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RESUMO 

A propagação de ondas é atualmente um tópico de extrema importância em diferentes áreas da 

engenharia, incluindo Engenharia Civil. Nesta área, existem dois temas que requerem ainda 

alguma investigação: o primeiro, está relacionado com a deteção de dano em estruturas através 

da aplicação de ultrassons e, o segundo, relacionado com o controlo e mitigação de vibrações. 

As ondas ultrassónicas são caracterizadas por frequências superiores a 20 kHz e são cada vez 

mais utilizadas na engenharia, para medir distâncias, detetar falhas em produtos ou em 

estruturas. É precisamente na área da deteção de dano em estruturas de betão que, nesta tese, é 

apresentada uma metodologia para apoiar técnicas não destrutivas, baseada no tempo de 

propagação das ondas. 

As vibrações produzidas por veículos rodoviários pesados e ferroviários (fonte) que se 

propagam pelo solo até zonas sensíveis (recetor) causam incómodo e podem danificar 

estruturas. Nesta tese apresenta-se uma estratégia de vanguarda, com recurso a arranjos 

geométricos cristalinos de elementos individuais simples, posicionados entre a fonte e o recetor, 

no sentido de mitigar o efeito dessas vibrações. 

Como suporte às metodologias referidas, foram desenvolvidas duas ferramentas de simulação 

numérica: a primeira, aplicada a modelos geometricamente simples, recorrendo a soluções 

fundamentais do sistema, foi desenvolvida no sentido de estudar a mitigação de vibrações; a 

outra, com recurso a elementos finitos, foi desenvolvida para estudar a propagação de ondas 

em modelos geométricos mais complexos, tanto no estudo da mitigação de vibrações como no 

estudo do betão fissurado. 

A estratégia usada para a mitigação de vibrações permitiu concluir que os cristais fonónicos 

têm um efeito significante na redução dos níveis de vibração. Relativamente à deteção de dano, 

os resultados são promissores e confirmam a viabilidade do uso de equipamentos ultrassónicos 

baseados em ondas primárias e secundárias para aplicação in situ. 

Palavras-chave: barreira de estruturas enterradas periódicas, cristal fonónico, deteção de dano, 

método sem malha, mitigação de vibrações, modelação numérica, propagação de onda elástica, 

teste não destrutivo, ultrassom.
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ABSTRACT 

The propagation of waves is currently a topic of extreme importance in different areas of 

engineering, including Civil Engineering. In this area, there are two issues that still require 

some research: the first is related to the damage detection in structures by the application in 

ultrasonic, and the second, relates to control and mitigate vibrations. 

Ultrasonic waves are characterised by frequencies above 20 kHz and are increasingly being 

used in engineering, to measure distances or to detect failures in products or structures. It is 

exactly in damage detection in concrete structures that, in this thesis, a methodology is 

presented to support non-destructive techniques, based on the propagation time of waves. 

Vibrations produced by heavy road and rail vehicles (source) that propagate through the soil to 

sensible buildings (receiver) cause discomfort and can damage structures. This thesis presents 

an advanced strategy using crystalline geometric arrangements of simple individual elements, 

positioned between the source and the receiver, in order to mitigate the effect of these 

vibrations. 

To support the above methodologies, two numerical simulation tools were developed: the first 

one, applied to geometrically simple models, using fundamental system solutions, was 

developed in order to study the vibration mitigation; the other, using finite elements, was 

applied to more complex geometric models, both in vibration mitigation and in cracked concrete 

analyses. 

The strategy used for vibration mitigation allowed to conclude that the phononic crystals have 

a significant effect on vibration levels reduction. Regarding damage detection, the results are 

promising and confirm the feasibility of the use of ultrasonic equipment based on primary and 

secondary waves for in situ applications. 

Key-words: damage detection, elastic wave propagation, meshless method, non-destructive 

testing, numerical modelling, phononic crystal, shielding periodic buried structures, ultrasound, 

vibration mitigation.
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1 INTRODUCTION 

The wave propagation in elastic media is a subject studied since the first half of the nineteenth 

century and, currently, occupies a prominent place in medicine and engineering. As for the 

origin, waves can be classified in electromagnetic or mechanical. The former type is produced 

by varying electric and a magnetic fields. They can propagate in vacuum, in contrast with 

mechanical waves that are produced by a mechanical disturbance in a material medium. These 

waves, particularly elastic waves, which propagate without causing permanent effects in the 

elastic medium, are the focus of this thesis. The numerical simulation of elastic waves is a very 

difficult process, due to the complexity of the waves that are simultaneously present in the 

system. Currently, there are several methods of numerical simulation of wave propagation, both 

in the time and frequency domain, but they require high of computational effort. This work 

proposes two innovative methods applicable to important issues that are currently being 

investigated by the scientific community: the mitigation of vehicle-induced vibrations and 

damage detection in structures. 

1.1 Motivation 

The background and motivation of the thesis theme are presented below. Its introduction is 

made separately in three main topics: an introduction to numerical simulation techniques, the 

control of unwanted vibrations and the application of ultrasounds in damage detection in 

structures. 

1.1.1 Numerical simulation techniques 

Of all the known numerical simulation techniques, the Finite Element Method (FEM) is 

undoubtedly the most used in engineering. This is especially due to its advantages in certain 

physical systems with inhomogeneous or non-linear behaviour. FEM is part of a group of 

numerical techniques that require a discretised mesh of system nodes connected through finite 

elements to their neighbours. Other techniques, such as the finite difference or finite-volume 
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methods, are also within this group. It is not intended to list here all the methods or to make an 

exhaustive reference of them. At this point, an important distinction is made that these 

techniques are dependent on a finite element mesh, whereas others do not require the nodes 

cloud connection in the simulation domain. The latter are known as mesh free or meshless 

techniques and can be more efficient than mesh methods in problems with geometrically simple 

singularities or in open domains. Techniques like Method of Fundamental Solutions (MFS) are 

within this group. 

As mentioned in the introductory paragraph of the section 1.1, this thesis addresses two 

important application areas, related to non-destructive techniques and to vibration protection 

devices. For efficiency reasons, numerical simulation tools are distinct for each of these topics. 

In this thesis, to simulate the geometrically more complex models, related to the structural 

damage detection, the FEM was adapted and improved to efficiently response to the proposed 

problems. FEM was also used in the simulation of vibration mitigation barriers, by taking 

advantage of vibration energy dissipative tools in order to accommodate the infinite character 

of the propagation medium. However, in some studies related to vibration mitigation, the 

geometry was fairly simple and, in those cases, MFS proved to be more efficient. 

1.1.2 Mitigation of vehicle-induced vibrations 

Vibrations arising from means of transport has been under discussion since the middle of 

twentieth century when high-speed trains, where speeds above 200 km/h emerged as regular 

intercity transport in several countries in Europe and Asia (Yang and Hung, 2009). These 

vibrations are propagated by the soil and can interfere with constructions such as dwelling 

houses, technological production buildings or laboratories equipped with sensitive equipment. 

The most common effect of these vibrations on buildings is the appearance of cracks in the 

plaster and paint and their subsequent fall. However, in more serious situations, cracking of 

structural elements or even problems with the functioning and collapse of buildings can occur 

(Jakubczyk-Gałczyńska and Jankowski, 2014). They can also directly interfere with ordinary 

people in terms of comfort, well-being and health (Croy et al., 2013; Smith et al., 2013). At 

European level, there are projects for implementing innovative and practical solutions by 2050 
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(European Commission, 2011, 2016), so that “vibrations no longer being considered a problem 

for the railways and its neighbours”, making their levels socially and economically acceptable 

and allowing passenger and goods operations without time restrictions (Cheron et al., 2012). In 

this context, efficient solutions are required for vibration mitigation to achieve societal 

acceptance. 

Scientific and technical literature reports, related to mitigation of vibrations induced by railway 

traffic, have been developed over the last years, proposing and analysing different solutions that 

can be typically grouped into three categories: those acting at the source level, those acting at 

the receiver, and those acting in the propagation medium (see Figure 1.1). The first category 

includes resilient materials that act directly at the track, such as under sleeper pads or ballast 

mats (Alves-Costa et al., 2012a; Bongini et al., 2011). The second category can include global 

base-isolation systems, globally protecting a building (Anderson, 2000; Talbot, 2016; Talbot 

and Hunt, 2000, 2003). The third category includes all solutions that can be introduced within 

the propagation medium between the source and the receiver to change the propagation patterns 

of elastic waves, as is the case of buried walls, trenches (empty or in-filled) and inertia blocks 

(Barbosa et al., 2015; Thompson et al., 2016; Yang and Hung, 2009). This last group is of 

particular interest, since it can help to protect groups of buildings and entire sites from traffic-

generated vibrations, complementing well interventions at the source level. However, some 

difficulties are usually identified when using trench solutions, since their efficiency is heavily 

based on their depth, particularly, at low frequencies. As for in-filled trenches, recent studies 

by (Barbosa et al., 2015) and by Coulier (Coulier et al., 2013) show that stiff barriers provide 

protection mostly from a wave guiding effect due to the coupling between surface waves 

propagating in the ground and the bending waves propagating in the barrier. A study by 

Hoorickx et al. (2017b) analysed the effect of double buried walls, showing that in general an 

improvement is registered when a second buried wall is added to the system, although the 

resonances occurring between the two walls may originate a decrease in efficiency at some 

specific frequencies. 
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Figure 1.1 – Schematic representation of mitigation systems. 

A recent trend in acoustic and vibratory protection is related to the introduction of a new 

paradigm based in the concept of metamaterials, which are artificial materials engineered to 

have properties not directly found in nature. A case of such materials is that of periodic 

structures, such as those usually designated as “phononic crystals”, which have the property of 

stopping the energy passage at specific frequency bands (band gaps); some practical 

applications of these metamaterials can already be found for acoustic shielding as described in 

(Martínez-Sala et al., 2006; Umnova et al., 2006). The successful studies already developed for 

acoustic applications indicate that such concepts may also be extended for elastodynamic 

applications, in the sense of blocking vibrations at specific frequency bands. Some works 

concerning seismic protection by periodic structures can indeed be found in the literature. Kim 

and Das (2012) analysed the effect of a periodic structure in the creation of a shadow zone to 

seismic waves. Alagoz and Alagoz (2011) presented numerical studies concerning the effect of 

what they called “seismic crystals”, indicating an effective attenuation of seismic waves. Brûlé 

et al. (2014) reported what is possibly the first evidence of the efficiency of such structures as 

a shield to seismic waves. More recently, Krödel et al. (2015) and Dertimanis et al. (2016) have 

shown that the use of metastructures can reflect acoustic signals with wavelengths well above 

the characteristic size of the internal structure of the material, opening doors for a large number 

of applications where low frequency band gaps are demanded. 
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1.1.3 Damage detection in structures 

Many concrete buildings show early signs of damage and aging, which are often the result of 

poor design, inferior quality of materials and exposure to increasingly aggressive environments 

(Gomes et al., 2014; Maia, 2016). It is important to intervene and control the progress of 

degradation and to extend the life span of the structure. The early diagnosis of structural defects 

is essential to decide and plan effective actions that can mitigate the structural degradation at 

an acceptable cost. In the case of concrete cracking, the diagnosis can be particularly 

challenging because cracks are often not visible in the initial stage. However, it is recognised 

that identifying the onset of cracking, is extremely important for early interventions designed 

to restore the structural performance. 

Strategies of inspection and evaluation of concrete structures are, in most cases, still performed 

by visual survey methods, with some destructive testing techniques being available to support 

the analysis, either in situ or at the laboratory. Recently, several non-destructive techniques 

(NDT) of damage detection have been studied and implemented. Usually, the type of damage 

sought dictates the type of sensor to be used (Kessler et al., 2002). The “Guidebook on non-

destructive testing of concrete structures” (International Atomic Energy Agency, 2002) presents 

an extensive list of NDT and their applications, including electromagnetic methods and infrared 

thermography. Khazanovich et al. (2016) explore the heterogeneous nature of the concrete 

material itself, such as the presence of reinforcement and aggregates, which impose additional 

challenges in the damage detection. Today, other methods are object of research and with well-

defined practical applications. For example, Dihoru et al. (2009) investigated the potential of 

using measured data of modal frequency for detecting the location and the size of defects in a 

vibrating beam using a neural network approach, and Galantucci and Fatiguso (2019) 

researched on damage detection in historical buildings through digital photogrammetry and 3D 

surface analysis. Nevertheless, the use of NDT vibration-based has shown the potential to detect 

and identify the location and the severity of the damage in structures (Sinou, 2009). 

Ultrasounds (or ultrasonic waves) are waves whose frequency is above 20 kHz. However, the 

frequencies usually used in NDT are in the range between (0.5 and 25) MHz (Lohith K. S., 

2009). The effectiveness is due to the high frequency that provides a good penetration ability. 
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In engineering, a well-known ultrasonic-based NDT used for location and size of damage 

detection is the Time of Flight Diffraction (ToFD) method (Manjula et al., 2012), which is 

based on the diffraction of ultrasonic waves from a crack tip and has been applied successfully, 

as defect sizing method in ultrasonic testing, since it uses arrival time of echoes instead of their 

amplitude (Honarvar and Ledari, 2016; Yeh et al., 2018). The principle of ultrasound testing is 

simple: using an ultrasonic transducer, a receiver measures the response time of a pulse 

generated by a transmitter (see Figure 1.2). The analysis is based on the concept that the 

propagation velocity of ultrasonic waves depends only on the material density and its elastic 

properties (Young’s modulus and Poisson's coefficient). Knowing the waves velocity in the 

propagation medium, the time of flight can be directly related to the distance that the signal 

travelled. In post-processing, some information about damage can be obtained such as location 

and size, among others. This is the method used in this thesis for simulating damage detection 

of cracks in concrete structures. However, some care must be taken in the evaluation of the 

results, due to the interference between the various types of wave, which can accumulate energy 

in the receiver at a given time point. 

 

Figure 1.2 – Schematic representation of an ultrasonic transducer into operation. 

1.2 Aims 

As previously mentioned, this thesis aims to develop numerical tools for simulating the 

propagation of elastic waves in discontinuous media applied to two specific problems: the first 

aim focuses on the mitigation of vibrations induced by rail traffic, and the second addresses the 
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detection of damage in concrete structures. As mentioned before, two numerical simulation 

tools (FEM and MFS) are adopted, and their use is defined according to the desired result 

domains: time domain or frequency domain. 

The first topic, focused on the vibration mitigation, has as the following main objectives: 

a) study of innovative mitigation devices based on buried phononic crystals; 
b) implementation of a numerical simulation model based on MFS (frequency domain); 
c) implementation of a numerical simulation model based on FEM (time domain); 
d) parametric study to validate the MFS model parameters; 
e) parametric study to determine the influence of physical and geometric variables on the 

mitigation solutions efficiency. 

The second topic, related to the damage detection based on non-destructive techniques, uses the 

Time of Flight Diffraction (ToFD) method to detect the presence of cracks, and has the 

following specific objectives: 

a) to better understand the phenomenon of propagation of P, S and surface waves as a 
whole, that is, as a full wave solution; 

b) implementation of a numerical simulation model based on FEM (time domain); 
c) analysis of P, S and surface ultrasonic waves using the ToFD method; 
d) application of the simulation model in a case study. 

1.3 Thesis outline 

The thesis is structured in eight main chapters. This first chapter presents generically the 

relevance of the proposed study by framing the theme as a response to essential and current 

issues, and sets the main objectives of this research work. In the second chapter, a historical 

review is made and the current state of the art regarding wave propagation and its application 

in vibration control and damage detection in concrete structures is discussed. This chapter also 

reviews the numerical techniques so far in the field of wave propagation. The third chapter 

presents the numerical models developed and used within this work. The fourth chapter presents 

the numerical models verification with benchmarks. The fifth chapter presents the application 

of MFS in frequency domain in the 2D and 2.5D study of vibration mitigation solutions. The 
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sixth chapter presents studies on vibrations mitigation in several scenarios of the propagation 

medium and the phononic crystals definition, using FEM in the time domain. The seventh 

chapter presents results of numerical simulation of ultrasonic waves propagation in the context 

of damage detection in concrete structures. Finally, the eighth chapter summarises the 

contributions of this work, it also presents the main conclusions and points out future 

developments. Outputs resulting from the research work developed under the doctoral program 

are also presented in this chapter. 
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2 BRIEF LITERATURE REVIEW 

This chapter is divided into five parts. The first part deals with a generic historical introduction 

on elastic wave propagation, including basic definitions and concepts. In the second part, a 

critical review of the state-of-the-art, focusing on vibration mitigation, is made. The third part 

reviews the state-of-the-art related to the detection and control of damage in concrete structures. 

The fourth part reviews the numerical models currently used to simulate wave propagation. 

Finally, in the fifth part, reference is made to the technologies adopted in this thesis for the 

purpose of vibration mitigation, damage detection and to the numerical models used in the 

simulation of elastic wave propagation. 

2.1 Elastic wave propagation 

Historically, the interest in wave propagation arose incidentally in researches related to light 

propagation in the first half of the nineteenth century (Miklowitz, 1978). Around 1817, Fresnel 

and Thomas Young showed that two beams of light polarised in planes perpendicular to one 

another do not interfere with each other. Fresnel concluded that this could only be explained by 

transverse waves (see Figure 2.1), i.e., waves with displacements orthogonal to the direction of 

propagation – property that is also associated with mechanical waves. This conclusion gave the 

study of elasticity a powerful push, attracting great mathematicians like Cauchy and Poisson 

who later made significant advances in elasticity theory. By 1822, Cauchy had discovered most 

of the elements of elasticity classical theory, including the stress and displacement equations of 

motion. Later, in 1828, Poisson was the first to recognise that an elastic disturbance is in general 

composed of both types of fundamental displacement waves: longitudinal and transverse. After 

the first studies, other important findings related to elastic waves were made by Cauchy (1830) 

and Green (1839) who obtained equations for the propagation velocity. Stokes (1849) and Love 

(1903) carried out investigations related to elastic wave motion due to body forces. Rayleigh 

(1887) discovered surface waves that occur in a half-space and, those are currently designated 

by his own name. Lamb (1904) studied the propagation of a pulse in an elastic half-space. Many 

others, over time, had a fundamental role in the current understanding of wave propagation with 
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developments and applications in different branches of knowledge. Some of those researchers 

will be mentioned in the following sections when appropriate. 

 

Figure 2.1 – Schematic representation of electromagnetic transverse waves. 

A wave is an oscillatory perturbation of a physical quantity in space and periodic in time and, 

therefore, its propagation involves two different scales: a spatial scale characterised by the 

wavelength, , and a time scale characterised by the period, 𝑇. These two scales relate to each 

other through the velocity of the medium by the fundamental equation 𝑉 = /𝑇. When a 

medium is excited by a mechanical impulse, three distinct types of waves are generated: 

pressure, shear and surface waves. The first type of wave compresses and expands the medium, 

alternating in the same direction of propagation as shown in Figure 2.2 (a). These waves are 

also known as “push” and “primary” (or simply “P”) waves due to their higher speed compared 

to other wave motions (Milsom, 2003). The shear (“shake”, “secondary” due to the lower 

velocity relative to P-waves, or simply “S”) waves are transverse waves causing displacements 

in the medium orthogonal to the propagation direction as shown in Figure 2.2 (b). S waves 

propagate only in solids, since fluids (gases and liquids) do not support shear stresses. P and S 

waves are body waves since they expand within the medium, whereas surface waves are 

generated at interfaces. These waves may carry substantial energy emitted by the source, 

however they travel very slowly, and their amplitude decreases exponentially with the depth 

relatively to the interface surface. Rayleigh waves are the main type of surface waves, often 

called “ground roll” (Telford et al., 1990), or simply “R” wave. The motion occurs mostly in 
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the vertical plane and describes an elliptical path with the major axis in the vertical position as 

shown in Figure 2.2 (c). The last type of surface waves is called Love wave, which involves 

transverse motion, similar to shear waves, parallel to the surface. 

 

Figure 2.2 – Illustrative representation of particles motion subject to different mechanical wave propagation. 

2.2 Vibration mitigation 

This section addresses the vibration mitigation resulting from the activity of transport systems, 

with focus in rail transport. Vibration is a problem that has been discussed since the appearance 

of intercity trains, with speeds above 200 km/h, in several countries in Europe and Asia (Yang 

and Hung, 2009). Ewing (1957) discussed the wave propagation in elastic media with distinct 

types of sources (point or in line sources) depending on the source generator. Richart (1970) 

made deeper studies on the interaction between the surrounding medium and the heavy sleepers. 

Regarding the ground vibrations from the railways, Verhas (1979) considered trains as a point 

source or a line source and later, Chua (1992), and Hunt (1994), continued his study (Suhairy, 

2000). In 1994, Krylov and Ferguson, developed a theoretical model of the excitation 

mechanism of ground vibrations generated by trains. This model, solved by Green’s functions, 

is based on theoretical properties of the rail and train and ground parameters. Volberg (Suhairy, 

2000) carried out measurements and concluded that the ground vibration generated by trains is 

relatively connected to the ground type and properties. Kjörling (1995) measured the ground 

vibrations due to the passage of trains and showed that faster and slower trains produce higher 

and lower frequencies, respectively (Suhairy, 2000). He concluded that vertical vibrations 
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arising in the railway are the most important. In addition, slow, long and heavy trains produce 

more vibrations at low frequencies than fast short trains. Given that those low frequency 

vibrations do not suffer a significant damping of the soil, they are the most difficult to mitigate. 

Many variables are yet to be evaluated. For example, Colaço et al. (2016) studied which train-

related components have the most influence on ground vibrations and which may be neglected. 

Among several variables, they concluded that an increase in unsprung mass of the train causes 

a large increase in the vibration levels unlike changes in the wheel/bogie spacing and semi-

sprung mass that have a minimal effect. To support and validate the studies recently being 

developed, experiments and measurements are being conducted across Europe to analyse track-

ground vibrations (dos Santos et al., 2016; Kouroussis et al., 2016). 

Vibrations induced by rail traffic do not only affect sensible buildings but also people feel their 

negative effects. Nowadays, with railways crossing urban areas, there has been an increase in 

the demand for quality and comfort, therefore increasing the complaints about noise and 

vibrations by passing trains (Suhairy, 2000). The noise and vibration exposure lead to increased 

number of awakenings and cardiac problems, with vibrations being of particular importance: 

combined exposure between low-vibration and high-vibration levels, might be a more 

pronounced alarming signal than noise alone, and the heart rate alterations endure even after 

the exposure has been interrupted (Croy et al., 2013). Studies have since been done to obtain 

the human response to railway-induced vibrations that were often forgotten compared to noise 

(Waddington et al., 2015). It is important to know the perception of people exposed to vibration, 

the annoyance caused while in their homes and the impact on sleep, so that mitigation measures 

can be taken. A recent study compared the annoyance caused by railway-induced noise and 

vibration (Ögren et al., 2017). The comparison provides a relationship between the ground 

vibration velocity and the corresponding noise level on the facade. 

It should be noted that even if there were no imperfections and irregularities in the vehicle and 

tracks, the passing train would still produces a stress pattern in the surrounding ground (Hall, 

2003). The reality, however, is that there are many particularities associated with each train and 

track, which may worsen the stresses by passing trains. These stresses or vibrations in general, 
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induced by the activity of rail transport systems, can be mitigated by reducing the vibrations 

from the source to the receiver. 

In the source, vibrations can be strongly mitigated by acting on the train system (see “mitigation 

at source” in Figure 1.1, page 4), in the rail and just underneath it, using resilient materials, such 

as under sleeper pads and ballast mats (Alves-Costa et al., 2012a; Bongini et al., 2011; 

Hemsworth, 2000). Toward et al. (2014) examined the effect of two alternative approaches 

applied to soft soils: placing (continuous) concrete blocks directly under the track and impeding 

wave blocks positioned at a certain depth also under the track. They further concluded that jet 

grouting is less effective than concrete. However, it could be a viable solution for tracks on soft 

ground, particularly if the soil is stiffened to a greater depth. To mitigate vibrations, Feng et al. 

(2017) analysed the influence of Cement Fly-ash Gravel (CFG) piles on the soil treatment under 

the track. They considered an equivalent soil to simplify the model (see Figure 2.3). Among 

other things, the authors concluded that the effect of this soil treatment on vibration mitigation 

is significant but decreases rapidly with distance. However, with the soil treatment depth, the 

benefits on surface ground vibration isolation increase consistently and the effective zone of 

vibration reduction expand largely. To complement the measures that can be taken at source it 

should be noted that train drivers also play a key role in vibration control. They must be trained 

to avoid vehicle instabilities such as bouncing, rolling, pitching and yawing, thus contributing 

to mitigate ground disturbance. 

 

Figure 2.3 – Illustration of the equivalent model assumed by Feng et al. to simulate the CFG piles. 
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At the receiver, mitigation can be done using base-isolation systems to protect the whole 

building (Anderson, 2000; BSW-Berleburger, 2014; Talbot, 2016; Talbot and Hunt, 2000, 

2003). Although the use of base isolation is frequent and, applied to a wide variety of buildings 

(such as apartments, offices, cinemas, concert halls, hospitals, etc.), there is a significant lack 

of guidance in design (Talbot, 2016). However, around the world, base-isolation technologies 

continue to be improved, mostly with earthquake protection as their primary objective 

(D’Amato et al., 2019; Mazza and Labernarda, 2018; Saitta et al., 2018). For example, Saitta 

et al. analysed the curved surface sliders and their behaviour under low-energy earthquakes 

(Saitta et al., 2018). In his PhD thesis, Tehrani investigated an innovative dual-mode rolling 

isolation system to protect isolated equipment, to mitigate the impacts caused by exceeding the 

displacement capacity and to reduce the response of the primary structure supporting the 

isolated equipment (Hadikhan Tehrani, 2019). Di Matteo et al. (2019) examined the hybrid use 

of three passive control strategies to mitigate the seismic response of a base-isolated structure: 

strategies that combine the base isolation with the Tuned Mass Damper, the New Tuned Mass 

Damper (New TMD) and the Tuned Liquid Column Damper. Among other aspects, the authors 

concluded that the New TMD can represent an effective mean to reduce the response of base-

isolated structures. Although in some buildings only sensitive equipment is isolated, in general 

the complete building is isolated at its base by “breaking” the rigid connection to the ground. 

