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Abstract

Bitcoin is the oldest and most attractive cryptocurrency. Since its launch in 2009, it has thrived,
attracting the attention of investors, regulators and the public in general. Its price dynamics, charac-
terized by extreme volatility, severe jumps and impressive appreciation as made bitcoin a different
asset from those already existing in the financial market, attracted also the academia attention. The
purpose of this dissertation is to examine fractality in the bitcoin market. This is not a new issue,
however we intend to get a more clear and comprehensive overview, by applying the Multifractal
Detrended Fluctuation Analysis (MF-DFA) and an Multifractal Regime Detecting Method (MRDM)
in a high frequency setup. These techniques were applied to 1-min bitcoin returns of Bitstamp, from
January 2013 to July 2020, and two other data sets constituted by hourly and daily returns of seven
online exchanges (Bitfinex, Bitstamp, Cexio, Coinbase, Exmo, Gemini and Kraken), for the years of
2018-2020 and 2017-2020, respectively.

Our results point out that there is strong evidence that 1-min returns present multifractality, with
smaller fluctuations being persistent behavior, while larger fluctuations being anti-persistent. This
multifractality comes from the existence of significant long-range correlations, which cast some
doubts on the informational efficiency of bitcoin at this frequency. But mainly multifractality comes
from fat-tails distribution, which highlights the high level of risk that investors are subjected to in this
market. Multifractality is mainly present during 2017, and in late 2018 and earlier 2019.

The comparison between exchanges show similar results at hourly frequency, namely that there is
persistence in small fluctuations and anti-persistence in large fluctuations. Although multifractality
mainly comes from fat-tail distribution, market efficiency may be low due to significant long-range
correlations. There was no visible pattern relating multifractality and efficiency with the trading
volume of those exchanges.

At a daily frequency one observe a direct relationship between multifractality and inefficiency
with illiquidity (measured by trading volume). Surprisingly, at a daily frequency the main source of
multifractality is not fat-tail distributions but instead the long-run correlations.

This complexity puts into perspective that although bitcoin has the potential for long-run attrac-
tiveness and increasing valuation, it is also subjected to a non-trivial short-run instability.





Resumo

A criptomoeda mais antiga e mais atrativa é a bitcoin. Desde o seu lançamento em 2009, tem
prosperado, atraindo a atenção de investidores, reguladores e do público em geral. A sua dinâmica de
preços, caracterizada por extrema volatilidade, saltos e apreciações impressionantes, fazem da bitcoin
um ativo diferente dos já existentes no mercado financeiro, atraindo também a atenção da academia.
O objetivo desta dissertação é examinar a fractalidade no mercado do bitcoin. Esta não é uma questão
nova, mas pretendemos obter uma visão mais clara e abrangente, através da aplicação da Multifractal
Detrended Fluctuation Analysis (MF-DFA) e de um Multifractal Regime Detecting Method (MRDM)
numa configuração de alta frequência. Estas técnicas foram aplicadas aos retornos minuto-a-minuto
da bitcoin da Bitstamp, de Janeiro de 2013 a Julho de 2020, e a dois outros conjuntos de dados
constituídos por retornos horários e diários de sete casas de câmbio on-line (Bitfinex, Bitstamp, Cexio,
Coinbase, Exmo, Gemini e Kraken), para os anos de 2018-2020 e 2017-2020, respetivamente.

Os nossos resultados apontam para a existência de fortes indícios de que os retornos 1-minuto
apresentam multifractalidade, tendo as flutuações menores comportamentos persistentes, enquanto as
flutuações maiores são anti-persistentes. Esta multifractalidade provém da existência de correlações
de longo prazo significativas, que lançam algumas dúvidas sobre a eficiência informacional da bitcoin.
Mas principalmente a multifractalidade provém da distribuição de caudas largas, o que realça o
elevado nível de risco a que os investidores estão sujeitos neste mercado. A multifractalidade está
principalmente presente durante 2017, e no final de 2018 e início de 2019.

A comparação entre as casas de câmbio mostra resultados semelhantes a uma frequência horária,
nomeadamente que há persistência nas pequenas flutuações e anti-persistência nas grandes flutuações.
Embora a multifractalidade provenha principalmente da distribuições com caudas largas, a eficiência
do mercado pode ser baixa devido a correlações de longo prazo significativas. Não houve um padrão
visível que relacionasse a multifractalidade e a eficiência com o volume de transação das casas de
câmbio.

Numa frequência diária observa-se uma relação directa entre multifractalidade e ineficiência
com iliquidez (medida pelo volume de comércio). Surpreendentemente, a uma frequência diária, a
principal fonte de multifractalidade não são as distribuições com cauda largas, mas sim as correlações
de longo prazo.

Esta complexidade coloca em perspetiva que, embora a bitcoin tenha o potencial de atração a
longo prazo e de valorização crescente, está também sujeita a uma instabilidade não trivial a curto
prazo.
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Chapter 1

Introduction

The cryptocurrency market, especially bitcoin, has gained special attention from investors, aca-
demics and regulators (Derbentsev et al., 2019). The history of bitcoin began in 2008, with a person
or group of people with the pseudonym Satoshi Nakamoto publishing a white-paper on an electronic
payment system without physical representation based on cryptography (Nakamoto, 2008). Just
a few months latter, the bitcoin network was created based on an electronic public ledger called
blockchain. Since the launch of bitcoin, many other cryptocurrencies were created1, which, according
to Bariviera et al. (2017), can be considered new synthetic tradable assets not supported by any
financial intermediary or monetary authority.

Cryptocurrencies can be seen as open sources (anyone may enter in), decentralized (as no third
trusted party is needed to validate the payments) networks. Transactions are available 24/7 (Cheng
et al., 2019), and all transactions are public knowledge, although the system is pseudo-anonymous
(public keys are known by all the network but real identity of users is not revealed). The blockchain is
immutable, in the sense that once recorded, transactions cannot be altered or dismissed. Additionally,
the blockchain has proven to be resilient to any attempt to hack the network. These features bring
confidence and security to market participants; mainly by solving the double spending problem, i.e.
by avoiding that a given digital entity is being used simultaneously in different payments (Sebastião
and Godinho, 2021). Some cryptocurrencies have their supply artificially truncated.This is the case of
bitcoin, whose supply is capped at 21 million units, hence due to its high attractiveness, the demand
pressure is prone to result in long-term price appreciation, i.e. bitcoin is subjected to a long-run
deflating process.

The finance literature on bitcoin and other cryptocurrencies has been increasing exponentially in
the last five years. This dissertation belongs to this stream of the literature. More precisely, here we
apply the fractal and multifractal concepts introduced by Benoit Mandelbrot (Mandelbrot and Hudson,
2010) to the bitcoin market. Multifractality may be related to observable properties of financial series,
such as the existence of long memory and fat-tail distributions, which are not explainable by the
traditional finance theory. In other words, when there is evidence of multifractality, this may imply
that the market is informationally inefficient (Al-Yahyaee et al., 2018). In fact, if fractality exists,

1According to CoinMarketCap (https://coinmarketcap.com/1/, accessed on Oct. 20, 2020) there are more than
3,500 cryptocurrencies on the market, with bitcoin (BTC) being the currency with the largest market capitalization, more
than 210 billion USD . Other important altcoins (i.e., alternative cryptocurrencies to bitcoin) are ethereum (ETH), litecoin
(LTC), tether (USDT), ripple (XRP) and bitcoin cash (BCH).

1

https://coinmarketcap.com/1/


2 Introduction

then there are strong reasons to suspect that the Efficient Market Hypothesis (EMH), systematized by
Fama (1970), does not hold, and most probably the price dynamics are better explained by the Fractal
Market Hypothesis (FMH) of Peters (1994), according to which financial markets have different
liquidity levels through time mainly because investors have different horizons.

The examination of multifractality in the bitcoin return series is pursued using the Multifractal
Detrended Fluctuation Analysis (MF-DFA) and the Multifractal Regime Detecting Method (MRDM).
The MF-DFA was proposed by Kantelhardt et al. (2002), and is an enhancement of the Detrended
Fluctuation Analysis (DFA) of Peng et al. (1994), allowing the evaluation of multifractality of non-
stationary time series and the characterization of series that do not present monofractal scaling
behavior. The MRDM allows the characterization of the time-varying features of fractality itself,
namely by identifying those periods of multifractality and monofractality dominance (Lee and Chang,
2015) .

Those methods where applied to 1-min bitcoin returns of Bitstamp, from January 2013 to July
2020, and two other data sets constituted by hourly and daily returns of seven online exchanges
(Bitfinex, Bitstamp, Cexio, Coinbase, Exmo, Gemini and Kraken), for the years of 2018-2020 and
2017-2020, respectively.

To the best of our knowledge there are just a few papers addressing the multifractality of cryptocur-
rencies in a high frequency setup, and none of these papers compare the multifractality in different
online exchanges. The idea to do this comparison is based on the hypothesis, already documented in
the finance literature, that eventual misalignments between exchanges may produce distinct fractal
dynamics. Also we remark that our MRDM differs from that of (Lee and Chang, 2015) because we
use the estimates of the generalized Hurst exponents obtain from the MF-DFA.

This dissertation is organized as follows. Chapter 2 presents some basic concepts related to fractals
and multifractals, explains the two sources of multifractality, and presents the Efficient Market and
Fractal Market hypotheses. Chapter 3 reviews the most relevant empirical literature on fractality of
cryptocurrencies in general and bitcoin in particular. In Chapter 4, the multifractal formalism and the
MF-DFA are formally presented. Chapter 5 presents a description of the database used, descriptive
statistics, and the main results obtained using the MF-DFA and MRDM. Finally, Chapter 6 concludes
this dissertation.



Chapter 2

Fractal and Multifractal Theory

2.1 Introduction to fractal and multifractal theory

Financial time series are often generated by complex systems, which are formed by various
parts that interact between themselves in a non-linear way, rendering these systems prone to phase
transitions. These systems exhibit fluctuations that usually follow a scaling relation, characterized by
a power function, over several orders of magnitude. It is here that fractal and multifractal concepts
arise: through fractal or multifractal scaling exponents, the scaling laws allow to characterize such
complex systems and, consequently, their data and states. More specifically, they help to predict the
future behavior of the system (Kantelhardt, 2008). The ecosystem, the economy, the human brain, and
in particular financial markets, are examples of such complex systems.

