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Abstract 

Decisions on where to locate emergency vehicles have a crucial impact on the quality of the emergency 

service that is provided to populations, with consequences in terms of mortality and quality of life. It is 

important to guarantee the access of the population to emergency care, not forgetting the need to 

guarantee the best possible use of all available resources. In this work a new integer linear programming 

model is presented that aims at optimizing the location of emergency vehicles, considering in an explicit 

way the substitutability possibilities among vehicles of different types, taken into account the type of 

care they can provide. Moreover, the assignment of variables to emergency episodes is also explicitly 

considered which allows the model to be more accurate when calculating the expected coverage 

obtained. Both deterministic and stochastic models are presented. In the stochastic model, uncertainty 

regarding emergency episodes is represented by using scenarios. The model is applied to a dataset built 

considering all the features which are present in real data.  
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1. Introduction 

The adequate location of health facilities is essential to guarantee a proper use of these services by the 

population, minimizing both their under and over utilization. The location of emergency vehicles is 

crucial to guarantee that pre-hospital care will be available where it is needed, within the recommended 

time window, and minimizing inequalities. Not locating in an optimal way health resources can lead to 

situations of increased costs, inconvenience to the user and, more importantly, an increase in the 

mortality and morbidity of the populations (Daskin & Dean, 2004). 

The demand for health services, especially regarding emergency situations, is inherently uncertain, 

which increases the difficulty of the decision-making process. Emergency services are used daily by 

many people and play an essential role guaranteeing that the right care arrives at the right time and at 
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the right place, reducing mortality and morbidity. Research on location of emergency vehicles can 

contribute to improvements in the provision of these services to the populations. Traditionally, 

emergency resource location problems have dealt with three types of decisions: where to locate, how 

many and what kind of resources to locate.  In order to answer these questions, locations where 

emergency situations occur are usually assumed to be known, as well as the possible bases where 

resources can be located (Li, Zhao, Zhu & Wyatt, 2011). It is usually necessary to include constraints 

related to the maximum number of resources available, the maximum number of vehicles that can be 

located at each one of the bases, assurance of proper coverage and also constraints defining the available 

budget. The first models used to tackle emergency location problems were deterministic, and they did 

not explicitly consider the uncertainty associated with real situations, which constitutes a serious 

limitation of these models.  One of the first known works that optimizes ambulance location can be 

attributed to Toregas, Swain, ReVelle & Bergman (1971), where the authors use a set covering model 

to establish  the optimal location of emergency bases. The objective function represents the minimization 

of supply points, ensuring that each demand point is served by at least one supply point. Church & 

ReVelle (1974) present the first model of maximization of coverage (Maximal Coverage Problem). 

Coverage based models are still widely used. In coverage models, a maximum time or distance limit is 

established a priori and a demand point is only covered if it is closer to an emergency base than this 

defined limit (Ahmadi-Javid, Seyedi & Syam, 2015; Jánošíková, Jankovič & Márton, 2017). This 

definition of coverage has an underlying problem, since it does not tackle explicitly the possible 

unavailability of the resources placed within the time or distance limit of the demand point when the 

emergency episode occurs. One alternative is to consider the concept of double coverage. Double 

coverage considers the possibility of a population being covered by more than one resource, in case of 

one of them not being available (see, for instance, (Gendreau, Laporte & Semet, 1997)).  

One of the advantages of using coverage-based models is the fact that these models are not very 

demanding in terms of the information they need. Furthermore, they can be used in combination with 

probabilistic models (Knight, Harper & Smith, 2012), as can be seen in the case of Shiah & Chen (2007). 

The authors include additional capacity restrictions on the number of available ambulances, 

approximating the model to the real situation.  

In addition to coverage models, p-center models have also been used for vehicle emergency location, 

namely considering the minimization of the maximum distance between a demand point and an 

emergency base, possibly taking into account different capacity restrictions and limiting the number of 

ambulance bases available (Chanta, Mayorga & McLay, 2014; Yin & Mu, 2012). 

An increased importance has been given to bridging the gap between the situation represented by the 

models and the reality of the pre-hospital emergency care context. One of the important developments 

is the explicit consideration of uncertainty. Emergency vehicles operate in highly complex 

environments, with multiple simultaneous emergency calls, and the occurrence of these calls will 

determine periods of unavailability for the allocated vehicles (Brotcorne, Laporte & Semet, 2003). 
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Stochastic models have the capability of dealing, in a more real setting, with questions associated with 

the availability of resources and adequate dimensioning of the emergency bases (Maleki, Majlesinasab 

& Sepehri, 2014), since they take explicitly into account situations where the resources are allocated to 

other emergency occurrences and cannot be allocated to new occurrences (Aboueljinane, Sahin & Jemai, 

2013). Not being able to properly represent resource availability is not a new concern.  Daskin (1983) 

presents a work where each resource is associated with a probability of being taken when it is needed. 

The model presented in Hogan & ReVelle (1986) follows a similar path. An extension to the work 

presented in Daskin (1983) considers two different servers and dependencies between the types of 

servers and servers of the same type (McLay, 2009). Each episode will receive exactly one vehicle, 

which can be different from the most adequate one if the latter is busy. Two types of vehicles are also 

considered in Chong, Henderson & Mark E. Lewis (2016). The authors develop two models (a Markov 

decision model and an integer programming model) under a budget constraint. Van Den Berg, 

Legemaate & van der Mei (2017) consider the location of different types of vehicles in the context of 

firefighter services, with a limited number of relocations being allowed.  Ball & Lin (1993) present a 

model establishing a minimum confidence level in the service provided and considering the probability 

of resources not being available.  Beraldi, Bruni & Conforti (2004) develop a stochastic model for the 

determination of how many vehicles to locate and where to locate them, using probabilistic constraints. 

Noyan (2010) introduces risk metrics to control the unfulfilled demand. Erkut, Ingolfsson & Erdoǧan 

(2007) maximize survival, where the probability of survival depends not only on the time before the 

arrival of the means but also on the characteristics of the emergency medical team and of the emergency 

vehicle, among other things. Ingolfsson, Budge & Erkut (2008) present a model with uncertainty in 

resource availability and travel times. Knight et al. (2012) maximize survival, grouping patients into 

different categories according to the severity degree. The authors include queuing models to deal with 

resource congestion. Nickel et al. (2016) also present a stochastic model for ambulance location. Each 

scenario defines the number of ambulances requested by each demand point, being possible to generate 

all possible scenarios. However, the resulting problem would be impossible to solve due to its 

dimension. The authors choose to divide the model using different scenario subsamples, and running a 

heuristic procedure to build a global solution. Yoon & Albert (2017) present a model considering 

different priorities associated with the emergency episodes, including explicitly the existence of queues. 

Boujemaa, Jebali, Hammami, Ruiz & Bouchriha (2017) present a stochastic model, with different 

service levels.  

Some authors have chosen to explicitly deal with the dynamic nature of these problems. This dynamic 

approach allows the consideration of ambulance reallocation decisions among different bases, aiming at 

improving the coverage. It is assigned to Gendreau, Laporte & Semet (2001) the presentation of the first 

model that includes the redistribution of emergency resources. Nogueira et al. (2016), for instance, 

presents a location model allowing the number of available ambulances in each base to be changed, in 

different periods of the day.  
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Akdoğan, Bayındır & Iyigun (2018) develop a stochastic model with the objective of minimizing the 

mean response time of emergency vehicles location, allowing the assignment of more than one vehicle 

to each episode. They define areas with different demands, each following a time homogeneous Poisson 

process. All the emergency vehicles are assumed to be similar. 

In the real setting, there are different emergency care models that can be implemented. Until 1967, 

advanced life support (ALS) did not exist in prehospital care. All patients were transported to the 

hospital by professionals trained in basic life support (BLS) or by emergency technicians. The first time 

ALS care in the prehospital setting was mentioned was by Pantridge, a physician and cardiologist from 

Northern Ireland, with the proposal of organizing a mobile intensive care unit that could transport 

patients with acute myocardial infarction to the hospital, providing ALS, on site and during 

transportation (Liberman, Branas, Mulder, Lavoie & Sampalis, 2004). Since then, prehospital ALS units 

have been introduced, developed and expanded according to the possibilities and characteristics of each 

country (Liberman et al., 2004) . 

In the organization of prehospital emergency care, two strategies can be used  (Beuran M et al., 2012; 

Liberman et al., 2004). The “scoop and run / load and go” strategy, most commonly used in the United 

States, is based on the fast evacuation of the patient to the nearest emergency center, assisting the patient 

during this time, rather than trying to stabilize the situation at the place of occurrence of the episode. 

The care team is composed by paramedics or emergency technicians and their activities consist only of 

non-invasive interventions such as wound dressing, external bleeding control, spinal and fracture 

immobilization, oxygen administration, non-invasive cardiopulmonary function resuscitation and 

management of basic airway devices (oro / nasopharyngeal tubes and hand inflators). These techniques 

are easy to perform, require little additional on-site time, can be usually completed during travel, and 

have been widely accepted as necessary for the acute treatment of patients in the prehospital setting. 

Another strategy is known as the “stay and play / treat then transfer” strategy, used mainly in European 

countries. In this strategy, medical doctors and nurses go to the emergency occurrence, assisting and 

stabilizing the patient before moving the patient to a health care unit. Over the past 30 years, ALS in the 

prehospital setting has also been accepted as necessary for severe trauma victims and has been widely 

implemented, encompassing all the previously mentioned BLS techniques, as well as invasive 

procedures including intubation, intravenous access initiation, fluid replacement, drug administration. 

It is based on the reasoning that these interventions will not only prevent the deterioration of the patient's 

condition, like in BLS, but will also improve the patient’s health status by stabilizing the patient before 

the arrival at the hospital. Some countries (Brazil, for instance) follow both strategies. In a performance 

comparative study of both models, in trauma situations, in the city of Catanduva, state of São Paulo, no 

significant differences in terms of health results were found (Gonsaga, Brugugnolli & Fraga, 2012). For 

Ebben et al. (2013) both strategies have their virtues and flaws, so it is risky to say which one is the most 

effective. In trauma situations, according to the same author, the approach to prehospital care should be 

decided considering the injury mechanism (blunt versus penetrating trauma), the distance from the 
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trauma center (urban versus non-urban areas) and the level of resources available. The advantages of 

each system, according to the type of care needed, are still widely discussed today (Beuran M et al., 

2012; De Souza Minayo & Deslandes, 2008; Dretzke, Sandercock, Bayliss & Burls, 2004; Ebben et al., 

2013; Liu & Bai, 2018; O’Dwyer, Konder, Machado, Alves & Alves, 2013; Poppe et al., 2015). 