These base-isolating systems can be coupled to the building in various ways. Figure 2.4 shows 

examples of the most common locations of base-isolation systems in buildings. 

 

Figure 2.4 – Schematic representation of most common locations of base-isolation systems in buildings. 

As discussed above, there are source and receiver mitigation systems, but even combined they 

are not foully efficient. Sometimes there is a need to intervene in the propagation medium, at a 
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certain distance, between the source and the receiver. Open or in-filled trenches (also known as 

buried barriers) with materials that together with the ground constitute a vibration mitigation 

system, have been studied and applied on large scale for mitigation of vibrations induced by 

trains (Jiang et al., 2015). Numerical simulations demonstrate that a stiff wave barrier, 

consisting of a material that is stiffer than the host medium, can be very effective if the contrast 

between the stiffnesses of barrier and medium is sufficiently large. Coulier and Hunt (2014) 

confirmed this by carrying out a lab experiment using gelatine instead of soil to reduce the 

wavelengths and thus the scale of the test setup. Full-scale tests were later performed and it was 

found that the buried barriers are effective in real vibration reduction (Coulier et al., 2014, 

2015). Dijckmans et al. (2015), in collaboration with Coulier and others, investigated the 

effectiveness of heavy masses placed above the ground in a continuous row along and next to 

the track forming a wall (see Figure 2.5), as a measure for the reduction of railway induced 

ground vibration. The authors found that heavy masses become effective above the mass–spring 

resonance frequency, which is determined by the dynamic stiffness of the soil and the mass of 

the wall. They also concluded that at frequencies above resonance, masses at the surface of soil 

mitigate the propagation of surface waves. Later, Dijckmans et al. (2016) investigated the 

effectiveness of a sheet pile wall to reduce railway induced vibration. They concluded that the 

sheet pile wall acts as a stiff wave barrier and the efficacy is determined by the depth and 

stiffness contrast with soil. 

 

Figure 2.5 – Schematic representation of heavy mass next to and along the track to reduce railway induced 
ground vibrations. 

Persson et al. (2016) investigated the effects of infiltration of water into an open trench and 

concluded that the effectiveness of the trench decreases when any large amount of infiltrateds 

water is present since water transmits P waves. For example, if a water level of 12 m in a trench 

16 m deep was found, the effectiveness of the trench decreases, and vibration level reduction 
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decreases from 65 % to 21 %. Hoorickx et al. (2017a, 2017b) compared the performance of 

double jet-grout wall barriers with single wall barriers with the same material properties and 

total volume. They concluded that the double wall barrier performs slightly better than the 

single wall barrier at shorter distances along the barrier, and that for large walls thickness and 

spacing between walls, a higher insertion loss is found, especially when these measures (walls 

thickness and spacing between walls) are close to a quarter of the Rayleigh wavelength. Bordón 

et al. (2018) investigated the shape optimisation (position, inclination, length and thickness) of 

single and double walls. The authors observed that when the walls depth is less than 1.1 times 

the Rayleigh wavelength, the barrier topology does not lead to significant improvements. They 

found that by repositioning and inclining the walls, these become more effective when 

compared to the reference cases. Huang et al. (2017) proposed a layered periodic structure as 

wave barrier (see Figure 2.6), consisting of two different components. They concluded, among 

other things, that the number of periods and barrier depth have significant effect on the vibration 

reduction. They also concluded that greater barrier distances from the track are more effective 

due to the increasing content of surface waves. Still Yarmohammadi et al. (2019) concluded 

that open trenches have much higher mitigation capacities when compared with the in-filled 

trenches, and using double-trench barriers instead of single-trench, enhances the mitigation 

capacity by up to 20 %. However, triple trench barriers do not have such a large increase in 

mitigation level. 

 

Figure 2.6 – Schematic representation of a layered periodic structure. 

Up to now, studies have been presented to improve common solutions, such as trenches and 

buried walls, and innovative devices based on those, such as above-ground heavy masses or 

layered periodic structures. However, all those devices are placed along the railway at a certain 

distance and are built continuously. In recent years, phononic crystals also have been studied to 

mitigate the vibrations induced by rail traffic. These structures were initially studied within the 

scope of acoustic barriers, being a relatively recent innovation (Amado-Mendes et al., 2016; 
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Fard et al., 2015; Godinho, Soares Jr., et al., 2015; Morandi et al., 2015). The focus of these 

studies is the analysis of the distribution of the elements in the crystal, the properties of the 

materials and their shape and size. The application of this concept to vibration mitigation is a 

much more recent subject being still in a research phase. The above referred phononic crystals 

are elementary structures, periodically distributed forming a pattern similar to a macro-scale 

crystalline structure. The individual inclusions forming the crystal can be linear elements, such 

as driven piles (with cylindrical or rectangular shape), or may be more compact individual 

elements (as spheres or cubes at different depths) forming a 3D matrix, here named “Vibration 

Shielding Crystals” (VSC) – see examples in “Vibration Shielding Crystals” section of Figure 

1.1, page 4. On this subject, Castanheira-Pinto et al. (2018) investigated the influence of 

continuous buried horizontal inclusions, parallel to the railway, and found that the response 

pattern is very complex. They also verified that the distribution of inclusions in the group that 

form the crystal affects its efficiency. Huang et al. (2019) analysed the trees as large-scale 

natural phononic crystals both theoretically and experimentally. Through simulation, the 

authors shown that effectiveness of vibration reduction increases with the number of tree lines 

and that they (the trees) can be observed as a large-scale natural phononic crystal. 

Li et al. (2017) developed a small device, based on metamaterials concept, which can filter 

mechanical waves and harvest energy at the same time. Even though it is not a topic addressed 

in this research work, its importance for future work is recognised. 

2.3 Damage detection 

A relevant application of the analysis of wave propagation in civil engineering, is related to 

damage detection in concrete structures. The diagnosis and monitoring of structures in service 

are needed to ensure its durability and reliability (Goszczyńska et al., 2012). Due to the damage 

and ageing processes that appear increasingly earlier in modern construction (Gomes et al., 

2014), it is important to intervene at the right moment to avoid further degradation and to extend 

the life span of the structure. The early detection of structural defects in this scope can indeed 

prevent a costly repair and retrofit at later stages. In this scope, the inspection and evaluation of 

concrete structures is, in most cases, still performed by visual survey methods and sometimes 
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with some destructive testing techniques to support the analysis, either in situ or at the 

laboratory (Gomes et al., 2014). Visual inspections may be insufficient for timely damage 

detection because cracks are often not visible in the initial stages, and destructive testing 

techniques cause localised damage that may not be acceptable. The non-destructive inspection 

may be repeated over time, without affecting the integrity and, in most cases without affecting 

the operability of the structure. Currently, there are several methods of inspection of concrete 

structures based on, e.g., digital image correlation, infrared thermography, or ultrasound 

(Galantucci and Fatiguso, 2019; International Atomic Energy Agency, 2002). However, new 

proposals have emerged to improve the performance of existing techniques and other innovative 

areas are being developed. Based on the image deformation approach, an efficient strategy to 

monitor structural integrity and crack propagation in concrete structures was applied (Dias-da-

Costa et al., 2016). This approach could extract the global crack maps from the structure surface 

and detect extremely small changes occurring within a given time interval, such as the 

movement associated with cracks opening. This technology can be complemented by other non-

destructive technique (NDT) based on ultrasonic methods, and can have several advantages, 

particularly in terms of the early detection of damage and cracking (Godinho, Dias-da-Costa, 

et al., 2013), both on the surface and within the structural element. 

Ultrasonic non-destructive techniques (uNDT) are based on the propagation of ultrasonic 

waves. These techniques require the use of ultrasonic transducers, and receivers that measure 

the response time of the pulse generated by a source (see Figure 1.2, page 6). Since the presence 

of cracks and voids will affect the propagation time of ultrasonic waves, this information can 

be used to infer the most likely type of damage within the structure. The development of these 

techniques began in the mid-1930s when Sergei Y. Sokolov demonstrated a continuous 

transmission technique to detect metal failures. However, the resolution of the experimental 

devices manufactured was very weak and could not be used for practical applications. Despite 

this, from the 1940s onwards, the technology suggested by Sokolov, which could generate a 

very short pulsed sound wave needed to measure the brief time of propagation of its echoes, 

came to be produced. Industrial applications of ultrasonic testing apparently began at the same 

time in the United States, Great Britain, Germany and Japan (APC International Ltd., 2015; 

Woo, n.d.). Since then, the uNDTs have been developed and are very well known and widely 
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used in the analysis of defects in steel structures. However, the application of uNDT is not 

limited to steel. Ultrasonic testing can be used in concrete, wood, plastics, ceramics and 

composite structures (Nobile and Nobile, 2015). 

More recent studies focus on non-contact tests between the object of study and both source and 

receiver of ultrasonic waves. This contactless is interesting because it may be used for quick 

scanning large surfaces, avoiding problems with wet or dry coupling between contact ultrasonic 

transducers and tested materials (Kaczmarek et al., 2015). Another recent innovation related to 

early detection of cracks in reinforced concrete structures, discussed by Chakraborty et al. 

(2019), proposes ultrasonic sensors embedded in concrete. According to the authors, this type 

of ultrasonic measurements offers significant advantages over traditional measurement 

techniques because it can deliver the full-field surface strain measurements, as well as be 

advantageous in determining crack opening and propagation. Furthermore, the ultrasonic 

feature can monitor small strains/cracks during loading. 

Focusing now on the existing techniques that employ transmitted and received ultrasonic waves 

using contact transducers, it is well known that the propagation is deeply influenced by the 

presence of obstacles or discontinuities in the medium, which impact the different travel times 

observed – particularly in comparison with a homogenous medium (Medeiros, 2007). One of 

the most critical tasks in ultrasound testing, the signal processing, can be done using time or 

frequency domain responses or considering both the time and frequency domains (Xu and Wei, 

2019). The most outstanding analysis methods for ultrasonic damage detection in the time 

domain are the Phased Array Ultrasonic Testing (using reflection) and the Time-of-Flight 

Diffraction (ToFD, using diffraction). ToFD has been reported as accurate in several works 

related to crack sizing (Capineri et al., 1992; Ogilvy and Temple, 1983). ToFD complemented 

with Time Reversal Method can be used to construct the digital image of the shape of cavities 

and cracks. Together, they can evaluate the surface damage severity and can identify the 

location and the boundary of internal cracks and voids (Kimoto et al., 2017; Zhao et al., 2018). 

Some authors have been studying the use of shear horizontal (SH) waves in ultrasonic 

propagation models (Godinho, Dias-da-Costa, et al., 2013; Liu and Lam, 1996; Wang and 

Wang, 1996). One advantage that SH waves have over some other wave types is their ability to 
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propagate around curved surfaces with little loss of energy (Petcher et al., 2014). Other types 

of waves have been used in damage detection. For example, guided waves such as Rayleigh 

and Lamb waves have shown great potential for damage detection in metallic and composite 

structures. Nevertheless, body waves, travelling in the bulk of the material, are, in general, 

easier to model than those waves (Lee and Staszewski, 2003). The presence and interaction of 

body (P and S) and surface (R) waves leads to the physical phenomena within the propagation 

media becoming quite complex, even in geometrically simple media. 

2.4 Numerical simulation of wave propagation 

There are two distinct approaches to modelling the wave propagation: one based on finite 

elements and the other based on boundary elements. It is not known with certainty when the 

finite elements based method arose, however, it began to have its big success even before the 

appearance of the first personal computer, by the 1960's (Argyris et al., 1964; Idelsohn and 

Oñate, 2006). Practically at the same time as the FEM arose, a method based on boundary 

elements also emerged (Ang, 2007; Idelsohn and Oñate, 2006). Nevertheless, Brebbia and 

Dominguez (1977) were probably the first to use the term "boundary element method" 

introducing the method in the engineering research community, nearly two decades later (Ang, 

2007). In the last two decades, several meshless methods were developed to reduce the 

computational cost (Fries and Matthies, 2004; Idelsohn and Oñate, 2006). BEM, a meshless 

method, obtained greater interest by the researchers. However, among other constraints 

(Godinho, Amado-Mendes, et al., 2015; Tsiatas and Yiotis, 2013), the total computational cost 

can be high due to the fullness of the system matrix obtained. Another important constraint is 

related to the accuracy of the evaluation of nearly singular integrals. Gu et al. (2016) have 

recently proposed an alternative method for these integrals and found that its implementation 

results in reductions in the relative error of several orders of magnitude when compared to a 

straightforward implementation of Gaussian quadrature. Another meshless method, the Method 

of Fundamental Solutions, has proved to be a worthy and more efficient alternative to classic 

methods, such as the BEM or FEM. Recently, a considerable effort has been done to eliminate 

the need to create finite element meshes (Gu et al., 2011). In fact, it is interesting to denote the 

progressive shift from the term “meshless” to “meshfree” adopted in recent publications, with 
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both terms being used interchangeably. A recent example is due to (Gu et al., 2011), who 

developed the Singular Boundary Method (SBM) from the MFS. In the SBM, unlike the MFS, 

the virtual sources, coinciding with collocation points in the physical boundary of the element, 

are used to simulate the displacement field and an inverse interpolation technique regularises 

the singularity of the fundamental solution (Gu et al., 2011). Nonetheless, a limitation of SBM, 

as also in other methods, is the associated intrinsic error, which in this case can be difficult to 

reduce. A very interesting and accepted approach that found applications in many domains is 

its precursor – the MFS. In the case of wave propagation problems, the MFS displacement field 

is simulated by the fields superposition generated by some virtual sources located outside the 

domain. The errors of this method can be controlled and minimised through the right choice of 

the collocation points number and distances between virtual sources and those collocation 

points (Gu et al., 2011, 2014; Tadeu et al., 2009). This method can have improved performance 

compared with the BEM since it avoids integrations, although still requiring the knowledge of 

the fundamental solutions, which can be referred to as Green’s functions. In the MFS, the 

response is computed based on the consideration of a set of virtual sources with initially 

unknown amplitude, which simulate the wave field. The final response depends only on the use 

of appropriate fundamental solutions, points location and material properties. To combine the 

advantages of both FEM and meshless methods, some researchers have come to coupling them 

(Gu and Zhang, 2008; Rao and Rahman, 2001). However, (Amado-Mendes et al., 2015; dos 

Santos et al., 2017; Germonpré et al., 2017; Godinho, Amado-Mendes, et al., 2013; Jin et al., 

2018) have been developing the coupling for wave propagation domain induced by transport 

systems. 

The numerical simulation methods mentioned above have advantages and disadvantages in 

relation to each other, and it is important to know them to evaluate and minimise their 

application errors, but also to define compromise between these and computational 

performance. With regard to wave propagation, to simulate large systems or (semi-) infinite 

media, meshless methods are more appropriate since they do not depend on finite elements. 

The elements mesh density is related to the wavelength: with six finite elements per wavelength 

typically required for a solution with an error between 10 % and 15 %, while a number between 

7 and 10 elements per wavelength already provides an accurate solution (Langer et al., 2017; 
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Marburg, 2002). The numerical simulation of (semi-) infinite media with FEM is only possible 

using absorption techniques for suppressing reflections from the truncated model boundaries. 

Several techniques exist for modelling those edges. The most commonly used is the Perfectly 

Matched Layer (PML). The formulation and use of this technique can be easily found in the 

literature on wave propagation where the truncation of the infinite medium is necessary – as 

examples refer to (Colaço et al., 2017; Fontara et al., 2018; Lopes et al., 2013, 2014). The use 

of infinite elements for this purpose is not common but it is a topic being studied by some 

authors (Barros, 1996; Shih et al., 2016). 

With respect to signal analysis, either of the numerical simulation methods can perform time or 

frequency domain analysis. Recently, Soares Jr. developed an explicit time marching algorithm 

based only on single-step displacement-velocity relations (Soares Jr., 2016) and is here adopted 

to render the numerical process more efficient. According to the author, it is a conditionally 

stable algorithm and exhibits high stability limits, with its critical sampling frequency varying 

between 3.571 and 4.0 (i.e. its upper limit is twice the central difference method). 

Regarding the concrete damage detection, the use of ultrasonic wave propagation technology 

is not recent, although it has received particular attention from researchers in recent years. There 

are several conventional techniques such as Pulse Echo or Through Transmission, but these 

techniques are highly dependent on defect orientation (Praveen et al., 2013). ToFD (already 

discussed in section 2.3) is a method which can be used in these concrete structures and has 

been reported as accurate in several works related to crack size (Capineri et al., 1992; Ogilvy 

and Temple, 1983). 

Still on the numerical simulation, it should be mentioned that the loading, in the case of 

propagation of elastic waves, must be time-varying. Several wavelets can be found, however, 

the simplest and most widely used in the literature – for example, (Lopes et al., 2013; P. G. 

Santos et al., 2014) – is the Ricker pulse (or wavelet), 𝑅 , the second derivative of the Gaussian 

function. This wavelet is shown in Figure 2.7 in (a) time and (b) frequency domains which are 

respectively the graphs of Equations (2.1) and (2.2), for a time peak centred at 0.05 s and a 

central frequency of 30 Hz. 
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 𝑅 (𝑡) = [1 − 2(𝜋𝑓 𝑡) ]e ( )  (2.1)

 𝑅 (𝑓) =
2

√𝜋

𝑓

𝑓
e  (2.2)

where, 𝑓  is the central frequency (or peak frequency), 𝑡 is the time and 𝑓 the frequency. The 

main advantage of this wavelet is that it is bounded in both time and frequency domains. 

 

Figure 2.7 – Ricker pulse in (a) time and (b) frequency domains. 

2.5 Final remarks 

In this chapter, some basic definitions and concepts about elastic wave propagation were 

introduced. Then, some of the most important methodologies for mitigating heavy vehicle-

induced vibrations, namely rail transport, were addressed. The use of ultrasound to detect 

damage in concrete structures was another topic mentioned. Finally, commonly used 

methodologies for the numerical simulation of elastic wave propagation were presented. 

 





 
3 DEVELOPMENT OF NUMERICAL SIMULATION MODELS 

 

 

Carlos Alberto Pessoa Albino 25 

3 DEVELOPMENT OF NUMERICAL SIMULATION MODELS 

Any wave propagation problem can be divided into three stages – generation from a source, 

propagation through the medium and reception of the propagated wave. On the other hand, the 

same problem can be approached in two distinct domains: the frequency domain and the time 

domain. 

The first model presented – Method of Fundamental Solutions (MFS) – is used in the simulation 

of vibration mitigation and applied to simple geometries once it has some limitations in the 

presence of geometric singularities. This model is developed in the frequency domain, 

corresponding to practical situations where the propagation time signal of the elastic wave is 

not relevant but rather the energy that wave transports at specific frequencies. 

The second model, the Finite Element Method in Time Domain (FEM-TD) is applied to more 

complex geometries. It has no geometric constraints and, in this thesis, is used both in vibration 

mitigation and damage detection. This model has an added benefit since detection is based on 

the time of flight diffraction of the ultrasonic waves. This will be further explored later. 

3.1 Governing differential equations 

Before presenting the computational models, the mathematical formulation for the wave 

propagation will be presented. For a homogeneous elastic medium and in the time domain, the 

wave propagation follows the equilibrium equation, where the body force term is not included, 

since it does not have a significant effect (Bedford and Drumheller, 1996). The equilibrium 

equation can be expressed relating the stress field tensor 𝛔 to the particle displacement 𝑢 in a 

material of density 𝜌 (Drozdz, 2008; Godinho, Amado-Mendes, et al., 2015) by: 

 = 𝜌 . (3.1)
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The stress-strain relation for an isotropic linear elastic material is given by 𝜎 = 𝜆𝛿 𝜀 + 2𝜇𝜀 , 

where 𝜆 =
( )( )

 and 𝜇 =
( )

 are the Lamé's first and second parameters, respectively, 

𝛿  is the Kronecker delta function, 𝜀  is the Lagrangian strain tensor, 𝐸 is the Young’s modulus 

and 𝜈 is the Poisson’s ratio. The components of the linear strain tensor are related to the 

components of the displacement by 𝜀 = + . Therefore, the stress components in 

terms of the displacement components are 𝜎 =  𝜆𝛿 + 𝜇 + . Then, by substituting 

these expressions into the Equation (3.1), the equation of balance of linear momentum for an 

isotropic linear elastic material is obtained (Bedford and Drumheller, 1996): 

 (𝜆 + 𝜇) + 𝜇 = 𝜌 . (3.2)

Introducing the Cartesian unit vectors, 𝐢  (where the 𝑖 index is a cartesian direction) this equation 

results in the vector equation: 

 (𝜆 + 𝜇)
𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥
𝐢 + 𝜇

𝜕 𝑢

𝜕𝑥 𝜕𝑥
𝐢 = 𝜌

𝜕 𝑢

𝜕𝑡
𝐢  (3.3)

that can be expressed in a vector form as (Bedford and Drumheller, 1996): 

 (𝜆 + 𝜇)∇(∇ ∙ 𝐮) + 𝜇∇ 𝐮 = 𝜌
𝐮
. (3.4)

The second term of the left side is known as vector Laplacian of 𝐮 and can be written in the 

form 

 𝜇∇ 𝐮 = ∇(∇ ∙ 𝐮) − ∇ × (∇ × 𝐮). (3.5)

Substituting the last expression into Equation (3.4), the following can be written (Bedford and 

Drumheller, 1996) 
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 (𝜆 + 2𝜇)∇(∇ ∙ 𝐮) − 𝜇∇ × (∇ × 𝐮) − 𝜌�̈� = 0, (3.6)

where 𝐮 vector is the displacement of the material relative to the reference state, �̈� is the 

acceleration, and the del operator has different vector operation meanings: (∇) is the gradient 

(product with a scalar), (∇ ∙) is the divergence (dot product, changes in the volume and density 

of the material) and (∇ ×) is the curl (cross product, which describes the infinitesimal rotation). 

Equations (3.2) and (3.6) are well known equations of motion because they are expressed in 

terms of the displacement of the material (Bedford and Drumheller, 1996). 

By applying a time Fourier transform to the previous equation, the following equation is 

obtained that represents the elastic wave propagation in the frequency domain, for null initial 

conditions: 

 (𝜆 + 2𝜇)∇∇ ∙ 𝐮 − 𝜇∇ × ∇ × 𝐮 + 𝜔 𝜌𝐮 = 0, (3.7)

in which 𝜔 is the angular frequency and 𝐮 is the displacement vector in the frequency domain. 

By taking the Equation (3.6) and decomposing the displacement field into the sum of the 

gradient of a scalar potential 𝜙 (𝜙 = ∇ ∙ 𝐮, representing the dilation of the material) and the curl 

of a vector potential 𝛙 (𝛙 = ∇ × 𝐮/2 representing the rotation vector), the displacement field 

comes as (Bedford and Drumheller, 1996; Yang and Hung, 2009): 

 𝐮 = ∇𝜙 + ∇ × 𝛙, (3.8)

and Equation (3.6) becomes (Bedford and Drumheller, 1996): 

 ∇ 𝜌 − (𝜆 + 2𝜇)∇ 𝜙 + ∇ × 𝜌
𝛙

− 𝜇∇ 𝛙 = 0. (3.9)

The last equation is satisfied if the potentials 𝜙 and 𝛙 satisfy: 
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 𝜌
𝜕 𝜙

𝜕𝑡
= 𝛼 ∇ 𝜙 (3.10)

and 

 𝜌
𝛙

= 𝛽 ∇ 𝛙. (3.11)

The constants 𝛼 and 𝛽 are the propagation velocities, where: 

 𝛼 = 𝑣 = =
( )

( )( )
, (3.12)

is the velocity of propagation of dilatational (compressional) waves in an elastic medium and: 

 𝛽 = 𝑣 = =
( )

, (3.13)

is the velocity of propagation of rotational (shear) waves in an elastic medium. 

The Rayleigh waves propagation velocity is not defined by a closed form expression, but the 

following relationship with the secondary waves velocity is considered a good approximation 

(Yang and Hung, 2009), and is used in this thesis: 

 𝑣 ≈
. .

𝑣 =
. .

( )
. (3.14)

3.2 The Method of Fundamental Solutions 

To solve the vector wave equation in the frequency domain, Equation (3.7), several strategies 

and numerical schemes can be used. In this thesis, the MFS is used, which approximates the 

solution within a given elastic domain as a combination of fundamental solutions generated by 
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a set of virtual sources positioned outside the domain to avoid numerical singularities. In this 

section, the main features and the formulation of the MFS method are presented. 

To formulate the numerical simulation using the MFS method, consider a solid inclusion Ω , 

with density 𝜌 , where pressure (P) and shear (S) waves propagate with 𝛼  and 𝛽  velocities, 

respectively. This inclusion is embedded in an elastic host medium Ω , with density 𝜌  which 

allows (P and S) waves to propagate with 𝛼  and 𝛽  velocities (Amado-Mendes and Godinho, 

2013; Tadeu et al., 2009). The host medium is excited by a dynamic load 𝐼 at position 𝑃 (𝑥 , 𝑦 ) 

oscillating with a frequency 𝜔, according to the Figure 3.1. 

 

Figure 3.1 – Schematic representation of required data for the MFS model. 

The computation is performed using 𝑁𝐶 collocation points distributed along the inclusion 

boundary and two sets of 𝑁𝐶 virtual sources placed on either side of that interface at a distance 

𝑑  and 𝑑 , related to the inclusion and host medium, respectively. At each position, loads must 

be considered acting in both directions 𝑥 and 𝑦. The sources inside the inclusion (related to the 

host medium) have unknown amplitudes 𝑃 , whereas those placed in the host medium (related 

to the inclusion) have unknown amplitudes 𝑄  (𝑛 is the source order number and 𝑗 is the 

direction in which the load acts on this source point). 

