposit of Bonnie silt extending from the left to 

the right boundary of the model was considered at this stage; due to the simple 

geometry of the model at this stage, the initial stresses were generated using a K0-

procedure (i.e. assuming “greenfield conditions”) using K0 = 0.5 for both Nevada sand 

and Bonnie silt deposits; moreover, a hydrostatic pore water profile characterised by 
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a linear variation of the pore water pressures from 9.81 kPa at the top of the Bonnie 

silt layer to about 78.48 kPa at the bottom of the Nevada sand deposit was introduced 

in the analysis, allowing for the computation of the effective stress state by applying 

Terzaghi’s principle. 

(2) Switching of the material used to model the elements comprising the embedded part 

of the structure from that adopted for Bonnie silt to that selected for the structural 

elements. 

(3) Activation of the remaining elements representing the structure in a total of five 

increments corresponding to the layers of elements above the ground level (Figure 

5.24). 

During this phase, drained conditions were prescribed for soil elements, while elements 

representing the structure were considered non-porous. Moreover, conventional static 

displacement boundary conditions were adopted during this phase, consisting of the 

restriction of the horizontal displacements along the lateral boundaries of the model, as well 

as restriction of both horizontal and vertical displacements along the bottom boundary of the 

model. 

Table 5.7 – Model parameters adopted for the generation of the initial stress state of VELACS 
Model 12 (Taborda, 2011). 

Model parameters Nevada sand Bonnie silt Structure 

Linear elasticity    
Gtan (in GPa) 26.3 26.3 26.3 

 0.333 0.333 0.333 

Strength (Mohr-Coulomb failure criterion) 
c’ (in kPa) 0.0 5.0 – 

' (in °) 30.0 28.0 – 

In terms of material properties, a similar strategy to that adopted by Taborda (2011) was 

followed, consisting of using a linear elastic model coupled with the Mohr-Coulomb failure 

criterion to describe the response of both Bonnie silt and Nevada sand during this phase of 

the analysis, rather than the more sophisticated constitutive models adopted in the 

subsequent dynamic phase (i.e. the BSPM for Nevada sand). Moreover, to prevent the 

occurrence of large shear stress localisations at the soil-structure interface, which could have 

a detrimental impact on the subsequent dynamic phase, similar stiffness characteristics were 

adopted for all materials (Table 5.7), as reported by Taborda (2011). Naturally, at the start of 

the dynamic phase, the BSPM with the model parameters listed in Table 5.4 was assigned to 

Nevada sand, with the elastic and plastic state parameters being initialised for each Gauss 

point according to the methodology described in Section 5.2.3. Similarly, the model 

parameters assigned to Bonnie silt and to the structure were changed to those indicated in 

Section 5.3.2.2.2. 
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Figure 5.26 compares the effective stresses obtained by FEMEPDYN with those reported by 

Taborda (2011) for three different horizontal alignments: y = 0.0025 m (close to the bottom 

of the model), y = 0.0325 m (at about the middle of the deposit of Nevada sand) and y =

0.0525 m (close to the top of the deposit of Nevada sand). Note that the dimensions are 

presented in model scale (to be easily compared with the dimensions of the model – Figure 

5.24), while stresses are independent of the scale. Moreover, due to the symmetry of the 

model (Figure 5.24), the obtained effective stresses are symmetric about the axis of symmetry 

of the structure (x = 0.14 m) and, therefore, only those obtained for the left part of the model 

are depicted in Figure 5.26. 

It can be seen that, although different methodologies were employed during this phase of the 

analysis, a very good match between the results obtained by both FE codes was observed. 

Furthermore, the small discrepancies seem essentially limited to the effective stresses 

obtained for zones of the model close to the structure, with a maximum discrepancy of about 

4.1 kPa being registered for the vertical effective stress, ′yy, at (x, y) = (0.14, 0.0525) m. 

Note that this value corresponds to a maximum relative difference of about 

(78.8 − 74.7) 78.8⁄ ≈ 5.2 %. Interestingly, both sets of data seem to suggest that the 

influence of the structure on the deposit of Nevada sand is particularly noticeable until a 

distance of about 0.5 B to the side of the lateral face of the solid structure (with B representing 

the width of the structure), being practically negligible for distances greater than 2.0 B. 

Complementarily, Figure 5.27 shows the obtained results for two vertical alignments: x =

0.07 m (corresponding half distance from the left boundary to the structure) and x = 0.14 m 

(axis of the structure). Once again, it can be concluded that the differences are very limited, 

with a slightly smoother increase of the effective stresses being registered in the computation 

performed using FEMEPDYN. 
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Figure 5.26 – Computed initial effective stresses for three horizontal alignments of VELACS 

Model 12. 
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Figure 5.27 – Computed initial effective stresses for two vertical alignments of VELACS Model 12. 

5.3.2.2.4.3 Dynamic analysis 

Figure 5.28 compares the horizontal acceleration time-histories obtained by FEMEPDYN with 

those presented in Taborda (2011) for a vertical alignment coincident with the axis of the 

structure (except for the top horizontal acceleration time-history, which was registered at the 

top right corner of the structure: (x, y) = (15.5, 9.5) m in prototype scale). Note that all 

obtained results were converted to prototype scale, by using the relations presented in Table 

5.5, to facilitate their interpretation. 
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Figure 5.28 – Computed horizontal acceleration time-histories for VELACS model 12 for a vertical 

alignment coincident with the axis of the structure. 

It can be observed that an excellent agreement between both sets of data was obtained, with 
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levels of the sand deposit. As expected, the accelerations at the top corner of the structure 

are significantly higher than those registered at the base of the structure. In effect, as 

established by the theory of wave propagation in an isotropic elastic medium (e.g. Kramer, 

1996), when a body wave reaches a free surface, due to impossibility of transmitting stresses, 

the amplitude of the displacement of the boundary is double of that of the incident wave. 

Similarly, Figure 5.29 shows that a very good agreement between the horizontal acceleration 

time-histories computed by FEMEPDYN and those presented in Taborda (2011) was obtained 

for a vertical alignment corresponding to half distance from the left boundary to the structure 

(i.e. x = 7.0 m, in prototype scale), even though different constitutive relationships were 

employed for the 1 m-thick deposit of Bonnie silt. This suggests that the constitutive model 

selected for Bonnie silt has limited impact on this aspect of soil response. 

 

 
Figure 5.29 – Computed horizontal acceleration time-histories for VELACS model 12 for a vertical 

alignment corresponding to half distance from the left boundary to the structure. 

In addition, Figure 5.30 compares the vertical acceleration time-histories computed by 

FEMEPDYN with those depicted in Taborda (2011) at the top right corner of the structure (x =

15.5 and y = 9.5). Once again, it can be observed that a remarkable agreement was obtained 

between both sets of data. Interestingly, despite null vertical accelerations having been 

imposed at the bottom boundary of the mesh, large vertical accelerations were computed at 

the top of the structure. As pointed out by Taborda (2011), this suggests that the structure 
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exhibited rocking response – i.e. the structure oscillated in the vertical direction due to the 

generation of unbalanced forces (Coelho, 2007). 

 
Figure 5.30 – Computed vertical acceleration time-histories at the top right corner of the structure 

for VELACS model 12. 

Figure 5.31 compares the excess pore water pressure computed by FEMEPDYN with those 

reported by Taborda (2011). It can be observed that, in general, a very good agreement was 

obtained between both sets of data. This is particularly evident for the results registered at 

the three positions underneath the structure (i.e. for which x = 13.75 m). At the position 

farthest away from the influence of the structure (i.e. at position (x, y) = (6.75, 3.0) m), small 

discrepancies between results obtained by FEMEPDYN and those presented in Taborda (2011) 

can be observed, probably due to the larger influence of the response of Bonnie silt on the 

overall response of the system at this location. 

Finally, Figure 5.32 compares the structure settlement time-history obtained by FEMEPDYN 

with that reported by Taborda (2011). It can be observed that slightly smaller settlements 

were registered in the present analysis. However, taking into account the complexity of the 

present analysis, involving highly non-linear response under very low effective stresses, the 

different constitutive models used to simulate the response of Bonnie silt and the differences 

between the algorithms implemented in both FE codes, it can be considered that the results 

are sufficiently close to conclude that the implementation of the version of the BSPM 

proposed by Taborda (2011) and Taborda et al. (2014) was successful. 
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Figure 5.31 – Computed excess pore water pressure evolution with time for VELACS model 12. 
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Figure 5.32 – Evolution of structure settlement with time for VELACS model 12. 

 
Figure 5.33 – Evolution of settlement with time at the surface of Bonnie silt for VELACS model 12. 

5.3.3 Inherent fabric anisotropy formulation 

To validate the implementation of the inherent fabric anisotropy component of the model 

(Section 4.3.3), an undrained cyclic direct simple shear (UCDSS) test on Fraser River sand was 

simulated, with the obtained results being compared with those presented in Williams (2014). 

As mentioned before, this author developed an inherent fabric anisotropy formulation, which 

was coupled with the version of the Bounding Surface Plasticity model proposed by Taborda 

et al. (2014) and implemented into the Imperial College Finite Element Program (ICFEP). It is, 

therefore, possible to directly compare data presented by Williams (2014) with results 

obtained by FEMEPDYN. 

The available data indicate that a sample of Fraser River sand having an initial void ratio of 

e = 0.818 and subjected to an initial vertical effective stress of ′v = 50.0 kPa and to a shear 

stress of  = 0.0 kPa was subjected to 4 loading cycles characterised by a shear stress 

oscillation of  = ±5.0 kPa. This solicitation was simulated by applying uniform tangent 

stresses to the nodes located along the top boundary of the element (Figure 5.4b). 

A first simulation was performed using the original version of the model (i.e. by adopting a =

1.0/3.0, vA = 0.0 and kA = 1.0). An additional simulation was subsequently performed using 

the extended version of the model with a = 0.20, vA = 5.0 and kA = 0.4. The model 

parameters employed in both analyses are indicated in Table 5.8. 
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Table 5.8 – Model parameters for Fraser River sand (Williams, 2014). 

Model parameter 
Inherent fabric 

isotropy 
Inherent fabric 

anisotropy 

Non-linear elasticity   
Cg 422.0 422.0 
mg (1) (1) 
ng 0.500 0.500 

 2.000 2.000 
a1 0.440 0.440 

1 1.60 x 10-3 1.60 x 10-3 
p'min Not used Not used 
Gmin Not used Not used 

 0.200 0.200 

Model surfaces   
p’ref 101.3 kPa 101.3 kPa 
(eCS)ref 0.840 0.840 

 0.030 0.030 

 0.660 0.660 
vA 0.000 5.000 
Mc

c 1.376 1.376 
Me

c  1.000 1.000 

kc
d 1.670 1.670 

ke
d 1.214 1.214 

kc
b 2.670 2.670 

ke
b 1.940 1.940 

m 0.005 0.005 
p’YS 1.0 kPa 1.0 kPa 

Plastic hardening modulus   
A0 1.000 1.000 
h0 0.100 0.100 

 0.650 0.650 
elim 0.946 0.946 

 1.000 1.000 

 0.000 0.000 

 -0.300 -0.300 
kA 1.000 0.400 
hf,min Not used Not used 
hf,max Not used Not used 

Shearing-induced fabric component 
H0 12 600.0 120 000.0 

 2.000 0.600 
Hmax Not used Not used 

Inherent fabric anisotropy component 
a 0.333 0.200 

(1) For the purpose of validation, Equation 4.25 was employed for the calculation of the small-strain shear 
modulus, as defined in the original formulation of the model. This means that the model parameter mg, which 
is used in Equation 4.99 and 4.100, is not necessary in the present simulations. 
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Figure 5.34 depicts the results obtained when using the original version of the model (i.e. in 

the first of the two simulations), while Figure 5.35 presents the results obtained when the 

inherent fabric anisotropy component of the model was activated. In both cases, the results 

obtained by FEMEPDYN are compared with those presented in Williams (2014).  

  

 
Figure 5.34 – Numerical simulation of an UDSS test using the original version of the model: (a) 

shear stress – vertical effective stress and (b) shear stress – shear strain. 

  

 
Figure 5.35 – Numerical simulation of an UDSS test using the inherent fabric anisotropy 

component of the model: (a) shear stress – vertical effective stress and (b) shear stress – shear 
strain. 

It can be seen that a very good agreement was obtained for both simulations. The small 

discrepancies are believed to arise from the use of different numerical tolerances, as well as 

from inaccuracies introduced when digitising the results presented in Williams (2014). It is 

interesting to note that, for these loading conditions and model parameters, the introduction 
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of the inherent fabric anisotropy led to a faster decrease of the vertical effective stress with 

loading. 

5.4 Summary and conclusions 

In the first part of this chapter, the numerical algorithms used for the integration of the 

bounding surface plasticity model (BSPM) model were comprehensively described. 

Specifically, due to its robustness and simplicity, a modified forward Euler scheme with 

automatic sub-stepping and error control, as introduced by Sloan et al. (2001), was selected. 

This scheme involves an initial elastic trial, eventually followed by an elasto-plastic 

computation once the effective stress point intersects one of the yield surfaces or is located 

on one of them. The size of the strain step is automatically adapted to the magnitude of the 

error in computed stresses and plastic state parameters, resulting in a computationally 

efficient scheme. Moreover, an unconditionally convergent algorithm based on the well-

established Pegasus method (Dowell and Jarratt, 1972) is used to find the intersection of the 

stress path with the yield surface during elastic trial, as proposed by Sloan et al. (2001). The 

rate of convergence of the algorithm is enhanced by reducing the search interval of the 

algorithm, as suggested by Hong et al. (2012). Additionally, a drift correction scheme is 

employed, when necessary, to prevent the effective stress point from being located out of 

the yield surface at the end of an elasto-plastic increment (i.e. to ensure that the consistency 

condition is satisfied, as required by elasto-plasticity theory). 

The second part of this chapter focused on the validation of the implementation, by 

simulating both element laboratory tests and dynamic boundary-value problems. Starting 

with the former set of simulations, it included the numerical reproduction of drained isotropic 

compression tests, drained and undrained monotonic triaxial compression tests, undrained 

cyclic triaxial tests and undrained cyclic direct simple shear tests. It was shown that the 

numerical precision adopted in the calculations may affect the obtained results, particularly 

for large strains. Nevertheless, when using similar numerical precisions, it was shown that a 

remarkably good agreement was obtained between the results obtained by FEMEPDYN and 

those published in the literature (Taborda, 2011), both in terms of effective stress paths and 

stress-strain response. The newly developed code was subsequently applied to the simulation 

of boundary-value problems involving earthquake-induced liquefaction. Specifically, two 

different dynamic centrifuge experiments, performed as part of the large collaborative 

research project VErification of Liquefaction Analysis by Centrifuge Studies (VELACS), were 

reproduced. The first of these centrifuge experiments – VELACS model 1 – comprised a 10 m-

thick (in prototype scale), level deposit of saturated loose Nevada sand subjected to 

horizontal motion on its base. Overall, a very good agreement between the results computed 

by FEMEPDYN and those presented in the literature (Taborda, 2011) was obtained in terms 

of horizontal acceleration time histories, as well as evolutions with time of excess pore water 
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pressures and vertical displacements. It is important to note that very similar results were 

obtained in terms of the moment at which cyclic mobility was initiated at each level and 

consequent modification of the horizontal accelerations, as well as initiation of excess pore 

water pressure dissipation at each level.  

To complement the validation of the implementation of the original formulation of the BSPM 

into FEMEPDYN, a second centrifuge experiment – VELACS model 12 – was simulated. The 

second centrifuge experiment differed from the previous one by including a 6.0 m-thick (in 

prototype scale) solid structure partially embedded into a 6.0 m-thick (in prototype scale) 

deposit of fully-saturated relatively dense Nevada sand and a 1.0 m-thick (in prototype scale) 

low-permeability deposit of Bonnie silt. Although a different constitutive model had to be 

employed to characterise the response of Bonnie silt than that used in Taborda (2011), the 

obtained results were shown to be very similar in terms of simulated horizontal and vertical 

acceleration time histories, excess pore water pressure and settlements evolution with time. 

This suggested that FEMEPDYN can be applied to the simulation of boundary-value problems 

involving liquefaction-related phenomena and soil-structure interaction concurrently. 

The final part of the validation routine consisted of simulating an UCDSS test using the 

extended version of the model (i.e. including the inherent fabric anisotropy component) and 

compare the obtained results with those presented in Williams (2014). Once again, a 

remarkable agreement between both sets of numerical data was obtained, suggesting that 

this additional component of the model was also successfully implemented into FEMEPDYN. 
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Chapter 6 CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR 

HOSTUN SAND 

6.1 Introduction 

The formulation of a bounding surface plasticity model (BSPM) presented in the literature 

was comprehensively described in Chapter 4 and some alterations to that formulation were 

proposed. Using an explicit stress integration scheme (Chapter 5), the constitutive model was 

implemented into the dynamic finite element code FEMEPDYN, with its validation being 

performed against published results of numerical simulations of element laboratory tests, as 

well as simulations of centrifuge experiments. A very good agreement was obtained in both 

cases, suggesting that the implementation of the constitutive model into FEMEPDYN was 

performed successfully. 

In this chapter, the constitutive model is calibrated for Hostun sand against the vast amount 

of laboratory test results presented in Chapter 2 and Chapter 3. While the majority of the 

model parameters are calibrated based on well-known features of the response of sand, 

computational analyses are required to assess the impact of the parameters lacking physical 

meaning on the modelled response and, based on the obtained results, decide on the best 

parameters. This is particularly true for the case of the model parameters defining the plastic 

hardening modulus, as well as the model parameters related to the inherent fabric anisotropy 

and shearing-induced fabric components, for which small parametric studies are presented 

to assess the effect of each model parameter on the modelled response in order to assist in 

the selection of its value. Two different sets of model parameters are obtained, one set for 

the original formulation of the model (Taborda et al., 2014) and another set for the extended 

formulation which includes an inherent fabric anisotropy component (Chapter 4). The 

performance and modelling capabilities of both original and extended constitutive 

relationships are subsequently evaluated in the context of element laboratory testing 

(Chapter 7) and centrifuge testing (Chapter 8). 

As pointed out in Chapter 2, it should be noted that some results presented in this chapter 

have already been published by the author and his supervisors in a scientific journal (Azeiteiro 

et al., 2017a). Note, however, that the work published in this paper was developed as part of 

the present PhD research. As such, it is considered as original work in the present thesis and, 

therefore, citation to the paper is considered unnecessary. 

6.2 Methodology 

The calibration of a constitutive model consists of finding the set of parameters that allows 

for the best possible reproduction of the available experimental data. The complexity of this 
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process depends highly on the number of model parameters to be calibrated, as well as on 

the complexity of the model in itself. An increase in complexity is typically observed when the 

formulation of the constitutive model requires the calibration of model parameters having no 

physical meaning or that cannot be directly related to a given distinctive feature of sand 

response. In such case, optimisation techniques, such as genetic algorithms (e.g. Simpson and 

Priest, 1993; Pal et al., 1996; Taborda et al., 2008; Azeiteiro, 2008; Azeiteiro et al., 2009; 

Taborda, 2011; Pedro, 2013) may be a valuable tool. In the present study, an alternative 

approach, which has been successfully applied to the calibration of BSPMs (e.g. Papadimitriou 

et al., 2001a; Loukidis and Salgado, 2009; Taborda, 2011; Taborda et al., 2014) was selected. 

This approach is termed “hierarchical” and consists of calibrating the model parameters 

sequentially according to a pre-established order of greater physical relevance and 

independence from other model parameters.  

As pointed out by Loukidis and Salgado (2009) and Taborda (2011), the first components of 

the constitutive model to be calibrated are those defining clear aspects of sand response, 

namely the Critical state line (CSL) in the e – p’ plane, the critical state strength and elastic 

stiffness at small strains, whose model parameters are simply obtained by curve fitting over 

experimental data. Subsequently, the calibration process focuses on the quantities that, 

despite having a numerical nature, control well-known features of the response of sand. This 

includes the model parameters defining the position of the dilatancy surface, which identifies 

the phase transformation state (i.e. the state at which the response of sand changes from 

plastic contraction to plastic dilation), the model parameters controlling the position of the 

bounding surface, which is related to the occurrence of a maximum angle of shearing 

resistance, the model parameter defining the stress-dilatancy relationship and those 

controlling the reduction of the elastic stiffness with shearing. These model parameters can 

still be obtained by curve fitting over experimental data, with clear instructions on how to do 

it being provided in this chapter. Finally, trial-and-error procedures are required to calibrate 

the model parameters having no physical meaning, such as those related to the plastic 

hardening modulus, as well as to the shearing-induced fabric and inherent fabric anisotropy 

components. As detailed later, this last step of the calibration process is far more complex 

than the previous steps, particularly due to the interaction between some model parameters. 

To overcome this issue, parametric analyses are performed whenever necessary to identify 

more clearly the impact of each parameter on the computed response. 

Table 6.1 summarises the hierarchical order adopted for the calibration of the constitutive 

model. It can be observed that higher-order components may be influenced by lower-order 

components. The opposite, however, is generally not true, i.e. lower-order components tend 

to be independent of higher-order components. For instance, the constitutive model 

establishes a dependency of the positions of the dilatancy and bounding surfaces on the 

position of the CSL on e – p’ plane and critical state strength, with the attributed orders (3 

and 1, respectively) reflecting this aspect. Similarly, it is necessary to calibrate the model 
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parameters related to small-strain shear modulus (order 2) before those defining the 

reduction of the tangent shear modulus (order 5). Probably, the only exception consists of 

orders attributed to the shearing-induced fabric and inherent fabric anisotropy components 

(orders 7 and 8, respectively). Since the latter component is expected to affect the modelled 

cyclic response and, therefore, to require a readjustment of the model parameters related to 

the former component, it would be logical to switch the orders attributed to these 

components of the constitutive model. However, with the purpose of evaluating the impact 

of the inherent fabric anisotropy component on the modelled results, it was deemed 

important to obtain two different sets of model parameters: one of which excluding the 

inherent fabric anisotropy component (by setting a = 0.333, vA = 0.0 and kA = 1.0) and, 

therefore, implying the use of the formulation originally proposed by Taborda et al. (2014), 

while the second set of model parameters activating the inherent fabric anisotropy 

component. Apart from the numerical stability-related parameters, whose values are 

established in a subsequent phase of the process (order 9), the calibration of the set of model 

parameters compatible with the original version of the model is completed at the end of 

phase 7, while the calibration of the extended version is only completed at the end of phase 

8. 

Table 6.1 – Hierarchical order to the calibration of the BSPM parameters (Loukidis and Salgado, 
2009). 

Order Component of the model Parameters 

1 
Critical state line position on the e – p’ plane (ecs)ref, , , p’ref 

Critical state strength Mc
c, Me

c  

2 
Small-strain shear modulus Cg, mg , ng 

Small-strain Poisson’s ratio  

3 
Position of the dilatancy surface kc

d, ke
d 

Position of the bounding surface kc
b, ke

b 

4 Stress-dilatancy relationship A0 

5 Reduction of the tangent shear modulus , a1 , 1 

6 Plastic hardening modulus h0 , , , m, , elim ,  

7 Shearing-induced fabric H0,  

8 Inherent fabric anisotropy a, vA, kA 

9 Numerical stability-related parameters 
p'min, Gmin, p'ys, Hmax, 
hf,min, hf,max  

The element laboratory test results on Hostun sand, presented in Chapter 2 and Chapter 3, 

were employed in the calibration of the constitutive model. This includes bender element test 

results, drained and undrained monotonic triaxial compression and extension tests, as well as 

undrained cyclic triaxial tests performed on air-pluviated samples prepared to different initial 
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void ratios and consolidated under various isotropic and anisotropic stress states. Note that, 

although other strategies would have been possible, all test data were used during the 

calibration of the constitutive model. This was considered the most appropriate strategy to 

obtain a set of parameters able to reproduce the response of Hostun sand under different 

initial and loading conditions, which might be particularly important when using the 

constitutive model in the context of boundary-value problems (Chapter 8). Note that a similar 

approach was followed by Loukidis and Salgado (2009). 

6.3 Critical state line 

The position of the critical state line (CSL) on e – ln p’ plane (Equation 4.2) plays a key role in 

the constitutive model, since it allows the definition of the state parameter,  (Equation 4.3), 

which, in turn, is used to determine the positions of the bounding and dilatancy surfaces 

(Equation 4.4 and 4.5, respectively) and, consequently, the gradient of the plastic potential 

and hardening modulus associated with the primary yield surface (Equations 4.46 and 4.48, 

respectively). Therefore, accurate calibration of the CSL might be crucial for obtaining reliable 

numerical results with the present model. 

The critical state (CS) is defined as the state established at large strains at which soil deforms 

under constant stress and void ratio (Roscoe et al., 1958). According to this definition, it 

implies that clear signs of stress and volumetric strain stabilisation are measured for drained 

shearing, or stress and pore water pressure stabilisation are observed for undrained shearing, 

not only momentarily (as at the quasi-steady state), rather it should continue in that state 

with further deformation (Been et al., 1991). Therefore, although a large number of drained 

and undrained triaxial compression (TC) and triaxial extension (TE) tests were reported in 

Chapter 2, CS conditions were considered to be only attained in four TC tests, as detailed in 

Section 2.6.5.1. The e – p’ data at the end of shearing for those four tests are presented as 

solid black circles in Figure 6.1. By considering only those four data points, it can be observed 

that a lack of representative CS data exists at relatively low stresses (p’ ≤ 100 kPa). As 

discussed by Klotz and Coop (2002), this seems to be a consequence of the premature 

occurrence of barrelling and strain localisation when samples are sheared under lower 

confining stresses, preventing them from reaching critical state conditions. The authors 

suggested, however, that this lack of experimental data and, consequently, the additional 

difficulty in estimating the position of the CSL is circumvented by the fact that the CSL tend to 

the maximum void ratio, emax, of sand at very low stresses, as proposed firstly by Riemer et 

al. (1990). It was, therefore, assumed that (ecs)ref = emax = 1.00. Having set p′ref = 101.3 (i.e. 

equal to the atmospheric pressure), the remaining two model parameters –  and , which 

control the slope and curvature of the CSL, respectively – were subsequently estimated by 

linear least square fitting over the 4 data points, with the values  = 0.07 and  = 0.36 being 

obtained. 
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Figure 6.1 – Proposed critical state line for Hostun sand. 

As detailed in Section 2.6.5.1, given the few data points used to estimate the position of the 

CSL, the proposed CSL was compared to critical state test data presented in the literature. In 

particular, drained and undrained triaxial compression test data obtained in studies carried 

out at Grenoble Institute of Technology (INPG) and École National des Ponts et Chaussées 

(ENPC) over the last three decades were analysed. The e – p’ data at the end of tests where 

CS conditions were considered to be attained are also plotted in Figure 6.1. It can be observed 

that these additional data points seem to corroborate the adopted CSL. 

6.4 Critical state strength 

The critical state (CS) strength in triaxial compression (TC) and in triaxial extension (TE) are 

defined by their corresponding stress ratios Mc
c and Me

c , respectively. These model parameters 

define the position of the CS surface in the multiaxial stress space, also influencing the 

positions of the bounding and dilatancy surfaces (Equation 4.4 and 4.5, as well as 4.35 to 

4.38). Therefore, high importance is given to their calibration. 

The q – p’ data obtained at the end of the four TC tests where CS conditions were considered 

to be attained are shown in Figure 6.2 as solid black circles. By employing a least square fitting 

over those four data points, Mc
c was estimated as 1.265, which corresponds to a CS friction 

angle, ′
c
c, of approximately 31.5° (Equation 6.1). Indeed, the additional critical state data 

obtained from TC tests performed in other institutions seem to be in good agreement with 

the proposed CSL. 

′
c
c = asin (

3 Mc
c

6+Mc
c) ≈ 31.5° (6.1) 
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Figure 6.2 – Critical state strength in compression and extension for Hostun sand. 

With respect to the CS in TE, it is difficult to obtain a reliable estimation of Me
c  from TE test 

data due to the inevitable occurrence of necking in those tests, as explained in Chapter 2. 

Nevertheless, several experimental studies have shown that the CS friction angle in TE, ′
e
c , is 

close to its counterpart value in TC, ′
c
c, at least for pluviated sands (e.g. Vaid et al., 1990; 

Lade, 2006). Indeed, Loukidis and Salgado (2009) suggested that ′
e
c  for sand is, in general, 0 

to 2° greater than ′
c
c. A value in the middle range was adopted, i.e. ′

e
c = ′

c
c + 1.0° = 32.5°, 

which corresponds to Me
c = 0.911, according to Equation 6.2. Note that, by adopting this 

value, a CS ratio of cc = Me
c Mc

c⁄ = 0.720 is obtained, a value within the typical 0.67–0.75 

range for silica sands (Loukidis and Salgado, 2009). Furthermore, according to Loukidis and 

Salgado (2009), this value is greater than the minimum value ensuring a convex shape for the 

critical surface (cc ≥ 0.717), which is a crucial aspect to guarantee numerical stability. 

′
e
c = asin (

3 Me
c

6−Me
c) ⟺ Me

cs =
6 sin(′

e
c)

3 + sin(′
e
c)
≈ 0.911 (6.2) 

The obtained CSL in TE is plotted in Figure 6.2 along with the q – p’ test data obtained for TE 

tests performed on moderately loose samples of Hostun sand. As expected, some very slight 

discrepancies can be observed between the proposed CSL in TE and the obtained 

experimental data. 

6.5 Small-strain shear modulus 

As detailed in Section 4.2.2, the present constitutive model makes use of the well-established 

hysteretic formulation of Ramberg and Osgood (1943) to determine the current tangent shear 

modulus, Gtan, by applying a reduction factor, T, to the maximum shear modulus, Gmax. 

(Equation 4.18). The calibration process starts by assessing the model parameters required to 
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the calculation of Gmax, focusing at a later stage (Section 6.9) on the calibration of the model 

parameters required to the computation of T. 

Several experimental studies on sand (e.g. Hardin, 1965; Hardin and Black, 1966; Hardin and 

Drnevich, 1972a; Lo Presti et al., 1997; Zhou and Chen, 2005) have suggested that Gmax can 

be essentially related to the current mean effective stress, p’, and void ratio, e. The 

experimental results obtained in the present study (Section 2.5.5) seem also to corroborate 

this proposition. Moreover, as detailed in Section 4.3.2, a more general expression has been 

introduced in the present constitutive relationship to define the dependence of Gmax on p’ 

and e (Equation 4.94, 4.99 and 4.100) than that incorporated in the earlier versions of the 

model (Equation 4.19). In this updated formulation, the following three model parameters 

require proper calibration: Cg, mg and ng. While the second of these parameters (which define 

the influence of e on Gmax) is usually set to 2.17 for round-grained sand or 2.97 for angular-

grained sand (Hardin, 1965; Hardin and Black, 1966a), the remaining two parameters are 

typically calibrated against small-strain measurements (e.g. results of bender element and/or 

resonant column tests). 

In the present case, a value of mg = 2.97 was adopted, due to the sub-angular to angular 

grain shape of Hostun sand. Moreover, as detailed in Section 2.5.5, results of bender element 

(BE) tests performed both on moderately loose and dense samples were used to estimate Cg 

and ng. As shown again in Figure 6.3, a simple least square fitting over the BE data points led 

to Cg = 293.0 and ng = 0.49. 

 
Figure 6.3 – Small-strain shear modulus for Hostun sand. 

6.6 Poisson’s ratio 

The small-strain Poisson’s ratio, , can be defined by the ratio of the radial strain increment, 

r, to the axial strain increment, a – Equation 6.3. In the present model, the small-strain 

Poisson’s coefficient is assumed to remain constant throughout loading, relating the current 
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tangent bulk modulus, Ktan, to the current tangent shear modulus, Gtan, according to the 

theory of elasticity (Equation 4.24). Due to this, the small-strain Poisson’s ratio is often 

referred to simply as Poisson’s ratio. 

 = −
r

a
 (6.3) 

The value of  may be obtained from small-strain measurements, providing that wave 

measurements in two different directions are undertaken. In such case, the shear and 

compressional wave velocities, vs and vp, respectively, may be employed to estimate the 

small-strain value of , as indicated by Equation 6.4. 

  =
1

2
 
(

vp

vs
)

2

− 2

(
vp

vs
)

2

− 1

 (6.4) 

Alternatively, it is possible to estimate the small-strain Poisson’s ratio, , from triaxial tests, 

providing that high-resolution local-strain transducers are used to measure the deformation 

of the sample in both axial and radial directions and small cyclic loads are applied. 

In the present study, since none of the aforementioned tests was performed, it was necessary 

to select a value from other studies presented in the literature. Specifically, Hoque and 

Tatsuoka (2000) and Hoque (2005) present results of small-strain cyclic triaxial loading tests 

performed on dry samples of air-pluviated Hostun sand, using high-resolution-strain 

transducers. In these tests, samples were prepared to several different initial void ratio and 

consolidated under various different confining stresses, with values of  between 0.14 and 

0.23 being measured in the laboratory tests. Since a more reliable source for this parameter 

was not found,  = 0.18, corresponding to the average value, was adopted in the present 

study. Note that the small-strain Poisson’s ratio is not expected to vary significantly for 

different sands (e.g. Loukidis and Salgado, 2009). In fact, based on similar tests, Tatsuoka and 

Hoque (2004) obtained values in the range 0.16 – 0.18 for Toyoura (Japanese) sand, a value 

of about 0.16 for Ticino (Italian) sand and values in the range 0.11 – 0.18 for Silver Leighton-

Buzzard (U.K.) sand. 

6.7 Positions of the bounding and dilatancy surfaces 

6.7.1 General aspects 

The bounding and dilatancy surfaces are used to model two distinctive states of the response 

of sand to loading, namely the peak stress ratio state, which is related to the mobilisation of 

the maximum angle of shearing resistance, and the phase transformation state (Ishihara et 

al., 1975), which marks the change from plastic contraction to plastic dilation. Contrary to the 

critical state, which is characterised by stationary conditions, both phase transformation and 

peak stress ratio states are transitory and can occur either at moderate strains or large strains, 
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depending on the effective stress state, as well as on the material’s state (e.g. Been and 

Jefferies, 1985; Wood et al., 1994; Li and Dafalias, 2000; Been and Jefferies, 2004; Jefferies 

and Been, 2006). In order to take into account this dependency in a simple but effective way, 

a linear dependence of the bounding and dilatancy surface positions (characterised by their 

respective stress ratios) on the critical state strength and state parameter,  (Been and 

Jefferies, 1985), is considered by the present BSPM – Equation 4.4 and 4.5, respectively. 

Therefore, the calibration process is very similar for both surface positions. Specifically, 

providing that results of several triaxial compression and extension tests are available, it 

involves the computation of stress ratio, , – state parameter, , data points corresponding 

to the occurrence of the peak stress ratio (i.e. 
c,e
b  – 

c,e
b  data points) and to the occurrence 

of phase transformation (i.e. 
c,e
d  – 

c,e
d  data points). Having plotted these points, a simple 

linear regression can be employed to estimate the slope of straight lines that best describe 

the available experimental data in triaxial compression and extension (i.e. the set of 

parameters kc,e
b  and kc,e

d , respectively for the bounding and dilatancy surfaces). Note that such 

linear regression must result in 
c,e
b = 

c,e
d = 

c,e
c  for  = 0.0, to ensure compatibility with 

critical state soil mechanics (CSSM) framework (Roscoe et al., 1958; Schofield and Wroth, 

1968), as assumed by the model formulation. Moreover, note that, rather than Mc,e
b , Mc,e

d  and 

Mc,e
c , which represent positive model parameters, the experimental results are presented in 

terms of 
c,e
b , 

c,e
d  and 

c,e
c  to comply with the adopted sign convention, where stress ratio in 

triaxial extension takes negative value (i.e. 
e
b , 

e
d and 

e
c  are negative). 

Finally, it is important to highlight that, as pointed out by Taborda (2011), to obtain a more 

accurate estimation of these model parameters, the current value of  is used in the 

calibration process, and not its initial magnitude, as initially suggested by Papadimitriou et al. 

(2001). 

6.7.2 Bounding surface 

Figure 6.4 presents 
c,e
b  – 

c,e
b  data obtained from triaxial compression and extension tests 

performed on Hostun sand. As detailed in Section 2.6.5.2, from the thirty-two tests 

performed, only three undrained triaxial extension tests were excluded, since the stress ratio 

was still increasing when these tests were stopped. In Figure 6.4, it can be observed that, 

irrespective of type of consolidation, drainage conditions and stress path direction of tests, 

the data points seem to align quite well, with a linear trend describing very satisfactorily the 

experimental data. Moreover, at least for this sand, the exponential form suggested by Li et 

al. (1999) as a replacement for the linear form of Equation 4.4 does not seem to bring any 

additional gain in accuracy. 
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Figure 6.4 – Calibration of the parameters controlling the position of the bounding surface for 

Hostun sand. 

Also shown in the figure is the line obtained when the simplification ke
b = kc

b (Me
c Mc

c⁄ ), 

proposed by Papadimitriou and Bouckovalas (2002) and often employed in the literature (e.g. 

Loukidis and Salgado, 2009; Taborda et al., 2014) is taken into account. It can be observed 

that this line does not plot far from that obtained when applying a linear regression to the 

experimental data for most of data points. Moreover, it is apparent that this line 

approximates better the peak stress state point obtained from DMTE p↓ test than the line 

obtained by linear regression. Indeed, it was later found that the line considering the 

simplification ke
b = kc

b (Me
c Mc

c⁄ ) allows, overall, for a better replication of the available 

monotonic and cyclic triaxial test data, as well as centrifuge test data. Therefore, in the 

present study, the model parameters kc
b = 2.81 and ke

b = 2.02 were adopted in all subsequent 

numerical analyses. 

6.7.3 Dilatancy surface 

The dilatancy surface is used to model the temporary state at which the volumetric plastic 

strains change sign (i.e. the plastic dilation is temporarily null). This distinctive state of the 

response of sand was termed as phase transformation state by Ishihara et al. (1975). 

According to these authors, under undrained conditions, this state can be identified by a local 

minimum in the mean effective stress, p’. Under drained conditions, the identification of this 

transitory state is much more complex, since it involves the estimation of the volumetric 

plastic strains, or, more generically, of the dilatancy. For that purpose, the procedure 

described in Section 2.6.5.3 was applied, with the dilatancy being estimated based on 

Equation 6.5. 
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 D ≈
v −

p'
Kmax

q −
q

3 Gmax

≈
(vj+1

− vj
) −

p'j+1 − p'j
Kmax

(qj+1
− qj

) −
qj+1 − qj

3 Gmax

 (6.5) 

where: 

Kmax =
2 (1+ )

3 (1− 2)
Gmax (6.6) 

Note that Equation 6.5 assumes that Gtan and Ktan can be approximated, at this stage of the 

calibration, by Gmax and Kmax, respectively. Furthermore, it assumes that Gmax and Kmax remain 

constant over each time step (i.e. from a given instant j to the subsequent instant j+1). 

According to Loukidis and Salgado (2009), these simplifications are reasonable provided that 

data obtained from drained triaxial compression tests are used. In fact, since strains induced 

in sand during triaxial loading are mostly of plastic nature, the value of D is expected to be 

primarily affected by the total volumetric and deviatoric strain increments, v and q, 

respectively, depending only to a limited extent on the elastic volumetric and deviatoric strain 

components, v
e and q

e, respectively. Conversely, under undrained conditions, since v ≈

0.0, D is more dependent on v
e ≈ (p'j+1 − p'j) Ktan⁄ ≈ (p'j+1 − p'j) Kmax⁄  and, therefore, 

inaccurate values of D can be obtained when those simplifications are adopted. 

Figure 6.5 presents 
c,e
d  – 

c,e
d  data gather from twenty-eight drained and undrained triaxial 

compression and extension tests. Note that, as detailed in Section 2.6.5.3, in three drained 

triaxial compression tests, the samples exhibited dilatant response throughout loading, 

making it impossible to obtain 
c,e
d  – 

c,e
d  data. In addition, as also described in Section 2.6.5.3, 

one data point was excluded from the analysis, since it was observed to plot far from the 

remaining points. In fact, it is apparent that the obtained 
c,e
d  – 

c,e
d  data presented in Figure 

6.5 presents more scatter than the obtained 
c,e
b  – 

c,e
b  data presented in Figure 6.4, 

particularly in triaxial extension. As suggested in the literature (Been and Jefferies, 2004; 

Loukidis and Salgado, 2009), this greater scatter can be attributed not only to the 

simplifications adopted for the estimation of the dilatancy, but also to the inherent 

unreliability of stress-dilatancy data obtained during the early stages of triaxial shearing, at 

which phase transformation state is typically observed to occur. Indeed, it was found that 

ke
d = 0.20, obtained by performing a simple linear regression over the 

e
d – 

e
d data, would be 

too low to allow for an adequate reproduction of the available monotonic and cyclic triaxial 

test data, as well as centrifuge test data, with far better results being obtained when using 

the simplification ke
d = kc

d (Me
c Mc

c⁄ ) proposed by Papadimitriou and Bouckovalas (2002) and 

often employed in the literature (e.g. Loukidis and Salgado, 2009; Taborda et al., 2014). 

Therefore, in the present study, the following values were adopted: kc
d = 0.94 and ke

d = 0.67. 
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As mentioned for the peak stress state data, the exponential form suggested by Li et al. (1999) 

as a replacement for the linear form of Equation 4.5 does not seem to improve the description 

of the experimental data in triaxial compression (i.e. 
c
d – 

c
d data). 

 
Figure 6.5 – Calibration of the parameters controlling the position of the dilatancy surface for 

Hostun sand. 

6.8 Stress-dilatancy relationship 

In this constitutive model, the dilatancy, D, is assumed to be proportional to the distance dd 

from the current stress ratio to the dilatancy stress ratio, as expressed by Equation 4.47, 

where A0 is the constant of proportionality (i.e. the model parameter characterising the 

stress-dilatancy relationship). Once more, since the reduction of the shear modulus has yet 

been calibrated, only drained tests should be employed to assess the stress-dilatancy 

response (Loukidis and Salgado, 2009). As explained before, when using drained test data, 

the error introduced by assuming Gtan ≈ Gmax and Ktan ≈ Kmax in the estimation of the 

dilatancy, D (Equation 6.5), is expected to be much smaller than that introduced by this 

simplification when analysing undrained test data. 

Figure 6.6 shows the stress-dilatancy curves obtained from drained triaxial compression tests. 

Note that these curves were smoothed by using an interval of data values to the computation 

of D greater than the test sampling interval, a procedure also employed by Loukidis and 

Salgado (2009) and Taborda (2011). A single straight line seems to describe reasonably the 

stress-dilatancy response of loose, moderately loose and dense samples, at least until the 

peak stress ratio is reached. Furthermore, by employing a simple linear regression, A0 ≈ 1.0 

was obtained. 
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Figure 6.6 – Calibration of the stress-dilatancy relationship for Hostun sand. 

6.9 Shear modulus reduction 

Figure 6.7 shows the stress-dilatancy response computed from results of undrained triaxial 

compression tests by using Equation 6.5 in conjunction with v ≈ 0.0. It is apparent that a 

much smaller value for A0
* (where the subscript “*” is used to distinguish from the drained 

case) is obtained for undrained shearing (A0
* ≈ 0.3 in comparison with A0 ≈ 1.0). 

According to Loukidis and Salgado (2009), since dilatancy is considered an intrinsic 

characteristic of sand, similar stress-dilatancy responses should be obtained in both drained 

and undrained cases, with eventual discrepancies being likely the result of the use of 

inappropriate values for elastic stiffness when estimating the dilatancy coefficient, here 

denoted as D when using drained test data and D* when using drained test data, to ease the 

presentation. In fact, as pointed out before, although errors in the estimation of Gtan and Ktan 

are likely to affect the estimation of both D and D*, the impact of the introduced error is 

predictably larger in the undrained case, where D* is highly dependent on the value of Ktan. In 

addition, Loukidis and Salgado (2009) pointed out that, due to the inherent unreliability of 

triaxial test data obtained during the early stage of loading (i.e. for low values of the stress 

ratio, ), it is usual to discard those data points and use only data obtained during later stages 

of loading (i.e. for medium to large values of ) to characterise the stress-dilatancy response 

of sand. Indeed, under such values of , it is predictable that Gtan and Ktan have already 

reached values close to their minimum (i.e. Gtan ≈ Gmin and Ktan ≈ Kmin are likely observed 

under such range of values of ). 
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Figure 6.7 – Stress-dilatancy relationship obtained from UMTC test data when constant elastic 

stiffness is considered. 

Taking both aspect into account, Loukidis and Salgado (2009) suggested that similar 

undrained and drained stress-dilatancy responses (i.e. A0
* ≈ A0) are likely obtained when 

using Gtan ≈ Gmin and Ktan ≈ Kmin for the estimation of D*, rather than using Gtan ≈ Gmax and 

Ktan ≈ Kmax, as assumed when estimating D, which is less sensitive to the values of Gtan and 

Ktan. Therefore, to conciliate the drained and undrained stress-dilatancy responses, Loukidis 

and Salgado (2009) proposed the adoption of a ratio of the minimum to the maximum tangent 

shear modulus, Kmin Kmax⁄ , equal to the ratio of the undrained to drained stress-dilatancy-

related parameters, A0
* A0⁄ , – Equation 6.7. 

Kmin

Kmax
≈

A0
*

A0
 (6.7) 

Recalling that, in the present model, the lower limit for the tangent shear modulus is given by 

Gmin = Gmax [1+  (1 a1⁄ − 1)]⁄  and that Ktan is proportional to Gtan via a constant Poisson’s 

ratio  (Equation 4.24), it is possible to relate the model parameters a1 and  to Kmin Kmax⁄ , as 

given by Equation 6.8. 

Kmin

Kmax
=

Gmin

Gmax
=

1

1 +  (
1
a1
− 1)

⟺ a1 =
 

Kmin

Kmax

1+
Kmin

Kmax

 (6.8) 

By substituting Equation 6.7 into Equation 6.8 and assuming  = 2.0, as proposed by 

Papadimitriou and Bouckovalas (2002), the following value is obtained for the model 

parameters a1: 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

D
*

( 
)

c,e
d − c,e ( )

ICUMTC p↑ 0.868/80 ICUMTC p↑ 0.843/135

ICUMTC p↑ 0.808/25 ICUMTC p↑ 0.801/80

ICUMTC p↑ 0.815/135 ICUMTC p↑ 0.694/135

D* = 0.3 (c,e
d - c,e)



CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR HOSTUN SAND 

351 
 

a1 ≈
 

A0
*

A0

1 +
A0

*

A0

≈
2.0 ×

0.3
1.0

1.0+
0.3
1.0

≈ 0.46 (6.9) 

As highlighted by Taborda (2011), a significant number of assumptions were introduced in the 

approach proposed by Loukidis and Salgado (2009) for the calibration of the model 

parameters governing the reduction of the tangent shear modulus. To confirm the 

reasonability of the approach, Taborda (2011) performed a small parametric study, where 

values of A0 and A0
* were computed for several different values of a1, considering, as a 

simplification, a1 constant in each computation. A similar study was carried out in the present 

study, with the obtained results being shown in Figure 6.8. 

 
Figure 6.8 – Stress-dilatancy-related parameter A0 as a function of the parameter a1 controlling the 

reduction of the tangent shear modulus with shearing. 

It can be observed that the intersection of A0 and A0
* curves occurs at a value of a1 very similar 

to that obtained when using the approach proposed by Loukidis and Salgado (2009). In 

addition, Figure 6.8 seems to corroborate the basic assumption of Loukidis and Salgado (2009) 

that the reduction of stiffness has a much larger impact on the computation of A0
* (i.e. based 

on undrained test data) than on that of A0 (i.e. based on drained test data). Specifically, while 

values from about 2.5 to 0.3 were obtained for A0
*  when a1 was varied, respectively, from 0.2 

to 1.0, a much more limited variation of A0, from about 0.75 to 1.0, was obtained for a similar 

range of values of a1. Note that similar conclusions were drawn by Taborda (2011) when 

calibrating a BSPM for Leighton Buzzard Fraction-E sand. It was, therefore, decided to adopt 

a1 = 0.46. Furthermore, as originally proposed by Papadimitriou and Bouckovalas (2002),  =

2.0 was assumed in the present study. Note that this value was also adopted in all numerical 

analyses performed by Taborda (2011). Moreover, this value is intrinsically employed in the 

formulation of the numerical relationship proposed by Loukidis and Salgado (2009). 
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Having defined the model parameters a1 and , it is still necessary to calibrate 1. According 

to Papadimitriou and Bouckovalas (2002), since Gtan ≈ Gmin for  ≥ 
1
, the parameter 1  can 

be related to the volumetric cyclic threshold strain, 
t,v

, which defines the limit above which 

plastic strains become dominant (Vucetic, 1994). This author reported results of cyclic direct 

simple shear and cyclic triaxial tests performed on several sands indicating values for 
t,v

 in 

the range of 1.0 × 10−4 − 4.0× 10−4. More recently, an empirical expression (Equation 6.10) 

has been proposed by Loukidis and Salgado (2009). 


1
= 5.5× 10−4  

1− a1

2 a1
2

 (6.10) 

The application of this expression gives a value of 
1
= 7.0 × 10−4 , which is slightly above the 

upper limit of the range indicated by Vucetic et al. (1994). Nevertheless, since a more reliable 

procedure for the calibration of 1 was not been found, this value was adopted in the present 

study. It should be noted, however, that this value might need to be readjusted at a later 

stage. As shown in Figure 6.9, the parameter 1 has a significant impact on the rate at which 

the reduction of the shear modulus, T, occurs with the distance, 
ref
r  (which in monotonic 

triaxial compression is simply given by 
ref
r = ||), with larger values of 1 resulting in slower 

rates. 

 
Figure 6.9 – Influence of 1 on the reduction of the tangent shear modulus. 

A final note concerns the importance of the non-linear elastic formulation on the present 

model. This formulation was introduced by Papadimitriou and Bouckovalas (2002) to improve 

the simulation of the reduction of the shear modulus under dynamic loading. Indeed, as 

shown here, it also plays a key role in guaranteeing the compatibility between the stress-

dilatancy response under drained and undrained loading (Loukidis and Salgado, 2009). As 
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example, in the original version of the model proposed by Manzari and Dafalias (1997) –either 

the maximum shear modulus should be set to values much smaller than those measured 

experimentally (i.e. obtained in bender element or column resonant tests) or, alternatively, 

unrealistically low values of Poisson’s ratio need to be used to simulate adequately both 

drained and undrained monotonic response of sand. 

6.10 Plastic hardening modulus 

6.10.1 Initial considerations 

Along the lines of the bounding surface plasticity framework, the distance from the current 

stress point to its projection on the bounding surface is used to determine the plastic 

hardening modulus associated with the primary yield surface, A1 (Equation 4.48). That 

dependency is scaled by the quantity h, which is a function of state parameters. In particular, 

for the present formulation of the model, the quantity h is given by the product of the 

following scalar-valued quantities: 

1) hg, introducing the effect of the current tangent elastic shear modulus, Gtan, on A1 – 

Equation 4.62. 

2) hb, introducing the effect of the current mean effective stress, p’, as well as of the 

current distance to the bounding surface, db, in relation to its overall diameter, dref
b , 

on A1 – Equation 4.59; 

3) he, introducing the effect of the current void ratio, e, on A1 – Equation 4.60; 

4) hf, introducing the influence of the current characteristics of the shearing-induced 

fabric tensor, F, and its interaction with the deviatoric loading tensor, n, on A1 – 

Equation 4.54; 

5) hA, introducing the effect of the inherent fabric tensor, FA, and its interaction with n 

on A1 – Equation 4.108. 

In order to define each of the aforementioned quantities, the following sets of model 

parameters are required: 

1)  defining the non-linearity of the influence of Gtan on A1; 

2)  and  establishing, respectively, the non-linearity of the influence of the normalised 

mean effective stress, p′/p′ref, and of the normalised distance to the bounding surface, 

|db|/|dref
b − db|, on A1; 

3) h0,  and emax defining the influence of e on A1; 

4) H0 and  defining the influence of sand’s initial conditions on the evolution of F with 

loading; 

5) a characterising FA and hA scaling the influence of FA on A1. 
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As mentioned by Loukidis and Salgado (2009) and Taborda (2011), these model parameters 

cannot be directly associated with any specific aspect of sand response observed in 

laboratory, resulting in a complex calibration process. Nevertheless, having already 

determined a considerable number of model parameters, it is possible to carry out 

simulations of monotonic triaxial tests and assess the impact of these model parameters on 

the reproduced response. By comparing the obtained numerical results with the available 

experimental data, it is possible to select appropriate values for the model parameters. This 

methodology was adopted in the present study, following the abovementioned order 1) to 

5), as presented in the following sections. Note that, although affecting solely the plastic 

hardening modulus, due to its importance for the simulation of the cyclic response of sand, 

the calibration of the shearing-induced fabric component-related parameters H0 and  is 

presented in an individual section (Section 6.11). Similarly, the calibration of the model 

parameters a and hA, related to the inherent fabric anisotropy component, is presented in an 

individual section (Section 6.12), since: (1) this component of the model affects not only the 

plastic hardening modulus, but also the gradient of the plastic potential, due to the relocation 

of the CSL; and (2) as mentioned before, two sets of model parameters are to be obtained, 

one set for the original formulation of the model (Taborda et al., 2014) and another set for 

the extended formulation incorporating the inherent fabric anisotropy component. 

6.10.2 Model parameters related to the influence of the tangent shear modulus 

According to Taborda (2011), the model parameter  was solely introduced to allow the 

possibility of reverting to the original formulation proposed by Papadimitriou and 

Bouckovalas (2002), if desired. More specifically, by adopting  = 0.0, the effect of the 

tangent shear modulus, Gtan, on the plastic hardening modulus associated with the primary 

yield surface, A1, is removed (i.e. hg = 1.0) and the original formulation of Papadimitriou and 

Bouckovalas (2002) is retrieved. This is, however, not desirable in the present case. As shown 

in Taborda et al. (2014), the introduction of the effect of Gtan on A1 allows for a more 

consistent reduction of plastic stiffness throughout loading. Therefore,  = 1.0 was adopted 

in the present study. 

6.10.3 Model parameters related to the influence of the normalised distance to the 

bounding surface 

According to Loukidis and Salgado (2009) and Taborda et al. (2014), the model parameter  

has a strong effect on the shape of the effective stress path obtained in undrained shearing 

from the start of shearing to the phase transformation state. In particular, when simulating 

loose samples submitted to undrained triaxial compression loading, it has a strong influence 

on the stress state at which the temporary peak in deviatoric stress is obtained. Therefore, a 

proper calibration of  is essential to the accurate prediction of the occurrence of the 

undrained instability state (Section 2.6.5.4). Similar conclusions were drawn by Loukidis and 

Salgado (2009), when analysing the effect of a similar model parameter on the plastic 



CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR HOSTUN SAND 

355 
 

hardening modulus. Given the above, both group of authors performed a small parametric 

study to calibrate this model parameter, where: 

-  = 1.0 and  = 0.0 to deactivate the effect of p’ and e on A1, respectively; 

- H0 = 0.0 and  = 0.0 to deactivate the effect of F on A1; 

-  is varied in each analysis – values of 0.0, 0.3, 0.6 and 0.9 were employed; 

- for each value of , the value of h0 resulting in a value of p’min similar to that observed 

in the laboratory test is selected. 

A similar procedure was adopted in the present study. Figure 6.10 to Figure 6.12 compare the 

numerical and experimental results of three ICUMTC p↑ tests performed on loose samples, 

respectively: ICUMTC p↑ 0.876/80, ICUMTC p↑ 0.868/80 and ICUMTC p↑ 0.843/135 tests. 

Note that, in these tests, the existence of a temporary peak in deviatoric stress before a 

minimum value of p’ is reached is more evident than in tests conducted on samples prepared 

to denser initial states.  

In all three figures, it is apparent that the modelled effective stress paths do not match well 

the measured effective stress paths. Note, however, that this may be affected by 

experimental bedding errors (i.e. errors related to the initial adjust of samples to loading) and, 

therefore, emphasis is given to the matching of the temporary peak in deviatoric stress. For 

ICUMTC p↑ 0.876/80 test (Figure 6.10) and ICUMTC p↑ 0.868/80 test (Figure 6.11), it seems 

that, overall,  = 0.3 allows for a satisfactory reproduction of the measured effective stress 

paths and stress-strain responses. In fact, it is apparent that higher values of  result in the 

overprediction of the local maximum peak of the deviatoric stress, while a lower value 

underestimates that temporarily peak. Moreover,  = 0.3 seems to result in a very accurate 

replication of the stress-strain response measured in the first of these tests (i.e. in the 

ICUMTC p↑ 0.876/80 test, illustrated in Figure 6.10b), although slightly overestimating the 

stress-strain response measured in the second of these tests (i.e. in the UMTC p↑ 0.868/80 

test, illustrated in Figure 6.11b). Regarding the UMTC p↑ 0.843/135 test, while  = 0.0 

seems to simulate more accurately the effective stress path measured in the laboratory, it 

appears to result in a considerably stiffer stress-strain response that registered in the 

experiment. This latter aspect seems to be slightly improved when  = 0.3 is adopted, 

although a better agreement would require an even higher value for . Overall, it seems that 

 = 0.3 leads to the best possible simulation of these three tests and, therefore, this value 

was adopted at this stage. Note, however, that the value assigned to this model parameter 

might be adjusted later if unreasonable modelled response is obtained. 
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Figure 6.10 – Influence of  on the numerical simulation of test ICUMTC p↑ 0.876/80: (a) effective 

stress path and (b) stress-strain response. 

  
Figure 6.11 – Influence of  on the numerical simulation of test ICUMTC p↑ 0.868/80: (a) effective 

stress path and (b) stress-strain response. 
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Figure 6.12 – Influence of  on the numerical simulation of test ICUMTC p↑ 0.843/135: (a) 

effective stress path and (b) stress-strain response. 

6.10.4 Model parameters related to the influence of the void ratio and of the mean 

effective stress 

A trial-and-error procedure was employed to calibrate the model parameters h0,  and emax, 

defining the influence of the void ratio, e, (through the plastic multiplier he – Equation 4.60) 

on the plastic hardening modulus associated with the primary yield surface, A1, as well as the 

model parameter , controlling the influence of the mean effective stress, p’, through the 

plastic multiplier hb (Equation 4.59), on A1. Note that, since both p’ and e are used to 

determine the tangent shear modulus, Gtan, these state parameters also influence A1 through 

the plastic multiplier hg – Equation 4.62. 

As suggested by Taborda (2011), initial simulations of drained and undrained monotonic 

triaxial compression tests were performed. In these simulations, the effects of e (through the 

plastic multiplier he) and p’ (through the plastic multiplier hb) on A1 were removed by setting 

 = 0.0 and  = 1.0, respectively. In addition, H0 = 0.0 and  = 0.0 were adopted in the 

analysis to deactivate the effect of the shearing-induced fabric tensor, F, on A1 (Equations 

4.66, 4.67, 4.68, 4.69 and 4.54). By employing a trial-and-error procedure, the value of h0 

resulting in the best possible match between the simulation and the laboratory test data was 

selected. Note that, to avoid confusion with the final value of the model parameter h0, the 

parameter subjected to the trial-and-error optimisation is denoted as h0
*. Note also that, by 

neglecting, at this stage, the effect of F (through the plastic multiplier hf) on A1, h0
* is simply 

defined by Equation 6.11. 

h0
* = he (

p′

p′ref
)

−1.0

= h0 (1.0−  e) (
p′

p′ref
)

−1.0

 (6.11) 
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Table 6.2 – Values of h0
* obtained by trial and error for each monotonic triaxial compression test. 

Test ID (1) 
e0 (2) 
( ) 

p'0 (2) 
(kPa) 

0 (2) 
( ) 

h0
* 

( ) 

ICUMTC 0.876/80/p↑ 0.876 80.0 -0.059 0.034 
ICUMTC 0.868/80/p↑ 0.868 80.0 -0.067 0.030 
ICUMTC 0.843/135/p↑ 0.843 135.0 -0.079 0.015 
ICUMTC 0.783/25/p↑ 0.783 25.0 -0.175 0.038 
ICUMTC 0.801/80/p↑ 0.801 80.0 -0.135 0.033 
ICUMTC 0.815/135/p↑ 0.815 135.0 -0.108 0.035 
ICUMTC 0.686/25/p↑ 0.686 25.0 -0.272 0.050 
ICUMTC 0.751/80/p↑ 0.751 80.0 -0.185 0.040 
ICUMTC 0.694/135/p↑ 0.694 135.0 -0.229 0.035 
ICDMTC 0.875/50/p↑ 0.875 50.0 -0.071 0.020 
ICDMTC 0.885/80/p↑ 0.885 80.0 -0.050 0.022 
ICDMTC 0.846/200/p↑ 0.846 200.0 -0.064 0.008 
ICDMTC 0.835/500/p↑ 0.835 500.0 -0.040 0.004 
ICDMTC 0.829/25/p↑ 0.829 25.0 -0.129 0.036 
ICDMTC 0.798/80/p↑ 0.798 80.0 -0.138 0.030 
ICDMTC 0.804/135/p↑ 0.804 135.0 -0.118 0.025 
ICDMTC 0.667/25/p↑ 0.667 25.0 -0.291 0.044 
ICDMTC 0.725/80/p↑ 0.725 80.0 -0.211 0.045 
ICDMTC 0.728/135/p↑ 0.728 135.0 -0.195 0.040 
ICDMTC 0.826/80/p↓ 0.826 80.0 -0.109 0.008 
K0CDMTC 0.797/80/p↓ 0.797 80.0 -0.139 0.035 
ICDMTC 0.65/80/p↓ 0.650 80.0 -0.286 0.055 
K0CDMTC 0.672/80/p↓ 0.672 80.0 -0.264 0.050 

(1) The nomenclature used to designate the laboratory tests is detailed in Chapter 2. (2) Post-
consolidation values. 

Table 6.2 presents the values of h0
* selected for each monotonic triaxial compression test 

simulated, together with the initial conditions of each of those tests (initial void ratio, e0, initial 

mean effective stress, p’0, and initial state parameter, 0). As concluded by Taborda (2011), 

it is apparent that a single value for h0
* is not adequate to reproduce accurately all tests, with 

values within the range of 0.004 – 0.055 being obtained in the present analysis. 

By plotting the obtained values of h0
* against e0 for tests having p′0 = 80.0 kPa (Figure 6.13), 

it appears that a fairly linear dependence of h0
* on e0 exists, as proposed in the present model 

(Taborda et al., 2014), as well as in other models based on the same framework (e.g. Dafalias 

and Manzari, 2004; Taiebat and Dafalias, 2008). Note that, although the void ratio is known 

to vary significantly during drained shearing, for calibration purposes, the initial value of this 

state parameter is used, as also assumed by other authors (e.g. Li and Dafalias, 2000; Loukidis 

and Salgado, 2009; Taborda, 2011). 



CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR HOSTUN SAND 

359 
 

 
Figure 6.13 – Variation of the obtained values for h0

* with the initial void ratio for tests having the 
same initial mean effective stress. 

In order to assess the dependence of h0
* on p’0, data obtained from tests performed on 

samples having similar initial void ratio, e0, though consolidated to different initial mean 

stress, p’0, are depicted in Figure 6.14. Although some scatter seems to exist, it seems that, in 

general, the smaller the value of p’0, the higher the value of h0
*. Indeed, it seems that a power 

law can be used to describe the relationship between those quantities, as proposed in the 

present constitutive model. Note, however, that, due to the significant variation of p’ during 

the shearing process, care should be taken when extrapolating the conclusions obtained in 

the present study. Ideally, this relationship should be evaluated based on data obtained from 

drained constant-p’ triaxial tests. Unfortunately, data from that type of tests is not available 

in the present study and, therefore, future investigation is required. In fact, this may be an 

interesting topic for future investigation, due to the apparent lack of consensus on whether 

the expression for the plastic hardening modulus should include a multiplier defining a 

dependence on p’ or not, with several constitutive relationships establishing such 

dependency (e.g. Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 2004; Taiebat 

and Dafalias, 2008), while others neglect it (e.g. Li, 2002; Loukidis and Salgado, 2009; 

Andrianopoulos et al., 2010b). In addition, it should be noted that two power curves are 

displayed in Figure 6.14, one of them corresponding to the best fitting of experimental data 

(represented in black), with the values of he = 0.018 and  = 0.126 being obtained for 

Equation 6.11, while the other curve (represented in grey) is obtained by restricting  ≥ 0.5, 

as recommended by Papadimitriou and Bouckovalas (2002). Although no justification was 

given by these authors, it is believed this restriction intends to prevent strong variations of A1 

under very low values of p’ from happening, which could compromise the numerical stability 

of the constitutive model. This restriction was adopted in the present study. 
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Figure 6.14 – Variation of the obtained values for h0

* with the initial mean effective stress for tests 
having similar initial void ratio. 

Assuming that the effect of e and p’ on A1 can be adequately described by their values at the 

beginning of loading, a multi-variable non-linear regression was performed to estimate the 

set of model parameters h0,  and  that best fit Equation 6.11 and, therefore, better 

characterise the concurrent effect of both e and p’ on A1. As explained before, a lower limit 

of 0.5 was applied to the value of . The following set of parameters was obtained: h0 =

0.132,  = 0.999 and  = 0.500. Therefore, Equation 6.11 can be re-written as: 

h0
* = h0 (1.0−  e) (

p′

p′ref
)

−1.0

= 0.132 (1.0− 0.999 e) (
p′

p′ref
)

0.5−1.0

 (6.12) 

Figure 6.15 compares the values of h0
* selected when modelling individually each test (Table 

6.2) with those computed with Equation 6.12. It can be observed that, in general, satisfactory 

approximations are obtained for the majority of the tests. Perhaps, the exceptions consist of 

tests ICDMTC p↓ 0.826/80 and ICDMTC p↑ 0.667/25 (both highlighted in the figure), for 

which larger values of h0
* are provided by Equation 6.12 than those leading to the best possible 

match of experimental data. The opposite trend seems to be observed for tests ICUMTC p↑ 

0.876/80 and ICDMTC p↑ 0.843/135 (also highlighted in the figure), with slightly smaller 

values of h0
* being provided by Equation 6.12 than those obtaining when modelling 

individually each test to match experimental data. 
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Figure 6.15 – Multi-variable regression analysis. Comparison of the h0

* values obtained from 
constitutive equations with those obtained by modelling each test individually. 

To avoid the computation of very low (or even negative) values for h0
*, which could 

compromise the numerical stability of the analysis, a lower limit for the plastic multiplier he is 

considered, as proposed by Taborda et al. (2014): 

he = h0 (1.0−  e) ≥ h0 (1−  elim) (6.13) 

where elim is the limit void ratio. At this stage of the calibration process, a value of elim = 0.96 

was selected, resulting in a minimum value for he of about 0.005. 

It is perhaps important to note that, if only monotonic response of Hostun sand would be 

relevant and the original version of the constitutive model, as proposed by Taborda et al. 

(2014), would be employed, the calibration process could have been terminated at this point. 

In effect, the shearing-induced fabric component (whose calibration is presented in the 

following section) was introduced in the formulation of the constitutive model to capture the 

effect of cyclic history on the modelled response and, therefore, there is, in principle, no need 

to activate this component when simulating only monotonic response of sand. Regarding the 

inherent fabric anisotropy component, it intends to improve the simulation of the response 

of sand for conditions other than triaxial compression. The potential benefits in terms of 

flexibility and accuracy resulting from the activation of this component are discussed in 

Section 6.12. 
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6.11 Shearing-induced fabric 

The two model parameters to be calibrated next – H0 and  – concern the evolution of the 

shearing-induced fabric tensor, F, with loading. Specifically, these two parameters are used 

to relate the evolution of the isotropic and deviatoric components of the shearing-induced 

fabric tensor, fp and f, respectively, to the initial values of the major principal effective 

stress, ’1,0, and state parameter, 0, through the positive quantity H, as shown by Equations 

6.14 to 6.17. 

 fp = H v
p (6.14) 

 f = −H〈v
p〉 (C n + f) (6.15) 

where: 

 H = H0 (
′1,0

p′ref
)

−

〈−
0
〉 (6.16) 

 C = max |fp
|

2

 (6.17) 

As detailed in Chapter 4, the shearing-induced fabric tensor, F = fp I+ f, determines the 

plastic multiplier hf (rewritten below as Equation 6.18) which, in turn, affects the plastic 

hardening modulus associated with the primary yield surface, A1. 

hf =
1 + 〈fp

〉2

1+ 〈f : n〉
 (6.18) 

As explained before, since f develops only during plastic dilation in the opposite direction of 

the loading tensor, n, and Macaulay brackets are employed in the denominator of Equation 

6.18, it can be concluded that f only affects hf when a shear reversal is triggered after a dilative 

phase of plastic deformation. Therefore, under monotonic loading, due to the absence of 

shear reversals, it can be concluded that hf is solely determined by the value of fp. In relation 

to the evolution of this component, since fp has the same sign as v
p (Equation 6.14), it 

follows that fp increases during plastic contractive sand response (i.e. v
p > 0.0 ⟹ fp >

0.0). The opposite trend is observed as the phase transformation state is reached and, 

consequently, the response changes from plastic contraction to plastic dilation. Note, 

however, that, due to the use of the Macaulay brackets in the numerator of Equation 6.18, 

the value of hf never becomes less than 1.0 under monotonic loading. 

To get insight into the effect of fp on the monotonic response of Hostun sand, test 

ICUMTC p↑ 0.876/80 was reproduced using the following three different values for H0
*: 0.0 

(meaning that the shearing-induced fabric component was not activated), 20 000.0 and 

45 000.0. Naturally, the previously calibrated model parameters were employed in this small 

parametric study. Moreover,   = 0.0 was used to deactivate the effect of ’1,0 on H0. Note 

that, similar to the notation adopted before, H0
* is used to distinguish the values employed in 

these simulations from that eventually obtained for H0. The results of the three different 
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numerical simulations of test ICUMTC p↑ 0.876/80 are depicted in Figure 6.16. As expected, 

it can be observed that the larger the value of H0
* the greater the value of hf (Figure 6.16d) 

and, consequently, the stiffer the stress-strain response obtained (Figure 6.16b). Moreover, 

it is apparent that the value of H0
* affects the evolution of the mean effective stress, p’ (Figure 

6.16a), as well as the excess pore water pressure build-up, u (Figure 6.16c), during the earlier 

stages of loading. Smaller reductions of p’, as well as lesser generation of positive excess pore 

water pressure are obtained when larger values of H0
* are employed in the numerical analysis. 

This clearly illustrates that, although this component of the formulation was introduced to 

deal with cyclic loading, it affects the modelled monotonic response. 

  

  

Figure 6.16 – Influence of H0
* on the numerical simulation of test ICUMTC p↑ 0.876/80: 

(a) effective stress path, (b) stress-strain response, (c) pore water pressure evolution with axial 
strain and (d) evolution of hf with axial strain. 
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response and, consequently, a faster decrease of the mean effective stress upon shear 

reversal is simulated, as observed experimentally (e.g Ishihara et al., 1975). This aspect is 

illustrated in Figure 6.17, which depicts the results obtained in the numerical simulation of 

the undrained cyclic triaxial test ICUCT 0.832/80/42 when using H0
* = 35 000.0 in conjunction 

with the previously calibrated model parameters. Note that the exact value of H0
* employed 

in this simulation is not important, since the intention is, at this point, to assess the qualitative 

response. Note also that, to ease the presentation, only the results obtained from the loading 

cycle N = 3 to 5 are included in the figure. Furthermore, observe that, for triaxial conditions, 

fxx =  fzz = −fyy/2.0 and fxy =  fxz = fyx = 0.0. 

  

  

Figure 6.17 – Effect of the shearing-induced fabric component on the numerical simulation of an 
undrained cyclic triaxial test: (a) effective stress path; (b) and (c) evolutions of the isotropic and 
deviatoric components of the shearing-induced fabric tensor with the number of loading cycles; 

(d) evolution of the plastic multiplier hf with the number of loading cycles. 
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result, the evolution of the plastic multiplier hf is marked by discontinuities: “jumps” observed 

in Figure 6.17d from 3 to 3’, from 6 to 6’ and from 9 to 9’, triggered by a positive value of the 

trace product f : n and consequent activation of the denominator of Equation 6.18; “jumps” 

from 4 to 4’ and from 7 to 7’ triggered by a negative value of the trace product f : n and 

consequent deactivation of the denominator of Equation 6.18. 

Furthermore, by comparing, for instance, the effective stress paths 3 – 4 to 6 – 7 (Figure 

6.17a), it is apparent that the reduction of p’ is more pronounced during the latter than during 

the former path. This modelled response is primarily controlled by the value of hf, which is, in 

fact, lower during the path 6’ – 7 than during 3’ – 4 (Figure 6.17d). This seems to be a 

consequence of the larger accumulation of plastic dilation during path 6’ – 7, as well as the 

dependency of the evolution of the deviatoric component of shearing-induced fabric tensor, 

f, on the previous values of f and fp (through model quantity C), as indicated by Equation 

6.15. Therefore, it can be concluded that the shearing-induced fabric tensor introduces the 

effect of the cyclic history on the modelled response. 

To further illustrate the great effect of H0
* on the simulated cyclic response of sand, test 

ICUCT 0.832/80/42 was reproduced using two different values for H0
*, respectively 20 000 and 

35 000. The obtained results are presented in Figure 6.18. It can be observed that the smaller 

the value of H0
* the greater the increase in excess pore water pressures and the reduction of 

the mean effective stress with cyclic loading. Consequently, fewer cycles are required to reach 

the onset of cyclic mobility when a smaller value for H0
* is used in the numerical analysis. In 

this case, it is apparent that H0
* = 35 000.0 provides a much better reproduction of the 

experimental data than H0
* = 20 000.0. However, it is important to note that there is an 

interdependency between the value to be selected for H0
* and those used for other plastic-

hardening-modulus-related parameters (in particular, h0 and ), which means that it is 

possible to select a different value for H0
* than that identified at first sight as the most 

appropriate to replicate a given set of tests and, subsequently, recalibrate the plastic-

hardening-modulus-related parameters. An example of application of such strategy is, for 

example, provided in Taborda (2011). 
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Figure 6.18 – Influence of H0

* on the numerical simulation of test ICUCT 0.832/80/42: (a) effective 
stress path, (b) excess pore water pressure build-up and (c) axial strain evolution with the number 

of loading cycles. 
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From the results presented in Figure 6.16 to Figure 6.18, it can be concluded that the shearing-

induced fabric anisotropy influences both monotonic and cyclic responses, with a much 

greater impact on the latter one. Therefore, as suggested by Taborda (2011), the calibration 

process of the shearing-induced fabric-related parameters should focus primarily on the cyclic 

response. Thus, the following strategy, proposed by Taborda (2011), was adopted in the 

present study: 

1) Selection of two undrained cyclic triaxial (UCT) tests performed on samples 

consolidated under similar effective stress states. By setting the value of  to 0.0 (to 

deactivate the influence of he on A1) and choosing an appropriate value for h0
* for each 

test, a value of H0
* leading to a satisfactory reproduction of both UCT tests is sought. 

Note that, since H (Equation 6.16) depends solely on the major principal effective 

stress at consolidation, ′1,0, which is similar for both tests, as well as on the values 

assigned for the model parameters H0 and , which are considered unique for a given 

material, a single value for H0
* should fit both tests. In addition, note that, since  =

0.0 is used at this stage of the calibration process, the notation H0
* = H 〈−

0
〉⁄  is used 

to avoid confusion with the model parameter H0. Similarly, h0
* is used to avoid 

confusion with the final value of the model parameter h0. 

2) If deemed necessary, recalibration of the plastic-hardening-modulus-related 

parameters h0 and , by using both monotonic triaxial compression and cyclic triaxial 

test data. 

3) By setting  to 0.0 and using a trial-and-error procedure, inference of the value of H0
* 

resulting in the best possible reproduction of each UCT test. Based on the obtained 

('1,0 p'ref
⁄ ,  H0

*) data, a non-linear regression analysis is performed to calibrate H0 and 

. 

According to the proposed methodology, tests ICUCT 0.832/80/42 and ICUTC 0.651/80/43 

were selected. In these tests, samples prepared to very different initial void ratio (e0 = 0.832 

and e0 = 0.651, respectively) were consolidated to a mean effective stress of p′0 = 80 kPa 

and subjected to a similar deviatoric stress oscillation of q = ±42 kPa and q = ±43 kPa, 

respectively. A series of numerical simulations were subsequently performed for both tests, 

in order to find the best possible set of values for h0
* and H0

*. Starting with the simulation of 

the ICUCT 0.832/80/42 test, it was previously shown in Figure 6.18 that a good approximation 

of the experimental data is obtained when using that H0
* = 35 000.0 in conjunction with the 

current values of h0 and . Nevertheless, other combinations of h0
* and H0

* values were tested, 

in an attempt to identify the best possible combination of values for these quantities.  
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Figure 6.19 – Effect of two different sets of H0

* and h0
* values on the numerical simulation of test 

ICUCT 0.832/80/42: (a) effective stress path, (b) excess pore water pressure build-up and (c) axial 
strain evolution with the number of loading cycles. 
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For instance, Figure 6.19 compares the results of two different numerical simulations – one 

of them employing H0
* = 20 000.0 and h0

* = 0.060, while the other one adopting H0
* =

70 000.0 and h0
* = 0.010 – with the corresponding laboratory test data. It can be observed 

that, when using the former set of parameters (H0
* = 20 000.0 and h0

* = 0.060), the rate of 

excess pore water pressure generation is overestimated during the first 5 loading cycles (i.e. 

approximately up to the first crossing of the phase transformation line). An opposite trend 

seems to be registered during the remaining loading cycles, with the effective stress path 

tending very slowly to zero mean effective stress, contrary to the experimental observations. 

The accumulation of axial strain is also much smaller than that measured in the experiment. 

Moreover, although an overall better reproduction of test ICUCT 0.832/80/42 is obtained 

when employing the set of parameters H0
* = 70 000.0 and h0

* = 0.010 (rather than when 

using H0
* = 20 000.0 and h0

* = 0.060), it can be seen that the increase in the excess pore water 

pressures during the 5th cycle (corresponding to the first crossing of the phase transformation 

line) obtained in the numerical analysis clearly overestimates that measured in the 

experiment. In effect, this aspect is mainly governed by the magnitude of the state parameter 

C (Equation 6.17). By comparing the results shown in Figure 6.18 and Figure 6.19, it may be 

concluded that, among the three different values tested until this moment, H0
* = 35 000.0 

provides the best approximation for test ICUCT 0.832/80/42. 

Subsequently, a series of numerical analysis were conducted to find out the set of values for 

h0
* and H0

* leading to best replication of test ICUCT 0.651/80/43. Figure 6.20 compares the 

results of two different numerical simulations – one of them employing H0
* = 35 000.0 in 

conjunction with the current values of the plastic-hardening-modulus-related parameters 

( = 1.000,  = 0.300, h0 = 0.132,  = 0.999, emax = 0.960 and  = 0.500) and the other 

simulation using H0
* = 20 000.0 and h0

* = 0.060 – with the experimental data. Note that these 

sets of values were also used in the simulations of test ICUCT 0.832/80/42. It is apparent that 

none of the employed set of parameters is able to reproduce adequately the complete 

experimental data. In particular, it can be observed that, irrespective of the model parameters 

used in the numerical analysis, once the phase transformation line is crossed and the stress 

path is reverted, a significantly faster reduction of the mean affective stress is simulated by 

the constitutive model, in comparison to that observed in the experiment. As a result, the 

accumulation of axial strain is overestimated from that moment by the constitutive model. In 

addition, Figure 6.20 shows that, irrespective of the values adopted for h0
* and H0

*, the 

oscillations of the excess pore water pressure during loading are overestimated by the 

constitutive model. Nevertheless, a satisfactory reproduction of the permanent accumulation 

of excess pore water pressure with loading appears to be obtained, particularly when 

employing H0
* = 35 000.0 in conjunction with the current values of the plastic-hardening-

modulus-related parameters. 
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Figure 6.20 – Effect of H0

* and h0
* on the numerical simulation of test ICUCT 0.651/80/43: (a) 

effective stress path, (b) excess pore water pressure build-up and (c) axial strain evolution with 
the number of loading cycles. 
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Based on the results obtained in these initial simulations of tests ICUCT 0.832/80/42 and 

ICUCT 0.651/80/43, it can be concluded that H0
* = 35 000.0 provides a good initial estimation, 

when used in conjunction with the current values of the plastic-hardening-modulus-related 

parameters ( = 1.000,  = 0.300, h0 = 0.132,  = 0.999, emax = 0.960 and  = 0.500). 

Nevertheless, it was pointed out that, although introduced to address the simulation of cyclic 

loading, the isotropic component of the shearing-induced fabric tensor affects the early 

contractive stages of the modelled response of UMTC tests performed on loose and 

moderately loose samples. More specifically, the introduction of the shearing-induced fabric 

component leads to the reproduction of a stiffer stress-strain response and a less compliant 

effective stress path during the early stage of loading (Figure 6.16). To improve slightly this 

aspect, it was decided to increase the value of  from 0.30 to 0.60. Furthermore, since this 

alteration enforces the recalibration of the plastic-hardening-modulus-related parameters h0, 

 and emax, as defined in step 2) of the calibration strategy, it was also decided to adopt H0
* =

45 000.0, rather than H0
* = 35 000.0, to obtain a slightly better match of the reduction of 

stiffness upon the first crossing of the dilatancy surface, particularly for moderately loose 

samples. Therefore, following the methodology previously described in Section 6.10.4 and 

having  = 1.000,  = 0.300,  = 0.500 and H0
* = 45 000.0, the model parameters h0,  and 

emax were recalibrated against results of monotonic and cyclic triaxial tests performed on 

samples consolidated to p'0 = 80 kPa. The obtained results are presented in Figure 6.21. Note 

that the h0
* – e0 line corresponding to the previous set of parameters (i.e. obtained in Section 

6.10.4) is also displayed in the figure for comparison purposes. Although a different value for 

 was used at this stage, hampering firm conclusions from being reached, it seems that a 

more inclined h0
* – e0 line was obtained at this stage, illustrating the strong effect of the 

shearing-induced fabric tensor in both monotonic and cyclic response of sand. Additionally, it 

is apparent that, for monotonic tests performed on loose and moderately loose sand (namely, 

tests ICDMTC p↑ 0.885/80, ICDMTC p↑ 0.798/80, ICUMTC p↑ 0.876/80, ICUMTC p↑ 

0.868/80 and ICUMTC p↑ 0.801/80), the values of h0
* computed by the constitutive 

relationship (i.e. represented by the newly obtained h0
* – e0 line) are slightly larger than those 

identified as the most appropriate values (i.e. data points). This suggests that, for these tests, 

the constitutive model (when using this new set of model parameters) will likely overestimate 

the stiffness of the material, at least during the earlier stages of loading. This aspect will be 

discussed in detail in the following chapter. Finally, Figure 6.21 also shows that a smaller value 

for emax is now required, to limit the model parameter he to a positive value. At this stage, a 

value of emax = 0.900 was selected, resulting in a minimum value for he of about 0.002. To 

sum up, the following plastic-hardening-modulus-related parameters were adopted at this 

stage:  = 1.000,  = 0.600, h0 = 0.200,  = 1.100, emax = 0.900 and  = 0.500. 
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Figure 6.21 – Recalibration of the plastic-hardening-modulus-related parameters using monotonic 
triaxial compression and cyclic triaxial tests where samples were consolidated to a mean effective 

stress of 80 kPa. 

