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Abstract 

The ability to engage in social interactions is one of the most captivating aspects of human 

nature. As we develop our social skills throughout life, they become important tools for our 

integration in the society. However, for some people – like individuals with Autism Spectrum 

Disorder (ASD) – engagement in adaptive social interactions are far from being intuitive. In 

this thesis we aimed to better understand core aspects of social interactions in autism and 

typically developed controls using virtual reality simulations to improve the ecology of 

experimental paradigms and, with that knowledge, develop techniques to characterize and 

rehabilitate those deficits. 

We focused on the processing of facial expressions (FE), which is a core aspect of social 

interactions which is often impaired in ASD.  We developed an experimental paradigm to 

address the processing of FEs, using animated dynamic FEs in virtual avatars and a stringent 

statistical contrast to isolate such type of processing. We were able to identify a brain region 

over-recruited by the ASD group during the visualization of FEs of the “other”: the right 

precuneus. To the best of our knowledge, this region was never reported as altered for ASD 

participants in studies with static stimuli, but several tasks requiring perspective taking and 

theory of mind showed the recruitment of this area, thus confirming the importance of 

combining ecological stimuli and well-defined statistical contrasts to identify neural correlates 

of social interactions that would not be retrieved otherwise.  

Moreover, we explored the mental imagery of FEs as a mean for brain modulation in ASD, 

which revealed group differences in the same region identified by the dynamic FE stimuli, 

especially for the theta frequency band. Furthermore, we identified a group of features 

extracted from topographical regions correspondent to the right precuneus, from the theta 

and high-beta/gamma frequency bands, that were able to accurately differentiate the groups, 

using statistical classifiers. Those features can now be explored as biomarkers to aid the 

diagnosis or, after further validation studies, as outcome measures of interventions that tackle 

FE processing deficits. 

Furthering the idea of using mental imagery of FEs as a mean of controlling brain activity, we 

developed a fMRI-based neurofeedback approach that uses this method to modulate activity 

in the posterior superior temporal sulcus (pSTS) region as a mean for intervention in ASD. 

We focused our efforts in transferring this approach to an EEG setup, which could be used 
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in domiciliary settings and with much lower costs. We identified a set of features (at the scalp 

and source level) that relate to the fMRI localized BOLD activity and combined them with 

machine learning algorithms to predict the BOLD activity at the pSTS region, while 

considering different approaches for dealing with the hemodynamic delay. We showed that 

our proposed feature set (especially the nonlinear ones) improve the prediction accuracy of 

the literature models and the convolution of the predictors with multiple hemodynamic 

response functions (HRFs) with variable peak latencies provide a more robust way to deal 

with the hemodynamic delay of the BOLD signal, since it explores the inter- and intra-subject 

HRF variability. 

Finally, we approached virtual reality as a mean to integrate rehabilitation approaches in ASD. 

We implemented a paradigm based on a simple social measure – the interpersonal distance – 

and measured in a real setting and in a virtual replication of the environment. Our results 

showed a good replicability of the distances measured in the real and virtual environments, 

with high correlation levels between environments, with a rescaling factor present for the 

control group (anisometry between real and virtual worlds).  

We then developed a pilot interventional study of behavioral training of ASD using a virtual 

reality serious game. Participants used our system for three sessions where they followed the 

common steps for taking a bus in the virtual environment. The system measured the 

electrodermal activity of the participants and automatically adapted the environment noise 

based on their stress level. We observed a significant improvement in the outcome measures 

and a reduction of stress during the task. Looking into a possible generalized application of 

this and future solutions, we developed the Neurohab system for therapeutics and clinicians 

remotely monitoring the performance of the participants along the sessions. 

In sum, this thesis aimed at the understanding of social deficits in ASD and aid their 

rehabilitation, from a clinical informatics perspective, supported on an integrative solution 

between knowledge derived from neuroimaging and virtual rehabilitation simulations. 

Keywords: Autism Spectrum Disorder, EEG, fMRI, Simultaneous EEG-fMRI, 

Neurofeedback, Biomarker, Mental Imagery, Virtual Rehabilitation, Serious Games. 
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Resumo 

A capacidade de realizar interações sociais adaptativas representa um dos aspetos mais 

cativantes da cognição humana. As competências sociais que desenvolvemos ao longo da vida 

são ferramentas importantes para nossa integração na sociedade. No entanto, para algumas 

pessoas – como os indivíduos com o Perturbação do Espectro do Autismo (PEA) – as 

interações sociais estão longe de serem executadas de forma intuitiva. Nesta dissertação 

procurámos entender melhor os aspetos centrais das interações sociais em indivíduos com 

PEA e com desenvolvimento normal usando simulações de realidade virtual para aumentar a 

ecologia dos desenhos experimentais e, com esse conhecimento, desenvolver técnicas para 

caracterizar e reabilitar as dificuldades sociais associadas na PEA. 

Focámos o estudo no processamento de expressões faciais (EF), um aspeto central das 

interações sociais, muitas vezes alterado na PEA. Desenvolvemos um paradigma experimental 

para abordar o processamento de EFs, usando EFs dinâmicas animadas em avatares virtuais 

e um contraste estatístico rigoroso para isolar esse tipo de processamento. Com isso 

identificámos uma região cerebral recrutada excessivamente pelo grupo PEA durante a 

visualização de EFs no “outro”: o precuneus direito. Esta região nunca foi reportada como 

alterada para participantes com PEA em estudos usando estímulos estáticos, mas várias tarefas 

que exigiam a tomada de perspetiva do outro e teoria da mente mostraram o recrutamento 

dessa área, confirmando assim a importância de combinar estímulos ecológicos e contrastes 

estatísticos bem definidos para identificar correlatos de interações sociais que não seriam 

visíveis de outra forma. 

Além disso, explorámos a imaginação de EFs como um meio para a modulação da atividade 

cerebral pela PEA, que revelou diferenças de grupo na mesma região, especialmente para a 

banda de frequência teta. Identificamos também um conjunto de características extraídas de 

regiões topográficas correspondentes ao precuneus direito, a partir das bandas de frequência 

teta e beta-alta/gama, capazes de diferenciar com precisão os grupos, utilizando classificadores 

estatísticos. Essas características podem agora ser exploradas como biomarcadores para 

auxiliar o diagnóstico ou, após estudos adicionais de validação, como medidas de avaliação de 

intervenções focadas no processamento de EFs. 

Usando a ideia de usar a imaginação de EFs como um meio de controlar a atividade cerebral, 

desenvolvemos uma abordagem de neurofeedback baseada em fMRI que usa este método para 
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modular a atividade na região posterior do sulco temporal superior (pSTS) como meio de 

intervenção na PEA. Focámos o trabalho na transferência dessa abordagem para uma 

configuração de EEG, que poderia ser usada em ambientes domiciliares e com custos muito 

menores. Identificámos um conjunto de características (ao nível do escalpe e da fonte) 

relacionados com a atividade BOLD de interesse e combinámo-las com algoritmos de 

aprendizagem automática para prever esse sinal, considerando diferentes abordagens para lidar 

com o atraso da resposta hemodinâmica. Mostramos que o conjunto de características 

proposto (especialmente as não lineares) melhoram a qualidade da predição dos modelos 

presentes na literatura, e que a convolução dos preditores com múltiplas funções de resposta 

hemodinâmica com picos de latência variável explora com mais eficiência a variabilidade intra- 

e inter-indivíduo. 

Finalmente, abordámos o uso da realidade virtual para abordagens de reabilitação na PEA. 

Implementámos um paradigma baseado numa medida social simples – a distância interpessoal 

– medida num ambiente real e numa replicação virtual desse mesmo ambiente. Os resultados 

mostraram uma boa replicabilidade das distâncias medidas nos dois ambientes, com níveis de 

correlação elevados, com o grupo de controlo a apresentar um efeito de reescalonamento 

(anisometria entre o mundo real e virtual). 

Desenvolvemos então um estudo piloto de intervenção na PEA para treino comportamental 

usando um jogo sério de realidade virtual. Os participantes usaram o sistema em três sessões, 

nas quais seguiram os passos comuns para viajar de autocarro, num ambiente virtual. O 

sistema mediu a atividade eletrodérmica dos participantes e adaptou automaticamente o ruído 

ambiente com base nos seus níveis de stress. Observámos uma melhoria significativa nas 

medidas de avaliação e uma redução do stress medido durante a tarefa. Projetando a aplicação 

generalizada desta e outras aplicações, desenvolvemos o sistema Neurohab para que terapeutas 

e clínicos possam monitorizar remotamente o desempenho dos participantes ao longo das 

sessões. 

Em suma, esta tese visou o estudo dos défices sociais na PEA e a sua reabilitação, seguindo 

uma abordagem de informática clínica, numa solução integrativa apoiada no conhecimento 

extraído de simulações virtuais ancoradas em técnicas de neuroimagem funcional. 
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Introduction 

According to the definition of the American Medical Informatics Association (AMIA), Medical 

Informatics is “the interdisciplinary field that studies and pursues the effective uses of biomedical data, 

information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to 

improve human health.” There are some major sub-fields in medical informatics. Clinical 

informatics is one of these sub-areas that is concerned with the development of informatics-

based services to support health. It deals with all aspects related to the organization and multi-

modal and multi-scale analysis of information and its application for clinical decision support. 

This thesis addresses the current need of creating and applying clinical informatics solutions 

to the study and rehabilitation of social deficits, especially for the Autism Spectrum Disorder 

(ASD). 

1.1 Motivation 

Individuals in the Autism spectrum present persistent deficits in social communication and 

interaction, as well as restricted and repetitive patterns of behavior and interests (American 

Psychiatric Association, 2013). These deficits have a major impact in the life of ASD 

individuals, with implications ranging from the difficulty of establishing empathic relationship 

to the incapacity of living independently (Van Heijst and Geurts, 2015; Bishop-Fitzpatrick et 

al., 2017). In this context, any research that helps to understand and improve any of these 

deficits can have impactful implications on the lives of these individuals (Bohlander et al., 

2012; Guivarch et al., 2017). That impact is significant not only at the individual scale but also 

at a societal level. In the past decades, the number of reported diagnosis have grown 

exponentially (Baio et al., 2018), with the current estimated prevalence to be 1 out of every 59 

children in the United States of America (USA). In Portugal, the most updated prevalence 

value goes back to 2007 (Oliveira et al., 2007), with 9.2 out of 10000. There are uncertainties 

regarding the real reason of the increase in diagnosed patients, on whether it represents a true 

change of the prevalence or is just a consequence of the alterations applied to the diagnosis 
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methods in the past years along with more people being aware of the existence of this disorder, 

with studies accounting a contribution of around 60% to those factors (Hansen et al., 2015). 

Nevertheless, the number of patients that would benefit by improvements in this field is large 

and keeps increasing every year. Thus, research on understanding and rehabilitating the ASD 

deficits show great potential both at the individual and population level, especially the ones 

that can be widely delivered with low costs of application and tailored for the patients’ 

individualized needs, in a personalized health paradigm (pHealth). 

When looking for studies focusing the social interaction deficits in the literature, we found 

that most neuroimaging studies merely look for brain responses to static images, being the use 

of ecological paradigms still scarce (Monteiro et al., 2017). The need for structured and well-

defined experimental settings is contrary to the ecology present in the every-day social 

interactions. Although we agree that models must be created to understand the reality, and 

every model is limited in its representative capacity, we believe that virtual reality can be an 

option to extend the current experimental models in the ecology direction, without losing the 

control and reproducibility characteristics needed in experimental modeling design. 

Furthermore, there is evidence for a specific interest (and even preference (Hardy et al., 2002)) 

of ASD patients in virtual reality or computerized settings, which might ease the acceptance 

of specific therapeutics that use this mean of administration. Thus, we consider that there is a 

need and an opportunity to extend ecological validity as an alternative to commonly used 

neuroimaging tasks, and through that ecology uncover new neural correlates of ASD social 

deficits. 

Concerning the neural correlates of social deficits, there is a clear need for biomarkers in the 

field. A biomarker is a quantifiable characteristic extracted from biological measures that is 

able to discriminate disorders or specific deficits. Those biomarkers were traditionally genetic 

(Goldani et al., 2014), but recently were extended to the neuroimaging field (Anagnostou and 

Taylor, 2011). The basic idea is to identify features of structural or functional neuroimaging 

data that function as diagnostic or prognostic markers of the disorder. Most diagnostic and 

prognostic approaches to ASD and respective core symptoms are made by behavioral 

observation or neuropsychological evaluation questionnaires answered by the patient and 

his/her bystanders (parents, teachers, caregivers). As every observation-based metric, it is 

prone to bias or error, which is partially mitigated by using diversified clinical teams composed 

of physicians and psychologists to perform diagnosis and prognosis. Therefore, there is a surge 
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for data analysis techniques able to extract quantifiable metrics that can be used in this field 

to assist and complement the job of the clinical teams. 

In the case of clinical trials – the scientific methodology to validate treatment safety, effects 

and efficacy – the importance of defining outcome measures that are specific and sensitive to 

changes in the deficits caused by the treatments is pivotal. In that sense, having biomarkers 

that can quantify improvements is a core aspect in this field. When designing a clinical trial, 

teams struggle to find the right outcome measures, usually resorting to neuropsychological 

evaluation scales which are prone to bias, as mentioned before. In this sense, finding 

biomarkers that relate directly with the clinical target is nowadays an important research topic, 

for which neuroimaging has been more and more used (Thal et al., 2006; Anagnostou and 

Taylor, 2011; Goldani et al., 2014; Ruggeri et al., 2014; Liu and Waterton, 2017). 

On the intervention level, there is a growing application of neurofeedback (NF) solutions 

based on electroencephalography (EEG). However, those interventions still lack scientific 

validation. Several systematic reviews have investigated this issue (Holtmann et al., 2011; 

Micoulaud-Franchi et al., 2015; Arns et al., 2017) and show only slight evidence of effects of 

such interventions in ASD, and some argue that it influences only the symptoms related to 

the Attention Deficit and Hyperactivity Disorder (ADHD) (Holtmann et al., 2011), a 

comorbidity of the ASD. The lack of spatial resolution in EEG leads to neurofeedback 

interventions that use this method to focus on the control of frequency bands of activity 

(Micoulaud-Franchi et al., 2015). On contrary, the high spatial resolution of functional 

Magnetic Resonance Imaging (fMRI) allows for a modulation of blood-oxygen-level 

dependent (BOLD) activity in specific anatomical regions, usually related to the 

pathophysiology of the disorders (Sitaram et al., 2016). Since the fMRI-based approach is able 

to target disorder-related localizations, this technique is, arguably, more efficient than the 

EEG-based approach (Weiskopf et al., 2004). However, due to the costs and higher constrains 

of using magnetic resonance imaging (Sarracanie et al., 2015), and also being a much more 

recent technique than the EEG (Kamiya, 1969; Weiskopf et al., 2004), the fMRI 

neurofeedback approach is not yet fully disseminated. 

The costs and setup inflexibility lead to other issues when comparing different neuroimaging-

based neurofeedback techniques. For instance, the number of training sessions used for EEG-

NF studies is usually superior to 10 (Marzbani et al., 2016), while most fMRI-NF studies use 

often not more than one session (Shibata et al., 2011). That limits both the widespread 
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application of fMRI-NF and the efficacy studies of based on this technique. Thus, it would 

be very beneficial to be able to transfer fMRI-NF protocols to EEG settings. That transfer 

would potentiate the widespread application of innovative fMRI-NF solutions, make possible 

domiciliary interventions and pave the way for personalized health solutions. 

Despite the great potential application of this solution, it presents big technical challenges to 

overcome (Biessmann et al., 2011; Abreu et al., 2018). The characteristics of both signals are 

intrinsically different, and few studies in the literature aimed to transfer neurofeedback 

paradigms between imaging techniques. Thus, this is still today an open research question. 

Another intervention type that has gained traction in the last years is virtual rehabilitation. It 

consists of using virtual reality (VR) scenarios to train skills in a controlled manner (Parsons 

et al., 2009; Threapleton et al., 2016). It presents several advantages, namely the full control 

of the environment, which allows for increasingly change its complexity (Parsons and Cobb, 

2011). For instance, this is very important for incremental exposure used in phobias and other 

disorders (Benbow and Anderson, 2018). In autism, it can be used to adapt the sensorimotor 

stimuli of the environments to a level tolerable to the patients, and incrementally manipulate 

it or simply use it to avoid disruption with the training plan (Rizzo and Wiederhold, n.d.; 

Rothbaum and Hodges, 1999). The virtualization of the environments allows for safely 

training skills that could, otherwise, endanger the patients, like learning how to cross a street 

or navigate in a city without the possibility of being hit by a car (Josman et al., 2008). 

Furthermore, the possibility of training the same task in several different environments might 

help the generalization of the learned concepts (Parsons and Cobb, 2011). 

There are other reasons that make virtual rehabilitation an interesting approach, especially for 

ASD. There is evidence showing good technology acceptance by patients with this disorder 

(Hardy et al., 2002), mainly due to the structure and predictability of technology systems, and 

the fact that VR controls mainly the visual and auditory sensory inputs, which are the preferred 

sensory channels in ASD (Rao, Shaila and Gagie, 2006), evidence the potential of this field. 

However, there is lack of validity demonstrations in the field. Most VR studies use solutions 

with limited immersion capabilities, with several studies referring to simple computerized 

interventions to virtual reality environments (Parsons and Cobb, 2011). It is important to 

establish the VR as a good mean for ASD training and evaluation and, upon that, build 

solutions that explore the VR potential in this field, since the level of immersion has been 
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shown to impact the ability to assess and teach social skills to ASD in virtual environments 

(Miller and Bugnariu, 2016). 

An interconnected topic is serious gaming. A serious game is a game that serves a purpose 

other than entertainment, usually teaching a skill or concept (Ritterfeld et al., 2009). In that 

field, there is the hypothesis that using gamification techniques – means for retaining the 

attention and interest of the players – one can increase the success of interventions, by keeping 

the patients engaged with the intervention (Kapp, 2012). Therefore, combining virtual 

rehabilitation with serious gaming concepts, one might potentiate the learning effects of the 

intervention, increasing the engagement and motivation of the patients. There are some 

studies looking into serious games in ASD (Zakari et al., 2014), but few consider the 

combination of serious gaming and virtual reality. 

Finally, there is the cost motivation. Current cost estimates for raising an ASD child in the 

USA or the United Kingdom point to over one million dollars throughout the life span (Ganz, 

2007; Amendah et al., 2011; Buescher et al., 2014), for which education and behavioral therapy 

account for more than 50%. This is mostly due to the need of specialized interventions that 

are, very often, in a one to one basis: one therapist per patient. This option is very demanding 

in human resources, especially when considering the growth of ASD prevalence. Moreover, 

most interventions require extensive contact hours, and when left without intervention, there 

are few resources to train and consolidate the concepts learned. Virtual solutions could 

contemplate the therapist sessions, with training performed at home. That could even extend 

the interventions to remote areas where patient associations and intervention solutions are 

scarce. 

1.2 Objectives 

This thesis aimed for exploring two main axes of clinical informatics applied to the social 

cognition in autism: characterization and rehabilitation. Figure 1.1 shows the structure and 

subdivisions of these objectives. 

On the characterization part, we focused on using virtual reality to develop richer and more 

ecological studies of social cognition to better identify the differences to the typically 

developed individuals, and develop biomarkers capable of identify those differences, through 

machine learning. 
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On the rehabilitation part, we follow two sub-vectors of action: one pointing towards 

neurofeedback rehabilitation, with the main goal being the transfer of fMRI-based 

interventions to EEG settings, and another pointing to the use of virtual reality solutions to 

train social and independent living skills in autism. 

 

Figure 1.1 - Structure of the objectives of the thesis. 

1.3 Contributions and relevance 

On the characterization part, we started to explore the use of ecological environments for the 

study of social characteristics, focusing on facial expressions. We scanned the literature for 

EEG studies of facial expressions in autism, and verified that most studies used non-ecological 

stimuli, usually corresponding to still pictures contrasting from blank baselines. We published 

this analysis as a systematic review in the review Journal of Autism and Neurodevelopmental 

Disorders (JADD) (Monteiro et al., 2017), where we highlight the need for ecologic studies 

that use dynamic expressions and better statistical contrasts. 

We performed a pilot study in controls showing that evoked potentials of facial expressions 

were accurately measured in immersive dynamic virtual environments, published in The 

International Conference on Health Informatics (Simões et al., 2014a). From that study, we 

moved to the ASD population, with a study published in the Frontiers of Neuroscience 

journal (Simões et al., 2018b), composed by two parts. The first part consisted of an event-

related potential analysis that used dynamic expressions of a virtual character as stimulus, and 

a contrast of face with emotional expression against the face itself with a neutral expression. 

This stringent contrast allowed us to identify two event-related potential (ERP) components 

that showed a higher recruitment of the right precuneus region by the ASD group. This was the 
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first time, to our knowledge, that the right precuneus region was implicated in the processing of 

facial expressions in the ASD population. On the second part of the study, participants 

performed mental imagery of facial expressions. The study of mental imagery applied to the 

facial expressions was innovative and relates to the perspective taking and theory of mind, 

known to be altered in the ASD. Our results showed the over-recruitment of the same region 

(right precuneus) by the ASD participants, both for the ERP and the theta frequency band. We 

argue that the over-recruitment of this region is a compensatory mechanism for the deficit. 

Furthermore, we were able to identify a group of features extracted from the EEG signal that 

were capable of distinguishing the groups with an accuracy of 80%, using machine learning 

classifiers. We propose those features to be considered as biomarkers, useful for evaluation 

and prognosis of facial expression deficits. 

On the intervention level, since we identified deficits in the processing and mental imagery of 

facial expressions, we developed a fMRI-based neurofeedback intervention that used the 

morphing of the imagined facial expression in a virtual human character as feedback to the 

participant. We used the posterior Superior Temporal Sulcus (pSTS) as target region-of-

interest (ROI) for the intervention, since it is known to be related to the processing of facial 

expressions and to be altered in Autism. Because we were aiming, from the beginning, for 

transferring this intervention to an EEG setup, we performed an initial study capturing 

simultaneously EEG and fMRI signals and used them as a validation dataset to test 

transferring approaches, which we published in the Neuroscience journal (Direito et al., 2019). 

Our focus, demonstrated in this thesis, was to investigate the transfer possibility for EEG. 

For that, we firstly extracted a group of EEG features and checked their individualized 

correlation with the localized BOLD signal. We published that analysis in the IEEE 

Engineering in Medicine and Biology Conference (IEEE-EMBC) (Simoes et al., 2015), 

showing some statistically significant correlations for some features, but with relatively low 

absolute values. Then, following some research showing a relationship between the alpha band 

and the BOLD signal, we explored with higher detail that characteristic, with a new publication 

in the IEEE-EMBC (Simoes et al., 2017, Appendix III). We identified a frontal and a parieto-

occipital cluster of alpha variations that statistically significantly correlated with the BOLD 

signal in the ROIs of the facial expression processing network, but once again, the correlation 

values were too low to enable the transferring of imaging modalities. 
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Since individual correlation levels were low, we approached the transfer challenge with 

machine learning. We replicated an approach published in the NeuroImage journal and 

increased its efficiency by exploring different delay approaches, a new set of features and new 

regression techniques, at the scalp and source levels. This result represents a significant 

advance of the state of the art, since we increased the reconstruction capacity of an established 

method, currently used in several interventional studies (Noam et al., 2016; Keynan et al., 

2019). 

On the virtual reality axis, we performed a study using a fully immersive virtual reality setup, 

where we studied a simple social metric (interpersonal distance) in the real environment and 

in an exact virtual replication of that environment. We showed that, while the control 

participants had different behavior in the real and virtual environment, the ASD group had 

similar behavioral measures in both environments, which, in our opinion, justifies the use of 

virtual reality environment for interventions and the use of ecological approaches, especially 

for the ASD population.  

With these supporting results, we developed an immersive serious game for training a daily 

living skill in ASD: how to use the bus as a mean for transportation. That study combined a 

virtual city where participants had to navigate from one point to another, planning the trip 

and taking the correct buses to reach the destination, following the bus norms (validate ticket, 

choose appropriate seats, press the stop button and so on). We measured the behavior 

(decisions and errors) as well as the stress level through electrodermal activity (EDA) sensors, 

and saw that, with three sessions of training, participants were able to significantly reduce the 

number of errors, as well as reducing the level of stress throughout the process. This study 

was published in the Journal of Medical Internet Research for Serious Games (Simões et al., 

2018a). 

To have a solution that integrates the serious games, results and implement some gamification 

techniques, we developed the Neurohab platform, where all those options are provided. We 

published a short paper in the HCist conference (Simões et al., 2014b) describing that 

platform, that we believe to have the roots for delivering personalized health solutions to the 

patients, combining the virtual reality and neurofeedback approaches of interventions, using 

gamification techniques and monitoring the progress of rehabilitation.  
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Table 1.1 and Table 1.2 summarize the papers resulting from this thesis. To promote clarity, 

we selected the core contribution for inclusion in the thesis body, others for inclusion as 

appendices and others to be referenced, but not included, in the thesis.  

Table 1.1 - List of publications directly included in the thesis. 

CONTRIBUTION TYPE LOCATION 

Monteiro R, Simões M, Andrade J, Castelo Branco M (2017) Processing of 

Facial Expressions in Autism: a Systematic Review of EEG/ERP Evidence. 

Rev J Autism Dev Disord 4:255–276. 

Journal 

Paper 

Chapter 3  

Section 3.1 

Simões M, Monteiro R, Andrade J, Mouga S, França F, Oliveira G, Carvalho 

P, Castelo-Branco M (2018) A Novel Biomarker of Compensatory 

Recruitment of Face Emotional Imagery Networks in Autism Spectrum 

Disorder. Front Neurosci 12:1–15. 

Journal 

Paper 
Chapter 4 

Simões M, Lima J, Direito B, Castelhano J, Ferreira C, Carvalho P, Castelo-

Branco M (2015) Feature analysis for correlation studies of simultaneous 

EEG-fMRI data: A proof of concept for neurofeedback approaches. In: 

2015 37th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), pp 4065–4068. IEEE. 

Conference 

Proceedings 

Paper 

Chapter 5 

Section 5.1 

Simões, M., Abreu, R., Direito, B., Sayal, A., Castelhano, J., Carvalho, P., 

Castelo-Branco, M. How much of the BOLD-fMRI signal can be 

reconstructed by the EEG data: a comparative simultaneous EEG-fMRI 

study 

Journal 

Paper * 

Chapter 5 

Section 5.2 

Simões, M, Mouga, S, Pereira, A, Gonçalves, H, Oliveira, G, Carvalho, P, 

Castelo-Branco, M. Virtual reality immersion rescales regulation of 

interpersonal distance in controls but not in Autism Spectrum Disorder. 

Journal 

Paper * 

Chapter 6 

Section 6.2 

Simões M*, Bernardes M*, Barros F, Castelo-Branco M (2018) Virtual 

Travel Training for Autism Spectrum Disorder: Proof-of-Concept 

Interventional Study. JMIR serious games 6:e5. 

Journal 

Paper 

Chapter 6 

Section 6.3 

Direito B, Lima J, Simões M, Sayal A, Sousa T, Luehrs M, Ferreira C, 

Castelo-Branco M (2019) Targeting dynamic facial processing mechanisms 

in superior temporal sulcus using a novel fMRI neurofeedback target. 

Neuroscience 406:97–108. 

Journal 

Paper 
Appendix I 

Direito, B*, Mouga, S*, Sayal, A, Simões, M, Quental, H, Bernardino, I, 

Playle, R, McNamara, R, Linden, D, Oliveira, G, Castelo-Branco, M. 

Training the social brain - clinical and neural effects of an 8-week real-time 

fMRI neurofeedback Phase IIa Clinical Trial in autism 

Journal 

Paper * 
Appendix II 

Simões M, Direito B, Lima J, Castelhano J, Ferreira C, Couceiro R, Carvalho 

P, Castelo-Branco M (2017) Correlated alpha activity with the facial 

expression processing network in a simultaneous EEG-fMRI experiment. 

In: 2017 39th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), pp 2562–2565. IEEE. 

Conference 

Proceedings 

Paper 

Appendix III 

Simões M, Mouga S, Pedrosa F, Carvalho P, Oliveira G, Castelo-Branco M 

(2014) Neurohab: A Platform for Virtual Training of Daily Living Skills in 

Autism Spectrum Disorder. Procedia Technol 16:1417–1423. 

Conference 

Proceedings 

Paper 

Appendix IV 

* under review  
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Table 1.2 - List of publications not included in the thesis. 

CONTRIBUTION TYPE CITED IN 

Simões M, Amaral C, Carvalho P, Castelo-Branco M (2014) Specific 

EEG/ERP Responses to Dynamic Facial Expressions in Virtual Reality 

Environments. In: The International Conference on Health Informatics. 

IFMBE Proceedings (Zhang Y, ed), pp 331–334 IFMBE Proceedings. 

Cham: Springer.  

Conference 

Proceedings 

Paper 

Chapter 7 

Simões M, Carvalho P, Castelo-Branco M (2012) Virtual reality and brain-

computer interface for joint-attention training in autism. Proc 9th Intl Conf 

Disabil Virtual Real Assoc Technol:507–510. 

Conference 

Proceedings 

Paper 

Chapter 3, 7 

Andrade J*, Cecílio J*, Simões M, Sales F, Castelo-Branco M (2017) 

Separability of motor imagery of the self from interpretation of motor 

intentions of others at the single trial level: an EEG study. J Neuroeng 

Rehabil 14:63. 

Journal 

Paper 
Chapter 3, 7 

Amaral C, Simões M, Mouga S, Andrade J, Castelo-Branco M (2017) A 

novel Brain Computer Interface for classification of social joint attention in 

autism and comparison of 3 experimental setups: A feasibility study. J 

Neurosci Methods 290:105–115. 

Journal 

Paper 
Chapter 3, 7 

Amaral C, Mouga S, Simões M, Pereira HC, Bernardino I, Quental H, Playle 

R, McNamara R, Oliveira G, Castelo-Branco M (2018) A feasibility clinical 

trial to improve social attention in Autistic Spectrum Disorder (ASD) using a 

brain computer interface. Front Neurosci 12:1–13.  

Journal 

Paper 
Chapter 3, 7 

Simões M, Amaral C, França F, Carvalho P, Castelo-Branco M (2019) 

Applying Weightless Neural Networks to a P300-Based Brain-Computer 

Interface. In: World Congress on Medical Physics and Biomedical 

Engineering 2018. IFMBE Proceedings (Lhotska L, Sukupova L, Lacković I, 

Ibbott G, eds), pp 113–117. Singapore: Springer. 

Conference 

Proceedings 

Paper 

Chapter 3, 7 

Júlio F, Ribeiro MJ, Patrício M, Malhão A, Pedrosa F, Gonçalves H, Simões 

M, van Asselen M, Simões MR, Castelo-Branco M, Januário C (2019) A 

Novel Ecological Approach reveals Early Executive Function Impairments 

in Huntington’s Disease. Front Psychol 10:585. 

Journal 

Paper 
Chapter 7 

Simões M*, Gonçalves H*, Abreu R, Pinto M, Pereira M, Castelo-Branco M 

(2019) GameAAL – Gamification applied to ambient assisted living. In: 

2019 IEEE International Conference on Serious Games and Applications 

for Health (SeGAH). Kyoto: IEEE. 

Conference 

Proceedings 

Paper 

Chapter 6, 7 

Simões M*, Abreu R*, Gonçalves H, Rodrigues A, Bernardino I, Castelo-

Branco M (2019) Serious games for ageing: a pilot interventional study in a 

cohort of heterogeneous cognitive impairment. In: 2019 IEEE International 

Conference on Serious Games and Applications for Health (SeGAH). 

Kyoto: IEEE. 

Conference 

Proceedings 

Paper 

Chapter 6, 7 

 

The contributions of this thesis are transversal to different areas. Combining approaches that 

explore both the feature engineering and machine learning, as well as serious games and virtual 

reality are challenging. However, we believe that clinical informatics translational research is 

the answer to complex problems and exploring the best that each area has to offer is 

paramount to tackle the challenges that the study of behavioral deficits offers. In the end, we 
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improved the state of the art on aspects that are basilar for the understanding and 

rehabilitation of social deficits in ASD. 

1.4 Thesis outline 

This document is structured in seven chapters. After this introduction, Chapter 2 describes 

the background topics covered in our work and Chapter 3 the state of the art of the research 

on them. Chapters 4 to 6 present the studies we performed to achieve the objectives of the 

thesis. Chapter 4 describes the characterization axis of the work, presenting the EEG study 

we performed on facial expressions processing and their mental imagery, with biomarker 

exploration. Chapter 5 covers our efforts in the transfer of a neurofeedback intervention from 

fMRI to EEG, with an initial feature exploration paper followed by our approach to improve 

the EEG fingerprint (EFP) method for the neurofeedback transfer, with the exploration of a 

new feature set, a new method for dealing with the hemodynamic delay of the BOLD signal 

and improved regression method. Chapter 6 aggregates our efforts on the virtual rehabilitation 

axis of the thesis. It presents the interpersonal distance study, where we validated the virtual 

reality setup for training in the ASD population and the pilot intervention study we conducted 

for training ASD participants on how to take the bus. Finally, Chapter 7 discusses the results 

and its implications, as well as future steps to follow the line of work of this thesis.  



 12 

  



13 

 

  

Background 

In this chapter we perform a description of the themes covered in the thesis. Since this is a 

multidisciplinary work that merges contributions in the clinical, neuroimaging and virtual 

reality fields, a background contextualization aims to establish the common ground we built 

upon. We cover first the Autism spectrum disorder, then the neuroimaging techniques we 

used (EEG and MRI, apart and simultaneously) and finally the concept of virtual reality. 

2.1 Autism spectrum disorder 

The Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

deficits in social interaction and communication, as well as very restrictive interests and 

repetitive behaviors (American Psychiatric Association, 2013). This disorder was firstly 

reported by Kanner (1943) in a paper showing a clinical description of 11 children presenting 

“extreme aloneness from the very beginning of life, not responding to anything that comes to 

them from the outside world”. However, only in the early 80s the disorder was considered 

independent from schizophrenia being renamed at first to “infantile autism” and in the late 

80s to “autism disorder” (Won et al., 2013). 

2.1.1 Diagnosis 

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), which 

is the current standard reference for the diagnosis of mental and behavioral conditions, 

provides some examples of the two main axis of symptoms of the ASD. For the social 

interaction and communication deficits, the provided list of illustrative (not exhaustive) 

examples states: 
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1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social 

approach and failure of normal back-and-forth conversation; to reduced sharing of 

interests, emotions or affect; to failure to initiate or respond to social interactions. 

2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, 

for example, from poorly integrated verbal and nonverbal communication; to 

abnormalities in eye contact and body language or deficits in understanding and use 

of gestures; to a total lack of facial expressions and nonverbal communication. 

3. Deficits in developing, maintaining, and understanding relationships, ranging, for 

example, from difficulties adjusting behavior to suit various social contexts; to 

difficulties in sharing imaginative play or in making friends; to absence of interest in 

peers. 

A similar list of illustrative cases is provided for the restricted, repetitive patterns of behaviors, 

interests or activities, with the diagnosis in this axis to refer the need for identifying at least 

two of those items, currently manifesting or that have manifested previously during the 

development of the child: 

 Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple 

motor stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases). 

 Insistence on sameness, inflexible adherence to routines, or ritualized patterns or 

verbal nonverbal behavior (e.g., extreme distress at small changes, difficulties with 

transitions, rigid thinking patterns, greeting rituals, need to take same route or eat the 

same type of food every day). 

 Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong 

attachment to or preoccupation with unusual objects, excessively circumscribed or 

perseverative interest). 

 Hyper- or hyporeactivity to sensory input or unusual interests in sensory aspects of 

the environment (e.g., apparent indifference to pain/temperature, adverse response to 

specific sounds or textures, excessive smelling or touching of objects, visual 

fascination with lights or movement).  
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Accompanied with these items, a level of severity must be defined along with the diagnosis, 

in accordance to the following table: 

Severity 
Level 

Social Communication 
Restricted, Repetitive 

Behaviors 

Level 3 
 

“Requiring 
very 

substantial 
support” 

Severe deficits in verbal and nonverbal 
social communication skills cause severe 
impairments in functioning, very limited 
initiation of social interactions, and 
minimal response to social overtures 
from others. For example, a person with 
few words of intelligible speech who 
rarely initiates interaction and, when he 
or she does, makes unusual approaches 
to meet needs only and responds to only 
very direct social approaches. 
 

Inflexibility of behavior, 
extreme difficulty coping with 
change, or other restricted/ 
repetitive behaviors markedly 
interfere with functioning in all 
spheres. Great distress/ 
difficulty changing focus or 
action 

Level 2 
 

“Requiring 
substantial 
support” 

Marked deficits in verbal and nonverbal 
social communication skills; social 
impairments apparent even with 
supports in place; limited initiation of 
social interactions; and reduced or 
abnormal responses to social overtures 
from others. For example, a person who 
speaks simple sentences, whose 
interaction is limited to narrow special 
interests, and who has markedly odd 
nonverbal communication. 
 

Inflexibility of behavior, 
difficulty coping with change, 
or other restricted/ repetitive 
behaviors appear frequently 
enough to be obvious to the 
casual observer and interfere 
with functioning in a variety of 
contexts. Distress and/ or 
difficulty changing focus or 
action. 

Level 1 
 

“Requiring 
support” 

Without supports in place, deficits in 
social communication cause noticeable 
impairments. Difficulty initiating social 
interactions, and clear examples of 
atypical or unsuccessful responses to 
social overtures of others. May appear 
to have decreased interest in social 
interactions. For example, a person who 
is able to speak in full sentences and 
engages in communication but whose 
to-and-fro conversation with others 
fails, and whose attempts to make 
friends are odd and typically 
unsuccessful. 
 

Inflexibility of behavior causes 
significant interference with 
functioning in one or more 
contexts. Difficulty switching 
between activities. Problems of 
organization and planning 
hamper independence. 

adapted from DSM-5 (American Psychiatric Association, 2013) 

Without the existence of definitive biological tests (called biomarkers), the diagnosis is thus 

based mainly on behavioral and neuropsychological evaluation. The guidelines state that the 
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symptoms must be present in the early developmental stage, but they may only become fully 

manifest when social demands exceed limited capacities or may be masked by learned 

strategies in later life. 

2.1.2 Prevalence 

The prevalence of Autism Spectrum Disorders is hard to assess, because of the difficulty to 

conducting full-coverage epidemiological research. It depends on the existence of national-

wide institutions of public access and a good cooperation between services and specialized 

clinical centers, which is frequently hard to establish. However, some studies have been 

providing some important indicators. In the United States of America, Autism and 

Developmental Disabilities Monitoring (ADDM) Network from the Centers for Disease 

Control and Prevention (CDC) have conducted systematic studies for the last decades (Baio 

et al., 2018), which are summarized in Figure 2.1. These studies have a periodicity of 2 years 

and cover a total of 14 sites along the USA. 

 

Figure 2.1 – Evolution of ASD prevalence in the USA, measured by the ADDM network of the 
CDC – adapted from TACA – the autism community in action (https://tacanow.org/autism-
statistics/). 

 

In Portugal, the only existent study was performed in the main land of Portugal and Azores 

islands in the year of 2007 by Oliveira and colleagues (Oliveira et al., 2007). It showed a 
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prevalence of 1 in 1000. This value is significantly inferior (about tenfold) to the USA reported 

prevalence. 

Furthermore, ASDs are reported to occur in all racial, ethnic, and socioeconomic groups. The 

ADDM reports show higher prevalence in the Caucasian race compared to African-American 

or Hispanic individuals, but with the ratios Caucasian : African-American and Caucasian : 

Hispanic decreasing, due to a greater increase of diagnosis of African-American and Hispanic 

children (Baio et al., 2018). The major variability in the diagnosis is gender, being 4.5 times 

more common in boys than among girls. 

The growth of diagnosed cases in the last few years is a consequence of several factors. The 

improvement on diagnosis techniques may have contributed to some of the apparent increase 

on the prevalence, along with the increase of the general awareness on autism. Some studies 

have tried to quantify the impact of the changes of the diagnostic criteria in the increase of 

reported prevalence, estimating a contribution of around 60% (Hansen et al., 2015). 

Therefore, despite this major contribution, other effects (like environmental causes) cannot 

be discarded. 

There is a list of comorbidities that often occur with ASD. About 70% of the cases show at 

least one comorbidity and 40% show two or more comorbidities (Simonoff et al., 2008). 

Between the most common comorbidities are anxiety, attention deficit and hyperactivity 

disorder (ADHD), intellectual disability and epilepsy. Those comorbidities harden sometimes 

the diagnosis, since the traits of ASDs often overlap with symptoms of other disorders and 

the characteristics of ASDs make traditional diagnostic procedures difficult (Bauman, 2010). 

2.1.3 Treatment 

Currently, there is no known cure for ASD. However, some interventions can help improving 

significantly the quality of life of ASD patients and of their bystanders. These interventions 

usually need to be performed by a trained specialist and must be consistently recurrent for 

improving results. These needs are very expensive and cause a strong socio-economic impact 

on the families. Cost estimates for raising an ASD individual surpass the value of one million 

USA dollars throughout life (estimates for the USA and the United Kingdom) (Ganz, 2007; 

Amendah et al., 2011; Buescher et al., 2014). In this cost estimates, education and behavioral 

therapy account for more than 50%. The largest cost components identified for children are 
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special education services and loss of productivity of the parents. For adults, residential care 

or supportive living accommodation and loss of individual productivity are the highest cost 

components. Medical costs are higher for adults than for children (Buescher et al., 2014). 

There is a clear deficit of pharmacology responses to ASD. Although the use of psychotropic 

pharmacotherapy in individuals with ASD is comparable to schizophrenia or ADHD (about 

50%), the pharmacotherapy in ASD focus mainly non‐core symptoms and significant 

psychiatric comorbidities (Jobski et al., 2017). The most common medications used are 

risperidone and aripiprazole for tackling challenging and repetitive behaviors (McPheeters et 

al., 2011). With few pharmacological responses, behavioral therapies play an important role in 

managing the disorder. 

Therapies often follow the Applied Behavior Analysis (ABA) structure, an approach based on 

the analysis of behavior and reinforcement in the structure of antecedent, behavior, 

consequence. This procedure has shown some interesting results, and is considered an 

evidence-based best practice treatment for ASD by the American Psychological Association 

(Slocum et al., 2014). However, the interventions following this procedure must be intensive, 

from 25 to 40 hours per week (Roane et al., 2016), most of the times in a one-on-one basis 

between the therapist and the patient. This kind of therapy is extremely expensive to support, 

considering both cost to the families and even at the societal level, with the continued increase 

in prevalence. This opens space to new therapies following domiciliary or remote training to 

step in and complement the one-on-one therapies, providing means to individualized and 

independent training. 
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2.2 Neuroimaging: a window to the brain 

Neuroimaging is a term used to describe any experimental technique measuring human (or 

animal) brain structure or function, directly or indirectly (Brammer, 2009).  

For the structure of brain, the oldest technique is the computed tomography (CT) scan, 

formerly known as computerized axial tomography (CAT) scan, which uses several X-ray 

measurements taken from different angles to create cross-sectional images of the brain. It has 

been surpassed by the magnetic resonance imaging technique (MRI), which produces detailed 

structural information where grey matter (neuronal cell populations) and white matter 

(myelinated tracts) are visible to the naked eye (Bunge and Kahn, 2010). New techniques, such 

as diffusion tensor imaging (DTI), focus on mapping those myelinated tracks. 

Despite the importance of structural neuroimaging, our work focuses on the functional 

aspects of the brain. Thus, there is a greater interest of functional neuroimaging techniques, 

which capture where and when neuronal activity in the brain is associated to a specific 

cognitive task. There is a greater variety of techniques for assessing brain function, which can 

be divided into two categories: direct measures of electrical activity of brain firing and indirect 

measures of brain activity, supported by the assumption that neuronal activity is directly 

supported by increased blood flow and metabolic activity (Bunge and Kahn, 2010). Into the 

direct measure category fall the electroencephalography (EEG) and the 

magnetoencephalography (MEG) techniques, which provide greater time resolution (when 

neuronal activity happens), but fall short of specifically localizing the activity (where), due to 

the ill-posed structure of the source localization problem, the attenuation of the brain signals 

until they reach the sensors located at the scalp and the complexity of the neuroanatomical 

models needed for performing the localization of source activity (da Silva, 2009; Awan et al., 

2018). This topic is further discussed in section 0. On the category of indirect measures, one 

can mention functional MRI (fMRI), the functional near infrared spectroscopy (fNIRS) and 

the positron emission tomography (PET). The former two (fMRI and fNIRS) measure the 

blood-oxygen-level dependent response (BOLD) signal and the latter (PET) is based on 

mapping metabolic activity (if fluorodeoxyglucose (FDG) is used) or perfusion (H2
15O), using 

radioactive tracers. Therefore, PET is the most intrusive technique, since it requires a 

radiopharmaceutical compound to be injected in the patients’ veins and for some cases even 

arterial sampling to derive arterial input functions. Since the two first techniques depend 
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always on the hemodynamic response, they are considered indirect techniques, because what 

is measured is not the real activity but the result of the changes in the cerebral blood flow 

caused by neuronal activity. This principle is called neuro-vascular coupling. Due to their 

indirect nature, a time delay is always present, in addition to lower time resolution, but usually 

offer a very good spatial resolution (where brain activity occurs). fNIRS has advantages in cost 

and portability over fMRI, but it cannot measure cortical activity more than 4cm deep and has 

poorer spatial resolution. 

In this thesis we used the EEG and fMRI techniques, both separated and combined. We will 

now further discuss their characteristics. 

2.2.1 Electroencephalogram 

The existence of the electrical activity of the brain was firstly identified by Richard Canton in 

1875 (Canton, 1875), a discovery reported for the brains of monkeys and rabbits. Only four 

decades later, in the late 20s, Hans Berger reported a way to record the electrical activity from 

the human brain (Berger, 1929). Despite being almost one century old, the 

electroencephalogram (EEG) took a considered amount of time to be accepted as a method 

to assess brain function in health and disease (da Silva, 2009), mostly due to the large 

complexity of the underlying system of neural generators and the attenuation suffered from 

the signal until it reaches the sensors. 

The measured EEG activity is composed by the summed electrical activities of populations 

of neurons, from the cortex. Neurons are excitable cells with characteristic intrinsic electrical 

properties and their activity produces electrical and magnetic fields. Each neuron is composed 

by the dendrites (input from other neurons signals), the soma (cell body) with the nucleus, the 

axon and the axon terminals (Figure 2.2). Axon terminals of other neurons are connected to 

the neuron dendrites and soma, and through that connections the neuron receives its input 

information. 
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Figure 2.2 – Schematic of the structure of a neuron. This model is a simplification of the 
neuron cell, showing the main elements (dendrites, soma, nucleus, axon and axon terminals) 
- adapted from Arizona State University’s Ask a Biologist page “A Nervous Journey” 
(https://askabiologist.asu.edu/neuron-anatomy). 

 

Like any other cell in the human body, membranes of neurons are positively charged in the 

extracellular space, and negatively charged in the intracellular space, generating a rest potential 

of around -70 mV of voltage in the neuron cell. However, each time one neuron receives a 

synapse from other neuron, the cell potential and the surrounding extracellular potential 

fluctuates, causing what is called a postsynaptic potential (PSP). That connections can be 

excitatory, which increase the membrane potential (excitatory postsynaptic potentials - EPSP), 

or inhibitory, which decrease the membrane potential (inhibitory postsynaptic potentials - 

IPSP). When the membrane potential reaches the -55 mV threshold (which may vary 

according to neuron type), an action potential is fired and passed through the axon up to the 

axon terminals, connecting to other neurons. During the action potential, the membrane 

potential rises to +30 mV and then drops quickly down to below -70 mV, until it normalizes 

at the rest potential (Figure 2.3). All of this happens in less than 2ms (Brandeis et al., 2010). 

That variations in the neuron membrane are made mainly through the selective permeability 

of the neuron membrane to potassium (K+) and sodium (Na+) ions, through voltage gated 

sodium channels, leaking potassium channels, and the sodium-potassium pumps. 
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Figure 2.3 – Representation of a neuron receiving signals from other neurons connected to it, 
and the action potential. The left can be represented as an analogue region, where the voltage 
floats until the membrane reaches the -55mV threshold (typical of most neurons), and the 
right part, the axon, can be considered digital, since it follows the “all or none” rule, meaning 
that when the threshold is reached, it passes the voltage all the way to the axon terminals and 
a synapse occurs between the neuron and the ones it is connected to. – adapted from Ka Xiong 
Charand – HyperPhysics Action Potential (http://hyperphysics.phy-
astr.gsu.edu/hbase/Biology/actpot.html). 

 

The action and postsynaptic potentials of several nearby neurons produce an 

electrophysiological signal in their extracellular space (local field potential – LFP). As 

previously referred, for a sensor to be able to capture electrical activity of the neurons, a large 

population of neurons must activate synchronously and with the same orientation, orthogonal 

to the skull. Since action potentials are very fast and almost never overlap, EEG measures are 

composed mostly by the variations of the PSPs (graded potentials). Regarding the orientation, 

most of the signal captured by the sensors is generated in the pyramidal cells (Spruston, 2008), 

Although all neuron types contribute to the extracellular field, the shape of the cell influences 

their relative contribution. Pyramidal cells have long, thick apical dendrites that can generate 

strong dipoles along the axis between the dendrites and the soma. Such dipoles generate an 

open field, due to the considerable spatial separation between the active sink (or the source) 
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and the return currents. Thus, pyramidal cells are the greater contributors to the extracellular 

field. (Figure 2.4). 

 

Figure 2.4 – Diagram of a pyramid cell and the correspondent dipole it generates – adapted 
from (Abtahi, 2011). 

 

EEG activity can be measured locally with implanted depth microelectrodes, from the cortical 

surface (electrocorticogram – ECoG) or even from the scalp (EEG) (Buzsáki et al., 2012) – 

see Figure 2.5 for a graphical hierarchy of the brain layers. Since the signal gets attenuated by 

the different layers, the deeper the sensor the better the signal-to-noise ratio (SNR). However, 

ECoG and deep electrodes are very intrusive and require a medical surgery to be implanted in 

the patients, so it is only performed in cases of disease (like epilepsy) where the possible 

benefits overrule the risks. In this thesis, we worked mainly with scalp EEG. Scalp EEG is a 

mixture of local field potentials (LFP) generated at several brain locations, which generate two 

types of electrical activity: rhythmic and arrhythmic (Michel and Brandeis, 2010).  
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Figure 2.5 – Layers of the brain and the type of signals measured at each level. EEG is 
measured at the scalp, ECoG at epidural or subdural levels and implanted microelectrodes at 
the intraparenchymal space. – adapted from (Leuthardt et al., 2009). 

2.2.1.1 EEG rhythmic activity 

Neural activity in the central nervous system can happen in repetitive patterns, called 

oscillations. Oscillatory activity is generated at the cortex in many ways, either within 

individual neurons or driven by interactions between neurons. In individual neurons it can be 

found either by oscillations in membrane potential or by rhythmic patterns of action 

potentials, which then produce oscillatory activation of post-synaptic neurons. Considering 

large groups of neurons, their synchronized activity gives rise to oscillations that can be 

observed at the scalp. Despite oscillatory activity of the measured EEG being identified since 

the first recordings, only in the mid-seventies the different frequency bands were stratified 

and a taxonomy was defined by the International Federation of Societies for 

Electroencephalography and Clinical Neurophysiology, driven by pragmatic clinical 

considerations (IFSECN, 1974). Berger has firstly identified the alpha activity, so the 

subsequently discovered frequency bands followed the same nomenclature and were labeled 

with Greek letters. The identified bands and respective nomenclature are still in use today 

(delta: 0.5–4 hertz; theta: 4–8 hertz; alpha: 8–13 hertz: beta: 13–30 hertz; gamma: >30 hertz). 

Besides a significant inter-subject variability, brain rhythms identifiable in the EEG signal are 

highly dependent on the age and behavioral state of the measured individual, particularly the 

alertness level (da Silva, 2009). Brain rhythms are believed to provide a mechanism for 

coordinating activity within and across brain regions (Zheng and Colgin, 2015). 
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Power Spectrum Distribution 

The power of the brain electrical field potentials follows an inverse relation with the frequency, 

meaning that the power tends to decrease with increasing frequency, following the power-law 

function  

 
𝑃 ∝  

1

𝑓𝛽
 (2.1) 

where P is power, f is frequency, and β is the power-law exponent, typically in the range of 0 

to 3 (He, 2014). 

Delta oscillations 

Delta waves are defined as rhythms with frequencies below 4 Hz (IFSECN, 1974). They are 

usually present in some phases of sleep (slow wave sleep) in human adults. In wakefulness, it 

is present in young children, but in adults it is mainly found in pathological states (Michel and 

Brandeis, 2010).  