Fractal theory has become more and more recognized by academia due to the important results
obtained in several areas of knowledge, such as biology and medicine (Ashkenazy et al., 2001;
Peng et al., 1994), music (Su and Wu, 2006), meteorology (Baranowski et al., 2015), economics
and finance (Barunik et al., 2012). Applications of fractal theory began in the 1960s, when Benoit
Mandelbrot1 use it to analyze cotton prices, concluding that their distribution followed a power
law (Mandelbrot and Hudson, 2010). Mandelbrot’s fractal theory began then to be widely used
to analyze financial markets, casting some doubts on the conventional financial theory of Eugene
Fama (Fama, 1970; Mandelbrot and Hudson, 2010). Over the years, fractal theory has proved useful in
clarifying certain phenomena and features of financial series, which conventional financial theory have
overlooked, such as that returns time series have fat-tail distributions, which relate to the occurrence
of extreme events, show long memory, self-similarity, volatility clustering, and asymmetry (Gunay,
2014).

Basically, a fractal is a geometric shape where each part is identical to the whole. Objects that
show this complex geometry cannot be characterized by an integer dimension, hence this led to the
definition of fractal dimension – a new measure in fractal geometry. Within this definition there are
two important notions: self-similarity and self-affinity. A self-similar fractal is one that scales in the
same way in all directions, i.e., “is similar in shape to the element on the next scale higher up or lower
down” (Mandelbrot and Hudson, 2010). This concept is associated with scale invariance because

1Mandelbrot was a Polish-born French and American mathematician considered the father of fractal geometry, since he
coined the word "fractal" from the Latin "fractus" which means “broken”.

3



4 Fractal and Multifractal Theory

regardless of the scale to be taken, the fractal is always similar. A self-affine fractal is one that scales
more in one direction than another.

A multifractal is a fractal that scales in several different ways over distinct interwoven subsets
of the series (Kantelhardt, 2008; Mandelbrot and Hudson, 2010). So, the main difference between a
fractal and a multifractal is that the scaling behavior of the former is characterized by a single scaling
exponent, while the behavior of the latter is characterized by multiple exponents. Hereafter, some
concepts of fractal theory are formally presented.

A stochastic process X(t) is self-similar if it satisfies:

X(qt) d
= qHX(t) (2.1)

where q is a positive constant (scaling factor), t ≥ 0 is a time scale and H is the Hurst exponent1 (Gunay,
2014; Jiang et al., 2020; Mandelbrot, 1972; Taqqu, 1978). Some authors also use the above scaling
rule to describe a self-affine process, as they define it in a more general way (Mandelbrot et al., 1997).
Equation (2.1) is a scaling rule where the Hurst exponent is constant and unique. If 0.5 < H < 1,
then the process is persistent and stationary. If H = 0.5, the process is not long-range dependent, i.e.
there is no long memory. This is assumed to be the reference value, which usually refers to random
walk processes. Hence, the concept of long memory can be measured by the Hurst coefficient and is
considered to be a pervasive feature of financial time series. If H > 1, the process is non-stationary. If
H < 0.5, the process is anti-persistent (presents a negative long memory), indicating that an increment
(decrement) is more likely to be followed by a decrement (increment). If H > 0.5, the process is
persistent (presents a positive long memory), indicating that an increment (decrement) of the series
is likely to be followed by an increment (decrement) (Kristoufek and Vosvrda, 2013). One can
observe long memory in the series through the dependence between observations and the presence
of a power-law decaying autocorrelation function (Derbentsev et al., 2019; Kristoufek and Vosvrda,
2016; Mandelbrot and Hudson, 2010; Pascoal and Monteiro, 2014)

The Hurst exponent and the fractal dimension, denoted by D, are connected through the equality

D = 2−H (2.2)

for a self-affine process (Kristoufek and Vosvrda, 2013; Pascoal and Monteiro, 2014). The fractal
dimension is a local characteristic of time series and is a measure of its roughness. For univariate series
1 < D ≤ 2. If D = 1.5 the process is uncorrelated, i.e, there is no persistence nor anti-persistence.
Therefore, a low fractal dimension, D ∈ [1,1.5], means a persistent process, while a high fractal
dimension D ∈ [1.5,2] means anti-persistent process (Kristoufek and Vosvrda, 2013).

Time series do not always present monofractal scaling behaviors, where a single scaling exponent
may be used to characterize its behavior (Kantelhardt et al., 2002). In such cases, multiple scaling
exponents are necessary to provide a complete description of the scaling behavior. So, for a multifractal
process:

X(qt) d
= qh(q)X(t) (2.3)

1The first application of the Hurst exponent and long range dependence in economic time series was made by Mandelbrot,
using Rescaled-Range Analysis, which became known as R/S analysis. Precisely the approach used by the renowned British
hydrologist, H. E. Hurst.
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where t ≥ 0 is a time scale and h(q) is the generalized Hurst exponent, which is not constant (Mandel-
brot et al., 1997). Therefore, a way to distinguish multifractals from monofractals series is to look
at the dependence of h(q) on q. If h(q) is independent of q, i.e. h(q) = H, then the series shows a
monofractal behavior. If h(q) is dependent on q, the series shows a multifractal behavior. The same
interpretation of the classic Hurst exponent is applicable to the generalized Hurst exponent: Large
fluctuations (q > 0) are persistent if h(q)> 0.5 and anti-persistent if h(q)< 0.5; small fluctuations
(q < 0) are persistent if h(q)> 0.5 and anti-persistence if h(q)< 0.5 (Fang et al., 2018). The general-
ized Hurst exponent is a very important parameter in the Multifractal Detrended Fluctuation Analysis
(MF-DFA), described in the Section 4.2.

The generalized Hurst exponent, h(q), is also related to the classical scaling exponent, also called
Rényi exponent, τ(q) defined by the standard partition function multifractal formalism, which is the
simplest representation of the multifractal analysis, to be presented later:

τ(q) = qh(q)−1 (2.4)

Unfortunately, this standard multifractal formalism does not produce satisfactory results for non-
stationary series, hence new methods such as MF-DFA emerged (Kantelhardt, 2008). In addition, this
scaling exponent appears in the definition of multifractal process with stationary increments (Calvet
et al., 1997; Pascoal and Monteiro, 2014):

E[|X(t)|q] = c(q)tτ(q)+1 (2.5)

If τ(q) is linear, then it means that the process is monofractal, because in that case h(q) = H and
therefore τ(q) = qH −1. Otherwise, if τ(q) is non-linear, and more precisely a concave function, then
it is a multifractal process. According to Mandelbrot et al. (1997), a self-affine process that satisfies
Equation (2.1) is multifractal since X(t) d

= tHX(1) and E[|X(t)|q] = E[|tHX(1)|q] = tHqE[|X(1)|q].
Therefore, according to Equation (2.5), c(q) = E[|X(1)|q] and τ(q)+1 = qH, with τ(q) linear.

Furthermore, one may also characterize the multifractal time series through the multifractal
spectrum which relates two exponents: α (the Hölder exponent or singularity strength), defined as the
exponent of the scale relationship of the fluctuation dimension on a time scale and f (α) (singularity
spectrum), defined as the exponent in a scale relationship of the dimension of the subset of the series,
i.e., the number of cells sharing the same α . This gives a metric on the asymmetry between small and
large fluctuations. This spectrum is related to τ(q), via Legendre transform (Calvet et al., 1997) to be
specified later. The width of the spectrum is given by:

△α = αmax −αmin (2.6)

and determines the richness of the multifractality: the wider the spectrum, the richer the multifractality,
meaning that there is a bigger difference between periods with small and large fluctuations (Gunay,
2014). Therefore, the multifractal spectrum is usually presented graphically by the plot of f (α) on
α . The width and shape of the spectrum provide information about multifractality. In addition, if the
series have a multifractal spectrum with a long left tail (right truncation), it means that the multifractal
structure of the series is insensitive to small size local fluctuations. If the series have a multifractal
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spectrum with a long right tail (left truncation), it means that the multifractal structure of the series is
insensitive to large size local fluctuations (Ihlen, 2012).

These relations between α , f (α) and τ(q) will be detailed below in Chapter 4. The degree of
multifractality may also be directly measured by the range of generalized Hurst exponents h(q),
denoted by △h:

△h = hmax(q)−hmin(q) (2.7)

In sum, there are several ways to analyze the multifractality in time series.

2.2 The sources of multifractality

According to Kantelhardt (2008) multifractality present in times series may result from two
sources: (a) Fat-tails probability density functions, and (b) different long-range correlations of small
and large fluctuations. Given that the effects of these two sources are mixed up in the original data, one
needs to use two different data transformations in order to assess its relative importance: (i) Shuffled
data via a shuffling technique and (ii) Surrogate data via a phase-randomization technique.

The shuffling process consists in randomly blend the observations of the original series, aiming at
eliminating the existing correlations. Through this process, the importance of source (b) is removed,
while the impact of source (a) remains in the transformed series (Gunay, 2014). If multifractality
remains in the shuffled series, that means that the remaining multifractality is due to source (a)
(Kantelhardt, 2008; Kantelhardt et al., 2002). One may perform this analysis using the generalized
Hurst exponent applied to the shuffled data, hshu f (q). If multifractality comes only from source
(b), the shuffled series will exhibit a simple random behavior, and hshu f (q) = 0.5. On the other
hand, if (a) is the only source present, h(q) will not change because the multifractality remains, and
hshu f (q) = h(q) (Bolgorian and Gharli, 2011; Kantelhardt et al., 2002). The phase-randomization
technique is based on the randomization of the Fourier phases of original data aiming at eliminating
the non-linearities stored in the phases. The resulting series are called surrogate series and the
corresponding interpretation, similar to the previous one, may be applied to hsurr(q) (Ashkenazy
et al., 2001; Benbachir and El Alaoui, 2011).

Generally speaking, if the shuffled series remain multifractal, then fat-tails are at least in part the
origin of multifractality, otherwise, if it turns monofractal, the long-range correlations are the source
of multifractality. If the surrogate series remain multifractal, then the long range correlations are a
source of multifractality, otherwise, if it turns monofractal, fat-tails are the source of multifractality.
Additionally, the two sources of multifractality may be analyzed by comparing the different generalized
Hurst exponents of the shuffled and surrogate series or by analyzing the multifractal spectrum f (α)

vs α . If the difference between hshu f (q) for different q orders is very small (i.e., if the dependence of
h(q) on q for this series is low), this indicates that the multifractality in the original series is likely
to derive also from the different long-range correlations of the small and large fluctuations. For the
surrogate series, the same reasoning applies. If the difference between hsurr(q) for different q orders
is very small, this is an indication that the multifractality in the original series is likely to derive from
the fat-tails. Also if the width of the spectrum in the shuffled series decreases, the multifractality
has not disappeared, and therefore the long-range correlations are one of its sources in the original
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series. If the width of the spectrum in the surrogated series is small, then the series gives evidence
of nearly monofractal behavior and the fat-tails are at the origin of multifractality in the original
series (Bolgorian and Gharli, 2011; Gunay, 2014).