The calibration proceeded to step 3), where each UCT test available was modelled by setting 

 to 0.0 and selecting an appropriate value for H0
*. The obtained results are indicated in Table 

6.3, together with the initial conditions of each laboratory test. 

Table 6.3 – Values of H0
* obtained by a trial-and-error procedure for all available undrained cyclic 

triaxial tests. 

Test ID (1) 
e0 (2) 

( ) 
p'0 

(kPa) 
0 (2) 

( ) 
|q|(3) 
(kPa) 

H0
* 

( ) 

ICUCT 0.821/25/13 0.821 25.0 -0.140 13.0 200 000.0 
ICUCT 0.777/25/18 0.777 25.0 -0.140 18.0 170 000.0 
ICUCT 0.771/80/32 0.771 80.0 -0.137 32.0 55 000.0 
ICUCT 0.803/80/36 0.803 80.0 -0.137 36.0 80 000.0 
ICUCT 0.832/80/42 0.832 80.0 -0.129 42.0 55 000.0 
ICUCT 0.804/80/48 0.804 80.0 -0.136 48.0 5 000.0 
ICUCT 0.773/80/56 0.773 80.0 -0.138 56.0 1 000.0 
ICUCT 0.805/135/40 0.805 135.0 -0.120 40.0 40 000.0 
ICUCT 0.830/135/54 0.830 135.0 -0.128 54.0 55 000.0 
ICUCT 0.793/135/67.5 0.793 135.0 -0.128 67.5 5 000.0 
ICUCT 0.651/80/43 0.651 80.0 -0.285 43.0 35 000.0 
ICUCT 0.652/80/72 0.652 80.0 -0.284 72.0 30 000.0 
ICUCT 0.652/80/88 0.652 80.0 -0.284 88.0 30 000.0 

(1) Test identifier nomenclature is detailed in Chapter 2 Chapter 3; (2) post-consolidation values; 
(3) deviatoric stress oscillation. 
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Figure 6.22 – Calibration of H0

* for tests ICUCT 0.804/80/48, ICUCT 0.773/80/56 and 
ICUCT 0.793/135/67.5: (a) effective stress path and (b) excess pore water pressure build-up with 

the number of loading cycles. 

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

q
 (

k
P

a)

p' (kPa)

ICUCT 0.804/80/48 simulation

a.1)

ICUCT 0.804/80/48: H0
* = 5 000.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

r u
=

 
u

 /
 

' v0
( 

)

N ( )

ICUCT 0.804/80/48 simulation

b.1)

ICUCT 0.804/80/48: H0
* = 5 000.0

-60

-40

-20

0

20

40

60

0 20 40 60 80 100

q
 (

k
P

a)

p' (kPa)

ICUCT 0.773/80/56 simulation

a.2)

ICUCT

0.773/80/56:

H0
* = 1 000.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

r u
=

 
u

 /
 

' v0
( 

)

N ( )

ICUCT 0.773/80/56 simulation

b.2)

ICUCT 0.773/80/56:

H0
* = 1 000.0

-80

-60

-40

-20

0

20

40

60

80

0 40 80 120 160

q
 (

k
P

a)

p' (kPa)

ICUCT 0.793/135/67.5 simulation

a.3)

ICUCT 0.793/135/67.5: H0
* = 5 000.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

r u
=

 
u

 /
 

' v0
( 

)

N ( )

Experimental Numerical

b.3)

ICUCT 0.793/135/67.5:

H0
* = 5 000.0

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8

 a
(%

)

N ( )

Experimental Numerical

c.1)

H0
*= 20 000.0



CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR HOSTUN SAND 

374 
 

By analysing the values presented in Table 6.3, it is apparent that satisfactory simulations of 

tests ICUCT 0.804/80/48, ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5 (presented in grey) 

would require very low values for H0
*. In these three tests, the samples were sheared under 

large cyclic stress ratios (CSRs), exhibiting very soft responses in triaxial extension during the 

first loading cycle. As a result, severe reductions of the effective stresses were observed in 

these tests, with the onset of cyclic mobility occurring just after two to four loading cycles, as 

illustrated in Figure 6.22. Although it is apparent in the figure that, for all three tests, the 

constitutive model would be able to replicate satisfactorily the measured response, the values 

of H0
* obtained in the analysis are clearly smaller than those require to simulate adequately 

the remaining tests conducted on samples consolidated under similar mean effective stresses 

(p'0 = 80 or 135 kPa), as indicated in Table 6.3. It was, therefore, decided to exclude these 

three tests from the calibration process. Note that similar findings were also reached by 

Taborda (2011) when simulating the undrained cyclic response of Leighton Buzzard Fraction-

E sand. In particular, the author observed that the constitutive model was unable to capture 

the very soft response observed in one UCT test using a large CSR, where a dense sample was 

observed to reach cyclic mobility after just two loading cycles. This suggests that the problem 

is not related to the model parameters obtained for Hostun sand in the current calibration 

process, rather to the ability of the constitutive model to capture the very soft response of 

sand typically observed in tests where large oscillations stresses are applied to the samples, 

leading to the onset of cyclic mobility in just very few cycles. Note, nevertheless, that, as 

suggested by Taborda (2011), the introduction of the inherent fabric anisotropy component 

in the formulation of the constitutive model is expected to improve the ability of the model 

to replicate the response observed in these tests. This aspect will be explored in the following 

section. 

Having plotted the ('1,0 p'ref
⁄ ,  H0

*) data values, as depicted in Figure 6.23, a non-linear 

regression analysis was subsequently performed to determine the model parameters H0 and 

. The following values were obtained: H0 = 43 000.0 and  = 1.00. 

Note that, apart from the numerical stability-related parameters, whose calibration is 

presented in Section 6.13, the determination of the shearing-induced fabric-related 

parameters marks the end of the calibration process for the original version of the model. 
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Figure 6.23 – Calibration of the shearing-induced fabric-related parameters. 

6.12 Inherent fabric anisotropy 

As detailed in Section 4.3.3, the inherent fabric anisotropy formulation introduces a new 

tensor FA (Equation 6.19). Moreover, the interaction of this new tensor with the deviatoric 

loading direction tensor, n, defines a new scalar-valued state parameter AF (Equation 6.20). 

FA = [

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

] = [
1/2 (1− a) 0 0

0 a 0
0 0 1/2 (1− a)

] (6.19) 

AF = g(, ca) FA : n (6.20) 

where g is the interpolation function (Equation 4.36),  is the modified Lode’s angle (Equation 

4.37) and ca is the positive value of the ratio between AF in triaxial extension, AF,e, and its value 

in triaxial compression, AF,c, i.e. ca = −AF,e AF,c⁄ . 

The anisotropic state parameter, AF, affects the position of the CSL in the e – p’ space 

(Equation 6.21), by relocating its intersection with the e-axis (Equation 6.22). 

ecs = (ecs)A  −  (
p′

p′ref
)



 (6.21) 

(ecs)A = (ecs)ref exp(vA  
〈dc〉

dref
c (AF,c − AF)) (6.22) 

where dc is the distance in the normalised deviatoric plane from the current stress point to 

the CSL, while dref
c  is a reference distance to the CSL (Equation 6.23). 

dref
c = √

2

3
 (

c + +
c ) = √

2

3
 (g(, cc) Mc

c + g(+, cc) Mc
c − 2m) (6.23) 
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More specifically, since dc > 0 for initially denser-than-critical samples (as it is the case of all 

samples tested in the present study) and AF,c − AF < 0 for loading conditions other than 

triaxial compression (TC), and providing that vA > 0 (as reported in the literature), it follows 

that exp(vA  
〈dc〉

dref
c (AF,c − AF)) < 1 under such loading conditions and, therefore, (ecs)A <

(ecs)ref while dc > 0. This relocation of the CSL affects the value of the state parameter,  

(Equation 6.24), and, consequently, the positions of both bounding and dilatancy surfaces 

(Equations 6.25 and 6.26, respectively), which are linearly dependent on . This means that 

the relocation of the CSL with AF requires, in principle, the recalibration of the positions of the 

dilatancy and bounding surfaces for triaxial extension (TE) loading, as it will be detailed later. 

  = e − ecs = e − (ecs)A +  (p′ p′ref⁄ )

 (6.24) 

 Mc,e
b = Mc,e

c + kc,e
b  ⟨−⟩ (6.25) 

 Mc,e
d = Mc,e

c + kc,e
d   (6.26) 

Indeed, recalling that, according to the two-surface plasticity framework (Manzari and 

Dafalias, 1997), the gradient of the plastic potential, 𝜕P 𝜕′⁄ , and the plastic hardening 

modulus, A1, depend on the distances between the current effective stress point and its 

projection on the dilatancy and bounding surfaces, respectively, it can be further concluded 

that the relocation of the CSL with AF affects these two aspects of the constitutive model, as 

pointed out in Chapter 4. 

Additional influence on A1 is introduced by the plastic multiplier hA (Equation 6.27). 

hA = exp [(
AF,c − AF

AF,c − AF,e
)

1.25

 ln(kA)] (6.27) 

From Equations 6.19 to 6.27, it can be observed that three additional model parameters are 

introduced by the inherent fabric anisotropy formulation, namely a, vA and kA. The first of 

these parameters is a measure of the orientation of the particle distribution. According to 

Dafalias et al. (2004), a is expected to have a value between 0.0 and 1.0 / 3.0 for sand. While 

the former value corresponds to the case where particles “lie” entirely on the horizontal 

plane, which is only expectable for extremely thin and long grains (such as montmorillonite 

grains), the latter value resembles a statistically isotropic orientation of particles, which, 

according to the authors, would solely be attainable by spherical grains with identical size. 

Further investigation on appropriate values for the model parameter a was undertaken by 

Papadimitriou et al. (2005). In particular, these authors performed a series of numerical 

simulations to evaluate the ability of the constitutive model developed by Dafalias et al. 

(2004), which includes an inherent fabric anisotropy formulation, to capture the effect of the 

method of sample preparation on the undrained monotonic response of sand. While 

concluding that the constitutive relationship was able to replicate the different responses 

obtained by several different methods of sample preparation, the authors suggested that the 
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value of a is more affected by the nature of the grains (mineralogy, particle shape and size 

distribution) than by the method of sample’s preparation, with values in the range of 0.28 – 

0.31 being adopted for Toyoura sand prepared by dry deposition, air pluviation, wet tamping 

and dry rodding. Values within this range were also adopted by Loukidis and Salgado (2009). 

Specifically, a = 0.29 was adopted by these authors to the simulation of the response of dry-

deposited Toyoura sand, while a slightly larger value of a = 0.31 was adopted for slurry-

deposited and water-pluviated Ottawa sand. Taking into account that the particle shape and 

size distribution of Hostun sand are, respectively, similar to those of Toyoura and Ottawa 

sands (Section 2.2.1), a = 0.29 was adopted in the present study. 

Regarding the other two model parameters, vA determines the magnitude of the effect of Af 

on the CSL, as given by Equation 6.22, while kA controls the difference in stiffness between 

the two extreme cases of loading direction (TC and TE), as given by Equation 6.27. Ideally, 

these model parameters would be calibrated by trial and error against results of torsional 

shearing tests. By varying the angle  of the major principal effective stress, '1, to the axis of 

the sample and/or the coefficient  b = (′2 − ′3) (′1 − ′3)⁄  defining the magnitude of the 

intermediate principal effective stress, '2, in relation to the major and minor principal 

effective stresses, '1 and '3 respectively, different values for Af would be obtained, allowing 

for the calibration of Equation 6.22 and Equation 6.27. Details on this procedure can be found, 

for example, in Loukidis and Salgado (2009). Alternatively, in the absence of torsional shearing 

test data, as it is the present case, results of monotonic triaxial extension (MTE) and cyclic 

triaxial (CT) tests can be employed in the calibration process. 

Before detailing the strategy adopted for the calibration of the model parameters vA and kA, 

three aspects should be highlighted. Firstly, assuming that ca = cc = 0.72 and having a =

0.29, it follows that, in the present study, the value of the anisotropic state parameter, AF, in 

TC, designated as AF,c, is about -0.053 (Equation 6.28), while in TE, AF,e is approximately 0.038 

(Equation 6.29). These values define the range of variation of AF. 

AF,c = g(, ca) F : n = 1×
1

√6
 [

1

2
(1− a) × (−1) + a × (2) +

1

2
(1− a) × (−1)]

=
3 a − 1

√6
 =

3 × 0.29− 1

√6
 ≈ −0.053 

(6.28) 

AF,e = g(, ca) F : n = ca ×
1

√6
 [

1

2
(1− a) × (1) + a × (−2) +

1

2
(1− a) × (1)]

= ca  
1− 3 a

√6
= 0.72 ×

1 − 3 × 0.29

√6
 ≈ 0.038 

(6.29) 

Secondly, as noted before, the inherent fabric anisotropy component has no impact on the 

modelled response under TC loading (i.e. when AF = AF,c), since, under such loading 

conditions, it follows that (ecs)A = (ecs)ref (Equation 6.22) and hA = 1.0 (Equation 6.27). 

Therefore, when solely monotonic response is of interest, there should be, in principle, no 

need to recalibrate the plastic-hardening-modulus-related parameters previously calibrated 
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against results of monotonic triaxial compression tests, with the introduction of the inherent 

fabric anisotropy component simply enhancing the modelled response under loading 

conditions other than triaxial compression (e.g. in triaxial extension). 

Thirdly, as explained before, due to the relocation of the CSL for loading conditions other than 

triaxial compression (Equation 6.22), it might be necessary to recalibrate the model 

parameters ke
d and ke

b, defining, respectively, the positions of the dilatancy and bounding 

surfaces for triaxial extension (TE) loading. Difficulties arise, however, from the dependency 

of the relocation of the CSL on the value selected for vA (Equation 6.22), meaning that an 

iterative procedure may be required to recalibrate ke
d and ke

b. In an attempt to avoid such 

complexity, a parametric study was performed to assess the impact of different values of vA 

on stress ratio, , – state parameter, , data corresponding to the occurrence of phase 

transformation and peak stress ratio states in TE tests and, therefore, to evaluate the need 

for recalibrating ke
d and ke

b. With this purpose, the procedure described in Section 6.7 was 

followed once again, with the sole difference consisting of the dependence, at this stage, of 

 on (ecs)A, as given by Equation 6.24, rather than directly on (ecs)ref. 

 
Figure 6.24 – Influence of the relocation of the CSL with vA = 1.0 on the stress ratio at phase-

transformation state as a function of the state parameter. 

Figure 6.24 compares 
e
d – 

e
d data obtained when using with vA = 1.0 (represented in black) 

with that obtained before when using the original version of the constitutive model, i.e. when 

considering vA = 0.0 (represented in grey). It is apparent that differences between the two 

data sets are limited to UMTE p↓ test data. Indeed, these differences do not suggest a 
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different trend in the obtained results, with the previously adopted dilatancy line in TE, 

characterised by ke
d = 0.67, corresponding to the simplification ke

b = kc
b (Me

c Mc
c⁄ ) proposed 

by Papadimitriou and Bouckovalas (2002), still providing the overall best fit for the newly 

obtained data (including data obtained from DMTE p↓ and DMTE p↑ test results). Once 

again, it is evident that some data scatter exists, likely due to the approximations required to 

estimate the dilatancy coefficient and inherent unreliability of triaxial extension data, as 

discussed in Section 6.7. 

Similarly, Figure 6.25 compares 
e
d – 

e
d data obtained when using with vA = 10.0 

(represented in black) with that obtained when using the original version of the constitutive 

model (represented in grey). Once again, it is apparent that the influence of the relocation of 

the CSL on the position of the dilatancy line in TE is limited to data inferred from UMTE p↓ 

test results and, once more, does not suggest any drastic alteration to the position of the 

dilatancy line. It should be noted, nevertheless, that the validity of these conclusions might 

be restricted to the present data. 

 
Figure 6.25 – Influence of the relocation of the CSL with vA = 10.0 on the stress ratio at phase-

transformation state as a function of the state parameter. 
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value) than critical stress ratio, 
e
c , meaning that, when peak stress ratio state is reached, 

〈dc〉 ≈ 0 and, therefore, (ecs)A ≈ (ecs)ref (Equation 6.22). Given this conclusion, and for 

brevity of the presentation, the obtained results are not presented here. Note, nevertheless, 

that the results obtained in a small parametric study focusing on the impact of vA on the 

simulated response, which will be presented later, will also provide evidence on this 

conclusion. 

Considering the experimental data available, at least two completely different strategies 

could have been established at this stage. One possible strategy would consist of using the 

complete set of model parameters obtained until this point, including the shearing-induced 

fabric-related parameters, and, by trial and error, trying to find out the values of vA and kA 

allowing for the best possible reproduction of both monotonic triaxial extension and cyclic 

triaxial test data. The main drawback of this approach is that, as shown later, the shearing-

induced fabric component is observed to have a very strong influence on the modelled 

response, not only when reproducing cyclic response, but also monotonic response. This 

means that it would be difficult to assess the most appropriate values for vA and kA. Moreover, 

by following this strategy, there would be no guarantee that the obtained values for vA and 

kA would be appropriate for the simulation of monotonic loading if the shearing-induced 

fabric component would be deactivated. Therefore, it was considered more consistent 

moving back in the calibration process to the end of the calibration of the plastic-hardening-

modulus-related parameters (Section 6.10) and, based on the set of values established up to 

that point, calibrating the inherent fabric anisotropy component. Subsequently, the model 

parameters related to the shearing-induced fabric component were recalibrated by following 

a methodology similar to that employed in the previous section. As detailed later, by following 

this strategy, a single set of values for vA and kA improving the modelled monotonic triaxial 

extension response was identified. It can be argued that, by adopting this strategy, it would 

have been more logical to calibrate the inherent-anisotropy-related parameters before the 

calibration of the shearing-induced fabric-related parameters (i.e. to switch the present 

section with the previous one), since this would eliminate the need of calibrating the shearing-

induced fabric-related parameters twice (i.e. before and after the introduction of the inherent 

fabric anisotropy component). However, as explained before, it was considered important to 

obtain two different sets of model parameters: one excluding the inherent fabric anisotropy 

component (by setting a = 0.333, vA = 0.0 and kA = 1.0) and, therefore, making use of the 

formulation originally proposed by Taborda et al. (2014), and another set of model 

parameters activating the inherent fabric anisotropy component. 

Prior to the determination of the precise magnitude of vA and kA, two small parametric studies 

were performed to evaluate the impact of these model parameters on the simulated 

monotonic response. With this purpose, test ICUMTE p↓ 0.799/80 was reproduced by 

employing four different values for vA: 0.0 (corresponding to the original formulation), 1.0, 

5.0 and 10.0. For the remaining model parameters, the values obtained in the previous 
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sections (Section 6.3 to 6.10) were used. Moreover, as explained before, a = 0.29 was 

adopted in the present study, while kA = 1.0 was employed to deactivate the effect of hA 

(Equation 6.27) and, therefore, to focus the attention, at this stage, only on the effect of vA. 

The obtained numerical results are compared to those registered in the laboratory in Figure 

6.26. It can be observed that very similar numerical results are obtained when using vA = 0.0 

and vA = 1.0. Unfortunately, it is apparent that, in both cases, the effective stress state at 

phase transformation – which can be associated with the occurrence of the minimum mean 

effective stress under undrained conditions (Ishihara et al., 1975), as mentioned before – is 

slightly underpredicted in relation to that measured in the experiment (Figure 6.26a). Indeed, 

it can be seen that the prediction of this distinctive state is worse as values for vA greater than 

1.0 are employed in the numerical analysis. In fact, it is apparent that vA has a strong effect 

during the early stages of the test simulation (in this particular case, for axial strains up to 

about 3 to 4 %), while vanishing for the later stages. This aspect is particularly evident when 

comparing the modelled stress-strain curves among each other for axial strains greater than 

4 %, with the computed curves being observed to be practically parallel. Note that similar 

observations were obtained when simulating the remaining available undrained monotonic 

triaxial extension tests (namely, tests ICUMTE p↓ 0.790/25, ICUMTE p↓ 0.658/25 and 

ICUMTE p↓ 0.650/80). 

 
 

Figure 6.26 – Influence of vA on the numerical simulation of test ICUMTE p↓ 0.799/80 in terms of: 
(a) effective stress path and (b) stress-strain response. 

Further insight into the effect of vA on the modelled response was obtained by simulating test 

ICDMTE p↑ 0.798/80. Note that, similar to the previous set of simulations, the following 

values were assigned to vA: 0.0 (corresponding to the original formulation), 1.0, 5.0 and 10.0. 

The results obtained in each of these three different numerical simulations are compared with 

those measured in the laboratory in Figure 6.27. It is apparent that, in this case, the adoption 

of a value of vA greater than 1.0 in the numerical analysis allows for a slightly better 
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5.0 also resulting in a better prediction of the stress-strain response in relation to that 

computed when using vA = 0.0. Conversely, the results obtained when using vA = 1.0 in the 

numerical analysis are very similar to those obtained when employing vA = 0.0. In both cases, 

the volumetric contraction observed during the early stages of the test is considerably 

underpredicted, while slightly overpredicting the stress-strain response measured during that 

stage of the experiment. Similar observations were obtained when simulating the remaining 

available ICDMTE p↑ and K0DMTE p↑ tests. 

  
Figure 6.27 – Influence of vA on the numerical simulation of test ICDMTE p↑ 0.798/80: (a) stress-

strain response and (b) evolution of volumetric strain with axial strain. 
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5.0 and 10.0). It can be seen that the adoption of a value for vA greater than 1.0 would allow 

for a better reproduction of the observed volumetric response, while resulting in a worse 

prediction of the measured stress-strain response. 

  
Figure 6.28 – Influence of vA on the numerical simulation of test ICDMTE p↓ 0.793/80: (a) stress-

strain response and (b) evolution of volumetric strain with axial strain. 
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In addition, a series of simulations were performed to evaluate the impact of the model 

parameter kA on the modelled response. With that purpose, vA = 0.0 was employed to 

deactivate the effect of vA (Equation 6.22), while three different values of kA were tested: kA =

1.0 (i.e. no effect on the modelled response), kA = 0.75 and kA = 0.50. Once more, a = 0.29 

was adopted in this study and the values obtained in the previous sections (Section 6.3 to 

6.10) were adopted for the remaining model parameters. Figure 6.29 depicts the results 

obtained when simulating test ICUMTE p↓ 0.799/80, together with those measured in the 

laboratory. Similar to what was observed when employing a value for vA greater than 1.0, it is 

apparent that softer stress-strain responses are obtained when values of kA smaller than 1.0 

are employed in the numerical analysis (Figure 6.29b), resulting in a more compliant effective 

stress path (Figure 6.29a). Note, however, that, on the contrary to vA, the value adopted for 

kA affects the modelled response throughout loading (i.e. from the beginning to the end of 

the simulation). Despite the underprediction of the stress-strain response measured during 

the early stages of this test, it seems that a value of kA smaller than 1.0 allows for a better 

reproduction of the stress-strain response measured in the laboratory during the later stages 

of loading (i.e. for axial strains greater than about 2 %). 

  
Figure 6.29 – Influence of kA on the numerical simulation of test ICUMTE p↓ 0.799/80: (a) effective 

stress path and (b) stress-strain response. 

Complementary, the three different values of kA (1.0, 0.75 and 0.5) were employed to the 

simulation of test ICDMTE p↑ 0.798/80. Figure 6.30 compares the results obtained in these 

three different numerical simulations with those obtained in the laboratory. It can be 

observed that, by reducing the value of kA from 1.0 to 0.5, a much softer stress-strain response 

is simulated, as well as a higher contractive volumetric response. In this case, a value for kA in 

between 0.5 and 0.75 would likely result in the best possible reproduction of the measured 
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Figure 6.30 – Influence of kA on the numerical simulation of test ICDMTE p↑ 0.798/80: (a) stress-

strain response and (b) evolution of volumetric strain with axial strain. 

In relation to test ICDMTE p↓ 0.793/80, it can be observed in Figure 6.31 that the best 

approximation of the volumetric response measured in test would likely be obtained when 

employing a value for kA in between 0.5 and 0.75. Conversely, in terms of stress-strain 

response, it is apparent that, regardless of the value selected for kA, the measured stress-

strain is underpredicted. 

  
Figure 6.31 – Influence of kA on the numerical simulation of test ICDMTE p↓ 0.793/80: (a) stress-

strain response and (b) evolution of volumetric strain with axial strain. 
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- the adoption of a value for vA greater than 1.0 seems to improve the reproduction of 

the volumetric response observed in ICDMTE p↑, K0DMTE p↑ and ICDMTE p↓ tests; 

it also improves the stress-strain response measured during the early stages of loading 

of both ICDMTE p↑ and K0DMTE p↑ tests; however, it increases significantly the 

discrepancies between the modelled and measured minimum mean effective stresses 

in ICUMTE p↓ tests; 

- the model parameter kA affects the modelled response throughout loading; 

- the adoption of a value for kA smaller than 1.0 seems to improve the reproduction of 

the volumetric response observed in ICDMTE p↑, K0DMTE p↑ and ICDMTE p↓ tests; 

it also improves the stress-strain response registered throughout loading of both 

ICDMTE p↑ and K0DMTE p↑ tests; moreover, although the discrepancies between 

the modelled and measured minimum mean effective stresses in ICUMTE p↓ tests 

are increased when using a value for kA smaller than 1.0 (as also observed when 

employing a value for vA greater than 1.0), it seems to result in a better approximation 

of the stiffness exhibited by the samples subjected to this type of loading within the 

medium to large strain range. 

Taking into account the conclusions reached in the aforementioned parametric studies, it was 

decided to adopt vA = 1.0 (which seems to have little impact on the simulation of the 

available monotonic triaxial extension tests) and to seek, by trial and error, a value for kA 

resulting in an improved prediction of the overall stress-strain responses registered in all 

available tests, as well as volumetric responses observed in ICDMTE p↑, K0DMTE p↑ and 

ICDMTE p↓ tests. Note that the lesser importance given at this point to the accurate 

prediction of the minimum mean effective stress in ICUMTE p↓ tests is justified by the fact 

that the subsequent introduction of the shearing-induced fabric component will likely affect 

this aspect of the response, as observed when calibrating the original formulation of the 

model (Section 6.11). 

Having carried out simulations using different values of kA, it was concluded that kA = 0.60 

allows for the best possible reproduction of the available triaxial extension test data. Figure 

6.32 compares the results of the numerical simulations of the four available ICUMTE p↓ tests 

when using the original formulation of the model (i.e. not activating the inherent fabric 

anisotropy component by using a = 0.333, vA = 0.0 and kA = 1.0) with those obtained when 

employing the extended formulation (i.e. a = 0.29, vA = 1.0 and kA = 0.60). The 

experimental results are also depicted in the figure for comparison purposes. As anticipated, 

it is apparent that, although slightly increasing the discrepancies in terms of predicted 

effective stress state at phase transformation, the extended formulation slightly improves the 

modelled stress-strain response of all tests for axial strains greater than about 2 %. 
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Figure 6.32 – Numerical simulation of all available ICUMTE p↓ tests using the original and 

extended formulations of the constitutive model: (a) effective stress path and (b) stress-strain 
response. 

With respect to the drained monotonic triaxial extension tests, Figure 6.33 compares the 
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of the constitutive model. The experimental results are also presented in the figure for 

comparison purposes. Although not drastically, it can be observed that both stress-strain and 

volumetric responses registered in all tests are improved when using the extended 

formulation. 
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Figure 6.33 – Numerical simulation of all available ICDMTE p↑, K0DMTE p↑ and ICDMTE p↓ tests 
using the original and extended formulations of the constitutive model: (a) stress-strain response 

and (b) evolution of volumetric strain with axial strain. 
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b) Recalibration of the plastic-hardening-modulus-related parameters h0 and  against 

results of drained and undrained monotonic triaxial compression (DMTC and UMTC, 

respectively), drained and undrained monotonic triaxial extension (DMTE and UMTE, 

respectively) and undrained cyclic triaxial (UCT) tests. 

c) By setting  to 0.0 and using, once more, a trial-and-error procedure, inference of the 

value of H0
* leading to the best possible reproduction of each UCT test. Estimation of 

appropriate values of H0 and  by performing a non-linear regression over 

('1,0 p'ref
⁄ ,  H0

*) data. 

Once more, tests ICUCT 0.832/80/42 and ICUCT 0.651/80/43 were chosen to infer an initial 

value for H0
* – step a). After testing several values H0

*, it was concluded that H0
* = 45 000.0, 

when used in conjunction with the current values of h0 and , provides a satisfactory initial 

approximation of both tests, as illustrated in Figure 6.34. It is interesting to observe that, 

when compared to the results obtained with the original formulation of the constitutive 

model (Figure 6.18 and Figure 6.20), a greater tendency to accumulate strains in extension 

during the later stages of loading is obtained in this case. 

The following step concerned the recalibration of the plastic-hardening-modulus-related 

parameters – step b). As explained in Section 6.11, the recalibration of these parameters was 

deemed necessary, since the activation of the shearing-induced fabric component was 

observed to have a strong impact not only on the modelled cyclic response, as intended, but 

also on the early stages of the modelled monotonic response of Hostun sand. Therefore, 

following a similar strategy to that employed in Section 6.11, it was decided to increase the 

value assigned to  from 0.30 to 0.60, to allow for the simulation of a more curved effective 

stress path under undrained shearing (Section 6.10.3). Subsequently, by setting  = 0.0 and 

 = 0.0, while keeping  = 0.500 and H0
* = 45 000.0, the value of h0

* resulting in the best 

possible simulation of each available DMTC, UMTC, DMTE, UMTE and UCT tests performed 

on samples consolidated to p'0 = 80 kPa was estimated. The obtained results are depicted in 

Figure 6.35. Note that, to enable a direct comparison with the previously adopted model 

parameters, the h0
* – e0 line obtained before the introduction of the shearing-induced fabric 

tensor (characterised by h0 = 0.132 and  = 0.999), as well as that corresponding to the 

original formulation of the constitutive relationship (characterised by h0 = 0.200 and  =

1.100) are also presented in the figure.  
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Figure 6.34 – Numerical simulation of tests ICUCT 0.832/80/42 and ICUCT 0.651/80/43 using the 

extended formulation of the model and a value of 45 000.0 for H0
*: (a) effective stress path, 

(b) excess pore water pressure build-up and (c) axial strain evolution with the number of loading 
cycles. 
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Figure 6.35 – Recalibration of the plastic-hardening-modulus-related parameters using monotonic 
triaxial compression and cyclic triaxial tests where samples were consolidated to a mean effective 

stress of 80 kPa. 
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the best possible reproduction of drained and undrained monotonic triaxial extension tests 

(ICDMTE p↓, IC & K0DMTE p↑ and ICUMTE p↓ tests). 
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* 
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extension introduced by the inherent fabric anisotropy component and, therefore, to 

reproduce a similar undrained cyclic resistance (i.e. to obtain a similar number of loading to 

the onset of cyclic mobility). 

Table 6.4 – Values of H0
* obtained by a trial-and-error procedure for all available undrained cyclic 

triaxial tests when using the extended formulation of the constitutive model. 

Test ID (1) 
e0 (2) 

( ) 
p'0 

(kPa) 
0 (2) 

( ) 
|q|(3) 
(kPa) 

H0
* 

( ) 

ICUCT 0.821/25/13 0.821 25.0 -0.140 13.0 230 000.0 
ICUCT 0.777/25/18 0.777 25.0 -0.140 18.0 180 000.0 
ICUCT 0.771/80/32 0.771 80.0 -0.137 32.0 68 000.0 
ICUCT 0.803/80/36 0.803 80.0 -0.137 36.0 90 000.0 
ICUCT 0.832/80/42 0.832 80.0 -0.129 42.0 65 000.0 
ICUCT 0.804/80/48 0.804 80.0 -0.136 48.0 15 000.0 
ICUCT 0.773/80/56 0.773 80.0 -0.138 56.0 3 000.0 
ICUCT 0.805/135/40 0.805 135.0 -0.120 40.0 50 000.0 
ICUCT 0.830/135/54 0.830 135.0 -0.128 54.0 70 000.0 
ICUCT 0.793/135/67.5 0.793 135.0 -0.128 67.5 8 000.0 
ICUCT 0.651/80/43 0.651 80.0 -0.285 43.0 45 000.0 
ICUCT 0.652/80/72 0.652 80.0 -0.284 72.0 40 000.0 
ICUCT 0.652/80/88 0.652 80.0 -0.284 88.0 40 000.0 

(1) Test identifier nomenclature is detailed in Chapter 2 Chapter 3; (2) Post-consolidation values; 
(3) deviatoric stress oscillation. 

 

It is also noteworthy that, as observed before when using the original formulation of the 

constitutive model, the H0
* values required to simulate properly tests ICUCT 0.804/80/48, 

ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5 (coloured in grey) are significantly smaller than 

those required to simulate the remaining tests. Note that, in these three tests, where large 

cyclic stress ratios were used, the samples exhibited very soft responses in triaxial extension 

during the first loading cycle, resulting in a severe reduction of the effective stress, with cyclic 

mobility being triggered just after two to four loading cycles, as shown in Figure 6.36. 

Unfortunately, this suggests that, although bringing additional flexibility to the constitutive 

model and slightly improving the modelled response for triaxial extension, the incorporation 

of the inherent fabric anisotropy component into the constitutive relationship may still be 

insufficient to replicate accurately the very wide range of undrained cyclic responses of 

Hostun sand registered in the present laboratory testing programme, with samples requiring 

from two to seventy-seven loading cycles to the onset of cyclic mobility. 
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Figure 6.36 – Calibration of H0

* when using the extended formulation to the simulation of tests 
ICUCT 0.804/80/48, ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5: (a) effective stress path and 

(b) excess pore water pressure build-up with the number of loading cycles. 
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Having plotted the ('1,0 p'ref
⁄ ,  H0

*) data values, as depicted in Figure 6.23, a non-linear 

regression analysis was performed to determine the model parameters H0 and . The 

following values were obtained: H0 = 55 000.0 and  = 0.85. It can be seen in the figure that 

the newly obtained curve plots above that obtained when using the original formulation of 

the constitutive model. 

 
Figure 6.37 – Calibration of the shearing-induced fabric-related parameters when using the 

extended formulation of the constitutive model. 

6.13 Numerical stability-related parameters 

The final model parameters to be calibrated are: 

1) m defining the opening of the primary yield surface (Equation 4.34); 

2) p'ys defining the position of the low-stress (also termed as secondary) yield surface 

(Equation 4.71); 

3) p’min defining a lower limit for the maximum shear modulus, Gmax (Equation 4.25), as 

well as Gmin defining a lower limit for the current value of the tangent shear modulus, 

Gtan (Equation 4.26); 

4) hf,min and hf,max imposing, respectively, a lower and an upper limit to the magnitude of 

the plastic multiplier hf, i.e. to the contribution of the shearing-induced fabric tensor, 

F, to the plastic hardening modulus associated with the primary yield surface, A1 

(Equations 4.55, 4.56 and 4.57); 

5) maximum value of the shearing-induced fabric index, Hmax (Equations 4.69 and 4.70). 

As discussed in more detail in Taborda (2011), these model parameters were introduced to 

improve the numerical stability of the constitutive relationship, particularly when simulating 

boundary-value problems involving liquefaction-related phenomena, where materials 

undergo very low effective stresses. As such, these model parameters lack any relevant 

0

50000

100000

150000

200000

250000

300000

0 0.25 0.5 0.75 1 1.25 1.5

H
0
*

( 
) 

'1,0 / p'ref ( )

mod. loose / p'0 = 25 kPa mod. loose / p'0 = 80 kPa

mod. loose / p'0 = 135 kPa dense / p' = 80 kPa

Obs.:

An unique value of H0
* should have been obtained for all tests consolidated to 

the same stress state (25, 80 and 135 kPa).

H0
* = H0 ('1;0 / p'ref)

-

= 43000.0 ('1,0 / p'ref)
-1.0

Newly obtained curve:

Curve of the

original formulation:

H0
* = H0 ('1;0 / p'ref)

-

= 55 000.0 ('1,0 / p'ref)
-0.85

△ mod. loose with p'0 = 25 kPa

○ mod. loose with p'0 = 80 kPa

◻ mod. loose with p'0 = 135 kPa

× dense with p'0 = 80 kPa



CALIBRATION OF THE BOUNDING SURFACE PLASTICITY MODEL FOR HOSTUN SAND 

394 
 

physical meaning and, therefore, their calibration typically require performing small 

parametric studies to decide on the values that lead to a satisfactory reproduction of the 

available data, while ensuring numerical stability and, possibly, reducing the computational 

cost of the numerical integration of the constitutive relationship. As detailed later, the results 

of the parametric analyses conducted in the present study enable to conclude that the values 

established in previous studies (Papadimitriou and Bouckovalas, 2002; Loukidis and Salgado, 

2009; Taborda, 2011; Taborda et al., 2014) are also suitable for the present case. This suggest 

that reference values may be established for these model parameters (at least for clean sand), 

eventually reducing the effort required to calibrate this constitutive relationship in future 

applications. Before describing the value adopted for each model parameter, it is important 

to note that, to shorten the presentation, only results obtained when using the original 

version of the model (i.e. not including the inherent fabric anisotropy component) are 

presented in this section. Note, nevertheless, that similar results were obtained when using 

the extended version of the constitutive model. 

Starting with the model parameter m, since it defines the elastic domain, it is expected to 

have particular impact on the simulation of cyclic response at very small strains (e.g. 

simulation of vibrations due to machine foundation). Moreover, as highlighted by Loukidis 

and Salgado (2009), it plays an important role of ensuring numerical stability during the 

integration of the constitutive model. According to Manzari and Dafalias (1997), a value of 

0.050 Mc
c, which is typically close to 0.065 for most of silica sands, leads to a satisfactory 

numerical performance of the constitutive model. This value was adopted by Papadimitriou 

and Bouckovalas (2002), Taborda (2011) and Taborda et al. (2014) and is also considered in 

the present study. 

Regarding p'ys, as pointed out by Taborda et al. (2014), its value should be large enough to 

prevent the stress point from reaching extremely low effective stresses, for which the non-

linearity of the constitutive relationship is known to increase substantially, therefore keeping 

the computational effort within reasonable limits. On the other hand, the value assigned to 

p'ys should be small enough to avoid meaningful alteration of the modelled response. As 

illustrated in Figure 6.38, while a large value as p'ys = 10.0 kPa would restrict the ability of the 

constitutive model to replicate the large excess pore water pressure ratios observed in the 

laboratory tests (in most cases, close to 1.0), as well as the accumulation of large strains, a 

value of p'ys = 1.0 kPa does not seem to have any detrimental impact on the modelled 

response. Since this value was also observed to ensure numerical stability during the 

simulation of boundary-value problems involving liquefaction by Taborda (2011), it was 

adopted in the present study. 
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Figure 6.38 – Impact of p’ys on the numerical simulation of test ICUCT 0.771/80/32: (a) effective 
stress path, (b) excess pore water pressure ratio build-up and (c) axial strain evolution with the 

number of loading cycles. 
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As highlighted by Taborda (2011), due to the dependence of the plastic hardening modulus 

associated with the primary yield surface, A1, on the tangent shear modulus, Gtan, through the 

plastic multiplier hg (Equation 4.62), the lower limit for the maximum shear modulus, Gmax, 

implicitly limits the magnitude of the A1. As such, this lower limit may play an important role 

in the limitation of the accumulation of excessively large strains under very low effective 

stresses. In effect, the results of a small parametric studies using all available UCT test data 

(not presented here for brevity of the presentation) enabled to conclude that, by adopting 

p'min = 10.0 kPa, it seems possible to limit the accumulation of strains under very low 

effective stresses to reasonable values, particularly for dense sand, as it will be clear in the 

following chapter. Note that an identical value was selected by Taborda (2011) when 

calibrating the BSPM for Nevada sand. Note also that, alternatively, it would have been 

possible to impose a lower limit on Gtan through the model parameter Gmin. However, as 

pointed out by Taborda (2011), since Gtan depend on several other factors besides p’, such as 

on the density of the material and distance of the current stress point to that at last shear 

reversal, it seems more consistent to impose a lower limit to Gmax through p’min. 

Subsequently, an upper limit to the magnitude of the fabric index, Hmax, was established. This 

limit may be particularly important when simulating the response of initially denser-than-

critical sand (
0
< 0.0) subjected to very low effective stresses. Under such conditions, and 

when no restriction is applied, a very large magnitude of H is likely be obtained, leading to 

very large oscillations of the shearing-induced fabric tensor (Equation 4.66 and 4.67) and, 

consequently, of the plastic hardening modulus, which might compromise the stability of the 

numerical analysis. As suggested by Taborda (2011), to find an appropriate value for Hmax, the 

initial conditions of each available UCT test, in terms of major principal effective stress, ’1,0, 

and state parameter, 0, – see, for example, Table 6.3 – should be compared with the values 

given by Equation 4.69, re-written below for clarity. 

 H = H0 (
′1,0

p′ref
)

−

〈−
0
〉 (6.30) 

where H0 = 43000.0 and  = 1.00 were obtained for the original version of the constitutive 

model (Section 6.11). The comparison is illustrated in Figure 6.39, where lines corresponding 

to H = 1 000.0, H = 5 000.0, H = 10 000.0 and H = 50 000.0 are plotted together with the 

experimental (’1,0, 0) values. It can be observed that the value of H = 50 000.0 provides an 

upper limit for the initial states of all samples. This value was adopted in the present study. 
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Figure 6.39 – Contours of the fabric index H. 

Finally, small parametric studies were performed to evaluate the impact of hf,min and hf,max, 

on the modelled response. Note that these model parameters limit the magnitude of the 

plastic multiplier hf (i.e. the contribution of F to A1). Once again, it was concluded that the 

values adopted by Taborda (2011) in previous studies were also adequate to the present case, 

consisting of setting hf,min = 0.1 and hf,max = 100.0. 

6.14 Summary of model parameters 

Table 6.5 summarises the four sets of model parameters obtained during the calibration of 
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Hostun sand. The sets of parameters belonging to the category “A) Static” were optimised to 

the simulation of the monotonic response of Hostun sand and, therefore, should not be 

employed in the simulation of its cyclic response. Conversely, the sets of parameters 
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once the phase transformation line is crossed and the effective stress path is reversed – an 
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model parameters belonging to the categories “A) Static” and “B) Dynamic” are highlighted 

in bold, while the three additional model parameters required by the inherent fabric 

anisotropy component are presented in grey. 

Table 6.5 – Model parameters for Hostun sand. 

Sets of parameters 
A) Static B) Dynamic 

A.1) Original 
formulation 

A.2) Extended 
formulation 

B.1) Original 
formulation 

B.2) Extended 
formulation 

Non-linear elasticity     
Cg 293.0 293.0 293.0 293.0 
mg 2.97 2.97 2.97 2.97 
ng 0.49 0.49 0.49 0.49 

 2.00 2.00 2.00 2.00 
a1 0.46 0.46 0.46 0.46 

1 7.02 x 10-4 7.02 x 10-4 7.02 x 10-4 7.02 x 10-4 
p'min 1.0 kPa (1) 1.0 kPa (1) 10.0 kPa 10.0 kPa 
Gmin 1.0 kPa (1) 1.0 kPa (1) 1.0 kPa (1) 1.0 kPa (1) 

 0.18 0.18 0.18 0.18 

Model surfaces     
p’ref  101.3 kPa 101.3 kPa 101.3 kPa 101.3 kPa 
(eCS)ref 1.000 1.000 1.000 1.000 

 0.070 0.070 0.070 0.070 

 0.360 0.360 0.360 0.360 
Mc

c 1.265 1.265 1.265 1.265 
Me

c  0.911 0.911 0.911 0.911 

kc
d 0.940 0.940 0.940 0.940 

ke
d 0.677 0.677 0.677 0.677 

kc
b 2.810 2.810 2.810 2.810 

ke
b 2.024 2.024 2.024 2.024 

m 0.065 0.065 0.065 0.065 
p’ys 1.0 kPa 1.0 kPa 1.0 kPa 1.0 kPa 

Stress-dilatancy relationship 
A0 1.000 1.000 1.000 1.000 

Plastic hardening modulus 
h0 0.132 0.132 0.200 0.195 

 0.999 0.999 1.100 1.080 
elim 0.960 0.960 0.900 0.900 

 1.000 1.000 1.000 1.000 

 0.500 0.500 0.500 0.500 

 0.300 0.300 0.600 0.600 

Shearing-induced fabric component 
H0 0.0 (2) 0.0 (2) 43 000.0 55 000.0 

 0.0 (2) 0.0 (2) 1.00 0.85 
Hmax (2) (2) 50 000.0 50 000.0 
hf,min (2) (2) 0.1 0.1 
hf,max (2) (2) 100.0 100.0 
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Table 6.5 – Model parameters for Hostun sand. 

Sets of parameters 
A) Static B) Dynamic 

A.1) Original 
formulation 

A.2) Extended 
formulation 

B.1) Original 
formulation 

B.2) Extended 
formulation 

Inherent fabric anisotropy component 
a 0.333 (2) 0.290 0.333 (2) 0.290 
vA 0.000 (2) 1.000 0.000 (2) 1.000 
kA 1.000 (2) 0.600 1.000 (2) 0.600 

(1) Not used. (2) Component not activated when using this set of model parameters. 

Table 6.6 compares the dynamic set of model parameters B.1 obtained in the present study 

for Hostun sand with other sets of parameters employed in other studies published in the 

literature using other sands as reference material (Taborda, 2011; Taborda et al., 2014; 

Williams, 2014). For future reference, the range of values employed for each parameter in 

the studies under comparison is included in the table, highlighting in bold the values 

established by the present study. It is interesting to observe that the values of kc
d and ke

d, 

defining the position of the dilatancy surface in triaxial compression (TC) and in triaxial 

extension (TE), respectively, obtained in the present study for Hostun sand are the lowest 

among the values obtained in all studies. Since the critical stress ratio in TC, Mc,e
c , does not 

vary significantly for the sands under comparison and the equation defining the dilatancy 

surface is linearly dependent on the state parameter,  (Equation 4.5), it can be concluded 

that denser-than-critical samples ( < 0) of Hostun sand tends to start dilating for higher 

stress ratios than those required by the other sands (Leighton Buzzard, Nevada and Fraser 

river sands) having a similar . Along the same lines, the fact that the values of kc
b and ke

b, 

characterising the position of the bounding surface in TC and TE (Equation 4.4), respectively, 

obtained for Hostun sand defines the upper limits of their ranges (although not being 

significantly higher than the values obtained for the other sands) suggests that denser-than-

critical samples ( < 0) of Hostun sand tend to mobilise higher peak stress ratios than those 

reached by the other sands under comparison having a similar value of . 

Table 6.6 – Comparison of the set of parameters obtained in the present study with those 
employed in other studies reported in the literature. 

Sets of 
parameters 

Hostun sand 
(set B.1) 

Leighton 
Buzzard sand 

Nevada sand Fraser river sand Range of values 

Reference present study Taborda, (2011) 
Taborda et al. 

(2014) 
Williams (2014)  

Non-linear elasticity 
Cg 293.0 623.0 (1) 518.6 (1) 422.0 (1) (1) 
mg 2.97 (1) (1) (1) (1) 
ng 0.49 0.50 (1) 0.50 (1) 0.50 (1) (1) 

 2.00 2.00 2.00 2.00 2.00 
a1 0.46 0.50 0.30 0.44 0.30 – 0.46 

1 7.02 x 10-4 5.5 x 10-4 6.5 x 10-4 1.59 x 10-3 5.5 x 10-4 – 1.59 x 10-3 
p'min (kPa) 10.0 5.0 10.0 (2) 5.0 – 10.0 
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Table 6.6 – Comparison of the set of parameters obtained in the present study with those 
employed in other studies reported in the literature. 

Sets of 
parameters 

Hostun sand 
(set B.1) 

Leighton 
Buzzard sand 

Nevada sand Fraser river sand Range of values 

Reference present study Taborda, (2011) 
Taborda et al. 

(2014) 
Williams (2014)  

Gmin (2) (2) (2) (2) (2) 

 0.180 0.135 0.200 0.200 0.135 – 0.200 

Model surfaces 
p’ref (kPa) 101.3 101.3 100.0 100.0 100.0 – 101.3 
(eCS)ref 1.000 1.010 0.887 0.840 0.840 – 1.010 

 0.070 0.080 0.079 0.030 0.030 – 0.080 

 0.360 0.350 0.250 0.660 0.250 – 0.660 
Mc

c 1.265 1.180 1.290 1.376 1.180 – 1.376 
Me

c  0.911 0.850 0.900 1.000 0.850 – 1.000 

kc
d 0.940 2.140 2.350 1.670 0.940 – 1.670 

ke
d 0.677 (3) 1.542 (3) 1.640 (3) 1.214 (3) 0.677 – 1.640 

kc
b 2.810 1.920 2.180 2.670 1.920 – 2.810 

ke
b 2.024 (3) 1.383 (3) 1.521 (3) 1.940 (3) 1.383 – 2.024 

m 0.065 0.065 0.065 0.050 0.050 – 0.065 
p’ys (kPa) 1.0 1.0 1.0 1.0 1.0 

Stress-dilatancy relationship 
A0 1.000 1.050 1.460 1.000 1.000 – 1.460 
Plastic hardening modulus 
h0 0.200 0.047 0.613 0.100 0.047 – 0.613 

 1.100 0.956 1.214 0.650 0.650 – 1.214 
elim 0.900 0.934 0.818 0.946 0.818 – 0.946 

 1.000 1.000 1.000 1.000 1.000 

 0.500 0.623 1.500 0.000 0.000 – 1.500 

 0.600 0.750 0.000 -0.300 -0.300 – 0.750 
Shearing-induced fabric component 
H0 43 000.0 8 021.2 12 239.4 12 600 8 021.2 – 43 000.0 

 1.00 2.40 1.59 2.00 1.00 – 2.40 
Hmax 5.0 x 104 6.0 x 104 2.0 x 106 (2) 5.0 x 104 – 2.0 x 106 
hf,min 0.1 0.1 0.1 (2) 0.1 
hf,max 100.0 100.0 100.0 (2) 100.0 

(1) In the previous studies, Gmax = Cg p'ref  
1

0.3+0.7 e2 (
p′

p′ref
)

ng

, with ng = 0.50 was considered; this 

equation was replaced by Gmax = Cg p'ref
(mg−e)

2

1+e
(

p′

p′ref
)

ng

 in the present version of the model. (2) Not 

used. (3) The assumptions ke
d = kc

d (Me
c Mc

c⁄ ) and ke
b = kc

b (Me
c Mc

c⁄ ), proposed by Papadimitriou and 
Bouckovalas (2002), were employed in all studies. 

Nevertheless, the most appreciable difference between the values obtained for Hostun sand 

and those reported in the literature for other sands concerns those characterising the 

shearing-induced fabric component. In particular, it can be observed that the value assigned 

to the shearing-induced fabric index constant, H0, is clearly above those employed in other 

studies. This suggests that, when compared with the other sands, a stronger stiffening effect 
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is expected to be observed for Hostun sand under effective stress paths below the dilatancy 

surface and, therefore, a greater number of loading cycles are likely required to reach cyclic 

mobility under similar conditions. To illustrate this aspect, a small parametric study was 

performed, comprising the simulation of tests ICUCT 0.771/80/32, ICUCT 0.803/80/36 and 

ICUCT 0.832/80/42 using three different values for H0: 21 500, 43 000.0 and 86 000.0. Note 

that the intermediate value corresponds to that obtained during the calibration process (set 

B.1), while the smallest and largest values correspond, respectively, to half and double of the 

intermediate value. With respect to the remaining model parameters, the values indicated in 

Table 6.6 for the set B.1 were employed. The results obtained in these simulations are 

presented in Figure 6.40, in terms of cyclic resistance ratio (CRR) against the number of 

loading cycles required to the onset of cyclic mobility, Nliq. Note that, as indicated in the figure, 

CRR is given by the ratio of the deviatoric stress oscillation (inducing cyclic mobility in a given 

number of loading cycles), |q|, to twice the isotropic effective stress at consolidation, ’0 

(note that all samples were isotropically consolidated). Moreover, it should be noted that, to 

be consistent with the criterion used before when analysing the experimental data (Chapter 

3), cyclic mobility was considered triggered when a residual (i.e. corresponding to a null 

deviatoric stress) excess pore water pressure ratio, ru,res, of 0.95 was obtained. The choice of 

the cyclic mobility criterion is, nevertheless, expected to have no influence on the conclusions 

reached in this small parametric study, as discussed in detail in Chapter 3. Finally, note that, 

for reference, experimental data is also plotted in Figure 6.40. As expected, it can be seen 

that the smaller the value assigned to H0, the lesser the number of loading cycles required to 

the onset of cyclic mobility (in other words, the smaller the undrained cyclic resistance 

simulated by the constitutive model). Furthermore, it is apparent that H0 = 43 000.0 allows 

for a better reproduction of experimental data than the remaining two values. 

 
Figure 6.40 – Effect of different values of shearing-induced fabric index constant H0 on the 

numerical reproduction of undrained cyclic triaxial resistance of Hostun sand. 
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A plausible explanation for the need of a larger value of H0 for Hostun sand than those used 

for other sands in other studies is provided in Figure 6.41, which compares the undrained 

cyclic resistance of Hostun, Leighton Buzzard and Nevada sands, inferred, in all cases, from 

undrained cyclic triaxial (UCT) test data used for the calibration of the constitutive model. 

Note that, in the study undertaken by Williams (2014) on Fraser river sand, undrained cyclic 

direct simple shear test data was used for the calibration of the model, hampering a direct 

comparison with data presented in Figure 6.41. It is apparent that Hostun sand is significantly 

more resistant than the other two sands. For instance, while a moderately loose sample of 

Nevada sand (Dr ≈ 40 − 60 %) consolidated to '0 = 80 kPa requires a single loading cycle to 

the onset of cyclic mobility when subjected to a cyclic stress ratio of CSR = 0.25, a significantly 

larger number of loading cycles (of about 15) are required by a sample of Hostun sand having 

a similar initial density (Dr ≈ 50 %), consolidated under an identical effective stress state and 

sheared under a similar CSR. The discrepancies between the undrained cyclic strengths of 

Hostun and Leighton Buzzard sands are even larger. Specifically, while a moderately dense 

sample of Leighton Buzzard sand (Dr ≈ 50 %) consolidated to '0 = 120 kPa requires a single 

loading cycle to the onset of cyclic mobility when subjected to CSR = 0.20, a much larger 

number of loading cycles are required to induce cyclic mobility on a similarly prepared sample 

of Hostun sand subjected to a similar CSR (note that Nliq ≈ 20 are required by a Hostun sand 

sample consolidated to '0 = 135 kPa and, therefore, more than twenty loading cycles would 

be likely required by a sample consolidated to '0 = 120 kPa). 

 
Figure 6.41 – Experimental characterisation of the undrained cyclic triaxial resistance of 

moderately loose samples of Hostun, Leighton Buzzard and Nevada sands. 
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Nevada sand (having h0 = 0.613) by Taborda et al. (2014). Note, however, that such strategy 

would clearly deteriorate the ability of the constitutive model to simulate adequately cyclic 

response of Hostun sand (see, for example, Figure 6.19 where H0
* = 20 000.0 is used in 

conjunction with h0
* = 0.060). 

The ability of the constitutive model to capture key aspects of the response of Hostun sand 

observed in triaxial tests is further explored in Chapter 7, while the application of the model 

to the simulation of boundary-value problems involving liquefaction-related phenomena is 

presented in Chapter 8. 
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Chapter 7 APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE 

SIMULATION OF ELEMENT LABORATORY TESTS 

7.1 Introduction 

Having established the model parameters leading to the best possible reproduction of the 

available experimental data in the previous chapter, the ability of the constitutive model to 

replicate key features of the monotonic and cyclic response of Hostun sand observed in 

element laboratory tests is explored in this chapter. More specifically, its ability to capture 

the effect of the initial void ratio, consolidation effective stress state and stress path direction 

on the modelled monotonic response of Hostun sand is firstly assessed. Although these 

aspects are indirectly considered during the calibration process (for example, by considering 

the effect of the state parameter on the positions of the bounding and dilatancy surfaces), it 

is important to evaluate the degree of accuracy obtained when simulating the available test 

data. In terms of cyclic response of Hostun sand, particular emphasis is given to the 

investigation of the ability of the constitutive relationship to replicate the evolutions of both 

secant stiffness and hysteretic damping with cyclic loading, the excess pore water pressure 

build-up and strain accumulation with cyclic loading, as well as the onset of cyclic mobility 

observed in the laboratory experiments. 

All numerical simulations, whose results are presented in this chapter, were performed by 

using a single hybrid eight-noded isoparametric quadrilateral element with pore water 

pressure degrees of freedom at the corner nodes. To simulate triaxial test conditions, 

axisymmetric conditions were specified, with the displacements being restricted vertically 

along the base of the model and horizontally along the inner boundary corresponding to the 

axis of symmetry (i.e. left boundary of the model). In addition, to simulate undrained 

conditions, the displacements of the solid and fluid phases along the direction perpendicular 

to that defined by a given boundary of the model are tied. In terms of solicitation, uniform 

vertical displacements were prescribed to the nodes belonging to the top boundary of the 

model to reproduce the strain-controlled nature of the drained and undrained monotonic 

triaxial compression and extension tests. Conversely, when simulating drained isotropic 

compression tests, uniform normal stresses were prescribed to the nodes belonging to the 

top and outer (i.e. right) boundaries of the model, therefore simulating the stress-controlled 

nature of these tests. Finally, to allow for the adequate replication of the stress reversals 

imposed in cyclic triaxial tests in the laboratory, stress-controlled loading conditions were 

considered by applying uniform normal stresses to the nodes belonging to the top boundary 

of the model. 
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Regarding the model parameters employed in the numerical simulations, since the ultimate 

objective of this thesis is to assess the ability of the constitutive relationship to replicate 

liquefaction-related phenomena observed in dynamic centrifuge experiments (presented in 

the following chapter), it was decided to use the sets of model parameters belonging to the 

category “B) Dynamic” (Table 6.5) for the simulation of both monotonic and cyclic triaxial 

tests. Nevertheless, whenever relevant, the obtained results are compared with those 

obtained when employing one of the sets of parameters optimised for the simulation of the 

monotonic response of Hostun sand, belonging to the category “A) Static” (Table 6.5). Further 

comparison between the results obtained when using “dynamic” and “static” sets of 

parameters is provided in Appendix A. 

In terms of structure of this chapter, the ability of the original formulation of the constitutive 

model, as proposed by Taborda et al. (2014), is firstly assessed in Section 7.2. With this 

purpose, the set of model parameters “B.1) Dynamic – original formulation” are employed to 

the simulation of all available monotonic and cyclic test data. Subsequently, in Section 7.3, 

the results obtained when using the set “B.2) Dynamic – extended formulation”, which 

activates the inherent fabric anisotropy component and, therefore, makes use of the 

extended formulation of the constitutive model, are presented. Note that, since the inherent 

fabric anisotropy component affects only the modelled response for loading conditions other 

than triaxial compression, Section 7.3 focuses only on the simulation of monotonic triaxial 

extension tests and cyclic triaxial tests. Finally, Section 7.4 summarises the main results and 

conclusions obtained from these numerical simulations. 

7.2 Original formulation of the constitutive model 

7.2.1 Monotonic response 

7.2.1.1 Available data 

Table 7.1 summarises the designation and initial conditions of the two drained isotropic 

compression (DIC) tests, as well as thirty-two drained (D) and undrained (U) monotonic 

triaxial compression and extension (MTC and MTE, respectively) tests performed on Hostun 

sand. It can be observed that samples were prepared to a wide range of void ratios (from 

0.650 to 0.885) and isotropically or anisotropically consolidated (IC and K0C, respectively) 

under various mean effective stresses: 25, 50, 80, 135, 200 and 500 kPa. Moreover, it can be 

seen that samples were sheared under five different stress paths: isotropic compression (IC), 

monotonic triaxial compression with increasing mean stress (MTC p↑) – which is the most 

conventional stress path followed in triaxial compression tests – , monotonic triaxial 

compression with decreasing mean stress (MTC p↓), monotonic triaxial extension with 

decreasing mean stress (MTE p↓) – which is the most conventional stress path followed in 

triaxial extension tests – , and, lastly, monotonic triaxial extension with increasing mean stress 

(MTE p↑). 
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Table 7.1 – Designation and initial conditions of the monotonic triaxial compression and triaxial 
extension tests on Hostun sand. 

Type of test Designation (§) 
e0 
( ) 

’r,0 
(kPa) 

’a,0 
(kPa) 

p'0 
(kPa) 

q0 
(kPa) 

0 
( ) 

Loading 
(p↑/p↓) 

Drained 
isotropic 

ICDIC 0.794/25 0.787 25.0 25.0 25.0 0.0 -0.174 p↑&p↓ 

compression 
(DIC) 

ICDIC 0.659/25 0.653 25.0 25.0 25.0 0.0 -0.308 p↑&p↓ 

Undrained 
monotonic 
triaxial 
compression 
(UMTC) 

ICUMTC p↑ 0.876/80 0.876 80.0 80.0 80.0 0.0 -0.059 p↑ 

ICUMTC p↑ 0.868/80 0.868 80.0 80.0 80.0 0.0 -0.067 p↑ 

ICUMTC p↑ 0.843/135 0.843 135.0 135.0 135.0 0.0 -0.079 p↑ 

ICUMTC p↑ 0.783/25 0.783 25.0 25.0 25.0 0.0 -0.175 p↑ 

ICUMTC p↑ 0.801/80 0.801 80.0 80.0 80.0 0.0 -0.135 p↑ 

ICUMTC p↑ 0.815/135 0.815 135.0 135.0 135.0 0.0 -0.108 p↑ 

ICUMTC p↑ 0.686/25 0.686 25.0 25.0 25.0 0.0 -0.272 p↑ 

ICUMTC p↑ 0.751/80 0.751 80.0 80.0 80.0 0.0 -0.185 p↑ 

ICUMTC p↑ 0.694/135 0.694 135.0 135.0 135.0 0.0 -0.229 p↑ 

Drained 
monotonic 
triaxial 
compression 
(DMTC) 

ICDMTC p↑ 0.875/50 0.875 50.0 50.0 50.0 0.0 -0.071 p↑ 
ICDMTC p↑ 0.885/80 0.885 80.0 80.0 80.0 0.0 -0.050 p↑ 
ICDMTC p↑ 0.846/200 0.846 200.0 200.0 200.0 0.0 -0.064 p↑ 
ICDMTC p↑ 0.835/500 0.835 500.0 500.0 500.0 0.0 -0.040 p↑ 
ICDMTC p↑ 0.829/25 0.829 25.0 25.0 25.0 0.0 -0.129 p↑ 
ICDMTC p↑ 0.798/80 0.798 80.0 80.0 80.0 0.0 -0.138 p↑ 
ICDMTC p↑ 0.804/135 0.804 135.0 135.0 135.0 0.0 -0.118 p↑ 
ICDMTC p↑ 0.667/25 0.667 25.0 25.0 25.0 0.0 -0.291 p↑ 
ICDMTC p↑ 0.725/80 0.725 80.0 80.0 80.0 0.0 -0.211 p↑ 
ICDMTC p↑ 0.728/135 0.728 135.0 135.0 135.0 0.0 -0.195 p↑ 

ICDMTC p↓ 0.826/80 0.826 80.0 80.0 80.0 0.0 -0.109 p↓ 

K0CDMTC p↓ 0.797/80 0.797 60.0 120.0 80.0 60.0 -0.139 p↓ 

ICDMTC p↓ 0.650/80 0.650 80.0 80.0 80.0 0.0 -0.286 p↓ 

K0CDMTC p↓ 0.672/80 0.672 60.0 120.0 80.0 60.0 -0.264 p↓ 

Undrained 
monotonic 
triaxial 
extension 
(UMTE) 

ICUMTE p↓ 0.790/25 0.790 25.0 25.0 25.0 0.0 -0.167 p↓ 

ICUMTE p↓ 0.799/80 0.799 80.0 80.0 80.0 0.0 -0.137 p↓ 

ICUMTE p↓ 0.658/25 0.658 25.0 25.0 25.0 0.0 -0.299 p↓ 

ICUMTE p↓ 0.650/80 0.650 80.0 80.0 80.0 0.0 -0.286 p↓ 

Drained 
monotonic 
triaxial 
extension 
(DMTE) 

ICDMTE p↑ 0.798/80 0.798 80.0 80.0 80.0 0.0 -0.138 p↑ 

K0CDMTE p↑ 0.801/80 0.801 60.0 120.0 80.0 60.0 -0.137 p↑ 

ICDMTE p↑ 0.652/80 0.652 80.0 80.0 80.0 0.0 -0.284 p↑ 

K0CDMTE p↑ 0.652/80 0.652 60.0 120.0 80.0 60.0 -0.284 p↑ 

ICDMTE p↓ 0.793/80 0.793 80.0 80.0 80.0 0.0 -0.143 p↓ 
(§) The designation identifies (1) type of consolidation: IC or K0C for isotropic or anisotropic consolidation, 
respectively; (2) type of drainage: D or U for drained or undrained condition, respectively; (3) type of loading: IC 
for isotropic compression, MTC p↑ for monotonic triaxial compression with increasing mean stress, MTC p↓ 
for monotonic triaxial compression with decreasing mean stress, MTE p↓ for monotonic triaxial extension with 
decreasing mean stress, and MTE p↑ for monotonic triaxial extension with increasing mean stress; (4) void ratio 
immediately after consolidation, e0; and (5) mean effective stress immediately after consolidation, p’0. 
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Note that, while in this chapter the results of the simulations of several different monotonic 

tests are presented together to provide an overall assessment of the performance of the 

constitutive model, the results obtained in each simulation are individually presented in 

Appendix A. 

7.2.1.2 Influence of the initial void ratio 

7.2.1.2.1 Undrained conditions 

The results of the simulations of isotropically consolidated undrained monotonic triaxial 

compression tests with increasing mean stress (ICUMTC p↑ tests) on samples consolidated 

to a mean effective stress, p’0, of 80 kPa are presented in Figure 7.1. 

  

  

 
Figure 7.1 – Influence of the initial void ratio on the numerical simulation of ICUMTC p↑ tests 
performed on samples consolidated to p’0 = 80 kPa: (a) effective stress path, (b) stress-strain 

response, (c) excess pore water pressure build-up and (d) stress ratio evolution with axial strain. 
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It can be seen that, apart from test ICUMTC p↑ 0.801/80, a satisfactory agreement between 

the numerical and experimental data was obtained. More important, the obtained results 

suggest that the constitutive model is able to capture the effect of the initial void ratio on the 

modelled response, including the stiffer stress-strain response, lesser tendency to generate 

positive (i.e. compression-type) excess pore water pressures during the early stages of loading 

and higher rate of generation of negative (i.e. suction-type) excess pore water pressures 

during the later stages of loading as samples are denser, as observed in the laboratory 

experiments. 

Note, nevertheless, that, despite being able to describe the general trend observed in tests 

ICUMTC p↑ 0.868/80 and ICUMTC p↑ 0.876/80, discrepancies between numerical and 

experimental data can be observed during the earlier stages of loading. Specifically, it is 

apparent that, when using this set of model parameters, the constitutive model is unable to 

replicate the highly-curved-shape effective stress path, as well as the minimum effective 

stress registered in the experiment. As discussed in Section 6.11, this seems to be a 

detrimental consequence of the activation of the shearing-induced fabric component. In 

effect, although introduced to deal with cyclic loading, this component of the model affects 

the initial contractive phase of the modelled monotonic response, during which positive 

excess pore water pressures are generated. As shown in Figure 7.2, when using the set of 

model parameters “A.1) Static – original formulation” (which was optimised for monotonic 

loading and, therefore, does not activate the shearing-induced fabric component), a much 

better replication of the response observed during the earlier stages of experiment is 

obtained, with the constitutive model being inclusively able to predict with satisfactory 

accuracy the occurrence of the undrained instability (UI) state, corresponding to the local 

maximum of the deviatoric stress in the deviatoric stress – mean effective stress space (e.g. 

Ishihara, 1993). As mentioned before, this local maximum of deviatoric stress is often 

employed in the prediction of conditions leading to flow liquefaction under monotonic 

loading (e.g. Sladen et al., 1985; Alarcon-Guzman et al., 1988; Nakata et al., 1998). 
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Figure 7.2 – Numerical simulation of tests ICUMTC p↑ 0.868/80 and ICUMTC p↑ 0.876/80 using 
the set of model parameters optimised for monotonic loading: (a) effective stress path and (b) 

stress-strain response. 

In addition, Figure 7.3 depicts the results obtained in the numerical simulations of 

ICUMTC p↑ tests conducted on samples consolidated to p'0 = 135 kPa, together with the 

results registered in the laboratory. Apart from test ICUMTC p↑ 0.843/135, it is apparent that 

a satisfactory agreement between the two sets of data was obtained, both in terms of stress-

strain response and excess pore water pressure ratio generation with loading. Once again, a 

significantly better reproduction of test ICUMTC p↑ 0.843/135 is obtained when using the 

set of model parameters optimised for monotonic loading “A.1) Static – original formulation”, 

as shown in Appendix A. 
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Figure 7.3 – Influence of the initial void ratio on the numerical simulation of ICUMTC p↑ tests 
performed on samples consolidated to p’0 = 135 kPa: (a) effective stress path, (b) stress-strain 

response, (c) excess pore water pressure build-up and (d) stress ratio evolution with axial strain. 
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Figure 7.4 – Influence of the initial void ratio on the numerical simulation of ICDMTC p↑ tests 
performed on samples consolidated to p’0 = 80 kPa: (a) stress-strain response, (b) stress ratio 
evolution with axial strain, (c) volumetric strain evolution with axial strain and (d) void ratio 

evolution with mean effective stress. 

Similar to what was observed for the undrained tests, the stress-strain responses obtained 

for tests performed on loose and moderately loose samples (in this case, tests 

ICDMTC p↑ 0.885/80 and ICDMTC p↑ 0.798/80) are considerably stiffer than those 

registered in the experiment, particularly during the earlier stages of loading, during which 

samples tend to exhibit a contractive response. As pointed out before, this discrepancy seems 

to be mainly related to the detrimental effect of the shearing-induced fabric component of 

the constitutive model on the modelled monotonic response. As shown in Figure 7.5, when 

this component is not activated (i.e. when using the set of model parameters optimised for 

monotonic loading “A.1) Static – original formulation”), a considerably better reproduction of 

0

50

100

150

200

250

300

0 5 10 15 20 25

q
 (

k
P

a)

a (%)

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

a)

ICDMTCp↑ 0.798/80

ICDMTCp↑ 0.885/80

ICDMTCp↑ 0.725/80

0.0

0.4

0.8

1.2

1.6

2.0

0 5 10 15 20 25


=

 q
 /

 p
' (

 )

a (%)

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

b)

ICDMTCp↑ 0.798/80

ICDMTCp↑ 0.885/80

ICDMTCp↑ 0.725/80

0

1

2

0 1 2

-6

-5

-4

-3

-2

-1

0

1

2

0 5 10 15 20 25

 v
(%

)

a (%)

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

c)

ICDMTCp↑ 0.885/80

-1

0

1

0 1 2

0.65

0.70

0.75

0.80

0.85

0.90

0.95

10 100 1000

e 
( 

)

p' (kPa)

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

ICDMTC 0.725/80/p↑ - UC

ICDMTC 0.798/80/p↑ - UC

ICDMTC 0.885/80/p↑ - UC

d)

ICDMTCp↑ 0.798/80

ICDMTCp↑ 0.885/80

ICDMTCp↑ 0.725/80

-100

-60

-20

20

60

100

-0.5 -0.3 -0.1 0.1 0.3 0.5

q
 (

kP
a)

a (%)

Experimental Numerical (set B.1)

a.2)

ICDCT 0.820/135/81



APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE SIMULATION OF ELEMENT LABORATORY 

TESTS 

413 
 

the experimental data is obtained. Indeed, in this case, it can be seen that, as samples are 

initially looser, the modelled peak stress is observed to occur at a greater axial strain, as 

registered in the laboratory experiment. 

  

 
Figure 7.5 – Numerical simulation of the ICDMTC p↑ tests performed on samples consolidated to 

p’0 = 80 kPa by using the set of model parameters optimised for monotonic loading: (a) stress-
strain response and (b) volumetric strain evolution with axial strain. 

Additionally, Figure 7.6 depicts the results obtained in the numerical simulations of 

ICDMTC p↑ tests performed on samples consolidated to p'0 = 135 kPa, together with the 

results registered in the laboratory. The results obtained in the numerical simulations are, in 

this case, slightly better than those obtained for tests on samples consolidated to p'0 =

80 kPa. Note, however, that, in this case, the available data does not include a test on a very 

loose sample (such as the sample subjected to test ICDMTC p↑ 0.885/80). 

To sum up, it can be mentioned that, in general, regardless of the mean effective stress at 

consolidation, the constitutive model seems able to capture satisfactorily the effect of the 

void ratio on the modelled response, with a stiffer stress-strain response and more dilatant 

response being predicted for initially denser samples, as observed experimentally. 

Unfortunately, the introduction of the shearing-induced fabric component seems to have a 

detrimental impact on the modelled response obtained for the earlier stages of loading, 

particularly for loose samples – a fact anticipated during the calibration process (Section 

6.11). 
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Figure 7.6 – Influence of the initial void ratio on the numerical simulation of ICDMTC p↑ tests 
performed on samples consolidated to p’0 = 135 kPa: (a) stress-strain response, (b) stress ratio 
evolution with axial strain, (c) volumetric strain evolution with axial strain and (d) void ratio 

evolution with mean effective stress. 

7.2.1.3 Influence of the initial confining stress 

7.2.1.3.1 Undrained conditions 

Figure 7.7 depicts the results of the numerical simulations of ICUMTC p↑ tests on moderately 
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indicated in the designations of the tests) are not very different from each other. It can be 

seen that, in general, stiffer stress-strain responses (Figure 7.7b), as well as higher rates of 

generation of excess pore water pressure with loading (Figure 7.7c) were obtained in the 
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the small differences in terms of void ratio have a strong impact on the numerical simulation. 

For instance, it can be observed that, due to its smaller initial void ratio, the modelled 

evolution of excess pore water pressure with axial strain of test ICUMTC p↑ 0.801/80 plots 

below that computed for test ICUMTC p↑ 0.815/135 throughout loading – an aspect not 

observed in the laboratory. 

  

  

 
Figure 7.7 – Influence of the initial confining stress on the numerical simulation of ICUMTC p↑ 

tests performed on moderately loose samples: (a) effective stress path, (b) stress-strain response, 
(c) excess pore water pressure build-up and (d) stress ratio evolution with axial strain. 

Complementary, Figure 7.8 depicts the results of the numerical simulations of two different 

ICUMTC p↑ tests performed on dense samples. It can be seen that, apart from the stress 

ratios evolution with axial strain, which are slightly overpredicted in the numerical simulation 

(at least during the later stages of loading), a very good agreement between numerical and 
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to predict accurately the main trends observed in the experiment, such as the fact that 

samples consolidated under higher confining stresses tend to exhibit a stiffer stress-strain 

response, as well as to generate higher positive excess pore water pressure during the early 

stages of loading. 

  

  

 
Figure 7.8 – Influence of the initial confining stress on the numerical simulation of ICUMTC p↑ 

tests performed on dense samples: (a) effective stress path, (b) stress-strain response, (c) excess 
pore water pressure build-up and (d) stress ratio evolution with axial strain. 

7.2.1.3.2 Drained conditions 
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earlier stages of loading. Consequently, the volumetric responses obtained in the numerical 

simulations are underpredicted in relation to those measured in the laboratory. 

  

  

 
Figure 7.9 – Influence of the initial confining stress on the numerical simulation of ICDMTC p↑ 

tests performed on loose samples: (a) stress-strain response, (b) stress ratio evolution with axial 
strain, (c) volumetric strain evolution with axial strain and (d) void ratio evolution with mean 

effective stress. 

Once more, although crucial for the accurate reproduction of the cyclic response of sand, the 

shearing-induced fabric component seems to have a considerably detrimental contribution 

to the discrepancies observed between numerical and experimental test data on loose 

samples. Having re-run the simulations with the set of model parameters “A.1) Static – 

original formulation”, optimised for monotonic loading, the results are clearly more 

satisfactory, as shown in Figure 7.10. The fact that the modelled peak strengths are slightly 

underpredicted in relation to those registered in the laboratory suggests that the calibration 
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of the plastic hardening modulus (Section 6.10) was excessively focused on the deformation 

pattern (in this case, relation between volumetric and axial strains), rather than on the overall 

stress-strain response. A more balanced approach (i.e. giving similar importance to both 

aspects) could have resulted in an overall better agreement. 

  

 
Figure 7.10 – Numerical simulation of the ICDMTC p↑ tests performed on loose samples by using 
the set of model parameters optimised for monotonic loading: (a) stress-strain response and (b) 

volumetric strain evolution with axial strain. 

In addition, Figure 7.11 and Figure 7.12 compare the numerical and experimental results of 

ICDMTC p↑ tests on moderately loose and dense samples, respectively. It can be observed 

that the agreement between the numerical and experimental data is, in this case, much better 

than that obtained for the loosest samples (Figure 7.9), being particularly remarkable for 

dense samples. In general, it can be observed that the constitutive model is able to capture 

the main trends observed in the laboratory experiments, such as the tendency to mobilise 

greater shear stresses when subjected to higher confining stresses. Moreover, the numerical 

results suggest that the confining stress has little influence on the stress ratio and volumetric 

strain evolutions with strain level for the mean effective stress range under analysis (25 to 

135 kPa), as observed in the laboratory. 
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Figure 7.11 – Influence of the initial confining stress on the numerical simulation of ICDMTC p↑ 

tests performed on moderately loose samples: (a) stress-strain response, (b) stress ratio evolution 
with axial strain, (c) volumetric strain evolution with axial strain and (d) void ratio evolution with 

mean effective stress. 
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Figure 7.12 – Influence of the initial confining stress on the numerical simulation of ICDMTC p↑ 

tests performed on dense samples: (a) stress-strain response, (b) stress ratio evolution with axial 
strain, (c) volumetric strain evolution with axial strain and (d) void ratio evolution with mean 

effective stress. 

7.2.1.4 Influence of stress path direction 

7.2.1.4.1 Drained isotropic compression 

Figure 7.13 depicts the results of the simulations of the two isotropically consolidated drained 

isotropic compression (ICDIC) tests performed on a moderately loose and on a dense sample 

of Hostun sand (ICDIC 0.787/20 and ICDIC 0.653/20, respectively). The experimental data is 

also presented in the figure for comparison. It can be observed that the constitutive model is 

unable to replicate adequately the response registered in the laboratory, clearly 

overpredicting the observed stiffer stress-strain response. This is essentially a consequence 
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of the open primary yield surface formulation, which implies that no plasticity is predicted 

under stress paths characterised by a constant stress ratio (as it is the present case). 

Therefore, the predicted volumetric strains (and, consequently, changes in void ratio) are 

solely of elastic nature. Moreover, since the stress ratio is kept constant (and equal to zero, 

in this type of tests), the quantity 
ref
r  (Equation 4.21) remains null throughout the calculation. 

Consequently, the scalar reduction factor, T (Equation 4.20) remains equal to 1.0 during the 

entire simulation, meaning that no reduction of the tangent shear modulus occurs (i.e. it 

retains its maximum value, Gtan = Gmax). Furthermore, since a constant Poisson’s ratio, , is 

assumed in the present constitutive model, no reduction of the tangent bulk modulus occurs 

(i.e. Ktan = Kmax during the entire simulation). As suggested by Taborda (2011), one of the 

following three different approaches might be adopted to improve this aspect: (1) 

replacement of the current shape of the primary yield surface by a closed shape, as, for 

instance, included in the BSPM proposed by Taiebat and Dafalias (2008); (2) introduction of 

an additional yield surface which closes the current yield surface for large values of mean 

effective stress, as originally proposed by Vermeer (1978) and included in the BSPM 

developed by Li (2002) and Gao and Zhao (2015); (3) introduction of a nonlinear reduction of 

the tangent bulk modulus with volumetric strain, as proposed by Jardine et al. (1986). 

  

 
Figure 7.13 – Numerical simulation of ICDIC tests performed on a loose and on a dense sample: 

evolutions of (a) void ratio and of (b) volumetric strain with mean effective stress. 
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figure. It can be seen that, in general, a satisfactory agreement between numerical and 

experimental data was obtained, especially in terms of volumetric response. As pointed out 

before, a plausible explanation for the slightly underestimation of the modelled peak 

strengths in relation to those measured in the laboratory resides on a greater importance 

given to the deformation pattern during calibration of the plastic hardening modulus 

(Section 6.10), rather than to the stress-strain response. 

  

  

 
Figure 7.14 – Influence of the stress path on the numerical simulation of ICDMTC p↑ and 
ICDMTC p↓ tests: (a) stress-strain response, (b) stress ratio evolution with axial strain, (c) 

volumetric strain evolution with axial strain and (d) void ratio evolution with mean effective 
stress. 
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p'0 = 80 kPa, with those obtained in a ICDMTC p↑ test performed on a sample prepared to 

a similar void ratio and consolidated under the same mean effective stress. Note that, to allow 

for a direct comparison between the results of triaxial compression (TC) and triaxial extension 

(TE) tests, the deviatoric stress in TE is taken, in this case, as positive. 

  

  

 
Figure 7.15 – Influence of the stress path on the numerical simulation of ICDMTC↑, ICDMTE↑ and 

ICDMTE↓ tests performed on moderately loose samples consolidated to p’0 = 80 kPa: (a) stress-
strain response, (b) stress ratio evolution with axial strain, (c) volumetric strain evolution with 

axial strain and (d) void ratio evolution with mean effective stress. 
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increase in mean stress during loading), appear to be captured by the constitutive model. The 

ability of the constitutive model to simulate triaxial extension is discussed in more detail in 

Section 7.3.2. 

7.2.1.4.3 Undrained monotonic triaxial compression and extension 

Figure 7.16 compares the results obtained in one undrained monotonic triaxial compression 

test with increasing mean stress (namely, test ICUMTC p↑ 0.686/25) with those obtained in 

one monotonic triaxial extension test with decreasing mean stress (namely, test 

ICUMTE p↓ 0.658/25). Note that both tests were performed on dense samples isotropically 

consolidated to a mean effective stress, p’0, of 25 kPa. Note also that, to ease the comparison 

between the results obtained in TC and TE, the deviatoric stress in TE is taken as positive. 