Theta oscillations 

Theta waves oscillations present a frequency range of 4 to 8 Hz (IFSECN, 1974). Found more 

often in infancy and childhood, they are also present in drowsiness and during sleep. For 

adults in a wakefulness state, theta activity can be found at mid-frontal electrodes related to 

cognitive activities, especially cognitive control and working memory (Maurer et al., 2014; 

Eschmann et al., 2018). The theta band has been found at posterior sites, especially related to 

memory retrieval (Walden et al., 2014) and a relation between frontal and parietal theta has 

been reported associated to willed attention (Rajan et al., 2018). Changes in theta are often 

correlated with power changes in the alpha oscillations, and they are usually analyzed as the 

theta/alpha ratio (TAR) (Imperatori et al., 2017). Theta rhythms during wakefulness are 

different from the ones during sleep. 

Alpha oscillations 

The alpha rhythm was the first one to be described, since it has been found in the first EEG 

studies of Hans Berger (1929). This EEG rhythm was thoroughly explored by the famous 

Portuguese scientist Fernando Lopes da Silva, both in dogs and humans (Lopes Da Silva and 

Storm Van Leeuwen, 1977; Lopes Da Silva et al., 1997; da Silva, 2009). It comprises 
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oscillations between 8 and 13 Hz (IFSECN, 1974) and represents the most prominent 

oscillatory frequency over occipital cortex during rest and with eyes closed, which supports 

the idea that it is an idling rhythm involved in the active suppression of sensory input (Michel 

and Brandeis, 2010; van Diepen and Mazaheri, 2017). Furthermore, the alpha activity is 

suppressed after eye opening, visual stimulus presentation or simply additional mental activity, 

which reinforces that hypothesis. But the alpha is not specific to the visual cortex. Alpha 

oscillations also occur over frontal cortex as well as over the auditory cortex, sensory motor 

cortex and the supplementary motor area (SMA). This version of the alpha rhythm is named 

the mu rhythm, and is suppressed by the performance of activity or simply by the mental 

imagery of it (Pfurtscheller and Neuper, 1997; McFarland et al., 2000; Neuper et al., 2009). 

This alpha suppression was broadly linked with cortical activation, in an inverse relation. 

However, there is task-related evidence that the alpha rhythm also plays important roles in 

regulating the timing and temporal resolution of perception and are strongly associated with 

top‐down control and may help the transmission of neural “predictions” to visual cortex (for 

a review of the alpha roles, please refer to the work of Clayton and colleagues (2018)). 

Therefore, as for the other rhythms, there is no single source of alpha activity in the brain, 

since alpha rhythms appear in different brain areas and have different behavioral significance. 

Beta oscillations 

Even in Berger first reports, he made a distinction between the large alpha waves from small 

fast oscillations he called “beta waves”. Beta activity is present in the frequency range from 15 

to approximately 30 Hz (IFSECN, 1974) and its role in coordination between regions has 

been implicated in numerous functions, including sensory perception, selective attention, and 

motor planning and initiation (Sherman et al., 2016). Beta activity is a strong predictor of 

perceptual and motor performance and, in sensorimotor cortex, beta rhythms have been 

linked to anticipation of visual stimuli that cue a subsequent motor response (Kilavik et al., 

2013) , and are visible during motor activity. Thus again, as for the other frequency bands, 

beta activity has several different functions and generators, depending also on the functional 

state of the brain (Michel and Brandeis, 2010). 

Gamma oscillations 

Gamma rhythms are usually attributed to sensory and cognitive brain functions. They range 

from around 30 to 80 Hz. Gamma oscillations can reflect a state of high neuronal excitability 



27 

 

involved in complex brain processes, binding the activity of distributed neuron populations 

(engaged networks) (Jia and Kohn, 2011), and are associated to several cognitive processes, 

including perceptual decision (Castelhano et al., 2017), working memory (Pesaran et al., 2002) 

and learning (Bauer et al., 2007). As for the other frequency bands, distinct gamma frequency 

sub-bands reflect different neural substrates and cognitive mechanisms (Castelhano et al., 

2014). 

 

Overall, the rhythmic activity depends on the mental state of the subject in a broad sense, and 

variations in the rhythms are observed linked to specific mental processes. Therefore, it is 

possible to modulate it based on stimuli or events that provoke variations in the EEG 

spectrum through stimuli experienced by the subject. Depending on the response to those 

stimuli/events, oscillatory activity can be either enhanced — event-related synchronization 

(ERS) — or suppressed— event-related desynchronization (ERD) (Neuper et al., 2009; 

Formaggio et al., 2010). The detection of those variations can be exploited by algorithms and 

converted to commands for external devices or applications, a technique known as brain-

computer interface (BCI), that we further describe in section 3.2.1.1. 

2.2.1.2 EEG arrhythmic activity 

The second type of EEG activity we find is arrhythmic activity. The most studied case of 

arrhythmic activity is the response to stimuli, for which populations of neurons produce a 

synchronized activation or deactivation, time-locked to the event / stimuli. Those are called 

event-related potentials (ERP). 

The ERPs are difficult to measure because their amplitude is usually one order of magnitude 

lower than that of ongoing EEG. To separate the ERPs from the ongoing signal, and assuming 

that they are independent, several responses to the same stimuli have to be recorded. 

Considering K EEG single trials responses to the same type of event or stimulus, each with 

N samples along the time, represented in the matrix y of dimension [K, N], its signal-to-noise 

ratio (SNR) can be estimated, as suggested by Lemm and colleagues (2006), using the formula  

 
𝑆𝑁𝑅(𝑦) = 10 𝑙𝑜𝑔

𝑉𝑎𝑟𝑛(𝐸𝑘[𝑦])

𝐸𝑘[ 𝑉𝑎𝑟𝑛(𝑦𝑘 − 𝐸𝑘[𝑦])]
 (2.2) 
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where Varn is the variance of the signal along the N time samples and Ek is the mean over the 

K trials.  

Averaging the signal over the trials increases the SNR. The mathematical justification is based 

on two assumptions: 

1. The K signals contain ERP responses of invariable shape and latency, time-locked to the 

stimulus, 

2. The noise can be approximated by a zero mean Gaussian random process of variance σ2, 

uncorrelated between trials and not time-locked to the event. This includes both noise and 

ongoing EEG activity, independent of the stimulus. 

Based on these assumptions, the averaging method can be described by 

 

�̅�(𝑛) =
1

𝐾
∑ 𝑥𝑘(𝑛) = 𝑠(𝑛) +

1

𝐾
휀𝑘(𝑛)

𝐾

𝑘=1

 (2.3) 

where �̅� is the averaged signal over K event-locked trials, s is the signal that is constant 

between the trials (ERP) and 휀𝑘 the noise on the segment k, which includes the ongoing EEG 

activity. Because of assumption 2, the mean of the noise is 0 and, therefore, when K increases, 

the noise will tend to its mean, leaving the signal �̅� ≈ s. 

The implications of this method include the fact that, for one to visualize and analyze it an 

ERP, the same event/stimulus must be repeated several times (usually about 100 repetitions 

per condition), which hardens the experimental conditions (studies have to be both long and 

repetitive). However, especially for the field of brain-computer interfaces (BCI) that we 

describe in section 3.2.1.1, few repetitions are considered, and machine learning algorithms 

are used to extract the information that the human eye cannot see. Pires and colleagues (2008) 

performed a study on the effect of changing the amount of averaged trials on the error rate 

for a P300-based BCI using a Bayesian classifier, and found a monotonic decrease in the false 

positive, false negative and error rate as the number of averaged signals increased. This result 

highlights the efficacy of the averaging method in increasing the SNR of the ERPs and 

reinforces the need for trading off SNR for duration and repetitiveness of the experimental 

paradigms. Although few trials are used in the classification approaches, it should be noted 

that for BCIs, the objective is to identify the presence of the ERP, not to study its morphology. 

Therefore, it can use substantially less trials than the ones needed for pure neuroscientific 
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studies, where the aim is to characterize the brain response to the stimulus as well as their 

timing and morphology. 

Another important issue is the intrinsic trial-to-trial variability that, through (2.3) are also 

averaged out. This problem as gain increasing interest and some studies and approaches now 

look into modeling or, at least, measure trial-to-trial variability in their analysis (Delorme et 

al., 2015). 

2.2.1.3 Source localization of EEG activity 

As mentioned before, the signals captured at the scalp include a mixture of several brain 

sources of activity. In order to study the neural correlates of specific brain processes measured 

at the scalp, it is important to estimate the regions from where the measured signals are 

generated. That process is called source localization. 

 

Figure 2.6 - Schematic representation of the forward and inverse problem. The forward 
problem consists in modeling the signal propagation from the sources up to the sensors at the 
scalp, whilst the inverse problem localizes the sources of activity based on the signal measured 
at the sensors. – adapted from (Belaoucha, 2017). 

 

In this field there are two well-known and related problems, called the forward problem and 

the inverse problem (see Figure 2.6). The forward problem consists in modeling the brain 

structure such that one can simulate the propagation of a source signal generated in a specific 

location of the cortex up until it reaches the sensors at the scalp. In sum, the forward problem 

responds to the question: “given an electrical source at location L, what is the potential 
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measure at the electrodes E” (Hallez et al., 2007). This procedure is performed for several 

locations, in order to cover significantly all possible brain locations. Then, solved the forward 

problem, the inverse problem consists of going from a measured EEG signal and finding 

which location brain location generated that signal. In sum, the inverse problem answers to 

the question: “given this potential measure in the electrodes E at the scalp, which location L 

generated it” (Grech et al., 2008). 

The forward problem 

The forward problem addresses the calculation of the electric potential that reaches the scalp 

for a known configuration of sources, given that the physical properties (conductivities) of 

the head tissues are known. The problem can be formalized as 

 
𝛷 = K J + 휀 (2.4) 

being Φ 𝜖 ℝ𝑁𝐸x1 the electric potentials measured at the scalp, K 𝜖 ℝN𝐸x3N𝑆
 the leadfield 

matrix, J 𝜖 ℝ3N𝑆x1 the current source density (CSD), and 휀 𝜖 ℝ𝑁𝐸x1 an array with a repeated 

arbitrary constants representing the noise of the measurement. NE represents the number of 

electrodes at the scalp, NS the number of possible source activities. Since the source activity 

generates the signal in a specific direction, each Jl contains three values, containing the intensity 

in the direction of each axis x, y and z. Thus,  

 𝐽 = {𝐽1,𝑥 , 𝐽1,𝑦 , 𝐽1,𝑧 , 𝐽2,𝑥 , 𝐽2,𝑦 , 𝐽2,𝑧 , … ,

𝐽𝑁𝑠,𝑥 , 𝐽𝑁𝑠,𝑦 , 𝐽𝑁𝑠,𝑧} 
(2.5) 

and K contains, for each e 𝜖 [1, 𝑁𝐸], the mapping of all J sources to the electrode e. 

The forward problem consists of computing the leadfield matrix K. To do so, one must create 

a model of the brain, considering the different electrical conductivities of different tissues, as 

well as the morphology of the head itself. There are two types of models used for this 

computation: the finite-element method (FEM) and the boundary element method (BEM). 

The BEM method models the head as a volume conductor consisting of compartments with 

constant, isotropic conductivities, in a shell form, where currents flow from the inside surface 

to the outside. This way, the forward problem can be transformed into a boundary integral 

equation, which can then be solved numerically. The most simplistic BEM solutions include 

three concentric spheres, simulating the different layers of the head. However, assuming 
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isotropy in each head compartment is inaccurate, since anisotropy is present in several cases, 

e.g., in the white or gray matter compartment. That simplification influences source analysis, 

as has been shown (Güllmar et al., 2010), but the errors induced by the disregard for 

anisotropy are smaller than other modelling errors, like misclassified tissue or the use of non-

realistic head models. Additionally, most current BEM implementations are restricted to 

nested shell topographies. The FEM solutions do not suffer from several of those problems, 

since they represent complex models that (usually) consider more aspects of the head anatomy 

than the BEM models. However, there are studies pointing towards the good performance of 

some BEM algorithms, even when compared with FEM implementations (Vorwerk et al., 

2012). 

The inverse problem 

The inverse problem consists of, given the electrode potentials at the scalp, find the source 

generator(s) of that activity. That implies to invert the equation (2.4). Assuming the noise to 

be white, Gaussian and zero-mean, that inversion can be represented as 

 
𝐽 = 𝐾−1𝛷 (2.6) 

However, this corresponds to an ill-posed problem, since the number of possible sources is 

much greater than the number of sensors at the scalp, and different solutions can give rise to 

the same signal measurements at the scalp. 

There are several methods to solve the inverse problem, which can be subdivided in equivalent 

dipole methods and linear distributed methods. 

The dipole methods assume that a given scalp measurement is exclusively explained by a 

limited number of sources, smaller than the number of electrodes to ensure the solution is 

unique. The forward model is computed for estimating the scalp potentials by a single dipole 

at a specific position, orientation and strength. The result is compared with the measured 

signal with a similarity metric, and the process is repeated for every dipole position, orientation 

and strength, to select the dipole that better represent the observed signal (Gulrajani et al., 

1984). This search through the solution space increases exponentially in complexity when one 

considers more than one dipole. Moreover, identifying the correct number of dipoles is usually 

impossible without some a priori knowledge about the physiological mechanisms underlying 
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the scalp potentials under analysis (Bai and He, 2005). Therefore, solutions that do not need 

this information (linear distributed models) are usually preferred over this method. 

Linear distributed source models are the most common used models to solve the inverse 

problem. Their main advantage is the fact they do not need a priori information regarding the 

number of sources. For these models, the source space is a 3D grid covering the cortical grey 

matter, rendering each cell a possible source of activity. Since their positions are fixed, their 

orientation and strength must still be estimated, and so it is possible to represent the scalp 

recordings as a linear combination of the source amplitudes. Nevertheless, and on contrary to 

the equivalent dipole models, distributed models have more sources than sensors, thus some 

constrains must be defined that allow the selection of the ‘optimum’ solution. Several methods 

have been suggested, being some of the most widely adopted the minimum norm estimate 

(MNE) and its variations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-

Gilbert, LAURA, Shrinking LORETA FOCUSS -SLF, SSLOFO and ALF for non-parametric 

methods, and beamforming techniques, BESA, subspace techniques like MUSIC and its 

derivatives, FINES, simulated annealing and computational intelligence algorithms for 

parametric methods. A comprehensive revision of those methods is provided by Grech and 

colleagues (2008) and, more recently, by Awan et al. (2018). The former study performs a 

simulation analysis comparing all the methods and identifies sLORETA method as the best 

solution in terms of both localization error and ghost sources, while the latter focus more on 

recent advances on new methods, still poorly consolidated in the literature. 

2.2.2 Magnetic resonance imaging 

Magnetic Resonance Imaging (MRI) is a technology that uses strong magnetic fields, magnetic 

field gradients, and radio waves to generate images of the organs in the body. It manipulated 

the magnetic properties of the hydrogen nucleus (one proton), since the hydrogen is present 

in water and fat, which is present in most of our body tissues in different concentrations 

(Huettel et al., 2004).  

2.2.2.1 Longitudinal magnetization 

Each hydrogen proton is spinning around an axis, thus creating a tiny magnetic field. So, we 

can look at each proton as a very small magnetic bar that, under normal circumstances, is align 



33 

 

randomly across the body. However, when placed under the influence of a strong magnetic 

field (�⃗� 0), the spin axis of each hydrogen proton aligns parallel or anti-parallel to that strong 

magnetic field direction. The preferred alignment direction is the one that requires less energy, 

so more protons align parallel to �⃗� 0 than antiparallel. This excess of protons aligned with B0 

produces a net magnetic effect called the net magnetization vector (NMV) �⃗⃗�  that aligns with 

the main magnetic field. The difference is typically small but depends on the strength of B0 

and the temperature of the measured tissue. So, if the B0 strength increases, more magnetic 

moments align with B0 since the energy needed to oppose it is higher. Therefore, the NMV 

increases (Berger, 2002). 

For the magnetic moment of the protons to align with the B0 field, they perform a precession 

movement around the B0 axis. The angular momentum vector of the proton precesses about 

the external field axis with an angular frequency known as the Larmor frequency, described 

(in MHz) by 

 
𝜔0 =  𝛾𝐵0 (2.7) 

where γ is the gyromagnetic ratio, a constant of the nuclear species of the matter (e.g. 

hydrogen), and B0 is the main magnetic field strength. The strength of the magnetic field is 

measured in units of Tesla (T), and 1T is equivalent to approximately 20 000 times the 

magnetic field of the earth. The gyromagnetic ratio of the hydrogen proton is 42.6 MHz/T. 

As seen in (2.7), the Larmor frequency ω0 is proportional to the strength of �⃗� 0 (Currie et al., 

2013). 

2.2.2.2 Transverse magnetization 

Since �⃗⃗�  is aligned to �⃗� 0, it cannot be measured. But it is possible to apply a radiofrequency 

(RF) pulse (B1) transversal to B0, at the same frequency as ω0, which will disturb the protons 

so they fall out of alignment with B0. That disturbance happens by the transfer of energy from 

the RF pulse to the proton, which occurs only if the RF pulse has the same frequency as the 

precession frequency (ω0), a phenomenon called resonance. The �⃗⃗�  vector is tilted onto the 

transverse plane relative to �⃗� 0 by a specific angle, called flip angle, given by 
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𝛼 =  𝛾𝐵1𝜏 (2.8) 

where τ is the exposure duration of the nuclei to B1. Therefore, it is possible to control the 

flip angle that we apply to the protons. This RF pulse is generated by an electromagnetic coil 

known as the transmitter coil, but mostly referred as the RF coil. The titled �⃗⃗�  can be 

decomposed into two separate components: a longitudinal magnetization component �⃗⃗� 𝑧, 

along the direction of �⃗� 0 (conventionally assumed as z axis), consequence of the transition 

between parallel and antiparallel directions of the protons nuclei magnetization vectors due to 

the increase of their energy state, and a transverse magnetization component �⃗⃗� xy, precessing 

around the z axis, consequence of the phase synchronization of the proton spins induced by 

the RF pulse (Currie et al., 2013).  

After the application of the RF pulse, protons go back gradually to their equilibrium state, in 

a process called “relaxation”. Relaxation occurs in two different ways: the longitudinal 

magnetization returns gradually to its original value, a process named longitudinal or T1 

(‘Time’ 1) relaxation, and the transverse magnetization begins to disappear, a process called 

transverse or T2 (‘Time’ 2) relaxation. Following the Faraday law of induction, a change in the 

magnetic flux experienced by a coil induces an electromotive force (EMF), that can be 

detected by receiver coils (Huettel et al., 2004). 

2.2.2.3 Relaxation processes 

The energy received through the resonance process makes some protons to transition from 

the parallel state to the antiparallel, which changes the �⃗⃗� 𝑧  vector. After the RF pulse, the 

protons transition back gradually to their equilibrium state M0. To return to that lower energy 

state, protons exchange energy with their surroundings. The rate at which that process occurs 

depends on the sampling tissue. For instance, fat and water recover the equilibrium at different 

rates. So, different tissues have different T1 values, but the relaxation process follows an 

exponential with time constant T1 given by 

 

𝑀𝑧(𝑡) = 𝑀0 − (𝑀0 − 𝑀𝑧(0))𝑒
−

𝑡
𝑇1 (2.9) 
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where M0 is the original magnetization value (prior to the RF pulse) and 𝑀𝑧(0) is the value 

longitudinal magnetization value of �⃗⃗�  after the RF pulse. If the RF pulse produces a flip angle 

of 90º, 𝑀𝑧(0) becomes 0 and (2.9) can be simplified into 

 

𝑀𝑧(𝑡) = 𝑀0(1 − 𝑒
−

𝑡
𝑇1  ) (2.10) 

So, the T1 value corresponds to the time it takes for the tissue to recovers (1 − 𝑒−1) ≈ 63% 

of its original longitudinal magnetization value (see Figure 2.7). The imaging method takes 

advantage of the different T1 values of different tissues to generate images with different levels 

of intensity for different tissues, depending on the time after the RF pulse that the image is 

captured. 

 

Figure 2.7 - T1 relaxation illustrations, showing the recovery of the longitudinal magnetization 

of �⃗⃗⃗�  across time – adapted from (Ridgway, 2010). 

 

Another consequence of the RF pulse is that it synchronizes the phase of the spins, so after 

the pulse all protons spin with the same phase, generating an �⃗⃗� xy component that is spinning 
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around �⃗� 0. Before the pulse, at the equilibrium state, protons spin at random phases and, 

therefore, their magnetizations in the xy plan sums to 0 since they cancel each other out. 

After the RF pulse, the spins will gradually fall out of phase with each other, thus decreasing 

the �⃗⃗� xy component. This reduction of the Mxy value in function of the time is given by 

 

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0)𝑒
−

𝑡
𝑇2 (2.11) 

having Mxy(0) representing the transverse magnetization after the RF pulse (instant 0). If the 

pulse produces a flip angle of 90º, Mxy(0) will be equal to M0, since the longitudinal 

magnetization is fully transposed the transversal plan (Mz(0) = 0, Mxy(0) = M0). For the 

duration of T2, the transverse magnetization is reduced in 𝑒−1 ≈ 37%. 

However, in reality the spins dephase quicker than T2, due to inhomogeneity in the magnetic 

field B0 and differences in magnetic susceptibility between tissues present in the sample. Those 

tissue differences are particularly important in regions in contact with blood vessels containing 

paramagnetic hemoglobin. This quicker decay is called T2* relaxation.  

The relaxation processes in �⃗⃗�  are, thus, summarized in three equations (known as the Block 

equations): 

 𝑑𝑀𝑥

𝑑𝑡
= 𝛾(𝑀𝑦𝐵0 − 𝑀𝑧𝐵1 sin𝜔𝑡) − 

𝑀𝑥

𝑇2
 

𝑑𝑀𝑦

𝑑𝑡
= 𝛾(𝑀𝑧𝐵1 cos𝜔𝑡 − 𝑀𝑥𝐵0) − 

𝑀𝑦

𝑇2
 

𝑑𝑀𝑧

𝑑𝑡
= 𝛾(𝑀𝑥𝐵1 sin𝜔𝑡 − 𝑀𝑧𝐵1 cos𝜔𝑡) − 

𝑀𝑧 − 𝑀0

𝑇1
 

(2.12) 

The relaxation times are highly dependent on the local characteristics of the tissues under 

imaging. Since different tissues have different T1 and T2 times, they will present different levels 

of magnetization at time X, thus creating contrasts in the MR images. Carefully crafted 

acquisition parameters (such as echo time, repetition time or the flip angle) generate T1-, T2- 

and T2*-weighted MR images that show the different soft tissues in the human body, in health 

and disease. 

So, after the RF pulse, the �⃗⃗�  net magnetic vector is precessing around �⃗� 0 at the Larmor 

frequency. Thus, though Faraday’s law of induction, a RF receiver coil detects the electric 
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voltage induced by the moving magnetic field �⃗⃗� . This signal is called a Free Induction Decay 

(FID) and an illustration is provided in Figure 2.8. 

 

Figure 2.8 – T2* and T2 relaxation illustration, showing the effect of the de-phasing of nuclear 
spins through time, in the transverse plan XY – adapted from (Ridgway, 2010). 

 

Although the FID can be detected directly as an MR signal, usually the MR generates and 

measures the signal in the form of an echo, because of the magnetic field gradients used to 

localize and encode the MR signals in space cause additional de-phasing in the nuclear spins 

which disrupts the FID. There are two commonly used types of echoes: gradient echoes and 

spin echoes. To spatially encode the FID measured signals, magnetic gradient fields are used 

(generated by the gradient coils in the MR machine). Magnetic field gradients produce a change 

in field strength (and, consequentially, the Larmor frequency of the nuclear spins) along a 

particular direction. Three gradients (Gz, Gx, Gy) are applied along the z, x and y axis, 

respectively, to spatially localize the measured signal. The Gz gradient generates a monotonic 

variation along the z axis, which allows the RF pulse to target the frequency of a specific slice 

(a plane transversal to the z axis). Therefore, only the protons in that slice will be influenced 

by the RF pulse. The Gz gradient is often called the Slice Select Gradient. The spatial encoding 

for the XY plane is achieved by using the gradients in the x and y plane to create changes in 
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the frequency and phase characteristics of the FID signal, respectively. The phase encoding is 

performed before the signal acquisition (but after the RF pulse) and consists of using Gy to 

change the frequency of the protons’ spins depending on their position (where the magnetic 

field increases, the frequency of precession is higher, and where it decreases, the frequency is 

lower). After the gradient is switched off, the relative phase of the protons’ spins has changed 

by an amount that is linear dependent on their position along the y axis (known as the phase 

encoding direction). After the phase encoding, the frequency encoding starts and, at the same 

time, the signal is recorded. The Gx will, similarly to the Gy, produce a change in the frequency 

of the protons based on their position along the x axis (called frequency encoding direction). 

This is called the frequency encoding. So, for a specific slice, one acquires a signal that can be 

decomposed in frequency and phase to positions of the xy plane. The process is repeated 

several times with variations in the strength of the phase gradient, and each acquisition is 

decomposed to what is called the k-space. Then, a 2D Fourier transform applied to the k-

space data is able to construct the MR image of the targeted slice. The process is repeated for 

the remaining slices to cover the full volume of interest to be imaged (Berger, 2002; Huettel 

et al., 2004; Ridgway, 2010). 

2.2.2.4 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is supported by the neurovascular coupling 

concept: the property that states that there is an increase of cerebral blood flow wherever and 

whenever neuronal activity occurs. Neuronal activity consumes energy in the form of 

adenosine triphosphate (ATP), a nucleotide produced from glycolytic oxygenation of glucose, 

which generates carbon dioxide as a by-product of its production. Therefore, an activated 

brain region causes a variation in the cerebral metabolic rate of oxygen (Buxton and Frank, 

1997). The vascular system responds with an increasing affluence of glucose and oxygen to 

provide for the energetic demands of those brain cells, thus restoring the homeostasis of the 

system (Buxton et al., 1998). This process causes a change of the relative levels of 

oxyhemoglobin and deoxyhemoglobin (oxygenated or deoxygenated blood) that can be 

measured through their differential magnetic susceptibility, since oxygenated blood shows 

different magnetic properties than deoxygenated blood. When fully oxygenated, hemoglobin 

is diamagnetic and magnetically indistinguishable from brain tissue, but fully deoxygenated 

haemoglobin is highly paramagnetic, with 4 unpaired electrons. This paramagnetism results in 

local gradients in magnetic field whose strength depends on the deoxyhemoglobin 
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concentration (Glover, 2011). Therefore, images can be created using the deoxygenated 

haemoglobin paramagnetism as result of brain activity, with the so-called blood-oxygen-level 

dependent (BOLD) contrast.  

This hemodynamic response to an increase of activity in the brain is not instantaneous. In 

fact, the process of restoring the homeostasis takes several seconds to complete. The 

maximum level of deoxygenation peaks around 5 to 6 seconds after the trigger of brain 

activity, and after that the deoxygenation process stops and oxygenation takes place, up to 15 

to 18 seconds, where an undershoot occurs. This undershoot is a reduction, relative to the 

baseline, of the BOLD signal after the end of the stimulus, which can persist several seconds 

before the signal returns to baseline. There is some debate around this effect (van Zijl et al., 

2012), with the most common theories arguing a slow recovery of the cerebral blood volume, 

a slow recovery of the cerebral metabolic rate of oxygen or even an undershoot of the cerebral 

blood flow (Liu et al., 2019). Nevertheless, these variations are detected by the BOLD signal 

and, transformed to a function over time, became the so-called hemodynamic response 

function (HRF). Figure 2.9 describes the canonical version of the function, since several 

variations can be found between individuals (Handwerker et al., 2004) or pathologies (Hanlon 

et al., 2016). 
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Figure 2.9 – Morphology of the canonic Hemodynamic Response Function (HRF) over time, 
specifying its main characteristics – adapted from (Eloyan et al., 2014). 

 

The link between brain activity and blood flow, the basilar principle of the fMRI method, was 

first discovered by Roy and Sherrington in 1890. Next, Pauling and Coryell discovered the 

magnetic properties of deoxygenated and oxygenated blood, and their differences, during the 

year of 1936. Ogawa and colleagues, in 1990, figured out how to explore this principle using 

MRI, at the time used only for structural imaging, introducing the BOLD contrast. Ogawa 

and colleagues proved this principle in rodents in that same year, Belliveau et al. (1991) 

explored this principle using a ferromagnetic contrast injected into the participants, but the 

first studies using BOLD in humans occurred in 1992: one by Kwong and colleagues, one by 

the Ogawa group and the third one by Bandettini and colleagues (Bandettini et al., 1992; 

Kwong et al., 1992; Ogawa et al., 1992). 

2.2.3 Simultaneous EEG-fMRI 

As seen above, each imaging modality presents some significant drawbacks. On the one hand, 

EEG presents poor spatial resolution, which limits the localization of neuronal activity, and a 

low SNR, which requires long and repetitive experimental structures to overcome it. On the 
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other hand, fMRI presents poor time resolution, being limited by the hemodynamic response 

timings and hardware constraints, as well as its costs and setup inflexibility, which limit its 

large-scale application. In that sense, efforts have been made to combine both methods, 

aiming to obtain the best of both worlds: the temporal resolution of EEG with the spatial 

resolution of fMRI. The first tests of combined EEG-fMRI measurements appeared soon 

after the invention of fMRI, driven by the need to map epileptic brain activity. So, the first 

study was performed in 1993 by John Ives and colleagues in Boston, USA (Ives et al., 1993). 

The main driver of this was the need for noninvasively localize the epileptic focus, which even 

today remains a significant challenge. 

The first difficulty in combined EEG-fMRI acquisitions is the noise contamination the EEG 

signal suffers. Ensuring EEG data quality in an EEG-fMRI experiment is a crucial step of the 

process. There are two main artifacts affecting the EEG signal inside the MR machine: the 

gradient artifact (GA) and the ballistocardiogram (BCG) artifact (also called pulse artifact – 

PA) (Ferreira et al., 2016). 

2.2.3.1 Gradient artifact correction 

The gradient artifact is an interference in the EEG signal caused by the switching on and off 

of magnetic field gradients of the MR machine. A variation of the magnetic flux applied to a 

conducting circuit causes an electromagnetic current, according to Faraday law of induction. 

That current affects the head of the subject and the EEG equipment (sensors and wires), 

creating very large variations on the measured signals that occlude the brain activity of the 

subject. Depending on the type of MR imaging sequence, the changes in the gradient will be 

different. The most common case the 2D multi-slice Echo Planar Imaging (EPI) sequence, 

for which the gradients are rapidly switched on and off for the acquisition of each imaging 

slice. That process generates an artifact in the EEG signal through the electromagnetic 

induction phenomena, as previously described. This artifact is usually called Gradient Artifact 

(GA). 

GA shows much higher amplitudes than the small neurophysiology-based EEG measures, 

which make the EEG signal unrecognizable during MRI acquisition periods (for an example 

of this type of artifact, refer to Figure 2.10). Several solutions have been proposed to attenuate 

the effects of the GA at the source. One approach to minimize the magnitude of the GA is 

to lay out and immobilize the EEG leads, twisting the leads or modifying the lead paths, using 
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a bipolar electrode configuration, and using a head vacuum cushion (Mullinger et al., 2014). 

Even adjusting the position of the subject within the MR scanner attenuates the GA amplitude 

(Mullinger et al., 2011). Other options have been proposed at the hardware level, with 

Chowdhury and colleagues suggesting the use of an EEG cap with electrodes on an external 

layer that record the GA separately from the EEG, allowing then to make a subtraction 

between the signals recorded by internal and corresponding external electrodes, reducing the 

artifact (Chowdhury et al., 2014). Although these solutions perform a considerable attenuation 

of the GA, its effective suppression must be performed with post processing signal 

approaches. 

 

Figure 2.10 - Example of EEG data with and without the contamination by the Gradient 
Artifact. A zoomed view of the GA shows the repetitive nature of the artifact, which is explored 
by the template subtraction methods. – adapted from (Abreu et al., 2018). 
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Targeting the GA at the post processing phase is challenging, since the amplitude of the GA 

exceeds the physiological measures significantly and contain components in the EEG 

frequency range. There is an important result showing that the gradient-switching-related 

impulse response function can be modeled as a linear and time invariant system (Felblinger et 

al., 1999). Thus, one can assume that the GAs are additive, and therefore can be removed 

independently from other artifacts. With that established, average artifact subtraction (AAS) 

methodologies can be applied, which are currently the most used approaches to remove the 

GA from the signal. The process explores the assumption that the GA is periodic and 

stationary to create an average template from several occurrences, which are then subtracted 

from the signal to restore the neurophysiological signal, due to the additive property 

mentioned above. 

The quality of the reconstruction achieved by AAS methods depends on the EEG sample 

frequency, since timing correctly the windows for creating the average template and its 

subtraction have crucial importance and depend also on the absence of head movement by 

the participant. To target the first dependence, very high frequencies are used for EEG 

recording (above 5KHz), and synchronized with the clock frequency of the MR machine 

(Mandelkow et al., 2006). To avoid head motion, besides immobilizing the movement as much 

as possible with head cushions, Allen and colleagues proposed a template approach that is still 

used as the most effective way to remove GA in post processing (Allen et al., 2000). Additional 

to the template subtraction, an adaptive noise cancelation (ANC) filter is applied. The small 

head motions of the subjects and the system vibrations add a stochastic component to GA, 

characterized by random artifact fluctuations on the EEG. Since morphologies and 

amplitudes of the GA (template) systematically differ between EEG channels, because of the 

different positions and orientations of the electrodes and cables with respect to the gradients 

(among other factors), the GA template calculation and the corresponding GA correction is 

performed for each channel separately. Specific targeting that component, some variations of 

the original method have been proposed, considering moving or weighted averages for the 

creation of the template, for instance. For an overview of different approaches, please refer 

to (Eichele et al., 2010). 
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2.2.3.2 Pulse artifact correction 

Concerning the pulse-related artifact (PA), the ballistocardiogram (BCG) component is usually 

clearly visible after the GA rejection. Besides existing also outside the scanner, the BCG 

artifact presents a much larger amplitude inside the scanner. This is believed to be a 

consequence of cardiac-related electrode movement, due to expansions and contractions of 

scalp arteries between systolic and diastolic phase (Vanderperren et al., 2010). Those 

movements, occurring under the B0 magnetic field, generate an electric current due to 

Faraday’s law of induction. The stronger the B0 magnetic field, the higher the BCG artifact 

amplitude (Debener et al., 2008). Inside the MR machine and, therefore, under the influence 

of the B0 magnetic field, the cardiac pulse generates an artifact of approximately 10Hz and 

bellow (Allen et al., 2000).  

There are several putative mechanisms that cause the PA, with the stronger candidates being 

cardiac-pulse-driven head rotation, the Hall effect1 due to pulsatile blood flow and pulse-

driven expansion of the scalp. The main contributor to PA seems to be cardiac-pulse-driven 

head rotation, but the variance of PA across cardiac cycles is more influenced by the Hall 

effect of pulsatile blood flow (Mullinger et al., 2013). 

The correction approaches to this artifact can be divided into two main categories: template 

subtraction and blind source separation (Vanderperren et al., 2010). The template subtraction 

method is similar to the AAS method for the GA correction, with variations on the process 

of template creation, to account for temporal variability. The different approaches include 

median-filtering (Ellingson et al., 2004), Gaussian weighted averaging (Goldman et al., 2000) 

or the use of an optimal basis set (OBS) of PCA components (Niazy et al., 2005; Marino et 

al., 2018), for each channel. These approaches depend also on the identification of the QRS 

complexes on the EEG, which can be made through peak detection algorithms or using a 

modified Teager energy operator (Kim et al., 2004). For the blind source separation approach 

different methods have been employed, such as, for example, the canonical correlation 

analysis (Assecondi et al., 2009), but the most commonly used is, by far, the independent 

component analysis (ICA) (Mullinger et al., 2013). The process relies on the fact that BCG 

activity is independent of neuronal activity, and thus could be separated from each other given 

                                                 
1 The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, 
transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current 
(Hall, 1879). 
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enough sensors. The independent components (ICs) containing BCG-related activity are 

discarded and the remaining components are re-projected in the original data, thus removing 

the contribution of the discarded ICs. However, most ICA algorithms assume spatial 

stationarity, ignoring the spatio-temporal variability of the BCG artifact. Nevertheless, due to 

the limitations of alternative methods (Vanderperren et al., 2010), ICA-based approaches are 

usually used. An interesting approach has been suggested using a combination of both 

approaches, applying AAS or OBS on the IC projections instead of excluding the ICs, which 

yield an improvement compared to the currently most used methods (Abreu et al., 2016). A 

different approach has also been recently applied, modeling the BCG using likelihood-based 

regression techniques, with promising results (Krishnaswamy et al., 2016).  

2.2.3.3 Simultaneous EEG-fMRI analysis 

When considering simultaneously acquired EEG-fMRI analysis, different strategies have been 

used. There are three main approaches in the literature: i) symmetric fusion techniques, where 

a common generation model is constructed to explain both the EEG and fMRI data, ii) fMRI-

constrained EEG source localization, using the fMRI data to limit search space of the inverse 

solution and iii) EEG-informed fMRI analysis, using EEG features, convolved with the HRF, 

to identify regions that correlate significantly the BOLD activity with those EEG features (Lei 

et al., 2012).  

In theory, the most interesting approach would be the symmetrical fusion, which considers 

both signals without constraining any of them. However, it implies the creation of a common 

temporal forward or generative model that links the underlying neuronal activity to the 

measured hemodynamic and electrical responses (Mullinger and Bowtell, 2011), which is 

difficult to develop. Model-driven fusion approaches use frameworks like dynamic causal 

models or neural field models to create neurophysiologically grounded solutions, whose 

inversion might give some insights into the origin of neuronal activity and its mediation 

through intrinsic and extrinsic connections. Due to the difficulty of developing such models, 

most fusion approaches use joint EEG/fMRI ICA decompositions in a data-driven approach 

to integrate the two modalities (Lei et al., 2012). 

fMRI data can be used to provide spatial constraints when localizing sources of EEG activity. 

This idea is grounded on the premise that the origins of EEG are linked to regions of increased 

BOLD signal, which has been shown in a couple of combined EEG/fMRI studies that, 
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analyzing the EEG and fMRI data independently, identified the same sources of activity 

(Mulert et al., 2004; Mullinger and Bowtell, 2011). However, the use of fMRI to constrain the 

source localization of EEG should be handled with care, due to 1) deep sources of brain 

activity, which appear in the fMRI data and do not manifest in EEG due to its strong 

dependence of the depth of the source, 2) particular sources of EEG activity might generate 

low metabolic demand and, therefore, there may not be a corresponding BOLD response and 

4) an EEG signal may correlate to either positive or negative BOLD fluctuations, making it 

difficult to impose source constraints on the EEG (Ritter and Villringer, 2006). Nevertheless, 

given that those issues are taken into account, one can still use fMRI as a weight factor for the 

source localization, thus only guiding the process, which has been shown to help the 

localization process (Wan et al., 2008). 

Finally, and probably the most used integration analysis technique, is the EEG-informed fMRI 

analysis. For this technique, the common approach is to extract a time course representative 

of the phenomenon one wants to study from the EEG signal and use it as a regressor for the 

general linear model (GLM) analysis of the fMRI signal. That representation is often achieved 

using temporal or spectral features (Abreu et al., 2018). In the temporal domain, the simplest 

case is the use of boxcar functions to select periods of interest (Thornton et al., 2010) or, in 

task-related analysis with event-related potentials (ERPs), to use features from those ERPs, at 

each trial (e.g., peak amplitude and/or latency) (Nguyen and Cunnington, 2014). For the 

spectral domain, the typical approach is to compute the time-frequency decomposition of the 

EEG signal and extract the power of specific bands over time (Abreu et al., 2018). By including 

the power values over different EEG bands in the GLM analysis, one can investigate their 

individual contributions to the BOLD signal (de Munck et al., 2009). To account for the spatial 

representations of EEG phenomenon in the scalp, techniques like clustering, ICA or 

topographic time-frequency decomposition are usually employed (Yuan et al., 2012; Schwab 

et al., 2015). Functional connectivity methods have also been used as priors for the fMRI 

analysis, including partial direct coherence, phase synchronization index or global field 

synchronization (Abreu et al., 2018). Some studies have also addressed the EEG-fMRI 

combination in terms of connectivity in both signals, meaning to link connectivity measures 

in the EEG to dynamic functional connectivity measures in the BOLD signal, instead of the 

BOLD signal itself (Tagliazucchi and Laufs, 2015). 

In the scope of this thesis, the EEG-fMRI combination is addressed in a transfer way: we aim 

to find EEG characteristics that correlate with the BOLD activity in a specific location. This 
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is different from the usual EEG-informed fMRI approach, in the way that we do not seek to 

identify which regions best correlate to an observed EEG phenomenon, but instead to identify 

which EEG phenomenon correlate with the BOLD activity we observe in a specific region. 

Studies using this approach are scarce in the literature. There is one Israeli group that 

developed a method to map EEG time-frequency decompositions to the BOLD activity in 

the amygdala, to use in relaxation neurofeedback tasks (Meir-Hasson et al., 2014, 2016). They 

named this method EEG Finger-Print (EFP) and it consists of mapping the EEG time-

frequency decomposition of several delayed signals to the observed BOLD signal, using a 

ridge regression model. They find interesting correlation values for both the visual cortex and 

what they claimed to be the amygdala signal (please refer to the end of section 3.2.1.2 for 

further details).  
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2.3 Virtual reality 

According to the definition presented by Craig and colleagues in Developing Virtual Reality 

Applications (2009), Virtual Reality (VR) is a term that applies to computer simulations that 

create an image of a world that appears to our senses in much the same way we perceive the 

real world (or “physical” reality) . In order to convince the brain that the synthetic world is 

authentic, the computer simulation monitors the movements of the participants and adjusts 

the sensory displays in a manner that delivers the feeling of being immersed in the simulation. 

Since sight is, for most people, the dominant perceptual sense, it is the aspect of reality most 

frequently addressed in VR. Other important components for one’s perceptual experience are 

sounds and tactile feedback. Although smell and taste play important roles in our daily life, 

they have been less exploited in VR due to the complexity of the required technology 

(Gutiérrez A. et al., 2008). 

The VR technological steps started around the mid 50’s, with the cinematographer Morton 

Heilig’s Sensorama, patented in 1962. This was an arcade-like cabinet featuring stereo 

speakers, a stereoscopic 3D display, fans, smell generators and a vibrating chair, designed for 

immerse the viewer completely in the film. Heilig also patented a head-mounted display 

(HMD) device, called the Telesphere Mask, in 1960. In 1965 Ivan Sutherland presents a paper 

describing the “ultimate display”, where he details the concept of a virtual world viewed 

through an HMD which replicated reality so accurately that the viewer would not be able to 

distinguish between it and the reality, and included means for the user to interact with objects 

(Sutherland, 1965).  

VR technology continued to be developed throughout the 1970s, but mostly in universities 

and research centers. The 1980s saw a boom in VR research and commercialization, but the 

technology was not ready to fulfil the expectations. The most common problems were 

unreliable hardware, slow computers and cyber sickness (Gutiérrez A. et al., 2008). In the early 

1990s, a change of paradigm in VR interfaces occurred with the design of the CAVE (Cruz-

Neira et al., 1992). The CAVE is a room with graphics projected from behind the walls in 

stereo to provide a depth cue. The projected images create a wider field-of-view (FOV) than 

that of an HMD and has the benefit of instead of using a heavy headset, the user only needs 

some (lightweight) stereo glasses.  
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The first decades of the 21st century saw a major, rapid advancement in the development of 

virtual reality. Computer technology, especially small and powerful mobile technologies, have 

exploded while prices were constantly driven down. The rise of smartphones with high-density 

displays and 3D graphics capabilities enabled a generation of lightweight and practical virtual 

reality devices. The video game industry also continued to drive the development of consumer 

virtual reality, delivering depth sensing cameras, motion controllers and natural human 

interfaces. The Oculus Rift, which started as a Kickstarter campaign in 2012, showed that was 

possible to create lightweight easy-to-wear HMDs and re-opened the HMD development and 

commercial market, which several companies to follow, bringing momentum to the area 

(Sony, Google, Facebook, Samsung, HTC and more). 

 The immersion quality of an experience is measured by the level of fidelity, concerning all 

sensory modalities, that a VR system can provide. Thus, immersion is objective, measurable, 

and depends only on the technology used by the VR system. Presence, however, refers to the 

human reaction to that immersion and represents the psychological sense of being inside the 

virtual environment (Sanchez-Vives and Slater, 2005). Characteristics that have an impact on 

the presence in a virtual environment (VE) include: 

• Display parameters - graphics frame-rate, latency, head tracking, stereopsis 

(stereoscopic vision), geometric field of view, 

• Visual realism, 

• Sound, 

• Haptics - technology with tactile feedback (e.g. game controller vibration), 

• Visual body representation, 

• Body engagement - using body motion as input. 

Thus, immersion and presence are the two main factors that influence VR experiences and, 

regarding immersion, VR systems can be divided into three different categories (Gutiérrez A. 

et al., 2008), namely: 

• non-immersive - systems using desktop-based VR (e.g. video games), 

• semi-immersive - systems using large projection screens (e.g. CAVE), 

• fully-immersive - systems using head-mounted displays (HMD) (e.g. Oculus 

Rift, HTC Vibe, etc). 

Figure 2.11 shows example snapshots of the different types of immersion from our lab.  
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Figure 2.11 - Examples of the three types of immersion in virtual reality. at the left, a non-
immersive system (tablet). In the middle, a semi-immersive system (3D projection with 
position tracking). At the right, a fully-immersive system (a head-mounted display). 

 

2.3.1 Virtual rehabilitation 

Virtual rehabilitation represents the combination of computers, special interfaces, and 

simulation exercises used to train patients in an engaging and motivating way (Burdea et al., 

2007). The advances in VR technology, along with respective cost reductions, supported the 

development of more usable, useful, and accessible VR systems that have been explored to 

target a wide range of physical, psychological, and cognitive rehabilitation concerns and 

research questions (Rizzo and Kim, 2005). VR characteristics potentiate the creation of 

systematic human testing, training, and treatment environments that allow for the precise 

control of complex, immersive, dynamic 3D stimulus presentations, enabling sophisticated 

interactions, behavioral tracking, and performance recording. 

Mostly due to its capacities of recreating real environments while keeping control of the 

events, virtual reality has been widely applied as rehabilitation tool in several pathologies, 

including post-traumatic stress disorders (PTSD) (Cukor et al., 2015), anxiety disorders 

(Benbow and Anderson, 2018), physical (Edmans et al., 2006; Piquepaille, 2010) and cognitive 

rehabilitation (Coyle et al., 2015). For reviews on the level of evidence of the clinical 

applications of VR, please refer to (Parsons et al., 2009; Mishkind et al., 2017; Powers and 

Rothbaum, 2019). In the case of ASD, there are some aspects of VR that make it particularly 

interesting (Strickland, 1997; Goodwin, 2008; Bellani et al., 2011; Parsons and Cobb, 2011):  

 Controllable Input Stimuli: virtual environments can be simplified to the level of 

input stimulation tolerable by the user. Distortions in elements can take place to match 

the user expectations or abilities. Distracting visual elements and sounds can be 
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removed and introduced in a slow, regulated way. Moreover, the level and number of 

non-verbal and verbal features of communication can be directly controlled and 

manipulated. 

 Modification for Generalization: minimal modification across similar scenes may 

allow generalization and decreased rigidity. For instance, one can train to shop for 

groceries in different virtual grocery stores, following the same procedure and thus 

helping to learn the procedure independently of grocery store. This is a property of 

major importance, because it dictates the relevance of the application for the user's 

real life. 

 Safer Learning Situation: a virtual learning world provides a less hazardous and 

more forgiving environment for developing skills associated with activities of daily 

living. Mistakes are less catastrophic, and the environments can be made progressively 

more complex until realistic scenes to help individuals function safely and comfortably 

in the real world. 

 A Primarily Visual/Auditory World: the VR systems used nowadays use especially 

visual and auditory stimuli. Particularly with autism, sight and sound have been 

effective in teaching abstract concepts. Studies show that the autistic individuals 

thought patterns are primarily visual. 

 Preferred Computer Interactions: the complexity of social interaction can interfere 

when teaching individuals with social disorders. Establishing influence over the child 

is an often-difficult step where human interaction can be so disruptive that learning is 

not possible. These children respond well to structured, explicit, consistent 

expectations and challenge provided by computers. Moreover, interaction can take 

many forms and face-to-face communication can be avoided, which many people with 

autism might find particularly threatening (users may communicate via their avatars). 

It is worth mentioning that most virtual rehabilitation interventions categorize themselves as 

virtual reality interventions but the large majority consist solely on computerized interventions 

(Lorenzo et al., 2016). Fully immersive interventions are still scarce. 

2.3.1.1 Serious gaming 

One type of virtual rehabilitation that has gain traction in the last years is serious games. A 

serious game is a game whose objective is not recreational, but rather to train or develop a 
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skill or knowledge (R. Michael and L. Chen, 2006). Thus, the primary purpose of serious 

games can be, but are not limited to, education, training, human resource management, and 

health improvement. This way, serious games are designed to educate, train, or change 

behavior as they entertain players.  

Most serious games use computer or tablet platforms, since they are more disseminated in the 

market. Some virtual reality serious games can be found in the literature, but they are scarce 

(Zakari et al., 2014). A recent review by Lau and colleagues (2017) found that serious games 

as interventions for reducing mental health problems appears feasible, but there is a limited 

number of randomized control trials (RCTs) that systematically test the effects of serious 

games. More RCTs are needed to determine the effectiveness of serious games in pathologies 

like ASD. The heterogeneous characteristics of this population make it an interesting target 

of these games, since the levels of difficulty or complexity can be gradually adapted to the 

participants’ performance and, through gamification principles, keep the user engaged in the 

learning process. Gamification is the process that leverages the innate desires of people to 

mastery, competition, achievement and status (among others) to engage them in the game 

(Lieberoth, 2015). These strategies usually use rewards, points, achievement badges, 

leaderboards levels or virtual currencies (Kapp, 2012). Through these strategies, players are 

impelled to progress and achieve new results in the game which, when applied to serious 

games, means the development or training of some skill or knowledge. 
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State of the art 

This chapter covers the current knowledge of the two axes of this thesis: characterization and 

rehabilitation of social deficits in ASD. On the characterization part, we describe how social 

deficits in ASD are studied nowadays and explain how adding more ecology to the 

experimental paradigms might help to unveil neural mechanisms that are masked in current 

studies due to the great simplification imposed on experimental setups. Furthermore, we 

explore the current known biomarkers associated with ASD social processing deficits. 

The rehabilitation part is subdivided into the two main areas of that axis: neuroimaging-based 

and virtual reality-based interventions. On the neuroimaging-based interventions axis we 

cover the current brain-computer interfaces and neurofeedback studies that tried to 

rehabilitate ASD patients. We then explain why the transfer of fMRI neurofeedback 

interventions to EEG is an important step to generalize and improve the application of 

neurofeedback interventions. On the virtual reality-based interventions, we highlight studies 

that focus on the training of social skills on ASD individuals. Particularly with the 

development of mobile technologies, several serious games have appeared but with poor 

validation. Furthermore, we emphasize that most of studies use non-immersive technology 

(like tablets or desktop applications) and could benefit from using virtual reality to improve 

the sense of presence, performing the training in realistic environments and, thus, improving 

the chances for generalization of the learnt concepts into the real world. 
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3.1 Studying social deficits 

Being the social deficits a core area of ASD symptomatology, there is a large area of research 

investigating them. Although ASD is heterogeneous in etiology and symptoms, social behavior 

deficits unrelated to cognitive dysfunction represent a common central feature and they alone 

are specific to ASD. So, social deficits are likely to be most informative with respect to 

modeling the pathophysiology of the disorder (Schultz, 2005). Studies types range from purely 

behavioral to neuroimaging assessments (EEG and fMRI), with several research groups 

focusing on eye-tracking analysis of behavior (Billeci et al., 2017).  

Social deficits are found throughout child development. In ASD newborns there is evidence 

for lack of innate preference and impaired selective attention to human voice over other 

sounds and human faces over other stimuli (Barak and Feng, 2016). Diminished social 

preferences in auditory and visual stimuli can be observed throughout infancy, for stimuli like 

biological motion, human speech or facial expression (Chawarska et al., 2007; Paul et al., 2007; 

Klin et al., 2015). Another indicator of social interaction deficit is the inability of following 

joint-attention cues. Joint-attention is the process by which two individuals share the focus on 

an object or element. This skill is impaired in most cases of ASD and is related to later 

development of other skills like language or pretend play (Charman, 2003; Dawson et al., 2004; 

Vivanti et al., 2017; Adamson et al., 2019).  