2.3 Efficiency on financial markets

The multifractal theory has several financial applications. Most notably, it may be used to test
the possibility of investors to use past price information to obtain abnormal returns1 and to assess the
level of extreme risks they support. For instance, if multifractality arises from long-range correlations
of small and large fluctuations then investors may profit on the information incorporated in past prices,
if multifractality arises from fat-tails this means that investments are exposed to high risks, i.e. there is
a higher probability of extreme events (Gunay, 2014). At this point, one should clarify two important
frameworks: the Efficient Market Hypothesis (EMH) and the Fractal Market Hypothesis (FMH).

2.3.1 Efficient Market Hypothesis (EMH)

The basic ideas supporting EMH were introduced in 1900 by Louis Bachelier, a French math-
ematician. However, the EMH was only formally stated in the 1960s and 1970s by Eugene Fama,
an American economist and Mandelbrot’s PhD student. This hypothesis is by now part of the con-
ventional financial theory and is the cornerstone of modern financial economics. The random walk
model used by Bachelier is based on the laws of chance, independent increments and, hence, absence
of memory. In this model, prices go up or down with equal probability and therefore are not pre-
dictable (Mandelbrot and Hudson, 2010). Accordingly, price movements follow a normal distribution.
Fama (1970) built on the random walk and fair game concepts, arguing that the price system contains
all the relevant information and therefore no one can obtain abnormal returns by using a particular
information set. Depending on the information set considered, the market efficiency may be segmented
into three levels or forms: (i) In the weak-form the information set contains all historical market
information (such as the time series of prices, trading volumes, dividends, etc.). Hence, technical
analysis has no value in the sense that looking at past market information does not allow trader to
earn abnormal returns. (ii) In the semi-strong form the information set, besides historical market
information, also includes all other public information (produced, for instance by firms, financial
analysts, rating firms, etc.). Hence the price system fits rapidly to all new public information, and no
one can profit on any piece of public information. (iii) In the strong-form efficiency the information
set contains all relevant information, public and private, and no one, even those market participants
that own private information may use it to obtain abnormal returns (Fama, 1970; Miloş et al., 2020;
Pascoal and Monteiro, 2014).

Not only the basic assumptions of EMH that investors are rational and homogeneous, but also its
corollaries that price changes are normally distributed and independent have been subjected to fierce
criticisms (Mandelbrot and Hudson, 2010).

A given information set does not have the same impact on the investment decisions of all investors,
simply because investors are not homogeneous (Peters, 1994). In reality investors have different

1Abnormal returns are returns higher than the overall market. Using the jargon of traders, abnormal returns means
"beating the market".
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investment horizons, treat the available information differently, do not take the same investment
decisions and hence do not achieve the same returns. Even if one assumes that the information sets of
all investors are the same, depending on the investment horizons, that information may imply large
expected losses for some investors while for others it may result in an expected profit (Peters, 1994).
In reality price changes do not follow a normal distribution. The distributions of price changes in
financial markets, such as stock, bonds and currencies, are more picked and present fatter tails, and
hence are more likely to follow a power law. Price changes are not independent of each other, i.e., they
have memory. If prices go up (down) a lot today, there is a high probability that they will continue to
go up (down) again tomorrow (Mandelbrot and Hudson, 2010; Peters, 1994).

2.3.2 Fractal Market Hypothesis (FMH)

Fractal Market Hypothesis (FMH) is an alternative to EMH and was defined in 1994 by Edgar E.
Peters, an asset manager with contributions on financial economics (Peters, 1994). Briefly, FMH is
based on the idea that investors have different horizons, and that is why trades occur and financial
markets are liquid and stable. Liquidity means the easiness to trade, rapidly with low transaction costs.
If a market is liquid then trades occur without causing major impacts on prices.

If investors treated information in the same way, they would make the same decisions and,
consequently, there would not be anyone to trade against to. Markets would be completely illiquid.
Because investors have different horizons, they will use information differently, even if they have
the same set. Hence, the concept of "fair price" changes from investor to investor, and the market
is formed by investors with complementary interests. Therefore, market liquidity exists because
investors are not homogeneous, the diversity also comes from the fact that investors access to the
information at different times and have different preferences and interpretations.

Liquidity in the market is necessary to guarantee the stable functioning of the market (Kristoufek,
2012), that is, a "stable market is a liquid market" (Peters, 1994). A stable market is a market
where long-term investors intervene to stabilize the market in face of the forced trading of short-term
investors. A market becomes unstable when long-term investors become short-term investors or cease
to participate in the market. When long-term investors feel that the fundamental information is not
reliable, panic installs into the market causing big price movements, contributing to fattening the tails
of the distribution. According to Peters (1994), long-term investors become more nervous in periods
of instability and crisis, when fundamental information looses its value, making short-term investors
more active in the market and therefore dominant. Because prices are the result of a combination of
technical information, important in the short term, and fundamental information, important in the long
term, the unbalance between these two types of investors reduces the market liquidity and disrupts its
stability. In sum, the causal relation runs from investor heterogeneity to market liquidity and from
market liquidity to market stability.

This efficiency hypothesis was named "fractal" because of it somehow involves a self-similar
structure - a characteristic of fractals - i.e., investors should share the same levels of risk, because
long-term investors will counterbalance short-term investors to keep the market stable. This leads to
different time horizons being intertwined. In particular, self-similarity is associated with complexity
under magnification, i.e. if one considers shorter time periods, the smoothness that occurs in longer
periods tend to decrease, and invariance in scale, i.e. whatever the scale to be taken, there is always
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similarity (Anderson and Noss, 2013). Kristoufek (2012) supports this hypothesis by concluding that
the FMH gives good predictions of market dynamics in the turbulent times, specifically in the global
financial crisis that began in 2007/2008. Anderson and Noss (2013) studied the Dow Jones industrial
indexes and state that price series appear to exhibit self-similarity.





Chapter 3

Multifractality in Cryptocurrency
Market

In financial markets, large fluctuations, caused by crises and crashes or speculative bubbles,
occur more frequently than would be expected if price changes followed a normal distribution. Price
time series often exhibit long tailed distributions which indicates the existence of multifractality
(Mandelbrot, 1972). Also, according to the FMH of Peters (1994) market liquidity dynamics create
significant long-range correlations, especially during periods caracterized by high turbulence. For
instance, multifractality has been found in foreign exchanges (Gunay, 2014; Ioan et al., 2012) stock
indexes (Benbachir and El Alaoui, 2011; Kumar and Deo, 2009; Miloş et al., 2020; Suárez-García
and Gómez-Ullate, 2014; Wang et al., 2014), gold (Bolgorian and Gharli, 2011; Wang et al., 2011),
bonds (Lim et al., 2007) and even in inflation rates (Fernandes et al., 2020). These results, mainly
achieved using the MF-DFA , seem pervasive independently of the market under study being central or
peripheral. However, there is no consensus on the source of multifractality. In those studies revealing
persistence, the authors always point out that this is a clear evidence on the rejection of EMH (Barunik
et al., 2012; Tiwari et al., 2019).

The cryptocurrency market is prone to frequent "fast markets" events characterized by extreme
volatility and hence it is not surprising that an important stream of the financial literature on cryptocur-
rencies deals with the analysis of fractal structures and their implications in terms of informational
efficiency. Obviously the majority of those studies deal only with bitcoin, as it is the most important
cryptocurrency in terms of age, trading volume, price appreciation, market capitalization and public
attention.

Urquhart (2016) was one of the first papers to address the efficiency of bitcoin. The author
used several efficiency tests on the daily prices, among which the rescaled Hurst exponent (R/S
Hurst). The main conclusion is that bitcoin is inefficient, especially in the first sub-sample until
2013. Kristoufek and Vosvrda (2016) and Kristoufek (2018) use the Efficiency Index of Kristoufek
and Vosvrda (2013), based on long-range dependence, fractal dimension, and entropy, to assess the
level of market efficiency. The first paper studies the efficiency of the gold prices in several fiat
currencies and bitcoin, showing that gold prices expressed in bitcoin are among the less efficient.
The second paper focus on the efficiency of bitcoin in US dollar and the Chinese yuan, showing that
both price series are mostly inefficient, although efficiency increases in market cooling periods after
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bubble-type events. Fang et al. (2018) also study the bitcoin series in USD and yuans concluding that
large fluctuations in the Yuan market are persistent, while in the USD market are anti-persistent. In
the USD market the broad probability density functions are the source of multifractality. Therefore,
the authors conclude that investors participating in the Chinese market are more speculative and less
risk averse than those that participate in the US market. Bariviera (2017) and Bariviera et al. (2017)
analyze the daily and intraday returns via the DFA. These authors concluded that the Hurst exponent
was in the first years of bitcoin above 0.5, hence showing a persistent behavior, but since 2014 it
declined to approximately 0.5, implying that the market is becoming more efficient. Tiwari et al.
(2018) use a battery of robust long-range dependence estimators and conclude against the previous
papers, arguing that the bitcoin market is mostly efficient, except for the periods of April to August
2013 and August to November 2016. On the other side, Jiang et al. (2018) categorically conclude
that long memory is present in the bitcoin returns and that bitcoin is inefficient and it has not become
more efficient over time. Lahmiri and Bekiros (2018) focused on price and returns of bitcoin to study
chaos, randomness and multifractal properties. The sample was segmented into periods of stable
prices and of exponentially increasing prices. Multifractality and long-range correlations were found
to be present in returns and prices, with fat-tail distributions being the main cause of multifractality. In
addition, multifractality was stronger in returns than in prices for negative q scales, while the opposite
happened for positive q scales. Takaishi (2018) examined 1-min bitcoin returns highlighting that they
present a fat tail distribution with a kurtosis much higher than three. The MF-DFA approach showed
the existence of multifractality coming from both sources. Therefore, according to the author, bitcoin
is similar to other assets in terms of stylized facts. Filho et al. (2018) apply the MF-DFA to prices
quoted every 12h and find that multifractality arose from both fat tails and long-range correlations.
The authors highlight that multifractality of bitcoin series is stronger when compared to other financial
series. Al-Yahyaee et al. (2018) also reach this broad conclusion when comparing the bitcoin market
with the gold, stock and foreign exchange markets via the MF-DFA. Zhang et al. (2019a) show that
multifractality is evident in prices and volumes, and that fat-tails are the main reason of multifractality.
However, prices and volumes are characterized by persistence and anti-persistence, respectively. Telli
and Chen (2020) use the MF-DFA to investigate multifractality in the returns and volatility series.
They found that returns and volatility are persistent, and the degree of multifractality in bitcoin is
greater than in gold. Fat-tails and temporal correlations are both at the origin of the multifractality of
the two series. Jiang et al. (2020) develop an empirical multifractal scaling hypothesis test to verify
if there is a multifractal scaling in the presence of fat-tails and applied it to 1-min and daily bitcoin
prices. They conclude that the scaling behavior of bitcoin is more akin to a multifractal model than to
a heavy tail process, however the presence of multifractality in high frequency data is only revealed in
smaller samples.