  

  

 
Figure 7.16 – Influence of the stress path on the numerical simulation of ICUMTC p↑ and 

ICUMTE p↓ tests performed on dense samples consolidated to p’0 = 25 kPa: (a) effective stress 
path, (b) stress-strain response, (c) excess pore water pressure evolution with axial strain and 

(d) stress ratio evolution with axial strain. 
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It is interesting to observe that the constitutive model is able to reproduce satisfactorily 

important aspects of the response of sand observed in the laboratory, such as the significantly 

smaller stress ratio mobilised in TE (Figure 7.16d), which results in a less inclined effective 

stress path under such loading conditions (Figure 7.16a). The numerical results are, however, 

less satisfactory in terms of stress-strain response (Figure 7.16b) and evolution of excess pore 

water pressure with axial strain (Figure 7.16c) observed in test ICUMTE p↓ 0.658/25. In 

effect, although a softer stress-strain response is simulated in TE, in relation to that computed 

in TC, it is clearly overpredicted in relation to that measured in the laboratory. Consequently, 

the rate of negative excess pore water pressure accumulation with axial strain obtained in the 

TE test simulation is considerably higher than that observed in the experiment. Note that, by 

inducing a softer stress-strain response for loading conditions other than TC, the activation of 

the inherent fabric anisotropy component is expected to improve the response obtained for 

TE. This topic is explored in Section 7.3.2. 

Note that similar conclusions are obtained when comparing the results of other sets of 

ICUMTC p↑ and ICUMTE p↓ tests (such as those performed on samples consolidated to 

p'0 = 80 kPa). For brevity, the results obtained in these simulations are not compared here. 

Nevertheless, as noted before, these simulations are presented in Appendix A. 

7.2.1.5 Influence of the type of consolidation 

Figure 7.17 compares the experimental and numerical results of three drained monotonic 

triaxial compression tests with decreasing mean stress (DMTC p↓ tests). In two of these tests, 

a moderately loose and a dense sample were anisotropically consolidated (K0C) to an 

effective stress state characterised by radial and axial effective stresses of 60 kPa and 120 kPa, 

respectively, which correspond to a mean effective stress of 80 kPa and a deviatoric stress of 

60 kPa under triaxial loading conditions (Table 7.1). In the remaining test, a dense sample was 

isotropically consolidated (IC) to an effective stress state characterised by a mean effective 

stress of 80 kPa, implying a null deviatoric stress at consolidation. It can be seen that, overall, 

a satisfactory agreement between both sets of data was achieved. Indeed, the constitutive 

model appears to be able to capture important aspects of the response, such as the similar 

stress ratio evolutions with axial strain, as well as similar volumetric strain responses observed 

for tests ICDMTC p↓ 0.650/80 and K0DMTC p↓ 0.672/80, where dense samples were 

subjected to different types of consolidation (isotropic and anisotropic, respectively). 
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Figure 7.17 – Influence of the type of consolidation on the numerical simulation of DMTC p↓ tests: 

(a) stress-strain response, (b) volumetric strain evolution with axial strain, (c) volumetric strain 
evolution with axial strain and (d) void ratio evolution with mean effective stress. 
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up with the number of loading cycles observed in the laboratory is examined. Note that, since 

very large deformations are typically observed from the moment that cyclic mobility, as well 

as other liquefaction-related phenomena are triggered, capable of causing extensive damage 

to buildings, bridges, pipelines and other critical infrastructure built on (or buried in) a given 

soil deposit, the ability of the model to predict accurately the undrained cyclic resistance of 

the material is of upmost importance. Regarding the evolution of the secant shear modulus 

with cyclic loading, it influences the velocity at which shear waves propagate within a given 

soil deposit and, therefore, its accurate prediction is crucial to the simulation of any 

geotechnical problem involving shear wave propagation, such as blasting, machine vibration, 

pile driving and earthquake-induced loading (Kramer, 1996; Taborda et al., 2016). With 

respect to the damping ratio, it measures the energy dissipated by the soil through hysteresis 

and, thus, has a strong impact on the prediction of the amplitude of deformations induced in 

the soil during the propagation of the shear waves. In terms of excess pore water pressure 

build-up with the number of loading cycles, the comparison between the response predicted 

by the constitutive model and that measured in the laboratory provides fundamental insight 

into the ability of the model to predict the severe reduction in effective stresses typically 

observed in very rapid phenomena (such as those involving liquefaction), which are known to 

impact both stiffness and strength of the material. 

Lastly, the ability of the constitutive model to reproduce the volumetric strains observed in 

drained cyclic triaxial tests is investigated. As mentioned by Kramer (1996) and Taborda 

(2011), this may provide an indication about the ability of the constitutive model to predict 

surface settlements, which may affect structures supported by shallow foundations, as well 

as lifelines located at shallow depths. 

7.2.2.2 Available data 

Table 7.2 summarises the designation and initial conditions of the fifteen cyclic triaxial tests 

performed on Hostun sand, including thirteen isotropically consolidated undrained cyclic 

triaxial (ICUCT) tests, as well as one isotropically consolidated (IC) and one anisotropically 

consolidated (K0C) drained cyclic triaxial (ICDCT and K0CDCT, respectively) tests. It can be 

observed that the samples were prepared to very different void ratios (with e0 ranging from 

0.651 to 0.820), consolidated under three different mean effective stresses (namely, p'0 =

25, 80 and 135 kPa) and subjected to two-way symmetric deviatoric shear stress oscillations 

(i.e. similar deviatoric stress amplitude in triaxial compression and in triaxial extension), q. 

Under undrained conditions, the samples were tested until large strains and excess pore 

water pressures were measured in the test. Conversely, under drained conditions, tests were 

stopped when a given number of loading cycles, N, as indicated in the table, was reached. 

Note that, while in this chapter the results of the numerical simulations of several different 

cyclic triaxial tests are presented together to provide an overall assessment of the 
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performance of the model, the results obtained in each simulation are individually presented 

in Appendix B. 

Table 7.2 –Designation, initial sample’s and loading conditions of the cyclic triaxial tests performed 
on Hostun sand. 

Type of test Designation (§) 
e0 
( ) 

p'0 
(kPa) 

q 
(kPa) 

0 
( ) 

CSR = |q|/(2 p'0) 
( ) 

N 
( ) 

Undrained 
cyclic triaxial 
(UCT) 

ICUCT 0.821/25/13 0.821 25.0 ±13.0 -0.136 0.260 (†) 

ICUCT 0.777/25/18 0.777 25.0 ±18.0 -0.181 0.360 (†) 

ICUCT 0.771/80/32 0.771 80.0 ±32.0 -0.165 0.200 (†) 

ICUCT 0.803/80/36 0.803 80.0 ±36.0 -0.133 0.225 (†) 

ICUCT 0.832/80/42 0.832 80.0 ±42.0 -0.104 0.263 (†) 

ICUCT 0.804/80/48 0.804 80.0 ±48.0 -0.132 0.300 (†) 

ICUCT 0.773/80/56 0.773 80.0 ±56.0 -0.162 0.350 (†) 

ICUCT 0.805/135/40 0.805 135.0 ±40.0 -0.117 0.148 (†) 

ICUCT 0.830/135/54 0.830 135.0 ±54.0 -0.092 0.200 (†) 

ICUCT 0.793/135/67.5 0.793 135.0 ±67.5 -0.129 0.250 (†) 

ICUCT 0.651/80/43 0.651 80.0 ±43.0 -0.299 0.269 (†) 

ICUCT 0.652/80/72 0.652 80.0 ±72.0 -0.285 0.450 (†) 

ICUCT 0.652/80/88 0.652 80.0 ±88.0 -0.284 0.550 (†) 

Drained cyclic 
triaxial (DCT) 

K0CDCT 0.811/80/30 0.811 80.0 (ǂ) ±30.0 -0.125 – 10 

ICDCT 0.820/135/81 0.820 135.0 ±81.0 -0.102  –  10 
(§) The designation identifies: (1) type of consolidation: IC for isotropic consolidation; (2) type of drainage: D or 
U for drained or undrained test, respectively; (3) type of loading: CT for cyclic triaxial; (4) void ratio immediately 
after consolidation; and (5) mean effective stress immediately after consolidation; (6) deviatoric stress 

oscillation applied in the test: |q|. 
(†) The undrained cyclic triaxial tests were stopped when large strains were observed (typically, for moderately 
loose samples, the accumulation of double amplitude axial strain of 5% was used as criterion to stop the test). 
(ǂ) In this test, the sample was subjected to anisotropic consolidation, with the axial and radial effective stresses 
at consolidation being 120 and 60 kPa, respectively. 

 

7.2.2.3 Overview of the undrained cyclic triaxial test results 

Figure 7.18 compares the numerical and experimental results obtained for two isotropically 

consolidated undrained cyclic triaxial (ICUCT) tests performed on samples prepared to similar 

void ratios and consolidated under the same isotropic confining stress of 80 kPa, while 

subjected to different deviatoric stress oscillation, q. In particular, q = ±32 kPa was 

applied in test ICUCT 0.771/80/32, while a larger value of q = ±42 kPa was imposed in test 

ICUCT 0.832/80/42. It can be observed that both tests are very satisfactorily reproduced by 

the constitutive model. This can be considered remarkable, given the very different responses 

observed in these two tests, particularly in terms of number of loading cycles required to the 

onset of cyclic mobility. Perhaps unsurprisingly due to its key role in the calibration of the 

model parameters related to the shearing-induced fabric component, the agreement 

between numerical and experimental data in terms of this aspect of the response is slightly 

better for test ICUCT 0.830/80/42. 
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Figure 7.18 – Numerical simulation of tests ICUCT 0.771/80/32 and ICUCT 0.832/80/42: 

(a) effective stress path, (b) excess pore water pressure ratio build-up and (c) axial strain evolution 
with the number of loading cycles. 
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Indeed, the constitutive model seems able to capture important features of the cyclic 

response of sand observed in the laboratory tests, such as the stiffening of the response after 

the first loading cycle, as well as the significant increase in excess pore water pressure and 

axial strain after the first crossing of the phase transformation line and subsequent reversal 

of the stress path. One aspect of the cyclic response of sand that seems to be less accurately 

replicated by the constitutive model consists of the rate of accumulation of axial strain under 

very low effective stresses. This aspect is more clearly illustrated in Figure 7.19, which depicts 

the evolution of double amplitude axial strain, a,da, with the number of loading cycles, N, for 

these two tests. Particularly for test ICUCT 0.832/80/42, it is apparent that the rate of 

accumulation of a,da with N is underpredicted in the numerical analysis (particularly evident 

when comparing the increase in a,da obtained during the last loading cycle). Among other 

possibilities, the slight increase of the value assigned to the model parameter , scaling the 

effect of the void ratio on the plastic multiplier he (Equation 4.60), would likely improve this 

aspect of the modelled response. Note, however, that this would likely result in a worse 

prediction of the monotonic response of loose Hostun sand observed in UMTC p↑ and 

DMTC p↑ tests, as discussed in Section 6.11. 

  

 
Figure 7.19 – Double amplitude axial strain evolution with the number of loading cycles registered 

for tests: (a) ICUCT 0.771/80/32 and (b) ICUCT 0.832/80/42. 
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constitutive model predicts a much larger number of loading cycles to reach low effective 
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stresses. Similar conclusions were obtained for test ICUCT 0.773/80/56, whose results are 

presented in Appendix B. 

  

 
Figure 7.20 – Numerical simulation of test ICUCT 0.804/80/48: (a) effective stress path and 

(b) excess pore water pressure ratio build-up with the number of loading cycles. 

In addition, Figure 7.21 compares the numerical and experimental results obtained for tests 

ICUCT 0.651/80/43 and ICUCT 0.652/80/88, both of them conducted on dense samples. It can 

be seen that the constitutive model underpredicts the rate of excess pore water pressure 

build-up with cyclic loading measured in the former test, particularly after the first twenty 

loading cycles. Consequently, the number of loading cycles required to reach large values of 

ru = u ′v,0⁄  in the numerical analysis are overestimated in relation to those registered in 

the laboratory, with the accumulation of large axial strains also occurring later in the 

numerical simulation. With respect to test ICUCT 0.652/80/88, a much better agreement 

between numerical and experimental data was obtained, particularly in terms of excess pore 

water pressure generation with the number of loading cycles. In terms of axial strain 

accumulation with cyclic loading, it is apparent that the constitutive model tends to 

underpredict the measured response during the loading cycles preceding the onset of cyclic 

mobility (i.e. before reaching values of ru close to unit). Nevertheless, as cyclic mobility is 

triggered, the magnitude of the computed axial strains seems to approach that measured in 

the laboratory. 
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Figure 7.21 – Numerical simulation of tests ICUCT 0.651/80/43 and ICUCT 0.652/80/88: 

(a) effective stress path, (b) excess pore water pressure ratio build-up and (c) axial strain evolution 
with the number of loading cycles. 
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To get insight into the ability of the constitutive model to capture the cyclic response of 

Hostun sand when subjected to different initial confining stresses, the numerical results 

obtained for test ICUCT 0.777/25/18 are firstly compared with those obtained for test 

ICUCT 0.832/80/42 (Figure 7.22). The experimental results are also included in the figure for 

reference. Note that, in these laboratory tests, although the samples were consolidated under 

different isotropic effective stresses and subjected to different deviatoric stress amplitudes, 

similar responses were measured, particularly in terms of number of loading cycles required 

to the onset of cyclic mobility. Indeed, it is interesting to observe that the constitutive model 

is able to capture adequately this aspect, matching well the excess pore water pressure 

evolution with cyclic loading observed in both tests. As pointed out before, the aspect of the 

cyclic response that seems less satisfactorily reproduced in the numerical analysis consists of 

the smaller axial strain accumulation in relation to that measured in the laboratory, 

particularly when large excess pore water pressures are reached. 

In addition, Figure 7.23 compares the numerical and experimental results obtained for tests 

ICUCT 0.771/80/32 and ICUCT 0.805/135/40. As observed for the previous pair of tests, 

similar responses were measured in both tests in the laboratory, despite the different 

consolidation stresses and deviatoric stress oscillations applied to the samples. It is apparent 

that, once more, an overall satisfactory agreement between experimental and numerical data 

was obtained, despite the slight overprediction of the rate of excess pore water pressure 

increase in test ICUCT 0.805/135/40, which is particularly evident for the early stages of 

loading. 

Taking into account that a relatively wide range of void ratios and consolidation pressures 

were used in the laboratory tests, which resulted in very different cyclic responses, 

particularly in terms of number of loading cycles required to trigger cyclic mobility, it seems 

reasonable to conclude that the constitutive model shows an overall satisfactory 

performance. As mentioned before, the exception seems to consist of tests where samples 

exhibited a highly anisotropic response during the first loading cycle, with very few loading 

cycles being required to the onset of cyclic mobility (namely, tests ICUCT 0.804/80/48, 

ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5). 

In what follows, the ability of the constitutive model to simulate key aspects of the cyclic 

response of sand is further explored. 
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Figure 7.22 – Numerical simulation of tests ICUCT 0.777/25/18 and ICUCT 0.832/80/42: 

(a) effective stress path, (b) excess pore water pressure ratio build-up and (c) axial strain evolution 
with the number of loading cycles. 
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Figure 7.23 – Numerical simulation of tests ICUCT 0.771/80/32 and ICUCT 0.805/135/40: 

(a) effective stress path, (b) excess pore water pressure ratio build-up and (c) axial strain evolution 
with the number of loading cycles. 
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7.2.2.4 Undrained cyclic resistance 

The choice to implement a Bounding Surface Plasticity Model (BSPM) was mainly justified by 

its greater ability to simulate liquefaction-related phenomena in comparison to simpler 

models available in the literature, such as cyclic non-linear models (as detailed, for example, 

in Taborda (2011)). Therefore, it is of upmost importance to evaluate its ability to predict the 

undrained cyclic resistance of sand, which has been commonly defined by the number of 

loading cycles of constant shear stress amplitude required to induce cyclic mobility, Nliq. With 

that purpose, a suitable criterion defining the onset of cyclic mobility is required. As discussed 

in Chapter 3, in the present study, the development of a residual (i.e. corresponding to a null 

deviatoric stress) excess pore water pressure ratio of ru,res = ures ′v,0⁄ = 0.95 is adopted as 

the criterion to the onset of cyclic mobility. The application of this criterion is illustrated in 

Figure 7.24. 

 
Figure 7.24 – Illustration of the application of the criterion adopted to define the onset of cyclic 

mobility based on the experimental and numerical results of test ICUCT 0.832/80/42. 

Having clarified the cyclic mobility criterion to be used in the present study, it is also important 

to point out, as traditionally defined in the literature (e.g. Seed and Idriss, 1970a; Seed et al., 

1975; Idriss and Boulanger, 2006), the designation “cyclic resistance ratio“ (CRR) is used to 

define the uniform cyclic stress ratio (CSR) causing liquefaction in a given number of loading 

cycles. Moreover, it is important to note that CSR is defined as (e.g. Ishihara, 1996): 

 CSR =
|q|

2 p'0
  (7.1) 

where |q| is the two-way symmetric deviatoric stress oscillation applied to the sample 

during the shearing phase and p’0 is the mean effective stress at consolidation (see Table 7.2). 
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Figure 7.25 compares the undrained cyclic resistance obtained from the numerical and 

experimental results of all available ICUCT tests performed on both moderately loose samples 

(characterised by e0 ≈ 0.771 − 0.832, corresponding to Dr ≈ 50 − 70 %) and dense samples 

(characterised by e0 = 0.651 − 0.652, corresponding to Dr ≈ 102 %) consolidated to p'0 =

80 kPa. Note that both experimental and numerical results are described by power 

relationships of the form (e.g. Idriss and Boulanger, 2006): 

CRR = a  Nliq
−b (7.2) 

where a and b are material parameters. Note also that, as discussed in Chapter 3 and it is 

apparent in the figure, test ICUCT 0.652/80/72 is excluded from the analysis, since the CRR – 

Nliq data point observed for this test has been found to plot far away from the trend described 

by the CRR – Nliq data points observed for tests ICUCT 0.651/80/43 and ICUCT 0.652/80/72. It 

can be observed that, providing that the results obtained for tests ICUCT 0.804/80/48 and 

ICUCT 0.773/80/56 (where large CSRs were applied to the samples, inducing a very soft 

response in triaxial extension) are also excluded from the analysis, very similar undrained 

cyclic resistance curves are obtained from numerical and experimental data, with the 

agreement being particularly remarkable for moderately loose samples. 

 
Figure 7.25 – Comparison between the undrained cyclic resistance of Hostun sand predicted by the 
original formulation of the constitutive model and that observed in the laboratory for ICUCT tests 

performed on moderately loose and dense samples consolidated under p’0 = 80 kPa. 
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experimental and numerical results of all available ICUCT tests performed on moderately 

loose samples (i.e. having Dr ≈ 50 − 70 %) consolidated under three different isotropic 
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can be observed that the constitutive model tends to underpredict the undrained cyclic 

resistance of Hostun sand, particularly for the two tests where samples were consolidated to 

p'0 = 135 kPa (i.e. tests ICUCT 0.805/135/40 and ICUCT 0.830/135/54). Nevertheless, it is 

important to highlight that the constitutive model is able to capture qualitatively the effect 

of the mean effective stress at consolidation on the undrained cyclic resistance, with the two 

points corresponding to the tests performed on samples consolidated to p'0 = 25 kPa 

(represented with triangles) and to p'0 = 135 kPa (represented with squares) plotting, 

respectively, above and below the curve describing the predicted undrained cyclic resistance 

for p'0 = 80 kPa, as observed in the laboratory. 

 
Figure 7.26 – Comparison between the undrained cyclic resistance of Hostun sand predicted by the 
original formulation of the constitutive model and that observed in the laboratory for ICUCT tests 

performed on moderately loose samples consolidated under p’0 =  25, 80 and 135 kPa. 
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calibration process, and taking into account the very wide undrained cyclic resistances 

observed in the laboratory (with samples requiring from two to seventy-eight loading cycles 
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satisfactory ability to predict the undrained cyclic resistance of Hostun sand. 
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shear or cyclic triaxial tests, in most cases, performed using constant cyclic strain amplitude 

loading conditions (i.e. imposing strain-controlled shear reversals). 

Section 3.5.3.2 presents the detailed procedure adopted in the present research for 

determining the secant shear modulus, Gsec, normalised by the maximum (i.e. at very small 

strains) shear modulus, Gmax, and damping ratio, , based on stress-strain loops measured in 

undrained cyclic triaxial tests. It is important to note, however, that due to the fact that the 

shear reversals were controlled by a deviatoric stress condition in the conducted UCT tests, it 

is inappropriate to compare the evolutions of the normalised secant shear modulus, 

Gsec / Gmax, obtained from modelled and measured stress-strain loops, in terms of strain 

amplitude. In effect, since peak deviatoric stresses are imposed in both laboratory 

experiments and corresponding numerical simulations, the evolutions of Gsec / Gmax merely 

depict the differences in the strain amplitude associated with each cycle, meaning that a 

seemingly perfect match between the two datasets would arise, with points just shifted along 

a unique relationship. Clearly, this is not an obstacle when performing cyclic tests with strain-

controlled shear reversals, since, in such case, for a given strain amplitude, the discrepancy in 

applied stress would be directly visible through the difference in Gsec. Given the above, in the 

present study, the number of loading cycles, N, normalised by the number of loading cycles 

required to the onset of cyclic mobility, Nliq, are used to compare the evolution of Gsec / Gmax 

with cyclic loading obtained from experimental and numerical results. For consistency, the 

damping ratio, , is also plotted as a function of N / Nliq, although, in this case, it would have 

been possible to compare its evolution as a function of strain amplitude (for example, as a 

function of single amplitude axial strain, a,sa, as in Section 3.5.3.4). It should be clear, 

however, that the adoption of this strategy does not mean that it is believed that either 

Gsec / Gmax or  are primarily a function of N / Nliq. In fact, it is well established that for sand 

both quantities are primarily a function of strain amplitude, while being only slightly affected 

by the number of loading cycles (Seed et al., 1986; Vucetic and Dobry, 1991; Ishihara, 1996; 

Darendeli, 2001; Taborda, 2011). Naturally, in the present case, since UCT test data is used 

and, therefore, strain amplitude (among other factors) changes from cycle to cycle, both 

Gsec / Gmax and  are observed to evolve indirectly with N / Nliq. Lastly, it is important to note 

that, as discussed in Chapter 3 and observed in other studies concerning the evaluation of 

damping ratio under undrained cyclic loading conditions (e.g. Matasović and Vucetic, 1993; 

Wang and Kuwano, 1999; Elgamal et al., 2005), the value of  is observed to drop substantially 

during the later stages of the test. A detailed discussion on possible causes of this 

phenomenon is presented in Section 3.5.3.3. 

Having defined the methodology employed in the present study, Figure 7.27 compares the 

evolutions of both Gsec / Gmax and  with N / Nliq obtained from experimental and numerical 

results of tests ICUCT 0.771/80/32 and ICUCT 0.832/80/42. Note that, in these tests, 

moderately loose samples (i.e. having Dr ≈ 50 − 70 %) were consolidated under an isotropic 
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confining stress of 80 kPa, though sheared under different deviatoric stress oscillations and, 

therefore, under different cyclic stress ratios (CSRs) – see Table 7.2. 

  

 
Figure 7.27 – Effect of the cyclic stress ratio on the (a) normalised secant shear modulus and 

(b) damping ratio evolutions with the normalised number of loading cycles obtained from 
experimental and numerical data. 
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possible to adjust slightly the value assigned to this model parameter to improve the 
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unnecessary at this point, particularly given the overall satisfactory reproductions obtained 

for these two tests (Figure 7.18). 

In addition, it can be observed that, for test ICUCT 0.832/80/42, the reduction in Gsec / Gmax 

with N / Nliq occurs faster in the numerical simulation (from N Nliq⁄ ≈ 0.65 to N Nliq⁄ ≈ 0.85) 

than observed in the experiment (from N Nliq⁄ ≈ 0.4 to N Nliq⁄ ≈ 0.85). As discussed in 

Section 6.11, it would be possible to improve the reproduction of this aspect of the response 

by reducing slightly the value assigned to the shearing-induced fabric index constant, H0. 

Note, however, that such alteration would likely result in a less accurate replication of the 

evolution of Gsec / Gmax during the preceding loading cycles, since H0 affects not only the 

softening response after the crossing of the PTL and reversal of the effective stress path, but 

also the stiffening unloading-reloading response for effective stress paths below the PTL, as 

explained in detail in Section 4.2.4. This suggests that the shearing-induced fabric component 

of the constitutive model may require future improvement – a conclusion that will be 

reiterated during this chapter. In this case, the improvement of the formulation could consist 

of removing the dependency of the model parameter C (Equation 4.68) – which controls the 

rate of evolution of the deviatoric component of the shearing-induced fabric tensor, f 

(Equation 4.67) – on the maximum value ever registered by the isotropic component of the 

shearing-induced fabric tensor, fp. In effect, this alteration would remove the 

interdependency between fp and f and, therefore, allow for an independent control of the 

stiffening unloading-reloading response for effective stress paths below the PTL (which is 

controlled by fp) and softening response after the crossing of the PTL and reversal of the 

effective stress path (which is controlled by f). 

In terms of  – N / Nliq curves (Figure 7.27b), the agreement between numerical and 

experimental results appears to be overall satisfactory, with both sets of data showing a sharp 

increase in  as the onset of cyclic mobility is approached. It is, nevertheless, apparent that 

the peak value of  is slightly overpredicted by the constitutive model for test 

ICUCT 0.832/80/42, while the opposite trend is observed for test ICUCT 0.771/80/32. 

Further insight into the ability of the model to reproduce the evolutions of both Gsec / Gmax 

and  with N / Nliq is provided in Figure 7.28, which compares the curves obtained from 

laboratory measurements and numerical analyses of tests ICUCT 0.832/80/42 and 

ICUCT 0.651/80/43. Note that, in these tests, samples prepared to different void ratios (e =

0.832 and 0.651, respectively) were consolidated under the same effective stress state and 

sheared under a similar deviatoric stress oscillation (and, therefore, a similar CSR). It is 

apparent that the constitutive model is able to replicate the main trends observed in the 

laboratory, such as the occurrence of higher values of Gsec / Gmax with N / Nliq, as well as 

smaller values of  with N / Nliq for the test conducted on the denser sample than for the test 

performed on the looser sample. As observed before, it seems that the sharp decrease of 

Gsec / Gmax and concurrent sharp increase of  occur later (i.e. for higher values of N / Nliq) in 
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the numerical simulations than observed in the laboratory – an aspect that could be possibly 

improved by reducing slightly the value assigned to ke
d, defining the position of the PTL in TE. 

  

 
Figure 7.28 – Effect of the void ratio on the (a) normalised secant shear modulus and (b) damping 
ratio evolutions with the normalised number of loading cycles obtained from experimental and 

numerical results. 

Lastly, Figure 7.29 compares the experimental and numerical results obtained for tests 

ICUCT 0.821/25/13 and ICUCT 0.832/80/42 conducted on samples prepared to similar void 

ratios, though consolidated under different mean effective stresses (25 and 80 kPa, 

respectively). Nevertheless, note that similar cyclic stress ratios were applied in both tests, 

namely: CSR = 0.260 for test ICUCT 0.821/25/13 and CSR = 0.263 for test 

ICUCT 0.832/80/42. It is interesting to observe that the sample consolidated under the 

smaller mean effective stress (i.e. subjected to test ICUCT 0.821/25/13) exhibited a 

consistently stiffer (in normalised terms) stress-strain response during cyclic loading than that 

observed in test ICUCT 0.832/80/42 (Figure 7.29a) – an aspect successfully captured by the 

constitutive model. This does not mean, however, that, for a given strain amplitude, larger 

values of Gsec / Gmax would be obtained for test ICUCT 0.821/25/13 than for test 

ICUCT 0.832/80/42. In effect, as shown in Chapter 3, the opposite trend appears to be 

observed (i.e. the Gsec / Gmax – a,da curve corresponding to test ICUCT 0.821/25/13 plots 

below that corresponding to test ICUCT 0.832/80/42). With respect to  (Figure 7.29b), the 

constitutive model seems to capture reasonably well the trends observed in the laboratory, 

although underpredicting slightly the peak value measured in test ICUCT 0.821/25/13. 
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Figure 7.29 – Effect of the effective mean stress at consolidation on the (a) normalised secant 

shear modulus and (b) damping ratio evolutions with the normalised number of loading cycles 
obtained from experimental and numerical results. 

7.2.2.6 Excess pore water pressure build-up with cyclic loading 

The final aspect of the undrained cyclic response of Hostun sand to be investigated concerns 

the rate of the excess pore water pressure build-up with the number of loading cycles. This 

aspect is commonly studied by plotting the excess pore water pressure ratio, ru, as a function 

of the ratio of the number of loading cycles to that required to the onset of cyclic mobility, 

N / Nliq, with several expressions being proposed in the literature, such as that given by 

Equation 7.3 (Seed et al., 1975b). 

ru =
1

2
+

1


 asin (2 (

N

Nliq
)

1 ⁄

− 1) (7.3) 

where  is a model parameter, for which a value of 0.70 was reported as appropriate to 

describe the average response measured in undrained cyclic triaxial and simple shear tests 

performed on Monterey sand by Seed et al. (1975b). 

Following the strategy adopted in Chapter 3, rather than the excess pore water pressure ratio, 

ru, the average values of the residual excess pore water pressure ratio, ru,res,av, are employed 

in the present study. The computation of the values of this quantity is illustrated in Figure 

7.30 for test ICUCT 0.832/80/42. 
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Figure 7.30 – Illustration of the computation of the average values of the residual excess pore 

water pressure ratio evolution with the number of loading cycles measured in test 
ICUCT 0.832/80/42. 

Figure 7.31 compares the evolution of ru,res,av with N / Nliq obtained from numerical and 

experimental data of ICUCT tests performed on samples consolidated to p'0 = 80 kPa. Note 

that, as a reference, the outcome of Seed et al. (1975b)’s proposal with  = 0.70 is included 

in the figure. Starting with the curves obtained from experimental data, it is apparent that 

very different evolutions of ru,res,av with N / Nliq are obtained for the several tests, which do 

not seem accurately represented by Equation 7.3 (at least when employing a single value for 

). As discussed in Chapter 3, among other factors, CSR seems to have a great impact: in 

general, and for a given relative density, the higher the CSR, the higher the rate of ru,res,av 

increase during the earlier stages of loading, with the opposite trend being observed for the 

later stages of loading. The influence of CSR on the curves obtained from numerical data 

seems more limited (i.e. numerical curves plot closer to each other). Since the reproduction 

of this aspect of the response of sand is largely controlled by the shearing-induced fabric 

component of the constitutive model, this suggests that further improvement of this 

component may be required in the future. As mentioned before, it may be beneficial to 

remove the dependency of the model parameter C (Equation 4.68) on the maximum value 

ever registered by the isotropic component of the shearing-induced fabric tensor, fp, allowing 

for a more independent control of the modelled response before and after the crossing of the 

phase transformation line (and, therefore, additional flexibility). 
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Figure 7.31 – Average residual excess pore water pressure ratio as a function of the normalised 

number of loading cycles obtained from experimental and numerical results of ICUCT tests 
performed on a) moderately loose samples and b) dense samples, in both cases consolidated to 

p’0 = 80 kPa. 

In addition, Figure 7.32 compares the results obtained from numerical and experimental data 

of ICUCT tests conducted on samples prepared to similar void ratios and consolidated to mean 

effective stresses of 25 and 135 kPa. Starting by analysing the sets of curves corresponding to 

p'0 = 25 kPa (Figure 7.32a), it seems that, in general, the constitutive model underestimates 

the excess pore water pressure build-up rate for N Nliq⁄ ≤ 0.80 (which is particularly evident 

for test ICUCT 0.777/25/18), while the opposite trends appears to be observed for N Nliq⁄ >

0.80. Once again, this appears to be a detrimental consequence of the interdependency of 

the evolutions of the isotropic and deviatoric components, fp (Equation 4.66) and f (Equation 

4.67), of the shearing-induced fabric tensor through the quantity C (Equation 4.68). More 

specifically, for samples consolidated under very low effective stresses, large values of H are, 

in general, required to simulate accurately the rate of excess pore water pressure build-up 

with loading observed in the laboratory tests. This means that fp increases quickly with cyclic 

loading. Since C is given by the maximum absolute value ever registered by fp (Equation 4.68), 

a quickly development of f is also registered once the phase transformation line is crossed, 

leading to a strong decrease of the plastic hardening modulus as the effective stress path is 

reversed and, consequently, to a very fast increase of excess pore water pressure. Probably, 

the introduction of a new formulation for C, independent of fp, would improve the ability of 

the constitutive model to reproduce this aspect of the response of sand. 
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In relation to the samples consolidated to p'0 = 135 kPa (Figure 7.32b), it can be observed 

that the constitutive model overestimates the excess pore water pressure build-up rate with 

the number of loading cycles for both tests. Nevertheless, it is apparent that the curves 

obtained from numerical and experimental data are qualitatively similar. 

  

 
Figure 7.32 – Average residual excess pore water pressure ratio as a function of the normalised 

number of loading cycles obtained from experimental and numerical results of ICUCT tests 
performed on moderately loose samples consolidated under isotropic effective stresses of 

a) 25 kPa and b) 135 kPa. 

7.2.2.7 Volumetric strains induced by cyclic loading 

The ability of the constitutive model to predict volumetric strains induced by drained cyclic 

triaxial (DCT) loading was also investigated. As pointed out by Taborda (2011), this aspect is 

particularly important when assessing the performance of structures particularly sensitive to 

surface settlements, such as railways, highways, pipelines, historic buildings, among others. 

Two DCT tests performed on moderately loose samples were simulated. In the first of these 

tests, termed as test K0DCT 0.811/80/30, the sample was anisotropically consolidated to an 

axial effective stress of 'a,0 = 120 kPa and a radial effective stress of 'r,0 = 60 kPa, 

corresponding to a mean effective stress of p'0 = 80 kPa and to a deviatoric stress of q0 =

60 kPa. The sample was subsequently subjected to 10 loading cycles having a deviatoric stress 

oscillation of q = ±30 kPa, by varying the axial stress from 'a = 90 kPa to 'a = 150 kPa 

and vice-versa. Conversely, in test ICDCT 0.820/135/81, the sample was isotropically 

consolidated to 'a,0 = 'r,0 = '0 = 135 kPa and subjected to a larger deviatoric stress 

oscillation of q = ±81 kPa. The results obtained in the numerical simulations of these tests 

are compared with those registered in the laboratory in Figure 7.33. 
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Figure 7.33 – Numerical simulation of tests K0CDCT 0.811/80/30 and ICDCT 0.820/135/81: 
(a) stress-strain response, (b) axial strain evolution with the number of loading cycles and 

(c) volumetric strain evolution with the number of loading cycles. 
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It can be observed that a satisfactory agreement between numerical and experimental data 

is obtained for the first three loading cycles of test ICDCT 0.820/135/81. However, as the 

number of loading cycles increase, the agreement between numerical and experimental data 

is less satisfactory, with the constitutive model overpredicting the axial and volumetric strain 

evolutions with loading. With respect to test K0DCT 0.811/80/30, it can be seen that the 

constitutive model tends to overpredict the measured response, both in terms of axial and 

volumetric strain accumulation with the number of loading cycles, particularly after the first 

loading cycle. Note that similar conclusions were obtained by Taborda (2011) when simulating 

isotropically consolidated drained simple shear tests. Nevertheless, according to this author, 

the ability of the constitutive model to predict volumetric strains observed in the laboratory 

tests seems to improve for higher strain levels – unfortunately, the available experimental 

data does not allow for the assessment of this aspect for Hostun sand. 

7.3 Extended formulation of the constitutive model 

7.3.1 General aspects 

An inherent fabric anisotropy component was introduced into the constitutive relationship to 

improve its ability to replicate accurately the response of sand for loading conditions other 

than triaxial compression. In particular, as detailed in Section 4.3.3, when this component of 

the constitutive model is activated, the plastic hardening modulus depend on a scalar-valued 

anisotropic state parameter, AF, which measures the interaction between the a second-order 

symmetric tensor FA, which describes the inherent fabric anisotropy of the material, with the 

direction of loading in the normalised deviatoric stress ratio plane n. Therefore, the extended 

formulation of the model accounts for the effect of the inherent fabric anisotropy of the 

material on its response. 

Since this component was added to the original formulation of the constitutive model 

proposed by Taborda et al. (2014), it was considered important to investigate whether the 

activation of this component allows for a better replication of the available experimental data. 

With that purpose, a new series of simulations of drained and undrained triaxial extension 

tests, as well as undrained cyclic triaxial tests were carried out using the set of model 

parameters “B.2) Dynamic – Extended formulation” (Table 6.5). The results obtained in these 

newly performed simulations are compared with those previously obtained when using the 

original formulation of the constitutive model (i.e. when using the set of parameters “B.1) 

Dynamic – Original formulation”). Once again, it is important to highlight that, since the 

ultimate objective of this thesis consists of assessing the ability of the constitutive relationship 

to replicate liquefaction-related phenomena observed in dynamic centrifuge experiments 

(presented in the following chapter), the responses obtained when using the sets of 

parameters optimised for the simulation of monotonic loading (i.e. sets of parameters 

belonging to the category “A) Static”) are not presented here. Note, however, that the results 

obtained when employing the set of parameters “A.2) Static – Extended formulation” to the 
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simulation of drained and undrained triaxial extension tests were already presented in the 

previous chapter, when calibrating the inherent fabric anisotropy component of the model 

(Section 6.12), leading to the conclusion that the modelled response is slightly improved 

when using the extended formulation (particularly in terms of stress-strain response within 

medium to large strain range). 

The results of the simulations of the available monotonic triaxial extension tests are firstly 

presented (in Section 7.3.2), while the results of the simulations of the available cyclic triaxial 

tests are subsequently presented (in Section 7.3.3). 

7.3.2 Monotonic triaxial extension test simulations 

Figure 7.34 compares the outcome of the numerical simulations of the isotropically 

consolidated undrained monotonic triaxial extension tests with decreasing mean stress 

(ICUMTE p↓ tests) performed by using the original and extended constitutive relationships 

(i.e. by employing the sets of model parameters “B.1) Dynamic – Original formulation” and 

“B.2) Dynamic – Extended formulation”, respectively). The experimental data is also depicted 

in the figure (in grey colour) for comparison purposes. It is apparent that the two sets of 

numerical data are very similar, suggesting that, at least when using these sets of model 

parameters, the inherent fabric anisotropy component has little impact on the modelled 

response. This is perhaps surprising, given that noticeable differences between results of 

simulations of these laboratory tests when employing the sets of model parameters belonging 

to the category “A.1) Static - Original formulation” (not considering inherent fabric 

anisotropy) and “A.2) Static - Extended formulation” (considering inherent fabric anisotropy) 

had been observed (see Section 6.12). Given that the main difference between sets of model 

parameters belonging to the categories “A) Static” and “B) Dynamic” consist of the activation 

of the shearing-induced fabric component (which introduced the effect of recent cyclic history 

on the modelled response), it is plausible that the shearing-induced fabric component may 

be supressing the effect of the inherent fabric anisotropy on the modelled response – an 

aspect that will be further investigated below. It is also apparent that none of the sets of 

model parameters is able to capture adequately the response observed in the laboratory. In 

particular, it is observed that, regardless of the test, the modelled response is significantly 

stiffer than that measured in the experiment throughout loading, leading to the generation 

of smaller positive excess pore water pressures during the earlier stages of loading, as well as 

greater negative excess pore water pressures during the later stages of loading. 
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Figure 7.34 – Numerical simulation of all available ICUMTE p↓ tests using the original and 
extended formulations of the constitutive model: (a) effective stress path, (b) stress-strain 

response and (c) excess pore water pressure evolution with axial strain. 
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To investigate the apparent suppression of the effect of the inherent fabric anisotropy 

component on the modelled response due to the activation of the shearing-induced fabric 

component, test ICUMTE p↓ 0.650/80 was simulated once again. In this simulation, the 

model parameter set “B.1) Dynamic – Original formulation” was modified to include the effect 

of the inherent fabric anisotropy by setting a = 0.29, vA = 0.0 and kA = 0.6 (rather than 

considering the standard set of values which removes the impact of this component of the 

formulation, i.e. a = 0.333, vA = 0.0 and kA = 1.0, as in the previous simulation). The results 

obtained in this newly performed simulation are compared with those obtained in the 

previous simulation when using the set B.1 in Figure 7.35. Note that the main advantage of 

comparing the results of these two simulations (rather than, for example, further exploring 

the results obtained when using the set B.2) consists of having the same values for all model 

parameters (including those required by the shearing-induced fabric component), except for 

those required by the inherent fabric anisotropy component. It can be observed that, 

although identical values have been adopted for the shearing-induced fabric component of 

the constitutive model, higher values of the plastic multiplier hf are obtained when the 

inherent fabric anisotropy component is activated (Figure 7.35d). This could, in fact, be 

expected, since the activation of the latter component results in a steady reduction of the 

plastic hardening modulus associated with the primary surface, A1, during loading in triaxial 

extension (Figure 7.35e) and, consequently, in a greater accumulation of deviatoric strain, as 

well as volumetric strain (Figure 7.35c). Moreover, since the evolution of fp is directly 

proportional to the accumulation of volumetric strain (Equation 4.66), a greater increase in fp 

occurs during the earlier stages of loading (i.e. during compressive volumetric plastic 

straining), leading to higher values of hf (Equation 4.56). This means that, when the inherent 

fabric anisotropy component is activated, and under this type of loading, A1 is, on one hand, 

scaled down by the plastic multiplier hA and, on the other hand, scaled up by the plastic 

multiplier hf. In other words, during the early stages of the modelled response (in this case, 

less than 1% of axial strain), the effect of the inherent fabric anisotropy on the plastic 

hardening modulus is partly counterbalanced by the effect of the isotropic component of the 

shearing-induced fabric tensor. Furthermore, it can be observed that, although the plastic 

multiplier hf reaches 1.0 (i.e. vanishes) as the response of sand changes from plastic 

volumetric contraction to dilation and holds this value until the end of loading (Figure 7.35f), 

the plastic hardening modulus has already reached a very small value at that moment (in this 

case, smaller than 200 kPa, as shown in the detail of Figure 7.35f) and, consequently, the 

impact of hA = 0.6 (Figure 7.35e) on the computed response is limited. 
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Figure 7.35 – Influence of the inherent fabric anisotropy through the use of kA < 1.0 on the 

numerical simulation of test ICUMTE p↓ 0.799/80: (a) effective stress path and (b) stress-strain 
response; (c) plastic volumetric strain, (d) plastic multiplier hf, (e) plastic multiplier hA and 

(f) plastic hardening modulus evolutions with axial strain. 
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To evaluate the impact of the model parameter vA on the modelled response, an additional 

simulation of test ICUMTEp↓ 0.650/80 was conducted by employing the set “B.1) Dynamic – 

Original formulation” in conjunction with a = 0.29, vA = 1.0 and kA = 1.0. The outcome of 

this simulation is compared with that of the simulation using the unaltered set B.1 in Figure 

7.36. It can be seen that the effect of employing a value for vA greater than 0.0 (i.e. the effect 

of relocating the critical state line (CSL) during loading) is also counterbalanced during the 

early stages of loading by a faster increase in the value of hf. 

 
 

  
Figure 7.36 – Influence of the inherent fabric anisotropy through the use of vA > 0.0 on the 

numerical simulation of test ICUMTE p↓ 0.799/80: (a) effective stress path, (b) stress-strain 
response, (c) plastic volumetric strain and (d) plastic multiplier hf evolution with axial strain. 
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Section 6.14) likely increased the impact of the former component on the modelled response 

and, consequently, reduced that of the latter component. In addition, note that the available 

laboratory test is limited to triaxial test data, suggesting that further investigation on this topic 

using other element laboratory tests would likely enrich the conclusions reached in the 

present study. 

A possible strategy to circumvent this conflict between the shearing-induced fabric and 

inherent fabric anisotropy components might consist of developing a new formulation for the 

former component based on strain-energy-related principles (e.g. as a function of dissipated 

energy per unit volume). Note that, in such case, the shearing-induced fabric component 

would not affect the monotonic response, due to the absence of shear reversals. Note also 

that, based on results of undrained cyclic triaxial test performed using uniform and non-

uniform loading conditions, Azeiteiro et al. (2017b) concluded that residual excess pore water 

pressure build-up during cyclic loading appears to be very satisfactorily correlated with the 

accumulation of dissipated energy per unit volume, irrespective of the loading pattern used 

in each test. Indeed, this conclusion seems to agree well with those reached in other 

experimental studies (e.g. Towhata and Ishihara, 1985; Figueroa et al., 1994; Dief and 

Figueroa, 2007; Polito et al., 2013; Kokusho, 2013), emphasising the suitability of energy 

concepts for the prediction of the occurrence of liquefaction-related phenomena. Lastly, note 

that a general algorithm has been proposed in the literature to assess the dissipated energy 

per unit volume simulated by a given constitutive model based on the registered response in 

three-dimensional stress-strain space (Taborda et al., 2016), which might assist the 

development of a new formulation for the evolution of the shearing-induced fabric tensor. 

Figure 7.37 depicts the results of simulations of anisotropically and isotropically consolidated 

drained monotonic triaxial extension tests with increasing mean stress (K0CDMTE p↑ and 

ICDMTE p↑, respectively) performed using the original and extended formulations of the 

constitutive model. The results of the experimental results are also presented in the figure (in 

grey colour) for comparison. Also in this case, it is apparent that the results obtained when 

using the set “B.2) Dynamic – Extended formulation” are very similar to those obtained when 

using the set “B.1) Dynamic – Original formulation”, particularly for moderately loose samples 

(i.e. samples subjected to tests ICDMTE p↑ 0.798/80 and K0DMTE p↑ 0.801/80). Indeed, 

considerably worse predictions of the responses observed in these tests have been obtained 

in these newly performed simulations, in comparison to those obtained when using the sets 

of model parameters belonging to the category “A) Static” (see Section 6.12). Once more, this 

suggests that, although introduced to deal with cyclic loading, the shearing-induced fabric 

component seems to have a significant detrimental impact on the simulation of the 

monotonic response of Hostun sand, with a considerably stiffer response being generally 

predicted during the early stages of loading in comparison with that obtained in the numerical 

simulations not considering this component of the model, as well as observed in the 

laboratory. As mentioned before, the replacement of the existing formulation of the shearing-
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induced fabric component by another formulated in terms of strain-energy concepts would 

likely overcome this issue. 

  

  

 
Figure 7.37 – Numerical simulation of ICDMTE p↑ tests using the original and extended 

formulations of the constitutive model: (a) stress-strain response and (b) volumetric strain 
evolution with axial strain. 
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Figure 7.38 compares the results of the numerical simulations of test ICUCT 0.832/80/42 using 

the original (i.e. set B.1) and extended (i.e. set B.2) formulations of the constitutive model. 

The experimental data is also presented in the figure for comparison purposes. 
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Figure 7.38 – Numerical simulation of test ICUCT 0.832/80/42 using the original and extended 

formulations of the constitutive model: (a) effective stress path, (b) excess pore water pressure 
ratio build-up and (c) axial strain evolution with the number of loading cycles. 
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It is apparent that very similar results were obtained in both numerical simulations. The 

discrepancies between both sets of numerical data seem practically restricted to the slightly 

larger accumulation of axial strains in triaxial extension during the last loading cycles when 

using the extended version of the model, due to the softer stress-strain response induced by 

the plastic multiplier hA under this type of loading. This aspect can be more clearly observed 

in Figure 7.39. It is apparent that the rate of accumulation of double amplitude during the last 

loading cycles obtained when using the extended formulation is closer to that observed in the 

laboratory. This figure also shows that, regardless of the formulation of the constitutive model 

used (i.e. original or extended), the onset of accumulation of large axial strains occurs later in 

the numerical simulation than registered in the laboratory. 

  

 
Figure 7.39 – Double amplitude axial strain evolution with the number of loading cycles obtained 

for test ICUCT 0.832/80/42 when using (a) the original formulation and (b) the extended 
formulation of the constitutive model. 
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(Figure 7.40a). However, when comparing the evolutions of hA hf (Figure 7.40b), it is apparent 

that the larger values of hf obtained when using the extended version are counterbalanced 

by smaller values of hA in triaxial extension and, therefore, similar values of hA hf are obtained 

when using both original and extended formulation at the end of each loading cycle (Figure 

7.40b). Overall, it appears that similar average evolutions of hA hf (and, consequently, similar 

average reductions of the plastic hardening modulus) are obtained when using the original 

and extended formulations of the constitutive model, therefore justifying the similar 

responses registered in both numerical simulations. 

  
Figure 7.40 – Numerical simulation of test ICUCT 0.832/80/42 using the original and extended 

formulations of the constitutive model: evolution of the (a) plastic multiplier hf and (b) product of 
the plastic multipliers hf and hA with the number of loading cycles. 
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Figure 7.41 – Numerical simulation of test ICUCT 0.804/80/48 using the original and extended 

formulations of the constitutive model: (a) effective stress path, (b) excess pore water pressure 
ratio build-up and (c) axial strain evolution with the number of loading cycles. 

Moreover, as also pointed out before, it seems that the effect of the inherent fabric 

anisotropy component on the modelled response is partly counterbalanced by the shearing-

-50

-30

-10

10

30

50

0 20 40 60 80 100

q
 (

kP
a)

p' (kPa)

Experimental FEMEPDYN

a.1)

Set B.1) 

Dynamic -

original 

formulation
-50

-30

-10

10

30

50

0 20 40 60 80 100

q
 (

kP
a)

p' (kPa)

Experimental FEMEPDYN

a.2)

Set B.2) 

dynamic -

extended 

formulation

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

r u
=

 
u 

/ 


' v
0
( 

)

N ( )

ICUCT 0.804/80/48 FEMEPDYN

b.1)

Set B.1) Dynamic -

original formulation
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

r u
=

 
u 

/ 


' v
0

( 
)

N ( )

ICUCT 0.804/80/48 FEMEPDYN

b.2)
Set B.2) dynamic -

extended formulation

-6

-4

-2

0

2

0 2 4 6 8 10

 a
(%

)

N ( )

ICUCT 0.804/80/48 Numerical

c)

Set B.1) Dynamic -

original formulation
-8

-6

-4

-2

0

2

0 2 4 6 8 10

 a
(%

)

N ( )

Experimental Numerical (set B.2)

c.2)

Set B.2) dynamic -

extended formulation



APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE SIMULATION OF ELEMENT LABORATORY 

TESTS 

460 
 

induced fabric component, reducing the impact of the former on the modelled response. 

Note that similar conclusions were reached when simulating the laboratory tests 

ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5, where large CSRs were also used. Although 

not presented here for brevity, the results of the simulations of these tests are presented in 

Appendix B. 

Figure 7.42 compares the undrained cyclic resistance predicted by the extended formulation 

of the constitutive model with that measured in the laboratory for samples consolidated to 

p'0 = 80 kPa. Similar to what was observed when using the original version of the model, it is 

apparent that, when excluding the ICUCT 0.804/80/48 and ICUCT 0.773/80/56 tests, very 

satisfactory reproductions of undrained cyclic resistance curves observed in the laboratory 

are obtained. Given the very different responses observed in these tests, including samples 

requiring from two to seventy-eight loading cycles to reach cyclic mobility, and the fact that 

a single set of model parameters was employed to the simulation of the response of both 

moderately loose and dense sand, the agreement can be considered very satisfactory. 

 
Figure 7.42 – Comparison of the undrained cyclic resistance of Hostun sand predicted by the 

extended formulation of the constitutive model with that observed in laboratory for ICUCT tests 
performed on moderately loose and dense samples consolidated under p’0 = 80 kPa. 
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presented in Figure 7.25, obtained by using the original formulation (i.e. the set of model 

parameters B.1), it can be concluded that similar undrained cyclic resistance curves are 

predicted by both versions of the model, with a slight improvement being achieved for dense 

samples (note, however, that some uncertainty exists in relation to the experimentally 

determined curve, as discussed in Chapter 3). 
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adequately the response observed in tests ICUCT 
0.804/80/56 and ICUCT 0.773/80/56

ICUCT

0.773/80/56

ICUCT

0.804/80/48

ICUCT

0.832/80/42
ICUCT

0.832/80/42

ICUCT

0.803/80/36

ICUCT

0.652/80/72

ICUCT

0.652/80/88

ICUCT

0.651/80/43

?
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At this point, it should be mentioned that, despite the several attempts, it was not possible 

to find a set of values for a, vA and hA that would improve the reproduction of the responses 

observed in tests ICUCT 0.804/80/48, ICUCT 0.773/80/56 and ICUCT 0.793/135/67.5, while 

keeping an overall satisfactory reproduction of the remaining tests. As discussed before, there 

seems to exist two plausible explanations: 

1)  the effect of the inherent fabric anisotropy component on the modelled response is 

partly inhibited by an opposite effect of the shearing-induced fabric component; 

2) the shearing-induced fabric component appears to have a much stronger impact on 

the overall cyclic response than the inherent fabric anisotropy component. 

These pitfalls suggest that further development of the shearing-induced fabric and/or 

inherent fabric anisotropy formulations may be required in the future. As pointed out before, 

it is believed that, due to its suitability for the prediction of excess pore water pressure build-

up during cyclic loading, strain-energy-related concepts (such as the dissipated energy per 

unit volume) may be used to develop a new formulation for the shearing-induced fabric 

component. In addition, it may be necessary to redefine the contribution of these two 

components to the plastic hardening modulus. In fact, it is apparent that the plastic multiplier 

hf has a very wide variation during loading, being even necessary to limit its range of values 

to prevent the occurrence of numerical instabilities. Conversely, the variation of the plastic 

multiplier hA is much more restricted (namely in between the value selected for kA and 1.0). 

Consequently, the impact of the inherent fabric anisotropy component seems to be 

significantly more limited than that of the shearing-induced fabric component. A more 

balanced approach might certainly benefit the concurrent use of these two components. 

Lastly, similar to what was observed for the undrained cyclic resistance, the use of the 

extended formulation of the constitutive model (i.e. the set of model parameters B.2), instead 

of the original formulation (i.e. the set B.1), does not seem to produce significant alterations 

neither to the evolutions of the secant shear modulus and damping ratio with the number of 

loading cycles, nor to the evolution of residual excess pore water pressure with the number 

of loading cycles. Therefore, to abbreviate the presentation, those results are not presented 

here, with the conclusions drawn in Section  7.2.2.5 and 7.2.2.6 being applicable for the 

extended formulation of the constitutive model. Similarly, the activation of the inherent fabric 

anisotropy component does not seem to improve the volumetric response observed in DCT 

tests, in relation to that registered when using the original formulation, with the conclusions 

presented in Section 7.2.2.7 retaining their validity. 

7.4 Summary and conclusions 

In this chapter, the ability of the constitutive model to replicate the monotonic and cyclic 

response of Hostun sand registered in laboratory tests was explored. Under monotonic 

loading, it was shown that, in general, the constitutive model is capable of capturing the effect 
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of the initial void ratio, effective stress state at consolidation and stress path direction on the 

sand’s response. While a satisfactory agreement between numerical and experimental data 

was obtained for tests performed on moderately loose (Dr ≈ 50 − 70 %) and dense (Dr >

70 %) samples, discrepancies were observed for tests performed on loose samples (Dr <

50 %). In effect, although introduced to address the simulation of cyclic loading, the isotropic 

component of the shearing-induced fabric tensor was observed to affect detrimentally the 

initial contractive phase of the modelled monotonic response. Specifically, the constitutive 

model was observed to predict stiffer stress-strain responses for loose samples than those 

measured in the laboratory during the early stages of the experiment, therefore 

underpredicting the excess pore water pressure generation observed under undrained 

conditions or, similarly, the accumulation of compressive volumetric strains under drained 

conditions. It was shown, however, that when using the set of model parameters optimised 

for the reproduction of the monotonic response of Hostun sand (i.e. a set of model 

parameters not activating the shearing-induced fabric component), a good agreement 

between simulated and measured response of loose sand was obtained. It is also important 

to note that the centrifuge experiments, whose numerical simulations are presented in the 

following chapter, were performed only on deposits of moderately loose (i.e. having Dr ≈

50 %) and dense Hostun sand and, therefore, the overprediction of the stiffness of loose 

Hostun sand (i.e. having Dr < 50 %) under monotonic loading is not expected to have a 

relevant impact on the simulations of the centrifuge experiments. 

The original formulation of the constitutive model, as proposed by Taborda (2011), was 

subsequently employed in the simulation of cyclic triaxial tests. Apart from the tests where 

samples were subjected to large cyclic stress ratios (CSRs) and required only few cycles to the 

onset of cyclic mobility, it was shown that, irrespective of the effective stress state at 

consolidation and applied deviatoric stress oscillation, the constitutive model was, in general, 

able to replicate satisfactorily the cyclic response of moderately loose Hostun sand observed 

in the laboratory, particularly in terms of excess pore water pressure generation with loading 

and effective stress path registered in the laboratory. In terms of accumulation of axial strain, 

it appeared that the constitutive model tends to underestimate this aspect of the response, 

particularly from the moment that very low effective stresses are reached (i.e. during the later 

stages of cyclic loading). In relation to the reproduction of the cyclic response of dense Hostun 

sand, the obtained results suggested that the constitutive model tends to underestimate 

slightly the rate of excess pore water pressure build-up with cyclic loading measured in the 

laboratory, therefore overestimating slightly the number of loading cycles required to the 

onset of cyclic mobility (particularly evident for the test where the sample was subjected to 

the smallest deviatoric stress oscillation). Furthermore, for dense samples, smaller strain 

accumulation than that measured in the experiment was, in general, predicted by the model 

during the loading cycles preceding the onset of cyclic mobility, with a better agreement being 

obtained afterwards. Considering the very different responses observed in the present 
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laboratory testing programme and the fact that a single set of model parameters was used to 

simulate all tests, the agreement between numerical and experimental data was considered 

satisfactory. 

In addition, the ability of the constitutive model to capture key aspects of cyclic sand response 

was investigated. Starting with the undrained cyclic resistance (i.e. number of loading cycles 

require to the onset of cyclic mobility under constant deviatoric stress loading conditions), it 

was shown that, when excluding tests where samples were subjected to very large CSRs 

inducing cyclic mobility in very few cycles, a good match between numerical and experimental 

data was obtained for both moderately loose (Dr ≈ 50 − 70 %) and dense (Dr ≈ 102 %) 

samples. Subsequently, the evolutions of both secant shear modulus (normalised by the shear 

modulus at small-strains) and damping ratio with the number of loading cycles (normalised 

by that required to the onset of cyclic mobility) simulated by the constitutive model were 

compared to those observed in the laboratory. It was shown that the constitutive model is 

able to replicate qualitatively the main trends observed in the laboratory, including the 

stiffening unloading-reloading response for effective stress paths remaining below the phase 

transformation line (PTL), particularly evident during the first loading cycles, and sharp 

reduction in stiffness once the phase transformation line is crossed and the effective stress 

path is reversed. Indeed, it was suggested that, to allow for an independent control of both 

aspects of the cyclic response (i.e. stiffening before the crossing of the phase transformation 

line and softening after its crossing and reversal of stress path), it would be beneficial to 

remove the interdependency between the isotropic and deviatoric components of the 

shearing-induced fabric tensor, fp and f, respectively. In terms of damping ratio evolution, it 

appeared that, under this type of loading, the model tends to underestimate slightly the 

values observed in the laboratory. Attention was afterwards given to the ability of the model 

to replicate the rate of excess pore water pressure generation with the normalised number 

of loading cycles measured in the laboratory. It was apparent that the effect of cyclic stress 

ratio (CSR) on the curves obtained from numerical data was more limited than that observed 

from the experimental data, suggesting, once more, that the shearing-induced fabric 

component may require future improvement. Finally, the performance of the model when 

simulating the volumetric strains of saturated sands observed under drained cyclic loading 

was evaluated. While a good agreement between numerical and experimental data was 

obtained for the first two to three loading cycles, it was shown that the model tended to 

overpredict the axial and volumetric strains measured in the laboratory experiments with 

further loading. 

The potential benefits of using the extended formulation of the model, which includes an 

inherent fabric anisotropy component, were subsequently investigated by using the set of 

model parameters “B.2) Dynamic -extended formulation”. Starting by simulating drained and 

undrained monotonic triaxial extension tests, it was observed that the reduction in the plastic 

hardening modulus associated with the primary yield surface, A1, imposed by the inherent 
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fabric anisotropy component through the plastic multiplier hA is counterbalanced during the 

early stages of loading by an opposite effect of the shearing-induced fabric component 

through the plastic multiplier hf. Consequently, the modelled responses obtained by using the 

set of model parameters B.2 were observed to be similar to those predicted by the set of 

model parameters “B.1) Dynamic -original formulation” (which makes uses of the original 

formulation of the model). It was noted that, as a future improvement, a possible strategy to 

overcome this incompatibility would consist of developing a new formulation for the 

shearing-induced fabric component based on strain-energy-related principles (e.g. dissipated 

energy per unit volume), since, in such case, the shearing-induced fabric formulation would 

not impact the monotonic response, while being used for cyclic loading, as intended. 

Subsequently, results of simulations of undrained cyclic triaxial tests obtained when using the 

set of model parameters B.2 (i.e. the extended formulation of the model) were compared to 

those previously obtained when using the set of model parameters B.1 (i.e. the original 

formulation of the model). Unfortunately, it was, once more, observed that similar results 

were obtained when employing the two different sets of model parameters. Two plausible 

causes for the observed results were discussed: (1) the effect of the inherent fabric anisotropy 

component on the modelled response is partly inhibited by an opposite effect of the shearing-

induced fabric component, as also observed for the monotonic triaxial extension test data; 

(2) overall, the shearing-induced fabric component has a much stronger influence on the 

modelled cyclic response than the inherent fabric anisotropy component. It was suggested 

that the contributions of these two components to the plastic hardening modulus should be 

redefined in the future. 

As a final note, it should be highlight that the present study involved the simulation of a very 

large number of laboratory tests (thirty-two monotonic triaxial compression and extension 

tests, as well as fifteen cyclic triaxial tests) performed on samples prepared to a wide range 

of void ratios and consolidated under several different confining stresses. As such, the 

expectations were not to reach a perfect match with all available experimental data, but to 

get insight into the ability of the constitutive model to capture the most relevant aspects of 

both monotonic and cyclic response of Hostun sand. Although it has been acknowledged that 

the shearing-induced fabric formulation and its coupling with the inherent fabric anisotropy 

formulation may require future improvement, it also seems fair to mention that the 

constitutive model seems able to reproduce satisfactorily key aspects of the response of 

Hostun sand, including its resistance to cyclic mobility. 
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Chapter 8 APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE 

SIMULATION OF THE DYNAMIC RESPONSE OF SHALLOW FOUNDATIONS BUILT 

ON LIQUEFIABLE SAND DEPOSITS 

8.1 Introduction 

Having investigated the ability of the implemented Bounding Surface Plasticity model (BSPM) 

to reproduce element laboratory tests, the present chapter focuses on the characterisation 

of its performance when simulating the response of sand under general loading conditions, 

such as those encountered in boundary-value problems. It is of particular interest to 

characterise the ability of the constitutive model to predict the occurrence of liquefaction-

related phenomena and their effects. With that purpose, and considering the scarcity of field 

monitoring data on these phenomena, as well as the difficulties inherent to the 

characterisation of natural/intact sandy soils, the results of two dynamic centrifuge 

experiments are employed as benchmark for the Finite Element analyses. It should be noted 

that both centrifuge experiments were performed at the Schofield Centre, University of 

Cambridge, U.K., as part of a collaborative research project between the University of 

Cambridge and the University of Coimbra (Marques et al., 2012a, 2012b, 2012c, 2014a, 

2014b, 2014c, 2015). Moreover, note that, in both centrifuge experiments, Hostun sand was 

employed as model material and, therefore, the results of the calibration of the BSPM against 

results of element laboratory tests presented in Chapter 6 are employed in the numerical 

simulations of the centrifuge experiments. 

Before presenting the results of the numerical simulations, a brief overview of the 

experimental research programme is provided, including its background, main objectives and 

main characteristics. Subsequently, the particular aspects of each centrifuge experiment are 

described and the obtained experimental results are briefly presented and discussed. Finally, 

the numerical procedure is described in detail and the computed numerical results are 

compared with those obtained in the experiment. In the first centrifuge experiment, 

particular emphasis is given to the characterisation of the ability of the numerical tool to 

simulate basic aspects of sand-structure interaction under dynamic loading, as well as to 

predict accurately the influence of different bearing pressures (induced by a lighter and a 

heavier adjacent shallow foundations) on the overall performance of the system under 

dynamic loading. Conversely, in the second experiment, the focus is given to the 

characterisation of the ability of the numerical tool to replicate the impact of narrow 

densification zones and high-permeability zones on the mitigation of liquefaction effects. 
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8.2 Overview of the experimental programme 

8.2.1 Background 

As part of his PhD research programme, Coelho (2007) carried out a total of fourteen 

centrifuge experiments in the Schofield Centre’s 10 m-beam centrifuge facility, including: 

- three centrifuge tests concerning the dynamic response of saturated level deposits of 

loose (Dr = 50 %), moderately loose (Dr = 60 %) and dense (Dr = 80 %) sand, 

intended to characterise the fundamental mechanisms governing the response of 

sand deposits located far from the influence of structures (i.e. under “free-field” 

conditions); 

- two centrifuge tests concerning the behaviour of two different small deck-bridges 

supported on shallow foundations and built on a loose (Dr = 50 %) deposit of 

saturated sand to investigate the fundamental mechanisms governing the sand-

structure interaction; 

- five centrifuge tests on models representing identical small deck-bridges supported 

on shallow foundations and resting on densified zones with different widths, aimed at 

identifying the benefits of densification, as well as its optimal width; 

- four centrifuge tests intended to investigate the benefits from using both narrow 

densification zones and impermeable barriers to the mitigation of liquefaction effects 

and, consequently, to the improvement of the performance of shallow foundations 

built on liquefiable sand deposits. 

Based on the obtained experimental results, Coelho (2007) concluded that: 

- during dynamic loading, dilative sand response is typically observed in the zone of the 

deposit under the influence of the shallow foundation, due to the occurrence of 

further stress concentration in that zone of the model; despite this fact, significant co-

seismic displacements are registered during this phase, mostly due to the reduction 

of stiffness and strength of the sand deposit caused by excess pore pressure 

generation and/or migration from other zones of the model; indeed, the most 

effective liquefaction resistance measure for this phase seems to consist of the 

densification of the zone of the deposit under the influence of the foundation, since it 

increases dilation (and, consequently, the stability of the foundation) and reduces 

settlements; the optimal densification width seems to correspond to that of the 

shallow foundation (i.e. there seems to be no additional benefits in extending the 

densification width beyond the limits of the shallow foundation); 

- after the end of dynamic loading, an excess pore pressure migration from the zones 

of the deposit farther away from the structure (often termed as “free-field”, although 

such designation is not entirely correct due to the relatively small size of the model) 

to the zones of the deposit located underneath the foundation seems to occur, 
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resulting in a further reduction of the stiffness and strength of sand at those locations 

and, therefore, in a further reduction of the bearing capacity; this excess pore pressure 

migration seems also to justify the larger magnitude of settlements measured during 

this phase in the zone of the deposit underneath the foundation in relation to that 

registered in the free-field; indeed, the most effective liquefaction resistance measure 

for this phase appears to consist of high-capacity drains or impermeable barriers, 

reducing/preventing excess pore pressure migration from occurring. 

Although significant advancement in the understanding of the fundamental mechanisms 

governing the response of shallow foundations under dynamic loading causing liquefaction 

had been achieved, Coelho (2007) highlighted the need for further investigation on the 

following aspects: 

- the influence of the characteristics of the structure on its performance; specifically, 

the impact of the bearing pressure transmitted by the shallow foundation to the 

underlying sand deposit on the overall performance of the sand-structure system, 

both in terms of settlements and seismic energy transmitted to the structure; 

- the most cost-effective combination of liquefaction resistance measures, particularly 

in terms of the depth of the densification and length of the impermeable barriers or 

high capacity drains; 

- the influence of the characteristics of the dynamic motion used in the experiment on 

excess pore pressure generated in the sand deposit, as well as on the settlements and 

rotation of the structure. 

8.2.2 Main objectives and characteristics of the research programme 

As part of a Seismic Engineering Research Infrastructures for European Synergies (SERIES) 

Transnational Access Use Agreement, a dynamic centrifuge testing programme using the 

10 m-diameter Turner Beam Centrifuge at the Schofield Centre, University of Cambridge, U.K. 

– whose details of construction and operation are provided in Schofield (1980) – was 

undertaken by the PhD candidate Andreia Silva Marques. The centrifuge testing programme 

was designed to investigate the following aspects (Marques et al., 2014a): 

- the influence of the bearing pressure induced by different shallow foundations on 

their performance under dynamic loading causing liquefaction; 

- the potential interaction effects between neighbouring shallow foundations, 

particularly in terms of potential differential settlements occurring in the foundations; 

- the use of densification and high-capacity vertical drains for the mitigation of 

liquefaction effects. 

As detailed in Marques et al. (2014a), to accomplish the aforementioned objectives, the 

following two centrifuge models, which are schematically illustrated in Figure 8.1, were tested 

(note that all indicated dimensions and input motions are in prototype scale): 
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- Centrifuge model A (CM-A): Adjacent shallow foundations resting on a uniform 

moderately loose sand deposit subjected to dynamic loading causing liquefaction – 

study on the dynamic response of two rigid structures (henceforth designated as 

“shallow foundations”), consisting of solid steel bocks and having an identical base 

area of 3.0 x 3.0 m2, while different heights of 0.750 and 1.225 m, spaced 13.5 m apart 

(between axes) and resting on a 18.0 m-thick saturated deposit of moderately loose 

Hostun sand (reported as Dr ≈ 50%); the fluid table was located at the sand deposit 

surface; the vertical stresses applied by the lighter and heavier shallow foundations to 

the underlying sand deposit were about 58 kPa and 95 kPa, respectively. 

- Centrifuge model B (CM-B): Use of narrow densified zones and high-capacity vertical 

drains to improve the performance of adjacent shallow foundations resting on a sand 

deposit subjected to dynamic loading causing liquefaction – study on the dynamic 

response of two similar solid steel structures (henceforth also designated as “shallow 

foundations”), with an identical height of 1.225 m and a base area of 3.0 x 3.0 m2, 

spaced 13.5 m apart (between axes) and resting on saturated and densified columns 

of Hostun sand (reported as Dr ≈ 80%) with dimensions of 5.0 x 5.0 m2 in plan (i.e. 

1.0 m wider than the base dimension of the built-on shallow foundation for each of 

its side) and length of 18.0 m (i.e. extending to the bottom of the model); one of the 

densified sand columns was encased along its full length by a drainage geocomposite 

simulating closely spaced high-capacity vertical drains; the remaining deposit 

consisted of moderately loose Hostun sand (reported as Dr ≈ 50%) and was also 

saturated, with the fluid table being located at the ground surface; both shallow 

foundations applied a vertical stress of 95 kPa (corresponding to that applied by the 

heavier foundation of the CM-A) to the underlying sand deposit. 

As pointed out by Marques et al. (2014a), a similar input motion was intended to be applied 

to all centrifuge models, consisting of 25 loading cycles with a frequency of 1 Hz (i.e. 25 s of 

duration) and a maximum acceleration of 0.3 g. Moreover, a centrifugal acceleration of 50 g 

was used in all tests. 

All three models were prepared and tested in an Equivalent Shear Beam (ESB) container, 

consisting of a stack of aluminium alloy rectangular frames, separated by rubber layers 

(Marques et al., 2014a). As discussed by Zeng and Schofield (1996), this container is designed 

in such way that the laterals walls tend to achieve a similar stiffness to the adjacent soil, 

consequently minimising the interaction effects between the soil and its boundaries. As 

pointed out by Coelho (2007), this match is likely less effective when simulating liquefaction-

related phenomena. During such experiments, the stiffness of soil is observed to reduce 

significantly, while the stiffness of the walls remains unchanged, likely increasing the 

boundary effects. As suggested by the author, it is important to assess the boundary effects, 

particularly from the moment liquefaction is observed to initiate. 
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Figure 8.1 – Schematic illustration of the centrifuge models (adapted from Marques et al., 2014a). 

Similar to the element laboratory test programme (Chapter 2), air pluviation technique was 

employed to prepare all centrifuge models. Moreover, to allow for the creation of the 

densified zones in CM-B, thin-wall metallic boxes were temporarily employed to support sand, 

being removed as the pluviation process was completed (Marques et al., 2014a). This 

procedure was not required when the densified sand column was fully encased by a drainage 

geocomposite (i.e. for the densified zone on the left side of CM-B, as illustrated in Figure 8.1). 

After pluviation of sand was completed, the models were saturated with a viscous fluid. More 

specifically, as reported by Marques et al. (2014a), a solution of hydroxypropyl 

methylcellulose in water was used as pore fluid. This fluid has a viscosity about 50 times 

greater than that of water, therefore, circumventing the conflict of scaling laws between 

dynamic time and diffusion/consolidation time (as previously discussed in Section 5.3.2.2) 

and allowing for the direct interpretation of the obtained results in prototype scale (e.g. 

Adamidis and Madabhushi, 2015). Note that the adoption of this strategy is typically termed 

as “viscosity scaling” (Coelho, 2007). In terms of saturation process, the pore fluid was allowed 

to slowly flow through the model by creating a small differential pressure between the top 

and base of the model – a procedure similar to that adopted in triaxial testing 

(Section  2.3.1.2). The saturation process was considered concluded when a given volume of 

fluid, determined beforehand, had been inserted in the model (Marques et al., 2014a). 

Further details on this procedure and required equipment can be found in Stringer et al. 

(2009) and Stringer and Madabhushi (2009). 

To minimise undesirable disturbances to the model, it was only loaded after the swing and 

the Stored Angular Momentum (SAM) actuator were attached to the centrifuge beam. As 

described by Madabhushi et al. (1998), this type of actuator uses the energy stored in a pair 

A laminar box was used in all centrifuge experiments;

All dimensions are in prototype scale.

Notes:

A solution of methylcellulose in water was used as pore fluid to circumvent the conflict between the 

scaling laws for dynamic time and diffusion time;
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of spinning flywheels connected to a rod to apply approximately sinusoidal input motions of 

selected amplitude, frequency and duration to the model. As the model was finally 

transported and placed into the swinging platform, the shallow foundations were 

appropriately positioned in the model. The centrifugal acceleration was subsequently slowly 

increased until the desired value of 50 g was observed (Marques et al., 2014a). Before 

applying the intended dynamic loading, the model was left spinning for some minutes at 50 g 

until the pore pressures within the model were observed to stabilise. 

Besides the evaluation of the performance of innovative hybrid techniques to mitigate 

liquefaction effects, this centrifuge test programme intended to assist the development of 

numerical tools to be used in performance-based design practice (Coelho et al., 2010b). 

8.3 Centrifuge model A – Adjacent shallow foundations resting on a uniform 

moderately loose sand deposit subjected to dynamic loading causing 

liquefaction 

8.3.1 Brief description of the experiment and obtained results 

8.3.1.1 Configuration and instrumentation of the experiment 

The centrifuge model A (CM-A) intended to investigate the dynamic response of two adjacent 

shallow foundations resting on a uniform and saturated moderately loose deposit of Hostun 

sand (reported as Dr ≈ 50%). Figure 8.2 and Figure 8.3 illustrate the final configuration of the 

centrifuge experiment, including the location of the monitoring instruments, whose 

coordinates, both in model and prototype scale, are indicated in Table 8.1. Note that the 

1.225 m-high (in prototype scale) solid steel shallow foundation located on the left side of the 

model is termed as “heavier”, while the 0.750 m-high (in prototype scale) solid steel shallow 

foundation located on the right side of the model is termed as “lighter”. 

In relation to the instrumentation used in the centrifuge experiment, it can be observed in 

Figure 8.3 and Table 8.1 that three different vertical alignments were selected for measuring 

the horizontal accelerations and excess pore pressures developed in the sand deposit: x =

10.0 m (corresponding to the axis of the heavier shallow foundation), x = 16.75 m 

(corresponding to half distance from the axes of the shallow foundations) and x = 23.7 m 

(corresponding to the axis of the lighter shallow foundation). While data acquired at these 

monitoring positions might be sufficient to adequately characterise the dynamic response of 

the deposit, it might not provide sufficient information about potential boundary effects, 

which have been shown to affect the measured acceleration time-histories and transient 

excess pore pressures at positions close to the centrifuge walls in previous centrifuge test 

programmes (Coelho et al., 2003; Teymur and Madabhushi, 2003). 
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Figure 8.2 – Plan view of CM-A and location of some monitoring instruments (adapted from 

Marques et al., 2014a). 

 
Figure 8.3 – Side view of CM-A and location of the monitoring instruments (adapted from Marques 

et al., 2014a). 

LVDT1
LVDT2

LVDT3

AH1, AH2, AH3

AV1
MEMS-H1 MEMS-H2

MEMS-V1 MEMS-V2 MEMS-V3
MEMS-V4

z

x

10.0 m (20.0 cm)

12.7 m

(25.4 cm)

Accelerometer in the horizontal direction (AH) Accelerometer in the vertical direction (AV)

Linear variable differential transducer (LVDT)

Dimensions in prototype scale (and in model scale)

Hostun sand

(Dr ≈ 50%) 

Heavier shallow foundation

base: 3.0 x 3.0 m2 (6.0 x 6.0 cm2)

Lighter shallow foundation

base: 3.0 x 3.0 m2 (6.0 x 6.0 cm2)

10.0 m (20.0 cm)6.85 m (13.7 cm)6.85 m (13.7 cm)

6.35 m

(12.7 cm)

MEMS in the horizontal direction (MEMS-H) MEMS in the vertical direction (MEMS-V)

height = 0.750 m (1.5 cm)height = 1.225 m (2.45 cm)

6.35 m

(12.7 cm)

33.7 m (67.4 cm)

PPT1

PPT2

PPT3

PPT4

PPT5

PPT6

PPT7

LVDT1

LVDT2

LVDT3

AH1

AH2

AH3

AH4

AH5

AH6

AH7

AH8

AH9

AH10

AH11

AH12

AH13

AH14

AH15

AV1

MEMS-H1 MEMS-H2
MEMS-V1

MEMS-V2

MEMS-V3

MEMS-V4

y

x

Input motion, ax(t), at a centrifugal acceleration of 50 g

10.0 m (20.0 cm)

18.0 m

(36.0 cm)

Pore pressure transducer (PPT)

Accelerometer in the horizontal direction (AH) Accelerometer in the vertical direction (AV)

Linear variable differential transducer (LVDT)

FL

Out of plane dimensions: 12.7 m (25.4 cm)Dimensions in prototype scale (and in model scale)

Hostun sand

(Dr ≈ 50%) 

1.0 m

(2.0 cm)

5.0 m

(10.0 cm)

5.5 m

(11.0 cm)

Heavier shallow foundation: 

base: 3.0 x 3.0 m2 (6.0 x 6.0 cm2)

Lighter shallow foundation:

base: 3.0 x 3.0 m2 (6.0 x 6.0 cm2)

10.0 m (20.0 cm)6.85 m (13.7 cm) 6.85 m (13.7 cm)

0.5 m (1.0 cm)

6.0 m

(12.0 cm)

MEMS in the horizontal direction (MEMS-H) MEMS in the vertical direction (MEMS-V)

height = 1.225 m (2.45 cm) height = 0.75 m (1.5 cm)
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Table 8.1 – Type and positioning of the monitoring instruments used in CM-A (adapted from 
Marques et al., 2014a). 

Instrument 
ID 

Model scale Prototype scale 
type x (cm) y (cm) z (cm) x (m) y (m) z (m) 

Accelerometer measuring 
in the vertical direction 

AV1 0.0 0.0 12.7 0.00 0.00 6.35 

Accelerometer measuring 
in the horizontal direction 

AH1 0.0 0.0 12.7 0.00 0.00 6.35 
AH2 0.0 18.0 12.7 0.00 9.00 6.35 
AH3 0.0 36.0 12.7 0.00 18.00 6.35 
AH4 20.0 1.0 12.7 10.00 0.50 6.35 
AH5 20.0 13.0 12.7 10.00 6.50 6.35 
AH6 20.0 24.0 12.7 10.00 12.00 6.35 
AH7 20.0 34.0 12.7 10.00 17.00 6.35 
AH8 33.7 1.0 12.7 16.85 0.50 6.35 
AH9 33.7 13.0 12.7 16.85 6.50 6.35 

AH10 33.7 24.0 12.7 16.85 12.00 6.35 
AH11 33.7 34.0 12.7 16.85 17.00 6.35 
AH12 47.4 1.0 12.7 23.70 0.50 6.35 
AH13 47.4 13.0 12.7 23.70 6.50 6.35 
AH14 47.4 24.0 12.7 23.70 12.00 6.35 
AH15 47.4 34.0 12.7 23.70 17.00 6.35 

Linear variable differential 
transformer (LVDT) 

LVDT1 20.0 38.45 12.7 10.00 19.225 6.35 
LVDT2 33.7 36.0 12.7 16.85 18.00 6.35 
LVDT3 47.4 37.5 12.7 23.70 18.75 6.35 

Pore pressure transducer 
(PPT) 

PPT1 20.0 24.0 12.7 10.00 12.00 6.35 
PPT2 20.0 34.0 12.7 10.00 17.00 6.35 
PPT3 33.7 1.0 12.7 16.85 0.50 6.35 
PPT4 33.7 24.0 12.7 16.85 12.00 6.35 
PPT5 33.7 34.0 12.7 16.85 17.00 6.35 
PPT6 47.4 24.0 12.7 23.70 12.00 6.35 
PPT7 47.4 34.0 12.7 23.70 17.00 6.35 

Microelectromechanical 
system (MEMS) measuring 
in the vertical direction  

MEMS-V1 17.0 38.45 12.7 8.50 19.225 6.35 
MEMS-V2 23.0 38.45 12.7 11.50 19.225 6.35 
MEMS-V3 44.4 37.5 12.7 22.20 18.75 6.35 
MEMS-V4 50.4 37.5 12.7 25.20 18.75 6.35 

MEMS measuring in the 
horizontal direction 

MEMS-H1 17.0 38.45 12.7 8.50 19.225 6.35 
MEMS-H3 44.4 37.5 12.7 22.20 18.75 6.35 

In what follows, all dimensions, input motions and results are presented only in prototype 

scale. As mentioned before, since a viscous solution of hydroxypropyl methylcellulose in 

water was used as the pore fluid in the centrifuge experiments, the centrifuge test results 

obtained in model scale can be extrapolated to prototype scale. 

8.3.1.2 Horizontal acceleration time-histories 

Starting with the horizontal acceleration-time histories, Figure 8.4 depicts the results 

obtained for the three accelerometers positioned along the left wall of the centrifuge 

container (i.e. AH1, AH2 and AH3). It can be observed that, unfortunately, the accelerometer 

AH1, positioned at the base of the centrifuge model, malfunctioned during the test and, 
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consequently, the horizontal acceleration-time history effectively applied to the model was 

not recorded. 

 

 

 
Figure 8.4 – Measured horizontal acceleration time-histories at three different monitoring 

positions along the left wall of CM-A. 