Social impairments follow though the development of the child, especially after language 

acquisition. In typically developed children, the increased ability to communicate verbally with 

others results in more complex social behavior, including shared play and interactions with 

other children. Since these abilities are impaired in ASD children, social interactions deficits 

are conspicuous during this phase and are usually the triggers to test the children for ASD 

(Barak and Feng, 2016). These impairments in social interaction are manifested throughout 

the life-course of ASD individuals.  

One key aspect of social interactions is the understanding and correct identification of facial 

expressions of the others. Faces represent a critical source of visual information for social 

perception, conveying relevant information about identity and emotional states of others 

(Kanwisher and Yovel, 2006). Since the first months of life, children are able to process facial 

cues, like facial expressions. The ability to interpret these social signals represents an essential 

skill in child development and, therefore, a basic condition for the development of the ability 
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to engage in successful social interactions early in life (Bayless et al., 2011). Specialized neural 

systems have evolved for rapid perceptual analysis of emotional face expressions, which is 

essential for decoding the feelings of others (Akechi et al., 2010). Thus, facially expressed 

emotions have an important role in the regulation of contextual interactions between 

individuals and their environment. In this thesis, we focus on the facial expression processing 

aspect of social interaction. Although face processing deficits (as a whole) in ASD have been 

fairly covered in the literature, both by behavioral (Tanaka and Sung, 2016) and neuroimaging 

(Tavares et al., 2016) approaches, understanding of facial expression processing presents up 

until today some challenges, especially from the neuroimaging perspective, that we address in 

our work. 

Neuroscientific studies have been able to identify specific brain areas and neural circuits 

involved in face processing (Apicella et al., 2013). From those regions, two different neural 

systems were identified as responsible for face recognition: a core system, that processes the 

early visual face properties, consists of three bilateral regions in occipito-temporal cortex 

(Haxby et al., 2000), and an extended system, which includes a number of regions with 

distinct functional specializations (Benuzzi et al., 2007; Apicella et al., 2013; Tye et al., 2014). 

The core system includes the inferior occipital gyrus (IOG), the lateral portion of the fusiform 

gyrus (FG) and the superior temporal sulcus (STS) (Haxby et al., 2000; Batty et al., 2011). IOG 

and FG mediate the encoding of faces, while STS is involved in the perception of social signals 

derived from faces, such as direction of gaze, facial expressions, and dynamic changes in face 

identity (i.e., a face morphing into another face) (O’Connor et al., 2005; de Jong et al., 2008; 

Akechi et al., 2010). 

In recent years, many behavioral studies have been conducted focusing the face processing in 

ASD, but there is a lot of variability in the results regarding the deficits in recognizing 

emotional facial expressions (Rump et al., 2009). Some studies suggest that the ability is intact 

(Castelli, 2005; Jones et al., 2011), whereas others found profound deficits relative to TD 

children (Rump et al., 2009; Akechi et al., 2010; Apicella et al., 2013; Lerner et al., 2013). 

Nevertheless, there is evidence for face-processing differences in individuals with ASD 

relative to TD children. While TD individuals process faces holistically, individuals with ASD 

appear to prefer to use analytical-processing strategies (O’Connor et al., 2005). 

It is crucial to determine where and when processing of neural information of emotion 

displayed by faces is disrupted in ASD, as an important step towards understanding the 
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neurobiological basis of social and emotional deficits that these individuals display (Wong et 

al., 2008). To do that, the high temporal resolution of EEG makes it a particularly appropriate 

technique for studying the time course of emotional processes (Lerner et al., 2013). Event-

related potentials (ERPs) are particularly applicable to the study of face processing since faces 

evoke a distinct pattern of electrical brain activity. Several studies have showed some ERP 

components that are preferentially activated by faces. The most common, the N170, is 

recorded over the occipito-temporal cortex (critical for social perception, including FG and 

STS) and is greater in the right than the left hemisphere (Apicella et al., 2013; Tye et al., 2014). 

It is characterized by a negative slope that peaks at approximately 170 ms post-stimulus 

presentation. Another two ERP components are usually present in responses to face stimuli: 

the vertex positive potential (VPP), a fronto-central concomitant positive deflection of the 

N170, which is also sensitive to processing of faces (Luo et al., 2010; Sel et al., 2015); and also 

the early posterior negativity (EPN), a component that slopes negatively in response to 

emotional facial expression stimuli relative to neutral stimuli (Rellecke et al., 2013). 

Although those components are associated with face processing, it is still unclear how they 

are influenced by facial expressions. Abnormal ERP responses to emotional face expressions 

have been reported in ASD: consistent alterations are demonstrated for the N170 component 

in response to facial stimuli (Dawson et al., 2002, 2005; McPartland et al., 2004; Webb et al., 

2006); with delayed and reduced N170 ERP components to emotional facial expression 

stimuli (de Haan et al., 1998; Batty and Taylor, 2003; Eimer et al., 2003; McPartland et al., 

2004; O’Connor et al., 2005; Webb et al., 2006; Blau et al., 2007; Wong et al., 2008; Batty et 

al., 2011; Lerner et al., 2013); reduced N170 component by fear compared to TD individuals 

(de Jong et al., 2008) and larger amplitude compared to neutral facial expressions (Batty and 

Taylor, 2003; Eimer et al., 2003; Akechi et al., 2010; Wagner et al., 2013). Nevertheless, other 

studies report no differences in ERP components but rather in source localization of face 

related activity (Eimer and Holmes, 2001; Eimer et al., 2003; Wong et al., 2008; Tye et al., 

2014)(Eimer and Holmes, 2001)(Eimer and Holmes, 2001)(Eimer and Holmes, 2001)(Eimer 

and Holmes, 2001)(Eimer and Holmes, 2001). The same uncertainty applies to the VPP. Some 

studies report that this ERP component is affected by emotional facial expression contrasts 

(Luo et al., 2010; Sel et al., 2015), whether others find the opposite (De Taeye et al., 2015; 

Shim et al., 2016). 

To clarify the state-of-the-art regarding the facial expressions deficits in ASD, we conducted 

a systematic review on EEG studies that addressed facial expressions processing in this 
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disorder (Monteiro et al., 2017). We conducted article selection according to Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009). 

The procedure is detailed in the flowchart present in Figure 3.1. 

 

Figure 3.1 – PRISMA flow diagram of the article screening and selection process. 

 

After the application of the article screening and selection criteria, only 16 articles were 

available for further analysis. Most of the studies reviewed reported consistent findings, 

including: group differences; emotion and emotion by group interactions; source localization 

effects; and correlations between behavioral performance and ERP component signals. 

Significant group differences, found in some of the reviewed studies, point towards some 

disruption in processes involved in emotional face processing in ASD individuals, essentially 

due to deficits in early stages of visual processing (Batty et al., 2011; Luckhardt et al., 2014). 

Although for the first ERP components (P1 and N170) we found concordant results, that is 

only true for global group differences, for a maximum of three studies. Therefore, the findings 

regarding ASD facial expression processing deficits are not very robust yet. This scenario is 
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even worse when considering the later potentials (P2, N400, VPP, etc.), where none of the 

differences were reported by more than one study. 

Group differences and emotion by group interactions reported in the studies reviewed in 

Monteiro et al (2017) provide evidence that individuals with ASD process emotional facial 

expressions differently than TD individuals. However, the main emotion effects found for 

both groups suggest that, in most of the cases, individuals with ASD perform at the same level 

as TD individuals, possibly through the use of compensatory mechanisms they have 

developed (Harms et al., 2010). In other words, neurophysiological differences may reflect 

more a matter of cognitive style rather than a true deficit (Happe, 1999). 

3.1.1 The need for more ecological approaches 

Assessing emotional expression processing impairments in ASD individuals using static 

photographic stimuli depicting facial expressions, as almost all of the studies reviewed did, 

may represent a problem, because this type of stimulus could be learned explicitly in the 

context of therapeutic interventions (Harms et al., 2010). Dynamic morphing of facial 

expressions, representing emotional expressions of differing intensity, are more ecologically 

valid than static presentations and are more likely to induce the same response as subtle facial 

expressions in daily life social interactions (Harms et al., 2010). Thus, this type of stimulus 

may be more sensitive to group differences between ASD and TD individuals and should be 

included in future research, as a way to better connect behavioral clinical research and neural 

processing of emotional information (Harms et al., 2010). 

While it is clear that simplifications of reality must be created for us to be able to conduct 

systematic experimental studies, in the case of studying social domains (like facial expression 

processing) that simplification might be disruptive, since social interactions and theory of 

mind (the ability to interpret others’ beliefs, intentions and emotions) depend, most of the 

time, on the interpretation of subtle social nuances of the other (Brewer et al., 2017). 

Therefore, we believe that virtual reality can serve as a balanced medium, where structured 

and fully controllable environments can be developed to mimic some aspects of reality, while 

keeping its ecology. 

Based on our systematic review, all EEG studies rely on blank baselines followed by the 

presentation of a still picture. This experimental design loses the ecology of real life facial 
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expression interactions in two aspects. Firstly, the absence of dynamism in the facial 

expression. In real-life interactions, facial expressions are portrayed in a dynamic way, where 

the face of the individual expressing the emotion gradually morphs between facial expressions 

at distinct intensity levels. Secondly, the transition from blank baseline to face with expression 

merges the responses to the face itself (as a visual objects) with the specific responses to the 

facial expressions per se. With controlled virtual environments, experimental designs can be 

defined to structure transitions from faces without expressions to faces with expressions, thus 

creating stringent contrasts that isolate the responses to the facial expressions themselves. 

3.1.2 Biomarkers of social impairments 

There is a lack of biological tests (biomarkers) to diagnose or even characterize ASD. 

Biomarkers can be defined as biological variables associated with the disorder or disease and 

measurable directly in the patient or in his/her derived biological samples using sensitive and 

reliable quantitative procedures (Ruggeri et al., 2014). 

There is a clear heritability factor in autism, since monozygotic twins show much higher 

concordance rates of ASDs (92%) than dizygotic twins (10%) (Goldani et al., 2014), which 

supports the theory of a genetic etiology of the ASD (Won et al., 2013). But despite being 

highly heritable, the heterogeneous clinical symptomology and genetic architecture of ASD 

make difficult the identification of common genetic factors. Although several genetic 

mutations have been associated with the presence of autism, no common genetic variants that 

increase the risk of ASD have been identified, other than some clear genetic disorders such as 

fragile X, for example, of which phenotypes meet the ASD category description. ASD is, 

therefore, an etiologically heterogeneous disorder with no single genetic mutation accounting 

for more than 1 to 2% of ASD cases (Abrahams and Geschwind, 2008). 

With limited causal information available from the field of genetics, this led the science 

community to investigate other research avenues. More recently, neuroimaging studies have 

been used to characterize the ASD (Goldani et al., 2014). Early-accelerated brain volume 

growth has been identified in ASD, with a 10% increase in brain volume identified in toddlers, 

but followed by a plateau in volumetric changes during adolescence, ultimately leading to adult 

brain volumes that fall within the range of typically developing controls (Anagnostou and 

Taylor, 2011). However, there is also some evidence for enlarged total brain volume in 

adolescence and adulthood (Freitag et al., 2009; Hernandez et al., 2015).  
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There are some MRI studies showing structural abnormalities in the ASD brain, but there is 

too much variability between studies to derive a structural biomarker. For instance, studies 

show an increased volume of the caudate in ASD, and a relation between its volume and the 

severity of repetitive behaviors (Hollander et al., 2005). However, the little replicability of 

structural findings led to the exploration of functional abnormalities using electrophysiological 

and functional Magnetic Resonance Imaging (fMRI) studies. 

The fMRI research applied to ASD represents a large field of study. Most of fMRI findings 

point towards connectivity deficits, especially between fontal-posterior regions (Li et al., 2017), 

mostly identified in resting-state measures. However, there is interest in identifying biomarkers 

that are specific of the social mechanisms of the brain, and thus task-specific differences 

between ASD groups and controls must be assessed. Considering task-specific studies on the 

social networks of the brain, we can divide the studies into face processing, biological motion, 

theory of mind and the reward network. 

Face processing studies showed that viewing faces elicits activity in the bilateral fusiform face 

area (FFA), lateral occipital cortex (occipital face area – OFA), posterior STS and amygdala 

(Fox et al., 2009). It was originally proposed that ASD individuals show reduced activation to 

faces in the fusiform gyrus (FFA region) (Corbett et al., 2009; Kleinhans et al., 2011), but brain 

activity in these areas may be mediated by extrinsic factors that increase attention. For 

example, if ASD individuals are cued to look to the eyes of the faces activity in FFA increases 

(Davies et al., 2011), and the level of activity is correlated with the amount of time spent 

looking to the eyes of face stimuli (Dalton et al., 2005). Therefore, these studies suggest that 

the original findings of hypoactive responses to faces in ASD are due to either avoidance of 

or lack of attention to the eye area.  

The ability to process biological motion (movement that is not mechanical but rather human, 

like walking or moving body parts as the hands, mouth, eyes, etc.) has been associated with 

the STS region, inferior frontal gyrus, amygdala and visual areas like the fusiform gyrus 

(Herrington et al., 2011). In ASD, STS hypoactivation has been consistently reported 

associated to biological motion or social tasks that involve biological motion processing (like 

detecting dynamic facial expressions) (Kaiser et al., 2010; Shih et al., 2011; Hotier et al., 2017). 

Theory of mind is the ability of attributing mental states and intentions to others. This skill 

elicits neural activity in the STS, temporo-parietal junction (TPJ), medial prefrontal cortex 
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(MPFC), and temporal poles. There are studies showing abnormal activation patterns in all of 

these areas (Hernandez et al., 2015). 

Finally, the reward network associated to social interactions. In humans, social cues such as 

smiles are processed early in infancy and appear to be highly rewarding, biasing attention 

toward such cues. One general theory of autism postulates that reduced social motivation 

underlies the development of autism (Chevallier et al., 2012). The reward network includes 

the anterior cingulate cortex, orbitofrontal cortex, and ventral striatum (Kohls et al., 2013). 

Those regions have shown aberrant activity during monetary reward tasks, and those 

differences in the striatum were also found during social reward tasks (viewing happy faces) 

(Scott-Van Zeeland et al., 2010; Delmonte et al., 2012). 

Overall, there is increasing evidence for the temporal regions, like the STS, to play a crucial 

role in the social processing deficits in autism. However, variability of results makes it difficult 

to generalize neuroimaging biomarkers from these social networks, especially because many 

regions showing reduced activity under certain conditions can show typical responses when 

attention is explicitly directed to the task at hand, when the salience of the stimuli is increased, 

or when stimuli or tasks are more personally relevant to the individual (Hernandez et al., 2015). 

Regarding EEG-based biomarkers, several studies have investigated EEG patterns that may 

differentiate individuals with ASD from age-matched typically developing controls. Not 

surprisingly, because of the wide range in ages and phenotype of the ASD group being studied, 

no single EEG biomarker has been identified that consistently distinguishes individuals with 

ASD from those without ASD (Jeste et al., 2015). Although most of the studies usually recur 

to linear EEG measures (like the amplitude of event-related potentials or frequency measures 

in the different bands of the spectrum), Bosl and collegues (2018) showed recently that the 

nonlinear characteristics of the EEG signals can be explored as diagnosis tools (in particular 

when combined with machine learning algorithms). 

Some studies of functional connectivity have identified a general pattern of short-range under-

connectivity and long-range over-connectivity in ASD, with results varying based on regions 

and frequency bands of interest (Coben et al., 2008; Duffy and Als, 2012; Schwartz et al., 

2017). Signal complexity measures, like multi-scale entropy (MSE), have been used to 

differentiate ASD to TD individuals (J. et al., 2014).  
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However, those measures represent group differences that are not specific to social interaction 

deficits, since they are extracted in resting-state activity. Task-related measures provide better 

insights on the mechanisms behind the perceived deficits in social interactions. Some studies 

focus on the face processing network and investigate event-related potentials (ERPs) 

characteristics (amplitude and latencies of their components’ peaks), and differences have 

been found in those ERP components on the face processing network (Dawson et al., 2005). 

However, some studies fail to replicate those differences, with too much heterogeneity 

confounding the results (Monteiro et al., 2017). Another EEG component linked to the social 

deficits (usually associated with the mirror-neurons system) is the reduced suppression of the 

mu rhythm (~11Hz) when observing actions of others (Oberman et al., 2005). Most studies, 

however, only analyze group differences and do not evaluate the potential of those metrics as 

biomarkers (Jeste et al., 2015). 

 

In Chapter 4 we describe our approach to the study of social deficits, including the use of 

computerized dynamic stimuli to increase ecological validity and the search for biomarkers 

related to the abnormal processing of those stimuli. 
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3.2 Rehabilitating social deficits 

As seen in section 2.1.3, therapies for ASD rehabilitation usually follow the Applied Behavior 

Analysis (ABA) structure, an approach based on the analysis of behavior and reinforcement 

in the structure of antecedent, behavior, based on consequences. However, those 

interventions are intensive in time and resources – from  25 to 40 hours per week (Roane et 

al., 2016) and, most of the times, in a one-on-one basis between the therapist and the patient 

– which are, in most cases, impossible to implement. This way, other solutions which 

complement this type of interventions have been raising increased interest in the community. 

We divide those interventions into two main axes: neuroimaging-based interventions and 

virtual rehabilitation interventions. 

3.2.1 Neuroimaging-based interventions 

Considering the neuroimaging-based interventions, there are mainly two types: brain-

computer interfaces and neurofeedback paradigms. 

3.2.1.1 Brain-Computer Interfaces 

A Brain-Computer Interface (BCI) – also called Direct Neural Interface or Brain Machine 

Interface – is a direct pathway between the brain and an external device (Figure 3.2). Its basilar 

concept is to interpret brain signals in order to allow communication or interaction with the 

external world through the thoughts of its user (Hammon and de Sa, 2007). As suggested by 

Pfurtscheller and colleagues (2010), a BCI application must exhibit the four following 

components: 

1) Direct recording: the BCI must rely at least partly on direct measures of brain activity, 

such as through electrical potentials, magnetic fields, or hemodynamic changes. 

2) Real time processing: the signal processing must occur online and yield a 

communication or control signal. 

3) Intentional control: the user must perform an intentional, goal-directed mental 

action to control, such as imagining movement or focusing on a stimulus. 

4) Feedback: goal-directed feedback, about the success or failure of the control, must 

be provided to the user. 
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Figure 3.2 - General architecture of a brain-computer interface, showing the different steps of 
the process: the EEG is measured, features are extracted and then classified into actions that 
are translated into commands to external devices. – adapted from (Millán et al., 2008). 

 

The applicability of such technology is wide: the game community has early on understood 

the value of this technology in gaming and some products have already been released that use 

brain readings as interaction means (using portable and low-cost EEG headsets like Emotiv 

and NeuroSky, but with poor scientific validation). The military directed the research towards 

a telepathic communication device, where soldiers could communicate with each other’s just 

by thinking of it (Kotchetkov et al., 2010). But the largest research field has been the 

neuroscientific one, towards augmenting the capabilities of handicapped people, such as, 

power muscle implants and restoring partial movement (McFarland and Wolpaw, 2008), or 

through the widely-known P300 speller, where a user is presented with a matrix of letters and 

the system identifies the letter he/she wants to communicate, which is a feasible way for 

patients with locked-in syndrome2 to communicate (Fazel-rezai and Abhari, 2009; Pires et al., 

2011). 

Mostly due to its flexibility and easiness to use in domiciliary contexts, EEG has been the 

neuroimaging modality most explored for the development of BCI systems. Two types of 

changes can be extracted from the ongoing EEG signals: one change is time and phase-locked 

(evoked) to an externally or internally-paced event, the other is non-phase-locked (self-

induced). Thus, two types of BCI can be differentiated: one corresponding on evoked brain 

                                                 
2 Locked-in syndrome is a condition in which a patient is conscious and aware but cannot move or communicate 
verbally due to complete paralysis of nearly all voluntary muscles in the body except for the eyes. (NORD: 
National Organization for Rare Diseases - https://rarediseases.org/rare-diseases/locked-in-syndrome/) 
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activity by external stimulation (e.g. triggering selective attention) and another based on 

induced brain activity (e.g. motor imagery). 

BCIs based on selective attention require external stimuli provided by the BCI system. The 

stimuli can be auditory, visual or somatosensory. The most common approaches use visual 

stimuli. The stimulus most commonly used is some flashing character or image in a computer 

screen. Commonly, on this type of BCI, each stimulus is associated with a command to the 

application. On the original BCI speller (Farwell and Donchin, 1988), each stimulus is a 

character of the alphabet. That way, the user can write by selecting the stimuli's letters. That 

kind of BCI can be achieved through two different mechanisms, named after the brain 

patterns they produce: P300 and steady-state visual evoked potentials (SSVEP). 

The induced type of BCI usually makes use of the following phenomena: moving or simply 

contracting a muscle requires brain activity (brain oscillations recorded from the 

somatosensory and motor areas are known as the sensorimotor rhythms – SMR). 

Interestingly, the preparation of the movement or its mere imagination change the SMR in a 

similar way as the movement itself (Pfurtscheller and Neuper, 1997). The decrease of 

oscillatory activity in a specific frequency band is called event-related desynchronization 

(ERD). Correspondingly, the increase of oscillatory activity in a specific frequency band is 

called event-related synchronization (ERS). ERD/ERS patterns can be created by motor 

imagery, which is the imagination of movement without actually performing it. Since 

ERD/ERS patterns produced by motor imagery are similar in their topography and spectral 

behavior to the patterns elicited by actual movements, the mental imagery is a form of 

inducing brain rhythm changes that can be detected by a BCI system and then transformed 

into a command (Pfurtscheller et al., 2010). In contrast to BCIs based on selective attention, 

BCIs based on motor imagery do not depend on external stimuli. Nevertheless, motor imagery 

is a skill that has to be learned. Some users, however, never get a grip on mental imagery 

control, which makes this approach invalid for them (it is estimated to be around one third of 

users) (Kober et al., 2013). 

Regarding BCI research on autism, there are very few studies using it. Apart from some initial 

approaches (Jing Fan et al., 2015), most studies incorporate BCI within a serious game that 

uses BCI for mental training (for example, reducing the mu rhythm in the sensorimotor 

cortex) (Friedrich et al., 2014).  
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We created the first BCI system for training joint-attention in ASD. We optimized it, 

comparing between three EEG systems which one provided the best setup to use with the 

ASD participants (Amaral et al., 2017) and worked on the classification algorithms to improve 

the classification accuracy of the system (Simões et al., 2019b), and conducted a clinical trial 

on ASD to test its feasibility (Amaral et al., 2018) (ClinicalTrials.gov identifier: 

NCT02445625). Considering motor imagery, we also conducted an initial study with mental 

imagery of grasping movements on ASD, which could lead to a BCI intervention (Andrade et 

al., 2017). Those studies fall out of the primary scope of this thesis and are not fully described 

in this document. The readers should refer to the papers for further information. 

3.2.1.2 Neurofeedback 

Neurofeedback can be considered one type of BCI, but it diverges basically in its objective: 

while in BCI the goal is to control or command an external device, in neurofeedback (NF) the 

objective is to provide the user with real-time information of a neuronal process, for him to 

self-regulate it. This way, neurofeedback measures brain activity and provides a visual, auditory 

or other representation of the measured activity to the participant. With that information, the 

participant tries to volitionally change his/her neuronal activity, guided by the feedback he is 

receiving.  

Through neuroimaging studies, behavior has been correlated with patterns of brain activity. 

The concept behind neurofeedback is that if one can train himself/herself to volitionally 

modulate those patterns of brain activity directly, changes in the associated behavior should 

be observed. Indeed, some behavioral changes have been observed to result from self-

manipulation of neural activation (Shibata et al., 2011), which indicates that the physiological 

consequences of neurofeedback may be considered to be a form of endogenous neural 

stimulation. 
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Figure 3.3 - Schematic of the neurofeedback process, considering different feedback delivery 
means, different neuroimaging types and different forms of extracting indicators from the 
mental processes to use as feedback – adapted from (Sitaram et al., 2016). 

 

As shown in Figure 3.3, NF implementations can vary in three domains: feedback delivery 

method, neuroimaging method and feedback calculation method. For the feedback delivery 

method, the most common approach is to use visual feedback, showing a thermometer with 

the level corresponding to the activity level. Other approaches change the size of the stimuli 

in function of the level of activity. Other feedback delivery methods comprise auditory, tactile 

and even electrical stimuli. Regarding the neuroimaging method, the methods can be 

subdivided into two major groups: electrophysiological neuroimaging method (EEG, ECoG 

or MEG) and hemodynamic methods (fMRI or fNIRS). Finally, the feedback calculation 

process is the greater source of variability between studies, since the idea is to capture a pattern 

that is representative of a brain process of interest and convert it into a single signal to 

feedback the participant. At the electrophysiological domain, the most common approach is 

to filter the signal into frequencies of interest and use ratios between frequency bands 

(example: alpha /theta ratio) (Imperatori et al., 2017). However, evoked potentials can be 

used, as well as measures of connectivity between electrodes (like coherence) (Coben, 2007). 

In the hemodynamic domain, the most common approach is to select a region-of-interest 
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(ROI) in the brain and extract its level of BOLD signal to use as feedback (Young et al., 2017). 

Nevertheless, connectivity measures between different ROIs have also been used in the 

literature (Koush et al., 2013).  

EEG-based NF research started in the 1970s and has been widely used in the last decade. 

However, the level of evidence associated with this technique is still scarce. Micoulaud-Franchi 

and colleagues (2015) reviewed the level of evidence in the literature for EEG-based 

neurofeedback applied to mental disorders and concluded that there is some level of efficacy 

concerning ADHD patients and, for the case of ASD, there are improvements in specific 

symptoms that are related to the ADHD comorbidity, which is present in 40-50% of ASD 

patients. Other reviews corroborate this conclusion (Holtmann et al., 2011). Therefore, the 

level of efficiency of EEG-based NF in ASD is yet to be proven. 

fMRI-based NF has the major benefit of providing relatively high spatial resolution access to 

any brain structure, including deep regions, with millimeter precision. Therefore, fMRI-based 

NF can target any brain region and use their BOLD activity as feedback signal. However, 

since it is a technology much more recent than the EEG-based NF (the real-time fMRI was 

only developed in the mid-90s (Cox et al., 1995)) and, furthermore, much more expensive, 

fewer studies can be found in the literature using fMRI-based NF. Other consequence is the 

lower number of sessions per study: since fMRI scans are much more expensive, studies 

comprise only few training sessions, usually even only one session (mostly in preliminary 

studies) (Shibata et al., 2011). Nevertheless, its spatial precision granted, in previous studies, 

interesting behavioral results and several review works highlight its potential application in 

neuropsychiatric conditions (for a detailed analysis, please refer to (Micoulaud-Franchi et al., 

2015; Sitaram et al., 2016; Arns et al., 2017)). Its application on ASD, however, is still very 

scarce. Despite a project without any public outcome known yet (Caria and de Falco, 2015), 

no study yet tried to conduct systematic fMRI-based NF training in ASD. 

We developed an fMRI-based NF paradigm targeting the pSTS region on ASD using mental 

imagery of facial expressions as strategy for the BOLD modulation (Direito et al., 2019). With 

that, we implemented a feasibility clinical trial to test its feasibility on ASD (ClinicalTrials.gov 

identifier: NCT02440451). The clinical trial showed relevant clinical effects, verified in 

relevant neuropsychological scales, including emotion recognition. Those differences were 

present immediately after the intervention and replicated 6 months later (for further details, 

please refer to Appendix II). These results indicate that the intervention has the potential to 
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be successful and thus a phase IIb/III clinical trial should be conducted. Therefore, and upon 

the promising results of this clinical trial, transferring this intervention to an EEG setup would 

extend its potential application range and scope.  

fMRI to EEG neurofeedback transfer 

The combination of EEG and fMRI for neurofeedback was made, so far, following two 

different approaches: one is to explore both techniques as sources for feedback signals (for 

example, using localized hemodynamic activity and oscillatory electrical activity, as firstly 

showed by Zotev and colleagues (2014) for the left amygdala BOLD signal and frontal Beta 

asymmetry from the EEG) and the other is to transfer the fMRI-based NF paradigms to EEG 

settings (Meir-Hasson et al., 2014). This second approach is motivated by the fact that fMRI-

based NF is expensive and inflexible and, therefore, if seeking broader application scopes, the 

transfer of validated fMRI-based NF paradigms to EEG is a path of utmost importance. 

However, this approach faces great challenges: i) the different type of signal measured by both 

techniques, with dissimilar characteristics, ii) the incapacity of EEG to measure activity from 

non-cortical (deep) regions, due to the physiological attenuation of the signal, iii) the inter- 

and intra-subject variability of neuroimaging data. Possibly due to those challenges, literature 

on NF-transfer from fMRI to EEG is scarce (Perronnet, 2017; Abreu et al., 2018). Despite 

the works from the Tel-Aviv group (Meir-Hasson et al., 2014, 2016), we are not aware of any 

other study trying this approach. Nevertheless, these are challenges worth facing, since, as 

Fovet and colleagues (2015) point out in their critical analysis of the current fMRI-based NF, 

the major barrier in the translation of fMRI-NF protocols to the clinical practice is the 

accessibility and cost of the equipment, and the use of less complex devices after a limited 

number of fMRI-NF sessions (for models calibration, for example) could be a significant step 

in the translation of fMRI-based NF protocols into clinical practice.  

We address these challenges in Chapter 5, where we describe our contribution to transferring 

the fMRI-based NF protocol previously mentioned (Direito et al., 2019) to an EEG setup. 
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3.2.2 Virtual rehabilitation interventions 

The use of virtual rehabilitation of social deficits in ASD started with computerized or 

televised interventions. Computerized interventions specific to social skills training appeared 

in the mid-90s and continued to be developed until nowadays, with studies looking for false 

belief, facial expressions and feelings (Swettenham, 1996; Silver and Oakes, 2001; Bölte et al., 

2002). However, most of those studies found difficulties with generalization of the learned 

concepts. Through multimedia DVDs, some studies tried to teach emotions to ASD 

participants (Golan and Baron-Cohen, 2006, 2007; Golan et al., 2010). 

With the appearance of the concept of serious games and the development of mobile 

technologies, the number of applications designed for ASD have exploded. Zakari team (2014) 

and, more recently, Grossard and colleagues (2017) reviewed the games developed for ASD 

social skills rehabilitation. An interesting factor identified in the Grossard analysis is a positive 

correlation between the year of publication and the number of studies, showing a clear trend 

of the appearance of more applications for social rehabilitation in ASD every year. With them, 

researchers have been also looking to defining design principles for the development of games 

adapted for this population (Bartoli et al., 2014; Whyte et al., 2015), which is a fundamental 

step to develop better and more suitable solutions. The guidelines include 

• Strong customizability. 

• Increasing levels of complexity of game tasks. 

• Clear and easy to understand task goals. 

• Multiple means of communicating instructions (e.g. text, voice, visual cues). 

• Positive reinforcement with rewards. 

• Repeatability and predictability of game play. 

• Smooth transitions. 

• Minimalistic graphics and sound/music to avoid sensory hyperreactivity.  

• Dynamic stimuli. 

A factor identified by Liu and colleagues (2017) in their review of technology-facilitated 

treatments for ASD is the lack of customizable solutions that automatically adapt to the 

participant. Another point, which limits generalization, is the absence of fully immersive 

virtual reality interventions (Zakari et al., 2014). Bringing more ecological validity to the 

training task with immersion should help generalization. Despite the clear advantages of the 
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use of virtual reality in ASD (that we detailed in section 2.3.1), most of the studies (even the 

ones claiming to use virtual reality) resort to the use of virtual environments displayed in 

laptops or tablets (Josman et al., 2008; Parsons and Cobb, 2011; Zakari et al., 2014; Grossard 

et al., 2017). 

We developed a system for virtual rehabilitation training and tested a serious game to train 

social skills and independent living in ASD. Those contributions are detailed in Chapter 6. 

 

  



 72 

  



73 

 

 

 

  

Processing and imagining dynamic 

facial expressions 

 

 

 

 

 

 

 

 

 

 

This chapter consists in the paper:  

Simões, M., Monteiro, R., Andrade, J., Mouga, S., Franca, F. M., Oliveira, G., 
Carvalho, P., Castelo-Branco, M. (2018). A novel biomarker of compensatory 
recruitment of face emotional imagery networks in Autism Spectrum Disorder. 
Frontiers in Neuroscience, 12(November), 1–15. doi: 10.3389/fnins.2018.0079. 
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Abstract 

Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired but has 

been very difficult to capture at a neurophysiological level. We developed an approach that 

allowed to directly link observation of emotion expressions and imagery in ASD, and to derive 

biomarkers that are able to classify abnormal imagery in ASD. To provide a handle between 

perception and action imagery cycles it is important to use visual stimuli exploring the 

dynamical nature of emotion representation. We conducted a case-control study providing a 

link between both visualization and mental imagery of dynamic facial expressions and 

investigated source responses to pure face-expression contrasts. We were able to replicate the 

same highly group discriminative neural signatures during action observation (dynamical face 

expressions) and imagery, in the precuneus. Larger activation in regions involved in imagery 

for the ASD group suggests that this effect is compensatory. We conducted a machine learning 

procedure to automatically identify these group differences, based on the EEG activity during 

mental imagery of facial expressions. We compared two classifiers and achieved an accuracy 

of 81% using 15 features (both linear and nonlinear) of the signal from theta, high-beta and 

gamma bands extracted from right-parietal locations (matching the precuneus region), further 

confirming the findings regarding standard statistical analysis. This robust classification of 

signals resulting from imagery of dynamical expressions in ASD is surprising because it far 

and significantly exceeds the good classification already achieved with observation of neutral 

face expressions (74%). This novel neural correlate of emotional imagery in autism could 

potentially serve as a clinical interventional target for studies designed to improve facial 

expression recognition, or at least as an intervention biomarker. 

4.1 Chapter Introduction 

Faces represent a critical source of visual information for social perception, conveying relevant 

information about identity and emotional states of others (Kanwisher and Yovel, 2006). Since 

the first months of life, children are capable of understanding and processing facial cues, like 

facial expressions (Field et al., 1982). The ability to interpret these social signs represents an 
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essential skill in child development and, therefore, a basic condition for the development of 

the ability to engage in successful social interactions early in life (Bayless et al., 2011).  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits 

in the social domain which represent hallmark early characteristics (Sperdin et al., 2018). Even 

for simple visualization of facial expressions (FE), the literature is somewhat inconsistent: 

while some studies show group differences both in behavioral performance and neural 

responses, other studies show no identifiable deficits at all (for a compreensive review, see 

Monteiro et al., 2017).  

Importantly, no previous study has considered the role of mental imagery in the FE processing 

domain, possibly because of the challenges in identifying imagery signatures that mimic neural 

responses during simple observation. The perceptual strength and spatial frequency of the FE 

stimuli seem to be relevant to yield ASD group differences during simple visual presentation 

(Vlamings et al., 2010; Luckhardt et al., 2017), but the large majority of visual perception 

studies use static frame stimuli, lacking the dynamic characteristics of naturalistic FE 

(Monteiro et al., 2017). Those dynamics have been shown to play a crucial role on the 

perception of the respective FE and its emotional valence (Krumhuber et al., 2013) possibly 

because they allow to generate perception and action imagery cycles.  

Another limiting aspect is the notion that specific processing experimental contrasts are 

needed to isolate effects of interest. For example, the use of blank screen baselines, before the 

presentation of faces, generates a non-specific contrast of face with expression against a 

baseline without any stimulus. Therefore, those responses comprise both the processing of 

low-level core aspects of the face and the specific processing of the FE. In this EEG study 

we used dynamic FE morphing in a virtual avatar and used its neutral expression as baseline, 

to ensure a facial expression specific contrast. This way, the neutral FE is already present in 

the baseline. We believe this stringent contrast provides a response specific to the processing 

of the FE aspects, isolating it from the simple response to the face static itself. A systematic 

review of EEG studies regarding facial expression processing in ASD conducted by Monteiro 

and colleagues (2017) has already identified the need for experimental paradigms targeting the 

dynamic characteristics of facial expressions. All the studies identified by that review applied 

non-specific experimental contrasts, using blank screens as baseline of their experimental 

conditions. To the best of our knowledge, our study is the first one to combine a task-specific 

contrast for dynamic facial expression stimuli. 
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Mental imagery (MI) is defined as the simulation or re-creation of perceptual experience 

(Kosslyn et al., 2001; Pearson et al., 2013). Most of these mental representations are extracted 

from memory and allow one to mentally revisit the original stimuli or their combination 

(Pearson et al., 2015). Disturbed MI has been postulated to be present in several psychiatric 

disorders, from post-traumatic stress disorder (Lanius et al., 2002) to socio-emotional 

disorders like social phobia or depression (Hirsch et al., 2006). In the specific case of ASD, 

MI is likely to be impaired, since one of the key deficits included in the ASD diagnosis, in the 

form of absence or impairment of ‘pretend play’ (Baron-Cohen et al., 2001; American 

Psychiatric Association, 2013), which requires preserved action-perception imagery cycles. 

This deficit is particularly interesting since it spans into the social, imitation and repetitive 

behavior dimensions (Crespi et al., 2016). Therefore, the study of the neural correlates of MI 

in ASD gains relevance since it might lead to the understanding of the neural correlates of its 

core neurodevelopmental limitation and further help into the development of successful 

therapies.  

Here, by providing a critical link between visual observation and subsequent replay imagery, 

we bound MI to the FE of an avatar, in a task where the participant mentally replays the 

previously observed dynamic image of the avatar performing a happy or a sad facial 

expression. We believe this link between visual observation and MI of FE in others addresses 

both the deficits of FE processing, emotion identification and theory of mind, due to the lack 

of thinking from the perspective of the other present in ASD. Therefore, the concept of 

visually imagining others smiling recruits the faculties of expression processing and pretend 

play, and our experimental design allowed to study such imagery process in ASD, and to use 

two distinct classification approaches, based on linear and non-linear features describing brain 

signals, to differentiate between the disease state and normal cognition. Non-linear features 

consist of quantitative measures that represent in a relatively simple way complex dynamic 

characteristics of the EEG signals, which the traditional linear methods (amplitude and 

frequency, for example) are not able to capture. They have been adopted more and more 

frequently in EEG analysis in general and ASD biomarker research in particular (Bosl et al., 

2011, 2017). 
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4.2 Materials and methods 

4.2.1 Participants 

Seventeen male teenagers with the diagnosis of idiopathic ASD were recruited from the Unit 

of Neurodevelopment and Autism from the Pediatrics Unit from the University Hospital of 

Coimbra and from Portuguese ASD patient associations (Coimbra and Viseu). Since ASD is 

a disorder far more prevalent in male individuals, with a ratio of four males to every female, 

and there is accumulated evidence for sex differences in brain connectivity (Alaerts et al., 2016; 

Irimia et al., 2017; Fu et al., 2018), only male participants were included in the study. The 

diagnosis of ASD was performed based on the Autism Diagnostic Observation Schedule, the 

Autism Diagnostic Interview – Revisited and the Diagnostic and Statistical Manual of Mental 

Disorders – 5th edition criteria, confirmed by an expert multidisciplinary team. Seventeen 

healthy typically developing (TD) male controls were recruited from our local database of 

volunteers. Participants from both groups had their Intelligence Quotient (IQ) assessed by 

the Wechsler Adult Intelligence Scale for participants older than 16 years old, and by the 

Wechsler Intelligence Scale for Children for younger participants. Groups were matched by 

chronological age (ASD mean age and standard error (SE): 16.4 ± 0.6 years; TD mean age 

and SE: 15.5 ± 0.6 years) and performance IQ (ASD mean score and SE: 99.8 ± 3.0; TD 

mean score and SE: 106.2 ± 4.2). Additional group characterization can be found in Table 

4.1. 

Table 4.1 – Group characterization: Mean and standard error of the mean (between brackets) 
of Age, Full Scale IQ (FSIQ), Verbal IQ (VIQ) and Performance IQ (PIQ) (*p > 0.05). 

 ASD TD  

N 17 17  

Age 16.4 (0.6) 15.5 (0.6) * 

FSIQ 92.2 (3.1) 109.2 (4.5)  

VIQ 88.1 (4.2) 110.3 (4.2)  

PIQ 99.8 (3.0) 106.2 (4.2) * 

 

Written informed consent was obtained from the parents of the participants or, when 

appropriate, the participants themselves. The study was approved by the ethics committee 
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from Faculty of Medicine from the University of Coimbra and was conducted in accordance 

with the declaration of Helsinki. 

4.2.2 Experimental tasks 

The experiment is divided in two tasks: one of visual stimulation and one of mental imagery 

requiring “mental replay” of previously observed facial expression, with the goal to identify 

similar neural signatures. The visual stimulation task and overall experiment were developed 

in WorldViz Vizard 5 VR Toolkit (development edition) using the male002 virtual avatar from 

the Complete Characters HD pack and its facial expression poses. The total duration of the 

experiment is about 50 minutes, including 15 minutes for scalp cleaning and placement of the 

EEG cap, 30 minutes for the experimental tasks and 5 minutes to clean up at the end of the 

session. 

4.2.2.1 Visual stimulation task 

This task consists in observing a virtual avatar performing either sad or happy facial 

expressions (see Figure 4.1a), which represent two antagonistic expressions from the six core 

expressions (Ekman and Friesen, 1971). The facial expressions were verified in accordance 

with the action units defined in the Facial Action Coding System (FACS) (Ekman and Friesen, 

1978). The happy expression comprises action units 6 (cheek raiser), 12 (lip corner puller) and 

25 (lip part), while the sad facial expression uses action units 1 (inner brow raiser), 2 (outer 

brow raiser), 4 (brow depressor), 15 (lip corner depressor) and 17 (chin raiser). 



 

79 

 

 

Figure 4.1 – Description of the tasks, both regarding structure and stimuli used. a) Base 
stimuli used for each expression at their expression endpoint, comprising the neutral, happy 
and sad facial expressions. b) Structure of the visual stimulation paradigm: each expression 
lasted 1.5 seconds, divided by facial expression morphing (250 ms), static facial expression (1 
s) and facial expression unmorphing (250 ms). c) Structure of the mental imagery paradigm: 
the instruction is composed by the avatar performing the expression to be imagined, as 
presented in the visual stimulation task, and to facilitate mental replay. After that, an interval 
of 1.5 s is left for preparation, and an auditory stimulus (beep) cues the start of the mental 
imagery process, for 4 seconds, whereas another beep indicates the end of the mental imagery 
of the expression, and the start of the neutral period. 

 

Each trial is composed by a morphing period of 250 ms where the expression of the avatar 

gradually changes from neutral to the target expression, followed by a static period where the 

virtual avatar is displaying the target facial expression for 1000 ms and a final period where 

the avatar morphs back to the neutral expression, with the duration of 250 ms (see Figure 

4.1b). Thus, each stimulus has a duration of 1.5 s and the inter-trial interval consisted in 1s 

plus a jitter of 500 ms. The neutral face of the avatar is always present during the baseline / 

inter-trial interval, which creates a stringent contrast with the facial expression since the stimuli 
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does not come from no stimulus / blank screen, but from the neutral face, as naturally 

happens in real life. 

This part of the experiment is composed by two blocks of 120 randomized trials (60 of each 

facial expression), for a total of 240 trials. The participants were asked to fixate the face of the 

avatar in the middle of the eyes and observe the expressions. A rest period was included 

between blocks to ensure focus and reduce fatigue throughout the experiment. A total of 120 

trials per condition were recorded. 

4.2.2.2 Mental imagery task 

The second part of the experiment consists of a mental imagery paradigm. In this task, the 

participant is asked to mentally imagine the avatar performing the same types of facial 

expressions used in the stimulation part (used to facilitate mental replay). The computer screen 

shows the neutral face of the avatar during the whole period, except for the instruction, when 

it performs the facial expression the participant is asked to imagine. Then, after a cue, the 

participant imagines the avatar performing the facial expression, in a period of four seconds, 

returning to no imagery after that period. The c) section of Figure 4.1 details the structure of 

the trials. This task is composed by two blocks of 40 randomized trials (20 for each 

expression), achieving a total of 80 trials for the task. 

4.2.3 Experimental setup and data recording 

The experiment was conducted in a 22-inch LCD Monitor (frame rate of 60 Hz, 1680x1050 

pixel resolution). The participants sat about 60 cm away from the screen (distance measured 

from the eyes to the center of the screen) and were asked to keep their eyes open and fixed 

on the face of the avatar. EEG data were recorded using a 64 channel actiCHamp system 

from Brain Products. 

The scalp of the participants was first cleaned using abrasive gel and then the 64 channel 

actiCAP cap was placed on their head. Data were recorded from 64 Ag/AgCl active electrodes 

(Brain Products), placed across the head according to the international 10–10 standard system. 

The ground electrode was placed at AFz position and the reference electrode at the right ear. 

The impedance of the electrodes was kept under 10 kΩ during the recordings. The electrodes 

were connected directly to the Brain Products actiCHamp amplifier and sampled at 1000 Hz. 
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EEG data were recorded using the Brain Products Recorder software. For each paradigm, the 

individuals were informed about the respective task. The total duration of the experimental 

procedure (preparation + 2 tasks) was around 50 minutes. 

4.2.4 EEG preprocessing 

We used MathWorks Matlab 2017b and the EEGLAB toolbox v14.1.1 (Delorme and Makeig, 

2004) for EEG signal preprocessing and analysis. EEG data were filtered with a finite impulse 

response bandpass filter of frequencies 1 and 100Hz and notch filtered with an infinite 

impulse response filter between 47.5 and 52.5Hz, as implemented in the EEGLAB toolbox. 

Bad channels were removed, and data were re-referenced for the average reference. Epochs 

were created locked to the stimulus onsets (please refer to the task-specific analysis for details 

about the epoch lengths). Bad epochs were removed based on the EEGLAB semi-automatic 

procedures for extreme values and improbable signal segments. Independent Components 

Analysis (ICA) was then run on the data using EEGLAB implementation of infomax algorithm 

(Bell and Sejnowski, 1995). Components were used in order to extract noisy components, 

such as blinks, muscular activity or electrical interference. Components presenting such 

artifacts were removed and the weights were projected back to the data (Makeig et al., 2004). 

Bad channels previously removed were then interpolated. Further analysis of EEG data was 

conducted over these preprocessed signals. 

4.2.5 Experimental design and statistical analysis 

The analysis focused on identifying group differences for both visualization and mental 

imagery of the facial expressions. We specify the different analyses performed for each task 

separately. 

4.2.5.1 Visual stimulation task analysis 

The visual stimulation epochs comprise one second, starting 100 ms prior to the stimuli onset 

(baseline) and go to 900 ms after the start of the expression morphing (during the first 250 

ms of the epoch, the face of the avatar is continuously morphing the facial expression). Event-

related potentials (ERPs) were computed by subtracting each epoch by the mean of its baseline 
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(from 100 ms pre-stimulus to 0) and then averaging all epochs corresponding to the same 

stimulus condition.  

Source analysis were conducted using the standardized low resolution brain electromagnetic 

tomography (sLORETA) toolbox (Pascual-Marqui, 2002). The procedure included exporting 

from EEGLAB the preprocessed single-trial epochs, importing them into sLORETA 

software, averaging them (per subject and expression) and converting to the source space. 

Each participant electrode locations were co-registered with the realistic anatomical MR model 

using landmarks and standard electrode positions. The source space representation consists 

of a current source density (CSD) map computed with the sLORETA algorithm,  a 

standardized discrete three-dimensional (3D) distributed linear weighted Minimum norm 

inverse solution that takes several neurophysiologic and anatomical constraints into account 

and has been shown to yield depth-compensated zero localization error inverse solutions 

(Pascual-Marqui, 1999; Pascual-Marqui et al., 2002). sLORETA employs the current density 

estimate given by the minimum norm solution, and localization inference is based on 

standardized values of the current density estimates (Pascual-Marqui, 2002)  and has been 

shown to outperform its competitor algorithms in terms of localization error and ghost 

sources (Grech et al., 2008). 

For each expression and each group, we identified the peaks of the first and second ERP 

component for each electrode, and extracted the latencies for both peaks across the scalp. We 

performed the source localization of the mean activity of around those two ERP components 

(+- 125ms, see Figure 4.2).  
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Figure 4.2 – ERP component windows of interest, defined by the minimum and maximum 
value of the ERP of each electrode. 

 

We conducted a voxel‐by‐voxel between‐group comparison of the mean current source 

density distribution in those time windows around the ERP peaks, using the sLORETA 

software implementation of statistical nonparametric mapping (SnPM), employing a log‐F‐

ratio statistic for independent groups (for a similar procedure see, for example, Velikova et al., 

2011). The SnPM method corrects for multiple comparisons without requiring Gaussian 

assumptions (Nichols and Holmes, 2001). 

4.2.5.2 Mental imagery task analysis 

For the mental imagery task, we also performed ERP analysis locked to the sound trigger. For 

the longer imagery blocks, we performed a spectral source analysis at more distant time 

windows and investigated the statistical classification of putative neural biomarkers. 

Mental imagery ERP source analysis 

For the imagery epochs, we investigated the ERP sources originated by the happy and sad 

imagery triggers. The participant receives the instruction beforehand of which expression to 
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imagine. We segmented the trials from 100 ms prior to the cue beep and up to 900 ms after 

it, and subtracted them by the mean of their baseline (-100 ms to 0). 

Similarly to the visual stimulation ERPs, for the source analysis we looked for the mean global 

field power in the window of 0 to 250 ms. The pipeline was analogous to the visual evoked 

potentials (VEP), as well as the statistical framework.  

Mental imagery spectral source analysis 

For the mental imagery periods, we investigated frequency bands of the signal during the time 

window of 500 to 3500 ms, avoiding the contribution of the beep ERP and covering the main 

period of mental imagery, because mental imagery processes are best captured using time-

frequency analysis (Horki et al., 2014). The frequency bands of interest were θ, α, β and δ, as 

defined in the sLORETA toolbox. This analysis of frequency bands of induced activity 

comprised the following steps: we export the single trials from EEGLAB and imported them 

to the sLORETA toolbox. Then we compute the cross-spectrum of each trial and average 

them per subject and condition. The average cross-spectrum is used to compute the source 

current density maps used in the second-level analysis. 

For both ERP and frequency analysis we conducted voxel‐by‐voxel between‐group 

comparisons of the current density distribution for each expression, in a way analogous to the 

VEP procedure. 

Mental imagery biomarkers to classify groups 

To explore the mental imagery processes through the EEG data, we defined several features 

from the time, frequency and non-linear domain. We then performed a ranking analysis and 

selected the best features to train a classifier to discriminate participants between groups. 

Features were extracted for each channel and trial by trial and averaged across all imagery trials 

and electrode clusters. 

Feature extraction 

We follow the procedure of Simoes et al. (2015) for extracting features representative of 

different EEG characteristics. 
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Time / frequency domain 

For the time and frequency domain, we selected the signal envelope (env), Teager energy 

operator (teag) and instantaneous power (pow) as features. A detailed description of these 

features is present in Table 4.2. 

Table 4.2 – Time / Frequency domain features and their description 

Code Feature Name Description 

Env Signal envelope Envelope of the signal (smooth curve outlining the signal extremes), 

which corresponds to the magnitude of the analytic signal. The analytic 

signal is composed by the original waveform and its Hilbert 

transformation. Hilbert transformation of the signal corresponds to the 

original waveform with a 90º phase shift. Mathematically, the analytic 

signal z(t) is defined by  

 z(t) = x(t) + ix′(t) (3.1) 

in which i represents √−1, x’(t) corresponds to the Hilbert transformation 

of the original signal x(t) (Sadjadi and Hansen, 2015) 

Teag Teager energy 

operator 

An energy estimation operator which uses the sum of the instantaneous 

energy of the signal divided by the signal length. The instantaneous energy 

of a signal x at the sample n can be determined using the equation 

 Ψ[xn] =  xn
2 − xn−1xn+1 (3.2) 

where Ψ[. ] denotes the Teager energy operator (Solnik et al., 2010). This 

operator is sensitive to both amplitude and frequency.  

Pow Instantaneous power The instantaneous power is achieved by squaring its values 

 P[x(t)]  =  x2(t) (3.3) 

where P[. ] denotes the instant power of the signal x at the instant t. 

 

Non-linear domain 

To extract signal complexity measures, the EEG signal was transformed to its phase-space. 

The phase-space is a reconstruction of the chaotic dynamics of the system and, as was proven 

by Takens (1981), it keeps some of the relevant properties of the state space representation of 
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the system, such as the topographic properties, Lyaponov exponents and the Kolmogorov-

Sinai Entropy. Every possible state of the system can be represented by a point in the 

multidimensional phase space and time evolution of the system creates a trajectory in the 

phase space (Kliková and Raidl, 2011). We used the time delay method to reconstruct the 

phase-space of the signal. Given a time series of a scalar variable it is possible to construct a 

vector X(𝑡𝑖), 𝑖 = 1,… ,𝑁 in phase-space in time 𝑡𝑖 as follows:  

 

 𝑋(𝑡𝑖) = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝜏),… , 𝑥(𝑡𝑖 + (𝑚 − 1)𝜏)],

𝑖 = 1,… , 𝑁 − (𝑚 − 1)𝜏 

(3.4) 

where 𝜏 is time delay, 𝑚 is the dimension of reconstructed space and 𝑀 = 𝑁 − (𝑚 − 1)𝜏 is 

the number of points (states) in the phase space.  