Several papers address the issue of fractal structures of bitcoin and other cryptocurrencies, mainly
showing that these structures may be quite different and that they have a time-varying nature. For
instance, Caporale et al. (2018) find some evidence of persistence in bitcoin, litcoin, ripple and dash,
which implies market inefficiency, although this inefficiency tends to be less expressive in more recent
periods. Mensi et al. (2019) use the asymmetric multifractal detrended fluctuation analysis to study
high frequency data from bitcoin and ethereum. The main conclusions are that multifractality is
present in both markets, efficiency has a time-varying feature but bitcoin is more inefficient than
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ethereum. Costa et al. (2019) analyze bitcoin, ethereum, ripple and litecoin through the DFA and
found that bitcoin appears to be the most efficient, although the persistent behavior is predominant
at the end of 2017. Derbentsev et al. (2019) examine the multifractal properties of the most capi-
talized cryptocurrencies through R/S analysis and DFA. Persistent is observable for almost the full
period, although during periods of turbulence and crisis in the market, cryptocurrencies series present
anti-persistence. Cheng et al. (2019) use the DFA and MF-DFA to investigate the price movements
of four cryptocurrencies: bitcoin, ethereum, Ripple and EOS, concluding that bitcoin and ethereum
markets revealed a strong momentum effect (long-range memory), while ripple and EOS showed
price reversals (anti-persistence behavior). Stosic et al. (2019) apply the MF-DFA to the price and
volume series of fifty cryptocurrencies. The authors conclude that large fluctuations dominated the
multifractal behavior in price changes (left-skewed spectrum), while the opposite happened with
volume changes. Besides, the price changes do not present any kind of significant correlations,
while the volume changes present anti-persistence. They also highlight that fat tails are the origin of
multifractality for both price and volume changes. Bariviera (2020) study the informational efficiency
of the eighty-four largest cryptocurrencies through the generalized Hurst exponent, obtained from
a multi-scale methodology. Multifractal dynamics are mostly present in this market, but, for the
largest cryptocurrencies, a monofractal process seems to fit. The shuffling process resulted in a
reduction of multifractality, but the author continue to believe on the existence of the two sources of
multifractality. Mnif et al. (2020) applies MF-DFA to the five biggest cryptocurrencies to study their
efficiency through the magnitude of a Long-memory index related to the generalized Hurst exponent,
and the herding behavior at the time of COVID-19. Most of cryptocurrencies were multifractal before
the COVID-19 and bitcoin proved to be the most efficient one, but less efficient than ethereum after
the pandemic. A clear exception to the main stream of the literature is Zhang et al. (2019b). This
paper analyzes the long range memory of bitcoin, ethereum, ripple and litecoin using hourly prices.
The authors argue that the Hurst exponent is approximately 0.5, indicating relative efficiency, so the
price movements can be characterized by a random walk. Nevertheless, there is evidence of long
memory in certain periods.

In a nutshell, the main conclusions that one may highlight from all the previous mentioned
papers is that the bitcoin market presents multifractality, coming from not only fat-tails but also
from long-range correlations. Multifractality seems to be stronger in bitcoin than in other more
traditional financial markets. The existence of significant long-range correlations casts some doubts
on the informational efficiency of the market, although there is some weak evidence that efficiency is
increasing as the market matures. The fractal structure of bitcoin and other cryptocurrencies may be
quite different and have a time-varying structure.





Chapter 4

Methodology and Interpretations

4.1 The Multifractal Formalism

The multifractal formalism is one way among others to reveal the scaling behavior and charac-
terize the time series. Therefore, this formalism is introduced here in order to obtain the instrument
known as the full spectrum, through the partition function. The following is based on the articles
of Halsey et al. (1986) and Salat et al. (2017), where the moment method and box-counting approaches
to calculate the spectrum f (α) are detailed.

The probability related to the i-th box, pi, that is, the probability that the phenomenon occurs in
the i-th box, is defined by

pi :=
Ni

N
=

∫
ithbox

dµ(x) (4.1)

where µ represents the probability measure, N the number of boxes, or the times that a phenomenon
occurs in domain D, and Ni is the number of times that a phenomenon occurs in the i-th box. This
verifies pi ∼ rαi , where r is the unit of the mesh grid which covers D, i.e., the size of the i-th piece
which divides D. Remark that we have µi(r) ∼ rαi , where αi is the Hölder dimension, such that
αi = log µi(r)/ logr (Zhao et al., 2015). In addition, it is necessary to define N(αi) as the number of
times that α occurs in each interval [αi,αi + dαi], which verifies

N(αi)∼ ρ(αi)dαir− f (αi) (4.2)

where ρ is the density function used, which takes into account the D dimension, and f (α) represents
the dimensions of the set where the singularities of strength α can be found. Now, let us consider a
partition function Z(q) such that Z(q) := ∑i pq

i ∼ rτ(q). Notice that each q is associated to an α with a
predominant contribution to the total value of the measure:

Z(q) := ∑
i

pq
i ∼ ∑

i
rαiq ∼

∫
α

N(α)rαq ∼
∫

α

ρ(α)r− f (α)rαq dα ∼
∫

α

ρ(α)rαq− f (α) dα (4.3)

So, considering r small enough, Z(q) is almost entirely characterized in terms of α , such that τ(q)
given by αq− f (α) is minimal. Therefore, the full spectrum giving f as a function of α can be obtain
after computing τ .
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4.2 The Multifractal Detrended Fluctuation Analysis (MF-DFA)

The Multifractal Detrended Fluctuation Analysis (MF-DFA) (Kantelhardt et al., 2002), especially
suitable for time series, is based on five steps. Let’s consider a series xi of length N with a compact
support, i.e, xi = 0 only for an insignificant portion of values. The first three steps are identical with
the classical DFA (Peng et al., 1994).

First, from series xi and being x̄ its mean, the profile is computed as

Y ( j) =
j

∑
i=1

(xi − x̄), j = 1, . . . ,N (4.4)

The average doesn’t have to be necessary taken into account since it would be eliminated by the later
detrending.

The second step consists in splitting Y ( j) into Ns = int(N/s) non-overlapping segments of equal
length s, where s is a given time scale, int represents the rounding down to the nearest integer, and
N is often not a multiple of the scale s. The same procedure has to be considered starting from the
end of the sample in order not to ignore the residual part of the series not yet considered. Hence, 2Ns

segments should be obtained.
Next, after calculating the local trends for every segments by a least-square fit of the profile to a

polynomial function, the variances are given by

F2(s,υ)≡ 1
s

s

∑
j=1

{Y [(υ −1)s+ j]− yυ( j)}2, f or υ = 1, . . . ,Ns (4.5)

F2(s,υ)≡ 1
s

s

∑
j=1

{Y [N − (υ −Ns)s+ j]− yυ( j)}2, f or υ = Ns +1, . . . ,2Ns (4.6)

where yυ( j) is the polynomial trend fitted to segment υ . In the fitting procedure, the polynomials can
be linear, quadratic, cubic or of higher degrees. This procedure is done for different polynomial orders,
m. Hence, an MF-DFA of order m, trends of order m in Y ( j), or order m−1 in the original series, are
eliminated. Therefore, to estimate the type of the polynomial trend in the time series, a comparison of
the quality of trend fitting for different orders of DFA is necessary (Kantelhardt et al., 2002).

The fourth step consists in obtaining the q order fluctuation function and by averaging over all
segments:

Fq(s)≡

{
1

2Ns

2Ns

∑
υ=1

[F2(υ ,s)]
q
2

} 1
q

, f or q ̸= 0 (4.7)

It is apparent that Fq(s) increases with s. Also, Fq(s) depends on the order m, which is necessary
not superior to s− 2. Steps 2 to 4 must be repeated for several time scales s in order to know the
dependence of Fq(s) on the time scale s for different values of q. Finally, the scaling behavior of
fluctuation functions is determined by analyzing log-log plots of Fq(s) versus s for each value of q.
The following relationship is obtained:

Fq(s)∼ sh(q) (4.8)
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i.e., Fq(s) increases as a power-law, for large values of s, if the series xk are long-range power-law
correlated. Here h(q) is called the generalized Hurst exponent. The q-th order generalized Hurst
exponent is the slope of log(Fq(s)) ∼ log(s). For q > 0, h(q) specifies the scaling behavior of the
segments with larger fluctuations, while q < 0, h(q) specifies the scaling behavior of the segments
with small fluctuations. Thus, the small and large fluctuations will present a different behavior.
Moreover, for q = 2 and stationary series, h(2) is the classic Hurst exponent, H (Kantelhardt, 2008).
The fluctuation function of order 0, F0(s), is not obtainable from (4.7), so the following procedure is
defined:

F0(s)≡ exp

{
1

4Ns

2Ns

∑
υ=1

ln[F2(υ ,s)]

}
∼ sh(0) (4.9)

4.3 The Multifractal Formalism and MF-DFA

In order to show the relationship between h(q) and the Rényi exponent τ(q), characterizing the
behavior of the partition function, the standard multifractal formalism and the standard box counting
formalism are related to the MF-DFA, in the context of stationarity (Kantelhardt et al., 2002). First, to
make such a comparison, stationary, the normalized sequence xi of length N with compact support is
considered. Hence, in the third step of the MF-DFA, Equation (4.5) takes the form:

F2(s,υ)≡ [Y (υs)−Y ((υ −1)s)]2, f or υ = 1, . . . ,Ns. (4.10)

