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Abstract

Virtual reality has been growing in diverse areas in the recent past, ranging from games to
the medical field. Simultaneously with this growth, the field of haptics stands out. Haptic
displays are emerging as powerful interaction support for improving the realism of virtual
worlds. In most virtual reality applications, auditory and visual systems have a more
significant presence, whereas the tactile system is somewhat absent. With haptic devices,
these applications can incorporate tactile feedback, bringing the user the ability to touch
and feel objects in a virtual environment, creating many new and exciting applications.

Virtual reality has also been prominent in rehabilitation processes for different pathologies
such as stroke, spatial memory loss, and spinal cord injuries. We emphasize spinal cord
injuries within these pathologies, one of the most significant clinical challenges of today.

In 2016, a group of researchers presented a study that resulted in neurological improve-
ments through a 12-month intensive training using brain-machine interfaces. Today, the
TherTactExo team proposes modifications to reduce the training time through a new pro-
tocol that includes virtual reality associated with different sensory stimuli.

This project aims to develop a vibrotactile pattern editor and virtual reality components
to assist the TherTactExo team in their research. Besides, this project also intends to
provide tools to help projects involving virtual reality experiences with vibrotactile feed-
back. We started by researching the state of the art, where we analyzed existing editors.
After the analysis, we commenced the process of building our system. We designed an
architecture based on a Middleware that allows vibrotactile feedback to be expressed di-
rectly from the editor as well as from virtual reality components. This process resulted
in the Vibrotactile Editor’s development, which introduces features that allow the user to
create highly customizable vibrotactile patterns through a built-in waveform editor and
the multi-channel timeline. We also present the components developed for virtual reality,
namely the Unity and A-Frame components, enabling the user to create virtual experiences
where user interaction with these components expresses vibrotactile feedback.
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Resumo

A realidade virtual tem vindo a crescer nos últimos anos, estendendo-se de áreas de jogos a
áreas como medicina. Junto deste crescimento, destaca-se o campo das sensações hápticas.
Os dispositivos hápticos surgem como um mecanismo de suporte de interacção para mel-
horar o realismo dos mundos virtuais. Na maioria das aplicações de realidade virtual, os
sistemas auditivos e visuais têm uma presença mais significativa, enquanto que o sistema
táctil está ligeiramente ausente. Com os dispositivos hápticos, as aplicações de realidade
virtual podem incorporar feedback táctil, oferecendo ao utilizador a capacidade de tocar
e sentir objectos num ambiente virtual, dando origem à criação de um grande número de
aplicações novas e interessantes.

A realidade virtual também tem sido proeminente nos processos de reabilitação de difer-
entes patologias, tais como o AVC, perda de memória, e lesões da medula espinal. Aqui,
damos ênfase às lesões da medula espinal, um dos maiores desafios clínicos da actualidade.

Em 2016, um grupo de investigadores apresentou um estudo que resultou em melhorias
neurológicas através de um treino intensivo de 12 meses, utilizando interfaces cérebro-
computador. Hoje, a equipa TherTactExo, propõem modificações para reduzir o tempo de
treino através de um novo protocolo que inclui a realidade virtual associada a diferentes
estímulos sensoriais.

Este projecto visa desenvolver um editor de padrões vibrotácteis e componentes de real-
idade virtual para ajudar a equipa TherTactExo na sua investigação. Além disso, este
projecto pretende também disponibilizar ferramentas para ajudar projectos que envolvam
experiências de realidade virtual com feedback vibrotáctil. Começámos por pesquisar o
estado da arte, onde analisámos os editores existentes. Após a sua análise, iniciámos o
processo de construção do nosso sistema. Concebemos uma arquitectura baseada num
Middleware que permite que o feedback vibrotáctil seja expresso directamente a partir do
editor, bem como através dos componentes de realidade virtual. Este processo resultou
no desenvolvimento do Vibrotactile Editor, um editor que apresenta características que
permitem ao utilizador criar padrões vibrotáteis altamente personalizáveis através de um
editor de forma de onda integrado e de uma "timeline" multicanal. Apresentamos também
os componentes desenvolvidos para a realidade virtual, nomeadamente os componentes
Unity e A-Frame, que permitem ao utilizador criar experiências virtuais onde a interacção
do utilizador com estes componentes exprime o feedback vibrotáctil.

Palavras-Chave

Sensações Vibrotácteis, Realidade Virtual, Hápticos, Editor Gráfico, Unity, Aframe.
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Chapter 1

Introduction

In 2016, a group of researchers proposed and demonstrated a study that induces partial neu-
rological recovery in paraplegic patients through long-term training with a brain-machine
interface-based gait protocol [1]. Here, the patients were exposed to intense, immersive VR
training, enhanced visual-tactile feedback, and walking with a brain-controlled exoskeleton.
The overall integration of these multiple stimuli increased the subject’s neural activity.

Today, researchers are working on an improvement to the previous study, named the the
TherTactExo project. This project consists of an upgrade to the previous research reported
in Donati [1]. The main goal is to reduce the duration of a training protocol to achieve
partial neurological recovery of sensorimotor function in Spinal Cord Injury (SCI) patients
through an increased number of feedback stimuli coherent with the subjects’ intention
during the SCI rehabilitation. To accomplish this objective, the TherTactExo team defined
a new rehabilitation protocol, detailed in section 2.5.

1.1 Motivation

This dissertation aims to assist the TherTactExo by providing a tool for creating pro-
grammable vibrotactile sensations for VR environments. In these virtual reality experi-
ences, programming vibrotactile sensations prove to be difficult as there are no high-level
toolkits available to work with the TherTactExo project’s hardware specifications. There-
fore, it is necessary to develop a straightforward-to-use editor capable of creating different
vibrotactile sensations. The editor must allow users to visualize the vibration pattern
over time, test and calibrate the vibration patterns on the hardware, and export it into
a machine-and-human-readable format. The resulting tactile feedback will be expressed
through a feedback sleeve composed of several actuators placed on the patient’s arm during
the VR experience.

1.2 Challenges

Every project has its challenges. Being able to participate in such an ambitious project car-
ries many challenges. Understanding the background work and the theoretical foundations
behind its implementation it is utterly essential.

Virtual Reality associated with Rehabilitation or merely Virtual Rehabilitation has many
benefits and consequentially many challenges. For example, when comparing to the "tradi-
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tional rehabilitation", Virtual Rehabilitation can be presented in different formats, bringing
interactivity and motivation to the patient. Therefore, the first challenge is to develop in-
teractive and motivating virtual environments. Furthermore, these challenges are common
to Virtual Rehabilitation projects in general [2]. The first is clinical acceptance, which is
conditioned on proved medical efficacy. The VR interfaces pose another challenge. The
current standard VR interfaces are not designed as medical equipment, meaning that they
cannot accommodate the different patients. Finally, and one challenge that fits directly
in our project’s context is the shape, format, and weight of the haptic feedback equip-
ment. The patients must be able to interact with virtual environments naturally, without
usability constraints.

The next challenge is to deliver software according to the best practices of development.
Presenting a software product must always follow software development norms and stan-
dards. We also intend that this software be used not only by researchers in the medical
area but also for users with fewer computer skills. Therefore, it is imperative to build an
easy to learn, consistent, and efficient editor. As a consequence of this challenge, one rises.
The fact that there are few editors similar to what we plan to develop makes designing
one a challenge because there are few guiding examples. The same challenges apply to
the development of the Application Programming Interface (API). There is no guiding
example to help in the development. Also, the API design must be flexible to not only be
used by the delineated technologies but also for a wide range of applications.

Finally, we intend to develop the editor directly for the TherTactExo team. Considering
that the team is currently working with diverse platforms, another challenge is to build
the editor to interact with all the future implemented systems.

1.3 Objectives

Our work aims to help the TherTactExo team researchers create vibrotactile feedback by
developing a vibrotactile feedback editor to be used in the current training protocol. Thus,
the objectives of this project are:

• Develop a vibration pattern editor. This editor should be flexible enough to allow
different numbers and configurations of actuators, allow users to visualize the vibra-
tion pattern over time, test and calibrate the vibration patterns on the hardware,
and export the pattern into a machine- and human-readable format.

• Develop VR components for A-Frame1 and Unity to control the vibration actuators
according to pre-configured vibration patterns. We need to develop components for
the scenarios already defined in the rehabilitation protocol, which are environments
that experience "walking on the pavement", "sand" or "grass".

• Develop VR applications that showcase the work done in the two previous objectives.
We will create three virtual reality scenarios:

1. A stone environment: for the experience of "walking on the pavement".

2. A grass environment: for the experience of "walking on grass".

3. A sand environment: for the experience of "walking on sand".

1A web framework for building virtual reality applications
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1.4 Contributions

The main contributions from this projects are:

• Vibrotactile Editor that assists the TherTactExo team in creating VR experiences
with tactile feedback

• VR components for vibrotactile feedback that will be used to build the final VR
experience by the TherTactExo team

• Editor usability evaluation

• A-Frame component API usability evaluation

• Open-source software for the Vibrotactile Editor

• Open-source software for the Middleware

• Open-source software for the A-Frame component

• Open-source software for the Unity component

1.5 Document Structure

This document is structured as follows:

• Chapter 1 - Introduction: This chapter presents the overview of the work to be
done, including the motivation for its development, challenges, contributions, and
objectives.

• Chapter 2 - Background: This chapter presents the background knowledge essen-
tial to the further reading of this document.

• Chapter 3 - State of the art: This chapter presents the existent platforms available
in the market as well as the technologies to be used.

• Chapter 4 - Methodology and Work Plan: This chapter presents the followed
methodology for developing software and the work plan for both semesters.

• Chapter 5 - Requirements: This chapter presents the requirements for the project.

• Chapter 6 - Architecture: This chapter presents the architecture designed for the
project.

• Chapter 7 - The Vibrotactile Editor System: This chapter describes the Vi-
brotactile Editor System done during this dissertation.

• Chapter 8 - Evaluation: This chapter describes the evaluations done during this
dissertation.

• Chapter 9 - Conclusion: This chapter describes an overview of this dissertation.

3
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Chapter 2

Background

In this chapter, we briefly introduce the reader to the fundamental concepts that we will
be addressing during the present document. Given that this dissertation aims at providing
a tool for an ongoing project, there is also the need to provide background knowledge of
what is already implemented and how the interaction with it will be carried out.

2.1 Rehabilitation through Virtual Reality

The use of virtual reality in different healthcare applications is increasing. We found various
virtual reality applications such as rehabilitation of spatial memory [3], rehabilitation of
patients after a stroke [4], rehabilitation of physical activity in patients admitted to the
intensive care unit [5], and rehabilitation of patients with spinal cord injuries [1], which is
the motivation of this work. A significant reason for the growth in the inclusion of virtual
reality in this context is the entertainment it brings to the participants, leading to a greater
willingness to participate in the rehabilitation process [6]. In [5], the authors evaluated
the level of activity a Nintendo Wii console can provide and the patient’s satisfaction.
The results were that 86% of the participants would like to play the videogame in future
physical rehabilitation sessions.

Application of virtual reality can be classified as immersive, semi-immersive, non-immersive
[6]:

• Immersive: Refers to the extent the user is integrated into a virtual world experience
that is extensive, surrounding, inclusive, vivid, and matching [7].

• Semi-immersive: Refers to the extent to which the user interacts with the virtual
worlds through a surrounding screen [4].

• Non-immersive: Refers to the extent to which the user interacts with the virtual
world through a screen or monitor [4].

Rehabilitation associated with virtual reality shows promises in patients’ recovery. The
rehabilitation process shows improvement in isolation and when complemented with con-
ventional rehabilitation [4]. Besides, these studies also found that patients are more enter-
tained and are more willing to participate in the rehabilitation process when incorporated
with virtual reality [5, 6].
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2.1.1 Spinal Cord Injury Rehabilitation

Spinal Cord Injury (SCI) is a neurological condition associated with many life-changing
limitations, and rehabilitation remains a major clinical challenge. Motor recoveries after
neurological injury mostly depend on maximizing neuroplasticity. Neuroplasticity can be
defined as "the ability of the nervous system to respond to intrinsic or extrinsic stimuli by
reorganizing its structure, function, and connections"[8].

The brain is a component in the nervous system that controls the various functions of
the human body. It constitutes what is designated as the central nervous system, along
with the spinal cord and nerves. The nervous system is also composed of the peripherical
nervous system, consisting of sensory neurons, ganglia, and nerves that connect to the
central nervous system.

We can view the central nervous system as the command center of the body. Functionally,
the nervous system can be divided into the somatic and the autonomic components. The
autonomic component regulates specific body processes, such as blood pressure and the
rate of breathing. The somatic part consists of nerves that connect the brain and spinal
cord with muscles and sensory receptors in the skin [9]. Therefore, damage in the spinal
cord causes permanent changes in strength, sensations, and body functions below the injury
zone. The severity of the injury can be classified as complete or incomplete, depending on
the loss of sensory and motor functions.

Virtual reality is primarily used in the rehabilitation of this pathology in protocols that
"used games to provide stimuli that encourage movements to improve motor function,
balance, aerobic function, and pain" [10]. There are several types of methodologies and
protocols associated with the rehabilitation of patients with spinal cord injuries. However,
they all are "commonly used to induce or facilitate processes of neural regeneration and
plasticity, which might lead to significant functional recovery after SCI" [10].

2.2 Brain-computer Interfaces

A Brain-Computer Interface (BCI) is a device that measures and captures the activity of
the central nervous system and translates the signals transmitted by the brain into artificial
output signals of a computer system [11]. BCI’s are a technology that grows great interest,
not only in the scientific community but also in the lay public. The principal reason for
this stems from the fact that this technology has the potential to restore motor behaviors
in severely handicapped patients and also to control limb prostheses in amputees patients
[12].

A BCI framework or application is essentially composed of six steps in a closed-loop process.
Figure 2.1, presents the whole process.

Measuring brain activity is where the transmitted brain signal is acquired, amplified, and
digitalized. Two distinct methods for signal-acquisition result in different categories of
BCIs. They are categorized by using invasive or non-invasive methodologies, which we are
described later in this chapter.

The first phase is preprocessing the signal. In this phase is where we acquire the "brain-
data" that will be used to detect the subject signals. Usually, when using EEG, this data
tends to contain a lot of noise and needs to be filtered out [14].

Next, we have the feature extraction. One of the significant challenges in BCI platforms
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Figure 2.1: BCI Framework (redrawn from [13])

is developing algorithms for translating neural activity. One known drawback is trying to
"decipher the subject’s voluntary intentions, and decisions through measurements of the
joined electrical activity of the neuronal populations"[12]. Feature extraction is all about
translating the neural activity into a feature or a command. It is significantly essential
in the BCI systems due to its role in the precise representation of the classification stage
at specifying mental states [15]. The digitalized signal is subjected to a variety of feature
extraction procedures, such as spatial filtering, voltage amplitude measurements, spectral
analyses, or single-neuron separation. Also, BCIs can use signal features that are in the
time domain or the frequency domains. Once extracted these signal features, a translation
algorithm translates these signal features into orders that carry out the user’s intent. These
algorithms might use linear methods, such as classical statistical analysis, or non-linear
methods, such as neural networks [16]. In present-day BCIs, numerous techniques are
applied during the feature extraction phase. For example, in [17], wavelet-based feature
extraction algorithms were introduced. This algorithm, as described in [15], decomposes
a signal, allowing us to "analyze the different frequency bands, with different resolutions.
The signal decomposition is obtained by employing two sets of functions, called scaling and
wavelet functions, which are associated with low-pass filters and high-pass filters." Also,
in [15], it is provided a description and a comparison of feature extraction algorithms and
their impact in the classification stage.

In the classification phase, the classifiers translate the extracted features into actions/device
commands. Classifications of mental states vary according to the BCI system’s design. For
this reason, a broad spectrum of classification methods is used to design BCIs systems,
such as Linear Discriminant Analysis, Support Vector Machine, and Hidden Markov Model
[13].

Finally, after determining the user’s intents through the specific signal features, these are
translated into actions that operate a device. "Success depends on the interaction of
two adaptive controllers, user, and system. The user must develop and maintain a good
correlation between his or her intent and the signal features employed by the BCI. The
BCI must select and extract features that the user can control and translate those features
into device commands correctly and efficiently" [16].

2.2.1 Non-invasive BCI’s Systems

In non-invasive systems, the modulation of the brain signals are recorded from the sur-
face of the head using Electroencephalography (EEG) [18]. These systems are commonly
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Figure 2.2: Invasive and Non-invasive BCIs

named EEG-Based BCI. An EEG is a method that detects electrical activity in the brain
using small electrodes attached to the scalp (Figure 2.2) [19]. This method provides a
simple solution to get the brain recordings and requires relatively low-priced equipment.
Other non-invasive methods are based on neuroimaging technologies [15], such as Magne-
toencephalography (MEG), where signals are "obtained directly from the magnetic fields
produced by the brain activity" [20], and Magnetic Resonance Imaging (MRI), where
"functional MRI signals reflect brain activity indirectly by measuring the oxygenation of
blood flowing near active neurons" [20].

2.2.2 Invasive BCI’s Systems

In invasive systems, the devices to capture signals are inserted directly in the human
brain. The recordings of the brain activity are measured based on methods using epidural,
subdural, or intracortical electrodes (Figure 2.2) [16]. This methodology provides better
neural signals with high potential for further improvement; however, it carries the risk
associated with an invasive surgical procedure to place the electrodes [12]. There is a
higher threshold for adopting this methodology instead of a non-invasive one. It should
be used when they can provide communication superior to that offered by non-invasive
methods or other problems that impede non-invasive methods [16].

2.3 Exoskeletons

The concept and research on exoskeletons arose around the 1960s when General Electric
developed the first exoskeleton prototype [21]. Designated as Hardiman, this powered
exoskeleton was designed to allow the user to carry heavy loads with ease. However, it was
too heavy to accomplish its purpose [21]. Figure 2.3 illustrates the Hardiman concept, as
described in [21].

An exoskeleton is an external mechanical structure, with joints and links that simulate
those of the human body, respectively. Worn by the user, it is an external wearable frame-
work that facilitates, allows, assists and enhances physical activity through mechanical
interaction with the human body [22].

Taking into account the numerous possibilities of this technology, countless experiments
with exoskeletons were conducted. As a result, a broad spectrum of applications related to
exoskeletons has emerged with industry, military, and medicine standing out as the most
common.
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Figure 2.3: The hardiman project [21]

2.3.1 Industry and Military Applications

In industry and military sectors, exoskeletons are being developed to enhance the ability of
a healthy human. In the industrial area, the purpose of an exoskeleton is to increase, am-
plify, or reinforce the performance of the worker, often targeting specific body components.
[23].

In situations where the work is mostly physical - lifting and handling heavy materials -,
the aim is to increase the productivity gain, improve the quality of work and reduce the
risk of work-related muscle injuries [23]. Figure 2.4 illustrates a leg exoskeleton designed
for people who engage in load-carrying activities.

Figure 2.4: Leg exoskeleton components [24]

In the military area, the same paradigm is followed. Exoskeletons aim to enhance the
military’s physical capacity and resistance and increase load capacity without mobility
loss [24].

2.3.2 Medical Applications

In medicine, exoskeletons are commonly used for rehabilitation purposes associated with
a wide range of injuries, such as sports injuries, spinal cord injuries, and strokes. The
treatment for these conditions relies on extensive physiotherapy procedures that require
a high level of one to one attention from the therapist [25]. With exoskeletons, a single
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therapist can administer rehabilitation training with little physical labor due to mechanical
assistance that the exoskeletons provide [26].