To determine the unknown amplitudes, it is necessary to impose the boundary conditions of 

continuity of tangential and normal displacements and stresses along the interface at the 𝑁𝐶 
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collocation points, therefore establishing a linear equation system with 4𝑁𝐶 

equations/unknowns. After solving these equations, the displacements at any point (𝑥, 𝑦) in the 

propagation domain can be determined as the summation of the contribution of their respective 

virtual sources (Amado-Mendes and Godinho, 2013). Accordingly, in the host medium, the 

displacements are given by: 

 𝑢 (𝑥, 𝑦) =  ∑ ∑ 𝑃 𝐺 , (3.15)

while inside the inclusion: 

 𝑢 (𝑥, 𝑦) =  ∑ ∑ 𝑄 𝐺 , (3.16)

where 𝐺 = 𝐺 (𝑥 , 𝑦 , 𝑥, 𝑦, 𝜌 , 𝛼 , 𝛽 ) is the displacement at point (𝑥, 𝑦) in the medium 𝑚, 

along direction 𝑖, generated by a load acting along 𝑗 at position (𝑥 ,  𝑦 ) computed using the 

adequate fundamental solution (Amado-Mendes and Godinho, 2013); 𝑎, is the number of 

coordinates considered and takes the value of 2 (corresponding to 𝑥 and 𝑦 coordinates) for 2D 

formulation and the value of 3 (corresponding to 𝑥, 𝑦 and 𝑧 coordinates) for 2.5D formulation. 

The aforesaid system of equations is generated from two sets of fundamental solutions: one for 

an elastic half-space simulating the host medium and another for an elastic full-space simulating 

the field within the inclusion. 

3.2.1 Fundamental solutions 

Both sets of fundamental solutions (also known as Green’s functions), which relate the field 

variables (stresses or displacements) at some location in the half-space domain caused by the 

dynamic source placed elsewhere in the medium, are extensively described in the works by 

Tadeu and Kausel (2000) and Tadeu et al. (2001). 

The fundamental solutions presented here are expressed in an explicit form and represent the 

Green’s functions for a harmonic (steady state) line load buried in a half-space whose amplitude 
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varies from a sinusoidal shape in the third (i.e. 𝑧) dimension. For this purpose, consider an 

infinite and homogeneous space subjected, at the origin of coordinates, to a spatially varying 

line load in the 𝑧 direction of the form 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝛿(𝑥)𝛿(𝑦)e ( ) and acting in one of the 

three coordinate directions. In this expression, 𝑥, 𝑦 and 𝑧 are the three spatial directions; 𝑡, is 

the time variable; 𝛿(𝑥) and 𝛿(𝑦) are Dirac delta functions; e is the exponential function; 𝑖 =

√−1 represents the unit imaginary complex number; 𝜔 is the load frequency and 𝑘  is the 

wavenumber in the 𝑧 direction as represented in Figure 3.2 (a). 

 

Figure 3.2 – Geometry of the (a) full space and the (b) half-space problems. 

The response to this load can be obtained by applying a spatial Fourier transform in the 𝑧 

direction to the Helmholtz equations for a point load. To understand this transformation, see 

Equation 17.34.4 in (Gradshteyn and Ryzhik, 2007). In the 𝑧 direction, the transformed 

equations are 

 
𝜕 𝐴

𝜕𝑥
+

𝜕 𝐴

𝜕𝑦
+ 𝑘 𝐴 =

−𝑖H
( )

(−𝑖𝑘 𝑟)

4𝜌𝛼
 (3.17)

and 

 
𝜕 𝐴

𝜕𝑥
+

𝜕 𝐴

𝜕𝑦
+ 𝑘 𝐴 =

−𝑖H
( )

(−𝑖𝑘 𝑟)

4𝜌𝛽
 (3.18)
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were 𝑘 = 𝑘 − 𝑘  with Imag(𝑘 ) ≤ 0 and 𝑘 = 𝜔/𝛼, 𝑘 = 𝑘 − 𝑘  with Imag(𝑘 ) ≤ 0 and 

𝑘 = 𝜔/𝛽, 𝛼 = (𝜆 + 2𝜇)/𝜌 and 𝛽 = 𝜇/𝜌, 𝜆 and 𝜇 are the Lamé constants, 𝐴 (𝑥, 𝑦, 𝑘 , 𝜔) and 

𝐴 (𝑥, 𝑦, 𝑘 , 𝜔) are the Fourier transforms of the two potentials 𝐴 (𝑥, 𝑦, 𝑘 , 𝜔) and 𝐴 (𝑥, 𝑦, 𝑘 , 𝜔), 

respectively, for the irrotational and equivoluminal parts of the displacement vector; H( )
(∙) are 

the Hankel functions of the second kind and order 0 and 𝑟 = 𝑥 + 𝑦 . 

In the equilibrium condition, 𝐴  and 𝐴  assume the respective values, 

 𝐴 =
𝑖

4𝜌𝜔
H

( )
(𝑘 𝑟) − H

( )
(−𝑖𝑘 𝑟)   (3.19)

and 

 𝐴 =
𝑖

4𝜌𝜔
H

( )
(𝑘 𝑟) − H

( )
(−𝑖𝑘 𝑟) . (3.20)

Also, the displacements 𝐺  in direction 𝑖 due to a load applied in direction 𝑗 can be obtained 

from the relation of those two values as 

 𝐺 = + 𝛿 ∇ 𝐴 , (3.21)

where 𝑥 = 𝑥, 𝑦, 𝑧 for 𝑗 = 1,2,3 and 𝜕 𝜕⁄ = −𝑖𝑘 . 

Considering the previous equations, it is possible to observe that 

 𝐴 − 𝐴 =
1

4𝑖𝜌𝜔
H

( )
(𝑘 𝑟) − H

( )
(𝑘 𝑟)  (3.22)

and 
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 ∇ 𝐴 =
1

4𝑖𝜌𝛽
H

( )
(𝑘 𝑟) (3.23)

and it is possible to obtain the complete set of Green’s functions as: 

 
𝐺 𝐺 𝐺

𝐺 𝐺 𝐺

𝐺 𝐺 𝐺
= 

 𝐴 ×

⎣
⎢
⎢
⎢
⎡𝑘 H −

1

𝑟
𝐵 + 𝛾 𝐵 𝛾 𝛾 𝐵 𝑖𝑘 𝛾 𝐵

𝛾 𝛾 𝐵 𝑘 H −
1

𝑟
𝐵 + 𝛾 𝐵 𝑖𝑘 𝛾 𝐵

𝑖𝑘 𝛾 𝐵 𝑖𝑘 𝛾 𝐵 𝑘 H − 𝑘 𝐵 ⎦
⎥
⎥
⎥
⎤

 (3.24)

where 𝐴 =  is the amplitude; 𝐵 = 𝑘 𝐻 − 𝑘 H , H = 𝐻
( )

(𝑘 𝑟) and H = H
( )

(𝑘 𝑟) 

are the Hankel function of the second kind and n  order; 𝛾 = =  for 𝑖 = 𝑥, 𝑦. 

The full set of Green’s functions for the strains and stresses are given in (Tadeu and Kausel, 

2000), Appendix II. 

The total wave field can be expressed by considering the incident field generated by the source 

(source terms), and the terms generated at the surface (surface terms). The source terms can be 

written making use of the equations proposed by (Tadeu and Kausel, 2000), while surface terms 

can be represented by a set of one dilatational, 𝜙, and another shear, 𝜓, potentials with unknown 

amplitude values. The continuous integrals of the effects of plane waves which express both 

the source and the surface terms, can be discretised into summations of discrete terms, assuming 

the existence of an infinite number of virtual sources placed along the 𝑥 direction at equal 

intervals, 𝐿 . The distance separating them is large enough to prevent the virtual loads from 

contaminating the response. Considering the contribution of 2𝑁 + 1 terms, the potentials that 

define the surface terms for loads acting along the 𝑥 direction are 
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 𝜙 = 𝐸 𝐸 𝐴 𝐸   (3.25)

and 

 𝜓 = −𝐸 ∑ (𝐸 𝐶 )𝐸 . (3.26)

For loads acting along the 𝑦 direction, 

 𝜙 = 𝐸 𝐸 𝐴 𝐸   (3.27)

and 

 𝜓 = 𝐸 𝐸 𝐵 𝐸 , (3.28)

were 𝐴 , 𝐴 , 𝐵  and 𝐶 , are the unknown coefficient to be determined from appropriate 

boundary conditions; 𝐸 = ; 𝐸 = e ; 𝐸 = e ; 𝐸 = e ( );  𝑘 = 2𝜋𝑛 𝐿⁄  

(the horizontal wavenumber along 𝑥); 𝑘 = 𝜔 𝛼⁄ ; 𝑘 = 𝜔 𝛽⁄ ; 𝛾 = 𝑘 − 𝑘  (where 

Imag(𝛾 ) ≤ 0); 𝑣 = 𝑘 − 𝑘  (where Imag(𝑣 ) ≤ 0); 𝜔 is the excitation frequency. 

Within the scope of this thesis, the fundamental solutions for the displacements are computed 

differently by evaluating the displacement field outside or within an inclusion. Within the 

inclusion, the fundamental solution for the displacements field can be simply described by the 

full space Green’s functions (Tadeu et al., 2001), such that 

 𝐺 (∙) = 𝐺 (∙)   (3.29)

and 
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 𝐺 (∙) =  𝐺 (∙) , (3.30)

where (∙) = (𝑥 , 𝑦 , 𝑥, 𝑦, 𝜌 , 𝛼 , 𝛽 ) and 𝐺 (⋅)  represents the displacement generated along 𝑘 

direction, due to a load acting along 𝑙, by a dynamic source in an infinite elastic medium. 

In the case of a half-space (outside of the inclusion), it is necessary to impose the boundary 

conditions: null tangential and normal stresses at the half-space free surface. Thus, the systems 

of equations can be established for each value of 𝑘  that allow the unknown amplitude factors 

to be calculated. As an example, taking the specific case of a load acting along 𝑥, after solving 

the relevant equation systems for a full sequence of values of 𝑘 , in the range − 𝑁; + 𝑁 , 

the final displacements contains an additional summation – see (Amado-Mendes and Godinho, 

2013; Tadeu and Kausel, 2000) – due to the influence of the surface and that satisfies the free-

surface conditions: 

 𝐺 (∙) =  𝐺 (∙) + 𝐸 𝐴 𝐸 − 𝑖𝛾 𝐸 𝐶 𝐸   (3.31)

and 

 𝐺 (∙) =  𝐺 (∙) + 𝐸 (−𝑖𝑘 𝐴 𝐸 + 𝑖𝑘 𝐶 𝐸 )𝐸 , (3.32)

where (∙) = (𝑥 , 𝑦 , 𝑥, 𝑦, 𝜌 , 𝛼 , 𝛽 ). 

Note that the formulation presented above relates to the more general case of 2.5D problems, 

that is, considering that the propagation medium has an invariable geometry along one direction 

(𝑧). For 2D, the corresponding equations can be directly obtained by setting 𝑘 = 0. Once the 

fundamental solutions are known, the resulting system is solved. 
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3.2.2 MFS Equation system 

The equation system must be assembled in the conventional matrix form 𝐀𝐚 = 𝐛. Consider a 

generic physical system with 𝑛 buried inclusions such that each inclusion 𝑖 can be defined by 

different 𝑛𝑐  collocation points. The total number of collocation points is 𝑁𝐶 = ∑ 𝑛𝑐 . By 

imposing the equilibrium and compatibility conditions in those collocation points, each one is 

defined by four unknowns: two, 𝑥 and 𝑦, displacements and two, normal and tangential, 

stresses. Accordingly, the vector that incorporates the prescribed displacements, 𝐮, and stresses, 

𝛔, at the collocation points is defined as 

 𝐛 =
𝛔
𝐮

. (3.33)

The vector of unknown amplitudes, with same dimension as 𝐛, can be defined as 

 𝐚 = [𝑎 , 𝑎 , 𝑎 , 𝑎 , ⋯ 𝑎 , 𝑎 , ] . (3.34)

It remains necessary to define the 𝐀 matrix – matrix of fundamental solutions – where each item 

is the contribution of a specific virtual source at a given collocation point (see Figure 3.1). This 

matrix can be given in a compact form, 

 𝐀 = [𝐀 |𝐀 ] , , (3.35)

where the full 𝐀  matrix contains the fundamental solutions that are the contributions of virtual 

sources related to the host medium (those which are within the inclusion) and the block-

diagonal 𝐀  matrix contains the fundamental solutions that are the contributions of virtual 

sources related to the inclusions (those which are outside the inclusion). Looking to the general 

case and grouping the contributions of virtual sources related to the host medium through the 

inclusions to which they belong (see Figure 3.1), it follows that 
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 𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐀 ⋯ 𝐀 ⋯ 𝐀

⋮ ⋱ ⋮ ⋱ ⋮
𝐀 ⋯ 𝐀 ⋯ 𝐀

⋮ ⋱ ⋮ ⋱ ⋮
𝐀 ⋯ 𝐀 ⋯ 𝐀 ⎦

⎥
⎥
⎥
⎥
⎤

,

, (3.36)

with 𝑘 = 1, … , 𝑛. 

Now, grouping the contributions of virtual sources related to the inclusions, the block-diagonal 

matrix is obtained 

 𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐀

⋱
𝐀

⋱
𝐀 ⎦

⎥
⎥
⎥
⎥
⎤

,

, (3.37)

since the set of sources around the inclusion only influence its internal field. In the two 

preceding equations, 𝐀  contains the displacements, 𝐮 , and stresses, 𝛔 , that are the 

fundamental solutions – the contributions from virtual sources of inclusion 𝑞 at collocation 

points of inclusion 𝑝. Therefore, 

 𝐀 =
𝛔
𝐮 ,

. (3.38)

In this expression, 𝛔  contains the normal, 𝛔 , and tangential, 𝛔 , components of the 

(fundamental) stresses. Hence, 

 𝛔 =
𝛔

𝛔
,

. (3.39)

On the other hand, 𝐮  contains the 𝑥, and 𝑦 components of the (fundamental) displacements, 

𝐮  and 𝐮 , respectively. For that 



Numerical Simulation of Elastic Wave Propagation in Discontinuous Media: 
Applications in Ultrasonic and Vibration Control 
 

 

 

Carlos Alberto Pessoa Albino 38 

 𝐮 =
𝐮

𝐮
,

. (3.40)

Normal stresses components are due to load in 𝑥 direction, 𝛔 , , and 𝑦 direction, 𝛔 , , applied 

in the virtual sources. Similarly, it is true for the tangential components of the stress: 

 𝛔 = 𝛔
,

𝛔
,

,
 (3.41)

and 

 𝛔 = 𝛔
,

𝛔
,

,
. (3.42)

Also, each displacement 𝑥 and 𝑦 are due to loads in both directions. Thus, similarly to the 

stresses, it follows that 

 𝐮 = [𝐮
,

𝐮
, ] ,  (3.43)

and 

 𝐮 = 𝐮
,

𝐮
,

,
. (3.44)

Finally, each element of matrices defined in Equations (3.41) to (3.44) is a 𝑛𝑐 × 𝑛𝑐  submatrix 

which assigns the contributions of each isolated component of fundamental solution from 

virtual sources of inclusion 𝑞 to the collocation points of inclusion 𝑝. Taking as an example the 

components of the normal stress in the collocation points of inclusion 𝑝 due to loading of the 

virtual sources of inclusion 𝑞, it follows that 
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 𝛔
,

=
𝜎 , ⋯ 𝜎

,

⋮ ⋱ ⋮

𝜎 , ⋯ 𝜎
,

,

; 𝑖 = 1, … , 𝑝; 𝑗 = 1, … , 𝑞, (3.45)

where 𝜎 ,  is a fundamental solution, 𝑖 is an individual collocation point and 𝑗 is an individual 

virtual source. The same procedure can be used for the other three components. 

In terms of computational effort, the algorithm can be optimised when the inclusions have the 

same dimensions and the same material properties. In this situation, the 𝐀  diagonal submatrix 

has repeated 𝐀  blocks that need to be calculated only once. 

This system of equations is valid for the 2D spatial problems. To address 2.5D problems, the 

third direction should be considered, and the system of equations is 

 𝐀𝐚 = 𝐛 ⇔ 𝐀
,

𝐀
, ,

× 𝐚 =
𝛔
𝐮

. (3.46)

3.3 Models for complex configurations 

For complex geometric configurations, the strategy of making a time domain analysis was 

adopted, together with a more general numerical method, able to address all necessary 

geometric complexities. In this section, the computational model based on the FEM in the time 

domain is briefly described since can easily be found in a variety of publications and reference 

books, e.g. Bathe (2014) and Zienkiewicz et al. (2000). The purpose is to present a recently 

developed and innovative time-marching algorithm, in the context FEM models, which will be 

used for some of the simulations. 

3.3.1 The finite element method for static problems 

Keeping in mind the traditional FEM, consider an undisturbed body, Ω, delimited by the 

external boundary, Γ, that is fixed in a subdomain of the external boundary, Γ , where the 
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essential boundary conditions, the displacements 𝐮, are prescribed (see Figure 3.3). Now 

consider that a small load increment of a given total loading is applied, such that the response 

remains quasi-static, and is composed of body forces, �̅�, and natural boundary conditions, the 

imposed tractions 𝐭,̅ the latter distributed on part of the external boundary, Γ , being Γ = Γ ∪ Γ  

and Γ ∩ Γ = ∅. The unit vector 𝑛 is defined as orthogonal and pointing outwards to the 

boundary surface. 

 

Figure 3.3 – Schematic representation of the domain. 

The governing field equations and the boundary conditions can be expressed as 

 ∇ ∙ 𝛔 + �̅� = 𝟎 in Ω, (3.47)

 𝛆 = ∇ 𝐮 in Ω (for small displacements), (3.48)

 𝛔 = 𝛔(𝛆) in Ω, (3.49)

 𝐮 = 𝐮 at Γ , (3.50)

 𝛔 ∙ 𝐧 = 𝐭 ̅at Γ , (3.51)

where 𝛔 is the stress field, 𝛆 is the total strain field and 𝐮 is the total displacement field; ∇ 

denotes the gradient operator and (∙)  is the symmetric part of (∙). 
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By the principle of virtual work, the work done by the internal stress in the virtual deformation 

of the body (𝛿𝑊 ) is equal to the work done by the external forces in the virtual displacements 

of its points of application (𝛿𝑊 ). Equation (3.52) translates this equality: 

 𝛿𝑊 = 𝛿𝑊  (3.52)

For the continuous body shown in Figure 3.3, the principle of virtual work can be written as 

 ∫ 𝛿𝛆 ∙ 𝛔𝑑Ω = ∫ 𝛿𝐮 ∙ �̅�𝑑Ω + ∫ 𝛿𝐮 ∙ 𝐭�̅�Γ, (3.53)

where 𝛿𝛆 and 𝛿𝐮 are the virtual strain and the virtual displacement fields, respectively. In the 

FEM formulation, the strain field is interpolated from nodal displacements as 

 𝛆 = 𝐁𝐚, (3.54)

where 𝐁 = 𝐋𝐍 is the deformation matrix and 𝐚 is the nodal displacements vector. 𝐋 contains the 

differential operators and 𝐍 contains the usual element shape functions. For Ω belonging to 2D 

space, 𝐋 becomes 

 𝐋 =

⎣
⎢
⎢
⎢
⎡ 0

0

⎦
⎥
⎥
⎥
⎤

  (3.55)

and for Ω belonging to 3D space, 𝐋 becomes 
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 𝐋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0

0 0

0 0

0

0

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (3.56)

where 𝑥 , 𝑥  and 𝑥  correspond to 𝑥, 𝑦 and 𝑧 Cartesian coordinates, respectively. For Ω 

belonging to 2D space and 3-node elements (triangular elements) are considered, 𝐍 becomes 

 𝐍 =
𝑁 0
0 𝑁

𝑁 0
0 𝑁

𝑁 0
0 𝑁

 (3.57)

In this case, the nodal basis functions are 

 𝑁 = 1 − 𝜉 − 𝜂 (3.58)

 𝑁 = 𝜉 (3.59)

 𝑁 = 𝜂 (3.60)

where 𝜉 and 𝜂 are the coordinates of the integration domain (normalised coordinate system, 

always in the [−1, 1] range). 

For Ω belonging to 3D space and 4-node elements (tetrahedral elements) are considered, 𝐍 

becomes 
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 𝐍 =
𝑁 0 0
0 𝑁 0
0 0 𝑁

𝑁 0 0
0 𝑁 0
0 0 𝑁

𝑁 0 0
0 𝑁 0
0 0 𝑁

𝑁 0 0
0 𝑁 0
0 0 𝑁

, (3.61)

where the nodal basis functions in the normalised coordinate system are given by 

 𝑁 = 1 − 𝜉 − 𝜂 − 𝜍 (3.62)

 𝑁 = 𝜉 (3.63)

 𝑁 = 𝜂 (3.64)

 𝑁 = 𝜍 (3.65)

where 𝜍 is the third normalised coordinate. 

The stresses (for an isotropic material with elastic linear behaviour) can be obtained by the 

following constitutive relationship: 

 𝛔 = 𝐃𝛆 = 𝐃𝐁𝐚, (3.66)

where 𝐃 is the elasticity matrix given by 

 𝐃 =

⎣
⎢
⎢
⎢
⎡ 0

0

0 0
( )⎦

⎥
⎥
⎥
⎤

, (3.67)

if a 2D space and a plane stress state is considered and, if a 3D space is considered, 𝐃 becomes 
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 𝐃 =
( )( )

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3.68)

From nodal displacements, the displacement field interpolation is performed with the 

expression 

 𝐮 = 𝐍𝐚. (3.69)

When Equations (3.54) and (3.69) refer to virtual displacements, they can be written, 

respectively, as follows 

 𝛿𝛆 = 𝐁𝛿𝐚 ⇔ 𝛿𝛆 = 𝛿𝐚 𝐁 , (3.70)

 𝛿𝐮 = 𝐍𝛿𝐚 ⇔ 𝛿𝐮 = 𝛿𝐚 𝐍 . (3.71)

Replacing Equations (3.66), (3.70) and (3.71) in the Equation (3.53), and after some algebraic 

simplifications, the principle of virtual work is expressed by the following equation: 

 ∫ 𝐁 𝐃𝐁𝑑Ω 𝐔 = ∫ 𝐍 �̅�𝑑Ω + ∫ 𝐍 𝐭�̅�Γ. (3.72)

This equation can be written in matrix format: 

 𝐅 = 𝐅, (3.73)

where 𝐅 = 𝐊𝐔 is the elastic force and 𝐅 is the applied static load; 𝐊 is stiffness matrix and 𝐔 is 

the vector of (unknown) displacements. 
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3.3.2 The finite element method for dynamic problems 

Consider now the influence of time on one of the load increments on body shown in Figure 3.3. 

At time 𝑡 = 0 s an impulsive load, 𝐈(𝑡), represented in Figure 3.3, time dependent and with a 

certain frequency, is imposed, on part of the external boundary, Γ . To understand the behaviour 

of the structure over time due to that impulsive (dynamic) load, a time-history analysis of the 

structure is performed. In this case, inertia should be included as a contribution of body forces 

(the latter being neglected for dynamic study). On the other hand, at any given time instant, 

only the effect of impulsive loading is considered. Thus, in order to contemplate the dynamics 

and assuming that velocities and accelerations are approximated as displacements, the Equation 

(3.72) can be written as follows: 

 𝐁 𝐃𝐁𝑑Ω 𝐔 + 𝐍 𝜌𝐍𝑑Ω �̈� = 𝐍 𝐈(𝑡)𝑑Γ (3.74)

or in matrix format 

 𝐅 + 𝐅 = 𝐅 (3.75)

where 𝐅 = 𝐌�̈� is the force of inertia, 𝐌 is the mass matrix and �̈� is the acceleration. Note that 

all terms of Equation (3.75) are time dependent. Equation (3.75) is integrated using an 

innovative step-by-step procedure developed by Soares Jr. (Soares Jr., 2016). This specific 

procedure is briefly presented in the next section. 

3.3.3 Specific finite element method in the time domain (FEM-TD) 

Consider now that the body shown in Figure 3.3 represents a dynamic, multidimensional and 

damped system. Applying that principle to this system, the Equation (3.74) can be written in 

weak form: 
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 𝐁 𝐃𝐁𝑑Ω 𝐔 + 𝐍 𝑐𝐍𝑑Ω �̇� + 𝐍 𝜌𝐍𝑑Ω �̈� = 𝐍 𝐈(𝑡)𝑑Γ (3.76)

or in compact form 

 𝐅 + 𝐅 + 𝐅 = 𝐅 (3.77)

were 𝐅 = 𝐈(𝑡) is the applied dynamic load, 𝐅 = 𝐌�̈�(𝑡) is the force of inertia, 𝐅 = 𝐂�̇�(𝑡) is the 

damping force and 𝐅 = 𝐊𝐔(𝑡) is the elastic force. 𝐌 and 𝐊, are, respectively, the mass and 

stiffness matrices; 𝐂 = 𝛼 𝐌 + 𝛽 𝐊 is the proportional (Rayleigh) damping matrix, with 𝛼  and 

𝛽  calculated so that the required damping factor 𝜁 is attained at desired frequencies. �̈� = �̈�(𝑡), 

�̇� = �̇�(𝑡) and 𝐔 = 𝐔(𝑡), are respectively the acceleration, velocity and displacement vectors 

dependent on time. Once 𝐌, 𝐂 and 𝐊 matrices are obtained, the time integration is performed 

with the algorithm developed by Soares Jr. and presented in (Soares Jr., 2016), where the basic 

aspects and the main parameters of the time-marching formulation are described. 