Remark that it is not necessary to apply the detrending procedure, as no trend has to be eliminated.
Proceeding with the MF-DFA, the next step allows, substituting 4.10 into 4.7, to obtain

Fq(s) =

{
1

2Ns

2Ns

∑
υ=1

|Y (υs)−Y ((υ −1)s)|q
} 1

q

∼ sh(q) i.e.
1

2Ns

2Ns

∑
υ=1

|Y (υs)−Y ((υ −1)s)|q ∼ sqh(q)

(4.11)
Since Ns = N/s, assuming that N is divisible by s, the previous expression can be written as:

Ns

∑
υ=1

|Y (υs)−Y ((υ −1)s)|q ∼ sqh(q)−1 (4.12)

The standard box counting formalism is introduced in this context by defining the partition function

Zq(s)≡
N/s

∑
υ=1

|ps(υ)|q ∼ sτ(q) with ps(υ)≡
υs

∑
i=(υ−1)s+1

xi = Y (υs)−Y ((υ −1)s) (4.13)

where ps(υ) is the box probability, that is identical to the sum of the numbers xi within each segment
υ of size s. Therefore, the expression (4.12) is equivalent to expression (4.13), so it can be verified
that Zq(s)∼ sqh(q)−1 and therefore:

τ(q) = qh(q)−1. (4.14)
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Also, τ(q) is related to the generalized multifractal dimension D(q), which is sometimes used in
certain studies instead of τ(q), given by:

D(q)≡ τ(q)
q−1

=
qh(q)−1

q−1
(4.15)

In a monofractal series with compact support, D(q) depends on q, unlike h(q), which is independent
of q. Hence

α(q) = τ
′(q) =

dτ(q)
dq

=
d[qh(q)−1]

dq
= h(q)+q

dh(q)
dq

(4.16)

and equating equations (4.14) and τ(q) = αq− f (α), where f (α) is the spectrum of singularity and
α is the Hölder exponent, referred to in Section 2.1:

qh(q)−1 = αq− f (α)

⇔ f (α) = q(α −h(q))+1 (4.17)

Thus, through h(q), the multifractal spectrum can be specified, which also characterizes the
multifractal series.

4.4 The presence of multifractality in the MF-DFA

In order to detect the existence of multifractality in financial time series, it is necessary to check
certain characteristics in the graphs obtained through the MF-DFA. Starting with the plot logFq(s) vs
s of the series, where Fq(s) is the q-order fluctuation function, an indication of a monofractal behavior
can be the parallel relationship that the fluctuation function presents in different scales for different
orders of q.

The slopes of the regression lines give the generalized Hurst exponents. In the multifractal case,
the slopes are dependent on q and the differences between the fluctuation functions for negative and
positive qs are more pronounced in small segment sizes. If it is a monofractal case, these differences
are the same for different q orders, thus h(q) is a constant H, for all q orders (Gunay, 2014).

Regarding the generalized Hurst exponents h(q), more specifically the plot h(q) vs q, the distance
of the values of the generalized Hurst exponent from each other for different orders, is a sign of
multifractality. Therefore, an approximately equal behavior of h(q) for different q orders are evidence
of near monofractal behavior, while wide variations of h(q) according to the variation of q are evidence
of strong multifractality in the series. Usually, in the case of multifractality, the function described by
the graph h(q) vs q is non-linear and decreasing on q (Benbachir and El Alaoui, 2011; Bolgorian and
Gharli, 2011; Gunay, 2014; Miloş et al., 2020; Wang et al., 2014).

The plot τ(q) on q concerns the classical multifractal scaling exponent for the partition function
on different orders of q. The monofractal behavior is associated with the linear form of τ(q) = qH −1,
since h(q) = H is constant, while a nonlinear form of τ(q) represents the existence of multifractality.
Moreover, the further apart from linearity the curve is, the stronger the multifractality is (Wang et al.,
2014).

Finally, concerning the multifractal spectrum, that is, the function f (α), a monofractal behavior is
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reflected in the shape of the dense spectrum, in which its curve is reduced to a single point α = H
with f (α) = 1. On the contrary, a multifractal behavior translates into a spectrum curve with a
single-humped shape, presenting a concave downward parabola shape. Also, for a small degree of
multifractality, the width of the spectrum will have a small range and for strong multifractal series, the
width will have a large range (Telli and Chen, 2020). The relations between the plots h(q), τ(q) and
f (α) results from the analysis exposed in the previous sections.





Chapter 5

Empirical Results

5.1 Data and preliminary analysis

The first data set analyzed in this dissertation consists on the time series of 1-min bitcoin prices
from January 01, 2013 to July 26, 2020. The database, retrieved from the Bitcoincharts website API1,
contains the trading information on bitcoin from one of the main bitcoin online exchanges – Bitstamp.
The data file has the timestamp in Unix time, the trading price in USD, and the trading volume in
bitcoin units. A significant part of these volumes are not integers, because bitcoin may be traded
in multiples of 10−10 of a bitcoin, i.e. a satoshi. These raw data was then sampled considering the
last price before each minute-by-minute observation point. The final data is formed by 3,981,601
observations.

The second data set contains the bitcoin hourly prices in USD of seven online exchanges: Gemini,
Coinbase, Kraken and Bitfinex from USA and Bitstamp, Cexio and Exmo from Europe, from January
1, 2018 to October 12, 2020. This data set, with a total of 24,372 observations, was retrieved from the
Cryptodatadownload website2.

Finally, a third data set with daily bitcoin prices in USD timestamped at 00:00:00 for the period
from January 1, 2017 to December 2, 2020 (1,432 observations) for the set of the seven online
exchanges, was retrieved from Bitcoinity.org website3.

The exchanges, ranked by decreasing liquidity, measured by the trading volume, are characterized
below in Table 5.1. The table shows the continent of the location of their headquarters, the launching
year, average hourly trading volume (01/01/2018 - 10/12/2020) and average daily trading volume
(01/01/2017 - 12/02/2020).

1http://api.bitcoincharts.com/v1/csv/.
2https://www.cryptodatadownload.com/data/.
3http://data.bitcoinity.org/markets/price/5y/USD?c=e&t=l.
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Table 5.1 Online exchanges

Headquarter Year Hourly volume (BTC) Daily volume (USD)

Bitfinex America 2012 18,572,760 228,991,353,026
Coinbase America 2012 13,108,974 158,496,869,065
Bitstamp Europe 2011 9,334,135 103,626,571,751
Kraken America 2011 6,320,323 62,047,382,036
Gemini America 2014 3,095,720 40,254,511,611
Cexio Europe 2013 479,672 7,101,667,828
Exmo Europe 2014 414,553 4,103,315,927

The time series of bitcoin prices were then used to compute the logarithmic returns, such that
rt = log(Pt/Pt−1), where Pt is the transaction price at time t.

Figure 5.1 plots the series of bitcoin 1-min prices and their resulting logarithmic returns, with
Unix time converted into calendar time.

Fig. 5.1 Bitcoin 1-min prices (a) and bitcoin 1-min returns (b)

A striking feature that can visualize from Figure 5.1a is that bitcoin prices have increased their
scale considerably. During 2013, prices were relatively low and seem stable. At the end of that year
the market saw its first period of exponential price increases, i.e. the first bubble-like event. During the
following three years prices remain at similar levels without significant long run increases or decreases.
2017 was characterized by exponential increasing prices – the second and more important bubble
in our sample. At the beginning of 2017, bitcoin was quote almost at 1,000USD and at the end of
that year it achieved the absolute maximum in this sample of almost 20,000USD. In 2018, the bubble
burst and prices showed a sharp decline. In November that year one may even observe a "negative"
jump halving the price from 6,000USD to 3,000USD. In the first semester of 2019 there was the third
long duration bubble, while in the second semester of that year there was a reverse tendency. Finally,
in the year 2020 there is a sharp decrease in February/March, which is associated with the impact
of the Covid-19 pandemic crisis. Our sample ends in July 2020, when bitcoin was quoted around
10,000USD. Nevertheless, one should notice that bitcoin is now living the most important bubble in
all of financial history of mankind. At the time of writing (March 13, 2021) bitcoin price reached
more than 57,000USD. According to Jiang et al. (2020), the 2013 and 2017 peaks come from boosts
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in the popularity of bitcoin. The sharp decline in the beginning of 2018 was associated with the launch
of Bitcoin futures by the the Chicago Board Options Exchange (CBOE) and the Chicago Mercantile
Exchange (CME) (Sebastião and Godinho, 2020). Figure 5.1b presents the history of 1-min returns.
At this frequency, one may observe that returns are more volatile in the beginning of the sample, so
the stability of prices in that period were more "an illusion" due to the change in its scale during the
overall sample.

Table 5.2 presents the descriptive statistics of bitcoin 1-min returns. One can verify that returns
present a positive mean very close to zero, positive skewness, indicating more probability mass
on the right side of the distribution, a very high kurtosis in comparison to the reference value 3
of the normal distribution, showing that the distribution is highly leptokurtic. This extremely high
kurtosis, which is pervasive at various periodicities, has itself being addressed in the literature on
multifractality (Bariviera, 2017; Filho et al., 2018). To complement the strong evidence that the return
series are non-normal, Table 5.2 also shows the Jarque-Bera test, which peremptorily rejects the null
hypothesis of normality. The first order autocorrelation is significantly negative, corroborating the re-
sult present in Takaishi (2018), for the 1-min returns of the bitcoin price index in the period 2014-2016.