We reconstructed a 2 and 3-dimensional phase-space associated to the EEG data, and the 

time delay was considered to be the mean of the first local minimum from the signal’s 

autocorrelation (hereafter defined as lag). From the non-linear domain we extracted the spatial 

filling index (SFI), largest Lyapunov exponent (Lyap), correlation dimension (CorrDim), 

approximate entropy (ApEn) and sample entropy (SpEn) as features. We provide a detailed 

description of these features in Table 4.3. 

Table 4.3 – Non-linear domain features and their description 

Code Feature Name Description 

SFI Spatial Filling Index The states are normalized to the interval [-1, 1]. The phase space area is 

then divided into small square areas of size 𝑅 × 𝑅, and the number of 

grids in the normalized phase-space is 𝑛 = [2/𝑅]2. A new matrix can be 

obtained with its elements equal to the number of phase space points 

falling in each grid (Faust et al., 2004). Spatial Filling Index corresponds 

to the probability of a phase space point falling in a grid. 

Lyap Largest Lyapunov 

Exponent 

Characterizes the rate of separation of infinitesimally close trajectories 

of the signal in phase space, providing a measure of the degree of the 

system’s instability (Cencini et al., 2010). Mathematically, two 
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trajectories in the phase space with initial separation of 𝛿𝑍0, diverge at 

a rate given by  

 |𝛿𝑍(𝑡)| ≈ 𝑒𝜆𝑡|𝛿𝑍0| (3.5) 

where 𝜆 is the local Lyapunov exponent (local exponential rate of 

expansion) (Cencini et al., 2010). The rate of separation can be different 

for different orientations of initial separation vector, leading to a 

spectrum of Lyapunov exponents – equal in number to the 

dimensionality of the phase space. The maximum Lyapunov exponent 

corresponds to the mean exponential rate of divergence, characterizing 

the trajectory’s instability (positive values are associated with a chaotic 

system). 

CorrDim Correlation Dimension Chaotic dynamic systems exhibit strange attractors, which tend to be 

self-similar. The Correlation dimension is a measure of the space fractal 

dimensionality of the attractor defined in the phase space. Correlation 

sum is defined as sum the fraction of pairs of points of the phase space 

whose distance is smaller than r, being r the Lag (defined previously). If 

this number of points is sufficiently large, the ratio between the 

logarithm of the correlation sum and logarithm of the time delay is a 

good estimate of the Correlation Dimension (Cencini et al., 2010). 

ApEn Approximate Entropy Quantifies the amount of the regularity and unpredictability of 

fluctuations of the signal. A time series with many repetitive patterns has 

a small value of ApEn, reflecting its predictability; the opposite happens 

for less predictable signals (Yentes et al., 2013). 

SpEn Sample Entropy This feature is a modification of ApEn used for assessing the complexity 

of a physiological time series data. ApEn depends on the length of the 

time series and lacks relative consistency. SpEn, similarly to ApEn, 

quantifies the regularity of the signal but does not have the 

aforementioned disadvantages (Yentes et al., 2013).  
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The features were extracted from 3 time windows in each trial: baseline [-500 ms to 0 ms pre 

instruction], emotion imagery [500 ms to 3500 ms after imagery trigger] and neutral [500 ms 

to 3500 ms after neutral trigger]. For the emotion and neutral time windows, we used the 

absolute value for the non-linear features and the normalized values (subtracted by the same 

feature extracted from the baseline) for the time/frequency domain. 

1.1.1.1.1 Frequency bands 

All features were extracted from signals filtered at different frequency bands. Band-pass 

Infinite Impulse Response (IIR) filters were used as implemented in EEGLAB toolbox, for 

the frequency bands: θ [4-8] Hz, α [8-12] Hz, low β [12-21] Hz, high β [21-30] Hz and γ [30-

40] Hz.  

1.1.1.1.2 Feature selection 

In order to reduce the dimensionality of the feature set, we averaged the features extracted 

from each electrode in spatial clusters, as defined in Figure 4.3. The clusters were defined by 

electrode spatial proximity in a way that covers the full scalp, keeps symmetry and lobule 

divisions (frontal, parietal – subdivided in central and posterior region, occipital and temporal). 

We then used the a priori information provided by the source localization and selected only 

the clusters closer to the right precuneus region, namely C1, C2, C4 and C5. 

 

Figure 4.3 – Clusters defined for the analysis. A full scalp distribution of the clusters was 
created in order to keep left and right occipital, parietal, central, frontal and temporal areas, 
and three central clusters for frontal, parietal and occipital lobes. Channel locations are 
represented with the 10-10 system standard codes. 
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We ended up with 8 different features x 5 frequency bands x 4 clusters, for a total of 160 

different features. We then computed the statistical discriminative value of each feature 

between groups with two sample T-tests, using only the samples from the training set, and the 

features were ordered by absolute T value, from the most important to the least.  

1.1.1.1.3 Classification 

We trained a Support Vector Machine (SVM) with a linear kernel, for being one of the most 

used classifiers applied to EEG signals (Lotte et al., 2007) and also a Weightless Neural 

Network (WNN). The WNNs are underused in the literature but present characteristics that 

generalize well for noisy domains, like the EEG (Simões et al., 2019b). We implemented a 

variation of the Wilkes, Stonham and Aleksander Recognition Device (WiSARD) combined 

with a bleaching technique (França et al., 2014) which has been shown to perform at the same 

level as the SVM in distinct fields and presents fast learning curves, achieving good results 

even with small datasets of data (Cardoso et al., 2016). 

We trained the classifiers to discriminate the group of the participant, based on the feature 

vector extracted from his EEG data. We divided the participants into train and test sets: 80% 

of the cases were randomly chosen for training and the remaining 20% for testing. We 

repeated the procedure more than 30 times, to avoid overfitting, following the guidelines 

provided by Varoquaux and collegues (2017) regarding the use of machine learning on brain 

imaging data. Feature selection was performed every time using only training-set data. 

To explore the relation between accuracy and the number of features used, the procedure was 

conducted starting with 5 features and adding 5 more features up to the total of features. 

We repeated the full classification procedure using the EEG signal from the neutral part of 

the mental imagery task, in order to check if the results were specifically improved during over 

emotion expression imagery. 
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4.3 Results 

4.3.1 Visual stimulation task  

This section presents the results of the analysis performed on the ERP responses to the visual 

stimulation task (observation of happy and sad facial expressions), which was used to identify 

neural signatures relevant to validate the imagery task. 

4.3.1.1 ERP source analysis results 

The ERPs obtained from the visual stimulation task present two clear independent 

components, the first one peaking around 300 ms and the second around 600 ms (Figure 4.4). 

Since the morphing occurs during the first 250 ms, we expect a delay on the first component, 

as reported by Graewe and colleagues (2012). The topography of the first component matches 

the well-known topography of the N170 component, with a negativity around the right and 

left parietal-occipital regions, but it appears delayed in time, as expected by the morphing 

animation. The second component has a strong parietal positivity, slightly right lateralized, 

especially for the ASD group. 
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Figure 4.4 – ERPs for both groups and expressions, extracted from the P4 electrode. 
Topographic maps for each component are present near the ERP plots. Orange marks 
represent the TD group and blue marks the ASD. Topographic maps show the scalp 
distribution of the ERP amplitudes extracted from 250 ms windows, centered at the peaks of 
the components of each expression (refer to Supplementary Table 3 for detailed peak 
latencies). 

 

For the source analysis of the visual stimulation task ERPs we defined time-windows of 250 

ms around the two component peaks of activity in the ERPs. We show the results for the first 

and the second ERP component, separately. The mean peak latencies used for each expression 

and each group is detailed in Table 4.4. 

Table 4.4 – Latencies of the mean ERP components and respective standard error (in 
brackets), for each group and facial expression. 

GROUP EXPRESSION FIRST COMPONENT SECOND COMPONENT 

ASD 
Happy 295 (±9) ms 579 (±16) ms 

Sad 299 (±15) ms 585 (±15) ms 

TD 
Happy 265 (±10) ms 492 (±14) ms 

Sad 285 (±15) ms 576 (±19) ms 
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The mean current source density of activity in the intervals around the component peaks 

showed group differences for both expressions in the first component, using voxel-by-voxel 

independent tests between groups, corrected for multiple comparisons at the 5% level using 

the SnPM method (two-tailed). Both expressions show the group differences right-lateralized 

and located at the superior parietal region, in the precuneus area (Figure 4.5). As for the second 

component, only the sad expression presented statistically significant differences, exactly in 

the same superior parietal region, which showed also enhanced recruitment for the ASD 

group, in the right hemisphere. 

 

Figure 4.5 – Source group differences for the first and second ERP components, for happy 
and sad expressions. We found higher activation for the ASD group in the right precuneus 
using a two tailed alpha level of 5%, corrected with the SnPM method. Regarding the second 
component, this result was statistically significant specifically for the sad expression. 
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4.3.2 Mental imagery task 

This section presents the results for the mental imagery task. We analyzed the ERP for the 

initial imagery period and the longer mental imagery blocks through source analysis of the 

power spectrum and the analysis of several characteristics of the signal using machine learning 

techniques. 

4.3.2.1 Mental imagery ERP source analysis results 

After the sound trigger, an initial ERP can be found corresponding to processing the beep 

and starting the imagery procedure (Figure 4.6). We defined a time window to target at the 

source level, between 0 and 250ms, in order to investigate specific responses at the source 

level. The mean current source density in that interval presented group differences for both 

expressions with p < 0.01, using voxel-by-voxel independent tests between groups, corrected 

for multiple comparisons using the SnPM method. Importantly, the same region identified 

group differences for both expressions. This was also the same region that was identified 

during visual stimulation. Accordingly, the ASD group presented higher activation in the 

superior parietal region (precuneus area – Figure 4.7). 
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Figure 4.6 – ERP and topographic plots for the mental imagery task (PO4 channel). An initial 
ERP is visible peaking positively at 100 ms and negatively at 200 ms, with the tonic spectral 
characteristics overtaking the remaining time period (from 0.5 s onwards). 

 

Figure 4.7 – Group differences for the source analysis of the ERPs of mental imagery. 
Statistical differences (two-tailed p < 0.01, SnPM corrected) were found in the region of 
precuneus, with higher activation for the ASD group. 
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4.3.2.2 Mental imagery spectral source analysis results 

For the longer periods of imagery (500-3500 ms), we conducted a source analysis of the 

defined frequency bands of the signal. A statistically significant result was found for in the 

imagery of sad expressions, for the theta band (Figure 4.8). The ASD group shows again 

higher recruitment of the very same right precuneus area at this frequency. 

 

Figure 4.8 – Source analysis for the mental imagery segments, in the theta band. Higher 
activation for the ASD group in the precuneus area (two tailed p < 0.05, SnPM corrected). 

4.3.2.3 Statistical classification of mental imagery periods – evidence for 

a potential biomarker in ASD  

We then tested whether the identified neural signatures of imagery of facial expressions could 

be identified in a data driven manner using statistical classifiers. The linear SVM and the 

WiSARD classifier were able to achieve high test set accuracies (~77% and ~81% of accuracy, 

respectively), with the WiSARD yielding the best accuracy of 81% with just 15 features (Figure 

4.9). Test set classification accuracy of the neutral face expression segments of the signal were 

far worse, with ~68% for the SVM and ~74% for the WiSARD, suggesting that important 

group differences are captured by the features are emotion expression-dependent (for 
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statistical details see Figure 4.9). We present also a detailed exploration of the performance 

metrics using the top 15 features. We computed accuracy, specificity, sensitivity/recall, 

precision and the F1 score for both classifiers using the mental imagery segments and the 

neutral segments. 

 

Figure 4.9 – Accuracy of the classifiers SVM (left) and WiSARD (right) as function of the 
considered number of features. Mean accuracies are represented with the lines and the error 
bars show the standard error of the mean. Classification results with the mental imagery part 
of the EEG signals are represented in blue and the neutral signals in orange. Statistically 
different accuracies between Emotion and Neutral are marked by * (one-sample T-tests with 
alpha level of 5% and false discovery rate correction for multiple comparisons). At the bottom 
we present the performance metrics for both classifiers using the top 25 features. Each cell 
presents the mean values followed by the standard error of the mean of the respective metric. 

 

We checked the correlation value between the extracted features and the IQ measurements 

(full-scale, verbal and performance IQ), and no feature was significantly correlated with any 

of the covariates. 

We then focused on the top 15 features that generated the 81% of accuracy. We investigated 

the most selected frequency bands and clusters of these top features. Figure 4.10 shows the 

top 15 feature distribution by clusters and frequency bands, showing the specific contribution 

of theta, high beta and gamma bands for group discrimination. Detailed feature information 

(Table 4.5) clarifies that the most discriminative features originate from the time-frequency 
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domain, at the high-beta/gamma bands, and that the non-linear features are mainly from the 

theta-band.  

Table 4.5 – List of the top 15 features used in the classifiers, showing their frequency band, 
cluster and statistical value. Non-linear features are presented with grey background and time 
/ frequency features with white background. Rank values correspond to the mean order of the 
feature across training sets, with the respective standard error of the mean. T and P values for 
each feature are presented, resulting from an independent T-test between the groups. All the 
15 features are statistically significant (corrected for multiple comparisons using the false 
discovery rate algorithm). 

FEATURE FREQ. BAND CLUSTER RANK T P 

ENV [21 - 30] Hz 4 2.57 (0.41) 4.23 0.0002 

TEAG [21 - 30] Hz 1 4.30 (0.53) 3.84 0.0005 

POW [21 - 30] Hz 1 6.87 (0.77) 3.61 0.0010 

ENV [30-40] Hz 4 7.67 (0.83) 3.67 0.0009 

TEAG [21 - 30] Hz 4 8.73 (0.87) 3.56 0.0012 

SPEN [4 - 8] Hz 4 8.80 (1.16) 3.43 0.0017 

LYAP [4 - 8] Hz 4 9.83 (1.27) -3.36 0.0020 

ENV [30 - 40] Hz 5 10.03 (0.99) 3.53 0.0013 

POW [21 - 30] Hz 4 11.37 (1.11) 3.41 0.0018 

ENV [21 - 30] Hz 1 12.03 (1.23) 3.22 0.0029 

ENV [30 - 40] Hz 1 13.37 (1.65) 3.24 0.0028 

SPI [4 - 8] Hz 4 13.43 (1.33) 3.25 0.0027 

ENV [21 - 30] Hz 5 13.83 (1.30) 3.37 0.0020 

APEN [4 - 8] Hz 4 14.37 (1.77) 3.15 0.0036 

POW [30 - 40] Hz 1 14.97 (1.14) 3.08 0.0042 

 
Figure 4.10 – Top 15 features distribution by frequency band (left) and clusters (right). The 
histogram on the left depicts the exploitability of theta and high-beta / gamma frequency 
features. The histogram of the right shows the scalp distribution of features within the right 
parietal-occipital region, showing a preference for the posterior clusters of the region. 
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4.4 Chapter Discussion  

Here we addressed for the first time facial expression (FE) imagery in ASD and identified a 

common neural correlate of observation and mental imagery of dynamic FEs in this condition, 

in the precuneus. Robust statistical classification of brain activity patterns using linear and 

non-linear features could also be achieved, and the identified biomarker of abnormal imagery 

in ASD can potentially be used as an outcome measure to evaluate clinical interventions 

addressing cognitive and behavioral improvement in this condition. 

We focused on Mental Imagery (MI) of facial expressions in ASD as a major research target 

in this study. This is a very important cognitive process in the context of this disease, because 

mental rehearsal is very important for action perception cycles, in particular in the context 

emotional face recognition. MI is the process of creating a mental representation and 

corresponding sensory experience of an episode or stimulus without a direct external source 

(Pearson et al., 2015). In the case of facial expressions, it also involves mental imagery of 

motor patterns (facial expressions) which requires the involvement of the mirror neuron 

system. There are indeed several types of MI, namely visual, auditory and motor (for a review, 

see Kosslyn et al., 2001). Some studies showed the effect of MI on boosting performance in 

detection tasks (Tartaglia et al., 2009) and on decision making bias (Pearson et al., 2009). In 

our study, participants were asked to perform visual MI of an avatar performing a FE 

(mentally replaying previously observed patterns). This task combines MI, perspective taking 

and theory of mind, since the participant is asked to recreate an expression of another.  

A critical aspect that renders the study of imagery difficult in ASD is that it is important to 

ascertain that imagery really reflects the expected visual content. We could achieve this by 

showing that similar neural signatures (source localization) can be found by both observation 

and imagery of facial expressions. The ERP elicited by the imagery cue did indeed reveal that 

source differences were very similar as compared to the ERP of the FE stimuli, with the 

precuneus showing higher activation for the ASD group. The right precuneus belongs to task-

active networks (Yang et al., 2015) that are also active during imagery (for a review of the 

relation with the precuneus with visuo-spatial imagery and visuomotor transformations, please 

refer to (Cavanna and Trimble, 2006)).  

One of the common aspects of visualization and mental imagery of the others facial 

expressions is the need to incorporate the perspective of the other. Because we use a stringent 
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contrast in the visual stimulation task, we expected the core processing of the face to have less 

weight than the perspective taking aspects task. The precuneus is one of the core regions 

present in the perspective taking network, as showed by Healey and Grossman (2018). The 

authors reviewed the literature and found the precuneus as a key region in both cognitive and 

affective perspective taking networks (Abu-Akel and Shamay-Tsoory, 2011). Those fMRI 

studies validate the source we identified in our study. 

The link between the precuneus and its role in facial expressions processing has already been 

demonstrated by some studies (Saarimäki et al., 2016; An et al., 2018), but our study is the first 

one, to the best of our knowledge, to identify the over-recruitment of this region in the ASD 

population in a social cognition task. Since visual perspective taking and theory of mind skills 

are impaired in ASD (Hamilton et al., 2009; David et al., 2010), we believe that ASD 

participants needed higher recruitment of the right precuneus as a compensatory mechanism 

for the MI of the other’s FE. 

Frequency band decomposition of the MI signals showed that theta and high-beta/gamma 

bands explained the main group differences. The source analysis of the theta band further 

revealed again a higher activation of the right precuneus for the ASD group (specifically for 

the sad FE). It was already known that FEs elicited higher theta responses than neutral 

expressions in healthy participants (for a review, please refer to Güntekin and Başar, 2014). 

Although theta band activity patterning has been linked to the medial frontal cortex and its 

role in cognitive control (Cavanagh and Frank, 2014) its source in our study seems to be 

different. In agreement with our own source, Wang and collegues (2016) demonstrated a 

relationship between the theta band and activity patterns in the posterior cingulate cortex / 

precuneus, in a simultaneous EEG-fMRI study. Furthermore, the study from Knyazev et al. 

(2009) identified the same right parietal source from theta responses to facial expressions. 

Therefore, we believe the parietal theta band relation with the precuneus to be a core neural 

correlate of emotional MI processing. Despite using different types of signals (phasic or tonic 

in relation to the type of mental process) to perform the source localization (ERP and time-

frequency decomposition), due to the characteristics of the tasks, it is very interesting to 

observe the same region involved in both visualization and mental imagery processes. 

The precuneus is recruited in several types of imagery, including motor imagery, mental 

navigation, memory-related imagery, episodic source memory retrieval and emotional state 

attribution (Cavanna and Trimble, 2006). Specifically regarding attributing emotions to others, 
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several studies identified the role of the precuneus in Theory of Mind scenarios (Vogeley et 

al., 2001; Takahashi et al., 2015). Moreover, a connectivity analysis study of resting state fMRI 

data showed decreased connectivity of the precuneus region with the middle temporal gyrus 

and the ventromedial frontal cortex in the ASD population, in both hemispheres (Cheng et 

al., 2015). All these observations pinpoint the precuneus as playing a pivotal role in FE MI. 

Furthermore, the group difference in the right hemisphere, which is also known to dominate 

in attention and imagery, suggests that the ASD group processes the FEs of the other in a 

more effortful, attention-based mechanism than the TD group. This view has been suggested 

by Harms et al. (2010). Our study is the first one, to our knowledge, to show that the same 

neural pattern that is observed during FE recognition is replicated for MI of the FEs, in ASD. 

Based on the observed group differences, we investigated whether we could extract features 

that would function as biomarkers (not necessarily as diagnostic, but as intervention targets) 

of ASD, based on the MI process. The need for diagnostic, prognostic and intervention 

biomarkers in ASD is well recognized. While ASD biomarkers range from genetics to clinical 

(for a review, please refer to Ruggeri et al., 2014), the inter-subject variability observed in this 

disorder justifies the use of machine learning techniques combining multiple features to 

generate potential biomarkers (Huys et al., 2016). Therefore, we developed two classifiers – a 

Support Vector Machine (SVM) and a Weightless Neural Network (WNN) to classify each 

subject (represented by a feature vector extracted from his EEG data) into ASD or TD group. 

Our purpose is to show that the features used by the classifiers provide exploitable group 

differences, that can also be used to characterize neural mechanisms underlying ASD (in this 

case, FE processing) and therefore be used to monitor, for example, rehabilitation efficacy 

(outcome measure) or aid at subgroup stratification in the ASD population (Castelhano et al., 

2018), albeit not for early detection.  

We verified that the WNN method achieved around 81% of accuracy using 15 features. When 

compared to the same classifiers trained with features extracted from EEG of the neutral 

periods, the accuracy was significantly lower (around 73%). 

We then performed a further analysis of the top 15 features selected for classification. The 

most representative frequency band, when using non-linear features, was the theta band, while 

the most discriminative features were from the time/frequency domain and high-beta/gamma 

frequency bands. Those bands and their relation with the precuneus have been explored in 

the literature by Fomina et al. (2016), which attempted to train the self-regulation of gamma 
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and theta bands in the precuneus in amyotrophic lateral sclerosis patients. This is consistent 

with our results, showing that the precuneus activity at the theta and high-beta/gamma bands 

represent important MI information that can be used for clinical purposes, for instance in BCI 

based neurofeedback. 

The overall use of dynamic FE morphing enabled a more realistic and ecologic approach, 

because the stimuli featured more realistically the daily life characteristics of social interactions 

than the commonly used static stimuli. Moreover, we used a specific face expression contrast 

(emotional expressions vs. neutral expression). As stated by Krumhuber et al. (2013), the 

dynamic characteristics of FEs are possibly also understudied which is a limitation for the 

validity of neurocognitive approaches.  

Our approach to morph the expression into a virtual avatar makes a potential bridge between 

dynamic FEs and rehabilitation possibilities using, for instance, virtual reality. Understanding 

how the FEs are processed in virtual environments opens the door for intervention solutions, 

where the environment is completely controlled (Miller and Bugnariu, 2016; Simões et al., 

2018a). This is important because the neural markers identified in this study could potentially 

be used as intervention target measures. 

A common characteristic of most studies in the literature using EEG and observation of FEs 

is the use of a black-screen as baseline for the visual stimulus (Monteiro et al., 2017), thus 

eliciting ERPs that mix the processing of the FE with face and other nonspecific visual 

features. We argue that the use of a more specific contrast (expressionless/neutral face as 

baseline) elicits an ERP specific to the dynamic expression characteristics of the face, not the 

face itself. Moreover, Monteiro et al. (2017) demonstrate disparate findings in the literature 

when evaluating EEG responses to FEs in ASD. Several studies found expression effects 

accompanied by group effects. Using a very specific contrast, we were able to identify, even 

for FE observation, group differences in the right precuneus, with the ASD group showing 

higher activation in this region. The functional role of precuneus in attentional deployment 

and imagery is well recognized (Cavanna and Trimble, 2006), with some studies also 

suggesting a relation to perspective taking (Vogeley et al., 2001; Kircher et al., 2002; Schurz et 

al., 2015), face familiarity (specifically for the left precuneus) (Lee et al., 2013) and emotional 

state recognition and attribution (Ochsner et al., 2004; Spies et al., 2017). Our right precuneus 

group effect for both happy and sad expressions is consistent with several studies using 

functional Magnetic Resonance Imaging (fMRI) that reported the same effect for ASD in the 
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right precuneus (see the meta-analysis of Aoki et al., 2015, which found hyperactivation of 

bilaterate thalamus, caudade and right precuneus for the ASD group). Especially in tasks 

requiring taking the others perspective, the recruitment of the precuneus is key in both 

cognitive and affective perspective taking networks (Healey and Grossman, 2018). We 

hypothesize that the ASD group performs a higher recruitment of the precuneus region to 

compensate for emotional processing and perspective taking behavioral deficits. 

Our study focused only on male subjects to avoid an effect of gender in the analysis. There is 

evidence for sex differences in brain connectivity in ASD which might influence the EEG 

analysis we conducted (Alaerts et al., 2016; Irimia et al., 2017; Fu et al., 2018). The replicability 

of these results in female ASD cohorts lacks further validation. Moreover, in spite of the 

limitations of our sample size, it paves the way for future replication studies in larger groups. 

In conclusion, we found for the first time, a neural correlate of emotion expression imagery 

in ASD, which was validated as a replication of the neural signatures evoked by visual 

observation of specific facial expressions. We developed an innovative approach to study FE 

(facial expression) processing in ASD, combining visualization of dynamic FEs (with a very 

selective contrast, isolating pure facial expressions from the mere presence of a face) and MI 

(mental imagery) of FEs in others. Our results emphasize the important role of the precuneus 

in the ASD facial processing circuit and suggest that its increased recruitment may serve as a 

compensatory strategy to overcome the natural deficits in their emotional processing. 

Furthermore, we extracted a set of features and trained a classifier that was able to discriminate 

between groups with high accuracy. The features were then observed to match topographically 

and spectrally the group effects, and can therefore be potentially used as intervention targets.  
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On the transfer of an fMRI-based 

neurofeedback intervention to EEG  

 

 

 

 

 

This chapter describes the exploration of features for transferring the fMRI-based 

neurofeedback intervention to EEG settings. It combines the following contributions: 

Simões, M., Lima, J., Direito, B., Castelhano, J., Ferreira, C., Carvalho, P., Castelo-
Branco, M. (2015). Feature analysis for correlation studies of simultaneous EEG-
fMRI data: A proof of concept for neurofeedback approaches. in 2015 37th Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC) (IEEE), 4065–4068. doi:10.1109/EMBC.2015.7319287. 

Simões, M., Abreu, R., Direito, B., Sayal, A., Castelhano, J., Carvalho, P., Castelo-
Branco, M. How much of the BOLD-fMRI signal can be reconstructed by the 
EEG data: a comparative simultaneous EEG-fMRI study. 

 

 

  



 104 

5.1 Chapter Introduction 

Our approach for neuroimaging-based rehabilitation of social deficits, an axis of this thesis, 

was to develop a neurofeedback paradigm that targets the posterior part of the Superior 

Temporal Sulcus (pSTS). That brain region plays an important role in mechanisms of social 

information processing in the brain and several studies found it to be abnormally activated in 

ASD. Our hypothesis was that through the repeated training of neuromodulation of activity 

on that region, behavioral mechanisms that depend on that region could be restored to a 

normal functioning. To do so, we developed a task where participants try to modulate the 

activity on that regions using mental imagery of facial expressions as a mean to achieve it. Our 

approach included the development of a localization procedure based on dynamic facial 

expressions contrasted with movement and static faces to identify the parcel of the pSTS 

region that was specifically responsible for the processing of facial expressions. This stringent 

contrast guaranteed us that the selected region did not responded merely to faces or to low-

level movement features of the stimuli, but to the biological motion of the face. In Appendix 

I we present the paper that described this approach and validated the mental imagery of facial 

expressions as a valid mechanism for modulate the BOLD activity in the pSTS region. To 

validate the possible effectiveness of this NF paradigm in ASD, we conducted a feasibility 

clinical trial were 15 participants underwent five NF sessions each (ClinicalTrias.gov identifier: 

NCT02440451). The results showed relevant clinical effects, as documented by improvements 

in relevant subscale neuropsychological measures, including emotion recognition, which were 

observed immediately after the intervention and replicated 6 months later (for further details, 

please refer to Appendix II). 
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Figure 5.1 – Schematic representation of the transferring approach. We acquire simultaneous 
EEG-fMRI and use the fMRI to generate neurofeedback for the online task. We then use both 
EEG and fMRI data to develop a read out mechanism for using EEG as substitute of fMRI in 
the neurofeedback loop. 

 

However, for an efficient broad application of this NF training approach, the fMRI setup 

presents a constraint due to its inflexibility and elevated costs of application. In that sense, 

and following the clinical informatics perspective of this thesis, we focused on the possibility 

of transferring this NF approach into an EEG solution. For that we acquired a dataset of 

simultaneous EEG-fMRI of people performing one NF session (Figure 5.1). Using that data, 

we investigated several features of the EEG signal and evaluated their correlation with the 

BOLD activity in the pSTS region (section 5.2, published in IEEE EMBC’15 proceedings – 

Simões et al., 2015). Afterwards, after verifying that the base correlations achieved by EEG 

features with the target BOLD signal, although statistically significant, were judged to be likely 

too low for being used directly in practical applications as representatives of the BOLD activity 

in the pSTS activity. We therefore incorporated machine learning algorithms (regressors) to 

extend the capabilities of relating the EEG features with the BOLD activity, at the scalp and 

source levels. This final approach is present in section 0.  

Furthermore, we tested other approaches, as the one we present in Appendix III, focusing on 

the relation between the alpha activity with the BOLD signal (Simoes et al., 2017). 
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5.2 Feature analysis for correlation studies of 

simultaneous EEG-fMRI data: A proof of 

concept for neurofeedback approaches  

 

This section is composed by the contents of the following publication: 

Simões, M., Lima, J., Direito, B., Castelhano, J., Ferreira, C., Carvalho, P., Castelo-
Branco, M. (2015). Feature analysis for correlation studies of simultaneous EEG-
fMRI data: A proof of concept for neurofeedback approaches. in 2015 37th Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC) (IEEE), 4065–4068. doi:10.1109/EMBC.2015.7319287. 

Abstract 

The identification and interpretation of facial expressions is an important feature of social 

cognition. This characteristic is often impaired in various neurodevelopmental disorders. 

Recent therapeutic approaches to intervene in social communication impairments include 

neurofeedback (NF). 

In this study, we present a NF real-time functional Magnetic Resonance Imaging (rt-fMRI), 

combined with electroencephalography (EEG) to train social communication skills. In this 

sense, we defined the right Superior Temporal Sulcus as our target region-of-interest. To 

analyze the correlation between the fMRI regions of interest and the EEG data, we transposed 

the sources located at the nearest cortical location to the target region. We extracted a set of 

75 features from EEG segments and performed a correlation analysis with the brain 

activations extracted from rt-fMRI in the right pSTS region. The finding of significant 

correlations of simultaneously measured signals in distinct modalities (EEG and fMRI) is 

promising. Future studies should address whether the observed correlation levels between 

local brain activity and scalp measures are enough to implement NF approaches. 
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5.2.1 Introduction 

Neurofeedback (NF) is the general concept of providing the participant real-time information 

concerning brain activity of a specific brain region, allowing oneself to modulate his own brain 

activation (LaConte, 2011). The real-time decoding of functional Magnetic Resonance 

Imaging (fMRI) recordings enables the use of fMRI for NF applications. Along these lines, a 

subject lying inside an MRI scanner is able to self-regulate blood-oxygenation-level-dependent 

(BOLD) signal in a target region(s) of his/her own brain, experienced as real time. Several 

brain regions have been targeted for NF and behavioral improvements were achieved from 

neuromodulation of specific areas (for a review, see Sulzer et al. - 2013).  

fMRI-based NF has the great advantage of spatial resolution, which allows the targeting of 

specific brain regions. Electroencephalography (EEG), on the opposite, lacks such spatial 

characteristics, but leverages a very high time resolution. NF studies based on EEG have a 

longer history, but the approaches are fundamentally different: EEG studies target the 

modulation of different rhythms, present on different frequency bands, e.g. the sensorimotor 

rhythms. Applications focus attention deficit/hyperactivity disorders, depression, 

performance enhancement, etc (Zotev et al., 2014).  

Only a few studies use simultaneous EEG-fMRI NF and combine both approaches to provide 

feedback (Zotev et al., 2014). The analysis of the EEG patterns related with modulation of a 

specifically mapped (with fMRI) brain area during a NF session has not yet been addressed.  

The identification of a signal representative of the modulation of a NF-targeted brain region 

would make possible to perform that specific NF session with EEG, making it easier and 

cheaper to perform training sessions. If successful, this approach would allow explicit transfer 

from a complex technique such as fMRI to more affordable and generalizable NF solutions. 

Our study targets the right posterior Superior Temporal Sulcus (pSTS), a region related to the 

processing of biological motion and facial expressions. Recent studies demonstrated that the 

development of social cognition abilities is supported in specific brain networks that interpret 

actions and intentions of others. Functional magnetic resonance imaging studies associated 

the superior temporal sulcus to important features of social cognition (particularly in the visual 

analysis of social stimuli/clues)(Pelphrey and Carter, 2008). Along these lines, this region lies 

in the core of “social brain network” important in tasks such as the interpretation and 
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prediction of others’ actions and intentions based on the analysis of biological motion 

(Saitovitch et al., 2012). 

We present a fMRI-based NF study targeting the right pSTS region. EEG recordings were 

collected simultaneously, and we analyze different features on the source EEG signal and 

assess their putative correlation to the modulated BOLD activity in the right pSTS region. 

5.2.2 Methods 

5.2.2.1 Participants 

We performed a simultaneous EEG/fMRI experiment in 13 healthy subjects (mean age: 26 ± 

3 years; 12 males). All participants had normal or corrected to normal vision, no history of 

neurological disorders and were naive regarding the purpose of the study. Eight subjects 

performed the complete simultaneous EEG/fMRI task (four runs), three did not complete 

the transfer run (self-driven modulation without NF) and two only performed the localizer 

and the auditory feedback. This study was approved by the Ethics Commission of the Faculty 

of Medicine of the University of Coimbra and was conducted in accordance with the 

declaration of Helsinki. All subjects gave written informed consent to participate in the study. 

5.2.2.2 Acquisition Protocol 

The acquisition protocol consisted of 4 runs inside of the MRI scanner: localizer, imagery with 

auditory feedback, imagery with visual feedback and transfer run. The order of auditory and 

visual feedback was randomized between subjects. 

Localizer 

The experimental design comprised five different stimulation conditions: i. randomly moving 

dots, ii. neutral, iii. morphing from neutral to sad, iv. morphing from neutral to happy, v. 

alternation between sadness and happiness. Each block lasts eight seconds and is repeated 

eight times during the run. The total duration of the run is approximately 5 minutes. The 

conditions are ordered randomly.  Schematic representation of the face expression. The total 
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duration of the facial expression presentation is 2000ms. Each expression is repeated four 

times during a block. 

Expression conditions (iii, iv and v) morph from neutral to the endpoint expression during 

the first 500ms, hold the expression during 1000ms, and then morph back to neutral during 

500ms (Figure 5.2). This structure is repeated 4 times during each block (condition v alternates 

expression happy and sad). Neutral and movement conditions (i and ii) consisted in presenting 

the neutral face during the eight seconds of the block and showing random dots moving all 

over the screen, respectively. These two conditions were used to remove features not related 

to the facial expressions and movement without biological basis from the activations. 

 

Figure 5.2 – The functional localizer is applied to define the brain networks (i.e., region-of-
interest, ROI) related with the processing of facial expressions, particularly the right posterior 
portion of STS. 

 

Functional MR volumes were recorded consisting of 33 slices (in-plane resolution: 4×4 mm2, 

field of view (FOV): 256×256 mm2, slice thickness: 3 mm, flip angle (FA): 90°) yielding a total 

coverage of the occipital and posterior temporal lobe. Repetition time (TR) was 2000 ms 

(Echo Time (TE): 30 ms). For each participant, 160 volumes were acquired for the localizer 

run. Start of each trial was synchronized with the acquisition of the fMRI volumes. 

Each scanning session included the acquisition of a high-resolution magnetization-prepared 

rapid acquisition gradient echo (MPRAGE) sequence for co-registration of functional data 

(176 slices; TE: 3.42ms; TR: 2530ms; voxel size 1.0×1.0×1.0 mm3. 

Neurofeedback runs 

The NF runs consisted of two types of feedback and an additional run without feedback 

(Figure 5.3). The runs were divided in blocks of imagery with duration of 24 seconds, 
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alternating between baseline and expression blocks. In the baseline blocks, participants were 

instructed to imagine a neutral face in the avatar, while in the expression blocks they were 

instructed to imagine repeatedly the morphing of the expression (happy, sad or alternating 

from happy and sad).  

The technical aspects of the functional MR volumes were similarly to the localizer run. Each 

run had a total duration of 10 minutes, corresponding to a total of 300 volumes. 

 

Figure 5.3 – Schematic representation of the face expression. The total duration of the facial 
expression presentation is 2000 ms. Each expression is repeated four times during a block. 

 

Visual feedback: The avatar’s expression was discretized into 15 levels (between neutral and 

the endpoint expression). The expression level feedback/displayed to the subject was 

determined based on the level of the signal variation in the mean BOLD activation in the ROI 

defined in the localizer. To determine the signal variation, we computed the difference 

between the current activation level and the mean activation obtained in the previous ten 

baseline instants. The variation percentage was calculated based on a maximum percent signal 

change (maxPSC) of 2% and truncated to a minimum of 0% and a maximum of 100%, as in 
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𝑓𝑏 =
[
𝑥 −  β

𝛽
  ]

𝑚𝑎𝑥𝑃𝑆𝐶
 

(5.1) 



Auditory feedback: the feedback was given to the participant every six seconds through a 

positive or negative sound (high or low frequency beep). The polarity of the feedback was 

based on the derivative of the previous three ROI activations. This approach focused on the 

local variations of the brain activation, instead of a global variation relative to the baseline, as 

in visual feedback. 

Finally, the transfer run structure was equal to the auditory feedback runs (without the 

presentation of the avatar), but no feedback was provided to the user.  

5.2.2.3 EEG signal recording and processing 

For EEG recording, we used an MR compatible EEG system (MagLinkTM, NeuroScan, 

USA) with a cap providing 64Ag/AgCl nonmagnetic electrodes positioned according to the 

10/10 system. The recording reference was set to an electrode close to CZ and EEG and 

fMRI data were acquired in a continuous way. The electrocardiogram signal (EKG) was also 

recorded, simultaneously with the EEG. EEG and EKG signals were amplified and recorded 

at a sampling rate (SR) of 10 kHz. 

Signal processing 

EEG recordings from simultaneous EEG/fMRI sessions are challenging due to two major 

interferences: gradient artifacts and ballistocardiogram signals (BCG; which represent 

physiological cardiac-related artifacts) (Allen et al., 2000).  

EEG artifacts related to MR gradient switch were corrected offline using average subtraction 

gradient correction implemented in Maglink RT Edit software (v4.5, NeuroScan, USA). In 

brief, an average template of the artifact is created and then subtracted from the recorded 

EEG (Castelhano et al., 2014). The correction algorithm includes a low-pass filter of 75 Hz. 

For the correction of BCG artifacts, an independent component analysis (ICA) approach was 

followed. Data were high-pass filtered by 1Hz. Bad channels were removed and data were re-

referenced to average reference. ICA components were computed using the standard 
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implementation present in EEGLAB (Matlab toolbox v13_1_1b).  The independent 

components were inspected and the ones with higher correlation with the EKG signal 

recorded during the acquisition were removed from the signal. Similarly, components related 

to blinking and eye movements were also removed. We used the scalp topography of the ICA 

components to identify the ocular component for ocular artifact attenuation. Finally, the signal 

was divided into two second segments, time-locked to the beginning of each TR from the 

MR. Noisy segments were excluded. 

Standard anatomical MR data were used to create the boundary element model (BEM) of each 

subject’s head, using Curry 7.0 software (NeuroScan, USA). Leadfields were then generated 

concerning the participant’s electrodes position and unconstrained cortex sources. Sources 

positions were also exported, in Talairach coordinates. 

Talairach coordinates of the voxels selected for each subject’s ROI (i.e., right pSTS) were 

identified as well as the nearest sources of the leadfields. EEG signals were then transposed 

to the source space applying sLORETA method, with a regularization level of 0.1, as 

presented in (Pascual-Marqui, 2007). From the average of the time courses of the different 

sources we estimated the source time course for the right pSTS of each subject. 

5.2.2.4 Feature extraction 

For this study we extracted 75 different features from the source signal segments.  

We present the features grouped by category. Each feature was calculated in the original 

frequency band (1-75Hz) and in two additional frequency bands, targeting the alpha and beta 

rhythms: [8-11] Hz and [11-13] Hz for alpha, [13-20] Hz and [25-30] Hz for beta.  

Time domain 

 Hilbert Envelope (Env) – smooth curve outlining the extremes of the signal. 

Maximum and average values of each segment were extracted. 

 Power – the square of the signal. Maximum and average values of each segment were 

extracted. 

 Teager Energy – an energy estimation operator. Maximum and average values were 

extracted. 
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Frequency domain  

 Power Band Activation (PBA) – absolute spectral power extracted from the different 

frequency bands. 

 Spectral Flux (SF) – Difference between the segment’s spectral power and the spectral 

power present in the baseline. 

 Power Spectrum Density peak (PSD) – maximum of the power spectrum density, 

extracted from the signal filtered at different bands. 

 Frequency Roll Off (ROff) – first frequency where the spectrum represented by lower 

frequencies meets 95% of the power spectrum (only applied in the original frequency 

band). 

Non-linear domain 

 Lag – first local minimum from the signal’s autocorrelation. 

 Detrended Fluctuation Analysis (DFA) – statistical signal self-affinity estimation. 

 Largest Lyapunov Exponent (Lyap)- characterization the rate of separation of 

infinitesimally close trajectories of the signal’s phase space. 

 Correlation Dimension (CD) – measure of space dimensionality of the signal. 

 Approximate Entropy (ApEn) – quantification of the regularity of the signal. 

 Sample Entropy – similarly to Approximate Entropy, quantifies the regularity of the 

signal. 

5.2.2.5 Correlation analysis 

Features for each subject and each run were normalized based on the mean of the first 20 

points of the Neutral expression, the baseline for our conditions. pSTS BOLD activation was 

also normalized using the same process. Correlations were then calculated between each 

feature and the BOLD signal. In order to synchronize the EEG features with its 

corresponding BOLD activation, a hemodynamic delay of six seconds was considered. 

5.2.3 Results 

For each time segments, a total of 75 features were generated. A Spearman correlation was 

calculated between the features values and the pSTS BOLD activations. The ten best features 



 114 

for each expression condition are present in Table 5.1, along with Spearman’s rho values and 

significance levels. Significance levels were corrected for multiple comparisons using the 

Bonferroni method. 

 

Table 5.1 – Best ten features based on BOLD correlation 

Happy Sad Alternate 

CD 13-20Hz 0,22** CD 13-20Hz 0,20** CD 13-20Hz 0,21** 

Teager max 0,16** Teager avg 0,20** ApEn 8-11Hz 0,12** 

PBA 0,16** Teager max 0,19** Teager max 0,12** 

Teager avg 0,13** CD 25-30Hz 0,12** CD 25-30Hz 0,11* 

Lag 8-11Hz 0,12** Lag 25-30Hz 0,12** SpEn 8-11Hz 0,11* 

ApEn 8-11Hz 0,12** PBA 0,11** Teager avg 0,11* 

CD 25-30Hz 0,11* Env max 0,10 Lag 8-11Hz 0,10* 

Lag 25-30Hz 0,11* Lag 8-11Hz 0,08 Lag 25-30Hz 0,10* 

SF25-30Hz 0,10 SF 25-30Hz 0,08 
Teager max 

11-13Hz 
0,07 

SpEn 8-11Hz 0,10 SF 11-13Hz 0,08 Power max 0,07 

 

The feature Correlation Dimension, when applied on the signal band-pass filtered to the low 

beta band [13-20]Hz, yields the best correlation levels for all the expression blocks. Although 

75 features were tested, only a small subset presented statistically significance, and there is a 

repetition of most of those features along the different expression conditions. 

5.2.4 Discussion 

Extraction through the EEG of fMRI activity is very difficult, mostly due to low signal-to-

noise ratio (SNR) and difficulties of having good head model representations (Kaiboriboon 

et al., 2012). The common way to perform source localization of EEG fonts requires the 

averaging of several trials in order to reduce the SNR. Because our approach focused on 

getting, in real time, the activation level of a specific brain area, averaging of several trials was 

not an option. Therefore, correlations of simultaneous measured signals in distinct modalities 
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(EEG and fMRI) at the single-trial level were not expected to be high, but statistically 

significant. 

We were able to identify a group of features containing a weak yet significant correlation level 

with right pSTS modulation, for both conditions of happy, sad and alternated imagery. CD [12-

20]Hz and Teager max features succeeded it at an alpha level of 0.01 for all conditions. This sheds 

a promising light of how the energy and phase-space dimensionality of low-beta source EEG 

signals might relate to real fMRI activity. Additional exploration is still needed to identify the 

viability of using these techniques for NF approaches. 
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5.3 How much of the BOLD-fMRI signal can be 

reconstructed by the EEG data: a comparative 

simultaneous EEG-fMRI study 

This section is composed by the contents of the following publication: 

 Simões, M., Abreu, R., Direito, B., Sayal, A., Castelhano, J., Carvalho, P., Castelo-
Branco, M. How much of the BOLD-fMRI signal can be reconstructed by the 
EEG data: a comparative simultaneous EEG-fMRI study. 

Abstract 

The simultaneous acquisition of EEG and fMRI data is motivated by the need to accurately 

map networks of interest in the brain, exploring their highly complementary properties. The 

so-called EEG-informed fMRI approach is by far the most commonly used, which relies on 

extracting a representative time-course of the activity of interest from the EEG, and then 

identify the brain regions with a BOLD-fMRI signal significantly correlated with it. 

Conversely, in order to transfer specific fMRI interventions (e.g., neurofeedback) to EEG 

setups, the BOLD-fMRI signal of specific brain regions and/or networks needs to be 

reconstructed based only on EEG signals. Because these types of approaches have been 

poorly explored so far, here we systematically investigated the extent at which the BOLD-

fMRI signal recorded from the facial expressions processing network during a neurofeedback 

task, could be reconstructed from the simultaneously recorded EEG signal. For that purpose, 

several features from both the scalp and source spaces (the latter estimated using continuous 

EEG source imaging) were extracted and used as predictors in a regression problem using 

random forests. When compared with the only approach already proposed in the literature 

that uses spectral features and considers different time delays, our results show that 

convolving the features extracted from the scalp with multiple HRF functions peaking at 

different latencies increase significantly the reconstruction accuracies from 20% (the current 

literature) to 53%. Importantly, nonlinear features exhibited the highest relevance in the 

regression problem. At the source level, similar prediction accuracies were obtained when 

using features extracted from the average source time-courses within brain regions parceled 
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according to the automated anatomical labeling atlas. Our results highlight the importance of 

combining different kinds of scalp EEG features (particularly the nonlinear ones) and of 

addressing the BOLD hemodynamic delay with multiple HRFs, for more accurately 

reconstruct the BOLD signal, with direct impact in the transfer of fMRI-based neurofeedback 

interventions to EEG setups. 

5.3.1 Introduction 

When provided with real-time information about a specific brain process, an individual can 

attempt to manipulate it through self-regulation, which allows for adjustments in the internal 

mechanisms used for its manipulation. This process is called neurofeedback (NF) (Kober et 

al., 2013; Arns et al., 2017). If the brain process under manipulation is dysfunctional, its 

regularization through NF is expected to result in behavioral changes (Shibata et al., 2011). 

Therefore, clinical applications of NF interventions have been conducted throughout the last 

years, namely on patients with Attention Deficit/Hyperactivity Disorder (ADHD), 

depression, addictions, anxiety disorders and others  (Micoulaud-Franchi et al., 2015; Sitaram 

et al., 2016; Arns et al., 2017).  

Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are the 

most commonly used techniques for implementing a NF loop  (Sitaram et al., 2016). The 

different characteristics of each technique led to the development of different approaches for 

their application in NF studies. In particular, EEG-based NF interventions target mostly 

attention and relaxation-related EEG rhythms, namely the alpha frequency band, the ratio of 

theta power over alpha power, or the µ rhythm (Micoulaud-Franchi et al., 2015). Levering its 

remarkable spatial resolution, NF studies using fMRI target more selective brain regions 

and/or networks, and therefore represent the hallmark for neuromodulation of localized brain 

areas (Fovet et al., 2015; Sitaram et al., 2016). In contrast with the low-cost and portability of 

EEG setups, the economical and logistical constraints of NF interventions using fMRI 

hamper its widespread application (Sarracanie et al., 2015). In this sense, methods that aim to 

transfer real-time (rt-)fMRI NF interventions to EEG setups gain considerable relevance. 

Considering their complementary properties, the simultaneous acquisition of EEG and fMRI 

data has been proposed for accurately mapping a given activity of interest in the brain. 

Although it poses several challenges, recent advances on the improvement of data quality and 

the integration of the two types of signal, currently allow to exploit the advantages of this 
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multimodal technique to a fuller extent (de Munck et al., 2009; Zotev et al., 2014; Murta et al., 

2015). The most common approach relies on extracting a representative time-course from the 

EEG, and then identify the brain regions on which the BOLD-fMRI signal recorded is 

significantly correlated with it (for a comprehensive review, please refer to (Murta et al., 2015) 

and (Abreu et al., 2018)). However, in order to transfer NF applications from fMRI into EEG, 

a different approach needs to be carried out, whereby the BOLD-fMRI signal of specific brain 

regions and/or networks is reconstructed based only on EEG signals. Despite its academic 

and clinical interest, such methodological strategy has been poorly explored. To the best of 

our knowledge, only Meir-Hasson and colleagues (Meir-Hasson et al., 2014) have attempted 

to reconstruct the BOLD-fMRI signal recorded at a specific region (the amygdala) from scalp 

EEG signals based on a ridge regression of power activity from different frequency bands and 

several time delays. The authors named this method the EEG Finger-Print (EFP), which is 

currently the gold standard. 

For the purpose of better understanding the extent at which the BOLD-fMRI signal from a 

specific brain region or network can be accurately reconstructed from the EEG alone in the 

context of transferring NF interventions from fMRI into EEG, in this paper we systematically 

explored several EEG features extracted from both the scalp and source spaces, as potential 

predictors of the BOLD signal recorded from facial expression processing regions during a 

NF task. We performed the BOLD signal reconstruction based on a regression problem using 

random forests, and compared the prediction accuracies of the tested features with the EFP 

method, on simultaneous EEG-fMRI data collected from 10 subjects at 3T.  

5.3.2 Methods 

5.3.2.1 Participants 

Ten healthy participants (mean age: 26 ± 3 years; 9 males) performed a simultaneous EEG-

fMRI NF session. All participants had normal or corrected-to-normal vision, and no history 

of neurological disorders. The study was approved by the Ethics Commission of the Faculty 

of Medicine of the University of Coimbra and was conducted in accordance with the 

declaration of Helsinki. All subjects provided written informed consent to participate in the 

study. The high male/female ratio was purposefully ensured to match the target population 

(ASD) higher male prevalence. 
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5.3.2.2 Experimental protocol 

The session was performed at the Portuguese Brain Imaging Network (Coimbra, Portugal) 

and consisted of four fMRI runs: first, a functional localizer specifically developed to identify 

the facial expressions processing network (anchored on the posterior Superior Temporal 

Sulcus region; pSTS), followed by three NF runs (of alternated up and down regulation). The 

first two NF runs used either visual or auditory feedback (random order) and the third had no 

feedback presented to the participant. The participants were given a mental strategy to follow 

during the NF runs, but were instructed to adapt it to maximize the modulation outcomes 

presented by the feedback. 

For the localizer run, 8 second blocks of dynamic facial expressions (happy, sad or alternated 

between happy and sad expressions) morphed into the face of a realistic human virtual 

character are contrasted with 8 second blocks consisted of the same face with a static neutral 

expression or motion blocks of moving dots. This rigorous contrast is able to identify regions 

that respond to the dynamic aspects of the facial expressions but not to the face itself or the 

movement aspects of the stimuli (Direito et al., 2019). The NF runs consist of 24 second 

blocks of alternated up and down regulation of the activity extracted in real-time from the 

pSTS region identified in the localizer run. For the first two NF runs, the participants were 

presented with visual feedback (materialized in the intensity level of the facial expression 

displayed by the virtual avatar) or auditory feedback (consisting of high and low pitch beep 

sounds, corresponding to increasing or decreasing levels of BOLD activity in the pSTS 

region). The full detailed description of the protocol can be found in our previous paper 

(Direito et al., 2019), where we assessed the neuroscientific aspects of the fMRI NF sessions. 