 

In this work a new model for emergency vehicle location is presented. This model was developed in 

order to be able to represent the way in which emergency vehicles are organized in Portugal, where the 

strategy used is mostly “stay and play”. However, the seriousness of the situation and the needed care 

that is foreseen in the hospital, have a greater preponderance in the decision of what strategy to adopt in 

each particular case.  

The existing emergency vehicle location models, even the ones that consider multiple types of vehicles 

(see, for instance, Chong, Henderson & Mark E. Lewis (2016) and McLay (2009)), are not appropriate 

to represent the current situation in Portugal. Actually, it is necessary not only to consider the existence 

of several different types of vehicles, providing different levels of assistance and considering coverage 

time limits that are different for different areas (namely urban and rural), but also the possibility of 

vehicle substitution. When a given type of vehicle is not available, it is sometimes possible to dispatch 

other vehicles of different types that are capable of providing the same level of assistance. The authors 

were not able to find published works that considered this substitutability capacity. An emergency 

episode is only considered covered if it receives all the vehicles that are appropriate to the situation, and 

there are possibly different sets of vehicle combinations that can provide the adequate assistance.     

The developed model is different from the ones known from the literature in several different ways. It 

simultaneously considers: 

1. Different types of vehicles capable of providing different levels of emergency healthcare; 

2. The possibility of substitutability between emergency vehicles of different types; 

3. The possibility of more than one vehicle, of similar or different types, being needed in a given 

emergency episode; 

4. An incompatibility matrix that defines whether a given vehicle can or cannot be simultaneously 

assigned to two different emergency episodes, taking into account the time periods of 

occurrence of these episodes. This matrix allows the model to have a dynamic characteristic, 

without the need of having decision variables indexed to time, which is an added value regarding 

the dimension of the model. 

5. The explicit consideration of the unavailability of vehicles due to previous assignments. 

In the stochastic version of the model, uncertainty is explicitly taken into account considering a two-

stage stochastic programming approach. 

We can thus define the overall contribution of this work as being the development of a model that is 

able to incorporate more features present in the real setting, in the context of pre-hospital emergency 

care vehicles location, when compared with the existing models, leading to solutions that will better 

support the decision-making process. Features like vehicle substitution and vehicle unavailability due 
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to previous occurrences bring more reality to the model and can have an important impact in the quality 

of the produced solution. 

In the next section, the organization of the emergency vehicles in Portugal, that motivated the 

development of this work, is described. In section 3, the deterministic version of the model will be 

described and illustrated with small examples. In section 4, the stochastic version of the model is 

presented. Section 5 presents the application of the model to a problem inspired by real data. Section 6 

concludes and suggests possible paths for future research.  

2. Contextualization of the problem 

In Portugal, the emergency response system is framed in what is known as the Integrated Medical 

Emergency System. This system uses both medical teams (including a medical doctor) and non-medical 

teams that belong to different organizations and have different assistance capacities. According to the 

National Medical Emergency Institute (INEM, 2019), the existing emergency resources can be of the 

following types (a summary of this information can be found in Table 1): 

 Non-medical vehicle 

 Medical Emergency Motorcycles (MEM): vehicles manned by an emergency technician 

able to deliver BLS and External Automatic Defibrillation (EAD). They allow the 

initialization of stabilization measures of the victim and, according to the type of care 

required, they can prepare the victim to be transported by another vehicle. 

 Assistance Ambulances (AA): they are usually located at emergency medical centers 

(Volunteer Fire Departments or sections of the Portuguese Red Cross) and are manned by 

volunteers or professionals with specific training in prehospital emergency techniques. 

They can work with other means of emergency and have the capacity of transporting the 

victims to health units. 

 Medical Emergency Ambulances (MEA): they are manned by two emergency technicians. 

Their mission is to stabilize the victim autonomously or in complementarity with other 

means, and to transport the victim to the hospital. They have equipment for resuscitation 

and clinical stabilization, namely EAD. They have the capacity to transport the victim to a 

care unit. They are usually based at INEM bases. 

 Immediate Life Support (ILS) Ambulances (ILSA): they guarantee more differentiated 

health care than the previous means, such as resuscitation maneuvers. The crew consists of 

a nurse and a pre-hospital emergency technician. They can work in partnership with other 

means (with different levels of care differentiation) and have the capacity of defibrillation, 

cardiac monitoring, transmission of electrocardiographic data and they can transport the 

victim to a care unit. They are preferably based on basic urgency units. 

 

 Medical vehicle 
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 Medical Emergency and Resuscitation Vehicles (MERV): they are intended for prehospital 

intervention. The crew is composed by a nurse and a medical doctor with competence and 

equipment for ALS. They aim to stabilize and monitor the transportation of victims to the 

hospital. They do not have the ability to transport victims, which forces them to work with 

another emergency vehicle whenever there is such a need. 

 Emergency Medical Helicopters (EMH): they are manned by a team of pilots, a medical 

doctor and a nurse, and are assigned to primary response (the stabilization of the victim at 

the place of occurrence and transportation to the hospital as well as transportation between 

two health units). They allow for rapid intervention, even over long distances, and have all 

the equipment available in an ALS vehicle. Their operation availability is highly dependent 

on the weather conditions. They are located in heliports of hospital bases, in firemen 

quarters or aerodromes. 

 

All these vehicles are managed in an integrated way by INEM, through its Urgent Patient Guidance 

Centers (CODU). These are telephone answering centers that, through defined algorithms and looking 

at the available resources, dispatch the necessary vehicles for each emergency occurrence. There are 

four CODUs in Portugal: one in the North (Porto), one in the Center (Coimbra), one in Lisbon and one 

in Algarve (Faro). 

 

Type of vehicle BLS ALS Physician Nurse 
Emergency 

Technician 

Volunteer 

Firemen 

Transportation 
EAD 

MEM x    1  No Yes 

AA x     2 Yes No 

MEA x    2  Yes Yes 

ILSA x x  1 1  Yes Yes 

MERV x x 1 1   No Yes 

EMH x x 1 1   Yes Yes 

Table 1: Type of emergency vehicles that exist in the Portuguese emergency system and their main characteristics 

 

According to the guidelines of INEM (2017), it is important to guarantee that BLS and ALS reach the 

emergency occurrence locations in the shortest possible time, since every minute without electrical 

defibrillation, in cardiac arrest victims with defibrillation rhythms, decreases the probability of survival 

by around 10% to 12%. If this waiting time is supported with BLS, this percentage decreases to 3% to 

4%. Some countries established upper bounds for desirable assistance response times. In the United 

States of America, for instance, response time targets have been set as assisting 90% of life-threatening 

emergency episodes occurring in urban areas by a vehicle with transportation capability within 8:59 

minutes. For rural and wilderness areas this target is changed by considering 15 and 30 minutes 

respectively. In the United Kingdom, 75% of the most critical emergency calls, in urban and rural areas, 

should be attended in 8 minutes and 95% of these episodes should be reached within 14 minutes in urban 

areas and 19 minutes in rural areas. Hong Kong has defined a time limit of 12 minutes that should be 
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respected for 92% and 95% of all emergency episodes in rural and urban areas, respectively (Fitch , 

2005). Although, as far as the authors know, there is no strict definition of maximum response times for 

Portugal, the time limits defined as reference by INEM (2019) are 15 minutes for urban areas and 30 

minutes for rural areas.  It should be highlighted that, although response time is an important aspect of 

prehospital care, it is not the only one influencing the success of the intervention. Data gathering and 

analysis of group of patients per type of diseases and evolution of health status under specific treatments, 

training of response teams and the cooperation of different entities are equally crucial factors for the 

success of the intervention (Salvucci, Kuehl, Clawson & Martin, 2004). 

3. Deterministic Mathematical Model 

In this section we will present the deterministic version of the model, making it easier to understand the 

underlying reasoning behind the model. In the next section, the stochastic version of the model will be 

presented. In the deterministic version, it is assumed that it is possible to know a priori which are the 

emergency episodes that will occur in the given planning time horizon. Each emergency episode will be 

characterized by several different features, including time of occurrence and number of vehicles of each 

type that need to be dispatched to guarantee a proper care. The model seeks to integrate a hierarchical 

view of the available resources, considering explicitly the possibility of vehicle substitution, if the 

needed vehicle is not available. For instance, the intermediate level support provided by ILSA can cover 

situations of BLS (AA and MEA), and the ALS vehicles can cover intermediate and basic level needs. 

The need of transporting the patient to a health unit has also to be considered, since there are vehicles 

that do not have this capability. For instance, although a MERV can supply the level of care of ILSA or 

MEA, it cannot replace them if the patient needs to be transported.  

 

All the parameters used in the model are now presented. They are also presented in a table in Annex B. 

T: time horizon ݅ ∈ ݆ set of possible bases for emergency vehicles :ܫ ∈ ݇ set of locations where emergency episodes may occur ௜ܰ: maximum number of vehicles that can be positioned in base i :ܬ ∈  set of different types of vehicles, were each type k also determines the level of assistance of the :ܭ

respective vehicles ሺ݈௞ ∈ ,ܵܮܤ} ,ܵܮܫ ,{ܵܮܣ ∀݇ ∈ �  ሻܭ ∈ �: set of existing vehicles. Each vehicle is characterized as being of a certain type (݇�). ݁ ∈ �: set of emergency episodes that occur during the defined time horizon. Each emergency episode 

is characterized by: 

 ݆� ∈  ;the location where the episode takes place :ܬ

 ��௞: number of vehicles of type k that will need to be dispatched, ∀݇ ∈  ;ܭ
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 ܶܵ�௞: time period in which the assistance begins for vehicles of type k, ∀݇ ∈  1;ܭ

 ܶܵݐ�௞:  time period in which the assistance ends for vehicles of type k, ∀݇ ∈  .ܭ

 

Coverage matrix 

For each location pair i,j and for each level of assistance l, the coverage matrix will give the information 

of whether j is in the coverage radius of base i. This coverage matrix represents the possibility of having 

different coverage time limits for different levels l of needed assistance. 