The algorithm is based only on single-step displacement-velocity relations and it requires no 

system of equations to be dealt with (once lumped mass matrices are considered). It is second-

order accurate and allows the dissipation of spurious modes, which makes it very effective and 

able to provide accurate analyses with relatively large time steps. Moreover, since the algorithm 

has high stability limits, it minimises the main drawback of explicit procedures, allowing time-

steps that are only usual in accurate implicit analyses, rendering good results at reduced 

computational costs – see (Soares Jr., 2016; Soares Jr. et al., 2007). The equations used for the 

analysis of the proposed complex geometric configurations, read as follows: 

 the velocity equation, 

 𝐄�̇� = ℑ𝐅 + 𝐌�̇� −
1

2
Δ𝑡𝐂�̇� − 𝐊 Δ𝑡𝐔 +

1

2
Δ𝑡 �̇�  (3.78)

 and the displacement equation, 
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 𝐄𝐔 = 𝐄 𝐔 +
1

2
Δ𝑡�̇� +

1

2
Δ𝑡�̇� −

1

2
Δ𝑡 𝐂�̇� − 

 𝐊 (𝛽𝑏 𝑏 )Δ𝑡 �̇� +
1

16
+ 𝛽𝑏 Δ𝑡 �̇�  (3.79)

where 𝐄 = 𝐌 + Δ𝑡𝐂 is the effective matrix; 𝑛 and Δ𝑡 = 3.571/ max (eig(𝐊, 𝐌)) are the time-

step number and time-step length, respectively; 𝛽 = 1, 𝑏 = 8.567 × 10  and 𝑏 =

8.590 × 10  are the time integration parameters of the Soares Jr. method; ℑ𝐅
⁄

= 𝛽 Δ𝑡𝐅 +

𝛽 Δ𝑡𝐅 , with 𝛽 = 𝛽 = 1/2, using trapezoidal quadrature rule or 𝛽 = 1 and 𝛽 = 0, 

extending the explicit feature of the technique to the load term. More details can be seen in 

(Soares Jr., 2016). 

The time integration parameters, 𝑏  and 𝑏 , defined above, are pre-established to optimise the 

performance of the method and the 𝛽 parameter (0 ≤ 𝛽 ≤ 1) is selected to control the algorithm 

dissipative features of the technique. In this context, if 𝛽 = 0, no numerical dissipation is 

introduced into the analysis and if 𝛽 = 1, maximal dissipation is considered, resulting in a null 

value for the bifurcation spectral radius. For this reason, the value 𝛽 = 1 was assumed in this 

thesis. 

The two equations and the parameters here presented completely describe the new model of 

time marching proposed by Soares Jr. From the above, it can be concluded that the model is 

very simple, and it is essentially depending on 𝛽. Both mass and damping matrices must be 

diagonal to avoid systems of equations to be solved within each time step of the analysis. 

The main features of this model, among others, can be outlined: the method is based only on 

single-step displacement-velocity relations and, therefore, stands as truly self-starting; it may 

require no system of equations to be dealt with in the analysis; it provides reduced period 

elongation errors; it allows numerical dissipation of spurious high-frequency modes (for 𝛽 >

0); it exhibits extended stability limits; it may be stated as second-order accurate, etc. This 

model is very effective, being able to provide accurate analyses considering relatively large 

time steps. Moreover, since it has high stability limits, it minimises the main drawback of 

explicit procedures, allowing time-steps that are usually observed in accurate implicit analyses, 
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rendering good results at reduced computational costs (Soares Jr., 2016). For example, if its 

critical time-step is adopted (ensuring stability), the proposed time-marching method will only 

require around 56 % of the number of time steps of the (very popular) Central Difference 

Method to reach the solution at a given time instant, for 𝛽 = 1, and 50 % for 𝛽 = 0; this saving 

can be quite important in large problems such as the ones analysed in this thesis. 

3.3.4 Absorbent layer to simulate (semi-)infinite media 

To simulate infinite or semi-infinite media, it requires demanding computational resources and 

numerical tools when traditional numerical techniques as FEM are chosen. It is important to 

remember that vibration mitigation structures are in an (semi-)infinite medium and, therefore, 

to be able to model them, it is necessary to use numerical techniques that reduce the degrees of 

freedom of the problem. The absorbent layer allows using only a part of the (semi-)infinite 

medium – the Analysis zone – plus the absorbent layer (see Figure 3.4). This layer has the 

function of dissipating the propagated wave energy minimising the spurious reflections of the 

geometric model bounds that represent the infinite part of the modelled medium. 

 

Figure 3.4 – Schematic representation of the absorbent layer in a semi-infinite medium. 

Next, two absorption layer techniques used in the simulations of this thesis are presented. 

Initially, an efficient, position-dependent and normalized function has been created in order to 

absorbing unwanted vibration reflections. Equation (3.80) gives a multiplication factor, 𝑓 , as 

function of 𝑥 position – a relative position within the layer and its value varies linearly between 

0, next to the Analysis zone and 1, on the edge of the layer furthest from the Analysis zone. 
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 𝑓 (𝑥) = 1 − e . − 1 × 10. (3.80)

This function is easy to implement in the time integration process and it works well only in the 

frequency range of about 10 kHz. In fact, these function parameters are individually adjusted 

for a certain frequency range or, at the limit, for each frequency. Figure 3.5 shows the graph of 

this function. 

 

Figure 3.5 – Position-dependent function for a frequency range of about 10 kHz. 

3.3.4.1 Forced decay absorbent layer 

To automate the technique for absorbing unwanted vibration reflections, a forced decay 

function has been developed from the function (3.80). 

 𝑓 (𝑥) = 1 − e . . × × − 1 × 10 (3.81)

where 𝑓 is the frequency under analysis. 

Figure 3.6 shows the normalised graphs of this function for an absorbent layer with a 

propagation frequency of 60 Hz and 10 kHz. 
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This function was applied on a frequency range between 1 Hz and 200 kHz, using different 

materials, yielding the desired result, i.e., no reflection for the domain under analysis. This 

technique is also easy to implement in the time integration process. 

 

Figure 3.6 – Forced decay function. 

Once this technique is implemented in the time integration process, there is the disadvantage of 

slowing down the time marching, since this computation has to be done in each time step. On 

the other hand, damping is unchanged throughout the process and the effort due to the formation 

of the matrices of the regular meshes (often used) is reduced. 

3.3.4.2 Variable damping absorbent layer 

In order to avoid the computation overload in the time integration process, another technique 

was created and applied when assembling the dynamic matrix. In this case, absorption acts as 

a material property associated with damping, i.e., in the absorption layer width, the damping 

increases to the outer edge of the absorption layer. The equation expressing the amount of 

absorption, 𝑝 , associated with the damping is: 

 𝑝 (𝑥) = 𝐷 𝑥  (3.82)
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where 𝐷  is the maximum damping (generally, 70 % gives good results). 𝑝  is then added to 

𝛼  – see description of Equation (3.77), page 46 – to compute the damping matrix. This equation 

produces the normalized graph shown in Figure 3.7. 

 

Figure 3.7 – Variable damping function. 

This technique is the most efficient since the computation is performed only once and does not 

interfere with the time marching process. Although it makes the computation of the damping 

matrix a little slower, the time integration is faster, reducing often the total time. 

An important note to mention at this point is related to the models used to reach those functions. 

Since the absorbent layers are essentially used to modelling (semi-)infinite models, their 

application is intrinsically linked to vibration mitigation. In this sense, the values are related to 

the material in this propagation medium: the soil. 
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4 IMPLEMENTATION AND VERIFICATION OF NUMERICAL 
SIMULATION MODELS 

This chapter describes the implementation and verification of the numerical simulation models 

presented in the previous chapter. Indeed, the implementation of the Method of Fundamental 

Solutions in the numerical simulation of elastic waves propagation requires a detailed analysis, 

for example in what concerns the number of colocation points needed for a good simulation, 

the distance from virtual sources to the border and errors related to analytical solutions. 

Regarding the Finite Element Method in the time domain, the implemented step-by-step 

analysis in the numerical simulation of elastic waves propagation, also needs to be carefully 

studied and should be verified against other methodologies before application. In this case, a 

comparison is made with the analytical solution transformed from the frequency domain. 

4.1 The Method of Fundamental Solutions 

4.1.1 Implementation and verification 

To analyse the implementation process of the MFS, consider a single inclusion buried in a 

propagation medium as shown in Figure 4.1. The location of the receiver where the 

displacement field is computed must be considered. If the receiver is outside of the inclusion, 

Equation (3.15) must be used, whereas if the receiver is inside the inclusion, Equation (3.16) 

must be used. If the receiver is on the edge of the inclusion, any of the equations can be used. 

The computing process of displacement amplitude is shown in Figure 4.1, where an inclusion 

with four collocation points (for simplicity) and the respective virtual sources are represented. 

Figure 4.1 (b) shows the virtual sources that intervene in computing the amplitudes in a receiver 

inside an inclusion – see Equations (3.29) and (3.30); Figure 4.1 (a) shows the virtual sources 

that intervene in computing the amplitudes in a receiver outside an inclusion and the incident 

field that directly affects the amplitude in that receiver – see Equations (3.31) and (3.32). 
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Figure 4.1 – Schematic representation of displacement computation (a) outside and (b) inside an inclusion. 

It is important to note that the full discretization of the system is only possible using simplified 

approaches to introduce a small numerical damping that ensures convergence in the 

computation of the Green’s functions of half space domain (Tadeu et al., 2001). In this thesis, 

the complex angular frequency with a small imaginary part is used for this purpose (Tadeu et 

al., 2001): 

 𝜔 = 2𝜋𝑓 − 𝑖𝜂 (4.1)

where 𝑓 is the frequency, 𝑖 = √−1 and 𝜂 = 0.7(2𝜋/𝑇). 

For MFS verification, a comprehensive study was made using firstly, a single inclusion and 

then, several inclusions. In what follows, this study will be described. 

Single inclusion 

Consider a circular inclusion of radius 0.5 m centred at point (−10, 2) m, embedded in an elastic 

medium that is excited by a dynamic vertical load 𝐹 = 1 N, acting at point (0, 0.1) m, according 

to Figure 4.2. The inclusion is made as the same material as the host medium, with density 𝜌 =

1700 kg/m , shear modulus 𝐺 = 43.52 × 10  Pa and Poison’s ratio 𝜈 = 0.33. The response, in 
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terms of horizontal (𝑥) and vertical (𝑦) displacements, is computed for a specific frequency of 

20 Hz over a set of 10 receivers evenly distributed along the border of the inclusion. 

 

Figure 4.2 – Schematic representation of a fictitious circular inclusion embedded in an elastic medium. 

The computation was performed using the MFS model, with 40 collocation points evenly 

distributed along the inclusion boundary and with two sets of 40 virtual sources placed to either 

side of that interface at a distance of 0.25 m. Receivers are displaced of the collocation points, 

where the responses should be the same in both implementations. The response (displacement) 

values are shown in Figure 4.3 in both (a) 𝑥 and (b) 𝑦 directions as well as the relative error, 

𝐸 , logarithmically scaled, with respect to the analytical values resulting from the Green’s 

functions, also in (c) 𝑥 and (d) 𝑦 directions. In all receivers, the relative error is smaller than 

1 × 10 , validating the response. The response is schematically represented in Figure 4.4, 

where ‘O-filled’ markers are receivers on the original position; ‘O’ markers represent the 

analytical response computed directly with the Green’s functions; ‘’ markers represent the 

result computed as if the receivers were inside the inclusion using Equation (3.16); and ‘+’ 

markers, highlights results computed as if the receivers were in the host medium and calculated 

using the fundamental solution corresponding to the half-space Green’s functions depicted in 

Equation (3.15). 
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Figure 4.3 – Response (displacement) in the (a) x and (b) y directions and error in (c) x and d) y directions 
relative to the analytical (Green) response. 

 

Figure 4.4 – Displaced positions of the receivers: (a) imaginary and (b) real parts of the response, amplified by 
a factor of 5×107. 
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Multiple inclusions 

A comprehensive study was also made using more than one inclusion. Here a test case is 

analysed considering 𝑁𝐸 = 6 solid circular inclusions with radius 𝑅 = 0.5 m. For the study a 

varying number of collocation points in the set 𝑁𝐶 = {20, 30, 40, 50, 60, 70, 80} along each 

inclusion border was considered, as well as a frequency of either (20 or 100) Hz and a shear 

modulus in the set 𝐺 = {𝐺 2⁄ , 𝐺 , 2𝐺 } Pa. For the host medium, a shear modulus 𝐺 =

43.52 × 10  Pa was considered. Both host medium and inclusion had a density 𝜌 = 𝜌 =

1700 kg/m  and Poisson’s ratio 𝜈 = 𝜈 = 0.33. The centre of the upper inclusions was placed 

at a depth of 2 m and spaced from each other 2 m, either vertically or horizontally, as shown in 

Figure 4.5. 

 

Figure 4.5 – Schematic representation of multiple inclusion model. 

The response, in terms of horizontal (𝑥) and vertical (𝑦) displacements, is computed in 𝑁𝐸 sets 

of 10 receivers evenly distributed along each inclusion border. Since receivers are placed on 

the border of the inclusions, the computation is performed by two possible ways: first using the 

result of Equation (3.15), as if receivers were in the host medium, and then the result of Equation 

(3.16), as if receivers were inside the inclusion. 
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Preliminary studies were carried out to assess the effect of the number of collocation points and 

of the distance of virtual sources to the inclusion border in the accuracy of the computations. 

The analysis of these effects is presented at the end of this verification. 

Of the set of cases evaluated, only one is presented for illustrative purposes. In all other cases, 

satisfactory results were also obtained. Therefore, only the analysis of the computed response 

for six inclusions with the same material properties of the host medium and excited by a 

frequency of 20 Hz is presented. For this model (shown in Figure 4.5) different collocation 

points were considered. For the case of 40 collocation points and the virtual sources positioned 

at 𝑑 = 𝑑 = 𝑑 = 0.5𝑅, the (a) imaginary and (b) real parts of the response, amplified by a 

factor of 1.510 , are schematically represented in Figure 4.6, where “O-filled” markers are 

receivers on the original position; “O” markers represent the analytical response computed 

directly with the Green’s functions; ‘’ markers represent the result computed as if the receivers 

were inside the inclusion using Equation (3.16); and ‘+’ markers highlights results computed 

as if the receivers were in the host medium and calculated using the fundamental solution 

corresponding to the half-space Green’s functions depicted in Equation (3.15). 

 

Figure 4.6 – Deformed shape of the inclusions: (a) imaginary and (b) real parts of the response, amplified by a 
factor of 1.5108. 

As can be seen in the previous figure, the numerical results match very well those calculated 

analytically, using the half-space Green’s functions. The relative error, 𝐸 , with respect to the 
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analytical response are shown, logarithmically scaled, in Figure 4.7 which presents the (a) 

imaginary and (b) real parts of relative errors for all studied collocation points in range 𝑁𝐶 =

{20, 30, 40, 50, 60, 70, 80}, using 𝑑 = 0.5𝑅. In this figure "Full" means the computation was 

performed using Equation (3.16) and "Half" means the computation was performed using 

Equation (3.15); “-X” and “-Y” relate to directions 𝑥 and 𝑦, respectively. Observing the 

presented plots it can be concluded that the relative error tends to decrease with increasing 

numbers of collocation points, indicating a progressive convergence to the correct solution. 

Using 40 collocation points the relative error is already lower than 1 × 10 , indicating 

excellent solution accuracy. 

 

Figure 4.7 – (a) imaginary and (b) real parts of relative errors related to collocation points number. 

The same type of analysis was performed for the distance of virtual sources. For the previously 

presented study, with 40 collocation points, Figure 4.8 shows the relative error, logarithmically 

scaled, related to the distance of the virtual sources where (a) imaginary and (b) real parts for 

the range 𝑑 = {0.1, 0.15, 0.2, 0.25, … ,0.9} × 𝑅, are presented. In addition, as in the case of 

collocation points, it can be concluded that the relative error tends to decrease with increasing 

the virtual sources distance. Using 𝑑 = 0.5𝑅 the relative error is lower than 1 × 10 , 

indicating excellent solution accuracy. 
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Figure 4.8 – (a) imaginary and (b) real parts of relative errors related to virtual sources distance. 

Observing Figure 4.9, it can be seen that the system matrix becomes progressively more ill-

conditioned with the increase of the number of collocation points and the distance of the virtual 

sources, although the quality of the calculations does not seem to be degraded due to this issue. 

However, it is considered that this parameter should be monitored to avoid numerical errors 

due to badly conditioned matrices. 

 

Figure 4.9 – System matrix condition number. 
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The effect of the inclusion stiffness relative to the host medium is shown in Figure 4.10 through 

the representation of the deformed shape of the inclusion with the same stiffness (“O” markers), 

half stiffness (“” markers) and twice the stiffness (“+” markers) of the host medium. This 

figure also compares these results with those achieved using the BEM (Godinho and Tadeu, 

2002) under the same conditions. As can be seen, an excellent agreement of the MFS and BEM 

is obtained. Although not shown here, also good results were obtained for larger sets of 

inclusions. 

 

Figure 4.10 – Modified positions of receivers: (a) imaginary and (b) real parts of the responses, amplified by a 
factor of 1.5108. 

4.1.2 Optimal position of virtual sources 

As already seen in previous cases, a higher number of collocation points leads to a better result. 

However, the accuracy of the result computed for each number of collocation points depends 

on the distance of the virtual sources to the inclusion boundary. Furthermore, a higher number 

of collocation points has an increased computation time. So, for a given number of collocation 

points, it is important to determine the best position of the virtual sources in order to obtain 

accurate results while minimising the computational cost. To do this, an evaluation of the result 

should be carried out and this evaluation should be comparable. There are several ways to 

compute the error, such as the: 
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 average of errors computed in receivers’ location (𝐸 ): 
average of relative errors to the analytical solution computed in receivers’ location; 

 average of errors computed in collocation points’ location (𝐸 ): 
average of relative errors to the analytical solution computed in collocation points’ 
location; 

 the Integral of errors computed along the inclusion border (𝐸 ): 
result of the integration of the difference between the computation of the full-space 
Green’s functions and the half-space Green’s functions along the inclusion border. 

The first two forms of quantifying the errors consider the relative errors to the analytical 

solution. Therefore, they are only valid when analytical solution is known, as in the case when 

both host medium and inclusions have the same material characteristics. On the other hand, it 

was seen previously that independently of material characteristics of both media, the result on 

the inclusion border must be the same computed using either fundamental solution 

corresponding to the full-space Green’s functions or fundamental solution corresponding to the 

half-space Green’s functions. However, when this computation is made away of the collocation 

points, there is a difference between the two results that can be measured, and the smaller the 

difference, the better the result. By integrating this difference along the inclusion border a value 

is obtained, characteristic of the model conditions, which can be seen as representing the error 

of the result (Tadeu et al., 2009). This is the principle of the third method (𝐸 ) to estimate the 

error of a particular result. Some examples are presented next, considering these methods of 

evaluating the result error. 

Both media with same characteristics 

The study of the error when the inclusion has the same material characteristics of the host 

medium, where it is buried, is the simplest case and allows the computation of the error through 

the three methods previously presented, and so their differences can be established. For this 

purpose, consider the system depicted in Figure 4.11 where a circular inclusion of radius 0.5 m 

centred at point (−10, 2) m, with the same material of the elastic medium in which it is 

embedded, that is excited by a dynamic vertical load 𝐹 = 1 N, acting at point (0, 0.1) m and 

oscillating with a frequency of 100 Hz. The elastic properties of both media are: density 𝜌 =

1700 kg m⁄ , shear modulus 𝐺 = 43.52 × 10  Pa and Poison’s ratio 𝜈 = 0.33. Consider too a set 
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of receivers at a depth of 0.1 m and 1 m horizontally spaced in a range of {−30, … , 30} m. A 

system damping is introduced by means of a complex frequency with a small imaginary part. 

 

Figure 4.11 – Schematic representation of the system used for determining the model error measure. 

For this case, the distances between the virtual sources and the interface tested for each number 

of collocation points are in the range between 0.10𝑅 and 0.90𝑅, with steps of 0.10𝑅. Between 

10 and 60 collocation points, the distances of virtual sources were, then, evaluated in the range 

between 0.80𝑅 and 0.99𝑅 with steps of 0.01𝑅, since with the step of 0.10𝑅 all results were 0.90𝑅. 

With 100 collocation points the distance of 0.45𝑅 was also evaluated. These latest two 

evaluations were made to establish more detailed differences in optimal distances. Table 4.1 

shows the different analyses performed to allow a better understanding. As can be seen from 

the results shown in the Figure 4.12 (a), all proposed methods of determining the error lead 

practically to the same optimal distance of the virtual sources. Indeed, the differences between 

methods observed when adopting 20 to 50 collocation points are irrelevant as will be seen later. 

Table 4.1 – Performed analyses. 

 Collocation points 𝒅𝑽𝑺 ∆𝒅𝑽𝑺 

1st 10 to 100 (0.10 to 0.90) 𝑅 0.10𝑅 

2nd 10 to 60 (0.80 to 0.99) 𝑅 0.01𝑅 

3rd 100 (0.40 to 0.50) 𝑅 0.05𝑅 
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It should be noted that the errors of each optimal virtual sources distance to the respective 

number of collocation points shown in Figure 4.12 (b) cannot be compared in absolute terms 

because they have different meanings. While 𝐸  and 𝐸  are the relative errors to the analytical 

solution, 𝐸  is the integral of absolute errors computed along the inclusion border. Furthermore 

𝐸  and 𝐸  also cannot be compared because they are computed in different receivers. 

Nevertheless, all methods have the same trend. So, any of them can be used for computing the 

optimal virtual sources distance. 

 

Figure 4.12 – (a) optimal distance of virtual sources and (b) associated error taking into account the number of 
collocation points. 

In this example, the best choice would correspond to the pair (𝑁𝐶, 𝑑 ) = (100, 0.45), which 

exhibits the lowest error. However, the practical choice falls on (𝑁𝐶, 𝑑 ) = (30, 0.9), with 

excellent results and computationally much faster due to the lower number of collocation points. 

By analysing Figure 4.12 it can be concluded that the optimal distance of virtual sources and 

correspondent error decreases with increasing the number of collocation points. Increasing the 

collocation points improves the definition of the model's geometry, while allowing a more 

detailed wave-field to be reconstructed by adding the contribution of a larger number of virtual 

sources, leading to better results. On the other hand, the decrease of the virtual sources distance 

with the increase of the number of collocation points also improves the results. As already seen 

in Figure 4.9, both the increase in the collocation points number and in the distance of virtual 

sources make the system ill-conditioned. Thus, by reducing the distance of virtual sources, the 



 
4 IMPLEMENTATION AND VERIFICATION OF NUMERICAL SIMULATION MODELS 

 

 

Carlos Alberto Pessoa Albino 65 

system becomes better conditioned reducing the numerical error due to instability. A similar 

conclusion had already been reached by (Godinho et al., 2012). 

Inclusion with different stiffness from the host medium 

Consider the model shown in Figure 4.11. A similar analysis to the one previously presented 

was performed for different ratios of stiffness between inclusion and host medium, and all other 

properties were kept constant. For a frequency of 100 Hz the optimal distance of virtual sources 

for each number of collocation points can be seen in Figure 4.13 (a) and the respective 𝐸  

errors in Figure 4.13 (b). For any stiffness ratio between inclusion and host medium, the same 

previous conclusion can be drawn, i.e., the optimal distance of virtual sources and 

corresponding error decreases with increasing the number of collocation points. Note that, as 

in all cases previously seen, using 10 collocation points always leads to bad results. When 

considering other frequencies, the graphics are similar as will be seen later. 

 

Figure 4.13 – (a) optimal distance of virtual sources and (b) associated error considering the number of 
collocation points for different ratios of stiffness between inclusion and host medium. 

Looking at the Figure 4.13 (a), considering, for example, 60 collocation points, it can be seen 

that all ratios except 𝐺 = 𝐺  have an optimal distance of 𝑑 = 0.65𝑅 as opposed to the latter 

which is 𝑑 = 0.92𝑅, all of them with an error less than 1 × 10 . Next, the response for the 

case of an inclusion four times stiffer than the host medium is analysed with those two distances 

from virtual sources, since if 𝐸  and 𝐸  errors are minimized, the optimal distance is 𝑑 =
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0.92𝑅. Horizontal (𝑥) and vertical (𝑦) displacements are shown in Figure 4.14 (a). Graphically 

there is no difference using 𝑑 = 0.65𝑅 or 𝑑 = 0.92𝑅. The absolute difference of 

displacements computed considering those distances is shown in Figure 4.13 (b). It can be seen, 

given the order of magnitude of this difference, that in practice it is irrelevant to use one or 

another of those distances. Identical analysis was done for the remaining ratios of stiffness, 

obtaining equivalent results. This means that for 60 collocation points, a distance of 𝑑 =

0.65𝑅 or 𝑑 = 0.92𝑅 could be used for all cases without loss of accuracy. 

 

Figure 4.14 – (a) Response in terms of displacement and (b) difference between displacements (x and y 
directions) computed with different distances of virtual sources. 

Behaviour of the method for different frequencies 

This study was carried out in the same scenario presented in Figure 4.11 and taking into account 

a unitary vertical load oscillating with several frequencies in the range (10 to 150) Hz. Different 

stiffness ratios between inclusion and host medium were also considered. As it has been seen 

for frequency of 100 Hz, the optimal distance of virtual sources and the associated error 

decrease with increasing the number of collocation points (see Figure 4.12 and Figure 4.13). 

This conclusion cut across any frequency value and any stiffness ratio. Figure 4.15 shows this 

result for the inclusion four times stiffer than the host medium. Similar results are obtained for 

the other stiffness ratios. 
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Figure 4.15 – (a) optimal distance of virtual sources and (b) associated EIB error considering the number of 
collocation points for different frequencies. 

Multiple inclusions 

In this example, consider the model with 6 inclusions shown in Figure 4.5, to study the 

behaviour of the distance of the virtual sources and the respective error with the number of 

collocation points and the frequency. To study the 𝐸  error, the same receptors identified in 

the system of Figure 4.11 (a set of receivers at a depth of 0.1 m and 1 m horizontally spaced in 

a range of {−30, … , 30} m) have been considered. Figure 4.16 presents the results obtained for 

the frequency of 50 Hz. Howsoever, all frequencies have a similar behaviour. Comparing this 

image with those related to a single inclusion (Figure 4.12 and Figure 4.13), it is concluded that 

the multiple inclusions follow the same trend of individual inclusions. 