5.3.2.3 EEG-fMRI data acquisition 

Imaging was performed on a 3T Siemens Magnetom Trio MRI scanner (Siemens, Erlangen) 

using a 12-channel RF receive coil. The functional images were acquired using a 2D multi-

slice gradient-echo echo-planar imaging (GE-EPI) sequence, with the following parameters: 

TR/TE = 2000/30 ms, voxel size = 4.0×4.0×3.0 mm3, 33 slices, FOV = 256×256 mm2, FA 

= 90°, yielding a total coverage of the occipital and posterior temporal lobe. The start of each 

trial was synchronized with the acquisition of the functional images. A T1-weighted, 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequence was used for 
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the acquisition of structural data (1 mm isotropic, 176 slices, TR/TE = 2530/3.42 ms), for 

the subsequent co-registration of the functional data. For each participant, 160 fMRI volumes 

were acquired during the localizer run, yielding approximately 5.33 minutes; the remaining 

three functional runs consisted of 300 volumes (10 minutes). 

The EEG signal was recorded using the MR-compatible 64-channel NeuroScan SynAmps RT 

MaglinkTM system, with a cap of 64 Ag/AgCl non-magnetic electrodes positioned according 

to the 10/10 coordinate system. The reference electrode was placed close to the Cz position. 

EEG, electrocardiography (EKG) and fMRI data were acquired simultaneously in a 

continuous way, and synchronized by means of a Syncbox (NordicNeuroLab, USA) device. 

EEG and EKG signals were recorded at a sampling rate (SR) of 10 kHz. No filters were 

applied during the recordings. 

Outside the MR scanner and prior to the beginning of the experiment, each subject was 

submitted to an EEG-only acquisition while performing the localizer stimulation experiment. 

These data were used for quality checking the EEG recorded inside the MR scanner, after the 

removal of gradient switching and pulse artifacts. 

5.3.2.4 MRI data analysis 

Pre-processing steps 

The first 10 s of data were discarded to allow the signal to reach steady-state, and non-brain 

tissue was removed using FSL’s tool BET (Smith, 2002). Subsequently, slice timing and 

motion correction were performed using FSL’s tool MCFLIRT (Jenkinson et al., 2002). Then, 

a high-pass temporal filtering with a cut-off period of 100 s was applied, and spatial smoothing 

using a Gaussian kernel with full width at half-maximum (FWHM) of 5 mm was performed. 

Physiological noise was removed by linear regression using the following regressors (Abreu et 

al., 2017)  : 1) quasi-periodic BOLD fluctuations related to cardiac cycles were modeled by a 

fourth order Fourier series using RETROICOR (Glover et al., 2000)  ; 2) aperiodic BOLD 

fluctuations associated with changes in the heart rate were modeled by convolution with the 

respective impulsive response function (as described in (Chang et al., 2009)  ; 3) the average 

BOLD fluctuations in white matter (WM) and cerebrospinal fluid (CSF); 4) the six motion 

parameters (MPs) estimated by MCFLIRT; and 5) scan nulling regressors (motion scrubbing) 

associated with volumes acquired during periods of large head motion. Because the respiratory 
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traces were not recorded, the associated physiological fluctuations in the BOLD signal were 

not removed. 

For each participant, WM and CSF masks were obtained from the respective T1-weighted 

structural image by segmentation into gray matter, WM and CSF using FSL’s tool FAST 

(Zhang et al., 2001). The functional images were co-registered with the respective T1-weighted 

structural images using FSL’s tool FLIRT, and subsequently with the Montreal Neurological 

Institute (MNI) (Collins et al., 1994) template, using FSL’s tool FNIRT (Jenkinson et al., 2002; 

Jenkinson and Smith, 2001)  . Both WM and CSF masks were transformed into functional 

space and were then eroded using a 3 mm spherical kernel in order to minimize partial volume 

effects (Jo et al., 2010). Additionally, the eroded CSF mask was intersected with a mask of the 

large ventricles from the MNI space, following the rationale described in (Chang and Glover, 

2009). 

Mapping of the facial expressions processing network 

For the purpose of mapping the regions in the facial expressions processing network (FEPN), 

a general linear model (GLM) framework was used. For each subject, a GLM comprising five 

regressors was built (one for each condition), based on boxcar functions with 1s during the 

respective condition to be modeled, and 0s elsewhere. The regressors were convolved with a 

canonical, double-gamma hemodynamic response function (HRF) (Friston et al., 1995). The 

resulting GLMs were then fitted to the pre-processed fMRI data using FSL’s improved linear 

model (FILM) (Woolrich et al., 2001), and voxels exhibiting significant BOLD changes when 

contrasting the facial expression conditions with the neutral and motion conditions (balanced) 

were identified by cluster thresholding (voxel Z > 2.7, cluster p < 0.007). The BOLD signal 

was averaged across voxels comprising the mapped regions, and subsequently used as target 

for the reconstruction analysis. 

5.3.2.5 EEG data analysis 

Here, the pre-processing steps applied to the EEG data are first described, followed by the 

pipeline used to estimate the temporal dynamics of EEG sources. From these two spaces 

(scalp and source), the several features extracted for reconstructing the BOLD signal at the 

FEPN are then described. 



 122 

Pre-processing steps 

EEG datasets from all patients underwent gradient artifact correction on a volume-wise basis 

using a standard artifact template subtraction (AAS) approach (Allen et al., 2000). Then, bad 

epochs of 2s (corresponding to one TR) were manually identified and removed from the EEG 

signal, followed by the visual inspection and interpolation of bad channels. For the removal 

of the pulse artifact, the method presented in (Abreu et al., 2016)  was employed, whereby 

the EEG data is first decomposed using independent component analysis (ICA), followed by 

AAS to remove the artifact occurrences from the independent components (ICs) associated 

with the artifact. The corrected EEG data are then obtained by reconstructing the signal using 

the artifact-corrected ICs together with the original non-artifact-related ICs. Finally, the EEG 

data was down-sampled to 250 Hz and band-pass filtered to 1–45 Hz. For the purpose of 

removing the pulse artifact from the EEG, and the physiological noise from the fMRI, the 

Pan-Tompkins algorithm (Pan and Tompkins, 1985)   was optimized and used for the 

detection of R peaks on the EKG data (Abreu et al., 2017). 

EEG source imaging 

The pre-processed EEG data and the subsequent features extracted from it (described next) 

were then submitted to an EEG source imaging (ESI) procedure. Specifically, the so-called 

continuous ESI (cESI) was performed, with the purpose of estimating the temporal variations 

of the EEG sources responsible for generating the electrical potential distributions and EEG 

features measured at the scalp with a high temporal resolution. This has already been used for 

the purpose of mapping the epileptic networks on an EEG-correlated fMRI framework 

(Vulliemoz et al., 2010), and for identifying resting-state networks (RSNs; typically observed 

on fMRI) with the EEG alone (Liu et al., 2017a, 2018). 

A realistic head model was built by first segmenting each subject’s structural image into 12 

tissue classes (skin, eyes, muscle, fat, spongy bone, compact bone, cortical gray matter, 

cerebellar gray matter, cortical white matter, cerebellar white matter, cerebrospinal fluid and 

brain stem), each with a specific electrical conductivity. Because this is not feasible using the 

currently available segmentation tools (which allow segmentation up to 6 tissues), a state-of-

the-art brain tissue model was used (MIDA, available online; Iacono et al., 2015), and co-

registered into the structural image. The electrode positions were co-registered to the skin 

compartment by first considering their standard positions, and then manually adjusting them 
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to match the distortions clearly observed on the structural images. Finally, the SimBio finite 

element model (FEM; Wolters et al., 2004) algorithm implemented in FieldTrip (Oostenveld 

et al., 2011) was then used for numerically approximating the volume conduction model. The 

source dipoles were placed on a 4-mm 3D grid only spanning the cortical gray matter, followed 

by the estimation of the leadfield matrix, which maps each possible dipole configuration onto 

a scalp potential distribution (the forward problem). The inverse problem was solved 

following a distributed inversion solution approach using the exact low resolution brain 

electromagnetic tomography (eLORETA; Pascual-Marqui et al., 2011) algorithm, which 

estimates the strength j of each dipole on the source grid at the x (jx), y (jy) and z (jz) directions. 

For each EEG time sample t, the overall strength of a dipole was computed as: 

 𝑝(𝑡) = √𝑗𝑥2(𝑡) + 𝑗𝑦2(𝑡) + 𝑗𝑧2(𝑡) (1) 

This was computed for all dipoles, yielding a 4D (3D × t) dataset (EEG-cESI). The time-

series of dipole strength was then downsampled to 0.5 Hz. These processing steps were 

selected based on previous studies that comprehensively investigated their impact on detecting 

RSNs from EEG-cESI data, concluding that this was the optimal processing pipeline (Liu et 

al., 2017a, 2018). 

5.3.2.6 BOLD reconstruction approach 

For each subject, we extracted seven EEG features (described next) from seven frequency 

bands of interest (theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, low-beta: 13-22 Hz, high-

beta: 22-30 Hz, gamma: 30-40 Hz and broadband: 1-45 Hz) from non-overlapping scalp EEG 

segments of 2 seconds (corresponding to the TR of the fMRI data) at the following electrodes: 

P4, P6, P8, PO6, PO8, P3, P5, P7, P05 and PO7 (total of ten, five at each hemisphere). Such 

electrodes were selected based on their proximity to the FEPN. For the source-based models, 

the abovementioned features were then mapped to the source space and their source time 

courses extracted from either the FEPN, or from 90 non-overlapping brain regions parceled 

according to the Automated Automatic Labeling (AAL) atlas. 

EEG features extracted 

Seven EEG features were considered to build the proposed pool of features (the FeatPool 

model), three of which extracted from the time-frequency domain; the remaining four were 
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focused on exploring the nonlinear characteristics of the EEG signal. The latter were 

motivated by previous studies showing their usefulness on several applications including the 

characterization of mental imagery processes similar to the ones conveyed by the participants 

during the NF runs (Bosl et al., 2017, 2018; Simões et al., 2018b). These features were 

estimated for each frequency band (by previously band-passing the EEG signal across the 

respective band), and for each 2-second EEG segment. 

For the time-frequency domain, we used the power, frequency peak (f-peak) and the Teager 

energy. The power was computed by squaring the signal and averaging its values. The f-peak 

was obtained by extracting the maximum values of the frequency spectrum. The Teager energy 

operator calculates the instantaneous energy of the signal x using 

 𝛹[𝑥(𝑡)] = 𝑥(𝑡)2 − 𝑥(𝑡 − 1)𝑥(𝑡 + 1) (2) 

where 𝛹[. ] denotes the Teager operator (Solnik et al., 2010); the resulting values were then 

averaged. This operator is sensitive to variations in both amplitude and frequency of the 

original signal x. 

For the nonlinear domain, we transformed each EEG signal into its phase-space, which 

represents a reconstruction of its chaotic dynamics. As shown by Takens (1981), the phase-

space captures the relevant properties of the state space representation of the system, such as 

the Lyaponov exponents and the Kolmogorov-Sinai Entropy. Every state of the system can 

be represented by a point in the multidimensional phase space, and the time evolution of the 

system creates a trajectory in this space (Kliková and Raidl, 2011). We used the time delay 

embedding method to reconstruct the phase-space of the EEG. Given a time series x, the 

corresponding vector X(𝑡𝑖), 𝑖 = 1,… ,𝑁 in phase-space at time 𝑡𝑖 is given by  

 𝑋(𝑡𝑖) = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝜏),… , 𝑥(𝑡𝑖 + (𝑚 − 1)𝜏)], 𝑖

= 1,… ,𝑁 − (𝑚 − 1)𝜏 

(3) 

where 𝜏 is the time delay, 𝑚 is the dimension of reconstructed space and 𝑀 = 𝑁 − (𝑚 − 1)𝜏 

is the number of points (states) in the phase-space. We reconstructed a 2- and 3-dimensional 

phase-space associated to the EEG data, and the time delay was considered to be the mean 

of the first local minimum from the autocorrelation of the signal (lag r) (Gao et al., 2012). The 

evolution of the states of the system in the phase-space creates a trajectory that represents the 

dynamics of the system. Those dynamics tend to incorporate a bounded subspace referred to 
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as an attractor. To characterize the attractor and the corresponding dynamics of the system, 

measures can be taken to estimate its complexity and stability. To estimate complexity, we 

computed the correlation dimension (CorrDim) of the trajectories, which is the most common 

approach. For the stability, we used the largest Lyapunov exponent (Lyap) and two entropy 

measures - approximate entropy (ApEn) and sample entropy (SpEn) – that quantifies the 

chaos of the attractor (Rodríguez-Bermúdez and García-Laencina, 2015). 

The correlation dimension is a measure of the space fractal dimensionality. Correlation sum 

is defined as the sum of the fraction of pairs of points in the phase-space whose distance is 

smaller than r (the previously defined lag). If this number of points is sufficiently large, the 

ratio between the logarithm of the correlation sum and the logarithm of the time delay is an 

accurate estimate of the correlation dimension (Cencini et al., 2010). 

The largest Lyapunov exponent characterizes the rate of separation of infinitesimally close 

trajectories of the signal in phase space, yielding a measure of the degree of the instability of 

the system (Cencini et al., 2010). Mathematically, two trajectories in the phase space with initial 

separation of 𝛿𝑍0, diverge at a rate given by 

 |𝛿𝑍(𝑡)| ≈ 𝑒𝜆𝑡|𝛿𝑍0| (4) 

where 𝜆 is the local Lyapunov exponent (local exponential rate of expansion). The maximum 

Lyapunov exponent corresponds to the mean exponential rate of divergence, characterizing 

the trajectory’s instability. 

The approximate (ApEn) and sample (SpEn) entropy quantify the regularity and predictability 

of signals throughout time. The ApEn is a descriptor of the changing complexity in the 

embedded space. The SpEn is a variation of the ApEn method which does not depend on the 

length of the signal and showing usually shows better relative consistency (Yentes et al., 2013). 

Since ApEn and SpEn present different values for the same characteristic of the signal, we 

considered both metrics in our analysis. 

Addressing the hemodynamic delay of the BOLD signal 

In order to tackle the hemodynamic delay of the BOLD signal relative to the EEG signal, the 

previously proposed EFP method incorporates in the regression problem not only the original 

spectral power predictors, but also their time-delayed versions up to 12 seconds (Meir-Hasson 

et al., 2014). Thus, the prediction model associated with this method is described by: 
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 𝑦(𝑡) = 𝑓(𝑥1(𝑡), 𝑥1(𝑡 − 1), … , 𝑥1(𝑡 − 𝑛), 𝑥2(𝑡), 𝑥2(𝑡 − 1), … , 𝑥𝑚(𝑡 − 𝑛)) (2) 

with y the BOLD signal to predict at time t, 𝑥𝑘 the k-th EEG feature, considering m features 

and n delays; and f the prediction function. 

However, the most common approach to take into account this delay in conventional EEG-

informed fMRI studies is to convolve the EEG time-course of interest with the canonical 

HRF (Abreu et al., 2018). Therefore, the EEG feature time courses xk were then convolved 

with the canonical HRF: 

 𝑥𝑘
′ = 𝑥𝑘 ⊗ 𝐻𝑅𝐹 (3) 

yielding the model  

 𝑦(𝑡) = 𝑓(𝑥1
′(𝑡), 𝑥2

′ (𝑡), … , 𝑥𝑚
′ (𝑡)). (4) 

Because of the known variability of the HRF across subjects and sessions (Aguirre et al., 1998) 

and even brain regions (Rangaprakash et al., 2018), the EEG features were also convolved 

with HRF functions peaking at different latencies (3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10 and 12 

seconds): 

 𝑥𝑘
𝑙 = 𝑥𝑘 ⊗ 𝐻𝑅𝐹𝑙 (5) 

thus resulting in the final model:  

 𝑦(𝑡) = 𝑓 (𝑥1
1(𝑡), 𝑥1

2(𝑡), … , 𝑥1
𝑙(𝑡), 𝑥2

1(𝑡), 𝑥2
2(𝑡), … , 𝑥𝑚

𝑙 (𝑡)). (6) 

with l the number of latencies (in this case, twelve, matching the number of delays considered 

in the EFP method). These three approaches (delays, canonical HRF and multiple HRFs) were 

tested on the EEG spectral power features used in the EFP method. Because the multiple 

HRF convolution approach yielded the highest prediction accuracy (see Results section), it 

was then considered for the new models proposed here. 

Reconstruction approach 

Unbiased prediction accuracies were calculated by first concatenating the three NF runs, and 

then applying a 6-fold cross validation scheme, having so the equivalent of half of a NF run 
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in the testing sets. For each fold, the minimum redundancy maximum relevance (mRMR) 

method was used for feature selection, which ranks the features to include in the different 

models (Peng et al., 2005) In this way, the curse of dimensionality is partially overcome (Keogh 

and Mueen, 2017), and a fair comparison between the models tested, which have a different 

number of predictors (see below), can be performed. In order to investigate the impact of 

model complexity in the reconstruction of the BOLD signal, we varied the number of 

predictors included in the models according to the mRMR. Specifically, models with 1, 2, 5, 

10, 20, 50, 100, 150, 200 and 250 predictors were considered; more complex models were not 

tested since the reconstruction accuracy reached a plateau for most models. 

For the regression step, random forests were used with bootstrap aggregation (bag) of an 

ensemble of decision trees (number of random predictors per split: number of predictors / 3, 

minimum number of observations per leaf: 5), as implemented in the MALTAB R2019b’s 

Statistics and Machine Learning toolbox fitrensemble function (method: Bag, number of learning 

cycles: 150). Random forests were selected for their capacity to deal with small sample sizes 

and large feature sets, outperforming competing machine learning algorithms in several studies 

(Rodriguez-Galiano et al., 2015; Couronné et al., 2018). 

Comparison of reconstruction models  

We used as baseline model the state-of-the-art EFP, adapted from Meir-Hasson’s work (2014), 

consisting of the spectral power feature from seven frequency bands and their time-delayed 

versions, extracted from the scalp EEG signal. In this case, a total of 840 predictors (7 

frequency bands × 12 delays × 10 channels) comprise the model used in the EFP method. 

We then tested the same method using the multiple HRF convolution approach. We named 

this method improved EFP (iEFPscalp), which also consists of 840 predictors (7 frequency 

bands × 12 latencies × 10 channels). Still at the scalp level, we tested the effect of using all the 

seven features (FeatPoolscalp), rather than the spectral power alone, also using the multiple HRF 

convolution approach. This results in the most complex model, with a total of 5880 predictors 

(7 features × 7 frequency bands × 12 latencies × 10 channels). 

At the source level, we tested firstly the direct source mapping of the EEG signal 

(𝐸𝐸𝐺𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼  model). This method is particularly interesting due to its simplicity since it avoids 

the feature extraction step, which could be very efficient for online applications. Furthermore, 

we tested the source mapping of the iEFP (𝑖𝐸𝐹𝑃𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼 ) and the FeatPool 
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(𝐹𝑒𝑎𝑡𝑃𝑜𝑜𝑙𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼 ) models. From the resulting time-courses of source activations, we 

computed the average across our ROI (the FEPN, mapped according to the localizer run) and 

submitted to the multiple HRF convolution approach, yielding a total of 12 (number of 

latencies), 84 (7 frequency bands × 12 latencies) and 588 (7 features × 7 frequency bands × 

12 latencies) predictors, for the 𝐸𝐸𝐺𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼 , 𝑖𝐸𝐹𝑃𝑠𝑜𝑢𝑟𝑐𝑒

𝑅𝑂𝐼  and 𝐹𝑒𝑎𝑡𝑃𝑜𝑜𝑙𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼  models. In order 

to consider whole-brain source activations, rather than those from the FEPN alone, the source 

time-courses were also averaged across 90 non-overlapping brain regions parceled according 

to the Automated Automatic Labeling (AAL) atlas. In this way, the number of predictors of 

the previous models increased 90-fold. Figure 5.4 shows the list of models used. Note that 

despite the high number of predictors of most models, only up to 250 features were 

considered in the regression step according to the feature ranking approach (mRMR) 

described above.  

 

Figure 5.4 – List of the models used on the EEG-based reconstruction of the BOLD signal. 
The EFP (in green) represents the current state-of-the-art. The scalp methods include also 
the iEFP and FeatPool, while the source methods include the EEG, iEFP and the FeatPool, 
each one subdivided into ROI and AAL parcels. 

 

BOLD upsampling effect 

The EFP method, as presented in (Meir-Hasson et al., 2014), performs an upsampling of the 

BOLD signal by a factor of 8 (new sampling frequency of 4 Hz) using spline interpolation. 

We believe this induces strong linear relations on the target signal that will bias the prediction 

accuracy of the models. This was verified by investigating the impact of the upsampling step 

on the EFP model. Otherwise, all the results presented in the paper are conducted in the 

original BOLD sampling rate of 0.5 Hz. 

5.3.2.7 Statistical analysis 

In order to compare the performance of the models, we first determined the optimal number 

of predictors to be included in each model based on their reconstruction accuracy. Then, those 
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reconstruction accuracy values were submitted to a one-way repeated measures analysis of 

variance (ANOVA) to assess differences in their means. From that, we conducted post-hoc 

pairwise comparisons between each pair of models, correcting for multiple comparisons using 

the Tukey-Kramer method. 

We computed correlation maps from the EFP method (the current state-of-the-art, baseline 

model) and the best model (FeatPoolscalp). To verify the brain regions related to the 

reconstructed BOLD signal of the EFP and FeatPoolscalp models, we used the reconstructed 

signals separately as regressors of interest in a GLM analysis of the pre-processed fMRI data 

using FILM (Woolrich et al., 2001). Voxels exhibiting significant correlations were identified 

by cluster thresholding (voxel Z > 2.7, cluster p < 0.007). Group activation maps were then 

obtained using the FSL’s Local Analysis of Mixed Effects (FLAME) (Beckmann et al., 2003). 

With this analysis, it is possible to assess if the brain regions associated with the reconstructed 

BOLD signal match those involved in the FEPN. 

Afterwards, we investigated the contributions of each feature, frequency band and HRF 

latency to the reconstruction of the BOLD signal. We averaged the ranks for each feature 

across participants and cross-validation folds and built histograms for each feature, frequency 

band and HRF latency whose average rank was below 100. Understanding which frequency 

bands and features contribute the most for the BOLD reconstruction provide insights on the 

electrophysiological mechanisms underlying the BOLD signal measured at the FEPN. 

5.3.3 Results 

The effect of the upsampling step of the BOLD signal on the EFP model is presented in 

Figure 5.5. While it increases the number of time points by a factor of 8, strong, yet false, 

linear relationships between neighboring BOLD samples are introduced by the spline 

interpolation, which in turn inflates the accuracy in an artificial manner, verifiable both in the 

mean correlation (across folds and participants) and the standard error of the mean. In fact, 

although the EFP model reached an average prediction accuracy of 90% when considering 

the upsampled BOLD signal, at the original sampling rate, such accuracy did not go beyond 

20%. 
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Figure 5.5 – Comparison of the original EFP model with and without upsampling the BOLD 
signal. The center of each bar corresponds to the mean correlation of all participants between 
the prediction signal and the BOLD activity of the FEPN, and the error bars present the 
standard error of the mean. Results are presented in function of the number of predictors 
included in the models, showing a plateau of the correlations after approximately 50 
predictors. 

5.3.3.1 Comparison of approaches addressing the BOLD hemodynamic 

delay 

Regarding the approaches considered for dealing with the hemodynamic delay of the BOLD 

signal, Figure 5.6 shows the effects of using the original approach used in the EFP (delays), 

the approach used in conventional EEG-fMRI studies (convolution with the canonical HRF), 

and the new proposed method considering the convolution of multiple HRFs peaking at 

different latencies. Because it largely outperformed the other two (reconstruction accuracy of 

approximately 50%, vs. 40% and 20% for the canonical HRF and delays approaches, 

respectively), only the convolution with multiple HRFs was considered for the remaining 

models; in particular, the new version of the EFP model using this approach was termed 

improved EFP (iEFP). 
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Figure 5.6 – Comparison of the correlations achieved using the EFP method by the three 
approaches tested to deal with the hemodynamic delay. The HRF method only shows up to 
50 predictors because it contains only the power for 7 frequency bands from 10 electrodes (70 
predictors), while the other two have the different delays or the multiple convolutions, thus 
increasing the number of predictors (in this case, 840). Points represent the group mean 
correlation values and the bars the standard error of the mean. 

5.3.3.2 Comparison of the reconstruction accuracy of the models 

The analysis for the ideal number of predictors for each model is presented in Table 5.2. For 

most models, higher correlation values were consistently obtained by increasing the number 

of predictors (up to 250) included in them; however, we also observed that increasing the 

number of predictors from 150 to 200, or from 200 to 250, yielded a non-significant increase 

in the respective correlation values in most cases. 

Table 5.2 – Optimal number of predictors included in each model. On the left, the number of 
features that generated the highest correlation values and, on the right, the last number of 
features that caused a significant increase in the correlation accuracy. 

Model 
Number of Features 

Max R Last Significant Increase R 

EFPscalp 200 150 
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iEFPscalp 200 50 

FeatPoolscalp 250 150 

𝐸𝐸𝐺𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼  5 5 

𝐸𝐸𝐺𝑠𝑜𝑢𝑟𝑐𝑒
𝐴𝐴𝐿  250 250 

𝑖𝐸𝐹𝑃𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼  50 20 

𝑖𝐸𝐹𝑃𝑠𝑜𝑢𝑟𝑐𝑒
𝐴𝐴𝐿  250 100 

𝐹𝑒𝑎𝑡𝑃𝑜𝑜𝑙𝑠𝑜𝑢𝑟𝑐𝑒
𝑅𝑂𝐼  200 100 

𝐹𝑒𝑎𝑡𝑃𝑜𝑜𝑙𝑠𝑜𝑢𝑟𝑐𝑒
𝐴𝐴𝐿  250 250 

 

Considering for each model the number of predictors with maximum R, Figure 5.7 shows the 

post-hoc pairwise comparisons between the R values achieved by each model. Comparing 

with the state-of-the-art model (EFP), only the EEGsource
ROI  model did not surpass its 

correlation; in contrast, all the BOLD reconstructions from the other proposed models 

obtained statistically significantly higher correlations. At the scalp level, the FeatPool 

outperformed the iEFP model, showing that the pool of features is able to capture additional 

task-specific brain processes that are not fully identified using only the EEG power. At the 

source level, the same pattern was observed, with the FeatPool exhibiting better results than 

the iEFP (both for ROI and AAL versions). As expected, using the information from several 

brain regions parcelled according to the AAL, rather than the pSTS region alone, higher 

correlation values were obtained. correlation values were obtained. 
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Figure 5.7 - Comparison of the correlation achieved by the BOLD reconstructions of each 
model. Significance bars on top show statistical significance between the model with the 
longer tick and the remainder signaled models (* p < 0.05, ** p < 0.01, *** p < 0.001). 

  

Based on the group correlation maps shown in Figure 5.8, it is possible to observe that by 

using the proposed FeatPoolscalp model, the brain regions associated with the reconstructed 

BOLD signal match those involved in the FEPN (mapped from the Localizer run at the group 

level), which is not observed when considering the EFP model. 
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Figure 5.8 – Group correlation maps for the EFP method (top) and the FeatPool method 
(bottom) (MNI coordinates: x = -52, y = -48, z = 6). The FeatPool method recovers most of 
the FEPN identified by the localizer (in blue) while the EFP method fails to reconstruct even 
its main locations. The maps are cluster thresholded for Z > 2.7 (top) and Z > 3.1 (bottom). 

5.3.3.3 Features, frequency bands and HRFs importance to the model 

Considering the FeatPoolscalp as the best model to reconstruct the BOLD signal from the pSTS 

region, we then investigated which features, frequency bands and HRF functions (among the 

top ranked predictors according to the mRMR) contributed the most for the reconstruction 

(Figure 5.9). We verified a strong contribution from the largest Lyaponov exponent and the 

sample entropy features. For the frequency bands, the theta band was the most used, followed 

by the beta sub-bands (low-beta and high-beta) and only after those the alpha band, along 

with the broadband. Finally, we observed that the most used HRF functions were those close 

to the canonical HRF, prevailing the peak latencies around 5.5 seconds. However, two 

uncommon clusters are also discernible, one for the short response functions (3.5 seconds) 

and another one for the long response functions (10 seconds). The morphologies captured by 

the HRF functions peaking at those clusters are never captured by the canonical HRF nor the 

linear delays function, which clarifies the usefulness of using a set of HRF functions with 

variable peak latencies. 
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Figure 5.9 – Histograms for the top ranked features, frequency bands and HRF functions 
(average rank < 100).  

5.3.4 Discussion 

In this study, we systematically investigated the extent at which the BOLD-fMRI signal 

recorded from the facial expressions processing network (FEPN) during a neurofeedback task 

could be reconstructed from the simultaneously recorded EEG signal. We proposed novel 

features potentially predictive of the BOLD signal, as well as new approaches to tackle its 

hemodynamic delay. Using random forests for the regression, we compared our novel 

contributions with the EFP (the current state-of-the-art) and found that combining our newly 

proposed features with the convolution of multiple HRFs peaking at different latencies yielded 

the best model (FeatPoolscalp), achieving an accuracy of 53%. This represented an improvement 

of 33 percentage points relative to the EFPscalp. 

The FeatPoolscalp model outperformed the iEFPscalp, showing that only spectral characteristics 

of the EEG are not sufficient to capture the BOLD signal up to its full extent, since the 

exploration of other characteristics of the EEG signal increased the correlations achieved. 

Furthermore, we verified that the nonlinear features provided a strong contribution to the 

FeatPoolscalp model, especially the ones that characterize the stability of the phase-space 
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attractors, namely the largest Lyaponov exponent and the sample entropy. We also verified a 

strong contribution of features extracted from the theta band, which is in line with our 

previous study where nonlinear features in the theta band discriminated the mental imagery 

of facial expressions processes from autism spectrum disorder patients and controls (Simões 

et al., 2018b). Importantly, other studies have already shown the pivotal role of nonlinear 

aspects of the EEG signal in mental imagery tasks, especially in the brain-computer interfaces 

domain (Solhjoo et al., 2005; Montri and Masahiro, 2008; Banitalebi et al., 2009; Wang et al., 

2011). However, to the best of our knowledge, no study has yet addressed the use of nonlinear 

features for the characterization, and more importantly reconstruction, of the BOLD signal. 

The preponderance of the theta and beta sub-bands over the alpha band is surprising, since 

most studies focus on the relationship of the EEG alpha rhythm with the BOLD signal (Laufs 

et al., 2003; Gonçalves et al., 2006; de Munck et al., 2009; Jann et al., 2009). However, EEG 

power over the theta and beta bands has been shown to exhibit significant correlations with 

the BOLD signal in the prefrontal cortex during memory tasks (Bäuml et al., 2010; Hanslmayr 

et al., 2011). Nevertheless, our results reinforce the relationship between EEG power over the 

theta band and facial emotion processing (Balconi and Lucchiari, 2006; Balconi et al., 2015; 

Simões et al., 2018b), given the observed strong contribution of this frequency band for the 

reconstruction of the BOLD signal at the FEPN. 

Regarding the hemodynamic delay between the BOLD and EEG signals, the EFPscalp method 

does not include any a priori knowledge of the BOLD hemodynamic response, letting the 

regression procedure weight each delay according to its contribution to the final 

reconstruction. This is different from conventional EEG-correlated fMRI studies, whereby 

the predictors are typically convolved with the canonical HRF (with a fixed delay of 5s), thus 

including the expected behavior of the BOLD response (Abreu et al., 2018). We verified that, 

for the same number of predictors, convolving the predictors with the canonical HRF 

outperformed the delays approach used in the EFP method in terms of the reconstruction 

accuracy of the BOLD signal. In (Meir-Hasson et al., 2014), a similar comparison is also 

presented; however, the “delays” approach surprisingly outperforms the canonical HRF 

convolution in this case. These contradictory results may result from unfairly comparing 

models with different complexities, with the original EFP model comprising twelve times 

more (the number of delays) predictors than those used when considering the convolution 

with the canonical HRF.  Motivated by the known variability of the HRF (Aguirre et al., 1998; 
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Rangaprakash et al., 2018), Sato and colleagues (2010) followed an approach similar to the 

“delays” approach used in the EFP model to estimate the transfer function between the EEG 

and the BOLD signal measured at the visual cortex. Despite their promising results, only two 

pilot subjects were considered, which limits the generalization of the results. The morphology 

of the estimated transfer functions varied significantly across participants and experiments, 

thus supporting the convolution of the proposed EEG features with multiple HRF functions 

peaking at different latencies. For the same number of predictors, this approach outperformed 

the other two, possibly because it not only incorporates the hemodynamic response behavior 

in the predictor time course, but also addresses the variability of the HRF function, which has 

already been found across subjects, sessions and brain regions (Aguirre et al., 1998; 

Rangaprakash et al., 2018). 

Some insights can also be derived from the analysis of the higher ranked (according to the 

mRMR) HRF latencies used in the best model (the FeatPoolscalp). While the canonical HRF and 

its smaller variations were the most frequently used in the higher ranked predictors, the 

FeatPoolscalp model also exploited HRF functions deviating from the canonical HRF. The 

relevance of such shorter and larger latency peaks has also been previously reported (Jacobs 

et al., 2008; Feige et al., 2017), but never in the context of task-specific studies. Our results are 

in agreement with those of Feige and colleagues (2017) who observed that, depending on the 

EEG spectral band or network/region of interest, the lag between the EEG phenomenon 

and the corresponding deconvolved BOLD signal representative of different resting-state 

networks varied from 0 to 10.5 seconds. This highlights the importance of exploring different 

HRF modulation approaches, especially when integrating different imaging modalities. 

The source-based models also provided different results: the EEGsource
ROI  model, which 

comprises the average source time-course across the FEPN from the direct mapping of the 

EEG signal was not better than the original EFP method. Despite the expected gain in 

sensitivity by considering the more informative 3D space of the source, rather than the 2D 

space of the scalp,  volume conduction induces redundancy between adjacent brain regions, 

which may compromise this source model extracted from such small regions as the FEPN 

(Tenke and Kayser, 2012). However, when considering the source model comprising the 

parcel-averaged source time-courses (EEGsource
AAL ) the reconstruction accuracy improves 

significantly, suggesting that despite the volume conduction problem, whole-brain source 

activations convey crucial information for the reconstruction of the BOLD signal at the 
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FEPN. Consistently, the source models considering the AAL atlas outperformed the 

equivalent ROI versions of the source methods. Exploring EEG source activations over time 

itself represents a new contribution to this field, as only a number of studies has explored this 

approach and its relationship with the BOLD signal in the context of disease (epilepsy) or 

resting-state. Specifically, the average source time-course across an epilepsy-related ROI has 

been shown to improve the epileptic network mapping with simultaneous EEG-fMRI, when 

compared with the typically used unitary regressors to model the BOLD signal (Vulliemoz et 

al., 2010). More recently, resting-state networks, which are typically observed in fMRI, were 

shown to be also present on continuous EEG source data (Pascual-Marqui et al., 2014; Custo 

et al., 2017; Liu et al., 2017a, 2018). To the best of our knowledge, our work is the first to 

conduct it in a task-based paradigm and to use the continuous source time courses of features 

extracted at the scalp, instead of the source mapping of the EEG signal or its spectral 

characteristics directly. 

The fact that the best reconstruction was achieved by the FeatPoolscalp model suggests that the 

combination of different kinds of features (linear and nonlinear) with the convolution of 

multiple HRF functions peaking at different latencies, together with the use of random forests 

for the regression was pivotal. As shown in (Simoes et al., 2015), the isolated use of features 

is unable to perform a direct mapping of the BOLD modulation in the FEPN. It is the 

convolution of the features extracted with different HRF functions that creates a feature set 

that sufficiently captures the variance of the BOLD signal of interest. We were able to clarify 

the isolated effects of the feature set and delay approach, and this dissociation should help 

future studies to target both domains (features and delays) of EEG-fMRI transfer functions. 

Concluding, the exploration of nonlinear EEG features as the largest Lyapunov exponent or 

the sample entropy extracted from different frequency bands is crucial for more accurately 

reconstructing the BOLD signal at the facial expression processing network. Furthermore, we 

show that convolving EEG the features with multiple HRF functions peaking at different 

latencies best captures the variability of the hemodynamic delay of the BOLD signal, yielding 

robust improvements on the overall localized BOLD signal reconstruction from the EEG 

data, with direct impact in the transfer of fMRI-based neurofeedback interventions to EEG 

setups. Future studies should address how these models generalize across subjects and 

sessions.  
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5.4 Chapter Discussion 

Transferring an fMRI-based neurofeedback intervention approach to EEG poses several 

challenges. Firstly, the two neuroimaging techniques record signals of intrinsically different 

origins, and spatiotemporal resolutions, with fMRI measuring hemodynamic changes and 

EEG measuring electrical activity. Furthermore, the indirect nature of the BOLD signal 

creates a delay of several seconds between the mental activity and the variation detected in the 

signal, whilst the EEG measures brain activity directly, thus capturing processes at (almost) 

real time. Moreover, since our region-of-interest is located in a sulcus, cancelation processes 

can occur (Ahlfors et al., 2009; Irimia et al., 2012), which limits the activity measurable at the 

scalp. Considering the inter-subject variability, the problem is, undoubtedly, challenging.  

Nevertheless, the difficulty of the problem is countered by the benefits of a successful 

outcome. Since there is evidence of positive behavioral effects as consequence of the NF 

intervention (Appendix II), achieving a successful transfer of this intervention would 

widespread its application range and prevalence. Not only it would be possible to include more 

patients in interventional approaches, but also to perform more interventional sessions per 

participant. There could be the case that greater benefits would only appear after more training 

sessions, which are not possible to convey on the MR machine due to its high costs and setup 

inflexibility (Fovet et al., 2015). Therefore, we addressed this problem framing it as identifying 

a framework that, based simply on EEG activity, can generate a read-out signal that correlates 

with the fMRI activity in our target regions, the facial expression processing network. 

Our first step was to extract several features from the EEG that cover time/frequency and 

non-linear domains and check their direct correlation with the target signal. Since the 

correlation levels were too low to be used in practice, we explored the addition of a regressor 

to combine several features as predictors of the BOLD activity of interest. We were able to 

improve the correlation levels achieved by the state-of-the-art method, the EEG finger print, 

showing that the exploration of nonlinear features captures more brain dynamics than the 

EEG signal power by itself. Furthermore, we proposed an improvement in the method for 

dealing with the hemodynamic delay of the BOLD signal: to convolve the predictors with a 

set of HRF functions peaking at different time latencies, thus addressing inter and intra-subject 

variability of the HRF. We showed this method significantly improves the prediction accuracy 

of the models. Those contributions helped to highlight the relations between EEG and fMRI 
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signal measures, and we propose new methodologies for addressing the transferring of fMRI 

NF interventions into EEG. 

Still, to fully transfer the NF intervention from imaging modalities, the models must be tested 

between independent runs and sessions. We addressed this by training the models with two 

neurofeedback runs and testing on the third, thus providing a first independent evaluation of 

the model generalization capacities (the first generalization level, since we were still using data 

from the same session but different runs). The results, however, did not surpass a performance 

level above 25%, showing that further steps are still needed to make the transfer viable. 
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This chapter describes the exploration of virtual reality for evaluate and rehabilitate ASD 

deficits. It combines the following two contributions: 

Simoes, M., Mouga, S., Pereira, A., Gonçalves, H., Oliveira, G., Carvalho, P., Castelo-

Branco, M. 6.2 Assessing immersive virtual reality feasibility for studying 

personal space regulation in Autism spectrum disorder. 

Simões, M.*, Bernardes, M.*, Barros, F., & Castelo-Branco, M. (2018). Virtual Travel 

Training for Autism Spectrum Disorder: Proof-of-Concept Interventional Study. 

JMIR Serious Games, 6(1), e5. https://doi.org/10.2196/games.8428. 
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6.1 Chapter Introduction 

For the virtual rehabilitation part of the thesis, we studied the use of virtual reality for 

rehabilitating social deficits or daily living tasks. The literature presents the general idea of 

using virtual reality for the study and training social skills in ASD, advocating several 

arguments such as the control it provides to repeat the same task under different scenarios to 

help the generalization of the concept, the safety or the preference ASD patients usually 

manifest regarding computerized and technological setups (for a more detailed description, 

please refer to section 2.3.1 – Virtual rehabilitation). However, there is no study, to the best 

of our knowledge, to show that behavioral metrics can be replicated in the virtual 

environments, comparing them to the same behavioral metrics measured in the real 

environments. Therefore, we created a virtual reality environment that fully replicates the same 

real environment, providing the perfect set for a feasibility assessment. We used the preferred 

interpersonal distance measured in both environments as metric of comparison, since it 

represents a simple behavioral social metric that can easily be measured in both environments 

with high levels of accuracy. We present this study in section 6.2. 

We then created an immersive virtual reality serious game to train participants in performing 

a challenging daily living task, such as taking a bus. This task represents several challenges to 

an individual with ASD, since it presents several subtasks with some levels of unpredictability, 

which cause anxiety and are difficult to handle. We implemented in the game a biofeedback 

system that automatically adjusted some disturbing factors of the game (like the noise inside 

the bus or dogs barking in the streets) based on the anxiety level of the user (measured through 

electrodermal activity), and performed a pilot one-arm intervention study with three training 

sessions of increasing complexity. This work is described in 6.3. 

To accompany and support this and other serious games, we created a platform for managing 

the games, users, training plans, progress of the players as well as providing gamification 

strategies such as awards and badges to keep players engaged in the rehabilitation. This work 

is presented in Appendix IV. 
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6.2 Virtual reality immersion rescales regulation of 

interpersonal distance in controls but not in 

Autism Spectrum Disorder 

This section is composed by the contents of the following publication: 

 Simões, M., Mouga, S., Pereira, A., Gonçalves, H., Oliveira, G., Carvalho, P., Castelo-
Branco, M. Virtual reality immersion rescales regulation of interpersonal distance 
in controls but not in Autism Spectrum Disorder. 

Abstract 

Interpersonal distance (IPD) is a simple social regulation metric which is altered in autism. We 

performed a stop-distance paradigm to evaluate IPD regulation in ASD and control groups in 

a real versus a virtual environment mimicking in detail the real one. We found a bimodal 

pattern of IPDs only in ASD. Both groups showed high IPD correlations between real and 

virtual environments, but the significantly larger slope in the control group suggests rescaling, 

which was absent in ASD. We argue that loss of nuances of non-verbal communication, such 

as perception of subtle body gestures in the virtual environment, lead to changed regulation 

of IPD in controls, whilst ASD participants show similar deficits in perceiving such subtle 

cues in both environments.  

6.2.1 Introduction 

Virtual reality (VR) has been repeatedly referred as a suitable tool for performing virtual 

rehabilitation in autism spectrum disorder (ASD) patients (Strickland, 1997; Blascovich et al., 

2002; Goodwin, 2008; Bellani et al., 2011; Parsons and Cobb, 2011; Kandalaft et al., 2013; 

Didehbani et al., 2016; Simões et al., 2018a). According to those authors, several reasons 

account for this match, including the level of control virtual stimulations provide regarding 

the amount of stimuli and clutter in the environments, allowing for simplifications that are 

tolerable by the patients; the possibility of repeating the same task in different environments, 

helping the generalization of the trained concepts; the safety of virtual settings, enabling the 
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training of possibly dangerous tasks without the danger of harming the participant (like 

crossing a busy street or driving a car); and the frequently observed adherence of ASD 

participants to computerized setups, mostly due to their structure and predictability. However, 

despite this apparently perfect match, very few studies addressed the use of fully-immersive 

VR simulations in ASD. Most virtual rehabilitation interventions categorize themselves as VR 

interventions, but the large majority of them consists solely on computerized interventions 

(Lorenzo et al., 2016).  

The review by Miller and Bugnariu (2016) shows that the level of immersion of experimental 

settings directly impacts the assessment and teaching of social skills in ASD. However, most 

studies identified by that review only present low to moderate immersion levels. Furthermore, 

there was no study, to the best of our knowledge, performing a fair comparison between real 

and fully-immersive environments assessing a social skill in ASD. Therefore, the advantage of 

virtual settings in the training or assessment of social skills for this disorder still lacks 

supporting evidence.  

In this paper, we compare and evaluate the feasibility of a fully-immersive VR setup to 

measure a simple social skill: the interpersonal space social regulation. We developed a virtual 

environment that is a detailed and realistic replica of the real environment where the 

experiment is conducted, thus reducing the variability between experimental settings, enabling 

a fairer comparison of results.  

Interpersonal space social regulation is the way one adjusts the distance maintained between 

himself/herself and other people (Gessaroli et al., 2013; Perry et al., 2015a). That distance is 

called interpersonal distance (IPD), and has been used as a measure of extent of social personal 

space (Candini et al., 2017). People spontaneously monitor and closely adjust their IPD in 

order to maintain a comfortable distance of interaction with others. IPD varies with the social 

context, both in animals and humans. It increases in situations of threat, but is also sensitive 

to friendship, attraction or intimacy in others (Delevoye-Turrell et al., 2011; Perry et al., 

2015a). Nevertheless, apart from cultural and situational differences, IPD seems to be stable 

within each individual throughout his/her lifespan (Perry et al., 2015b). Thus, individually-

measured IPD can be used as a metric of human social interaction. 

There is evidence for abnormal IPD in several neuropsychiatric or neuropsychological 

disorders, like early child abuse (Vranic, 2003), post-traumatic stress disorder (Bogovic et al., 

2014) and social anxiety (Perry et al., 2013), among others. Since social deficits represent the 
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core characteristic of ASD, some studies have addressed the personal space regulation in this 

neurodevelopmental disorder. However, the results are controversial: while some studies 

show a preference for wider distances (Gessaroli et al., 2013; Candini et al., 2017), other 

authors found that participants would choose very close distances without feeling any 

discomfort (Parsons et al., 2004; Kennedy and Adolphs, 2014; Perry et al., 2015a). This 

variability suggests that other factors might be responsible for the IPD preference, like sensory 

sensitivity levels or severity of social impairments (Perry et al., 2015b). 

Immersive virtual environments have been used to study personal space. Some works 

compared behavior in virtual settings and concluded they follow the expected patterns 

observed in real ones  (Blascovich, 2002; Bailenson et al., 2003), but no direct quantitative 

measure was performed between real and virtual settings. Another study compared the IPD 

preference between different types of virtual agents, but with no direct validation against real 

environments (Iachini et al., 2014). Regarding ASD studies of personal space using virtual 

environments, Parsons and colleagues (2004) conducted an experiment where participants 

were evaluated on whether they would disrupt the personal space of virtual avatars engaged 

on a social interaction. Once again, no direct test against a real environment was conducted 

and, furthermore, the virtual setting was rendered in a non-immersive setup (laptop). 

Our approach consisted on the use of a modified version of the stop-distance paradigm 

(Gessaroli et al., 2013) applied both in a real environment and in an immersive virtual replica 

of the same setting. A group of ASD participants and a group of typically-developing (TD) 

youngsters underwent the experiment. Our goal was to compare regulation of interpersonal 

distance in the real and virtual environments in the two groups and, through that comparison, 

to investigate how immersive virtual and environments compare across groups and if they can 

provide reliable measures of a social interaction action metric. 

6.2.2 Methods 

6.2.2.1 Participants 

The study comprised two groups of participants: the experimental group, composed by 

individuals with confirmed ASD diagnosis; and the control group, composed by individuals 

with typical neurodevelopment. A total of 48 participants were enrolled in the study, 25 for 
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the ASD group and 23 for the control group. Groups were matched by age and performance 

intelligence quotient (PIQ). Further characterization details can be found in Table 6.1. 

ASD participants were recruited from the Autism Unit, Child Developmental Center, 

Pediatrics Hospital from the University Hospital of Coimbra and from Portuguese ASD 

patient associations (Coimbra and Viseu). The diagnosis of ASD was performed based on the 

Autism Diagnostic Observation Schedule, the Autism Diagnostic Interview – revisited and the Diagnostic 

and Statistical Manual of Mental Disorders – 5th edition criteria, confirmed by an experienced 

multidisciplinary team coordinated by neurodevelomental Pediatricians. Participants from 

both groups had their intelligence quotient (IQ) assessed with the Wechsler Intelligence Scale for 

Children for younger participants, and with the Wechsler Adult Intelligence Scale for 

participants older than 16 years old, by a trained neurodevelopmental psychologist. 

Table 6.1 – Characterization of Groups: Mean and standard error of the mean – within 
parenthesis – of age, full scale IQ (FSIQ), verbal IQ (VIQ) and performance IQ (PIQ) (* p > 
0.05). 

 ASD TD  

N 25 23  

M/F 23/2 22/1  

Age 12.8 (0.6) 13.0 (0.6) * 

FSIQ 99.4 (3.0) 115.8 (4.1)  

VIQ 96.6 (2.4) 116.3 (4.4)  

PIQ 102.7 (4.0) 110.0 (3.5) * 

 

Written informed consent was obtained from the parents of the participants or, when 

appropriate, the participants themselves. The study was approved by the ethics committee 

from Faculty of Medicine from the University of Coimbra and was conducted in accordance 

with the declaration of Helsinki. 

6.2.2.2 Experimental setup 

The experiment was conducted in our VR lab, established at the Centro de Investigação e 

Formação Clínica of Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 

Coimbra, Portugal. The lab consists in a rectangular room with approximate dimensions of 4 

x 5.5 x 2.5 meters. The lab is equipped with 3-D Vizard Virtual Reality Toolkit Devices for 
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Integrated VR Setups and a Position Tracking System. Virtual stimuli were presented through 

the Oculus Rift (Oculus, USA) head mounted display (HMD), with a low persistence OLED 

display with 960×1080 resolution per eye, refreshed at 60 Hz. Head orientation was tracked 

using the Oculus internal Adjacent Reality Tracker and head position was tracked using a 

passive optical tracking system (Precision Position Tracker, PPT-H2; WorldViz, USA), with 

an infrared emitter attached to the HMD. Graphics displayed in the HMD were updated on 

the basis of the position and orientation of participant’s head. A long cable connected the 

HMD to the desktop computer on the corner of the room, allowing for the participant to 

move freely inside the room. 

 

Figure 6.1 - Images of the VR lab (photography, left) and its 3D representation used as virtual 
environment (3D rendering, right). 

 

The virtual environment experiment was developed using the Vizard software, and for the 

virtual avatars we used the male m002 and female f008 from the Complete Characters HD 

Pack (Worldviz, USA). Due to the position tracking system and having the exact same 

environment, the virtual walls are in the exact same positions as the real ones, so the 

participants can touch and feel the virtual walls (while touching the real ones). Figure 6.1 

shows photographic captures of both environments. 

Stop-distance paradigm 

We applied an adapted version of the stop-distance paradigm used by Gessaroli and colleagues 

(2013). All subjects met the experimenters for the first time. All subjects were tested in the 

same room and virtual environment, against real and virtual experimenters of similar 

appearance. For each environment, 16 trials were conducted, corresponding to every possible 
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combination of the 4 binary factors tested: gender of the experimenter (male or female), 

experimenter’s gaze direction (direct or averted), mode (starting from far away – 3 meters – 

and walking towards the other or starting very close – 30 cm – and walking away from the 

other) and actor (the experimenter or the participant is the one who walks). Figure 6.2 shows 

the different combinations of these last two modes. Trials were presented in random order in 

both environments, to avoid adaptation effects. 

 

Figure 6.2 – Example showing four different conditions, regarding who is walking and the 
walking person. A) The experimenter approaches the participant. B) The experimenter 
recedes from the participant. C) The participant approaches the experimenter. D) The 
participant recedes from the experimenter. 

 

In the trials in which the participant is the one moving, he/she simply stops at the distance 

he/she feels more comfortable. For the other trials, the experimenter walks in a steady pace 

towards or away from the participant, who was instructed to say the word “stop” whenever 

they feel the distance is appropriate. They could then fine-tune that distance by asking the 

experimenter to move slightly closer of farther away. Afterwards, the distance between the 

waists of the experimenter and the participant were measured with a digital laser measurer 

(model DLR165K; Bosch; error ±0.003 m).  

Two marks in the room floor, 3 meters from each other, marked the starting positions for the 

participant and the experimenter, so between each trial the experimenter and the participant 

reset their positions. Inside the virtual environment the avatars (male or female) playing as 

experimenters appeared in the beginning of each trial in the same place as the starting position 

a b

c d
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of the real environment and were programmed to walk towards or away from the participant. 

The avatar’s gaze was directed or averted to the participant, depending on the trial condition. 

The participants had to act as in the real environment: saying “stop” at the distance they felt 

more comfortable, or simply stop in the trials they were the ones walking. Afterwards, they 

could adjust the distance asking the avatar to come a bit closer or farther away. Stopping the 

avatars and the final adjustments to the position were controlled by one of the experimenters. 