 

 ܽ௜௝௟ = {ͳ, if the distance between ݅ and ݆ is within the maximum time limit defined for level of assistance ݈ ሺ݆ is covered by vehicles in ݅, for assistance level ݈ሻ, ∀݅ ∈ ,ܫ ݆ ∈ ,ܬ ∈ ,ܵܮܫ} ,ܵܮܣ ,Ͳ              {ܵܮܤ otherwise  

 

Notice that it is possible to have different maximum times defined for different levels of assistance, so 

that ܽ௜௝௟ can take different values for different values of l. 

 

Substitution matrix 

The hierarchical relationship between vehicles that can be dispatched to a particular episode of 

emergency is made explicit in the substitution matrix. A vehicle of type k’ can replace another vehicle 

of type k if and only if it provides at least the same level of care of vehicles of type k (also taking into 

account transportation capability).  

 ܿ௞௞′ = {ͳ, if a vehicle of type ݇′can substitute vehicle of type ݇, ∀ ݇, ݇′ ∈ ,Ͳܭ otherwise  

 

It should be stressed that, in general, ܿ௞௞′ can be different from ܿ௞′௞ (݇’ can replace ݇ but the opposite 

cannot occur). Table 2 shows an example of a substitution matrix.  

 

k AA MEM MERV 

AA 1 0 0 

MEM 1 1 1 

MERV 0 0 1 

Table 2: Example of a substitution matrix that gathers the information of which vehicle types can or cannot substitute others 

 

                                                      
1 These times are defined by type of vehicle to be possible to represent a situation where, at an early stage, only 

one type of vehicle is necessary but, later on, in the course of the episode, other types of vehicles are deemed 

necessary. In this situation, vehicles will not arrive all at the same time and they also do not end the assignment at 

the same time. It is assumed, however, that all the vehicles of the same type arrive at the same time and are free at 

the same time, which constitutes a limitation of the model. 
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From this table, it is possible to conclude that a vehicle of type MEM can be substituted by any other 

type of vehicle, but the opposite is not allowed. MERV vehicles, for instance, are not substitutes to AA 

because they do not offer transportation capability.  

 

There are situations where a vehicle can be substituted by two additional vehicles. This can happen, for 

instance, with ILSA vehicles, that can be substituted by a MERV and AA (MERV provides a higher 

level of care but it does not have the transportation capability). These situations will be properly 

represented by constraints in the model, as explained later. For now, let us define the following notation: 

௞ݎ  = {ͳ, if vehicle of type ݇ can be substituted by more than one vehicle, ∀݇ ∈ ,Ͳܭ otherwise  

 ݃௞ = {ሺ݇′, ݇′′ሻ: vehicle of type ݇ can be substituted by a pair of vehiclesof types ݇′and ݇′′, ݇′, ݇′′ ,{ܭ∋ ∀݇ ∈    ܭ

Assume that ሺ݇, ݇ሻ ∈ ݃௞ , ∀݇ ∈  .ܭ

 

Incompatibility matrix 

If two episodes have overlapping time periods of occurrence, then the same vehicle cannot be dispatched 

to both of them. For this reason, there is a matrix of incompatibilities that defines whether or not two 

episodes are overlapping and thus are incompatible. Two episodes will be considered incompatible if 

they occur, in whole or in part, at the same time. 

 ܾ��′௞ = {ͳ, if vehicles of type ݇ cannot be assigned to both episodes ݁ and ݁′ , ∀݁, ݁′ ∈ �, ݇ ∈   Ͳ, otherwise  ܭ

 

Notice that the time periods in which a vehicle is assigned to an episode can also include the time spent 

to prepare the vehicle after the episode, so that it is ready to be assigned to another episode. 

 

Availability matrix 

It cannot usually be assumed that all the emergency vehicles are available at the beginning of the defined 

planning time horizon. In fact, some emergency vehicles can be unavailable because they are still being 

used in an episode that started before the current planning time period and that has not yet ended. 

Moreover, a vehicle can also be unavailable because it is in maintenance, for instance. These situations 

can be represented using this binary matrix. 

 ݀�� = {ͳ, if vehicle  � can be assigned to episode ݁, ∀݁ ∈ �, � ∈ �Ͳ, otherwise                                                            
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The decision variables to be defined in the model determine how to locate the existing emergency 

vehicles among the available potential bases, taking into account the needs of the emergency episodes 

that occur during the defined time horizon. 

 

Decision variables ݕ௜ = {ͳ, if location ݅ has vehicles located there, ∀݅ ∈ Ͳ, otherwise                                                                                    ℎ�௜                              ܫ = {ͳ, if vehicle � is located at ݅, ∀� ∈ �, ݅ ∈ �ݖ                             Ͳ, otherwiseܫ = {ͳ, if episode ݁ receives all the needed vehicles within the maximum time limit, ∀݁ ∈ �Ͳ, otherwise                                                                                                                             

௞��ݔ = {ͳ, if vehicle �  is assigned to episode e to fulfill level k needsሺeven if it is of a different levelሻ, ∀� ∈ �, ݁ ∈ �, ݇ ∈                                                                             Ͳ, otherwiseܭ

 

In this model, the objective function is the maximization of the total number of episodes covered.  

= ܼ ݔܽܯ  ∑ �∋��ݖ                                                                                                                                ( 1 ) 

 

With this objective function, many optimal alternative solutions exist, especially if there are more 

resources than the ones strictly needed. To eliminate many of these alternative optimal solutions, the 

objective function can be changed as follows: 

= ܼ ݔܽܯ  ∑ �∋��ݖ − ∑ሺߝ ∑ ℎ�௜௜∈� + ∑ �∋��∋௜௜ݕ + ∑ ∑ ∑ �∋��∋��∋௞௞��ݔ ሻ                                         ( 2 ) 

 

Parameter  represents a very small positive number. 

 

The constraints can be defined as follows: 

 An episode e is covered if and only if it receives all the necessary vehicles of all the needed 

types within the defined time limits. These restrictions consider the possibility of one vehicle 

being substituted by another one but not by more than one vehicle (ݎ௞ = Ͳሻ. If it is possible to 

substitute vehicle k by more than one vehicle, then constraints (4) to (10) apply. ��௞ݖ� ൑ ∑ ܿ௞௞�ݔ��௞�∈� , ∀݁ ∈ �, ݇ ∈ :ܭ ௞ݎ = Ͳ                                                                          ( 3 ) 

 

 When a vehicle of a given type can be substituted by more than one vehicle of other types, then 

it is more complicated to guarantee that the correct number of vehicles assigned to each episode 

is in accordance with what the episode needs. This is done by using auxiliary variables. Define 

auxiliary integer variables ܱ�௞௞′, ∀݁ ∈ �, ݇, ݇′ ∈ ,ܭ ݇′: ∃ሺ݇′, ݇′′ሻ ∈ ݃௞ . These variables will 

count the number of vehicles of type ݇′ that are assigned to e, such that  ݇′ can substitute k in 

conjunction with other ݇′′ ሺሺ݇′, ݇′′ሻ ∈ ݃௞ሻ. Furthermore, let ݍ�௞௞′௞′′, ∀݁ ∈ �, ݇, ݇′, ݇′′ ∈

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



12 

 

:ܭ ௞ݎ = ͳ, ሺ݇′, ݇′′ሻ ∈ ݃௞ , ݇′ < ݇′′, represent the number of vehicles belonging to the pair ሺ݇′, ݇′′ሻ ∈ ݃௞ that are simultaneously dispatched to episode e. These variables will guarantee 

that no vehicle is counted more than once. Then, if vehicle k can be substituted by more than 

one vehicle (namely the pair ሺ݇′, ݇′′ሻ ∈ ݃௞ሻ the following constraints hold: 

 

o Variable ܱ �௞௞ represents the number of vehicles that are dispatched to episode e without 

being substituted by more than one vehicle. 

 ܱ�௞௞ ൑ ∑ ܿ௞௞�ݔ��௞�∈� , ∀݁ ∈ �, ݇ ∈ :ܭ ௞ݎ = ͳ                                                               ( 4 ) 

 

o Episode e is covered if and only if it receives the necessary vehicles, either exactly the 

ones it should receive from the needed vehicle types or from direct substitutability 

(ܱ�௞௞ሻ or pairs of others that are equivalent in terms of care (∑ ′′௞௞′௞′′ሺ௞′,௞′′ሻ∈��,௞′<௞�ݍ ).  

 ��௞ݖ� ൑ ܱ�௞௞ + ∑ ′′௞௞′௞�ݍ , ∀݁ ∈ �, ݇ ∈ :ܭ ௞ݎ = ͳሺ௞′,௞′′ሻ∈��,௞′<௞′′                           ( 5 ) 

 

 

o The number of vehicles of type ݇′ that contribute to the substitution of vehicles of type 

k are limited by the number of vehicles of this type that are dispatched to episode e, 

considering the vehicles of this type that were already needed. These constraints 

guarantee that no vehicle is counted more than once for the same episode. This could 

happen if the episode needs different vehicles of different types and a given vehicle v 

of type k’ can simultaneously be the sole substitute for one type of needed vehicle, but 

also belongs to a pair ሺ݇′, ݇′′ሻ for another type of vehicle, for instance.  

 ܱ�௞௞′ ൑ ∑ ܿ௞′௞�ݔ��௞′�∈� − ��௞′ , ∀݁ ∈ �, ݇, ݇′ ∈ :ܭ ௞ݎ = ͳ, ∃ሺ݇′, ݇′′ሻ ∈ ݃௞           ( 6 ) 

 

o The total number of pairs of vehicles ሺ݇′, ݇′′ሻ ∈ ݃௞  that are used to substitute vehicles 

of type k is limited by the lower number of vehicles of each type. If ݇′ belongs to more 

than one pair ሺ݇′, ݇′′ሻ ∈ ݃௞, then the same vehicle cannot contribute to more than one 

substituting pair. 

Imagine that 2 vehicles of type ݇′ and 1 vehicle of type ݇′′ are being dispatched. This 

means that only one pair ሺ݇′, ݇′′ሻ can be counted.  

 

 ∑ ′′௞௞′௞′′ሺ௞′,௞′′ሻ∈��:௞′<௞�ݍ ൑ ܱ�௞௞′ , , ∀݁ ∈ �, ݇, ݇′ ∈ ,ܭ ݇′ < ݇′′: ∃ሺ݇′, ݇′′ሻ ∈ ݃௞    ( 7 ) ∑ ′′௞௞′௞′′ሺ௞′,௞′′ሻ∈��:௞′<௞�ݍ ൑ ܱ�௞௞′′ , , ∀݁ ∈ �, ݇, ݇′′ ∈ ,ܭ ݇′ < ݇′′: ∃ሺ݇′, ݇′′ሻ ∈ ݃௞  ( 8 ) 

 

 In each episode e, an emergency vehicle can only contribute to one given level of assistance.  