 

Figure 4.16 – (a) optimal distance of virtual sources and (b) associated error considering the number of 
collocation points for two ratios of stiffness between inclusion and host medium. 
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With these examples it is seen that each case is different and must be particularly evaluated. 

However, based on the evaluated cases, it can be stated for frequencies up to 150 Hz, the use of 

25 or more collocation points and distances of virtual sources between (0.5 and 0.8)𝑅 can be 

obtained accurate results. 

4.2 The Finite Element Method in the Time Domain 

4.2.1 Implementation and verification 

To verify the correct implementation of the Finite Element Time Domain algorithm, a simple 

verification scenario has been tested, corresponding to a half-space medium. The material 

properties correspond to a Young’s modulus of 𝐺 = 30 × 10  Pa, a Poisson’s ratio of 𝜈 = 0.2 

and a density of 𝜌 = 2400 kg m⁄ . Calculations were performed over a grid covering an area of 

0.8 m wide by 0.2 m deep where a vertical load is positioned half width at the surface of the 

medium, generating a Ricker pulse with a central frequency of 70 kHz. This problem has been 

modelled using the FEM-TD algorithm considering an element size of 0.001 m, and the time 

step used is 3.33 × 10  s (calculated automatically from the highest order eigenvalue of the 

equation system). 

In order to obtain a reference solution for this verification, the fundamental solution for a half-

space in the frequency domain has been used. Responses have been computed for the same 

geometric configuration and material properties indicated above for 128 frequencies, starting 

at 2000 Hz and with an increment of 2000 Hz, following the procedure indicated, for example, 

in (Godinho, Dias-da-Costa, et al., 2013). 

Figure 4.17 presents the calculated results for the two methods, for a time instant 𝑡 =

8.5 × 10  s. Observing the results it is clearly that very similar results have been obtained, with 

only very small amplitude differences being registers between the two completely independent 

methods. This result clearly indicates that a correct prediction is provided by the FEM-TD 

implementation, and that it can be used reliably to analyse this type of problem. 
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Figure 4.17 – Horizontal displacement computed over a complete grid of receivers using the (a) FEM-TD and 
(b) an analytical solution transformed from the frequency domain, at t = 8.5×10-5 s. 

In order to show the potential of the FEM-TD algorithm, two examples of wave propagation 

simulation are presented next: the first, simulating the propagation in a semi-infinite medium 

using an absorption layer to simulate the infinite nature of the medium; and the second, 

simulating the propagation in a finite medium corresponding to a concrete beam. 

Figure 4.18 (a) shows a slice of a semi-infinite medium 0.5 m wide, 30 m long and up to 7 m 

deep where the host medium has a density 𝜌 = 2000 kg m⁄ , Young’s modulus 𝐸 = 50 × 10  Pa, 

Poisson’s ratio 𝜈 = 0.35 and a damping factor of 𝜁 = 1 % was assumed. To simulate the infinite 

part of the soil a 5 m thick absorption layer was used. 

Figure 4.18 (b) shows a concrete beam with 400 × 100 × 100 mm  which has a 

5 × 20 × 100 mm  notch, located at the middle of the top. The material properties are: density 

 = 2500 kg/m , Young’s modulus 𝐸 = 35 000 N/mm , Poisson’s ratio  = 0.15 and a damping 

factor of 𝜁 = 3 % was assumed. 

 

Figure 4.18 – (a) schematic representation of a soil slice and (b) schematic representation of a concrete beam. 

Figure 4.19 (a) shows the time evolution of horizontal displacement due to a load generated by 

a Ricker pulse applied to the ground surface, 10 m from the origin of the Analysis zone (upper 
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left corner) with a central frequency of 100 Hz. As can be seen from these plots, the propagation 

is physically coherent and the absorption layer blocks the reflections of the boundaries of the 

geometric model, thus fulfilling its purpose. 

Figure 4.19 (b) shows snapshots of the time evolution of vertical displacements due to a load 

generated by a Ricker pulse applied to the beam upper face, 100 mm from the origin of the 

beam (upper left corner), with a central frequency of 150 kHz. Reflections can be seen at the 

boundaries of the beam and, in later times, the reflection caused by the notch can also be seen. 

Once again, the main features observed in this simulation are in-line with the expected patterns, 

thus indicating the good results achieved with the algorithm. 

 

Figure 4.19 – (a) horizontal displacements in a semi-infinite medium and (b) vertical displacements in a finite 
medium. 
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It should be noted that, in the absence of a reference of the maximum element size or of the 

number of elements per wavelength, in the examples presented in this work, at least 8 elements 

per wavelength are always considered, thus ensuring the accuracy of the results. 

4.2.2 Behaviour of the absorbent layer 

Consider a slice (“Analysis zone”) of a semi-infinite medium 0.5 m wide, 30 m long and up to 

7 m deep as shown in Figure 4.20. The host medium has a density 𝜌 = 2000 kg m⁄ , Young’s 

modulus 𝐸 = 50 × 10  Pa and Poisson’s ratio 𝜈 = 0.35. 

 

Figure 4.20 – Schematic representation of absorbent layer analysis model. 

To analyse the behaviour of the absorbent layer, the frequencies of (5, 10, 20, 50, 100 and 250) 

Hz and the layers thicknesses of (2, 3, 4, 5 and 6) m were used. Analyses have been performed 

using the variable damping absorption layer (VD) and using the forced decay absorption layer 

(FD). For the VD analyses the value of 𝐷 = 70 % – see Equation (3.82) – was used. The 

results are shown in Figure 4.21. There is a big difference between the models regarding the 

trend of layer thickness. In the case of the FD model, there is a need for a thick layer at almost 

all studied frequencies. In the case of the VD model, as the frequency increases, the required 

layer thickness to absorb the unwanted reflected energy decreases. Taking into account the 

object of study (the mitigation of vibrations induced by means of transport, mainly railway) and 

the associated frequencies are between (20 and 100) Hz, the VD model ensures greater 

efficiency by modelling a narrow absorbent layer. 
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Figure 4.21 – Layer thickness against frequency in FD and VD absorbent layer models. 

Using the described geometric model and for a frequency of 100 Hz, Figure 4.22 shows 

snapshots of wave propagation in terms of vertical displacements in the Analysis zone and the 

absorbent layer in the 𝑦 = 0 m plane. In Figure 4.22 (a) the VD model with a thickness of 2 m 

was used; in Figure 4.22 (b) the same model with a thickness of 3 m was used; Figure 4.22 (c) 

shows the results of the FD model with a thickness of 3 m. In (a) and (c), in later time snapshots, 

reflections can be seen in the Analysis zone, while in (b), no spurious reflections from the 

artificial absorption layer seem to occur. This result is compatible with the graphic of the Figure 

4.21. 

 

Figure 4.22 – Time evolution of wave propagation in the domain with an absorbent layer: (a) VD with 2 m thick, 
(b) VD with 3 m thick and (c) FD with 3 m thick. 
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As already mentioned at the end of the section 3.3.4, both models perfectly simulate an (semi-

)infinite medium dissipating the unwanted propagated wave energy. It was also seen that the 

VD model is more efficient since it is computed only once before the time marching process. 

However, another advantage is evident: for the same system under study, a thinner absorption 

layer is needed (comparing with the FD model), thus reducing the number of finite elements 

and the respective computation time. The use of the FD model has advantages when there is a 

small time window or when there are relatively few time-steps. 
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5 APPLICATION OF THE MFS FOR THE STUDY OF VIBRATION 
MITIGATION SOLUTIONS 

In this chapter, the main objective is to better understand the effect of introducing a set of 

inclusions between an emitting source and a set of receiver points, considering the scenario of 

wave propagation in a half-space soil. To evaluate the effect of the presence of inclusions in the 

vibrations registered at the set of receivers, the reduction of vibration levels is evaluated for 

some test cases. This reduction is computed in terms of an insertion loss, 𝐼𝐿, that is defined as 

the difference between the vibration levels obtained in the presence of inclusions (𝐿 ) and the 

displacement vibration levels obtained without the inclusions (𝐿 ). This ratio is given in dB by 

the Equation (5.1). 

 𝐼𝐿 = 𝐿 , − 𝐿 , = −20log
|𝑢 |

𝐺
 (5.1)

where 𝑢  is the displacement field, along direction 𝑖, computed at receivers in the presence of 

inclusions and 𝐺  represents the displacement field, along direction 𝑖 and generated by a load 

acting along direction 𝑗, computed without the inclusions. According to Equation (5.1), positive 

values correspond to a reduction of the displacement vibration levels in the presence of 

inclusions and negative values of the insertion loss stand for losing protective solutions 

efficiency. 

The application examples presented in this chapter are simulated based on MFS formulation 

that are separated into two sections: the first, based on 2D model and the second on 2.5D model 

of MFS numerical application. 

At this point it is important to define the terminology of several zones affected by the load that 

will be used in this chapter. Figure 5.1 shows schematically the system divided in these zones 

and the terminology of each one of them. Accordingly, the Analysis zone is located between 

the load application point, the sensible point, and the Remaining zone in the opposite direction. 

The Analysis zone, in turn, is divided into three zones: the Inclusions zone, the Downstream 
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zone (between the sensible point and the inclusions) and the Upstream zone (between the load 

point and the inclusions). 

 

Figure 5.1 – Zones terminology. 

5.1 Analysis of 2D scenarios 

5.1.1 Number of inclusions and their geometric distribution 

In this numerical study, four different groups of solid circular inclusions are compared. Figure 

5.2 schematically shows these groups and their location in an elastic half-space where they are 

buried. The groups are considered with two distinct depths from the centre of the upper 

inclusion: (1 and 3) m. They are subjected to two frequencies, (15 and 120) Hz, resulting from 

the dynamic vertical load 𝐹 = 1 N acting near the surface at point (0, 0.1) m. All inclusions 

have a radius of 0.3 m and are made by a homogenous material with elastic properties of 𝜌 =

2700 kg/m , 𝐺 = 1840 × 10  Pa and 𝜈 = 0.20, while the hosting soil is characterised by 𝜌 =

1700 kg/m , 𝐺 = 43.61 × 10  Pa and 𝜈 = 0.33. The inclusions are placed along the system 

axes, equally spaced between them by a distance which is twice their diameter, and the centre 

of each group along horizontal direction is kept at 𝑥 = −15 m. 

The response in terms of horizontal, 𝑥, and vertical, 𝑦, displacements is computed along a line 

of receivers placed 0.1 m below the surface and 0.1 m horizontally spaced in a range of 

{−30, … , 30} m. The computations are performed using the MFS model, with 30 collocation 

points distributed along the boundary of each inclusion, and with two sets of 30 virtual sources 

placed at either side of that interface, at a distance of 0.24 m. 
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Figure 5.2 – Schematic representation of model for the numerical application related to insertion loss. 

The various zones affected by the load are defined in the Table 5.1. 

Table 5.1 – Zones definition. 

Zones Downstream Inclusions Upstream 

Location [m] 𝑥 = {−30, … , −20} 𝑥 = {−20, … , −10} 𝑥 = {−10, … , 0} 

As an example of the graphic representation of displacements, Figure 5.3 shows the horizontal 

and vertical displacements caused by the impulsive load, without any inclusions (𝐺  and 𝐺 , 

respectively) and with the effect of inclusions Group I.V (𝐷  and 𝐷 ). The upper graphs result 

from the inclusions at a depth of 1 m, while the lower graphs result from their depth at 3 m from 

the surface. In the left-hand charts, the impulsive load has a frequency of 15 Hz, whereas in the 

right-hand plots the frequency is 120 Hz. 

In the upper right chart (frequency of 120 Hz and depth of 1 m), the largest difference between 

the displacements without and with the inclusion group is evident. It is clearly seen that the 

inclusions group causes a decrease in the amplitude of the displacements, especially the vertical 

ones, in the Downstream zone. On the other hand, in the Remaining zone, there is an increase 

of the amplitude in the presence of that group of inclusions, evident in the vertical 
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displacements. Regardless of the amplitude of the displacement, the graphs of the other groups 

have a similar shape. 

 

Figure 5.3 – Displacements with inclusions Group I.V (Dx and Dy) and without inclusions (Gx and Gy). 

Figure 5.4 illustrates the insertion loss, in dB, along the line of receivers for 𝑥 and 𝑦 components 

of the displacements and shows the influence in the response of the depth (1 or 3) m of 

inclusions Group I.V (see Figure 5.2) and for frequencies of (15 and 120) Hz. Considering these 

results, it can be concluded that for low frequencies (15 Hz) the influence of the depth of the 

inclusions is not very perceptible, and low attenuation values are always registered. However, 

at a higher frequency (120 Hz) the effect of this geometric parameter reveals to be determinant 

in the effect provided by the presence of the inclusions. At receivers placed in the Downstream 

zone, considerable attenuation values (positive 𝐼𝐿 values) are identified, for the lowest depth 

values. There is also a positive evolution in the horizontal attenuation along the Inclusions zone 

reaching a high peak in the left border of the group (𝑥 = −16.5 m) evident when they are in the 

shallowest position (depth of 1 m). The negative effect of this group in the Remaining zone, in 
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the case (frequency of 120 Hz and depth of 1 m), is more evident in this graph with the negative 

insertion values in this zone. 

 

Figure 5.4 – Attenuation provided by Group I.V. 

Considering now Group I.H (rotating the inclusions Group I.V by 90), the computed results at 

the same line of receivers are presented in Figure 5.5. Again, for the lower frequency, with 

larger wavelengths, very small attenuations are registered, while a much stronger attenuation 

effect is seen in the Downstream zone for the higher frequency, and for inclusions closer to the 

surface. Comparing these results with those of Group I.V, a stronger attenuation is observed 

when a larger number of inclusions is distributed along the horizontal direction, thus allowing 

a stronger interference with waves traveling closer to the surface. 

In order to identify the effect of varying number of inclusions, relative to the previous model, 

consider now just the presence of one column with five inclusions (Group II.V), whose results 

can be seen in Figure 5.6, and another case in which the group of five inclusion is arranged 

horizontally (Group II.H), for which the results are shown in Figure 5.7. 
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Figure 5.5 – Attenuation provided by Group I.H. 

 

Figure 5.6 – Attenuation provided by Group II.V. 



 
5 APPLICATION OF THE MFS FOR THE STUDY OF VIBRATION MITIGATION SOLUTIONS 

 

 

Carlos Alberto Pessoa Albino 81 

 

Figure 5.7 – Attenuation provided by Group II.H. 

Analysing these last two sets of results it becomes clear that, horizontal distribution of 

inclusions (Group II.H) allows a better efficiency in reducing the vibration levels. In addition, 

for the higher frequency, the effect provided by just one line of inclusions is very similar to that 

obtained when three horizontal lines are included. When a lower frequency is considered, the 

larger wavelengths involved lead again to a smaller attenuation when only one line (or one 

column) of inclusions is used. 

It should still be noted that the influence of inclusions also occurs to the right of the load 

application point, in the Remain zone, as a result of reflections originated at the inclusions’ 

surfaces. In general, the insertion loss values are not significant in this zone, however, there 

may be increases of 3 dB (see Figure 5.4, depth of 1 m and frequency of 120 Hz) which in real 

applications may result in constraints. 

Table 5.2 shows the RMS (Root Mean Square) insertion loss, in dB, of all inclusions groups at 

both depths, computed in the receivers placed on the Downstream zone, taking into account the 
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frequencies of (15 and 120) Hz. The results are separated in the two main directions, 𝑥 and 𝑦. It 

can be seen, by observing this table, that all groups of inclusions at the depth of 3 m are 

inefficient, even amplifying the vibration levels produced, considering the highest frequency of 

120 Hz. This is quite an interesting observation, which is related to the fact that for, that 

frequency, the smaller wavelength allows surface waves to just pass over the introduced 

inclusions, without interference. It is also clear that the parameter that most affects the 

efficiency of the system is the number of inclusions positioned in the horizontal direction, 

indicating, again, that this is preferred direction for distributing these buried devices. 

Table 5.2 – RMS of insertion loss, in dB, in the receivers placed in Downstream zone, due to the frequencies (15 
and 120) Hz for all inclusions groups in both depth of (1 and 3) m. 

Group I.V I.H II.V II.H 

Frequency [Hz] 15 120 15 120 15 120 15 120 

Depth [m] 

1 
x 0.55 2.58 -0.17 4.08 0.21 0.66 -0.24 4.40 
y 0.03 2.70 -0.14 4.03 0.01 1.97 -0.03 4.52 

3 
x 0.62 -0.03 0.67 -0.03 0.23 -0.33 0.23 -0.01 
y 0.32 -0.03 -0.01 -0.03 0.12 -0.04 -0.09 -0.05 

Table 5.3 identifies the group of inclusions which has the highest effectiveness in reducing 

vibration levels for the chosen scenario, in Downstream zone. As can be seen from the two 

tables, none of the groups produces a reduction in vibration when placed 3 m deep in case the 

load vibrate at a frequency of 120 Hz. 

Table 5.3 – Group selection with better efficiency for each combination depth-frequency-displacement direction. 

Effectiveness 
Frequency [Hz] 

15 120 

Depth [m] 

1 
x I.V II.H 
y I.V II.H 

3 
x I.H N/A 
y I.V N/A 

The frequencies of (15 and 120) Hz may not be representative of low and high frequencies, 

respectively. For this reason and to better assess the attenuation provided by the different 
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configurations, an additional study was carried where a full range of frequencies between (12 

and 112) Hz were considered. Figure 5.8 illustrates the insertion loss (in dB) for each of the 

inclusions’ groups in one third octave bands and computed in the receivers placed on the 

Downstream zone. The first observation to be made is relative to the depth, being evident that 

the inclusions 3 m depth have a lower performance. They come even be harmful mainly in the 

horizontal vibration levels. Clearly, when only one vertical line of inclusions is considered very 

low insertion loss values are registered throughout the frequency range analysed. When more 

inclusions are considered along the horizontal direction, again very low attenuations are 

registered at lower frequencies, but starting on the 63 Hz band a much stronger insertion loss is 

visible. Indeed, considering the propagation velocities allowed by the host medium (around 

318 m/s for P waves, 160 m/s for S waves and 150 m/s for R waves), this frequency band 

coincides with the so-called “phononic crystal effect”, generated by the Bragg interference 

phenomenon occurring between inclusions, which occurs approximately around 𝑐/2𝑑 (𝑐 being 

the velocity and 𝑑 the spacing between inclusions) considering, in this case, the R wave velocity 

(𝑐 = 150 m/s). As more inclusions are considered along the horizontal direction, this effect 

becomes stronger, and leads to stronger attenuations, as is clear in the provided results. This 

results confirms that this type of mitigation strategy may be designed to fit a given frequency 

of the propagating vibration field, thus originating a good attenuation and providing effective 

protection for sensible structures positioned the beyond the inclusions. 

Figure 5.9 shows the effectiveness, in terms of insertion loss, of each zone in the protection of 

the sensitive point, in the case of the Group I.H. Observing the behaviour of the two lower 

graphs it is found that, regardless of the amplitude, they have a similar shape. The same is to 

say that the effectiveness of the whole zone of study (Analysis zone) is influenced, in the 

majority, by the Inclusions zone. This observation is valid for all cases, although in the deeper 

groups, this relationship is not so evident. 
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Figure 5.8 – Insertion loss in 1/3 octave bands. 

 

Figure 5.9 – Effective vibration levels by frequency to the inclusion Group I.H. 
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A small study on the influence of the inclusions radius was made for the inclusions Group II.H 

in the two depths of top of inclusions, (0.7 and 2.7) m. The study was performed for the 

frequencies of 1/3 octave band of central frequency of 100 Hz and for radius of 

{0.15, 0.30, 0.45} m. As shown in Figure 5.10, the effectiveness in Downstream zone increases 

exponentially with the radius for depth 0.7 m. Conversely, the almost null effectiveness 

decreases when the inclusion group is at a depth of 2.7 m, being harmful when the inclusions 

have the largest radius. 

 

Figure 5.10 – Effective vibration levels in 1/3 octave band of 100 Hz to the inclusion Group II.H for radius 
study. 

To assess the influence of the distance between inclusions, another study was carried out on 

Group II.H, where all inclusions have a diameter of 𝐷 = 0.6 m and was performed for the 

frequencies of 1/3 octave band of central frequency of 100 Hz. The centre of the inclusions 

group was always kept at a depth of 1 m and positioned 15 m to the left of the dynamic vertical 

load as shown in the Figure 5.2. As it can be seen in Figure 5.11, the inclusions work better as 

a group when their centres are separated by 1.5𝐷 m. When they are separated more than 2.8𝐷 m 

it is assumed that they work alone. 
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Figure 5.11 – Effective vibration levels in 1/3 octave band of 100 Hz to the inclusion Group II.H for distance 
study. 

5.1.2 Conclusions 

In this section, a general MFS strategy was presented to allow the analysis of wave propagation 

in the presence of buried inclusions in a half-space. The proposed strategy is general and allows 

the simulation of any number of inclusions filled with distinct materials. The presented 

numerical results evidence the stability and convergence of solutions. The accuracy of the MFS 

is quite good, particularly when compared with BEM results. This section only reported 

findings concerning the 2D case, and further in-depth studies need to be conducted to verify 

and improve the proposed strategy, for 2.5D and 3D cases. 

Conceptually, the inclusions have a significant effect on vibration attenuation, and it was 

observed that their efficiency peaks at a specific frequency range, which is strongly related to 

the Bragg effect occurring due to the multiple interferences between reflections at the equally 

spaced structures. 

5.2 2.5D MFS applications 

In this section, a 2.5D numerical model based on the MFS is used to analyse the elastic wave 

propagation in the ground to help reducing the vibrations that can reach sensible structures, 

considering arrays of elastic inclusions buried in a homogeneous medium. In this model, the 
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complete elastodynamic interaction between the inclusions and the host medium is fully 

considered. Due to the geometric periodicity of the analysed problem, the numerical 

formulation can be simplified, particularly in what concerns the calculation of the system 

matrix, and significant computational gains can be obtained. The results of a numerical study 

concerning the behaviour of a sequence of embedded inclusions within an elastic material, when 

subject to the incidence of waves with different frequencies, is here presented, and the 

interpretation of the involved phenomena is described in order to clarify the main wave 

propagation features in the presence of multiple elastic inclusions. 

Beyond the physical phenomena themselves, one of the challenges of this type of problem is 

related to their accurate computational simulation. Previous works in the field of wave 

propagation – see, for example, (Amado-Mendes and Godinho, 2013) and (Martins et al., 2013) 

– made use of a number of techniques, which can be extended and adapted to treat the problem 

of metamaterials in solid media. Methods such as BEM or MFS seem to be appropriate choices 

for that purpose. Conceptually, one way to solve this problem is related to a 2.5D analysis, in 

which the geometry remains constant along one direction, although with a purely 3D source. 

These models are very efficient (P. G. Santos et al., 2014) and can be of interest to study the 

propagation of elastic waves in the presence of arrays of scatterers; they may serve as an 

excellent base for understanding the underlying physics of such complex phenomena. 

This section intends to provide a numerical strategy based on the use of a 2.5D MFS 

implementation and tries to interpret physically the wave propagation phenomena that occur 

around solid buried inclusions embedded in a host homogeneous soil. Due to the geometric 

periodicity and geometrically repetitive nature of the analysed problem, the numerical 

implementation can be significantly simplified, particularly in what concerns the calculation of 

the system matrix; indeed, a large number of repeated blocks occur in this matrix, whose 

calculation just needs to be performed once, and so significant computational gains can be 

obtained. Several numerical simulations are here used to illustrate the main features of wave 

propagation in this type of scenarios, using different arrays of scatterers and considering 

different elastic properties. 



Numerical Simulation of Elastic Wave Propagation in Discontinuous Media: 
Applications in Ultrasonic and Vibration Control 
 

 

 

Carlos Alberto Pessoa Albino 88 

5.2.1 2.5D formulation complements 

Consider an elastic medium within which a set of elastic bodies is embedded, composing a 

multi-domain elastic system. Based on the frequency domain wave equation defined in 

Equation (3.7), consider that in this physical system the solid inclusions have a constant 

geometry along the 𝑧 direction, and the whole system is subjected to a harmonic point source, 

which is oscillating with an angular frequency 𝜔. Since the system’s geometry is infinite and 

does not change along the 𝑧 direction, it is possible to apply a spatial Fourier transformation 

along that direction and to determine the 3D displacement field as a continuous integral of 

simpler bi-dimensional solutions, as 

 𝐮 = 𝐮 . (𝑘)e ( ) 𝑑𝑘 (5.2)

been 𝑘 the axial wavenumber. Discretising this integral and rewriting this equation as a discrete 

summation (assuming an infinite set of virtual sources equally spaced 𝐿  along the axial 

direction, such that ∆𝑘 = 2𝜋/𝐿 ), the 3D displacement field may be written as 

 𝐮 = 𝐮 . (𝑘 )e ( )∆𝑘 e ( ) (5.3)

where 𝑘 = 𝑚∆𝑘 . This summation converges and can be approximated by a finite number of 

terms, ranging from – 𝑀 to +𝑀. Note that, in order to avoid any spatial contamination from the 

virtual sources, the distance 𝐿  must be sufficiently large and that the case with 𝑘 = 0 

corresponds to the 2D problem (as already seen in section 3.2.1). 

5.2.2 Details for periodic geometries 

If a set of 𝑛 inclusions is considered, equally spaced between them forming a regular matrix, 

the calculation of the MFS system matrix can be greatly accelerated – see Equations (3.36) and 

(3.37). It is important to notice that, if the inclusions are periodically placed, many of the 
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submatrices of 𝐀 , in Equation (3.36), are repeated, and may only be calculated once; this can 

be easily realized, for example, for all diagonal submatrices. This behaviour is applied to both 

displacements and their derivatives, according to the corresponding constitutive law: stresses 

and strains. Given this observation, a practical implementation algorithm to compute 𝐀 – see 

Equation (3.35) – can simply be written as (pseudocode): 

FUNCTION compute_A (data) 
 𝑘 =  0 
 FOR 𝑖 FROM 1 to 𝑛 
  FOR 𝑗 FROM 1 to 𝑛 

   𝑣 = 𝑥 −  𝑥  # vector connecting the centres of inclusions 𝑖 and 𝑗. 