Nevertheless, as highlighted by Marques et al. (2014a), since an identical input motion was 

intended to be applied to all performed centrifuge tests (Section 8.2.2), there is no reason to 

believe that the input motion applied to CM-A differed significantly from that applied to CM-

B. Having that in mind, Figure 8.5 depicts the horizontal acceleration-time history recorded at 

the base of CM-B (i.e. at (x, y) = (0.0, 0.0) m) and compares the horizontal acceleration time-

histories measured in both CM-A and CM-B at the middle position of the centrifuge wall (i.e. 

at (x, y) = (0.0, 9.0) m). Note that, as discussed in Coelho (2007), the responses measured at 

the walls of the centrifuge container are expected to be nearly independent of the response 

of the materials inside the container. In effect, providing that a time delay of about 1.05 s 

between the starting of the shaking in CM-B and in CM-A is amended, it can be observed in 
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Figure 8.5 that similar acceleration time-history trends seem to have been recorded in both 

experiments at (x, y) = (0.0, 9.0) m. 

 

 
Figure 8.5 – Recorded horizontal acceleration time-histories at two different positions along the 

left wall of CM-A and CM-B. 

Furthermore, as shown in Figure 8.6, a closer match between the horizontal acceleration 

time-histories recorded in both CM-A and CM-B at (x, y) = (0.0, 9.0) m can be obtained by 

scaling down the amplitude of the accelerations registered in CM-B by a factor of 0.806, 

corresponding to the ratio of the maximum amplitude registered in CM-B to that measured 

in CM-A at that position. Indeed, by applying a similar amplitude correction to the motion 

registered at (x, y) = (0.0, 0.0) m in CM-B, the horizontal acceleration-time history depicted 

in Figure 8.6 is obtained. Since a better methodology to the estimation of the input motion of 

CM-A was not found, the acceleration time-history corresponding to (x, y) = (0.0, 0.0) m 

depicted in Figure 8.6 was used for the numerical simulation of the CM-A. Therefore, in what 

follows, this acceleration time-history is referred to as “estimated input motion” for CM-A. 
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Figure 8.6 – Estimation of the input motion for CM-A by scaling-down the amplitude of the 

horizontal acceleration time-histories measured in CM-B. 

By observing Figure 8.6, it is apparent that the horizontal peak accelerations applied to the 

model were presumably smaller than the intended value of ±3.0 m/s2. Although it can be 

argued that the inaccuracies inherent to the estimation of the input motion might be 

responsible for these lower than intended values, it should be noted that much smaller peak 

accelerations than intended (of about ±2.0 m/s2, rather than ±3.0 m/s2) were also measured 

in another centrifuge experiment included in the experimental programme reported by 

Marques et al. (2014a). Moreover, although a sinusoidal-type loading was specified as input, 

Figure 8.6 shows that local peaks were recorded in between the maximum acceleration peaks 

during the majority of the duration of the solicitation. In effect, by observing the 

corresponding Fourier Spectrum depicted in Figure 8.7, which was computed using the 

computer software SeismoSignal 2018 (Seismosoft, 2018), it can be concluded that the 

solicitation was not single-frequency as intended. Nevertheless, it can be seen that the 

predominant frequency matches that intended (about 1.0 Hz). 
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Figure 8.7 – Fourier spectrum of the estimated input motion for CM-A. 

In addition, Figure 8.8 depicts the horizontal acceleration-time histories registered at several 

different monitoring positions within the sand deposit located along a vertical alignment 

coincident with the axis of the heavier shallow foundation (x = 10.0 m). It is interesting to 

observe that, during the first two cycles of loading, similar acceleration values were measured 

at every level, probably due to the low excess pore pressures generated within the model at 

this early stage (as discussed in more detailed later). Conversely, after these two initial loading 

cycles, the peak acceleration values appear to be attenuated, particularly at the shallower 

monitoring positions. This observation is consistent with the larger excess pore pressures 

observed at this stage of the experiment and, consequently, with the lower effective stresses, 

lower stiffness of the material and greater material damping. 

The horizontal accelerations measured at the top of the heavier shallow foundation, (x, y) =

(8.5, 19.225) m, are compared with those measured at the top monitoring position within 

the underlying sand deposit, (x, y) = (10.0, 17.0) m, in Figure 8.9. As expected, due to the 

large stiffness of the solid shallow foundation, it can be seen that the acceleration time-

histories recorded at these two locations have similar patterns. As also expected, it is 

apparent that the horizontal peak accelerations recorded at the top of the shallow foundation 

are larger than those recorded within the sand deposit. In fact, as established by the theory 

of wave propagation (e.g. Kramer, 1996), when a body wave propagating through a 

homogeneous, isotropic and elastic medium reaches a free boundary, where stresses cannot 

be transmitted, the amplitude of the acceleration registered at that location tends to be 

double of that registered within the medium. Naturally, since, in the present case, the 

responses of materials (particularly of sand) are likely neither isotropic nor elastic, with both 

hysteretic and viscous damping likely contributing to the dissipation of energy, the horizontal 

peak accelerations recorded at the top of the shallow foundation are not exactly double 

amplitude of those registered within the sand deposit. Moreover, as discussed later, 

interaction effects between the two shallow foundations included in the model might have 

also influenced the accelerations transmitted from the sand deposit to the shallow 

foundations. 
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Figure 8.8 – Measured horizontal acceleration time-histories along a vertical alignment coincident 

with the axis of the heavier shallow foundation for CM-A. 
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Figure 8.9 – Measured horizontal acceleration time-histories at the top of the heavier shallow 

foundation and underneath it for CM-A. 

The Fourier spectra corresponding to the acceleration time-histories measured at the 

shallowest monitoring position within the sand deposit (i.e. at (x, y) = (10.0, 17.0) m) and at 

the top of the heavier shallow foundation (i.e. at (x, y) = (8.5, 19.225) m) are compared with 

the Fourier spectrum of the estimated input motion in Figure 8.10. Note that these Fourier 

spectra were, once more, computed using the software SeismoSignal 2018 (Seismosoft, 

2018). As typically observed in this type of problems involving liquefaction, it is apparent that 

the motions recorded at the top monitoring positions (i.e. at (x, y) = (10.0, 17.0) m and 

(x, y) = (8.5, 19.225) m) are characterised by smaller peak Fourier amplitudes than those 

characterising the input motion. Nevertheless, the two predominant frequencies (of about 1 

and 3 Hz) seem to be, in general, very similar for all three motions, suggesting that the 

predominant frequency content of the input motion remained practically unchanged during 

the centrifuge experiment. Conversely, the high frequency content of the input motion 

(above 10 Hz) seems practically filtered by the sand deposit during the experiment, as 

expected. Note that similar conclusions are obtained when comparing the motions recorded 

at the top monitoring positions with that recorded at the deepest position within the sand 

deposit (i.e. at (x, y) = (10.0, 0.5) m), suggesting that the aforementioned conclusions are 

valid despite the approximate nature of the input motion obtained for CM-A. 
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Figure 8.10 – Comparison of the Fourier spectra of the horizontal acceleration time-histories 

recorded at the top of the heavier shallow foundation and underneath it with that corresponding 
to the estimated input motion for CM-A. 

Figure 8.11 depicts the horizontal acceleration-time at several different monitoring positions 

located along a vertical alignment coincident with the axis of the lighter shallow foundation 

(x = 23.7 m). Similar to what was observed for the heavier shallow foundation, Figure 8.11 

suggests that, after the first two loading cycles, a significant attenuation of the peak 

accelerations occurred at shallow levels, likely due to the large excess pore pressure ratios 

measured during that period in the model. 

In addition, Figure 8.12 compares the horizontal accelerations recorded at the top of the 

lighter shallow foundation (i.e. at (x, y) = (22.2, 18.75) m) with those measured at the top 

monitoring position within the underlying sand deposit (i.e. at (x, y) = (23.7, 17.0) m). 

Similar to what was observed for the heavier shallow foundation, it can be seen that the 

amplitude of the accelerations at the top of the shallow foundation are larger than those 

registered within the sand deposit. Note, however, that, in this case, the horizontal 

accelerations reached amplitudes significantly larger than double of those recorded in the 

underlying sand deposit. As suggested by Marques et al. (2012a) and explained in more detail 

later, interaction effects between the two shallow foundations included in the model might 

have strongly influenced the motions transmitted from the sand deposit to each shallow 

foundation. 
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Figure 8.11 – Measured horizontal acceleration time-histories along a vertical alignment 

coincident with the axis of the lighter shallow foundation for CM-A. 
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Figure 8.12 – Measured horizontal acceleration time-histories at the top of the lighter shallow 

foundation and underneath it for CM-A. 

To gain further insight into the differences between the horizontal motions transmitted and 

propagated through the shallow foundations, Figure 8.13 compares the horizontal 

acceleration time-histories recorded at the top of the heavier and lighter shallow foundations 

(i.e. at (x, y) = (8.5, 19.225) m and (x, y) = (22.2, 18.75) m, respectively), as well as at the 

top monitoring positions within the sand deposit underneath the shallow foundations (i.e. at 

(x, y) = (10.0, 17.0) m and (x, y) = (23.7, 17.0) m, respectively). Their respective Fourier 

spectra are presented in Figure 8.14. By inspecting both Figure 8.13 and Figure 8.14, it is clear 

that much larger peak accelerations (with more than double of the amplitude) were measured 

at the top of the lighter shallow foundation in relation to those measured at the top of the 

heavier shallow foundation. According to Marques et al. (2012a), these discrepancies can be 

explained by the Newton's second law of motion, which establishes that the vector sum of 

the forces acting on an object is equal to the mass of that object multiplied by the acceleration 

of the object. Based on this law and assuming that similar forces were transmitted to the base 

of both shallow foundations, the authors concluded that the amplitude of the accelerations 

recorded at the top of the lighter shallow foundation had to be necessarily larger than those 

registered at the top of the heavier shallow foundation. 
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Figure 8.13 – Comparison of the horizontal acceleration time-histories measured at the top of the 

heavier and lighter shallow foundations and underneath them for CM-A. 

 

 
Figure 8.14 – Comparison of the Fourier spectra of the horizontal acceleration time-histories 

measured at the top of the heavier and lighter shallow foundations and underneath them for CM-
A. 
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Still regarding the results presented in Figure 8.13 and Figure 8.14, three additional aspects 

are noteworthy. Firstly, it can be seen that very similar horizontal acceleration time-histories 

were registered within the sand deposit underneath both shallow foundations, suggesting 

that the different vertical stresses induced by the lighter and heavier foundations in the 

underlying sand deposit had little impact on this aspect of the measured response (Marques 

et al., 2012b). Secondly, it is apparent in Figure 8.13 that the horizontal acceleration-time 

histories recorded at the top of the shallow foundations differ from each other not only in 

terms of amplitude, as mentioned before, but also in terms of instants of time at which the 

maximum peaks occurred, indicating that the shallow foundations oscillated (in this direction) 

out of phase. Finally, it appears that, although having very different amplitudes, the frequency 

contents of the horizontal motions registered at the top of the shallow foundations are 

qualitatively similar. 

The horizontal acceleration time-histories measured at several monitoring positions located 

along a vertical alignment coincident with the middle of the model (x = 16.85 m) are depicted 

in Figure 8.15. Once again, the ground motion seems to be attenuated at the two shallower 

monitoring positions (i.e. at (x, y) = (16.85, 12.0) m and (x, y) = (16.85, 17.0) m) after the 

first two loading cycles. Despite this fact, as observed for monitoring positions located along 

the axes of the shallow foundations, the two predominant frequencies of the input motions 

(of about 1 and 3 Hz) were, in general, preserved, as shown in Figure 8.16, which compares 

the Fourier spectrum of the acceleration time-history measured at the shallowest monitoring 

position within the sand deposit (i.e. at (x, y) = (16.85, 17.0) m) with that of the estimated 

input motion. 
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Figure 8.15 – Measured horizontal acceleration time-histories for a vertical alignment coincident 

with the middle of the model for CM-A. 
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Figure 8.16 – Comparison of the Fourier spectrum of the horizontal acceleration time-history 

recorded at shallowest monitoring positions located along a vertical alignment coincident with the 
middle of the model with that of the estimated input motion for CM-A. 
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(x, y) = (0.0, 0.0) m) in Figure 8.17. It can be seen that the vertical input excitation is 
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characterising the estimated input horizontal motion. Despite this fact, it can be seen that 

large vertical peak accelerations were recorded at both top edges of the heavier shallow 

foundation, with amplitudes even larger than those characterising the horizontal peak 

accelerations measured at the left edge of the shallow foundation (Figure 8.9). Moreover, it 

is apparent that the vertical acceleration time-histories measured at the left and right top 

edges of the heavier shallow foundation appear to be in phase. Note, nevertheless, that the 

amplitudes of the peak accelerations are slightly different, which suggests that the shallow 

foundation oscillated during the experiment. This aspect can be more clearly observed in 

Figure 8.18, which depicts the semi-sum (i.e. average value) and semi-difference of the 

vertical accelerations measured at the edges of the heavier shallow foundation. Note that, 
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rocking motion involving the entire centrifuge model (rather than an individual rocking 
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Figure 8.17 – Measured vertical acceleration time-histories at the base of the model and at the left 

and right top edges of the heavier shallow foundation for CM-A. 

 
Figure 8.18 – Semi-sum and semi-difference of the vertical accelerations measured at the left and 

right top edges of the heavier shallow foundation for CM-A. 
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Figure 8.19 – Fourier spectra of the vertical acceleration time-histories recorded at the left and 

right top edges of the heavier shallow foundation for CM-A. 
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(x, y) = (25.2, 18.75) m, respectively) with that recorded at the base of the model (i.e. at 

(x, y) = (0.0, 0.0) m). Also in this case, much larger vertical accelerations were measured at 

the top of the shallow foundation than those applied to the bottom of the model. 

 

 
Figure 8.20 – Measured vertical acceleration time-histories at the base of the model and at the left 

and right top edges of the lighter shallow foundation for CM-A. 
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measured at the edges of the lighter shallow foundation. As observed for the heavier shallow 

foundation, it seems that the lighter shallow foundation oscillated with a relatively constant 

frequency and amplitude during cyclic loading. 

 
Figure 8.21 – Semi-sum and semi-difference of the vertical accelerations measured at the left and 

right top edges of the lighter shallow foundation for CM-A. 
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similar frequency content. 

 
Figure 8.22 – Fourier spectra of the vertical acceleration time-histories recorded at the left and 

right top edges of the lighter shallow foundation for CM-A. 
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model may have occurred during the experiment (Marques et al., 2012c, 2014c). This global 

rocking mechanism might explain the oscillations observed for each shallow foundation. 

 
Figure 8.23 – Measured vertical acceleration time-histories at the left edges of the heavier and 

lighter shallow foundations for CM-A. 

 
Figure 8.24 – Measured vertical acceleration time-histories at the right edges of the heavier and 

lighter shallow foundations for CM-A. 
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(e.g. Coelho, 2007). From t ≈ 200 s, the dissipation rate was considerably greater, with the 

consolidation process lasting until t ≈ 700 − 800 s. Indeed, both during excitation and 

consolidation, very slight discrepancies can be observed between data recorded at these two 

monitoring positions (i.e. at (x, y) = (10.0, 12.0) m and at (x, y) = (23.7, 12.0) m), 

suggesting that, at this depth (of about 6 m), the influence of the different vertical stresses 

induced by the shallow foundations on the observed excess pore pressures was already very 

limited. 

With respect to the excess pore pressure registered at the shallowest level (y = 17.0 m), a 

different trend from that registered at the deeper monitoring position (i.e. at y = 12.0 m) can 

be observed in Figure 8.25 and Figure 8.26, with residual excess pore pressures gradually 

increasing during shaking. As often observed in this type of problems (e.g. Coelho, 2007), it 

can be seen that excess pore pressures further increased after the end of shaking until t ≈

250 s, likely due to excess pore pressure migration from the zones of the sand deposit located 

farther from the shallow foundations to the zones under their influence. Indeed, the excess 

pore pressure measured at about t ≈ 250 s is about 2.5 times greater than that measured 

during shaking, which might have a catastrophic impact on the bearing capacity of the sand 

deposit (Coelho, 2007). Moreover, it can be seen that, at this level, the dissipation of the 

excess pore pressures only started at t ≈ 300 s, with stabilisation of the excess pore pressure 

being only observed at t ≈ 700 − 800 s. As pointed out by Marques et al. (2012a), the fact 

that excess pore pressures were observed to stabilise with a value of about 10 kPa (rather 

than 0 kPa) is likely a detrimental consequence of the large settlement experienced by the 

transducer. 

Still regarding the results registered at the shallowest level (y = 17.0 m), it is apparent that, 

although the stresses induced by the shallow foundations in the underlying sand deposit are 

different, the discrepancies between the responses measured underneath the heavier and 

lighter shallow foundations (i.e. at (x, y) = (10.0, 17.0) m and at (x, y) = (23.7, 17.0) m, 

respectively) are practically restricted to the magnitude of the oscillation of the excess pore 

pressures during shaking. As expected, larger oscillations were measured in the sand under 

the influence of the heavier shallow foundation, due to the higher effective stresses induced 

by this foundation. 
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Figure 8.25 – Excess pore pressure evolution with time during dynamic loading and shortly after its 
end measured at two different monitoring positions located along vertical alignments coincident 

with the axes of the heavier and lighter shallow foundations for CM-A. 

 

 
Figure 8.26 – Long-term dissipation of excess pore pressures at two different monitoring positions 

located along vertical alignments coincident with the axes of the heavier and lighter shallow 
foundations for CM-A. 
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In addition, Figure 8.27 compares the evolutions of excess pore pressure with time measured 

at three different monitoring positions located along a vertical alignment coincident with the 

middle of the model with those measured along a vertical alignment coincident with the axis 

of the heavier shallow foundation during shaking and shortly after its end. The long-term 

dissipations of the excess pore pressure at those monitoring positions are depicted in Figure 

8.28. Perhaps surprisingly, it can be seen that co-seismic excess pore pressures registered at 

the shallowest monitoring position in the middle of the model (i.e. at (x, y) =

(16.85, 17.0) m) are similar to those measured immediately underneath the heavier shallow 

foundation (i.e. at (x, y) = (10.0, 17.0) m). Note, however, that these results might have 

been detrimentally affected by the different settlements of the pore pressure transducers, as 

suggested by the different values of excess pore pressure registered at those locations at the 

end of consolidation phase (i.e. at t ≈ 700 − 800 s). Significantly different trends are, 

nevertheless, observed as shaking ended (i.e. from t ≈ 40 s), with the excess pore pressures 

being observed to rise significantly underneath the shallow foundation (as discussed before), 

while remaining practically constant in the middle of the model until the start of their 

dissipation (i.e. until t ≈ 300 s). At the intermediate level (y = 12.0 m), excess pore pressures 

were observed to rapidly increase with loading both under the heavier shallow foundation 

(i.e. at (x, y) = (10.0, 17.0) m) and in the middle of the model (i.e. at (x, y) =

(16.85, 17.0) m). With further loading, greater oscillations of excess pore pressure were 

recorded at the monitoring position located along a vertical alignment coincident with the 

axis of the heavier shallow foundation (i.e. at (x, y) = (10.0, 12.0) m), probably due to the 

slightly higher initial effective stresses installed in that zone of the deposit. Moreover, it is 

apparent that larger residual excess pore pressures were registered at the end of shaking at 

(x, y) = (10.0, 12.0) m than at (x, y) = (16.85, 12.0) m. With respect to the deepest position 

(y = 0.5 m), pore pressure measurements were only undertaken at the monitoring position 

(x, y) = (16.85, 0.5) m. Similar to what was observed for the intermediate level, excess pore 

pressures rose quickly as shaking started, reaching large values close to the initial vertical 

effective stress after the first few loading cycles. 
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Figure 8.27 – Excess pore pressure evolution with time during dynamic loading and shortly after its 
end measured at three different monitoring positions located along vertical alignments coincident 

with the axis of the heavier shallow foundation and middle of the model for CM-A. 
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responses in sand under the shallow foundation (i.e. at (x, y) = (10.0, 17.0) m) and farther 

from its influence (i.e. at (x, y) = (16.85, 17.0) m) exhibit different trends. Specifically, while 

excess pore pressures continued to increase significantly after the end of shaking at the 
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monitoring position underneath the shallow foundation, excess pore pressures at the middle 

of the model remained practically constant until t ≈ 300 s. A plausible explanation for these 

differences may consist of the longest drainage path associated with the position underneath 

the shallow foundation. Additionally, as noted before, measured excess pore pressures might 

have been affected by the different settlements of the transducers, with larger settlements 

being observed for sand underneath the shallow foundations, as detailed in the following 

section. 

 

 

 
Figure 8.28 – Long-term dissipation of excess pore pressures at three different monitoring 
positions located along vertical alignments coincident with the axis of the heavier shallow 

foundation and middle of the model for CM-A. 
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foundations (i.e. at (x, y) = (16.85, 18.0) m). Figure 8.29 compares the settlements 

measured at these three different monitoring positions during the dynamic excitation and 

shortly after its end, while Figure 8.30 depicts the long-term settlements (i.e. until pore 

pressures were observed to stabilise). 

 
Figure 8.29 – Measured settlements at the top of the shallow foundations and at the ground 

surface in between them during shaking and shortly after its end for CM-A. 

 
Figure 8.30 – Measured settlements at the top of the shallow foundations and at the ground 
surface in between them until the complete dissipation of excess pore pressures for CM-A. 
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the top of the heavier shallow foundation at the end of the experiment, which compares with 

a settlement of approximately 88 cm registered during shaking (i.e. until t ≈ 40 s). This means 

that approximately 78 % of the total settlement of that shallow foundation occurred 

concurrently with the application of the dynamic loading, only the remaining portion of 22 % 

occurring after the end of shaking. Furthermore, a closer inspection of the settlements 

occurring solely after the end of the solicitation enables to conclude that its greatest portion 

effectively occurred until t ≈ 300 s. In fact, during such period (i.e. 40 s < t < 300 s), despite 

the cessation of dynamic loading, excess pore pressures were observed to increase in the 

zones of the deposit under the influence of the shallow foundations (Figure 8.28). Similar 

observations are valid for the lighter shallow foundation, with approximately 74 % of the 

settlements occurring concurrently with the application of dynamic loading. 

Although settlements have been only measured at three different positions during the 

centrifuge experiment, post-test visual inspections were carried out after draining the model 

(Marques et al., 2012a). The measured displacements of the ground surface and shallow 

foundations are depicted in Figure 8.31. Note that, since the model had to be unloaded from 

the centrifuge beam and drained before undertaking the post-visual measurements, the 

displacements shown in this figure are, in general, slightly different from those obtained 

immediately after the end of the experiment (and presented in the previous figures). 

Nevertheless, assuming that similar displacements were induced at every position of the 

ground surface by the drainage of the model, these post-test visual inspections may enable 

to roughly define a settlement profile of the ground surface. In Figure 8.31, it is interesting to 

observe that the shallow foundations “punched through” the sand deposit (i.e. the shallow 

foundations settled more than surrounding sand). It is also noteworthy that, while the heavier 

shallow foundation seems to have practically retained its horizontal position during the 

experiment, the lighter shallow foundation appears to have rotated slightly to the direction 

of the heavier shallow foundation. This may indicate that the presence of the heavier shallow 

foundation influenced the deformation mechanism of the lighter one. 

 
Figure 8.31 – Measured settlement profile of the ground surface and shallow foundations after the 

complete drainage of the model for CM-A. 
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8.3.2 Numerical analysis 

8.3.2.1 General aspects 

Given the relevance of the interaction between the pore fluid and solid phases of porous 

material when simulating liquefaction-related phenomena, a fully coupled non-linear 

dynamic finite element analysis was performed using FEMEPDYN. As described before, the 

complete formulation “ds – df – u” (where ds and df designate, respectively, the solid and pore 

fluid displacement degrees of freedom, while u designates the pore pressure degree of 

freedom) of the equation of the motion is implemented into FEMEPDYN, making it suitable 

for the simulation of a wide range of problems, from those involving quasi-static loading to 

very rapid loading (Zienkiewicz et al., 1980; Grazina, 2009). Note that this formulation is often 

referred to as “u – w – p“ (Zienkiewicz et al., 1980). Eight-noded isoparametric quadrilateral 

elements with pore pressure degrees of freedom assigned to the four corner nodes (i.e. 

hybrid elements) were used to model the response of the sand deposit. Conversely, both 

heavier and lighter shallow foundations were considered non-porous, with eight-noded 

isoparametric finite elements with no pore pressure degrees of freedom (i.e. ordinary single-

phase elements) being used to model their responses.  

Moreover, since the use of a viscous solution of hydroxypropyl methylcellulose in water as 

pore fluid in the centrifuge experiments allowed for the direct interpretation of the centrifuge 

test results in prototype scale, the numerical simulation was performed in prototype scale. 

Regarding the model geometry, although a generalised 3D formulation of the BSPM has been 

implemented into FEMEPDYN, the current version of the code is only able to perform 2D 

dynamic simulations. Therefore, a 2D plane strain simplification was adopted in the present 

numerical analysis, requiring a correction of the contribution of the shallow foundation to the 

initial stress state, with the adopted methodology being comprehensively described in the 

following section, together with the presentation of the obtained results. Note that, even if 

the code would allow for a 3D dynamic simulation, this type of calculation typically requires 

powerful computational resources, which, in most cases, are not available (Taborda, 2011). 

As a result, despite the evident 3D nature of this type of the problem, it has been usual to 

adopt a 2D plane strain simplification to replicate it, as exemplified by several numerical 

simulations of the VELACS experiments performed by different authors (e.g. Popescu and 

Prevost, 1993; Taiebat et al., 2007; Andrianopoulos et al., 2010a; Taborda, 2011). Moreover, 

it is important to note that the centrifuge container was solely shaken in the direction 

coincident with the larger horizontal dimension of the container (i.e. in-plane horizontal 

direction of Figure 8.3). 
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Figure 8.32 – Employed finite element mesh for the simulation of CM-A. 

When performing dynamic finite element analysis, particular attention should be given to the 

proper choice of the size of the elements and time discretisation to prevent the filtering of 

relevant frequencies of the input motion (e.g. Bathe, 1996; Grazina, 2009; Taborda, 2011). 

Although empirical guidelines concerning the influence of these aspects have been proposed 

in the literature (e.g. Kuhlemeyer and Lysmer, 1973; Bathe, 1996; Haigh et al., 2005), its 

applicability for numerical simulations of liquefaction-related phenomena seems to be limited 

(Taborda, 2011). In effect, the adequate selection of spatial and time discretisation likely 

depends on the constitutive model employed, as well as on the numerical algorithms 

implemented into a given FE code (Bathe, 1996; Grazina, 2009; Taborda, 2011). Therefore, 

prior to the simulation of CM-A and CM-B, a parametric study on the influence of these 

aspects was conducted. The methodology, tested cases and obtained results are detailed in 

Appendix D. Briefly, it was concluded that a satisfactory compromise between accuracy and 

computational effort may be obtained when employing elements with a size of 1.0 m and a 

time step of 0.0125 s. Taking that into account, the FE mesh illustrated in Figure 8.32 was 

adopted for the current numerical analysis. Apart from the elements located along the lateral 

boundaries of the model (which had a slightly larger dimension), the FE mesh adopted to 

model the sand deposit consisted of elements with L × H = 1.5× 1.0 m2 (where L is the width 

and H is the height). Note that, due to the likely predominant vertical propagation of shear 

waves, the horizontal dimension of the elements is expected to have much smaller influence 

on the analysis than the vertical dimension of the elements, thus justifying the adoption of a 

larger dimension to the elements in the horizontal direction. Complementary, elements with 
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L × H = 1.5 × 1.225 m2 and L × H = 1.5× 0.750 m2 were used to model the heavier and 

lighter shallow foundations, respectively. In terms of time step, a constant value of t =

0.0125 s was adopted. Since a total duration of 250 s was required to simulate the application 

of the dynamic excitation and subsequent dissipation of excess pore pressures, the adoption 

of t = 0.0125 s resulted in a total of 20 000 increments. 

In relation to the time-integration algorithm used to solve the equation of motion, the 

generalised- (or CH-) method, proposed by Chung and Hulbert (1993) and implemented 

into FEMEPDYN by Grazina (2009), was selected. As detailed in Grazina (2009), by adopting 

f = 4/9, m = 3f − 1 = 1/3,  = (1− f)
2
≈ 0.3086 and  = 3/2 − 2f ≈ 0.6111 for the 

parameters controlling the algorithm, which result in a spectral radius at infinity of 
∞
≈

0.800 for a single degree of freedom (SDOF) oscillator, the method verifies the conditions of 

unconditional stability and second order accuracy, also achieving the optimal high frequency 

dissipation with minimal low frequency impact. As demonstrated, for example, by Kontoe 

(2006), Grazina (2009) and Tsaparli et al. (2017), this latter attribute is particularly important 

to mitigate the detrimental impact of spurious high frequencies of the excitation on the FE 

results, particularly when no Rayleigh damping is employed in the numerical analysis, which 

is the present case. Further details on the time-integration algorithm and its implementation 

into FEMEPDYN can be found in Grazina (2009). 

In terms of boundary conditions, the estimated horizontal acceleration time-history shown in 

Figure 8.6 was prescribed at the nodes located along the bottom boundary of the mesh. 

Moreover, since the vertical motion was disregarded in this numerical analysis, the vertical 

displacements of the nodes at the bottom boundary were restricted. With respect to the 

lateral boundaries of the model, in order to model the flexible walls of the centrifuge 

container, the horizontal and vertical displacements were tied along nodes of the same 

height. Note that, although the model was not perfectly symmetric about a vertical axis 

coincident with its middle (due to the presence of shallow foundations with different heights 

and, therefore, different self-weights), the lateral boundaries were considered to be 

sufficiently far away from the zone of influence of the shallow foundations to allow for the 

application of this boundary condition. Note also that other dynamic boundary conditions, 

such as absorbent or free-field boundary conditions (refer, for example, to Kontoe (2006) for 

further information), are not yet available in FEMEPDYN. This means that the choice was 

limited to the use of tied degrees of freedom or to the application of the accelerations 

measured at the base of the centrifuge model, with this latter approach being, in general, 

more suitable for the simulation of effects of containers with rigid walls (as in VELACS model 

1 and 12 – Section 5.3.2.2). 

The hydraulic regime of the centrifuge test was characterised by the possibility of drainage 

solely through the ground surface. To simulate this aspect, conditions of no flow were applied 

to the bottom and lateral boundaries of the mesh, by tying the displacements in the solid and 
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fluid phases in the direction perpendicular to that defined by the boundary. In addition, a 

pore pressure boundary condition of u = 0.0 kPa was imposed at the corner nodes defining 

the top of the sand deposit (except those defining the sand-structure contact). 

8.3.2.2 Material properties 

The bounding surface plasticity model (BSPM) was used to model the mechanical response of 

the deposit of Hostun sand. Since substantial improvements of the modelled response were 

unfortunately not observed when using the inherent fabric component of the model to the 

simulation of cyclic triaxial tests, this component was not used in the present finite element 

analysis. This means that the set of model parameters “B.1) Original formulation”, listed in 

Table 6.5, was adopted for this numerical simulation. Note, nevertheless, that a comparative 

FE analysis was performed by employing the set of model parameters “B.2) Extended 

formulation” (see also Table 6.5), with the obtained results being presented in Appendix E. 

Moreover, it should be noted that, although possible, Rayleigh damping was not introduced 

in the analysis, since the constitutive model already predicts the occurrence of material 

damping both at small strains, due to its cyclic non-linear elastic component, and at medium 

to large strains, mainly due to the occurrence of plasticity. For further details on this topic, 

please refer to Taborda (2011). 

According to Marques et al. (2014a), the initial density of the Hostun sand deposit in CM-A 

was Dr ≈ 50%. By using the maximum and minimum void ratios experimentally determined 

in the present study, respectively of emax = 1.000 and emin = 0.660, the following initial void 

ratio would be obtained: 

e = emax − Dr (emax − emin) ≈ 1.000 − 0.50 × (1.000 − 0.66) ≈ 0.830 (8.1) 

Different values of emin and emax were, however, reported by Marques et al. (2014a). 

Specifically, based on the outcome of a laboratory study on Hostun sand carried out by 

Mitrani (2006) at the University of Cambridge, emax = 1.067 and emin = 0.555 were reported, 

leading to the following void ratio: 

e = emax − Dr (emax − emin) ≈ 1.067 − 0.50 × (1.067 − 0.555) ≈ 0.811 (8.2) 

While it is unclear which value of void ratio was effectively achieved in the model preparation, 

it seems more reasonable to assume that a target value of the void ratio (and not of the 

relative density) was used to control the air pluviation of the sand deposit. Therefore, in the 

present study, it was assumed that the void ratio of the sand deposit at the beginning of the 

centrifuge test was e ≈ 0.811 (corresponding to Dr ≈ 56%, according to emin and emax 

determined in the present study). 

Having defined the initial void ratio, and given the density of the solid particles of Gs = 2.64, 

the saturated unit weight, sat, was estimated as 18.7 kN/m3 (Equation 8.3), corresponding to 

a mass density, , of about 1.906 g/cm3 (Equation 8.4). 
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sat
= 

w
 

Gs + e

1.0+ e
 ≈ 9.81 ×

2.64 + 0.811

1.0 + 0.811
≈ 18.7 kN/m3 (8.3) 

 =  


sat

g
 ≈

18.7

9.81
≈ 1.906 g/cm3 (8.4) 

In terms of the hydraulic conductivity of the sand deposit, Equation 8.5, proposed by Lauer 

and Engel (2005) for Hostun sand, was employed. It is perhaps important to note that the 

main physical characteristics of Hostun sand used in the laboratory testing programme 

reported in Lauer and Engel (2005), such as particle size distribution, grain shape and density 

of solid particles, are very similar to those characterising Hostun sand used in the present 

study (Section 2.2). Furthermore, the values of the minimum and maximum void ratios 

reported in Lauer and Engel (2005), respectively emin = 0.65 and emax = 1.03, are also very 

close to those experimentally determined in the present study (emin = 0.66 and emax = 1.00, 

respectively). Since the physical properties have a great influence on the hydraulic 

conductivity of sandy materials – as suggested, for instance, by the Hazen and Kozeny-

Carman’s empirical formulas (e.g. Carrier III, 2003) – , the results presented in Lauer and Engel 

(2005) were considered more representative of the characteristics of Hostun sand used in the 

present study (including in the centrifuge experiments) than those obtained in other 

experimental studies (e.g. Mokni and Desrues, 2013). In addition, it should be noted that, 

since no information was available on the hydraulic conductivity anisotropy of the material, 

a single value was used to define the hydraulic conductivity in both horizontal and vertical 

directions (i.e. kx = ky was considered in the present study). 

kx = ky = (6.1 e − 1.3)×10-4 = (6.1×0.811 − 1.3)×10-4 ≈ 3.65×10-4 m/s (8.5) 

In relation to the solid steel shallow foundations, a simple isotropic linear elastic model was 

used to model their responses. This model requires only two parameters, with a shear 

modulus of G = 76.9 GPa and a Poisson’s ratio of  = 0.30 (i.e. typical stiffness characteristics 

of steel) being, in this case, specified. For consistency, the mass density of this material, , 

was estimated based on the weight of the shallow foundations required to apply to the 

underlying sand deposit the corrected value of the vertical stress, v
∗, during the generation 

of the initial stress state (as described in detail in the following section): 

 =  
v

∗

g h
 (8.6) 

where g is the acceleration of gravity (g ≈ 9.81 m/s2) and h is the height of the solid shallow 

foundation. 

Finally, the only input parameter required for the pore fluid consists of its bulk modulus, with 

Kf ≈ 2.2 GPa being adopted in the present study. Note that this value was also adopted by 

Taborda (2011) when simulating VELACS experiments, as described in Chapter 5. 
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8.3.2.3 Generation of the initial stress state 

Although it would have been possible to simulate a similar procedure to that employed in the 

centrifuge test (i.e. deposition of sand, followed by the placement of the shallow foundations 

and finally by the increase in centrifugal acceleration), such detail would not necessarily result 

in a more accurate initial stress state, while bringing excessive complexity to this phase of the 

calculation (Taborda, 2011). Therefore, a methodology similar to that followed by this author 

during the generation of the initial stress state of VELACS model 12 (Section 5.3.2.2.4) was 

employed in the present study, consisting of the use of a gravity loading procedure, in which 

body (or gravity) forces are applied to the elements of the mesh, which are considered 

weightless at the start of the analysis – for further details on this procedure, refer, for 

example, to Potts and Zdravkovic (1999). Naturally, the body forces are computed by 

multiplying the mass density of each material by the acceleration of gravity (in this analysis, 

g ≈ 9.81 m/s2 since the model was reproduced in prototype scale). Concurrently, a 

hydrostatic pore pressure profile, characterised by a linear variation between a value of u =

0.0 kPa at the surface of the sand deposit and u = 
pf

 H = 9.81× 18.0 ≈ 176.6 kPa at its 

bottom, was introduced in the analysis. Note that, according to experimental studies on 

methylcellulose conducted by Stewart et al. (1998), the mass density of this fluid is very 

similar to that of water, thus justifying the use of 
pf
≈ 

w
≈ 9.81 kN/m3 in the definition of 

the pore pressures. Having defined the total stresses and pore pressures, the effective 

stresses were computed by using Terzaghi’s principle of effective stress. 

Similar, once more, to the methodology used by Taborda (2011) to the generation of the 

initial stress state of VELACS model 12 (Chapter 5), a linear isotropic elastic model was 

employed during this phase of the analysis to model the responses of both sand deposit and 

shallow foundations, with uniform stiffness parameters being adopted to limit the occurrence 

of significant shear stress localisations at the sand-structure contact (which would likely have 

a detrimental impact on the subsequent dynamic phase). More specifically, a shear modulus 

of G = 76.9 GPa (corresponding to that assigned for the shallow foundation during the 

dynamic calculation) and a Poisson’s ratio of  = 0.333 were selected. It is perhaps important 

to note that the particular value selected for the shear modulus during this initial phase is not 

important, since obtained displacements were reset to zero before the start of the following 

dynamic phase. With respect to the value of Poisson’s ratio, it was particularly chosen to 

obtain a coefficient of earth pressure at rest (i.e. ratio of horizontal to vertical effective 

stresses at rest), K0, close to 0.50 in the zones of the deposit far from the influence of the 

shallow foundations. In fact, by assuming zero lateral strain, these quantities are related by 

the theory of isotropic elasticity through Equation 8.7 (e.g. Bowles, 1996): 

K0 =


1.0 − 
=

0.333

1.0 − 0.333
≈ 0.50 (8.7) 
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Moreover, to limit the occurrence of large shear stresses in the sand deposit, the Mohr-

Coulomb failure criterion was used together with the linear elastic model for this material, 

with a friction angle of  ′ = asin {3.0 Mc
c (6.0+ Mc

c)⁄ } = asin {3.0× 1.265 (6.0+ 1.265)⁄ } ≈

31.5°, an apparent cohesion of c′ = 0.0 kPa and a dilatancy angle of  = 0.0° being adopted. 

In terms of boundary conditions, standard displacement boundary conditions for static 

analyses were applied during this phase, consisting of restricting the horizontal displacements 

along the lateral boundaries of the model, as well as horizontal and vertical displacements of 

the nodes belonging to the bottom boundary of the model. No restrictions needed to be 

applied to the pore fluid, since, during this phase, the sand deposit was considered to respond 

in fully drained conditions (i.e. no excess pore pressures were generated in the deposit during 

this phase). 

Clearly, the aforementioned methodology implies that the mass densities of all materials are 

known beforehand, allowing for the determination of the body forces of each element 

according to the mesh geometry. As explained before, due to impossibility of reproducing the 

3D nature of the problem in a 2D plane strain analysis, a procedure is required to estimate 

the value of the mass density of the strip shallow foundations resulting in a stress state similar 

to that computed in a 3D analysis. Although other strategies could have been followed (such 

as using another FE code to perform comparative 2D plane strain and 3D analyses), in the 

present study, the solutions of the theory of elasticity were employed to obtain a comparison 

between the vertical stress change in the interior of a homogeneous, isotropic and elastic 

semi-infinite space induced by a vertical load uniformly distributed over a square 3.0×3.0 m2 

area (corresponding to the base of both heavier and lighter shallow foundations) and that 

imposed by a vertical load uniformly distributed over a 3.0 m-wide strip area (corresponding 

to the 2D plane strain assumption). In particular, while the solutions derived by Carothers 

(1920) were directly used to determine the vertical stress increment induced by the strip 

loading in any point of a domain, a more elaborate procedure was required to determine the 

vertical stress increment induced by the square loading. Specifically, after applying the 

solutions derived by Giroud (1970) to determine the vertical stress change under the corner 

of the square 3.0×3.0 m2 loaded area, the method of superposition (which is valid for a 

homogeneous, isotropic and elastic semi-infinite space) was employed to determine the 

vertical stress change in other points of the domain. For brevity, and taking into account that 

the analytical solutions derived by Carothers (1920) and Giroud (1970) are widely published 

in the literature (e.g. Poulos and Davis, 1974), the mathematical expressions are not 

presented here. 

Figure 8.33 depicts the elastic vertical stress increment normalised by the magnitude of the 

surface load obtained for three different vertical alignments coincident with the centre, 

middle right point and right extremity of the loaded area (which, for the heavier shallow 

foundation, coincide with x = 10.0, 10.75 and 11.5 m, respectively, while, for lighter shallow 
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foundation, coincide with x = 23.5, 24.25 and 25.0 m, respectively). It can be seen that, apart 

from the elevation at which the load is applied (i.e. at y = 18.0 m), for which identical values 

are obtained for both square and strip loading, the vertical stress increment induced by the 

strip loading is consistently larger than that induced by the square loading, as expected. 

Furthermore, it is apparent that the largest discrepancies in terms of normalised stresses 

between both sets of data is observed for levels in the range of 15.0 m ≥ y ≥ 10.0 m (i.e. 

approximately from 3.0 m to 8.0 m below the loaded area). 

Naturally, the different stress changes imposed by the square and strip loadings are likely to 

induce different settlements in the sand deposit. By using, once more, the solutions of the 

theory of elasticity (e.g. Timoshenko and Goodier, 1951; Bowles, 1996), it is possible to obtain 

a comparison of the immediate settlements to be expected when vertical uniform square and 

strip loadings are applied at the surface of an homogeneous, isotropic and elastic semi-infinite 

space. Note that, according to those analytical solutions (please refer to the aforementioned 

references for further details), the settlement is a function of the value of the loading, the 

dimensions of the loaded area, the base embedment depth (which, in this case, is null), the 

thickness of the deposit and its elastic stiffness properties (e.g. shear modulus and Poisson’s 

ratio). Nevertheless, since the intention is solely to compare the ratio of the settlements 

produced by different loading types, it should be noted that the exact values of the elastic 

stiffness parameters adopted in the analysis are not relevant, providing that identical values 

are employed in both calculations (i.e. for the two different loading types). Similarly, the 

precise value of the load is not important, providing that a unique value is used in both 

computations. In relation to the thickness of the deposit, as suggested by Bowles (1996), 

rather than using its entire thickness (H = 18.0 m), it was assumed, in both computations, 

that the influence of the thickness of the deposit is limited to a depth of about Hinfl = 5 B, 

where B is the width of the foundation. Since B = 3.0 m, it follows that Hinfl = 15.0 m was 

considered in the present study. 
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Figure 8.33 – Normalised vertical stress increment induced in an elastic domain by a uniform 
square loading and by a uniform strip loading with identical magnitude for three different vertical 
alignments coincident with: (a) centre, (b) right middle point and (c) right edge of the loaded area. 

Having applied the aforementioned methodology, Figure 8.34 depicts the ratio of the 

immediate settlement caused by a uniform vertical strip loading to that resulting from a 

uniform vertical square loading, particularly at the following three points of the deposit 

surface: centre of the loaded area; middle right point of the loaded area and extremity of the 

loaded area. As expected, it can be observed that the settlements obtained for the strip 

loading largely exceed those corresponding to the square loading. Specifically, it can be seen 

that the ratio of settlement for the centre point of the loaded area is about 1.682 greater 

when a strip loading is applied. This ratio is further increased to the side of the loaded area, 

with a ratio of 1.929 being obtained at the extremity of the loaded area. 
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Figure 8.34 – Ratio of the immediate surface settlement induced by a uniform strip loading to that 

caused by a uniform square loading computed using elastic solutions. 

By employing a methodology similar to that followed by Popescu and Prevost (1993) for the 

estimation of the load reduction to be considered in numerical simulation of the VELACS 

model 12 (Section 5.3.2.2.4), a load reduction factor of  = (1.0 − 1.0/1.682) × 100 ≈ 40.6% 

is required to obtain a similar immediate settlement at the centre point for both types of 

loading. Interestingly, even though Popescu and Prevost (1993) estimated the reduction load 

factor by comparing the settlements registered in a 2D plane strain FE analysis with those 

obtained in a 3D FE analysis, rather than by employing analytical elastic solutions, the 

reduction factor reported by the authors for VELACS model 12 ( = 36.7%) is very close to 

that obtained in this case ( = 40.6%). Indeed, the reduction load factor suggested by 

Popescu and Prevost (1993) for VELACS model 12 was adopted by Taborda (2011) and 

Andrianopoulos et al. (2010a) for the numerical simulation of VELACS model 12, allowing for 

a very good numerical prediction of the surface settlements registered during dynamic 

loading in the centrifuge experiment. Therefore, although a more refined procedure could 

have been employed, a load reduction factor of  ≈ 40.6% was considered appropriate. This 

reduction leads to a maximum vertical stress increment applied by the heavier shallow 

foundation (with a height of h =  1.225 m) and by the lighter shallow foundation (with a 

height of h =  0.75 m) to the underlying sand deposit of, respectively, v
∗ ≈ (1.0−

0.406) × 95.0 ≈  56.4 kPa and v
∗ ≈ (1.0− 0.406) × 58.0 ≈  34.5 kPa. Given Equation 8.6, 

this means that a mass density of  ≈ 4.7 g/cm3 was considered for both heavier and lighter 

shallow foundations in the numerical analysis. 

To gain insight into the impact of the obtained load reduction, Figure 8.35 compares the 

vertical stress increment induced by a uniform square loading of magnitude q with that 

resulting from the application of a uniform strip loading with reduced magnitude of qred =

(1.0 − ) q = (1.0− 0.406) q = 0.594 q. Once again, the comparison is performed for three 
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different vertical alignments coincident with the centre, middle right point and right extremity 

of the loaded area. 

  

 

 

Figure 8.35 – Normalised vertical stress increment induced in an elastic domain by a uniform 
square loading and by a uniform strip loading with reduced magnitude for three different vertical 
alignments coincident with: (a) centre, (b) right middle point and (c) right edge of the loaded area. 
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than that induced by the square loading at shallow depths (approximately for the first 3.0 m 

of depth), with the opposite trend being observed for deeper depths. 
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Having defined the mass density of the shallow foundations ( = 4.7 g/cm3, as indicated 

before), the previously described gravity loading procedure was employed to generate the 

initial effective stress state in the FE model. Figure 8.36 depicts the effective stresses obtained 

for four different vertical alignments located on the left side of the model: x = 1.25 m (i.e. 

close to the left boundary of the model), x = 4.75 m (i.e. at approximately half distance from 

the centre of the heavier shallow foundation to the left boundary of the model), x = 9.25 m 

(i.e. at the left middle point of the heavier shallow foundation) and x = 10.75 m (i.e. at right 

middle point of the heavier shallow foundation). For comparison, the vertical effective 

stresses computed by using the solutions of the theory of elasticity for a strip loading 

(Carothers, 1920; Poulos and Davis, 1974) are also depicted in the figure. It is apparent that 

the vertical effective stress distribution computed by FEMEPDYN match well that obtained by 

using elastic solutions. It is also interesting to note in Figure 8.36 that, as expected, the 

shallow foundation has a much stronger influence on the computed vertical effective stresses 

than on the horizontal effective stresses (note that the scale of vertical effective stress is 

double of those corresponding to the horizontal effective stresses). 

Regarding the right side of the model, the computed effective stresses are presented in Figure 

8.37 for four different vertical alignments: x = 22.75 m and x = 24.25 m (i.e. at the left and 

right middle points of the lighter shallow foundation, respectively), x = 28.75 m (i.e. at half 

distance from the centre of the lighter shallow foundation to the right boundary of the model) 

and x = 32.25 m (i.e. close to the right boundary of the model). Note that these vertical 

alignments are symmetric to those used to inspect the effective stresses under the left 

shallow foundation of the model about the axis corresponding to the middle of the model. 

Once again, the vertical effective stresses computed by FEMEPDYN agree very well with those 

obtained from the solutions of the theory of elasticity. By comparing the results presented in 

this figure with those shown in Figure 8.36, it is apparent that the effective stresses induced 

by the lighter shallow foundation are significantly smaller than those induced by the heavier 

one, as expected. 
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Figure 8.36 – Computed initial effective stresses for four different vertical alignments located on 

the left side of CM-A: (a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) shear 
stress; (d) horizontal (out-of-plane) effective stress. 
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Figure 8.37 – Computed initial effective stresses for four different vertical alignments located on 

the right side of CM-A: (a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) 
shear stress; (d) horizontal (out-of-plane) effective stress. 
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Figure 8.38 – Computed initial effective stresses for four different horizontal alignments of CM-A: 
(a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) shear stress; (d) horizontal 

(out-of-plane) effective stress. 
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33.5 m). Similarly, the impact of the shallow foundations on the effective stresses obtained in 
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zones under the shallow foundations (i.e. zones approximately delimited by 8.5 m ≤ x ≤

11.5 m and by 22.0 m ≤ x ≤ 25.0 m.) are only about 10 % higher than those obtained in the 

remaining deposit of sand (i.e. to the sides and middle of the model). Furthermore, at the 

bottom depth (i.e. y = 0.5 m), the influence of the shallow foundations on the initial effective 

stresses seem practically negligible, as also expected. Indeed, this seems to support the 

assumption made when estimation the load reduction, , that only part of the sand deposit 

is contributing to the occurrence of immediate settlements, as suggested by Bowles (1996). 

As pointed out by Taborda (2011), since the modelled response of sand is greatly influenced 

by its stress ratio ( = q p'⁄ , in the triaxial stress space), it is also important to analyse the 

initial stress state in terms of deviatoric stress, q, – mean effective stress, p’. Note that the 

invariants q and p’ are given by Equation 8.8 and Equation 8.9, respectively. 

 p' =
'xx + 'yy + 'zz

3
 (8.8) 

 q =
1

√2
√(′xx − ′yy)

2
+ (′yy − ′zz)

2
+ (′zz − ′xx)2 + 6 (xy

2 + xz
2 + yz

2) (8.9) 

Moreover, the stress ratio, , can be related to the coefficient of earth pressure at rest, K0, 

through Equation 8.10 (which assumes, as a simplification, triaxial loading conditions). 

 =
q

p'
=

'yy − 'xx

'yy + 2 'xx

3

=
3 (1 − K0)

1 + 2 K0
 (8.10) 

Figure 8.39 depicts the q – p’ profiles for Gauss points located along the previously analysed 

four vertical alignments located on the left side of the model (i.e. x = 1.25 m, x = 4.75 m, x =

9.25 m and x = 10.75 m) and four vertical alignments located on the right side of the model 

(i.e. x = 22.75 m, x = 24.25 m, x = 28.75 m and x = 32.25 m). A line corresponding to the 

critical state (CS) strength in triaxial compression (TC), i.e.  = Mc
c = 1.265 ⇔ K0 ≈ 0.26 

(Equation 8.10), one corresponding to the coefficient of earth pressure at rest of K0 = 0.50 ⇔

 ≈ 0.75 and another one corresponding to the stress ratio of  = 0.55 ⇔ K0 ≈ 0.60 are also 

plotted in the figure. It can be observed that the effective stress states at the majority of the 

Gauss points located along the vertical alignments farther away from the influence of the 

shallow foundations (i.e. along x = 1.25 m, x = 4.75 m, x = 28.75 m and x = 32.25 m) are 

characterised by stress ratios close to  = 0.75 ⇔ K0 = 0.50, as intended by adopting a linear 

elastic isotropic model coupled with the Mohr-Coulomb failure criterion and a Poisson’s ratio 

of  = 0.333 during this phase of the analysis. Conversely, larger stress ratios were, in general, 

obtained for Gauss points located underneath the shallow foundations (i.e. along x = 9.25 m, 

x = 10.75 m, x = 22.75 m and x = 24.25 m). 
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Figure 8.39 – Computed initial stress state in terms of deviatoric stress as a function of the mean 

effective stress at Gauss points located along four different vertical alignments located on: (a) the 
left side of CM-A and (b) right side of CM-A. 

Further insight into the initial stress state is provided in Figure 8.40, which depicts the stress 

ratio, , – state parameter,  = e − ecs, profiles obtained for Gauss points located along x =

9.25 m and x = 24.25 m (i.e. underneath the heavier and lighter shallow foundations, 

respectively), together with dilatancy stress ratio,  = M
d (Equation 8.12), and critical state 

(CS) stress ratio,  = M
c  (Equation 8.11), – state parameter, , profiles predicted by the 

constitutive model at those points. 

M
c = g(, cc) Mc

c (8.11) 

M
d = M

c + g(, cd) kc
d  = g(, cc) Mc

c + g(, cd) kc
d  = M

c + g(, cd) kc
d  (8.12) 

where: 

 Mc,e
d = Mc,e

c + kc,e
d   = Mc,e

c + kc,e
d  (e− (ecs)ref +  (

p′

p′ref
)



) (8.13) 

 g(, cc,d) =
2 cc,d

1 + cd,c,b

2  −  
1 − cc,b

2  cos(3)
− [

1+ cc,d

2
+ 

1 − cc,b

2
 cos(3)] (8.14) 

 cos(3) = (
3 √3

2
 

J3

(J2)
3 2⁄
) (8.15) 

 cc,d =
Me

c,d

Mc
c,d (8.16) 

and J2 and J3 are, respectively, the modified second and third invariants of the effective stress, 

given by: 
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J2 = 1 2⁄ r̄ : r̄ =
1

6
 [(r̄xx − r̄yy)

2
+ (r̄yy − r̄zz)

2
+ (r̄zz − r̄xx)

2] + r̄xy
2 + r̄xz

2 + r̄yz
2 (8.17) 

J3 = det r̄ = r̄xx r̄yy r̄zz − r̄xx r̄yz
2 − r̄yy r̄xz

2 − r̄zz r̄xy
2 + 2 r̄xy  r̄yz r̄yz (8.18) 

with the radial tensor, r̄, being given by the difference between the stress ratio tensor, r, and 

the back-stress tensor, : 

 r̄ = r−  (8.19) 

 r =
s

p′
=

[
 
 
 
 
 
 
′xx − p′

p′

xy

p′

xz

p′

yx

p′

′yy − p′

p′

yz

p′

zx

p′

zy

p′

′zz − p′

p′ ]
 
 
 
 
 
 

 (8.20) 

  = [

xx xy xz

yx yy yz

zx zy zz

] (8.21) 

It is apparent that, although located inside both dilatancy and critical surfaces, the initial 

stress states obtained for Gauss points located at shallower depths (characterised by larger 

negative values of  = e − ecs, as a result of the smaller mean effective stresses and, 

consequently, larger values of ecs) are closer to the dilatancy surface than the initial stress 

points corresponding to deeper zones of the deposit of sand. These Gauss points will likely 

exhibit a smaller tendency to contract (and, therefore, to generate positive excess pore 

pressures under undrained conditions) when subjected to dynamic loading. 

  
Figure 8.40 – Mobilised, dilatancy and critical state stress ratios as a function of the state 

parameter at Gauss points located along: (a) a vertical alignment crossing the heavier shallow 
foundation of CM-A and (b) a vertical alignment crossing the lighter shallow foundation of CM-A. 
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The state parameter profiles for Gauss points located along the four different horizontal 

alignments that have been recurrently used to analyse the results of this initial phase (i.e. y =

0.50 m, y = 9.50 m, y = 14.50 m and y = 17.50 m) are depicted in Figure 8.41. Note that the 

position of the ground surface, in terms of the value of the state parameter, is merely 

indicative, corresponding to a mean effective stress of 1.0 kPa (which is the lower limit 

imposed by the low-stress yield surface). It can be observed that the values of the state 

parameter vary within the range of -0.17 to -0.11. By comparing these values with those 

characterising the initial state of moderately loose samples subjected to undrained cyclic 

triaxial testing (Section 3.4), it can be concluded that the laboratory test programme was able 

to cover the initial states of different zones of the sand deposit of CM-A, as intended. 

 
Figure 8.41 – Computed initial state parameter for Gauss points located along four different 

horizontal alignments of CM-A. 
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foundations. This suggests that any of described procedures would be acceptable to generate 

the initial stress state. In the present case, the results obtained when employing the gravity 

loading procedure were adopted for the subsequent dynamic phase. 

  

 
 

Figure 8.42 – Comparison of the initial effective stresses computed by using a gravity loading 
procedure with those obtained when using a staged construction procedure for CM-A: 

(a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) shear stress; (d) horizontal 
(out-of-plane) effective stress. 
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8.3.2.4 Dynamic analysis 

8.3.2.4.1 Horizontal acceleration time-histories 

The horizontal acceleration time-histories computed at several different positions located 

along a vertical alignment coincident with the axis of the heavier shallow foundation (x =

10.0 m) are compared with those recorded in the centrifuge experiment in Figure 8.43. Note 

that, to ease their visualisation and comparison, all experimental and numerical signals 

presented in this section were filtered using SeismoSignal version 2018 (Seismosoft, 2018), 

specifically by employing a fourth-order Butterworth-type filter with limit frequencies of 0.1 

and 25 Hz. At the bottom of the sand deposit (i.e. at (x, y) = (10.0, 0.5) m), small 

discrepancies between the experimental and numerical sets of results can be observed, in 

terms of both amplitude and time of occurrence of the peak accelerations. These small 

discrepancies are likely a detrimental consequence of the approximations required to 

compute the input motion (Section 8.3.1.2). These inaccuracies seem also to affect the 

computed response at (x, y) = (10.0, 6.5) m, where the computed peak accelerations appear 

to be slightly smaller than those registered in the experiment. For the upper levels of the 

deposit (i.e. at (x, y) = (10.0, 12.0) m and (x, y) = (10.0, 17.0) m), the agreement between 

numerical and experiment sets of data appears to be overall satisfactory. Indeed, at these 

shallow depths, it is particularly interesting to note that the numerical model was able to 

predict the reduction of the amplitudes of the accelerations after the first coupled of 

significant loading cycles, with the agreement being particularly remarkable at (x, y) =

(10.0, 12.0) m. As mentioned before, this significant alteration of the motion is probably the 

result of the severe reduction of the stiffness of the sand deposit and increase in material 

damping, occurring concurrently with the generation of large excess pore pressures and, 

consequently, significant reduction of the effective stresses. 

In addition, Figure 8.44 compares the computed and measured horizontal acceleration time-

histories at the top left edge of the heavier shallow foundation (i.e. at (x, y) =

(8.5, 19.225) m), as well as at the top position within the underlying sand deposit (i.e. at 

(x, y) = (10.0, 17.0) m). It can be seen that a reasonable agreement between numerical and 

experimental data was obtained in terms of the amplitude of the accelerations, perhaps with 

the exception of the period ranging from 11.0 s to 14.0 s (i.e. from the third to the fifth 

significant loading cycles) during which the accelerations obtained in the numerical analysis 

are higher than those measured in the experiment. This might be a detrimental consequence 

of the approximations required to simulate the 3D nature of the problem in a 2D plane strain 

analysis, with the discrepancies between the effective stress state obtained in a 3D analysis 

and those obtained in a 2D plane strain analysis being particularly evident at shallow depths, 

as described in Section 8.3.2.3. In addition, there appears to exist a small time delay between 

the modelled and measured response at both monitoring positions. Since this small time 

delay is also observed for the motion registered at (x, y) = (10.0, 12.0) m (Figure 8.43), it 
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might be related to the small underestimation of the rate of excess pore pressure build-up 

during the earlier stages of loading at that monitoring position, as discussed in more detail 

later. 

 

 

 

 
Figure 8.43 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the heavier shallow foundation for 

CM-A. 
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Figure 8.44 – Measured and computed horizontal acceleration time-histories at the top of the 

heavier shallow foundation and underneath it for CM-A. 
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particularly noteworthy the fact that the numerical tool is able to reproduce adequately the 

attenuation of the motion at that level after the first two significant loading cycles, as 

observed in the experiment. 
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Figure 8.45 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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between numerical and experimental data registered at the top of the shallow foundation is 

much less satisfactory than that reached for motions registered within the sand deposit, with 

the accelerations computed at the top of the shallow foundation being underestimated in 

relation to those measured in the experiment. This suggests that the numerical tool was not 

able to capture adequately the strong effect of the different masses of the shallow 

foundations on the horizontal accelerations propagated through them, as reported by 

Marques et al. (2012a). In effect, by comparing the results presented in Figure 8.46 and Figure 

8.44, it can be concluded that peak horizontal accelerations with similar amplitude were 

obtained at the top of both heavier and lighter shallow foundations in the numerical analysis, 

while in the experiment much larger peak accelerations were measured at the top of the 

lighter shallow foundation than those recorded at the top of the heavier one. This aspect 

might require further investigation in the future. 

 

 
Figure 8.46 – Measured horizontal acceleration time-histories at the top of the lighter shallow 

foundation and underneath it for CM-A. 
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t ≈ 14 s in relation to that recorded during the experiment, suggesting that the constitutive 

model might have overestimated the increase in damping of the sand deposit at that location. 

 

 

 

 
Figure 8.47 – Measured and computed horizontal acceleration time-histories at several positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 
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foundation (i.e. at (x, y) = (8.5, 19.225) m and (x, y) = (11.5, 19.225) m, respectively), 

together with those measured in the centrifuge experiment. 

 

 

 
Figure 8.48 – Measured and computed vertical acceleration time-histories at the base of the model 

and at the left and right top edges of the heavier shallow foundation for CM-A. 
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presentation, only the results obtained for the period ranging from 15 s to 20 s are presented 

in the figure. Nevertheless, a similar pattern is observed for the remaining period of cyclic 

loading. It is apparent that, although having similar amplitudes, some local peaks occur out of 

phase, suggesting that rocking motion was simulated in the numerical analysis. This aspect 

can be more clearly observed in Figure 8.50, which compares the semi-sum (i.e. average 

values) and semi-difference of the vertical accelerations computed at (x, y) =

(8.5, 19.225) m and (x, y) = (11.5, 19.225) m during the same period. It can be seen that, 

due to the out-of-phase occurrence of local peaks, the semi-difference of vertical acceleration 

time-history presents some peaks, indicating the occurrence of oscillations. It should be 

noted, however, that the magnitude of these oscillations can be considered small (at least, 

when compared to the very large settlements), with a permanent rotation of the shallow 

foundation of about 0.5° being obtained at the end of dynamic loading, as shown later. 

 
Figure 8.49 – Computed vertical acceleration time-histories at the left and right top edges of the 

heavier shallow foundation during the period ranging from 15 s to 20 s for CM-A. 

 
Figure 8.50 – Semi-sum and semi-difference of the vertical accelerations computed at the left and 
right top edges of the heavier shallow foundation during the period ranging from 15 s to 20 s for 

CM-A. 
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right top edges of the shallow foundation (i.e. (x, y) = (22.0, 18.75) m at  and (x, y) =

(25.0, 18.75) m, respectively), reveals that, although having similar amplitudes, some local 

peaks occur out-of-phase (Figure 8.52). This suggests the occurrence of oscillations during 

dynamic loading. Nevertheless, as noted for the heavier shallow foundation, the amplitude of 

these oscillations can be considered small, with a permanent rotation of about 0.7° being 

obtained at the end of dynamic loading for the lighter shallow foundation, as shown later. 

 

 
Figure 8.51 – Measured and computed vertical acceleration time-histories at the left and right top 

edges of the lighter shallow foundation for CM-A. 

 
Figure 8.52 – Computed vertical acceleration time-histories at the left and right top edges of the 

lighter shallow foundation during the period ranging from 15 s to 20 s for CM-A. 
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vertical accelerations computed at the edges of the shallow foundations occur at similar 

instants of time, suggesting that the shallow foundations oscillated in phase. As highlighted 

before, although an out-of-phase oscillation of the shallow foundations was observed in the 

centrifuge experiment, this was probably the result of a non-intentional rocking motion 

imposed to the entire centrifuge model during the experiment and, therefore, not a physical 

mechanism introduced by the sand-structure system during the experiment. 

 
Figure 8.53 – Computed vertical acceleration time-histories at the left edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 

 
Figure 8.54 – Computed vertical acceleration time-histories at the right edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 
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Figure 8.55 – Computed and measured excess pore pressure build-up at two different positions 
located along a vertical alignment coincident with the axis of the heavier shallow foundation for 

CM-A. 

 

 
Figure 8.56 – Computed and measured excess pore pressure build-up at two different positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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excess pore pressure build-up during the first half of the shaking period (until t ≈ 20.0 s). The 

agreement between numerical and experimental results is slightly less satisfactory for the 

subsequent shaking period, with the numerical model slightly underpredicting excess pore 

pressures. Conversely, at the shallowest level of both vertical alignments (i.e. at (x, y) =

(10.0, 17.0) m and (x, y) = (23.7, 17.0) m), the opposite trend appears to be observed, with 

the constitutive model generally overestimating the excess pore pressures with dynamic 

loading, particularly during the first half of the shaking period. This overestimation might be 

a detrimental consequence of the simplification of the 3D nature of the problem by assuming 

2D plane strain conditions. In effect, as discussed in Section 8.3.2.3, the 2D plane strain 

simplification appears to result in a slight underestimation of the effective stresses induced 

in the zones of the deposit immediately underneath the shallow foundations. It is, therefore, 

possible that, at those locations, the effective stress points are slightly farther away from the 

dilatancy surface than they would likely be in a full 3D model, implying that a higher tendency 

to contract and, therefore, to generate greater positive excess pore pressures under 

practically undrained conditions might have been simulated. 

Greater discrepancies between numerical and experimental data are observed during the 

consolidation phase (i.e. phase during which excess pore pressure dissipation occurs), with 

the constitutive model significantly overpredicting the rate at which dissipation occurs. This 

undesirable aspect was also observed by Taborda (2011) when simulating the centrifuge 

experiments VELACS model 1 and VELACS model 12. As highlighted by the author, due to its 

open yield surface formulation, the constitutive model tends to largely overestimate the 

stiffness under stress paths characterised by approximately constant stress ratios – which are 

likely to occur after the end of shaking (i.e. during the consolidation phase) – and, therefore, 

to overpredict the rate of excess pore pressure dissipation during that stage. Consequently, 

the numerical tool is unable to reproduce the increase of excess pore pressure observed after 

the end of shaking in the centrifuge experiment, eventually overestimating the bearing 

capacity of the sand deposit during this phase of the experiment. Note that this pitfall of the 

constitutive model has been also identified when simulating drained isotropic compression 

tests, which are characterised by constant stress ratio loading (Section 7.2.1.4.1). 
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Figure 8.57 – Computed and measured excess pore pressure build-up at three different positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 

The computed evolutions of the excess pore pressures with time at three different levels 

located along a vertical alignment coincident with the middle of the model (x = 16.0 m in the 

numerical model) are shown in Figure 8.57, together with those registered in the experiment. 

Similar to what was observed for the vertical alignments coincident with the axes of the 

shallow foundations, the numerical model appears to overpredict slightly excess pore 

pressure generation at the shallowest position (i.e. at (x, y) = (16.0, 17.0) m) during the first 

half of shaking, while slightly underestimating this aspect at the deeper levels, particularly at 

(x, y) = (16.0, 0.5) m. In addition, it is apparent that the excess pore pressure dissipation in 

the numerical model is much faster than that measured in the experiment, as also observed 

for the positions under the shallow foundations. Nevertheless, as observed experimentally, 

the dissipation of excess pore pressures is observed to start earlier at the deepest levels of 

the sand deposit, suggesting that the numerical tool was able to reproduce the upward flow 

of water typically observed during the consolidation phase in this type of problems. 
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The computed excess pore pressures at t = 37.5 s (approximately corresponding to the end 

of shaking) are illustrated in Figure 8.58. Note that this contour plot was obtained by using 

the post-processing module of the software GiD version 7.2 (GiD, 2002). Details about the 

integration of FEMEPDYN with GiD can be found in Grazina (2009). As expected, the largest 

excess pore pressures, with values close to 140 kPa, are obtained at the bottom of the model, 

due to the highest effective stresses existing at that location at the start of the analysis, as 

well as largest distance to the ground surface, which consists of a seepage hydraulic boundary 

condition of the model (i.e. a boundary where water can flow in or out freely). Interestingly, 

apart from the very deep zones of the deposit, the lines of identical excess pore pressures are 

relatively horizontal, meaning that similar excess pore pressures are generated below the two 

shallow foundations, despite the different stress levels induced by the shallow foundations in 

the sand deposit. This aspect seems to agree with the experimental observations, since very 

similar excess pore pressures at the end of dynamic loading were measured at the following 

three monitoring positions: (x, y) = (10.0, 12.0) m (i.e. under the heavier shallow 

foundation), at (x, y) = (16.85, 12.0) m (i.e. in between both shallow foundations) and at 

(x, y) = (23.7, 12.0) m (i.e. under the lighter shallow foundation). 

 

 

Figure 8.58 – Excess pore pressures (in kPa) at the end of dynamic loading (t = 37.5 s) for CM-A. 

In addition, Figure 8.59 illustrates the excess pore pressure ratio, ru, obtained in the numerical 

analysis at t = 37.5 s (i.e. approximately at the end of shaking). Although other possibilities 

would exist, for consistency with the definition used in laboratory testing, ru is defined as the 

ratio of the excess pore pressure, u, to the initial vertical effective stress, ’v,0. It can be 

observed that, apart from the zone below the shallow foundations (having higher initial 

effective stresses), large values of ru (in general, above 0.7) are obtained at the end of shaking 

in the model. This seems to agree well with the experimental results, where large excess pore 

pressures, with magnitudes similar to those of the initial vertical effective stress, were 
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measured at every monitoring position located along the alignment coincident with the 

middle of the model (x = 16.0 m in the numerical model), even at the bottom of the sand 

deposit (i.e. at (x, y) = (16.0, 0.5) m), while not reaching the values of the initial vertical 

effective stresses below the shallow foundations. 

 

 

Figure 8.59 – Excess pore pressure ratio at the end of dynamic loading (t = 37.5 s) for CM-A. 

8.3.2.4.4 Settlements 

The computed evolutions of settlements during shaking and shortly after its end at the top of 

the heavier and lighter shallow foundations (i.e. at (x, y) = (10.0, 19.225) m and (x, y) =

(23.7, 18.75) m, respectively) are compared with those measured in the experiment in Figure 

8.60. It can be observed that the onset of deformation occurs slightly later in the numerical 

model than in the centrifuge experiment, probably due to the approximations required to 

estimate the input signal used in the numerical analysis, as well as due to the small 

underprediction of the excess pore pressure build-up during the earlier stages of loading 

(particularly observed at (x, y) = (10.0, 12.0) m and (x, y) = (23.5, 12.0) m), likely resulting 

in a small overprediction of the stiffness of the sand deposit during that early stage. 

Moreover, it can be observed that the rate of settlement obtained in the numerical analysis 

during shaking is slightly higher than that measured in the experiment, leading to a slight 

overestimation of the magnitude of settlement occurring during that phase of the experiment 

(of about 23 and 9 % for the heavier and lighter shallow foundations). Nevertheless, 

considering the complexity of the phenomena involved in this type of problems and the 

simplifications required to simulate this problem, it seems fair to mention that a good 

agreement between numerical and experimental data was reached during the application of 

dynamic loading. 
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Figure 8.60 – Computed and measured settlements at the top of the heavier and lighter shallow 

foundations during shaking and shortly after its end for CM-A. 

Perhaps unsurprisingly at this point, the agreement between computed and measured 

structural settlements occurring during the consolidation stage is much less satisfactory, with 

the numerical model underpredicting these settlements. As shown in Figure 8.61, this is 

particularly evident for the period ranging from t ≈ 36.0 s (corresponding to the end of 

shaking) to t ≈ 300.0 s, during which excess pore pressures were observed to increase 

significantly in the zones of the sand deposit immediately under the shallow foundations in 

the centrifuge experiment (Figure 8.55 and Figure 8.56). As mentioned before, this aspect is 

not properly simulated by the numerical model, with a significantly less excess pore pressure 

build-up in the zones of the deposit below the shallow foundations being registered after the 

end of shaking, probably justifying the underprediction of the settlements occurring during 

this stage of the analysis. As also pointed out before, this seems to be mainly a detrimental 

consequence of the open primary yield surface formulation adopted by the constitutive 

model, leading to the prediction of solely elastic response for stress paths characterised by 

approximately constant stress ratios. 

 
Figure 8.61 – Computed and measured settlements at the top of the heavier and lighter shallow 

foundations until the complete dissipation of the excess pore pressures for CM-A. 

Regarding the settlements registered at the surface of the sand deposit in between shallow 

foundations, it is apparent in Figure 8.62 that the deformation pattern obtained in the 

numerical analysis differs from that measured in the experiment. Specifically, while the 

numerical model predicts significant heave, the opposite trend (i.e. settlement / subsidence) 
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is observed in the experiment. These discrepancies seem to arise from the fact that a 

practically undrained response was obtained for sand during shaking, while the results 

measured in the experiment seem to indicate the occurrence of a partially drained response. 

In effect, as investigated in Section 8.3.2.5, this mismatch appears to be mainly explained by 

the inability of the numerical tool to predict the occurrence of a temporary increase in the 

hydraulic conductivity of the liquefied sand deposit during dynamic loading in relation to the 

value of this property measured in conventional laboratory tests (e.g. permeameter tests) – 

a phenomenon reported in similar centrifuge studies (e.g. Scott, 1986a; Coelho, 2007; Su et 

al., 2009) and numerically investigated by several authors when simulating VELACS model 1 

(Manzari and Arulanandan, 1993; Taiebat et al., 2007; Andrianopoulos et al., 2010a; Taborda, 

2011). In effect, although evidence on the mechanism responsible for this co-seismic increase 

of hydraulic conductivity is not available, Coelho (2007) suggested that the occurrence of 

transient cracks in the sand deposit under very low effective stresses and large vertical 

hydraulic gradients might be a plausible explanation. Indeed, this author suggested that the 

hydraulic conductivity of a homogeneous deposit of Leighton Buzzard sand might have 

increased by about twenty times of its original value during similar dynamic centrifuge tests, 

also intending to study liquefaction-related phenomena. This aspect was also studied by 

Taborda (2011), when reproducing VELACS model 1 (which was described in 

Section 5.3.2.2.3). This author demonstrated that the co-seismic settlements registered in the 

free-field in this type of problems are largely controlled by the value of the hydraulic 

conductivity adopted for the material in the numerical analysis, with the numerical tool 

largely underestimating the settlements observed in the free-field when the value measured 

in conventional element laboratory tests (in the case, permeameter test) is used in the 

simulation. Furthermore, based on a computational study, Taborda (2011) concluded that the 

hydraulic conductivity of Nevada sand might have reached a value of about six to seven times 

greater than its original value (i.e. measured in permeameter test) under dynamic excitation. 

Indeed, having proposed a simple non-linear hydraulic model describing the increase of the 

hydraulic conductivity of the sand deposit when large excess pore pressure ratios are 

obtained in the analysis, the author was able to match satisfactorily the settlements observed 

in the free-field. 
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Figure 8.62 – Computed and measured settlements at the ground surface in between the two 

shallow foundations during shaking and shortly after its end for CM-A. 

In addition, Figure 8.63 compares the ground settlement profile obtained at the end of the 

numerical analysis with that obtained from post-test measurements undertaken in the 

centrifuge facility after the complete dissipation of the excess pore pressures (Marques et al., 

2012a). Note that the post-test measurements shown in this figure are uniformly scaled to 

match the settlement of the heavier shallow foundation measured by the linear variable 

differential transducer (LVDT) located at (x, y) = (10.0, 19.225) m during the experiment (i.e. 

dy ≈ 112.0 cm at t ≈ 600.0 s). It is apparent that the numerical model predicts a movement 

of sand from the zones of the deposit under the influence of the shallow foundations to the 

zones farther from their influence (sides and middle of the model). Conversely, in the 

centrifuge experiment, the shallow foundations appear to have “punched through” the sand 

deposit, eventually getting partially buried in the sand deposit. Indeed, it is apparent that the 

change in volume of the sand deposit estimated from the ground settlement profile obtained 

in the numerical simulation is significantly smaller than that observed in the experiment. This 

aspect can be more clearly observed in Figure 8.64, which illustrates the numerical ground 

settlement profile at t = 37.5 s (i.e. approximately at the end of dynamic loading) and the 

corresponding change in volume of the sand deposit. It can be observed that the change in 

volume is only about 0.69 m2.m. Since the initial volume of the sand deposit is approximately 

603.0 m2.m, the co-seismic volumetric strain change of the whole sand deposit can be 

estimated as 0.11 %, suggesting that, during this phase, practically fully undrained response 

was modelled. Note that, although experimental information about the ground settlement 

profile at t = 37.5 s is not available, it seems reasonable to assume that it might have a similar 

shape to that illustrated in Figure 8.63, since the majority of the settlement were observed to 

occur concurrently with the application of loading and similar trends (including the 

occurrence of subsidence in between shallow foundations) were registered by the 

instrumentation used in the centrifuge test. In such case, the experimental co-seismic change 

in volume of the whole sand deposit could be estimated as 15.5 m2.m, which gives a co-

seismic volumetric strain change of 2.57 % (note that, to ease the visualisation, and since it 

would be simply obtained by scaling that presented in Figure 8.63, the experimental ground 

settlement profile and its corresponding change in volume are omitted from Figure 8.64). This 
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strongly suggests that, on the contrary to what was obtained in the numerical analysis, the 

sand deposit responded in partially drained conditions during the experiment. Indeed, as 

suggested before, a plausible explanation for the inability of the numerical tool to predict this 

type of response may reside on the fact that a constant value for the hydraulic conductivity 

of the sand deposit was considered in the numerical analysis, while the hydraulic conductivity 

of the sand deposit might have increased concurrently with the application of loading in the 

experiment. This aspect is further investigated in Section 8.3.2.5. 

 
Figure 8.63 – Numerical and experimental ground settlement profile after the complete 

dissipation of excess pore pressures for CM-A. 

 
Figure 8.64 – Numerical ground settlement profile at the end of dynamic loading (t = 37.5 s) and 

corresponding change in volume of the sand deposit for CM-A. 

Still regarding Figure 8.63, it can be seen that an excellent prediction of the rotation of the 

shallow foundations was obtained in the numerical analysis, being particularly relevant the 

ability of the numerical tool to capture the influence of the heavier shallow foundation on the 

deformation mechanism of the lighter one, as observed in the centrifuge experiment. 

Further insight into the deformation mechanism predicted in the numerical analysis is 

provided in Figure 8.65, which compares the deformed mesh at three different instants of 

time (t = 25, 37.5 and 50 s) with the undeformed mesh (i.e. model at t = 0 s). Note that the 

scale of the deformations is equal to that of the model geometry (i.e. a scale of 1.0 was used 

to plot the deformed meshes). Moreover, note that accumulated total displacement vectors 

(scaled by a factor of 3.0 to aid the presentation) are also displayed in the figure to highlight 
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the deformation mechanism. It is apparent that the shallow foundations progressively settle 

by pushing sand to the sides, as mentioned before. Moreover, it is interesting to observe that 

the deformation mechanism of the heavier shallow foundation (positioned on the left side) 

affects that of the lighter shallow foundation, with this latter one tending to move to the right, 

while slightly rotating. 

  
(a) t = 0 s (b) t = 25 s 

  
(c) t = 37.5 s (d) t = 50 s 

Figure 8.65 – Deformed mesh and displacement vectors at different instants of time for CM-A. 

8.3.2.4.5 Vertical effective stresses 

Due to the large excess pore pressure generated during dynamic loading, as well as pore fluid 

migration observed in this type of problems, which might compromise the bearing capacity 

of the foundations, it is of particular interest to inspect the evolution of the vertical effective 

stresses with time. With this purpose, Figure 8.66 illustrates the vertical effective stresses 

computed at six different instants of time: t = 0 s (corresponding to the start of the analysis), 

t = 25 s (corresponding to approximately half of the duration of dynamic loading), t = 37.5 s 

(at the end of dynamic loading) and t = 50, 75 and 125 s (three different instants of time of 

the consolidation phase). As expected, it can be observed that the effective vertical stresses 

decrease rapidly as dynamic loading starts, particularly in the zones of the model farther away 

from the shallow foundations (i.e. sides of the model and middle of the model). The fact that 

the effective stresses are not symmetric about an axis corresponding to the middle of the 

model at t = 25 s seems consistent with the direction of the displacement of the shallow 

foundations, which appear to be slightly inclined to the right, as previously illustrated in Figure 

8.65. Moreover, it can be seen that, slightly after the end of dynamic (i.e. at t = 37.5 s), very 
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low effective stresses exist practically in the whole model, apart from the zones immediately 

underneath the shallow foundations. This is, indeed, consistent with the excess pore pressure 

ratios obtained in the numerical analysis at that instant of time (Figure 8.59). As dynamic 

loading ceases and dissipation of excess pore pressures occurs, the effective vertical stresses 

progressively increase from bottom to the top of the model, as also expected. Note that 

similar trends are observed for the horizontal effective stresses. 

  

 

 

(a) t = 0 s (b) t = 25 s  

  

 

(c) t = 37.5 s (d) t = 50 s  

  

 

(e) t = 75 s (f) t = 125 s  
Figure 8.66 – Vertical effective stresses (in kPa) at different instants of time for CM-A. 

8.3.2.5 Dynamic analysis with variable hydraulic conductivity 

8.3.2.5.1 Non-linear hydraulic model proposed by Taborda (2011) 

A comprehensive study on the influence of the hydraulic conductivity on the response of a 

level ground deposit of sand subjected to dynamic loading inducing cyclic mobility – VELACS 

model 1 (briefly described in Section 5.3.2.2.3) – was performed by Taborda (2011). 

Specifically, having observed that the numerical predictions largely underestimated both rate 

and magnitude of ground settlements observed in the centrifuge experiment, the author 

performed a series of finite element analyses adopting different hydraulic conductivities for 
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the sand deposit. The author verified that the increase in hydraulic conductivity of the sand 

deposit led to an increase in the rate and magnitude of settlements registered at the surface 

of the deposit. Furthermore, the author suggested that, although the increase in hydraulic 

conductivity may be insufficient by itself to describe accurately all aspects of the response of 

sand measured in the experiment (particularly in terms of observed excess pore pressures, as 

discussed later), it allows for a significantly better numerical reproduction of the settlements 

occurring in the free-field during dynamic loading. Indeed, the author proposed a simple non-

linear hydraulic model describing the variation of the hydraulic conductivity, k, with the 

excess pore pressure ratio, ru, as given by Equation 8.22 (note that, for simplicity of the 

presentation, the hydraulic conductivity is described in this equation as a one-dimensional 

property). 

k

k0
= 1.0+ (

kmax

k0
− 1.0) (

ru

ru
∗
)

nk

≤
kmax

k0
 (8.22) 

where k0 is the initial hydraulic conductivity (i.e. the value measured in conventional 

laboratory tests, such as in permeameter tests), kmax / k0 is the ratio of the maximum hydraulic 

conductivity reached in the experiment to its initial value, while, ru
∗ and nk are two additional 

model parameters with no physical meaning defining, respectively, the value of ru above 

which the hydraulic conductivity remains at its maximum value and the sharpness of its 

increase. 