Table 5.2 Descriptive statistics of bitcoin 1-min returns

Returns

Number of observations 3,981,600
Mean (10−6) 1.6637
Standard Deviation 0.0021
Median 0.0000
Maximum 0.3529
Minimum -0.3065
Skewness 0.5099
Kurtosis 959.59
Jarque-Bera normality test (1011) 1.5181
First order autocorrelation -0.1931

In order to obtain a more detailed analysis, the full sample was partitioned into three sub-samples
(Figure 5.2): the first sub-sample is from 01/01/2013 to 08/30/2015, the second sub-sample is from
08/31/2015 to 01/27/2019, and finally the third sub-sample is from 01/28/2019 to 07/26/2020. As
highlighted before, now one can observe that in fact prices vary considerably in all the three sub-
samples, showing increasing and decreasing trends of several months or even years. Table 5.3
presents the descriptive statistics of bitcoin returns in those three sub-samples. The mean in each
sub-sample is very close to zero and the maximum and minimum of the full sample are both located
in the first sub-sample. Only the second sub-sample shows a negative skewness, which gives the
indication of a long left tail, while the others sub-samples show positive skewness. Kurtosis is
very high in all sub-samples, the highest being found in the first sub-sample and the lowest in the
second sub-sample. Therefore, the series are highly leptokurtic independently of the period considered.
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Fig. 5.2 Bitcoin prices in: (a) 1st sub-sample (b) 2nd sub-sample (c) 3rd sub-sample

Table 5.3 Descriptive Statistics of bitcoin returns on the sub-samples

1st subsample 2nd subsample 3rd subsample

Observations 1,401,120 1,794,240 786,240
Mean (10−6) 2.0366 0.1525 1.3157
Standard Deviation 0.0030 0.0015 0.0012
Median 0.0000 0.0000 0.0000
Maximum 0.3529 0.1227 0.0938
Minimum -0.3065 -0.1205 -0.0572
Skewness 0.5394 -0.2829 0.1609
Kurtosis 652.38 103.70 150.24
Jarque-Bera normality test (108) 246.18 7.5814 7.1020

In order to have a more complete picture on what has happen in the bitcoin market, namely in
terms of trading intensity, we also looked at the historical data of the daily volume of the overall
bitcoin market. These data was collected from the CoinMarketCap website1 from April 29, 2013 to
July 30, 2020 (2,650 observations). This site provides aggregated data on eligible online exchanges.
The data file is formed by the daily opening and closing, the lowest and highest prices (which are
commonly referred to as OLHC prices), volume, and market capitalization, all in USD. The daily
volume in bitcoin units is obtained by dividing the volume in USD by the average of the OLHC prices.
Figure 5.3 plots of the daily volume of bitcoin.

1https://coinmarketcap.com/currencies/bitcoin/historical-data/.

https://coinmarketcap.com/currencies/bitcoin/historical-data/
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Fig. 5.3 Daily volume of bitcoin

Daily trading volume shows a stable linear increase during the years of 2013-2016. In 2017 the
daily trading volume increased visibly and then remained stable in 2018. In 2019 it increased in
the first semester and decreased in part of the second semester, which was directly related with the
price tendencies. Interestingly, in 2020 volume and price trends are inversely related, that is higher
volume was associated with selling pressure and decaying prices, with the peak in trading volume
occurring during the Covid-19 pandemic crisis. Table 5.4 presents the descriptive statistics of bitcoin
volume. On average, during the overall period, the eligible exchanges traded around 848 bitcoins
per day. The daily volume shows positive skewness and some excess kurtosis. As suggested in the
finance literature, the Jarque-Bera test is applied to the natural logarithm of volumes, but even with
this transformation the log-volume is clearly non-normal.

The full sample was then divided into four sub-samples. 1st sub-sample from 04/29/2013 to
12/31/2016, 2nd sub-sample from 01/01/2017 to 12/31/2018, 3rd sub-sample from 01/01/2019 to
12/31/2019, and finally, 4th sub-sample from 01/01/2020 to 07/30/2020. Figure 5.4 shows the volume
charts and Table 5.5 presents the descriptive statistics of bitcoin volumes of these sub-samples. All the
statistics increase through the four sub-samples, except the skewness and kurtosis, which are lower in
the 2nd and 3rd sub-samples.

Table 5.4 Descriptive Statistics of bitcoin volume

Volume

Observations 2,650
Mean 848,75
Standard Deviation 1,320,441
Median 208,575
Maximum 14,450,842
Minimum 0.0000
Skewness 2.6429
Kurtosis 13.009
Jarque-Bera normality test 97.018
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Fig. 5.4 Bitcoin volume in: (a) 1st sub-sample (b) 2nd sub-sample (c) 3rd sub-sample (d) 4th sub-
sample

Table 5.5 Descriptive Statistics of bitcoin volume in four sub-samples

1st sub-sample 2nd sub-sample 3rd sub-sample 4th sub-sample

Observations 1,343 730 365 212
Mean 87,428 628,819 2,280,344 3,964,183
Standard Deviation 80,710 340,641 733,539 1,834,469
Median 78,155 601,178 2,254,127 3,858,410
Maximum 624,124 2,260,484 6,071,189 14,450,842
Minimum 0.0000 66,068 1,141,826 1,337,546
Skewness 1.7116 1.1555 1.0690 1.2654
Kurtosis 8.2939 5.1663 5.1690 7.1543
Jarque-Bera normality test 43.640 113.70 3.965 3.9130

5.2 Multifractality in the bitcoin 1-min returns

This section applies the MF-DFA to the bitcoin 1-min logarithmic returns, using the code pro-
vided by Ihlen (2012). To apply the method we define the following parameters: (1) the scaling
parameter ranges from smin = 64 to smax = 262,144 in powers of two, the parameter q ranges from -5
to 5 with a step of 0.1 and the polynomial order is m= 1. According to Ihlen (2012), one should choose
10 < s < N/10, where N is the length of the time series and the value of the minimum scale should be
higher than the polynomial order used for detrending. Therefore, the minimum and maximum scales
were chosen to be powers of two between those boundaries, namely the last value is the highest power
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of two lower than N/10.
Figure 5.5 presents the plot of log2 Fq(s) vs. log2 s for 101 different q orders and the plot of

log2 Fq(s) vs. s for the values q =−5, q = 0 and q = 5.

Fig. 5.5 (a) The plot of log2 Fq(s) versus log2 s for 101 different q orders and (b) the plot of log2 Fq(s)
versus s for three q orders.

Noticeably, the presence of multifractality may be detected through the non-parallel relationship,
i.e., the slope changes for different orders q. In addition, a significant difference of the fluctuation
function can be verified for different orders in small size segments (left section of each graphs).
Therefore, this is a first indication that the series of 1-min returns presents multifractality. Figure 5.6
shows the plot of h(q) and τ(q) on q.

Fig. 5.6 (a)The plot of h(q) on q and (b)the plot of τ(q) on q

Figure 5.6a shows that the variation of h(q) with respect to q is remarkable, presenting a non-linear
decreasing shape. The generalized Hurst exponent, h(q), is the slope of the regression lines in Figure
5.5. Most fluctuations are persistent (h(q)> 0.5), but this behavior is more evident in small fluctua-
tions, i.e, for q < 0. For q > 1.6, the fluctuations are anti-persistent (Zhang et al., 2019a). Therefore,
for small fluctuations, the bitcoin market presents long memory. According to Figure 5.6b, the Rényi
exponent τ(q) presents also a visible increase for values of q up to 2.5, and a non-linear behavior on q,
which results from τ(q) = qh(q)−1, and h(q) not constant. These results strengthens the claim that
the 1-min returns are multifractal. Finally, the multifractal spectrum f (α), which characterizes the
multifractal behavior, is shown in Figure 5.7. The curve presents a single-humped shape, representing
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multifractality.

Fig. 5.7 The multifractal spectrum f (α) versus α

Several insights can be obtained from the multifractal spectrum. First, the degree of multifractality
measured by Equation (2.7) is △h = 0.5895−0.3131 = 0.2764. This is a lower value than the one
obtained by Takaishi (2018) using 1-min data from January 1, 2014 to December 31, 2016. Second,
the width of the spectrum given by Equation (2.6) is △α = 0.6497−0.1046 = 0.5451. Third, one
of the important values in the spectrum is α0, which gives the maximum of f (α), that is, f (α0) = 1,
and hence measures the persistent behavior. In this case, α0 = 0.5366, which is a value relatively
close to 0.5 (Telli and Chen, 2020). Fourth, the asymmetry parameter A = (αmax −α0)/(α0 −αmin)

gives information about the multifractal spectrum. If A < 1, the spectrum is left-skewed and the
scaling behavior of large fluctuations dominates the multifractal behavior. If A > 1, the spectrum is
right-skewed and small fluctuations dominate the multifractal behavior (Telli and Chen, 2020). For
these time series A = 0.2618, which indicates that the spectrum is left-skewed.

In order to study the EMH of the 1-min returns, we use the Market Efficiency Measure (MEM) (Al-
Yahyaee et al., 2018; Wang et al., 2009) defined as follows:

MEM =
1
2
(| h(qmin)−0.5 |+ | h(qmax)−0.5 |) (5.1)

According to the EMH, h(q) should take the value of 0.5 for all q orders. Therefore, a market is
efficient if MEM is equal to 0. The further away from 0 is the value of MEM, the lower the degree of
market efficiency. For these time series MEM = 0.1382, which clearly indicates inefficient.

We proceed by studying the sources of multifractality. Figure 5.8 shows the results of the MF-DFA
applied to the shuffled series. The lines log2 Fq vs. s are not parallel for all the different q orders, al-
though for q = 0 and q =−5 there seems to be an almost parallel relationship. This may be interpreted
as a weaker evidence of multifractality than in the original data. In the graph of hshu f (q) on q, there is
a higher variation of hshu f (q) for q < 0, while for q > 0 hshu f (q) is approximately constant. Only for
a few orders of q, hshu f (q) presents a value visibly below 0.5. Therefore, the dependence of hshu f (q)
on q is higher in the original series than in the shuffled series. Also, the Rényi exponent presents a
smaller non-linearity compared to the original series. These results suggest that the multifractality
comes from the long-range correlations but also from fat-tails distribution, since there is still evidence
of multifractality in the shuffled series.
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Fig. 5.8 The MF-DFA for the shuffled series of the bitcoin 1-min returns

Table 5.6 compares the the degree of multifractality, △h, the width of the spectrum, △α , and
the asymmetry parameter, A, of the original and shuffled series. All these values are lower for the
transformed series indicating that multifractality is weaker in the shuffled series and thus long-range
correlations are also a source of multifractality. This result is in accordance with Telli and Chen
(2020), Stosic et al. (2019), Takaishi (2018) and Filho et al. (2018).

Table 5.6 Original series vs shuffled series: Degree of multifractality, width of the multifractal
spectrum and asymmetry parameter

Original Series Shuffled Series

△h 0.2764 △hshu f 0.0880
△α 0.5451 △αshu f 0.2332
A 0.2618 Ashu f 0.1073

In order to obtain the surrogate series we apply the Fourier Transform (FT), which is the basis
of the phase randomization, using the method also used in Theiler et al. (1992) and Schreiber and
Schmitz (2000)1. Figure 5.9 shows the results of the MF-DFA for these series.