 ∑ �∋௞௞��ݔ ൑ ͳ, ∀݁ ∈ �, � ∈ �                                                                                                           ( 9 ) 

 

 The emergency vehicle v can only attend episode e from base i if it is located there, and if e 

occurs within the coverage radius of i for that level of care, and it is available. 

௞��ݔ  ൑ ݀�� ∑ ܽ௜௝�௟�ℎ�௜௜∈� , ∀� ∈ �, ݁ ∈ �, ݇ ∈  ( 10 )                                                                     ܭ
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 An emergency vehicle can only be assigned to two episodes if their occurrence time periods do 

not overlap. ∑ �∋′௞′௞��ݔ + ∑ �∋′௞′௞′��ݔ ൑ ʹ − ܾ��′௞ , ∀� ∈ �, ݇ ∈ ,ܭ ݁, ݁′ ∈ �: ݁ < ݁′                               ( 11 ) 

 

 There is a maximum number of vehicles that can be located at each base, and vehicles can only 

be assigned to a base that has been prepared.  

 ∑ ℎ�௜�∈� ൑ ௜ܰݕ௜ , ∀݅ ∈  ( 12 )                                                                                                                      ܫ

 

 Each emergency vehicle can only be located at one base. 

 ∑ ℎ�௜௜∈� ൑ ͳ, ∀� ∈ �                                                                                                                           ( 13 ) 

 

 If a given episode is not fully covered, then it will not have any resource assigned. This 

constraint will eliminate many alternative optimal solutions that would exist (M represents a 

very large and positive number). 

 ∑ ∑ �∋��∋௞௞��ݔ ൑ �ݖܯ , ∀݁ ∈ �                                                                                                      ( 14 ) 

௜ݕ  ∈ {Ͳ,ͳ}, ∀݅ ∈ ℎ�௜    ܫ ∈ {Ͳ,ͳ}, ∀� ∈ �, ݅ ∈ �ݖ ܫ ∈ {Ͳ,ͳ}, ∀݁ ∈ ௞��ݔ     � ∈ {Ͳ,ͳ}, ∀� ∈ �, ݁ ∈ �, ݇ ∈ ′′௞௞′௞�ݍ     ܭ ൒ Ͳ and integer, ∀݁ ∈ �, ݇, ݇′, ݇′′ ∈ :ܭ ሺ݇′, ݇′′ሻ ∈ ݃௞              ܱ�௞௞′ ൒ Ͳ and integer, ∀݁ ∈ �, ݇, ݇′ ∈ :ܭ ∃ሺ݇′, ݇′′ሻ ∈ ݃௞              
 

 

Constraints (4) to (8) deserve a more detailed explanation. They account for the situation in which one 

vehicle of type k can be substituted by simultaneously dispatching one vehicle of type ݇′ and another 

one of type ݇′′. In this situation, the coverage of episode e regarding assistance from vehicles of type k 

can be achieved by vehicles of type k (or equivalent vehicles according to the substitutability matrix) or 

by pairs of other types of vehicles.  

These restrictions could also be adapted to situations in which a vehicle can be substituted by more than 

two vehicles (which does not happen in the Portuguese case).  

 

In this deterministic model it is assumed that all the episodes that will occur are known (set E), along 

with the characteristics of each one. Considering the objective function of maximization of the total 

number of covered episodes, and with the constraints presented, the model would tend to benefit the less 
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demanding episodes, for which it is easier to achieve ݖ� =1. Imagine that there is an episode ݁ଵ that 

needs several vehicles of different types. This episode occurs before two other episodes (݁ଶ and ݁ଷ), that 

occur sequentially and with no overlapping time periods. Episode ݁ଵ has occurrence time periods that 

overlap with the occurrence times of ݁ଶ and ݁ଷ, so that vehicles cannot be simultaneously assigned to ݁ଵ and ݁ଶ or to  ݁ଵ and ݁ଷ . It would be better not to assign resources to ݁ଵ, and to guarantee instead the 

coverage of ݁ଶ and ݁ଷ, since this would be better in terms of the objective function. However, in a real 

setting, this would never happen since when ݁ଵ occurs there is no possibility of knowing that ݁ଶ and ݁ଷ 

will occur, because they occur later in time. If such a situation is allowed to happen, the value of the 

coverage calculated in the objective function would be biased, since it would be obtained thanks to a 

"knowledge of the future": the allocation of vehicles was not made according to the episodes that 

occurred until the present moment, but also taking into account what would happen in the future. The 

following solution was developed. Assume that all the episodes ݁ ∈ � are ordered by time of occurrence 

(that is, if e<e’ then e begins before e’). A new restriction is added that, in conjunction with (14), 

guarantees that if e and e’ have periods of intersection related to assistance by vehicles of type k ሺܾ��′௞ =ͳሻ, and if vehicle v that was available for e was not assigned to this episode that occurs first ሺݔ��௞ = Ͳሻ 

and ��௞ ൒ ͳ, if episode e did not receive all the vehicles it needed ሺݖ� = Ͳሻ, then vehicle v cannot be 

assigned to episode e’ (if it was available it should be used to ensure coverage of the episode that happens 

first). 

 ∑ �∋′௞′௞′��ݔ ൑ (ʹ − ∑ ܽ௜௝�′௟�ℎ�௜௜∈� − ∑ ܽ௜௝�௟�ℎ�௜௜∈� ) + ͳ − ሺܾ��′௞ − ௞��ݔ − ሻ�ݖ + ∑ ௞�′∈���௞�′�ݔ + 

ͳ)ܯ+ − ܿ௞௞�) + ∑ ∑ ܾ�′′�௞′ݔ��′′௞′�′′:�′′<� ௞′∈� ,    
                                                                                  ∀� ∈ �, ݁, ݁′ ∈ �: ݁ < ݁′, ݇ ∈ :ܭ ��௞ ൒ ͳ                  ( 15 ) 

 

This constraint will only be of interest if vehicle v is within the coverage radius of both episodes e and 

e’. If this is not the case, then ቀʹ − ∑ ܽ௜௝�′௟�ℎ�௜௜∈� − ∑ ܽ௜௝�௟�ℎ�௜௜∈� ቁ will be greater or equal to 1, and 

the constraint is redundant.  

If ܾ��′௞ = ͳ, ݔ��௞ = Ͳ, ݖ� = Ͳ and the total number of vehicles of type k assigned to e is less than ��௞ ቀ∑ ��′���′∈���� < ͳቁ (e is not being covered because it has not received sufficient vehicles of type k), we 

are left with ∑ �∋′௞′௞′��ݔ ൑ ͳ − ሺͳ − Ͳ − Ͳሻ +  a number less than 1. This causes ∑ �∋′௞′௞′��ݔ  to be 

less than or equal to a number less than 1, implying that  ∑ �∋′௞′௞′��ݔ  has to take the value zero (that is, 

vehicle v cannot go to the future episode e’). If ܿ௞௞� = Ͳ, then vehicle v does not contribute to type k, 

and the constraint is redundant. If ∑ ∑ ܾ�′′�௞′ݔ��′′௞′�′′:�′′<� ௞′∈� > Ͳ, this vehicle is already being used 

in another episode e’’ occurring before e and which has intersections with it (this latter addend causes 
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this restriction to have effect only if this vehicle is not already being used in an episode e’’, and therefore 

it is not in fact available to be assigned to e). In any other situation, we have ݔ��′௞  less than or equal to 

a number equal to or greater than 1, so the variable can already take the value 1. 

A small example will now be described to illustrate the model characteristics and the importance of 

constraints (15).  

 

Example 1 

Imagine that there are two possible locations for placing emergency services, each capable of receiving 

at most two vehicles. There are five locations where emergency episodes can occur, and each one will 

have exactly one emergency episode. For the sake of simplicity, let us assume that episode 1 occurs in 

location 1, episode 2 in location 2 and so on. Figure 1 illustrates the time periods in which these episodes 

occur. 

 

 

 

 

Figure 1: Timeline for the occurrence of episodes in example 1 

Let us also assume that there are four vehicles available, each one of a different type k. Table 3 presents 

the number of resources needed by each one of the emergency episodes. For now, let us assume that 

there is no possibility of substitution between vehicles, all vehicles are available at the beginning of the 

planning horizon, and locations 1 to 5 are all inside the coverage radius of both base locations 1 and 2. 

 

 Vehicle type 1 Vehicle type 2 Vehicle type 3 Vehicle type 4 

Episode 1 1 0 0 0 

Episode 2 1 1 0 0 

Episode 3 1 0 0 1 

Episode 4 0 0 0 1 

Episode 5 0 0 0 1 

Table 3: Resources needed by each one of the emergency episodes (example 1) 

 

The timeline presented in Figure 1 will determine the incompatibility matrix, and the corresponding 

values ܾ��′௞. Table 4 presents these values. 

 

k=1 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 

Episode 1 0 1 0 0 0 

Episode 2 1 0 0 0 0 

Episode 3 0 0 0 0 0 

Episode 4 0 0 0 0 0 

Episode 5 0 0 0 0 0 

 

k=2 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 

Episode 1 0 0 0 0 0 

Episode 2 0 0 0 0 0 

Episode 1  
1 vehicle of type 1 

Episode 2 
1 vehicle of type 1 

1 vehicle of type 2 

Episode 3 
1 vehicle of type 1+ 1 vehicle of type 4 

Episode 4 
1 vehicle 

of type 4 

Episode 5 
1 vehicle of 

type 4 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



16 

 

Episode 3 0 0 0 0 0 

Episode 4 0 0 0 0 0 

Episode 5 0 0 0 0 0 

      

k=3 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 

Episode 1 0 0 0 0 0 

Episode 2 0 0 0 0 0 

Episode 3 0 0 0 0 0 

Episode 4 0 0 0 0 0 

Episode 5 0 0 0 0 0 

      

k=4 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 

Episode 1 0 0 0 0 0 

Episode 2 0 0 0 0 0 

Episode 3 0 0 0 1 1 

Episode 4 0 0 1 0 0 

Episode 5 0 0 1 0 0 

Table 4: Incompatibility matrix between different emergency episodes (example 1) 

 

The optimal solution to this problem is as follows: episode 1 and 3 are the only ones covered. Base 2 is 

opened, and the two needed resources are located there. Vehicle 1 is assigned to both episodes 1 and 3. 