As illustrated in Figure 8.67a, to obtain a steep variation of the hydraulic conductivity with 

the excess pore pressure ratio, a relatively large value for nk is required. Note, however, that 

the selected value should not be too large, otherwise numerical instabilities might arise 

during the numerical analysis. A value of nk = 10.0 was used by Taborda (2011) in the 

numerical simulation of VELACS model 1. In terms of ru
∗ (whose value is naturaly limited by 

the range of values admissible for the excess pore pressure ratio, i.e. between 0.0 and 1.0), 

Figure 8.67b shows that, the larger the value of ru
∗, the greater the value of ru required to 

increase the hydraulic conductivity. Note that ru
∗ = 0.9 was employed by Taborda (2011) in 

the numerical simulation of VELACS model 1, implying that the hydraulic conductivity 

remaining practically unaltered until ru < 0.7, while reaching its maximum for ru ≥ 0.9, as 

highlighted by the author. 
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Figure 8.67 – Effect of (a) nk and (b) ru

* on the variation of hydraulic conductivity with the excess 
pore pressure ratio (adapted from Taborda, 2011). 

With the main objective of studying the influence of this aspect on the numerical simulation 

of CM-A, particularly on the settlements obtained for the zone of the deposit located in 

between shallow foundations, the hydraulic model proposed by Taborda (2011) was 

implemented into FEMEPDYN. As such, rather than constant throughout dynamic loading, the 

hydraulic conductivity of each element of the sand deposit was varied according to 

Equation 8.22 during this phase of the analysis. Note that details about the mathematical 

formulation of the equation of motion, as implemented into FEMEPDYN, are omitted here, 

since a detailed description of this aspect can be found in Grazina (2009). Moreover, it should 

be highlight that, although it would have been possible to vary both cartesian components of 

the hydraulic conductivity during the numerical analysis (as performed, for example, by 

Taborda (2011) when simulating VELACS model 1), in the present study, only the vertical 

component, ky, was varied during the analysis. In effect, as suggested by Coelho (2007), 

although evidence of the physical mechanism governing the increase in hydraulic conductivity 

in a liquefied sand deposit during dynamic loading is not available, it seems reasonable to 

assume that transient cracks may occur in the sand deposit under very low effective stresses 

and large hydraulic gradients observed during this phase of the experiment. Indeed, since 

drainage is only possible through the surface of the sand deposit and, consequently, the 

upwards flow of water is mainly oriented along the vertical direction, it may be further 

assumed that the orientation of the cracks is mainly vertical, therefore, affecting mainly the 

vertical hydraulic conductivity of the sand deposit. 

In terms of model parameters, Equation 8.22 requires the selection of values for kmax / k0 

(which, as explained before, corresponds, in this case, to ky,max / ky,0), ru
∗ and nk. Starting by the 

last two model parameters, given the lack of experimental data which could be used to 

calibrate the proposed equation, the values employed by Taborda (2011) in the numerical 

simulation of VELACS model 1 were adopted in the present study: ru
∗ = 0.9 and nk = 10.0. 
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Regarding the first of these parameters, ky,max ky,0⁄ = 100.0 was assumed. Although it can be 

argued that this value is large, it should be noted that the main purpose of this study is solely 

to assess whether the inability of the numerical tool to reproduce accurately the response 

observed in between shallow foundations in CM-A (particularly in terms of measured surface 

settlements) may be justified by an increase in hydraulic conductivity of the sand deposit 

during dynamic loading, as suggested in the literature (Coelho, 2007; Taborda, 2011). 

Naturally, for all remaining model parameters, the values adopted in the previous simulation 

were also employed in this analysis (Section 8.3.2.1), to allow for a direct comparison of the 

obtained results. Along the same lines, the mesh, boundary conditions, numerical control 

parameters and initial conditions (including initial stress state) considered in this simulation 

were identical to those adopted in the previous analysis. 

In the following sections, the results obtained in this numerical analysis with variable 

hydraulic conductivity are compared with those obtained in the previously performed analysis 

with constant hydraulic conductivity, as well as with those measured in the experiment. Focus 

is given to the excess pore pressures and surface settlements. Note, nevertheless, that the 

complete set of results (including horizontal and vertical accelerations) obtained in the 

analysis with variable hydraulic conductivity can be found in Appendix F. 

8.3.2.5.2 Excess pore pressures 

Figure 8.68 compares the evolutions of the excess pore pressures with time obtained in the 

newly performed numerical analysis with variable hydraulic conductivity with those obtained 

in the previous numerical analysis with constant hydraulic conductivity at two different 

positions located along a vertical alignment coincident with the axis of the heavier shallow 

foundation (x = 10.0 m). Similarly, Figure 8.69 compares the excess pore pressures obtained 

in the two numerical analyses at two different positions located along a vertical alignment 

coincident with the axis of the lighter shallow foundation (x = 23.5 m). In both figures, the 

experimental results are also presented for comparison. It can be observed that similar co-

seismic excess pore pressures were obtained in the two different numerical analyses at the 

deeper level of both alignments (i.e. at (x, y) = (10.0, 12.0) m and (x, y) = (23.5, 12.0) m), 

agreeing satisfactorily with the response measured in the experiment. Conversely, as shaking 

was over, different numerical responses were obtained in the two analyses. Specifically, it is 

apparent that the rate of dissipation of excess pore pressures obtained in the numerical 

analysis with variable hydraulic conductivity is much higher than that computed in the 

numerical analysis with constant hydraulic conductivity. Since the hydraulic conductivity 

considered for the sand deposit during this phase was identical in both analysis (and equal to 

the initial hydraulic conductivity, k0), this suggests that the post-seismic migration of excess 

pore pressures from other zones of the model to this location obtained in the analysis with 

variable hydraulic conductivity is significantly smaller than that computed in the analysis with 

constant hydraulic conductivity. As detailed later, this is likely a consequence of the smaller 
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excess pore pressures generated in the analysis with variable hydraulic conductivity in zones 

of the sand deposit where the influence of the shallow foundations is either small or negligible 

(basically, all zones where very large values of ru were computed in the analysis with constant 

hydraulic conductivity – Figure 8.59). 

Regarding the excess pore pressures computed at the shallower level of both alignments (i.e. 

at (x, y) = (10.0, 17.0) m and (x, y) = (23.7, 17.0) m), it can be seen that a clearly worse 

prediction of this aspect of the response was obtained in the newly performed analysis with 

variable hydraulic conductivity, with much higher excess pore pressures being computed at 

this location during dynamic loading. In effect, by increasing only the vertical hydraulic 

conductivity of the sand deposit, it is possible that high excess pore pressures, mainly 

migrating from deeper zones of the sand deposit, accumulate at this location, where drainage 

is not allowed, due to the presence of the impervious shallow foundation. A better 

reproduction of this aspect of the response would be likely obtained by increasing both 

horizontal and vertical components of the hydraulic conductivity of the sand deposit. 

 

 
Figure 8.68 – Comparison of the excess pore pressures evolutions with time obtained in numerical 
analyses with constant and variable hydraulic conductivity with those measured in the experiment 

for a vertical alignment coincident with the axis of the heavier shallow foundation of CM-A. 
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Figure 8.69 – Comparison of the excess pore pressures evolutions with time obtained in numerical 
analyses with constant and variable hydraulic conductivity with those measured in the experiment 

for a vertical alignment coincident with the axis of the lighter shallow foundation for CM-A. 

The evolutions of the excess pore pressures with time computed in both numerical analyses 
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model (x = 16.5 m in the numerical model) are shown in Figure 8.57, together with those 

registered in the experiment. It can be observed that, after an initial increase, a sudden 

decrease of the excess pore pressures at the two shallower positions (i.e. at (x, y) =

(16.5, 17.0) m and (x, y) = (16.5, 12.0) m) was obtained in the newly performed analysis, 

due to the increase in vertical hydraulic conductivity of the deposit. Similarly, the excess pore 

pressures at the deepest position (i.e. at (x, y) = (16.5, 0.5) m) were also underestimated in 

the newly performed analysis, although remaining relatively constant after the initial 

increase. It is apparent that a much better reproduction of the response observed in the 

experiment at these three positions was obtained in the previous numerical simulation 

assuming constant hydraulic conductivity. 
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Figure 8.70 – Comparison of the excess pore pressures evolutions with time obtained in numerical 
analyses with constant and variable hydraulic conductivity with those measured in the experiment 

for a vertical alignment coincident with the middle of the model for CM-A. 

Figure 8.71 illustrates the excess pore pressure ratio, ru, obtained in the newly performed 

numerical analysis with variable hydraulic conductivity approximately at the end of shaking 

(i.e. at t = 37.5 s). Contrary to what was obtained in the previous numerical analysis with 

constant hydraulic conductivity (Figure 8.59), it is apparent that relatively low values of ru (in 

general, below 0.4) were obtained at the end of shaking in this newly performed analysis. 

Furthermore, it is clear that the larger values are obtained underneath the shallow 

foundations, suggesting, once more, that the increase in the hydraulic conductivity did not 

lead to an improved reproduction of this aspect of the response of sand. This aspect, however, 

might deserve further investigation in the future, by employing more reasonable values for 

the increase in hydraulic conductivity of sand during dynamic loading. 
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Figure 8.71 – Excess pore pressure ratio obtained in the analysis with variable hydraulic 
conductivity at the end of dynamic loading (t = 37.5 s) for CM-A. 

8.3.2.5.3 Settlements 

The evolutions of settlements at the top of the heavier and lighter shallow foundations (i.e. 

at (x, y) = (10.0, 19.225) m and (x, y) = (23.7, 18.75) m, respectively) obtained in both 

numerical analyses are compared with those measured in the experiment in Figure 8.72. It 

can be observed that a smaller rate of structural settlement accumulation is obtained when 

considering variable hydraulic conductivity, which is likely the detrimental consequence of 

the overall underestimation of the excess pore pressures generated during dynamic loading 

and, therefore, overestimation of the stiffness of the sand deposit. 

 
Figure 8.72 – Comparison of the structural settlements obtained in numerical analyses with 

constant and variable hydraulic conductivity with those measured in the experiment for CM-A. 

In addition, Figure 8.73 compares the settlements obtained in the two numerical analyses at 

the surface of the sand deposit in between shallow foundations. The experimental 

measurements are also presented for comparison. It can be observed that, contrary to what 
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displacement (i.e. settlement/subsidence) is obtained in the simulation with variable 
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hydraulic conductivity, as observed in the experiment. This suggests that the hydraulic 

conductivity plays a fundamental role in the modelled response. Moreover, as suggested in 

previous experimental studies (e.g. Scott, 1986a; Coelho, 2007; Su et al., 2009), as well as 

numerically investigated by several authors (Manzari and Arulanandan, 1993; Taiebat et al., 

2007; Andrianopoulos et al., 2010a; Taborda, 2011), the increase of the hydraulic conductivity 

of the liquefied sand deposit during dynamic loading may explain the large co-seismic 

settlements observed in the zones of the model farther from the shallow foundations in the 

centrifuge experiment. 

 
Figure 8.73 – Comparison of the settlements obtained in numerical analyses with constant and 
variable hydraulic conductivity at the surface of the sand deposit in between the two shallow 

foundations with those measured in the experiment for CM-A. 

Figure 8.74 compares the ground settlement profile obtained at the end of both numerical 

analyses with that inferred from post-test measurements undertaken in the centrifuge facility 

after the complete dissipation of the excess pore pressures (Marques et al., 2012a). As noted 

before, the post-test measurements shown in this figure are uniformly scaled to match the 

settlement of the heavier shallow foundation measured by the linear variable differential 

transducer (LVDT) located at (x, y) = (10.0, 19.225) m during the experiment (i.e. dy ≈

112.0 cm at t ≈ 600.0 s). Although still underestimating the total change in volume observed 

in the experiment (in this case, a total volume change of 5.8 m2.m was obtained), it is clear 

that an improved replication of this aspect of the response was obtained in the newly 

performed numerical analysis considering the variation of the hydraulic conductivity of the 

liquefied sand deposit under dynamic excitation than in the previous analysis considering 

constant hydraulic conductivity. 

Furthermore, by comparing the deformation mechanism obtained in the previous numerical 

analysis with constant hydraulic conductivity (Figure 8.65) with that obtained in the newly 

performed numerical analysis with variable hydraulic conductivity (Figure 8.75), it appears 

that the latter resembles more the one observed in the centrifuge experiment, as significantly 

lesser lateral movement of sand from the zone under the influence of the shallow foundations 

to the zone in between them can now be observed. 
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Figure 8.74 – Comparison of the settlement profiles of the ground surface and shallow foundations 

after the complete dissipation of excess pore pressures obtained in numerical analyses with 
constant and variable hydraulic conductivity and inferred from post-test measurements for CM-A. 
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Figure 8.75 – Deformed mesh and displacement vectors at different instants of time obtained in 
the numerical analysis with variable hydraulic conductivity for CM-A. 
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8.4 Centrifuge model B – Use of narrow densified zones and high-capacity 

vertical drains to improve the performance of adjacent shallow 

foundations resting on a sand deposit subjected to dynamic loading 

causing liquefaction 

8.4.1 Brief description of the experiment and obtained results 

8.4.1.1 Configuration and instrumentation of the experiment 

The centrifuge model B (CM-B) intended to investigate the performance of two different 

techniques in the mitigation of liquefaction effects: narrow densified columns and the 

combined use of narrow densified columns and high-capacity vertical drains. Similar to CM-

A, two adjacent shallow foundations were used in CM-B. However, in this case, both shallow 

foundations consisted of prismatic B × L × H = 3.0 × 3.0× 1.225 m3 (in prototype scale) 

solid-steel blocks inducing a vertical stress in the underlying sand deposit of 95 kPa (i.e. both 

shallow foundations were similar to the “heavier shallow foundation” used in CM-A). 

 
Figure 8.76 – Plan view of CM-B and location of some monitoring instruments (adapted from 

Marques et al., 2015). 
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Figure 8.77 – Side view of CM-B and location of the monitoring instruments (adapted from 

Marques et al., 2015). 

The final configuration of the centrifuge experiment is illustrated in Figure 8.77. It can be 

observed that the shallow foundation on the left side of the model was placed on a 5.0 m-

width densified column of Hostun sand (reported as Dr ≈ 80%), which, in turn, was fully 

embedded by a drainage geocomposite TERRAM 1B1, consisting of an extruded high density 

polyethylene (HDPE) net drainage core with a non-woven polypropylene (PP) geotextile filter 
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right side of the model, resting on a densified sand column, is designated as “right shallow 

foundation”. 

The location of the monitoring instruments is also depicted in the figure, with their 

coordinates, both in model and prototype scale, being indicated in Table 8.2. Similar to CM-
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selected for measuring the horizontal accelerations and excess pore pressures developed in 

the model, namely: x = 10.0 m (corresponding to the axis of the left shallow foundation), x =

16.75 m (corresponding to half distance from axes of the shallow foundations) and x =

23.7 m (corresponding to the axis of the right shallow foundation). As mentioned before, 

while data acquired at these monitoring positions might be sufficient to adequately 

characterise the dynamic response of the deposit, it might not provide sufficient information 

about potential boundary effects, which have been shown to affect the measured 

acceleration time-histories and transient excess pore pressures at positions close to the 

centrifuge walls in previous centrifuge test programmes (Coelho et al., 2003; Teymur and 

Madabhushi, 2003). 

Table 8.2 – Type and positioning of the monitoring instruments used in CM-B. 

Instrument 
ID 

Model scale Prototype scale 
type x (cm) y (cm) z (cm) x (m) y (m) z (m) 

Accelerometer measuring 
in the vertical direction 

AV1 0.0 0.0 12.7 0.00 0.00 6.35 

Accelerometer measuring 
in the horizontal direction 

AH1 0.0 0.0 12.7 0.00 0.00 6.35 
AH2 0.0 18.0 12.7 0.00 9.00 6.35 
AH3 0.0 36.0 12.7 0.00 18.00 6.35 
AH4 20.0 1.0 12.7 10.00 0.50 6.35 
AH5 20.0 13.0 12.7 10.00 6.50 6.35 
AH6 20.0 24.0 12.7 10.00 12.00 6.35 
AH7 20.0 34.0 12.7 10.00 17.00 6.35 
AH8 33.7 1.0 12.7 16.85 0.50 6.35 
AH9 33.7 13.0 12.7 16.85 6.50 6.35 

AH10 33.7 24.0 12.7 16.85 12.00 6.35 
AH11 33.7 34.0 12.7 16.85 17.00 6.35 
AH12 47.4 1.0 12.7 23.70 0.50 6.35 
AH13 47.4 13.0 12.7 23.70 6.50 6.35 
AH14 47.4 24.0 12.7 23.70 12.00 6.35 
AH15 47.4 34.0 12.7 23.70 17.00 6.35 

Linear variable differential 
transformer (LVDT). 

LVDT1 23.0 38.45 12.7 10.00 19.225 6.35 
LVDT2 26.85 36.0 12.7 16.85 18.00 6.35 
LVDT3 43.8 37.5 12.7 23.70 18.75 6.35 

Pore pressure transducer 
(PPT) 

PPT1 20.0 24.0 12.7 10.00 12.00 6.35 
PPT2 20.0 34.0 12.7 10.00 17.00 6.35 
PPT3 33.7 1.0 12.7 16.85 0.50 6.35 
PPT4 33.7 24.0 12.7 16.85 12.00 6.35 
PPT5 33.7 34.0 12.7 16.85 17.00 6.35 
PPT6 47.4 24.0 12.7 23.70 12.00 6.35 
PPT7 47.4 34.0 12.7 23.70 17.00 6.35 

Microelectromechanical 
system (MEMS) measuring 
in the vertical direction  

MEMS-V1 17.0 38.45 12.7 8.50 19.225 6.35 
MEMS-V2 23.0 38.45 12.7 11.50 19.225 6.35 
MEMS-V3 44.4 37.5 12.7 22.20 18.75 6.35 
MEMS-V4 50.4 37.5 12.7 25.20 18.75 6.35 

MEMS measuring in the 
horizontal direction 

MEMS-H1 17.0 38.45 12.7 8.50 19.225 6.35 
MEMS-H3 44.4 37.5 12.7 22.20 18.75 6.35 
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In what follows, all dimensions, input motions and results are presented only in prototype 

scale. 

8.4.1.2 Horizontal acceleration time-histories 

Figure 8.78 depicts the horizontal acceleration time-histories recorded at three different 

monitoring positions on the centrifuge model wall.  

 

 

 
Figure 8.78 – Measured horizontal acceleration time-histories at three different monitoring 

positions along the left wall of CM-B. 
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located at (x, y) = (0.0, 0.0) m. It can be seen that, in general, the input motion is 

characterised by peak accelerations slightly smaller than the intended value of ±3.0 m/s2. 

Moreover, although a single-frequency sinusoidal loading was intended to be applied to the 

model, Figure 8.78 shows that local peaks were recorded in between the maximum 
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acceleration peaks during the majority of the duration of the input horizontal motion, 

suggesting the presence of other frequencies in the input motion. Interestingly, these non-

intended local peaks seem to be strongly attenuated from the base of the centrifuge 

container (i.e. from the monitoring position (x, y) = (0.0, 0.0) m) to the middle position on 

its lateral wall (i.e. to the monitoring position (x, y) = (0.0, 9.0) m). Conversely, the 

maximum (global) peaks are amplified from the base to the middle of the centrifuge wall, 

reaching values close to ±4.0 m/s2. In effect, the inspection of the Fourier Spectra of these 

horizontal motions, computed using the software SeismoSignal version 2018 (Seismosoft, 

2018) and depicted in Figure 8.79, enables to confirm that the Fourier amplitude of the 

predominant frequency (of about 1 Hz) is amplified from (x, y) = (0.0, 0.0) m to (x, y) =

(0.0, 9.0) m, while the Fourier amplitudes of the remaining frequencies of the motion are 

attenuated. 

 

 
Figure 8.79 – Fourier spectra of the acceleration time-histories measured at two different 

monitoring positions along the left wall of CM-B. 

Figure 8.80 compares the horizontal acceleration time-histories registered at four different 

monitoring positions located along a vertical alignment coincident with the axis of the left 

shallow foundation (x = 10.0 m) with that recorded at the base of the model (i.e. at (x, y) =

(0.0, 0.0) m). Complementary, Figure 8.81 compares the horizontal acceleration time-

histories recorded at the left top edge of the left shallow foundation (i.e. at (x, y) =

(8.5, 19.225) m) with that registered at (x, y) = (0.0, 0.0) m. 
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Figure 8.80 – Comparison of the horizontal acceleration time-histories recorded at several 

monitoring positions located along a vertical alignment coincident with the axis of the left shallow 
foundation with that recorded at the base of the model for CM-B. 
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Figure 8.81 – Comparison of the horizontal acceleration time-histories recorded at the top of the 
left shallow foundation and underneath it with that recorded at the base of the model for CM-B. 

Similar to CM-A, a significant attenuation of the horizontal peak accelerations is observed 

after the first two significant loading cycles (i.e. at t ≈ 12 s) at the two shallower monitoring 

positions within the sand deposit (i.e. at (x, y) = (10.0, 12.0) m and (x, y) = (10.0, 17.0) m) 

and, consequently, at the top of the shallow foundation (i.e. at (x, y) = (8.5, 19.225) m). This 

is likely a consequence of the large excess pore pressures generated in the model at this stage 

of the experiment, reducing significantly the effective stresses and stiffness of the sand 

deposit, while leading to the increase in material damping. Interestingly, after a couple of 

loading cycles succeeding this sudden attenuation of the horizontal accelerations, their peak 

values are observed to gradually increase until the end of shaking, although never reaching 

again the amplitudes registered during the first two significant loading cycles. This seems also 

consistent with the gradual decrease of the excess pore pressures measured at (x, y) =

(10.0, 12.0) m during this period of the experiment, likely induced by the drainage capacity 

provided by the drainage geocomposite, as detailed later. 

Note that, as expected, due to the upwards propagation of the shear waves, there is a small 

time delay between the motion recorded at the base of the model and those recorded within 

the sand deposit. Naturally, this delay increases as the monitoring position locates farther 

away from the base of the model. 

In terms of frequency content, Figure 8.82 compares the Fourier spectra corresponding to the 

horizontal acceleration time-histories measured at the three top monitoring positions – 

(x, y) = (10.0, 12.0) m, (x, y) = (10.0, 17.0) m and (x, y) = (8.5, 19.225) m – with that 

corresponding to the input motion (i.e. recorded at (x, y) = (0.0, 0.0) m). It is apparent that 

the Fourier amplitude corresponding to the predominant frequency of the input motion 

(about 1 Hz) is slightly amplified at the shallowest depths of the sand deposit (i.e. at (x, y) =

(10.0, 17.0) m) – and, as expected, further amplified at the top of the shallow foundation (i.e. 

at (x, y) = (8.5, 19.225) m), which is a free surface. Moreover, the signals recorded at 

shallow depths and at the top of the shallow foundation seem richer in terms of frequencies 

lower than 1.0 Hz, with the opposite trend being observed for frequencies greater than 

1.0 Hz. 
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Figure 8.82 – Comparison of the Fourier spectra of the horizontal acceleration time-histories 

recorded at the top of the left shallow foundation and underneath it with that corresponding to 
the horizontal acceleration time-history recorded at the base of the model for CM-B. 

The horizontal acceleration time-histories recorded at several monitoring positions located 

along a vertical alignment coincident with the axis of the right shallow foundation (x =

23.7 m) are compared with that recorded at the base of the model (i.e. at (x, y) =

(0.0, 0.0) m) in Figure 8.83.  
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Figure 8.83 – Comparison of the horizontal acceleration time-histories recorded at several 

monitoring positions located along a vertical alignment coincident with the axis of the right 
shallow foundation with that recorded at the base of the model for CM-B. 
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shallowest monitoring position: (x, y) = (23.7, 17.0) m. As pointed out before, this 

attenuation seems consistent with the large excess pore pressures generated in the model at 

this stage of the centrifuge experiment. Note, however, that, contrary to what was observed 

at the monitoring position underneath the left shallow foundation (i.e. at (x, y) =

(10.0, 17.0) m), rather than gradually increasing, the peak accelerations recorded at (x, y) =

(23.7, 17.0) m seem to remain practically constant (with values smaller than ±0.5 m/s2) 

during the remaining loading cycles. This seems consistent with the different trends observed 

for the excess pore pressures registered under the two shallow foundations. Specifically, 

while the excess pore pressures are observed to gradually decrease after its sudden initial 

increase in the zone of the sand deposit under the influence of the left shallow foundation of 

the model, the excess pore pressures continue to slightly build-up in the zones of the sand 

deposit under the influence of the right shallow foundation of the model. This suggests that 

the drainage geocomposite plays a key role in the mitigation and dissipation of excess pore 

pressures developed on the left side of the model, as discussed in more detail later. 

Moreover, as expected and also observed for the left side of the model, there seems to exist 

a small time delay between the peak horizontal accelerations recorded at the top monitoring 

position (i.e. at (x, y) = (23.7, 17.0) m) and those registered at deeper levels of the sand 

deposit.  

 

 
Figure 8.84 – Comparison of the horizontal acceleration time-histories recorded at the top of the 

right shallow foundation and underneath it with that recorded at the base of the model for CM-B. 
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(x, y) = (23.7, 17.0) m) with that registered at the base of the model (i.e. at (x, y) =

(0.0, 0.0) m). As explained before based on the theory of wave propagation, the peak 

accelerations registered at the top of the shallow foundation (which defines a free surface) 

are considerably larger than those registered within the sand deposit. 

 

 

 
Figure 8.85 – Comparison of the Fourier spectra of the horizontal acceleration time-histories 

recorded at the top of the right shallow foundation and underneath it with that that 
corresponding to the horizontal acceleration time-history recorded at the base of the model for 

CM-B. 

The frequency content of the motions recorded at the three shallower monitoring positions 

along vertical alignment corresponding to the axis of the right shallow foundation – (x, y) =

(22.2, 19.225) m, (x, y) = (23.7, 17.0) m and (x, y) = (23.7, 12.0) m – are compared with 

that of the input motion (i.e. recorded at (x, y) = (0.0, 0.0) m) in Figure 8.85. Contrary to 

what was observed for the signals recorded on the left side of the model, in this case, the 

signals registered at the top monitoring position within the sand deposit (i.e. at (x, y) =

(23.7, 17.0) m) and at the top of the shallow foundation (i.e. at (x, y) = (22.2, 19.225) m) are 
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characterised by maximum Fourier amplitudes smaller than that characterising the input 

motion. This is, in fact, consistent with the strong attenuation of the response observed on 

this side of the model. Regarding the remaining content of the signals, as observed for the 

other side of the model, it is apparent that the signals recorded at the top monitoring 

positions are richer in terms of low-frequency content (in particular, below the predominant 

frequency of the input motion, of about 1 Hz), while being poorer in terms of frequencies 

above 2 Hz. 

The acceleration time-histories measured at several different monitoring positions located 

along a vertical alignment coincident with the middle of the model are compared with that 

recorded at the base of the model in Figure 8.86. Once again, it is apparent that a strong 

attenuation of the ground motion occurred after the first two significant loading cycles, likely 

due to the large excess pore pressures observed in the model during this stage of the analysis, 

as shown later. This attenuation is particularly intense at the shallowest monitoring position 

(i.e. at (x, y) = (16.85, 17.0) m), with peak accelerations of about ±0.5 m/s2 being recorded 

from the moment that attenuation occurs until the end of dynamic loading, as also observed 

for the right side of the model (having no drainage geocomposite). 

This strong attenuation is also perceptible in Figure 8.87, which compares the Fourier spectra 

of the acceleration time-histories measured at the shallowest monitoring with that of the 

input signal. It is apparent that the amplitudes of all predominant frequencies of the signal 

measured at (x, y) = (16.85, 17.0) m are significantly attenuated in relation to those 

corresponding to the signal measured at the base of the model. 
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Figure 8.86 – Comparison of the horizontal acceleration time-histories recorded at several 

monitoring positions located along a vertical alignment coincident with the middle of the model 
with that corresponding to the horizontal acceleration time-history recorded at the base of the 

model for CM-B. 
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Figure 8.87 – Comparison of the Fourier spectrum of the horizontal acceleration time-history 

recorded at the shallowest monitoring position in between the two shallow foundations with that 
of the horizontal acceleration time-history recorded at the base of the model for CM-B. 

8.4.1.3 Vertical acceleration time-histories 

The vertical acceleration time-histories recorded at the top left and top right edges of the left 

shallow foundation (i.e. at (x, y) = (8.5, 19.225) m and (x, y) = (11.5, 19.225) m, 

respectively) are compared with that registered at the base of the model (i.e. at (x, y) =

(0.0, 0.0) m) in Figure 8.17. 

 

 
Figure 8.88 – Measured vertical acceleration time-histories at the base of the model and at the left 

and right top edges of the left shallow foundation for CM-B. 
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measured at the top edges of the shallow foundation, with the peak values registered at the 

right edge exceeding those measured at the left edge. 

As shown in Figure 8.89 (which, for clarity of the presentation, includes only results for the 

period ranging from 15 s to 25 s), although the maximum peak accelerations measured at the 

left and right top edges of the shallow foundation seem to occur practically in phase, the 

amplitudes of the peak accelerations are slightly different, suggesting that this shallow 

foundation oscillated during dynamic loading. This seems to be confirmed in Figure 8.90, 

which depicts the semi-sum (i.e. average value) and semi-difference of the vertical 

accelerations measured at the edges of the left shallow foundation. As mentioned before, the 

latter quantity provides an indication of the rotational motion of the shallow foundation. 

Note, nevertheless, that, as it was apparent for CM-A, this rotational movement might have 

been induced, at least partly, by a non-intentional rocking motion of the entire centrifuge 

model (rather than just by a rocking motion of the shallow foundation itself). 

 
Figure 8.89 – Measured vertical acceleration time-histories at the left and right top edge of the left 

shallow foundation during the period ranging from 15 to 25 s for CM-B. 

 
Figure 8.90 – Semi-sum and semi-difference of the vertical accelerations measured at the left and 
right top edge of the left shallow foundation during the period ranging from 15 to 25 s for CM-B. 

The Fourier spectra of the vertical acceleration time-histories measured at the edges of the 

left shallow foundation are compared with that of the vertical input motion in Figure 8.91. It 

can be observed that the vertical motions recorded at the edges of the shallow foundation 

are, in general, characterised by larger Fourier amplitudes than those characterising the input 

motion, at least for the first five predominant frequencies (1, 2, 3, 4 and 5 Hz). 
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Figure 8.91 – Fourier spectra of the vertical acceleration time-histories measured at the base of 

the model and at the top edges of the left shallow foundation for CM-B. 

With respect to the vertical accelerations at the top left and top right edges of the right 

shallow foundation (i.e. at (x, y) = (22.2, 19.225) m and (x, y) = (25.2, 19.225) m, 

respectively), the recorded vertical signals are compared to that registered at the base of the 

model (i.e. at (x, y) = (0.0, 0.0) m) in Figure 8.92. It can be seen that the acceleration time-

histories recorded at the left and right edges of this shallow foundation are characterised by 

similar amplitudes (particularly after t ≈ 12 s).  

Further comparison between the two vertical signals recorded at the top of the right shallow 

foundation is provided in Figure 8.93, for the period ranging from 15 s to 25 s. It is apparent 

that, in this case, while being characterised by similar amplitudes, the signals occur slightly 

out of phase, indicating that this shallow foundation also oscillated during dynamic loading. 
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Figure 8.92 – Measured vertical acceleration time-histories at the base of the model and at the top 

edges of the right shallow foundation for CM-B. 

 
Figure 8.93 – Measured vertical acceleration time-histories at the left and right top edges of the 

right shallow foundation during the period ranging from 15 to 25 s for CM-B. 

 
Figure 8.94 – Semi-sum and semi-difference of the vertical accelerations measured at the left and 

right top edges of the right shallow foundation during the period ranging from 15 to 25 s for CM-B. 

-4

-2

0

2

4

0 5 10 15 20 25 30 35 40 45 50

a y
(m

/s
2
)

t (s)

AV1: (x, y) = (0.0, 0.0) m

MEMS-V3:

(x, y) = (22.2, 19.225) m 

-4

-2

0

2

4

0 5 10 15 20 25 30 35 40 45 50

a y
(m

/s
2
)

t (s)

AV1: (x, y) = (0.0, 0.0) m

MEMS-V4:

(x, y) = (25.2, 19.225) m 

-4

-2

0

2

4

15 16 17 18 19 20 21 22 23 24 25

a y
(m

/s
2
)

t (s)

MEMS-V3: (x, y) = (22.2 19.225) m

MEMS-V4: (x, y) = (25.2, 19.225) m

-4

-2

0

2

4

15 16 17 18 19 20 21 22 23 24 25

(a
y
,l
e
ft
 

a y
,r

ig
h

t)
 /

 2
 (

m
/s

2
)

t (s)

semi-sum, (ay,left + ay,right) / 2

semi-difference, (ay,left − ay,right) / 2



APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE SIMULATION OF THE DYNAMIC RESPONSE OF 

SHALLOW FOUNDATIONS BUILT ON LIQUEFIABLE SAND DEPOSITS 

564 
 

The Fourier spectra corresponding to the motions recorded at the top of the right shallow 

foundation are shown in Figure 8.95. It can be observed that similar spectra were obtained 

for the vertical motions measured at the left and right edges of the shallow foundation (i.e. 

at (x, y) = (22.2, 19.225) m and (x, y) = (25.2, 19.225) m, respectively), corroborating the 

conclusions drawn when inspecting the acceleration time-histories. 

 

 
Figure 8.95 – Fourier spectra of the vertical acceleration time-histories measured the base of the 

model and at the top edges of the right shallow foundation for CM-B. 

To gain further insight into the measured response, the vertical acceleration time-histories 

measured at the left top edges of the two shallow foundations are depicted together in Figure 

8.96. Similarly, the vertical acceleration time-histories measured at the right top edges of the 

two shallow foundations are shown together in Figure 8.97. It is apparent the acceleration 

time-histories measured at the top of the left shallow foundation and at the top of the lighter 

one are characterised by different amplitudes and different frequencies of oscillation. This 

suggests that, even though a non-intentional rocking-type mechanism involving the entire 

centrifuge model might have occurred during this experiment (as observed for CM-A), 

individual rocking of at least one of the shallow foundations likely occurred during the 

experiment. 
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Figure 8.96 – Measured vertical acceleration time-histories at the top left edges of the two shallow 

foundations during the period ranging from 15 to 25 s for CM-B. 

 
Figure 8.97 – Measured vertical acceleration time-histories at the top right edges of the two 

shallow foundations during the period ranging from 15 to 25 s for CM-B. 

8.4.1.4 Excess pore pressures 
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foundations (x = 10.0 m and x = 23.7 m, respectively). Complementary, Figure 8.99 depicts 

the long-term dissipations of the excess pore pressure at those monitoring positions. It is 

apparent that the responses measured at the monitoring positions located on the left side of 

the model (i.e. at (x, y) = (10.0, 12.0) m and (x, y) = (10.0, 17.0) m) are considerably 

different from those registered at the monitoring positions located on the right side of the 

model (i.e. at (x, y) = (23.7, 12.0) m and (x, y) = (23.7, 17.0) m), which suggests that the 

drainage geocomposite enclosing the left densified sand column had a great impact on this 

aspect of the response, as intended. Specifically, it can be seen that, after an initial steep rise, 

the excess pore pressures are observed to gradually decrease with dynamic loading at 

(x, y) = (10.0, 12.0) m, while the opposite trend is observed at (x, y) = (23.7, 12.0) m. 

Indeed, when shaking is over (t ≈ 38 s), the excess pore pressure at (x, y) = (10.0, 12.0) m is 

already smaller than 20 kPa, being less than half of the value observed at (x, y) =

(23.7, 12.0) m. 
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Figure 8.98 – Excess pore pressure evolution with time during dynamic loading and shortly after its 
end measured at two different monitoring positions located along vertical alignments coincident 

with the axes of the left and right shallow foundations for CM-B. 

 

 
Figure 8.99 – Long-term dissipation of excess pore pressures at two different monitoring positions 

located along vertical alignments coincident with the axes of the left and right shallow 
foundations for CM-B. 
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excess pore pressure is already as low as 10 kPa, which is roughly one fifth of the maximum 

excess pore pressure generated during dynamic loading. At that instant of time, the 

dissipation of excess pore pressures is still to be initiated at (x, y) = (23.7, 12.0) m, being 

only completed when t ≈ 700 s. 

With respect to the responses measured at the shallower monitoring positions (i.e. at (x, y) =

(10.0, 17.0) m and (x, y) = (23.7, 17.0) m), it can be seen that negative (i.e. suction, tensile) 

excess pore pressures are generated under both shallow foundations as dynamic loading 

starts. As suggested by Coelho (2007), this type of response is likely induced by stress 

redistribution from the zones of the deposit farther from the shallow foundations to the zones 

under their influence. Note that, due to the presence of the shallow foundations, the zones 

of the deposit under their influence are initially subjected to higher effective stresses and, 

therefore, have greater stiffnesses than the surrounding zones. Moreover, note that, as 

observed in triaxial testing, dense sand tend to dilate under monotonic loading and, 

therefore, under practically undrained conditions, negative excess pore pressures are likely 

generated. The fact that smaller negative excess pore pressures are generated in the zone of 

the deposit under the influence of the left shallow foundation (i.e. at (x, y) = (10.0, 17.0) m) 

than in the zone under the influence of the right shallow foundation (i.e. at (x, y) =

(23.7, 17.0) m) is probably a consequence of the higher drainage capacity induced in the 

former zone by the drainage geocomposite. In effect, not only smaller negative excess pore 

pressures are generated during the first loading cycles, but also smaller positive excess pore 

pressures build-up during the remaining loading period at (x, y) = (10.0, 17.0) m. 

Furthermore, as shaking is over, the excess pore pressures appear to dissipate continuously 

at (x, y) = (10.0, 17.0) m, while the opposite trend seems to be observed at (x, y) =

(23.7, 17.0) m. As pointed out by Coelho (2007) and Marques et al. (2014a), this post-seismic 

excess pore pressure increase observed at (x, y) = (23.7, 17.0) m is likely the result of excess 

pore pressure migration from the bottom to the top of the deposit, as well as from the zones 

of the deposit farther from this shallow foundation to the zones under its influence. 

Remarkably, this phenomenon appears to be strongly mitigated on the left side of the model 

by the existence of the drainage geocomposite. It is perhaps important to note that the small 

(although not null) excess pore pressures observed at the final of the dissipation period (from 

t ≈ 700 s), particularly at the monitoring positions located on the right side of the model (i.e. 

at (x, y) = (23.7, 12.0) m and (x, y) = (23.7, 17.0) m), are likely the detrimental 

consequence of the settlement undergone by the pore pressure transducers. Full dissipation 

of excess pore pressures is expected to have occurred. 

Additionally, Figure 8.100 depicts the excess pore pressures generated during dynamic 

loading and shortly after its end at several positions located along a vertical alignment 

coincident with the middle of the model (represented in black), together with those obtained 

for vertical alignments coincident with the axes of the shallow foundations (represented in 
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grey). The corresponding long-term excess pore pressure dissipations are shown in Figure 

8.101. 

 

 

 
Figure 8.100 – Excess pore pressure evolution with time during dynamic loading and shortly after 

its end measured at three different monitoring positions located along vertical alignments 
coincident with the axes of the shallow foundations and middle of the model for CM-B. 
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Figure 8.101 – Long-term dissipation of excess pore pressures at three different monitoring 

positions located along vertical alignments coincident with the axes of the shallow foundations 
and middle of the model for CM-B. 
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(23.7, 17.0) m. As dynamic loading ceases, the excess pore pressures at (x, y) =

(16.85, 17.0) m are observed to continuously increase during a significant period (at least, 

until t ≈ 100 s), probably due to the excess pore pressure migration from the bottom to the 

top of the deposit. Note that, unfortunately, due to the lack of experimental data in the period 

ranging from 100 to 350 s, it is not possible to know the exact moment at which excess pore 

pressures stop increasing and start dissipating. Interestingly, although a similar trend (i.e. 

excess pore pressure build-up after the end of dynamic loading) is observed in the zone of the 

deposit under the influence of the right shallow foundation (i.e. at (x, y) = (23.7, 17.0) m), 

the rate at which it occurs is significantly higher at this location. This may indicate that excess 

pore pressures migrate not only vertically (i.e. from the bottom to the top of the deposit), but 

also laterally (i.e. from the zones of the deposit farther from this shallow foundation to the 

zones under its influence), as suggested by Coelho (2007) and Marques et al. (2014a). 

Still regarding the shallowest monitoring positions, two additional aspects are noteworthy. 

Firstly, while the excess pore pressures in the middle of the model and underneath the right 

shallow foundation are only observed to stabilise when t ≈ 600 − 700 s is reached, the 

dissipation of the excess pore pressures underneath the left shallow foundation, where the 

densified sand column was embedded by a drainage geocomposite, occurs faster, as 

discussed before, and seems already completed when t ≈ 400 s is reached. Secondly, the 

residual excess pore pressures observed at the end of the experiment at (x, y) =

(16.85, 17.0) m and (x, y) = (23.7, 17.0) m are probably the detrimental consequence of the 

settlement undergone by the pore pressure transducers at those locations. As highlighted 

before, full dissipation of excess pore pressures is expected to have occurred. 

In relation to the deepest level (y = 0.5 m), excess pore pressures were only monitored in the 

middle of the model, particularly at (x, y) = (16.85, 0.5) m. It can be seen that large excess 

pore pressures are generate as soon as dynamic loading is applied. After the first couple of 

loading cycles, however, these larger excess pore pressures are observed to reduce with 

dynamic loading, although at a very small rate. The rate of excess pore pressure dissipation is 

significantly increased as dynamic loading ceases, with the dissipation appearing completed 

when t ≈ 500 s. 

In addition, it is interesting to compare the excess pore pressure evolutions with time 

measured in this centrifuge model (CM-B) – where the shallow foundations were built on 

densified sand columns, one of them encased by a drainage geocomposite – with those 

registered in the previous centrifuge model (CM-A). Note that the lighter shallow foundation 

of CM-A, located on the right side of that model, is excluded from this comparison, since the 

stresses applied by this shallow foundation to the underlying sand deposit are smaller than 

those applied by the heavier shallow foundation of CM-A, as well as both shallow foundations 

of CM-B (which have a similar weight to that of CM-A, although the term “heavier” has been 

used to distinguish the shallow foundation of CM-A). 
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Figure 8.102 – Comparison of the excess pore pressure generated during shaking and shortly after 

its end in CM-A and CM-B at monitoring positions underneath the shallow foundations. 

 

 
Figure 8.103 – Comparison of the long-term dissipation of excess pore pressures measured in CM-

A and CM-B at monitoring positions underneath the shallow foundations. 

Figure 8.102 depicts the excess pore pressure developed during dynamic loading and shortly 

after its end for CM-A (in black) and CM-B (in grey), underneath the shallow foundations. 
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at those monitoring positions. Note that the time delay between the measured responses in 

these two different centrifuge experiments was corrected in order to ease the comparison. It 

is apparent that densification improves the performance of the sand deposit, with significant 

negative (i.e. suction, tensile) excess pore pressures being generated during dynamic loading 

at the shallowest level (y = 17.0 m) underneath the right shallow foundation of CM-B (built-

on a densified sand column), in relation to those generated for the (heavier) shallow 

foundation of CM-A. Densification seems also to contribute to a better post-seismic 

performance of the shallow foundation. In particular, Figure 8.103 shows that smaller positive 

excess pore pressures develop underneath the right shallow foundation of CM-B when 

compared to those generated underneath the heavier shallow foundation of CM-A. It is 

unclear, however, whether this enhanced response is solely the result of densification or the 

presence of the drainage geocomposite in the model (even if about 10 m far away) might 

have also slightly contributed to the registered improvement. In fact, as discussed later, the 

drainage geocomposite might have contributed to mitigate the excess pore pressures 

generated in the middle of the model in CM-B, which, in turn, might have resulted in smaller 

post-seismic excess pore pressure migration from the middle of the model to the zone under 

the influence of the right shallow foundation. Nevertheless, it is clear from Figure 8.102 and 

Figure 8.103 that the combination of densification with the drainage geocomposite simulating 

high-capacity vertical drains result in much smaller excess pore pressure generation during 

dynamic loading, as well as higher rate of excess pore pressure dissipation after the end of 

dynamic loading at both levels (y = 12.0 m and y = 17.0 m). 

Finally, Figure 8.104 compares the excess pore pressure evolutions during dynamic loading 

and shortly after its end registered at the bottom (i.e. at (x, y) = (16.85, 0.5) m) and top (i.e. 

(x, y) = (16.85, 17.0) m) monitoring positions within the sand deposit for a vertical 

alignment coincident with the middle of the model in CM-A (in black) and CM-B (in grey). 

Their corresponding long-term dissipation curves are plotted in Figure 8.105. Starting by 

inspecting the responses measured at (x, y) = (16.85, 0.5) m, it is apparent that slightly 

smaller excess pore pressures are developed in CM-B than in CM-A. Furthermore, it can be 

seen that the excess pore pressures tend to decrease slightly during dynamic loading in CM-

B, while remaining practically constant during that stage of the experiment in CM-A. Indeed, 

as dynamic loading ceases, a much faster dissipation of excess pore pressure occurs in CM-B 

than in CM-A. This suggests that the drainage geocomposite encasing the left densified sand 

column in CM-B may have also contributed to a better performance of the deposit of loose 

sand (i.e. zone of the deposit in between the densified sand columns). Conversely, the 

influence of the drainage geocomposite on the evolution of excess pore pressures at the top 

monitoring position (i.e. (x, y) = (16.85, 17.0) m) seems much more limited (or even 

inexistent), with slightly larger excess pore pressures being measured in CM-B than in CM-A 

both during shaking and shortly after its end. 
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Figure 8.104 – Comparison of the excess pore pressure generated during shaking and shortly after 

its end in CM-A and CM-B for a vertical alignment coincident with the middle of the model. 

 

 
Figure 8.105 – Comparison of the long-term dissipation of excess pore pressures measured in CM-

A and CM-B for a vertical alignment coincident with the middle of the model. 
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application of the dynamic loading and until shortly after its end. Complementary, Figure 

8.107 depicts the evolution of the settlements at those monitoring positions until the 

complete dissipation of excess pore pressures in the model. It can be observed that the 

settlement registered for the left shallow foundation, built on a densified sand column 

embedded by a drainage geocomposite, is significantly smaller than that measured for the 

right shallow foundation, built-on a densified sand column either during shaking or after its 

end. Specifically, a total settlement of about 10 cm was measured at the top of the left 

shallow foundation (i.e. at (x, y) = (10.0, 19.225) m), while a value of approximately 52 cm 

(i.e. more than five times greater) was registered at the top of the right shallow foundation 

(i.e. at (x, y) = (23.7, 19.225) m) during the application of dynamic loading (i.e. until t ≈

36.0 s). Similarly, during the period between the end of loading and the complete stabilisation 

of the pore pressures in the model (i.e. consolidation phase), the settlement registered for 

the left shallow foundation of the model (of only about 3 cm) is much smaller than that 

obtained for the right one (of about 21 cm). Indeed, the settlement registered for the left 

shallow foundation is even smaller than that registered at ground surface in between the 

shallow foundations (of approximately of 37 cm during the dynamic phase and 17 cm during 

the consolidation stage). This clearly indicates that the drainage geocomposite strongly 

enhanced the performance of the sand-structure system both during shaking and after its 

end. 

Indeed, the fact that drainage geocomposite simulating closely spaced high-capacity vertical 

drains improves the response of the sand deposit during shaking by reducing the excess pore 

pressure generated in the zones of the deposit under the influence of the shallow foundation 

and, consequently, reducing the observed settlements suggests that the use of high-capacity 

vertical drains as a measure to mitigate liquefaction effects has a great potential, being 

probably more attractive than other mitigation techniques, such as cut-off walls (either slurry 

walls or sheet pile walls). In effect, the centrifuge test results obtained by Coelho (2007) on 

the use of densified sand columns encased by a membrane simulating a flexible impermeable 

barrier to mitigate liquefaction effects revealed that the impermeable barrier solely enhanced 

the performance of the sand deposit during the consolidation stage (i.e. after the end of 

dynamic loading), by preventing the lateral excess pore pressure migration from the zones of 

the deposit farther from the shallow foundation to the zones under its influence. 
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Figure 8.106 – Measured settlements at the top of the shallow foundations and at the ground 

surface in between them during shaking and shortly after its end for CM-B. 

 
Figure 8.107 – Measured settlements at the top of the shallow foundations and at the ground 

surface in between them until the complete dissipation of excess pore pressures for CM-B. 

The ground surface settlement and the final positions of the shallow foundations obtained 

from post-test visual inspections are shown in Figure 8.108. Note that the values indicated in 

this figure are different from those measured immediately after the end of the centrifuge 

experiment, since complete drainage of the model was performed before undertaking the 

post-test visual inspections (Marques et al., 2014a, 2015). Nevertheless, the values indicated 

in this figure allow for a comparison of the settlements at different locations of the model. 

Several aspects are worth mentioning. Firstly, it is apparent that large relative displacements 

parallel to the drainage geocomposite (i.e. slipping) occurred during the experiment, with the 

deposit of loose sand undergoing much larger settlements than the left densified sand column 

embedded by the drainage geocomposite. Secondly, it appears that the right shallow 

foundation of the model slipped to the right of the model during the experiment, eventually 

resting partially on loose sand, rather than on the densified sand column. Note that, before 

the start of the centrifuge test, the right shallow foundation was centred on the densified 

sand column. Naturally, this might have influence both settlement and rotation of this shallow 

foundation. In effect, it appears that this shallow foundation was partially buried in sand only 

on its right side. Finally, it is interesting to observe that the left shallow foundation practically 

retained its horizontal position during the experiment, with no “punching trough” sand 

apparently occurring. 
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Figure 8.108 – Measured settlement profile of the ground surface and shallow foundations after 

the complete drainage of the model for CM-B. 

In addition, Figure 8.109 compares the settlements measured at the top of the shallow 

foundations employed in CM-A (represented in black) and CM-B (represented in grey) during 

dynamic loading and shortly after its end, with Figure 8.110 extending the presentation for 

the entire periods of the experiments. While the use of a densified sand column enabled the 

reduction of the final settlement in about 34 % (from about 112 cm to 73 cm) in relation to 

that obtained for the case in which no measures to mitigate liquefaction effects were applied 

(i.e. heavier shallow foundation in CM-A), the combined use of densification and drainage 

geocomposite simulating closely spaced high-capacity vertical drains resulted in a settlement 

reduction of about 88% (from approximately 112 cm to 14 cm) in relation to the case in which 

no measures were applied. 

 
Figure 8.109 – Comparison of the settlements measured at the top of the shallow foundations 

during shaking and shortly after its end for CM-A and CM-B. 
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Figure 8.110 – Comparison of the settlements measured at the top of the shallow foundations 

until the complete dissipation of the excess pore pressures for CM-A and CM-B. 

8.4.2 Numerical analysis 

8.4.2.1 General aspects 

Given the relevance of the interaction between the pore fluid and solid phases of porous 

material when simulating liquefaction-related phenomena, a fully coupled non-linear 

dynamic finite element analysis was performed using FEMEPDYN. Eight-noded isoparametric 

quadrilateral elements with pore pressure degrees of freedom assigned to the four corner 

nodes (i.e. hybrid elements) were used to model the response of both moderately loose and 

dense deposits of sand. Similarly, two columns of hybrid eight-noded isoparametric 

quadrilateral elements were used to model the drainage geocomposite. This strategy was 

deemed necessary to introduce the hydraulic conductivity estimated for the drainage 

geocomposite in the analysis. Other types of elements available in FEMEPDYN (such as 

interface elements) would only allow for fully permeable or fully impermeable response. 

Note, nevertheless, that interface elements were eventually introduced in the analysis  with 

the objective of simulating the interaction between the drainage geocomposite (more 

specifically, its non-woven geotextile filter) and surrounding loose sand, allowing for slipping 

to occur at that location, as observed in the centrifuge experiment. Although a similar strategy 

could have been employed to model the interaction between drainage geocomposite and 

dense sand, it was considered unnecessary, since practically no slipping was observed at that 

location in the centrifuge experiment (Figure 8.108). Regarding the shallow foundations, due 

to their very low hydraulic conductivity nature, eight-noded isoparametric finite elements 

with no pore pressure degrees of freedom (i.e. ordinary single-phase elements) were 

employed. 

Similar to the numerical modelling of CM-A, a 2D plane strain simplification was assumed in 

this numerical analysis, implying a correction of the contribution of the shallow foundations 

to the initial stress state. As detailed in the following section, the correction factor established 

for the simulation of CM-A was also considered appropriate for this case. Furthermore, the 

conclusions of the parametric study on the influence of the spatial discretisation presented in 

Appendix D were taken, once more, into account, with elements with L × H = 1.0 × 1.0 m2 
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(where L is the width and H is the height) being preferentially used to model the deposits of 

both loose and dense sands. 

 
Figure 8.111 – Employed finite element mesh for the simulation of CM-B. 

As illustrated in Figure 8.111, the adopted FE mesh includes a total of 636 elements: 6 of them 

consisting of ordinary single-phase eight-noded elements with a size of L × H = 1.0×

1.225 m2 representing the shallow foundations; 558 hybrid eight-noded elements modelling 

the deposits of sand, 36 of them having a size of L × H = 1.5 × 1.0 m2 and being located along 

the lateral boundaries of the model, while the remaining having a size of L × H =

1.0× 1.0 m2; 36 hybrid eight-noded elements with a size of L × H = 1.0 × 1.0 m2 modelling 

the drainage geocomposite; and, finally, 36 hybrid six-noded interface elements with H =

1.0 m modelling the sand-geotextile interaction. Note that, as originally formulated by 

Goodman et al. (1968) and detailed in Almeida e Sousa (1999) and Grazina (2009), the 

interface elements available in FEMEPDYN have zero thickness. In addition, it should be noted 

that some degrees of freedom of the interface elements were restricted. In particular, to 

guarantee the continuity of pore pressures, their associated degrees of freedom (at the 

corner nodes of the elements) were tied at each level. Moreover, to prevent gapping or 

overlapping (i.e. relative displacement perpendicular to the interface element) from 

triggering numerical instabilities during the numerical analysis (as observed by Grazina 

(2009)), the horizontal displacement degrees of freedom of each pair of nodes (i.e. nodes 
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having identical coordinates) were also tied, meaning that only slipping (i.e. relative 

displacement parallel to the interface element) was allowed to occur. Regarding the size of 

the elements simulating the geotextile, it is perhaps important to note that a small parametric 

study was performed to assess the influence of the width of these elements on the obtained 

results (particularly on the excess pore pressures developed in the model). Since similar 

results (not presented here for brevity) were obtained when using either 0.25 m- or 1.0 m-

width elements, it was decided to select the latter size, which results in a more homogeneous 

mesh. 

In terms of time step, and, once more, similar to what was considered for CM-A, a constant 

value of t = 0.0125 s was adopted in the analysis. Since a total duration of 250 s was 

required to simulate the application of the dynamic excitation and subsequent dissipation of 

excess pore pressures, the adoption of t = 0.0125 s resulted in a total of 20 000 increments. 

With respect to the time-integration algorithm used to solve the equation of motion, the 

generalised- method (Chung and Hulbert, 1993) was selected once more. As detailed in 

Grazina (2009), by adopting f = 4/9 and m = 3/2 − 2f = 11/18 for the parameters 

controlling the algorithm, which result in a spectral radius at infinity of 
∞
≈ 0.800 for a single 

degree of freedom oscillator, the method verifies the conditions of unconditional stability and 

second order accuracy, also achieving the optimal high frequency dissipation with minimal 

low frequency impact. Moreover, this algorithm verifies the conditions of unconditional 

stability and second order accuracy. As demonstrated, for example, by Kontoe (2006), Grazina 

(2009) and Tsaparli et al. (2017), this latter attribute is particularly important to mitigate the 

detrimental impact of spurious high frequencies of the excitation on the FE results, 

particularly when no Rayleigh damping is employed in the numerical analysis, which is the 

present case. Further details on the time-integration algorithm and its implementation into 

FEMEPDYN can be found in Grazina (2009). 

Similar boundary conditions to those specified in CM-A were considered in this numerical 

analysis. Specifically, the horizontal acceleration time-history shown in Figure 8.78 was 

prescribed at the nodes located along the bottom boundary of the mesh, while restricting the 

vertical displacements of those nodes (i.e. the vertical input motion was disregarded). With 

respect to the lateral boundaries of the model, in order to model the flexible walls of the 

centrifuge container, the horizontal and vertical displacements were tied along nodes of the 

same height. Note that, although the model was not symmetric about a vertical axis 

coincident with its middle (due to the presence of geotextile), the lateral boundaries were 

considered to be sufficiently far away from the zone of influence of the shallow foundations 

to allow for the application of this boundary condition. 

In terms of hydraulic regime, conditions of no flow were imposed at the bottom and lateral 

boundaries of the mesh, by tying the displacements in the solid and fluid phases in the 

direction perpendicular to that defined by the boundary. In addition, a pore pressure 
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boundary condition of u = 0.0 kPa was imposed at the corner nodes of the elements defining 

the top of the sand deposit (except those defining the sand-structure contact), allowing 

drainage to occur at the ground surface. 

8.4.2.2 Material properties 

The mechanical response of Hostun sand deposit was, once more, modelled using the BSPM, 

with the set of model parameters “B.1) Original formulation” indicated in Table 6.5. Although 

possible, Rayleigh damping was not introduced in the analysis, since the constitutive model 

already predicts the occurrence of material damping both at small strains, due to its cyclic 

non-linear elastic component, and at medium to large strains, mainly due to the occurrence 

of plasticity. For further details on this topic, please refer to Taborda (2011). 

As mentioned by Marques et al. (2014a), the densified sand columns were prepared to Dr ≈

80%, while the remaining sand deposit was prepared to Dr ≈ 50%. By using the maximum 

(emax = 1.067) and minimum (emin = 0.555) void ratios reported in Marques et al. (2014a) – 

which are different from those experimentally determined in the present study, as explained 

before – the initial void ratio of the loose and dense sand deposits were estimated as e ≈

0.811 (Equation 8.23) and e ≈ 0.657 (Equation  8.24), respectively. 

e = emax − Dr (emax − emin) ≈ 1.067 − 0.50 × (1.067 − 0.555) ≈ 0.811 (8.23) 

e = emax − Dr (emax − emin) ≈ 1.067 − 0.80 × (1.067 − 0.555) ≈ 0.657 (8.24) 

Having defined the initial void ratio, and given the density of the solid particles of Gs = 2.64, 

the saturated unit weight of loose Hostun sand was estimated as 
sat
= 18.7 kN/m3, which 

corresponds to a mass density of  ≈ 1.906 g/cm3 (Equation 8.25). For dense Hostun sand, 


sat
≈ 19.5 kN/m3 and  ≈ 1.990 g/cm3 were obtained (Equation 8.26). 


sat
= 

w
 

Gs + e

1.0+ e
 ≈ 9.81 ×

2.64 + 0.811

1.0 + 0.811
≈ 18.7 kN/m3 ⟺ 

 =  


sat

g
 ≈

18.7

9.81
≈ 1.906 g/cm3 

(8.25) 


sat
= 

w
 

Gs + e

1.0+ e
 ≈ 9.81 ×

2.64 + 0.657

1.0 + 0.657
≈ 19.5 kN/m3 ⟺ 

 =  


sat

g
 ≈

19.5

9.81
≈ 1.990 g/cm3 

(8.26) 

In terms of the hydraulic conductivity of the sand deposit, as justified before, the outcome of 

the experimental study on Hostun sand carried out by Lauer and Engel (2005) was considered 

in the present study, with the hydraulic conductivity coefficients of kx = ky ≈ 3.65 × 10-4 m/s 

(Equation 8.27) and kx = ky ≈ 2.71× 10-4 m/s (Equation 8.28) being adopted for loose and 

dense sand, respectively. 

kx = ky = (6.1 e − 1.3) × 10-4 = (6.1× 0.811 − 1.3) × 10-4 ≈ 3.65 × 10-4 m/s (8.27) 

kx = ky = (6.1 e − 1.3) × 10-4 = (6.1× 0.657 − 1.3) × 10-4 ≈ 2.71 × 10-4 m/s (8.28) 
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In relation to the solid elements simulating the drainage geocomposite, although other 

strategies would have been possible, identical mechanical characteristics to those adopted 

for moderately loose Hostun sand were considered. Naturally, a different hydraulic 

conductivity was assigned to this material. Assuming that clogging did not occur during the 

centrifuge test, the horizontal hydraulic conductivity, kx, was assumed to be identical to the 

cross hydraulic conductivity specified by the geotextile’s manufacturer (TERRAM 

Geosynthetics, 2018): kx ≈ 5.0 × 10-2 m/s (which is about one hundred times greater than 

that of sand). Regarding the vertical hydraulic conductivity, ky, assuming that neither clogging, 

bending or kinking occurred during the test and that the flow capacity of the geotextile is 

constant with depth (i.e. not significantly affected by the higher lateral pressures expected to 

occur at deeper levels), its value was estimated based on the discharge capacity of Q =

6.5× 10-4 m3/s/m specified by the geotextile’s manufacturer (TERRAM Geosynthetics, 2018). 

More specifically, by applying the Darcy’s law (which assumes the occurrence of a laminar 

flow), as shown by Equation 8.29, a vertical hydraulic conductivity of ky ≈ 1.3× 10-1 m/s was 

obtained (which is about one thousand times greater than that of sand). 

ky =
Q

i A
≈

6.5 × 10-4

1.0× (0.005 × 1.0)
≈1.3 × 10-1 m/s (8.29) 

where i is the vertical hydraulic gradient (which is roughly 1.0 for a vertical drain) and A is 

cross-section area where the laminar flow occurs (which is given by the width of the elements 

simulating the drainage core of the geocomposite times its length on the plane perpendicular 

to that of the FE analysis). 

It is perhaps important to note that similar results would likely be obtained if the mechanical 

properties of dense (rather than loose) Hostun sand would have been assigned to the 

geotextile – which, naturally, would imply locating the elements simulating the geocomposite 

within the left densified sand column, rather than surrounding it (Figure 8.111). In effect, the 

most important aspect to be modelled is the preferential drainage path provided by the 

geotextile, meaning that the most influential property consists of its hydraulic conductivity. 

Regarding the interface elements, their mechanical response in FEMEPDYN is defined by a 

linear elastic model coupled with the associated Mohr-Coulomb failure criterion (Almeida e 

Sousa, 1999; Grazina, 2009). As such, elastic gapping or overlapping (i.e. relative displacement 

perpendicular to the direction of the interface) is directly proportional to the elastic normal 

stiffness, Kn (in units of Force/Length3), while elastic slipping (i.e. relative displacement 

parallel to the direction of the interface) is directly proportional to the elastic shear stiffness, 

Ks (also in units of Force/Length3). Regarding the strength parameters, values for apparent 

cohesion, c’i, and friction angle, ’i, need to be defined. Unfortunately, due to the lack of 

experimental data, only a very rough estimation of the value of these parameters is possible. 

Although other strategies could have been devised (e.g. parametric study to evaluate the 

parameters that best reproduce the centrifuge test data), to keep consistent with the 
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approach followed in this study that all material parameters are calibrated à priori based on 

available element laboratory test data (or field test data, if it would have been the case), it 

was decided to use results published in the literature to calibrate the model parameters. 

Moreover, it should be noted that particular emphasis was given to the calibration of the 

strength parameters, due to the relevance of the plastic response of materials in this type of 

problems involving liquefaction-related phenomena. In most of experimental studies of 

interface strength properties, the friction of the interface is defined in relation to that of sand, 

by using the concept of coefficient of interaction (often termed by some authors as “interface 

efficiency”). As detailed, for example, in Vieira et al. (2013), this quantity is defined as the 

ratio of the maximum shear stress developed in a soil–geosynthetic interface (typically 

measured in direct shear tests) to the maximum shear stress developed in soil (measured in 

the same type of test). Having performed a large laboratory testing programme consisting of 

more than 450 direct shear tests on sand-polymer interfaces at low confining stresses (of 

about 20.7 kPa), O’Rourke et al. (1990) concluded that the coefficient of interaction of 

medium- and high-density polyethylene linings contacting with different sands at various 

densities is relatively constant, within the range of 0.55 to 0.65, with the highest values being 

obtained for a fluvial sub-angular sand. Higher values have been, nevertheless, suggested 

from other laboratory studies. In particular, based on results of large-scale direct shear tests 

on interfaces between moderately loose and dense silica sand and a high-strength composite 

geotextile, Vieira et al. (2013) obtained coefficients of interaction, in general, slightly above 

0.80. Similarly, Abu-Farsakh et al. (2007) reported a coefficient of interaction of 0.74 for a 

dense sand–woven geotextile interface tested in a large-scale direct shear test device. A 

comprehensive experimental study on sand-geotextile interface was also performed Markou 

(2018), involving not only small- and large-scale direct shear tests on several different sands 

and non-woven polypropylene geotextile interfaces, but also triaxial compression tests on 

reinforced sand samples. This author reported coefficients of interaction within 0.67 and 0.73 

for a sub-angular dense sand contacting with a non-woven polypropylene geotextile. 

Considering the outcome of these experimental studies, it was decided to adopt a value of 

0.67 for the coefficient of interaction. Assuming zero apparent cohesion and a friction angle 

for loose Hostun sand of 31.5° (corresponding to its critical-state value in triaxial compression 

loading conditions – Section 6.4), the friction angle of the interface, ’i, was set to 21.1°. 

With respect to the stiffness parameters, due to the scarcity of published data, which could 

be used as reference, the approach followed consisted of estimating firstly the lower limit 

tangent elastic shear modulus predicted by the constitutive model for loose Hostun sand 

(having an initial void ratio, e, of 0.811 and model parameters indicated in Table 6.5): 
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(Gtan)lim =

Cg p'ref

(mg − e)
2.0

1+ e (
p′min

p′ref
)

ng

1.0 +  (
1.0
a1

− 1.0)

=
293.0 × 101.3

(2.97 − 0.811)2.0

1 + 0.811 (
10.0

101.3)
0.49

1.0 + 2.0 (
1.0

0.46 − 1.0)
≈ 7337.6 kPa 

(8.30) 

Assuming an interface thickness, ti, of 0.1 m (which corresponds to about three times the 

mean grain size of Hostun sand in prototype scale) and considering that the elastic shear 

stiffness of the interface is smaller than that of the surrounding material, with the reduction 

being proportional to the square of the coefficient of interaction, fg, as proposed in Brinkgreve 

et al. (2019), the elastic shear stiffness of the interface, Ks, was estimated as: 

Ks =
fg

2.0 (Gtan)lim

ti
=

0.672.0 × 7337.6

0.1
≈ 3.30 × 104 kN/m3 (8.31) 

Note that it was not necessary to estimate a value for the elastic normal stiffness of the 

interface, Kn, since the horizontal displacements of the interface nodes were tied at each level, 

as mentioned before. 

Still regarding the interface stiffness properties, it is perhaps noteworthy that, although it 

would have been possible to consider several different materials in depth and relate, for 

example, the elastic stiffness properties of the interface to those of the surrounding sand at 

the start of the analysis, it is believed that such detail would result in unnecessary complexity, 

most probably without greatly increasing the accuracy of the analysis. Furthermore, note that 

such approach would not anyway account for the strong reduction of stiffness of sand 

typically observed in this type of problems. 

With respect to the solid steel shallow foundations, a simple isotropic linear elastic model 

with a shear modulus of G = 76.9 GPa and a Poisson’s ratio of  = 0.30 was used to model 

their mechanical responses. Similar to CM-A, their mass density, , was estimated based on 

the weight required to apply to the underlying sand deposit the corrected value of the vertical 

stress, v
∗, during the generation of the initial stress state. Specifically, as detailed in the 

following section, a mass density of  = 4.75 g/cm3, corresponding to a vertical stress of 

v
∗ ≈  57.1 kPa (Equation 8.32), was employed. 

 =  
v

∗

g h
≈

57.1

9.81 × 1.225
≈ 4.75 g/cm3 (8.32) 

Finally, the only input parameter required for the pore fluid consisted of its bulk modulus, 

with Kf ≈ 2.2 GPa being adopted in the numerical analysis (as also considered in the 

simulation of CM-A). 
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8.4.2.3 Generation of the initial stress state 

Similar to CM-A, a gravity loading procedure was employed to generate the initial stress state 

in the model, consisting of the application of body forces to the elements of the mesh, which 

are considered weightless at the start of the analysis, as a boundary condition – for further 

details on this procedure, refer, for example, to Potts and Zdravkovic (1999). Concurrently, a 

hydrostatic pore pressure profile, characterised by a linear variation between a pore pressure 

of u = 0.0 kPa at the surface of the sand deposit and u = 
pf

 H = 9.81 × 18.0 ≈ 176.6 kPa at 

its bottom, was introduced in the analysis. By combining these two actions, the initial 

effective stress state was computed by using Terzaghi’s principle of effective stress. As also 

described for CM-A, during this calculation phase, a linear elastic isotropic model and uniform 

stiffness parameters (G = 76.9 GPa and  = 0.333) were specified for all materials, to 

prevent the occurrence of large shear stresses at the sand-structure interfaces. As mentioned 

before, by adopting  = 0.333, a value of K0 ≈ 0.50 was obtained in the zones of the deposit 

far from the shallow foundations (Equation 8.7). In addition, the Mohr-Coulomb criterion with 


′ = 31.5°, c' = 0.0 kPa and  = 0.0° was adopted for the sand deposits, to prevent the 

occurrence of large stress ratios in these materials. Fully drained conditions were assumed 

during this stage and standard displacement boundary conditions for static analyses were 

applied, consisting of restricting the horizontal displacements along the lateral boundaries of 

the model, as well as horizontal and vertical displacements of the nodes belonging to the 

bottom boundary of the model. 

In relation to the mass density of each shallow foundation, as explained before, it can be 

directly related to the vertical stress induced by the shallow foundation in the underlying sand 

deposit (Equation 8.32). Furthermore, as described in detail for CM-A (Section 8.3.2.3), due 

to the impossibility of simulating a square shallow foundation in a 2D plane strain analysis, a 

correction for the vertical stress induced by that shallow foundation in the underlying sand 

deposit is required. For CM-A, a reduction factor of  = 40.0% was found by comparing the 

immediate settlement induced by a square and strip loading in an elastic, homogeneous and 

isotropic half space (Carothers, 1920; Giroud, 1970; Poulos and Davis, 1974; Bowles, 1996). 

Taking into account that the geometry of CM-B is very similar to that of CM-A (in particular, 

the aspects which have great influence on the analysis, such as the contact area between the 

shallow foundation and the sand deposit, the null embedment depth, the thickness of the 

deposit and its characteristics), the reduction factor of  = 40.6 % was also adopted for the 

present numerical analysis. This means that a maximum vertical stress change of v
∗ ≈

(1.0− 0.406) × 95.0 ≈  56.4 kPa was considered in the analysis, rather than the value of 

v =  95.0 kPa reported in the experiment (Marques et al., 2014a). This means that a mass 

density of  ≈ 4.7 g/cm3 was considered for both left and right shallow foundations in the 

numerical analysis (Equation 8.32). 
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Figure 8.112 depicts the effective stresses obtained for three different vertical alignments on 

the left side of the model: x = 0.75 m (i.e. close to the left boundary of the model), x = 4.0 m 

(i.e. at approximately half distance from the centre of the left shallow foundation to the left 

boundary of the model) and x = 10.0 m (i.e. axis of the left shallow foundation). It can be 

seen that the intended vertical stress increment of v
∗ ≈  57.1 kPa was adequately applied 

to the zone of the deposit immediately underneath the shallow foundation. Furthermore, as 

expected, a much more limited horizontal stress increment (less than half of the vertical stress 

increment) was applied to that zone of the deposit. Moreover, it is apparent that the influence 

of the shallow foundation is practically restricted to the zones of the deposit underneath it, 

with similar horizontal and vertical effective stresses being obtained for x = 0.75 m and x =

4.0 m. In addition, it is apparent that, at levels deeper than 8 – 10 m, the influence of the 

shallow foundation on the effective stress state of the sand deposit is practically negligible, 

with the vertical stress distribution computed for x = 10.0 m being similar to that obtained 

for x = 0.75 m and x = 4.0 m. Note that a similar effective stress state is obtained for the 

right side of the model. 

Complementary, Figure 8.113 presents the effective stresses generated in the model for four 

horizontal different horizontal alignments: y = 0.50 m (i.e. close to the bottom boundary of 

the model), y = 9.50 m (i.e. at approximately middle depth of the sand deposit), y = 14.50 m 

(i.e. at approximately one third of the depth of the sand deposit) and y = 17.50 m (i.e. close 

to the surface of the sand deposit). It can be observed that, as expected, in this case, the initial 

effective stresses are practically symmetric in relation to a vertical alignment located at half 

distance from the left to the right boundaries (x = 17.0 m). Moreover, as observed for CM-A, 

the impact of the shallow foundations on the effective stresses generated in the zones of the 

sand deposit located close to the lateral boundaries of the model (i.e. zones approximately 

delimited by 0.0 m ≤ x < 5.0 m and by 29.0 m < x ≤ 34.0 m), as well in between shallow 

foundations (i.e. approximately 15.0 m < x < 18.0 m) is small. Similarly, it is apparent that 

the influence of the shallow foundations on the initial effective stress state reduces 

significantly with depth. For instance, at the middle depth of the model (i.e. y = 9.5 m), the 

effective stresses generated in the zones under the shallow foundations (i.e. zones 

approximately delimited by 8.5 m ≤ x < 11.5 m and by 22.5 m ≤ x ≤ 25.5 m.) are only about 

10 % higher than those obtained in the remaining deposit of sand (i.e. to the sides and middle 

of the model). 
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Figure 8.112 – Computed initial effective stresses for three different vertical alignments located on 
the left side of CM-B: (a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) shear 

stress; (d) horizontal (out-of-plane) effective stress.. 
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Figure 8.113 – Computed initial effective stresses for four different horizontal alignments of CM-B: 
(a) horizontal (in-plane) effective stress; (b) vertical effective stress; (c) shear stress; (d) horizontal 

(out-of-plane) effective stress. 
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the figure. It can be observed that most Gauss points located along vertical alignments farther 

from the influence of the shallow foundations (i.e. x = 0.75 m and x = 4.0 m) have stress 

ratios close to  = 0.75 ⇔ K0 = 0.50, as intended. Conversely, larger stress ratios are 

obtained for Gauss points located under the influence of the shallow foundations (x =

10.0 m). 

 
Figure 8.114 – Computed initial stress state in terms of deviatoric stress as a function of the mean 

effective stress at Gauss points located along three different vertical alignments located on the left 
side of CM-B. 
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Figure 8.115 – Mobilised, dilatancy and critical state stress ratios as a function of the state 

parameter at Gauss points located along a vertical alignment coincident with the axis of the left 
shallow foundation of CM-B. 

 
Figure 8.116 – Computed initial state parameter for Gauss points located along four different 

horizontal alignments of CM-B. 
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difficult to reproduce in laboratory testing. Moreover, note that most of Gauss points of CM-

B are, in fact, characterised by values of the state parameter greater than -0.29. 

8.4.2.4 Dynamic analysis 

8.4.2.4.1 Horizontal acceleration time-histories 

The horizontal acceleration time-histories computed at several different positions located 

along a vertical alignment coincident with the axis of the left shallow foundation (x = 10.0 m) 

are compared with those recorded in the centrifuge experiment in Figure 8.117. Note that 

the two deepest positions (i.e. at (x, y) = (10.0, 0.5) m and (x, y) = (10.0, 6.0) m) are not 

precisely located along x = 10.0 m, rather along x = 10.5 m, to be compatible with the 

selected mesh (Figure 8.111). Nevertheless, at these deep locations, very similar results were 

obtained either along x = 9.5 m or x = 10.5 m, meaning that similar results would be also 

expected at x = 10.0 m. Moreover, note that, to ease their simultaneous visualisation and 

comparison, all experimental and numerical acceleration time-histories presented in this 

section were filtered using a fourth-order Butterworth-type filter with limit frequencies of 0.1 

Hz and 25 Hz, available in the software SeismoSignal version 2018 (Seismosoft, 2018). It can 

be seen that a good match between numerical and experimental data was obtained at the 

two deepest positions. A less satisfactory agreement was registered at the two shallowest 

positions (i.e. at (x, y) = (10.0, 12.0) m and (x, y) = (10.0, 17.0) m), with the numerical tool 

overpredicting the peak horizontal accelerations, particularly from the moment that the 

attenuation of the horizontal motion was observed in the experiment (approximately after 

the second significant loading cycle). As detailed later, this overprediction seems to be a 

detrimental consequence of the underprediction of the excess pore pressures generated at 

these locations (and, consequently, underprediction of material damping) during this stage of 

the analysis. Given this overestimation of the peak horizontal accelerations at the shallow 

depths of the sand deposit, the motion registered at the left top of the shallow foundation 

(i.e. at (x, y) = (8.5, 19.225) m) is also overestimated in relation to that recorded in the 

experiment, as shown in Figure 8.118.  
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Figure 8.117 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the left shallow foundation for CM-B. 
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Figure 8.118 – Measured and computed horizontal acceleration time-histories at the top of the left 

shallow foundation and underneath it for CM-B. 
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Figure 8.119 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the right shallow foundation for CM-

B. 
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Figure 8.120 – Measured and computed horizontal acceleration time-histories at the top of the 

right shallow foundation and underneath it for CM-B. 
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(x = 17.0 m in the numerical model) are compared with those recorded in the experiment in 
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(x, y) = (17.0, 0.5) m, (x, y) = (17.0, 6.0) m and (x, y) = (17.0, 12.0) m. The numerical tool 

seems, however, unable to replicate the strong attenuation of the horizontal peak 
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(17.0, 17.0) m) observed in the experiment after the second significant loading cycle. As 

discussed in detail later, this seems to be a detrimental consequence of the overestimation 

of the additional drainage capacity provided by the geocomposite during the analysis, leading 

to the underprediction of the excess pore pressure generated in this zone of the model during 

dynamic loading. In fact, a better agreement between numerical and experimental data in 

terms of accelerations computed at shallow depths of the sand deposit was reached when 

simulating the previous centrifuge experiment (Figure 8.45) – which did not include any 

drainage geocomposite – , with the numerical tool being able to capture accurately the 

attenuation of the horizontal peak accelerations at shallow depths of the sand deposit. 
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Figure 8.121 – Measured and computed horizontal acceleration time-histories at several positions 

located along a vertical alignment coincident with the middle of the CM-B. 
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zero vertical accelerations were prescribed at the nodes belonging to the bottom boundary 

of the numerical model, large vertical peak accelerations were computed at the top of the 

shallow foundations, with amplitudes not very different from the horizontal ones, as 

observed in the experiment (although, in the experiment, vertical accelerations have been 

imposed at the base of the centrifuge model). Similar to what was observed for the horizontal 

accelerations, it seems that the numerical tool overpredict the vertical peak accelerations at 

the top of this shallow foundation, which is likely a consequence of the underprediction of 

the excess pore pressures generated in the densified sand deposit underlying this shallow 

foundation. 

 

 

 
Figure 8.122 – Measured and computed vertical acceleration time-histories at the base of the 

model and at the left and right top edges of the left shallow foundation for CM-B. 
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average value) and semi-difference of the vertical accelerations computed at the left and right 

top edges of this shallow foundation. The fact that the semi-difference varies with time 

suggests that rocking motion was simulated. Note that, although similar results were 

observed in the experiment, the measured rotational movement might have been induced, 

at least partly, by a non-intentional rocking motion of the entire centrifuge model (rather than 

just by a rocking motion of the shallow foundation itself), as discussed in Section 8.4.1.3. 

 
Figure 8.123 – Computed vertical acceleration time-histories at the left and right top edge of the 

left shallow foundation during the period ranging from 15 to 25 s for CM-B. 

 
Figure 8.124 – Semi-sum and semi-difference of the vertical accelerations computed at the left and 
right top edges of the left shallow foundation during the period ranging from 15 to 20 s for CM-B. 
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Figure 8.125 depicts the computed values at its left and right top edges (i.e. at (x, y) =

(22.5, 19.225) m and (x, y) = (25.5, 19.225) m, respectively, in the numerical model), 

together with those recorded in the experiment. It can be observed that the computed local 

maximum peaks are larger than those registered in the experiment, suggesting that the 

constitutive model overpredicted the occurrence of dilation in the zone of the model 

underneath this shallow foundation. 
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Figure 8.125 – Measured and computed vertical acceleration time-histories at the base of the 

model and at the left and right top edges of the right shallow foundation for CM-B. 

Moreover, as obtained for the left shallow foundation of the model, the peak vertical 

accelerations computed at the left and right top corners of the right shallow foundation seem 

to occur out of phase (Figure 8.126). In effect, as more clearly observed in Figure 8.127, the 

shallow foundation was observed to oscillate during the numerical analysis, suggesting that a 

rocking motion was simulated. As noted for the left shallow foundation of the model, 

although similar results were measured in the experiment, it is unclear whether the oscillation 

was induced by a non-intentional rocking motion of the entire centrifuge model, by individual 

rocking motion of the shallow foundation or both concurrently (Section 8.4.1.3). 

 
Figure 8.126 – Computed vertical acceleration time-histories at the left and right top edge of the 

right shallow foundation during the period ranging from 15 to 25 s for CM-B. 
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Figure 8.127 – Semi-sum and semi-difference of the vertical accelerations computed at the left and 
right top edges of the right shallow foundation during the period ranging from 15 to 20 s for CM-B. 

8.4.2.4.3 Excess pore pressures 

The evolutions of the excess pore pressures with time computed for vertical alignments 

coincident with the axis of the left shallow foundation (x = 10.0 m) and right one (x = 24.0 m 

in the numerical model) are, respectively, shown in Figure 8.128 and Figure 8.129, together 

with the experimental data. Overall, it is apparent that a much better agreement between 

numerical and experimental sets of data was obtained for the zones of the model located 

under the right shallow foundation (Figure 8.129) than under the left one (Figure 8.128), with 

the numerical tool underpredicting the excess pore pressures observed at the two positions 

located along a vertical alignment coincident with the axis of the left shallow foundation: 

(x, y) = (10.0, 17.0) m and (x, y) = (10.0, 12.0) m. Since the main difference between the 

left and right side of the model consisted of the presence of the drainage geocomposite 

(which, as described before, was numerically simulated by two columns of elements having 

larger hydraulic conductivity than the surrounding elements simulating the sand deposit), it 

can be concluded that the numerical model overestimated the drainage capacity provided by 

the geocomposite, although specifications from the manufacturer have been used to 

estimate the hydraulic conductivity of the geocomposite, as described in Section 8.4.2.2. A 

plausible explanation resides in the 2D plane strain simplification adopted in the numerical 

analysis, with the geocomposite being simulated as a continuous element in the out-of-plane 

direction (Figure 8.111), while, in fact, it consisted of an open prism in the experiment, with 

a width of about 5.0 m in the out-of-plane direction in the centrifuge experiment (Figure 8.76 

and Figure 8.77). In addition, and perhaps seeming less probable, it can be argued that 

clogging, kinking or other physical mechanisms might have occurred during the centrifuge 

experiment, which are not considered in the numerical analysis. 