Figure 6.3 shows a participant performing the same trial in the real environment and immersed 

in the virtual one. 

 

Figure 6.3 – Capture of a user performing the task in both environments: the real environment, 
on the left, and the user using the VR setup, on the right. On the projection wall we display 
the same content that is presented to the user through the HMD. 

 

6.2.2.3 Statistical Analysis 

Since IPD relates to a social face-to-face contact, we converted the waist-to-waist distance 

into a face-to-face distance, based on the height of each participant and the experimenters 

applying the Pythagoras theorem  

 

𝐹𝑑𝑖𝑠𝑡 = √𝐷2 + |𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑒𝑟ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡ℎ𝑒𝑖𝑔ℎ𝑡|
2
 (6.1) 

using the measured distance (D) and the height difference between the experimenter and the 

participant. 
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For the first level analysis, we computed a generalized linear model (GLM) for each 

participant’s measures under each environment to find explained variance introduced by each 

factor. The model goes as  

 𝐷𝑘 = 𝐷𝑚 + 
1
∗ 𝐸𝑥𝑝𝐺𝑒𝑛𝑑𝑒𝑟𝑘 + 2 ∗ 𝐸𝑥𝑝𝐺𝑎𝑧𝑒𝑘 + 3 ∗ 𝑃𝑟𝑜𝑥𝑀𝑜𝑑𝑒𝑘

+ 4 ∗ 𝑊ℎ𝑜𝑊𝑎𝑙𝑘𝑠𝑘 + 𝑘 
(6.2) 

with 𝐷𝑘 as the measured distance at trial k, the 𝐷𝑚the mean distance for that participant 

(intercept of the model) and 𝑖, 𝑖 є [1, 4] as the weights of each factor i. Each factor 

(ExpGender, ExpGaze, ProxMode and WhoWalks) assumes the value 0 or 1 depending on 

the respective trial k. Figure 6.4 shows the design matrix for this model. The models were 

computed through the glmfit function of the Statistics and Machine Learning Toolbox from 

the Mathworks Matlab r2019b software. 

 

Figure 6.4 - Design matrix for the GLM models computed at the first level analysis. 

 

The 𝐷𝑚 and 𝛽 values were carried to the second level analysis. Non-parametric tests were 

used since data normality was not verified for all the distributions (verified through the 

Kolmogorov-Smirnoff test). 𝛽 values were tested against 0 to see if they had influence in the 

distances observed, using the Wilcoxon signed rank test. Between group comparisons were 

performed for median (Wilcoxon rank sum test) and variance (Brown–Forsythe test). The 

relation across environments was compared through Pearson correlations of the distances of 

each participant for both environments, and between groups through the analysis of the slopes 

of each group’s least-squares fit (Brame et al., 1998). Additionally, to rule out influence of age 



 

151 

 

or IQ, we verified the correlations between the participant IPDs and their age, full-scale IQ, 

verbal IQ and performance IQ. Tests were conducted considering the statistical  threshold 

of 5%. 

6.2.3 Results 

From the IPD histograms obtained for each group in the environment (Figure 6.5) we verify 

that the TD group (orange) shows a sharper distribution around the mean, while the ASD 

group manifests a twofold distribution, with a sub-group choosing closer IPDs and another 

subgroup wider ones. 

 

Figure 6.5 - Histogram of interpersonal distance measures for both groups, in the real 
environment. At the left we present the histogram for the ASD group, in blue, and at the right 
the histogram for the TD group.  

 

The Kolmogorov-Smirnoff test for normality showed that, while the TD group presented a 

normal distribution (K-S(22) = 0.1208, p = 0.16), the IPDs for the ASD group did not (K-

S(24) = 0.2018, p < 0.01). We found no median difference between the groups (Z=-0.1445, p 

= 0.89) but, when tested for difference in variance, the Brown–Forsythe test confirmed the 

difference perceivable from Figure 6.5 histograms (F(1,46) = 9.6865, p < 0.005), where a 
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bimodal pattern can also be identified. This bimodal pattern suggests that the ASD can be 

divided in two strata. 

Factor effects were not found to affect the distance, since none of the factors tested for 

statistically significantly different than 0 ( 

 

Table 6.2). Additionally, we found no effect of age, IQ or height covariates in the observed 

distances, for neither group (Table 6.3). 

 

Table 6.2 - Wilcoxon signed rank test results for the factors within each group. Z and 
respective p values are presented. 

 ASD TD 

 Z p Z P 

ExpGender -1.2243 0.2209 -0.2737 0.7843 

ExpGaze 0.1480 0.8824 1.5207 0.1283 

ProxMode 0.3902 0.6964 1.9466 0.0516 

WhoWalks -0.2825 0.7775 -0.7604 0.4470 

 

Table 6.3 - Pearson correlations between the age, full-scale IQ, verbal IQ, performance IQ 
and height covariates and the interpersonal distance preferences of participants, for both 
groups. We present the R value and respective p value. 

 ASD TD 

 R p R P 

Age -0.2910 0.1582 -0.3680 0. 0840 

FSIQ -0.1666 0.4261 0. 3016 0. 1620 

VIQ -0.1835 0.3799 0.3520 0. 0995 

PIQ -0.2022 0.3323 0.1679 0. 4438 

Height -0.0177 0.9331 -0.1536 0.4840 

 

When considering the IPDs measured in the virtual environment, the ASD group maintained 

the wide range verified in the real environment, with a range from 0.4 to 1.7 meters compared 

to the real environment range from 0.5 to 1.5 meters (see Figure 6.6). The TD group, however, 

increased the variation of the IPDs observed. While in the real environment the distances 

measured vary from 0.6 to 1.0 meter, in the virtual environment the range starts also at 0.6 

meters but goes to 1.6 meters. When comparing the variances between real and virtual 

environments there was no difference for the ASD group (F(1,46) = 0.1639, p = 0.69), but 
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for the TD group we found a tendency for a significant effect (F(1,46) = 3.4437, p = 0.07), 

which corroborates the differences between the IPD histograms of this group. 

 

Figure 6.6 - Histogram of interpersonal distance measures for both groups, in the virtual 
environment. At the left we present the histogram for the ASD group, in blue, and at the right 
the histogram for the TD group. The bimodal pattern is still discernible in the ASD group. 

 

For a more direct comparison between environments, we computed the Pearson correlation 

between the distances measured in both environments (see Figure 6.7). We found statistically 

significant correlations for both groups, with a similar, albeit higher correlation for the ASD 

group (R = 0.85, p < 0.001) than the TD group (R = 0.82, p < 0.001).  To investigate scaling 

effects, we tested the difference of the slopes of the least squares fit lines for each group (ASD: 

0.81, TD: 1.68) and found it statistically significant (Z = 3.11, p = 0.003). The slopes for ASD 

were 0.81 whereas for TD, 1.68; meaning that for each step in the real world the TD group 

does a step twice as large in the virtual world than does the ASD group. 
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Figure 6.7 - Scatter plot comparing the measures in the real and virtual environments, for the 
ASD group (in blue) and the TD group (in orange). The slopes of the least squares fit lines for 
each group (ASD: 0.81, TD: 1.68) show that the virtual disruption is grater for the controls, 
since a small difference in the real environment distances manifests a high increase in the 
distance observed in the virtual environment (Z = -3.11, p = 0.003). 

6.2.4 Discussion 

The use of VR for studying and rehabilitating social deficits of ASD has been repeatedly 

advocated in the literature (Strickland, 1997; Blascovich et al., 2002; Goodwin, 2008; Bellani 

et al., 2011; Parsons and Cobb, 2011; Kandalaft et al., 2013; Didehbani et al., 2016; Simões et 

al., 2018a). However, there is no study, to the best of our knowledge, comparing the same 

social regulation behavior in the exact same real and virtual environment. In this paper, we 

created a VR setup that mimics a real environment (which it overlays), thus providing a very 

accurate setting for VR validation, since it provides the same exact visual input to the 

participant whichever its position and orientation are inside the environment, both real and 

virtual. This type of immersive setup is frequently used in the literature (Blascovich, 2002; 

Bailenson et al., 2003; Iachini et al., 2014). However, to the best of our knowledge, no study 

emulated the exact same environment as the one the immersion is performed in. 

To validate the use of virtual environments for tasks that study social abilities in ASD, we 

selected a simple quantitative metric that could be similarly measured in the real environment 

and inside the virtual environment: the IPD. We implemented a well-established protocol for 
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the identification of the IPD of a person – the stop-distance paradigm – and performed it in 

the real and virtual environments.  

The results for the real environment showed different patterns for the ASD group and the 

TD group, not in terms of average distance, but in terms of the type of distribution (near 

normal in TD and bimodal in ASD) and, in particular, the type of dispersion of the observed 

distances. While the TD group showed a more compact distribution around the median, the 

ASD group had some participants opting for closer distances and others to much wider 

distances (half a meter more that the wider distance for the TD group). This statistically 

significant difference between groups may help reconcile previous studies in the literature 

showing disparate results, with some studies reporting preference for wider distances 

(Gessaroli et al., 2013; Candini et al., 2017), while other authors found that ASD participants 

would choose very close distances (Parsons et al., 2004; Kennedy and Adolphs, 2014; Perry et 

al., 2015a). Our data show that both behaviors occurred in our sample. Since regulation of 

IPD is quite important in social interactions, these results identify a stratum within ASD 

whereby patients might benefit from an intervention to improve such regulation, for the cases 

whose distances become socially disruptive. The possibility to manipulate the distance of 

virtual avatars in a controlled way allows the systematic study of neurobehavioral and 

physiological responses of the patients to different IPDs, an aspect that future studies should 

address.  The combination of this simulation with biosensors like electrodermal activity, heart 

rate frequency or electroencephalography would help to understand indirect factors that could 

influence the IPD, like stress-related aspects (Perry et al., 2015a; Simões et al., 2018a). 

We tested whether the IPD depended on other factors like age or IQ. Furthermore, since the 

height of participants was used to convert the waist-to-waist distance to the face-to-face one, 

we also tested its influence on the results. However, no covariate showed to be statistically 

significant, which points towards a social-specific deficit in young adolescents. 

We found no effect of gender, gaze, starting point mode or who walks. While this is consistent 

with some studies (Gessaroli et al., 2013), other studies found that who walks affects the IPD 

(Asada et al., 2016; Candini et al., 2017). Further studies need to be conducted to clarify the 

reasons behind this discrepancy. Importantly, cultural effects cannot not be discarded since 

no multi-centric international study was yet conducted.   

Considering the comparison between real and virtual environments, our results showed a 

slope of IPDs closer to 1 for the ASD group than the TD group (which departed largely from 



 156 

an isometric slope of 1). This critically suggests that ASD patients interact in similar and 

replicable ways (similar scale) in virtual and real worlds, in contrast with TD, who seem to 

show large rescaling, departing from an isometric slope of 1. Interestingly, the TD group 

showed greater variability inside the virtual environment, but not the bimodal pattern that was 

seen in ASD both in real and virtual environments.  

In sum, between environment correlations were high both for the ASD and TD groups, but 

the later showed significantly different and large rescaling. We believe this is due to two 

factors: 1. Patients interact with the real world as if they were in a VR world, without 

processing the social nuances, like subtle body gestures and micro-expressions; 2. Control 

participants are affected by the absence of those social nuances in the virtual environment, in 

a phenomenon similar to the “uncanny valley” effect. The uncanny valley effect is a negative 

feeling reported for interaction with artificially human-like stimuli that have high levels of 

realism but can still be perceived as artificial (Kätsyri et al., 2015, 2017; Macdorman, 2017). 

Our perception of the other comprises a holistic evaluation, which includes several 

subconscious features like micro facial expressions, pupil dilations, odors and several non-

verbal communication aspects (Mundy et al., 1986), which are very difficult to recreate in full 

by virtual avatars. We argue that the ASD group performs the task in the real world ignoring 

those nuances – due to their core deficits in social interactions –, and thus perform similarly 

in the two environments, while the TD group finds the virtual environment more artificial, 

more disruptive, showing a distinct behavioral pattern in this setting, with large rescaling, as 

shown by the slope analysis. 

Our results validate the use of VR for ASD social evaluation and its potentially helpfulness to 

conduct specific social rehabilitation programs, since the behavioral metrics recorded inside 

the virtual environment matched the ones in the real environment. These results support the 

body of literature theory advocating the use of VR in ASD. On the light of this evidence, 

future studies can expand the range of virtual environments used for studying IPD and 

possibly adapt it into a training task, where ASD participants with extreme abnormal IPDs 

which undermine their social interactions can learn to regulate their personal space, in the 

format of a serious game.  

  



 

157 

 

6.3 Virtual Travel Training for Autism Spectrum 

Disorder: Proof-of-Concept Interventional 

Study 

This section is composed by the contents of the following publication: 

Simões M, Bernardes M, Barros F, Castelo-Branco M (2018) Virtual Travel Training 
for Autism Spectrum Disorder: Proof-of-Concept Interventional Study. JMIR 
serious games 6:e5. doi: 10.2196/games.8428. 

Abstract 

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder 

characterized by impairments in social interaction and repetitive patterns of behavior, which 

can lead to deficits in adaptive behavior. In this study, a serious game was developed to train 

individuals with ASD for an important type of outdoor activity, which is the use of buses as a 

means of transportation. 

Objective: To develop a serious game that defines a “safe environment” where the players 

became familiar with the process of taking a bus and to validate if it could be used effectively 

to teach bus-taking routines and adaptive procedures to individuals with ASD. 

Methods: In the game, players were placed in a three-dimensional city and were submitted to 

a set of tasks that involved taking buses to reach specific destinations. Participants with ASD 

(n=10) underwent between 1 and 3 training sessions. Participants with typical development 

(n=10) were also included in this study for comparison purposes and received one control 

session. 

Results: We found a statistically significant increase in the measures of knowledge of the 

process of riding a bus and a reduction in the electrodermal activity (a metric of anxiety) 

measured inside the bus environments with a high success rate of their application within the 

game (93.8%). 
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Conclusions: The developed game proved to be potentially useful in the context of emerging 

immersive virtual reality technologies, of which use in therapies and serious games is still in 

its infancy. Our findings suggest that serious games, using these technologies, can be used 

effectively in helping people with ASD become more independent in outdoor activities, 

specifically regarding the use of buses for transportation. 

 

6.3.1 Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder responsible for 

impairments in social communication and interaction and restricted repetitive patterns of 

behavior, interests, or activities. Current ASD prevalence is estimated to be around 1% of the 

population, worldwide (American Psychiatric Association, 2013). Given that a cure is yet to 

be found, individuals rely on interventional approaches to improve and overcome their 

impairments. Further increasing the relevance of rehabilitation driven strategies is the fact that 

still only a minority of individuals with ASD are able to live independently in adulthood 

(American Psychiatric Association, 2013).  

Virtual reality (VR) consists of artificial, 3D, computer-generated environments which the user 

can explore and interact with (Gutiérrez A. et al., 2008). VR usually takes advantage of 

different types of devices such as head-mounted displays and controllers to deliver the 

stimulation and provide means of interaction that lead to immersive experiences (Kim, 2005). 

The immersiveness of an experience is measured by the level of fidelity, concerning all sensory 

modalities, that a VR system can provide. Thus, immersion is objective, measurable, and 

depends only on the technology used by the VR system. Presence, on the other hand, is the 

human reaction to immersion, the feeling of actually being in the virtual environment and 

behaving as such (Slater and Wilbur, 1997; Slater, 2003; Sanchez-Vives and Slater, 2005). In 

fact, the immersive VR technologies available nowadays are able to present users with 

experiences realistic enough to trick the mind and create a feeling of presence within the 

environment (Bimber, 2014). These technologies have already been used and proven effective 

in therapies for posttraumatic stress disorder (Rizzo et al., 2014), phobias (Emmelkamp et al., 

2001), as well as ASD (Strickland and Marcus, 1996). There are several reasons that justify the 

use of VR in those approaches. Its capacity to provide safe, realistic, and controlled 

environments (Parsons and Cobb, 2011) make therapy possible for people who, due to 
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physical (e.g. paralysis) or psychological (e.g. anxiety) reasons, cannot undergo exposure in real 

life situations. Moreover, this creates the possibility of applying therapies at ease without the 

need to go to a specific location where real exposure occurs. Finally, even when using low-

budget hardware and software, it has been proven that VR therapies can be as effective as 

exposure in real life (Emmelkamp et al., 2001). 

Serious games have also been proven effective in ASD therapies, not only for including game 

design techniques to keep the players motivated, but also because individuals with ASD are 

often interested in computer-based activities (Chen and Bernard-Opitz, 1993). However, 

according to Zakari et al (2014), most of the serious games developed for ASD rehabilitation 

between 2004 and 2014 are delivered through nonimmersive VR (e.g., desktops, tablets) and 

focus mainly on communication and social skill development. This highlights both the 

importance of focusing on other relevant ASD impairments, including executive function in 

outdoor situations, as well as exploring the potential of these new immersive technologies. 

The aim of this study was to develop and validate a serious game which uses a VR headset 

(Oculus Rift) as a proof of concept for rehabilitation of individuals with ASD. Teaching a 

person with ASD to use public transportation requires parents or therapists to practice with 

them until they are ready and comfortable enough to perform this task alone (basically, the 

same process used with people with typical development, but with all the obstacles set by ASD 

particularities). In fact, being able to engage in outdoor activities such as the efficient use of 

public transport can be particularly challenging for people with ASD due to deficits in adaptive 

behavior (Mouga et al., 2015) and anxiety (White et al., 2009). This project intended to ease 

this process by creating and validating a game that prepares the players to use, in this case, 

buses for transportation. This included not only teaching the required skills, but also making 

them comfortable with the involved procedures and environments.  To our knowledge, this 

is the first study to use VR training for teaching the process of bus-taking for people with 

ASD. 

6.3.2 Methods 

In this section, we describe the game, the experimental setup, the participants, and the 

validation procedure. 
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6.3.2.1 Game Description 

The game was developed in-house with the aim of preparing individuals with ASD to use 

buses for transportation. To achieve that, it places the user in a three-dimensional city and sets 

a task that is completed by riding buses to reach a specific destination. Figure 6.8 shows 

different screenshots of the city and the buses.  

 

Figure 6.8 – Screenshot from the virtual environment, showing two views from the bus stop 
perspective on the top, and two views from inside the bus. On the top left corner, we can see 
one bus stop, with other people waiting for the bus, and the map to be used by the participant 
on the wall. On the top right, we see a bus with its designated number signaled in red, and 
some traffic on the street. The bottom images show two perspectives from inside of the bus. 

 

There are several different buses driving in 4 pre-defined routes within the city. Figure 6.9 

shows the map of the city with the 4 bus lines available. The player can enter any of these 

buses, validate his/her ticket, choose a place to sit, and press the STOP button, requesting the 

bus to stop, and leave the bus. Before starting the game, it is possible to choose from 7 

different tasks, 4 of them labelled by complexity as simple (the player only needs to take one 

bus to reach the destination) and 3 labelled as complex (the player needs to take 2 buses to 

reach the destination). Each task has 2 levels of difficulty: an easy and a hard mode. The easy 

mode leads the player, step by step, to the destination, while in the hard mode, the player is 

only told the place he/she must go to. At the end of each task, a scoring system evaluates the 

performance of the player on 2 different components: "Actions" (the capacity of the player to 
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memorize and execute bus norms, eg, validating the ticket or sitting on unreserved seats) and 

"Route" (the capacity of the player to plan a route to the destination, eg, if the player took the 

right buses in the right bus stops). 

 

Figure 6.9 – City map showing the bus lines, stops and important places like the hospital, 
church, restaurant, and others. 

 

The game includes several objects/elements, such as people, traffic, and dogs, which might 

cause anxiety, depending on the player. For that reason, a biofeedback system was 

implemented to ensure that, while the player becomes familiarized with the environment, it 

never becomes hostile to him/her. This is achieved by assessing the anxiety felt by the player 

through the analysis of the electrodermal activity (EDA) and reducing the stimulus clutter the 

player is exposed to, in real time, in case high anxiety levels are reached (eg, reducing the 

amount of noise in the environment). Figure 6.10 schematizes the biofeedback loop. 
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Figure 6.10 – Biofeedback loop diagram. The level of electrodermal activity is measured from 
the participant by the game. If it detects a peak of activity, it decreases the level of stimuli and 
noise in the scene. 

6.3.2.2 Recruitment 

For this project, 2 groups were selected: a clinical and a control group. For the clinical group, 

10 participants with ASD, whose diagnosis followed the criteria established on the Diagnostic 

and Statistical Manual of Mental Disorders, 5th Edition (American Psychiatric Association, 

2013), were recruited from Associação Portuguesa para as Perturbações do Desenvolvimento 

e Autismo de Viseu (APPDA-Viseu). For the clinical group, 9 males and 1 female were 

recruited, with a mean age of 18.8 (SD 4.5) years. In the same group, 8 were without 

intellectual disability (IQ equal to 70 or higher) and 2 were with mild intellectual disability (IQ 

between 50 and 69 (World Health Organization, 1993)). For the control group, 10 individuals 

with typical development (TD) were also recruited; 4 males and 6 females, with a mean age of 

21.9 (SD 3.56) years. The groups were matched by age (t(18)=−1.633, P=.12). Participants 

gave oral consent, and a written informed consent was obtained from their parents/guardians 

or themselves if they were adults with sufficient autonomy.  

6.3.2.3 Intervention Protocol 

The ASD group underwent an intervention of 3 sessions of increasing complexity and 

difficulty (see Table 6.4), with a duration between 20 and 40 minutes each. Of the 10 

participants recruited with ASD, only 6 performed all the intervention sessions of the study 
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due to scheduling issues. During the recruitment, participants completed a questionnaire to 

assess their experience in using buses for transportation. With an exception for 1 of the 

participants, all the participants were unable to take buses autonomously at the beginning of 

the study.  

Table 6.4 – Task complexity and difficulty per session. 

Metric Session 1 Session 2 Session 3 

Difficulty Easy Hard Hard 

Complexity Simple Simple Complex 

 

The control group was submitted to a single session (corresponding to the first of the 

patients). This group was used to provide a task baseline and to assess the capacity of the 

serious game to identify differences between groups. 

The sessions took place in APPDA-Viseu for the ASD participants and in the Institute of 

Biomedical Imaging and Life Sciences for the TD participants. In all of them, the same 

research staff was present. This study and all the procedures were reviewed and approved by 

the Ethics Commission of our Faculty of Medicine from University of Coimbra and were 

conducted in accordance with the declaration of Helsinki.  

6.3.2.4 Session Procedure  

In each session, the players received a tutorial (to learn or review the game controls) and a 

task. The task difficulty and complexity changed from session to session, as shown in Table 

6.4. At the end of every session, participants were asked to describe the process of riding a 

bus, from the moment they arrived at the bus stop, until they reached their destination, but 

never received feedback on the answer given. Their responses were recorded in a checklist 

containing all the steps existing in a bus trip (Textbox 6.1).  

Textbox 6.1 - Checklist with steps existing in a bus trip. 

● Wait for the bus 

● Enter in the bus 

● Validate ticket 

● Avoid reserved seats 

● Sit 
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● Wait until getting close to the destination 

● Press stop button 

● Leave the bus 

6.3.2.5 Acquisition Setup 

In every session, players sat on a swivel chair and wore a bracelet for wireless EDA recording 

(Biopac Bionomadix BN-PPGED and MP150 amplifier). All tasks were run on a laptop 

computer (Windows 8.1, 16.0 GB RAM and an IntelCore i7 2.50 GHz processor). The head-

mounted display used was Oculus Rift Development Kit 2, firmware version 2.12, and a 

gamepad was used for input. Three participants with ASD and one with TD received the tasks 

without the Oculus Rift, due to vision impairments. Figure 6.11 illustrates the setup used.  

 

Figure 6.11 – Diagram of the setup used during the sessions, including the VR headset, game 
controller, biosignal recorder, and the main computer. 

 

6.3.2.6 Metrics and Outcome Measures 

Because the main objective of the serious game was to teach how to use a bus, we defined 

two main outcome measures to evaluate the knowledge of the process of riding the bus. One 

is measured automatically by the game and the other is measured using the debriefing. Both 

consist of the percentage of the checklist (Textbox 6.1) performed correctly. 
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Actions Accuracy 

The game identified every action of the participant (entering the bus, ticket validation, etc) 

and calculated the actions accuracy based on the equation: number of correct actions/number 

of expected actions (Textbox 6.1). 

Debriefing Accuracy 

After the game, we asked the participants to describe the step-by-step process of riding a bus 

and calculated an accuracy based on the same equation of the actions accuracy. 

Additional Metrics 

Task Duration 

Duration, in minutes, of the time taken to complete the task in each session. Since the tasks 

changes in complexity and difficulty, this metric is not directly comparable between sessions. 

Nevertheless, it is useful to analyze intersubject variability and to perform intergroup 

comparisons for the first session. 

Anxiety Level 

The variation of EDA values during the session was used as a measure of anxiety. To calculate 

it, we detrended the signal, subtracting it to its best fit to a straight-line (for details, see detrend 

implementation in MathWorks Matlab), then calculated the standard deviations of the 

detrended EDA values. We then created heat maps of anxiety peaks in the “virtual city”, where 

it is possible to highlight the game locations where EDA peaks occurred, corresponding to 

anxiety events felt by the players. If the locations of anxiety peaks are the same between 

subjects and sessions, those locations will become red, but if they are sparse, their 

representations are green and blue. The heat maps were created using heatmap.js (Wied, n.d.), 

an open source heat map visualization library for JavaScript. Since the game has two major 

different situations (the city streets and the inside of the buses), two different conditions were 

defined: one representing the anxiety felt on the streets of the city and another with the anxiety 

felt inside the buses. 
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6.3.2.7 Statistical Analysis 

For every metric, normality was assessed using histograms, Q-Q plots and the Kolmogorov-

Smirnov test. Normality test results were used to choose between parametric and 

nonparametric test, accordingly. 

Clinical vs Control Group Analysis: 

The metrics actions accuracy, debriefing accuracy, and task duration were not normally 

distributed. Therefore, we used the Mann-Whitney U test for the between-group comparison 

of those metrics. Anxiety Level data was nevertheless normally distributed. Thus, we used 

two-sample T test for those between-groups comparisons. 

Intervention Analysis (Intragroup Analysis for the Clinical Group): 

As expected from the intergroup analysis, Actions Accuracy, Debriefing Accuracy, and Task 

Duration were not normally distributed. Paired data for last and first session were therefore 

compared using a Wilcoxon Sign-rank test. Regarding Anxiety Level, a one-sample T test was 

used for the paired data (last and first session). Additionally, we generated heat maps of 

locations where consistent peaks of anxiety where identified. 

6.3.3 Results 

The results are organized in two sections, one for the intergroup analysis and another for the 

within-subject analysis of the clinical group. In the figures presented, the error bars always 

represent the standard error of the mean, and the horizontal bar represents the median when 

considering nonparametric data (actions and debriefing accuracies, as well as task durations) 

and the mean when considering parametric data (EDA measures). 

 

6.3.3.1 Clinical vs control group results 

Regarding the actions accuracy (percentage of correct actions performed during the task), we 

found a statistically significant difference between groups. The Mann-Whitney U test indicated 

that the actions accuracy of the control group (median=100%) was greater than for the clinical 
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group (median=88%), U=75.0, P=.01. When analyzing the knowledge retained by the 

debriefing, the control group (median=100%) has greater accuracy than the clinical group 

(median=62.5%), as shown by the Mann-Whitney U test, U=80.5, P=.02 (Figure 6.12).   

 

Figure 6.12 – Left: Actions accuracy for both groups in the first session. The control group 
(typical development) had a perfect performance, while participants in the clinical group 
missed some actions. Right: Debriefing accuracy for both groups. Higher, but not perfect, 
accuracy was found in the control group. 

 

In terms of Task Duration, Figure 6.13 shows the between-group differences. A Mann-

Whitney U test showed that the task duration of the ASD group (median=3.76) was 

statistically significant higher than for the control group (median=3.19), U=18.0, P=.02. 



 168 

 

Figure 6.13 – Task duration for session 1 from each group. 

 

Regarding the anxiety level of each group, we see a trend for higher values for the clinical 

group for all the scenarios (global EDA, inside the bus and outdoors, in the street). Figure 

6.14 shows the mean EDA fluctuations of each group in each condition. However, two-

sample T tests showed no statistically significant differences (possibly because of the 

biofeedback implementation) for either of the conditions (global EDA: t(18)=−0.60, P=.56; 

bus condition: t(18)=−0.99, P=.33; streets condition: t(18)=−0.48, P=.63).  
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Figure 6.14 – Anxiety levels for each group (mean and standard error) for the overall task and 
two subconditions: inside the bus and outside (streets). The clinical group presents higher 
values for all the settings, although without statistical significance. 

 

6.3.3.2 Intervention Results 

We then compared the main outcome measures pre- and postintervention for the 6 

participants who completed the 3 sessions. The in-game measure (actions accuracy) evolved 

positively throughout the sessions (preintervention median accuracy=75.0%, postintervention 

median accuracy=93.8%; see Figure 6.15), with a Wilcoxon signed-rank test showing a small 

trend for significant differences (Z=1.63, P=.10). Even though the differences were not 

statistically significant when using “in-game” measures, the same test applied to the Debriefing 

Accuracy show a significant increase (Z=2.22, P=.03) from session 1 (median=68.8%) to 

session 3 (median=100.0%). Figure 6.16 illustrates the evolution of the debriefing checklist 

accuracy throughout the sessions. 

 



 170 

 

Figure 6.15 – Actions accuracy for the clinical group, measured “inside the game” throughout 
the intervention sessions. 

 

 

Figure 6.16 – Debriefing accuracy of the intervention group for each session. 
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Regarding the task duration, since the tasks increased in complexity and difficulty along the 

intervention, the task duration is not directly comparable. However, it is important to verify 

that the time to successfully complete the task did not statistically increase, even with exposure 

to harder levels (Figure 6.17). In session 1, the task was performed in the “easy” mode, in 

which players are guided step by step, from the starting position until the final location. Tasks 

in “easy” mode do not require as much planning as the ones in “hard” mode, but slowly 

introduce the player to this concept and demonstrate how buses can be used to travel between 

bus stations. The “hard” mode tasks, on the other hand, only tell the player where they must 

go to complete the task (eg, "go to the hospital"). In these tasks, players have to analyze the 

map to discover which bus or buses they can take to reach the final destination. Furthermore, 

the tasks received in sessions 1 and 2 required the player to take 1 bus, while the task from 

session 3 required the player to take 2 buses. A Wilcoxon signed-rank test show no difference 

between the easiest and simpler (first session) task and the most complex and difficult task 

(last session), Z=0.105, P=.92. 

 

 

Figure 6.17 – Time taken by each participant in the clinical group to complete the task in each 
intervention session. 
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The anxiety levels decreased from the first to the last session, for both overall EDA and for 

the bus and streets conditions. Figure 6.18 shows the mean differences and their error. 

However, only the bus condition shows a strong tendency to significance (t(5)=−2.36, P=.07). 

The general EDA values showed a weak tendency towards an effect (t(5)=−1.93, P=.11) and 

the EDA values on the streets had the smaller decrease with the intervention (t(5)=−1.48, 

P=.20).  

 

Figure 6.18 – Decrease observed in anxiety levels, measured by electrodermal activity 
variability, between the last session and the first. 

 

We created heatmaps using the peaks of anxiety of each participant and separated the 

conditions inside the bus and outside. Figure 6.19 shows the streets scenario for each of the 

sessions, and Figure 6.20 shows the same metrics but for the inside the bus condition. 
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Figure 6.19 – Anxiety peaks heat map from session 1 (left) to session 3 (right), for the times 
the participant was not inside of the bus environment. Most of the locations represent bus 
stops, where participants need to make the decision of what bus to take and wait for it to 
arrive. 

 

Figure 6.20 – Anxiety peaks heat map from session 1 (left) to session 3 (right), for the times 
the participant was inside of the bus environment. The locations are much more dispersed 
through the route than in the outside the bus scenario. There is a visible decrease in frequency 
of anxiety peaks from the first to the last session. 

 



 174 

According to Figure 6.19, players felt most anxious in 3 different situations (Textbox 6.2).  

Textbox 6.2 – Situations in which players felt anxious. 

● When waiting for the bus at the bus stops (red areas near the bus stop 

signs) 

● When planning the trip or looking for the correct bus stop in the starting 

areas (ie, green areas near the restaurant in session 1, the fire station in 

stage 2, one of the bus stops in session 3) 

● When reaching or looking for the destination in the finishing areas (ie, 

green areas near the police station in session 1, the hospital in session 2, 

and the fire station in session 3). 

 

6.3.4 Discussion 

This project aimed to assess the potential of the developed serious game and here presents it 

as a tool for rehabilitation. The game is, to our knowledge, the first application specifically 

developed to teach ASD individuals to use public transportation systems.  In addition, we 

were able to measure psychophysiological markers of anxiety, paving the way for future 

biofeedback applications. With only three sessions, it was possible to improve the knowledge 

of the participants regarding the norms of the bus-taking process and to reduce the anxiety 

levels felt by the participants during that process. 

The impacts of a learning tool with this purpose are broad since it trains executive functions 

and might increase the autonomy of the users, providing them with a new way of moving 

through a city. It is also a way to make cities more inclusive, providing people with special 

needs ways to successfully use this type of public service. 

Some studies have been conducted using VR training for ASD, usually focusing on training 

other skills. Most interventional approaches target social performance training (Kandalaft et 

al., 2013; Stichter et al., 2014) or job interviewing (Smith et al., 2014). Gaming platforms 

(Simões et al., 2014b) and brain-computer interfaces (Simões et al., 2012) were also suggested 

in the literature for autism training, but without validation with patients. Although these are 

important targets of intervention, our work focuses on a more specific task of executive 

function that is relevant for the needs of daily life. Our pilot validation study aimed to assess 
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not only the efficacy of the application, but also the acceptance of the solution with this 

specific clinical population. Few studies perform fully immersive interventions, and the 

difficulties of combining them with biofeedback create a technology apparatus that could 

potentially be disruptive to the participants. The 4 drop-outs during the intervention occurred 

exclusively due to scheduling issues. No patient dropped the study due to discomfort or raised 

any difficulty in using the setup. There were specific cases where the Oculus device was not 

used, but all of those were related to vision impairments, not to lack of tolerance from the 

user. 

The baseline comparison with the control group was clear in identifying the impairments in 

the clinical group. Both the debriefing of the procedure for taking the bus and the in-game 

actions showed statistically different results between groups, proving the validity of the 

rehabilitation target and confirming the capacity of the game to, by itself, identify the deficits 

of target participants in the process of taking the bus. Additionally, the time needed to 

complete the task was increased for the clinical group. Despite having mean anxiety levels 

above the control group, this difference was not significant, perhaps due to the small statistical 

power resulting from a small group of participants, as well as the implementation of 

biofeedback, which decreases differences between groups. 

The intervention was successful in increasing the accuracy of the process description during 

the debriefing, showing a statistically significant improvement in the theoretical knowledge of 

the process, which was the main outcome measure. When evaluated inside the game by the 

user actions, the increase was not statistically significant, but showed a tendency that we 

believe additional sessions or a larger intervention group would further confirm. It was also 

successful in decreasing the anxiety felt by participants, especially inside the bus. By using heat 

maps to represent the anxiety peaks recorded, it was possible to understand that participants 

with ASD felt more anxious in bus stops and near the starting and finishing areas. This led to 

the conclusion that, when outside the buses, players felt most anxious when planning the trip, 

when looking for the bus stop, when waiting for the bus, and when looking for the final 

destination. Inside the bus, we observed a desensitization to stress throughout the sessions, 

with a final session showing fewer peaks of EDA activity. 

Despite the increase of task complexity and difficulty across sessions, the time duration to 

complete the task did not increase, suggesting a learning effect and adaptation to the serious 

game. 



 176 

By using the game as a therapeutic intervention tool, in just three sessions it was possible to 

improve the general efficiency of participants and expose them to peculiar scenarios in which 

they could train their planning skills. More importantly, it was possible to nearly extinguish 

the anxiety felt in bus environments and teach the bus-taking norms necessary for the 

autonomous use of buses for transportation, both in theoretical and practical contexts. Future 

studies should conduct randomized controlled trials, with larger intervention groups, to 

replicate the findings and extend them to other clinical populations with executive function 

deficits and lack of autonomy. 
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6.4 Chapter Discussion 

For the virtual rehabilitation part of this thesis, we created a virtual reality lab for performing 

fully-immersive virtual reality experiments with ASD patients. We verified that, in the 

literature, despite the consensus that virtual reality is a suitable and promising setting for 

studying and training social skills in ASD, no study conducted a fair comparison between real 

and virtual environments. So, we created a 3D representation of the lab and tested a simple 

social measure in a real environment and in its virtual replica. The results confirmed that we 

are able to reproduce, with high levels of accuracy, the social behavior observed in the real 

world inside the VR environment. This is a basilar study to support the applicability of VR 

studies in ASD. 

Furthermore, and despite some evidence showing that higher levels of immersion produce 

better outcomes in for computerized ASD interventions (Miller and Bugnariu, 2016), most 

studies claim the use of “virtual reality” when performing simple computerized tasks on tablets 

or computers (Lorenzo et al., 2016). With our intervention game to training ASD individuals 

to use the bus, we were able to improve participants’ knowledge on the rules to use the bus, 

verified inside the game (by automatically analyzing the actions of the players) and outside the 

game, through debriefing. Furthermore, we were able to reduce the anxiety levels manifested 

by the participants during the task throughout the sessions, with some participants (and 

parents) reporting in the end of the intervention sessions that would then be willing to use the 

bus autonomously. We confirmed through an informal follow up that at least one case actually 

started to use buses as a consequence of the training sessions with the serious game. 

The variability of symptomatology and specificities of each ASD patient poses several 

challenges on the development of such interventions. One way to deal with it is letting the 

game adapt to the patient needs and skills (Bartoli et al., 2014; Whyte et al., 2015). To provide 

that kind of adaptation, the implemented biofeedback system played an important role. The 

seemingly change in game noise and disturbing elements based on the stress level felt by the 

participants provided a smoother interaction without disrupting the experience. Furthermore, 

the customization of the game with several levels with different difficulty and complexity 

allows the users to incrementally progress based on their skills at the time. The integration 

with the neurohab platform (Simões et al., 2014b - Appendix IV) provides progress 
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monitoring for the therapists and caregivers, as well as an automatic adjustment of the 

difficulty levels or the implementation of pre-defined training plans. 

We believe that this integrative view of patients, caregivers, therapists and technology in the 

tackling of the deficits of the patient might significantly improve the quality of interventions 

offered to this population. The costs of intensive training are too expensive for several families 

to support and is, most of the times, only available in large urban centers. Remote families 

struggle to provide the patients at their care intensive therapeutic training. For such families, 

platforms like neurohab can be a solution that provide them access to therapies that would 

be, otherwise, impossible to have. Future studies will need to further validate the efficacy of 

these interventions, through phase II and III clinical trials. 
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General Discussion and Future Work 

This thesis aimed at the understanding of social deficits in ASD and their rehabilitation, from 

a clinical informatics perspective. Our approach for tackling ASD social deficits is supported 

on an integrative solution between knowledge derived from neuroimaging and the 

development of virtual rehabilitation techniques, where virtual reality technology is used to 

mimic social scenarios and interactive situations and the neuroscience inspired neuroimaging 

technology provides real-time information about the ongoing brain activity, allowing the 

patient to endogenously manipulate his/her brain activity in that social context. 

Firstly, we investigated the known social deficits of ASD. One of the major difficulties 

recognized in the literature is the identification of the direct neural underpinnings of 

processing of facial expressions in others. Our systematic review (Monteiro et al., 2017) 

showed that the state-of-the-art regarding EEG studies on facial expression processing in 

ASD present inconsistent findings, with most studies using static images of facial expressions, 

contrasted with neutral expressions. We argue that most social nuances are anchored on the 

dynamism of facial expressions, which is lost in the experimental paradigms based on static 

pictures. Hence, we implemented a dynamic facial expression morphing paradigm using 

virtual avatars, in which we contrasted the morphing of the facial expression with the neutral 

expression (Simões et al., 2018b). This stringent contrast enabled us to better recreate social 

interaction situations and separate the processing of the facial expression from the processing 

of the face itself. Most studies in the literature are not able to isolate these two processes 

because the contrasts are usually made against a blank baseline. We previously had conducted 

a pilot study with EEG and virtual reality that showed the feasibility of such an approach 

(Simões et al., 2014a). 

The ecology introduced in the experimental design, along with the restrictive and focused 

experimental contrast, allowed us to identify two event-related components that responded 

specifically to the expression-related features of the face, the first around 300 ms after the 

stimulus onset and the second around 600 ms. Sources analysis of those two components 

identified a group difference in the right Precuneus, with the ASD group showing a higher 
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recruitment of the mentioned region. Because we used a stringent contrast in the visual 

stimulation task, we expected the core processing of the face (irrespective of emotional 

aspects) to have less weight than the emotional perspective-taking aspects task. The precuneus 

is one of the core regions present in the perspective taking network (Healey and Grossman, 

2018), for both cognitive and affective perspective taking networks (Abu-Akel and Shamay-

Tsoory, 2011). Although the link between the precuneus and its role in facial expressions 

processing had already been shown by some studies (Saarimäki et al., 2016; An et al., 2018), 

ours was the first one, to the best of our knowledge, to identify its over-recruitment by the 

ASD population in a social cognition task. 

From the standpoint of the analysis of the visual perception of facial expressions, we then 

studied the mental imagery of facial expressions in ASD. Mental rehearsal is very important 

for action perception cycles, in particular in the context emotional face recognition. Our task 

combined mental imagery, perspective taking and theory of mind, since the participant is asked 

to recreate an expression of another. We found that the ERP elicited by the imagery cue did 

indeed reveal that source differences were very similar as compared to the ERP of the FE 

stimuli, with the precuneus showing higher activation for the ASD group. Moreover, the 

source analysis conducted on the sub-bands of the frequency spectrum showed that, for the 

theta band, the same region presented a higher activation pattern for the ASD group. The 

right Precuneus belongs to task-active networks (Yang et al., 2015) that are also active during 

imagery (Cavanna and Trimble, 2006). Since visual perspective taking and theory of mind skills 

are impaired in ASD (Hamilton et al., 2009; David et al., 2010), we believe that ASD 

participants needed higher recruitment of the right precuneus as a compensatory mechanism 

for the mental imagery of the other’s facial expressions. 

We assessed the feasibility of exploring the over-recruitment shown in this region as a 

biomarker linked to the facial expression deficit. We extracted a group of features (from the 

time-frequency domain and from the non-linear domain) from the right center-parietal EEG 

electrodes (overlapping the right Precuneus region) that we used to train two classifiers to 

distinguish between ASD individuals and controls. We verified that we were able to distinguish 

the groups with an accuracy of 81% using only 15 features from the mental imagery time 

segments. When trained the same classifiers using features extracted from EEG of the neutral 

periods, the accuracy was significantly lower (around 73%), which reinforced the facial 

expression related specificity of the differences extracted by the EEG features. Furthermore, 

we found that non-linear features captured particularly well the differences for the theta band, 
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while time-frequency features took better advantage of the differences for the high-beta and 

gamma bands. This result confirmed that nonlinear characteristics of EEG signals contain 

information that can be explored for ASD characterization, especially if combined with 

machine learning algorithms (Bosl et al., 2017, 2018). 

The potential applicability range of quantifiable measures associated with specific social 

processing deficits is wide. One of the main challenges encountered by current clinical trials 

of innovative solutions is the difficulty to quantify its effects, relying most of the times on 

neuropsychological evaluation scales, which have high variability, low sensitivity and are often 

biased (Casaletto and Heaton, 2017; Fernández and Abe, 2018). Therefore, the discovery of 

quantifiable neurophysiological measures associated with specific symptomatology of ASD 

could be explored to aid diagnosis, predict developmental trajectories of monitor treatment 

outcomes (Jeste et al., 2015). The biomarker we identified associated with this compensatory 

neural correlate in ASD could possibly be explored for monitoring treatment outcomes that 

target facial expression processing deficits, after further validation studies to ascertain its level 

of specificity and reproducibility. 

 

We then advanced to the rehabilitation arm of our objectives. With the focus on the facial 

expression deficits, we implemented a real-time fMRI neurofeedback intervention based on 

the same mental imagery of facial expressions mechanism, targeting the posterior Superior 

Temporal Sulcus for its core role in the social interaction network (Fox et al., 2009) and its 

reported impairment in ASD (Saitovitch et al., 2012; Alaerts et al., 2013; Cheng et al., 2015). 

Our primary results showed the BOLD activity in the pSTS region is successfully manipulated 

through the mental imagery strategy (Direito et al., 2019). With that, we implemented a phase 

IIa clinical trial consisting of 5 neurofeedback sessions, where we were able to observe 

improvements in several neuropsychological measures, including emotion recognition, 

immediately after the intervention. These improvements were retained after 6 months 

(Appendix II). 

Despite the need for phase III clinical trials to fully assess the behavioral outcomes of this 

intervention, the phase IIa trial showed promising indicators regarding the success of this 

strategy. Therefore, with the goal of increasing the application range of this intervention, we 

focused our attention in transferring the intervention to an EEG setting, which would enable 
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the creation of a system for personalized domiciliary training, without the cost and inflexibility 

constraints imposed by an fMRI setup (Sarracanie et al., 2015). 

We explored several features extracted from the EEG signal and tested their direct correlation 

with the BOLD signal of interest (Simoes et al., 2015). The obtained correlations were 

statistically significant for some features but still insufficient to provide a reliable signature of 

the pSTS BOLD signal that could be used in a practical application. Hence, we explored the 

addition of machine learning algorithms to predict the BOLD activity based on the EEG 

features. We followed and extended the approach of the only existing study in the literature 

(Meir-Hasson et al., 2014) – to the best of our knowledge – and analyzed the effect of adding 

different features (at the scalp and source level) and considered different approaches for 

dealing with the HRF delay. Our results showed that the approach followed in literature 

overestimated the prediction accuracy by adding a linear dependence in the upsampling of the 

BOLD signal, which generates a dependency (autocorrelation) between timepoints exploited 

by the regressors. We show that our proposed features (especially the nonlinear ones) improve 

the prediction accuracy of the models and the convolution of the predictors with multiple 

HRFs with variable peak latencies provide a more robust way to deal with the BOLD 

hemodynamic delay, since it explores the inter and intra-subject HRF variability. Furthermore, 

we explored several approaches of converting the signal into the source space, which also 

showed promising results and confirmed the benefits of the exploration of more features 

beyond the power of the signal to increase the models’ accuracy. 

When looking for the generalization of the models to different runs or sessions, the obtained 

prediction accuracies were not high enough to allow the transfer of the intervention protocol 

from fMRI to an EEG application. As we verified, the challenge of transferring fMRI to EEG 

is high, due to the intrinsic different characteristics of both signals. One may argue that the 

source approach is valid even without high but significant correlations with the BOLD signal, 

because of those intrinsic differences. Manipulating a signal localized at the target region will 

necessarily affect the neural activity of that region, notwithstanding the consequential BOLD 

variation. Future studies should focus on the integration of data from multiple sessions and 

multiple subjects in the trained models to increase the diversity of the extracted patterns and, 

hopefully, help the generalization process. To do so, larger EEG-fMRI datasets will be needed, 

which will also allow to address this problem with different approaches, like the use of deep 

learning methods.  
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Finally, following the logic of clinical informatics approaches, we investigated the application 

of virtual reality for rehabilitation in parallel with the neurofeedback approach. Our objective 

was to validate that both approaches are useful independently, so that we can, in the future, 

merge them into one final solution that incorporates neurofeedback training inside a serious 

game for virtual rehabilitation.  

We created a virtual reality lab in the Pediatrics’ Hospital of Coimbra and a 3D version of the 

same lab, producing the ideal setup to assess virtual reality feasibility with real vs virtual 

environment comparisons. With that, we defined the interpersonal distance as metric for 

performing a quantitative comparison because it represents a validated metric for social 

interaction that has been shown impaired in ASD (Gessaroli et al., 2013; Lough et al., 2015; 

Perry et al., 2015a; Asada et al., 2016) and it could be easily measured in both environments 

with high levels of accuracy. We first verify the abnormal distance pattern for the ASD group, 

with a dual characteristic: some individuals chose closer distances, while others opted for 

distances much higher than the control group. This pattern was replicated in the virtual 

environment, with high correlation levels, thus showing the VR setup can be effectively used 

for assessment and rehabilitation of social skills in ASD. 

Interestingly, we found lack of isometry between environments for the control group, with a 

regression slope much above 1, suggesting rescaling. The social nuances are difficult to 

reproduce in full or to be perceived in the virtual environment, leading to a break in isometry. 

Virtual avatars are realistic but limited in their expressiveness and overall non-verbal 

communication. We believe this rigidity influenced the behavior of the control group, but not 

the ASD group, whose regression slope was closer to 1, evidencing that individuals from the 

ASD group also do not use the above mentioned social nuances in their social space regulation 

in the real world (Pellicano, 2013). The dissociation between the scales of virtual and real 

world in control participants may be due to the so-called “uncanny valley effect”. This may 

lead to the observation that a step in the real world is almost doubled in virtual environments, 

as observed by the control group anisometric pattern.  

Our findings in this study supported the idea of using virtual reality systems to study and 

rehabilitate social deficits in ASD (Strickland, 1997; Goodwin, 2008; Bellani et al., 2011; 

Parsons and Cobb, 2011; Kandalaft et al., 2013; Didehbani et al., 2016). Thus, we implemented 

our own virtual reality rehabilitation serious game to train ASD patients to perform a daily 
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activity they found very challenging: taking a bus. This type of task, if successful, aids the 

patients in their autonomous living. Moreover, it includes several social interaction steps in 

the process (buy bus tickets, validate them in the bus, picking a place to sit, among others). 

We combined the virtual reality game with a biofeedback system, providing the automatic 

adjustment of the environment noise to the level of stress measured in the patient. Our results 

showed that in just three sessions it was possible to improve the general efficiency of 

participants and expose them to peculiar scenarios in which they could train their planning 

skills. Moreover, we were able to nearly extinguish the anxiety felt in bus environments and 

teach the bus-taking norms necessary for the autonomous use of buses for transportation, 

both in theoretical and practical contexts.  

In our view, one must approach rehabilitation in ASD with individualized and integrative 

clinical informatics solutions. We developed the Neurohab platform (Simões et al., 2014b 

and Appendix IV) with the flexibility to provide such a kind of solution, and performed 

feasibility studies on the independent neurorehabilitation branches (neurofeedback and virtual 

rehabilitation). In future work we will integrate this vision, with systems combining task-

related neurofeedback training within virtual rehabilitation serious games for combined neuro-

behavioral training, in both home-based and clinical settings. The search for neuroscientific 

validity before dissemination is of utmost importance in this area. As mentioned in the State 

of the art chapter, several EEG-based neurofeedback interventions have been used in the past 

for a few decades, but without supporting scientific evidence (Holtmann et al., 2011; 

Micoulaud-Franchi et al., 2015). Therefore, we believe other interventions should follow the 

same process as ours: start from an initial scientific neuroimaging probe and validate it with 

clinical trials before performing its broad dissemination. We also follow this approach in other 

studies, where we integrated a BCI joint-attention task with a virtual reality environment and 

performed a clinical trial to test its feasibility (Amaral et al., 2018). To do so, we first looked 

into the basic neural signature used by the system (Amaral et al., 2015) and tested the best 

setup to conduct the trial (Amaral et al., 2017) as well as the improvement of the machine 

learning algorithms behind the BCI system (Simões et al., 2019b). Despite its relation to this 

work and topic, this study falls out the scope of this doctoral thesis and is not detailed here. 

The integration of neurofeedback tasks within serious games increases the level of engagement 

and entertainment during the interventions – due to gamification strategies –, which 

potentiates acceptance and adherence (Kapp, 2012; Lieberoth, 2015). The domiciliary and 

remote aspects of those solutions will improve accessibility for patients with difficult access 
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to urban areas, where most specialized rehabilitation treatments are conducted. Furthermore, 

by providing a way for patients conducting individualized training on their own as 

complement of rehabilitation sessions, we reduce the number of specialized human labor 

hours needed for intensive rehabilitation training, thus reducing the costs for these 

interventions, which currently are extremely high (Ganz, 2007; Amendah et al., 2011; Buescher 

et al., 2014). The reduction of intervention costs makes virtual rehabilitation an important 

response to the societal change we face with the growing prevalence of this disorder. 