Episode 3 also needs vehicle 4. Episode 2 cannot be covered because one needed resource is already 

assigned to episode 1 and it is not available, and no other vehicle can be a substitute. Episodes 4 and 5 

can also not be covered because the needed resource is assigned to episode 3. 

Now imagine that the problem is solved without constraints (15). In this case, the model, that maximizes 

the total number of covered episodes, will take advantage of its “knowledge of the future”: it will be 

better to guarantee the coverage of episodes 4 and 5 than to guarantee the coverage of episode 3. So, 

instead of dispatching the needed and available resources to episode 3 when this episode happens, these 

available vehicles will be held so that they can be later assigned to the other two episodes. In this case, 

three episodes will be covered. This is a biased value for coverage, since this would never occur in a 

real setting. 

 

Example 2 

Let us now assume that vehicle of type 3 can substitute vehicles of type 4. In this case, three resources 

will be used, and episodes 1, 3, 4 and 5 can be covered. As each base can have, at most, 2 vehicles, both 

bases will be operational. Base 1 will have vehicles 3 and 4, base 2 will have vehicle 1. It will be possible 

to assign vehicle 3 as being of type 4 to episodes 3 and 4 (ݔଷସସ and ݔଷହସ are equal to 1). There are 

optimal alternative solutions, both in terms of the location of the vehicles (since all locations are inside 

the coverage radius of each potential base), and regarding the assignment of vehicle 3 (it could also be 

assigned to episode 3 and vehicle 4 to episodes 4 and 5). 

If we now change the coverage matrix, stating that location 1 is only covered by using vehicles of base 

1, then the needed vehicle to assure coverage of this episode would be mandatorily located at base 1. 

 

Example 3 
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Let us now work with a slightly different example, where the occurrence of episodes is depicted in figure 

2. Table 5 shows the vehicles that need to be assigned to each episode. 

 

 Vehicle type 1 Vehicle type 2 Vehicle type 3 Vehicle type 4 

Episode 1 0 0 0 1 

Episode 2 0 1 0 0 

Episode 3 1 0 0 1 

Episode 4 0 0 0 1 

Episode 5 0 0 0 1 

Table 5: Resources needed by each one of the emergency episodes (example 3) 

Constraint (15) deals with the situation where, despite one episode not being fully covered (episode 3), 

other incompatible episodes can be served (episodes 4 and 5) because the episode is not covered due to 

the fact that the needed resource is already being used in a prior event that has not yet finished (episode 

1). 

 

 

 

 

 

Figure 2: Timeline for the occurrence of episodes in example 3 

 

The optimal solution in this example is ݔଵଶଵ, ݔଶଶଶ, ݔସଵସ, ݔସସସ and ݔସହସ equal to 1, guaranteeing the 

coverage of all the episodes but episode 3.  

4. Stochastic Model 

The previous described model is missing a very important characteristic: the ability of explicitly 

considering the underlying uncertainty that is associated with the existence of emergency episodes. In 

order to bring our model closer to the real context of emergency situations, a stochastic version is now 

described, explicitly acknowledging that it is not possible to know with certainty which episodes will 

be occurring during the defined time horizon. 

The model developed is a two-stage stochastic model, with uncertainty included in the model using a 

set of different scenarios. The set of scenarios will be represented by ݏ ∈ ܵ. Each scenario will have a 

given probability of occurrence ݏ∀ ,�݌ ∈ ܵ. The decision variables belong to one of two sets: either they 

belong to the first stage set, meaning that they have to be decided before the actual realization of the 

uncertainty, or they belong to the second stage set, and will be defined after the random events are 

known (also named recourse variables). Monte Carlo simulation is used to build the scenarios, and the 

sample average approximation method is used (Birge & Francois, 2011). 

 

Episode 2 
1 vehicle of type 2 

Episode 1 
1 vehicle of type 4 

 

Episode 4 
 1 vehicle 

of type 4 

Episode 5 
1 vehicle of 

type 4 

Episode 3 
1 vehicle of type 1+1 vehicle of type 4 
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The classical linear two-stage programming problem can be formulated as follows (a minimization 

problem is shown without any loss of generality): 

 min ݂ሺߞሻ = ߞ்ܿ + �Θ[ܴሺߞ, Θሻ] 
Subject to ߞܣ = ܾ; ߞ ∈ Ȳ 

 �Θ[ܴሺߞ, Θሻ] denotes the mathematical expectation with respect to Θ.  ܴሺߞ, Θሻ is the optimal value of the 

second stage problem for a given scenario s ሺΘሺݏሻሻ which can be formulated as: 

 min  �ሺΘሻ்ݎ 

Subject to ΓሺΘሻߞ + ΥሺΘሻω = �ሺΘሻ; � ∈ ȳ 

 

Variables ߞ are the first stage decision variables, and � are the second stage decision variables. Θሺr, Γ, Υ, �ሻ corresponds to the data of the second stage problem, which is considered to be random (it 

is scenario dependent). In the present case, ߞ corresponds to variables ݕ௜ and ℎ�௜ (the location variables 

that will not be scenario dependent). Second stage variables � correspond to variables ݖ�� and ݔ��௞� 

(similar to variables ݖ� and ݔ��௞ in the deterministic version, but that are now indexed to the different 

scenarios that are going to be included in the model). �Θ[ܴሺߞ, Θሻ] is replaced by a Monte Carlo estimate 

such that each scenario will be a given realization of  Θ (Θሺݏሻሻ. 

 

��ݖ = {ͳ, if episode e receives all the needed vehicles withinthe maximum time limit, under scenario s  , ∀݁ ∈ ��, ݏ ∈ ܵ   Ͳ, otherwise  

 

�௞��ݔ = {, if vehicle � is assigned to episode e  to fulfill level k needs under scenario s ሺeven if it is of a different levelሻ, ∀� ∈ �, ݏ ∈ ܵ, ݇ ∈ ,ܭ ݁ ∈ ��Ͳ, otherwise  

 

The parameters defined previously remain valid for this model, so we will only present those which 

must change to accommodate the existence of scenarios. Each scenario will have its own set of 

emergency episodes, ݁ ∈ ��. Θሺr, Γ, Υ, �ሻ in the classical two-stage programming problem formulation 

represents the data associated with the emergency episodes, that have a random nature. 

The incompatibility matrix will now also depend on the different scenarios.  

 

ܾ��′௞� = {ͳ, if vehicles of type k cannot be assigned to both episodes ݁ and ݁′ under scenario s, ∀݁, ݁ ′ ∈ ��, ݇ ∈ ,ܭ ݏ ∈ ܵͲ, otherwise                                                                                                    
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It is also possible that the a priori availability of vehicles is different for different scenarios: 

 ݀��� = {ͳ, if vehicle  � can be assigned to episode ݁, under scenario ݏ, ∀݁ ∈ ��, � ∈ �, ݏ ∈ ܵͲ, otherwise                                                                                              

 

The number of vehicles of type k that will need to be dispatched to emergency episode e belonging to 

scenario s will now be represented by ��௞�. 

 

The objective function will now be the maximization of the expected total number of covered emergency 

episodes, considering the probability of occurrence of each scenario (݌�, ݏ∀ ∈ ܵሻ: 

= ܼ ݔܽܯ  ∑ ∑ ௌ∋���∋���ݖ�݌ − ∑ሺߝ ∑ ℎ�௜௜∈� + ∑ �∋��∋௜௜ݕ + ∑ ∑ ∑ ∑ �∋��∋��∋௞��∈ௌ௞��ݔ�݌ ሻ           ( 16 ) 

 

Parameter  represents a very small positive number. 

 

Considering the classical two-stage programming model formulation, min corresponds to min ߞ்ܿ ∑ሺߝ ∑ ℎ�௜௜∈� + ∑ �∋��∋௜௜ݕ ሻ whilst min ሺΘሻ்� represents minݎ ��ݖ− + ∑ሺߝ ∑ ∑ �∋��∋��∋௞�௞��ݔ ሻ.    
Constraints ߞܣ = ܾ in the classical two-stage programming model formulation are represented by 

constraints (12-13), defined for the deterministic version and that should also hold in the stochastic 

model. Constraints ΓሺΘሻߞ + ΥሺΘሻω = �ሺΘሻ are represented by (16-27), that are defined as (these 

constraints follow directly from (3) to (11)): 

  

 An episode belonging to a given scenario s is "covered" if and only if it receives all the necessary 

vehicles of all the needed types in that scenario. 

              ��௞�ݖ�� ൑ ∑ ܿ௞௞�ݔ��௞��∈� , ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇ ∈ :ܭ  ௞ݎ = Ͳ                                         ( 17 ) 

 

 Define auxiliary integer variables ܱ�௞௞′�, ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇ ∈ ,ܭ ݇′: ∃ሺ݇′, ݇′′ሻ ∈ ݃௞which 

represent the number of vehicles of type ݇′ that are dispatched to episode e substituting vehicles 

of type k, under scenario s. Furthermore, let ݍ�௞௞′௞′′�, ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇ ∈ :ܭ ௞ݎ = ͳ, ሺ݇′, ݇′′ሻ ∈݃௞ , ݇′ < ݇′′, represent the number of vehicles belonging to the pair , ሺ݇′, ݇′′ሻ ∈ ݃௞ that are 

simultaneously dispatched to episode e under scenario s. Then, if vehicle k can be substituted 

by more than one vehicle (namely the pair ሺ݇′, ݇′′ሻ ∈ ݃௞ሻ the following constraints hold: ��௞�ݖ�� ൑ ܱ�௞௞� + ∑ ,�′′௞௞′௞�ݍ ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇ ∈ :ܭ ௞ݎ = ͳሺ௞′,௞′′ሻ∈��,௞′<௞′′                     ( 18 ) 

 ܱ�௞௞� ൑ ∑ ܿ௞௞�ݔ��௞��∈� , ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇ ∈ :ܭ ௞ݎ = ͳ                                                          ( 19 ) ܱ�௞௞′� ൑ ∑ ܿ௞′௞�ݔ��௞′��∈� − ��௞′�, ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇, ݇′ ∈ :ܭ ∃ሺ݇′, ݇′′ሻ ∈ ݃௞                      ( 20 ) 

 ∑ ′′௞௞′௞′′�ሺ௞′,௞′′ሻ∈��:௞′<௞�ݍ ൑ ܱ�௞௞′�, ݏ∀ ∈ ܵ, ݁ ∈ �� , ݇, ݇′ ∈ :ܭ ∃ሺ݇′, ݇′′ሻ ∈ ݃௞                   ( 21 ) ∑ ′′௞௞′௞′′�ሺ௞′,௞′′ሻ∈��:௞′<௞�ݍ ൑ ܱ�௞௞′′�, ݏ∀ ∈ ܵ, ݁ ∈ ��, ݇, ݇′′ ∈ :ܭ ∃ሺ݇′, ݇′′ሻ ∈ ݃௞                  ( 22 ) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



20 

 

 

 An emergency vehicle can only contribute to one given level of assistance, in each episode 

belonging to a given scenario.  