For example, the exoskeleton used in [1] was developed in the neurorehabilitation paradigm
for restoring locomotion in patients suffering from SCI. In [26], a lower limb orthosis (Figure
2.5 ) was designed to assist during motor rehabilitation in patients suffering from neuronal
injuries through the re-learning of gating patterns. Exoskeletons can assist in the rehabil-
itation of other pathologies, as is the case of strokes. Strokes can cause severe long-term
disabilities, such as abnormal muscle activation and coordination, muscle weakness, and
dexterity, and precision loss [27]. In [28], an exoskeleton was designed to aid primarily
hemiplegic1 stroke patients with loss of function in the upper extremities, more specifically
to simulate a rehabilitation therapy session to achieve finger extension to open up the
palm, in order to resume motor activities and maintain daily activities.

Figure 2.5: Powered Ankle-Foot Orthosis [26]

2.4 Haptics

Haptics comes from the Greek haptikós, meaning "able to grasp or perceive." It refers to
the ability to identify and perceive the properties of objects through our sense of touch
and, more specifically, on active touch [29].

Haptic perception is fundamental to interact with the environment successfully. For exam-
ple, in the past decade, prosthetic devices have advanced remarkably, replicating nearly the
degrees of freedom of the human hand [30]. However, the use of these advanced devices has
been limited, due primarily to the feedback deficit. The primary reason for this drawback
is the feedback deficit from sensory receptors in the skin [30]. To overcome this difficulty,
researchers put their efforts into creating sensors that provide tactile and kinesthetic feed-
back. To achieve this end, it is crucial to study the fundamentals of the human haptic
system. Here, we summarize some terminologies and fundamental concepts essential to the
further reading of this document and provide relevant information about designing haptic
interfaces.

1total paralysis of one side of the body

10



Background

2.4.1 Human Haptic System

The human haptic system is bidirectional in the sense that the information it receives
is a function of hand movements used to explore the environment [30]. It consists of
the mechanical, sensory, motor, and cognitive components, as illustrated in Figure 2.6.
The tactile sensing information from the hand can be divided into two classes. These
classes delineate the features of the haptic sense. The first is denominated as tactile
information. Tactile information refers to the stimulation of sensors in the skin known as
mechanoreceptors. Kinesthetic information completes the tactile sensing. It refers to the
sense of position and motion of the limbs that comes from sensors in muscles, tendons,
joints, and the forces generated by muscles [30]. The obtained sensory information from
the sensors in the skin and muscles is then transmitted to the brain, where it is processed
in distinct cortical areas to give raise to our haptic experiences.

Figure 2.6: Human haptic perception [31]

2.4.2 Tactile and Haptic Interfaces

Using the skin and touch for communication, goes back to the early nineteenth century with
the development of braille for the visually impaired [30]. Since then, a variety of tactile
displays have been developed. However, tactile and haptic devices have a well-defined
distinct definition. Haptic interfaces enable a user to make contact with an object in a real
or virtual environment, to feel properties such as weight or stiffness, and to manipulate the
object directly [30]. Tactile interfaces provide vibrotactile, electrotactile, or static tactile
only to the skin whereas haptic interfaces engage both the tactile and kinesthetic senses
[30].

2.4.3 Vibrotactile Interfaces

We can find devices that are part of our daily lives in the broad scope of tactile interfaces. In
areas like gaming, for example, the vibration generated by the handheld console controller.
Phone vibrations are indicating an incoming call or a reminder for an approaching event.
Therefore, and based on the input delivered to the skin, the tactile interfaces can be
divide into three broad categories: vibration, static pressure, and lateral skin stretch [30].
However, given that the focus of the current work is on vibrotactile interfaces, we will not
be detailing the remaining categories and solely focus on vibration.
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Vibrotactile interfaces stimulate the skin by delivering pressure through motors or actuators
that convert electrical energy into mechanical displacement on the skin [30]. According to
[32], numerous features of vibrotactile stimuli can be modulated to send information over
this sensory channel. The physiological perception of the stimuli can differ from individual
to individual due to the sensitivity of one’s skin. Therefore, several parameters were defined
to produce different patterns of vibration [32]:

• Frequency: the main spectral component of the periodic stimulus;

• Intensity: the strength of stimulation;

• Timbre: the complexity of the stimulation waveform;

• Duration: the time length of the “on” time or an elementary stimulation;

• Spatial location: the single body part or the pattern of parts that are stimulated;

Adjusting the values given to each one of these parameters, we can create a wide number
of different stimuli patterns giving the user different feedback for different activities.

2.4.4 Vibrotactile Patterns

A vibrotactile pattern is a sequence of vibrotactile stimuli of different durations to create
a temporal pattern [30]. Figure 2.7 illustrates a vibrotactile pattern with one actuator and
varying intensity levels during a time period.

Figure 2.7: Vibrotactile Pattern

Understanding vibrotactile patterns and how to create them is a fundamental part of the
present work.

A haptic system (Figure 2.8) is usually composed of three principal components [33]. The
first is an input that can be from the user or a system event. Depending on the input, the
processor makes the decision to send one or more vibration patterns to the actuator(s).
Finally, the actuators produce the output through its vibration properties.

In this system, it is worth highlighting and specifying the type of actuators since their
vibration properties can give rise to different haptic perceptions. Actuators are mechanical
or electro-mechanical mechanisms that present controlled and occasionally limited move-
ments or positioning, which are operated electrically, manually, or by various fluids such
as air or hydraulic [34].
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Figure 2.8: Haptic System adapted from [33]

In haptics, the most common actuators are the Eccentric Rotating Mass (ERM) and Linear
Resonant Actuator (LRA). The LRA has a linear motion and the ERM a rotary motion.
The linear actuators convert the energy into straight-line motions, usually applied to appli-
cations that have push and pull functions. The vibration is produced when the LRA pushes
the mass up and down through a magnetic coil enhanced by a spring. Rotary actuators
convert energy to provide rotary motion [35]. The ERM actuators produce vibration by
rotating an unbalanced weight around the motor shaft. This rotation of the shaft causes
the spinning of the irregular mass simulating vibration effects [35].

(a) ERM motor

(b) Linear resonant actuator

Figure 2.9: Vibration motors. Retrieved from https://www.precisionmicrodrives.com/
vibration-motors
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There are also have the piezoelectric actuators, although their application is comparatively
smaller than ERM or LRA. These actuators generate motion through the piezoelectric
effect, a property that causes the material to squeeze or stretch when an electric signal is
applied [36].

Creating Vibrotactile Patterns

We can represent vibrotactile patterns in different waveforms. Figure 2.7 shows a repre-
sentation of a vibrotactile pattern as square wave. The challenge of creating an editor for
vibrating patterns involves knowing how to re-create an analog waveform by digital means.
To give a better understanding, we pretend to provide the user with the ability to create
any waveform. Analog signals are continuous in both time and amplitude, giving the user
higher freedom of manipulation to achieve the representation of the waveform they desire.
We can obtain these signals through the Pulse Width Modulation (PWM) technique.

PWM is a technique used by microcontrollers to re-create an analog signal by digital
means [37]. In most control applications, analog signals range continuously over a voltage
range between 0 and 5V. A PWM signal consists of two key elements: the duty cycle and
frequency. The duty cycle is the percentage of time the signal is on during a period of time
[37]. The time the signal stays on is called the pulse width. The frequency determines
how fast the PWM completes a cycle. With PWM is possible to simulate all the voltages
between 0 and 5V. This is accomplished by changing the portion of the time the signal
spends on versus the time that the signal spends off [37], that is, manipulating the duty
cycle.

To give a concrete example, the graphic in Figure 2.10, shows four different duty cycles.
The first one represents a voltage of 0V during the period of time. Next, we have a
representation of a 25% duty cycle. The average voltage can be calculated by taking the
maximum voltage and multiply by the duty cycle [38]. Therefore, with a 25% duty cycle
would yield 0.25 x 5V = 1.25V. Selecting a duty cycle of 50% would yield 2.5V, and, finally,
a 100% duty cycle would yield the maximum voltage, 5V.

Figure 2.10: PWM Duty Cycle. Retrieved from [37]

14



Background

2.5 TherTactExo

This section describes the TherTactExo’s project.

The TherTactExo project aims to reduce the previous training protocol capable of achieving
partial neurological recovery of sensorimotor functions in patients with spinal cord injuries
[1] by adding thermal feedback and dynamic virtual reality.

With these new additions, thermal feedback will be correlated with the virtual reality
scenario’s alterations and tactile feedback. In this new training protocol, patients will
be trained with richer sensory experiences to fulfill the time reduction goal, yet always
coherent with their volition.

2.5.1 Trainning Protocol

The TherTactExo’s training protocol is a refined version from the training protocol de-
scribed in [1] by introducing dynamic Virtual Reality (VR) scenarios and thermal feedback
that will match the users’ virtual experiences. The protocol consists of three phases.

In the first phase, the patient is required to modulate his/her neural activity by imagine
movements of their own legs to indicate commands, such as "start" or "stop" walking. In
SCI, the patient’s brain may not be able to generate these simple commands due to the
loss of sensations and movement. Therefore, the goal of this first phase is to guarantee that
the patient’s brain can make such commands many years after the SCI. The commands
generated will then be translated to control the gaiting of the avatar legs. Gaiting refers to
the way of an individual natural walking. In this phase, the patient will be in an orthostatic
position2 on a stand-in-table. Thermal and tactile feedback is expressed in the patient’s
arm through the feedback sleeve. Visual and auditory feedback is delivered through VR.
Figure 2.11 illustrates the first phase.

Figure 2.11: First training phase

During the second phase, the patient is using an exoskeleton in a passive gaiting mode
– robotically assisted walk without neuronal control – while receiving all the feedback
previously mentioned (Tactile, Visual, Auditory, and Thermal (TVAT)), as illustrated in

2Upright standing position
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Figure 2.12. In other words, the patient is wearing the exoskeleton in passive mode, that
is, the exoskeleton simulates walking. At the same time, tactile stimulation is given in the
forearm following the rolling robotic feet on the ground. This phase consists of regular
rehabilitation training and is aimed at improving muscle strength, bowel function, and
getting the patient’s cardiovascular system used to the orthostatic position.

Figure 2.12: Second training phase

Finally, in the third phase, as demonstrated in Figure 2.13, the patient will actively con-
trol the exoskeleton movement using neural modulation of their EEG. At this point, the
patient’s lower limbs will move as a result of patients’ intention (first phase training), and
a continuous stream of tactile feedback information will be given to the upper arms.

Figure 2.13: Third training phase

2.5.2 Feedback Sleeve

The feedback sleeve (Figure 2.14) is connected to a microcontroller, which is responsible
for sending information to the actuators embedded in the sleeve. The microcontroller is
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connected to the computer via USB and communicates through the board’s serial port.
Figure 2.15 shows a diagram that illustrates the interactions between the computer and
the feedback sleeve.

(a) Components (b) Testing vibration

Figure 2.14: Prototype Sleeve

Currently, the feedback sleeve is composed only by actuators. The thermal component
will not be used during this work nevertheless, it is described in this section to give a full
perspective of the system. The prototype we are currently using for testing is illustrated
in Figure 2.14

Figure 2.15: Feedback sleeve prototype

In Figure 2.14a, we can observe that the prototype is composed of six ERM actuators
embed in an acoustic foam material. The prototype uses an Arduino Nano to control these
ERM actuators, connected to a computer via USB. On the right side, in Figure 2.14b, it is
demonstrated how to perform a test to feel the output of a vibration pattern in the user’s
arm. The user lays its arm over the motors and perceives its vibration pattern.
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Chapter 3

State of the Art

This chapter presents the research result of the current state of the art on vibrotactile
editors and an analysis of possible solutions for programming graphical user interfaces.
We also describe complementary technologies related to the project.

3.1 Vibrotactile Software

3.1.1 Macaron

Macaron is a web-based effect editor for creating vibrotactile patterns. Previously vibrotac-
tile effect libraries, available to designers, did not have an option for effect customization.
Those library elements were generally opaque in construction and immutable. For this
reason, Macaron was developed to allow the customization o vibrotactile effects, through
the manipulation of signal parameters such as frequency, amplitude, and waveform [39].
In Figure 3.1 below, it is presented the Macaron Editor.

Figure 3.1: Macaron Editor retrieved from [39]

On the right side of the editor, the user can select examples from the available frames.
These examples are immutable, however, it is possible to crop a selection and drag it to
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the left side of the editor. On the left side, the user can manipulate freely the waveform.
Macarron editor implemented familiar concepts such as tracks, envelopes, and keyframes.
These concepts are standard in a broad spectrum of editors, concretely video and audio.
The tracks are used to provide the user with perceptual parameters such as the amplitude
and frequency. Using keyframes, the user can easily manipulate the waveform to a specific
design.

Macarron editor presents a set of unique features. It gives the user freedom to manipulate
the waveform. Features such as drag-and-drop, realtime playback, undo and redo, copy
and paste from selected examples, a set of preset examples, are the principal assets of
this software. It brings value in terms of usability and fast-reaching the main objective:
generating a vibrotactile pattern.

3.1.2 VibViz

Vibviz is an interactive tool for end-user to access a large and diverse set of vibrotactile
stimuli organized in different schemes: Sensory and Emotional View, Physical View, and
Metaphor & Usage Example View [40]. Following, in Figure 3.2 is a snapshot of the VibViz
library.

Figure 3.2: VibViz library. Snapshot from https: // www. cs. ubc. ca/ ~seifi/ VibViz/
main. html

VibViz provides to the users a way to assist in waveform customization or manipulation
by creating a vast library divided into three views. Each of these views contains a screen
where the user can observe the vibration representations graphically. Also, each vibration
has associated different characteristics. These characteristics were synthesized through
research on tactile language and vibrotactile effects, and are the following:

• Emotional: represents the emotional interpretation of the vibration.

• Usage Examples: Types of events in which a vibration fits.

• Metaphors: Familiar examples resembling the vibration’s feel.

Although VibViz does not allow the user to manipulate a waveform directly, this vast
library of examples is an asset. It gives the user the possibility to replicate a vibration
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pattern by presenting a visual representation. The filters and the navigation itself is
very intuitive. The users can quickly narrow the search for a pattern. Additionally, the
vibrotactile effects used in the VibViz library are available for use, in Waveform Audio File
(WAV) format.

3.1.3 posVibEditor

The posVibEditor is a graphical authoring tool of vibratory patterns for multiple vibration
motors or actuators. This editor supports the customization of the vibration patterns
through graphical editing. It also supports a multi-channel vibration pattern design as
well as a drag-and-drop paradigm. Figure 3.3 shows the posVibeEditor’s interface.

Figure 3.3: The posVibeEditor retrieved from [41]

The vibration pattern editor provides the user interface for designing vibration and playing
them on the spot. The multi-channel interface allows the design and test of simultaneous
vibration for multiple actuators. Finally, the panel is a workspace where the user can
manage and group the formerly designed vibration patterns [41].

The posVibeEditor has unique features when comparing to the already analyzed works. It
allows the user to save the vibration pattern in a database using XML formats. It permits
the user to reuse previously designed patterns and saves the recently created. The multi-
channel interface can assign different vibration patterns to individual actuators and can
also chronologically handle its activation.
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3.1.4 Hapticon Editor

One of the first interfaces for creating vibrotactile patterns was Hapticon Editor. Before
the name of vibrotactile sensations became the standard, the programmed forces applied
to the user through a haptic interface were also referred to as hapticons [42]. Below, in
Figure 3.5, it is represented the graphical interface of the Hapticon Editor.

Figure 3.4: Hapticon Editor retrieved from [42]

The Hapticon Editor was developed for a haptic display with a single degree of freedom.
It allows the user to create a new file for designing the waveforms. These files can be
saved and are displayed on the left panel of the editor. The editor provides seven simple
waveforms with varying amplitudes, frequencies, and durations. The user can customize
the waveform by concatenating the types of wave functions. Also, the user can select the
dots - similar to the keyframes in the Macarron Editor - and move the wave up or down.

Figure 3.5: Hapticon Creator Screen retrieved from [42]
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Overall, the Hapticon Editor has most of the features desired for this set of editors. It
provides an effortless way to create a waveform and later saving it for reuse. However, this
editor is focused on a single haptic interface. As a consequence, it lacks a multi-channel
timeline. Also, the editor does not have a preset of vibration pattern examples, relevant
for inexperienced users in waveform customization.

3.1.5 VITAKI

VITAKI is a vibrotactile prototyping toolkit for Eccentric Rotating Mass actuators. This
platform was developed to facilitate the prototyping and testing procedures of new vibro-
tactile interaction techniques for Virtual Reality and video games [43].

Figure 3.6: VITAKI Editor [43]

The VITAKI platform allows the user to adjust the controller’s parameters and create
complex vibrotactile stimuli over multiple actuators. The user can also choose a picture
that represents the device used. After that, the user can set the number of the actuators
and rearrange them according to the user’s preferred spatial position. In the right panel is
present a default set of waveforms where the user can drag and drop to the desired channel
or actuator. These waveforms can be edited by the user through the waveform editor (
Figure 3.7 ), saving them, creating a custom set for future use.
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Figure 3.7: Waveform Editor [43]

Finally, VITAKI also was a configuration dialog (Figure 3.8) that allows communication
with a particular hardware device. Here, it is possible to identify the number of actuators
available and change the configuration according to the present parameters.

Figure 3.8: Configuration Dialog in the VITAKI platform [43]
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3.1.6 Comparative Analysis

All of the reviewed editors provided some unique features essential to include when creating
vibrotactile patterns. Next, we identified the characteristics essential to have in a vibration
pattern editor and performed a comparative analysis between the studied editors, detailed
in Table 3.1.

Feature Macaron posVibeEditor VibViz
Hapticon
Editor

VITAKI
Vibrotactile

Editor
Built-in waveform editor Yes Yes No Yes Yes Yes
Free waveform design
manipulation

Yes No No No No Yes

Visual representation of
the device

No No No No Yes Yes

Used actuator -
Vibration
motor

-
Force
knob

Vibration
motor

Vibration
motor

Actuators supported - ERM -
DC

motor
ERM/LRA ERM/LRA

Internal player Yes Yes Yes Yes Yes Yes
Multichannel timeline No Yes No No Yes Yes
Multiple actuators No Yes No No Yes Yes
Sample library Yes Yes Yes No Yes Yes
Open-source Yes No Yes No No Yes
Software available Yes No No No No Yes
High level VR
components

No No No No No Yes

API No No No No Yes Yes

Table 3.1: Comparative analysis between the studied editors

The first feature that emerges and is familiar to all editors is the built-in waveform editor.
This is an essential feature to have as it allows drawing the vibrotactile patterns.

Also, in the built-in waveform editor, it is essential to give the user the freedom to de-
sign vibrotactile patterns as needed without concatenating various functions representing
waveforms, as is the case in most of the editors.

Presenting the user with a visual representation of the device they are working on helps
them envision possible configurations and how many possible ways they can express the
vibrotactile feedback. Besides VITAKI, this feature is not included in any of the remaining
editors.

The following two characteristics concern the type of actuators that are used and supported
by the editors. An editor that has more flexibility in the kind of actuators supported
becomes more appealing to future users.

In addition to creating the vibrotactile patterns, the editor should also be able to reproduce
the vibration directly on the feedback device. This is a must-have feature as we can see it
is available in all the editors.

A timeline with multiple channels allows the definition of numerous parameters, including
the start time for each pattern, which actuators and vibration patterns are associated with
and contained within the channel. Besides these features, it allows the user to create much

25



Chapter 3

more complex vibrotactile patterns.

The editor must also be able to support multiple actuators. When creating more complex
projects involving more than an actuator, it is imperative to the editor to be flexible to
handle a finite number of actuators.