-4

-2

0

2

4

15 16 17 18 19 20 21 22 23 24 25

(a
y,

le
ft
 

a y
,r

ig
h
t)

 /
 2

 (
m

/s
2
)

t (s)

semi-sum, (ay,left + ay,right) / 2

semi-difference, (ay,left − ay,right) / 2



APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE SIMULATION OF THE DYNAMIC RESPONSE OF 

SHALLOW FOUNDATIONS BUILT ON LIQUEFIABLE SAND DEPOSITS 

600 
 

 

 
Figure 8.128 – Computed and measured excess pore pressure build-up at two different positions 

located along a vertical alignment coincident with the axis of the left shallow foundation for CM-B. 

 

 
Figure 8.129 – Computed and measured excess pore pressure build-up at two different positions 

located along a vertical alignment coincident with the axis of the right shallow foundation for CM-
B. 
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Moreover, it can be observed in both figures that, during the early stages of loading (i.e. 

during the first two significant loading cycles), the numerical tool predicted the generation of 

positive (i.e. compression-type) excess pore pressures in the zones of the deposit immediately 

underneath both shallow foundations (i.e. at (x, y) = (10.0, 17.0) m and (x, y) =

(24.0, 17.0) m), while the opposite trend (i.e. suction-type excess pore pressure) was 

observed in the experiment. Once again, this might be a detrimental consequence of the 2D 

plane strain simplification, with the contribution of the shallow foundations to the initial 

effective stresses generated at shallow depths of the sand deposit being likely 

underestimated, as discussed before. In effect, providing that larger effective stresses would 

have been computed in the zone of the sand deposit located immediately underneath the 

shallow foundations, dilatant response would have likely been triggered, which, under mostly 

undrained conditions, would have likely resulted in generation of negative excess pore 

pressure generation, as observed in the experiment. 

In relation to the consolidation phase, similar to the CM-A, the rate of excess pore pressure 

dissipation computed by the numerical tool is much higher than that registered in the 

centrifuge experiment. As explained before, this seems to be a detrimental consequence of 

the open yield surface formulation of the constitutive model, which results in a significant 

overprediction of the stiffness of sand under stress paths characterised by approximately 

constant stress ratios – which are likely imposed after the end of shaking (i.e. during the 

consolidation phase). Similar conclusions were reported by Taborda (2011) when inspecting 

the results obtained in the numerical simulation of VELACS models 1 and 12. 

The computed evolutions of the excess pore pressures with time at three different positions 

located along a vertical alignment coincident with the middle of the model (x = 17.00 m in 

the numerical model) are shown in Figure 8.130, together with those measured in the 

experiment. It is apparent that the excess pore pressures are slightly underpredicted in the 

numerical analysis. This suggests that the drainage capacity of the geocomposite was 

overestimated in the numerical analysis, as discussed before, and may have affected also the 

computed excess pore pressure build-up in the middle of the model. 
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Figure 8.130 – Computed and measured excess pore pressure build-up at two different positions 

located along a vertical alignment coincident with the middle of the model for CM-B. 

The computed excess pore pressures at t = 38 s (approximately corresponding to the end of 

shaking) are illustrated in Figure 8.131. Note that this contour plot was obtained by using the 

post-processing software GiD version 7.2 (GiD, 2002). As noted before, details about the 

integration between FEMEPDYN and GiD can be found in Grazina (2009). As expected, it is 

apparent that smaller excess pore pressures were generated at shallow depths, due to the 

small initial effective stresses, as well as in the zones of the model close to the columns of 

elements having higher hydraulic conductivity (i.e. the columns of elements simulating the 

geocomposite). Moreover, it can be seen that the additional capacity of drainage provided by 

geocomposite has a significant impact on the mitigation of excess pore pressures generated 

in the left densified sand column and, in a less degree, in between densified sand columns. 
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Figure 8.131 – Excess pore pressures (in kPa) at the end of dynamic loading (t = 38 s) for CM-B. 

In addition, Figure 8.132 illustrates the excess pore pressure ratio, ru, obtained in the 

numerical analysis also at t = 38 s. Note that, as considered for CM-A, ru is defined as the 

ratio of the excess pore pressure, u, to the initial vertical effective stress, ’v,0. Perhaps 

unsurprisingly at this point, it can be seen that large values of ru were only obtained in zones 

of the deposit close to the lateral boundaries, as well as close to the ground surface in 

between shallow foundations and under the right shallow foundation of the model at deep 

levels (where the influence of the shallow foundation on the effective stress state appears to 

be small). Once again, it is apparent the strong effect of the additional drainage capacity 

provided by the geocomposite on the limitation of the excess pore pressures generated on 

the left densified sand column, as well as middle of the model (particularly at deep levels). 

 

 

Figure 8.132 – Excess pore pressure ratio at the end of dynamic loading (t = 38 s) for CM-B. 
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8.4.2.4.4 Settlements 

The computed evolutions of the settlements during shaking and shortly after its end for the 

left and right shallow foundations of the model are depicted in Figure 8.133, together with 

the experimental results. Starting with the left shallow foundation, it can be observed that 

the numerical tool slightly underpredicts the rate and final magnitude of settlement, which 

is, in fact, consistent with the underprediction of the excess pore pressures generated in the 

densified sand deposit under the influence of this shallow foundation, likely overpredicting 

the stiffness of sand. Nevertheless, considering the 2D plane strain simplification adopted in 

the numerical analysis, which likely affect the effective stresses and drainage capacity of the 

geocomposite, the agreement between numerical and experimental data may be considered 

very satisfactory. In effect, at the end of shaking (i.e. at t ≈ 38 s), the computed settlement 

for the left shallow foundation reached a value of about 8.8 cm, while a settlement of about 

10.4 cm was measured at that instant of time in the experiment. 

 
Figure 8.133 – Computed and measured settlements at the top of the left and right shallow 

foundations for CM-B. 

With respect to the settlements obtained for the right shallow foundation, it is apparent that 

the rate at which it occurs in the numerical analysis is very similar to that measured in the 

experiment up to about 25 s (disregarding the slightly later onset of settlement observed for 

the numerical analysis). From that moment, the rate of settlement computed in the numerical 

analysis is slightly smaller than that registered in the experiment, resulting in a smaller final 

magnitude of settlement (of about 20%) at the end of dynamic loading. This underprediction 

appears, however, to be justified by the fact that, during the centrifuge experiment, the right 

shallow foundation was observed to move significantly to the right of the model. In fact, post-

test measurements of the final settlement profile revealed that part of the right shallow 

foundation was eventually resting on the loose sand deposit, rather than on the densified 

sand deposit, as intended (Marques et al., 2014a, 2015). This aspect is illustrated in Figure 

8.134, which compares the computed and measured (i.e. inferred from post-test 

measurements) ground settlement profile at the end of the experiment. Note that the post-

test measurements shown in this figure are uniformly scaled to match the final settlements 

of the shallow foundations measured by the linear variable differential transducer (LVDT) 

placed at the top of the shallow foundations. It can be observed that, although the computed 

-60

-45

-30

-15

0

0 10 20 30 40 50 60 70 80

d
y

(c
m

)

t (s)

Experimental

Numerical

Left shallow foundation: (x, y) = (10.0, 19.225) m

Right shallow foundation: (x, y) = (24.0, 19.225) m



APPLICATION OF THE BOUNDING SURFACE PLASTICITY MODEL TO THE SIMULATION OF THE DYNAMIC RESPONSE OF 

SHALLOW FOUNDATIONS BUILT ON LIQUEFIABLE SAND DEPOSITS 

605 
 

settlement for the right shallow foundation is effectively smaller than that measured in the 

experiment for the shallow foundation, as well as smaller than that measured at the centre 

of the densified sand column, where the shallow foundation was initially placed, the 

discrepancy to this latter position can be considered small, particularly considering the fact 

that the settlements occurring during the consolidation phase (which consist of about 30 % 

of the total settlement measured in the experiment) are largely underpredicted by the 

constitutive model, due to its open primary yield surface formulation. 

 
Figure 8.134 – Computed and measured settlement profile of the ground surface and shallow 

foundations after the complete dissipation of excess pore pressures for CM-B. 

Contrary to what was observed for CM-A, Figure 8.134 suggests that the numerical tool 

overpredicted the rotation of the shallow foundations. In effect, it is apparent that the 

shallow foundations are rotated towards each other at the end of the numerical analysis. 

Note that, in the experiment, the left shallow foundation was observed to remain practically 

level, while the right shallow foundation was observed to rotate towards the right, probably 

due to the unexpected sliding to the outside of the densified sand column (Marques et al., 

2014a, 2015). This overprediction of the rotation of the shallow foundations might be related 

to the numerical simulation of a rocking mechanism, which might have been more limited in 

the experiment, as discussed before. 

Although the introduction of the interface elements allowed for the occurrence of relative 

shear displacements at their location, the computed relative displacements are significantly 

smaller than those registered in the experiment, particularly on the right side of the left 

shallow foundation, where a relative displacement of about 50 cm was registered in the 

experiment. As clearly illustrated in Figure 8.135, this seems to be related to the inability of 

the numerical tool to capture the significant subsidence occurring at the ground surface in 

between shallow foundations. As suggested in previous studies (e.g. Scott, 1986a; Coelho, 

2007; Taborda, 2011) and numerically investigated for CM-A, this inability might be, at least 

partially, explained by a temporary increase of the hydraulic conductivity of the sand deposit 

during dynamic loading in relation to the value of this property measured in conventional 
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laboratory tests, which is not captured in the numerical analysis. Indeed, the introduction of 

hydraulic models establishing a variation of the hydraulic permeability with excess pore 

pressure ratio appears to lead to a better replication of the measured response, as discussed 

in Section 8.3.2.5, although the observed discrepancies (particularly in terms of excess pore 

pressures generated in the model) indicated that further investigation is required. 

 
Figure 8.135 – Computed and measured settlements at the ground surface in between shallow 

foundations for CM-B. 

  
(a) t = 0 s (b) t = 28 s 

  
(c) t = 38 s (d) t = 48 s 

Figure 8.136 – Deformed mesh and displacement vectors at different instants of time for CM-B. 

Further insight into the deformation mechanism predicted in the numerical analysis is 

provided in Figure 8.136, which compares the deformed mesh at three different instants of 

time (t = 28, 38 and 48 s) with the undeformed mesh (i.e. model at t = 0 s). To ease the 

visualisation, the scale of the deformations is twice that of the model geometry. Moreover, 

the accumulated total displacement vectors (scaled by a factor of 6.0 to aid the presentation) 

are also displayed in the figure to highlight the deformation mechanism. It is interesting to 

observe the different deformation mechanisms of the two shallow foundations. While the 
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right shallow foundation appears to push sand to the sides, particularly to the middle of the 

model, the left shallow foundation seems to punch through sand, clearly illustrating the 

strong effect of drainage on the deformation mechanism, as well as the beneficial 

contribution of the interface elements to the more accurate simulation of the interaction 

between sand and the geotextile interfaces. Moreover, it is noteworthy that, contrary to what 

was observed for CM-A, in this case, the deformation mechanisms of the two shallow 

foundations do not seem to interact with each other. 

Finally, Figure 8.137 compares the computed and measured settlements of the shallow 

foundations having similar weight (i.e. heavier shallow foundation for CM-A and both shallow 

foundations for CM-B). While a slightly greater settlement rate was predicted for CM-A, a very 

good agreement in terms of numerical and experimental settlement rate was obtained for 

CM-B. Perhaps more important, it is apparent that the numerical tool was able to predict the 

main trends observed in the experiments, with particular emphasis for the great 

enhancement of the combined use of densification and drainage geocomposite simulating 

closely spaced high-capacity vertical drains on the overall response of the system. 

 
Figure 8.137 – Comparison of the computed and measured settlements at the top of the shallow 

foundations for CM-A and CM-B. 

8.4.2.4.5 Vertical effective stresses 

Figure 8.138 illustrates the vertical effective stresses computed at four different instants of 

time: t = 0 s (i.e. at the start of the analysis), t = 18 s (i.e. during dynamic loading), t = 38 s 

(i.e. at the end of dynamic loading) and t = 78 s (i.e. practically at the end of  the consolidation 

phase). As expected, very different vertical effective evolutions with dynamic loading are 

observed for the left and right sides of the model. Specifically, while the effective vertical 

stresses are substantially reduced in the zones of the model under the influence of the right 

shallow foundation, particularly at middle depth of the right densified sand column and zones 

around it, the effective stresses appear to be only slightly reduced in the left densified sand 

column. As dynamic loading ceases and dissipation of excess pore pressures occurs, the 

effective vertical stresses progressively increase from bottom to the top of the model, as also 

expected. Note that similar trends are observed for the horizontal effective stresses. 
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(a) t = 0 s (b) t = 18 s  

  

 

(c) t = 38 s (d) t = 78 s  
Figure 8.138 – Vertical effective stresses (in kPa) at different instants of time for CM-B. 

8.5 Summary and conclusions 

In this chapter, the performance of the bounding surface plasticity model (BSPM) 

implemented into FEMEPDYN was evaluated in the context of boundary-value problems. 

Specifically, the results of two centrifuge experiments concerning the response of adjacent 

shallow foundations built on liquefiable sand deposits subjected to dynamic loading were 

used as benchmark for the dynamic finite element analyses. In the first centrifuge experiment, 

the adjacent shallow foundations, consisting of solid steel structures, were built on a uniform 

deposit of saturated loose sand and, therefore, the focus was given to the ability of the 

constitutive relationship to reproduce the basic aspects of sand-structure interaction under 

dynamic loading. Complementary, techniques to mitigate liquefaction effects were used in 

the second centrifuge experiment, including narrow densified columns and a drainage 

geocomposite simulating closely spaced high-capacity drains, increasing the complexity of the 

numerical analysis. Particular emphasis was given, in this second analysis, to the evaluation 

of the ability of the constitutive model to simulate the response of deposits with different 

initial densities using a single set of model parameters, as well as to replicate the impact of 

the additional drainage capacity provided by the geocomposite on the response of sand. 

Prior to the presentation and discussion of the finite element analyses and obtained results, 

an overview of the dynamic centrifuge testing programme undertaken by the PhD candidate 

Andreia Silva Marques was given, followed by a brief description of the obtained experimental 

results. The general aspects of the dynamic finite element analysis were subsequently 

described, including the time-integration algorithm employed, spatial and time discretisation 

and boundary conditions adopted, as well as characteristics adopted for the different 
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materials (such as initial density, stiffness and strength properties and hydraulic conductivity). 

Due to the simplification of the 3D configuration of the problem by assuming a plane strain 

condition, the methodology used to estimate the contributions of the shallow foundations to 

the initial stress state was thoroughly characterised and discussed, to ascertain potential 

detrimental impacts on the modelled response. Finally, the results obtained in each dynamic 

finite element analysis were compared with those obtained in the corresponding centrifuge 

experiment and conclusions were drawn about the ability of the constitutive model to capture 

the main phenomena observed in the experiments. 

In relation to the first centrifuge model (CM-A), concerning the response of two adjacent 

shallow foundations resting on a uniform deposit of saturated loose sand subjected to 

dynamic loading causing liquefaction, it was concluded that the constitutive model was able 

to replicate key aspects of the dynamic response of sand, such as: 

- attenuation of the input motion due to the strong degradation of sand stiffness and 

concurrent increase in material damping; 

- accurate prediction of the excess pore pressure evolution with dynamic loading at 

different locations of the sand deposit; 

- satisfactory prediction of the settlements registered for both heavier and lighter 

shallow foundations during dynamic loading. 

Conversely, the constitutive model was not able to reproduce satisfactorily the following 

aspects:  

- excess pore pressures build-up during the first half of dynamic loading in the zones of 

the deposit immediately underneath the foundation, with the constitutive model 

overpredicting this aspect of the sand response; 

- rate at which the excess pore pressure dissipates after the end of shaking (i.e. during 

the consolidation phase), with the constitutive model overpredicting this aspect; 

- rate and magnitude of the structural settlements occurring during the consolidation 

stage, with the constitutive model underpredicting the observed settlements. 

While the first aspect may be attributed to the simplifications required to simulate the 3D 

nature of the problem by assuming 2D plane strain conditions, the inability of the constitutive 

model to reproduce accurately the response of sand during consolidation seems related to 

the open primary yield surface formulation of the model, which leads to the prediction of 

solely elastic response under stress paths characterised by approximately constant stress 

ratios. Note that this aspect was also reported by Taborda (2011) when reproducing other 

centrifuge experiments. 

Still regarding CM-A , it was further observed that the following aspects were not satisfactorily 

captured in the numerical analysis: 
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- magnitude of the inertia effects introduced by the different masses of the shallow 

foundations, with the horizontal accelerations registered for the lighter shallow 

foundation being underestimated in relation to those measured in the experiment; 

- inability to predict the deformation mechanism observed in the centrifuge 

experiment, characterised by a progressive punching of the shallow foundations 

through the sand deposit during the experiment; conversely, in the numerical analysis, 

a movement of sand from the zones of the deposit under the influence of the shallow 

foundations to the zones farther from their influence (sides and middle of the model) 

was predicted; as a consequence, the displacements registered in the numerical 

analysis at the ground surface in between the two shallow foundations, as well as on 

the sides of the shallow foundations differ significantly from those measured in the 

experiment. 

Note that these aspects cannot be directly considered as pitfalls of the constitutive model, 

since other aspects of the numerical analysis seem to have influenced the computed 

response. In relation to the former aspect, it may be argued that the 2D plane strain 

simplification might have considerably influenced the response measured immediately 

underneath the shallow foundations, as pointed out before when addressing the 

discrepancies in terms of excess pore pressures generated at those locations. Regarding the 

deformation mechanism, it was attributed to the inability of the numerical tool to predict the 

occurrence of partially drained response of sand during dynamic loading. In fact, it has been 

extensively suggested in the literature (e.g. Scott, 1986a; Manzari and Arulanandan, 1993; 

Coelho, 2007; Taiebat et al., 2007; Su et al., 2009; Andrianopoulos et al., 2010a; Taborda, 

2011) that a temporary increase in hydraulic conductivity of the liquefied sand deposit in 

relation to the value of this property measured in conventional laboratory tests (e.g. 

permeameter tests) might occur during dynamic loading, likely due to the formation of 

transient cracks in the sand deposit under very low effective stresses and large vertical 

hydraulic gradients. To investigate this aspect, the numerical simulation of CM-A was re-run 

considering a simple variable hydraulic conductivity model proposed by Taborda (2011) 

linking the value of this property to the excess pore pressure ratio. Although significant 

discrepancies were obtained in this subsequent analysis in terms of excess pore pressures 

generated in the model and computed structural settlements, suggesting that further 

investigation is required, it was shown that a considerable improvement of the reproduction 

of the deformation mechanism observed in the experiment and, consequently, of the 

settlements registered in between the two shallow foundations was obtained. 

With respect to the results obtained for the second centrifuge model (CM-B), which assessed 

the use of narrow densified zones and high-capacity vertical drains to improve the 

performance of adjacent shallow foundations when subjected to dynamic loading, it was 

concluded that: 
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- apart from the zones of the deposit located immediately underneath the shallow 

foundations, the constitutive model was able to predict satisfactorily the modification 

of the input motion due to the degradation of sand stiffness and concurrent increase 

in material damping; 

- satisfactory prediction of the excess pore pressure evolution with dynamic loading 

under the right shallow foundation of the model; note that, on this side of the model, 

only densification was used as technique to mitigate liquefaction effects; 

- overestimation of the drainage capacity of the geocomposite, with smaller excess 

pore pressure accumulation under the left shallow foundation of the model and in the 

middle of the model being obtained in the numerical than those measured in the 

experiment; 

- very satisfactory prediction of the rate and magnitude of settlements registered for 

both shallow foundations during the dynamic phase; presumably, the agreement in 

terms of the magnitude of settlement of the right shallow foundation could have been 

even better if the shallow foundation had been observed to remain on the densified 

sand column during the centrifuge experiment, as intended (Marques et al., 2014a, 

2015); 

- similar to CM-A, overprediction of the rate of dissipation of excess pore pressures after 

the end of shaking, as well as underestimation of the settlements occurring during this 

stage of the experiment; as mentioned before, this is likely a consequence of the open 

shape of the primary yield surface, which results in an overestimation of the stiffness 

of sand under stress paths characterised by approximately constant stress ratios. 

Overall, in terms of the performance of the bounding surface plasticity model, it can be 

concluded that the constitutive model was able to predict accurately the generation of excess 

pore pressure during dynamic loading in both loose and dense deposits of Hostun sand. As a 

result, the constitutive model captured satisfactorily the reduction of stiffness and concurrent 

increase in material damping with dynamic loading and, therefore, the modification of the 

input motion. A satisfactory prediction of the co-seismic structural settlements was also 

obtained in the numerical analysis. Taking into account that both centrifuge experiments 

were simulated using model parameters calibrated solely against results of element 

laboratory tests, it suggests that the constitutive model has an extensive ability to simulate 

the occurrence and development of liquefaction-related phenomena, as well as the 

performance of shallow foundations under such circumstances. 

In order to expand the modelling capabilities of the constitutive model, it seems particularly 

important to improve the simulated response under stress paths characterised by 

approximately constant stress ratios. Under such loading conditions, the stiffness of sand 

appears to be greatly overpredicted by the constitutive model, resulting in the overprediction 

of the rate of excess pore pressure dissipation, as well as underprediction of settlements. As 

suggested by Taborda (2011), possible solutions may include: (1) replacement of the current 
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shape of the primary yield surface by a closed shape (e.g. Taiebat and Dafalias, 2008); (2) 

introduction of an additional yield surface which closes the current yield surface for large 

values of mean effective stress (Li, 2002); or (3) introduction of a nonlinear degradation of 

the secant bulk modulus with volumetric strain to complement the degradation of secant 

shear stiffness with shear strain (Jardine et al., 1986). 
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Chapter 9 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

9.1 Introduction 

The great development of the capabilities of finite element codes in recent years and their 

growing use in current engineering practice have revealed the need for the implementation 

of constitutive models capable of modelling accurately the response of soil under general 

loading conditions. Indeed, the adequate simulation of complex dynamic phenomena, such 

as those involving liquefaction, requires the use of advanced constitutive models able to 

capture important features of cyclic soil response, including the reduction of shear stiffness 

and concurrent increase in damping ratio with strain amplitude, the modification of the 

response of soil once the phase transformation line is crossed and stress path is reversed, the 

occurrence of flow liquefaction or cyclic mobility and the accumulation of very large strains. 

Furthermore, the constitutive model should be able to predict accurately the effect of stress 

state and density on the response of soil using a single set of model constants. Among the 

vast number of constitutive models available in the literature, bounding surface plasticity 

models (BSPM) have been a subject of great interest in recent years, not only due to their 

ability to reproduce adequately the aforementioned key aspects of cyclic soil response, but 

also due to their modularity and flexibility, which simplify their further expansion to enhance 

their modelling capabilities. Indeed, a successful application of such strategy was undertaken 

by Taborda (2011) and Taborda et al. (2014) by performing a detailed computational study 

on the expansion of a bounding surface plasticity model for sand originally proposed by 

Manzari and Dafalias (1997) and further developed by Papadimitriou and Bouckovalas (2002). 

While retaining the main constitutive ingredients from the original version (such as the 

dependence of the plastic hardening modulus and flow rule on the distances from the current 

stress point to its projection on the bounding and dilatancy surfaces, respectively), the more 

recent versions of Papadimitriou and Bouckovalas (2002) and Taborda et al. (2014) have been 

shown greater ability to simulate accurately cyclic sand response under a wide range of strain 

amplitudes. Furthermore, when compared to the precedent versions, the alterations 

introduced by Taborda et al. (2014) have increased the overall flexibility and accuracy of the 

constitutive model, while being numerically stable at very low effective stresses, which is a 

crucial requirement when simulating boundary-value problems involving liquefaction-related 

phenomena. Having selected the formulation proposed by Taborda et al. (2014) as a starting 

point, the following objectives were established for the present PhD research: 

- expansion of the constitutive relationship proposed by Taborda et al. (2014) by 

replacing the expression for the small-strain elastic stiffness modulus with a more 

general one, as well as by introducing an inherent fabric anisotropy component 

proposed in the literature, enhancing the ability of the constitutive relationship to 
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capture the effect of the direction of the major principal effective stress in relation to 

the axis of the deposition of the particles on the modelled response; 

- implementation of the proposed constitutive relationship into the finite element code 

FEMEPDYN, developed at the University of Coimbra; 

- extensive investigation of the ability of the constitutive model to replicate the 

response of sand observed in element laboratory tests and centrifuge tests involving 

liquefaction-related phenomena. 

It is important to note that the third objective was solely possible due to a collaboration 

established with another PhD research programme, which included centrifuge testing at the 

Turner Beam Centrifuge facility of the University of Cambridge, United Kingdom. Specifically, 

as part of a Seismic Engineering Research Infrastructures for European Synergies (SERIES) 

Transnational Access Use Agreement, a centrifuge-based study on the performance of 

shallow foundations built on liquefiable sand deposits when subjected to dynamic loading 

was undertaken by a PhD candidate, Andreia Silva Marques. Given the lack of field monitoring 

data concerning this type of phenomena, the results of these centrifuge experiments 

represented an excellent opportunity to evaluate the performance of the newly implemented 

constitutive model in the context of boundary-value problems involving liquefaction. To 

bridge the gap between centrifuge and numerical modelling, it was considered fundamental 

to perform an extensive laboratory characterisation of the material used in the dynamic 

centrifuge experiments – namely, air-pluviated Hostun sand. With that purpose, an extensive 

element laboratory testing programme, including bender element tests, as well as large 

number of monotonic and cyclic triaxial tests, was undertaken, allowing for the 

characterisation of the response of air-pluviated Hostun sand under a wide range of strains. 

Indeed, besides providing fundamental insight into important aspects of the monotonic and 

cyclic response of Hostun sand and, therefore, assisting the interpretation of the response 

measured in the centrifuge experiments, the results obtained in the element laboratory tests 

provided reliable data for the calibration of the BSPM. 

The following sections summarise the performed research and main conclusions drawn from 

the obtained results. The final section of this chapter presents recommendations for future 

investigation. 

9.2 Laboratory characterisation of the monotonic and cyclic response of 

Hostun sand 

In the first part of the thesis, consisting of Chapter 2 and Chapter 3, the element laboratory 

testing programme carried out on air-pluviated Hostun sand was thoroughly described. The 

obtained experimental results were presented and interpreted using a state parameter 

concept (Been and Jefferies, 1985) in conjunction with concepts of critical state soil mechanics 

(CSSM) framework (Roscoe et al., 1958; Schofield and Wroth, 1968) and bounding surface 

plasticity (BSP) framework (Dafalias and Popov, 1975; Dafalias, 1986; Manzari and Dafalias, 
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1997; Li and Dafalias, 2000) to assess the distinctive features of Hostun sand response. In 

addition, key aspects of the cyclic response of Hostun sand were examined, including the 

reduction of the normalised secant shear stiffness and concurrent increase of damping ratio 

with strain amplitude, the generation of excess pore water pressure with cyclic loading, the 

occurrence of phase transformation and subsequent modification of the response of sand 

upon stress reversal and the onset of cyclic mobility under undrained conditions. 

To characterise the response of Hostun sand at very small strains, a series of bender element 

tests were performed both on a moderately loose and on a dense sample subjected to drained 

isotropic compression (DIC) loading. More specifically, after saturation, the samples were 

gradually consolidated to higher isotropic effective stress levels and, at each stress level, 

single sine pulses with varying frequencies were transmitted to the top end of the samples, 

with the vertically propagated signal being subsequently recorded at the bottom end of the 

sample. A first unloading, reloading and second unloading phases were performed, with 

bender element measurements being taken at each stress level, to assess the influence of the 

previous stress history (or, in other words, overconsolidation) on the estimated Gmax. Two 

different methods of interpretation, one in the time domain (TD) and the other in the 

frequency domain (FD), were employed in the estimation of the arrival time of the shear 

wave. Having compared the arrival times estimated by both methods, it was apparent that 

the results obtained when using the TD method were more consistent with the recorded 

signal and, therefore, only this set of results was used for estimating the shear modulus at 

very small strains, Gmax. It was concluded that, for this type of loading (i.e. DIC loading), the 

previous stress history has little influence on Gmax and, therefore, Gmax can be solely related 

to the current void ratio, e, and mean effective stress, p’, as suggested in previous studies 

(e.g. Hardin, 1965; Hardin and Black, 1966; Hardin and Drnevich, 1972a; Lo Presti et al., 1997; 

Zhou and Chen, 2005). Furthermore, having used the obtained results for the calibration of a 

well-known equation proposed in the literature (Hardin, 1965; Hardin and Black, 1966a), it 

was found that a dependence of Gmax on approximately the square root of p’ (i.e. ng = 0.49) 

fitted well the experimental data, as also proposed in the literature for other sands (e.g. 

Hardin and Black, 1966b; Kokusho, 1980; Benz, 2007). Indeed, it was shown that the bender 

element test results obtained in the present study are similar to those obtained by Hoque and 

Tatsuoka (2000) when using small-amplitude cyclic triaxial loading on dry samples of Hostun 

sand locally instrumented by strain gauges. 

With the objective of characterising the monotonic response of air-pluviated Hostun sand 

within the medium to large strain range, a series of drained and undrained monotonic triaxial 

compression and extension tests were subsequently conducted on samples prepared to a 

wide range of void ratios and consolidated under several different isotropic and anisotropic 

stress states. Moreover, samples were sheared along four different stress paths possible to 

be applied in a stress path cell of Bishop and Wesley (1975)’s type to assess the stress path 

effects on the measured response. As expected, the obtained results suggest that the 
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response of Hostun sand is highly dependent on its void ratio and effective stress state at 

consolidation. More specifically, it was shown that denser sands tend to exhibit stiffer stress-

strain responses and greater tendency to dilate (i.e. to start dilating at smaller strain levels 

and at a higher rate) when compared to looser sands. Naturally, under undrained conditions, 

since the total volumetric strain remains constant throughout loading, the greater tendency 

to dilate of denser sands manifests itself through a smaller tendency to generate positive (i.e. 

compressive) excess pore water pressures during the early stages of loading and a greater 

tendency to generate negative (i.e. suction, tensile) excess pore water pressures during the 

later stages of loading. As a consequence of their stiffer and more dilatant responses, denser 

sands typically mobilise higher deviatoric stresses, as well as higher stress ratios (or, 

equivalently, shearing resistances) during loading than those mobilised by looser sands. 

Moreover, at very large strains, similar stress ratios tended to be mobilised by either (initially) 

denser or (initially) looser sands, as postulated by the CSSM framework (Roscoe et al., 1958; 

Schofield and Wroth, 1968). Regarding the effect of the mean effective stress at 

consolidation, the experimental results showed that, as expected, samples prepared to 

similar void ratios and consolidated under higher mean effective stresses tend to exhibit 

stiffer stress-strain responses and mobilise larger deviatoric stresses than samples 

consolidated to lower mean effective stresses. Moreover, the higher the effective stress at 

consolidation, the greater the tendency to generate larger positive (i.e. compressive) 

volumetric strains, which, under undrained conditions, is manifested by the generation of 

larger positive excess pore water pressures. In relation to the stress ratios mobilised during 

shearing, they were observed to be less dependent on the mean effective stress at 

consolidation than on the initial void ratio of the samples for the range of effective stress 

states at consolidation considered in the present laboratory testing programme. Indeed, as 

also postulated by the CSSM framework, at very large strains, samples tended to exhibit 

similar stress ratios, irrespectively of the effective stress at consolidation. With respect to the 

influence of the type of consolidation (i.e. either isotropic or anisotropic), the experimental 

results showed that anisotropically consolidated samples tend to reach slightly larger peak 

deviatoric stresses than isotropically consolidated samples, while having little impact on other 

aspects of the response of sand.  

To extend further the interpretation of the experimental results, a state-parameter approach, 

originally proposed by Been and Jefferies (1985), was used in conjunction with CSSM and BSP 

concepts to characterise the distinctive states of the monotonic response of Hostun sand, 

namely the critical state (CS), peak-stress-ratio state (PSRS), phase-transformation state (PTS) 

and undrained instability state (UIS). Starting with the CS – i.e. the state at which “soil 

continues to deform at constant stress and constant void ratio”, as defined by Roscoe et al. 

(1958) – , results of both drained and undrained monotonic triaxial compression tests 

conducted on loose samples (i.e. having relative densities below 50%) were used for the 

prediction of the CS strength of Hostun sand, as well as the critical state line (CSL) in the void 
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ratio, e, – mean effective stress, p’, space. Additional data found in the literature (Konrad, 

1993; Benahmed, 2001; Desrues, 2013) were used to corroborate the proposed CSL, which 

appears to be independent of the sample preparation method and drainage conditions. 

Subsequently, the PTS (i.e. the state at which the response of sand changes from plastic 

contraction to plastic dilation, meaning that dilatancy is temporarily null) and the PSRS (i.e. 

the state at which the maximum angle of shearing resistance is mobilised) were characterised. 

Irrespective of the stress state and void ratio at consolidation, drainage conditions and stress-

path direction, these two distinctive states appeared to be adequately described by simple 

linear state-dependent relationships. The very good agreement between PTS data inferred 

from drained and undrained tests was particularly remarkable, given the assumptions 

required to determine the occurrence of this state under drained conditions, involving the 

estimation of the dilatancy coefficient and, therefore, of plastic strains developed in each test. 

Conversely, under undrained conditions, the PTS can be simply identified by a local minimum 

in p’ (Ishihara et al., 1975). In addition, the UIS (i.e. the state corresponding to a temporary 

maximum value of undrained shear strength at relatively small-strains) was characterised. As 

suggested by other authors (e.g. Ishihara, 1993), the available data suggested that the mean 

effective stress state at UIS is strongly correlated with the mean effective stress at 

consolidation. When compared with other results presented in the literature, it appeared 

that, contrary to what was observed for the CS, the method of sample preparation influences 

the occurrence of the UIS. Finally, the results of drained triaxial compression tests performed 

on both loose and dense samples were used to calibrate (and, therefore, to examine) a stress-

dilatancy relationship proposed by Manzari and Dafalias (1997) and employed by the BSPM 

used in the present study. This stress-dilatancy relationship defines the dilatancy coefficient 

as a function of the difference between the current stress ratio and the stress ratio at PTS 

(termed as “dilatancy stress ratio” in the context of BSPM). It was found that the experimental 

data was adequately described by the proposed relationship. 

In addition, a series of drained and undrained cyclic triaxial tests were carried out to 

investigate the cyclic response of air-pluviated Hostun sand. Due to the fact that liquefaction-

related phenomena involve the generation of large excess pore water pressures, a much 

larger number of tests were performed under undrained conditions than under drained 

conditions. Once more, samples were prepared to different void ratios and consolidated 

under various isotropic effective stress states, allowing for the evaluation of the effect of 

these aspects on the cyclic response of sand. Two-way symmetric deviatoric stress oscillations 

(i.e. similar deviatoric stress amplitude in triaxial compression and in triaxial extension) with 

different amplitudes were applied to the samples. As expected, the results of undrained cyclic 

triaxial (UCT) tests confirmed that air-pluviated Hostun sand is susceptible to cyclic mobility. 

Irrespective of the initial conditions of the test (i.e. initial void ratio and effective stress state 

at consolidation), as well as amplitude of cyclic loading, the excess pore water pressure was 

observed to build-up in each cycle, resulting in a progressive reduction of the mean effective 
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stress and shear stiffness. Eventually, effective stresses close to zero were reached in all tests, 

with large strains being accumulated. Furthermore, as suggested in previous studies (Ishihara 

et al., 1975; Nemat-Nasser and Tobita, 1982; Papadimitriou et al., 2001), the cyclic response 

of Hostun sand appeared to be strongly affected by the crossing of the phase transformation 

line (PTL). Specifically, as a stress reversal occurs after the crossing of the PTL, a much more 

compliant response (i.e. a stronger reduction of the mean effective stress than that measured 

in the previous loading cycles) was observed, which may suggest that the arrangement of the 

particle contacts (i.e. the structure of sand) may be altered by the occurrence of dilation, as 

suggested in the literature (e.g. Nemat-Nasser and Tobita, 1982). In relation to the effect of 

the void ratio and isotropic confining stress at consolidation, the results of the conducted UCT 

tests enabled to conclude that looser samples subjected to higher initial effective stresses 

tend to generate larger excess pore water pressures in each loading cycle and, therefore, to 

reach cyclic mobility in a smaller number of loading cycles when compared to samples 

subjected to similar cyclic stress ratios (CSR). Moreover, the higher the CSR applied to the 

sample, the smaller the number of loading cycles required to reach cyclic mobility. These 

experimental observations agree well with those reported in the literature for other sands 

(e.g. Seed and Lee, 1966; Seed and Idriss, 1970a; Dobry et al., 1982; Tatsuoka et al., 1986a, 

1986b; Youd et al., 2001). 

To extend further the characterisation of the cyclic response of Hostun sand, the obtained 

UCT test results were used to assess the reduction of the normalised secant shear stiffness, 

Gsec / Gmax, and concurrent increase in damping ratio, , with strain level (in particular, single 

amplitude axial strain, a,sa, was considered in the present study). Note that, while the shear 

modulus can be related to the velocity of propagation of shear waves, the damping ratio 

provides a measure of the energy dissipated by the material during cyclic loading. As reported 

in the literature for other materials (e.g. Darendeli, 2001), it was concluded that the void ratio 

has a minor influence on the evolution of Gsec / Gmax with a,sa, seeming also to have little 

impact on the evolution of  with a,sa. In terms of mean effective stress at consolidation, this 

quantity appears to affect both aspects: the higher the mean effective stress at consolidation, 

the larger Gsec / Gmax for a given a,sa, while the opposite tend to occur in terms of  –a,sa 

curves. These findings seem to agree well with those reported in the literature for other sands 

(Seed and Idriss, 1970b; Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993; Darendeli, 

2001). 

The following aspect to be characterised was the undrained cyclic resistance of Hostun sand 

(i.e. resistance to the onset of cyclic mobility). Specifically, by adopting a criterion based on 

the accumulation of a residual excess pore water pressure ratio, ru,res (i.e. corresponding to 

null deviatoric stress) close to unit, undrained cyclic resistance curves for moderately loose 

and dense samples were established. As widely reported in the literature (e.g. Seed and Idriss, 

1970a; Tatsuoka et al., 1986b; Ishihara, 1996; Jefferies and Been, 2006; Idriss and Boulanger, 

2006), the obtained curves showed that a smaller number of loading cycles are required to 
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trigger cyclic mobility for looser samples than for denser samples. Similarly, a smaller number 

of loading cycles are required to reach cyclic mobility for samples consolidated under higher 

mean effective stresses or subjected to larger CSR. When comparing the response of Hostun 

sand with two other well-known sands (specifically, Ottawa and Toyoura sands), it was 

concluded that the undrained cyclic resistance of Hostun sand is higher than those exhibited 

by the other two sands. 

Subsequently, the evolution of ru,res with cyclic loading was studied. When plotted as a 

function of the normalised number of loading cycles, N / Nliq (where Nliq is the number of 

cycles required to the onset of liquefaction), it was concluded that similar evolutions of ru,res 

are obtained for samples sheared under similar CSR, regardless of the void ratio, e, and 

isotropic effective stress at consolidation, ’0 (note that all samples subjected to UCT tests 

were consolidated under isotropic effective stresses). Conversely, when different values of 

CSR are used in the tests, different evolutions of ru,res are registered. Specifically, the higher 

the CSR applied to the sample, the higher the rate of ru,res increase during the earlier stages 

of loading, with the opposite trend being observed during the later stages of loading. Further 

insight into the evolution of ru,res with undrained cyclic loading was obtained by plotting ru,res 

as a function of the normalised energy dissipated per unit volume, either by using the quantity 

W ′0⁄  or W / Wliq (where W is the dissipated energy per unit volume and Wliq is the 

value of this quantity when liquefaction is triggered – known as capacity energy). The 

obtained curves suggest that the relationship between ru,res and W ′0⁄  is practically 

independent of e and ’0, though dependent on the CSR applied to the sample. Conversely, 

the relationship between ru,res and W / Wliq seems to be practically independent of the 

values of ’0 and CSR, though dependent on e. This suggests that, although recent efforts 

have been made to find out a relationship that would be simultaneously independent of e, 

’0 and CSR, either by using element laboratory testing (e.g. Figueroa et al., 1994; Liang et al., 

1995; Kokusho, 2013; Azeiteiro et al., 2017b), centrifuge testing (e.g. Dief and Figueroa, 2007) 

or numerical modelling (e.g. Tsaparli et al., 2017a), further investigation on this topic is still 

required. 

The final aspect to be investigated was the volumetric strain response of moderately loose 

samples of Hostun sand under drained cyclic loading. As expected, samples exhibited a 

tendency to contract (i.e. to develop contractive volumetric strains) when sheared under 

drained conditions. Moreover, as also reported in the literature for other sand (e.g. López-

Querol and Coop, 2012), it was observed that progressively smaller volumetric strains were 

accumulated during loading, eventually stabilising with further loading. Moreover, as also 

observed under undrained conditions, a softer response of Hostun sand was registered in 

triaxial extension than in triaxial compression. 
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9.3 Implementation of a bounding surface plasticity model into a finite 

element code 

The second part of this thesis, consisting of Chapter 4 and Chapter 5, comprised a 

comprehensive description of the constitutive model adopted in the present study, the 

modifications introduced to its original formulation and the numerical algorithms used to 

implement it into a finite element code. This part concluded with validation exercises, whose 

results suggested that the implementation of the constitutive relationship was successful. 

Among the vast number of constitutive models available in the literature, a bounding surface 

plasticity model (BSPM), originally formulated by Manzari and Dafalias (1997) and further 

developed by Papadimitriou and Bouckovalas (2002), Taborda (2011) and Taborda et al. 

(2014) was chosen to be implemented into FEMEPDYN. Besides its extensive ability to 

replicate both monotonic and cyclic response of sand, proven by the successful simulation of 

element laboratory tests and centrifuge experiments by the aforementioned authors, the 

following aspects were considered essential for its selection: 

- reliable key constitutive ingredients, such as: (a) the incorporation of critical state soil 

mechanics (CSSM) concepts (Roscoe et al., 1958; Schofield and Wroth, 1968), which 

provide a reference state for the response of sand; (b) the dependence of the shearing 

response on the state parameter,  (Been and Jefferies, 1985), which enables the 

accurate prediction of the occurrence of distinctive states of the response of sand, 

such as the phase transformation state and the peak stress ratio state, using a single 

set of parameters, as discussed in Chapter 2 and Chapter 6; (c) the incorporation of a 

state-dependent stress-dilatancy relationship, which appears to characterise 

adequately the response of sand, as shown in Chapter 2 and Chapter 6; (d) the 

incorporation of bounding surface plasticity concepts (Dafalias and Popov, 1975; Mróz 

et al., 1979; Dafalias, 1986), relating the plastic hardening modulus to the distance 

from the current stress point to its projection on the bounding surface, enabling the 

adequate reproduction of the highly non-linear response of sand before failure 

(Loukidis and Salgado, 2009); indeed, when used in conjunction with a small 

kinematically-hardening yield surface, the bounding surface plasticity concepts can 

successfully address the simulation of cyclic loading (Manzari and Dafalias, 1997). 

- flexibility and modularity, allowing for its expansion with a relatively low effort 

(Taborda et al., 2014). 

Furthermore, it was highlighted that, although many other versions of the model – i.e. 

originating from the initial proposal of Manzari and Dafalias (1997) – have been proposed in 

the literature (e.g. Dafalias and Manzari, 2004; Dafalias et al., 2004; Taiebat and Dafalias, 

2008; Loukidis and Salgado, 2009; Andrianopoulos et al., 2010; Woo and Salgado, 2015), the 

formulation proposed by Papadimitriou and Bouckovalas (2002) and further extended by 

Taborda (2011) and Taborda et al. (2014) present the following advantages: 
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- ability to describe adequately the cyclic response of sand under a wide range of strain 

amplitudes; in particular, by incorporating a cyclic non-linear elastic formulation of 

Ramberg and Osgood (1943)’s type, Papadimitriou and Bouckovalas (2002) showed 

that the constitutive model is able to reproduce the stress-strain response of sand at 

small strains, both in terms of secant shear stiffness and hysteretic damping evolutions 

with strain level; moreover, Papadimitriou and Bouckovalas (2002) showed that the 

ability of the constitutive model to replicate cyclic response within the medium to 

large strain range was greatly enhanced in relation to its original version by affecting 

the plastic hardening modulus by a scalar quantity reflecting the effect of fabric 

evolution with shearing; this modification allowed the simulation of continuously 

stiffer unloading-reloading response observed both under drained and undrained 

stress paths beneath the dilatancy surface (which can be associated with the phase 

transformation line described by Ishihara et al, (1975)) – a response often termed as 

“densification” – , as well as a more compliant response once dilatancy surface is 

crossed and stress path is reversed, eventually leading to cyclic mobility, as observed 

in the laboratory (e.g. Ishihara et al., 1975); 

- ability to describe flow liquefaction, as well as flow with limited deformation, with a 

greater control being achieved after the introduction of a new parameter defining the 

nonlinearity of the relationship between the hardening modulus and the proximity to 

the bounding surface by Taborda (2011) and Taborda et al. (2014); 

- enhanced prediction of the response of dense sand after the adoption of a power law 

equation to describe the critical state line (CSL) in the void ratio, e, – mean effective 

stress, p’, space (Taborda, 2011; Taborda et al., 2014); 

- increased computational efficiency achieved through the introduction of a secondary 

low-stress yield surface to the model formulation, which is particularly relevant when 

simulating boundary-value problems involving liquefaction-related phenomena 

(Taborda, 2011; Taborda et al., 2014). 

In addition, the choice for the version proposed by Taborda (2011) and Taborda et al. (2014) 

was also justified by the availability of a large amount of numerical data concerning the 

simulation of both element laboratory and centrifuge tests, which were used as benchmark 

for the validation of the implementation of the constitutive model into FEMEPDYN. 

As suggested by several authors (e.g. Papadimitriou and Bouckovalas, 2002; Dafalias and 

Manzari, 2004; Dafalias et al., 2004; Taborda et al., 2014), the modular structure of the 

constitutive model allows, in principle, for the modification of any component of its 

formulation or to the addition of new components without affecting the remaining 

components. Having this aspect in mind, two alterations were introduced to improve the 

overall flexibility, as well as to increase the accuracy of the constitutive model. Firstly, the 

equation defining the influence of the void ratio, f(e), on the maximum shear modulus, Gmax, 

was replaced by a more general equation, which has been largely employed in experimental 
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studies, including the one undertaken in the first part of this PhD research. Secondly, a 

literature review on other versions of the constitutive model proposed in the literature 

(Dafalias and Manzari, 2004; Loukidis and Salgado, 2009; Li and Dafalias, 2012; Williams, 2014; 

Woo and Salgado, 2015) suggested that the ability of the constitutive relationship to replicate 

the response of sand for loading conditions other than triaxial compression was considerably 

improved when including an inherent fabric anisotropy component. Indeed, Williams (2014) 

showed that this component allows the replication of the effect on the response of sand of 

changes in the angle  of the major principal effective stress, '1, to the axis of the sample – 

a feature widely observed in hollow cylinder torsional shear tests, which is not captured by 

the constitutive relationship proposed by Taborda et al. (2014). A further motivation for the 

introduction of the inherent fabric anisotropy component consisted of the apparent inability 

of the original formulation to predict accurately highly anisotropic soil response observed in 

some undrained cyclic triaxial tests (Taborda, 2011). Among the several formulations 

available in the literature, the one proposed by Williams (2014) was chosen to be 

incorporated in the present constitutive model, due to its compliance with the CSSM 

framework and the fact that it did not imply profound alterations to the formulation proposed 

by Taborda et al. (2014). It is important to note that, should there be a lack of experimental 

evidence supporting its use, this newly introduced component may be deactivated by 

selecting specific values for its model parameters, therefore guaranteeing compatibility with 

the version proposed by Taborda (2011) and Taborda et al. (2014). Indeed, this philosophy 

also underlaid the alterations introduced by Taborda (2011) and Taborda et al. (2014) to the 

version developed by Papadimitriou and Bouckovalas (2002). 

Attention was subsequently given to the implementation of the constitutive model into 

FEMEPDYN, which plays a key role in two distinct operations of FE method (Potts and 

Zdravkovic, 1999; Taborda, 2011): the computation of the element tangent stiffness matrix, 

which is subsequently assembled into the global tangent stiffness matrix, and the 

computation of the effective stress change corresponding to a given strain increment. While 

the first operation consisted solely of writing the constitutive equations, the second operation 

required the use of a stress point algorithm. Based on an extensive literature review of 

available algorithms, their merits and drawbacks, it was concluded that explicit integration 

schemes with automatic sub-stepping and error control have been typically preferred over 

semi-explicit and implicit schemes, particularly for the implementation of BSPMs (e.g. Zhao 

et al., 2005; Andrianopoulos et al., 2010a; Taborda, 2011; E-Kan and Taiebat, 2014; Xu and 

Zhang, 2015; Vilhar et al., 2018). It was, therefore, decided to adopt the modified forward 

Euler scheme with automatic sub-stepping and error control introduced by Sloan (1987) and 

Sloan et al. (2001) to integrate the present BSPM into FEMEPDYN. The operations required in 

each step of the scheme were comprehensively described, giving particular attention to the 

additional operations required by the co-existence of two yield surfaces, which can be 

simultaneously active. 
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Having implemented the stress integration algorithm and constitutive equations into 

FEMEPDYN, focus was given to its validation. Due to the lack of theoretical or analytical 

solutions, the strategy consisted of comparing the results obtained using FEMEPDYN with 

those obtained by a validated finite element code. More specifically, results of simulations of 

element laboratory tests and centrifuge tests obtained by Taborda (2011) when using the 

Imperial College Finite Element Program (ICFEP) were employed as a benchmark for the 

validation of the implementation procedures. Starting with the element laboratory tests, it 

was shown that, when using similar numerical precisions, an excellent agreement between 

the results obtained by FEMEPDYN and ICFEP (Taborda, 2011; Taborda, personal 

communication, April 2015) was reached, irrespective of the type of analysis (axisymmetric 

or plane strain), as well as boundary and loading conditions applied in each simulated test. 

Subsequently, two different dynamic centrifuge experiments performed as part of the large 

collaborative research project VErification of Liquefaction Analysis by Centrifuge Studies 

(VELACS) were numerically reproduced. The first of these centrifuge experiments – VELACS 

model 1 – comprised a 10 m-thick (in prototype scale), level deposit of saturated loose (Dr ≈

40%) Nevada sand subjected to a horizontal sinusoidal-type motion applied at its base. It was 

shown that, overall, a very good agreement between the results computed by FEMEPDYN and 

those presented in the literature (Taborda, 2011) was obtained in terms of horizontal 

acceleration time-histories, as well as excess pore water pressure and settlement evolutions 

with time. The second centrifuge experiment – VELACS model 12 – comprised a 4.0 m-tall (in 

prototype scale) solid structure partially embedded into a 6.0 m-thick (in prototype scale) 

deposit of fully-saturated moderately dense (Dr ≈ 60%) Nevada sand and a 1.0 m-thick (in 

prototype scale) low-permeability deposit of Bonnie silt. Although a different constitutive 

model had to be employed to model the response of Bonnie silt in relation to that used by 

Taborda (2011), very similar results were obtained in terms of horizontal and vertical 

acceleration time-histories, as well as excess pore water pressure and settlement evolutions 

with time, suggesting that the original version, as proposed by Taborda (2011) and Taborda 

et al. (2014), was successfully implemented into FEMEPDYN and could be applied to the 

simulation of the performance of shallow foundations when subjected to dynamic loading 

causing liquefaction. The final part of the validation routine involved the simulation of an 

undrained cyclic direct simple shear (UCDSS) test by using the extended version of the model 

(i.e. activating the inherent fabric anisotropy component). The obtained results were 

compared with those presented in the literature (Williams, 2014). Once again, a remarkable 

agreement between both sets of numerical data was obtained, suggesting that this additional 

component of the model was also successfully implemented. 
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9.4 Application of a bounding surface plasticity model to the simulation of 

monotonic and cyclic element laboratory tests 

The third and final part of this thesis included Chapter 6, Chapter 7 and Chapter 8 and 

explored the ability of the constitutive model to simulate accurately liquefaction-related 

phenomena observed in both element laboratory tests and centrifuge experiments, after its 

calibration solely against the results of the element laboratory tests obtained in the first stage 

of this PhD research (Chapter 2 and Chapter 3). This aspect intended to replicate the 

methodology typically followed during the design stage of geotechnical engineering projects, 

where the response of materials is solely characterised based on element laboratory or field 

tests. It is important to reinforce that a single set of model constants were employed in all 

performed simulations, irrespective of the density and initial effective stress state of sand. 

In Chapter 6, the methodology adopted for the calibration of the bounding surface plasticity 

model (BSPM) constants against element laboratory test data was firstly described. Following 

the guidelines suggested in the literature for this type of models (Loukidis and Salgado, 2009; 

Taborda, 2011), a hierarchical approach was used, establishing the sequential calibration of 

the model parameters according to their physical relevance and independence from the 

remaining parameters. In particular, the calibration focused firstly on the material parameters 

defining clear features of sand response, including: the critical state line (CSL) in the void ratio, 

e, – mean effective stress, p’, space; the critical state (CS) strength; and the isotropic elastic 

stiffness at very small strains (defined by the shear modulus at small strains, Gmax, and 

Poisson’s ratio, ). While the small-strain parameters were calibrated against results of 

bender elements, the critical-state parameters were calibrated against results of drained and 

undrained monotonic triaxial compression tests. Subsequently, the calibration process 

focused on the quantities that, despite having a numerical nature, control physical features 

of the modelled response. This included the model parameters defining the positions of the 

bounding and dilatancy surfaces (which, as mentioned before, are identified by the 

occurrence of the peak stress ratio and phase transformation ratio, respectively), the model 

parameter defining the state-dependent stress-dilatancy relationship, as well as the model 

parameters defining the reduction of the elastic shear stiffness modulus with deviatoric stress 

ratio (in relation to its value at last shear reversal). These model parameters were also 

obtained by interpreting and analysing data obtained from drained and undrained monotonic 

triaxial compression and extension tests. It was particularly highlighted that the cyclic non-

linear elastic formulation plays an important role in making compatible the stress-dilatancy 

response obtained from drained and undrained test data, as required by the fundamental 

principles of soil mechanics (Loukidis and Salgado, 2009), while allowing for the use of realistic 

values of Gmax and  estimated from bender element measurements. 

The calibration process moved subsequently to a more complex stage, which involved the 

estimation of the model parameters having no physical meaning and related to the plastic 
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hardening modulus, shearing-induced fabric and inherent fabric anisotropy components. At 

this point, a series of computational analyses were required to assess the impact of each 

parameter on the modelled response and, based on the obtained results, decide on the best 

value to be assigned to the parameter. Starting with the plastic hardening modulus-related 

parameters, it was observed that the model constant , which defines the non-linearity of 

equation introducing the effect of the distance from the current stress point to its projection 

on the bounding surface on the plastic hardening modulus, has a strong influence on the 

shape of the effective stress path obtained for undrained shearing and, therefore, in the 

ability of the constitutive model to accurately predict the occurrence of the undrained 

instability state, as, indeed, reported in the literature (Loukidis and Salgado, 2009; Taborda, 

2011). Moreover, it was noted that the dependency of the plastic hardening modulus on the 

mean effective stress and void ratio, as proposed by the constitutive relationship, appears to 

increase the accuracy of the modelled response. The calibration focused subsequently on the 

parameters required by the shearing-induced fabric component. Based on a preliminary 

parametric study, it was shown that, as expected, this component has a tremendous impact 

on the number of loading cycles required to the onset of cyclic mobility and, therefore, its 

calibration should primarily focus on this aspect of the response of sand. Nevertheless, it was 

shown that, although introduced to address the simulation of cyclic response, this component 

also affects the early stages of the modelled monotonic response (particularly of loose and 

moderately loose sand samples, which exhibit a greater tendency to contract during the early 

stages of loading). Due to this, a readjustment of the model parameters affecting the plastic 

hardening modulus was necessary, leading to a very complex trial-and-error process. 

Unfortunately, at the end of this process, it was concluded that, although allowing for a 

satisfactory reproduction of the majority of the available undrained cyclic triaxial tests, the 

selected values for the shearing-induced fabric-related parameters would not result in an 

adequate reproduction of three particular undrained cyclic triaxial tests, where samples 

exhibited a very soft response in triaxial extension during the first loading cycle and cyclic 

mobility was initiated in very few cycles – indeed, similar difficulties were previously reported 

by Taborda (2011), motivating the introduction of the inherent fabric anisotropy component 

in the present study. 

Attention was subsequently given to the calibration of the parameters required by the 

inherent fabric anisotropy component. This was a very challenging task, due to the absence 

of hollow cylinder torsional shear test data, which, contrary to triaxial test data, would allow 

for the independent evaluation of the effect of anisotropy and magnitude of the intermediate 

principal effective stress on the response of sand. To obtain a set of model parameters 

appropriate for the simulation of both monotonic and cyclic response, the adopted strategy 

comprised the following two steps: firstly, moving back in the calibration process to the end 

of the calibration of the plastic hardening modulus-related parameters and, based on the set 

of values established up to that point, calibrating the inherent fabric anisotropy component 
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against results of monotonic triaxial extension tests; secondly, recalibrating the shearing-

induced fabric-related parameters. It was shown that the inherent fabric anisotropy 

component brings additional flexibility to the constitutive relationship, enabling the 

simulation of a softer response of sand under triaxial extension loading than that predicted 

by the formulation proposed by Taborda et al. (2014). Having subsequently recalibrated the 

shearing-induced fabric-related constants, it was found that, contrary to the expectations, 

only a very slight improvement was obtained in terms of the reproduction of the three 

undrained cyclic triaxial tests where samples exhibited a very soft response in triaxial 

extension during the first loading cycle and cyclic mobility was initiated in very few cycles. 

In total, four different sets of model parameters were proposed for Hostun sand, two of them 

– belonging to the category “Static” (i.e. not activating the shearing-induced fabric 

component) – optimised for the simulation of its monotonic response and the remaining two 

sets – belonging to the category “Dynamic” (i.e. activating the shearing-induced fabric 

component) – suitable for the simulation of its cyclic response. Among each pair of sets, one 

of them made use of the original formulation of the constitutive model proposed by Taborda 

et al. (2014) – “Original formulation” – , while the other set made use of the extended 

formulation of the constitutive model through the activation of the inherent fabric anisotropy 

component – “Extended formulation”. The proposed values for Hostun sand were 

subsequently compared with those published in the literature for other sands (Taborda, 2011; 

Taborda et al., 2014; Williams, 2014). It was concluded that, while the great majority of the 

values proposed for Hostun sand were within the range of values reported in the literature, 

the value obtained for the shearing-induced fabric index constant, H0, was considerably 

higher than the values reported in the literature for other sands (namely, Leighton Buzzard, 

Nevada and Fraser river sands). Indeed, having compared the undrained cyclic resistance of 

Hostun sand with those exhibited by the other sands, it was clear that Hostun sand shows 

greater resistance to the onset of cyclic mobility and, therefore, requires a greater value for 

H0. 

In Chapter 7, the ability of the original and extended formulations of the model to replicate 

key aspects of the monotonic and cyclic responses of Hostun sand registered in laboratory 

tests was further explored. Starting with the application of the original formulation of the 

constitutive model to the simulation of drained and undrained monotonic triaxial 

compression and extension tests, it was observed that, in general, the constitutive 

relationship was able to capture adequately the effect of the initial void ratio, consolidation 

stresses and stress path direction on the response of sand. It was, however, noted that, while 

a satisfactory agreement between numerical and experimental data was achieved for tests 

performed on moderately loose and dense samples (i.e. having relative densities before 

shearing, Dr,0, in the range of 50 – 70 % and above 70 %, respectively), some discrepancies 

were observed for tests performed on loose samples (i.e. having Dr,0 < 50%). This was 

attributed to the large value of the shearing-induced fabric index constant, H0, required to 
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simulate cyclic loading, which, as anticipated during the calibration process, was observed to 

practically eliminate the initial contractive phase of the modelled monotonic response, which 

is a significant feature of the response of loose samples. The original formulation of the 

constitutive model was subsequently employed to the simulation of cyclic triaxial tests. Apart 

from the tests where samples were subjected to large cyclic stress ratios and required only 

few cycles to the onset of cyclic mobility, it was shown that, irrespective of the consolidation 

stress and applied cyclic stress ratio, the constitutive model was, in general, able to 

satisfactorily replicate the undrained cyclic response of moderately loose Hostun sand (Dr ≈

50 − 70%) observed in the laboratory, particularly in terms of excess pore water pressure 

generation with loading and effective stress path registered in the laboratory. A slightly less 

satisfactory agreement with experimental data was obtained for dense samples (Dr ≈ 102 %), 

with the constitutive model tending to underestimate the material’s undrained cyclic 

resistance (particularly evident for the test using a small cyclic stress ratio). Furthermore, for 

dense samples, a smaller strain accumulation than that measured in the experiment was, in 

general, predicted by the constitutive model during the loading cycles preceding the onset of 

cyclic mobility, while a better agreement being obtained afterwards. 

To gain more insight into the performance of the original formulation of the constitutive 

model, the undrained cyclic resistance predicted by the constitutive model was compared 

with that measured in the laboratory. It was shown that, when excluding tests where samples 

were subjected to very large CSRs inducing cyclic mobility in very few cycles, very similar 

trends were obtained for moderately loose sand (Dr ≈ 50 − 70%). The agreement between 

numerical and experimental data was slightly less satisfactory for dense sand  (Dr ≈ 102 %). 

Subsequently, the evolutions of the secant shear modulus (normalised by the shear modulus 

at very small strains), as well as of the damping ratio with the number of loading cycles 

(normalised by those required to the onset of cyclic mobility) were inferred from the 

simulated stress-strain loops and compared with those previously inferred from experimental 

data (Chapter 3). It was shown that the constitutive model is able to replicate qualitatively 

the main trends observed in the laboratory, including the stiffening unloading-reloading 

response for effective stress paths remaining below the phase transformation line (PTL), 

particularly evident during the first loading cycles, and sharp reduction in stiffness once the 

phase transformation line is crossed and the effective stress path is reversed. In terms of 

damping ratio evolution, it appeared that, under this type of loading, the model tends to 

underestimate slightly the values observed in the laboratory. Nevertheless, a good qualitative 

agreement between the shape of the damping ratio curves inferred from numerical and 

experimental data was obtained. Focus was subsequently given to the ability of the 

constitutive model to replicate the excess pore water pressure generation with the 

normalised number of loading cycles observed in the laboratory tests. Once more, it was 

apparent that a better agreement between numerical and experimental data was obtained 

for moderately loose sand than for dense sand. Moreover, it was observed that the effect of 
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cyclic stress ratio on the curves obtained from numerical data was more limited than that 

inferred from experimental data, suggesting that the shearing-induced fabric component may 

require future improvement. Lastly, the original formulation of the constitutive model was 

applied to the simulation of drained cyclic triaxial tests, with the purpose of evaluating the 

ability of the constitutive model to simulate the volumetric strain accumulation with cyclic 

loading. While a good agreement between numerical and experimental data was obtained 

during the initial stages of loading (first few loading cycles), it was apparent that the model 

tended to overpredict slightly the axial and volumetric strains measured in the laboratory 

experiments during the remaining loading cycles. 

To complement the investigation of the ability of the constitutive model to replicate the 

response of sand observed in element laboratory tests, the available drained and undrained 

monotonic triaxial extension tests were simulated using the extended formulation, with the 

obtained results being compared with those previously obtained when using the original 

formulation of the constitutive model proposed by Taborda et al. (2014). In these simulations, 

only the set of model parameters belonging to the category “Dynamic” were used. Perhaps 

surprisingly, the obtained results suggested that the use of the extended formulation resulted 

in only a slight improvement of the modelled response. In effect, a detailed investigation of 

the response obtained when using the extended formulation revealed that, during the early 

stages of loading, the reduction in the plastic hardening modulus imposed by the inherent 

fabric anisotropy tensor was greatly inhibited by an opposite effect of the isotropic part of 

the shearing-induced fabric tensor. Similarly, it was apparent that very limited improvement 

was obtained when simulating undrained cyclic triaxial tests using the extended formulation 

of the constitutive model. Besides the aforementioned opposite effects of the two 

components on the plastic hardening modulus, it was observed that the slightly softer 

response in triaxial extension induced by the inherent fabric anisotropy component was 

counterbalanced by a slightly stiffer response in triaxial compression, suggesting that the 

impact of the shearing-induced fabric component on the modelled cyclic response is much 

greater than that of the inherent fabric anisotropy component. 

9.5 Application of a bounding surface plasticity model to the simulation of 

dynamic centrifuge experiments 

The final part of the present research (Chapter 8) involved the application of the constitutive 

model to the simulation of two dynamic centrifuge experiments concerning the performance 

of shallow foundations built on liquefiable sands deposits subjected to cyclic loading. Note 

that these centrifuge experiments were performed by the PhD candidate Andreia Silva 

Marques at the Schofield Centre, University of Cambridge, United Kingdom. Note also that all 

dimensions and results mentioned in the present text refer to prototype scale. In fact, as 

reported by Marques et al. (2012b, 2012c, 2014a, 2014b, 2015), since a solution of 

hydroxypropyl methylcellulose in water with a viscosity of about 50 times greater than that 
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of water was used as pore fluid in centrifuge experiments carried out under a centrifugal 

acceleration of 50 g, the well-known conflict of scaling laws between dynamic time and 

diffusion/consolidation time was circumvented, allowing for the direct interpretation of the 

results in prototype scale. As a result, the numerical simulations were performed in prototype 

scale, with the obtained results being directly compared with those extrapolated from the 

experiment. Regarding the configuration of the first centrifuge model – abbreviately 

designated as CM-A –, two solid steel structures, representing adjacent shallow foundations, 

were placed on a level, uniform, 18.0 m-thick, saturated deposit of moderately loose Hostun 

sand (i.e. characterised by e ≈ 0.811, which corresponds to Dr ≈ 56 %). Although the contact 

area between each structure and the underlying sand deposit was similar, the height of the 

structures was different and, therefore, different vertical stresses were applied by each 

structure to the underlying sand deposit. In terms of dynamic loading, a sinusoidal-type 

motion comprising 25 loading cycles with a frequency of 1 Hz (therefore, comprising a total 

duration of 25 s) and peak accelerations of about ±2.0 – 3.0 m/s2 was applied at the base of 

the model. Due to the absence of any technique to mitigate the occurrence of liquefaction, 

this dynamic centrifuge experiment represented an excellent opportunity for the evaluation 

of the ability of the newly developed numerical tool to reproduce basic aspects of sand-

structure interaction under dynamic loading, as well as the triggering and development of 

liquefaction. While also focussing on the response of two shallow foundations resting on a 

level saturated deposit of sand when subjected to a similar motion applied at its base, the 

second centrifuge model – designated as CM-B – aimed at investigating the use of different 

techniques to mitigate liquefaction effects. In particular, rather than consisting of a uniform 

sand deposit, narrow (i.e. having a width only slightly larger than that of the overlying 

structures) densified zones (characterised by e ≈ 0.657, which corresponds to Dr ≈ 101 %) 

were created in the model. In addition, a drainage geocomposite was used to simulate closely 

spaced high-capacity vertical drains surrounding the narrow densified sand column created 

on the left side of the model. It represented, therefore, a great opportunity to evaluate the 

ability of the numerical tool to reproduce the impact of different liquefaction techniques on 

the performance of shallow foundations under dynamic loading. 

Starting with the first centrifuge model (CM-A), the measured response was firstly described, 

giving particular attention to the horizontal and vertical acceleration time-histories, as well as 

excess pore pressure evolution with time registered at several different positions located 

along three different vertical alignments: two of them coincident with the axes of the shallow 

foundations and the other one corresponding to the middle of the model (i.e. at half distance 

from the axes of the two shallow foundations). In addition, the settlements registered in the 

experiment at the top of the shallow foundations and at the ground surface in between them 

were presented, followed by the presentation of the ground surface settlement profile at the 

end of the experiment, inferred from post-test measurements. It was noted that, 

unfortunately, due to the malfunction of the accelerometer placed at the base of the 
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centrifuge model, the horizontal acceleration time-history applied to the model during the 

experiment was not recorded. Nevertheless, since similar motions were reportedly intended 

to be applied to both centrifuge models (Marques et al., 2014a), the input horizontal motion 

was estimated based on that recorded in the other centrifuge experiment, as well as on the 

comparison of the motions recorded at similar positions of the centrifuge container’s wall in 

both experiments. The main aspects of the numerical analysis were subsequently described, 

including the type of analysis, mesh, time-integration algorithm and time step, boundary 

conditions, as well as characteristics adopted for the different materials. It was noted that, 

due to uncertainties concerning the influence of the mesh and time step employed in the 

dynamic analysis, particularly when simulating liquefaction-related phenomena, a 

preliminary parametric study on the influence of these aspects was carried out (Appendix D), 

allowing for the selection of appropriate values for these aspects of the analysis. Particular 

attention was also given to the generation of the initial stress state, since the 3D configuration 

of the problem was simplified by performing a 2D plane strain analysis, requiring a correction 

of the contribution of the shallow foundations to the initial stress state of the sand deposit. 

The implications arising from this simplification were carefully assessed, assisting the 

interpretation of the results obtained in the subsequent dynamic analysis. The results 

obtained in the numerical analysis of CM-A were subsequently compared to those registered 

in the experiment. It was concluded that the constitutive model was able to capture 

accurately important aspects of the response, such as the generation of large excess pore 

pressures with dynamic loading and concurrent alteration of the input motion due to the 

reduction in stiffness and increase in damping of sand, as well as the progressive 

accumulation of structural settlement with dynamic loading. Indeed, the agreement between 

computed and measured settlements during this phase of the analysis was considered very 

satisfactory, particularly given the complexity of the phenomena involved, the large 

settlements observed (of about 1.0 m for the heavier shallow foundation), simplifications 

required in the numerical analysis and the fact that model parameters were solely calibrated 

against results of element laboratory tests. It was noted, however, that the constitutive model 

tended to overestimate the increase in excess pore pressures in the zones of the deposit 

immediately underneath the shallow foundations, probably due to the simplifications 

required to simulate the 3D configuration of the problem by assuming 2D plane strain 

geometry. Moreover, it was observed that the constitutive model largely overestimated the 

rate at which excess pore water pressure dissipates during the consolidation phase, while 

underpredicting the rate and magnitude of settlements occurring during this phase. As 

previously suggested by Taborda (2011), this inability was attributed to the open primary yield 

surface formulation of the constitutive model, which leads to the prediction of solely elastic 

response under stress paths characterised by approximately constant stress ratios. In 

addition, it was noted that the type of deformation mechanism observed in the experiment, 

characterised by a progressive “punch through” and concurrent accumulation of settlement 



SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

631 
 

of the surface of the sand deposit, was not properly captured in the analysis. In effect, the 

results obtained in the numerical simulation suggested a movement of sand from the zones 

of the deposit under the influence of the shallow foundations to the zones farther from their 

influence (sides and middle of the model) during dynamic loading, showing little volumetric 

change, contrary to the response measured in the experiment. Given these observations, it 

was argued that this mismatch could be explained by the inability of the numerical tool to 

predict the occurrence of partly drained response (rather than practically undrained). Indeed, 

as previously suggested by several authors when inspecting results of similar centrifuge 

experiments (e.g. Scott, 1986; Coelho, 2007; Taiebat et al., 2007; Andrianopoulos et al., 

2010b; Taborda, 2011), it was hypothesised that a temporary increase in the vertical hydraulic 

conductivity of the liquefied sand deposit in relation to the value of this property measured 

in conventional laboratory tests (e.g. permeameter tests) during dynamic loading might have 

occurred in the experiment, at least in the zones of the model farther away from the influence 

of the shallow foundations, decisively contributing to the occurrence of partly drained 

response. As an attempt to replicate this aspect, the numerical simulation of CM-A was re-

run considering a simple variable hydraulic conductivity model proposed by Taborda (2011), 

which stipulate a steep increase in this property as large values of the excess pore pressure 

ratio are reached in the analysis. A considerable improvement of the predicted deformation 

mechanism was obtained in this analysis, even though the excess pore pressures and 

structural settlements were substantially less accurate than those obtained in the previous 

numerical analysis. 

Focus was subsequently given to the second centrifuge model, which, as mentioned before, 

concerned the use of narrow densified zones and high-capacity vertical drains to improve the 

performance of adjacent shallow foundations subjected to dynamic loading. As for CM-A, the 

main characteristics of the experiment were firstly described, followed by an interpretation 

of the experimental results. The main aspects of the numerical analysis of CM-B were 

described afterwards, giving, in this case, particular emphasis to the methodology used to 

simulate the drainage geocomposite, which was not employed in CM-A. The methodology 

and results of the initial stress generation were, also in this case, presented in detail, since a 

2D plane strain simplification was, once again, adopted in the numerical analysis. The 

obtained results were subsequently analysed, leading to the conclusion that, apart from an 

overprediction of the drainage capacity of the geocomposite, which led to an underprediction 

of the excess pore pressures generated on the side of the geocomposite, a satisfactory 

agreement between numerical and experimental data was obtained. Indeed, it was apparent 

that, once more, the main aspects of the sand-structure interaction observed in the centrifuge 

experiment were adequately captured by the numerical tool, such as the co-seismic increase 

in excess pore pressures in both moderately loose and dense sand deposits, resulting in the 

reduction in stiffness and increase in damping of sand and, consequently, modification of the 

motion, as well as the accumulation of structural settlements. Moreover, the agreement 
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between computed and measured rate and magnitude of structural settlements occurring 

during dynamic loading was considered very satisfactory, particularly given the fact that a 

single set of model constants solely calibrated against results of element laboratory tests was 

used to model the response of both moderately loose and dense sand. This suggests that the 

constitutive model may be successfully employed during the design of geotechnical structures 

under dynamic loading. 

9.6 Recommendations for future research 

Although constitutive models based on bounding surface plasticity framework are nowadays 

implemented into several academic and commercial finite element and finite difference 

codes, the characterisation of their performance to the simulation of different boundary-

value problems is still insufficient or, at least, not widely available in the literature. For 

instance, it would be important to evaluate the ability of the constitutive relationship to 

replicate the response of retaining structures, such as sheet pile walls and earth dams, where 

the horizontal displacements play a key role in the overall performance of the geotechnical 

structure. Similarly, it would be interesting to apply the constitutive model to other types of 

dynamic problems, such as those involving traffic- and train-induced vibrations, which are of 

upmost importance in modern societies, or explosions. This would possibly contribute to the 

further evaluation of the ability of the constitutive model, while also allowing for the 

establishment of typical range of values for its model parameters. 

Moreover, even though the constitutive model has been particularly developed to address 

the simulation of cyclic response of sand, it would be interesting to assess its ability to 

simulate adequately static boundary-value problems. A satisfactory performance under such 

conditions would certainly contribute to its recurrent use in design practice, which may 

involve the evaluation of the performance of the structure for both serviceability and ultimate 

limit states under both static and dynamic loading conditions. For instance, during the design 

phase of an earth-filled dam, it may be necessary to evaluate its performance for the following 

two extreme scenarios: (1) occurrence of a rapid drawdown during the operational phase of 

the dam; and (2) occurrence of an earthquake. Naturally, it would be desirable to use a single 

constitutive model (preferably with a single set of model parameters), to replicate the 

construction of the dam, its impoundment, operation phase and, finally, the occurrence of 

each of the aforementioned extreme situations. Unfortunately, although several constitutive 

models developed from the original proposal of Manzari and Dafalias (1997) have been shown 

to be able to capture key aspects of monotonic response of sand and sandy-silt mixtures 

observed in element laboratory tests (e.g. Dafalias and Manzari, 2004; Dafalias et al., 2004; 

Loukidis and Salgado, 2009; Taborda, 2011), with a satisfactory performance being also 

observed in the present study for Hostun sand (Chapter 7), few applications have been 

reported on its use to the simulation of static boundary-value problems (i.e. problems where 

change of loading with time is not a primary concern). Indeed, the fact that the constitutive 
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model was calibrated for Hostun sand in the present study might eventually instigate its more 

recurrent use, at least for research purposes, since Hostun sand has been often used as model 

material in centrifuge experiments performed at the University of Cambridge involving not 

only dynamic loading conditions (e.g. Marques et al., 2014a; Chian et al., 2014; Adamidis and 

Madabhushi, 2018), but also static loading conditions (e.g. Li and Bolton, 2014). 

A significant obstacle to using this constitutive model in current practice resides in the 

significant complexity and time cost of its calibration process, apart from the need for a 

significant amount of experimental data. In effect, although the hierarchical approach 

adopted in the present study allows for an efficient calibration of the material parameters 

characterising physical features of the modelled response (such as critical state, boundary 

and dilatancy surfaces, as well as stress-dilatancy relationship), the complexity of the process 

increases significantly when calibrating the significantly large number of model parameters 

required by the plastic hardening modulus, as well as by the shearing-induced fabric and 

inherent fabric anisotropy components, which have no physical meaning. The application of 

optimisation techniques, such as genetic algorithms (Simpson and Priest, 1993; Taborda et 

al., 2008; Azeiteiro, 2008; Azeiteiro et al., 2009; Taborda, 2011; Pedro, 2013), at least to the 

calibration of the plastic-hardening-modulus-related parameters, might reduce the required 

effort and subjectivity of this stage of the calibration process, therefore contributing to its use 

in design practice. It should be noted, nevertheless, that, even when employing optimisation 

techniques, it is of great advantage having well established range of values for each model 

parameter, since it ensures that physically acceptable values (or, at least, reasonable values) 

are obtained for the model parameters. Once more, this highlights the need for further 

calibration of this constitutive model for more materials. 

It would be also interesting to evaluate the ability of the extended formulation of the 

constitutive model to the simulation of hollow cylinder torsional shear tests. Naturally, since 

a large amount of monotonic and cyclic triaxial test data was obtained in the present study, 

complemented with bender element test data, the ideal situation would consist of having 

hollow cylinder test data on Hostun sand available and re-assessing the calibration of the 

inherent fabric anisotropy component. In such case, it would be interesting to re-run the 

numerical analysis of the centrifuge experiments to evaluate further the impact of this 

component on the modelled response. Alternatively, experimental data on Coimbra sand may 

be used. In fact, as part of a collaborative research programme involving the University of 

Coimbra, University of Porto and Instituto Superior Técnico of Lisbon, a large amount of 

experimental data on Coimbra sand was obtained, including bender element, resonant 

column, oedometer, triaxial and hollow cylinder torsional shear test data (e.g. Santos et al., 

2012; Araújo Santos, 2015). Therefore, a step forward in the research previously developed 

in Portugal may consist of calibrating this constitutive model for Coimbra sand and use it for 

the evaluation of the performance of geotechnical structures located in Portugal (at least, 

along Mondego riverbanks) under dynamic loading. Note, however, that, due to the loading 
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conditions applied in this type of test, the numerical simulation of hollow cylinder torsional 

shear tests requires the use of a 3D finite element method (or other methods allowing for the 

simulation of 3D boundary conditions, such as Fourier series aided finite element code – 

please refer to Potts and Zdravkovic (1999)) and, therefore, further development of 

FEMEPDYN is still required. It is important, however, to note that a full-3D implementation of 

the bounding surface plasticity model was performed in the present research, making it 

suitable to be used by either a 2D or a 3D finite element code. 

In addition, the present study highlighted the need for further improvement of the 

formulation of the constitutive model, to enhance its modelling capabilities. In particular, it 

seems of upmost importance to improve the modelled response under stress paths 

characterised by approximately constant stress ratios. As clearly observed when simulating 

drained isotropic compression tests (Chapter 7), the stiffness of the material is largely 

overpredicted by the constitutive model under such type of stress path, leading to the 

underprediction of the observed displacements. Indeed, as observed when simulating 

centrifuge experiments (Chapter 8), the rate of dissipation of excess pore pressures during 

the consolidation phase seems to be largely overpredicted, while significantly 

underpredicting the settlements occurring during this phase. As previously suggested by 

Taborda (2011), one of the following three different approaches may be adopted: 

(1) replacement of the current shape of the primary yield surface by a closed shape, as, for 

instance, included in the BSPM proposed by Taiebat and Dafalias (2008); (2) introduction of 

an additional yield surface which closes the current yield surface for large values of mean 

effective stress, as originally proposed by Vermeer (1978) and included in the BSPM 

developed by Li (2002) and Gao and Zhao (2015); (3) introduction of a nonlinear degradation 

of the secant bulk modulus with volumetric strain to complement the degradation of secant 

shear stiffness with shear strain, as proposed, for example, by Jardine et al. (1986). 

Moreover, it was shown in Chapter 6 and Chapter 7 that, although introduced to address the 

simulation of cyclic loading, the shearing-induced fabric component of the constitutive model 

may detrimentally affect the ability of the constitutive model to replicate the early stages of 

the monotonic response of loose and moderately loose sand (typically exhibiting a tendency 

to contract during the early stages of shearing). Furthermore, it was shown in Chapter 7 that 

this component, as it is currently formulated, partly inhibits the effect of the inherent fabric 

anisotropy component on the modelled response by imposing an increase in the plastic 

hardening modulus during contractive phases of the modelled response, counterbalancing 

the reduction in this model quantity imposed by the inherent fabric anisotropy component. 

A possible strategy to solve this apparent incompatibility may consist of developing a new 

formulation for the shearing-induced fabric component based on strain-energy-related 

principles (e.g. dissipated energy per unit volume), since, in such case, the shearing-induced 

fabric tensor should have little or no impact on the modelled monotonic response, while 

playing a key role in cyclic response, as intended. Note that this component of the formulation 
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is crucial to the accurate simulation of cyclic response, as demonstrated by fact that the great 

majority of the BSPM develop to address the simulation of cyclic loading include a shearing-

induced fabric component in its formulation, either affecting the plastic hardening modulus 

(e.g. Papadimitriou and Bouckovalas, 2002; Andrianopoulos et al., 2010b; Taborda, 2011) or 

the dilatancy coefficient (e.g. Dafalias and Manzari, 2004; Gao and Zhao, 2015). On the other 

hand, the inherent fabric component extends the ability of the constitutive model, enabling, 

for instance, to capture the effect of direction of the major principal effective stress to the 

vertical axis of the sample on the modelled response of sand, as observed in hollow cylinder 

torsional shear tests (e.g. Dafalias and Manzari, 2004; Loukidis and Salgado, 2009; Li and 

Dafalias, 2012; Williams, 2014; Woo and Salgado, 2015; Gao and Zhao, 2015). 