   IF 𝑣 = ANY(𝐯(   )) THEN 

    𝐯 = (𝐯 = 𝑣) 
    # there is no need to compute the 𝐀  submatrix. 
    𝐀 = 𝐀 (𝐯 ) # the reference of previously computed submatrix is associated to 𝐀 . 
   ELSE 
    𝑘 = 𝑘 + 1 
    𝐯 = 𝑣 # 𝑣 vector is added to the list of computed submatrices. 
    𝐀 (𝐯 ) # 𝐀  submatrix is computed and stored. 
   END IF 
  END FOR 𝑗 
 END FOR 𝑖 
 RETURN 𝐀 # with all necessary submatrices computed. 
END FUNCTION 

5.2.3 Model verification and performance 

To first check the correctness of the proposed model and of its implementation, a homogeneous 

system is simulated, for which the analytical solution corresponds to the fundamental solutions 

described in section 3.2.1. Using the proposed strategy, a matrix with 3 × 3 elastic inclusions, 

with radius 0.3 m, equally spaced 1.2 m is embedded in a host medium, and the same properties 

are ascribed to both the host medium and to the inclusions: Young’s modulus of 100 MPa, 

density of 2000 kg/m  and a Poisson’s ratio of 0.2. The system is excited by a source positioned 

at (𝑥, 𝑦) = (−2.0, 0.0) m, vertically centred with the inclusions, and responses are computed at 

a receiver positioned at (𝑥, 𝑦) = (5.3, 1.8) m. Figure 5.12 illustrates the computed displacements 

at the receiver, originated by a vertical load, together with the analytical solution, and 
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considering an apparent velocity of 1336 m/s (defined as 𝑣 = 𝜔/𝑘 ). The presented plots 

clearly evidence an excellent match between the two results. 

 

Figure 5.12 – Verification of the implemented algorithm for directions (a) x, (b) y and (c) z of displacements. 

To understand the performance gain between the proposed scheme (designated by PMFS) and 

a traditional MFS implementation, a sequence of tests has been performed, recording the CPU 

runtimes required by each approach. Geometries with 4 × 4, 5 × 5, 6 × 6  and 7 × 7  inclusions 

are considered, with 30 collocation points describing each inclusion; a maximum MFS matrix 

size of 8820 × 8820 is thus obtained for the larger problem. The internal material of the 

inclusions is assumed to have a Young’s modulus of 30 GPa, a density of 2500 kg/m  and a 

Poisson’s ratio of 0.3. Figure 5.13 illustrates the performance of the methods using a bar chart, 

in which each bar is divided in two parts: the lower (dark grey) part is related to the CPU 

runtime required for matrix formation; the upper (lighter grey) is related to the solution of the 

equation system. Since the same solver is used in both cases, the required CPU runtime for the 

equation system solution is always the same for the two schemes. Analysing the plot it is seen 

that a significant reduction of the CPU runtime occurs for the proposed implementation, which 

is related only to the matrix formation time. Comparing the dark grey parts of the plotted bars, 

this reduction is very large and, in general, only (20 to 30) % of the CPU runtime is required. 
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Figure 5.13 – CPU runtimes for the proposed (PMFS) and for the classical MFS implementations. 

5.2.4 Numerical application 

The presented model has been used to study the wave propagation patterns and the physical 

behaviour of a system composed by different numbers of inclusions. Several results are shown 

for different geometries composed of arrangements of circular cylinders. All results are 

presented in terms of normalized slowness and of normalized frequency (non-dimensional 

parameters). The normalized frequency, 𝑓,̅ is given in terms of the relation between the lattice 

constant of the arrangement of cylinders (spacing between consecutive centres), 𝑎, and the 

wavelength of the S waves, 𝜆 , in the solid host medium, allowing to define: 

 𝑓̅ =
𝑎

𝜆
= 𝑎

𝑓

𝑣
 (5.4)

The normalized slowness, 𝑘, is defined as the relation of the axial wavenumber, 𝑘 , to the S 

wave wavenumber, given as: 

 𝑘 =
𝑘

𝜔/𝑣
 (5.5)
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The following material properties are used in this study: 

Table 5.4 – Material properties. 

Material Density [kg/m3] Young [MPa] Poisson 

M1 2000 100 0.2 
M2 7800 200000 0.3 
M3 2500 30000 0.3 

Different geometrical arrangements are analysed, including both square and triangular lattice 

distributions. The typical arrangement for each test case is represented in Figure 5.14, for 

configurations with (a) 2 × 5 inclusions in a rectangular lattice, and (b) 2 × 3 inclusions in a 

triangular lattice. 

 

Figure 5.14 – Illustrative scheme of the tested configurations for (a) 25 square and (b) 23 triangular lattices. 

The first set of examples is related to the case in which perfectly rigid and unmovable inclusions 

are considered, embedded in a solid medium with the properties of M1, referring to a soft soil, 
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where S waves propagate at 144.3 m/s, and P waves at 235.7 m/s. Although this is a conceptual 

scenario, it allows getting a better insight of the involved physical phenomena. 

Figure 5.15 presents the amplitude level of the combined 𝑥, 𝑦 and 𝑧 velocities at 𝑅 . For 

normalized slowness above 1, very little energy propagates in the system, and only evanescent 

waves exist. Bellow this slowness, since the elastic waves propagate freely, without obstacles, 

increasing vibration velocities are seen as the frequency increases. This scenario greatly 

changes in the presence of a rigid inclusion, as can be seen in Figure 5.15 (b) (where a rigid 

inclusion of radius 0.3 m is considered between the source and the receiver). In this case, a 

significant decrease in the velocity levels is observed throughout the whole analysed 𝑓̅– 𝑘 

domain, since the presence of the obstacle blocks the direct incidence of waves at the receiver. 

 

Figure 5.15 – Absolute vibration velocity levels at R1 for (a) an homogeneous medium and (b) in the presence of 
a single rigid inclusion. 

To understand the effect of multiple inclusions, disposed in an organized pattern defined by a 

lattice constant 𝑎, in the wave propagation pattern, several tests were performed for different 

scenarios. To facilitate the interpretation of the effect of the multiple inclusions, next examples 

illustrate the results in terms of insertion loss, 𝐼𝐿, given by the difference of vibration levels 

registered at the receiver without and with the intermediate structures – see Equation (5.1). 
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Figure 5.16 shows the 𝐼𝐿 computed for an array of 9 inclusions (3 × 3 square lattice), disposed 

in a rectangular manner, considering a lattice constant 𝑎 = 1.2 m and an inclusion radius of 

0.3 m. The structure of these plots is much more complex than the previous one and includes 

several features. Indeed, multiple interactions occur between inclusions, originating 

constructive and destructive interferences. However, one feature merits special attention, 

particularly the presence of a high attenuation frequency range visible as a pattern of lighter 

shades in the presented plots. This zone occurs for the full sequence of 𝑘 values and indicates 

that a strong attenuation is originated by the presence of the set of inclusions. This effect occurs 

mostly between normalized frequencies of 0.5 and 1.5, that is, between frequencies 𝑓 =

0.5𝑣 /𝑎 Hz  and 𝑓 = 1.5𝑣 /𝑎 Hz (this zone is marked with “1” in the plot). Interestingly, this 

lower limit can be related to the theory of the acoustic attenuation by sonic crystal, in which the 

band gap frequency can usually be defined as  𝑓 = 0.5𝑣 /𝑎 Hz ; thus, it can be inferred that, 

possibly, the dominant effect controlling the energy attenuation by this system is the same as 

that observed in acoustics. An additional effect that is also seen in the presented plots is related 

to a constructive interference between the multiple inclusions (these regions are marked with 

“2” in the plot). 

 

Figure 5.16 – Insertion Loss at (a) R1 and (b) R2 for a 33 square lattice system. 
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Figure 5.17 illustrates similar plots computed for triangular shaped inclusion distributions, 

considering 3 × 3 (total of 10) and 5 × 3 (total of 17) inclusions. These plots reveal a quite 

similar behaviour to those in Figure 5.16, although some differences can be observed. The 

“band gap” identified above is now more marked and narrower, even for the 3 × 3 case, and 

seems to become progressively more intense when more inclusions are added. For the case of 

17 inclusions, the “band gap” effect is very well defined and corresponds to a continuous bright 

patch in the Figure 5.17 (b), occurring between normalized frequencies of 0.5 and 1.0. 

Additionally, it becomes clear that one of the constructive effects identified above – the leftmost 

one marked “2” in Figure 5.16 (a) – has now disappeared. That effect can be related to the 

diagonal distance between inclusions in the rectangular distribution, which is eliminated when 

triangular lattices are considered. 

 

Figure 5.17 – Insertion Loss at R1 for triangular lattices considering (a) 33 and (b) 53 groups. 

To understand the effect of considering the inclusions as being made of an elastic material, 

simulations were performed for the geometrical configuration used in Figure 5.17 (b), i.e., 5 × 3 

triangular lattice. The material properties M2 and M3 (see Table 5.4) for the inclusions were 

considered. Figure 5.18 illustrates the 𝐼𝐿 at receiver 𝑅  for these two materials. 
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Figure 5.18 – Insertion Loss at R1 when the inclusions are made of (a) M2 and (b) M3. 

Observing the plotted results, new features due to the consideration of the elastic properties of 

the inclusions can be seen. Although the upper part of the plots remains essentially unchanged, 

there is a very distinct behaviour on the lower part. This behaviour is associated with the 

longitudinal vibration modes of the inclusions, namely their flexural and torsional modes, 

which allow a significant part of the energy to pass through and reach the receivers. To validate 

this statement, the dispersion curve for longitudinal bending waves has been computed for both 

material types and is represented in the plots by a dashed line. This new line divides the upper 

and lower parts of the plot, and below it, a completely different behaviour is seen when 

compared with the plots depicted in Figure 5.16 or Figure 5.17. For lower values of 𝑘, the 

additional contribution of a torsional mode is seen, which also contributes to a reduced 𝐼𝐿 

observed in Figure 5.18. To confirm that these are indeed the referred modes, the deformed 

configuration of the inclusions has been computed for 𝑓̅– 𝑘 pairs located over the corresponding 

dispersion curves and is depicted in Figure 5.19. To facilitate the interpretation, only two 

inclusions are plotted. Observing these plots it can be seen that a clear bending behaviour is 

observed in Figure 5.19 (a), while a torsional behaviour is seen in Figure 5.19 (b), thus 

confirming the described effects. 
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Figure 5.19 – Deformed configuration of elastic inclusions computed for 𝑓–̅ 𝑘 pairs corresponding to (a) the 
bending wave and (b) torsional wave dispersion curves. 

The observations made above about elastic inclusions allow inferring that accounting for the 

correct elastic behaviour of the inclusions is essential, since the global behaviour is very 

different from that seen in the case of rigid inclusions. The elastic behaviour of the inclusions 

clearly decreases the attenuation efficiency of the periodic structures, mainly for lower values 

of the normalized slowness. 

5.2.5 Conclusion 

In this section, a study regarding the simulation of the dynamic behaviour of an elastic sonic-

crystal-like structure accounting for its 3D behaviour was made. The proposed model is based 

in a 2.5D elastodynamic formulation, making use of an improved version of the MFS 

specifically tailored for periodic structures. It was shown that the proposed model is quite 

adequate and very efficient for the analysis of such structures and allows simulations to be 

performed even for quite large systems. With the proposed improvement, efficiency is greater 

than 20 % when compared to traditional MFS. 

From the presented application examples, some interesting conclusions can be drawn. It can be 

said that the simulated arrays of rigid cylinders essentially present the expected behaviour of a 

sonic crystal, exhibiting a clear band gap. The position of this band gap can be approximately 
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estimated, similar to that used for acoustic problems, considering the S wave velocity. When 

square and triangular lattices were compared, the latter seems to exhibit a smoother and cleaner 

behaviour, with a very well-defined band gap region, although affecting a narrower frequency 

band. Finally, it was observed that when elastic inclusions are considered, a dramatic change 

occurs, and the vibrational behaviour of the inclusions introduces a very significant degradation 

of the 𝐼𝐿, particularly for low values of the normalized slowness (𝑘), below the dispersion curve 

associated with the bending waves of the inclusions. This behaviour represents a significant 

issue that must be addressed in order to efficiently use this concept for vibration mitigation. 
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6 3D FEM ANALYSIS OF VIBRATION MITIGATION 

In the previous chapter the existence of attenuating properties of arrays of elastic scatterers was 

demonstrated in a 2.5D scenario, although also identifying possible limitations related to the 

propagation of bending waves along the scatterers. However, it has been found that the new 

concept of vibration protection based on buried periodic structures may constitute a powerful 

future solution that deserves further investigation. To achieve this objective, in this chapter, a 

3D time domain finite element method was implemented for simulating ground wave 

propagation in the presence of buried periodic structures. For this purpose, a generic scenario 

such as the one schematically represented in Figure 6.1 is carefully defined and used for all 

cases of interest. In this scenario, an initial simplification in the loading pattern introduced by 

the train passage is assumed by taking the dynamic load to be invariant along one direction, 

which allows its representation using a line load. The load imposed by the train passage in 

reality is complex and governed by the train-track dynamic interaction (Alves-Costa et al., 

2012b; Colaço et al., 2016), being similar to moving point load. However, due to the track 

bending stiffness, point loads are distributed along the track-ground interface and, in the context 

of the present study, this can be assumed as a line loading condition to save computational 

effort. The specific type of mitigation device studied consists of a buried periodic structure, 

made of a sequence of vertical (or slightly tilted) inclusions with square cross-section in the 

horizontal plane, periodically repeated along one direction, allowing to create a buried barrier 

between the line load and sensible receivers (see Figure 6.1). Thus, since the propagation 

domain is infinite, only a slice of the model needs to be considered containing the set of 

inclusions to be repeated in one direction. The effect of the line load and receivers is also 

included in the considered slice. Since slices are infinitely repeated along the longitudinal 

direction of the line load, their global effect can be reproduced by the simulation of a single 

slice of the host environment with boundary condition of zero displacement in the direction 

orthogonal to the slice faces (𝑦 direction in Figure 6.1). 
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Figure 6.1 – Schematic representation of the model used for 3D wave propagation analyses. 

6.1 Definition of studied scenarios 

Extensive analyses were performed to understand the behaviour of a phononic crystal in 

different environments. Bearing in mind the presented general scenario, the study here 

presented was carried out in four complementary stages and results are grouped taking these 

stages into account. The first set of analyses considered a homogeneous soil medium, and 

simulations were performed to compare the performance with classical buried walls, for 

structures with different depths, materials and cross-sections. A second set of analyses 

considered the same homogeneous soil medium but simulated the effect of inclusions with 

different depths in the same phononic crystal. A third set of analyses aims at understanding 

more realistic scenarios in the performance of the same devices, with the presence of layered 

host ground media. Finally, a fourth set of analyses was done to evaluate the effect of the 

inclusions tilt in a homogeneous soil medium. 

For all cases, the basic structure adopted for the phononic crystal device consists of three rows 

of inclusions with the same geometric and material characteristics. Next, the main properties 

and features of the studied scenarios are presented. 
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6.1.1 Phononic crystal buried in a homogeneous medium 

The proposed phononic crystal device and a classical buried wall solution were initially studied. 

For both mitigation devices, three depths, three widths and two different material characteristics 

of the inclusions were considered. For comparison purposes, the buried wall was positioned at 

the same distance from the source as the closest inclusion. The host medium had a density 𝜌 =

2000 kg/m , Young’s modulus 𝐸 = 50 × 10  Pa and Poisson’s ratio 𝜈 = 0.35, properties of a 

soft soil. 

A first set of analysis was performed for thirty-seven cases: the case without any type of 

mitigation devices plus the thirty-six summarised in Table 6.1, where the material properties of 

mitigation devices are also defined. In this context, the designation of “poor” is used for devices 

with the lower Young’s modulus and “stiff” for devices with the higher Young’s modulus. In 

practice, stiffer devices have properties close to those of concrete, while the so-designated 

“poor” inclusions and walls have properties closer to a soil-cement mixture (with a Young’s 

modulus around ten times smaller than concrete). 

Table 6.1 – Summary of test cases in the first set. 

 Mitigation devices 
Type Phononic crystal Wall 

Cross-section in 
horizontal plane 

0.2 × 0.2, 0.4 × 0.4 and 0.6 × 0.6 
[m ] 

Thickness [m] of 
0.2, 0.4 and 0.6 

Depth [m] 1.5 3.0 5.0 1.5 3.0 5.0 1.5 3.0 5.0 1.5 3.0 5.0 

Density [kg/m ] 2100 2400 2100 2400 
Poisson’s ratio 0.25 0.20 0.25 0.20 

Young’s modulus [Pa] 2.710  2710  2.710  2710  
Designation “poor” “stiff” “poor” “stiff” 

Figure 6.2 illustrates the 1.2 m wide slice which was modelled and that is infinitely repeated 

along 𝑦 direction. In this figure, an absorption layer is shown, which is necessary to simulate 

the effect of an infinite medium in 𝑥 and 𝑧 (depth) directions. This layer, which has the width 

of at least one wavelength (considering the dominant wavelength of the emitted pulse), is 

responsible for absorbing all incoming energy, thus avoiding unwanted reflections from 

returning to the physical domain. The system is excited by a Ricker pulse, emitted from a line 
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source located 10 m to the right of the origin of the axes. The mitigation device has the centre 

of its first inclusion placed 10.3 m to the right of the excitation line load. The phononic crystal 

is composed of a set of three inclusions (along the 𝑥 direction), spaced 1.2 m between centres, 

and infinitely repeated along the 𝑦 axis with the same spacing. Three sets of inclusions were 

considered, with different depths of (1.5, 3.0 and 5.0) m and, for each depth, the horizontal cross-

sections of (0.2 × 0.2, 0.4 × 0.4 and 0.6 × 0.6) m  were tested. In addition, the two above 

described different materials were considered for the inclusions (see Table 6.1 and Figure 6.2). 

To benchmark the efficiency of these devices, the effect of a buried wall, also with its centreline 

placed 10.3 m from the source of excitation, was also studied. Similarly to the three sets of 

inclusions, three wall depths and three wall widths were considered with the same materials 

used in the inclusions. Finally, a line of receivers was placed on the ground surface, throughout 

the total width of the slice, at 15 m from the source (downstream, after the mitigation devices). 

 

Figure 6.2 – Schematic representation of the slice model used for the numerical analysis of wave propagation. 

6.1.2 Phononic crystal composed of inclusions with different depths 

The same model described in the previous section is used to perform a second set of analyses 

on the effect of inclusions with different depths in the same phononic crystal. For these 

analyses, the phononic crystal is still composed of three rows of inclusions, each row with a 

constant depth. Thus, the model is schematically represented in Figure 6.2, and the only change 

made corresponds to the depth of the inclusions. The five cases summarised in Table 6.2, are 

analysed. The two sets of material properties, designated by “stiff” and “poor”, are again used. 
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Table 6.2 – Configurations of phononic crystals with varying inclusion depth. 

Designation Depth of row 1 Depth of row 2 Depth of row 3 
{5.0, 5.0, 5.0} m 5.0 m 5.0 m 5.0 m 
{5.0, 3.0, 5.0} m 5.0 m 3.0 m 5.0 m 
{3.0, 5.0, 3.0} m 3.0 m 5.0 m 3.0 m 
{1.5, 3.0, 5.0} m 1.5 m 3.0 m 5.0 m 
{5.0, 3.0, 1.5} m 5.0 m 3.0 m 1.5 m 

6.1.3 Phononic crystal buried in stratified media 

For engineering purposes, natural grounds can be seen as layered domains of constant properties 

inside each layer. Thus, this variable – the effect of the soil stratification – is introduced into 

the model, with changes in wave propagation patterns and the response produced by the 

phononic crystals being expected. 

As in previous cases, mitigation devices correspond to phononic crystals composed by a set of 

three parallelepipedic inclusions with quadrangular horizontal cross-section. As in the initial 

scenarios presented in 6.1.1, three sets of inclusions with distinct depths, (1.5, 3.0 and 5.0) m are 

studied, and, for each case, three configurations of the stratified host medium (S1, S2 and S3) 

are analysed, as summarised in Table 6.3. 

Table 6.3 – Summary of the studies carried out in the third set of analyses. 

 Mitigation devices depth [m] 
Host medium (No mitigating devices) 1.5 3.0 5.0 
Stratification  S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

Layer 1 RHM RHM RHM RHM RHM RHM RHM RHM RHM RHM RHM RHM 
Layer 2 RHM SHM SHM RHM SHM SHM RHM SHM SHM RHM SHM SHM 
Layer 3 RHM SHM R RHM SHM R RHM SHM R RHM SHM R 

RHM – Reference host medium; 
SHM – Stiffer host medium; 
R – Rock. 

S1 – Only the reference soil; S2 – Reference soil in the surface layer and stiffer 
soil in the remaining layers; S3 – Reference soil in the surface layer, stiffer soil 
in the intermediate layer and rock in the deepest layer. 

The layers referred in Table 6.3 are schematically defined in Figure 6.3, showing the modelled 

slice with the stratified soil, inclusion set, loading and receivers line. As in the previous model, 

the represented slice is infinitely repeated along the 𝑦 direction, and adequate boundary 

conditions are used to simulate the infinite nature of the problem. The characteristics of the 

absorbent layer are the same as those considered in the previous model where, in the same way, 
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the energy absorption is based on the material damping to avoid unwanted reflections in the 

system being studied. The system is excited by a Ricker pulse with source located 10 m to the 

right of the system origin. The phononic crystal has its first element centre placed at a distance 

of 10.3 m to the right of the excitation point. This mitigation device consists of a periodic set of 

three inclusions spaced 1.2 m from their centres. Finally, a set of receivers is placed on the 

surface, along the total width of the slice, at 15 m from the source. 

 

Figure 6.3 – Schematic representation of the slice model used for stratified soil cases. 

For this set of analyses, only the “stiff” phononic crystal structures are considered. The material 

properties of both inclusions and of the different soil types are defined in Table 6.4. 

Table 6.4 – Material properties used in the third set of analyses. 

Materials 
Density 
[𝐤𝐠/𝐦𝟑] 

Poisson’s 
ratio 

Young’s modulus 
[𝐏𝐚] 

Wave velocities 
[𝐦/𝐬] 

P S R 
RHM 2000 0.35 50 × 10  200.31 96.23 89.95 
SHM 2000 0.35 200 × 10  400.62 192.45 179.91 
Rock 2312 0.23 32 × 10  4005.69 2371.99 2174.52 
Mitigation devices 2400 0.20 27 × 10  3535.53 2165.06 1973.82 

6.1.4 Phononic crystal with tilted scatterers buried in a homogeneous medium 

This model is similar to the first model scenario. In this case, the soil has the same material 

properties and only the “Stiff” quadrangular inclusions 5 m deep and 0.6 m wide whose material 
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characteristics are defined in the Table 6.1 were considered. The angles, 𝛼, of 0° (reference 

angle), 5° and 10° (see Figure 6.4) where analysed. 

 

Figure 6.4 – Schematic representation of the slice model used for tilted scatterers. 

6.2 Results and discussion 

Numerical simulations were performed using the 3D FEM-TD model. The geometry depicted 

in Figure 6.2 and in Figure 6.3 was discretised using a mesh of 2 162 160 regular tetrahedral 

elements; this mesh is generated considering a regular grid of nodes, equally spaced 0.1 m along 

the three spatial directions. A propagating Ricker pulse with a central frequency of 60 Hz was 

considered in all studied cases. Due to the spectral content of this type of pulse, the chosen 

central frequency of 60 Hz allows to simulate propagation scenarios in which significant energy 

content exists in the 40 − 100 Hz range: the relevant frequency range for transportation-induced 

vibrations. In the numerical process, a damping factor is taken equal to 1 % for all materials; 

the damping factor of the absorbent layer varied from 1 % near the Analysis zone to 100 % in 

the limit of the layer furthest from that zone. 

The required time-steps for the different scenarios without the phononic crystal are 5.9 × 10  

s, 3.0 × 10  s and 3.0 × 10  s, respectively for S1, S2 and S3. When the stiffer inclusions are 

considered, the time-step for S1 and S2 scenarios becomes lower, assuming the value of 

3.5 × 10  s. In all cases, the critical time-step is conditioned by the stiffer medium, which may 

either be the inclusion or the rock layer (for S3 configuration). 
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6.2.1 Phononic crystals versus buried walls 

This section presents the comparative results of the response in the Downstream zone due to 

the existence of vibration mitigation devices, namely in the presence of the phononic crystals 

and buried walls. To evaluate the differences due to the presence of both devices, the same 

materials were used for the two mitigation measures. Both results were, then, compared to the 

results without any type of mitigation devices to determine the respective insertion loss values. 

Figure 6.5 shows the vertical amplitudes over time registered in receiver 𝑅  (see Figure 6.2) 

placed at the surface of the host medium, 15 m from the source, aligned with the centre of the 

inclusions. These results are obtained when a set of three rows of inclusions or a buried wall, 

both with 5 m depth and 0.6 m width, are considered. These responses are compared to 

homogeneous medium propagation considering devices with different material properties: (a) 

a softer material and (b) a stiffer material. Observing the depicted plots, the arrival of a first 

pulse is clearly visible for both cases, corresponding to P waves travelling in the soil. For the 

homogeneous medium, a set of pulses arrives later and well separated from the first, 

corresponding to S and R waves, which travel at lower velocities and, after that, no additional 

pulses are registered. This is the expected response for a homogeneous medium, in which, 

besides the interaction with the surface, no additional interferences with the propagation of the 

incident wave occur. The result is markedly different when the periodic inclusions are 

considered. Note that for the first pulse (P wave), there is no significant difference in the 

response with respect to the homogeneous medium. However, right after that a set of other 

pulses arrive at the receiver, corresponding to multiple interactions with the buried structures. 