1The Matlab code was obtained in Temu (2020). Surrogate Data (https://www.mathworks.com/matlabcentral/
fileexchange/4612-surrogate-data), MATLAB Central File Exchange. Retrieved on October 23, 2020.

https://www.mathworks.com/matlabcentral/fileexchange/4612-surrogate-data
https://www.mathworks.com/matlabcentral/fileexchange/4612-surrogate-data
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Fig. 5.9 The MF-DFA for the surrogate series of bitcoin 1-min returns

As for the plot of log2 Fq, the slopes for different orders are apparently parallel, which indicates
that the surrogate series appear to have an almost monofractal behavior. There is a small variation of
h(q) with q, since for −5 ≤ q ≤ 5, h(q) varies approximately around 0.47. Therefore, the dependence
of h(q) on q is much higher in the original series than in the surrogate series. The Rényi exponent
τ(q) as a function of q is almost linear compared to the original series. The existing multifractality in
the surrogate series is therefore very weak, which seems to indicate that the importance of long-range
is somehow reduced, when compared with the importance of fat-tails as a source of multifractality.

Table 5.7 presents a similar comparison as in 5.6 but now for the surrogate series. The degree
of multifractality, △hsurr, and the width of the multifractal spectrum, △αsurr are very small, and
hence the multifractality is much weaker in the surrogate series. Therefore, the weak multifractality
remaining in the surrogate series is due to the long-range correlations.

In sum, both sources of multifractality are present in the 1-min returns, but clearly fat-tails
is the most important one. This is in accordance with the literature, for instance Telli and Chen
(2020), Stosic et al. (2019), Takaishi (2018) and Filho et al. (2018), conclude that both sources of
multifractality are present in the bitcoin returns, while Zhang et al. (2019a) and Lahmiri and Bekiros
(2018) go further indicating that the fat-tails distribution is the main source of multifractality.
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Table 5.7 Original series vs surrogate series: Degree of multifractality, width of the multifractal
spectrum and asymmetry parameter

Original Series Surrogate Series

△h 0.2764 △hsurr 0.0026
△α 0.5451 △αsurr 0.0052
A 0.2618 Asurr 0.3333

In order to have a more precise idea on the contribution of each source we use the procedure of
Baranowski et al. (2015). The contribution to multifractality of long-range correlations is quantified
as:

| hcorr(q) |=| h(q)−hshu f (q) | (5.2)

while the contribution to multifractality of fat-tails distribution is quantified by:

| hdist(q) |=| h(q)−hsurr(q) | (5.3)

Results are shown in Figure 5.10.

Fig. 5.10 Absolute differences between the generalized Hurst exponents of original and shuffled
series, | hcorr(q) |, and between the the generalized Hurst exponents of original and surrogate series,
| hdist(q) |, as a function of q

Non-zero values of | hdist(q) | and | hcorr(q) | prove that both sources of multifractality are present,
however, for almost all values of q, | hdist(q) | is greater than | hcorr(q) |, meaning that the multifractal-
ity of the 1-min returns results mainly from the fat-tails distribution.

5.3 Multifractal Regime Detecting Method (MRDM)

This section uses the Multifractal Regime Detecting Method (MRDM), introduced by Lee and
Chang (2015), to verify the time ranges when multifractality predominates. Basically MRDM consists
on a loop of a multifractality test applied within overlapping fixed width windows.

The multifractality test is the following: Firstly, different maximum scales in powers of two
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are considered, smax. Then, the MF-DFA is applied for each one of those maximum scales, and the
values of the generalized Hurst exponents for q = 1 and q = 2 are estimated. By proceeding this
way, we end up with two vectors, h(1) and h(2), with the same number of elements as the elements
considered for smax. Finally, the Wilcoxon rank sum test is used on the null of multifractality such
that: H0 : h(1) = h(2). As in Lee and Chang (2015) we also used a significance level of 0.05.

It should be remarked that the procedure used here differs from Lee and Chang (2015) since
h(1) and h(2) are estimated using the MF-DFA, while those authors estimate these generalized Hurst
exponents according to the procedure proposed by Di Matteo et al. (2003).

In order to check the multifractality in the 1-min returns, the test is applied using the scales
s = 26, ...,smax with smax = 27, ...,218, s = 26, ...,smax with smax = 27, ...,213 and s = 213, ...,smax with
smax = 214, ...,218. The results are presented in Table 5.8. According to the Wilcoxon rank sum test,
the null hypothesis is rejected, with a significance level of 0.05, only for the higher scales, implying
that smaller cycles are better characterized by monofractality.

Table 5.8 Wilcoxon rank sum test for q = 1 and q = 2

smax p− value Result

27 to 218 0.0885 Monofractal
27 to 213 0.1649 Monofractal
214 to 218 0.0317 Multifractal

It should be noted that this test only compares h(q) with q = 1 and q = 2, i.e. very close values.
Table 5.9 shows the test results using q = 1 and q = 3. Now, multifractality is clearly evident in all the
maximum scales considered. So, the farther apart are the values of q, the bigger will be the differences
between the h(q) vectors, and hence more compelling evidence on multifractality will be drawn from
the test.

Table 5.9 Wilcoxon rank sum test for q = 1 and q = 3

smax p− value Result

27 to 218 0.0000 Multifractal
27 to 213 0.0006 Multifractal
214 to 218 0.0079 Multifractal

Before the application of MRDM, we performed another preliminary analysis by conducting the
multifractality test on non-overlapping periods with a duration of 4 months, i.e. the test with q = 1
and q = 2 is performed on 24 samples with a length 161,280 minutes. Therefore, each period of 4
months does not refer to calendar months but to the standard value of minutes per week and weeks per
month. The results are present in Figure 5.11. The points represent the value of one minus the p-value
of the test, and hence higher values indicate higher probabilities of multifractality being present in
those 4-month periods.
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Note: The dates on the x-axis refer to the beginning of the interval of each 161280 minutes period.

Fig. 5.11 Multifractality test applied for every 4 months of the 1-min returns

Figure 5.11 highlights that multifractality is most probably present in the beginning and end of
2013, early 2017 to November 2017, and July 2018 to September 2019. So, multifractality predom-
inates mainly in the three last years of the sample (2017 to 2019). Comparing these latter findings
to the 1-min bitcoin price chart (Figure 5.1), it can be seen that the periods where multifractality
predominates are years with fast and sharp bitcoin price growths. Monofractal behavior is predominant
in calmer or moderately growing periods.

After this precursory analysis we present the MRDM procedure. Let’s consider a sample window
with fixed width n△, which is rolled forward by △ units each time. In each window the aforemen-
tioned multifractality test is performed and the result of the test (1 if the test reject the null, and 0
otherwise), is recorded. The result for window i may be denoted by 1M(i), where 1 is the indicator
function. Now, let us consider that the period of interest is [t, t +△], which is included in n moving
window samples, as shown in Figure 5.12.

Fig. 5.12 The time range [t, t +△] included in n sample windows. Source: Lee and Chang (2015)

Hence, there are n windows in the the period [t − (n− i)△, t + i△] that contain period [t, t +△].
Multifractality is checked in this time range through the proportion index:

I(t) =
1
n

n

∑
i=1

1M(i) (5.4)

Therefore, I(t) represents the proportion of the n windows containing [t, t +△] that reject H0.
According to Lee and Chang (2015), the existence of multifractality in [t, t +△] is given if the
proportion index is above a certain threshold value, IM , that they assume equal to 0.7. The parameters
chosen for the application of the method were: a sample window of length n△= 161,280 minutes,
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which is equivalent to 4 months, each window moves forward △= 10,080 minutes each time, which
is equivalent to 1 week, and the threshold value IM = 0.7. Therefore, for each week n = 16. The
results of MRDM applied to our sample are shown in Figure 5.13.

Fig. 5.13 MRDM applied to the 1-min bitcoin returns

The proportion index is computed over 365 weeks, so each value in the graph represents one week.
The first week is from April 15, 2013 at 00:00 to April 21, 2013 at 23:59, leaving 15 weeks behind, in
order to have the associated period [t − (n− i)△, t +△]. The second week goes from April 22, 2013
at 00:00 to April 28, 2013 at 23:59 and so on. The last week is from April 06, 2020 at 00:00 to April
12, 2020 at 23:59 in order to have the associated period [t, t +(n+1)△].

Figure 5.13 presents the results of the MDRM. In the first half of the sample there are several
consecutive weeks where I(t) = 0, which clearly indicates monofractality. This behavior happens
from week 46 to week 188 (February 2014 to November 2016). For the majority of the weeks there
are always some windows where monofractality is rejected, however considering the threshold of
IM = 0.7, the existence of multifractality is only identifiable in weeks 200 to 212, 292 to 298 and
313 to 328, which roughly correspond to the years 2017, late 2018 and early 2019. These results are
in agreement with what was found in the previous multifractality test for non-overlapping 4-month
periods.

5.4 Multifractality of bitcoin in different online exchanges

This section examines the multifractal behavior of bitcoin in different online exchanges in the
period after the burst of the second bubble. We use the second data set of hourly returns from January
1, 2018 to October 12, 2020 and the third data set with daily returns from January 1, 2017 to December
2, 2020.

The idea to study multifractality in different exchanges is based on the results present in the
finance literature, according to which bitcoin prices in multiple online exchanges are not completely
arbitraged away, even those formed in exchanges with the higher market shares (Makarov and Schoar,
2020; Pieters and Vivanco, 2017). Hence transmission of information and volatility spillovers between
exchanges can last for several hours or even days and price discovery may occur at different paces
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(Matkovskyy, 2019; Pagnottoni and Dimpfl, 2019; Sebastião et al., 2018). So, arguably, price forma-
tion processes may be different, which may imply that fractal structures on those exchanges are distinct.

5.4.1 Hourly data

The MF-DFA parameters are the same as those used in Section 5.2 for 1-minute returns, except
for the scaling parameter that ranges from smin = 16 to smax = 2,048 in powers of two. The main
results of the original, shuffled and surrogate series are shown in Table 5.10. Figure A.1, Figure A.2,
and Figure A.3 in Appendix present graphically the application of the method to the three series,
respectively. All exchanges present similar results, meaning that multifractality does not change much
among different exchanges. The differences in the fluctuation function for different orders of q are
significant in small size segments, contrary to what is seen for large size segments. The generalized
Hurst exponent is decreasing with q. For small fluctuations, h(q)> 0.5 (persistent behavior), while for
large fluctuations, h(q)< 0.5 (anti-persistent behavior). Also, τ(q) is non-linear, which is a signal of
multifractality of the series. Finally, the multifractal spectrum, which is left-skewed (A < 1), presents
a curve with a single-humped shape for all exchanges.