Almost all the editors have a library of examples. VibViz stands out in this regard,
presenting a large set of samples. The examples facilitate engagement, discover different
vibration pattern types, and help construct new ones.

Aside from Macaron, most editors are not open source and do not make the software
available. Making the software available helps us understand its behavior and identify
aspects that can be improved.

Finally, none of the editors provides high level VR components and, except for VITAKI,
no other presents an API for communication with external applications.

In conclusion, in this dissertation, we aim to develop an editor capable of meeting all the
enumerated features in Table 3.1. A common characteristic among the reviewed editors
leans on working with single degrees of freedom actuators, meaning that the waveform
manipulation only reflects on the frequency vibration of a specific actuator. The objective
here is to develop an editor capable of customizing both the intensity and the frequency of
the actuator’s vibration. Also, to have an extensive library of vibration patterns categorized
according to several parameters as in the VibViz example. One of the possible solutions
is to integrate the available files provided by the VibViz researchers and accessible for free
use to accomplish these features. In the next section, we will be evaluating the technologies
available for developing the editor, starting by reviewing graphical user interfaces.

3.2 Graphical User Interfaces

A Graphical User Interface (GUI) is a type of user interface that enables the user to
interact with electronic devices via graphical controls or widgets [44]. In this section, we
will be listing and analyzing different types of GUI toolkits. To develop the graphical
editor for programming the vibrotactile sensations, a review of the features provided by
all the solutions available is essential for the definitive selection of the GUI framework.

Most of the GUIs have a preset of standard features and are coupled with a particular
programming language. The most important type of controls are listed below:

1. Buttons, radio buttons, and check-boxes

2. Canvas

3. Text entries, labels, and messages

4. Menus, spin-boxes, and scrollbars

Of these list items, canvas, in particular, it is an asset for the user to create its pattern
through freely drawn geometric shapes. Also, we pretend that the GUI is available for a
variety of different systems. This is solvable by opting for cross-platform GUI frameworks
or opting for web-based user interface frameworks. Therefore, this section is divided into
two main categories: Cross-platform and web-based GUI framework solutions.
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3.2.1 Cross-platform Interfaces

A cross-platform system or applications are systems or applications that can run in multiple
types of platforms or operating environments [45]. Here, we present a list of solutions to
existing cross-platform GUIs.

TkInter

TkInter is a GUI programming toolkit for Python language. It is the standard GUI toolkit,
and it is available in the standard Python package. This library offers all the types of
controls stated at the beginning of this section. Also, since it is coupled with the Python
language, it can be used alongside with matplotlib library to create automatic charts [46].
Figure 3.9 illustrates a GUI example using the matplotlib library.

Figure 3.9: TkInter GUI example [47]

Kivy

Also associated with Python language, Kivy is an open-source library for rapid development
of applications that make use of innovative user interfaces [48]. Kivy brings a more modern
look to its components when compared to Tkinter. Like Tkinter, it can also use all the
python libraries and use matplotlib to integrate charts into the user interface. However,
since Kivy is not included with Python, it requires a new package installation. One of the
significant advantages of Kivy’s are developing for touch interfaces as it can natively use
most inputs, protocols and devices [48].

Swing

Java Swing is a GUI programming toolkit for Java. Swing was developed to give a more
refined set of GUI components than the previous GUI programming toolkit, the Abstract
Window Toolkit [49]. Coupled with the Java GUI programming, it offers all the main GUI
features listed previously. Figure 3.10 illustrates a GUI example developed in Java Swing
with the principal features highlighted.
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Figure 3.10: Java Swing GUI example [50]

JavaFx

Also written in the Java language, JavaFX is a set of graphics and media packages that
enables developers to design, create, test, debug, and deploy rich client applications that
operate consistently across diverse platforms [51]. The first version was released in 2008
and first developed by Sun Microsystems until being acquired by the Oracle Corporation.
JavaFX has UI components based on Swing since its initial release arrived much earlier
than JavaFX. However, this is not a shortcoming. JavaFX provides rich GUI components
with an advanced look and feel and has upcoming new rich UI components. Figure 3.11
illustrates an example of a GUI designed in JavaFX.

Figure 3.11: JavaFX GUI example [52]

ElectronJs

ElectronJS is an open-source framework created by Cheng Zhao. Formerly known as Atom
Shell, ElectronJs is now being developed by GitHub. The first version was initially released
in May 2016. It enables the development of desktop GUI applications using components
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originally conceived to designing web applications. Nowadays, there are a significant num-
ber of applications developed with Electron, including Atom, GitHub Desktop, Slack, Dis-
cord, WhatsApp Desktop, and Visual Studio Code. Currently, the stable version is 8.1.1
[53]. For example, in Figure 3.12 is presented an image of the GitHub Desktop application
developed with Electron.

Figure 3.12: Screenshot of GitHub Desktop developed with Electron

3.2.2 Web-based User Interfaces

A web-based GUI refers to the interaction between the user and software running on a
web server, where the browser acts as the user interface [44]. The advantage of using web
user interfaces is that they are platform-independent and require no installation. Also, it
requires no manual updates. With the growth of web development, various open-source
frameworks for creating user interfaces are available for integration. When analyzing plat-
forms that enable UIs development, we look at two distinct groups:

• Frameworks that allow us to organize the User Interface (UI) with pre-defined UI
elements (Cascading Style Sheets (CSS) Frameworks).

• Frameworks that allow us to couple between frameworks from the previous point
with application logic (Development Frameworks).

We analyzed these groups separately, starting with the frameworks for UI organization.

Due to the vast diversity of existing frameworks for building user interfaces, the chosen
criteria was based on popularity, date of the initial release, and last stable version date.
The popularity metric was measured recurring to GitHub repository stars.

Bootstrap

Bootstrap is currently the most popular front-end framework to design graphical user inter-
faces. Created by Mark Otto and Jacob Thornton, Bootstrap is an open-source framework
for the development of interface components using HyperText Markup Language (HTML),
CSS, and JavaScript. It is a well-documented framework and provides the user with several
free to use templates. From version 3.0, Bootstrap follows the mobile-first design paradigm,
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prioritizing the responsive design by default. Currently, the stable version is 4.1, and it is
compatible with most of the modern web browsers [54]. Using the resources given in the
official documentation, Figure 3.13 illustrates an example of a GUI dashboard template,
showcasing nearly all the features we intend for our editor.

Figure 3.13: Dashboard Template for Bootstrap [54]

Semantic UI

Semantic UI is a modern front-end development framework, powered by LESS and jQuery.
It is designed for theming and enables the developer to create websites having more than
fifty user interface elements, numerous CSS variables, and based on the flexbox model. On
top of that, the elements are built with EM values for a responsive design. This allows the
creating of a multiple device web platform. Finally, Semantic is integrated with popular
frameworks such as React, Angular, Meteor, and Ember. Currently, it is being used by
diverse applications, including Snapchat, Kmong, and Accenture [55].

(a) Semantic UI elements

(b) Semantic UI elements

Figure 3.14: Example of UI elements available in SemanticUI [55]

Bulma

Inspired by Bootstrap, Bulma is a new open-source CSS framework based on the flexbox
model. As no JavaScript is required, it easily integrates with any JavaScript environment
such as Vanilla, Angular, React, and Vue. Bulma can be integrated into any project with
a single CSS file [56].
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Figure 3.15: Example of UI designed with Bulma [56]

Foundation by Zurb

Foundation is a responsive front-end framework. Foundation provides a responsive grid
and HTML and CSS UI components, templates, and code snippets, including typography,
forms, buttons, navigation, and other interface elements, as well as optional functionality
provided by JavaScript extensions [57]. In Figure 3.16 are illustrated some examples of
Foundation’s UI components.

Figure 3.16: Example of UI elements from Foudation framework [57]

We conclude here the analysis of the frameworks of the first group. Next, we present the
frameworks from the second group:

React

Launched in 2015 by Facebook, React is an open-source JavaScript framework for creating
user interfaces. First created by Jordan Walk, a software engineer working for Facebook,
React’s first appearance was on Facebook’s news feed in 2011 [58].
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VueJs

Created by Evan You, an ex-engineer of Google, first released in February 2014, Vue is an
open-source Javascript framework for client-side programming, focused on creating single-
page applications and user interfaces [59].

Angular

Angular is a platform for building mobile and desktop web applications based on Type-
Script [60]. It was created by Google, first released in September 2016.

3.2.3 Comparative Analysis

Cross-platform Technologies Comparison

In the analysis of the technologies for the development of cross-platform interfaces we have
not found a linear approach to compare these technologies with each other. All of them
present the characteristics that we are looking for to develop our graphical interface.The
differences found are mainly the design of the components, where newer technologies pro-
vide components with a better look and feel, and the directly associated programming
language. Kivy and TkInter are coupled with Python, Swing and JavaFX with Java. Elec-
tronJs on the other hand is coupled with JavaScript but can use the CSS Frameworks
listed in the last section.

Web-based Technologies Comparison

Most of the frameworks analyzed in the web-based GUIs section are trending frameworks
used in many applications. There is no specific metric when it comes to making a com-
parative analysis. We used the same criteria for the evaluation as the criteria used for the
CSS framework selection:

1. Popularity

2. Date of the initial release

3. Date of the last stable version

Popularity is essential to the extent that comes with increased support from the community.
There is a higher probability of the same issue being resolved in community forums in case of
doubts. The date of the initial release can be related to the date of the last stable version.
It reveals framework growth or stagnation. We want to develop a user-friendly editor,
consistent and appealing to the user. The look and feel of the components must be rich,
must be intuitive, and overall must be familiar. To achieve this goal, newer frameworks
or old frameworks with consistent growth are the most desirable solution. Figure 3.17
presents a popularity chart based on GitHub stars for each CSS Framework repository.

Next, we assemble the release and the last stable version date in a chart to visualize how
each framework has evolved and if it is in continuous evolution.
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Figure 3.17: CSS frameworks popularity based on GitHub stars

Figure 3.18: Initial release and last stable version date of each CSS framework

Similar to the CSS frameworks analysis, we adopted the same approach for the development
frameworks. Figures 3.19 shows the frameworks’ popularity according to the stars on
GitHub, and Figure 3.20 the framework release and stable version date.

Figure 3.19: Development frameworks popularity based on GitHub stars
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Figure 3.20: Initial release and last stable version date of each development framework
framework

Final Conclusions

All the analyzed frameworks enable the development of a well-defined GUI. Within the
technologies for the development of cross-platform interfaces, we highlighted ElectronJs
for its flexibility and integration with CSS frameworks that provide us with more freedom
to design UI elements and, consequently, the GUI.

Within the technologies for Web-based GUI development, as far as CSS frameworks are
concerned, Bootstrap is the most widely used framework by developers, evidenced by the
popularity of its GitHub repository. In development frameworks, React, and Vue stand out.
These frameworks are among the most frequently found in web-based GUI development.

That said, the first decision we made was to select the type of GUI we wanted. The decision
made was to develop a Web-based GUI. A significant reason behind this choice was the
diversity of frameworks to organize the UI. We also take into consideration that the A-
Frame component is developed for virtual reality experiences on the web. Once we made
this decision, the next choice was the CSS framework. We decided to go with Bootstrap,
given its popularity, well-structured documentation, and web design responsiveness. To
develop the interface, we opted for React. Although Vue is more popular, this was heavily
influenced by the author’s previous experiences with the React framework.

In conclusion, the GUI will be web-based developed using React combined with Bootstrap.
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3.3 Technologies

3.3.1 Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware and software
[61]. Arduino boards are used in a vast broad of applications. These boards are capable
to read inputs and turn it into an output. For example, a user presses a button, the board
detects the event and lights a specific LED light.

There are several other microcontrollers available in the market but Arduino stands out
as it is inexpensive, has published open-source software, and hardware and has a clear
programming environment. We will be using Arduino to be a bridge between the feedback
sleeve and the Vibrotactile Editor.

3.3.2 Unity

Developed by Unity Technologies, Unity is a powerful known cross-platform game engine
released in June 2005. Unity is an application that enables the user to create games and
experiences [62]. Figure 3.21, shows the Unity3D interface.

Figure 3.21: Snapshot of the Unity Interface retrieved from [63]

The project window displays the library of available assets as well as imported assets
to the project. Scene view permits the developers to have visual navigation and editing
capabilities for the created scene. On the right side is the Inspector Window. It enables
the inspection of all the editable properties of a selected object. As the name suggests, the
Hierarchy Window shows a hierarchical representation of the available objects in the scene.
Finally, the Toolbar Window contains the essential tools to manipulate the scene and its
objects. We will be using Unity to create components for virtual reality. The objective
is to integrate the resulting vibration patterns created previously with the Vibrotactile
Editor with a Unity component.

3.3.3 A-Frame

A-Frame is a recent open-source web framework to build virtual reality experiences. Re-
leased in 2015 and developed initially by the Mozilla VR team, A-Frame is a JavaScript
framework that enables developers to design 3D and VR experiences with HTML. A-Frame
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was developed to be an effortless way to build VR content and has grown to be one of
the largest VR communities. It supports most of the VR headsets, and it is platform-
independent, meaning that still woks in standard desktops and smartphones when the user
lacks VR headsets [64]. Figure 3.22 showcases a virtual reality experience developed with
A-Frame.

Figure 3.22: Snapshot of one A-Frame example retrieved from [64]

Here, the same objective as in Unity is applied. The A-Frame framework will be used to de-
velop a component capable of handling a vibration pattern exported from the Vibrotactile
Editor.
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Methodology and Work Plan

In this chapter, we explain the methodology and the work plan adopted. The first section
describes the software development methodology, followed by the definition of the work
plan for both semesters and, finally, the risk management.

4.1 Methodology

For this project and considering the possibility of changes in the requirements, the method-
ology adopted was the modified version of Royce’s Waterfall Model [65]. Figure 4.1 shows
a representation of this model.

In choosing an Software Development Life Cycle (SDLC), we reviewed several models
before selecting the modified waterfall version.

Among the models analyzed, we start by examining the incremental model. In this
model, product development and delivery are planned in increments. In each increment, a
set of functionalities is chosen to be implemented. In theory, more features are developed
than in the previous increment [66]. We discarded this model simply because it does not
fit a short-term project, where the components to be implemented are relatively small.

Next, we addressed the spiral model, which is intended for long-running projects focusing
on identifying risks early on. This model is based on successive iterations that start with the
design goals and end with the client reviewing the progress so far and the future direction
[66]. That said, we also eliminated this alternative since it did not fit our requirements.

Finally, we looked at agile models. These models focus on delivering the product in small
incremental builds generated in small iterations lasting between one and three weeks. Agile
methodologies are more suitable for teams that work in several organized areas: planning,
requirements analysis, design, development, and testing [67].

The waterfall model presented is composed of six phases.

• Requirements & Analysis: To gather the requirements, the first step towards
this objective was to study the state of the art. We identified the key components
necessary to compete with the existing applications and features that may add value
to our editor by surveying existing vibrotactile patterns. To validate the requirements
specification, we wrote user stories to promote the discussion about the system’s
functional requirements. Through meetings with the advisor and members of the
TherTactExo team, we did the analysis and validation of the system requirements.
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Figure 4.1: Royce’s Modified Waterfall Model

• Design: We defined the system software architecture, data models, and visual pro-
totypes in the design phase. After identifying the requirements, we modeled the
system architecture through diagramming, such as context diagrams, container dia-
grams, and UML diagrams. Finally, we created a first visual prototype by designing
wireframes, an excellent way of presenting both the design and user interactions with
the system.

• Implementation & Testing: Defined the requirements and the software architec-
ture, in the implementation phase, we developed the functional requirements, guided
by the previously created visual prototype. We concluded the development of the
functionalities and proceeded with the testing phase. In this phase, we validated all
the work done and evaluated the usability of the editor.

• Maintenance: After the release of the product, maintenance occurs by delivering
new versions to fix eventual issues or add new features. This phase is not applicable
in this dissertation context.

Within the models analyzed, the modified waterfall model is not a perfect model for this
project, but it is the one that suits it better. As with all models, it has its drawbacks,
the most significant being the swift change of requirements and having to go back through
the model’s steps [66]. However, it is something that, to some extent, we have come to
expect. Yet, although the requirements are not entirely defined, the examples we have
studied provide a reasonably solid idea of the possibilities. Thus we do not anticipate the
necessity for many further iterations.

One example we can give, during the project, after developing the Vibrotactile Editor, the
testing phase occurred. When analyzing the results during the testing phase, we found
that some of the implemented features were not perceptible to the user. Consequently,
this caused us to rethink the design and go back several steps to reconsider an alternative
design and development, based on the conclusions reached during the testing phase.
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4.2 Work Plan

To present the work plans for both semesters, we defined two Gantt charts.

4.2.1 First Semester

During the first semester the work done was above all to study and research the disser-
tation subject and related works. After collecting the information, we proceeded to elicit
the project’s requirements and to prototype it. In the final stages, we developed the first
prototype of the Vibrotactile Editor. In this first semester, there was no significant devia-
tion between the planned and realized work. In the Gantt chart, shown in Figure 4.2, we
illustrate the planned and achieved work.

Task Start Date End Date Duration
Background 12/02/20 18/03/20 35
Study of haptic sensations 12/02/20 18/03/20 35
State of the art 18/03/20 03/04/20 16
Study of similar applications 18/03/20 27/03/20 9
Study of the targeted frameworks 27/03/20 03/04/20 7
Requirements Elicitation 03/04/20 14/06/20 11
Prototyping 14/04/20 20/06/20 67
Architecture definition 14/04/20 24/04/20 10
Creation of a visual prototype 24/04/20 02/05/20 8
Implementation 02/04/20 20/06/20 49
Intermediary report writing 12/02/20 25/06/20 134

Table 4.1: Work plan defined for the first semester

Figure 4.2: Gantt Chart for the first semester
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4.2.2 Second semester

The second semester was focused on developing the Vibrotactile Editor, the components
for virtual reality, and testing them. In the Gantt chart, shown in Figure 4.3, we illustrate
the planned and achieved work.

Task Start Date End Date Duration
Vibrotactile Editor Implementation 10/07/20 30/09/20 82
Development of the Vibrotactile Editor 10/07/20 31/08/20 52
Development of the Vibrotactile Middleware 10/09/20 30/09/20 20
Vibrotactile Editor Usability Testting 30/09/20 15/10/20 15
Development of VR components 04/10/20 16/12/20 73
Development of the A-Frame component 06/10/20 27/10/20 21
Development of the Unity component 27/10/20 18/11/20 22
VR Components Usability Testing 20/11/20 10/12/20 20
Vibrotactile Editor Implementation - 2nd Iteration - - -
Vibrotactile Editor Usabiltity - Testing 2nd Round - - -
Final report writting 01/08/20 20/01/21 172

Table 4.2: Work planned for the second semester

Figure 4.3: Gantt Chart for the second semester

We noticed several delays to what was initially planned during the second semester, be-
ginning with the editor’s development conclusion. Also, we changed the order of specific
tasks. After developing the A-Frame component, we decided to start with its usability test
and, later, to develop the component for Unity.

One of the most significant setbacks during this second semester was the usability testing,
which took longer than planned for two reasons. The first reason was the pandemic situ-
ation caused by COVID-19, which made it necessary to change the workplace, requiring
us to work remotely, bringing some communication and productivity difficulties. Further-
more, it did not allow the tests to be conducted as planned. The second reason was due
to the author’s inexperience in estimating the duration of the usability tests.

Thus, by the end of November, we decided to postpone the final delivery of the dissertation,
and, accordingly, we adapted the work plan in such a way as to accomplish the objectives
proposed in this dissertation.
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4.3 Risk Management

In software engineering, risk management involves all aspects of the program phases as
they relate to each other, from the idea to the conclusion [68]. Risk identification and
risk assessment should be done as early as possible in order to minimize possible negative
impacts on the project.