The surface and S waves also suffer significant influence from the buried structures, and the 

strong pulse observed before, associated with these wave types, is now replaced by a sequence 

of pulses resulting again from interaction phenomena. It can be noted, for all types of buried 

structures, that the very strong peak (S and surface waves) is very much attenuated by the 

presence of either the phononic crystal or the wall, even when smaller stiff properties are 

considered. Observing L , L  and L  lines (see Figure 6.5), related to the maximum amplitudes 

registered for each case, there also seems to be some additional benefit when the phononic 

crystals are used. This will be studied in more detail later in this work. 
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Figure 6.5 – Comparison between mitigation device types and their stiffness: (a) poor and (b) stiff. 

Figure 6.6 illustrates snapshots of the wave field in the Analysis zone, in terms of vertical 

displacements, computed in the presence of sets of 5 m depth stiff inclusions with differently 

sized square cross-sections: (a) 0.2 m, (b) 0.4 m and (c) 0.6 m. 

 

Figure 6.6 – Time evolution of 5 m depth stiff inclusions: (0.2, 0.4 and 0.6) m width, (a), (b) and (c) respectively. 
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Note that the distance between centres of inclusions is 1.2 m in all situations. One first remark 

that should be made is that no spurious reflections from the artificial absorption layer seem to 

occur. As for the wave propagation patterns, the interference of the buried devices is clear, with 

a more complex pattern being visible when multiple inclusions are considered – which becomes 

particularly evident for later times. These snapshots also evidence a considerable fraction of 

energy being reflected back by all inclusions, showing the intended shielding effect which, over 

time, is most evident in the inclusions with larger cross-sections. Additionally, from these 

snapshots can be seen that surface waves have a strong importance, as expected, since the 

geometric attenuation of this waves is null due to the loading characteristics (infinite line 

loading). 

Figure 6.7 shows the average vertical vibration levels detected on surface receivers located 15 m 

from the source, beyond the sets of 5 m deep inclusions with “poor” and “stiff” material. The 

vibration levels, at each frequency band, correspond to the various widths, in the longitudinal 

direction, of the studied inclusions. These levels are computed in the frequency domain, after 

application of a fast Fourier-transform to the time signals obtained using the TD-FEM 

algorithm. To better observe the global behaviour, the response is grouped in frequencies of 

one-third octave bands, in the range from (10 to 160) Hz. The same total duration of the time 

signal was always considered (0.35 s) to allow for a correct comparison between the different 

scenarios, thus leading to the same frequency domain discretisation and to one-third octave 

band levels that are directly comparable. It should be noted, however, that the absolute vibration 

levels will always depend on the frequency content of the load. Therefore, they must be used 

only for comparison of different scenarios when the same excitation load is considered. Figure 

6.7 shows that all sets of mitigation devices (although with different widths) allow a reduction 

of the vibration levels, despite acting differently throughout the frequency range. It is important 

to note that different reduction levels can be identified between the stiffer and softer (“poor”) 

inclusions, and clearly the use of a stiffer material to build these phononic crystals leads to a 

better overall efficiency of the solution. The higher contrast between the propagation medium 

and the elastic material of the embedded scatterers allows a larger portion of the incident energy 

to be reflected and thus enhances the visible effect of the structure. An additional point that 

must be stated is related with the effect of the dimension of the scatterers, which, for both 
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materials, is a dominant factor; for both cases, as larger scatterers are modelled, a higher 

reduction in the vibration levels occurs indicating that, as expected, larger filling fractions of 

the matrix have a beneficial effect. 

 

Figure 6.7 – Vertical vibration levels of 5 m deep, poor and stiff inclusions with several widths. 

Although the analyses presented focus on the vertical displacements, an illustrative plot is 

presented in Figure 6.8 for horizontal displacements. In that case, the reduction is not so clear 

and in the lower frequency bands, (10 – 20) Hz, the effect is null or even negative. 

 

Figure 6.8 – Horizontal vibration levels of 5 m deep, poor and stiff inclusions with several widths. 
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Figure 6.9 presents the vertical vibration levels detected in the previously mentioned receivers, 

now comparing the various depths of inclusions and buried walls, in all cases with the same 

stiffer material and with 0.6 × 0.6 m  horizontal cross-section and 0.6 m thickness, respectively. 

A qualitative comparison between plots immediately allows identifying an important difference 

between the behaviour of both types of device. When the discrete set of periodically spaced 

inclusions is considered, a larger vibration reduction is registered at intermediate frequencies, 

while the continuous walls provide better vibration reduction at higher frequencies. 

 

Figure 6.9 – Vertical vibration levels: both stiff inclusions and buried wall with 0.6 m width. 

To better understand these results, Figure 6.10 represents the calculated reduction levels of 

vertical vibration estimated for each scenario, for the three depths studied, and for the two types 

of elastic material composing the mitigation devices. To evaluate the effect of the presence of 

mitigation devices in the vibrations registered in the previously mentioned receivers, the 

reduction is computed in terms of insertion loss level, IL, which was already defined at the 

beginning of the previous chapter – Equation (5.1). 
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Figure 6.10 – Vertical insertion loss of mitigation devices of 0.6 m width: (a) set of inclusions and (b) buried 
wall. 

Regarding the material type used in the protection devices, as expected and as previously 

commented for Figure 6.7, using a stiffer material generally leads to a better global performance 

for all tested depths, with higher values of insertion loss being reached. For this case, a sharper 

contrast of properties between the soil and the devices exists and allows stronger energy 

reflections to occur. 

When comparing the horizontal cross-sectional dimensions of the buried devices (see Figure 

6.11), it can be concluded that 𝐼𝐿 has an approximately linear relation with the cross-section (or 

with the filling fraction in the case of phononic crystals) in the frequency range of interest; in 
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other words, taking into account the cases studied and the frequency bands between 

(20 and 100) Hz, it can be stated that the greater the width, the higher 𝐼𝐿. 

 

 

Figure 6.11 – Vertical insertion loss of mitigation devices 5 m deep: (a) set of inclusions and (b) buried wall. 

Finally, Figure 6.12 displays results computed for distances between inclusions of 1.2 m 

(analysed in the previous cases) and 0.8 m. In these cases, the cross-section of the inclusion was 

considered square, with side dimensions being half the distance between inclusions (i.e. 

0.6 × 0.6 m  for a distance of 1.2 m, and 0.4 × 0.4 m  for a distance of 0.8 m). Observing the 

presented plot, it becomes clear that a shift to higher frequencies occurs when a smaller spacing 

between inclusions is considered, confirming the behaviour identified earlier, and also the 

observations from (Castanheira-Pinto et al., 2017) for horizontally placed scatterers. 
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Figure 6.12 – Vertical insertion loss of mitigation devices 5 m deep comparing for square (dd) inclusions 
spaced by 2d. 

6.2.2 Phononic crystals using scatterers with different depths 

Although in the previous section only sets of inclusions with the same depth have been 

analysed, it may be interesting to verify the behaviour of the periodic device when scatterers 

with different depths are considered. Thus, in this section, the analysis presented before is 

extended to the case in which each row of the phononic crystal may have a different depth (see 

Figure 6.1 where a possible configuration scheme of inclusions is represented). The model is 

the same as that shown in Figure 6.2 and the properties of the materials are the ones indicated 

in Table 6.1. In this section, only the study carried out with inclusions of 0.6 × 0.6 m  horizontal 

cross-section is presented, and the results compared with a reference for the case with all 

inclusions 5 m deep. The tested cases are the ones depicted in Table 6.2. 

Figure 6.13 shows the comparison between the vertical amplitudes, in time domain, resulting 

from sets of multiple-depth inclusions with (a) poor and (b) stiff materials and the original set 

with a depth of 5 m. From the presented plots it is observed that, when inclusions 1.5 m deep 

are included, less favourable results are observed, while the remaining combinations seem to 

result in better performance; however, these time plots do not allow accurately detecting 

differences between the presented cases in detail. Regarding the type of material for the 

inclusions as expected and previously commented, using a stiffer material leads to a better 

global performance for all tested depths, with smaller amplitudes being reached (see line L). It 
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can be further added that the combination {5.0, 3.0 5.0} m depths has practically the same 

performance as the reference combination (set of all inclusions width 5 m depth). 

 

Figure 6.13 – Comparison between different configurations of phononic crystals: (a) poor and (b) stiff material. 

A more detailed comparison can be performed by analysing results in the frequency domain, 

presented in Figure 6.14, which shows the insertion loss values registered on surface receivers 

15 m from the source. From these charts, some conclusions may be drawn. The reference 

configuration outperforms all the remaining ones at lower frequencies, particularly when the 

softer material – see Figure 6.14 (a) – is used. Additionally, for configurations that include 

inclusions 1.5 m deep, this reduced performance is even more evident. For the higher 

frequencies, the combinations of different depths in the same phononic crystal produce better 

results. Looking at only this type of crystals, the solution {5.0, 3.0, 5.0) m produces, in almost 

all the frequency bands above 50 Hz, a better result. 

Generally, the results presented in this section seem to indicate that some improved 

performance at higher frequencies may be obtained by using inclusions with different depths, 

although at the cost of losing part of the performance at lower frequencies. However, this gain 

is only visible when stiffer inclusions are used. 
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Figure 6.14 – Vertical insertion loss of sets of 3 inclusions with a (a) poor and a (b) stiff material. 

6.2.3 Applications in layered ground 

To understand the performance of the phononic crystal solutions when embedded in a stratified 

medium, several simulations were performed. Figure 6.15 displays the vertical amplitude over 

time, registered in the receiver 𝑅  (see Figure 6.3) and placed at the surface of the medium, 

15 m away from the source, in the alignment of the centre of the inclusions. These results are 

obtained by taking into account three distinct stratification levels (see Table 6.3): S1, where 

only the reference soil is considered for all layers; S2, in which reference soil in the surface 

layer and stiffer soil in the remaining layers are considered; S3 wherein reference soil in the 

surface layer, stiffer soil in the intermediate layer and rock in the deepest layer are considered. 
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One should note that, for S2 and S3 cases, the highly dispersive character of the surface waves 

originates a quite different propagation pattern when compared to the S1 case. 

 

Figure 6.15 – Vertical displacement time history in the scenario with stratified media. 

Figure 6.16 presents snapshots at different time instants of the wave field corresponding to the 

vertical displacements in the tested cases: (a) only the reference host medium, (b) a 3 m 

reference host medium layer and a stiffer soil below and, finally, (c) the 3 m reference soil layer, 

followed by a 4 m stiffer soil layer, followed by a bedrock. It is evident that, as time progresses, 

the interference of the progressively stiffer deeper layers leads, at higher frequencies, to the 

energy being trapped in the top soil, resulting from the lower layers’ reflexion, originating a 

wave guiding effect, and thus a more complex wave pattern for the elastic waves in the layered 

media. For lower frequencies, a different effect is observed, with part of the energy travelling 

through the bottom layer, at much higher velocities, and then being again radiated to the top 

layer. It can also be seen that no spurious reflections from the artificial absorption layer occur. 

Regarding now the phononic crystal with three inclusions 5 m deep, with 0.6 × 0.6 m  

horizontal cross-section, Figure 6.17 shows the average vibration levels registered at surface 
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receivers; the reference levels obtained for each case without the phononic crystal are also 

included for comparison. From this figure, it can be concluded that the presence of the phononic 

crystals leads, again, to a decrease in surface vibration levels at all frequencies, although 

varying efficiency occurs with frequency and configuration of the layered ground. 

 

Figure 6.16 – Vertical displacements propagation over time in (a) S1, (b) S2 and (c) S3 stratification scenarios. 

 

Figure 6.17 – Vertical vibration levels with and without inclusions for the S1, S2 and S3 scenarios. 
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To better evaluate and understand the effect of the presence of the phononic crystal in the 

vibrations registered in the previously mentioned receivers, the efficiency is computed in terms 

of insertion loss as defined before. In Figure 6.18, a significant reduction of vibration is 

observed in all stratified media scenarios – the same is to say, with good performance –, in the 

original propagation central frequency of 60 Hz. It is also verified that, as the soil is more 

stratified, with the host environment composed of stiffer lower layers, the vibration attenuation 

becomes smaller. 

The aim of this study is to converge to mitigation devices that may be a future practical solution. 

Inclusions longer than 5 m may not be very interesting for technical and economic standpoints. 

However, an additional study with 7 m depth inclusions was done. In the case of homogeneous 

ground, there is a tendency for attenuation of vibration levels with the increase of inclusions 

length, i.e., as longer the inclusions are, the larger is their efficiency. In the case of layered 

ground, this efficiency is not so evident, being very similar to inclusions with 5 m depth. 
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Figure 6.18 – Vertical vibrations insertion loss by phononic crystal mitigation devices in different stratified 
media: (a) S1; (b) S2; (c) S3 scenarios. 

6.2.4 Phononic crystals using scatterers with a tilt angle 

Finally, the results considering the influence of inclusions positioned with a tilt angle is 

presented. Figure 6.19 presents snapshots at different time instants of the wave field 

corresponding to the vertical displacements in the tested cases: (a) 0° reference angle, (b) angle 

of 5° and (c) angle of 10°. This figure shows that, for the studied angles, the influence of the 

inclination is minimal. However, some energy is reflected to the lower parts of the soil to the 

left of the tilted inclusions. This is visible mainly in later times. 

Figure 6.20 shows the insertion loss average computed from the vertical vibration levels 

detected in the receivers line located 15 m from de load line, as defined in Figure 6.4. A 

qualitative comparison between plotted columns immediately allows identifying a benefit of 

tilted inclusions at low frequencies where the more tilted the more insertion loss. However, 

between central frequencies of (25 and 50) Hz the opposite is true. Between the central 

frequencies of (63 and 100) Hz, tilted inclusions perform better again. Although this is a quite 

complex phenomenon, it should be noted that the small tilt angle introduced will have some 

influence in the propagation pattern and can introduce changes in the expected behaviour. 

Indeed, the described Bragg effect will be influenced, and the reduction peak may be somewhat 

smoothed. This is, in fact, seen in Figure 6.20, in which the pronounced peak at 50 Hz is reduced 

and higher attenuations are obtained at (63 and 80) Hz. 
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Figure 6.19 – Vertical displacements propagation over time with inclusions tilt angle of (a) 0º, (b) 5º and (c) 10º 
to the vertical. 

 

Figure 6.20 – Vertical vibrations insertion loss in the presence of inclusions with different tilt angles. 

6.2.5 Conclusion 

From the study here presented it can be concluded that it may be possible to mitigate the effect 

of the vibrations caused by the passage of trains in sensitive constructions to achieve human 

comfort and well-being. That mitigation is achieved by transposing the “phononic” crystals and 
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metamaterial concepts to the vibration protection based on buried structures periodically 

arranged located between the source and the receiver. Different geometries, materials and tilt 

angles were studied and compared with results of current mitigation solutions, in this case, with 

buried walls. It was verified that the studied concept allows quite interesting results in a range 

of frequencies that may be adjusted by changing the spacing and properties of the buried 

scatterers. Only in very specific frequency bands it can be seen, in the insertion loss graphs of 

Figure 6.10 a), that the soil without inclusions has better behavior, especially at lower 

frequencies. It should, however, be noted that traditional buried wall systems may provide better 

results at higher frequencies. In a generic way, the stiffer materials, relatively to the stiffness of 

the propagation medium, lead to better results. The behaviour of the structures in a more natural 

environment, as in the case of a stratified soil, was also efficient and showed a good 

performance, although a more complex response was observed. Regarding the geometry 

(horizontal cross-section and spatial arrangement) and material characteristics of the inclusions, 

it can finally be concluded that an optimal and tuned system depends widely on the properties 

of the host medium and the frequency band to be mitigated, since each configuration has its 

efficiency zone very much enhanced in the band gap frequency range. 

A final aspect that is worth mentioning is that the time-marching 3D finite element model used 

here allowed to carry out this study in a more efficient manner, providing accurate results and 

a reduced computational effort. 
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7 NUMERICAL SIMULATION OF ULTRASONIC WAVE 
PROPAGATION 

The propagation of ultrasonic waves is used in some applications in civil engineering, such as 

measurements and detection of structural damage. Ultrasonic damage detection techniques are 

increasingly being used because of their non-destructive characteristics and because they allow 

the detection of damage in the initial stage. In this chapter, numerical simulations based on the 

Time of Flight Diffraction method are presented to analyse elastic wave propagation in cracked 

concrete structures. The FEM-TD algorithm described in section 3.3 of this thesis will be used, 

since it is more adequate for the analysis of complex geometries. 

7.1 Preliminary analysis 

The purpose of this section is to evaluate the numerical model ability to detect damage in 

concrete structures and also as a first approach to interpreting the outputs. The accuracy of the 

computations of the distances travelled by the P waves is shown in a first case, presented in a 

2D analysis. Next, a three-dimensional analysis is made in which the more complex patterns 

due to multiple reflections and wave types can be observed. 

7.1.1 2D analysis 

The 2D analysis allows evaluating the wave propagation and studying the results accurately 

and without excessive computational effort. This first analysis was made considering a 

400 × 100 mm  concrete beam with a small rectangular defect, with 50 × 10 mm , at its centre, 

as shown in Figure 7.1. The geometric model was defined by a finite element mesh with a 

maximum element size of 0.001 m. The corresponding concrete properties are: density  =

2500 kg/m , Young’s modulus 𝐸 = 35 000 N/mm  and Poisson’s ratio  = 0.15. 

This analysis scans the upper surface of the beam with a transducer that emits a vertical signal 

(a Ricker pulse) at each point, with a certain frequency, and acquires the response over time (𝑡) 

– see the sources and receivers in Figure 7.1. Then, the distance (𝑡 × 𝑣) travelled by the waves 
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is plotted considering the P waves velocity (𝑣 = 𝑣 = 3845 m/s). A first set of results is shown 

in Figure 7.2 for different central frequencies of the emitted pulse, namely (a) 100 kHz, (b) 150 

kHz, (c) 200 kHz and (d) 250 kHz. These figures show that the lower frequency exhibits wider 

pulses, which make it more difficult to interpret the different reflections in the system. This is 

particularly clear for higher order reflections. As higher frequencies are considered, the signals 

become progressively sharper, revealing more distinctly separate reflections. Among the 

presented results, those computed for 200 kHz seem to be a good compromise, which 

adequately evidence the main features of the wave propagation, while avoiding the drawbacks 

of higher frequency numerical simulations (such as finer meshes and consequently smaller time 

steps). 

 

Figure 7.1 – Schematic representation of the analysed beam with a centred defect. 

Figure 7.3 – magnification of Figure 7.2 (c) – shows the distance travelled by the P waves on 

the beam without defect, at each receiver placed at the top of the beam along its length. From 

this figure, it is clear that the distance travelled by the wave (0.2 m) is twice the height of the 

beam and the sum of two equal portions: the distance travelled on the outward flight and the 

distance travelled on the return flight. The colour map in the figure corresponds to the absolute 

value of the displacement amplitude at each receiver. 
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Figure 7.2 – Beam without defect, regarding a Ricker pulse with a central frequency of (a) 100 kHz, (b) 150 kHz, 
(c) 200 kHz and (d) 250 kHz. 

 

Figure 7.3 – Distance computed from data obtained on the receivers line, on the beam without defect, regarding 
a Ricker pulse with a central frequency of 200 kHz. 

In the presence of the defect, and considering a frequency of 200 kHz, the plot shown in the 

Figure 7.4 is obtained. The distance travelled by the P waves is accurately obtained and thus 
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the distance of the top of the defect to the top of the beam (0.09/2 = 0.045 m) is well defined. 

Indeed, for this case, the performed analysis allows an excellent reconstruction of the 

propagation medium, clearly evidencing the presence and position of the defect. This is, in fact, 

a classical example of application of ultrasonic techniques to obtain images of the interior of a 

structure. 

 

Figure 7.4 – Distance computed from data obtained on the receivers line, on the defected beam, regarding a 
Ricker pulse with a central frequency of 200 kHz. 

To better understand the behaviour of the reflection of propagated waves over time, the two 

models represented in the Figure 7.5 are analysed where the defect is centred on the beam with 

the same dimensions and rotated 15º (a) to the left and (b) to the right. The beam has the same 

dimensions and material properties as before and the frequency of the wave propagation 

impulse is 200 kHz. 

 

Figure 7.5 – Schematic representation of the beam with centred defects: rotated 15° (a) to the left and (b) to the 
right. 
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Observing the Figure 7.6, it is concluded that the evaluation of the rotated defect position is less 

clear; however, its presence and rotation is evident. In the Figure 7.6 (a), it can be seen that the 

reception of the left part of the defect occurs before its real location. The opposite is seen in the 

Figure 7.6 (b) where the reception of the left part is represented after its real position and 

extends beyond the defect, in the right part. 

 

Figure 7.6 – Detection of the defect from data obtained on the receivers line, on the beam with defected rotated 
15° (a) to the left and (b) to the right, regarding a Ricker pulse with a central frequency of 200 kHz. 

This differential between the real position and the position inferred from the wave patterns is 

due to the effect represented in the Figure 7.7. The load acting in the system is vertical and 

creates a curved wavefront which, in the case of the defect rotated to the left, is reflected before 

the vertically propagating impulse reaches the defect, causing it to be identified before its real 
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position – see Figure 7.6 (a). Horizontally flipping the Figure 7.7, a similar scheme is obtained 

for the defect rotated to the right and, likewise, the shift to the right – see Figure 7.6 (b) – of the 

data read at the receivers relative to the real position of the defect is justified. 

 

Figure 7.7 – Scheme of wave reflection in the rotated defect. 

7.1.2 3D analysis 

Analysis using a three-dimensional FEM-TD numerical model is next performed on a concrete 

beam of small size. For this analysis, beams with 400 × 100 × 100 mm  were considered. The 

corresponding concrete properties are: density  = 2500 kg/m , Young’s modulus 𝐸 =

35 000 N/mm  and Poisson’s ratio  = 0.15. The models used are outlined in Figure 7.8 where 

the beam: (a) has no damage, (b) has a spherical hole in its centre, (c) has a semi-spherical hole 

in the centre of the upper face and, (d) has a semi-spherical hole in the centre of the front face. 

The spherical hole configurations have a diameter of 30 mm. 

 

Figure 7.8 – Schematic representation of the analysed beam models. 
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All the beams were excited by a vertical Ricker pulse with a central frequency of 150 kHz, using 

a damping factor of 1 %, and located at S (100, 50, 100) mm, as shown in Figure 7.9. Isolated 

receivers were placed in the positions R  (300, 50, 100) mm and R  (300, 0, 100) mm. 

 

Figure 7.9 – Schematic representation of the source and receivers location. 

Figure 7.10 shows plots of the computed horizontal amplitudes in the window time 

[4, 16] × 10  s, at the two receivers, (a) R  and (b) R , for all beam models. Comparing the two 

plots, it can be seen that amplitudes are higher in receiver R . This is due to reflections coming 

from the front face of the beam, which, in this case, amplify the signal at that point. In receiver 

R  there is a delay in signal arrival for the beam with the top face hole. This delay was expected, 

as well as the smaller amplitude with which it was detected. As the hole is in the straight wave 

path, there are reflections in the opposite direction to the propagation and the energy passing 

beyond the hole is smaller. It is further noted that the presence of the other holes (inward and 

front face holes) are not easily detected under the defined conditions. For example, between 

those models and the no hole beam model and taking receiver R  as reference, both the 

amplitude and the time-of-flight of the wave are similar in the first arrival. However, later there 

are small differences in amplitude. 
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Figure 7.10 – Horizontal response computed at receivers (a) R1 and (b) R2, for all beam models. 

In Figure 7.11 it is possible visualize the time responses on the receivers line positioned in the 

centre of the top face of the beam, along its length. From the plots, it can be seen the propagation 

over time is very similar except for the graph corresponding to the beam with the top face hole 

– Figure 7.11 (b). 
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Figure 7.11 – Time responses determined for the receivers positioned at (x, 0.05, 0.1), for (a) simple beam, and 
beams with (b) top face, (c) inward and (d) front face holes, for frequency of 150 kHz. 

The propagation velocity of P waves in the specified concrete beam is 3845 m/s and its 

wavelength, for the induced frequency, is 26 mm. This wavelength is very close to the hole 

dimensions. This is why the inward and front holes are not evident in the time-amplitude 

analysis. The top hole is evident on receiver R  because it is in the wave path, causing it to 

deflect – see Figure 7.11 (b) – and thus changing its amplitude and the time-of-flight. To 

highlight the effect of perturbations on that analysis, the wavelength must be significantly 

shorter than them, i.e., the frequency must be increased. Next, it is presented the same model 

with some configuration differences: both the frequency and the size of the inward spherical 

hole have been increased. 

Figure 7.12 shows plots of the computed horizontal amplitudes in the window time 

[4, 16] × 10  s, at receiver R  for simple beam and for beam with 70 mm diameter spherical 

inward hole. The Ricker pulse excites the beam with a central frequency of 190 kHz at the same 

source point as before. In this configuration it is already possible to identify a time difference 

in wave arrival, a delay due to hole interference. 

Figure 7.13 (b) shows that over time, energy increases before the centre of the beam (𝑥 =

 0.2 m) due to the reflection caused by the inward hole. 
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Figure 7.12 – Horizontal response computed at receiver R1 for simple beam and for beam with 70 mm diameter 
spherical hole due to frequency of 190 kHz. 

 

Figure 7.13 – Time responses determined for the receivers positioned at (x, 0.05, 0.1), for (a) simple beam and 
(b) beam with inward hole, for frequency of 190 kHz. 

This example showed that by using the three-dimensional FEM in time domain, it is possible 

to simulate the damage detection in concrete beams, using ultrasound wave propagation. 

However, the propagation frequency is related to the detection rate; for example, to detect a 

particular damage, the propagated wavelength must be lower the size than this damage. The 

position of the transducer and receivers is also important. If they were placed on the front face 

of the beam, damage of that face would be detected and damage of the upper face would not be 

visible. At the computational level, this example requires significant effort in terms of memory 

and runtime. Thus, limitations such as the mesh size (number of degrees of freedom) hindered 
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the definition of the maximum frequency used to study this case. A higher frequency would be 

expected to provide better definition of the damage. 