Still regarding the coupling between the shearing-induced fabric and inherent fabric 

anisotropy components of the model, it was shown in Chapter 6 and Chapter 7 that, contrary 

to the initial expectations, the introduction of the latter component into the formulation of 

the constitutive model was not sufficient to improve significantly the ability of the constitutive 

relationship to simulate undrained cyclic triaxial tests where samples exhibited a very soft 

response in triaxial extension during the first loading cycle, leading to the occurrence of cyclic 

mobility in just a very few (1 to 4) loading cycles. In effect, besides the aforementioned 

counterbalancing effects of the shearing-induced fabric and inherent fabric anisotropy 

components during the contractive phases of the modelled response, it was clear that the 

influence of the latter component on the simulation of cyclic response is significantly smaller 

than that exerted by the former component. This suggests that the contribution of the two 

components to the plastic hardening modulus need  to be reformulated in the future. 

Alternatively, since both aspects are related to the effect of the orientation of the particles 

(or of the voids) and their evolution during loading on the modelled response, as postulated 

in Li and Dafalias (2012), it may be preferable to replace these two components by a single 

one, which can concurrently capture the aspects currently simulated by both components. 

Indeed, this may require significant research effort, particularly due to the experimental 

difficulties in measuring sand fabric and its evolution with cyclic loading, with numerical 

methods (such as discrete element methods) being generally used to provide a 

micromechanical description of the phenomena (e.g. Yimsiri and Soga, 2001, 2010). 
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Appendix A MEASURED AND SIMULATED MONOTONIC RESPONSE OF HOSTUN 

SAND 

A.1 Introduction 

This appendix compares the experimental results of each monotonic triaxial test performed 

on Hostun sand (Chapter 2) with the results of its numerical simulation (Chapter 7). 

A.2 Monotonic triaxial compression tests 

A.2.1.1 Model parameters used in the simulations 

Two different sets of model parameters were employed in the numerical simulations of 

monotonic triaxial compression tests: “A) Static”, which was optimised for the simulation of 

the monotonic response of Hostun sand, and “B) Dynamic”, which makes use of the stress-

induced anisotropy component of the constitutive model introducing the effect of the cyclic 

history on the modelled response. The values of the two sets of model parameters are 

indicated in Table A.1. Note that the differences between the two sets of parameters are 

highlighted in bold. Moreover, note that the calibration of these parameters can be found in 

Chapter 6. 

Table A.1 – Model parameters used in the monotonic triaxial 
compression test simulations. 

Sets of parameters A) Static B) Dynamic 

Cg 293.0 293.0 
mg 2.97 2.97 
ng 0.49 0.49 

 2.00 2.00 
a1 0.46 0.46 

1 7.02 x 10-4 7.02 x 10-4 
p'min 1.0 kPa (1) 10.0 kPa 
Gmin 1.0 kPa (1) 1.0 kPa (1) 

 0.18 0.18 

Model surfaces   
p’ref  101.3 kPa 101.3 kPa 
(eCS)ref 1.000 1.000 

 0.070 0.070 

 0.360 0.360 
Mc

c 1.265 1.265 
Me

c   (2)  (2) 

kc
d 0.940 0.940 

ke
d  (2)  (2) 

kc
b 2.810 2.810 

ke
b  (2)  (2) 
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Table A.1 – Model parameters used in the monotonic triaxial 
compression test simulations. 

Sets of parameters A) Static B) Dynamic 

m 0.065 0.065 
p’ys 1.0 kPa 1.0 kPa 

Stress-dilatancy   
A0 1.00 1.00 

Plastic hardening modulus 
h0 0.132 0.200 

 0.999 1.100 
elim 0.960 0.900 

 1.000 1.000 

 0.500 0.500 

 0.300 0.600 

Stress-induced anisotropy 
H0 0.0 (1) 43 000.0 

 0.0 (1) 1.00 
Hmax (1) 5.0 x 104 
hf,min (1) 0.1 
hf,max (1) 100.0 

Inherent anisotropy   
a  (2)  (2) 
vA  (2)  (2) 
kA  (2)  (2) 

(1) Not used. (2) Not relevant, since this component has no impact on the modelled response under monotonic 
triaxial compression loading conditions. 

A.2.1.2 Undrained monotonic triaxial compression tests 

Table A.2 – Designation and initial conditions of the isotropically consolidated undrained 
monotonic triaxial compression with increasing mean stress (ICUMTC p↑) tests. 

Designation (§) 
e0 
( ) 

’r,0 
(kPa) 

’a,0 
(kPa) 

p'0 
(kPa) 

q0 
(kPa) 

Loading 
(p↑ or p↓) 

ICUMTC p↑ 0.876/80 0.876 80.0 80.0 80.0 0.0 p↑ 
ICUMTC p↑ 0.868/80 0.868 80.0 80.0 80.0 0.0 p↑ 
ICUMTC p↑ 0.843/135 0.843 135.0 135.0 135.0 0.0 p↑ 
ICUMTC p↑ 0.783/25 0.783 25.0 25.0 25.0 0.0 p↑ 
ICUMTC p↑ 0.801/80 0.801 80.0 80.0 80.0 0.0 p↑ 
ICUMTC p↑ 0.815/135 0.815 135.0 135.0 135.0 0.0 p↑ 
ICUMTC p↑ 0.686/25 0.686 25.0 25.0 25.0 0.0 p↑ 
ICUMTC p↑ 0.751/80 0.751 80.0 80.0 80.0 0.0 p↑ 
ICUMTC p↑ 0.694/135 0.694 135.0 135.0 135.0 0.0 p↑ 

(§) The designation identifies (1) type of consolidation: IC for isotropic consolidation; (2) type of drainage: U for 
undrained condition; (3) type of loading: MTC p↑ for monotonic triaxial compression with increasing mean 
stress; (4) void ratio immediately after consolidation; and (5) mean effective stress immediately after 
consolidation.  
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Figure A.1 – Experimental and numerical results of test ICUMTC p↑ 0.876/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.2 – Experimental and numerical results of test ICUMTC p↑ 0.868/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.3 – Experimental and numerical results of test ICUMTC p↑ 0.843/135: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.4 – Experimental and numerical results of test ICUMTC p↑ 0.783/25: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.5 – Experimental and numerical results of test ICUMTC p↑ 0.801/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.6 – Experimental and numerical results of test ICUMTC p↑ 0.815/135: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.7 – Experimental and numerical results of test ICUMTC p↑ 0.686/25: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.8 – Experimental and numerical results of test ICUMTC p↑ 0.751/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.9 – Experimental and numerical results of test ICUMTC p↑ 0.694/135: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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A.2.1.3 Drained monotonic triaxial compression tests 

Table A.3 – Designation and initial conditions of the drained monotonic triaxial compression tests. 

Type of test Designation (§) 
e0 
( ) 

’r,0 
(kPa) 

’a,0 
(kPa) 

p'0 
(kPa) 

q0 
(kPa) 

Loading 
(p↑ or p↓) 

Drained isotropic 
compression (DIC) 

ICDIC 0.794/25 0.794 25.0 25.0 25.0 0.0 p↑&p↓ 
ICDIC 0.659/25 0.659 25.0 25.0 25.0 0.0 p↑&p↓ 

Drained 
monotonic triaxial 
compression 
(DMTC) 

ICDMTC p↑ 0.875/50 0.875 50.0 50.0 50.0 0.0 p↑ 
ICDMTC p↑ 0.885/80 0.885 80.0 80.0 80.0 0.0 p↑ 
ICDMTC p↑ 0.846/200 0.846 200.0 200.0 200.0 0.0 p↑ 
ICDMTC p↑ 0.835/500 0.835 500.0 500.0 500.0 0.0 p↑ 
ICDMTC p↑ 0.829/25 0.829 25.0 25.0 25.0 0.0 p↑ 
ICDMTC p↑ 0.798/80 0.798 80.0 80.0 80.0 0.0 p↑ 
ICDMTC p↑ 0.804/135 0.804 135.0 135.0 135.0 0.0 p↑ 
ICDMTC p↑ 0.667/25 0.667 25.0 25.0 25.0 0.0 p↑ 
ICDMTC p↑ 0.725/80 0.725 80.0 80.0 80.0 0.0 p↑ 
ICDMTC p↑ 0.728/135 0.728 135.0 135.0 135.0 0.0 p↑ 

K0CDMTC p↓ 0.797/80 0.797 60.0 120.0 80.0 60.0 p↓ 

ICDMTC p↓ 0.650/80 0.650 80.0 80.0 80.0 0.0 p↓ 

K0CDMTC p↓ 0.672/80 0.672 60.0 120.0 80.0 60.0 p↓ 
(§) The designation identifies (1) type of consolidation: IC or K0C for isotropic or anisotropic consolidation, 
respectively; (2) type of drainage: D for drained condition; (3) type of loading: IC for isotropic compression, 
MTC p↑ for monotonic triaxial compression with increasing mean stress, MTC p↓ for monotonic triaxial 
compression with decreasing mean stress; (4) void ratio immediately after consolidation; and (5) mean effective 
stress immediately after consolidation. 

 

  

 
Figure A.10 – Experimental and numerical results of tests ICDIC 0.794/25 and ICDIC 0.794/25: 

(a) volumetric strain and (b) void ratio evolutions with mean effective stress (note that, for these 
two tests, the numerical curves corresponding to the set A and set B are coincident). 
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Figure A.11 – Experimental and numerical results of test ICDMTC p↑ 0.875/50: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.12 – Experimental and numerical results of test ICDMTC p↑ 0.885/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.13 – Experimental and numerical results of test ICDMTC p↑ 0.846/200: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.14 – Experimental and numerical results of test ICDMTC p↑ 0.835/500: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.15 – Experimental and numerical results of test ICDMTC p↑ 0.829/25: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.16 – Experimental and numerical results of test ICDMTC p↑ 0.798/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.17 – Experimental and numerical results of test ICDMTC p↑ 0.804/135: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.18 – Experimental and numerical results of test ICDMTC p↑ 0.667/25: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.19 – Experimental and numerical results of test ICDMTC p↑ 0.725/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.20 – Experimental and numerical results of test ICDMTC p↑ 0.728/135: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.21 – Experimental and numerical results of test K0CDMTC p↓ 0.797/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.22 – Experimental and numerical results of test ICDMTC p↓ 0.650/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.23 – Experimental and numerical results of test K0CDMTC p↓ 0.672/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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A.3 Monotonic triaxial extension tests 

A.3.1.1 Model parameters used in the simulations 

As indicated in Table A.4, four different sets of model parameters were employed in the 

numerical simulations of monotonic triaxial extension tests. Two of the sets belong to the 

category “A) Static”, which was optimised for the simulation of the monotonic response of 

Hostun sand, while the remaining two sets belong to the category “B) Dynamic”, which makes 

use of the stress-induced anisotropy component of the constitutive model introducing the 

effect of the cyclic history on the modelled response. Among each pair of sets (A or B), one 

makes use of the original formulation of the model, as proposed by Taborda et al. (2014), 

while the other makes use of the extended formulation of the model by activating the 

inherent (i.e. fabric-related) anisotropy component. This component increases the ability of 

the constitutive model to capture soil response for loading conditions other than triaxial 

compression. Note that the differences between the sets of model parameters belonging to 

the categories “A) Static” and “B) Dynamic” are highlighted in bold, while the three additional 

model parameters required by the extended formulation of the constitutive model are 

presented in grey. The calibration of these parameters can be found in Chapter 6. 

Table A.4 – Model parameters used in the monotonic triaxial extension test simulations. 

Sets of parameters 
A) Static B) Dynamic 

A.1) Original 
formulation 

A.2) Extended 
formulation 

B.1) Original 
formulation 

B.2) Extended 
formulation 

Non-linear elasticity     
Cg 293.0 293.0 293.0 293.0 
mg 2.97 2.97 2.97 2.97 
ng 0.49 0.49 0.49 0.49 

 2.00 2.00 2.00 2.00 
a1 0.46 0.46 0.46 0.46 

1 7.02 x 10-4 7.02 x 10-4 7.02 x 10-4 7.02 x 10-4 
p'min 1.0 kPa (1) 1.0 kPa (1) 10.0 kPa 10.0 kPa 
Gmin 1.0 kPa (1) 1.0 kPa (1) 1.0 kPa (1) 1.0 kPa (1) 

 0.18 0.18 0.18 0.18 

Model surfaces     
p’ref  101.3 kPa 101.3 kPa 101.3 kPa 101.3 kPa 
(eCS)ref 1.000 1.000 1.000 1.000 

 0.070 0.070 0.070 0.070 

 0.360 0.360 0.360 0.360 
Mc

c 1.265 1.265 1.265 1.265 
Me

c  0.911 0.911 0.911 0.911 

kc
d 0.940 0.940 0.940 0.940 

ke
d 0.677 0.677 0.677 0.677 

kc
b 2.810 2.810 2.810 2.810 

ke
b 2.024 2.024 2.024 2.024 

m 0.065 0.065 0.065 0.065 
p’ys 1.0 kPa 1.0 kPa 1.0 kPa 1.0 kPa 
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Table A.4 – Model parameters used in the monotonic triaxial extension test simulations. 

Sets of parameters 
A) Static B) Dynamic 

A.1) Original 
formulation 

A.2) Extended 
formulation 

B.1) Original 
formulation 

B.2) Extended 
formulation 

Stress-dilatancy     
A0 1.00 1.00 1.00 1.00 

Plastic hardening modulus 
h0 0.132 0.132 0.200 0.195 

 0.999 0.999 1.100 1.080 
elim 0.960 0.960 0.900 0.900 

 1.000 1.000 1.000 1.000 

 0.500 0.500 0.500 0.500 

 0.300 0.300 0.600 0.600 

Stress-induced anisotropy 
H0 0.0 (2) 0.0 (2) 43 000.0 55 000.0 

 0.0 (2) 0.0 (2) 1.00 0.85 
Hmax (2) (2) 5.0 x 104 5.0 x 104 
hf,min (2) (2) 0.1 0.1 
hf,max (2) (2) 1 000.0 1 000.0 

Inherent anisotropy     
a 0.333 (2) 0.290 0.333 (2) 0.290 
vA 0.000 (2) 1.000 0.000 (2) 1.000 
kA 1.000 (2) 0.600 1.000 (2) 0.600 

(1) Not used. (2) Component not activated when using this set of parameters. 

 

A.3.1.2 Undrained monotonic triaxial extension tests 

Table A.5 – Designation and initial conditions of the isotropically consolidated undrained 
monotonic triaxial extension with decreasing mean stress (ICUMTE p↓) tests. 

Designation (§) 
e0 
( ) 

’r,0 
(kPa) 

’a,0 
(kPa) 

p'0 
(kPa) 

q0 
(kPa) 

Loading 
(p↑ or p↓) 

ICUMTE p↓ 0.790/25 0.790 25.0 25.0 25.0 0.0 p↓ 
ICUMTE p↓ 0.799/80 0.799 80.0 80.0 80.0 0.0 p↓ 
ICUMTE p↓ 0.658/25 0.658 25.0 25.0 25.0 0.0 p↓ 
ICUMTE p↓ 0.650/80 0.650 80.0 80.0 80.0 0.0 p↓ 

(§) The designation identifies (1) type of consolidation: IC for isotropic consolidation; (2) type of drainage: U for 
undrained condition; (3) type of loading: MTE p↓ for monotonic triaxial extension with decreasing mean stress; 
(4) void ratio immediately after consolidation; and (5) mean effective stress immediately after consolidation. 
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Figure A.24 – Experimental and numerical results of test ICUMTE p↓ 0.790/25: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.25 – Experimental and numerical results of test ICUMTE p↓ 0.799/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.26 – Experimental and numerical results of test ICUMTE p↓ 0.658/25: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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Figure A.27 – Experimental and numerical results of test ICUMTE p↓ 0.650/80: (a) effective stress 

path; (b) stress-strain response; (c) excess pore water pressure build-up; and (d) stress ratio 
evolution with axial strain. 
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A.3.1.3 Drained monotonic triaxial extension tests 

Table A.6 – Designation and initial conditions of the drained monotonic triaxial extension tests. 

Designation (§) 
e0 
( ) 

’r,0 
(kPa) 

’a,0 
(kPa) 

p'0 
(kPa) 

q0 
(kPa) 

Loading 
(p↑ or p↓) 

ICDMTE p↑ 0.798/80 0.798 80.0 80.0 80.0 0.0 p↑ 
K0CDMTE p↑ 0.801/80 0.801 60.0 120.0 80.0 60.0 p↑ 
ICDMTE p↑ 0.652/80 0.652 80.0 80.0 80.0 0.0 p↑ 
K0CDMTE p↑ 0.652/80 0.652 60.0 120.0 80.0 60.0 p↑ 
ICDMTE p↓ 0.793/80 0.793 80.0 80.0 80.0 0.0 p↓ 

(§) The designation identifies (1) type of consolidation: IC or K0C for isotropic or anisotropic consolidation, 
respectively; (2) type of drainage: D for drained condition; (3) type of loading: MTE p↓ for monotonic triaxial 
extension with decreasing mean stress and MTE p↑ for monotonic triaxial extension with increasing mean 
stress; (4) void ratio immediately after consolidation; and (5) mean effective stress immediately after 
consolidation. 
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Figure A.28 – Experimental and numerical results of test ICDMTE p↑ 0.798/80: (a) deviatoric stress 

evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.29 – Experimental and numerical results of test K0CDMTE p↑ 0.801/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.30 – Experimental and numerical results of test ICDMTE p↑ 0.652/80: (a) deviatoric stress 

evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.31 – Experimental and numerical results of test K0CDMTE p↑ 0.652/80: (a) deviatoric 

stress evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Figure A.32 – Experimental and numerical results of test ICDMTE p↓ 0.793/80: (a) deviatoric stress 

evolution with axial strain; (b) stress ratio evolution with axial strain; (c) volumetric strain 
evolution with axial strain; and (d) void ratio evolution with mean effective stress. 
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Appendix B MEASURED AND SIMULATED CYCLIC RESPONSE OF HOSTUN SAND 

B.1 Introduction 

This appendix compares the experimental results of each cyclic triaxial test performed on 

Hostun sand (Chapter 3) with the results of its numerical simulation (Chapter 7). 

B.2 Designation and initial conditions of each cyclic triaxial test 

Table B.1 summarises the designation and initial conditions of the fifteen cyclic triaxial tests 

performed on Hostun sand, including thirteen isotropically consolidated undrained cyclic 

triaxial (ICUCT) tests, as well as one isotropically consolidated (IC) and one anisotropically 

consolidated (K0C) drained cyclic triaxial (ICDCT and K0CDCT, respectively) tests. It can be 

observed that the samples were prepared to very different void ratios (with e0 ranging from 

0.651 to 0.820), consolidated under three different mean effective stresses (namely, p'0 =

25, 80 and 135 kPa) and subjected to two-way symmetric deviatoric shear stress oscillations 

(i.e. similar deviatoric stress amplitude in triaxial compression and in triaxial extension), q. 

Table B.1 – Designation and initial conditions of the cyclic triaxial tests performed on Hostun sand. 

Type of test Designation (§) 
e0 
( ) 

p'0 
(kPa) 

q 
(kPa) 

0 
(ƪ) 

( ) 

N 
( ) 

Undrained 
cyclic triaxial 
(UCT) 

ICUCT 0.821/25/13 0.821 25.0 ±13.0 -0.136 (†) 

ICUCT 0.777/25/18 0.777 25.0 ±18.0 -0.181 (†) 

ICUCT 0.771/80/32 0.771 80.0 ±32.0 -0.165 (†) 

ICUCT 0.803/80/36 0.803 80.0 ±36.0 -0.133 (†) 

ICUCT 0.832/80/42 0.832 80.0 ±42.0 -0.104 (†)) 

ICUCT 0.804/80/48 0.804 80.0 ±48.0 -0.132 (†) 

ICUCT 0.773/80/56 0.773 80.0 ±56.0 -0.162 (†) 

ICUCT 0.805/135/40 0.805 135.0 ±40.0 -0.117 (†) 

ICUCT 0.830/135/54 0.830 135.0 ±54.0 -0.092 (†) 

ICUCT 0.793/135/67.5 0.793 135.0 ±67.5 -0.129 (†) 

ICUCT 0.651/80/43 0.651 80.0 ±43.0 -0.299 (†) 

ICUCT 0.652/80/72 0.652 80.0 ±72.0 -0.285 (†) 

ICUCT 0.652/80/88 0.652 80.0 ±88.0 -0.284 (†) 

Drained cyclic 
triaxial (DCT) 

K0CDCT 0.811/80/30 0.811 80.0 (ǂ) ±30.0 -0.125 10 

ICDCT 0.820/135/81 0.820 135.0 ±81.0 -0.102 10 
(§) The designation identifies: (1) type of consolidation: IC for isotropic consolidation; (2) type of drainage: D or 
U for drained or undrained test, respectively; (3) type of loading: CT for cyclic triaxial; (4) void ratio immediately 
after consolidation; and (5) mean effective stress immediately after consolidation; (6) deviatoric stress 

oscillation applied in the test: |q|. 
(†) The undrained cyclic triaxial tests were stopped when large strains were observed (typically, for moderately 
loose samples, the accumulation of double amplitude axial strain of 5% was used as criterion to stop the test). 
(ƪ) See Chapter 3. 
(ǂ) In this test, the sample was subjected to anisotropic consolidation, with the axial and radial effective stresses 
at consolidation being 120 and 60 kPa, respectively. 
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B.3 Model parameters used in the simulations 

As indicated in Table B.2, two different sets of model parameters were employed in the 

numerical simulations of cyclic triaxial tests: one of them (termed as “set B.1) Dynamic – 

original formulation”) makes use of the original formulation of the model, as proposed by 

Taborda et al. (2014), while the other one (termed as “set B.2) Dynamic – extended 

formulation”) makes use of the extended formulation of the model by activating the inherent 

(i.e. fabric-related) anisotropy component. This component increases the ability of the 

constitutive model to capture soil response for loading conditions other than triaxial 

compression. Note that the differences between the values of the plastic-hardening-

modulus-related parameters are highlighted in bold, while the values assigned to the three 

additional model parameters required by the extended formulation of the constitutive model 

are presented in grey. The calibration of these parameters can be found in Chapter 6. 

Table B.2 – Model parameters used in the cyclic triaxial 
test simulations. 

Sets of parameters 

B) Dynamic 

B.1) Original 
formulation 

B.2) Extended 
formulation 

Non-linear elasticity   
Cg 293.0 293.0 
mg 2.97 2.97 
ng 0.49 0.49 

 2.00 2.00 
a1 0.46 0.46 

1 7.02 x 10-4 7.02 x 10-4 
p'min 10.0 kPa 10.0 kPa 
Gmin 1.0 kPa (1) 1.0 kPa (1) 

 0.18 0.18 

Model surfaces   
p’ref  101.3 kPa 101.3 kPa 
(eCS)ref 1.000 1.000 

 0.070 0.070 

 0.360 0.360 
Mc

c 1.265 1.265 
Me

c  0.911 0.911 

kc
d 0.940 0.940 

ke
d 0.677 0.677 

kc
b 2.810 2.810 

ke
b 2.024 2.024 

m 0.065 0.065 
p’ys 1.0 kPa 1.0 kPa 

Stress-dilatancy   
A0 1.00 1.00 
h0 0.200 0.195 

 1.100 1.080 
elim 0.900 0.900 
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Table B.2 – Model parameters used in the cyclic triaxial 
test simulations. 

Sets of parameters 

B) Dynamic 

B.1) Original 
formulation 

B.2) Extended 
formulation 

 1.000 1.000 

 0.500 0.500 

 0.600 0.600 
H0 43 000.0 55 000.0 

 1.00 0.85 
Hmax 5.0 x 104 5.0 x 104 
hf,min 0.1 0.1 
hf,max 1 000.0 1 000.0 

Inherent anisotropy   
a 0.333 (2) 0.290 
vA 0.000 (2) 1.000 
kA 1.000 (2) 0.600 

(1) Not used. (2) Component not activated when using this set of parameters. 
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B.4 Simulations using the original formulation of the constitutive model 

 

  

  

 
Figure B.1 – Experimental and numerical results of test ICUCT 0.821/25/13: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.2 – Experimental and numerical results of test ICUCT 0.777/25/18: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.3 – Experimental and numerical results of test ICUCT 0.771/80/32: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.4 – Experimental and numerical results of test ICUCT 0.803/80/36: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.5 – Experimental and numerical results of test ICUCT 0.832/80/42: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.6 – Experimental and numerical results of test ICUCT 0.804/80/48: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.7 – Experimental and numerical results of test ICUCT 0.773/80/56: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.8 – Experimental and numerical results of test ICUCT 0.805/135/40: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.9 – Experimental and numerical results of test ICUCT 0.830/135/54: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.10 – Experimental and numerical results of test ICUCT 0.793/135/67.5: (a) effective stress 
path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 

loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.11 – Experimental and numerical results of test ICUCT 0.651/80/43: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.12 – Experimental and numerical results of test ICUCT 0.652/80/77: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.13 – Experimental and numerical results of test ICUCT 0.652/80/88: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.14 – Experimental and numerical results of test K0CDCT 0.811/80/30: (a)  stress-strain 

response; (b) axial strain evolution with the number of loading cycles; (c) volumetric strain 
evolution with mean effective stress; and (d) volumetric strain evolution with the number of 

loading cycles. 
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Figure B.15 – Experimental and numerical results of test ICDCT 0.820/135/81: (a)  stress-strain 

response; (b) axial strain evolution with the number of loading cycles; (c) volumetric strain 
evolution with mean effective stress; and (d) volumetric strain evolution with the number of 

loading cycles. 
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B.5 Simulations using the extended formulation of the constitutive model 

 

  

  

 
Figure B.16 – Experimental and numerical results of test ICUCT 0.821/25/13: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.17 – Experimental and numerical results of test ICUCT 0.777/25/18: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.18 – Experimental and numerical results of test ICUCT 0.771/80/32: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.19 – Experimental and numerical results of test ICUCT 0.803/80/36: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.20 – Experimental and numerical results of test ICUCT 0.832/80/42: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.21 – Experimental and numerical results of test ICUCT 0.804/80/48: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.22 – Experimental and numerical results of test ICUCT 0.773/80/56: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.23 – Experimental and numerical results of test ICUCT 0.805/135/40: (a) effective stress 
path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 

loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.24 – Experimental and numerical results of test ICUCT 0.830/135/54: (a) effective stress 
path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 

loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.25 – Experimental and numerical results of test ICUCT 0.793/135/67.5: (a) effective stress 
path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 

loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.26 – Experimental and numerical results of test ICUCT 0.651/80/43: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.27 – Experimental and numerical results of test ICUCT 0.652/80/77: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.28 – Experimental and numerical results of test ICUCT 0.652/80/88: (a) effective stress 

path, (b) stress-strain response; (c) excess pore water pressure ratio build-up with the number of 
loading cycles; and (d) axial strain evolution with the number of loading cycles. 
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Figure B.29 – Experimental and numerical results of test K0CDCT 0.811/80/30: (a)  stress-strain 

response; (b) axial strain evolution with the number of loading cycles; (c) volumetric strain 
evolution with mean effective stress; and (d) volumetric strain evolution with the number of 

loading cycles. 
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Figure B.30 – Experimental and numerical results of test ICDCT 0.820/135/81: (a)  stress-strain 

response; (b) axial strain evolution with the number of loading cycles; (c) volumetric strain 
evolution with mean effective stress; and (d) volumetric strain evolution with the number of 

loading cycles. 
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Appendix C APPLICATION OF A MODIFIED FORWARD EULER SCHEME WITH 

AUTOMATIC SUB-STEPPING AND ERROR CONTROL TO THE STRESS 

INTEGRATION OF A BOUNDING SURFACE PLASTICITY MODEL 

C.1 Explicit stress point integration 

Table C.1 presents the operations required to integrate the present bounding surface 

plasticity model by using a modified forward Euler scheme with automatic sub-stepping and 

error control, as originally introduced by Sloan (1987) and further developed by Sloan et al. 

(2001). It is important to note that, due to their symmetrical form, second-order tensors are 

represented by an array, while fourth-order tensors are represented by a matrix. Moreover, 

the implementation of the constitutive model into FEMEPDYN makes use of a standard vector 

representation (i.e. a contravariant representation) for the symmetric stress tensor (where 

ij = ij with i ≠ j are the shear stress components) and the use of an engineering 

representation (i.e. a covariant representation) for the symmetric strain tensor (where 
ij
=

2.0 ij i ≠ j are the shear strain components). For consistency, a contravariant representation 

is adopted for fourth-order tensors (e.g., elastic constitutive matrix, [D]). For further details 

on the compressed matrix representations of symmetric second- and fourth-order tensors, 

refer, for example, to Bathe (1996) or to Helnwein (2001). 

Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

1 Initialisation of model variables 

 Given the total strain increment, {} = {xx yy 2.0xy zz 2.0xz 2.0yz}T =

{xx yy 
xy

zz 
xz


yz}

T
, enter with the initial values of: 

- effective stresses: {′} = {′xx ′yy xy ′zz xz yz}T; 

- elastic strains: {e} = {xx
e yy

e 
xy
e zz

e 
xz
e 

yz
e
}

T
; 

- plastic strains associated with the primary and secondary yield surfaces, respectively: 

{1
p} = {xx,1

p
yy,1

p


xy,1
p zz,1

p


xz,1
p 

yz,1
p
}

T
 and 

{2
p} = {xx,2

p
yy,2

p


xy,2
p zz,2

p


xz,2
p 

yz,2
p
}

T
; 

- total strains: {} = {e} + {1
p} + {2

p} = {xx yy 
xy

zz 
xz


yz}; 

- void ratio, e = e0; 
- elastic state parameters: effective stresses and strains at last shear reversal, {′SR} =

{′xx
SR
  ′yy

SR
  xy

SR  ′zz
SR
  xz

SR  yz
SR}

T
and {SR} = {xx

e yy
e 

xy
e zz

e 
xz
e 

yz
e
}

T
, respectively; void 

ratio at last shear reversal, eSR, and the scaling factor, N; 
- plastic state parameters: 
back-stress tensor, {} = {xx yy xy zz xz yz}T; isotropic and deviatoric 
components of the stress-induced anisotropy tensor, respectively, fp and {f} =
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

{fxx fyy fxy fzz fxz fyz}
T
, their rate of evolution, H, as well as stress-induced anisotropy 

constant C; 
- inherent anisotropy tensor, {F} = {Fxx Fyy Fxy Fzz Fxz Fyz}T =

{
1.0

2.0
(1.0 − a) a 0.0

1.0

2.0
(1.0 − a) 0.0 0.0}

T
. 

Determine the small-strain shear modulus at last shear reversal: 

Gmax
SR = Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′SR

p′ref
)

ng

≥ Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′min

p′ref
)

ng

 

Determine the initial positions of the primary and secondary yield surfaces: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

where (1): 
({s} − p′ {}):({s} − p′ {})

= (′xx − p′ (1.0+ xx))
2
+ (′yy − p′ (1.0+ yy))

2

+ (′zz − p′ (1.0+ zz))
2
+ 2.0 (xy − p′ xy)

2
+ 2.0 (xz − p′ xz)

2

+ 2.0 (yz − p′ yz)
2
 

F2 = p′YS − p′ 

where: 

p′ =
′xx + ′yy + ′zz

3.0
 

2 Elastic trial 

2.1 Initialise variables of the modified forward Euler scheme required to the integration of the 
purely elastic response (i.e. elastic trial): Tn = 1.0 and Tn = 0.0. 

Initialise variable informing which yield surface is active: IYIELD = 0. 

2.2 If Tn < 1.0 then: 
Determine the sub-step strain increment: {ss} = Tn {}. 
Save the pseudo time at the beginning of the sub-step increment, Tn−1 = Tn. 
Save temporarily the effective stresses and void ratio at the beginning of the sub-step 
increment, {′mem} = {′} and emem = e, respectively, as well as the positions of the 
yield surfaces at the beginning of the sub-step increment, F1,mem = F1 and F2, mem = F2. 

Save temporarily the values of the elastic state parameters corresponding to the 
beginning of the sub-step increment: {′mem

SR } = {′SR}, {mem
SR } = {SR}, emem

SR = eSR, 
and Nmem = N. 
Continue to step 2.3. 

Else: 
Move to step 4. 

End if. 

2.3 Check whether a shear strain reversal occurs, according to the methodology described in 
Section C.2. Enter with the current strain state, {}, and the sub-step strain increment, {ss}.  
If a shear reversal occurs, then: 

Update the elastic state parameters: {′SR} = {′}, {SR} = {}, eSR = e, N = 2.0. 
Update the small-strain shear modulus at last shear reversal: 

Gmax
SR = Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′SR

p′ref
)

ng

≥ Cg p'ref

(mg − e)
2.0

1.0 + e
(

p′min

p′ref
)

ng
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

End if. 

Determine the small-strain shear modulus corresponding to the current stress state and 
material’s state: 

Gmax = Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′

p′ref
)

ng

≥ Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′min

p′ref
)

ng

 

Determine the tangent shear modulus: 

Gtan =
Gmax

T
≥ Gmin 

where: 

 T = 1.0+  (
1.0

a1
− 1.0) (


ref
r

N 
1

)

−1.0

≥ 1.0 +  (
1.0

a1
− 1.0) 

with (1): 


ref
r = √

1.0

2.0
 ‖{r} − {rSR}‖2 = √

1.0

2.0
√({r} − {rSR}):({r} − {rSR})

= √
1.0

2.0

√
  
  
  
  
  
  
  
  
 

(
′xx − p′

p′
−

′xx
SR − p′SR

p′SR )

2.0

+ (
′yy − p′

p′
−

′yy
SR − p′SR

p′SR )

2.0

+

(
′zz − p′

p′
−

′zz
SR − p′SR

p′SR )

2.0

+ 2.0 (
xy

p′
−

xy
SR

p′SR)

2

+

2.0 (
xz

p′
−

xz
SR

p′SR)

2.0

+ 2.0 (
yz

p′
−

yz
SR

p′SR)

2.0

 

and 

 
1
= a1  (

Gmax
SR

p′SR ) 1
 

Determine the tangent bulk modulus: 

Ktan =
2.0 (1.0+ )

3.0 (1.0− 2.0 )
Gtan 

Compute the elastic constitutive matrix: 

[D({′})] =

[
 
 
 
 
 
 
 
 Ktan +

4.0

3.0
Gtan Ktan −

2.0

3.0
Gtan 0.0 Ktan −

2.0

3.0
Gtan 0.0 0.0

Ktan −
2.0

3.0
Gtan Ktan +

4.0

3.0
Gtan 0.0 Ktan −

2.0

3.0
Gtan 0.0 0.0

0.0 0.0 Gtan 0.0 0.0 0.0

Ktan −
2.0

3.0
Gtan Ktan −

2.0

3.0
Gtan 0.0 Ktan +

4.0

3.0
Gtan 0.0 0.0

0.0 0.0 0.0 0.0 Gtan 0.0
0.0 0.0 0.0 0.0 0.0 Gtan]

 
 
 
 
 
 
 
 

 

2.4 Compute the first-order approximation of changes in effective stresses (2): 

{′(1)} = [D({′})] {ss} 

2.5 Update temporarily the effective stress state: {′(1)} = {′mem} + {′(1)} 

Update temporarily the void ratio using a small-strain formulation: e = emem − (1.0+ einit) 
ss,v, where einit is the void ratio of the material at the beginning of the FE analysis and 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
ss,v = ss,xx + ss,yy + ss,zz is the volumetric component of the sub-step strain 

increment. 

Update the small-strain shear modulus, Gmax, the tangent shear modulus, Gtan, the tangent 
bulk modulus, Ktan, and the elastic constitutive matrix, [D], using the updated effective stress 

state, {′(1)}, and void ratio, e, and the equations previously presented in step 2.3. 

2.6 Compute the second-order approximation of changes in effective stresses (2): 

{′(2)} = [D({′(1)})] {ss} 

2.7 Compute the modified forward Euler approximation of changes in effective stresses: 

{′} =
{′(1)} + {′(2)}

2.0
 

Determine the relative error in the modified forward Euler approximation of the effective 
stresses (1): 

R ≈
1.0

2.0
 
‖({′

(2)
} − {′

(1)
})‖

2

‖{′mem} + {′}‖2
=

1.0

2.0
√
({′

(2)
} − {′

(1)
}) : ({′

(2)
} − {′

(1)
})

({′mem} + {′}):({′mem} + {′})
 

2.8 Compare the obtained relative error R with the tolerance SSTOL(4). 
If R > SSTOL and Tn > Tn,min then: 

The sub-step is not successful and, consequently, a smaller pseudo-time step needs to 
be used in the integration process. 
Restore the effective stress state, void ratio and elastic state parameters corresponding 
to the beginning of the sub-step increment: {′} = {′mem}, e = emem, {′SR} =
{′mem

SR }, {SR} = {mem
SR }, eSR = emem

SR , and N = Nmem. 

Compute:  = max{0.9 √SSTOL R⁄ , 0.1} and Tn = max  { Tn,  Tn,min}.  

Return to step 2.3. 
Else: 

The sub-step is considered successful. 
Update the effective stress state: {′} = {′mem} + {′}. 
Compute a new pseudo-time step multiplier, according to the following condition: 

if the previous sub-step or the one before failed:  = min  {0.9 √SSTOL R⁄ , 1.0}, 

otherwise:   = min  {0.9 √SSTOL R⁄ , 1.1}. 

Continue to step 2.9. 
End if 

2.9 Update the positions of the primary and secondary yield surfaces: 

F1 = √({s} − p′ {}): ({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 
Determine the portion  of the sub-step increment, {ss} = Tn {}, which is purely 
elastic(4): 
If F1 ≤ YTOL and F2 ≤ YTOL then: 

The response is purely elastic over the entire sub-step increment. Set  = 1.0. 
Update the elastic strain increment: {e} =  {ss}. 
Update the elastic strains: {e} = {e} + {e}. 

Set the new pseudo-time step: Tn = max  { Tn,  Tn,min}. 

Check that Tn + Tn does not exceed 1.0, i.e.: Tn = min  { Tn,  1.0− Tn}. 
Update the pseudo-time: Tn = Tn−1 + Tn. 
Return to step 2.2. 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
Else: 

If (F1,mem < −YTOL and F1 > YTOL and F2 ≤ YTOL) or 
(F1 ≤ YTOL and F2, mem < −YTOL and F2 > YTOL) or 

(F1,mem < −YTOL and F1 > YTOL and F2, mem < −YTOL and F2 > YTOL) then: 
A transition from purely elastic to elasto-plastic response occurs. 

Compute the value of  and the stress state, {′} = {′mem} + {′}, lying on the 
primary yield surfaces (IYIELD = 1), on the secondary yield surface (IYIELD = 2) 
or at the intersection between both yield surfaces (IYIELD = 3), by applying the 
Pegasus method, as described in Section C.3. 
Update the elastic strain increment: {e} =  {ss}. 
Update the elastic strains: {e} = {e} + {e}. 
Update the void ratio: e = emem − (1.0+ einit)  ss,v. 

Update the positions of the primary and secondary yield surfaces: 

F1 = √({s} − p′ {}): ({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 
Move to step 3.1. 

Else: 
One or both yield surfaces were active from the beginning of the sub-step 
increment. 
Check whether an elasto-plastic unloading has occurred during the current sub-
step increment (4). 
If F1 > YTOL then: 

Compute (1): 

cos 1 =
{
𝜕F1

𝜕′
} :{′}

‖{
𝜕F1
𝜕′

} ‖
2

‖{′} ‖2

=
{
𝜕F1

𝜕′
} :{′}

√{
𝜕F1
𝜕′

} : {
𝜕F1
𝜕′

} √{′}:{′}

 

where the gradient of the primary yield surface is given by: 

{
𝜕F1

𝜕′
} = {

𝜕F1

𝜕′xx
   
𝜕F1

𝜕′yy
   
𝜕F1

𝜕xy
   
𝜕F1

𝜕′zz
   
𝜕F1

𝜕xz
   
𝜕F1

𝜕yz
}

T

= −
1.0

3.0
 V {I} + {n}

= −
1.0

3.0
 [{} {n} + √

2.0

3.0
 m] {I} + {n} 

with: 

{
𝜕F1

𝜕′xx
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz

+ 2.0 yznyz +√
2.0

3.0
m] + nxx 

{
𝜕F1

𝜕′yy
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz

+ 2.0 yznyz +√
2.0

3.0
m] + nyy 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

{
𝜕F1

𝜕xy
} = nxy 

{
𝜕F1

𝜕′zz
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz

+ 2.0 yznyz +√
2.0

3.0
m] + nzz 

{
𝜕F1

𝜕xz
} = nxz 

{
𝜕F1

𝜕yz
} = nyz 

Set cos  = cos 1. 
End if 

If F2 > YTOL then: 
Compute (1): 

cos 2 =
{
𝜕F2

𝜕′
} :{′}

‖{
𝜕F2
𝜕′

} ‖
2

‖{′} ‖2

=
{
𝜕F2

𝜕′
} :{′}

√{
𝜕F2
𝜕′

} : {
𝜕F2
𝜕′

} √{′}:{′}

 

where the gradient of the primary yield surface is given by: 

{
𝜕F2

𝜕′
} = {

𝜕F2

𝜕′xx
   
𝜕F2

𝜕′yy
   
𝜕F2

𝜕xy
   
𝜕F2

𝜕′zz
   
𝜕F2

𝜕xz
   
𝜕F2

𝜕yz
}

T

= −
1.0

3.0
 {I} 

with: 

{
𝜕F2

𝜕′xx
} = {

𝜕F2

𝜕′yy
} = {

𝜕F2

𝜕′zz
} = −

1.0

3.0
 

{
𝜕F2

𝜕xy
} = {

𝜕F2

𝜕xz
} = {

𝜕F2

𝜕yz
} = 0.0 

Set cos  = cos 2. 
End if 

If F1 > YTOL and F2 > YTOL then: 
cos  = min{cos 1 , cos 2} 

End if 

If cos  < −LTOL then: 

An elasto-plastic unloading has occurred. Compute the value of  and the 
stress state, {′} = {′mem} + {′}, lying on the primary yield surfaces 
(IYIELD = 1), on the secondary yield surface (IYIELD = 2) or at the 
intersection between both yield surfaces (IYIELD = 3), by applying the 
Pegasus method, as described in Section C.3. 
Update the elastic strain increment: {e} =  {ss}. 
Update the elastic strains: {e} = {e} + {e}. 
Update the void ratio: e = emem − (1.0+ einit)  ss,v. 

Update the positions of the primary and secondary yield surfaces: 

F1 = √({s} − p′ {}): ({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
Move to step 3.1. 

Else: 
The response is elasto-plastic over the entire sub-step increment. 
Set  = 0.0. 
Restore the effective stress state, void ratio and positions of the yield 
surfaces corresponding to the beginning of the sub-step increment: {′} =
{′mem}, e = emem, F1 = F1,mem and F2 = F2, mem. 

Restore the values of the elastic state parameters corresponding to the 
beginning of the sub-step increment: {′SR} = {′mem

SR }, {SR} = {mem
SR }, 

eSR = emem
SR , and N = Nmem. 

Move to step 3.1. 
End if. 

End if. 
End if 

3 Elasto-plasticity 

3.1 Determine the part of the strain increment that has not yet been integrated: {ep} =
[(1.0− Tn−1) + (1.0 − ) Tn]{}. 

Initialise variables of the modified forward Euler scheme required to the integration of the 
elasto-plastic response: Tn

ep = 1.0 and Tn
ep = 0.0. 

3.2 If Tn
ep < 1.0 then: 

Determine the sub-step strain increment: {ss
ep} = Tn

ep {ep}. 
Save temporarily: 

- the current effective stresses and plastic strains: {′mem} = {′} and {mem
p } = {p}, 

respectively. 
- the current void ratio: emem = e. 
- the current values of the elastic state parameters: {′mem

SR } = {′SR}, {mem
SR } = {SR}, 

emem
SR = eSR, and Nmem = N. 

- the current back-stress tensor: {mem} = {}. 
- the isotropic and deviatoric components of the stress-induced anisotropy tensor: 

fpmem
= fp and {fmem} = {f}, respectively; as well as the current value of the model 

parameter defining the evolution of {f}: Cmem = C. 
- the current positions of the yield surfaces: F1,mem = F1 and F2, mem = F2. 

Continue to step 3.3. 
Else: 

Stress integration is completed. Move to step 4. 
End if. 

3.3 Check whether a shear strain reversal occurs, according to the methodology described in 

Section C.2. Enter with the current strain state, {}, and the sub-step strain increment, {ss
ep}. 

If a shear reversal occurs, then: 
Update the elastic state parameters: {′SR} = {′}, {SR} = {}, eSR = e, N = 2.0. 
Update the small-strain shear modulus at last shear reversal: 

Gmax
SR = Cg p'ref

(mg − e)
2.0

1.0+ e
(

p′SR

p′ref
)

ng

≥ Cg p'ref

(mg − e)
2.0

1.0 + e
(

p′min

p′ref
)

ng

 

End if. 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

Update the small-strain shear modulus, Gmax, the tangent shear modulus, Gtan, the tangent 
bulk modulus, Ktan, and the elastic constitutive matrix, [D], using the current effective stress 
state, {′}, current void ratio, e, and the current values of the elastic state parameters, 
according to the equations previously presented in step 2.3. 

Based on the current effective stress state, {′}, and back-stress-ratio tensor, {}, determine 
the radial tensor: 

{r̄} = {r̄xx   r̄yy   r̄xy   r̄zz   r̄xz   r̄yz}
T
= {r} − {}

= {
′xx − p′

p′
− xx   

′yy − p′

p′
− yy   

xy

p′
− xy    

′zz − p′

p′
− zz   

xz

p′

− xz   
yz

p′
− yz}

T

 

Determine the corresponding deviatoric loading direction, {n}: 

{n} = {nxx   nyy   nxy   nzz   nxz   nyz}
T
=

{r̄}

√2.0 3.0⁄  m

= {
r̄xx

√2.0 3.0⁄  m
   

r̄yy

√2.0 3.0⁄  m
   

r̄xy

√2.0 3.0⁄  m
   

r̄zz

√2.0 3.0⁄  m
   

r̄xz

√2.0 3.0⁄  m
   

r̄yz

√2.0 3.0⁄  m
}

T

 

Determine the modified Lode’s angle, : 

J2 =
1.0

2.0
{n}:{n} =

1.0

6.0
 [(nxx − nyy)

2.0
+ (nyy − nzz)

2.0
+ (nzz − nxx)

2.0] + nxy
2.0 + nxz

2.0

+ nyz
2.0 

J3 = det{n} = nxx nyy nzz − nxx nyz
2.0 − nyy nxz

2.0 − nzz nxy
2.0 + 2.0 nxy nyz nyz 

cos(3.0 ) = (
3.0 √3.0

2.0
 

J3

(J2)
3.0 2.0⁄ ) ⇔  = [cos−1 (

3.0 √3.0

2.0
 

J3

(J2)
3.0 2.0⁄ )] 3.0⁄  

Calculate the current value of the inherent anisotropic state variable, AF, based on the 
inherent anisotropy tensor, {F}, and on the current values of the deviatoric loading direction, 

{n}, and modified Lode’s angle, : 

AF = g(, ca){F}:{n}

= g(, ca) (Fxxnxx + Fyynyy + Fzznzz + 2.0 Fxynxy + 2.0 Fxznxz + 2.0 Fyznyz)

= g(, ca) [
1.0

2.0
(1.0 − a) nxx + a nyy +

1.0

2.0
(1.0− a) nzz] 

where  

 g(, ca) =
2.0 ca

1.0 + ca

2.0  −  
1.0− ca

2.0  cos(3.0 )
− [

1.0+ ca

2.0
+ 

1.0 − ca

2.0
 cos(3.0 )] 

and it is assumed that ca = cc = Me
c Mc

c⁄ , as proposed by Dafalias et al. (2004). 

Similarly, determine the inherent anisotropic state variable in triaxial compression and in 
triaxial extension, respectively: 

AF,c = g(0.0, ca) {F}:{nc} =  (−1.0+ 3.0 a) √6.0⁄  

AF,e = g( 3.0⁄ , ca) {F}:{ne} = ca  (1.0− 3.0 a) √6.0⁄ = −ca AF,c 

where: 

{nc} = 1.0 √6.0⁄   {−1.0 2.0 0.0 −1.0 0.0 0.0}T 

{ne} = 1.0 √6.0⁄   {1.0 −2.0 0.0 1.0 0.0 0.0}T 
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Determine the distance from the current stress point to the critical surface: 

dc = ({c} − {}):{n} = √2.0 3.0⁄  (g(, cc) Mc
c −m)  − {}:{n}

= √2.0 3.0⁄  (g(, cc) Mc
c −m)  

− (xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz) 

and the reference distance to the critical surface: 

dref
c = √2.0 3.0⁄  [ g(, cc) Mc

c + g(+ , cc) Mc
c − 2.0 m] 

where: 

 g(, cc) =
2.0 cc

1.0+ cc

2.0
 − 

1.0 − cc

2.0
 cos(3.0 )

− [
1.0+ cc

2.0
+ 

1.0 − cc

2.0
 cos(3.0 )] 

with cc = Me
c Mc

c⁄ . 

Determine the void ratio at CSL for the current mean effective stress, p’: 

eCS = (eCS)A −  (
p′

p′ref
)



= (eCS)ref exp [vA  
⟨dc⟩

dref
c  (AF,c − AF)] −  (

p′

p′ref
)



 

and the current state parameter: 
 = e − eCS 

Determine the distance from the current stress point to the dilatancy surface: 

dd = ({d} − {}):{n} =  √2.0 3.0⁄  [g(, cd) (Mc
c + kc

d ) −m]  − {}:{n}

= √2.0 3.0⁄  [g(, cd) (Mc
c + kc

d ) −m]  

− (xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz) 

where: 

 g(, cb) =
2.0 cb

1.0 + cb

2.0
 −  

1.0− cb

2.0
 cos(3.0 )

− [
1.0+ cb

2.0
+ 

1.0− cb

2.0
 cos(3.0 )] 

with: 

cd =
Me

d

Mc
d =

Me
c + ke

d 

Mc
c + kc

d 
 

Determine the distance from the current stress point to the bounding surface: 

db = ({b} − {}):{n} =  √2.0 3.0⁄  [g(, cb) (Mc
c + kc

b ⟨−⟩) −m]  − {}:{n}

= √2.0 3.0⁄  [g(, cb) (Mc
c + kc

b ⟨−⟩) −m]  

− (xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz) 

and the reference distance to the bounding surface: 

dref
b = √2.0 3.0⁄  [ g(, cb) (Mc

c + kc
b ⟨−⟩) + g(+ , cb) (Mc

c + kc
b ⟨−⟩) − 2.0 m] 

where: 

 g(, cb) =
2.0 cb

1.0 + cb

2.0  −  
1.0− cb

2.0  cos(3.0 )
− [

1.0+ cb

2.0
+ 

1.0− cb

2.0
 cos(3.0 )] 

with: 

cb =
Me

b

Mc
b =

Me
c + ke

b ⟨−⟩

Mc
c + kc

b ⟨−⟩
 

Evaluate the positions of the yield surfaces: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 

Compute the gradients of the yield surfaces: 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

{
𝜕F1

𝜕′
} = {

𝜕F1

𝜕′xx
   
𝜕F1

𝜕′yy
   
𝜕F1

𝜕xy
   
𝜕F1

𝜕′zz
   
𝜕F1

𝜕xz
   
𝜕F1

𝜕yz
}

T

= −
1.0

3.0
 V {I} + {n}

= −
1.0

3.0
 [{}:{n} + √

2.0

3.0
 m] {I} + {n} 

where: 

{
𝜕F1

𝜕′xx
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz +√

2.0

3.0
m]

+ nxx 

{
𝜕F1

𝜕′yy
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz +√

2.0

3.0
m]

+ nyy 

{
𝜕F1

𝜕xy
} = nxy 

{
𝜕F1

𝜕′zz
} = −

1.0

3.0
[xxnxx + yynyy + zznzz + 2.0 xynxy + 2.0 xznxz + 2.0 yznyz + √

2.0

3.0
m]

+ nzz 

{
𝜕F1

𝜕xz
} = nxz 

{
𝜕F1

𝜕yz
} = nyz 

and: 

{
𝜕F2

𝜕′
} = {

𝜕F2

𝜕′xx
   
𝜕F2

𝜕′yy
   
𝜕F2

𝜕xy
   
𝜕F2

𝜕′zz
   
𝜕F2

𝜕xz
   
𝜕F2

𝜕yz
}

T

= −
1.0

3.0
 {I} 

where: 

{
𝜕F2

𝜕′xx
} = {

𝜕F2

𝜕′yy
} = {

𝜕F2

𝜕′zz
} = −

1.0

3.0
 

{
𝜕F2

𝜕xy
} = {

𝜕F2

𝜕xz
} = {

𝜕F2

𝜕yz
} = 0.0 

Compute the gradients of the plastic potentials: 

{
𝜕P1

𝜕′
} = {

𝜕P1

𝜕′xx
   
𝜕P1

𝜕′yy
   
𝜕P1

𝜕xy
   
𝜕P1

𝜕′zz
   
𝜕P1

𝜕xz
   
𝜕P1

𝜕yz
}

T

=
1.0

3.0
 D {I} + {n} =

1.0

3.0
(A0 d

d) {I} + {n} 

where: 

{
𝜕P1

𝜕′xx
} =

1.0

3.0
 (A0 d

d) + nxx 

{
𝜕P1

𝜕′yy
} =

1.0

3.0
 (A0 d

d) + nyy 

{
𝜕P1

𝜕xy
} = nxy 

{
𝜕P1

𝜕′zz
} =

1.0

3.0
 (A0 d

d) + nzz 



APPLICATION OF A MODIFIED FORWARD EULER SCHEME WITH AUTOMATIC SUB-STEPPING AND ERROR CONTROL 

TO THE STRESS INTEGRATION OF A BOUNDING SURFACE PLASTICITY MODEL 

741 
 

Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

{
𝜕P1

𝜕xz
} = nxz 

{
𝜕P1

𝜕yz
} = nyz 

and: 

{
𝜕P2

𝜕′
} = {

𝜕P2

𝜕′xx
   
𝜕P2

𝜕′yy
   
𝜕P2

𝜕xy
   
𝜕P2

𝜕′zz
   
𝜕P2

𝜕xz
   
𝜕P2

𝜕yz
}

T

= −
1.0

3.0
 {I} 

where: 

{
𝜕P2

𝜕′xx
} = {

𝜕P2

𝜕′yy
} = {

𝜕P2

𝜕′zz
} = −

1.0

3.0
 

{
𝜕P2

𝜕xy
} = {

𝜕P2

𝜕xz
} = {

𝜕P2

𝜕yz
} = 0.0 

Determine the plastic hardening modulus associated with the primary yield surface: 

A1 = p′ hA hb he hf hg d
b 

where: 

hA = exp [(
AF,c − AF

AF,c − AF,e
)

1.25

 ln(kA)] 

hb = (
p′

p′ref
)

−1.0

 (
| db |

| dref
b − |db| |

)

+1.0

 

he = h0 (1.0−  e)  ≥ h0(1.0−  elim) 

hf,min ≤ hf =
1.0 + ⟨fp⟩

2.0

1.0+ ⟨{f}:{n}⟩
≤ hf,max 

hg = Gtan
  

with: 
{f}:{n} = fxxnxx + fyynyy + fzznzz + 2.0 fxynxy + 2.0 fxznxz + 2.0 fyznyz 

And the plastic hardening modulus associated with the secondary yield surface: 
A2 = 0.0 

3.4 Compute the plastic multipliers: 

If |F1| ≤ YTOL and F2 < −YTOL then: 
Only the primary yield surface is active: IYIELD = 1. 
Using the current values of the elastic constitutive matrix, [D], gradient of the primary 
yield surface, {𝜕F1 𝜕′⁄ }, gradient of the plastic potential associated with the primary 

yield surface, {𝜕P1 𝜕′⁄ }, and the current sub-step strain increment, {ss
ep}, determine 

the plastic multiplier associated with the primary yield surface (2), (3): 

1 =
{
𝜕F1

𝜕′
}

T

[D] {ss
ep}

{
𝜕F1
𝜕′

}
T

[D] {
𝜕P1
𝜕′

} + A1

 

Set the plastic multiplier associated with the secondary yield surface to 2 = 0.0. 

Else if F1 < −YTOL and |F2| ≤ YTOL then: 
Only the secondary yield surface is active: IYIELD = 2. 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
Using the current values of the elastic constitutive matrix, [D], gradient of the 
secondary yield surface, {𝜕F2 𝜕′⁄ }, gradient of the plastic potential associated with the 

secondary yield surface, {𝜕P2 𝜕′⁄ }, and the current sub-step strain increment, {ss
ep}, 

determine the plastic multiplier associated with the secondary yield surface (2), (3): 

2 =
{
𝜕F2

𝜕′
}

T

[D] {ss
ep}

{
𝜕F2
𝜕′

}
T

[D] {
𝜕P2
𝜕′

} + A2

 

Set the plastic multiplier associated with the primary yield surface to 1 = 0.0. 

Else if |F1| ≤ YTOL and |F2| ≤ YTOL then: 
The stress point is at the intersection of both yield surfaces and the actual active yield 
surface(s) should be determined. 
Using the current values of the elastic constitutive matrix, [D], gradients of the primary 
and secondary yield surfaces, {𝜕F1 𝜕′⁄ } and {𝜕F2 𝜕′⁄ }, respectively, gradients of the 
plastic potentials associated with the primary and secondary yield surfaces, {𝜕P1 𝜕′⁄ } 

and {𝜕P2 𝜕′⁄ }, respectively, and the current sub-step strain increment, {ss
ep}, 

determine the plastic multipliers associated with the primary and secondary yield 
surfaces, assuming that both are simultaneously active (2), (3): 

1 =
L22 T1 − L12 T2

L11 L22 − L12 L21
 

2 =
L11 T2 − L21 T1

L11 L22 − L12 L21
 

where: 

L11 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} + A1 

L12 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} 

L21 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} 

L22 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} + A2 

T1 = {
𝜕F1

𝜕′
}

T

[D] {ss
ep} 

T2 = {
𝜕F2

𝜕′
}

T

[D] {ss
ep} 

If 1 > 0.0 and 2 > 0.0, then: 
Both plastic mechanisms are simultaneously active: IYIELD = 3. The values 

obtained for 1 and 2 are correct. 

Else if 1 > 0.0 and 2 ≤ 0.0, then: 
Only the plastic mechanism associated with the primary yield surface is active: 
IYIELD = 1. Therefore, 2 = 0.0 and 1 should be recalculated (2), (3): 

1 =
{
𝜕F1

𝜕′
}

T

[D] {ss
ep}

{
𝜕F1
𝜕′

}
T

[D] {
𝜕P1
𝜕′

} + A1

 

Else if 1 ≤ 0.0 and 2 > 0.0, then: 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
Only the plastic mechanism associated with the secondary yield surface is active: 
IYIELD = 2. Therefore, 1 = 0.0 and 2 should be recalculated (2), (3): 

2 =
{
𝜕F2

𝜕′
}

T

[D] {ss
ep}

{
𝜕F2
𝜕′

}
T

[D] {
𝜕P2
𝜕′

} + A2

 

End if. 
End if. 

3.5 Compute the first-order approximation of changes in effective stresses (2), (3): 

{′(1)} = [D] {ss
ep} − 1 [D] {

𝜕P1

𝜕′
} − 2 [D] {

𝜕P2

𝜕′
} 

Compute the first-order approximation of changes in plastic strains (3): 

{1
p(1)
} = 1 {

𝜕P1

𝜕′
} 

{2
p(1)
} = 2 {

𝜕P2

𝜕′
} 

{p(1)
} = {1

p(1)
} + {2

p(1)
} 

Compute the first-order approximation of the evolution of the back-stress tensor: 

{(1)} = 1 hA hb he hf hg ({
b} − {}) =

= 1 hA hb he hf hg (√2.0 3.0⁄  [g(, cb) (Mc
c + kc

b ⟨−⟩) − m] {n} − {}) 

Compute the first-order approximation of the evolution of the isotropic and deviatoric 
components of the stress-induced anisotropy tensor, respectively: 

fp
(1) = H v

p(1)
 

{f(𝟏)} = −H ⟨−v
p(1)
⟩ [C {n} + {f}] 

where: 

v
p(1)

= v,1
p (1)

+ v,2
p (1)

= xx,1
p (1)

+ yy,1
p (1)

+ zz,1
p (1)

+ xx,2
p (1)

+ yy,2
p (1)

+ zz,2
p (1)

 

3.6 Update the effective stresses and back-stress tensor, respectively: 

{′} = {′mem} + {′(1)} 

{} = {mem} + {(1)} 

Update the isotropic and deviatoric components of the stress-induced anisotropy tensor, 
respectively: 

fp = fp, mem + fp
(1) 

{f} = {fmem} + {f(1)} 

Update the value of C, which depends on the maximum ever registered value of fp: 

If |fp|
2.0
> Cmem then: 

 C = |fp|
2.0

 

End if 

Update the void ratio: e = emem − (1.0 + einit) ss,v
ep , where ss,v

ep = ss,xx
ep + ss,yy

ep +

ss,zz
ep . 

Using the recently updated values of {′}, e, {}, fp and {f} and the equations previously 

presented in step 3.2, update the following quantities: 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
- the small-strain shear modulus, Gmax, the tangent shear modulus, Gtan, the tangent 
bulk modulus, Ktan, and finally the elastic constitutive matrix, [D];  
- the radial tensor, {r̄}, the deviatoric loading direction, {n}, and the modified Lode’s 

angle, ; 
- the inherent anisotropic state variable, AF, the distance from the current stress point 
to the critical surface, dc, the reference distance to the critical surface, dref

c , the void 

ratio at CSL, eCS, and the state parameter, ; 
- the distance from the current stress point to the dilatancy and bounding surfaces, dd 

and db, respectively, as well as the reference distance to the bounding surface, dref
b ; 

- the positions of the primary and secondary yield surfaces, F1 and F2, respectively, and 
the corresponding gradients, {𝜕F1 𝜕′⁄ } and {𝜕F2 𝜕′⁄ }, respectively; 
- the gradients of the plastic potentials associated with the primary and secondary yield 
surfaces, {𝜕P1 𝜕′⁄ } and {𝜕P2 𝜕′⁄ }, respectively; 
- the hardening moduli associated with the primary and secondary yield surfaces, A1 
and A2, respectively. 

Update the plastic multipliers associated with the primary and secondary yield surfaces, 1 

and 2: 
If IYIELD = 1 then (2), (3): 

1 =
{
𝜕F1

𝜕′
}

T

[D] {ss
ep}

{
𝜕F1
𝜕′

}
T

[D] {
𝜕P1
𝜕′

} + A1

 

2 = 0.0 

Else if IYIELD = 2 then (2), (3): 
1 = 0.0 

2 =
{
𝜕F2

𝜕′
}

T

[D] {ss
ep}

{
𝜕F2
𝜕′

}
T

[D] {
𝜕P2
𝜕′

} + A2

 

Else if IYIELD = 3 then (2), (3): 

1 =
L22 T1 − L12 T2

L11 L22 − L12 L21
 

2 =
L11 T2 − L21 T1

L11 L22 − L12 L21
 

where (2), (3): 

L11 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} + A1 

L12 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} 

L21 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} 

L22 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} + A2 

T1 = {
𝜕F1

𝜕′
}

T

[D] {ss
ep} 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

T2 = {
𝜕F2

𝜕′
}

T

[D] {ss
ep} 

End if. 

3.7 Compute the second-order approximation of changes in effective stresses (2), (3): 

{′(2)} = [D] {ss
ep} − 1 [D] {

𝜕P1

𝜕′
} − 2 [D] {

𝜕P2

𝜕′
} 

Compute the second-order approximation of changes in plastic strains (3): 

{1
p(2)
} = 1 {

𝜕P1

𝜕′
} 

{2
p(2)
} = 2 {

𝜕P2

𝜕′
} 

{p(2)
} = {1

p(2)
} + {2

p(2)
} 

Compute the second-order approximation of the evolution of the back-stress tensor: 

{(2)} = 1 hA hb he hf hg ({
b} − {}) =

= 1 hA hb he hf hg (√2.0 3.0⁄  [g(, cb) (Mc
c + kc

b ⟨−⟩) − m] {n} − {}) 

Compute the second-order approximation of the evolution of the isotropic and deviatoric 
components of the stress-induced anisotropy tensor, respectively: 

fp
(2) = H v

p(2)
 

{f(2)} = −H ⟨−v
p(2)
⟩ [C {n} + {f}] 

where: 

v
p(2)

= v,1
p (2)

+ v,2
p (2)

= xx,1
p (2)

+ yy,1
p (2)

+ zz,1
p (2)

+ xx,2
p (2)

+ yy,2
p (2)

+ zz,2
p (2)

 

3.8 Compute the modified forward Euler approximation of changes in effective stresses, changes 
in plastic strains and changes in the back-stress tensor, respectively: 

{′} =
{′(1)} + {′(2)}

2.0
 

{1
p} =

{1
p(1)
} + {1

p(2)
}

2.0
 

{2
p} =

{2
p(1)
} + {2

p(2)
}

2.0
 

{p} = {1
p} + {2

p} 

{} =
{(1)} + {(2)}

2.0
 

Compute the modified forward Euler approximation of the evolution of the isotropic and 
deviatoric components of the stress-induced anisotropy tensor, respectively: 

fp =
fp

(1) + fp
(2)

2.0
 

{f} =
{f(1)} + {f(2)}

2.0
 

Determine the relative error in the modified forward Euler approximation of the effective 
stresses and of the back-stress tensor, respectively (1): 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 

R = 
1.0

2.0
 
‖{′

(2)
} − {′

(1)
}‖

‖{′mem} + {′}‖
=

1.0

2.0
√
({′

(2)
} − {′

(1)
}) ({′

(2)
} − {′

(1)
})

({′mem} + {′}) ({′mem} + {′})
 

R = 
1.0

2.0
 
‖{(2)} − {(1)}‖

‖{mem} + {}‖
=

1.0

2.0
√
({(2)} − {(1)}) ({(2)} − {(1)})

({mem} + {}) ({mem} + {})
 

Determine the relative error in the modified forward Euler approximation of the isotropic and 
deviatoric components of the stress-induced anisotropy tensor, respectively (1): 

Rfp
=

1.0

2.0
√
(fp

(2) − fp
(1))

2.0

(fp, mem + fp
)

2.0 

Rf = 
1.0

2.0
 
‖{f(2)} − {f(1)}‖

‖{fmem} + {f}‖
=

1.0

2.0
√
({f(2)} − {f(1)}) ({f(2)} − {f(1)})

({fmem} + {f}) ({fmem} + {f})
 

Determine the minimum relative error: 

 R = max {R ,R , Rf , Rfp
} 

3.8 Compare the minimum relative error R with the tolerance SSTOL(4). 
If R > SSTOL and Tn

ep > Tn,min
ep then: 

The sub-step is not successful and, consequently, a smaller pseudo-time step needs to 
be used in the integration process. 
Restore the effective stresses and back-stress tensor corresponding to the beginning of 
the sub-step increment, respectively: {′} = {′mem} and {} = {mem}. 
Restore the value of the void ratio corresponding to the beginning of the sub-step 
increment: e = emem. 
Restore the values of the elastic state parameters corresponding to the beginning of 
the sub-step increment: {′SR} = {′mem

SR }, {SR} = {mem
SR }, eSR = emem

SR , and N = Nmem. 
Restore the isotropic and deviatoric components of the stress-induced anisotropy 
tensor corresponding to the beginning of the sub-step increment: fp = fp, mem and {f} =

{fmem}, respectively; as well as C = Cmem. 

Restore the positions of the yield surfaces corresponding to the beginning of the sub-
step increment: F1 = F1,mem and F2 = F2, mem. 

Compute:   = max {0.9 √SSTOL R⁄ , 0.1} and Tn
ep = max  { Tn

ep,  Tn,min
ep}. 

Return to step 3.2. 
Else: 

The sub-step is considered successful. 
Update the effective stress state and back-stress tensor, respectively: 
{′} = {′mem} + {′} 
{} = {mem} + {} 
Update the isotropic and deviatoric components of the stress-induced anisotropy 
tensor, respectively: 
fp = fp, mem + fp 

{f} = {fmem} + {f} 

Update the value of C, which depends on the maximum ever registered value of fp: 

If |fp|
2.0
> Cmem, then: 

 C = |fp|
2.0
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
End if 

Compute a new pseudo-time step multiplier, according to the following condition: 

If the previous sub-step or the one before failed: 

  = min {0.9 √SSTOL R⁄ , 1.0} 

Else: 

  = min {0.9 √SSTOL R⁄ , 1.1} 

End if. 
Continue to step 3.10. 

End if 

3.10 Given the recently updated values of {′} and {}, update the positions of the primary and 
secondary yield surfaces: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 
When a single yield surface is active, check whether the recently updated effective stress 
point lies outside of the non-active yield surface(1), specifically: 
If (IYIELD = 1 and F2 > YTOL) or (IYIELD = 2 and F1 > YTOL), then: 

The effective stress point lies outside of the non-active yield surface. Estimate the 

reduction, , to be apply to the pseudo-time step to bring the effective stress point to 
the intersection between both yield surfaces by a methodology similar to that 
described in Section C.3, with the main difference that the elasto-plastic response 
needs to be computed, rather than purely elastic response (i.e. the computations 
described in steps 3.2 and 3.3 replace step 2.3). 

Having obtained a value for  in the range ]0.0, 1.0[, as well as new values for the stress 
increment, {′}, evolution of the back-stress tensor, {}, evolutions of the isotropic 
and deviatoric components of the state parameters, fp and {f}, respectively, update, 

once again, the values of the following quantities: 
{′} = {′mem} + {′} 
 e = emem − (1.0+ einit)  ss,v

ep . 
{} = {mem} + {} 
fp = fp, mem + fp 

{f} = {fmem} + {f} 

If |fp|
2.0
> Cmem, then: 

 C = |fp|
2.0

 

End if 

Given the recently updated values of {′} and {}, update the positions of the primary 
and secondary yield surfaces: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 
F2 = p′YS − p′ 

Else: 
 = 1.0 

End if. 
Proceed to step 3.10. 

3.11 Check whether yield surface drift occurred (4): 
If (IYIELD = 1 and |F1| > YTOL) or 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
(IYIELD = 2 and |F2| > YTOL) or 
[IYIELD = 3 and (|F1| > YTOL or |F2| > YTOL)], then: 

Yield surface(s) drift has occurred. 

Given the updated values of {′}, e, {}, fp and {f} and the equations previously 

presented in Step 3.2, update the following quantities: 
- the small-strain shear modulus, Gmax, the tangent shear modulus, Gtan, the 
tangent bulk modulus, Ktan, and finally the elastic constitutive matrix, [D];  
- the radial tensor, {r̄}, the deviatoric loading direction, {n}, and the modified 

Lode’s angle, ; 
- the inherent anisotropic state variable, AF, the distance from the current stress 
point to the critical surface, dc, the reference distance to the critical surface, dref

c , 

the void ratio at CSL, eCS, and the state parameter, ; 
- the distance from the current stress point to the dilatancy and bounding 
surfaces, dd and db, respectively, as well as the reference distance to the 

bounding surface, dref
b ; 

- the positions of the primary and secondary yield surfaces, F1 and F2, 
respectively, and the corresponding gradients, {𝜕F1 𝜕′⁄ } and {𝜕F2 𝜕′⁄ }, 
respectively; 
- the gradients of the plastic potentials associated with the primary and 
secondary yield surfaces, {𝜕P1 𝜕′⁄ } and {𝜕P2 𝜕′⁄ }, respectively; 
- the hardening moduli associated with the primary and secondary yield surfaces, 
A1 and A2, respectively. 

Find a new combination of effective stresses, {′}, and state parameters, {}, fp and 

{f}, that satisfies the yield conditions by applying the methodology described in 
Section C.4. A new plastic strain increment, {p}, is also obtained. 
Proceed to step 3.11. 

End if. 

3.11 Update the elastic, plastic and total strains, respectively: 

{e} = {e} + {ss
ep} − {p} 

{1
p} = {1,mem

p } + {1
p} 

{2
p} = {2,mem

p } + {2
p} 

{p} = {1
p} + {2

p} 

{} = {e} + {p} 

Update the pseudo-time: Tn
ep = Tn−1

ep +  Tn
ep. 

Compute the new pseudo-time step (2): Tn
ep = max  { Tn

ep,  Tn,min
ep}. 

Make sure that Tn
ep + Tn

ep does not exceed 1.0: Tn
ep = min  { Tn

ep, 1.0− Tn
ep} 

Return to step 3.2. 

4 Store the final values of the state variables and state parameters 
Store the final values of the stress, strain and material’s state variables: 

- effective stresses, {′},  
- elastic strains, {e}, plastic strains associated with the primary and secondary yield 

surfaces, {1
p} and {2

p}, respectively, and total strains, {}. 

- void ratio, e. 
Store the final values of the elastic and plastic state parameters: 
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Table C.1 – Explicit stress integration scheme for the present bounding surface plasticity model. 

Step Description 
- elastic state parameters: effective stresses, strains and void ratio at last shear reversal, 
{′SR}, {SR} and eSR, respectively, and scaling factor, N; 
- plastic state parameters: back-stress tensor, {}; isotropic and deviatoric components 
of the stress-induced anisotropy tensor, fp and {f}, respectively, as well as the value of 

the constant C. 
Exit. 

(1) The trace (or inner) product of two tensors, a and b, represented, for convenience, as (6 x 1) vectors {a} =
{axx ayy axy azz axz ayz}T and {b} = {axx ayy axy azz axz ayz}T defines the operation: {a}: {b} =
axx bxx + ayy byy + azz bzz + 2.0 axy bxy + 2.0 axz bxz + 2.0 ayz byz. 

The Euclidian norm of a second-order tensor {a} = {axx ayy axy azz axz ayz}T is given by ‖{a}‖2 =

√{a}: {a} = √axx
2.0 + ayy

2.0 + azz
2.0 + 2.0 axy

2.0 + 2.0 axz
2.0 + 2.0 ayz

2.0. 
(2) Matrix multiplication. 
(3) To compute the plastic multipliers, as well as the elasto-plastic constitutive matrix using matrix operations 
(rather than tensorial operations), the derivatives of the yield surfaces, as well as the gradients of the plastic 
potential need to be represented in covariant coordinates. In such case, the deviatoric components of these 
tensors, stored in a vector, need to be scaled by 2.0. For the present constitutive model, it means that: 

{𝜕F1 𝜕xy⁄ } = 2.0 nxy; {𝜕F1 𝜕xz⁄ } = 2.0 nxz; {𝜕F1 𝜕yz⁄ } = 2.0 nyz; {𝜕P1 𝜕xy⁄ } = 2.0 nxy; {𝜕P1 𝜕xz⁄ } = 2.0 nxz; 

{𝜕P1 𝜕yz⁄ } = 2.0 nyz. Similarly, to compute the plastic strain change, covariant representation of the gradients 

of the plastic potential are required. 
(4) Based on conclusions obtained in small parametric studies, as well as on literature review (Sloan, 1987; Sloan 
et al., 2001; Potts and Zdravkovic, 1999; Zhao et al., 2005; Hong et al., 2012), the following values of the 
tolerance parameters were deemed appropriate for all numerical simulations performed in the present study: 

yield surface tolerance, YTOL = 1.0×10−9, elasto-plastic unloading tolerance, LTOL = 1.0×10−7, sub-stepping 

scheme tolerance for both elastic trial and elasto-plastic response: SSTOL = 1.0×10−5 and minimum pseudo 
time step, Tn,min = Tn,min

ep = 1.0×10−4.  

 

C.2 Shear strain reversal detection 

Table C.2 presents the operations performed to evaluate the occurrence of a shear strain 

reversal, which follows the strategy proposed by Papadimitriou and Bouckovalas (2002) and 

Taborda (2011). 

Table C.2 – Shear strain reversal detection. 

Step Description 

1 

 

Enter with: 
- current strain state (1): {} = {xx yy 

xy
zz 

xz


yz}T =
{xx yy 2.0 xy zz 2.0 xz 2.0 yz}T; 

- sub-step strain increment(1),(2): {} = {xx yy 
xy

zz 
xz


yz}

T
=

{xx yy 2.0 xy zz 2.0 xz 2.0 yz}T; 

- strain state at last shear reversal(1), {SR} = {xx
e yy

e 
xy
e zz

e 
xz
e 

yz
e
}

T
. 

Initialise the variable informing about the occurrence of a shear reversal: FLAG_SR = 0. 
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Table C.2 – Shear strain reversal detection. 

Step Description 

2 Check whether the norm of the deviatoric strain increment, {e}, is greater than a user-
defined tolerance, RTOL(3), below which the shear strain reversal condition is ignored. 

Determine the norm of the deviatoric part of the sub-step strain increment: 

e = √
1.0

2.0
‖{e}‖2 = √

1.0

2.0
√{e}:{e}

= √
1.0

2.0
√
(xx −

1.0

3.0
v)

2.0

+ (yy −
1.0

3.0
v)

2.0

+ (zz −
1.0

3.0
v)

2.0

+

2.0 xy
2.0 + 2.0 xz

2.0 + 2.0 yz
2.0

= √
1.0

2.0
√
(xx −

1.0

3.0
v)

2.0

+ (yy −
1.0

3.0
v)

2.0

+ (zz −
1.0

3.0
v)

2.0

+

1.0

2.0
 

xy
2.0 +

1.0

2.0
 

xz
2.0 +

1.0

2.0
 

yz
2.0

 

where: 
v = xx + yy + zz 

Compare the magnitude of the sub-step strain increment with the user-defined tolerance: 

If e ≤ RTOL then: 
The deviatoric strain increment is considered too small. Exit. 

Else 
Continue to step 3. 

End if. 

3 Compute the distance between the current deviatoric strain (i.e. value at the beginning of the 
sub-step increment), {e}, and the deviatoric strain at last shear reversal point, {eSR}: 


ref
e = √

1.0

2.0
 ‖{e} − {eSR}‖2 = √

1.0

2.0
√({e} − {eSR}):({e} − {eSR})

= √
1.0

2.0

√
  
  
  
  
  
  
  
  
 

[(xx −
1.0

3.0
v) − (xx

SR −
1.0

3.0
v

SR)]
2.0

+

[(yy −
1.0

3.0
v) − (yy

SR −
1.0

3.0
v

SR)]
2.0

+

[(zz −
1.0

3.0
v) − (zz

SR −
1.0

3.0
v

SR)]
2.0

+

2.0 [xy − xy
SR]

2.0
+ 2.0 [xz − xz

SR]2.0 + 2.0 [yz − yz
SR]

2.0

= √
1.0

2.0

√
  
  
  
  
  
  
  
  
  
 

[(xx −
1.0

3.0
v) − (xx

SR −
1.0

3.0
v

SR)]
2.0

+

[(yy −
1.0

3.0
v) − (yy

SR −
1.0

3.0
v

SR)]
2.0

+

[(zz −
1.0

3.0
v) − (zz

SR −
1.0

3.0
v

SR)]
2.0

+

1.0

2.0
 [

xy
− 

xy
SR]

2.0

+
1.0

2.0
 [

xz
− 

xz
SR]

2.0

+
1.0

2.0
 [

yz
− 

yz
SR]

2.0

 

Compute the distance between the deviatoric strain at the end of the sub-step increment, 
{e} + {e}, and the deviatoric strain at last shear reversal point, {eSR}: 
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Table C.2 – Shear strain reversal detection. 

Step Description 


ref
e+e = ‖{e} + {e} − {eSR}‖ = √

1.0

2.0
√({e} − {eSR}):({e} − {eSR})

= √
1.0

2.0

√
  
  
 
  
  
  
  
  
  

[(xx −
1.0

3.0
v + xx −

1.0

3.0
v) − (xx

SR −
1.0

3.0
v

SR)]
2.0

+

[(yy −
1.0

3.0
v + yy −

1.0

3.0
v) − (yy

SR −
1.0

3.0
v

SR)]
2.0

+

[(zz −
1.0

3.0
v + zz −

1.0

3.0
v) − (zz

SR −
1.0

3.0
v

SR)]
2.0

+

2.0 [xy + xy − xy
SR]

2.0
+ 2.0 [xz + xz − xz

SR]2.0 + 2.0 [yz + yz − yz
SR]

2.0

= √
1.0

2.0

√
  
  
  
  
  
  
  
  
  
  
  

[(xx + xx −
1.0

3.0
(v + v)) − (xx

SR −
1.0

3.0
v

SR)]

2.0

+

[(yy + yy −
1.0

3.0
(v + v)) − (yy

SR −
1.0

3.0
v

SR)]

2.0

+

[(zz + zz −
1.0

3.0
(v + v)) − (zz

SR −
1.0

3.0
v

SR)]

2.0

+

1.0

2.0
 [

xz
+ 

xz
− 

xz
SR]

2.0

+
1.0

2.0
 [

xz
+ 

xz
− 

xz
SR]

2.0

+
1.0

2.0
 [

yz
+ 

yz
− 

yz
SR]

2.0

 

If 
ref
e > 

ref
e+e, then: 

Signalise that a shear strain reversal has occurred: FLAG_SR = 1 and exit. 
Else: 

Continue to step 4. 
End if. 

4 Perform an additional verification when the norm of the deviatoric strain increment is greater 
than the  

If 
ref
e ≤ e, then: 

No shear reversal occurred. Exit. 
Else: 

Initialise R = 1.0. 

Do while R e ≥ 
ref
e : 

R = 0.1  R 
End do 
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Table C.2 – Shear strain reversal detection. 

Step Description 
Compute the distance between the deviatoric strain at the end of the sub-step 
increment, reduced by a factor R, and the deviatoric strain at last shear reversal point: 


ref
e+Re = ‖{e} + {e} − {eSR}‖ = √

1.0

2.0
√({e} − {eSR}):({e} − {eSR})

= √
1.0

2.0

√
  
 
  
 
  
  
 
  
 
  
 
  
  
 
  
 
  

[(xx + Rxx −
1.0

3.0
(v + Rv)) − (xx

SR −
1.0

3.0
v

SR)]

2.0

+

[(yy + Ryy −
1.0

3.0
(v + Rv)) − (yy

SR −
1.0

3.0
v

SR)]

2.0

+

[(zz + Rzz −
1.0

3.0
(v + Rv)) − (zz

SR −
1.0

3.0
v

SR)]

2.0

+

1.0

2.0
 [

xz
+ R

xz
− 

xz
SR]

2.0

+
1.0

2.0
 [

xz
+ R

xz
− 

xz
SR]

2.0

+

1.0

2.0
 [

yz
+ R

yz
− 

yz
SR]

2.0

 

If 
ref
e > 

ref
e+Re, then: 

Signalise that a shear strain reversal has occurred: FLAG_SR = 1 and exit. 
Else: 

No shear reversal occurred. Exit. 
End if. 

End if. 
(1) An engineering representation (i.e. a covariant representation) is used for the strain and incremental strain 
tensors (i.e. their shear components are, respectively, given by 

ij
= 2.0 ij, and 

ij
= 2.0 ij, with i ≠ j). 