Risk management processes involve five essential steps [69]:

1. Identifying the risks: Understand if any factors can negatively affect the project.

2. Assessing the risks: List the risks in order to certain attributes. These attributes are
commonly the impact of occurrence and the degree of risk certainty.

3. Planning the response: Modify the project plan to adjust for the risk or create a
mitigation plan if the risk can be eliminated or mitigated.

4. Monitoring the risks: Continue to re-evaluate the risks and update the risk profile
according to their evolution during the project development.

5. Document lessons learned: Learn from the risk management process.

4.3.1 Risk Description

Following, we describe the project’s risks.

ID R1
Title Estimations

Description
Lack of planning experience can lead to bad effort
estimations

Impact High
Probability Medium
Mitigation Plan Help of the advisor to validate the estimations

ID R2
Title Thesis’ topic
Description Lack of knowledge about the thesis’ topic
Impact Medium
Probability Medium

Mitigation Plan
In-depth study on the topic and its technological
application
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ID R3
Title Microcontrollers

Description
Lack of knowledge on how microcontrollers work
and how they communicate with other devices

Impact High
Probability Low
Mitigation Plan Study and explore microcontrollers

ID R4
Title Editor design

Description
The presented design does not correspond to the user’s
expectations.

Impact High
Probability Low

Mitigation Plan
Study in-detail the available designs. Get periodic feedback
from the team that will use the editor.

ID R5
Title Pandemic situation

Description
The worldwide pandemic COVID-19 brought restrictive
measures that may affect productivity and work
completion.

Impact High
Probability Medium

Mitigation Plan
Report delays and problems encountered.
Analyze alternative solutions that deliver similar results.
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Requirements

Before starting to develop a software project, one of the most critical, knowledge-intensive,
recognized software development activities is the requirements elicitation [70]. It is crucial
to understand what the system is intended to do. In most cases, poor elicitation leads to
project failure. Thus, this process must be well defined, employing the best requirements
elicitation techniques that can be applied to the project.

In this chapter, we outline the requirements for the components we will design. In section
5.1, we present the detailed process of requirements elicitation for the Vibrotactile Editor.
In section 5.2, we describe the requirements elicitation process for the Virtual Reality
components.

5.1 Requirements for Vibrotactile Editor

Regarding the Vibrotactile Editor requirements, first, we explain the problem definition
and the system objective. Following, we describe the requirements elicitation process as
well as the resulting requirements.

5.1.1 Problem Definition and System Objective

By researching the state of the art in vibrotactile editors, we identify that few editors
fully accomplish what we pretend in the field of haptics: creating vibrotactile patterns
and testing the effect of haptic feedback delivered to the users with ease and in a suitable
way. For this reason, we seek to develop a tool capable of creating vibrotactile feedback
efficiently. Therefore, we assemble a set of characteristics necessary to achieve this purpose.
The editor will have three main features:

• A dedicated area for customization: As explained in section 2.4.4, we can rep-
resent vibrotactile patterns in different waveforms. Therefore, we need to give the
user liberty to create and modify these vibration patterns by providing means to
manipulate typical signal parameters beginning with time, intensity/amplitude, and
waveforms.

• Timeline: We need a proper way to represent the instants of time when the actuators
are activated, the associated vibration pattern, and a way to support the design and
test of simultaneously controlled vibration patterns for various vibration actuators.
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The solution found to have these features is to have a multi-channel timeline. Each
channel can contain one or more vibrotactile patterns and be associated with different
actuators.

• Library: We need to provide the user with an environment rich in examples to
facilitate engagement, vibrotactile patterns discovery, and customization. Also, give
the user a feature where he can save custom patterns, provide a brief description,
and an example of its usage.

With this background, we then advanced to the requirements elicitation. Through an
iterative process involving techniques such as the creation of user stories – to promote
discussion about the characteristics of the system- and prototyping – design of wireframes
to help in the visualization of system features- we gathered a set of required functionalities
for the system.

5.1.2 User Stories

To gather the requirements, we opted to use user stories. User stories are short, simple
description of a feature, written from the perspective of the end-user, used to gather
the system functionalities quickly, and without the need to create a formal requirements
document. The user stories usually have the following template:

As a <type of user>, I want <some goal> so that <some reason>

After we defined the first version of the user stories, these served as an initial discussion
about the editor’s functionalities. The initial discussion was sole with the advisor, where
we reviewed the user stories and made the necessary changes. After this first iteration, we
took this result to a meeting with one of the TherTactExo researchers, which resulted in
the final version of the user stories, defined in Table 5.1.

ID As a I want to So that

1 User
Be able to upload a image
of the device

I can create different spatial
configurations

2 User
Be able to assign the number
of actuators

I can create specific patterns

3 User
Be able to assing a microcontroller
to the project

I can know the thresholds of
the patterns

4 User Create different types of waveforms I can create different patterns

5 User
Create waveforms in both frequency
and intensity

I can create different sensations

6 User
Be able to trigger an actuator according
to a timeline

I can create different sensations

7 User
Be able to create patterns for each
acuator individually

I can create different sensations

8 User Be able to save a pattern I can reuse it in future designs
9 User Have preset examples of patterns I can create waveforms easily

10 User
Be able to save the project
configuration

I can continue to work later
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11 User Be able to export a pattern
It can be used in other
applications

12 User
Be able to preview the animation of
the pattern

I can check the correct
activation of the actuators

13 User Have default project configurations
I can focus solely on
creating patterns

Table 5.1: User Stories

5.1.3 Functional Requirements

With the user stories defined, the transition to functional requirements was made with
ease. This approach allows the combination of user stories in specific tasks, which are a
better guideline for the development process. Furthermore, to consider the priority of the
requirements, we also used the moSCoW method for prioritization [71], which consists of
the distribution of the requirements within the following categories:

• Must Have: Requirements which the project guarantees to deliver.

• Should Have: Requirements that are important, but not obligatory for the success
of the project

• Could Have: Requirements that are desirable but not required for the project

• Won’t Have: Requirements which the project team has agreed will not be included
in this version of the project.

Similar to the user story process, the functional requirements were discussed and validated
with the advisor. The final requirements are described in Table 5.2 and are composed of
an ID, following by the description, and finally its priority.

ID Description Priority

FR1
The user can edit and save project configurations such as the

device image, number of actuators, and the hardware
controller at any time.

Must Have

FR2
The user can freely manipulate the waveform and

adjust the different parameters
Must Have

FR3
The user can assign different patterns to

multiple channels in the timeline
Must Have

FR4
The user can assign one or more actuators

to a channel in the timeline
Must Have

FR5
The user can reproduce any channel in

the timeline to preview the activation of the actuators
Should Have

FR6
The user can add or remove channels to and from the

timeline
Must Have
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FR7
The user can save a custom pattern in the

editor library
Must Have

FR8
The user can import any pattern from the editor

library to the waveform editor
Must Have

FR9
The user can search for project configurations

and import to the current project
Should Have

FR10
The user can create patterns in the editor and export

them to Unity or A-Frame format
Must Have

FR11
The user can place the actuators on the device image

in order to visualize and create different spatial
configurations

Must Have

FR12 The user can export the vibrotactile project to audio format Should Have

Table 5.2: Functional Requirements for the Vibrotactile Editor

After the Vibrotactile Editor usability test with a participant from the TherTactExo
project, he proposed that the editor should export the project to audio format to make it
more flexible and general to all microcontrollers. From this suggestion emerged another
functional requirement, the FR12.

5.1.4 Wireframes and Quality Attributes

Along with user stories, we used the wireframes to communicate with the team to promote
discussion about the requirements of the system. In Figure 5.1, we present the "Initial
Screen" wireframe, designed during the requirements elicitation process. The remaining
wireframes can be viewed in the Appendix A.1

Figure 5.1: Initial Screen

Finally, the quality attributes, also called as "Non-Functional Requirements," are charac-
teristics that the system must have in addition to functionality. Table 5.3 describes the
quality attributes required for the system.
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Quality Attribute Description Priority

Usability
The GUI must be designed in an efficient, simple

way, to facilitate the interactions and
to maximize the user experience.

Must Have

Interoperability

The system must be designed to facilitate the
integration with external systems and provide

an API according to the
current design standards.

Must Have

Table 5.3: Quality Attributes

5.2 Requirements for Virtual Reality Components

During the final stages of the Vibrotactile Editor’s development, we initiated the elicitation
process to ensure that the integration was thought through properly. The two components’
requirements are analogous; only the development technologies change; therefore, we have
gathered it all in one single section.

The methodology followed for the elicitation of requirements was more straightforward
than the Vibrotactile Editor, given its lower complexity.

From a user perspective, interacting with these components during virtual reality experi-
ences, the component’s purpose will be to transmit vibrotactile feedback that matches the
experience. These virtual reality experiences will be conducted by other individuals, who
need to program the vibrotactile components to match the coupled elements.

Therefore, another perspective that we took during this process was the programmer’s
perspective. The first requirement was obvious. The component would have to express
the vibrations exported from the Vibrotactile Editor. To not be dependent on the editor,
we studied a standard set of simple functions used in vibrotactile feedback devices. From
this analysis, we came up with vibrations corresponding to sinusoidal and sawtooth waves.
However, from the programmer’s viewpoint, to programmatically create vibrations with a
higher degree of freedom without using the editor was impossible. That said, we identified
this further final requirement. To give the freedom to create more complex vibrations
programmatically within the component.

To summarize, we describe the functional requirements in Table 5.4.

ID Description Priority

FR1 The user receives vibrotactile feedback when interacting
with the elements associated with the vibrotactile components Must Have

FR2 The programmer can associate vibrations exported via the
Vibrotactile Editor to the vibrotactile components. Must Have

FR3 The programmer can create simple vibrations through simple
pre-defined functions. Must Have

FR4 The programmer can create complex vibrations programmatically within the
component. Must Have

Table 5.4: Functional Requirements for the VR components
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Chapter 6

Architecture

In this chapter, we report on all the details of the system architecture. In the section
6.1, we present the model selected for the architecture documentation. In section 6.2, we
present the system architecture. Following, in section 6.3, we describe the chosen data
model. Finally, in section 6.4, we provide the communication protocol with the prototype
feedback sleeve developed by the TherTactExo team.

6.1 Software Architecture Documentation Model

Before defining the system architecture, we first decided on a model that would adequately
document the entire system architecture. Therefore, we chose the C4 model. The C4 model
features a set of hierarchical diagrams where we can visualize different levels of abstrac-
tion. From its definition, the C4 model is "an ’abstraction first’ approach to diagramming
software architectures, based upon abstractions that reflect how software architects and
developers think about and build software" [72].

In this section, we present the principal concepts of this model. Although C4 does not
dictate a particular notation, the most common notation (Figure 6.1), and used in the
following section, is as follows:

Figure 6.1: C4 Model notations
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With the introduction to the notation used, we now define the different levels of abstraction
offered by this model [72]:

• Context Diagram: Provides a starting point for diagramming a software system.
It shows how the system is built, its interactions with users and external software
systems.

• Container Diagram: Shows the high-level shape of the software architecture and
how responsibilities are distributed across it. It also specifies the major technology
choices and how the containers communicate with each other

• Component Diagram: Expands an individual container to to further identify the
significant building blocks and their interactions.

• Code: The code shows how an individual component is implemented. However, in
this model, this level of abstraction is optional.

That being said, we conclude the introduction to the C4 model. In the next section, we
use the C4 model to present the architecture of the system.

6.2 System Architecture

For organizational reasons, we divide this section to match the C4 model levels of abstrac-
tion, detailed in the previous section.

6.2.1 System Context View

As we stated earlier, the first level of abstraction in the C4 model concerns the context
diagram. This diagram presents the interactions with users and external software systems.
Thus, we understand that our system will mainly interact with three external systems,
namely:

1. A-Frame: Uses the Vibrotactile Editor to express vibrotactile feedback to the feed-
back device.

2. Unity: Uses the Vibrotactile Editor to express vibrotactile feedback to the feedback
device.

3. Arduino: Provides a connection between the Vibrotactile Editor and the feedback
device

Finally, we have the users that interact with the system. These are unregistered users
that can access the services provided by the Vibrotactile Editor. In conclusion, Figure 6.2
shows the system context diagram.

6.2.2 System Containers View

Having the starting point in the context diagram and understanding how the system works
more abstractly, the next step is to provide the high-level technical components and com-
munication protocols between them. In Table 6.1, we describe the identified containers:
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Figure 6.2: Level 1: System context diagram

Container Description

Application Client application that allows the users to create vibrotactile projects.

Middleware
Application layer acting as a mediator between different applications

and exposes a set of different services

Database
Container that stores all the data within the Vibrotactile Editor, such

as patterns and projects.

Table 6.1: Application Containers

Once we identified the components, the next step was to choose the technologies for their
development and the definition of the communication protocols between each container.
Table 6.3 describes the selected technologies for each container’s development, and in Table
6.3, the communication protocols between them.

Container Technology Description

Application ReactJs
JavaScript library for developing user interfaces. Already

detailed in chapter 3.

Middleware Node.js
Node.js is a open-source, cross-platform JavaScript run-time

that allows developers write server-side scripts outside the browser [73].

Database MongoDB
MongoDB is a document database with the scalability and flexibility

to querying and indexing as the developer needs [74].

Table 6.2: Container Technologies
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Protocol Description

HTTPS
HTTPS is a secure communication protocol that protects the integrity

and confidientiality between of data between the user’s and the browser [75].

JSON

JSON is a standard text-based format for representing structured data

based on JavaScript object syntax, typically used to transporting data in

web applications [76].

Serialport
Serial communication interface to connect a serial device to the computer

and capable of transmitting one bit at a time [77].

Table 6.3: Communication Protocols used between the containers

After all the relevant details were covered, we designed the container diagram, illustrated
in Figure 6.3.

Figure 6.3: Level 2: The container diagram
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6.2.3 System Components View

To describe the component diagram it is necessary to expand the containers that compose
the system. However, our emphasis is on the Application and Middleware containers as
they are the system’s fundamental containers.

The first expansion details the Application components. Here, we distinguish between two
types of components:

• Controllers: These components are used to access, modify and update data. For
example, controllers know how to query and alter data via a RESTfull API [78].

• React Components: These components are independent pieces of the user interface
that describe what should appear on the screen [79].

That said, the application container is composed of the components detailed in the diagram
in Figure 6.4.

Figure 6.4: Level 3: The component diagram for the Application Container

Regarding the middleware, the components diagram (Figure 6.5) has the following struc-
ture:
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Figure 6.5: Level 3: The component diagram for the Middleware Container

6.3 Data Model

The database is responsible for storing and securing all data regarding the projects and
patterns created in the editor. For this project, we chose MongoDB as the technology to
develop the database. In this section, we present the design process of the selected data
model.

Considering the use of the application and the technologies used for its development, we
did not find the necessity to use a relational database. Since MongoDB is a database based
on documents [74] that follow a structure analogous to a JavaScript object, this decision
seemed natural to take.

That said, we designed the following data model, illustrated in Figure 6.6:

Figure 6.6: Data Model
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6.4 Communication Protocol

The feedback device we are working with uses six actuators. Each actuator vibrates at an
intensity between 1 to 255. This implies that any vibration scale has to be translated into
this interval of values. That said, the Arduino reads the vibration data from the serial port.
As already mentioned, communication via the serial port occurs bit by bit. Therefore we
defined seven messages, listed in Table 6.4, to read the bits.

Message No. Description

1
Sends the 0-bit value indicating that the next six messages are the intensity

values for each actuator.

2 Intensity value between [1,255] for the first actuator.

3 Intensity value between [1,255] for the second actuator.

4 Intensity value between [1,255] for the third actuator.

5 Intensity value between [1,255] for the fourth actuator.

6 Intensity value between [1,255] for the fifth actuator.

7 Intensity value between [1,255] for the sixth actuator.

Table 6.4: Communication protocol messages

The first message that arrives has a value of zero bits, indicating that the following six
messages will be the actuators’ vibration values. After reading all the last six messages, the
following message arrives at the microcontroller according to the set sampling frequency
value.

In summary, the communication protocol is as described bellow:

1. Message No. 1 arrives.

2. Arduino knows the following six messages contain the vibration intensity for the six
actuators.

3. Message No. 2 to 7 arrive with intensity values between [1,255].

4. Next available message will arrive according to the sample rate defined.

5. Repeat.
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Chapter 7

The Vibrotactile Editor System

This chapter describes the details about the implementation of the system developed.
During this dissertation, we developed three components: the Vibrotactile Editor, the
Middleware, and the VR components. Section 7.1 describes the Vibrotactile Editor’s
implementation details. Section 7.2 details the Middleware implementation. Finally, in
section 7.3, we present the implementation details of the VR components.

7.1 Vibrotactile Editor

The Vibrotactile Editor was the primary outcome that resulted from this project. The ed-
itor introduces features that allow the user to create highly customizable vibrotactile pat-
terns through a built-in waveform editor and the multi-channel timeline. In this section, we
describe in detail the process, procedure, and decisions we made during the implementation
of the Vibrotactile Editor.

7.1.1 Graphical User Interface

In this subsection, we present the final results of Vibrotactile Editor . The development of
the editor was divided into two parts. We conducted the Vibrotactile Editor GUI usability
tests between this interval of time, marking the first part of the development and beginning
the second. During the first iteration, we developed most of the functionalities. In the
second iteration, we implemented new emerging features, and, above all, we adjust the
editor according to the results of the usability tests. A significant challenge faced during
this software development stage involved creating an editor that any user could operate
effortlessly with a minimum of experience and knowledge.

In Figure 7.1, we show the final version of the Vibrotactile Editor. We first introduce the
editor in its entirety, and then we describe the core components.

The first component we want to detail is the pattern editor. In the pattern editor, located
in the top-right corner, we can create vibrotactile patterns by inserting data points repre-
sented in the image by the blue circles. Each of these data points represents a key-value
pair. The first value refers to time and the second to intensity. The d3.js library is re-
sponsible for handling the vector that corresponds to the pattern. The user interacts with
the editor through the predefined functions for adding and removing data points. Besides,
we have also defined keyboard shortcuts corresponding to the same features to facilitate
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Figure 7.1: Vibrotactile Editor GUI

interaction. Finally, the pattern editor’s last feature enables the user to save the designed
pattern into the pattern library.

The component on the top-left corresponds to the image of the vibrotactile device that
will be used throughout the project. This component aims to envision how the vibrotactile
feedback will be replicated by the actuating motors depending on their position in the pro-
totype. Here, the user can add and remove actuators and create the spatial configuration
of choice.

In the timeline component, placed in the middle of the Vibrotactile Editor, the user can cre-
ate a more complex vibrotactile pattern by adding different patterns into multiple channels.
In each of these channels, we can associate various actuators with the contained patterns.
This functionality is done through user interaction with the "Actuators" text button. The
associated actuators are displayed at the beginning of each channel, underneath the chan-
nel name and the text button. In each project, the timeline has three predefined channels.
However, it is possible to associate and remove more channels as needed by the user. This
functionality is available in the toolbar component placed at the bottom of the Vibrotactile
Editor.

In the toolbar, the user can use the functionalities to access the library of examples, save the
project, add channels to the timeline and finally reproduce the project on the vibrotactile
feedback hardware. In the example library, illustrated in Figure 7.2, the user can search
and add patterns directly to a timeline channel of choice.