7.2 Application to analysis of a beam structure 

FEM-TD is applied to a single edge notched concrete beam of small size, with maximum 

aggregate size of 8 mm – see experimental details in (Schlangen, 1993). The beam measures 

400 × 100 × 100 mm  and has a 5 × 20 × 100 mm  notch, located at the middle of the top as 

shown in Figure 7.14. 

 

Figure 7.14 – Schematic representation of uncracked notched beam. 

The corresponding material parameters are: density  = 2500 kg/m ; Young’s modulus 𝐸 =

35 000 N/mm ; Poisson’s ratio  = 0.15; tensile strength 𝑓 = 3.0 N/mm ; and fracture energy 

𝐺 = 0.1 N/mm. A constitutive law described in (Wells and Sluys, 2001) is used, with normal 

stiffness 𝑘 = 10  N/mm  and shear stiffness 𝑘 = 410  N/mm . The study presented in this 

thesis focuses on two cracking stages. The crack paths presented in Figure 7.15 are obtained 

from numerical simulations with a strong embedded discrete crack approach (DSDA) using 

enriched finite elements. This variational consistent formulation is detailed in (Godinho, Dias-

da-Costa, et al., 2013) and are in agreement with the experimental crack (Schlangen, 1993). 

After the computation of the crack pattern for the different stages, the FEM cracked model is 

used as geometry input data for the FEM-TD model. For the presented test case a 2D model of 

the beam and three distinct crack stages are considered: the initial defect-free beam (Figure 
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7.14); the beam in the cracked stage, first with the crack tip at 57 mm, Figure 7.15 (a), and next 

at 40 mm, Figure 7.15 (b), above the bottom of the beam. 

 

Figure 7.15 – Schematic representation of beam with crack tip at (a) 57 mm and (b) 40 mm above the bottom. 

The analysis of this beam is carried out by two approaches: firstly, the beam is scanned on a 

surface with an emitter/receiver transducer (Pulse-Echo scanning) and then, only one source 

and the receivers (as indicated in Figure 7.14 and Figure 7.19) are positioned on a surface 

(Single Pulse-Echo). 

7.2.1 Pulse-Echo scanning 

In this approach, only a descriptive analysis of the phenomena involved is made. This analysis 

consists in scanning the upper surface of the beam with a transducer as previously done in 

section 7.1.1, where a pulse is emitted with a frequency of 200 kHz. Then, the distance (𝑡 × 𝑣) 

travelled by the waves is plotted considering the P waves velocity (𝑣 = 3845 m/s). Figure 7.16 
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shows the evolution of wave propagation in the three crack stages: (a) uncracked notched beam 

and beam with crack tip at (b) 57 mm and (c) 40 mm above the bottom. In Figure 7.16 (a) it can 

be seen that, despite the small relative amplitude, the reading of the P wave (PP wave) in the 

receiver positioned at x = 0.1 m is translated by a distance of 0.2 m, perfectly corresponding to 

the sum of the distance travelled on the outward flight and the distance travelled on the return 

flight, which is twice the height of the beam. The same image shows, at same position (x = 0.1 

m), the distances travelled by other "pure" waves, the S (S-S wave) and R (R-R wave) waves, 

and the distance travelled by combined waves which, due to their high relative amplitude, may 

have a negative impact on the identification the actual positioning of the crack. This is the case 

of P waves combined with S waves (P-S waves) and P waves combined with R waves (P-R 

waves). In Figure 7.16 (b) and Figure 7.16 (c), the presence of the crack is evident, both by the 

early reception of reflected wave to the right of the notch, and by the lack of reflections from 

the lower surface of the beam (see the lack of the reflected signal at the distance of 0.2 m just 

to the right of the notch). The shift to the right of the wave reflection is due to the effect already 

described and represented in the Figure 7.7. 

Figure 7.17 shows the wave propagation when the right surface of the beam is scanned. Note 

that the plots are horizontally flipped because it is assumed that time (or, in this case, the 

distance) is easier to read when the timeline is represented from left to right. Unlike the previous 

figure, here the reading is more complex due to the multiple reflections at the upper and lower 

boundaries of the beam before the signal reaches the crack. Still, the presence of the crack is 

evident. It is verified, however, that the arrival of the corresponding reflection at the receiver is 

seen at a later time (distance). This is due to the wave taking a different direction when reflected 

by the crack and can be reflected multiple times at the edges of the beam until the signal returns 

to the receiver (see Figure 7.18). There is still, at an even later time (𝑡 = 1.4 × 10  s, distance 

of 0.538 m), a large amount of energy that is trapped behind the crack and increases as the crack 

becomes larger. 
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Figure 7.16 – Upper surface scan: (a) uncracked notched beam and beam with crack tip at (b) 57 mm and (c) 40 
mm above the bottom. 
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Figure 7.17 – Right surface scan: (a) uncracked notched beam and beam with crack tip at (b) 57 mm and (c) 40 
mm above the bottom. 

 

Figure 7.18 – Scheme of wave reflection in the cracked beam. 
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7.2.2 Single Pulse-Echo 

In this second approach, the system is excited by a Ricker pulse whose source is located at 

(100, 100) mm. The notch right side is the area of interest for ultrasound signal analysis. 

Therefore, the response is evaluated at a set of receivers placed along this area. For the 

reliability of the method, at least 8 mesh elements per wavelength are used to model the 

structural concrete beam. 

For each of the proposed cracked beam geometries, a geometric ray analysis may be used to 

predict the most likely P-P and S-S wave paths for the earlier pulses reaching the receivers. In 

Figure 7.19 this geometrical analysis is schematically represented for the longer crack (tip at 

40 mm from the bottom), considering two receiver positions, both placed to the right of the 

crack, at different distances along the 𝑥 direction; the first is located half-way between the notch 

and the right end of the beam, A at (300, 100) mm, and the second is located closer to the notch, 

at a quarter distance between the notch and the right end of the beam, B at (250, 100) mm. For 

the first case, the expected first arrivals are originated by the diffraction of the incident wave 

by the crack tip, and by the back-wall echo effect at the bottom of the beam. These two paths 

are identified in the Figure 7.19 (a), respectively as Paths 1 and 2. When the receiver is 

positioned closer to the notch, the first arrival still corresponds to the pulse diffracted by the 

crack tip, but some changes occur for the second identified path. In this case, the propagation 

path is intercepted by the crack, and the diffraction by the crack tip also occurs after the 

reflection from the back-wall – see Figure 7.19 (b). It can be said that the receiver point is now 

shadowed by the presence of the crack, and the expected time of flight of this pulse should 

increase when compared to the uncracked configuration. 
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Figure 7.19 – Illustrative sketch of the waves paths. 

The length of each path is defined in the Table 7.1. 

Table 7.1 – Paths length. 

Receiver Path Length [mm] 

A 
1 142.037 + 92.496 = 234.533 

2 141.421 + 141.421 = 282.843 

B 
1 142.037 + 62.930 = 204.967 

2 135.709 + 55.180 + 62.930 = 253.819 

The wave propagation velocities considered for this case are 3844.8 m/s for P waves and 

2467.2 m/s for S waves. Figure 7.20  illustrates the results computed for the propagating Ricker 

pulse with a central frequency of 100 kHz using damping factors of (a) 0.5 % and (b) 1 % while 

in Figure 7.21 the damping factors of (a) 2 % and (b) 5 % were used. The colour scale of the 

figures is intentionally different, so that the most significant pulses can be highlighted. The 

higher damping factor has an effect of cleaning the weaker pulses, transporting less energy, 

revealing the path of the most important pulses; in that case, as expected, later arrivals almost 

disappear, since their energy is progressively dissipated by the material damping. 
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Figure 7.20 – Time responses determined for the receivers positioned at the top, for the uncracked beam using 
damping: (a) 0.5 % and (b) 1 %. 
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Figure 7.21 – Time responses determined for the receivers positioned at the top, for the uncracked beam using 
damping: (a) 2 % and (b) 5 %. 

Figure 7.22 and Figure 7.23 show the time signals obtained for two different frequencies of the 

ultrasonic pulse: 100 kHz and 150 kHz, respectively. For this purpose, a damping factor of 2 % 

was used. For both frequencies, significant differences in the wave propagation pattern are 

registered for the two crack lengths with crack tips at (a) 57 mm and (b) 40 mm above the 

bottom. Comparing plots (a) and (b) it is verified that the arrival of the first wave to the receivers 

exposes relevant characteristics that can be used to infer the length of the crack. Indeed, this 

first arrival is generated by the diffraction effect at the crack tip (or at the bottom of the beam) 

as identified before, which tends to occur later as longer cracks are considered (see schematic 

representation in Figure 7.19). This variation in the arrival times is mostly visible at receivers 

placed closer to the notch (Receiver B). In addition, for longer cracks, this diffraction effect 



Numerical Simulation of Elastic Wave Propagation in Discontinuous Media: 
Applications in Ultrasonic and Vibration Control 
 

 

 

Carlos Alberto Pessoa Albino 142 

originates a stronger deviation in the wave path and thus a lower amount of energy reaches the 

receivers; this effect is also clearly visible in plots (a) and (b). 

 

Figure 7.22 – Time responses for receivers at the top of the beam, for the cracked beam with crack tip at (a) 57 
mm and (b) 40 mm above the bottom, for frequency of 100 kHz. 

In Figure 7.23 (b) the computed times-of-flight using a geometrical ray analysis are identified 

for the two receivers (A and B) that will be later characterised in more detail. However, we can 

already make a descriptive and comparative analysis with Figure 7.22: for the frequency of 150 

kHz, the pulses are thinner and easier to identify. 
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Figure 7.23 – Time responses for receivers at the top of the beam, for the cracked beam with crack tip at (a) 57 
mm and (b) 40 mm above the bottom, for frequency of 150 kHz. 

Figure 7.24 and Figure 7.25 show the time signals registered for all stages, uncracked and 

cracked beam, respectively: the first for the (a) perfect and (b) notched beam, and the second 

for the crack tip at (a) 57 mm and (b) 40 mm above the bottom. The source emitting the Ricker 

pulse with a frequency of 100 kHz, is located at the same location as before and the receivers 

are placed along the right-bottom edge of the beam: between (200 and 400) mm horizontal 

position. The damping factor is set to 2 %. It is observed that the arrival of the first wave is not 

influenced by the notch, nor by the two crack lengths defined in Figure 7.15. However, next to 

the notch 𝑥 position the influence of the reflections of notch and crack is evident. In the lower 

right corner of the single beam there is a late concentration of energy resulting from the 

reflections at the boundaries of the beam, as shown in the upper right corner of Figure 7.24 (a). 
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Figure 7.24 – Time responses for the receivers at the bottom of the uncracked beam: (a) perfect beam and (b) 
notched beam, for frequency of 100 kHz. 

To have a more detailed insight of the presented results, analyses of the two individual receiver 

positions A and B, represented in Figure 7.19, are performed for the model with the longer 

crack path (crack tip at 40 mm above the bottom) by focusing on the expected arrival times of 

the earlier arriving pulses. For each receiver, it is possible to compute the time-of-flight (TOF) 

on the two paths, using a geometrical ray analysis (see Table 7.2). As expected, for each receiver 

and for each path, the first pulses are related to the P-P waves. Note that for receiver A, the 

crack does not interfere with Path 2. 
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Figure 7.25 – Time responses for the receivers at the bottom of the cracked beam with crack tip at (a) 57 mm 
and (b) 40 mm above the bottom, for frequency of 100 kHz. 

Table 7.2 – Time-of-flight to receivers A and B. 

Time-of-flight Receiver A Receiver B 
[ms] Path 1 Path 2 Path 1 Path 2 

P-P waves 0.06100 0.07356 0.05331 0.06602 
S-S waves 0.09506 0.11464 0.08308 0.10288 

In Figure 7.26, two plots illustrate detailed views of the computed time responses (horizontal 

amplitudes) at the two receivers, (a) A and (b) B, for both cracked and uncracked beams, 

together with the estimated arrival times of the first two pulses induced by P-P and S-S waves, 

corresponding to Paths 1 and 2. The triangular marks depict the TOF estimated using 
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geometrical ray analysis. The presented results were computed for an ultrasonic frequency of 

150 kHz (with a P wave wavelength of 25.6 mm and a S wave wavelength of 16.4 mm) and with 

a damping factor of 2 %. 

 

Figure 7.26 – Horizontal response computed at receivers (a) A and (b) B, for uncracked and cracked states, 
regarding  a Ricker pulse with a central frequency of 150 kHz. 

Observing the response computed for receiver A in Figure 7.26 (a), it is possible to identify the 

marked delay that occurs in the arrival times of the first pulse when the cracked beam is 

considered; this delay is directly related to the longer path that the P-P waves need to travel due 

to the presence of the crack. It may also be noted that the arrival time for this first pulse matches 

perfectly the predicted TOF presented above and identified with a triangular mark. As for the 

second arrival, the delay is much smaller and less noticeable, but a decrease of amplitude is 
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registered. Later, the arrival time of S-S waves through path 1 causes an increase in horizontal 

displacement amplitude which is again amplified by the arrival of the same type of waves 

coming from path 2. Again, the arrival times for these pulses match perfectly the estimated 

TOF. It is also noted that since Path 2 does not intercept the crack, the arrival time of the second 

pulse remains unchanged, and theses pulses appear almost overlapped at this receiver; it should 

be noted that there is not an exact match between the two curves at this point due to the influence 

of the many other energy paths connecting the source to the receiver. This is most noticeable in 

the arrival time of S-S waves. 

The analysis of receiver B – Figure 7.26 (b) – shows similar features, with a very visible delay 

being registered for the first arrival of P-P waves. In the second arrival, the delay is much 

smaller and less noticeable. Indeed, since it now corresponds to a diffracted pulse, the energy 

of the pulse that travels along Path 2 is spread after reaching the crack tip, and thus the pulse is 

considerably attenuated. As before, the match between the TOF estimated using geometric ray 

analysis and the arrival times observed in the numerical response are excellent. After the 

analysis of the plotted results, it is possible to confirm that, for the studied configuration, the 

delay of the first arrival of P-P waves is the most relevant feature when trying to localise the 

presence and position of a possible embedded crack. 

Figure 7.27 shows the vertical response in both receivers and, as before, the triangular marks 

depict the TOF estimated using geometrical ray analysis. By analysing vertical displacements, 

the same conclusions can be drawn. 
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Figure 7.27 – Vertical response computed at receivers (a) A and (b) B, for uncracked and cracked states. 

Given the described results, it may be stated that the P-P and S-S waves propagation patterns 

within the concrete beam are strongly influenced by the size of the crack, and that the responses 

registered at the receiver points may be of use for the evaluation of the damage within the beam. 

It is also important to note that concrete is, typically, a non-homogeneous material, and thus the 

propagation of high frequency waves may be significantly influenced by the small 

heterogeneities (e.g. aggregates, small voids, etc.). For this reason, it is common to make use 

of ultrasonic frequencies between 20 kHz and 150 kHz (International Atomic Energy Agency, 

2002) for real sized concrete elements, or somewhat higher frequencies when small elements 

are to be analysed. 
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7.3 Conclusion 

In this chapter the propagation of ultrasound waves was addressed as a means of detecting 

structural damage. The FEM-TD algorithm was used since it is the most suitable for the analysis 

of more complex geometries. 

The preliminary 2D analysis allowed, without excessive computational effort, to reconstruct 

the propagation medium where the defect is clear. In this analysis, primary waves are used to 

measure distances and the time-of-flight in the concrete beam. 

The preliminary 3D analysis shows that to have a good detection of the defect, both the source 

and the receiver must be well positioned in relation to the defect, otherwise it may not be 

detected. Also, the wavelength of the induced frequency must be significantly smaller than the 

size of the defect. In this case, limitations related to computational effort prevented from 

obtaining even better results in the detection of damage, since it was not possible to study higher 

frequencies. 

From the analysis of a realistic beam structure, both through pulse-echo scanning and a single 

pulse-echo, it was concluded that the propagation pattern of P and S waves is strongly 

influenced by the size of the defect and that the response registered at the receivers may be used 

for the evaluation of the damage within a concrete beam. In both cases, but mainly in the case 

of the single pulse-echo, it is adequately demonstrated that the flight times computed using the 

numerical simulation coincide precisely with the flight times analytically computed. It was also 

demonstrated the possibility of studying P and S waves propagation patterns, making viable the 

evaluation of the integrity of the concrete, and the application of this type of analysis, in 

ultrasonic non-destructive techniques. 
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8 CLOSING REMARKS 

The previous chapters have presented numerical simulations of elastic wave propagation in 

discontinuous media, namely applications in vibration control and ultrasonic crack detection. 

This chapter presents the contributions of the research to the field and the main conclusions in 

both application cases. Finally, some expected future developments are presented. 

8.1 New contributions to the research field 

This work contributed to the mitigation of vehicle-induced vibrations and expansion of 

knowledge in the area of damage detection in concrete structures. Both subjects are related to 

wave propagation in discontinuous media and its numerical simulation was carried out with the 

application of innovative models implemented for that purpose. 

8.1.1 Mitigation of vehicle-induced vibrations 

The technology associated with the concept of metamaterials has recently been applied in the 

field of acoustics, namely by its ability to interfere with wave propagation in a controlled and 

tuned manner, mitigating noises in a specific band, thus acting as an acoustic barrier for a given 

wave. The challenge of this work was to study the effect of buried barriers consisting of periodic 

arrangements of simple elements, forming large-scale crystalline patterns, in the protection of 

structures against traffic-induced vibrations. Geometry, arrangement and material properties 

were investigated. Comparisons with currently used devices were made to confirm the 

efficiency of the proposed phononic devices. 

8.1.2 Damage detection 

The damage detection in concrete structures was another subject addressed in this thesis. This 

work investigated P, S and surface waves whose pattern of propagation is more complex than 

the SH waves that are usually used for this purpose. The recognition of those patterns and the 
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comparison with the time-of-flight of the different waves, analytically computed, allowed 

determining the feasibility of their use in ultrasonic non-destructive techniques. 

8.1.3 Numerical simulation tools 

Two efficient algorithms for wave propagation were implemented: the method of fundamental 

solutions in the frequency domain for simple 2D and 2.5D geometries, and the finite element 

method in the time domain based on an innovative time march for complex 2D and 3D 

geometries. In other words, the MFS was used only to simulate the waves propagation in a 

semi-infinite medium with inclusions, to mitigate vibrations; while the FEM was used to 

simulate the propagation of waves in both finite and semi-infinite media. In the latter case, an 

absorbent layer was developed with the function of dissipating spurious reflections of the 

geometric model bounds that represent the infinite part of the modelled medium. Both versions 

of the algorithms have been validated and have proven to be efficient and accurate. 

8.2 Main conclusions 

The propagation of elastic waves has been studied since the first half of the nineteenth century. 

Currently, in civil engineering, the propagation of mechanical waves in elastic media is a 

relevant matter in research projects. The mitigation of seismic effects and vehicle-induced 

vibrations and the detection of discontinuities in concrete elements are the points of most 

interest. This thesis dealt with two distinct points: the mitigation of vehicle-induced vibrations, 

more specifically, railway vehicles, and the detection of damage in concrete structures. 

For the case of vibration mitigation, the proposed phononic barriers have a significant effect on 

vibration levels reduction, mainly in the downstream zone. As a group of inclusions with the 

same characteristics, these barriers are only efficient in a certain frequency range. By changing 

some crystalline parameters, such as the distance between inclusions, their geometry, or their 

distribution within the phononic crystal, it is possible to move, reduce or enlarge the frequency 

range for which the barrier is most efficient. An optimal and tuned system depends widely on 

the properties of the host medium, the properties of the inclusions and the frequency band to be 
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mitigated. Each configuration has its efficiency zone very much enhanced in the band gap 

frequency range. In this work, a soft soil was used as the reference soil. In this sense, the 

performance of the phononic crystals discussed here are directly associated with this type of 

scenario. 

A general MFS strategy, in frequency domain, was implemented to allow the analysis of wave 

propagation in the presence of buried inclusions in a half-space. The proposed strategy allows 

the simulation of any number of horizontally inclusions filled with distinct materials. 2D and 

2.5D application examples were presented, which evidence the stability and convergence of 

solutions. The accuracy of the MFS is quite good, particularly when compared with BEM 

results. 

To study vertical inclusions, a 3D FEM model in the time domain was developed in which the 

time integration was based on an innovative time-marching algorithm. In this case, an absorbent 

layer was developed to dissipating spurious reflections of the geometric model bounds that 

represent the infinite part of the modelled medium. This time-marching 3D finite element model 

allows to carry out the studies in a more efficient manner, providing accurate results and a 

reduced computational effort. 

The FEM model in the time domain was also used for numerically simulating the process of 

crack detection in concrete elements using (P and S) waves based on ultrasound methods. An 

application example was presented, which allows to conclude that cracks can be identified by 

the propagation of (P and S) waves. The presented results also compared the effects of cracks 

of different lengths – i.e. corresponding to increasing damaged states – in the time signals 

registered at receiver points over the structure surface. Results are promising and confirm the 

feasibility of using (P and S) waves based ultrasonic equipment for on-site applications in the 

future. 
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8.3 Publications 

As result of this thesis, several communications have been presented at national and 

international conferences. Furthermore, several papers have been published in international 

journals. 

8.3.1 Conference communications 

Carlos Albino, Luís Godinho, Daniel Dias-da-Costa, Paulo Amado-Mendes. “Numerical 

analysis of buried vibration protection devices using the MFS”. Boundary Elements and other 

Mesh Reduction Methods XLII. WIT Press. Southampton. 2019. ISBN: 978-1-78466-341-4. 

Pp 225-236. 

Luís Godinho, Carlos Albino, Pedro Alves-Costa, Paulo Amado-Mendes, Alexandre 

Castanheira-Pinto, Delfim Soares Jr. “A numerical study on the shielding performance of a 

periodic vibration protection device”. International Conference on Noise and Vibration 

Engineering (ISMA 2018) and International Conference on Uncertainty in Structural Dynamics 

(USD 2018). Curran Associates, Inc. Conference Proceedings. Morehouse Lane. 2019. ISBN: 

9781510876781. 

Carlos Albino, Luís Godinho, Pedro Alves-Costa, Paulo Amado-Mendes. “Effect of buried 

phononic crystal barriers in stratified medium”. 49th Spanish Congress on Acoustics 

(TECNIACUSTICA 2018). Cádiz. 24 to 26 October 2018. Pp 1033-1040. ISBN: 978-84-

87985-30-4. 

Paulo Amado-Mendes, Luís Godinho, Pedro Alves-Costa, Alexandre Castanheira-Pinto, Carlos 

Albino. “Numerical analysis of the shielding effect provided by periodic elastic scatterers”. 

VETOMAC XIV. MATEC Web of Conferences. 2018, 211, 13005. DOI: 

https://doi.org/10.1051/matecconf/201821113005. 

Luís Godinho, Carlos Albino, Pedro Alves-Costa, Paulo Amado-Mendes, Alexandre Pinto, 

Delfim Soares Jr. “Numerical study of a buried periodic device for vibration protection”. 11th 
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European Congress and Exposition on Noise Control Engineering (EURONOISE 2018), 

Heraklion, Crete, Greece, 27-31 May 2018. 

Carlos Albino, Luís Godinho, Daniel Dias-da-Costa and Delfim Soares Jr. “Ultrasonic wave 

propagation simulation to detect cracks in concrete structures using FEM”. 48th Spanish 

Congress on Acoustics (TECNIACUSTICA 2017), A Coruña, 3 to 6 October 2017. Pp 1023-

1031. ISBN: 978-84-87985-29-4. 

Carlos Albino, Luís Godinho, Daniel Dias-da-Costa and Paulo Amado-Mendes. “The MFS as 

a tool for the numerical analysis of vibration protection devices”. 22nd International Congress 

on Acoustics (ICA 2016). Buenos Aires, 5 to 9 September 2016.  

8.3.2 International journal papers 

Carlos Albino, Luís Godinho, Paulo Amado-Mendes, Pedro Alves-Costa, Daniel Dias-da-

Costa, Delfim Soares Jr. “3D FEM analysis of the effect of buried phononic crystal barriers on 

vibration mitigation”. Engineering Structures, 196, 2019 109340, 2019. DOI: 

https://doi.org/10.1016/j.engstruct.2019.109340. 

Luís Godinho, Paulo Amado-Mendes, Pedro Alves-Costa, Carlos Albino. “MFS Analysis of 

the Vibration Filtering Effect of Periodic Structures in Elastic Media”. International Journal of 

Computational Methods and Experimental Measurements, Vol.6, Issue 6 (2018), Pp 1108-

1119. DOI:10.2495/CMEM-V6-N6-1108-1119. 

8.4 Future developments 

Regarding mitigation of vibrations induced by rail traffic through crystalline phononic devices, 

the following topics could be selected: 

 It is true that the material properties of buried inclusions affect the propagation of waves 

in the host medium. The use of inclusions with different materials within the same 
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phononic crystal should be investigated to study its efficiency and the band gap 

frequency range. 

 The efficiency of inclusions with different sections or of more compact solids (such as 

spheres or cubes) in the constitution of the phononic crystal is a theme that must be 

investigated. 

 The use of metamaterials is having anti-noise application in different engineering fields. 

The same concept can be applied in the mitigation of vibrations, mainly in a certain 

range of frequencies. Thus, at the inclusion scale, the influence of the use of 

metamaterials should be investigated. 

 The mitigating devices are made up of inclusions capable of filtering the mechanical 

waves. At the same time, the energy from these waves can be stored or converted to 

electrical energy. Currently, the paradigm related to sustainable energy production and 

harvesting is on the table, being this a topic of great relevance. 

 For the implementation of such mitigation system, many variables have to be taken into 

account: the characteristics of the vehicle's circulation path, the distance between it and 

the sensitive object, the characteristics of the propagation medium, among others. As 

seen in the development of this work, the characteristics of mitigating devices can also 

be diverse, depending on the geometry of the section, distance between individual 

objects, material properties, etc. For these reasons, a solution for a specific case, results 

in a complex study of multiple variables. The development of an optimisation algorithm 

would be a great help to quickly reach a specific solution. 
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