          ∑ �∋௞�௞��ݔ ൑ ͳ, ݏ∀ ∈ ܵ, ݁ ∈ ��, � ∈ �                                                                                     ( 23 ) 

 

 The emergency vehicle v can only attend episode e, belonging to scenario s, from i if it is located 

there, and if e occurs within the coverage radius of i for that level of care, and it is available in 

that scenario. 

�௞��ݔ  ൑ ݀��� ∑ ܽ௜௝�௟�ℎ�௜௜∈� , ∀� ∈ �, ݏ ∈ ܵ, ݁ ∈ ��, ݇ ∈  ( 24 )                                                     ܭ

 

 An emergency vehicle can only be assigned to two episodes if their occurrence time periods do 

not intersect, considering the scenario where both episodes belong. 

 ∑ �∋′௞′�௞��ݔ + ∑ �∋′௞′�௞′��ݔ ൑ ʹ − ܾ��′௞�, ∀� ∈ �, ݇ ∈ ,ܭ ݏ ∈ ܵ, ݁, ݁′ ∈ ��: ݁ < ݁′          ( 25 ) 

 

Constraints (14) and (15) have also to be changed as follows: 

 If a given episode is not fully covered, then it will not have any resource assigned.  

 ∑ ∑ �∋��∋௞�௞��ݔ ൑ ,��ݖܯ ݏ∀ ∈ ܵ, ݁ ∈ ��                                                                                   ( 26 ) 

 

 It is not possible to anticipate the future in each scenario, regarding the assignment decisions. 

∑ �∋′௞′�௞′��ݔ ൑ (ʹ − ∑ ܽ௜௝�′௟�ℎ�௜௜∈� − ∑ ܽ௜௝�௟�ℎ�௜௜∈� ) + ͳ − ሺܾ��′௞� − �௞��ݔ − ሻ��ݖ + ∑ +�௞��′∈���௞�′�ݔ ͳ)ܯ − ܿ௞௞�) + ∑ ∑ ܾ�′′�௞′�ݔ��′′௞′��′′:�′′<� ௞′∈� , 
                                                                    ∀� ∈ �, ݏ ∈ ܵ, ݁, ݁′ ∈ ��: ݁ < ݁′, ݇ ∈ :ܭ ��௞� ൒ ͳ                  ( 27 ) 

5. Case study based on real data 

One of the objectives of the development of the model was to see whether it would be possible to reach 

a solution, in terms of vehicle locations, that would improve the emergency episodes coverage when 

compared with the current real setting (the current location of emergency vehicles). To apply the model, 

it is necessary to generate a set of randomly generated scenarios, but it is also important that these 

scenarios reflect what is expected to happen in reality. So, the analysis of the available data was the 

starting point for scenario generation.  

The available data includes information about all the emergency occurrences that required the 

assignment of ALS vehicles during one year, and data published by INEM (2019) for the last 3 years, 

that allowed the calculation of the total number of occurrences (BLS plus ALS) for the same period. It 
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was possible to collect information about the time and location of individual ALS calls but only 

aggregated information about the time and location of individual BLS calls. All scenarios were built 

considering this baseline information. These scenarios were then fed into the model which was solved 

using Cplex. We will first describe how the scenarios were built, and then we will analyze the obtained 

optimal solution. The solution that corresponds to the current location of the existing vehicles was also 

tested using the generated scenarios, and it is compared with the optimal solution obtained. As this 

comparison could be unfair for the current location of vehicles, both solutions are also compared in a 

new dataset composed of new scenarios not included in the instance that originated the optimal solution. 

In order to see whether the stochastic version of the model brings benefits when compared to the 

deterministic version, an optimal solution using this deterministic version was also calculated. 

 

5.1. Dataset 
The scenarios for the stochastic model were developed using R software environment. The geographical 

area of interest was the Coimbra district, located at the central part of Portugal. At the present moment 

there are 35 vehicles available that are distributed among 34 existing bases. The location of the existing 

bases is presented in Figure 3. The number of vehicles of each type presently located in each base is 

given in Table 6. In the developed model, three different types of vehicles are defined: BLS, including 

MEA, AA and MEM; ILS, including ILSA; ALS, including MERV. There is also one EMH available. 

This vehicle is not included in the model, because it is only used in very specific and limited situations. 

 

Figure 3: Location of existing bases for emergency vehicles in the area under study 

 

 
k  k  

Bases 1 AA 2 MEM 3 MEA 4 ILSA 5 MERV Bases 1 AA 2 MEM 3 MEA 4 ILSA 5 MERV  

1 1 0 0 0 0 18 0 0 0 0 0  

2 1 0 0 0 0 19 1 0 0 0 0  

3 1 0 0 0 0 20 1 0 0 0 0  

4 0 0 0 0 1 21 1 0 0 0 0  

5 0 0 0 0 1 22 1 0 0 0 0  
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6 0 0 0 0 0 23 1 0 0 0 0  

7 0 0 0 0 0 24 1 0 0 0 0  

8 0 1 3 0 0 25 1 0 0 0 0  

9 1 0 0 0 0 26 1 0 0 0 0  

10 1 0 0 0 0 27 1 0 0 0 0  

11 1 0 0 0 0 28 1 0 0 0 0  

12 0 0 0 0 0 29 1 0 0 0 0  

13 1 0 0 0 0 30 1 0 0 0 0  

14 0 0 0 1 1 31 1 0 0 0 0  

15 1 0 0 0 0 32 1 0 0 0 0  

16 0 0 0 0 0 33 1 0 0 0 0  

17 0 0 0 0 0 34 1 0 1 1 1  

Table 6: Number and location of existing vehicles (current situation) 

Table 7 presents the substitutability matrix for the available types of vehicles. A vehicle of type 4 can 

also be substituted by sending simultaneously a vehicle of type 5 and a vehicle of type 1 or 3. This means 

that ݎସ = ͳ and ݃ ସ = {ሺͶ,Ͷሻ, ሺͳ,ͷሻ, ሺ͵,ͷሻ}. This situation has been represented by using constraints (18)-

(22) accordingly.  

k 1 2 3 4 5 

1 1 0 1 1 0 

2 1 1 1 1 0 

3 1 0 1 1 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

Table 7: Substitutability matrix between different types of vehicles 

As this region has different areas, with different patterns of emergency situations, 16 different areas 

were defined, as depicted in Figure 4. Each area is defined as a polygon, through the use of GPS 

coordinates. Some polygons overlap. The biggest polygon represents the entire region. Smaller polygons 

represent areas that experience larger volumes of emergency calls, such as city centers and roads with a 

pattern of high number of accidents. 
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Figure 4: Definition of different areas with different patterns regarding the occurrence of emergency episodes, patterns that 

were taken into account when generating the scenarios. 

 

Each scenario will correspond to a 24-hour day period. The number of episodes in each scenario is 

randomly generated using a Poisson distribution with  adjusted by considering the best fit to the known 

data (the parameters were estimated by considering the maximum likelihood criterion, different 

distributions were tested and the Poisson distribution was chosen according to the Akaike information 

criterion). In the present case, two different types of emergency episodes were defined: medical episode 

or trauma episode. In the first case  is equal to 56.57, and in the second case is equal to 9.35. The type 

of emergency episode will influence the random generation of the number and type of vehicles that 

should be assigned to the episode. If the emergency is a trauma episode, for instance, then it is mandatory 

to have at least one MERV vehicle and one AA or MEA. The location of each episode is first randomly 

assigned to one of the existing polygons, according to the existing probabilities of occurrence for each 

area. The episode is then randomly located inside the polygon. The time limits considered for building 

the coverage matrix were the reference time limits from INEM (2019): 15 minutes for urban areas and 

30 minutes for rural areas. All the areas were defined as rural except for the polygons associated with 

the cities of Coimbra and Figueira da Foz. Actual driving times by road were calculated by using the 

Google Maps API, within R. Emergency vehicles usually drive faster than common vehicles, but no data 

was available that could support some kind of conversion between “normal” driving times and 

“emergency vehicles driving times”, so the option was to use these values. Furthermore, the area under 

study does not usually experience heavy traffic. The start time of each emergency episode was also 

randomly generated according to the occurrence patterns throughout the day (it is more likely that 

emergency episodes occur from 9.00 to 21.00 than from 2.00 to 4.00, for instance). Figure 5 presents 

the probability of a given episode occurring in each hour of the day. The total duration (in minutes) of 

each episode was randomly generated, assuming these times follow a Gamma distribution (this was the 
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distribution that presented the best fit to the available real data, with shape =4.2123, rate =0.0692 

(mean equal to 30.03 and standard deviation equal to 29.67). According to the existing data, vehicles 

were unavailable only 3% of the time (due to vehicle maintenance operations or other non-call 

activities), and this was the probability used to build the availability matrix. 

 

Figure 5: During the day, the probability of occurrence of an emergency episode is not always the same. This figure shows 

the pattern with which emergency episodes occur during one day (24 hour period). 

When using a sample average approximation, it is necessary to define the number of scenarios to 

generate. There is no way of determining the optimal number of scenarios. Increasing the sample size 

will allow the calculated solution to converge to the optimal solution of the two-stage stochastic model 

(Birge & Francois, 2011). In practice, it is necessary to reach a compromise between the number of 

scenarios considered and the dimension of the problem, and the inherent difficulties in calculating a 

solution. In this work we have considered a total of 30 scenarios. This number was chosen because it 

was possible to observe that the differences in the objective function obtained with different sets of 25 

scenarios each were small (the model was solved five times, each time with 25 scenarios independently 

generated, and the expected coverage rate was always within the interval [89.0%, 89.6%]). It was 

possible to solve the model with 30 scenarios in a reasonable computational time. With more scenarios, 

not only did the computational time increase considerably, but the general solver had also memory 

problems.  