Furthermore, this kind of serious games can be extended and adapted to other disorders, as 

we did for the Huntington disease (Júlio et al., 2019), or even healthy or cognitively impaired 

ageing (Pinto et al., 2019; Simões et al., 2019c, 2019a). This thesis paves the way for the 

neuroscientific-based clinical informatics systems for rehabilitation of ASD social deficits and 

promotion of independent living. 
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Targeting dynamic facial processing mechanisms 

in superior temporal sulcus using a novel fMRI 

neurofeedback target 

This appendix is composed by the contents of the following publication: 

Direito B, Lima J, Simões M, Sayal A, Sousa T, Luehrs M, Ferreira C, Castelo-Branco M (2019) 
Targeting dynamic facial processing mechanisms in superior temporal sulcus using a novel 
fMRI neurofeedback target. Neuroscience 406:97–108. doi: 
10.1016/j.neuroscience.2019.02.024.  

 

Abstract 

The superior temporal sulcus (STS) encompasses a complex set of regions involved in a wide 

range of cognitive functions. To understand its functional properties, neuromodulation 

approaches such brain stimulation or neurofeedback can be used. We investigated whether 

the posterior STS (pSTS), a core region in the face perception and imagery network, could be 

specifically identified based on the presence of dynamic facial expressions (and not just on 

simple motion or static face signals), and probed with neurofeedback. Recognition of facial 

expressions is critically impaired in autism spectrum disorder, making this region a relevant 

target for future clinical neurofeedback studies. We used a stringent localizer approach based 

on the contrast of dynamic facial expressions against static neutral faces plus moving dots. 

The target region had to be specifically responsive to dynamic facial expressions instead of 

mere motion and/or the presence of a static face. The localizer was successful in selecting this 

region across subjects. Neurofeedback was then performed, using this region as a target, with 

two novel feedback rules (mean or derivative-based, using visual or auditory interfaces). Our 

results provide evidence that a facial expression-selective cluster in pSTS can be identified and 

may represent a suitable target for neurofeedback approaches, aiming at social and emotional 

cognition. These findings highlight the presence of a highly selective region in STS encoding 
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dynamic aspects of facial expressions. Future studies should elucidate its role as a mechanistic 

target for neurofeedback strategies in clinical disorders of social cognition such as autism.  

1. Introduction 

The organization of the superior temporal sulcus (STS) comprises distinct functional sub-

regions that have been previously associated to various features of social perception and 

cognition. These include the perception and imagery of facial expressions, as well as 

understanding others’ actions or mental states (Allison et al., 2000; Hein and Knight, 2008; 

Pitcher et al., 2011; Deen et al., 2015).  

In terms of the organization of STS, Deen et al. (2015) proposed a structured set of domain-

specific regions along a posterior-to-anterior axis. According to the study, this rich spatial 

organization is compatible with the existence of sub- regions that integrate information from 

several neighboring sources.  

One of the most relevant sub-regions in terms of social cognition is the posterior region of 

the STS (pSTS). Ishai et al. (2002) found small subsets of face-selective regions (in the face 

perception network, including STS) which activated during visual imagery of famous faces. 

Kim et al. (2007) examined brain activity during imagery of emotional facial expressions and 

compared to the imagery of neutral facial expressions. The authors report the activation of 

the amygdala, dorsolateral prefrontal cortex, ventral premotor cortex, STS, parahippocampal 

gyrus, lingual gyrus and the midbrain. Rebola and Castelo-Branco (2014) reported a direct link 

between pSTS and the social face cognition net- works. Most of these studies use relatively 

liberal functional contrast criteria, which is not optimal to isolate processing of specific 

features, although this enables higher statistical power at the cost of specificity. Nevertheless, 

the studies support the notion that there are common neural correlates involved in visual 

perception and imagery in the pSTS. Taking this into account, we hypothesize that the brain 

activity of functional subdomains within the pSTS can be volitionally modulated using imagery 

strategies, paving the way to neurofeedback approaches targeting this region. Here we aimed 

to isolate the functional subdomain related specifically to dynamic facial expressions, 

irrespective of simple motion signals or the presence of a static face. 
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1.1 A neuroscientific approach based on 

neurofeedback to study facial expression of 

emotions 

Determining whether individuals are able to volitionally control the pSTS subdomain activity 

using neurofeedback strategies is relevant given the association between impaired functional 

activation patterns in pSTS and social cognition disorders such as autism spectrum disorder 

(ASD) (Saitovitch et al., 2012; Alaerts et al., 2014; Cheng et al., 2015). ASD is characterized 

by a range of clinical features that include deficits in the identification and interpretation of 

the emotional and mental state of others (Baron-Cohen et al., 2001). Neurobiological theories 

on the mechanisms underlying this condition commonly emphasize impaired neuroactivation 

in regions such as the amygdala (involved in emotional processing), the STS and the fusiform 

gyrus (important in face recognition) (Silver and Rapin, 2012). Additionally, neuroimaging 

studies suggest widespread abnormalities affecting these and other regions and connections 

over distributed networks (Muller, 2007). 

Neuroscientific and technological advances in functional magnetic resonance imaging (fMRI) 

combined with multi- variate supervised learning methods have made possible to decode brain 

states in real time. Such states can be assessed noninvasively, by measures of the blood 

oxygenation level-dependent (BOLD) signal, which is a delayed, indirect measure of neural 

activity (Logothetis, 2008). These advances led to the recognition of real-time fMRI (rt-fMRI) 

as a potentially useful tool in a broad range of basic and clinical applications that include 

diagnosis, disease monitoring, or even therapeutic approaches based on neurofeedback 

(Weiskopf et al., 2007; Subramanian et al., 2011). 

In neurofeedback studies, the decoded brain states are presented to the participants, who are 

instructed to control their own brain activity in real time (LaConte, 2011; Weiskopf, 2012). 

This closed-loop approach combined with the human inherent adaptability and flexibility to 

volitionally up- and down-regulate attention and engagement (Mishra and Gazzaley, 2015), 

facilitates specific changes in brain function and may ultimately optimize system-level 

neuroplasticity (Ros et al., 2010; Sagi et al., 2012). 
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Neurofeedback in therapeutic applications features the enablement of the control of 

physiological targets to be trained (based on skill learning), producing changes in specific 

neural networks that might be clinically useful by restoring impaired cognition and/or 

behavior (Stoeckel et al., 2014). Moreover, there is increasing evidence that self-regulation 

through fMRI neurofeedback is achievable in both healthy individuals and psychiatric patients 

(Ruiz et al., 2013b). 

1.1.1 Functional properties of neurofeedback target regions: 

challenges and the need for a mechanistic approach 

Various target areas (regions of interest, ROIs) have been previously chosen for 

neurofeedback-guided modulation such as the somatosensory cortex (deCharms et al., 2004; 

Bray et al., 2007), motor areas (Weiskopf et al., 2004; LaConteetal.,2007; Sitarametal.,2012), 

the amygdala (Posse et al., 2003; Johnston et al., 2010), the anterior cingulate cortex (ACC) 

(Weiskopf et al., 2003; deCharms et al., 2005; Hamilton et al., 2011; Mathiak et al., 2015) and 

visual areas (Sousa et al., 2016). 

Considering electroencephalography-based brain–computer interfaces (BCI) / neurofeedback 

applications, only about one third of participants can immediately achieve brain control 

(Friedrich et al., 2014). Another third would only gain rough control after training, while the 

rest of the participants are unable to achieve control using BCI or neuro- feedback setups. In 

this sense, different aspects may contribute to the participants’ engagement and success in 

BCI and neurofeedback technologies, such as the type of training protocol (including task, 

instructions and feedback type) and psychological traits such as motivation (Reiner et al., 

2018). 

In recent years, an emerging trend in neurofeedback research is the pairing of stimulus and 

feedback presentation with more explicit rewards directly related to the goals of the 

intervention. In a classic approach, the feedback is presented as a thermometer with a discrete 

color bar changing its level based on the brain activity in the target area selected; the 

instructions given to the participants are to increase or decrease the colored bar level. The 

participants’ own reward is achieved by successfully con- trolling the thermometer display. 

Novel approaches use task-related stimuli, namely images with dynamically changing 

properties (e.g. size) which are adjusted as a function of brain activity. deCharms et al. (2005) 
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used a continuous video display depicting a larger or smaller virtual fire to learn to control 

activation in the rostral ACC (a region involved in pain perception and regulation). Sokunbi 

et al. (2014) introduced a presentation framework that uses food pictures to evoke responses 

in areas related to food craving: the brain activity mediated gradual changes in picture size. 

Mathiak et al. (2015) introduced “social reward” in their feedback paradigm. A positive 

feedback, for the successful control in the dorsal ACC, is provided through a facial expression 

(avatar smiling). Recently, Krause et al. (2017) successfully tested 2 alternatives to the 

thermometer display, demonstrating the feasibility of multiple visual feedback presentations. 

Given the importance of face perception in normal human cognition and social interaction, 

the pivotal role of pSTS in this process, and the ability shown by healthy subjects to self-

regulate BOLD activity of specific ROIs, it is pertinent to investigate the ability to self-regulate 

BOLD activity derived from functionally defined subdomains in pSTS, and thereby test their 

physiological selectivity. 

The current study explores the definition of a functional sub-domain in pSTS based on a very 

selective localizer approach specifically isolating the processing of facial expressions. 

Moreover, we aimed to probe it by designing new neuro- feedback interfaces, and to 

determine if such combination (rt-fMRI neurofeedback technique, mental imagery strategies 

and novel neurofeedback target) is feasible. 

To this end, we investigated the following research questions: (1) Is it possible to reliably 

define a functional subdomain in pSTS that selectively encodes dynamic facial expressions, 

irrespective of the simple presence of motion and/or static faces? (2) Can one probe this pSTS 

domain as a mechanistic neurofeedback target based on mental imagery strategies? 

We addressed these questions based on 2 groups: an active and an alternative ROI group. 

Both performed neuro- feedback training using two interfaces: a visual and an auditory one. 

The feedback indicated variations in the activation level of a pSTS ROI in the active 

neurofeedback group (NF group). To control for non-specific effects of the neurofeedback 

procedure, the participants of the alternative ROI – control group (alt-roi group) attempted 

to up-regulate their brain activity based on an ROI selected with a set of voxels non-related 

to the task. The ability to voluntarily modulate pSTS in an identical paradigm with no feedback 

served as a measure for within-subject control. 
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2. Methods  

2.1 Participants 

Twenty healthy participants were recruited for a single-blind neurofeedback experiment and 

assigned to 1 of 2 groups. One group received feedback from the pSTS target region — NF 

group, and the other received feedback from an alternative ROI – alt-roi group. All 

participants remained unaware of the group assignment and successfully completed the 

protocol.  

Hence, 10 participants were assigned to the NF group (9 male; mean age: 25.70 ± 3.65 years) 

and the other 10 to the alt-roi group (8 male; mean age 26.60 ± 3.02 years). None of the 

participants had a history of neurological disorders, based on their medical and psychiatric 

history. Most of the participants in this study are male which is in line with a future application 

in autism research where males dominate. 

This study was approved by the Ethics Commission of the Faculty of Medicine of the 

University of Coimbra and was conducted in accordance with the declaration of Helsinki. All 

subjects provided written informed consent to participate in the study. 

2.2 System architecture and stimuli presentation 

The data-flow implemented in the rt-fMRI neurofeedback system includes a closed-loop setup 

composed of 3 major subsystems responsible for successfully accomplishing 3 tasks: A) fMRI 

image acquisition, B) signal processing and C) neuroimaging-based feedback. The three 

subsystems are connected using a Local Area Network. 

Subsystem A is the MRI scanner/acquisition equipment (3-T Siemens Magnetom Trio 

scanner with a 12-channel head coil, at the Portuguese Brain Imaging Network) that is 

connected to the image processing subsystem (B). The data are collected and saved in a 

network shared folder. 

Subsystem B accesses the data and performs data preprocessing and real-time statistical 

analysis using Turbo BrainVoyager 3.2 (TBV) (Brain Innovation, Maastricht, The 
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Netherlands). The mean BOLD values computed in real- time are based on an ROI defined 

with a functional localizer run of pSTS performed prior to the neurofeedback task. 

Subsystem C performs the computation of the neuroimaging-based feedback and is connected 

to the monitor placed inside the MRI scanner room (the routines were programmed using the 

Psychophysics toolbox (Brainard, 1997)). At the beginning of each run, a new randomized 

protocol is created and shared with subsystem B for the creation of the appropriate general 

linear model (GLM). During the neurofeedback run, subsystem C receives the average BOLD 

values and computes the feedback values, presenting visual (or auditory) stimuli. The feedback 

presentation strategy considers the delays inherent to the signal acquisition, signal processing 

and feedback calculation processes (we further detail the computational aspects of the 

feedback calculation in the following sections). 

The visual stimuli were designed with an 800 × 600–pixel resolution and presented on a 70 × 

39.5–cm LCD monitor, with a resolution of 1920 × 1080 pixels (refresh rate of 60 Hz), that 

the participant observes through a mirror The LCD was placed at an effective distance of 156 

cm from the participant’s eyes resulting on a vertical visual angle of approximately 8°. 

2.3 Experimental protocol 

Each scanning session started with a high-resolution magnetization-prepared rapid acquisition 

gradient echo sequence for co-registration of functional data [176 slices; echo time (TE): 3.42 

ms; repetition time (TR): 2530 ms; voxel size 1mm3 isotropic, flip angle (FA): 7°; matrix size: 

256 × 256]. 

Participants from both groups were briefed on the experimental goals and were given the 

same instructions. An experienced MRI technician accompanied the participants to the 

scanner and placed them on the table. Foam cushions were placed to minimize head 

movements throughout the experiments.  

After the structural image sequence, 4 functional sequences were acquired: 1 functional 

localizer and 3 imagery runs. To cover the occipital and posterior temporal lobes, 33 slices of 

3 mm thickness were selected, with in-plane resolution: 4mm2, matrix size: 64 × 64, FA: 90°, 

TR: 2000 ms and TE: 30 ms. The protocol duration was approximately 40 min. 
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2.3.1 Localizer run  

The pSTS region was functionally localized using a block-based design with 40 blocks of 8 s 

and 5 different conditions (160 volumes in total). Each condition was repeated 8 times during 

the localizer run. The subjects were instructed to attentively look at the screen. This localizer 

was very selective for the processing of facial expressions, as explained below in terms of the 

chosen statistical contrasts. 

The functional localizer comprised 5 conditions: i. Neutral – static neutral face to help subtract 

static aspects of face processing; ii. Happy – morphing face from neutral to happy; iii. Sad – 

morphing face from neutral to sad; iv. Alternate expressions – alternating between sad and 

happy; v. Moving dots – randomly moving dots, to help subtract motion processing. 

 

Figure 1 – The localizer includes 5 different conditions: i. Neutral; ii. Happy; iii. Sad; iv. 
Alternate expressions; v. Moving dots. The figure presents a scheme of condition ii. Happy. 
The avatar starts in the neutral position and morphs from neutral to happy inthe first 500 ms, 
holds the expression during 1000ms, and thenmorphs back to neutral during the last 500 ms. 
The expression is repeated 4 times during each block. 

 

Video clips of an avatar performing a facial expression (Vizard Virtual Reality Software 

Toolkit, Worldviz) were used as stimuli for conditions ii. Happy, iii. Sad and iv. Alternate 

expressions. The video clips were composed of 60 frames, presented at a frame rate of 30 

images per second (total duration of 2 s). Expression conditions (ii. Happy, iii. Sad, iv. 

Alternate expressions) were morphed from neutral to the endpoint expression during the first 

500 ms; the expression was held during 1000 ms, and then morphed back to neutral during 
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500 ms (Fig. 1 exemplifies the process for condition ii. Happy). This process is repeated 4 

times in each block. 

According to Furl et al. (2013), contrasting between dynamic and static faces versus static 

objects, dynamic objects and random-dot patterns allows for the identification of the face-

selective areas (including face and biological motion perception, and social content of the 

dynamical facial expressions). To isolate a functional subdomain in the posterior portion of 

STS (closely related to face perception (Deen et al., 2015)), we introduced as control stimuli 

the conditions v. Moving and i. Neutral. Note that this localizer approach is quite stringent, 

since the regions processing static facial features will be elicited by the non-dynamic face 

stimuli. With this contrast, we aim to capture the brain areas responsible for the specific 

processing of dynamic facial expressions. 

The data were analyzed in real-time as implemented in TBV. The design matrix contained a 

separate predictor for each of the 5 conditions. The real-time setup allowed continuous 

monitoring of the BOLD signal time-course. 

2.3.1.1 Regions of interest selection 

The NF group target area was selected according to the contrast (i. Neutral, v. Moving dots) 

< (ii. Happy, iii. Sad, iv. Alternate expressions), balanced. A 3-dimensional box was visually 

selected in TBV over the cluster displaying the strongest response in the statistical activation 

map around the posterior portion of the STS, on either the left or right hemisphere. The 

voxels significantly activated in this 3-dimensional box defined our target region of interest 

for neurofeedback. 

Despite previous studies associating the right pSTS region to the processing of information 

with social content (e.g. gaze and voice (Pelphrey and Carter, 2008; Saitovitch et al., 2012)), in 

this study we aimed to explore the best placement for a neurofeedback target specifically 

related with facial expression processing. To this end, we selected the neuro- feedback target 

in the hemisphere presenting the strongest response in the pSTS region. 

The functional approach to select the ROI takes into account inter-subject variability. This 

decision was based on the observation that the functional domain of interest (and the focus 

of our study) does not necessarily follow precise anatomical landmarks, and to ensure optimal 

selection of voxels for calculating a stable neurofeedback signal for each participant. 
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The alt-roi group ROI was based on a scattered set of white matter voxels that presented 

nonsignificant statistical values for the contrast of interest. The selection of the ROI was 

determined by the need to select a set of voxels uncorrelated with the task proposed and 

stimuli presented throughout the procedure, i.e. the alternative brain signal must be function- 

ally and neuroanatomically as independent as possible (Alino et al., 2016). 

2.3.2 Imagery runs  

After the definition of the neurofeedback target region, the participants from both groups 

performed 2 rt-fMRI- neurofeedback runs.  

Each run presented 25 blocks (12 up-regulation blocks alternating with 13 down-regulation 

blocks), each one with the duration of 24 s, totaling a length of 600 s (300 volumes). At the 

beginning of each block, an auditory instruction was given to the participant presenting the 

condition, while at the end a beep informed them of the end of each block.  

Each run consisted of 4 conditions. The up-regulation blocks included three randomly 

presented conditions: ii. Happy — imagery of a happy facial expression, iii. Sad — imagery of 

a sad facial expression, iv. Alternate — alternated imagery of happy and sad facial expressions. 

The down-regulation condition is the i. Neutral — imagery of a static neutral facial expression. 

Participants from both groups were instructed to upregulate mean ROI activation during 

conditions ii. Happy, iii. Sad and iv. Alternate and to downregulate during condition i. Neutral. 

Feedback would inform them of the activation pattern during the run. 

The participants were informed about the hemodynamic delay (approximately 6 s between 

any change in brain activity and its effect in the BOLD activation pattern). We tested 2 

different neurofeedback modalities: visual and auditory. One of the neurofeedback runs was 

performed with a task-tailored visual feedback while the other was performed with auditory 

feedback based on the derivative of the BOLD activity. The starting order was randomized. 

2.3.3 Visual feedback 

During visual feedback runs (Fig. 2), the expression of the avatar in the screen was updated 

based on the mean ROI activation of the neurofeedback target. The expression of the avatar 
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was discretized into 15 levels (between neutral and the endpoint expression). The expression 

level displayed is determined considering the level of the mean ROI activation signal variation.  

 

Figure 2 - Block design of the visual neurofeedback runs. 

 

Flow-chart in Fig. 3 presents the visual feedback algorithm. 

 

Figure 3 - Algorithm for visual feedback. 
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First, the protocol is created. The acquisition starts with a baseline block which allows the 

computation of the baseline variable b (BOLD activity in the ROI - mean over the ROI voxels 

for the last 10 samples of condition i. Neutral). Computing the baseline considering points 

from the i. Neutral condition block just before the up-regulation blocks mitigates the impact 

of low frequency drifts on the baseline and feedback values. 

When new samples become available, the feedback is computed after 3 points have been 

received. The waiting period is due to the delay inherent to the process (e.g. hemodynamic 

delay). If these rules apply, the signal variation is computed for every new sample and 

according to Eq. 1: 

 % signal variation ( n ) =  ( x( n ) - b ) / b   (Eq. 1) 

where x(n) represents ROI activation (mean over the voxels) in sample n and b the baseline. 

The baseline variable is calculated (and updated at every time point throughout the run) based 

on a data buffer containing the last 10 samples of the down-regulation condition i. Neutral. 

The signal variation value is then normalized and discretized (considering 15 levels). The 

avatar morphs to the endpoint expression when level 15 is achieved (happy for conditions ii. 

Happy. and iv. Alternate, and sad for condition iii. Sad). 

2.3.4 Auditory feedback 

The rationale supporting the auditory algorithm is the control of the brain activity based on 

the feedback of the short-term trend of the mean ROI activity.  

The short-term (three samples, i.e. 6 s) positive or negative trend is translated into a “positive” 

or “negative” sound, respectively. To help the participant in the imagery task, we briefly (2 s) 

present the avatar’s neutral expression before the instruction (Fig. 4).  
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Figure 4 - Block design of the auditory neurofeedback runs. 

 

Flow-chart in Fig. 5 presents the auditory feedback algorithm.  

 

Figure 5 - Algorithm for auditory feedback. 

 

Similarly to the visual feedback algorithm, the protocol is created in subsystem C and shared 

with subsystem B.  

We calculate the feedback (positive or negative) based on the short-term trend, determined as 

the first-degree polynomial curve fitting (MATLAB 2013b, Mathworks) of the last three data 

samples. To avoid confusing the participants with information from previous blocks (while 

also considering the delay inherent to the neurofeedback process), we discarded the first three 

points of each block. In this sense, the feed- back is presented to the participants in volumes 

5 (buffer with samples number 3, 4 and 5), 8 (6, 7, and 8) and 11 (9, 10 and 11) of each block. 

The time between two consecutive updates is 6 seconds. 

The feedback for a positive or negative signal change was a high or low frequency beep, 

respectively, determined according to the polarity of the short-term data trend. The sounds 

were previously presented to the participants. 
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2.3.5 No feedback run  

After the 2 neurofeedback runs, the participants performed a run without feedback, with a 

block design similar to the neurofeedback runs. The participants were instructed to maintain 

the imagery strategy as in the previous neurofeedback runs but without the visual or auditory 

feedback information. This run is performed to assess the ability to maintain the modulation 

without feedback. 

2.4 Offline fMRI data analysis 

The fMRI data were analyzed using Brain- Voyager QX 2.8 (Brain Innovation, Maastricht, 

Netherlands).  

Pre-processing of single-subject fMRI data included slice-time correction, realignment to the 

first image to compensate for head motion and temporal high-pass filtering to remove low-

frequency drifts. Co-registration of the functional data with the anatomical scan and 

normalization into Talairach coordinate space (Talairach and Tournoux, 1988) was also 

performed. 

In the first-level analysis of the functional runs, we used a standard GLM analysis for each 

run. Predictors were modeled as a boxcar function with the length of each condition (24 s), 

convolved with the canonical hemodynamic response function. Six motion parameters (three 

translational and three rotational) and predictors based on spikes (outliers in the BOLD time 

course) were also included into the GLM as covariates. 

Our main goal was to analyze the statistical significance of activation achieved within the pSTS 

ROI, for facial expressions. In this sense, we used an ROI-GLM and assessed the contrast (i. 

Neutral) vs. (ii. Happy, iii. Sad and iv. Alternate), balanced. The alternative ROI in the alt-roi 

group was defined as a set of white matter voxels with minimal statistical value considering 

the contrast of interest. The rationale for the definition of an alternative ROI based on a set 

of voxels from white matter regions was to have a truly negative control to fully prevent the 

possibility of participants to gain control over the feedback signal as compared to the 

experimental group (negative control) (Sulzer et al., 2013; Sorger et al., 2019). In addition to 

the negative control, we also considered a grey matter area (positive control) for both groups 

— a target region in the left anterior frontal cortex (BA 10). 
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To analyze differences between NF group and alt-roi group, 3D spatial smoothing was 

performed 8 mm full-width at half maximum Gaussian kernel. Then we performed a random 

effects (RFX) analysis considering each group individually. Finally, we compared the brain 

activation patterns between groups based on a two-sample t-test. 

3. Results  

3.1 Online definition of the ROI based on the 

functional localizer 

The localizer run allowed the real-time definition of subject-specific ROIs selective for facial 

expression perception for the NF group (we present the probability map for the ROI positions 

in Fig. 6 and an overview of the neurofeedback targets/ROIs in Table 1). The ROI was 

selected in the right hemisphere in seven subjects, while in the other three the ROI was defined 

in the left (based on statistical criteria). 

 

Figure 6 – Probability map of the ROIs selected online in the NF-group. Clusters in right and 
left pSTS represent the overlapping of the neurofeedback target of each participant. 
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Table 1 – ROIs selected using the functional localizer run for the active NF group. The 
functional data presented are based on the Talairach-normalized brain to enable between-
participant comparison. The t-statistic corresponds to the ROI-GLM with contrast (i. Neutral, 
v. Moving dots) < (ii. Happy, iii. Sad, iv. Alternate). 

Part. Mean Talairach 

coordinates 

(x, y, z) 

Cluster size 

(voxels) 

t-statistic of 

contrast 

(i, ii < iii, iv, v) 

NF-S01 (51, -35,11) 725 4.171 

NF-S02 (43, -61,4) 1200 9.560 

NF-S03 (-49, -57,5) 1408 8.048 

NF-S04 (-53,-49,10) 540 6.849 

NF-S05 (45,-40,15) 983 5.254 

NF-S06 (-51,-52,7) 1468 12.774 

NF-S07 (54,-25,21) 1295 9.356 

NF-S08 (60,-25,18) 721 8.912 

NF-S09 (56,-36,12) 1172 7.826 

NF-S10 (54,-47,15) 1270 10.092 

  1078.2 (319.583) 8.284 (2.462) 

 

3.2 Offline analysis of the localizer run 

The functional localizer revealed significant activation within the pSTS, fusiform gyrus, 

occipital inferior gyrus and preCentral Gyrus (Fig. 7, RFX-GLM, FDR corrected, t(19), 

p<0.0081). All these regions are involved in the extended system of the face perception 

network (Fox et al., 2009) or associated to neural responses to specific components of face 

expressions (Radua et al., 2010). 
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Figure 7 – Statistical map of the localizer run. The clusters represent sets of statistically 
significant voxels during the localizer run (RFX-GLM, FDR corrected, t(19), p<0.0081). Most 
of the highlighted regions are associated to specific components of the facial expression 
network, such as the pSTS, fusiform gyrus, occipital inferior gyrus and preCentral Gyrus. Note 
that this contrast truly highlights high level visual processing of dynamical facial expressions 
as compared to early level (de)activations. 

3.3 Imagery runs analysis 

In the visual neurofeedback runs, the participants were asked to control the facial expression 

of the avatar by up- and down-regulating the BOLD activation in the subject-specific ROI. In 

the auditory modality, the feedback information was provided in the form of ‘positive’ and 

‘negative’ sounds. 
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Based on the ROI-GLM, we computed t-statistic for each participant of the NF group, 

corresponding to the contrast of interest (i. Neutral) < (ii. Happy, iii. Sad, and iv. Alternate), 

balanced — i.e. down- vs. up-regulation conditions. The results suggest that self-regulation of 

pSTS using a mental imagery strategy is possible. According to the statistical criteria defined, 

ROI-GLM balanced contrast (i. Neutral) vs. (ii. Happy, iii. Sad and iv. Alternate) (FDR 

corrected, p<0.05), 9 out of 10 subjects were able to successfully regulate BOLD activity in at 

least 1 of the neurofeedback runs. The t-statistic value averaged 1.943 (± 1.533 standard 

deviation) for the auditory feedback run, for the visual feedback run the t-statistic averaged 

3.244 (± 2.563), and for the run without feedback the t-statistic averaged 1.688 (± 1.617) (see 

Table 2 for details). Seven out of the 10 participants presented statistically significant results 

for the visual feedback run, 4 for the auditory feedback run and 4 for the run without feedback 

(suggesting that these were able to modulate activity even without a closed loop, reinforcing 

the importance of the mental imagery strategy, that if effective may work irrespective of the 

feedback). 

 

Table 2 – The t-values correspond to the ROI-GLM with contrast (i. Neutral) < (ii. Happy, 
iii. Sad, and iv. Alternate) (* indicates p<0.05), (** indicates p<0.001). 

Part. Auditory Feedback Visual Feedback No feedback 

pSTS-based  ROI-GLM t-statistic 

NF-S01 2.021* 3.410 1.222 

NF-S02 1.624 0.511 1.778 

NF-S03 2.852* 0.420 1.383 

NF-S04 1.054 8.761** 0.528 

NF-S05 1.419 3.799** -1.542 

NF-S06 2.912* 5.263** 4.041** 

NF-S07 0.135 3.108* 0.850 

NF-S08 4.712** 3.361* 3.684** 

NF-S09 3.167* 0.292 2.516* 

NF-S10 -0.460 3.513* 2.426* 

mean 1.943 3.244 1.688 
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3.4 Offline analysis of the pSTS ROI activation 

across groups 

To compare NF group and alt-roi group and assess the specificity of the target region, we also 

selected a pSTS ROI in the alt-roi group (following the same strategy used in the NF group). 

The effect size between the t-statistic from the pSTS ROI of the 2 groups, measured as the 

Hedge’s g, was relatively small (the visual feedback run presented an effect size of 0.263, 0.279 

for the auditory feedback run and 0.323 for the run without feedback). 

For the alt-roi group, we also determined ROI-GLM t statistic for the contrast of interest in 

the alternative ROI (used online). The effect size between the target regions used in each 

group (pSTS ROI on the NF group vs. WM ROI on the alt-roi group) presented an effect 

size of 0.519, 0.545, 0.669 for the visual feedback, auditory feedback and run without 

feedback, respectively. One-sample t-tests assessed the significance of the BOLD % change 

within each ROI. The alternative ROI in no case reached statistical significance, unlike the 

pSTS-based ROIs in both groups (NF group and alt-roi group) (for details see Fig. 8).  
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Figure 8 – Box plots, depicting performance for each rt-fMRI neurofeedback and transfer runs 
per groups and ROI (* indicates statistical significance according to a One-sample t-test). 

 

In order to evaluate the neural correlates of the neurofeedback runs based on a pSTS-ROI, 

we assessed the pattern of brain activation of the two different groups in each run (visual and 

auditory). To this end, we analyzed the specific interaction effect across groups, and identified 

the regions where the contrast of interest (neutral vs. facial expressions imagery) are 

significantly different for the NF group vs. alt-roi group (Table 3, based on the statistical map 

- two-sample t-test, active NF vs. alt-roi group, t(18), p<0.005). 
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Table 3 – Whole brain assessment of the differences between NF group and alt-roi group 
during the visual feedback run and during the auditory feedback run 

Region Talairach coordinates 

(peak voxel coords X, 

Y, Z) 

Number of 

voxels 

t-statistic 

Visual feedback run analysis 

Sub-Gyral (right) 30 -7 37 7365 -3.752799 

Insula (right) 33 14 7 584 -3.445339 

Lentiform Nucleus (right) 21 -13 1 311 -3.575890 

Cingulate Gyrus (left) -9 -10 34 405 -3.399608 

Middle Frontal Gyrus (left) -45 32 22 3390 -3.456471 

Middle Frontal Gyrus (left) -36 26 43 1945 -3.415913 

Insula (left) -36 8 19 556 -3.399863 

Precentral Gyrus (left) -60 -4 31 1826 -3.331889 

      

      

Auditory feedback analysis 

Middle Temporal Gyrus (right) 45 -61 22 416 -3.584822 

Anterior Cingulate (right) 24 32 22 398 -3.506509 

Medial Frontal Gyrus (right) 12 44 25 533 -3.401492 

Precuneus (left) -9 -64 19 5482 -3.628287 

Precuneus (left) -21 -46 31 2110 -3.630086 

Anterior Cingulate (left) -12 20 22 546 -3.485696 

Medial Frontal Gyrus (left) -21 44 16 1724 -3.466876 

Middle Frontal Gyrus (left) -39 23 43 1095 -3.608613 

Supramarginal Gyrus (left) -36 -52 25 703 -3.511224 

Precentral Gyrus (left) -45 -7 22 605 -3.413738 

Middle Temporal Gyrus (left) -63 -10 -8 407 -3.507409 

 

As a final positive control group, we performed the analysis considering a grey matter area for 

both groups — we considered a target region in the left anterior frontal cortex (BA 10, sphere 

around voxel with Talairach coordinates [-24, 49, -5], and a total of 257 voxels). The results 

show that neither group was able to modulate BOLD activity in this region. Taken together, 

this additional analysis reinforces the specificity of the proposed mental imagery strategy and 

pSTS localization. 
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4. Discussion 

The aim of the current study was to investigate whether it is possible to reliably define a 

functional subdomain in pSTS that encodes dynamic facial expressions irrespective of the 

presence of motion and/or static faces and to probe this pSTS domain as a mechanistic 

neurofeedback target using a mental imagery task.  

We proposed the participants to volitionally control the BOLD signal of this functionally 

defined subdomain with the help of a customized rt-fMRI neurofeedback interface developed 

in our laboratory. Possible clinical benefits from volitional control of BOLD activity of the 

pSTS region are especially relevant in social and emotion cognition disorders, such as ASD. 

Neurobiological theories on the mechanisms of the disorder commonly emphasize 

neuroactivation impairment in the STS, particularly concerning emotion recognition from 

perceptual analysis of faces (Silver and Rapin, 2012). 

We used neurofeedback based on imagery of emotional facial expressions to get insight into 

the role of a specific region within STS. We were able to define a highly selective region, the 

pSTS subdomain which processes specific responses to facial expressions. This target region 

was specifically responsive to expression of emotions in faces and not just tomere motion or 

the presence of a face and its static features. We showed that volitional modulation of BOLD 

activity in pSTS ROI based on imagery of such emotional expressions can be successfully 

achieved, providing additional evidence for processing specificity. Additionally, we 

demonstrated that this was possible with two novel feedback approaches (visual or auditory) 

with distinct rules (mean or derivative based) in this selectively identified region. 

No previous study addressed self-modulation of brain activity directly targeting facial 

expressions (both from the neuromodulation strategy point of view and processing specificity 

of the target region — a sub-cluster within the STS processing dynamic expressions). In a 

previous clinical study using neurofeedback based on the anterior insula, emotional face 

recognition was used as a clinical outcome measure (Ruiz et al., 2013a). Presentation of static 

faces as emotional stimuli was used to promote downregulation of activity of the amygdala 

(Brühl et al., 2014). None of these studies addressed self-modulation of brain activity based 

on dynamic facial expressions in selectively defined social recognition core regions. 
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Another recent study based on the concept of functional selectivity used relative up-regulation 

of the parahippocampal place area over the fusiform face area (Habes et al., 2016). The 

participants, based on scene imagery, were able to self-regulate higher visual areas. These 

results suggest the feasibility of using fMRI neurofeedback and ultimately unveil functional 

specificity of these visual areas. Our study addresses an area in the social and emotional 

cognition network and demonstrates that self-regulation of a selective core region involved in 

processing of dynamic facial expressions in the STS can be achieved and may represent a 

potential neurofeedback target region. 

The proposed functional localizer enabled the identification of a specific functional domain 

in pSTS as well as brain regions specifically involved in the processing of dynamic aspects of 

facial expressions. The consistent identification of the target ROI across participants supports 

the notion that our paradigm allowed to functionally define a facial expression specific pSTS 

cluster that could be a potential target for imagery of emotions in faces. 

An important factor influencing performance in neurofeedback studies is the engagement and 

motivation of the participants. To maximize this factor, we offered to the participants 2 novel 

alternative approaches in the feedback modality, 1 visual and the other auditory. Based on the 

ROI-GLM values, both modalities showed promising results. Most participants were able to 

modulate in at least 1 of the modalities (9 out of 10 in at least 1 of the runs). Our aim was not 

to compare both strategies, but to investigate whether the pSTS region is a suitable 

neurofeedback target considering different optional strategies. The results suggest that self-

driven modulation is achievable considering the mental imagery of facial expressions coupled 

with the two different feedback interfaces. It is however important to note that given that this 

was a single session study, no inference can be made concerning long term learning effects. 

We considered 2 controls to assess the specificity of the strategy and neurofeedback target: a 

within-subject (no feedback, control run at the end of the session, which can also be viewed 

as an approach suited to investigate learning in repeated paradigms) and a between-group 

control (alt-roi group). The results suggest that the proposed strategy enables self-modulation 

of the pSTS region, irrespectively of the feedback source. Moreover, this is a region specifically 

related with the mental imagery of dynamic facial expressions, since this region did not activate 

in previous neurofeedback studies using different tasks, such as simple dot motion, performed 

in our group (Banca et al., 2015; Sousa et al., 2016). During the feedback runs, both NF and 

alt-roi groups were able to achieve self-regulation of a pSTS region validating the efficacy of 
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the proposed strategy (mental imagery of facial expressions) irrespectively of the ROI used to 

provide feedback. During the no feedback run, only the NF group achieved statistically 

significant results at the group level in the pSTS ROI. Further experiments are required to 

better understand possible learning effects caused by the approach proposed here. 

The present study provides evidence that a specific dynamic emotion expression subdomain 

in pSTS can be identified and it proved to be a suitable probe for a mental imagery task 

coupled with different neurofeedback modalities. Given the role of pSTS in social perception 

and emotional processing, and the evidence of abnormal functionality of this region in social 

cognition disorders such as ASD, we hypothesize that learned self-modulation of BOLD 

activity in this region could be tested in clinical trials using neurofeedback. A multiple session 

experiment taking advantage of pSTS neurofeedback target specificity would be valuable as a 

future approach supporting this idea; previous studies highlighted the impact of 

neurofeedback training in emotional processing (Zotev et al., 2014). 

4.1 Limitations 

Despite the encouraging preliminary results published with the use of rt-fMRI thus far, there 

is an ongoing debate on the limitations of these approaches and appropriate outcome 

measures or control conditions (Stoeckel et al., 2014; Mehler et al., 2018). It is therefore 

important to note the limitations of our study. The relatively small sample size limits 

generalization and future studies are necessary to replicate and extend our results. For that 

reason, we provide effect size measures. The use of a single neurofeedback session, to be 

expected from a proof-of-concept study, does not allow to further explore the learning effect 

of the neurofeedback experiment. The definition of appropriate controls in neurofeedback 

experiments is also a matter of debate (Sulzer et al., 2013; Sorger et al., 2019). Here, the 

rationale for a negative control region based on white matter voxels was to restrict the control 

over the trained signal as in the experimental group and a positive control based on a grey 

matter region was therefore also necessary. Despite these limitations our results point towards 

the possibility to use a functionally defined region in the pSTS for neuromodulation. 
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4.2 Conclusion 

Given the relatively early stage of research in this field, there have been no large randomized 

controlled trials establishing clinical evidence of treatment efficacy. The encouraging results 

on the ability to self-modulate activity in pSTS as a neurofeedback target region, reinforce the 

need for further studies addressing the feasibility of using this region in a larger study, with 

multiple neurofeedback sessions, to formally evaluate the tolerance and efficacy of 

neurofeedback interventions, and ultimately design phase II/III clinical trials in clinical 

populations such as ASD. 
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Appendix II 
 

Training the social brain - clinical and neural 

effects of an 8-week real-time fMRI neurofeedback 

Phase IIa Clinical Trial in autism 

 

This appendix is composed by the contents of the following publication: 

Direito B*, Mouga Sª, Sayal A, Simões M, Quental Q, Playle R, McNamara R, Linden D, Oliveira 
G, Castelo-Branco M. Training the social brain - clinical and neural effects of an 8-week real-
time fMRI neurofeedback Phase IIa Clinical Trial in autism 

 

Abstract 
Objective: Autism Spectrum Disorder (ASD) leads to abnormal activity patterns in core 

social brain regions. We aimed to demonstrate the feasibility of real-time fMRI volitional 

neurofeedback in targeting these regions in ASD.  

Method: In this within-group design clinical trial, ASD patients (N=15) were enrolled in a 

program with 5- training sessions of rtfMRI-nf that targeted facial emotion expressions 

processing, using a ROI in the social cognition network, the posterior superior temporal 

sulcus.  

Result: ASD participants were able to modulate brain activity in this ROI, over multiple 

sessions, using visual imagery strategies. Moreover, we identified relevant clinical and neural 

effects, as documented by neuroimaging results and neuropsychological measures, including 

emotion recognition, which were observed immediately after the intervention and retained 

after 6 months. Different neuromodulation profiles demonstrated subject-specificity in face 

perception in ASD: some participants regulated brain activity for happy, sad and neutral facial 

expressions in opposite directions – modulation occurred in positive or negative directions in 
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different patients. Striatal regions involved in operant learning (previously associated to 

success and failure of controlling neurofeedback signal), parts of the saliency (insula and 

Anterior Cingulate Cortex) and emotional control (medial Prefrontal Cortex) networks were 

recruited during neurofeedback.  

Conclusions: All patients showed significant absolute neuromodulation regardless of the 

modulation profile. The involvement of the operant learning network supports the notion of 

engagement of the participants. Moreover, the potential behavioral benefits after the 

intervention and the persistence of these benefits after 6 months pave the way for future phase 

IIb/III clinical trials.  

1. Introduction 

Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder characterized by 

an early onset, life-long set of clinical features, that include deficits in social interaction and 

communication, as well as repetitive patterns of behavior (1). Despite these core features, 

there is a characteristic etiological and phenotypic heterogeneity, in particular, regarding 

intellectual function and medical comorbidities (2–7).  

Insights into the neurobiology of ASD have been provided by developments of structural, 

functional and spectroscopic neuroimaging methodologies (8). Functional magnetic 

resonance imaging (fMRI) opened a new era of research into the understanding of the neural 

correlates, pathophysiology, and etiology of ASD. The use of neuroimaging for intervention 

purposes is an emerging attractive opportunity (9). The current work addresses this gap in the 

context of ASD by providing proof-of-concept for a therapeutic application of (real-time) 

fMRI, using volitional neurofeedback. The concept behind neurofeedback is that the training 

of self-regulation of disease-relevant areas or neural circuits can reinforce positive 

psychological processes and promote neuroplasticity (10, 11).  

The phenotypic (and genotypic) heterogeneity of ASD poses challenges to any unifying theory 

to explain core clinical features (4), which seems to involve disturbances in multiple and 

distinct neural systems (12). However, a large body of neuroimaging studies has addressed 
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social perception and cognition, which provide the rationale for our chosen target region for 

neurofeedback training, the superior temporal sulcus (STS).  

The functional organization of the STS comprises distinct sub-regions. The posterior STS 

(part of the face processing network, together with the fusiform face area (FFA) and the 

occipital face area (OFA)) has been strongly implicated in the processing of facial expressions 

and other social cues (13). The role of the STS in other cognitive processes, such as Theory 

of mind, audiovisual integration, face processing and imagery of emotional facial expressions 

is also well established (14–19). Moreover, it has strong functional and anatomical connections 

with the extended face processing system, which includes the amygdala, inferior frontal gyrus 

(IFG), precuneus and anterior STS. Behavioral impairments in joint attention, eye contact and 

face emotion recognition, hallmarks of ASD, have been strongly linked to this circuit. The 

impact of putatively impaired STS responses in ASD has also been documented in several 

studies (20–23) (for a review see (24)). A decrease in structural connectivity has also been 

documented in tracts arising from grey matter in the STS (DTI-based studies) (for a review 

see (9)).  

Training approaches based on volitional neurofeedback, using real-time fMRI, have been 

proposed for depression (25), addiction (26) and attention deficit hyperactivity disorder (27) 

but so far not for ASD. We have recently shown in healthy controls that neurofeedback 

focusing on the posterior STS (pSTS) is feasible and concluded that this region showed 

promise as a mechanistic neurofeedback target (28). This previous study in a control group 

paved the way for the present clinical study. 

In this proof-of-principle longitudinal study, we aimed to assess the feasibility of using the 

pSTS as a target region for real-time fMRI neurofeedback (rtfMRI-nf), in ASD participants. 

The rationale for the selection of the target region is the importance of social face perception 

in typical cognition and social interaction, and the pivotal role of pSTS in this process with 

potential clinical benefits. To this end, we aimed to evaluate the efficacy of neurofeedback 

over multiple therapeutic sessions in ASD, and to assess efficacy measures derived from 

neuropsychological evaluation and imaging data. 



 Appendix II 4 

2. Methods  

The study consisted of a single-arm, within-group “before-after” design and aimed to examine 

the neuroimaging and behavioral effects of an intervention protocol including five sessions of 

rtfMRI-nf. 

The research protocol was approved in January 2016 by the Institutional Ethics commission 

(Comissão de Ética da Faculdade de Medicina), the National Authority on medical devices 

(INFARMED - National Authority of Medicines and Health Products, I.P.) and National 

Ethics committee (CEIC - Portuguese Ethics Committee for Clinical Research) and registered 

in the clinicaltrials.gov platform. 

2.1 Participants 

Fifteen male participants (19 years and 11 months, ± 3 years and 3 months) with high-

functioning ASD (Full-Scale Intelligence Quotient [FSIQ] superior to 80; FSIQ: Mean = 103; 

SD = 10.7) participated in the study. All participants had normal or corrected to normal vision, 

based on their clinical history. During the trial, participants were instructed to follow the 

treatment as usual, if any, and to not make major alterations in their activities. 

Prior to participation, subjects were informed about the research protocol and gave written 

informed consent. All procedures are in accordance with the Declaration of Helsinki.  

2.2 Procedures 

The neurofeedback training intervention lasted for eight weeks and comprised five sessions 

of rtfMRI-nf (four weekly sessions and the last approximately one month later). During visit 

1, participants also completed a neuropsychological evaluation. The Facial Expressions of 

Emotion - Stimuli and Tests - FEEST (The Emotion Hexagon test) (29), was the primary 

behavioral outcome.. The relation between FEEST, basic emotion recognition and abnormal 

brain activity in specific components of the response to emotional faces in patients with ASD 

has been previously reported (30). Additionally, the participants also completed two secondary 

outcome measures - Autism Treatment Evaluation Checklist (ATEC)  (31) and the Vineland 
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Adaptive Behavior Scale (VABS) (32). Other neuropsychological measures related to mood, 

anxiety and depression were also assessed: Profile of Mood States (POMS) (33, 34); Hospital 

Anxiety & Depression Scale (HADS) (35, 36) and Beck Depression Inventory (BDI) (37–39). 

The evaluations were repeated at the primary endpoint - after the last training session, and at 

follow-up - 6 months after the last training session. 

2.3 rtfMRI-nf paradigm 

Data acquisition was performed on a 3T Siemens Magnetom Tim Trio scanner with a 12-

channel head coil, at the Portuguese Brain Imaging Network. Each scanning session started 

with a high-resolution magnetization-prepared rapid acquisition gradient echo sequence for 

co-registration of functional data (176 slices; TE: 3.42 ms; TR: 2530 ms; voxel size 1 mm3 

isotropic, FA: 7°; matrix size: 256×256).  

2.3.1 Localizer  

After the structural sequence, we performed a functional localizer to identify the target region-

of-interest (ROI) using an echo planar imaging sequence (160 volumes, TR = 2 s, TE = 30 

ms, flip angle = 75°, 32 slices, matrix size 64×70, in-plane voxel size = 3×3 mm, slice thickness 

= 2.5 mm, gap of 0.5 mm) (a detailed explanation of the protocol is presented in (28)).  

 

Figure 1 - Localizer run design. 
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The ROI was defined based on a block-based design with 40 blocks of eight seconds and five 

different conditions: Neutral - static neutral face; to subtract static aspects of face processing; 

Happy - morphing face from neutral to happy; Sad - morphing face from neutral to sad; 

Alternate expressions - alternating between sad and happy; Moving dots - randomly moving 

dots, to subtract motion processing (Figure 1) (see Supplementary Methods and (28) for 

further details). 

2.3.2 Imagery Runs  

The localizer was followed by four imagery task-based fMRI runs (300 volumes with the same 

EPI sequence parameters of the localizer run). The patients were asked to modulate BOLD 

activity in the target region. The first and the last runs were control runs without feedback, 

and the second and third were neurofeedback training runs. The first run establishes a baseline 

and the last is a control run (also known as transfer run) to test if patients retained the ability 

to self-regulate BOLD signal in the target ROI without feedback. 

To facilitate operant learning, explicit strategies were suggested to the patients to modulate 

pSTS BOLD signal activity (40), e.g. imagining facial expressions morphing, of an avatar or 

real person, with or without a context. Nevertheless, patients were given the freedom to 

explore other strategies that would maximize the presented feedback. 

The blocks included three randomly presented “conditions” featuring suggested 

neurofeedback strategies: IH) Imagery of a happy facial expression, IS) Imagery of a sad facial 

expression, IA) Alternate between the imagery of happy and sad facial expression, interleaved 

with IN) imagery of static neutral facial expressions. 

Visual feedback was presented in runs two and three through an interface based on the 

expression of an avatar. The expression of the avatar on the screen was continuously updated 

based on the mean ROI activation of the neurofeedback target.  
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2.4 Data analysis and statistical evaluation 

2.4.1 Outcome measures analysis 

Primary Outcome Measures were characterized in terms of Confidence Intervals (CIs) and 

relative frequency, respectively. Statistical Package for Social Sciences (SPSS, Version 24) was 

used to analyze data. To assess differences between outcome measures at baseline, primary 

and secondary endpoints, 95% CI were determined (baseline vs. primary endpoint, and 

baseline vs. secondary endpoint - follow up), as well as the p-values corresponding to paired 

sample t-tests.  

2.4.2 Imaging data 

The fMRI data were analyzed using BrainVoyager QX (Version 2.8, Brain Innovation, 

Maastricht, Netherlands).  

Our main goal was to assess the statistical significance of the modulation achieved within the 

neurofeedback target region. To this end, we performed t-tests to assess significance of 

neuromodulation. We performed additional group-analyses to explore whole-brain patterns 

associated with the neurofeedback training.  

3. Results  

3.1 Patient flow 

A total of 15 patients completed the protocol and were included in the analyses (see 

CONSORT flow chart as Supplemental material) 
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3.2 Feasibility measures 

The first important aspects to assess were fidelity (were intervention sessions delivered as intended?), 

feasibility (was delivery of the intervention feasible in terms of time, group size, amount of sessions?) and 

acceptability (did participants and researchers evaluate the session positively?) of the intervention 

sessions, by evaluating measures such as retention, compliance and adherence. Table 1 

summarizes feasibility measures. 

Table 1 - Feasibility measures summary. 

 % (n/n) 

Recruitment/Consent  100% (15/15) 

Retention (primary end point) 100% (15/15) 

Retention (secondary end point) 93% (14/15) 

Intervention uptake 100% (15/15) 

Adherence/ Completion 100% (15/15) 

Compliance 100% (15/15) 

Intervention delivery 100% (15/15) 

Acceptability 100% (15/15) 

 

The results for all feasibility measures, except the secondary endpoint, are 100%.  

3.3 Safety  

There were no adverse events reported during the study period by any of the participants. 

3.4 Outcome measures 

The results regarding clinical outcome measures are summarized in Table S1 (reported as 95% 

CIs). Considering global ability to recognize expressions using the FEEST, defined as our 

primary outcome measure, 10 out of 15 patients improved (the higher the result, the better is 

the ability to recognize the expressions). At the group level, the 95% CI for the difference 

between the global endpoint and baseline (i.e. the mean increase from baseline to primary 
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endpoint) is [-0.88, 5.41] (p = 0.144). Improvements at group level turned out to be specific 

and significant for fear conditions (see below)  

Regarding the secondary outcome measures, for the VABS the 95% CI for the difference 

between the primary endpoint and baseline is [1.40, 6.07] (p =  0.004) (the higher the score, 

the better is the adaptive behavior) and for the global ATEC, the 95% CI for the difference 

between the primary endpoint and baseline is [-9.31, 0.11] (p = 0.055) (the lower the score, 

the better).   

A detailed analysis of the subscales of the clinical outcome measures showed relevant 

improvements (regardless of the polarity of the scores, results presented as the difference 

between primary endpoint - after the last intervention session - and baseline): FEEST fear 

expression presented a mean increase from baseline to primary endpoint of 1.67 (95% CI 

[0.27, 3.07] (p = 0.023)), ATEC Sensory/Cognitive Awareness a decrease of 2.07 (95% CI [-

3.52, -0.61] (p = 0.009)), ATEC Health/Physical/Behavior a decrease of 2.40 (95% CI [-4.44, 

-0.36] (p = 0.024)), VABS Communication an increase of 4.27 (95% CI [1.09, 7.44] (p = 

0.012)), VABS Daily Living Skills an increase of 2.93 (95% CI [ 0.50, 5.37] (p = 0.022)),VABS 

ABC an increase of 3.73 (95% CI [1.40, 6.07] (p =  0.004)), VABS Socialization an increase of 

3.33 (95% CI [ 0.98, 5.69] (p = 0.009)). 