Finally, in the save project menu (Figure 7.3a), besides effectively saving the project, we
can export the project in two formats. The first format is used in the middleware, in the
Unity and A-Frame components. We explain this process in the individual sections for
each of the components. The second format corresponds to exporting the project to audio,
precisely the WAV format. Exporting the project to audio is handled with the Web Audio
API’s support and the audioEncoder dependency. The user defines the sample rate in the
export menu (Figure 7.3b) - within the values accepted by audioEncoder - and the file
name. This operation results in audio files equivalent to each timeline channel.

For illustration, Figures 7.4a and 7.4b show an example of a Vibrotactile Editor project
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Figure 7.2: Vibrotactile Editor library component

(a) Save Menu

(b) Export to audio menu

Figure 7.3: Vibrotactile Editor save menu component

and the resulting audio files in the audio processing software Audacity [80]. The export
to audio format feature was introduced to provide more flexibility and widen the editor’s
communication with other microcontrollers that do not follow the same transmission pro-
tocol. The audio files facilitate sampling and can be used efficiently to create another
communication protocol with any other microcontroller type.

To finalize this section of results, we are left with the component that allows the load-
ing or initiation of a project. In Figure 7.5, we have an overview of the component that
allows these operations to be performed. For a new project, the user defines the microcon-
troller used, the project name, the prototype image, and, finally, the number of actuators.
All these fields are validated first in the editor but are also subject to validation in the
Middleware.

Having described and demonstrated the Vibrotactile Editor GUI, now, we describe the
implementation details.
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(a) Vibrotactile Project

(b) Audacity Project

Figure 7.4: Resulting audio files exported from the Vibrotactile Editor

Figure 7.5: Vibrotactile Editor configurations component

React-Redux Flow

In React, the data follows from parent components to child components [81]. In a medium
or large-sized application, keeping track of the application data may be complex. Therefore,
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we decide to use a state-managing library for managing and updating the application state,
as the Redux framework [82].

The Redux framework serves as a centralized store for state that needs to be used across
the entire application, with rules ensuring that the state can only be updated predictably
[82]. To facilitate the description of how the data flows in Redux, in Figure 7.6 below, we
illustrate the whole process step by step:

Figure 7.6: Data flow in Redux adapted from [83]

The state of the application is kept in an object tree which we call store. To be able to
change the application’s state tree, we need to create an action. This action is produced in
the Action Creator and contains information about how we want to change our central
state’s data [83]. In the Listing 7.1, we can see an example of an action that indicates it
wants to add another datapoint to the pattern that we are editing.

1 {
2 action: {
3 type: "PATTERN_UPDATE_DATAPOINTS",
4 payload: {index: patternIndex, datapoints: _datapoints}
5 }
6 }

Listing 7.1: Action

Having the action created, now we need to dispatch it to the store. Before it reaches the
store, the dispatch forwards the action to the reducer. The reducer specifies how the state
gets updated in response to the action received [82]. Through reducer functions, we can
calculate a new state based on the old state and the action. After calculating the result,
the reducer sends the updated data to the state.

To access the store, we need to create a React component that has a store reference. This
component is labeled as the Provider component. Furthermore, a React component can
only listen and make changes to the store when wrapped with the connect method, which
communicates with the Provider to enable these operations. When the store updates, all
wrapped components will update.

From a software engineering perspective, the connect method is an excellent example of
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the observer pattern [84]. The observer pattern is a software design pattern that defines
a one-to-many dependency between objects so that when one object changes state, all its
dependencies are notified and updated automatically [85].

Dependencies

Apart from the technologies already mentioned, we used some dependencies to fulfill the
application’s requirements. In the following Table 7.1, we list the primary dependencies
used in developing the graphical interface, followed by a concise description.

Dependencies Description

d3.js
D3.js is a JavaScript library for producing dynamic, interactive data
visualization in web browsers using primarily HTML, CSS, and
Scalable Vector Graphics (SVG) [86].

react-bootstrap React-bootstrap is a JavaScript library to replace Bootstrap without
unneeded dependencies [87].

audio-encoder
Audio Encoder is a JavaScript library to encode audio buffers,
created from raw data using the Web Audio API [88], from the
browser to WAV format [89].

file-saver FileSaver.js is a JavaScript library for saving files in the client side [90].
yup Yup is a JavaScript schema builder for value parsing and validation [91].
formik React tool to handle form submissions, validation and error messages [92].

Table 7.1: Dependencies used on the GUI implementation

7.2 Middleware

The Middleware refers to the server part of the platform. It manages all the business oper-
ations and exposes the services to the clients. Also, it is responsible for the communication
with the database and the microcontroller.

The server was developed in Node.js, concretely using the Express framework. Express
is a web application framework that provides a set of features for web applications [93].
These features include minimalistic code, robust routing, adopting Representational State
Transfer (REST) service standards, and best practices. Furthermore, it is cross-platform,
so it is not limited to one operating system [94].

Within these enumerated characteristics, we have routing. Routing refers to the definition
of Uniform Resource Identifier (URI)s and how they respond to client requests [94]. Having
defined a route, it decides how it proceeds according to the incoming requests. These
requests arrive from methods. In our middleware, we registered three routes, described in
Table 7.2. In the first column, we have the designated route, and in the following columns,
the accepted HTTP methods.

Route GET POST PUT DELETE
/projects Yes Yes Yes Yes
/patterns Yes Yes Yes Yes
/vibrate No Yes No No

Table 7.2: Defined routes
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The first registered route is associated with getting (GET), creating (POST), updating
(PUT), and deleting (DELETE) projects. Requests arriving at this route are handled
according to the associated HTTP verb. The processing of these requests takes place in the
handler function. A GET call to the projects route returns all available projects. However,
it is possible to retrieve only one project by concatenating its identifier in the request.
For example, we have GET /projects:id, where the id parameter is the specific project’s
identifier. To store a new project, we use the POST verb. We define the default encoding
for the body of the request as application/json with the same structure as the projects
document, defined in the data model section, in chapter 6.

As with the HTTP POST method, the PUT method follows the same guidelines. However,
we use PUT when updating an existing project. Thus it is necessary to provide the project
identifier in the route. The HTTP DELETE method deletes a specific project and requires
specification of the project identifier in the route as well. In the diagram in Figure 7.7, we
illustrate the process of obtaining a project.

Figure 7.7: Sequence diagram for loading projects

That said, the following routes behave similarly, so we focused only on the differences.

The second route allows you to get, create, update and delete patterns. This route is
in many ways analogous to the previous one. The difference is concerned with the data
schema transmitted in the POST method’s body. Here, we use the same structure as the
patterns document.

Finally, the vibrate route, only available with the HTTP POST method, is where the
entire process, from receiving the data, coming from the editor or the components, to
sending the vibrotactile feedback to the microcontroller, is carried out.

To accomplish this, we had to develop a solution to handle the different types of data
received. The first decision was to define a flexible and easily manipulated data schema
that would be adaptable to both the editor and the other components communicating with
this route. The resulting schema is presented in Listing 7.2 below:

1 {
2 "samplingRate": 50,
3 "numberOfActuators": 6,
4 "channels": [
5 {
6 "patterns": [
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7 {
8 "datapoints": [
9 {

10 "intensity": 50,
11 "time": 0
12 },
13 {
14 "intensity": 50,
15 "time": 175
16 },
17 {
18 "intensity": 50,
19 "time": 350
20 }
21 ],
22 "startingTime": 0
23 },
24 {
25 "ramp": {
26 "initialIntensity": 20,
27 "finalIntensity": 100
28 },
29 "startingTime": 450,
30 "duration": 1000
31 }
32 ],
33 "actuators": [
34 0,
35 5
36 ]
37 }
38 ]
39 }

Listing 7.2: Data scheme for the vibrate route

The first two of fields give us the sampling frequency and the number of actuators in the
project. Then we have the channels where each contains information about the patterns
contained and which actuators are associated. The patterns can be a collection of points,
such as those from the editor or specific vibrotactile feedback functions. These functions
are available only in the components, and we will explain them in their respective sections.

With this data schema, we can handle all requests in a simple and flexible way. Finally,
we transform and transmit the vibration data through the serial port following the micro-
controller’s protocol, presented earlier in Chapter 6.

We tested all these routes during the development phase, using the Postman software [95],
before beginning with the usability tests.
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Dependencies

To conclude this section, as in the previous one, we list the dependencies used during
development and their description.

Dependencies Description
express Node.js framework for developing web applications.

body-parser Node.js body parsing middleware. Extracts the body of an incoming
request and exposes it in an easier way to handle [96].

mongoose Mongoose is a MongoDB object modeling tool designed to work
in an asynchronous environment [97].

serialport JavaScript package to access serial ports [77].

Table 7.3: Middleware dependencies list

7.2.1 Database

The database is the place where we store all the necessary information from the appli-
cation. From project settings to new customizable vibrotactile patterns, everything is in
the database. Out of a diverse selection of databases, we decided to develop our own as
a document-oriented, non-relational database. Within this spectrum, we chose the Mon-
goDB database. One of the reasons for this choice was the flexibility to create collections of
data. An advantage when system requirements emerge or evolve, and database adaptation
is more straightforward.

We integrated the database with the server from the dependency mentioned in the previous
section, mongoose. For this integration, it is only necessary to define the connection to
the database on the server. When creating the connection, it is required to supply some
parameters such as the port, location, and database name. All operations related to
changing data in the database and creating data schemas were executed on the middleware
through the mongoose dependency.

7.3 Virtual Reality Components

This section was divided into two subsections. Subsection 7.3.1 contains the implementa-
tion details of the A-Frame component, and subsection 7.3.2 the implementation details of
the Unity component.

7.3.1 A-Frame Component

A-Frame is a framework for creating web-based virtual reality experiences. One of this
project’s objectives was to develop a component to be used later in virtual reality tests
with vibrotactile feedback. Thus, in this section, we report the development details of
the developed A-Frame, labeled A-Frame Vibrotactile Component, available at https:
//github.com/ZeCanelha/aframe-vibrotactile-component and in Appendix B.1.

One of the biggest challenges observed during the development of the component was the
specification of the methods and the behavior itself. We questioned whether the component
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would only use vibrations exported from the Vibrotactile Editor or it would also imple-
ment inherent functions that programmers could use in a simple way to create vibrotactile
feedback. We concluded that one option would be to expose an API with the functions
available for use in the A-Frame context. Following, we describe all the methods developed
as well as examples of their usage. Finally, we present a simple model of a virtual reality
experience where we transmit vibrotactile feedback to the user according to the virtual
ground he/she is walking on.

A-Frame Vibrotactile Component API

The A-Frame component features four methods of creating vibrotactile feedback. Before
beginning to detail each of these methods individually, it is necessary to understand how
this feedback is transmitted. As we previously discussed, the Vibrotactile Editor applica-
tion’s middleware communicates with the microcontroller, which subsequently sends the
feedback information to the feedback prototype. Like the GUI, the reproduction of the
vibration is handled through the vibrate route. Here, we adapted all the inherent meth-
ods of the component to the protocol followed in that same middleware route. Having
said this, we now continue with the enumeration and description of the available A-Frame
Vibrotactile component methods.

Vibrotactile method

A component is defined as "JavaScript modules that can be mixed, matched, and com-
posed onto entities to build appearance, behavior, and functionality" [98] in A-Frame.
Besides, we can use it declaratively in the HTML or programmatically with JavaScript.
Therefore, to use the vibrotactile component, it is necessary to associate it with an entity.
In short, "entities are placeholder objects to which we plug-in components to provide them
appearance, behavior, and functionality" [98]. That said, it was necessary to register the
component and assign a name - vibrotactile - to use declaratively in the DOM, attached
to an entity. In the Table 7.4, we describe the component properties followed by an usage
example, illustrated in Figure 7.8.

Property Description Default Value

src Path to the vibration file exported from the Vibrotactile
Editor none

event A-Frame event that triggers the vibration. none

Table 7.4: Vibrotactile component properties

Figure 7.8: Basic usage example of the Vibrotactile component

In the example given, we have the usage of the Vibrotactile component in the HTML
interface. In the A-Frame scene, we have an entity that represents a box. In this box,
when the user passes with the cursor - the gaze reference point in A-Frame - the attached
vibration, defined by the vibration file vibrations.json, is triggered.

In the following description, we present the functions the user can use programmatically
from the Vibrotacile component. We designed these functions to enable users to create
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simple but common vibrations, such as vibrations with sinusoidal behavior or a sawtooth
wave, often called a ramp.

Vibrotactile Sin and Ramp methods

The Sin and Ramp methods share a panoply of properties that we describe in the Table
7.5 below.

Property Description Default Value
samplingRate Sampling rate in milliseconds 5
numberOfActuators Number of actuators 6
actuators The specific actuators to perform the vibration [0,1,2,3,4,5]
startingTime Time in milliseconds to start the vibration 0
duration Duration of the vibration in milliseconds 1000

Table 7.5: Common properties between the two methods

The properties listed in the Table 7.5 give the user the possibility to adjust some of the
vibrotactile feedback characteristics. For example, it is possible to set the sinusoidal vibra-
tion for five seconds for the first two actuators. That said, to create a sinusoidal vibration,
we need to use a set of parameters, as listed in Table 7.6.

Property Description Default Value
sin A JavaScript object containing the sine wave properties
sin.amplitude Sine amplitude value between [0,1] 1
sin.frequency Sine frequency value 5
sin.phase Sine phase value 0

options Common parameters
Common
parameters default
values

Table 7.6: Sin method properties

The properties defined for this method are those required to designate a sine wave, the
amplitude, frequency, and phase. To exemplify this method, we use the example in Figure
7.9. In this example, we defined the amplitude and the desired frequency. Since we did
not set the phase, we assumed the default value. Next, we define the common properties,
and finally, we run the method.

Figure 7.9: Sin method usage example
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To define a vibration behaving as a single sawtooth wave, it is necessary to specify the
initial and final intensities. According to the given values, we either establish the vibration
as an ascending ramp or a descending ramp. There is also the possibility to create a
constant vibration just by setting equal intensities. The ramp method’s properties are
detailed in Table 7.7, followed by an example (Figure 7.10) of the ramp’s method use in a
very similar manner as the sine.

Property Description Default Value
ramp A JavaScript object containing the ramp wave properties
ramp.initialIntensity Initial vibration intensity value [0,100] 0
ramp.finalIntensity Final vibration intensity value [0,100] 100

options Common parameters
Common
parameters default
values

Table 7.7: Ramp method properties

Figure 7.10: Ramp method usage example

The remaining methods follow a similar approach as the one previously described. To avoid
making this a repetitive description, the remaining methods can be accessed in Appendix
B.1.

A-Frame Component Virtual Reality Experience

After the development of the Vibrotactile component, we developed simple virtual reality
experiments for testing purposes (Figure 7.11).

The first was a simple scenario with a set of A-Frame primitives that reproduced the asso-
ciated vibration through events such as "mouseenter" and "click". The second experiment
developed shows a scenario with different floor types (Figure 7.12), such as grass, sand, and
stone. In this experiment, we have combined specific vibrations for each of these elements.
Concretely, the ramp method for the grass floor, the sin method for the sand floor, and,
finally, the customVibrations method for the stone floor. To simulate the walking motion,
we use the keyboard arrows to move. In this case, as we "walked", the component sent
vibrotactile feedback to the feedback prototype according to the user’s position.
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Figure 7.11: Experiences developed

(a) Sand floor (b) Grass floor
(c) Stone floor

Figure 7.12: A-Frame Vibrotactile componente VR experience

7.3.2 Unity Component

The last of the project’s objectives, the Unity component, also permits us to transmit
vibrotactile feedback in virtual reality experiences. The development of this component
became a challenge given the inexperience with the software. Moreover, as with the A-
Frame component, doubts emerged about how it would operate and its functionalities.

In contrast to A-Frame, Unity features a very elaborate GUI. Therefore, we took advantage
of it during the development of the component. Unity displays the component’s properties
visually in what is called the "Inspector". That said, we concluded that it might be an
excellent option to expose the available methods and their properties in the Inspector
window.

As mentioned earlier, the behavior of the Unity component is similar to that of the A-
Frame component. The main methods that are part of the Unity component are the same
as in A-Frame, namely ramp, sin, and customVibrations. Vibrotactile feedback is also sent
through the middleware through the vibrate registered route. That said, we now detail the
implementation of the unity component.

The Inspector in Unity exposes all the public properties of a component. However, it is
not always enough. To achieve better results, we created a customizable editor: "A custom
editor is a separate script which replaces this default layout with any editor controls that
you choose [62]". With these considerations in hand, we developed the component with an
editor that visually exposes all available methods (Figure 7.13), making it easier to create
vibrotactile feedback.
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Figure 7.13: Unity vibrotactile component

In Figure 7.13 we can select which method we intend to associate with this component. In
this case, we set the Vibration File method that takes the vibration file, exported from the
Vibrotactile Editor, as an argument. This is an example of how to associate a particular
method with a component.

However, it remains to be defined how the vibration is activated. Previously, in the A-
Frame component, we found several types of triggers, from mouse events to solutions that
involved checking a user’s distance from the ground. In Unity, activating vibration is also
made slightly simpler. Using the onCollisionEnter() method, we activate the vibration de-
fined in the component’s editor. As an example, in Figure 7.14, we have a user represented
by the capsule (Figure 7.14a). In the terrain cubes, we associate our vibration component
(Figure 7.14b). When the user is detected colliding with the terrain, the vibration defined
is activated, sending vibrotactile feedback to the user.

(a) Unity scene example

(b) Vibrotactile component editor
panel associated with the terrain

Figure 7.14: Unity vibrotactile component usage example

70



Chapter 8

Evaluation

This chapter describes the evaluation of the Vibrotactile Editor GUI, as well as the eval-
uation of the VR components.

8.1 Vibrotactile Editor Usability Testing

In this section, we describe in detail the usability evaluations of the Vibrotactile Editor. We
started by identifying the usability factors we wanted to evaluate. Afterward, we created a
test plan according to the objectives identified. We then performed usability testing with
ten participants and analyzed the results. We used the results to improve the editor’s user
interface, and then we conducted a second round of usability testing with 5 participants.

Making a system usable can vary from a different number of views of what usability is.
In this context, we want to measure usability based on the user performance view: how
the user interacts with the system in a controlled environment [99]. Here, the system’s
usability is the product of the types of users, the tasks they perform, and the environment
in which they work.

To summarize the Vibrotactile Editor usability test planning, we divided it into 4 phases,
as shown in Figure 8.1. The first phase was the usability test planning, where we identified
the tasks, users, metrics, and objectives. The second phase consisted of the execution of
the usability test sessions. The usability test sessions started with a brief introduction to
the project followed by the execution of the tasks, which were recorded. Afterward, users
completed the System Usability Scale (SUS) questionnaire, and we interviewed them about
their experience using the Vibrotactile Editor. In the third phase, we made a detailed
analysis of the user interaction with the editor through the records of their interaction,
notes, and questionnaire responses. Finally, we discussed the results and possible ways to
fix the usability issues that were uncovered.

To conclude the planning section and taking into account the COVID-19 pandemic, we
have established a strict and specific protocol (Figure 8.2) to respect all the safety rules
imposed by Direcção Geral de Saúde (DGS), during the realization of the usability testing.

With this usability test, we intend to:

• Determine design inconsistencies and usability problems within the user interface

• Test the application in a controlled environment
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Figure 8.1: Methodology Approach

Figure 8.2: Usability Test Protocol

To measure the usability of the system, we identified the following metrics. To evaluate the
user’s performance in each task, we reviewed two possibilities: Task Completion and Task
Efficiency. Task Completion relates to the completion of a task. Task Efficiency defines as
in [100]:

TE = Quantity * Quality / 100

Where quantity is the proportion of the task completed, and Quality is the proportion of
the goal achieved. To simplify the subjective value of the quality of the task performed,
we assign a weight of 100% for a goal achieved and 50% for a goal achieved with help or
with errors in accuracy and navigation. However, these metrics are only for evaluating
and comparing participants’ results. The purpose of this usability test is to find design
inconsistencies and usability problems within the user interface.