 

The created dataset encompasses a total of 30 different scenarios, and 1978 total emergency episodes. 

Figure 6 shows the location of the emergency episodes generated for these 30 scenarios. 
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Figure 6: Location of the emergency episodes for 30 scenarios 

The pseudo-code used to build the scenarios as well as all the generated data are available as 

supplementary material. 

 

5.2. Calculating and analyzing the optimal solution 
 

Two different instances were solved. In the first instance we let the model determine the optimal location 

of all the emergency vehicles, maximizing the expected total coverage. In the second instance, we fixed 

the vehicles in their current bases and looked for the solution that maximizes the expected coverage. 

The instances were solved by Cplex, version 12.7, using Intel Xeon Silver 4116, 2.1 gigahertz, 12-core 

processor, 128 gigabyte RAM. Cplex is capable of eliminating many of the existing constraints and also 

fixing several binary variables in the pre-solve stage, resulting in a model with 122982 constraints and 

71207 variables. The first instance took 6.7 hours solve to optimality. Assuming that this is a strategic 

decision, this computational time can be considered reasonable. The second instance (with the location 

variables fixed) took 50.03 seconds to solve to optimality. 

The results of the optimal location are shown in Table 8. These locations can be compared with the 

current ones presented in Table 6.   

 k  k  

Bases 1 AA 2 MEM 3 MEA 4 ILSA 5 MERV Bases 1 AA 2 MEM 3 MEA 4 ILSA 5 MERV  

1 1 0 0 0 0 18 0 0 0 0 0  

2 0 0 0 1 0 19 1 0 0 0 0  

3 1 0 0 0 0 20 1 0 0 0 0  

4 1 0 0 0 1 21 1 0 0 0 0  

5 0 0 1 0 0 22 1 0 0 0 0  

6 1 0 0 0 0 23 1 0 0 0 0  

7 0 0 0 0 0 24 0 0 0 0 0  

8 1 0 0 0 1 25 1 1 0 0 0  

9 0 0 0 0 0 26 0 0 1 0 0  

10 1 0 0 0 0 27 1 0 0 0 0  

11 0 0 0 0 0 28 0 0 0 0 0  
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12 0 0 0 1 0 29 0 0 1 0 0  

13 0 0 1 0 0 30 1 0 0 0 0  

14 2 0 0 0 1 31 1 0 0 0 0  

15 1 0 0 0 0 32 1 0 0 0 0  

16 1 0 0 0 0 33 1 0 0 0 0  

17 1 0 0 0 0 34 2 0 0 0 1  

Table 8: Optimal location of emergency vehicles (solution produced by using the proposed model) 

The differences between the current solution and the optimal one are highlighted in grey. The optimal 

locations for emergency vehicles achieve better coverage results than the existing one, as shown in Table 

9. 

Scenarios Total number of episodes 

Current solution Optimal solution 

Covered 

episodes 

Coverage 

rate % 

Covered 

episodes 

Coverage 

rate % 

1 64 53 82.81 55 85.94 

2 53 49 92.45 52 98.11 

3 70 62 88.57 67 95.71 

4 62 51 82.26 52 83.87 

5 70 63 90.00 66 94.29 

6 59 47 79.66 48 81.36 

7 77 67 87.01 71 92.21 

8 71 63 88.73 65 91.55 

9 69 62 89.86 65 94.20 

10 55 45 81.82 49 89.09 

11 72 59 81.94 63 87.50 

12 68 58 85.29 62 91.18 

13 51 43 84.31 47 92.16 

14 66 51 77.27 52 78.79 

15 64 58 90.63 59 92.19 

16 61 51 83.61 54 88.52 

17 56 39 69.64 47 83.93 

18 72 59 81.94 63 87.50 

19 68 54 79.41 61 89.71 

20 66 54 81.82 62 93.94 

21 67 60 89.55 63 94.03 

22 80 72 90.00 73 91.25 

23 65 56 86.15 59 90.77 

24 77 63 81.82 67 87.01 

25 55 48 87.27 48 87.27 

26 75 60 80.00 67 89.33 

27 84 69 82.14 75 89.29 

28 58 47 81.03 49 84.48 

29 67 56 83.58 61 91.04 

30 56 47 83.93 50 89.29 

Table 9: Comparison of the achieved coverage between the current and the optimal solution. For each one of the generated 

scenarios, the total number of scenarios as well as the covered ones are shown in the current and the optimal solution. 

The observed changes can be summarized as follows: 

 Some vehicles were relocated to areas with higher population density and, therefore, with a 

greater number of occurrences, such as the reinforcement of base 4 with a vehicle with transport 

capacity; 
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 Replacement of vehicles in areas that have, in the current solution, lower coverage, but that 

present high accident rates. An example is a MERV, that was previously assigned to base 5, and 

that is now moved to base 8, which is closer to two major roadways where severe trauma 

episodes are more likely to happen; 

 Reallocation of vehicles to areas where the emergency episodes pattern justifies the existence 

of these means. An example of this replacement is, for instance, one AA vehicle that is 

positioned in bases 16 and 17, the placement in base 25 of another BLS vehicle, or the placing 

of an emergency vehicle on bases 6 and 12; 

 Adjustment of the locations of BLS and ALS vehicles, relocating vehicles that have the capacity 

of transporting patients to bases where than can be more useful. As an example, base 14 is 

reinforced with one such vehicle.  

The optimal solution found is equal to or better than the current one in terms of coverage for all the 

scenarios. The expected coverage of the optimal solution is equal to 89.5%, whilst it is equal to 84.2% 

when the current location of vehicles is considered. Moreover, the worst result in all scenarios is equal 

to 78.8% of coverage, whilst this value is equal to 69.6% in the current solution. There was an overall 

gain of approximately 5% in the total number of episodes covered (plus 106 episodes covered), using 

exactly the same number of available vehicles. 

 

Comparing the current and optimal locations using the dataset used to build the solved instance can give 

a biased result, benefiting the optimal solution (it is the optimal solution for exactly that set of scenarios). 

To eliminate any bias resulting from using the dataset that originated the solved instance, we 

independently generated 15 new scenarios, using the same described procedure. Then, the locations of 

the emergency vehicles were fixed for both the current locations and the optimal locations calculated 

before. The results are shown in Table 10. 

Scenarios Total number of episodes 

Current solution Optimal solution 

Covered 

episodes 

Coverage 

rate % 

Covered 

episodes 

Coverage 

rate % 

1 62 55 88.71 57 91.94 

2 62 54 87.10 56 90.32 

3 82 65 79.27 71 86.59 

4 72 58 80.56 63 87.50 

5 67 58 86.57 61 91.04 

6 66 57 86.36 57 86.36 

7 47 41 87.23 40 85.11 

8 54 46 85.19 50 92.59 

9 54 44 81.48 47 87.04 

10 66 54 81.82 56 84.85 

11 73 62 84.93 62 84.93 

12 60 47 78.33 49 81.67 

13 58 51 87.93 51 87.93 

14 62 55 88.71 57 91.94 

15 66 54 81.82 59 89.39 

Table 10: Comparison of the achieved coverage between the current and the optimal solution for a new dataset with 15 

scenarios. 
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The optimal solution found presented also the best results in this new and unseen dataset. The expected 

coverage of the current location is 84.4%, and of the calculated one is 87.95%. The worst coverage 

achieved by the optimal solution is better than the worst coverage found using the current distribution 

of emergency vehicles (81.67% against 78.33%). The optimal solution is capable of covering 35 

episodes (3.7%) more than the current solution. 

Figure 7 depicts all the episodes from all scenarios that are not being covered in the optimal solution. 

Around 19% of these episodes are trauma medical emergencies. From the observation of this image, it 

is possible to conclude what would be the available bases that would need to have more vehicles, if 

possible. 

 

Figure 7: Location of the emergency episodes that are not covered considering the location of vehicles proposed by the 

model 

 

It is important to point out that, in a real setting, all episodes receive assistance. The emergency episodes 

that are not being covered in this model would be episodes where assistance would arrive later than it 

should, would receive vehicles providing a lower level of assistance, or vehicles originating from other 

bases not belonging to the defined area of interest would be called. The use of vehicles stationed in the 

outskirts of the region of interest is not being considered in this model, and it can be relevant especially 

when emergency episodes occur near the geographic limits of the defined area, or when there are several 

victims that require the activation of vehicles from different bases. It should also be pointed out that 

constraints (26) will not allow any vehicle to be dispatched to episodes that will not be covered. The 

model can thus consider as available some vehicles which would not be available in a real setting. This 

is equivalent to assuming that episodes occurring when all vehicles within the coverage radius are busy 

leave the system and will not stay in queue. A similar assumption has also been followed by other 

authors (Chong et al., 2016), considering the situation of all vehicles being busy. Our assumption is 

however stronger, since we are considering the situation where all vehicles within the coverage radius 

of the episode are busy.  
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To understand whether the stochastic model brings an added value when compared with its deterministic 

version, the deterministic model has also been used and the corresponding solution compared with the 

one obtained in the stochastic version. The input data is composed of the expected number of episodes 

for one day.  The respective locations correspond to the centroids obtained by creating clusters using all 

the episodes generated in the 30 scenarios dataset (using the k-means clustering algorithm). Applying 

the obtained optimal solution for the 30 scenarios dataset, the average coverage obtained is 84% (lower 

than what is obtained with the stochastic solution). Looking at the worst scenario, the coverage drops to 

73.4%. This solution was also applied to the out-of-sample dataset with 15 scenarios. The coverage 

obtained was, once again, lower than with the stochastic solution: 84.5% on average (31 less occurrences 

covered) and 78.7 for the worst-case scenario.     

 

Restrictions (27) have been added to assure that the model does not make vehicle assignments taking 

into account future emergency events that should not be known in advance. We have also tested the 

importance of these constraints, namely to see if, without them, the obtained coverage would be much 

different. Indeed, the average coverage increases, in the 30 scenario database, to 94.5% (an increase of 

5.6% when compared with the 89.5% average coverage) and, in the worst case scenario, it increases to 

81.8% (a 3.8% increase when compared with the 78.8% worst case coverage). If the constraints are not 

added to the model, the objective function will, indeed, be biased. Furthermore, it was possible to 

conclude that, without these constraints, the computational time increases significantly: more than 48 

hours were needed to calculate the optimal solution.  