(2) Since this routine is performed either during elastic trial or during elasto-plastic stress integration, the sub-
strain strain increment may be given either by {ss} = Tn {} or by {ss

ep} = Tn
ep (1.0− ) {ss}, as 

presented in Table C.1. To keep the presentation more general, the notation {} is used in this table.  
(3) In all numerical simulations performed in the present study, RTOL ≤ 1.0× 10−7.0 was used. This value was 
deemed appropriate to prevent very small strain steps from triggering the shear strain reversal conditions. 

 

C.3 Yield surface intersection 

Following the strategy proposed by Hong et al. (2012), Table C.3 presents the operations 

performed to find an appropriate search interval for the Pegasus method, originally proposed 

by Dowell and Jarratt (1972). 

Table C.3 – Defining the input range for the Pegasus method. 

Step Description 

1 

 

Enter with: 

- sub-step strain increment, (1): {} = {xx yy 
xy

zz 
xz


yz}

T
=

{xx yy 2.0 xy zz 2.0 xz 2.0 yz}T; 
- effective stresses at the beginning of the increment, {′mem} =
{′xx, mem ′yy, mem xy, mem ′zz, mem xz, mem yz, mem}

T; 

- current effective stresses, {′} = {′xx ′yy xy ′zz xz yz}
T; 
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Table C.3 – Defining the input range for the Pegasus method. 

Step Description 

- void ratio at the beginning of the increment:  emem; 
- current void ratio, e; 
- current back-stress tensor, {} = {xx yy xy zz xz yz}T, which does not 
evolve during elastic trial, as well as the mean effective stress at secondary yield, p′YS; 
- positions of the yield surfaces at the beginning of the sub-step increment, F1,mem and 
F2, mem. 

- current positions of the yield surfaces, F1 and F2. 

Determine which yield surface condition is violated during elastic trial: 
If F1,mem < −YTOL and F1 > YTOL and F2 ≤ YTOL then: 

Primary yield surface condition is violated: IYIELD = 1. 
Else if F1 ≤ YTOL and F2, mem < −YTOL and F2 > YTOL: 

Secondary yield surface condition is violated: IYIELD = 2. 
Else: 

Both yield surface conditions are violated: IYIELD = 3. 
End if 

Initialise the lower and upper limits for the Pegasus method: 
(inf) = 0.0 and 

(sup) = 0.9. 
Initialise the auxiliary variable: 

save
= 1.0. 

2 Apply the modified forward Euler scheme to estimate the effective stress change, {′},  

corresponding to the sub-step strain increment: {ss
( sup )} = 

(sup){ss} 
(2): 

- determine the elastic constitutive matrix corresponding to the beginning of the sub-
step increment, [D({′mem})], by following the procedure described in Step 2.3 of 
Table C.1; 
- compute a first-order approximation of effective stress change for the current sub-

step increment: {′(1)} = [D({′mem})] {ss
( sup )}; 

- update temporarily the effective stress state: {′} = {′mem} + {′(1)}; 

- update void ratio:  e = emem − (1.0 + einit) ss,v
( sup ); 

- update the elastic constitutive matrix using the recently updated effective stress state 
and void ratio, [D({′})], by following the procedure described in Step 2.3 of Table C.1; 
- compute a second-order approximation of effective stress changes for the current 

sub-step increment: {′(2)} = [D({′})] {ss
( sup )}; 

- compute a modified forward Euler approximation of effective stress change for the 

current sub-step increment: {′} = ({′(1)} + {′(2)}) 2.0⁄ ; 

- update the effective stress state: {′} = {′mem} + {′}. 

Determine the corresponding values of the yield conditions: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

where: 
({s} − p′ {}):({s} − p′ {})

= (′xx − p′ (1.0+ xx))
2.0
+ (′yy − p′ (1.0+ yy))

2.0

+ (′zz − p′ (1.0+ zz))
2.0
+ 2.0 (xy − p′ xy)

2.0
+ 2.0 (xz − p′ xz)

2.0

+ 2.0 (yz − p′ yz)
2.0

 

F2 = p′YS − p′ 

where: 

p′ =
′xx + ′yy + ′zz

3.0
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Table C.3 – Defining the input range for the Pegasus method. 

Step Description 

3 If (IYIELD = 1 and F1 > YTOL) or (IYIELD = 2 and F2 > YTOL) or 
[IYIELD = 3 and (F1 > YTOL or F2 > YTOL)] then: 

The effective stress point is located outside the yield surface(s) and, therefore, the 
search interval can be reduced. 

Update 
save

= 
(sup).  

Reduce the upper limit of the search range: 
(sup) = 0.9 

(sup). 
Return to step 2. 

Else if (IYIELD = 1 and F1 < −YTOL) or (IYIELD = 2 and F2 < −YTOL) or 
[IYIELD = 3 and (F1 < −YTOL and F2 < −YTOL )] then: 

The effective stress point is located inside both yield surfaces and, therefore, the actual 

value of 
(sup) can be used as a lower limit for the search range of the Pegasus method. 

Update 
(inf) = 

(sup). 

The value of  corresponding to the previous iteration defines the upper limit of the 

input range for the Pegasus method: 
(sup) = 

save
. 

Go to step 4. 

Else if (IYIELD = 1 and |F1| ≤ −YTOL) or (IYIELD = 2 and |F2| ≤ −YTOL) or 
[IYIELD = 3 and (|F1| ≤ −YTOL and F2 < −YTOL )] or  
[IYIELD = 3 and (F1 ≤ −YTOL and |F2| ≤ −YTOL )] or  
[IYIELD = 3 and (|F1| ≤ −YTOL and |F2| ≤ −YTOL )] then: 

The intersection with one or both yield surface was found, meaning that 
(inf) = 

(sup). 
Go to step 4. 

End if. 

4 Exit with: 

- input range for the Pegasus method, [
(inf),  

(sup)]; 

- the variable informing which yield condition is violated during elastic trial, YIELD. 
(1) To reduce the computational cost of the constitutive model integration, an engineering representation (i.e. a 
covariant representation) is used for the strain and incremental strain tensors (i.e. their shear components are, 
respectively, given by 

ij
= 2.0 ij, and 

ij
= 2.0 ij, with i ≠ j). 

(2) Before proceeding to the yield surface intersection, the modified forward Euler scheme is used to estimate 
the effective stress change due to a purely elastic sub-step strain increment, {ss}, as described in Section C.1. 
During that previous calculation stage, the error resulting from stress integration is controlled to remain below 
a user-defined tolerance, SSTOL. Since the size of the sub-step strain increment used in the present routine, 

{ss
( sup )} = 

(sup){ss}, where 
(sup) ≤ 1.0, is smaller than that used in the main routine, {ss}, the error 

introduced in the present routine is expected to be smaller than that obtained in the previous calculation stage 
and, therefore, smaller than the user-defined tolerance, SSTOL. Therefore, in this routine, there is no error 
control. 

 

Having defined the input range, the Pegasus method (Dowell and Jarratt, 1972) is applied to 

the estimation of the yield surface intersection, as suggested by Sloan et al. (2001). The 

required operations are comprehensively described in Table C.4. 
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Table C.4 – Application of the Pegasus method to the estimation of the yield surface intersection. 

Step Description 

1 

 

Enter with: 

- sub-step strain increment(1): {} = {xx yy 
xy

zz 
xz


yz}

T
=

{xx yy 2.0 xy zz 2.0 xz 2.0 yz}T; 
- effective stresses at the beginning of the increment, {′mem} =
{′xx, mem ′yy, mem xy, mem ′zz, mem xz, mem yz, mem}

T; 
- current effective stresses, {′} = {′xx ′yy xy ′zz xz yz}

T; 
- void ratio at the beginning of the increment:  emem; 
- current void ratio, e; 
- current back-stress tensor, {} = {xx yy xy zz xz yz}T, which does not 
evolve during elastic trial, as well as the mean effective stress at secondary yield, p′YS; 
- positions of the yield surfaces at the beginning of the sub-step increment, F1,mem and 
F2, mem. 

- current positions of the yield surfaces, F1 and F2. 

- input range for the Pegasus method: [
(inf),  

(sup)]; 

- variable informing which yield condition is violated during elastic trial, YIELD; 
- maximum number of iterations of this scheme, Niter,max

(2). 

Initialise: 
- the sub-step strain increment reduction:  = 

1
= 

2
= 1.0; 

- the variable counting the number of iterations: Niter = 0; 
- the variable counting how many times this routine needs to be performed: NTIMES =
1. 

2 Update the variable counting the number of iterations: Niter = Niter + 1. 

Compute the values of the yield function corresponding to the lower and upper limits of , by 
performing the following sub-steps: 

2.1 Apply the modified forward Euler scheme(1) to estimate the effective stress change, {′}, 

corresponding to the sub-step strain increment {ss
( PM )} = 

(inf){ss}: 

- determine the elastic constitutive matrix corresponding to the beginning of the sub-
step increment, [D({′mem})], by following the procedure described in Step 2.3 of 
Table C.1; 
- compute a first-order approximation of effective stress change for the current sub-

step increment: {′(1)} = [D({′mem})] {ss
( PM )}; 

- update temporarily the effective stress state: {′} = {′mem} + {′(1)}; 

- update void ratio:  e = emem − (1.0 + einit) ss,v
( PM ); 

- update the elastic constitutive matrix using the recently updated effective stress state 
and void ratio, [D({′})], by following the procedure described in Step 2.3 of Table C.1; 
- compute a second-order approximation of effective stress changes for the current 

sub-step increment: {′(2)} = [D({′})] {ss
( PM )}; 

- compute a modified forward Euler approximation of effective stress change for the 

current sub-step increment: {′} = ({′(1)} + {′(2)}) 2.0⁄ ; 

- update the effective stress state: {′} = {′mem} + {′}. 

Determine the corresponding values of the yield conditions: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

where: 
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Table C.4 – Application of the Pegasus method to the estimation of the yield surface intersection. 

Step Description 
({s} − p′ {}):({s} − p′ {})

= (′xx − p′ (1.0+ xx))
2.0
+ (′yy − p′ (1.0+ yy))

2.0

+ (′zz − p′ (1.0+ zz))
2.0
+ 2.0 (xy − p′ xy)

2.0
+ 2.0 (xz − p′ xz)

2.0

+ 2.0 (yz − p′ yz)
2.0

 

F2 = p′YS − p′ 

where: 

p′ =
′xx + ′yy + ′zz

3.0
 

2.2 If IYIELD = 1 or (IYIELD = 3 and NTIMES = 1) then: 

Save F( inf ) = F1. 
Repeat the operations described in step 2.1 for the sub-step strain increment 

{ss
( PM )} = 

(sup){ss}. Save F(sup) = F1. 
Else if IYIELD = 2 or (IYIELD = 3 and NTIMES = 2) then: 

Save F( inf ) = F2. 
Repeat the operations described in step 2.1 for the sub-step strain increment 

{ss
( PM )} = 

(sup){ss}. Save F(sup) = F2. 

End if. 

3 If Niter ≤ Niter,max then: 

Compute a new value for  by linear interpolation: 

 = 
(sup) − F(sup) 

(sup) − 
(inf)

F(sup) − F( inf )
 

Apply the modified forward Euler scheme(1) to estimate the effective stress change, 

{′}, corresponding to the sub-step strain increment {ss
( PM )} =  {ss}:, by 

following a similar procedure to that described in step 2.1. 

Determine the corresponding values of the yield conditions: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

F2 = p′YS − p′ 
End if. 

4 If IYIELD = 1 and |F1| ≤ YTOL then: 
The intersection with the yield surface was found. 
Set 

1
= 

2
= . 

Go to step 5. 
Else if IYIELD = 2 and |F2| ≤ YTOL then: 

The intersection with the yield surface was found. 
Set 

1
= 

2
= . 

Go to step 5. 

Else if IYIELD = 3 and NTIMES = 1 and |F1| ≤ YTOL then: 
The intersection with the yield surface was found. 
Set 

1
= . 

Set Niter = 0 and NTIMES = NTIMES + 1. Return to step 2. 
Else if IYIELD = 3 and NTIMES = 2 and |F2| ≤ YTOL then: 

The intersection with the yield surface was found. 
Set 

2
= . 
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Table C.4 – Application of the Pegasus method to the estimation of the yield surface intersection. 

Step Description 

Determine   = min{
1
,  

2
}. 

Apply the modified forward Euler scheme(1) to estimate the effective stress change, 

{′}, corresponding to the sub-step strain increment {ss
( PM )} =  {ss}, by 

following a similar procedure to that described in step 2.1. 

Determine the corresponding values of the yield conditions: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

F2 = p′YS − p′ 

Go to step 5. 
End if. 

If Niter ≤ Niter,max then: 

Set new values and proceed to a new iteration: 

If IYIELD = 1 then: 

Set F(int) = F1. 
Else if IYIELD = 2 then: 

Set F(int) = F2. 

Else if IYIELD = 3 and NTIMES = 1 then: 

Set F(int) = F1. 
Else if IYIELD = 3 and NTIMES = 2 then: 

Set F(int) = F2. 
End if. 

If F(int) F(sup) < 0.0, then: 

Set 
(inf) =  and F( inf ) = F(int) 

Else 

And scale down the value of F( inf ) to prevent the retention of an end-point 
(Dowell and Jarratt, 1972): 

F( inf ) = F( inf )  
F(sup)

F(int) + F(sup)
 

Set 
(sup) =  and F(sup) = F(int) 

End if. 
Return to step 2. 

Else if Niter = Niter,max then: 

The maximum number of iterations were reached. Print an error message and stop. 
End if. 

5 Exit with: 

- the portion of the sub-step strain increment, which is purely elastic,  = min{
1
,  

2
}; 

- the effective stress state, {′}, lying on the yield surface and the corresponding sub-
step effective stress increment, {′}; 
- current elastic constitutive matrix, [D({′})]; 
- current positions of the yield surfaces, F1 and F2. 

(1) See notes of Table C.3. 
(2) In all numerical simulations performed in the present study, Niter = 100 was adopted. It should be noted, 
however, that, in general, a very fast convergence involving less than 5 iterations was achieved. 

 



APPLICATION OF A MODIFIED FORWARD EULER SCHEME WITH AUTOMATIC SUB-STEPPING AND ERROR CONTROL 

TO THE STRESS INTEGRATION OF A BOUNDING SURFACE PLASTICITY MODEL 

758 
 

C.4 Correction of yield surface drift by projecting back 

Table C.5 describes the algorithm used to correct the yield surface drift, proposed by Potts 

and Gens (1985), Potts and Zdravkovic (1999) and (Sloan et al., 2001). 

Table C.5 – Yield surface drift correction scheme. 

Step Description 

1 

 

Enter with: 

- sub-step strain increment (1): {} = {xx yy 
xy

zz 
xz


yz}

T
=

{xx yy 2.0 xy zz 2.0 xz 2.0 yz}T; 
- current effective stresses, {′} = {′xx ′yy xy ′zz xz yz}

T; 
- current void ratio, e; 

- current elastic strains: {e} = {xx
e yy

e 
xy
e zz

e 
xz
e 

yz
e
}

T
; 

- plastic strains associated with the primary and secondary yield surfaces, 

respectively: {1
p
} = {xx,1

p
yy,1

p


xy,1
p zz,1

p


xz,1
p 

yz,1
p
}

T
 and 

{2
p} = {xx,2

p
yy,2

p


xy,2
p zz,2

p


xz,2
p 

yz,2
p
}

T
; 

- elastic state parameters: effective stresses and strains at last shear reversal, {′SR} =

{′xx
SR
  ′yy

SR
  xy

SR  ′zz
SR
  xz

SR  yz
SR}

T
and {SR} = {xx

e yy
e 

xy
e zz

e 
xz
e 

yz
e
}

T
, 

respectively; void ratio at last shear reversal, eSR, and the scaling factor, N; 
- plastic state parameters:  
back-stress tensor, {} = {xx yy xy zz xz yz}T; 
isotropic and deviatoric components of the stress-induced anisotropy tensor, 

respectively, fp and {f} = {fxx fyy fxy fzz fxz fyz}
T
, as well as the rate of 

evolution, H, and constant C; 
- current elastic constitutive matrix, [D]; 

- current deviatoric loading direction, {n}, and the modified Lode’s angle, ; 

- current distance from the current stress point to the bounding surface, {b}; 

- current positions of the primary and secondary yield surfaces, F1 and F2, respectively, 
as well as corresponding gradients, {𝜕F1 𝜕′⁄ } and {𝜕F2 𝜕′⁄ }; 
- current gradients of the plastic potentials associated with the primary and secondary 
yield surfaces, {𝜕P1 𝜕′⁄ } and {𝜕P2 𝜕′⁄ }, respectively; 
- current values of hA, hb, he, hf and hg, as well as current hardening moduli associated 
with the primary and secondary yield surfaces, A1 and A2, respectively; 
- variable informing which yield condition is active: IYIELD = 1 when only the primary 
yield surface is active; IYIELD = 2 when only the secondary yield surface is active; 
IYIELD = 3 when both yield surfaces are active; 
- maximum number of iterations of this scheme, Niter,max

(2). 

Store temporarily: {′temp} = {′}; {temp
e } = {e}; {1,temp

p } = {1
p}; {2,temp

p } = {2
p}; 

{temp} = {}; fp,temp = fp and {ftemp} = {f}; Ctemp = C; F1,temp = F1 and F2,temp = F2. 

Initialise the variable counting the number of iterations: Niter = 0. 

2 Update the variable counting the number of iterations: Niter = Niter + 1. 
Obtain an estimation for the correction to be applied to the plastic multipliers (3): 
If IYIELD = 1 then: 

1,cor =
F1

{
𝜕F1
𝜕′

}
T

[D] {
𝜕P1
𝜕′

} + A1
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Table C.5 – Yield surface drift correction scheme. 

Step Description 
2,cor = 0.0 

Else if IYIELD = 2 then: 
1,cor = 0.0 

2,cor =
F2

{
𝜕F2
𝜕′

}
T

[D] {
𝜕P2
𝜕′

} + A2

 

Else if IYIELD = 3 then: 

1,cor =
L22 F1 − L12 F2

L11 L22 − L12 L21
 

2,cor =
L11 F2 − L21 F1

L11 L22 − L12 L21
 

where: 

L11 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} + A1 

L12 = {
𝜕F1

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} 

L21 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P1

𝜕′
} 

L22 = {
𝜕F2

𝜕′
}

T

[D] {
𝜕P2

𝜕′
} + A2 

End if. 

Correct the effective stresses (3): 

{′} = −1,cor [D] {
𝜕P1

𝜕′
} − 2,cor [D] {

𝜕P2

𝜕′
} 

{′} = {′} + {′} 

Correct the plastic strains associated with the primary and secondary yield surfaces (3): 

{1
p} = 1,cor  {

𝜕P1

𝜕′
} 

{1
p} = {1

p} + {1
p} 

{2
p} = 2,cor  {

𝜕P2

𝜕′
} 

{2
p} = {2

p} + {2
p} 

Assuming that the total strains remain constant, correct the elastic strains (3): 

{e} = −{1
p} − {2

p} = −1,cor  {
𝜕P1

𝜕′
} − 2,cor  {

𝜕P2

𝜕′
} 

{e} = {e} + {e} 

Correct the back-stress tensor: 

{} = 1,cor hA hb he hf hg ({
b} − {}) 

{} = {} + {} 

Correct the isotropic and deviatoric components of the stress-induced anisotropy tensor: 
fp = H v

p 

fp = fp,temp + fp 

{f} = −H ⟨−v
p⟩ [C {n} + {f}] 

{f} = {f} + {f} 
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Table C.5 – Yield surface drift correction scheme. 

Step Description 

where: 

v
p = v,1

p
+ v,2

p
= xx,1

p
+ yy,1

p
+ zz,1

p
+ xx,2

p
+ yy,2

p
+ zz,2

p
 

If |fp|
2.0
> C then: 

 C = |fp|
2.0

 

End if 

3 Update the positions of the primary and secondary yield surfaces, respectively: 

F1 = √({s} − p′ {}):({s} − p′ {}) − √2.0 3.0⁄  m p′ 

where: 
({s} − p′ {}):({s} − p′ {})

= (′xx − p′ (1.0+ xx))
2.0
+ (′yy − p′ (1.0+ yy))

2.0

+ (′zz − p′ (1.0+ zz))
2.0
+ 2.0 (xy − p′ xy)

2.0
+ 2.0 (xz − p′ xz)

2.0

+ 2.0 (yz − p′ yz)
2.0

 

F2 = p′YS − p′ 

where: 

p′ =
′xx + ′yy + ′zz

3.0
 

Check whether the corrected effective stress state, {′}, lies on the active yield surface(s): 

If (IYIELD = 1 and |F1| ≤ YTOL) or (IYIELD = 2 and |F2| ≤ YTOL) or 
(IYIELD = 3 and |F1| ≤ YTOL and |F2| ≤ YTOL) then: 

A solution has been found. Move to step 4. 

Else if (IYIELD = 1 and |F1| < |F1,temp|) or (IYIELD = 2 and |F2| < |F2,temp|) or 

(IYIELD = 3 and √F1
2.0 + F2

2.0 < √F1,temp
2.0 + F2,temp

2.0) then: 

A solution has not been found yet. Nevertheless, the effective stress state is now closer 
to the active yield surface(s) than before correction. 
If Niter < Niter,max then: 

Using the updated values of {′}, {}, fp and {f} and the equations previously 

presented in Step 3.2 of Table C.1, update the following quantities: 
- the small-strain shear modulus, Gmax, the tangent shear modulus, Gtan, 
the tangent bulk modulus, Ktan, and finally the elastic constitutive matrix, 
[D];  
- the radial tensor, {r̄}, the deviatoric loading direction, {n}, and the 

modified Lode’s angle, ; 
- the inherent anisotropic state variable, AF, the distance from the current 
stress point to the critical surface, dc, the reference distance to the critical 

surface, dref
c , the void ratio at CSL, eCS, and the state parameter, ; 

- the distance from the current stress point to the dilatancy and bounding 
surfaces, dd and db, respectively, as well as the reference distance to the 

bounding surface, dref
b ; 

- the positions of the primary and secondary yield surfaces, F1 and F2, 
respectively, and the corresponding gradients, {𝜕F1 𝜕′⁄ } and {𝜕F2 𝜕′⁄ }, 
respectively; 
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Table C.5 – Yield surface drift correction scheme. 

Step Description 
- the gradients of the plastic potentials associated with the primary and 
secondary yield surfaces, {𝜕P1 𝜕′⁄ } and {𝜕P2 𝜕′⁄ }, respectively; 
- the hardening moduli associated with the primary and secondary yield 
surfaces, A1 and A2, respectively. 

Return to step 2. 
Else: 

Maximum number of iterations was reached. Print a warning message and move 
to step 4. 

End if. 

Else: 
Divergence occurred. 

Abandon the previous correction by setting: {′} = {′temp}; {
e} = {temp

e }; {1
p} =

{1,temp
p }; {2

p} = {2,temp
p }; {} = {temp}; fp = fp,temp and {f} = {ftemp}; C = Ctemp; 

F1,temp = F1 and F2,temp = F2. 

Print an error message and move to step 4. 

End if. 

4 Exit with: 

- corrected effective stresses, elastic and plastic strains: {′}, {e}, {1
p} and {2

p}, 

respectively. 

- current elastic strains: {e} = {xx
e yy

e 
xy
e zz

e 
xz
e 

yz
e
}

T
; 

- corrected plastic state parameters: corrected back-stress tensor, {}, corrected 
isotropic and deviatoric components of the stress-induced anisotropy tensor, fp and 

{f}, respectively, as well corrected constant C; 
- updated positions of the yield surfaces, F1 and F2. 

(1) See notes of Table C.3. 
(2) In all numerical simulations performed in the present study, Niter = 100 was adopted. It should be noted, 
however, that, in general, a very fast convergence involving less than 10 iterations was achieved. 
(3) To compute the plastic multipliers, as well as the elasto-plastic constitutive matrix using matrix operations 
(rather than tensorial operations), the derivatives of the yield surfaces, as well as the gradients of the plastic 
potential need to be represented in covariant coordinates. In such case, the deviatoric components of these 
tensors, stored in a vector, need to be scaled by 2.0. For the present constitutive model, it means that: 

{𝜕F1 𝜕xy⁄ } = 2.0 nxy; {𝜕F1 𝜕xz⁄ } = 2.0 nxz; {𝜕F1 𝜕yz⁄ } = 2.0 nyz; {𝜕P1 𝜕xy⁄ } = 2.0 nxy; {𝜕P1 𝜕xz⁄ } = 2.0 nxz; 

{𝜕P1 𝜕yz⁄ } = 2.0 nyz. Similarly, to compute the plastic strain change, covariant representation of the gradients 

of the plastic potential are required. 
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Appendix D INFLUENCE OF TIME STEP AND ELEMENT SIZE ON SITE RESPONSE 

ANALYSIS INVOLVING CYCLIC MOBILITY OF HOSTUN SAND 

D.1 Introduction 

When performing a dynamic analysis, it is important to ensure that the adopted spatial and 

time discretisation’s are adequate to the simulation of the range of frequencies relevant to 

the boundary-value problem under analysis. Starting with the spatial discretisation, based on 

the outcome of a series of 2D plane strain finite element (FE) analyses using four-noded 

quadrangular elements with a single Gauss point (i.e. using linear interpolation) and 

concerning the propagation of compressional waves through a homogeneous elastic medium, 

Kuhlemeyer and Lysmer (1973) suggested that the accurate replication of deformations 

induced by the propagation of the waves required the use of elements with size, L, smaller 

than  10⁄  to  8⁄ , where  is wavelength of the simulated wave (given by the ratio of its 

velocity of propagation to its frequency). As pointed by Bathe (1996), when using eight-noded 

quadrangular elements with nine Gauss points (such as those employed in all FE analyses 

performed in the present research), since the distance between nodes of the element is 

reduced to half, the empirical guideline established by Kuhlemeyer and Lysmer (1973) may 

be adapted to  L ≤  5⁄  to  4⁄ . Moreover, given that the velocity of the body wave, v, may 

vary during the analysis (which is typically the case, due to the non-linear response of soil), 

and the body wave may be characterised by more than a single frequency, the minimum 

reproducible velocity, vmin, of a body wave can be written as a function of the adopted L, as 

given by Equation D.1. 

L ≤


4− 5
⟹ min ≈ 4 − 5 L ⟺ vmin ≈ 4 − 5 fmax L (D.1) 

where min is the shortest wavelength and fmax is the highest frequency relevant to the 

problem under analysis. 

In relation to the time step used in the analysis, it should be small enough to describe properly 

the propagation of the wave through soil. According to Bathe (1996) and Grazina (2009), 

accurate results are, in general, obtained when the Courant–Friedrichs–Lewy (CFL) condition 

is satisfied. This condition establishes that the time step, t, used in a FE analysis should be 

smaller than that required by a body wave to travel from a given node to an adjacent one (in 

other words, for a given step, a body wave should not be allowed to travel a distance greater 

than two adjacent nodes of the mesh). For eight-noded quadrangular elements, such as those 

used in the present research, this condition can be written as: 

t ≤
L

2 v
⟺ v ≤

L

2 t
⟹ vmax ≈

L

2 t
 (D.2) 
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where vmax is the maximum reproducible body wave velocity. 

Regarding Equation D.2, two aspects are particularly worth mentioning: (1) the adequate time 

step depends on the selected element size and, therefore, the evaluation of the impact of 

these aspects on the modelled response should be assessed concurrently; (2) a linear 

relationship between both quantities (i.e. time step and element size) is established by the 

CFL condition, suggesting that a very fine mesh requires, in principle, a very small time step, 

which might lead to prohibitive computational resources. This suggests that the selection of 

an appropriate element size is a crucial aspect of a dynamic FE analysis. 

It should be noted that, for a time integration scheme providing only conditional stability (e.g. 

Newmark method with  ≥ 1/2 and  < /2, which, to be clear, was never used in the 

present research), a time step smaller than that required by the scheme to provide a stable 

solution should be employed, as detailed in Grazina (2009). In the present parametric study, 

as well as in the numerical simulations whose results are presented in Chapter 8, the 

generalised- method, proposed by Chung and Hulbert (1993) and implemented into 

FEMEPDYN by Grazina (2009), was employed with the following set of parameters: f = 4/9, 

m = 3f − 1 = 1/3,  = (1− f)
2
≈ 0.3086 and  = 3/2 − 2f ≈ 0.6111, which results in 

a spectral radius at infinity 
∞
= 0.80 for a single degree of freedom (SDOF) oscillator 

(Grazina, 2009). As detailed by this author, when using this set of parameters, the method 

ensures unconditional stability and second order accuracy, also achieving the optimal high 

frequency dissipation with minimal low frequency impact. 

Although the empirical guidelines defined by Equation D.1 and D.2 are often employed to 

define the element size and time step to be used in the simulation of dynamic problems, it 

should be highlighted that these guidelines were, in general, developed based on simplified 

loading and geometry conditions, as well as considering a limited degree of non-linearity for 

soil response. As such, there is little guarantee that these guidelines are applicable for 

boundary-value problems involving liquefaction-related phenomena (Taborda, 2011). 

Furthermore, the adequate choice of element size and time step to be used in a given dynamic 

analysis may depend on the numerical algorithms implemented into a given FE code (Bathe, 

1996; Grazina, 2009; Taborda, 2011). It was, therefore, decided to perform a parametric study 

to evaluate the influence of these two aspects on the modelled cyclic response of Hostun 

sand. Note that, although it would have been possible to use the geometry of centrifuge 

model A (CM-A) – see Chapter 8 –, excessive computational resources would have likely been 

required to perform several computations, some of them employing very small element sizes 

and time steps. Therefore, it was decided to perform 1D site response analyses (i.e. 

considering a level ground deposit of moderately loose Hostun sand having no structure on 

top of it, subjected to a dynamic motion at its base) employing three different element sizes 

(and, consequently, three different meshes), as well as three different time steps, resulting in 

a total of nine different computations. As detailed in Section 5.3.2.2.3, this type of problem 
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can be simulated using a single column of elements with both solid and fluid displacement 

degrees of freedom, as well as pore pressure degree of freedom tied at each level of the mesh 

(Figure D.1), therefore greatly reducing the computational effort required in the analysis. 

  

  
Figure D.1 – Schematic illustration of tied degrees of freedom for: a) solid displacement degrees of 

freedom and b) pore fluid displacement degrees of freedom and c) pore pressure degrees of 
freedom. 

In the following section, the main characteristics of the conducted numerical analyses are 

described. Subsequently, the results of the conducted numerical analyses are compared in 

terms of evolution of excess pore pressure with time at several positions of the deposit, 

horizontal acceleration time-histories and corresponding Fourier spectra at ground surface, 

surface settlement evolution with time and computational cost. Lastly, a summary of the 

obtained results and reached conclusions is provided. 
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D.2 Characteristics of the performed finite element analyses 

Table D.1 summarises the main characteristics of the mesh (in terms of element size, L, and 

number of elements, nelem, required to model the total thickness, H, of the deposit of Hostun 

sand), as well as the time step, t, and corresponding number of steps, nsteps, required to 

compute the total duration, T, of the analysis. The minimum and maximum reproducible 

shear wave velocities, vs,min and vs,max, respectively, determined according to the guidelines 

provided in the literature (Equations D.1 and D.2, respectively), are also indicated in the table. 

Table D.1 – Spatial and time discretisation used in the parametric study and its relation to the 
empirical guidelines proposed in the literature. 

Computation 1 2 3 4 5 6 7 8 9 
ID m0.5 / 

dt0.0025 
m0.5 / 

dt0.00625 
m0.5 / 

dt0.0125 
m1.0 / 

dt0.0025 
m1.0 / 

dt0.0125 
m1.0 / 

dt0.0625 
m1.5 / 

dt0.0025 
m1.5 / 

dt0.0125 
m1.5 / 

dt0.01875 

Mesh m0.5 m0.5 m0.5 m1.0 m1.0 m1.0 m1.5 m1.5 m1.5 

L (m) 0.5 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 
H (m) 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 
nelem ( ) 36 36 36 18 18 18 12 12 12 
f1,input (Hz) (1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
vs,min (m/s) (2) 1.9 1.9 1.9 3.9 3.9 3.9 5.8 5.8 5.8 

t (s) 0.0025 0.00625 0.0125 0.0025 0.0125 0.0625 0.0025 0.0125 0.01875 

T (s) (3) 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 
nsteps ( ) 100000 20000 20000 100000 20000 4000 100000 20000 1333 
vs,max (m/s) (4) 100.0 40.0 20.0 200.0 40.0 8.0 300.0 60.0 40.0 
(1) The predominant frequency of the input motion applied in the dynamic centrifuge experiments 
presented in Chapter 8 was considered; (2) computed from Equation D.1; (3) duration of the input 
motion applied in the dynamic centrifuge experiments presented in Chapter 8; (4) computed from 
Equation D.2. 
 

Given the predominant frequency of the input acceleration time-history intended to be 

applied to both CM-A and CM-B of f1,input ≈ 1 Hz (see Chapter 8), it can be observed that, for 

the selected mesh sizes, the values for vs,min provided by Equation D.1 vary between 1.9 to 

5.8 m/s. Note, however, that, as discussed in more detail in Chapter 8, the horizontal motions 

applied to the centrifuge models were not single-frequency, as intended. This aspect is 

illustrated in Figure D.2, which depicts the horizontal acceleration time-history (in prototype 

scale) estimated for CM-A (note that, as explained in Chapter 8, the input motion of CM-A 

had to be estimated based on that recorded in CM-B) and the corresponding Fourier 

spectrum, with the frequencies corresponding to the ten highest Fourier amplitudes being 

highlighted. It is apparent that these frequencies are located within the range of 1 to 11 Hz. 

If the upper limit of this range (11 Hz) would be used for the estimation of vs,min (rather than 

f1,input ≈ 1 Hz, as shown in Table D.1), then values significantly greater than those indicated 

in Table D.1 would be obtained, namely varying in between 22.0 and 66.0 m/s. Note, 

however, that, since the natural frequency of the sand deposit is likely much smaller (in the 

range of 1 to 3 Hz, as discussed later), the contribution of the high-frequency content of the 
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input motion to the modelled response is probably limited. Nevertheless, this example 

illustrates the difficulties that would arise from the application of Equation D.1 to the 

definition of the element size. 

In relation to vs,max, Table D.1 shows that Equation D.2 provides values in the range of 8.0 to 

300.0 m/s for the selected element sizes and time steps. These values can be compared with 

those expected at each level of the mesh when using the maximum shear modulus, Gmax, 

computed by the present constitutive model (Equations D.3 and D.4). Note that the 

formulation of the constitutive model is comprehensively described in Chapter 4. 

vs,max = √
Gmax


 (D.3) 

where: 

Gmax = Cg p'ref  
(mg − e)

2

1.0 + e
 (

p′

p′ref
)

ng

 (D.4) 

with the model parameters Cg = 293.0, mg = 2.97 and ng = 0.49 being adopted for Hostun 

sand (Chapter 6) and a mass density of  ≈ 1.906 g/cm3 and a void ratio of e ≈ 0.811 being 

estimated for the moderately loose deposit of Hostun sand used in CM-A and CM-B (Chapter 

8). Moreover, for a 18 m-thick deposit of saturated Hostun sand characterised by a saturated 

unit weight of 
sat
≈ 18.7 kN/m3 and a coefficient of earth pressure at rest of K0 ≈ 0.50, the 

initial effective mean stress, p’0, at its bottom (H = 18.0 m) can be estimated as: 

p′0 = (
sat
− 

w
) H (

1+ 2 K0

3
) ≈ 106.7 kPa (D.5) 

which results in a value for vs,max at the bottom of the sand deposit of: 

Gmax ≈ 78.3 MPa ⟹ vs,max ≈ 202.7 m/s (D.6) 

By comparing the estimated value with those provided by Equation D.2 (Table D.1), it can be 

concluded that computation no. 7 (termed as “m1.5 dt0.0025” and using L =  1.5 m and 

t =  0.0025 s) is the only one satisfying the CFL condition at the bottom of the sand deposit, 

while a value close to that required by the CFL condition is obtained for computation no. 4 

(termed as “m1.0dt0.0025” and using L =  1.0 m and t =  0.0025 s). In both cases, 

however, a very small time step of t =  0.0025 s is employed, which might lead to very 

demanding computational costs, as discussed later in more detail. Two aspects should, 

nevertheless, be considered: (1) as shown by Equation D.4, Gmax, and, therefore, vs,max depend 

on the mean effective stress, p’, and, therefore, the values of vs,max computed at shallower 

levels are likely smaller than 202.7 m/s; (2) due to the tendency of Hostun sand to generate 

positive excess pore pressures when subjected to cyclic loading and, consequently, to reduce 

the mean effective stress during loading (as discussed in Chapter 3), vs,max ≈ 202.7 m/s might 

be only observed at the start of the numerical analysis, reducing with cyclic loading and, 
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therefore, the use of such small time step of 0.0025 s might not be necessary, as discussed in 

more detail later. 

 

 
Figure D.2 – Input horizontal acceleration time-history estimated for CM- A and its corresponding 

Fourier spectrum. 

Other aspects of the conducted numerical analyses worth mentioning include: 

- Given the relevance of the interaction between the pore fluid and solid phases of 

porous material, fully coupled flow-deformation analyses were performed using eight-

noded isoparametric quadrilateral elements with pore pressure degrees of freedom 

assigned to the four corner nodes (i.e. hybrid elements). 

- As mentioned before, a single column of elements with tied degrees of freedom at a 

given level of the mesh was employed in each analysis (Figure D.1); moreover, the 

horizontal acceleration time-history depicted in Figure D.2 was prescribed at the 

nodes located along the bottom side of the mesh, with the vertical displacements of 

these nodes being restricted. 

- In terms of groundwater flow boundary conditions, conditions of no flow were applied 

to the bottom and lateral boundaries of the mesh, by tying the displacements in the 

solid and fluid phases along the direction perpendicular to the boundary; in addition, 

pore pressure boundary condition of u = 0.0 kPa was imposed at the top boundary of 

the mesh, allowing drainage to occur solely through the ground surface. 

- The mechanical response of the Hostun sand deposit was modelled using the BSPM 
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Chapter 6; although possible, Rayleigh damping was not introduced in the analysis, 

since the constitutive model predicts the occurrence of material damping within the 

full strain range and the numerical damping introduced by the time integration 

scheme allows for the mitigation of spurious, irregular, high-frequency oscillations. 

- As mentioned before, an initial void ratio of e ≈ 0.811, corresponding to moderately 

loose Hostun sand, was considered in the analysis; given the density of the solid 

particles of Hostun sand (Gs = 2.64), the saturated unit weight was estimated as 


sat
= 18.7 kN/m3, which leads to a mass density of  =  1.906 g/cm3; in terms of 

hydraulic properties, kx = ky ≈ 3.65×10-4 m/s was assumed, based on the results 

presented by Lauer and Engel (2005). 

- A bulk modulus of Kf ≈ 2.2 GPa was considered for the pore fluid. 

- All dimensions and results are presented in prototype scale. 

D.3 Obtained numerical results 

D.3.1 Influence of the time step 

Figure D.3 depicts the evolutions of excess pore pressure with time obtained in three 

computations employing an identical mesh, consisting of elements with a size, L, of 1.0 m, 

though different time steps: computation no. 4, termed as m1.0/dt0.0025 and employing a 

time step, t, of 0.0025 s, computation no. 5, termed as m1.0/dt0.0125 and employing t =

0.0125 s, and computation no. 6, m1.0/dt0.0625 and employing t = 0.0625 s (Table D.1). It 

can be observed that very similar excess pore pressure evolutions with time are obtained in 

computations m1.0/dt0.0025 and m1.0/dt0.0125. The very small discrepancies between the 

results obtained in these two computations seem practically restricted to the slightly higher 

oscillations of excess pore pressures obtained in the former computation, likely due to the 

inevitable slightly different frequency content of the acceleration time-history registered at 

each position (including that imposed to the base of the model, since interpolation was 

required to discretise the input motion in a smaller time step than that used in the centrifuge 

experiment of t = 0.0125 s). Conversely, considerable discrepancies can be observed 

between the results obtained in computation m1.0/dt0.0625 (employing the largest time 

step) and in the remaining two computations. Specifically, it can be seen that a considerably 

higher rate of excess pore pressure generation is predicted at the two deepest positions (y =

0.0 m and y = 5.0 m). Moreover, it is apparent that the initiation of excess pore pressure 

dissipation (i.e. of the consolidation phase) at each level occurs later in computation 

m1.0/dt0.0625 than in the remaining two computations. The dissipation rate is, nevertheless, 

similar in all three computations. This aspect is more clearly illustrated in Figure D.4, which 

depicts the evolutions of the excess pore pressure, normalised by its maximum ever reached 

value, as a function of time occurring after the initiation of the consolidation phase, tcons, at 

the shallowest and deepest positions of the Hostun sand deposit (y = 17.0 m and y = 0.0 m, 

respectively). 
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Figure D.3 – Excess pore pressure evolution with time at five different positions of the deposit of 

Hostun sand obtained in three computations using different time steps. 
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Figure D.4 – Normalised excess pore water pressure dissipation with time at two different 

positions of the deposit of Hostun sand obtained in three computations using different time steps. 
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- the time step used in the analysis may mainly affect: (1) the rate of excess pore 

pressure build-up with cyclic loading, (2) the maximum excess pore pressure reached 

at a given level and (3) the moment at which the dissipation of excess pore pressures 

starts; conversely, the rate of excess pore pressure dissipation seems fairly 

independent of the time step adopted in the numerical analysis; 

- similar excess pore pressure evolutions with time are obtained when using t =

0.0025 s and t = 0.0125 s (i.e. in computations m1.0/dt0.0025 and m1.0/dt0.0125, 

respectively), while a higher rate of excess pore pressure build-up and a delayed onset 

of dissipation of excess pore pressure is observed when using the largest time step of 

t = 0.0625 s (i.e. in computation m1.0/dt0.0625). 

Similarly, it can be observed in Figure D.5 that very similar surface settlement evolutions with 
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computation m1.0/dt0.0625, probably due to the higher excess pore pressures obtained at 

the deepest position of the deposit and, more importantly, due to the fact that the onset of 

dissipation of excess pore pressures occurs later in this computation (meaning that the 

deposit of sand remained under very low effective stresses for a greater period) than in the 

remaining two computations. By using, once again, Equation D.7 the maximum relative error 

of this computation is estimated as 6.0 %. 
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 Rmax =
|dy,max, t=0.0025 m − dy,max, t|

|dy,max, t=0.0025 m|
× 100 (%) (D.7) 

where  dy,max, t=0.0025 m is the maximum surface settlement registered in the computation 

using a time step of  t = 0.0025 s (used as reference), while  dy,max, t refers to the 

maximum surface settlement obtained in the computation under comparison (i.e. using a 

time step different from 0.0025 s). 

 
Figure D.5 – Surface settlement evolution with time for three computations using different time 

steps. 

Further insight into the impact of the time step on the modelled response is obtained by 

analysing the horizontal acceleration time-histories registered at the surface of the sand 

deposit in these three different computations – Figure D.6. Note that, for clarity of the 

presentation, a bandpass filter with limit frequencies of 0.1 Hz and 25 Hz was applied to the 

obtained horizontal acceleration time-histories by using the computer software SeismoSignal 

version 2018 (Seismosoft, 2018). It appears that there is a small delay in the obtained 

response as a larger time step is employed in the analysis – a conclusion that agrees well with 

that reached by Grazina (2009) in a similar parametric study. Conversely, the amplitude of the 

peak accelerations seems little affected by the adopted time step. Note, however, that this 

conclusion may not retain its validity for other studies, particularly when only limited cyclic 

mobility is observed (contrary to the widespread occurrence of cyclic mobility observed in the 

present case). 

 
Figure D.6 – Surface horizontal acceleration time-history for three computations using different 

time steps. 
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In addition, the Fourier spectra corresponding to the horizontal acceleration time-histories 

registered at the surface in these three different computations are compared in Figure D.7. It 

is apparent that the time step slightly influences the Fourier amplitude corresponding to the 

predominant frequency. Moreover, when comparing the Fourier spectra obtained for 

computation m1.0/dt0.0625, employing the largest time step, with that obtained for 

computation m1.0/dt0.0025, employing the smallest time step, it seems that the frequency 

contents of the registered acceleration time-histories are considerably different, particularly 

in terms of the location of the Fourier peak amplitudes (with the exception of the 

predominant frequency, as pointed out before). The discrepancies between the Fourier 

spectra obtained for computations m1.0/dt0.0025 and m1.0/dt0.0125 are more limited, with 

similar patterns being observed. 

 
Figure D.7 – Fourier spectra of the surface horizontal acceleration time-histories registered in 

three computations using different time steps. 
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the former computation being 4.0 % of those required in the latter computation. This 
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Table D.2 – Run times for three computations using different time steps. 

Computation ID 
4 5 6 

m1.0/dt0.0025 m1.0/dt0.0125 m1.0/dt0.0625 

Time step, t (s) 0.0025 0.0125 0.0625 
Total number of increments, ninc 100000 20000 4000 
Total run time, t (min) 1096 223 91 

Normalised no. of increments, ninc / tcalc 4 (%) – 20.0 4.0 
Normalised total run time, t / tcalc 4 (%) – 20.3 8.3 
Normalised run time per increment, 
(t / ninc) / (tcalc 4 / ninc, calc 4) (%) 

– 101.7 207.6 

 

D.3.2 Influence of the element size 

D.3.2.1 Initial considerations 

To evaluate the influence of the element size, the results obtained in two different sets of 

computations are compared, specifically: 

1) Computations no. 3 (termed as m0.5/dt0.0125), no. 5 (termed as m1.0/dt0.0125) and 

no. 8 (termed as m1.5/dt0.0125), employing different meshes, with element sizes of 

0.5, 1.0 and 1.5 m, respectively, while using an identical time step of 0.0125 s; 

2) Computations no. 2 (termed as m0.5/dt0.00625), no. 5 (termed as m1.0/dt0.0125) 

and no. 9 (termed as m1.5/dt0.01875), which, despite employing different element 

sizes and time steps, are able to reproduce an identical maximum velocity of about 

40 m/s, according to the Courant–Friedrichs–Lewy (CFL) condition (Equation D.2). 

D.3.2.2 Analyses using identical time steps 

Starting with the first series of computations, employing 0.0125 s as time step, Figure D.8 

depicts the evolutions of excess pore pressure with time at five different positions of the 

Hostun sand deposit. 
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Figure D.8 – Excess pore pressure evolution with time at five different positions obtained for three 

computations using different element sizes and identical time steps. 
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It can be observed that very similar rates of excess pore pressure generation with dynamic 

loading, as well as maximum excess pore pressures are obtained at each level of the deposit, 

regardless of the element size used in the computation. The only exception seems to consist 

of the higher excess pore pressure reached at the bottom of the deposit in the computation 

employing the largest element size (m1.5/dt0.0125), in relation to registered in the remaining 

two computations (m0.5/dt0.0125 and m1.0/dt0.0125). At the remaining shallower positions, 

the discrepancies between the maximum excess pore pressures reached in computation 

m1.5/dt0.0125 and those obtained in the two remaining computations seem to be solely 

related to the differences in the geometric coordinates of the nodes used to plot the results, 

as noted in the figure. In terms of dissipation of excess pore pressures (i.e. consolidation 

phase), it seems that, as the size of the element is increased, the initiation of the dissipation 

is slightly delayed, with the discrepancies between the sets of results increasing at shallower 

depths, as a consequence of the upward flow of water occurring during this phase. 

Nevertheless, similar to what was observed when using different time steps, the mesh 

discretisation seems to have little impact on the rate of excess pore pressure dissipation. This 

aspect is more clearly illustrated in Figure D.9, which compares the normalised dissipation 

branches obtained in the three different computations at two different positions (y = 12.0 m 

and y = 0.0 m). By imposing a similar starting point, similar evolutions of dissipation of 

normalised excess pore pressures with time are obtained. 

 

 
Figure D.9 – Normalised excess pore water pressure dissipation with time at two different depths 

obtained for three computations using different element sizes and identical time steps. 

Further insight into the impact of the mesh discretisation on the numerical simulation is 

obtained by analysing the computed evolution of surface settlements with time (Figure D.10). 
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It is apparent that the surface settlements obtained in computations m0.5/dt0.0125 and 

m1.0/dt0.0125 are very similar. Specifically, by employing Equation D.8, a maximum relative 

error, Rmax, between these two computations of about 2.0 % is obtained. Conversely, larger 

surface settlements are obtained when adopting the larger element size of 1.5 m (i.e. in 

computation m1.5/dt0.0125) in relation to those registered in the computation employing 

the smallest element size of 0.5 m, with a maximum relative error of about 7.2 % being 

determined using Equation D.8. 

 Rmax =
|dy,max,  L=0.5 m − dy,max, L|

|dy,max, L=0.5 m|
× 100 (%) (D.8) 

where  dy,max, L=0.5 m is the maximum surface settlement registered in the computation 

using an element size of  L = 0.5 m (used as reference), while  dy,max, L refers to the 

maximum settlement obtained in computation under comparison (i.e. using an element size 

different from 0.5 m). 

 
Figure D.10 – Surface settlement evolution with time obtained for three computations using 

different element sizes and identical time steps. 

In terms of horizontal accelerations at surface, it is apparent in Figure D.11 that very similar 

time histories were obtained in the three computations, with the large attenuation of the 

accelerations after about 10 to 11 s being a consequence of the significant reduction in 

effective stresses and stiffness induced by the occurrence of cyclic mobility. It should be noted 

that a bandpass filter with limit frequencies of 0.1 and 25 Hz was applied by using the 

computer software SeismoSignal version 2018 (Seismosoft, 2018) to ease the comparison of 

the numerical results. The aforementioned software was also used to compute the Fourier 

spectra of the simulated horizontal motions, with the obtained results being depicted in 

Figure D.12. It is apparent that slight discrepancies between the Fourier spectra are solely 

observed for frequencies higher than 3.0 Hz (which does not include the predominant 

frequency of the motion, of about 1.0 Hz). Indeed, it appears that the importance of the 

higher frequencies (particularly, in the range of 12 Hz to 20 Hz), typically considered 

numerical noise, is greater when employing the largest element size of 1.5 m (i.e. for the 

computation m1.5/dt0.0125). This conclusion agrees well with that obtained by Taborda 

(2011) in a similar parametric study on Nevada sand. 

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 20 40 60 80 100 120 140 160 180 200

d
y

(m
m

)

t (s)

m0.5 / dt0.0125 s

m1.0 / dt0.0125 s

m1.5 / dt0.0025 s



INFLUENCE OF TIME STEP AND ELEMENT SIZE ON SITE RESPONSE ANALYSIS INVOLVING CYCLIC MOBILITY OF 

HOSTUN SAND 

778 
 

 
Figure D.11 – Surface horizontal acceleration time-history for three computations using different 

element sizes and identical time steps. 

 
Figure D.12 – Fourier spectra of the surface horizontal acceleration time-history for three 

computations using different element sizes and identical time steps. 

The final aspect to be analysed consists of the computational cost of these three different 

computations (m0.5/dt0.0125, m1.0/dt0.0125 and m1.5/dt0.0125), as indicated in Table D.3. 

Note that, in this case, the total run time, t, and run time per element, t / nelem, are normalised 

in relation to those registered in the computation m0.5/dt0.0125, where the smallest element 

size of 0.5 m was used. It can be observed that the required time is practically proportional 

to the total number of elements of the mesh (which is related to the total degrees of freedom 

of the problem). 

Table D.3 – Computational times for three computations using different element sizes and 
identical time steps. 

Computation ID 
3 5 8 

m0.5/dt0.0125 m1.0/dt0.0125 m1.5/dt0.0125 

Element size, L (m) 0.5 1.0 1.5 
Total number of elements, nelem 36 18 12 
Degrees of freedom (DOF), nDOF 252 126 84 
Total run time, t (min) 456 223 143 
Normalised no. of elements, nelem / nelem,calc 3 (%) – 50.0 33.3 
Normalised DOF, nDOF / nDOF,calc 3 (%) – 50.0 33.3 
Normalised total run time, t / tcalc 3 (%) – 48.9 31.4 
Normalised run time per element, 
(t / nelem) / (tcalc 3 / nelem, calc 3) (%) 

– 97.8 94.1 

It is important to note that similar conclusions were reached when analysing results obtained 

in three additional computations using a smaller time step of 0.0025 s, not only in terms of 
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horizontal acceleration time-histories and respective Fourier spectra, but also in terms of 

evolutions of excess pore pressures and settlements with time. For brevity, only the excess 

pore pressures at the shallowest position (y = 17.0 m), surface settlement and acceleration 

time-histories are presented here, respectively in Figure D.13, Figure D.14 and Figure D.15. 

 
Figure D.13 – Excess pore pressure evolution with time at y = 17.0 m obtained for three 

computations using different element sizes and an identical time step of 0.0025 s. 

 
Figure D.14 – Surface settlement evolution with time for three computations using different 

element sizes and an identical time step of 0.0025 s. 

 
Figure D.15 – Surface horizontal acceleration time-history for three computations using different 

element sizes and an identical time step of 0.0025 s. 

D.3.2.3 Analyses able to simulate an identical maximum velocity according to the Courant–

Friedrichs–Lewy condition 

Figure D.16 depicts the evolutions of excess pore pressure with time at five different positions 

of the Hostun sand deposit obtained in computations m0.5/dt0.00625, m1.0/dt0.0125 and 

m1.5/dt0.01875. 
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Figure D.16 – Excess pore pressure evolution with time at five different depths obtained for three 

different computations able to reproduce similar maximum velocities. 
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It can be observed that similar rates of excess pore pressure build-up with dynamic loading 

are obtained in these three different computations. Conversely, the maximum excess pore 

pressure reached at the bottom of the deposit (y = 0.0 m) differs slightly in these 

computations, with larger values appearing to be registered for coarser meshes. In addition, 

it can be observed that the moment at which the excess pore pressures start to dissipate (i.e. 

the onset of the consolidation phase) occurs later as a coarser mesh is employed in the 

analysis. This is likely a result of the differences in terms of excess pore pressures reached at 

the bottom level of the model, which affect the upward flow of water occurring during the 

consolidation phase. 

Nevertheless, as observed for the previous analyses, when a common starting point is 

imposed to the dissipation curves, very similar rate of dissipations of excess pore pressures 

are obtained for the three different analysis, as illustrated in Figure D.9, suggesting that this 

aspect of sand response is practically insensitive to the element size and time step adopted 

in the analysis. 

 

 
Figure D.17 – Normalised excess pore water pressure dissipation with time at two different depths 

obtained for three different computations able to reproduce similar maximum velocities. 
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intermediate element sizes. In effect, the maximum settlement obtained in the latter 

computation is only about 2.5 % larger than that registered in computation m0.5/dt0.00625, 

according to Equation D.8. Conversely, considerably larger discrepancies are observed 

between the results obtained in the computation m1.5/dt0.01875 and those obtained in the 
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computation m0.5/dt0.00625, with a maximum relative error of about 10.1 % being obtained 

from Equation D.8. 

 
Figure D.18 – Surface settlement evolution with time for three different computations able to 

reproduce similar maximum velocities. 

The acceleration time-histories registered at the ground surface in the three different 

computations are compared in Figure D.19. Note that, once more, for clarity of the 

presentation, a bandpass filter with limit frequencies of 0.1 and 25 Hz was applied by using 

the computer software SeismoSignal version 2018 (Seismosoft, 2018). It is apparent that very 

similar acceleration time-histories were obtained in computations m0.5/dt0.00625 and 

m1.0/dt0.0125. Conversely, small discrepancies can be observed between these two sets of 

data and that obtained in computation m1.5/dt0.01875, particularly between 10.5 and 12.0 s, 

where slightly larger accelerations were registered in computation m1.5/dt0.01875. This is 

likely a detrimental consequence of the richer high-frequency content of the surface motion 

registered in computation m1.5/dt0.01875, as illustrated by the Fourier spectra shown in 

Figure D.20. This conclusion agrees well with that drawn when analysing the previous series 

of computations concerning the use of an identical time step and different element sizes, as 

well as with the conclusions reached by Taborda (2011) in a similar parametric study. 

 
Figure D.19 – Surface horizontal acceleration time-history for three different computations able to 

reproduce similar maximum velocities. 
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Figure D.20 – Fourier spectra of the surface horizontal acceleration time-history for three different 

computations able to reproduce similar maximum velocities. 

Finally, the computational costs of these three different computations are compared in terms 

of total run time (Table D.4). It can be observed that the run time of computation 

m1.0/dt0.0125 and m1.5/dt0.01875 are, respectively, about 25 % and 14.2 % of that required 

by computation m0.5/dt0.00625. 

Table D.4 – Computational times three different computations able to reproduce similar maximum 
velocities. 

Computation ID 
2 5 9 

m0.5/dt0.00625 m1.0/dt0.0125 m1.5/dt0.01875 

Element size, L (m) 0.5 1.0 1.5 
Total number of elements, nelem 36 18 12 

Time step, t (s) 0.00625 0.0125 0.01875 

Total number of increments, ninc 40000 20000 13333 
Total run time, t (min) 894 223 127 
Normalised total run time, t / tcalc 2 (%) – 24.9 14.2 

 

D.4 Summary and conclusions 

Given the lack of comprehensive guidelines on the spatial and time discretisation’s to be 

adopted in the simulation of highly non-linear dynamic problems involving liquefaction-

related phenomena, a parametric study on the impact of these aspects on the modelled cyclic 

response of Hostun sand was performed. For simplicity, the selected problem consisted of an 

18 m-thick level ground deposit of moderately loose saturated Hostun sand subjected to 

dynamic loading. Due to the inexistence of sand-structure interaction, as well as due to the 

simple geometry of the problem, a single column of elements with displacement and pore 

pressure degrees of freedom tied at each level was used to simulate this problem, as 

suggested in the literature (e.g. Zienkiewicz et al., 1989), reducing substantially the 

computational cost of the simulation and, therefore, allowing for a series of analyses to be 

performed in a reasonable time frame. Specifically, a total of nine different computations 

were performed, consisting of three different element size (0.5, 1.0 and 1.5 m) and five 

different time steps (0.0025, 0.00625, 0.0125, 0.01875 and 0.0625 s). 
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The results obtained for three calculations using an identical element size of 1.0 m, yet 

adopting distinct time steps (namely, 0.0025 s, 0.0125 s and 0.0625 s), were firstly compared. 

It was concluded that the use of a time step of 0.0625 s seemed to have a detrimental impact 

on the computed excess pore pressure build-up and initiation of the dissipation of the excess 

pore pressures (i.e. onset of the consolidation phase), as well as on the surface settlements 

registered in the analysis. Additionally, the use of such time step appeared to affect 

considerably the frequency content of the horizontal accelerations registered at the surface. 

Conversely, the impact of using a time step of 0.0125 s, rather than 0.0025 s, seemed 

significantly more limited, particularly in terms of excess pore pressures and surface 

settlements. When using a time step of 0.0125 s, the computational cost of the numerical 

analysis was reduced in about 80 %, when compared to that required to perform a similar 

analysis with a time step of 0.0025 s. 

A subsequent parametric study focused on the impact of the element size on the simulated 

response. In particular, the results obtained in three computations using different meshes, 

consisting of elements with 0.5, 1.0 and 1.5 m of size, in conjunction with a time step of 

0.0125 s, were firstly compared. Additionally, results obtained in three computations 

employing different element sizes and time steps, though being able to reproduce an identical 

maximum velocity according to the Courant–Friedrichs–Lewy (CFL) condition, were 

compared. Interestingly, similar conclusions were reached when analysing the results 

obtained in both series of analyses. Specifically, it was concluded that the mesh discretisation 

may slightly affect the maximum excess pore water pressures obtained in the analysis at the 

deepest positions of the sand deposit, with larger values tending to be registered when a 

coarser mesh discretisation is adopted, resulting in delays in the onset of dissipation of excess 

pore pressures as dynamic loading ceases. While the discrepancies between the results 

obtained when using an element size of 1.0 m and those obtained when employing an 

element size of 0.5 m seemed very reasonable, with a relative error of about 2 % being 

estimated, the discrepancies were observed to be considerably larger when using a larger 

element size of 1.5 m, with a relative error ranging from 7 to 10 %. By comparing the 

frequency content of the signals registered at the surface of the sand deposit in the several 

different computations, it was concluded that the use of a coarser mesh discretisation may 

lead to the increase in the relevance of the high-frequency content of the motion, typically 

regarded as numerical noise. This was particularly observed when comparing the results 

obtained in the computation using an element size of 1.5 m to those obtained in the reference 

computation, using an element size of 0.5 m. A minor impact was, nevertheless, observed 

when using a mesh consisting of elements with 1.0 m of size, suggesting that the use of this 

mesh discretisation allows for sufficiently accurate predictions of the cyclic response of 

Hostun sand, while allowing for the significant reduction of the computational cost of the 

analysis. In effect, the run time of the analysis employing a mesh consisting of elements with 
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1.0 m of size was about half of that required by the computation using an element size of 

0.5 m.  

Based on the results obtained in this parametric study, it can be concluded that a very 

satisfactory balance between accuracy and computational effort may be obtained when 

employing elements with a size of 1.0 m and a time step of 0.0125 s. 
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Appendix E DYNAMIC FINITE ELEMENT ANALYSIS OF CENTRIFUGE MODEL A USING 

THE EXTENDED FORMULATION OF THE BOUNDING SURFACE PLASTICITY 

MODEL 

E.1 Introduction 

This appendix contains the complete set of results of a finite element analysis of the 

Centrifuge model A (CM-A), entitled as “Adjacent shallow foundations resting on a uniform 

loose sand deposit subjected to dynamic loading causing liquefaction”, using the set of model 

parameters “B.2) Extended formulation”. While the values assigned to the model parameters 

are listed in Chapter 6, the employed mesh, time step, time integration algorithm, boundary 

conditions and initial stresses are presented in Chapter 8. To aid the presentation, the 

adopted mesh and nodes selected for the inspection of acceleration, displacement and excess 

pore pressure time-histories are illustrated in Figure F.1. 

 
Figure E.1 – Employed finite element mesh for the simulation of CM-A. 
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E.2 Obtained numerical results 

E.2.1 Horizontal acceleration time-histories 

 

 

 

 
Figure E.2 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the heavier shallow foundation for 

CM-A. 
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Figure E.3 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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Figure E.4 – Measured and computed horizontal acceleration time-histories at the top of the 

heavier shallow foundation and underneath it for CM-A. 

 

 
Figure E.5 – Measured horizontal acceleration time-histories at the top of the lighter shallow 

foundation and underneath it for CM-A. 
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Figure E.6 – Measured and computed horizontal acceleration time-histories at several positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 
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E.2.2 Vertical acceleration time-histories 

 

 

 
Figure E.7 – Measured and computed vertical acceleration time-histories at the base of the model 

and at the left and right top edges of the heavier shallow foundation for CM-A. 

 
Figure E.8 – Computed vertical acceleration time-histories at the left and right top edges of the 

heavier shallow foundation during the period ranging from 15 s to 20 s for CM-A. 
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Figure E.9 – Measured and computed vertical acceleration time-histories at the left and right top 

edges of the lighter shallow foundation for CM-A. 

 
Figure E.10 – Computed vertical acceleration time-histories at the left edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 

 
Figure E.11 – Computed vertical acceleration time-histories at the right edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 
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E.2.3 Excess pore pressures 

 

 
Figure E.12 – Computed and measured excess pore pressure build-up at two different positions 
located along a vertical alignment coincident with the axis of the heavier shallow foundation for 

CM-A. 

 

 
Figure E.13 – Computed and measured excess pore pressure build-up at two different positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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Figure E.14 – Computed and measured excess pore pressure build-up at three different positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 
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E.2.4 Settlements 

 
Figure E.15 – Computed and measured settlements at the top of the heavier and lighter shallow 

foundations during shaking and shortly after its end for CM-A. 

 
Figure E.16 – Computed and measured settlements at the ground surface in between the two 

shallow foundations during shaking and shortly after its end for CM-A. 

 
Figure E.17 – Computed and measured ground settlement profile after the complete dissipation of 

excess pore pressures for CM-A. 
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Appendix F DYNAMIC FINITE ELEMENT ANALYSIS OF CENTRIFUGE MODEL A WITH 

VARIABLE HYDRAULIC CONDUCTIVITY 

F.1 Introduction 

This appendix contains the complete set of results of a finite element analysis of the 

Centrifuge model A (CM-A), entitled as “Adjacent shallow foundations resting on a uniform 

moderately loose sand deposit subjected to dynamic loading causing liquefaction”, 

considering a simple hydraulic model establishing the variation of the vertical hydraulic 

conductivity of the sand deposit with the excess pore pressure ratio. Note that this hydraulic 

model was proposed by Taborda (2011) and described in Chapter 8. Similarly, the employed 

material parameters, mesh, time step, time integration algorithm, boundary conditions and 

initial stresses are presented in Chapter 8. To aid the presentation, the adopted mesh and 

nodes selected for the inspection of acceleration, displacement and excess pore pressure 

time-histories are illustrated in Figure F.1. 

 
Figure F.1 – Employed finite element mesh for the simulation of CM-A. 
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F.2 Obtained numerical results 

F.2.1 Horizontal acceleration time-histories 

 

 

 

 
Figure F.2 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the heavier shallow foundation for 

CM-A. 
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Figure F.3 – Measured and computed horizontal acceleration time-histories at several positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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Figure F.4 – Measured and computed horizontal acceleration time-histories at the top of the 

heavier shallow foundation and underneath it for CM-A. 

 

 
Figure F.5 – Measured horizontal acceleration time-histories at the top of the lighter shallow 

foundation and underneath it for CM-A. 
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Figure F.6 – Measured and computed horizontal acceleration time-histories at several positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 
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F.2.2 Vertical acceleration time-histories 

 

 

 
Figure F.7 – Measured and computed vertical acceleration time-histories at the base of the model 

and at the left and right top edges of the heavier shallow foundation for CM-A. 

 
Figure F.8 – Computed vertical acceleration time-histories at the left and right top edges of the 

heavier shallow foundation during the period ranging from 15 s to 20 s for CM-A. 
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Figure F.9 – Measured and computed vertical acceleration time-histories at the left and right top 

edges of the lighter shallow foundation for CM-A. 

 
Figure F.10 – Computed vertical acceleration time-histories at the left edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 

 
Figure F.11 – Computed vertical acceleration time-histories at the right edges of the heavier and 

lighter shallow foundations during the period ranging from 15 s to 20 s for CM-A. 
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F.2.3 Excess pore pressures 

 

 
Figure F.12 – Computed and measured excess pore pressure build-up at two different positions 

located along a vertical alignment coincident with the axis of the heavier shallow foundation for 
CM-A. 
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Figure F.13 – Computed and measured excess pore pressure build-up at two different positions 
located along a vertical alignment coincident with the axis of the lighter shallow foundation for 

CM-A. 
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Figure F.14 – Computed and measured excess pore pressure build-up at three different positions 

located along a vertical alignment coincident with the middle of the model for CM-A. 
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F.2.4 Settlements 

 
Figure F.15 – Computed and measured settlements at the top of the heavier and lighter shallow 

foundations during shaking and shortly after its end for CM-A. 

 
Figure F.16 – Computed and measured settlements at the ground surface in between the two 

shallow foundations during shaking and shortly after its end for CM-A. 

 
Figure F.17 – Computed and measured ground settlement profile after the complete dissipation of 

excess pore pressures for CM-A. 

 

-120

-90

-60

-30

0

0 5 10 15 20 25 30 35 40 45 50 55 60

d
y

(c
m

)

t (s)

Experimental

Numerical Heavier structure: (x, y) = (10.0, 19.225) m

Lighter structure: (x, y) = (23.5, 18.75) m

-45

-30

-15

0

15

0 5 10 15 20 25 30 35 40 45 50 55 60

d
y

(c
m

)

t (s)

Experimental

Numerical

(x, y) = (16.5, 18.0) m

-150

-100

-50

0

50

100

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

v
er

ti
ca

l 
d

is
p

la
ce

m
en

t,

d
y

(c
m

)

Distance from the left boundary of the model (m)

Heavier structure
Lighter structure

Initial

ground 

surface
─ Experimental

─ Numerical

(  corner nodes)


	Abstract
	Resumo
	Acknowledgments
	Table of contents
	List of figures
	List of tables
	List of symbols
	Abbreviations and acronyms
	Greek alphabet
	Roman alphabet
	Subscripts
	Superscripts

	Chapter 1 Introduction
	1.1 Background
	1.2 Finite element code FEMEPDYN
	1.3 Main objective and scope of research
	1.4 Synergies with other research programmes
	1.5 Layout of the thesis

	Chapter 2 Laboratory characterisation of the monotonic response of Hostun sand
	2.1 Introduction
	2.2 Hostun sand
	2.2.1 Physical properties
	2.2.2 Overview of previous experimental studies on Hostun sand

	2.3 Laboratory test apparatuses and experimental procedures
	2.3.1 Triaxial tests
	2.3.1.1 Apparatuses
	2.3.1.2 Experimental procedures
	2.3.1.3 Main advantages and limitations of triaxial testing

	2.3.2 Bender element tests

	2.4 Principles used in the interpretation of laboratory test results
	2.4.1 Triaxial tests
	2.4.2 Bender element tests

	2.5 Monotonic response of Hostun sand at small strains
	2.5.1 General aspects
	2.5.2 Bender element testing programme
	2.5.3 Time-domain analysis of the measured waves
	2.5.4 Frequency-domain analysis of the measured waves
	2.5.5 Shear modulus at small strains

	2.6 Monotonic response of Hostun sand at medium to large strains
	2.6.1 General aspects
	2.6.2 Monotonic triaxial testing programme
	2.6.3 Monotonic triaxial compression test results
	2.6.3.1 Drained monotonic triaxial compression with increasing mean stress
	2.6.3.2 Drained monotonic triaxial compression with decreasing mean stress
	2.6.3.3 Undrained monotonic triaxial compression with increasing mean stress

	2.6.4 Monotonic triaxial extension test results
	2.6.4.1 Drained monotonic triaxial extension with increasing and decreasing mean stress
	2.6.4.2 Undrained monotonic triaxial extension with decreasing mean stress

	2.6.5 Distinctive states of the response of sand
	2.6.5.1 Critical state
	2.6.5.2 Peak stress ratio state
	2.6.5.3 Phase transformation state
	2.6.5.4 Undrained instability state and quasi-steady state
	2.6.5.5 Summary of the results of the monotonic triaxial tests performed

	2.6.6 Stress-dilatancy characteristics

	2.7 Summary and conclusions

	Chapter 3 Laboratory characterisation of the cyclic response of Hostun sand
	3.1 Introduction
	3.2 Use of triaxial testing to investigate cyclic mobility
	3.3 Laboratory test apparatus and experimental procedures
	3.3.1 Material and equipment used
	3.3.2 Experimental procedures

	3.4 Testing programme
	3.5 Undrained cyclic response
	3.5.1 Overview of obtained results
	3.5.1.1 Main patterns of the undrained cyclic response of Hostun sand
	3.5.1.2 Influence of the void ratio
	3.5.1.3 Influence of the isotropic effective stress at consolidation
	3.5.1.4 Influence of the cyclic stress ratio

	3.5.2 Undrained cyclic resistance
	3.5.3 Secant shear modulus and damping ratio evolutions with strain amplitude
	3.5.3.1 Basic concepts
	3.5.3.2 Methodology adopted to compute the secant shear modulus and damping ratio
	3.5.3.3 Main patterns under undrained cyclic triaxial loading
	3.5.3.4 Influence of the initial state on the evolution of the normalised secant shear stiffness and damping ratio with strain amplitude
	3.5.3.5 Comparison with curves proposed in the literature for sand

	3.5.4 Excess pore water pressure build-up with cyclic loading
	3.5.4.1 General aspects
	3.5.4.2 Residual excess pore water pressure ratio evolution as a function of the normalised number of loading cycles
	3.5.4.3 Residual excess pore water pressure ratio evolution as a function of the energy dissipated per unit volume


	3.6 Drained cyclic response
	3.7 Summary and conclusions

	Chapter 4 A bounding surface plasticity model for sand
	4.1 Introduction
	4.2 Original formulation
	4.2.1 Fundamental concepts
	4.2.2 Non-linear elastic response
	4.2.3 Plastic response
	4.2.3.1 Introduction
	4.2.3.2 Model surfaces in the multiaxial stress space
	4.2.3.3 Distances from the current effective stress point to its projections on the model surfaces
	4.2.3.4 Gradient of the yield surface
	4.2.3.5 Gradient of the plastic potential
	4.2.3.6 Plastic hardening modulus

	4.2.4 State parameter evolution laws
	4.2.5 Additional low-stress yield surface
	4.2.6 Summary of the original model formulation and parameters

	4.3 Modifications to the formulation proposed by Taborda et al. (2014)
	4.3.1 Introduction
	4.3.2 Small-strain shear modulus
	4.3.3 Inherent fabric anisotropy
	4.3.3.1 Experimental evidence on anisotropic sand response
	4.3.3.2 Motivation for incorporating an inherent fabric anisotropy component in the formulation of the bounding surface plasticity model
	4.3.3.3 Inherent fabric anisotropy formulations proposed in the literature for constitutive models based on the bounding surface plasticity framework
	4.3.3.4 Adopted formulation

	4.3.4 Summary of the new constitutive equations and model parameters required

	4.4 Summary and conclusions

	Chapter 5 Implementation of a bounding surface plasticity model into a finite element code and its validation
	5.1 Introduction
	5.2 Explicit stress integration
	5.2.1 Overview of an explicit stress integration scheme
	5.2.2 A modified forward Euler integration scheme with automatic sub-stepping and error control
	5.2.3 Initialisation of the elastic and plastic state parameters
	5.2.4 Detection of a shear strain reversal and update of the elastic state parameters
	5.2.5 Elastic trial
	5.2.5.1 Yield surface intersection
	5.2.5.2 Detection of an elasto-plastic unloading

	5.2.6 Elasto-plasticity
	5.2.6.1 Elasto-plastic constitutive matrix
	5.2.6.2 Activation of an additional yield surface
	5.2.6.3 Correction of yield surface drift
	5.2.6.3.1 Initial considerations
	5.2.6.3.2 When a single yield surface is active
	5.2.6.3.3 When two yield surfaces are simultaneously active


	5.2.7 Summary

	5.3 Validation
	5.3.1 Methodology
	5.3.2 Original formulation
	5.3.2.1 Simulation of element laboratory tests
	5.3.2.1.1 Material properties and testing programme
	5.3.2.1.2 General aspects of the numerical simulations
	5.3.2.1.3 Drained isotropic compression
	5.3.2.1.4 Drained monotonic triaxial compression tests
	5.3.2.1.5 Undrained monotonic triaxial compression tests
	5.3.2.1.6 Undrained cyclic triaxial test
	5.3.2.1.7 Undrained cyclic direct simple shear test

	5.3.2.2 Simulation of dynamic centrifuge experiments
	5.3.2.2.1 Brief description of the main aspects of the simulated centrifuge experiments
	5.3.2.2.2 Material properties
	5.3.2.2.3 VELACS model 1 – Level ground liquefaction
	5.3.2.2.3.1 General aspects of the numerical simulation
	5.3.2.2.3.2 Obtained numerical results

	5.3.2.2.4 VELACS model 12 – Embedded structure in stratified soil layers
	5.3.2.2.4.1 General aspects of the numerical simulation
	5.3.2.2.4.2 Generation of the initial effective stress state
	5.3.2.2.4.3 Dynamic analysis



	5.3.3 Inherent fabric anisotropy formulation

	5.4 Summary and conclusions

	Chapter 6 Calibration of the bounding surface plasticity model for Hostun sand
	6.1 Introduction
	6.2 Methodology
	6.3 Critical state line
	6.4 Critical state strength
	6.5 Small-strain shear modulus
	6.6 Poisson’s ratio
	6.7 Positions of the bounding and dilatancy surfaces
	6.7.1 General aspects
	6.7.2 Bounding surface
	6.7.3 Dilatancy surface

	6.8 Stress-dilatancy relationship
	6.9 Shear modulus reduction
	6.10 Plastic hardening modulus
	6.10.1 Initial considerations
	6.10.2 Model parameters related to the influence of the tangent shear modulus
	6.10.3 Model parameters related to the influence of the normalised distance to the bounding surface
	6.10.4 Model parameters related to the influence of the void ratio and of the mean effective stress

	6.11 Shearing-induced fabric
	6.12 Inherent fabric anisotropy
	6.13 Numerical stability-related parameters
	6.14 Summary of model parameters

	Chapter 7 Application of the bounding surface plasticity model to the simulation of element laboratory tests
	7.1 Introduction
	7.2 Original formulation of the constitutive model
	7.2.1 Monotonic response
	7.2.1.1 Available data
	7.2.1.2 Influence of the initial void ratio
	7.2.1.2.1 Undrained conditions
	7.2.1.2.2 Drained conditions

	7.2.1.3 Influence of the initial confining stress
	7.2.1.3.1 Undrained conditions
	7.2.1.3.2 Drained conditions

	7.2.1.4 Influence of stress path direction
	7.2.1.4.1 Drained isotropic compression
	7.2.1.4.2 Drained monotonic triaxial compression and extension
	7.2.1.4.3 Undrained monotonic triaxial compression and extension

	7.2.1.5 Influence of the type of consolidation

	7.2.2 Cyclic response
	7.2.2.1 Aspects analysed
	7.2.2.2 Available data
	7.2.2.3 Overview of the undrained cyclic triaxial test results
	7.2.2.4 Undrained cyclic resistance
	7.2.2.5 Normalised secant shear modulus and damping ratio evolutions with cyclic loading
	7.2.2.6 Excess pore water pressure build-up with cyclic loading
	7.2.2.7 Volumetric strains induced by cyclic loading


	7.3 Extended formulation of the constitutive model
	7.3.1 General aspects
	7.3.2 Monotonic triaxial extension test simulations
	7.3.3 Undrained cyclic triaxial test simulations

	7.4 Summary and conclusions

	Chapter 8 Application of the bounding surface plasticity model to the simulation of the dynamic response of shallow foundations built on liquefiable sand deposits
	8.1 Introduction
	8.2 Overview of the experimental programme
	8.2.1 Background
	8.2.2 Main objectives and characteristics of the research programme

	8.3 Centrifuge model A – Adjacent shallow foundations resting on a uniform moderately loose sand deposit subjected to dynamic loading causing liquefaction
	8.3.1 Brief description of the experiment and obtained results
	8.3.1.1 Configuration and instrumentation of the experiment
	8.3.1.2 Horizontal acceleration time-histories
	8.3.1.3 Vertical acceleration time-histories
	8.3.1.4 Excess pore pressures
	8.3.1.5 Settlements

	8.3.2 Numerical analysis
	8.3.2.1 General aspects
	8.3.2.2 Material properties
	8.3.2.3 Generation of the initial stress state
	8.3.2.4 Dynamic analysis
	8.3.2.4.1 Horizontal acceleration time-histories
	8.3.2.4.2 Vertical acceleration time-histories
	8.3.2.4.3 Excess pore pressures
	8.3.2.4.4 Settlements
	8.3.2.4.5 Vertical effective stresses

	8.3.2.5 Dynamic analysis with variable hydraulic conductivity
	8.3.2.5.1 Non-linear hydraulic model proposed by Taborda (2011)
	8.3.2.5.2 Excess pore pressures
	8.3.2.5.3 Settlements



	8.4 Centrifuge model B – Use of narrow densified zones and high-capacity vertical drains to improve the performance of adjacent shallow foundations resting on a sand deposit subjected to dynamic loading causing liquefaction
	8.4.1 Brief description of the experiment and obtained results
	8.4.1.1 Configuration and instrumentation of the experiment
	8.4.1.2 Horizontal acceleration time-histories
	8.4.1.3 Vertical acceleration time-histories
	8.4.1.4 Excess pore pressures
	8.4.1.5 Settlements

	8.4.2 Numerical analysis
	8.4.2.1 General aspects
	8.4.2.2 Material properties
	8.4.2.3 Generation of the initial stress state
	8.4.2.4 Dynamic analysis
	8.4.2.4.1 Horizontal acceleration time-histories
	8.4.2.4.2 Vertical acceleration time-histories
	8.4.2.4.3 Excess pore pressures
	8.4.2.4.4 Settlements
	8.4.2.4.5 Vertical effective stresses



	8.5 Summary and conclusions

	Chapter 9 Summary, conclusions and recommendations
	9.1 Introduction
	9.2 Laboratory characterisation of the monotonic and cyclic response of Hostun sand
	9.3 Implementation of a bounding surface plasticity model into a finite element code
	9.4 Application of a bounding surface plasticity model to the simulation of monotonic and cyclic element laboratory tests
	9.5 Application of a bounding surface plasticity model to the simulation of dynamic centrifuge experiments
	9.6 Recommendations for future research

	References
	Appendix A Measured and simulated monotonic response of Hostun sand
	A.1 Introduction
	A.2 Monotonic triaxial compression tests
	A.2.1.1 Model parameters used in the simulations
	A.2.1.2 Undrained monotonic triaxial compression tests
	A.2.1.3 Drained monotonic triaxial compression tests

	A.3 Monotonic triaxial extension tests
	A.3.1.1 Model parameters used in the simulations
	A.3.1.2 Undrained monotonic triaxial extension tests
	A.3.1.3 Drained monotonic triaxial extension tests


	Appendix B Measured and simulated cyclic response of Hostun sand
	B.1 Introduction
	B.2 Designation and initial conditions of each cyclic triaxial test
	B.3 Model parameters used in the simulations
	B.4 Simulations using the original formulation of the constitutive model
	B.5 Simulations using the extended formulation of the constitutive model

	Appendix C Application of a modified forward Euler scheme with automatic sub-stepping and error control to the stress integration of a bounding surface plasticity model
	C.1 Explicit stress point integration
	C.2 Shear strain reversal detection
	C.3 Yield surface intersection
	C.4 Correction of yield surface drift by projecting back

	Appendix D Influence of time step and element size on site response analysis involving cyclic mobility of Hostun sand
	D.1 Introduction
	D.2 Characteristics of the performed finite element analyses
	D.3 Obtained numerical results
	D.3.1 Influence of the time step
	D.3.2 Influence of the element size
	D.3.2.1 Initial considerations
	D.3.2.2 Analyses using identical time steps
	D.3.2.3 Analyses able to simulate an identical maximum velocity according to the Courant–Friedrichs–Lewy condition


	D.4 Summary and conclusions

	Appendix E Dynamic finite element analysis of centrifuge model A using the extended formulation of the bounding surface plasticity model
	E.1 Introduction
	E.2 Obtained numerical results
	E.2.1 Horizontal acceleration time-histories
	E.2.2 Vertical acceleration time-histories
	E.2.3 Excess pore pressures
	E.2.4 Settlements


	Appendix F Dynamic finite element analysis of centrifuge model A with variable hydraulic conductivity
	F.1 Introduction
	F.2 Obtained numerical results
	F.2.1 Horizontal acceleration time-histories
	F.2.2 Vertical acceleration time-histories
	F.2.3 Excess pore pressures
	F.2.4 Settlements