Besides, to collect the system’s usability rating, we chose the SUS questionnaire. This
questionnaire comprises ten statements, scored on a 5-point Likert scale of strength of
agreement, as follows:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.
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5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

We presented the ten statements to the participants through a "Google Form" (see Ap-
pendix C.1).

The SUS provides a point estimate measure of usability and satisfaction, the SUS score.
We can use it as a basis for comparison with other user interfaces.

The next step was to identify the group of users who would participate in this test. We
identified the following groups that we would be able to reach:

1. Students without experience/knowledge in creating vibrotactile sensations.

2. Researchers from the TherTactExo project.

In the first usability test we targeted the first group and performed the test with eight
participants.

8.1.1 Tasks

We defined a list of tasks to test all the relevant features of the editor. However, the
tasks defined are too extensive to be documented in full in this subsection. Therefore, we
transcribe the first task and summarize the remaining tasks. The full version is available
in Appendix C.2.

Task 1 Create a new project with the name of your choice, where the device will be
an Arduino Nano connected to 6 vibration actuators. Finally, upload the prototype
image from the file system, available at Desktop/VTEditorTest/64-teste.jpg.

Tasks summarized:

1. Create a new project

2. Add and edit a new pattern

3. Create a spatial configuration

4. Associate actuators to created pattern

5. Save the project

6. Use the examples library

7. Associate actuators to imported pattern
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8. Add a new channel

9. Add an edit a new pattern

10. Save the new pattern

11. Search for the saved pattern

12. Clear the timeline

13. Create timeline with pattern configurations

14. Add intervals to timeline

We tested these tasks in the first version of the editor, illustrated in Figure 8.3.

Figure 8.3: Vibrotactile Editor GUI for the first usability test

8.1.2 Procedure

The following procedure was adapted from the usability test plan template available in
[101].

Participants took part in the usability test at Lab G5.3 in the Department of Informatics
Engineering. A computer with the application and supporting software was used in a
typical office environment, as shown in Figure 8.4. The participant’s interaction with the
application was observed by the facilitator and screen-recorded with audio. Both facilitator
and participants followed the established COVID-19 safety rules.

The facilitator briefed the participants on the application and assured that what was being
evaluated was the application, not the participant. Participants signed an informed consent
that acknowledges: the participation is voluntary, that participation can cease at any time,
and allows the recording of the session and subsequent treatment of the gathered data.

The facilitator instructed the participant to ‘think aloud’ so that a verbal record of the
interaction with the application exists. The facilitator observed and took notes about user
behavior, comments, and system actions.
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Figure 8.4: Lab environment

The facilitator instructed the participant to begin the test, informing that exploratory
behavior outside the task flow should not occur until after task completion. Time mea-
surement began when the participant started the task.. After all tasks were completed,
the participant was asked to fill in the post-test SUS questionnaire.

8.1.3 Results

In Table 8.1, we present the success rate in executing the tasks and the main difficulties.
The table organizes as follows: the first column contains the requested task; the second
column summarizes the notes on the task performed; finally, the third column the number
of users who completed the task, without errors. In the chart depicted in Figure 8.5, we
present the efficiency of each task.

Task Notes
No of users who
successfully completed
the task

#1 Create a new project - 8

#2 Add and edit a new pattern Noticeable difficulties in
finding the feature requested 0

#3 Create a spatial configuration - 8

#4 Associate actuators to created pattern Functionality not intuitive
or perceptible 1

#5 Save the project - 8

#6 Use the examples library Navigation, location,
accuracy problems. 2

#7 Associate actuators to imported pattern - 7
#8 Add new channel - 8
#9 Add an edit a new pattern - 8
#10 Save the new pattern Accuracy problems 1
#11 Search for the saved pattern - 8
#12 Clear the timeline - 6
#13 Create timeline with pattern configurations - 6
#14 Add intervals to timeline - 8

Table 8.1: Vibrotactile Editor usability tests results: task execution success and main
dificulties
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Figure 8.5: Task efficiency

Difficulties observed

During the study, we noticed that sometimes participants had difficulties completing some
of the tasks. For simplicity, here, we address the tasks by their number.

In task #2, we asked the participants to add and edit a vibrotactile pattern to match a
given pattern image. This task’s purpose was to see if the editing functionalities (add,
drag, and delete a keyframe) were quickly found and used. These features were inspired by
editing software using the same keyboard shortcuts. We defined the "double-click" to add
and "shift-click" to delete a keyframe. We observed that adding keyframes was not easily
found. Some participants moved the mouse around the editor, searching for a function,
and others tried to right-click in the editor area and over the keyframes. In the end, we
conclude that dragging was the only direct and perceptible feature.

In task #4, we asked participants to associate an actuator to the channel. We observed
difficulties in performing this task: participants wandered around the editor to find the
functionality for quite some time before the moderator intervened.

Another task that brought confusion to the participants was task #6. We requested par-
ticipants to add a new pattern from the library. However, some participants’ first intuition
was to add a default new pattern, clicking the button in the timeline channel. However,
the participants realized that they were not achieving the right result and corrected their
mistakes promptly.

Finally, in task #10, we asked the participants to save the created pattern. The first action
of the majority of the participants was to select the save project button. Therefore, we
assume the placement of the solicited functionality is confused.

There were also tasks that, from our viewpoint, would pose problems but which participants
successfully executed without a problem. The first was task #9, where we asked the user
to edit a pattern according to a given example. The purpose of this task was to discover
the expansion function of the time axis. Although some users noticed the example had a
more extended time scale than that shown in the editor, we thought this posed a problem
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since no visual indication exists, such as an indicator to expand the axis. With this task,
we intended to observe the participants’ behavior and whether such an indicator would be
necessary. However, the functionality proved to be easily discoverable.

The other task that we considered that might cause difficulties was #13. Our concern was
to know if the user would move the timeline patterns according to the task description’s
time. However, we observed that most users had no difficulties executing the task, even
though not all participants completed it thoroughly.

Sugestions

After completing the post-questionnaire, we interviewed participants to gather suggestions
for improvement from their point of view. Regarding task #2, where participants had
more difficulties, a general opinion was to have a visible toolbar to facilitate the editing
of vibrotactile patterns. Other participants pointed out that tasks #6 and #10 could be
improved by adding more vivid colors to the buttons. Finally, in task #12, we asked the
user to clear the timeline. Some suggested adding a button to remove all the content at
once would be more efficient.

SUS Questionnaire

In this section, we analyzed the SUS questionnaire results (Figure 8.6). The SUS state-
ments alternate between positive and negative aspects of the system. Odd-numbered state-
ments represent the negative, and even-numbered statements the positive. To calculate
the SUS score, we need to follow the following rules:

• For odd-numbered statements: subtract one from the participant response.

• For even-numbered statements: subtract the participant response from five.

• Add up the converted responses for each participant and multiply that total by 2.5.

The SUS score classifies from 0-100. In a study of 2,324 applications of the SUS question-
naire [102] the average SUS score was found to be 70.14. That same study [102] categorized
the evaluated systems into: cell phone equipment, customer premise equipment, graphical
user interfaces, interactive voice response systems, internet-based Web pages and applica-
tions.

The GUIs category ( 208 systems analysed ) had a mean score of 75.24 with a standard
deviation of 20.77. The Vibrotactile Editor obtained a score of 80, meaning it was scored
above average in the specific GUI category as well as overall.

8.1.4 Discussion

The usability testing of the Vibrotactile Editor showed encouraging results in this first
iteration. The values obtained through the usability test show a total Task Efficiency of
83,6%. Acknowledging the participants’ suggestions and the faults observed, we can be
assured that the next iteration can show more promising results. One of the objectives of
this test was to determine design inconsistencies and usability problems. We achieved this
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Figure 8.6: SUS results

objective, discovering the inconsistencies and pointing out the most relevant flaws in the
editor’s design.

During the participants’ test, we notice the Vibrotactile Editor’s learning curve was initially
steep as it is required to become familiar with new concepts, background knowledge, and,
principally, the editor’s functionalities. Some of the practical difficulties were due to a lack
of empirical knowledge and design flaws, as is Task 4, where the functionality requested was
not noticeable. In task 6, on the other hand, we concluded that the difficulties were only
due to design problems: the position and projection of the UI control element associated
with the requested functionality.

After the initial learning phase, solving more advanced tasks became relatively simple,
and the learning curve flattened. We can observe this behavior in task #13, where we
ask the participants a combination of tasks #2, #4, and #6. As we discussed in the
results section, these tasks score the lowest task efficiency value. However, when doing the
#13, the participants had no difficulty. The Task Efficiency value and observations show
that there was an acquisition of knowledge throughout the usability test. Regarding the
participants’ suggestions, some were in line with the solutions we have in mind for their
resolution. This feedback was crucial to be able to view the editor from a user perspective.
Besides, it also promoted discussion on how we could solve the raised issues.

Finally, the result of SUS shows that users found the Vibrotactile Editor satisfactory and
easy-to-use. The result obtained was above the average of the numerous systems analyzed
by [102]. Moreover, within the context of GUIs, the editor was also on the upside. However,
this result is not significantly higher than the reported average. This shows that there are
still factors that can be improved.

8.1.5 Second Round

To avoid a repetitive description of the process, we summarize the procedure involved,
which is very similar to the previous one. Subsequently, we present the results obtained
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along with their discussion.

In this usability test, we had 4 + 1 participants. In other words, we had four participants
from the first group and one from the TherTactExo project. Regarding the first group
participants, when recruiting, we focused on having two participants who had already
participated in the first round and two new entrants. By doing this, we wanted to analyze
whether the observed faults recurred in both new participants and repeaters, with the
focus on the former.

Since we had one participant from the TherTactExo project in this iteration, we chose to
run different tests.

Due to the COVID-19 pandemic and the DGS rules during this time, we conducted the
second round of testing remotely. In short, we asked the participants from the first group
to share their screen at the time of the test. Previously, we gave a brief introduction to
the application and basic concepts. Besides, we also sent out an informed consent, similar
to the first round of testing. By the end of the test, we discussed the changes and inquired
about them with the participant.

For the TherTactExo project member test, we allow the participant to freely explore the
application due to his knowledge and experience in the area. This approach intends to
identify the limitations of the application in a future user’s hands.

Figure 8.7, shows the Vibrotactile Editor GUI where we conducted the second round of
usability testing. In this version, we incorporated all the feedback obtained in an effort to
improve it.

Figure 8.7: Vibrotactile Editor GUI for the second usability test

In comparison to the first round, the most resonant change is the color scheme. The change
was suggested by a participant and further designed to emphasize and express elevation of
certain features by contrasting them with darker surfaces [103, 104].

We also expanded the size of the timeline and the pattern editor. In the pattern editor, we
created a toolbar where we indicate the available editing options. In the timeline, besides
the size modification, we visually show which actuators are associated with each channel.
Finally, we changed the position of the "Add Actuator", "Add Channel", and "Library"
buttons to positions that seemed appropriate, according to the conclusions obtained in the
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previous round, and included a button to clear the timeline.

Results and Discussion

Table 8.2 presents the success rate in executing the tasks and the main difficulties in the
tasks that proved to be more difficult in the previous round. We omitted the remaining
tasks’ results as they were analogous and did not provide relevant information for analysis
and discussion.

Task Notes
No of users who
successfully
completed the taks

#2 Add and edit a new
pattern Users used the toolbar as intended 4

#4 Associate actuators to
created pattern

Feature more noticeable and gives better
understanding after first use 3

#6 Use the examples library Library button is more eye-catching 4
#10 Save the new pattern Save button is more obvious 3

Table 8.2: Vibrotactile Editor usability second round tests results

In task #2, we have improved the efficiency of the task significantly. Following the users’
suggestions, we created a toolbar. The toolbar allowed the user to find the editor’s features
easily and promptly. Also, we added an information button where keyboard shortcuts are
available. Finally, we indicate the coordinates as the user hovers the mouse over the editor
for better accuracy in creating patterns.

In task #4, we noticed that one of the new participants had difficulty understanding what
we required. We had already concluded the task’s fault could be related to a lack of
knowledge in this specific area. The design changes we made were minimal, as we did not
have a more direct solution. However, we now provide an immediate visual indication to
the user, telling which actuators are currently on that channel. After performing this task
and having the new visual information, we noticed that the users better understood the
feature’s purpose.

In Task #6, we found a substantial improvement. All the participants in this task pro-
ceeded easily and quickly to the button which opened the example library. We conclude
that the change of position and the increased exposure by changing the color of the button
to a primary color made a significant improvement.

Finally, in Task #10, we also noticed a slight improvement in approaching the "Save to
Library" functionality. However, we perceived some hesitation in one of the participants.
As before, the participant address the save project button first. However, he ended up
using the correct functionality.

Regarding the results reported by the participant from the TherTactExo project, we got
very positive feedback, with some remarks for improving the application. The shortcomings
reported involved changing the design of some elements. In the Table 8.3, we detail the
feedback received.

In addition to the feedback received on the design aspects, we also received one improve-
ment suggestion to enhance the application to make it more compatible with distinct
hardware controllers. The Vibrotactile Editor was developed specifically for the protocol
explained in chapter 6. This protocol, originated as part of the TherTactExo team’s work,
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UI Element Suggestions

Actuators
The function to remove an actuator may appear after a "click" made on
the relevant actuator. With a mouse hover, the remove button should be
placed more on the top edge.

Keyboard
shortcuts

The keyboard shortcuts can be changed to match the audio editors’ standards.
One mouse "click" to add a datapoint and a "control + click" to remove.

Table 8.3: Notes on the feedback received

is intended to control the prototypes they create. So one suggestion for improvement would
be able to export the projects to another type of format. The format suggested by the
participant was to transform the pattern data into audio files. These files, precisely the
WAV format, facilitates sampling and adaption to other hardware controlers.

The second round of tests, although with fewer participants, served to consolidate the
results obtained previously. From the feedback received, we developed an editor that
matched a future user’s expectations. The tasks that presented the most problems in the
first iteration of the Vibrotactile Editor were solved. Where previously no participants had
completed the task, as in task #2, all participants found success in this second round of
testing. Not just in this task, but there was also a significant improvement in the remaining
tasks. Finally, having very positive feedback from the project participant helps confirm the
participants’ positive results without experience and knowledge in this area. Furthermore,
it validates our work developed during this dissertation.

8.2 A-Frame Vibrotactile Component API Usability Testing

In this section, we describe the usability evaluation of the A-Frame Vibrotactile Compo-
nent. In this particular evaluation, we focused on the usability of the Application Program-
ming Interface (API) in the A-Frame context. To do so, we develop a test plan consisting
of two parts: an introductory tutorial to the A-Frame framework to train the participants,
and an online usability test for evaluating the API. We decided to include an introductory
tutorial due to the highly probable lack of knowledge and experience of the participants
who would take part in this test regarding the A-Frame framework and to acquire sufficient
experience to evaluate the component’s API, abstracting from the A-Frame framework’s
possible complexity. Although it is JavaScript-based, its usage is very particular, oriented
to 3D development. Therefore, we ensure that users have acquired the necessary experience
to perform the usability test with this approach and that possible difficulties are mostly
attributable to our API rather than to A-Frame itself.

An API’s usability is a qualitative attribute that indicates how easy it is, for developers,
to learn and use an API in a certain context [105]. We can consider different usability
characteristics [105] when evaluating the usability of a programmatic API, such as:

• Learnability

• Efficiency

• Understandability

• Effectiveness

• Readability
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• Satisfaction

• Debbugability

• Productivity

• Reusability

• Abstraction

• Expressiveness

• Unambiguousity

However, with this usability test, we focused on evaluating the following four characteristics
of API’s usability:

1. Learnability

2. Readability

3. Understandability

4. Abstraction

Learnability measures the capability of software to be learned by its developers with ease
[100]. The readability of an API measures the level to which a code written with the API
is readable by its users, such that they can follow it logically [105]. Understandability
measures how well a user can understand the code without confusion [100]. We want the
users to be able to understand what the API offers by just reading its documentation and
its examples. To reinforce this characteristic, we also evaluate the API’s abstraction. In
[106], API abstraction is defined as the ability to guarantee that programmers can use the
API with proficiency without requiring specific knowledge or assumptions concerning its
implementation details.

We focus on these four characteristics as they are among the most frequently evaluated
in primary studies [105], alongside efficiency and effectiveness. However, we did not cover
later two characteristics. Efficiency defines how much software enables its users to use the
right amount of resources to complete a task [100], effectiveness defines how much software
enables its users to complete their tasks correctly [100]. We deemed these characteristics
less relevant because we were not comparing our solution with other possible solutions and
measuring efficiency and effectiveness in absolute terms would be difficult.

API usability evaluation methods can be performed using two main types of studies [105]:

1. Analytic methods: the object of study is the API specification. In these methods,
the main focus is analyzing the technical specifications described in the API docu-
mentation where API reviewers give their feedback about the API design.

2. Empirical methods: the object of the study is focused on how developers use an API
in practice.

Analytic methods can take two different approaches for evaluation: Metrics, where the API
design is studied through evaluation software and the result is compared with predefined
thresholds, or Reviews, where experts study the design of the API and its documentation.
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Empirical methods, on the other hand, can be task-based usability tests where participants
perform one or more predefined tasks using the API, controlled experiments which compare
outcomes of different tasks using different APIs, or surveys and repository mining, which
focus on the study of developer’s past experiences using an API.

In this evaluation, we opted for conducting an empirical method using the task-based
usability test approach, given that it provides us with users’ feedback on a single existing
and new API (we did not have different APIs to compare, and the proposed API is new
without an existing user base).

After consolidating all the information, we developed the usability test based on tasks
where the user will use methods provided by the developed API.

8.2.1 Procedure

For this usability test, we recruited nine participants, most of them students in the com-
puter engineering department. The participants were contacted, some via direct contact,
others via instant messaging applications. We mainly communicated via the internet dur-
ing this usability test, explaining the entire procedure to each participant individually.

The first assignment to be completed would be the A-Frame tutorial, which we made avail-
able online at https://github.com/ZeCanelha/AFrame-Tutorial (see Appendix C.3).
We ask the participants to complete the tutorial in no more than a week. If not possible,
we asked them to mark the tutorial’s completion date.

Afterward, we explained that the next assignment was to complete a set of tasks in which
the A-Frame component was evaluated. We made the task list available for online assess-
ment in a shared document and sent the link to each participant.

The evaluation consisted of four tasks. In each task, we asked the users to use the different
methods and functionalities of the API. We design them to cover all aspects of the com-
ponent usability. In A-Frame, the components are encapsulated JavaScript code modules
that we can use declaratively in HTML as attributes of the elements [64]. Additionally,
programmers can access the inherent methods of a component from any other A-Frame
component. We intend the first two tasks to explore the HTML interface, whereas the last
two explore its internal methods. We also invited the users to leave suggestions in the code
as comments as they completed the tasks.

Finally, we requested the users to send their solutions through email and fill a questionnaire
regarding usability, available in Appendix C.5.

Given the length of each task, we transcribe only the first task. However, to give the reader
context for the results section, we describe each task with a summary of the objective and a
figure illustrating the scenario under consideration. The tasks in their entirety are available
in Appendix C.4.

Tasklist description

Task 1

Make changes in the example Task 5 provided, to match the following:

Use the Vibrotactile component to create a scene where there is vibration feedback
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(the vibration is defined by the vibrations1.json available in the directory) when the
cursor intercepts the toasted yellow <a-box> in the scene (Figure 8.8).