Considering the secondary follow-up time point, 6 months after the last training session, and 

comparing to the baseline, the patients sustained and improved the abovementioned 

variations reported in the primary follow-up time point, and even presented improvements in 

other measures such as ATEC Total (95% CI [-20.96, -12.19] (p < 0.001)) ATEC 

Speech/Language/Communication (95% CI [-1.76, -0.10] (p = 0.031)) and ATEC Sociability 

(95% CI [-7.17, -3.98] (p < 0.001)) (see Supplemental Material for a full account of 

improvement in additional measures, such as mood). 

3.5 Imaging Results 

3.5.1 Localizer  

The target ROIs for neurofeedback training were defined, in each session, according to 

functional and anatomical principles. In this sense, the identification of a homogeneous ROI 
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within and across participants was an important goal of the intervention. The average position 

in Talairach space was x = 54 ± 5, y = 39 ± 7, z = 8 ± 5, and the size (measured in number 

of 1 mm3 voxels) was 693 ± 325 voxels. Figure 2 shows the probabilistic distribution of the 

selected target regions. There was no significant effect of session on the size of the ROI, 

proving stability. We have also not found significant effect of session of the percent signal 

change (PSC) (Table S2). 

 

Figure 2 - Probabilistic map of the pSTS ROI locations. 

 

3.5.2 Region of Interest Neurofeedback Analysis 

Considering the feedback runs, we found that the participants could modulate brain activity 

based on the imagery of distinct facial expressions, but in subject- and stimulus-specific 

directions. In fact, some subjects could modulate the conditions IH, IS and IA expressions in 

different directions and this could even occur for IN imagery. We therefore opted to consider 

the absolute value of the t-statistic based on the facial expression contrast. Since the goal was 

to modulate ROI activity, irrespective of direction, we interpreted both modulation directions 

(IH, IS, IA > IN and IN > IH, IS, IA) as viable strategies. One-sample t-tests as well as 95% 

CIs characterized absolute BOLD % change within each ROI at the group level -  session 1: 
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t(29) = 8.1151, 95% CIs for the BOLD % change [0.2887, 0.5190], session 2: t(29) = 6.5398, 

95% CIs for the BOLD % change [0.2784, 0.5727], session 3: t(29) = 6.7730, 95% CIs for the 

BOLD % change [0.2619, 0.5075], session 4: t(29) = 6.2360, 95% CIs for the BOLD % change 

[0.3390, 0.6610], session 5: t(29) = 6.8469, 95% CIs for the BOLD % change [0.2907, 0.7339]. 

Considering all imagery runs (300 runs, 150 with and 150 without feedback), 128 runs 

presented statistically significant ROI-GLM (42% of the runs). Considering the 150 feedback 

runs, 70 runs presented statistically significant modulation values. Without feedback, 

significant modulation was only achieved in 58 runs, suggesting nevertheless that patients can 

readily use an instructed strategy to modulate brain activity even in the absence of feedback. 

Moreover, the number of successful training runs was close to the number of successful 

transfer runs (30 and 28 respectively). All patients were able to modulate ROI activity in at 

least 5 runs irrespective of feedback presentation; 4 patients achieved significance in more 

than 10 runs.  

3.5.3 Post-hoc assessment 

We further investigated individual profiles in the block-related average curves, given the 

evidence for different modulation strategies (participants could modulate either positively or 

negatively to distinct regulation conditions). We present the block-related average of a session 

from two patients in Figure 3, showing distinct directions in successful modulation. The first 

example (Figure 3.A) shows upregulation during condition IH and downregulation during 

condition IS. In the second example (Figure 3.B), the patient downregulates all non-neutral 

conditions. 
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A. 

 

B. 

 
 

Figure 3 - Individual analysis of block-related averages of the target region for two different 
sessions (mean over imagery runs), showing that patients can modulate brain activity in the 
target region but in distinct directions. A. Patient #10, session #2 and B. Patient #5, session 

#4. 

 

3.5.4 Whole-Brain Analysis 

Figure 4 presents the most active brain regions during the neurofeedback session, using the 

balanced contrast (IH, IS, IA > IN) (RFX-GLM, FDR corrected, t(14), p<0.0014), for the 15 
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patients, 5 sessions and 2 runs with feedback. In this analysis, we found regions in the saliency 

network such as the anterior insula and anterior cingulate cortex (ACC) and subcortical 

structures involved in reward, feedback processing and operant learning such as the body of 

the caudate and putamen. Regions involved in emotional control in the medial prefrontal 

cortex (MPFC) were also activated.  

 

Figure 4 – Group RFX-GLM activation map for the neurofeedback runs, contrasting the 

imagery of happy, sad and alternate conditions with the neutral condition (FDR corrected, 

q<0.05) – Talairach coordinates of the slices are Y=9 (top) and Z=10(bottom).  

 

4. Discussion 

We demonstrate the feasibility of volitional rtfMRI-nf multiple session training in patients 

with ASD. This was attempted through training of a core feature in ASD, the processing of 

facial emotion expressions, in the pSTS, a region of the social cognition network. Moreover, 
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we identified relevant clinical and neural effects, as documented by neuroimaging results and 

improvement in neuropsychological measures of emotion recognition, adaptive behavior, and 

mood, which were observed immediately after the intervention and were sustained after 6 

months. These findings pave the way for phase IIb/III clinical trials.  

Volitional neurofeedback has been previously attempted in ASD only using EEG (37) which 

limits the targeting of specific brain regions, unlike fMRI. A previous fMRI study provided 

real-time covert (non-volitionally controlled) incidental feedback provided by the presentation 

of abstract nonsocial stimuli and did not address amplitude modulation (41) but instead 

induced subsequent changes in (resting state) connectivity. Behavioral effects in that study 

were modest, because as stated by the authors, it was designed as a proof of principle that 

aberrant connectivity can be addressed through neurofeedback, rather than as a clinical 

intervention. The ability of patients with ASD to undergo a complete (volitional) rtfMRI-nf 

intervention, targeting their social brain circuitry, is, therefore a novel approach, here tested 

through a clinical trial. All patients successfully participated and finished the 5-session 

intervention. We were able to evaluate all participants at the primary endpoint and only one 

patient did not complete the follow-up 6-month evaluation (the patient left the country). 

Recruitment satisfied the planned number of participants for the study and followed the 

recruitment rate schedule as planned (one participant every three weeks).  

Neurobehavioral effects related to the chosen primary global efficacy outcome measure 

(emotion recognition - FEEST), were mainly observed for some subscales related to this 

measure and interesting effects were also observed for pre-defined secondary measures. 

Concerning the specific expression types assessed by FEEST, we note that the “Fear” 

condition presented a significant improvement. The secondary outcome measures, reflecting 

the generalization of learned skills to general aspects in social cognition, also suggest global 

significant improvements (VABS and ATEC) and in specific clinical subscales of ATEC, 

VABS, and POMS. Taken together, the results are in line with previous studies reporting that 

social cognition interventions can improve performance in emotion recognition tasks (42–44).  

In our approach, using a neurofeedback training intervention, the patients are instructed to 

self-regulate brain activity/networks, ultimately aiming to change neural activity in a controlled 

manner. This approach can be useful to improve the ability of patients to achieve stable 

behavioral and neuropsychological benefits in neurodevelopmental disorders (for a review see 

(45)). The use of fMRI-based neurofeedback in ASD creates the opportunity to target novel 
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brain regions (such as pSTS, a social cognition specific region which is not accessible using 

alternative imaging techniques) and clinical symptoms associated with their function. The 

results do therefore suggest that fMRI-based volitional neurofeedback using pSTS and social 

cognition features may have a therapeutic future. 

4.1 Imaging results – insights into the neural effects 

of NF 

Imaging results provide interesting insights into the putative mechanisms of action of the 

intervention. The pSTS ROI could reliably be identified and selected online across sessions. 

Patients could modulate activity in this ROI during the neurofeedback. Interestingly, we found 

evidence for distinct modulation profiles, which are consistent with the heterogeneity of the 

cognitive styles of ASD patients. Some patients upregulated for imagery of neutral expressions 

and downregulated for imagery of sad and happy expressions, suggesting that perception of 

neutral faces is intrinsically distinct in ASD. Taken together, our results show distinct 

individual profiles, possibly related to different modes of perceptual experience and personal 

interpretation of the feedback. Future studies should exploit these individual differences and 

address whether these distinct profiles do indeed require tailored NF approaches. 

4.2 The role of reward and affective processing 

regions during NF   

There is an ongoing debate addressing the mechanisms of action underlying volitional control 

and success in neurofeedback (46, 47). Neurofeedback learning is possibly supported by 

operant learning systems, which are intrinsically related to motivation related networks (48). 

Spontaneous strategies (49) may emerge during NF training, with trial and error learning, in 

such an operant manner. These mechanisms are supported by the observed activation of 

striatal circuits, such as the caudate nucleus, involved in operant learning and reward. These 

neural systems may be particularly relevant in patients with ASD. The importance of striatal 

brain regions (implicated in reward and feedback processing) has been established across 
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neurofeedback experiments with different mental tasks (50). The identification of a similar 

network substantiates the contribution of the reward value of feedback to self-regulation in 

ASD patients. Even when participants modulated with different patterns of activity (in terms 

of direction of modulation), the similar contribution of such reward regions seemed relevant 

to achieve self-modulation of the target regions. 

Another important aspect is that ASD participants seem to be highly motivated and engaged 

with information and communication technologies (ICTs) (51). ICTs allow them to explore a 

wide range of (self-driven) volitional strategies without disruptive social signals or 

intimidation.  

Whole brain analysis during neurofeedback showed regions involved in operant learning and 

reward such as the caudate, and in the saliency network, such as the ACC and the anterior 

insula, which is decisive during feedback guided imagery irrespective from the task (50). In 

ASD, this network is especially relevant. The anterior insula has been previously implicated in 

ASD and is functionally related to emotional processing and cognitive control (52–54). In 

addition to the ACC, the MPFC may represent a hub between affective and cognitive 

processing (54). According to the same authors, ACC and the insula are also associated with 

emotional recall and imagery tasks, which is also supported by our findings. The identification 

of circuits involved in operant learning, reward and saliency processing sheds light into 

mechanisms of action-guided motivated behavior during volitional neurofeedback. Taken 

together, the results suggest that the patients were highly motivated and actively engaged in 

imagery/emotional self-control tasks. Moreover, we believe that the current findings provide 

enough evidence of behavioral improvements to motivate future phase IIb/III clinical trials. 
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Supplementary Materials 
 

Participants additional details 

Fifteen male participants (19 years and 11 months, ± 3 years and 3 months) with high-

functioning ASD (Full-Scale Intelligence Quotient [FSIQ] superior to 80; FSIQ: Mean = 103; 

SD = 10.7) participated in the study. ASD diagnosis was assigned based on: parental or 

caregiver interview (Autism Diagnostic Interview - Revised, ADI-R (1, 2)), direct structured 

subject assessment (Autism Diagnostic Observation Schedule, ADOS (3)), and the current 

diagnostic criteria for ASD according to the DSM-5 (4). Exclusion criteria included FSIQ 

inferior to 80, any associated medical condition such as epilepsy, or other usual comorbidities 

in ASD. Eight patients were medicated for ASD-related symptomatology, in particular 

irritability and agitation, at the time of the study. Three of them were polymedicated 

(risperidone n = 6; methylphenidate n = 3; sertraline = 1; lorazepam = 1). 

Participants recruitment details 

The participants were recruited based on a collaborative recruitment effort between ICNAS, 

the Autism Unit of the Pediatric Hospital integrated into the University Hospital of Coimbra 

and local ASD associations.  

Sample size estimation 

For guidance purposes, we calculated the sample size based on the hypothetical improvement 

on the FEEST test (primary outcome measure) based on the effects reported in (5). To this 

end, we followed a more conservative non-parametric approach. In a within-subject design 

with a standardized effect size of 0.82, the required sample size was 15, at an alpha level of 

0.05 and power of 0.8. To determine these values, we used the G*Power tool  (6). 

Feasibility and efficacy measures  

The intervention was assessed based on recruitment rate, retention (at primary and secondary 

endpoints), adherence, compliance, acceptability and ability to understand (and follow/engage 
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on) the protocol, i.e. ability to self-modulate brain activity. As primary efficacy measures, also 

used to calculate the sample size, we chose emotion recognition scores. 

 

Procedures 

Localizer 

After the structural sequence, we performed a functional localizer to identify the target ROI 

for neurofeedback using an echo planar imaging (EPI) sequence (160 volumes, TR = 2 s, TE 

= 30 ms, flip angle = 75°, 32 slices, matrix size 64×70, in-plane voxel size = 3×3 mm, slice 

thickness = 2.5 mm, gap of 0.5 mm) (a detailed explanation of the protocol is presented in 

(7)).  

The ROI was defined based on a block-based design with 40 blocks of eight seconds and five 

different conditions: N) Neutral - static neutral face; to subtract static aspects of face 

processing; H) Happy - morphing face from neutral to happy; S) Sad - morphing face from 

neutral to sad; A) Alternate expressions - alternating between sad and happy; M) Moving dots 

- randomly moving dots, to subtract motion processing (Figure 5).  

Acquired fMRI data were exported in real-time to Turbo-BrainVoyager (TBV) software 

(Version 3.2, Brain Innovation, Maastricht, Netherlands), for data preprocessing (including 

3D motion correction, spatial Gaussian smoothing and temporal filtering). Additionally, the 

incremental general linear model (GLM) routines in TBV, allowed rapid/real-time definition 

of the ROI based on the localizer run data. Our contrast featured the balanced subtraction of 

conditions N and M from emotion expression conditions H, S and A. Video clips of an avatar 

performing a facial expression (Vizard Virtual Reality Software Toolkit, Worldviz) were used 

as stimuli for conditions H, S and A. 

Note that, because of the contrast-based subtraction by the static expression (N) and motion 

(M) conditions, the suggested localizer is quite stringent, since basic processing regions of 

static facial features will be elicited by the non-dynamic face stimuli, whose corresponding 

activation is subtracted. With this balanced contrast, we aim to capture the brain areas 

responsible specifically for processing of dynamic facial expressions. A three-dimensional box 

was visually selected over the cluster displaying the strongest response in the statistical 
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activation maps around the right posterior portion of the STS. We used the anatomical 

definition of the first sulcus inferior to the lateral fissure. The voxels significantly activated in 

this three-dimensional box defined our region of interest for the neurofeedback runs. 

Imagery runs 

Each run consisted of 25 blocks (12 regulation blocks featuring imagery of non-neutral 

expressions alternating with 13 regulation blocks of neutral expression imagery), each block 

with a duration of 24 seconds. At the beginning of each block, an auditory instruction was 

given to the participants presenting the condition, followed by a beep informing the start of 

each block.  

The blocks included three randomly presented “conditions” featuring suggested 

neurofeedback strategies: IH) Imagery of a happy facial expression, IS) Imagery of a sad facial 

expression, IA) Alternate between the imagery of happy and sad facial expression, interleaved 

with IN) imagery of static neutral facial expressions, whereby the objective was to keep a 

neutral expression in the avatar. These possible strategies were instructed, taking into account 

that neurofeedback is also a skill that requires strategy learning, which can be speeded up with 

biologically inspired strategies. 

Neurofeedback was presented in runs two and three with an interface providing the 

expression of an avatar. The expression of the avatar on the screen was continuously updated 

based on the mean ROI activation of the neurofeedback target. The avatar’s expression was 

discretized into 15 levels (between neutral and the endpoint expression). The expression level 

displayed is determined considering the mean level of the ROI signal variation, in the direction 

of the instruction of the condition. In the IA condition, the feedback morphed in the “happy” 

axis. Real-time statistical analysis was performed with a custom MATLAB script and used to 

determine PSC. PSC value was discretized (considering 15 levels of the morphing), 

considering a maximum value of 1.5%. 

The first and last runs were performed without feedback, but the stimuli and instructions were 

similar (the feedback was removed). 

Data analysis – Imaging data details 

The fMRI data were analyzed using BrainVoyager QX (Version 2.8, Brain Innovation, 

Maastricht, Netherlands). Pre-processing of single-subject fMRI data included slice-time 
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correction, realignment to the first image to compensate for head motion and temporal high-

pass filtering (GLM-Fourier, 2 cycles) to remove low-frequency drifts. Co-registration of the 

functional data with the anatomical scan and normalization into Talairach coordinate space 

(8) were also performed as preliminary steps for group analyses. 

In the first-level analysis of the functional runs, we used a standard GLM analysis for each 

run. Predictors were modelled as a boxcar function with the length of each condition (24 

seconds), convolved with the canonical hemodynamic response function. Six motion 

parameters (three translational and three rotational) and predictors based on spikes (outliers 

in the BOLD time course) were also included in the GLM as covariates. 

Our main goal was to assess the statistical significance of activation achieved within the 

neurofeedback target region. To this end, we used a ROI-GLM to retrieve the ROI activation 

level for the balanced contrast IN vs. IH, IS and IA.  

Second-level analysis of the functional data was performed to better understand the 

mechanisms involved in neurofeedback at the group level. To this end, we performed a 3D 

spatial smoothing with a Gaussian filter of 6 mm. The resulting p-values were adjusted based 

on the false discovery rate (FDR) to correct for multiple testing. 

Supplementary Results 
 

The patient flow is presented in the CONSORT flow diagram (Figure S1). No dropouts were 

observed. Recruitment started on February 11, 2016 and ended on February 10, 2017, when 

the required sample size was reached, and the last interventional session was performed. 

Follow-up assessment was completed for the last participant on September 8, 2017. 

Additional clinical measures 

Additionally, other clinical measures also present improvements BDI total a decrease of 4.07 

(95% CI [-7.41, -.72] (p = 0.021)) (the lower the score, the fewer the depression symptoms), 

POMS Tension a decrease of 3.20 (95% CI [-6.00, -0.41] (p = 0.028)) (the lower the score, the 

fewer the tension symptoms), POMS Anger a decrease of 1.80 (95% CI [-3.44, -0.16] (p = 

0.033)) (the lower the score, the fewer the anger symptoms). 
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Imaging data - ROI analysis 

Patients performed five neurofeedback training sessions. Each session included four imagery 

runs (the first - training run - and the last - transfer run - without feedback and the two in-

between with feedback). Patients were asked to self-regulate the target ROI activity, use the 

feedback to optimize the modulation strategy and apply the best strategy in the runs without 

feedback.  

Concerning variation within session, i.e. among runs, there is no evidence of run effect – 

repeated measures ANOVA [F(3,222) = 1.685, p = 0.171] (95% CI, training run [0.3694, 

0.5525], first feedback run [0.3199, 0.5219], second feedback run [0.3769, 0.5625], transfer run 

[0.4070, 0.6456]).  

There was no across session variability effect associated with the PSC within each imagery run 

– repeated measures ANOVA (training run: [F(4,56) = 0.564, p = 0.690]; neurofeedback 1: 

[F(4,56) = 1.596, p = 0.188]; neurofeedback 2: [F(4,56) = 0.464, p = 0.762]; transfer: [F(4,56) 

= 0.332 , p = 0.856]). 

  



 Appendix II 27 

Supplementary Figures 

 

Figure S1 - Patient Flow, according to the CONSORT template. Follow-up assesses long-
term effects of the intervention at 6 months (second evaluation, after the one occurring just 

post-intervention). 

 

Supplementary Tables 

Table S1– Outcome measure results (with a focus on confidence intervals - CIs). 

 

Baseline/Sess
ion 1 

Primary 
follow-up 
time point 
(Session 5 - 

post-
intervention) 

Mean 
difference and 

95% CI 

Secondary follow-
up time point (6 
months after last 
training session) 

Mean difference 
and 95% CI 

n Mean 
(SD) n Mean 

(SD) 

Mean 
differ
ence 

95% 
CI n Mean (SD) 

Mean 
differen

ce 
95% CI 

FEEST 
_Anger 

15 16.00 
(6.80) 

15 15.60 
(7.08) 

.40 (-.64, 
1.44) 

14 16.71 (6.22) -1.00 (-2.18, 
.18) 

FEEST 
_Disgust 

15 11.60 
(8.49) 

15 13.33 
(8.32) 

-1.73 (-3.74, 
.27) 

14 14.07 (7.92) -2.71 (-5.80, 
.37) 

FEEST _Fear 15 16.60 
(2.26) 

15 18.27 
(1.98) 

-1.67 (-3.07, 
-.27) 

14 17.64 (3.39) -1.21 (3.26, 
.83) 
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FEEST 
_Happiness 

15 19.27 
(2.84) 

15 19.53 
(0.99) 

-.27 (-1.51, 
.98) 

14 19.14 (3.21) .07 (-.08, 
.23) 

FEEST 
_Sadness 

15 17.73 
(2.69) 

15 17.40 
(4.82) 

.33 (-1.73, 
2.40) 

14 17.36 (4.77) .36 (-1.60, 
2.31) 

FEEST 
_Surprise 

15 16.80 
(4.63) 

15 16.20 
(6.26) 

.60 (-.56, 
1.76) 

14 15.86 (5.90) .71 (-.99, 
2.42) 

FEEST _Total 15 98.00 
(19.30) 

15 100.27 
(19.29) 

-2.27 (-5.41, 
.88) 

14 100.79 
(20.01) 

-3.79 (-8.34, 
.77) 

ATEC_SPEE
CH/LANGU
AGE/COMM
UNICATION 

15 2.93 
(1.71) 

15 2.67 
(1.76) 

.27 (-.13, 
.66) 

14 1.93 (1.30) .93 (.10, 
1.76) 

ATEC_SOCI
ABILITY 

15 13.60 
(7.85) 

15 13.73 
(9.77) 

-.13 (-3.00, 
2.74) 

14 7.79 (6.17) 5.57 (3.98, 
7.17) 

ATEC_SENS
ORY/COGN
ITIVE 
AWARENES
S  

15 8.87 
(5.04) 

15 6.80 
(3.80) 

2.07 (.61, 
3.52) 

14 4.86 (3.06) 4.21 (2.47, 
5.96) 

ATEC_HEA
LTH/PHYSI
CAL/BEHA
VIOR 

15 11.20 
(6.17) 

15 8.80 
(5.13) 

2.40 (.36, 
4.44) 

14 5.07 (2.81) 5.86 (3.27, 
8.45) 

ATEC_Total 15 36.60 
(13.94) 

15 32.00 
(14.66) 

4.60 (-.11, 
9.31) 

14 19.64 (8.13) 16.58 (12.19,  
20.96) 

VABS_COM 15 70.60 
(15.65) 

15 74.87 
(14.95) 

-4.27 (-7.44, 
-1.09) 

14 79.79 (13.70) -8.43 (-12.62, -
4.24) 

VABS_DLS 15 74.00 
(17.15) 

15 76.93 
(16.46) 

-2.93 (-5.37, 
-.50) 

14 83.14 (17.00) -8.64 (-12.31, -
4.98) 

VABS_SOC 15 63.40 
(14.21) 

15 66.73 
(16.43) 

-3.33 (-5.69, 
.98) 

14 71.43 (15.36) -7.07 (-9.60, -
4.55) 

VABS_ABC 15 63.40 
(13.52) 

15 67.13 
(15.22) 

-3.73 (-6.07, 
-1.40) 

14 73.57 (16.67) -9.50 (-12.13, -
6.87) 

HADS_Total 15 10.27 
(4.81) 

15 8.27 
(4.10) 

2.00 (-.47, 
4.47) 

    

BDI_Total 15 9.40 
(7.41) 

15 5.33 
(4.30) 

4.07 (.72, 
7.41)  

    

POMS_Tensi
on 

15 7.27 
(4.27) 

15 4.07 
(2.87) 

3.20 (.41, 
6.00)  

    

POMS_Depre
ssion 

15 5.93 
(8.49) 

15 1.07 
(2.46) 

4.87 (-.07, 
9.81)  

    

POMS_Anger 15 2.80 
(2.76) 

15 1.00 
(1.41) 

1.80 (.16, 
3.44)  

    

POMS_Vigou
r 

15 15.20 
(4.92) 

15 12.73 
(6.42) 

2.47 (-.48, 
5.41)  

    

POMS_Fatigu
e 

15 3.53 
(4.49) 

15 2.27 
(3.04) 

1.27 (-1.49, 
4.02) 

    

POMS_Confu
sion 

15 6.20 
(3.41) 

15 5.40 
(3.85) 

.80 (-1.99, 
3.59) 

    

POMS_Total 15 110.53 
(20.39) 

15 101.07 
(13.25) 

9.47 (-3.50, 
22.44) 
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Table S2 – Session effect on ROI size and PSC 

Session number  number of voxels PSC 

 n Mean 95% CI Mean 95% CI 

1 15 734.0667 [578.0849, 890.0484] 1.7857 [1.2542, 2.3173] 

2 15 687.2 [501.7434, 872.6566] 2.6417 [1.6347, 3.6486] 

3 15 660.8 [462.4300, 859.1700] 2.3843 [1.6718, 3.0968] 

4 15 689.6667 [495.3640, 883.9693] 2.3646 [1.4181, 3.3110] 

5 15 692.2667 [507.2407, 877.2926] 1.8578 [1.0977, 2.6179] 
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Appendix III 
 

Correlated alpha activity with the facial expression 
processing network in a simultaneous EEG-fMRI 
experiment 
 

This appendix is composed by the contents of the following publication: 

Simoes, M., Direito, B., Lima, J., Castelhano, J., Ferreira, C., Couceiro, R., Carvalho, 
P., Castelo-Branco, M. (2017). Correlated alpha activity with the facial expression 
processing network in a simultaneous EEG-fMRI experiment. in 2017 39th 
Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC) (IEEE), 2562–2565. doi:10.1109/EMBC.2017.8037380. 

 

Abstract 

The relationship between EEG and fMRI data is poorly covered in the literature. Extensive 

work has been conducted in resting-state and epileptic activity, highlighting a negative 

correlation between the alpha power band of the EEG and the BOLD activity in the default-

mode-network. The identification of an appropriate task-specific relationship between fMRI 

and EEG data for predefined regions-of-interest, would allow the transfer of interventional 

paradigms (such as BOLD-based neurofeedback sessions) from fMRI to EEG, enhancing its 

application range by lowering its costs and improving its flexibility. 

In this study, we present an analysis of the correlation between task-specific alpha band 

fluctuations and BOLD activity in the facial expressions processing network. We characterized 

the network ROIs through a stringent localizer and identified two clusters on the scalp (one 

frontal, one parietal-occipital) with marked alpha fluctuations, related to the task. We then 

check whether such power variations throughout the time correlate with the BOLD activity 

in the network.  
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Our results show statistically significant negative correlations between the alpha power in both 

clusters and for all the ROIs of the network. The correlation levels have still not met the 

requirements for transferring the protocol to an EEG setup, but they pave the way towards a 

better understand on how frontal and parietal-occipital alpha relates to the activity of the facial 

expressions processing network. 

 Introduction 

Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two 

non-invasive neuroimaging techniques. They are complementary and not supplementary, 

since their characteristics provide different types of measures of the brain activity. On the one 

hand, fMRI conveys detailed spatial information, with resolutions at the sub-millimetre level, 

but with a much more limited temporal resolution, with sampling rates around the second. 

On the other hand, EEG has poor spatial resolution (around 3 cm (Burle et al., 2015)), but 

presents high temporal resolution data (sub-millisecond). The differences go beyond their 

intrinsic characteristics: the costs associated with each imaging technique are very different. 

Although prices vary over location and institution, conducting a MRI recording session is 

much more expensive than an EEG session (DellaBadia Jr et al., 2002). Therefore, when 

considering therapeutically interventions - which usually require several sessions -, the EEG 

solution conveys better chances of widespread implementation based on its lower costs, 

portability and ease of use. However, since the characteristics of each technique are very 

different of the other, interventions using such methods tend also to be different.  

The most common rehabilitation interventions using these techniques are neurofeedback. 

Neurofeedback refers to the method of self-regulation of brain activity based on real-time 

information provided by a neuroimaging method (for in-depth review, see (Sitaram et al., 

2016)). The main concept behind it relies on the connection between behavior and neuronal 

activity: if there is a change in one activity pattern that is related to a behavior, changing that 

activity pattern should create a variation in the corresponding behavior. Thus, neurofeedback 

targets specific neuronal substrates of behavior and, providing real-time information about 

those neuronal substrates empowers the patient with the possibility of self-regulate the activity 

of those regions/patterns/signals and, hopefully, create a behavioral improvement.  
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The two major categories of neurofeedback signals used are electrophysiological and 

hemodynamic. The electrophysiological methods use EEG, magnetoencephalography (MEG) 

or invasive electrocorticography (ECoG) to capture the electrical activity of the brain, while 

the hemodynamic methods use fMRI or functional near-infrared spectroscopy (fNIRS) to 

capture changes in the Blood-Oxygenation-Level-Dependent (BOLD) activity. From those, 

the most used are scalp EEG and fMRI. 

One of the main difficulties of using fMRI-based neurofeedback is the cost and setup 

inflexibility, which makes current studies using this technique limited in the number of 

sessions (they vary significantly between studies, from one up to ten sessions (Shibata et al., 

2011), but the majority consisted of a single session). When comparing with EEG-based 

neurofeedback studies, where the number of sessions is significantly higher (most studies use 

more than 10 sessions), the need of transferring fMRI-based neurofeedback protocols to EEG 

setups becomes clear, in order to achieve a broader and wider application of those. 

The relationship between the EEG alpha band (oscillatory activity with frequency between 8 

and 15Hz) and the BOLD activity has been studied mostly for resting-state data. Negative 

correlations between the occipital alpha activity and the default-mode-network have been 

found in several studies (for a review, see (Murta et al., 2015)). However, it remains unclear if 

such relation exists when participants are performing a task. The literature on task-specific 

correlations is scarce (Meir-Hasson et al., 2016). 

In this paper, we present a correlation analysis between spectral scalp activity and BOLD 

responses in task-specific regions-of-interest (ROI), for a simultaneous EEG-fMRI 

experiment of neurofeedback based on facial expressions imagery. To the best of our 

knowledge, our study is the first one to analyze EEG-fMRI correlations at the single-trial level 

for the facial expression processing network. We analyze how the alpha power band in the 

EEG signal correlate with activity in the regions of Occipital Face Area (OFA), Fusiform Face 

Area (FFA) and posterior Superior Temporal Sulcus (pSTS) (Fox et al., 2009), during a task 

of neurofeedback based on mental imagery of facial expressions. 



 Appendix III 4 

 Methods 

In order to analyze the relationship between the different frequency bands and the BOLD 

signal at the different brain regions of the facial processing network, we conducted a 

neurofeedback session, recording simultaneously EEG and fMRI signals. The paradigm is 

fully described in (Simoes et al., 2015), and will be shortly overviewed here. 

2.1 Participants 

Ten healthy volunteers were enrolled in a one-session long fMRI-based neurofeedback 

experiment, where we captured simultaneously EEG signals (mean age: 26 ± 3 years; 9 males). 

All participants had normal or corrected-to-normal vision, presented no history of 

neurological disorders and were naive to the purpose of the study. The study was approved 

by the Ethics Commission of the Faculty of Medicine of the University of Coimbra and was 

conducted in accordance with the declaration of Helsinki. All subjects provided written 

informed consent to participate in the study. 

2.2 Session Protocol 

The session consisted of one localizer run and three runs of neurofeedback (imagery with 

auditory feedback, imagery with visual feedback and transfer run). The order of auditory and 

visual feedback was randomized between subjects. 

2.2.1 Localizer 

For the localization of the facial expression processing network, dynamic stimuli of a realistic 

avatar performing happy and sad facial expressions (see the facial expressions in Figure 2.1) 

was contrasted with the same avatar with a neutral expression and a generic motion stimulus 

(randomly moving dots). Such stringent contrast recovers the areas that respond to the facial 

expression, but do not respond to the face itself nor to isolated movement. 
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Figure 2.1 - Screenshots of the different facial expressions used in the stimuli (neutral, happy 
and sad). 

 

2.2.2 Neurofeedback runs 

The neurofeedback runs consisted of alternating blocks of up and down regulation of the 

activity over the right pSTS ROI, with duration of 24 seconds. As feedback, a visual (avatar 

morphing the facial expression) or auditory (positive or negative sound) were provided to the 

participant. To modulate the activity in the target ROI, the subject was suggested to use a 

strategy of mental imagery of the avatar performing the facial expression. In the baseline 

blocks, participants were instructed to imagine a neutral face in the avatar, while in the 

expression blocks they were instructed to imagine repeatedly the morphing of the expression 

(happy, sad or alternating from happy and sad). 

2.3 MRI data recording and processing 

Scanning was performed on a 3T Siemens Magnetom TimTrio scanner, at the Portuguese 

Brain Imaging Network, using a 12-channel head coil. To create a structural reference to map 

the functional data, the beginning of each scanning session included the acquisition of a high-

resolution magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence for 

co-registration of functional data (176 slices; TE: 3.42ms; TR: 2530ms; voxel size 1.0×1.0×1.0 

mm3. 

Functional MR volumes were recorded consisting of 33 slices (in-plane resolution: 4×4 mm2, 

field of view (FOV): 256×256 mm2, slice thickness: 3 mm, flip angle (FA): 90°) yielding a total 
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coverage of the occipital and posterior temporal lobe. Repetition time (TR) was 2000 ms 

(Echo Time (TE): 30 ms). Start of each trial was synchronized with the acquisition of the 

fMRI volumes. 

For the localizer run, 160 volumes were acquired for a total duration of approximately 5 

minutes. In the neurofeedback runs, the technical aspects of the functional MR volumes were 

similarly to the localizer run. Each run had a total duration of 10 minutes, corresponding to a 

total of 300 volumes. 

Pre-processing of single-subject fMRI data included co-registration with structural data and 

normalization into Talairach coordinate space, temporal high-pass filtering, space domain 3D 

motion correction with intra-session alignment and slice scan time correction with cubic spline 

interpolation. A 3D spatial smoothing with a Gaussian filter of 5 mm was also applied. 

2.4 EEG signal recording and processing 

We used the MRI-compatible 64-channels Neuroscan system (MagLinkTM, NeuroScan, 

USA) to record the electrophysiological signal during the neurofeedback experiment. The 

EEG system was applied to the participants before they entered the scanner: scalp was cleaned 

with abrasive gel and alcohol, the EEG cap was placed in the participant head and conductive 

gel was added to each of the 64Ag/AgCl nonmagnetic electrodes positioned according to the 

10/10 system to reduce impedance. Electrodes’ impedance was kept under 10 kΩ during the 

recordings. The recording reference was set to an electrode close to CZ and EEG and fMRI 

data were acquired in a continuous way. The electrocardiogram signal (EKG) was also 

recorded, simultaneously with the EEG. EEG and EKG signals were amplified and recorded 

at a sampling rate (SR) of 10 kHz. 

Simultaneous EEG/fMRI recording presents two major interferences in the EEG signal: 

gradient artifacts, corresponding to interference added by the magnetic field, and 

ballistocardiogram (BCG) artifacts, corresponding to physiological cardiac-related artifacts 

(Allen et al., 2000).  

We used the average subtraction gradient correction implemented in Maglink RT Edit 

software (v4.5, NeuroScan, USA) to correct the artifacts added by the MR gradient switch. 
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That method creates an average template of the artifact and then subtracts it from the recorded 

EEG (Castelhano et al., 2014). The correction algorithm includes a low-pass filter of 75 Hz. 

For the correction of BCG artifacts, we ran an independent component analysis (ICA). Data 

were high-pass filtered by 1Hz. “Bad” channels were removed and data were re-referenced to 

average reference. ICA components were computed using the EEGLAB (Matlab toolbox 

v13_3_3b) implementation of infomax algorithm (Bell and Sejnowski, 1995). The 

independent components were inspected and the ones with higher correlation with the EKG 

signal recorded during the acquisition were removed from the signal (around 3 to 5 

components). Similarly, components related to other artifacts (such as blinking and eye 

movements) were also removed.  

2.5 Analysis pipeline 

For the correlation analysis, we extracted time-frequency activity related to the frequency 

bands of interest, average the data from the electrodes on our clusters of interest, convolve 

the final time-frequency values with the hemodynamic function and then correlate the data 

with the functional data from the MRI. Peak correlation values are then extracted from the 

facial expression network ROIs and, finally, final ROI correlation values are averaged across 

subjects, using a Fisher transformation (Figure 2.2). 
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Figure 2.2 – Analysis Pipeline, describing all the steps from the preprocessed EEG and fMRI 
data to the correlation. 

 

2.5.1 ROI selection 

We used the localizer fMRI data to create a fixed-effects analysis. The statistical activation 

map was determined with the balanced contrast (i. randomly moving dots, ii. static neutral 

face) < (iii. morphing face from neutral to sad, iv. morphing face from neutral to happy, v. 

alternating between sad and happy). P-values were thresholded at p = 0.001. We were able to 

extract clusters from each of the regions of interest (FFA, OFA and pSTS, both hemispheres), 

guided by the literature locations. We then extracted the statistical peak of each ROI and 

generated spherical ROIs of 10mm diameter around each peak. As a result, ROI sizes became 

more homogeneous. 

2.5.2 Power extraction, cluster selection and correlation 

We calculated the Short-Time Fourier Transform with a window of 2 seconds and no overlap, 

in order to match the TR of the fMRI data, and extract the spectrogram for the alpha band 

(8-15Hz). That way we get a value of alpha activity for every TR and every channel. We then 

cluster the channels of interest and get a representation of the time-course of the alpha 

throughout the neurofeedback run.  
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For the selection of the clusters of interest, we looked for the task-related alpha variation 

throughout the scalp in order to identify the cluster who maximized those variations. 

In order to account for the hemodynamic delay in the fMRI data, alpha values were convolved 

with the standard hemodynamic response function (HRF). After that, correlation was 

computed between our alpha predictor and the volume time course data from each voxel of 

brain. Correlation peaks from each ROI were extracted and added for the multi-subject 

analysis. We then transform the R values of each run through a Fisher z-transformation, 

average them and transform them back to R values through its inverse. 

 Results 

Regarding the fixed-effects analysis for the extraction of the facial expression processing 

ROIs, Table 3.1 summarizes the peak Talairach coordinates, t and p-values achieved. As 

previously referred, spherical ROIs were applied centered on those coordinates. 

Table 3.1 - Peak ROI coordinates and statistical values. 

ROI X Y Z t p 

Right OFA 36 -67 -8 5,08 < 0.001 

Left OFA -39 -67 -8 9,21 < 0.001 

Right FFA 36 -40 -23 4,59 < 0.001 

Left FFA -39 -49 -14 4,87 < 0.001 

Right pSTS 48 -31 1 8,49 < 0.001 

Left pSTS -51 -46 10 8,29 < 0.001 
 

Regarding the electrodes clustering, Figure 3.1 evidences the alpha task-related response 

through the time-frequency plot and the topographic map highlight the regions from where 

the alpha variations were manifested. From that analysis, we selected a frontal and a parietal-

occipital cluster, described in Table 3.2. 
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Figure 3.1 – Relative power between neutral and facial expression mental imagery. Left: time-
frequency pattern normalized by the time after instruction and before cue. Right: spatial 
distribution of alpha power at t=2s. 

 

Table 3.2 –Electrode clusters. 

Cluster Electrodes 

Frontal F1 F2 F3 F4 FC1 FC2 FC3 FC4 

Parietal-Occipital 
O1 O2 PO3 PO5 PO7 PO4 PO6 PO8  

P1 P3 P5 P7 P2 P4 P6 P8 

 

Parietal-Occipital and Frontal alpha correlations provided similar results. Figure 3.2 shows the 

correlations distributions for each ROI by cluster. Negative correlations were statistically 

significant for every ROI of the facial expression processing network, for both frontal and 

parietal-occipital clusters, as shown in Table 3.3. 



 Appendix III 11 

 

Figure 3.2 – Pearson R distribution across subjects. Each column represents one ROI and 
each plot one EEG cluster. Outliers marked by red cross. 

 

Table 3.3 – Mean correlation values achieved  for each ROI based on the alpha predictors of 
each cluster. 

 Frontal Parietal-Occipital 

ROI R z R z 

OFA (R) -.24 -4.21** -.24 -4.18** 

OFA (L) -.23 -4.01** -.23 -4.07** 

FFA (R) -.24 -4.31** -.26 -4.51** 

FFA (L) -.22 -3.90** -.23 -4.09** 

pSTS (R) -.23 -4.12** -.24 -4.19** 

pSTS (L) -.22 -3.84** -.22 -3.79** 

**p < 0.01, FWE corrected for multiple comparisons 
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 Discussion 

The negative correlation between alpha oscillations and BOLD activity have been studied in 

the default-mode-network, especially for the occipital cortex. However, it was unclear if such 

a relationship would be present in task paradigms. Our study shows a significant correlation 

between a frontal and a parietal-occipital alpha and the facial expression processing network.  

Although correlations are not very high, it should be highlighted the fact that the facial 

expression processing ROIs are extracted from the group analysis. It is expected that subject-

specific ROIs would elicit higher correlation values, although sometimes it is not possible to 

elicit a full network localization for each subject (Fox et al., 2009). Despite presenting already 

statistically significant correlation values, in order to transfer this paradigm to an EEG setup, 

the correlation values presented have to improve further. In this sense, additional work is 

needed in order to look for a better metric to represent the activity in the facial expressions 

processing network. A predictive model of the fMRI data could increase the correlation 

coefficients. 

The similar results between clusters are justified by a high alpha power correlation between 

both clusters. Future work should assess that relation exploring, for instance, the source of 

both activities. Furthermore, task-performance might influence the correlation values, 

considering that better performers should present wider variation in the ROIs activity and 

therefore produce signals more easily measured at the scalp. Therefore, the relation between 

task performance and correlation levels should be addressed in future studies. 
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Appendix IV 
 

Neurohab: A Platform for Virtual Training of Daily 

Living Skills in Autism Spectrum Disorder. 

 

This appendix is composed by the contents of the following publication: 

Simões M, Mouga S, Pedrosa F, Carvalho P, Oliveira G, Branco MC (2014) Neurohab: A Platform 
for Virtual Training of Daily Living Skills in Autism Spectrum Disorder. In: HCIST 2014 - 
International Conference on Health and Social Care Information Systems and Technologies 
(João Varajão, Manuela Cunha, Niels Bjørn-Andersen, Rodney Turner, Duminda 
Wijesekera, Ricardo Martinho RR, ed), pp 1417–1423. Procedia Technology. Troia, Portugal 
doi: 10.1016/j.protcy.2014.10.161. 

 

Abstract 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that besides the core 

symptoms of impairment in communication, social interaction and repetitive behavior, 

seriously compromises adaptive functioning limiting social inclusion. A number of studies also 

support executive dysfunction in ASD, although its specificity remains controversial. 

Furthermore, recent studies point to the relevance of ecologically valid executive tasks that 

match patient’s daily lives and therefore address the correlation with social cognition and 

learning of adaptive behavior. These disabilities are usually addressed in rehabilitation 

therapies, usually performed in a scheme of one therapist for individual, having high costs for 

the individuals and patient associations in human resources. This usually results in lesser hours 

of intervention, leading to lesser impact of the behavior training. To avoid this impact, some 

technological responses have been arising in the literature to perform training of individuals 

with ASD, although lacking scientific validity. In this work, we propose a platform for training 

daily activities in controlled environments, which allow caregivers and therapists to follow the 

patients’ performances and improvements along the time. This platform contains several 
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serious games, which target specific adaptive and executive dysfunctions. Games can be added 

to the platform and become automatically available for the users.  

 Introduction 

Autism spectrum disorder (ASD) is a severe, early-onset and life-long neurodevelopmental 

disorder with a high prevalence worldwide and also in Portugal, and a distribution of four 

males (M) to one female (F) [1-3]. ASD is characterized by deficits in social interaction and 

communication as well as by the presence of a repetitive pattern of behavior and interests [4]. 

These core symptoms compromise functioning across multiple domains, including cognitive 

functioning and adaptive behavior (AB), affecting multiple areas of a person's life [4-6]. AB 

refers to the capacity to accomplish conceptual, social and practical demands on a daily basis 

[7]. To be successful in those demands and therefore support personal, domestic and social 

self-sufficiency, individuals have to perform daily activities that require adaptive skills [8-9]. 

Deficits in this area are a primary barrier to a wide range of tasks that go from basic personal 

and domestic autonomy (such as hygiene, dressing, making meals) to self-sufficiency (such as 

having a competitive employment or managing your money) [12]. Difficulties in AB appear 

early in life [5-6] and, without appropriate and effective intervention, persist throughout life 

[13]. Humans are deeply social creatures living in highly collective environments, which mean 

that adaptive behaviors require social imitation learning. Social cognition usually refers to the 

fundamental abilities to perceive, categorize, remember, analyze, reason with, and behave 

toward other individuals [14]. Executive functions (EF) are necessary for goal-directed and 

adaptive behavior and include the ability to initiate and finish actions, to monitor and change 

behavior as needed, and to plan future behavior when faced with novel tasks and situations 

[15]. EF allows us to anticipate outcomes and adapt to changing situations. The ability to form 

concepts and think abstractly is also considered a component of EF. These life-long 

disabilities are one of the most important in the prognosis of the people with ASD and 

consequently have social and economic repercussion with large cost to the society [16]. ASD 

has a significant economic and social impact due to its high prevalence, absence of specific 

therapeutic intervention, comorbidity, outcome and impact on families. Discarding medical 

costs, intensive behavioral interventions for children with ASD are estimated to cost between 

$40,000 and $60,000 per year for each child, in the United States of America [17]. This 
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economic burden is very difficult to support for both parents and governments. The main 

problem is related to the fact that therapy must be intensive, which required specialized human 

resources allocated for long time with children, which is very expensive. In order to lower 

these costs and increase the access of families to economically viable therapy solutions, 

technology has been targeted as a potential help. Inside the technology field, virtual reality 

(VR) has gained a particular focus. VR addresses the possibility of creating computer 

simulations of real environments, providing safer learning experiences for individuals with 

ASD [18]. Its use in autism therapy is argued by the characteristics of VR allowing the control 

of the stimuli provided to users, reducing the complexity of the real world, along with the 

safety, control, repetition and some preference found in ASD people for computer 

interactions [19-20]. Furthermore, the realism of virtual environments increases the 

probability of transferring learning skills to the real life [19, 21-22]. There are also some works 

proposing guidelines for the development of such applications, addressing most issues autism 

patients have with interactive learning software [23].  In this direction, we present in this paper 

the development of the Neurohab platform. It is an integrated solution of serious games for 

individuals with ASD, which allows users and caregivers to train in virtual environments daily 

activities, in order to improve their autonomy. Here we describe the requirements identified 

together with patient associations and clinical staff, as well as the way they were addressed and 

incorporated in the current solution. The paper is structured in four sections. After this 

introduction, the methods section presents how we established the requirements of the 

system, the results section describes the solution developed and then we discuss the results in 

the final section. 

 Methods  

For the development of the platform, requirements were defined together with two local 

autism patients’ associations – Associação Portuguesa para as Perturbações do 

Desenvolvimento e Autismo (APPDA) of Coimbra and Viseu – and clinical staff from the 

Unidade de Neurodesenvolvimento e Autismo, Centro de Desenvolvimento da Criança, 

Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra. Such interactions yielded, 

in a first phase, the main characteristics of the platform.  
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• Aim: It should enable participants to train daily living activities in virtual 

environments. 

• Interoperability: Solutions for different types of platforms. 

• Self-incremental: It should be possible to incrementally add new training tasks to the 

platform. 

• Reporting: Caregivers should be able to remotely follow the progress of the patients. 

• Enabled for Immersion: When immersion technology is available, the platform 

should be able to use it. 

Requirements focused on two distinct user types: the patient and the caregiver. For the patient, 

basic needs were identified regarding not only the basic features for the platform and its 

interface, but also for the main serious games to be included on the system. For the caregiver, 

there were identified the type of follow up needed to monitor the progress of the users. On a 

second phase, the principal areas of interest for the daily routines to rehabilitate were 

identified, in order to direct the development of the serious games to include in the platform. 

Those areas are: 

• Hygiene: teeth brushing, hand washing after using the toilet, choose clothes adapted 

to the weather, etc. 

• Privacy: inter-personal distance regulation, keeping secret codes private, etc. 

• Employment: train different professions, job interviews, etc.  

• Social: adapt dialogs to the relationship with the other person, questions you should 

not ask, questions you should not answer, etc. 

• Housekeeping: cooking, cleaning, place groceries, wash dishes, etc. 

• Outdoors: deal with loud noises, exposure to animals, crossing the street safely, etc. 

• Money: identify the money, use the debit card, attach costs to products value, etc.  

Using those requirements, we built the platform we present in the next section. 

 Results  

Following the requirements identified with the clinical partners, we developed the architecture 

defined in Figure 3.1. It incorporates a backbone of serious games, interfaced with different 
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devices with different levels of immersion. For the caregivers, a web interface allows access to 

the monitoring of the patients’ information and their progress and usage of the platform along 

the time. 

 

Figure 3.1 – Architecture of the system. 

 

Therefore, Neurohab is a software platform that provides access to a growing catalog of 

rehabilitation games on multiple platforms with focus on ubiquitous access and real-

time feedback. The software has several features which allow caregivers and therapists to 

closely follow the patients’ performance along their usage timeline. 

Ubiquitous access is achieved by having the same software run on multiple platforms like the 

desktop computer, the smartphone and the increasingly popular tablet. This allows for 

subjects to perform their training more frequently as they don't require any specific device or 

location. Using a centralized server, the user can automatically synchronize their progress 

across all devices, so they can continue as they left it. This synchronization is optional, as the 
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software does not require the server to run locally on any device, although required for the 

therapeutic follow up. 

The serious games provided in the platform can be parameterized. Subjects are able to directly 

(through the settings configuration) or indirectly (throughout progress) affect how the games 

are played. From changing the controls, the ability to enable the use of specialized hardware 

for virtual reality scenarios, for instance, as well as several aspects affecting the difficulty of 

the game. There is a special emphasis on adaptive learning. Therapists can take advantage of 

this feature to enforce a more personalized learning, tailored to the user’s needs. 

The ability to run games in a cross-platform environment with shared state comes from the 

Neurohab architecture as shown in Figure 1. Running on the personal computers there is a 

standalone application that runs an embedded webserver that serves a simple UI navigation 

website, where users can automatically maintain an updated catalog of games and their 

progress data. Having the UI built on HTML5 and JavaScript, standard languages for web 

applications, makes it easy to share the same code between the standalone (running a machine 

executable) and the tablet use case (where patients access a public address serving the same 

UI website). When games are started from the standalone version, communication between 

games only happens locally. Optionally the user can have the standalone application 

automatically synchronizing their progress data with the Neurohab main server, allowing for 

other platforms to retrieve this progress and monitoring by the caregivers. In limited devices 

such as tablets and smartphones, access to games are restricted to web games as the user are 

given access to the application through their web-browsers. 

Using the Neurohab website, both caregivers and therapists can watch closely how their 

assigned subjects are improving on the available games. For instance, on a conversations game, 

where subjects roam a virtual world engaging in conversations with digital avatars, caregivers 

are able to see how many conversations the subject performed, for how long, and how much 

confidence he gained with that individual avatar from the conversations made. These data are 

only available in the cases where the subject enables synchronization with the server (see 

Figure 3.2). 
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Figure 3.2 - Web interface for the caregivers to monitor the progress of the users. 

 

There is an emphasis on data privacy in the system, resulting in a number of security features 

regarding the access to subjects’ data, both personal information and progress record. Access 

to a subjects’ data can only be permitted after a therapists and/or caregiver been given a secret 

token generated by the subject himself. This access can be revoked by the subject at any time. 

The serious games are being developed as a continuous process, since the application provides 

the option of adding new games gradually. The games under development focus mainly daily 

routines targeting specific adaptive and executive dysfunctions. These games try to achieve a 

highly interactive and active learning experience for the user by leveraging the use of 3D virtual 

worlds and digital avatars to mimic subjects’ real-world settings and offer ecologically valid 

tasks. Instructions are made available both on-screen and using text-to-speech. 
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Figure 3.3 – NeuroHab platform for ASD users. On the left (a) is the main interface for 
selecting a serious game to practice. On the right (b) it is shown the application running on a 
tablet device 

 Discussion 

Neurohab is both aimed at ASD patients who want to develop target specific adaptive and 

executive dysfunctions and therapists who want to follow on these developments and 

complement their rehabilitation programs with complementary autonomous training. 

Running the platform in several devices and integrating the data from wherever the participant 

is playing, it enhances the possibilities of usage and may adapt so each patient uses their 

preferred devices. 

Furthermore, more immersive solutions can be provided by the autistic patients associations 

as a service, adding to their current rehabilitation offers. We believe this platform has the 

potential to be a complement to current therapies, reducing the costs of interventions and 

enhancing the follow-up of patients. 

Next steps involve the validation of the serious games and the continuous improvement and 

development of new games to add to the catalog. 
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