We have also tested the influence of the number of available vehicles in the coverage obtained (Table 

11). Assuming that the number of available vehicles is the double (keeping the fleet composition pattern 

unchanged), it would be possible to increase the coverage to 95.5% in the 30 scenarios dataset, being 

the coverage in the worst-case scenario equal to 89.9%. If we assume that the number of available 

vehicles has tripled, then not all of them would be needed to achieve 99.3% of coverage: in total 65 

vehicles of type 1, 1 vehicle of type 2, 10 vehicles of type 3, 6 vehicles of type 4, 15 vehicles of type 5. 

This information is summarized in Table 11. The option to double or triple the number of available 

vehicles instead of assuming that it would be possible to acquire new vehicles of each of the existing 

types has to do with the fact that we do not have information about the costs associated with each of 

these vehicle types. The composition of the existing fleet has implicit information about the vehicle 

relative costs, so it makes more sense to consider similar fleet compositions.  
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Number of available vehicles Average coverage Worst-case coverage Percentage of vehicles used 

Current situation 89.5% 78.8% 100% 

Doubling the number of vehicles 95.5% 89.9% 100% 

Tripling the number of vehicles 99.3% 95.1% 95% of all available vehicles: 

 90% of all vehicles of type 1 

 33% of all vehicles of type 2 

 83% of all vehicles of type 3 

 100% of all vehicles of type 4 

 100% of all vehicles of type 5 

Table 11: Sensitivity analysis with respect to the number of available vehicles for the 30 scenarios dataset, keeping the same 

vehicle type mix 

 

6. Conclusions 

The mathematical model developed is, as far as the authors know, different from the models proposed 

in the literature for locating emergency vehicles. The built-in matrices (covering, availability, 

incompatibility and substitution) give the model a dynamic character, removing limiting assumptions 

related to the uncertainty of demand and supply. The fact that the model explicitly includes the 

assignment of vehicles to emergency episodes is an added value that allows for a better representation 

of the real setting and improves the calculation of the expected coverage. The stochastic version of the 

model allows for the inclusion of different scenarios, so that it is possible to find solutions that present 

greater robustness, taking into account the inherent uncertainty of these contexts. The scenarios were 

generated in a way that truly represent the real situation.  

The solutions obtained show that the model is behaving as expected considering the input data, and it is 

coherent with the needs that result from the demand of each of the defined areas within the region of 

interest.  

One of the issues that may occur if the model is applied to a wider geographical area has to do with the 

model size. The size of the model will grow significantly if more episodes in each scenario are 

considered, or if more scenarios are included. The general solver was capable of solving the 30 scenarios 

instance, having almost 2000 episodes in total, in reasonable computational times. However, for larger 

instances, it would be interesting to develop a metaheuristic dedicated to this problem and assess whether 

it could calculate good quality solutions in reasonable computational times. It will also be interesting to 

explore the application of algorithms based on Bender’s decomposition, for instance. 

It is also important to explicitly state some limitations of the proposed approach, some of which can 

motivate future work. The generated scenarios are not differentiating different days of the week. A 

deeper real data analysis can bring some insights on whether this should be an important factor to take 

into account, being possible to have different vehicle locations during weekend and weekdays. A similar 

thing can be said regarding summer months, where there is usually a flow of people from the inland 

areas to the coast and the arrival of emigrants that, in some locations, increase significantly the number 
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of inhabitants. This could justify different vehicle locations throughout the year. The model is also 

assuming that the location of vehicles does not change during the day or the week. Considering that 

there are different patterns of emergency occurrence during the day, it could be better to develop a 

solution where vehicles could indeed change their positions. However, such approach would also have 

some disadvantages. It is important to notice that these changes usually generate a strong resistance from 

the human resources. 

The developed model considers the possibility of not sending vehicles to emergency episodes. This lost 

call assumption could also be dropped in future works, assuming instead that all episodes receive some 

kind of assistance (even if it is not the most appropriate of it does not arrive within the defined coverage 

window). 

It would also be interesting to study the impact of having different maximum assistance times in the 

definition of the coverage matrices. The more demanding these times are, the less coverage can be 

guaranteed with the same set of available vehicles. The model developed would also allow us to study 

the existing compromises between these maximum times and the resources necessary to maintain 

acceptable levels of coverage. 

Although our model maximizes the expected number of episodes that receive all the needed resources 

within the adequate time window, other objective functions could be used. Considering the stochastic 

formulation, it could be interesting to maximize the total minimum coverage (the coverage of the 

scenario that is in the worst situation), or maximize the equity between different areas (namely urban 

and regional areas, guaranteeing that the difference in coverage is minimized).  As there is a clear 

compromise between the number of available vehicles and the achieved coverage, it is also possible to 

evolve to multiobjective models. In the presented model, an episode is either covered or not. It could be 

possible to consider a partial coverage of an episode, namely if it receives vehicles that are not the ones 

it should receive.  
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Annex A 

Abbreviation Meaning 

AA Assistance Ambulances  

ALS Advanced Life Support  

BLS Basic Life Support  

CODU Urgent Patient Guidance Centers 

EAD External Automatic Defibrillation 

EMH Emergency Medical Helicopters  

ILS Immediate Life Support  

ILSA Immediate Life Support Ambulances  

INEM National Medical Emergency Institute 

MEA Medical Emergency Ambulances  

MEM Medical Emergency Motorcycles  

MERV Medical Emergency and Resuscitation Vehicles  

 

  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



36 

 

Annex B 

Indexes and Sets 
Index, set Meaning ܶ Time horizon. ݅ , ,݅ Set of possible bases for emergency vehicles ܫ ݅ ∈ ,݇ .ܫ  ܭ

Set of different types of vehicles ݇, ݇ ∈  each k will also determine the ;ܭ

level of assistance of those vehicles ݈௞. ݈௞ Level of assistance of vehicles of type ݇; ݈௞ ∈ ,ܵܮܤ} ,ܵܮܫ ,{ܵܮܣ ∀݇ ∈ ,� .ܭ � Set of existing vehicles �;  � ∈ �. ݇� Type of vehicle v;  � ∈ �; ݇� ∈ ,ݏ .ܭ ܵ Set of existing scenarios ݏ; ݏ  ∈ ܵ. ݁, � / �� 

Set of emergency episodes ݁  that occur during the considered time horizon; ݁ ∈ �. These emergency episodes will be scenario dependent in the 

stochastic model, so in this case ݁ ∈ ��. ݆, ݆ ;Set of locations ݆ where emergency episodes may occur ܬ ∈  .ܬ

 

Data ݆� The location j where the episode e takes place, ݆� ∈ ,ܬ ݁ ∈ �/��, ݏ ∈ ܵ. ��௞/��௞� 

Number of vehicles of type k that will need to be dispatched to episode ݁ 

(this can be scenario dependent in the stochastic model), ݇ ∈ ,ܭ ݁ ∈�/��, ݏ ∈ ܵ. ܶܵ�௞/ܶܵ�௞� 
Time period in which the assistance for vehicles of type k for episode ݁ is 

required. This value can be scenario dependent. ݇ ∈ ,ܭ ݁ ∈ �/��, ݏ ∈  �௞�ݐܵܶ/௞�ݐܵܶ .ܵ

Time period in which the assistance ends for vehicles of type k in episode ݁; 

this is the moment when the vehicle is declared operational by the crew after 

assisting episode e. It can be scenario dependent. ݇ ∈ ,ܭ ݁ ∈ �/��, ݏ ∈ ܵ. ௜ܰ Maximum number of vehicles that can be positioned in base I; ݅ ∈ ௜௝௟ܽ  .ܫ  
Binary value defining whether location j is in the coverage radius of i for 

level of assistance l. ݅ ∈ ,ܫ ݆ ∈ ,ܬ ݈ ∈ ,ܵܮܤ} ,ܵܮܫ ,݇ .௞௞′ Binary value that defines whether vehicle of type k’ can substitute kܿ .{ܵܮܣ ݇′  �௞௞ܿ .ܭ∋
The same as the previous one, but considering whether vehicle v (of type ݇�) can substitute vehicles of type k. � ∈ �, ݇, ݇� ∈  ௞ݎ .ܭ

Binary value indicating whether vehicles of type k can be substituted by 

more than one vehicle. If ݎ௞ is equal to one, then set ݃௞ will define the pairs 

of types of vehicles that can substitute type k. ݇ ∈  .ܭ

ܾ��′௞/ܾ��′௞� 

Binary value that will determine whether episodes ݁ and ݁´ have any 

intersection in their occurrence times. If this is true, then the same vehicle 

can’t be assigned to both episodes. These values can be scenario dependent. ݁ ∈ �/��, ݇ ∈ ,ܭ ݏ ∈ ݏ Probability of scenario �݌ .ܵ ∈ ܵ. 
 

Variables 

 �௞��ݔ/௞��ݔ

Binary decision variable that will decide whether vehicle � will be assigned 

to episode e providing level of assistance k. This last index is necessary to 

account for vehicle substitutability. These variables can be scenario 

dependent. � ∈ �, ݁ ∈ �/��, ݇ ∈ ,ܭ ݏ ∈ ܵ. 
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௜ݕ  
Binary decision variable that will determine whether base i will have vehicles 

based there, ݅ ∈ � ,݅ ℎ�௜ Binary decision variable that will determine whether vehicle � is located  .ܫ ∈ �, ݅ ∈  ��ݖ/�ݖ .ܫ

Binary decision variable that will determine whether episode ݁ receives all 

the vehicles it needs respecting the coverage radius. It can be scenario 

dependent. ݁ ∈ �/��, ݏ ∈ ܵ. ܱ�௞௞′ܱ�௞௞′� 

Auxiliary variable that represents the number of vehicles of type ݇′ that are 

dispatched to episode e substituting vehicles of type k. It can be scenario 

dependent. ݁ ∈ �/��, ݇, ݇′ ∈  �′′௞௞′௞�ݍ/′′௞௞′௞�ݍ .ܭ

Auxiliary variable representing the maximum number of vehicles belonging 

to the pair ሺ݇′, ݇′′ሻ ∈ ݃௞ that are simultaneously dispatched to episode e. It 

can be scenario dependent. ݁ ∈ �/��, ݇, ݇′, ݇′′ ∈   ܭ
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