Since we do not have a vibration device to receive vibrotactile feedback, confirm the
following output in the browser console:

Vibrations from *vibration file* attached with success

If any doubts arise, refer to the vibrotactile component documentation.

Figure 8.8: A-Frame Scenario - Task 1

In the second task, we asked the participants to continue exploring the HTML inter-
face. In this task, the objective was to use two components simultaneously in the same
entity. Specifically, we intended to associate a vibration and an animation component,
and on animation complete, the vibration should trigger. We used an empty scenario with
background only where the user had to define the entity in a given position.

For the third task, we requested the participants to use JavaScript methods of the vi-
brotactile component. In this task, we present a scenario with three entities (Figure 8.9).
Each of these entities was to be associated with a vibration function explicit in the task
statement. By doing this, we intend to explore the ability of users to use the API pro-
grammatically.

Figure 8.9: A-Frame Scenario - Task 3

Finally, in the fourth task, the participant was asked to create a Vibrotactile GPS. In this
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task, the participant had to walk towards a given destination (Figure 8.10). As he/she was
getting closer, distinct vibrotactile feedback was transmitted within predefined thresholds.
In this task, we requested the participants more autonomous use of the A-Frame framework
and extensive use of the component’s API.

Figure 8.10: A-Frame Scenario - Task 4

Usability questionnaire description

The questionnaire was based on the structured interview presented by [107] and was as
follows:

Questions regarding understandability:

1. Do you find that the API types map to the domain concepts in the way you expected?

2. Do you feel you had to keep track of information not represented by the API to solve
the tasks?

3. Does the code required to solve the tasks match your expectations?

Questions regarding abstraction:

1. Do you find the API abstraction level appropriate to the tasks?

2. Did you need to adapt the API (inheriting from API classes, overriding default
behaviors, providing non-API types) to meet your needs?

3. Do you feel you had to understand the underlying implementation to be able to use
the API?

Questions regarding learnability:

1. Once you performed the first two tasks, was it easier to perform the remaining tasks?

2. Do you feel you had to learn many classes and dependencies to solve the tasks?

Questions regarding readability:

1. Do you find the API understandable, accessible, and readable?

2. Do you find yourself able to use the API logically?

Figure 8.11 summarizes the A-Frame component API usability test plan. The first phase
was dedicated to planning. The second phase started with the tutorial and ended with the
conclusion of the usability test. The third and fourth phase was dedicated to the analysis
and discussion of the results obtained.
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Figure 8.11: Methodology Approach

8.2.2 Results

Usability Test

As this usability test was conducted online, we indicate the expected output for the user
to validate his / her answer in each task. In the table that follows, we have the results of
the practice test. The first column relates to the actual task. The second column shows
the expected output. Finally, in the third column, we indicate the number of users who
completed the task.

Task Expected Output
No of users who
successfully completed
the task

#1 Attach the vibrotactile component to an entity Vibrations from *vibration file* attached
with success 9

#2 Use the vibrotactile component with others Vibrations from *vibration file* attached
with success 9

#3 Use the inherent methods of the vibrotactile
component programmatically

An object containing the method’s name
followed by the parameters specified in the
task

8

#4 Vibrotactile GPS
An object containing the method’s name
followed by the parameters specified in the
task

5

Table 8.4: A-Frame Component API usability tests results

Upon analyzing the submissions regarding the first task, we found this task to be relatively
simple, and all users were successful in its execution. We intended to verify two key factors
through this task: importing an external component to the A-Frame environment and the
proper use and understanding of the Vibrotactile component.

Regarding the second task, all users have completed this task. In two of the codes sub-
mitted, we verified that the animation component parameters were not strictly the ones
defined in the statement, which does not influence the expected result.

As we mentioned earlier, the first two tasks corresponded to using the component through
the HTML interface. In the third task, we started the questions concerning the component’s
programmatic use. Reviewing the submitted codes, we verified that most users completed
the task successfully. The errors found were mainly related to JavaScript itself rather than
the use of the component. Of the two participants who did not complete this task correctly,
the mistake is common. We wanted the vibrations to be activated according to specific
interactions between the entities and the user. One of these interactions would be when
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the user intercepted the entity with the cursor (the WebGL gaze reference point). Here,
we expected the "mouseenter" event. However, the participant set as the event parameter
the string "intercept," as visible in Figure 8.12, thus not activating the entity’s vibration.

Figure 8.12: JavaScript related error

Finally, in the last task, we noticed that a significant portion of the participants did not
initiate the task’s resolution at all. We are aware that the task required more effort and
autonomy from the participant with the A-Frame. The conclusion we can draw from this
might fall on the extent or the understanding of the requested task. The participants who
did had some questions on particular aspects of the problem. One recurring doubt was how
to calculate the distance between two objects in the A-Frame environment. Since this was
a question slightly outside the evaluation context, we assisted the participants who asked.
Given the feedback on this question, we evaluated it and concluded that the implications
for assessing the component’s use were practically non-existent. Other than this hindrance,
these five participants used the requested methods correctly, with the proper parameters.

Usability Questionnaire

In this section, we analyzed the usability questionnaire results, available in Figure 8.13.
The first group of questions is related to the API’s understandability. The consensus
among the participants was that the API was perceivable and fulfilled the participant’s
expectations. The second group concerns API’s learnability. Based on the responses,
we conclude that the participants’ opinion is unanimous. After the API usage in the first
tasks, further use becomes more effortless. Also, we can conclude the participants feel that
it is not necessary to learn extra dependencies to use the API. Regarding the third question
group, we evaluated the API’s abstraction. We can safely assume that users felt that the
level of abstraction was appropriate for completing the tasks. Besides, each of the methods’
declaration and documentation was sufficient for the participants to understand how each
function works without understanding the underlying implementation. Finally, the last
group of questions concerns the readability of the API. The participants’ consensus was
that the API was accessible, readable, understandable, and above all, all participants could
use the API logically.

8.2.3 Discussion

After analyzing the results obtained, we can objectively conclude that the developed com-
ponent presents positive results. For this usability test, we took a different approach
to ensure that the participants had the background knowledge and experience required
through an introductory tutorial. This approach enabled the evaluation to be focused only
on the API, avoiding the A-Frame’s possible complexities.

However, the usability questionnaire results stand out somewhat compared to the results
obtained from the usability test. In the first three tasks, we achieved excellent results.
Yet, these results were to be expected, especially in the first and second tasks. We wrote
the documentation for the vibrotactile component in such a manner that a practical ex-
ample followed all information regarding a method. And in these two tasks, reading the
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Figure 8.13: A-Frame component API usability questionnaire results

documentation and understanding the provided example was sufficient for solving the first
tasks. In the last tasks, the resolution was not quite so linear. In the third task, we ob-
tained good results. The participants understood what was asked of them and solved it
accurately, with the correct methods and parameters. Although there were some errors,
as we pointed out in the results section, these had no impact on the final result. During
the component development, we had several iterations about the optimal way to state the
parameters. This was one of the primary aspects we wanted to validate, given that each
method takes a vast number of parameters.

Nevertheless, we cannot confidently state that this is proved entirely. The discrepancies
between the results of the test and the usability questionnaire leave us somewhat uncertain.
On the one hand, we have sufficient data to support that the results are positive overall.
On the other hand, we cannot help but feel that the participants’ disinterest in the last task
is reflected in such positive results in the usability questionnaire. Possible explanations for
the results obtained may relate to an attempt to help a colleague in his work, which in
reality, turned out not to be helpful. We expected the participants to be fully engaged in
the evaluation. Seeing that almost half chose not to perform the last task demonstrates
that our preparation failed to captivate participants to explore the A-Frame and API in a
challenge that would test their skills.
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Conclusion

To conclude this dissertation, we review all the work done during this academic year,
detailing the primary contributions. Finally, we give an outlook on the future work that
remains to be done.

9.1 Overview and Contributions

This dissertation was developed in the context of the TherTactExo project, which focuses
on rehabilitating patients with spinal cord injuries. Through a new specific protocol in-
volving virtual reality and feedback from several sensory stimuli, the main goal is to reduce
the duration of a training protocol to achieve partial neurological recovery of sensorimotor
function in SCI patients. Within these stimuli, we introduce the field of haptics, specifi-
cally, vibrotactile feedback. The work developed in this dissertation was intended to build
an editor that would facilitate the creation of vibrotactile feedback.

We developed the Vibrotactile Editor and the primary contributions are:

• The creation of highly customizable vibrotactile patterns through a built-in waveform
editor and the multi-channel timeline

• Provides a Middleware that enables the Virtual Reality components to create and
express vibrotactile feedback

• Provides a simple, intuitive, and easy-to-use GUI to allow any user to create vibro-
tactile feedback

We tested our work in a study conducted with eight participants to evaluate and improve
the editor. The usability test provided us an insight into how a user works with the
Vibrotactile Editor. Besides, the participants’ suggestions also proved to be a valuable
contribution to the improvement of the editor. We incorporated all the results from the
usability test into a second version of the Vibrotactile Editor and conducted a second
round usability test. The results obtained were significantly better. We also received the
validation and approval of the work developed by a TherTactExo team member, a future
user of the Vibrotactile Editor.

In this dissertation, we present a set of functional tools for assistance in the TherTactExo
project. The Vibrotactile Editor is already being used in the discrimination tests conducted
at the moment. They are also considering using the Unity component to develop the virtual
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reality experiments. However, this work is not restricted to the TherTactExo project
exclusively. Other projects working with virtual reality and haptic feedback have, in this
work, the necessary tools to support their developments.

9.2 Future Work

Future work on the Vibrotactile Editor System should focus on improving it further. One
of the possible improvements is to adapt the nature of the feedback that we can create–for
example, adapting the editor to create thermal feedback patterns. Other possibilities may
address the different types of microcontrollers available on the market. As described in
chapter 6, we developed the Vibrotactile Editor to meet a predefined communication pro-
tocol. Therefore, another improvement should be developing functionalities or establishing
a protocol that enables integration with multiple microcontrollers.

Another point for improvement in future work is to upgrade the A-Frame component and
its API. In the developed work, we introduced a set of functions to express vibrotactile
feedback. However, it can be expanded to incorporate all sorts of waveforms. Re-running
the A-Frame Component API usability tests to obtain more concrete results should be
another point to consider in future work. In a similar direction, a usability test of the
Unity component should also be conducted.
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Appendix A

Requirements

A.1 Wireframes

In this section, we exhibit the wireframes designed during the requirements elicitation
process.

Figure A.1: Start screen
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Appendix A

Figure A.2: Configuration screen

Figure A.3: Library screen

Figure A.4: Add actuator screen
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Appendix B

The Vibrotactile Editor System

B.1 A-Frame Component

In this section, we detail all the documentation available about the developed A-Frame
component, dubbed as A-Frame Vibrotactile Component.
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aframe-vibrotactile-componentaframe-vibrotactile-component

npm package not found  license package not found

A-Frame component for vibrotactile feedback

For A-Frame.

vibrotactilevibrotactile

When creating the vibrotactilevibrotactile component for A-Frame, we pass as an argument a file exported from [Vibrotactile Editor]
(https://github.com/ZeCanelha/VibrotactileEditor. Briefly, this editor allows to create and export a set of vibrotactile sensations, which we refer in this documentation
as the vibration file.

PropertyProperty DescriptionDescription Default ValueDefault Value

src Path to the vibration
file none

event A-Frame event none

Basic usage example:

<a-scene>

  <a-box vibrotactile="src: vibrations.json; event: mouseenter;"></a-box>

</a-scene>

See more examples in the examples folder.

The vibrotactile component offers a set of preset functions that can be used programmatically by the user. For simplicity the following table describes the common
parameters between the sinsin and rampramp functions.

Common parametersCommon parameters

PropertyProperty DescriptionDescription Default ValueDefault Value

samplingRate Sampling rate in milliseconds 5

numberOfActuators Number of actuators 6

actuators The specific actuators to perform the
vibration [0,1,2,3,4,5]

startingTime Time in milliseconds to start the vibration 0

duration Duration of the vibration in milliseconds 1000

vibrotactile.sin(sin, options)vibrotactile.sin(sin, options)

The sin function allows to create a sinusoidal waveformsinusoidal waveform vibration.

PropertyProperty DescriptionDescription Default ValueDefault Value

sin A JavaScrip object containing the sine wave
properties

sin.amplitude Sine amplitude value between [0,1] 1

sin.frequency Sine frequency value 5

sin.phase Sine phase value 0

options Common parameters options

Example:



<head>

  <title>Vibrotactile Component - Sin example</title>

  <script src="https://aframe.io/releases/0.9.2/aframe.min.js"></script>

  <script src="https://unpkg.com/aframe-vibrotactile-component@1.0.0/dist/aframe-vibrotactile-component.min.js"></script>

  <script>

    AFRAME.registerComponent("vibrotactile-example", {

      init: function () {

        var sin = {

          amplitude: 0.8,

          frequency: 10,

        };

        var options = {

          samplingRate: 10,

          actuators: [0, 1],

          numberOfActuators: 6,

          startingTime: 0,

          duration: 1500,

        };

        var vibrotactile = this.el.components.vibrotactile;

        vibrotactile.sin(sin, options);

      },

    });

  </script>

</head>

<body>

  <a-scene>

    <a-entity vibrotactile vibrotactile-example></a-entity>

  </a-scene>

</body>

vibrotactile.ramp(initialIntensity, finalIntensity, options )vibrotactile.ramp(initialIntensity, finalIntensity, options )

The ramp function allows to create a single sawtooth wave, a ramp waveformramp waveform vibration.

PropertyProperty DescriptionDescription Default ValueDefault Value

ramp A JavaScript object containing the ramp wave
properties

ramp.initialIntensity Initial vibration intensity value [0,100] 0

ramp.finalIntensity Final vibration intensity value [0,100] 100

options Common parameters options

The ramp function is similar to the sin. Example:



<head>

  <title>Vibrotactile Component - Ramp example</title>

  <script src="https://aframe.io/releases/0.9.2/aframe.min.js"></script>

  <script src="https://unpkg.com/aframe-vibrotactile-component@1.0.0/dist/aframe-vibrotactile-component.min.js"></script>

  <script>

    AFRAME.registerComponent("vibrotactile-example", {

      init: function () {

        var ramp = {

          initialIntensity: 25,

          finalIntensity: 10,

        };

        var options = {

          samplingRate: 5,

          actuators: [3, 4, 5, 6],

          numberOfActuators: 6,

          startingTime: 0,

          duration: 500,

        };

        var vibrotactile = this.el.components.vibrotactile;

        vibrotactile.ramp(ramp, options);

      },

    });

  </script>

</head>

<body>

  <a-scene>

    <a-entity vibrotactile vibrotactile-example></a-entity>

  </a-scene>

</body>

vibrotactile.sendVibrations(vibrationFile)vibrotactile.sendVibrations(vibrationFile)

The sendVibrations function allows the programmatic execution of a vibration file passed as a parameter. If no file is specified, the function will execute the file
specified at component initialization.

PropertyProperty DescriptionDescription Default ValueDefault Value

vibrationFile Path to the vibration file exported from the Vibrotactile
Editor

Vibration file specified at component
initialization

Example:



<head>

  <title>Vibrotactile Component - Send vibrations example</title>

  <script src="https://aframe.io/releases/0.9.2/aframe.min.js"></script>

  <script src="https://unpkg.com/aframe-vibrotactile-component@1.0.0/dist/aframe-vibrotactile-component.min.js"></script>

  <script>

    AFRAME.registerComponent("vibrotactile-example", {

      init: function () {

        var waveVibration = "path/to/waveVibrationFile.json";

        var vibrotactile = document.querySelector(#box).components.vibrotactile;

        // Sends the vibrations specified at the src property

        vibrotactile.sendVibrations();

        // Sends the wave vibration file

        vibrotactile.sendVibrations(waveVibration);

      },

    });

  </script>

</head>

<body>

  <a-scene>

    <a-box

      id="box"

      vibrotactile="src: path/to/vibrationFile.json; event:mouseenter"

    ></a-box>

  </a-scene>

</body>

vibrotactile.customVibrations(vibrations, samplingRate, numberOfActuators)vibrotactile.customVibrations(vibrations, samplingRate, numberOfActuators)

The customVibrations function allows the construction of elaborated vibrations, close to the level achieved with the Editor, in a simple programmatic way.

PropertyProperty DescriptionDescription Default ValueDefault Value

vibrations JavaScript object containing the vibration
properties

vibration.intensity Vibration intensity -

vibration.actuators Array of Number  indicating the actuators -

vibration.startingTime Vibration starting time in milliseconds -

vibration.duration Vibration duration in milliseconds -

Example:



<head>

  <title>Vibrotactile Component - Custom vibration example</title>

  <script src="https://aframe.io/releases/0.9.2/aframe.min.js"></script>

  <script src="https://unpkg.com/aframe-vibrotactile-component@1.0.0/dist/aframe-vibrotactile-component.min.js"></script>

  <script>

    AFRAME.registerComponent("vibrotactile-example", {

      init: function () {

        const samplingRate = 5;

        const numberOfActuators = 6;

        var vibrations = [];

        var vibrationObject = {

          actuators: [1, 2],

          intensity: 50,

          startingTime: 0,

          duration: 1000,

        };

        vibrations.push(vibrationObject);

        var vibrotactile = this.el.components.vibrotactile;

        vibrotactile.customVibrations(

          vibrations,

          samplingRate,

          numberOfActuators

        );

      },

    });

  </script>

</head>

<body>

  <a-scene>

    <a-entity vibrotactile vibrotactile-example></a-entity>

  </a-scene>

</body>

See more examples.

InstallationInstallation

Browser Install and use by directly including the Browser Install and use by directly including the browser filesbrowser files::

<head>

  <title>My A-Frame Scene</title>

  <script src="https://aframe.io/releases/0.9.2/aframe.min.js"></script>

  <script src="https://unpkg.com/aframe-vibrotactile-component@1.0.0/dist/aframe-vibrotactile-component.min.js"></script>

</head>

<body>

  <a-scene>

    <a-entity

      vibrotactile="src: vibrations.json; event: click;"

      geometry="primitive: box;"

    ></a-entity>

  </a-scene>

</body>

npmnpm

Install via npm:

npm install aframe-vibrotactile-component

Then require and use.



require("aframe");

require("aframe-vibrotactile-component");



This page is intentionally left blank.



Appendix C

Evaluation

C.1 SUS Questionnaire

In this section, we detail the SUS usability questionnaire provided the usability test par-
ticipants.
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15/03/2021 Vibrotactile Editor - Questionnaire

https://docs.google.com/forms/d/1zmzhvk5biZTA363eT8qHdh7_4QQXlgNUf__wcfZdriM/edit 1/4

1.

2.

Exemplo: 7 de janeiro de 2019

3.

Marcar apenas uma oval.

Outro:

Female

Male

Prefer not to say

4.

Marcar apenas uma oval.

Less than 18

Between 18 and 22

Between 23 and 30

Between 31 and 45

More than 45

System Usability Scale

Vibrotactile Editor - Questionnaire
*Obrigatório

Name *

Date *

Gender *

Age *



15/03/2021 Vibrotactile Editor - Questionnaire

https://docs.google.com/forms/d/1zmzhvk5biZTA363eT8qHdh7_4QQXlgNUf__wcfZdriM/edit 2/4

5.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

6.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

7.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

8.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I think that I would like to use Vibrotactile Editor frequently. *

I found Vibrotactile Editor unnecessarily complex. *

I thought Vibrotactile Editor was easy to use. *

I think that I would need the support of a technical person to be able to use
Vibrotactile Editor *
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9.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

10.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

11.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

12.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I found the various functions in Vibrotactile Editor were well integrated. *

I thought there was too much inconsistency in Vibrotactile Editor *

I would imagine that most people would learn to use Vibrotactile Editor very
quickly. *

I found Vibrotactile Editor very cumbersome (awkward) to use *
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13.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Marcar apenas uma oval.