Table 5.10 Multifractality in different exchanges using hourly data

△h △α A MEM △hshu f △αshu f △hsurr △αsurr

Bitfinex 0.2209 0.4195 0.5606 0.1104 0.1013 0.2148 0.0090 0.0212
Coinbase 0.2583 0.4949 0.7007 0.1291 0.0973 0.2081 0.0242 0.0481
Bitstamp 0.2551 0.4907 0.6478 0.1275 0.1149 0.2422 0.0158 0.0328
Kraken 0.2577 0.4971 0.7405 0.1288 0.1430 0.2909 0.0173 0.0380
Gemini 0.2556 0.4908 0.6779 0.1278 0.1358 0.2753 0.0133 0.0280
Cexio 0.2453 0.4755 0.6431 0.1226 0.1172 0.2379 0.0160 0.0340
Exmo 0.2326 0.4565 0.5016 0.1163 0.1194 0.2491 0.0169 0.0324

According to Table 5.10, it can be seen that there are four cryptocurrencies exchange with very
similar values, Coinbase, Bitstamp, Kraken and Gemini, presenting a stronger multifractal behavior,
with Coinbase showing higher values, while Bitfinex, Cexio and Exmo have slightly lower multifrac-
tality. In terms of efficiency, measured by MEM, Bitfinex and Exmo stand out as the more efficient
exchanges. Hence there is no discernible pattern relating multifractality and efficiency with the
liquidity of the exchanges (measured by trading volume) or even regarding their continent of origin.

For the shuffled series, the fluctuation function for different orders presents differences (h(q)
decreases as q increases), τ(q) has a non-linear behavior, and the multifractal spectrum, which is
left-skewed (A < 1), presents a curve with a single-humped shape. Regarding the surrogate series, the
evidences of multifractality are weaker when comparing with the original and shuffled data. The main
results summarized in Table 5.10, indicate that multifractality is weaker in the shuffled and surrogate
series, because both the degree of multifractality and the width of the spectrum of the shuffled series
(△hshu f and △αshu f ) and the surrogate series (△hsurr and △αsurr) decreased in relation to the values
of the original series. Therefore, it can be stated that, at this frequency, the multifractality of these
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exchanges comes from both sources.

Fig. 5.14 Absolute difference of the generalized Hurst exponents for original and shuffled series
| hcorr(q) | and original and surrogate series | hdist(q) | as a function of q, for the 7 exchanges using
hourly data

Figure 5.14 presents the results of | hcorr(q) | and | hdist(q) | computed according to Equation
5.2 and Equation 5.3, respectively. The plots indicate that the effect of fat-tails distribution is more
important than long-range correlations for all exchanges.

5.4.2 Daily data

This sub-section applies the MF-DFA to the daily bitcoin returns of the different cryptocurrencies
exchanges. The scaling parameter ranges now from smin = 16 to smax = 128 in powers of two. The
main results of the original, shuffled and surrogate series are shown in Table 5.11. Figure A.4, Figure
A.5, and Figure A.6 in Appendix, present graphically the application of the method to the three series,
respectively.

Table 5.11 Multifractality in different exchanges using daily data

△h △α A MEM △hshu f △αshu f △hsurr △αsurr

Bitfinex 0.2736 0.4845 3.0714 0.1783 0.0595 0.1083 0.0904 0.1728
Coinbase 0.2876 0.5010 5.4562 0.1981 0.0725 0.1396 0.0653 0.1332
Bitstamp 0.2980 0.5211 3.0490 0.1929 0.0404 0.0945 0.1002 0.1911
Kraken 0.2981 0.5180 3.0532 0.1946 0.0568 0.1078 0.0459 0.1016
Gemini 0.2914 0.5066 3.3188 0.1968 0.0606 0.1304 0.0494 0.0945
Cexio 0.3411 0.5772 4.0061 0.2465 0.0916 0.1783 0.1024 0.1930
Exmo 0.3298 0.5604 4.3524 0.2457 0.0486 0.1050 0.1002 0.1903

Again, exchanges exhibit multifractal behavior. Cexio and Exmo, two European exchanges
and the ones with the lower trading volume, have higher values of △h and △α , suggesting a stronger
multifractal behavior, and a higher value of MEM implying that are the least efficient exchanges. On



5.4 Multifractality of bitcoin in different online exchanges 37

the contrary, Bitfinex, the most liquid exchange, is the one that presents a weaker multifractal behavior
and higher efficiency. In fact, one may observe at a daily frequency a direct relationship between
multifractality and inefficiency with iliquidity (measured by trading volume).

The shuffled series continue to present a multifractal behavior. In the surrogate series, there is also
evidence of multifractality, but weaker, since logFq seem parallel in different orders and the variation
of △h as a function of q is very small in some cases. Hence, multifractality in the exchanges under
scrutiny also comes from both sources at a daily frequency.

Fig. 5.15 Absolute difference of the generalized Hurst exponents for original and shuffled series
| hcorr(q) | and original and surrogate series | hdist(q) | as a function of q, for the 7 exchanges using
daily data

The absolute values of hcorr(q) and hdist(q) are shown in Figure 5.15 for daily data. Contrary to
what we have seen so far, at a daily frequency, | hcorr(q) | is higher than | hdist(q) | in all exchanges
for almost all values of q. This means that the multifractality of the daily data results mostly from
long-range correlations.





Chapter 6

Conclusion

Bitcoin is a decentralized digital asset based on a public, immutable and resilient ledger, called
blockchain. Since its launch in 2009, bitcoin has thrived, attracting the attention of individual and
institutional investors, regulators and policy makers, and the public in general. Recently, due to its
impressive price appreciation, trading volume and market capitalization, the economics and finance
literature has been piling up at an significant rate. Most of this literature focus on gathering evidence
on stylized facts of bitcoin price dynamics, which appear to be quite different from other more
traditional and regulated financial markets. One way to characterize financial price dynamics is by
studying its fractal properties.

This dissertation aims at analyzing fractality of the bitcoin market, and also to provide some
insights on its informational efficiency. This study is conducted using the Multifract Detrended
Fluctuation Analysis (MF-DFA) of Kantelhardt et al. (2002) and the Multifractal Regime Detecting
Method (MRDM) of Lee and Chang (2015). The implementation of MRDM has an originality twist
because we use the estimations of the generalized Hurst exponentes obtained from the MF-DFA.

Those methodologies are applied to 1-min bitcoin returns (in USD) of Bitstamp (one of the most
mature, liquid and reputable cryptocurrency online exchanges) from January 2013 to July 2020. Two
other data sets constituted by hourly and daily returns of seven online exchanges (Bitfinex, Bitstamp,
Cexio, Coinbase, Exmo, Gemini and Kraken) for the years of 2018-2020 and 2017-2020, respectively,
are also used to check if eventual misalignments between these exchanges are visible on different
fractal dynamics.

Our results point out that bitcoin 1-min returns are non-normal. In fact, these returns are prone to
extreme volatility events, are subjected to jumps (the minimum and maximum returns in the sample
are -30.65% and 35.29%) and are highly leptokurtic. There is strong evidence that these returns
present multifractality, more specifically smaller fluctuations have a persistent behavior, while larger
fluctuations have an anti-persistent behavior. Overall, multifractality comes from the existence of
significant long-range correlations, which cast some doubts on the informational efficiency of bitcoin
prices at Bitstamp. But mainly multifractality comes from fat-tails distribution, which highlights the
high level of risk that investors are subjected to in this market.

The results also highlight that fractal dynamics are themselves time-varying. The MRDM shows
that, roughly speaking, multifractality is mainly present in the last half of the series. More precisely,
during 2017, and in late 2018 and earlier 2019. Monofractality in the period from February 2014
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to November 2016 is undoubtedly supported by MRDM. The analogy of Mandelbrot and Hudson
(2010) on the "wind tunnel" may shed some light on a possible explanation of these changes between
monofractal and multifractal behaviors. According to Mandelbrot and Hudson (2010), the complex
behavior of the wind inside a tunnel arises when the wind speed (i.e. the tunnel pressure) increases, or
when the tunnel opening narrows. Therefore, one may argue that the complexity in the bitcoin market
is caused by the pressure of increasing demand (that is, an increase in the "tunnel pressure") or by a
more inelastic supply (that is, a "narrow tunnel opening"). Noticeably, the periods of multifractality are
characterized by rapid and sharp growth in bitcoin prices resulting from demand increases, enhanced
by higher "public attention" and bitcoin attractiveness.

A second set of results were obtained for hourly and daily bitcoin returns from different exchanges.
These exchanges present similar results at hourly frequency: multifractality, with persistence in small
fluctuations and anti-persistence in large fluctuations, mainly coming from fat-tail distributions, but
still market efficiency may be low due to long-range correlations. There was no visible pattern relating
multifractality and efficiency with the trading volume of those exchanges. At a daily frequency one
observe a direct relationship between multifractality and inefficiency with illiquidity (measured by
trading volume), and now, a striking result is that the main source of multifractality is not fat-tail
distributions but instead the long-run correlations.

In sum, an everlasting drawback to long-run attractiveness and increasing valuation of bitcoin is
its short-run instability, as if these two features were the two faces of the same coin.
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Appendix A

MF-DFA and multifractal sources on
different online exchanges

A.1 Using hourly data (01/01/2018 - 10/12/2020)

Fig. A.1 The MF-DFA method for hourly data of Bitfinex (1st line), Coinbase (2nd line), Bitstamp
(3rd line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th line)
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Fig. A.2 The MF-DFA method for the shuffled series of hourly data of Bitfinex (1st line), Coinbase
(2nd line), Bitstamp (3rd line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th
line)
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Fig. A.3 The MF-DFA method for the surrogated series of hourly data of Bitfinex (1st line), Coinbase
(2nd line), Bitstamp (3rd line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th
line).
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A.2 Using daily data (01/01/2017 - 12/02/2020)

Fig. A.4 The MF-DFA method for daily data of Bitfinex (1st line), Coinbase (2nd line), Bitstamp (3rd
line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th line)
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Fig. A.5 The MF-DFA method for the shuffled series of daily data of Bitfinex (1st line), Coinbase (2nd
line), Bitstamp (3rd line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th line)
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Fig. A.6 The MF-DFA method for the surrogated series of daily data of Bitfinex (1st line), Coinbase
(2nd line), Bitstamp (3rd line), Kraken (4th line), Gemini (5th line), Cexio (6th line), and Exmo (7th
line).
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