Strongly disagree

1 2 3 4 5

Strongly agree

Este conteúdo não foi criado nem aprovado pelo Google.

I felt very confident using Vibrotactile Editor *

I needed to learn a lot of things before I could get going with VibrotactileEditor. *

 Formulários



Appendix C

C.2 Vibrotactile Editor Usability Testing - Tasklist

In this section, we detail the Vibrotactile Editor usability test tasklist.

Tasklist

• Task 1

Create a new project with the name of your choice, where the device will be an
Arduino Nano connected to 6 vibration actuators. Finally, upload the prototype
image from the file system, available at Desktop/VTEditorTest/64-teste.jpg.

• Task 2 Add a new pattern to the timeline with the following characteristics:
Four points, being the first coordinate the time and the second the intensity in
percentage:

– ≈ (0,20)

– ≈ (100,50)

– ≈ (200,75)

– ≈ (300,90)

• Task 3 Over the prototype image, create a spatial arrangement of the actuators.

• Task 4 Associate an actuator to the channel containing the pattern created in Task
2.

• Task 5 Save the Project.

• Task 6 Add the "Spikes" pattern from the library to an empty timeline channel.

• Task 7 As in Task 4, associate an actuator to the Channel containing the pattern
imported in the previous task.

• Task 8 Add a new channel to the project.

• Task 9 Add a new pattern to the newly created Channel.
Edit the pattern to match the one in Figure C.1.

Figure C.1: Pattern Example
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• Task 10 Save the edited pattern. Set the following characteristics:

– Pattern Name: Up and Down

– Description: Basic up and down pattern

– Usage: Running

• Task 11 Search for the pattern created in the previous task and add it to the timeline.

• Task 12 Clear the timeline.

• Task 13 Create a timeline with the following characteristics:

– Channel 1:

1. Add pattern "Spikes" from the library.
2. Set the start time at 0ms
3. Associate actuators 1 and 2.

– Channel 2:

1. Create a pattern that matches the one on Figure C.2.
2. Set the start time at 300ms
3. Associate actuators 3 and 4.

– Channel 3:

1. Add pattern "Pyramid Pattern" from the Library
2. Set the start time at 500ms
3. Associate actuators 5 and 6.

Figure C.2: Pattern Example

Play the timeline.

Obs: Place your arm over the hardware device before playing to feel the vibrotactile
sensations created.

• Task 14 Add a 100ms interval between each pattern. Play the timeline.

C.3 A-Frame Tutorial

In this section we describe the A-Frame tutorial developed during the testing phase of the
A-Frame Vibrotactile Component API.
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A-Frame TutorialA-Frame Tutorial

IntroductionIntroduction

A-Frame is a web framework for building virtual reality experiences using HTML and JavaScript. Therefore, to complete this tutorial, it is expected that the
participants have minimal knowledge of these technologies.

Getting StartedGetting Started

A-Frame can be developed from a plain HTML file without having to install anything. To get started, create an .html  file and include the A-Frame script in the
<head>  tag:

<html>

  <head>

    <script src="https://aframe.io/releases/1.1.0/aframe.min.js"></script>

  </head>

  <body>

    <a-scene>

      <a-box position="-1 0.5 -3" rotation="0 45 0" color="#4CC3D9"></a-box>

      <a-sphere position="0 1.25 -5" radius="1.25" color="#EF2D5E"></a-sphere>

      <a-cylinder

        position="1 0.75 -3"

        radius="0.5"

        height="1.5"

        color="#FFC65D"

      ></a-cylinder>

      <a-plane

        position="0 0 -4"

        rotation="-90 0 0"

        width="4"

        height="4"

        color="#7BC8A4"

      ></a-plane>

      <a-sky color="#ECECEC"></a-sky>

    </a-scene>

  </body>

</html>

TutorialTutorial

All the a-frame action happens within the a-scene  entity. In the example above, we have the scene tag with a handful of a-frame entities. These entities represented
as HTML elements are called primitivesprimitives.

PrimitivesPrimitives

Entities or primitives can be described as a 3D object which can take different geometric shapes, such as a box, sphere, or a cylinder. To see every primitive that A-
Frame provides, refer to the A-Frame documentation, at the bottom of the documentation navigation sidebar.

For this tutorial, we will be focusing on the most basic primitives, detailed in the table below.

PrimitivePrimitive DescriptionDescription

<a-box> The box primitive creates shapes such as boxes, cube, or walls

<a-cylinder> The cylinder primitive is used to create tubes and curved surfaces

<a-sphere> The sphere primitive creates a spherical or polyhedron shapes

<a-plane> The plane primitive is used to create flat surfaces

<a-sky>
The sky primitive adds a background color or 360° image to a
scene

ComponentsComponents



If we use the primitives as presented in the table above, the created primitives appear in their default form. To change its attributes, we associate componentscomponents with
these entities such as positionposition, rotationrotation, colorcolor, and scalescale. In A-Frame, components have the same syntax as an HTML attribute:

<a-box position="0 0 -4" color="#FF0000"

The code above creates a red box in the position given by the (0, 0, -4) coordinates. A-Frame uses a right-handed coordinate system where the negative Z axis extends
into the screen.

PositionPosition

The position component places entities at certain spots in 3D space. Position takes a coordinate value as three space-delimited numbers.

<a-sphere position="0 1 -1"></a-sphere>

A-Frame uses a right-handed coordinate system where the negative Z axis extends into the screen.

RotationRotation

The rotation component defines the orientation of an entity in degrees. It takes x, y, and z, as three space-delimited numbers indicating degrees of rotation.

<a-box rotation="45 90 180"></a-box>

ScaleScale

The scale component defines a shrinking, stretching, or skewing transformation of an entity. It takes three scaling factors for the X, Y, and Z axes.

<a-plane scale="0.5 1 2"></a-plane>

SizeSize

The unit of measurement used in A-Frame is the meter. To define the size in A-Frame we have different attributes depending on the object's geometry. The box
primitive takes the widthwidth, heightheight, and depthdepth attributes to control the size whereas the sphere and circle take the radiusradius attribute. A cylinder uses both the heightheight and
the radiusradius attribute:

<a-box position="2 0 -5" width="1" height="2" depth="1" color="#FFAA00"></a-box>

<a-sphere position="-2 0 -5" radius="0.75" color="red"></a-sphere>

<a-cylinder

  position="0 0 -5"

  radius="1"

  height="1.5"

  color="#212121"

></a-cylinder>

Textures and 3D ModelsTextures and 3D Models

In A-Frame, besides the color, we can also apply textures to the entities in our scene. The process of applying a texture to an entity is very straightforward and we can
apply it to every entity in the scene. Additionally, A-Frame also provides components for loading 3D models, to further enrich the VR scene. A-Frame has an assetasset
management systemmanagement system that allows us to place our assets in one place and to preload and cache assets for better performance. We will start here.

Asset Management SystemAsset Management System

The asset management system allow us to preload our assets, such as models and textures, before rendering the scene. This makes sure that assets aren’t missing
visually, and this is beneficial for performance to ensure scenes don’t try to fetch assets while rendering. Assets include:

<a-asset-item>
<audio>
<img>
<video>

To set a texture to an entity, we need to specify the src  property. src  can be a selector to any element in the asset management system. It is customary in A-Frame
to use ID selectors for assets: we assign an id to the asset in the asset management system, and then use an ID selector in the primitive we want to apply that asset
in. For example, to set a simple texture to an <a-box>  primitive, we simply load the texture to the asset management system, assign it an id of my-texture  and
specify the source in our primitive as being #my-texture .

<a-scene>

  <a-assets>

    <img id="my-texture" src="texture.png" />

  </a-assets>

  <a-box material="src: #my-texture"></a-entity>

</a-scene>



To load a 3D Model, the process is very similar. A-Frame recommends using glTF model. The <gltf-model>  component loads a 3D model using a .gltf  or .glb
file

<a-scene background="color: #ECECEC">

  <a-assets>

    <a-asset-item

      id="cityModel"

      src="https://cdn.aframe.io/test-models/models/glTF-2.0/virtualcity/VC.gltf"

    ></a-asset-item>

  </a-assets>

  <a-entity gltf-model="#cityModel" modify-materials></a-entity>

</a-scene>

AnimationsAnimations

The animation component lets us animate and tween values including:

Component values such as position, visibility, scale, and rotation.
Component property values such as light, intensity, etc.

As example, below we have a translating box:

<a-box

  position="-1 1.6 -5"

  animation="property: position; to: 1 8 -10; dur: 2000; easing: linear; loop: true"

  color="tomato"

></a-box>

See more about the animation component in the A-Frame documentation

EntitiesEntities

So far we have mentioned entities numerous times during this brief introduction to A-Frame, so what is the definition of an entity? In A-Frame entities are placeholders
objects to which we plug in components to provide them appearance, behavior, and functionality.

We can attach components to it to make it render something or do something. To give it shape and appearance, we can attach the geometry and material
components. The geometry component provides a basic shape fo an entity. The primitive  property defines the general shape. The material component gives
appearance to an entity. We can define properties such as color, opacity, or texture. Entities are inherently attached with the positionposition, rotationrotation, and scalescale components.
Consider the following example:

<a-entity

  geometry="primitive: box"

  material="color: red"

  position="2 2 -10"

  scale="2 2 1"

>

</a-entity>

Refer to the A-Frame documentation to see further more information.

Creating and register a componentCreating and register a component

Components of A-Frame's are JavaScript modules that can be mixed, matched, and composed onto entities to build appearance, behavior, and functionality. We can
register a new component in JavaScript and use it declaratively from the DOM. Components are configurable, reusable, and shareable. Most code in an A-Frame
application should live within components [1].

To use a component, we first must define it before the <a-scene>  tag, as example:



<html>

  <head>

    <!-- Import external component -->

    <script src="foo-component.js"></script>

  </head>

  <body>

    <script>

      // Or inline before the <a-scene>.

      AFRAME.registerComponent("bar", {

        // ...

      });

    </script>

    <a-scene> </a-scene>

  </body>

</html>

Let's have a first look to a basic component to get the general idea. This component will log a simple message once when the component’s entity is attached using
the .init()  handler. But first, we need to registerregister the component. Components are registered with AFRAME.registerComponent() . The first argument is the name
of the component, which will be used as the HTML attribute name, and for this example it will be hello-world . The second is a JavaScript object of methods and
properties. In the next example, we have our init()  handler.

AFRAME.registerComponent('hello-world', {

  init: function () {

    console.log('Hello, World!');

  }

});

Then we can use our hello-world  component declaratively as an HTML attribute. Do not forget to include the JavaScript file or declare inline before the <a-
scene>  tag.

<html>

  <head>

    <script src="https://aframe.io/releases/1.1.0/aframe.min.js"></script>

    <!-- Import the hello-world component -->

    <script src="hello-world.js"></script>

  </head>

  <body>

    <!-- Attach the component to the scene -->

    <a-scene hello-world> </a-scene>

  </body>

</html>

To set a component, rather than via static HTML , is to set it programmatically with .setAttribute() . In the example bellow, we set the hello-world component
on the scene programmatically:

document.querySelector('a-scene').setAttribute('hello-world', '');

Some components have methods available programmatically, and it is not possible to access them directly through HTML. For example, the Vibrotactile component
has three internal methods only accessible through JavaScript. A component's methods can be accessed through the entity from the .components  object. Consider
this example:

AFRAME.registerComponent('foo', {

  init: function () {

    this.bar = 'baz';

  },

  qux: function () {

    // ...

  }

});

To access the qux method:



var fooComponent = document.querySelector('[foo]').components.foo;

fooComponent.qux();

We can query for elements containing a component with the attribute selector (i.e., [ COMPONENT_NAME]), as used in the example above.

Refer to the A-Frame documentation for more information on creating and register a component.

Vibrotactile ComponentVibrotactile Component

In A-Frame we can use components created by the community. Here, we will use the vibrotactile component. This component sends vibrotactile feedback to the user
(if (s)he is using a special vibrotactile device) when interacting with scene elements that have the component associated. A basic example of its usage:

<html>

  <head>

    <script src="https://aframe.io/releases/1.1.0/aframe.min.js"></script>

    <!-- Import the vibrotactile component -->

    <script src="vibrotactile.js"></script>

  </head>

  <body>

    <a-scene>

      <a-box vibrotactile="src: vibrations.json; event: mouseenter;"></a-box>

    </a-scene>

  </body>

</html>

The Vibrotactile component takes two arguments:

A path to a vibration file exported from Vibrotactile Editor
An A-Frame event which will trigger the vibration.

In the example above, when the mouse intersects with the box primitive, it will trigger the vibrations from the vibrations.json  file.

Task ListTask List

Refer to the examples folder.

Task 1Task 1

Make changes in the example Task1  provided to match the following:

Change the sky primitive color to #ADD8E6
Apply a x-axis rotation of 45º in the box primitive
Change the y-axis position of the sphere to 2 meters.
Create another box primitive and apply a scale transformation of 3 1 1 .

Navigate in the scene using the arrow keys or the "wasd" controls.

Task 2Task 2

Make changes in the example Task2  provided to match the following:

Apply one texture from the asset management system to the box primitive.
Apply the "Gas Station" 3D Object Model to the empty entity

Task 3Task 3

Make changes in the example Task3  provided to match the following:

Apply a translation animation to the <a-box>  primitive from its initial position to "2 1.5 -10"

Task 4Task 4

Make changes in the example Task4  provided to match the following:

Using the <a-entity>  element provide the following characteristics:

Give the empty entity the shape and appearance of a yellow ( #FFF200 ) cube.
Position the yellow cube at "2 1.5 -10"
Give to another empty entity the shape and appearance of a red ( #FF0000 ) sphere.
Position the red sphere at "-2 1.5 -10"  and apply a scale transformation of 2 2 1 .

At this point, we have finished the first section of the A-Frame Tutorial. The main objective was to introduce the basic concepts of this framework. With the
knowledge acquired we now want the participant to do two more tasks focused on the use of an external component, the vibrotactile component.



Evaluation

C.4 A-Frame Vibrotactile Component API Usability Testing
- Tasklist

In this section we detail the A-Frame Vibrotactile Component API Usability Test tasklist.
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A-Frame Component Usability Test 
 

In this usability test, we want the participants to evaluate the usability of the A-Frame                             
vibrotactile component. We are interested in evaluating the level of understandability,                     
learnability, abstraction, and readability of the underlying API of the vibrotactile                     
component. 
 
To do so, we present four tasks where we suggest you create different scenarios in                             
A-Frame. In each of these scenarios, we have different sub-tasks to use the various                           
functionalities of the vibrotactile component. 
 
As you perform these tasks, please leave comments in the code with suggestions on                           
what you think could be improved in the component, even if minor things. 
 
After completing the tasks, please fill out the questionnaire. At this point, we ask you to                               
abstract from the possible complexity of the A-Frame framework and that you focus                         
solely on the use of the vibrotactile component and its different functionalities. 
 

Task List 
When performing these, you should have already gone through the A-Frame Tutorial. 
The tutorial also has the sample code for the following tasks. 

 
1. Make changes in the example Task 5 provided, to match the following: 

 
Use the Vibrotactile component to create a scene where there is vibration 
feedback (the vibration is defined by the vibrations1.json available in the 
directory) when the cursor intercepts the red <a-box> in the scene. 
 
Since we do not have a vibration device to receive vibrotactile feedback, confirm 
the following output in the browser console: 
 
Vibrations from *vibration file* attached with success 
 
If any doubts arise, refer to the vibrotactile component documentation. 

 
 



2. Make changes in the example Task 6 provided, to match the following: 
 
Use the vibrotactile component to create a scene where an animated sphere 
with 0.5m of radius is translating from "-2 0.5 2" to "2 0.5 2" during 500ms. After 
the animation completes (look in the documentation for the Animation 
component for animation events) - it should vibrate using the vibrations defined 
by vibrations4.json, available in the folder. 
 
If any doubts arise, refer to the vibrotactile component documentation. 

 
3. Make changes in the example Task 7 provided to create the following scenario: 

 
Write a simple A-Frame component to register the vibrations to the scene 
elements such that: 

a. The red box gives vibration feedback when the user clicks it. This vibration 
consists of a default sin vibration, with 500ms of duration. 

b. The sphere gives vibration feedback when intercepted by the cursor. 
Here, the vibration feedback should be expressed with a default ramp 
function with 200ms duration. 

c. Finally, the blue cylinder also gives feedback when clicked. The feedback 
should be expressed through a ramp vibration, with 10% as the initial 
intensity, and go up to 80%, with 250ms duration.  

 
If any doubts arise, refer to the vibrotactile component documentation. 
 

4. Make changes in the example Task 8 provided to create the following scenario: 
 
Imagine you intend to go to a predefined location. We want you to create a  
Vibrotactile GPS that receives vibrotactile feedback depending on how far from 
the location the user is. In this task, we provide a beach scenario with a 
lighthouse. The objective is to reach the lighthouse, receiving feedback while 
walking towards it, as illustrated in Figure 1: 
 
 

 
 
 
 

 
 



 
 
 

● When the user is in the light orange zone, there should be no vibration 
feedback. 

● When the user is in the blue zone, it should receive a vibration with low 
intensity (25%), expressed in actuators 5 and 6m during 500ms. 

● When the user is in the grey zone, it should receive a vibration with higher 
intensity (50%), expressed in actuators 3,4,5 and 6, during 750ms. 

● Finally, when the user is in the red zone, it should receive a sin vibration 
with max intensity in all actuators, during 100ms. 
 

If any doubts arise, refer to the vibrotactile component documentation. 
 
 

5. After completing the tasks, we ask you to submit the code (to 
josemc@student.dei.uc.pt) as well as completing the questionnaire by clicking on 
the link below. 

 
https://forms.gle/A574ubH4iBzPTGLS9 
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C.5 A-Frame Vibrotactile Component API Usability Form
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1.

2.

3.

Exemplo: 7 de janeiro de 2019

4.

Exemplo: 7 de janeiro de 2019

5.

Marque todas que se aplicam.

Agree and understand that the information gathered is for research purposes only and
that will not be used for any other purposes.

Understand that participation in this usability test is voluntary.

API Understandability

Vibrotactile Component API
This questionnaire addresses the different characteristics of the vibrotactile component 
API. 

We reinforce again that the focus is solely on the use of the component's different 
functionalities, its usability and understanding, while attempting to abstract from any 
complexity that might be the result of the A-Frame framework.

*Obrigatório

Name

Age *

Tutorial completion date *

Vibrotactile component usability test completion date *

In this usability test I: *
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6.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

7.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

8.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

API Learnability

9.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Do you find that the API types map to the domain concepts in the way you
expected? *

Do you feel you had to keep track of information not represented by the API to
solve the tasks? *

Does the code required to solve the tasks match your expectations? *

Once you performed the first task, was it easier to perform the remaining tasks /
subtasks? *
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10.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

API Abstraction

11.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

12.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

13.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

API Readability

Do you feel you had to learn many dependencies to solve the tasks? *

Do you find the API abstraction level appropriate to the tasks? *

Did you need to adapt the API (inheriting from API classes, overriding default
behaviors, providing non-API types) to meet your needs? *

Do you feel you had to understand the underlying implementation to be able to
use the API?Questions *
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14.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

15.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Este conteúdo não foi criado nem aprovado pelo Google.

Do you find the API understandable, accessible, and readable ? *

Do you find able to use the API logically ? *
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