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Abstract

A new industrial revolution driven by digital data, computation, and
automation has arrived. Human activities, industrial processes, and
research lead to data collection, generation, and processing on an un-

precedented scale, spurring new products, services, and applications. Among the
applications that generate more traffic are those related to augmented/virtual
reality and video streaming. These applications have strict time restrictions to
perform in a manner that is expected by final users, and usually rely on the use
of Cloud computing to achieve elasticity, on-demand self-service, resource pool-
ing, and timely delivery. However, new generation delay-sensitive applications
and services have requirements that are only partially met by existing Cloud
computing solutions.

In recent years there has been a paradigm shift to bring Cloud services towards
the edge of the network. In this peripheral area, there is an abundance of het-
erogeneous resource-constrained devices both generating and consuming data.
This represents an increment on the amount of data, that would lead to increased
traffic and response time to transport to the Cloud and back. It is possible to
place storage and processing devices at the rim of the network to help prepro-
cess this data and alleviate the load sent towards the core network, while also
reducing response times which particularly benefits delay-sensitive applications.
This solution is known as Fog computing.

Fog computing is an important paradigm to help address the requirements that
are not completely covered by the Cloud; nonetheless, the use of this techno-
logy creates new challenges. The Fog needs to support the orchestration of
applications and services on demand, with adaptability, while providing flexible
and time constrained performance. In practice, traditional service orchestration
approaches that were applied to Cloud services are not suitable for the large
scale and dynamism of Fog services. This creates the need for new mechan-
isms for the coordination of resources, applications, and services in the Fog.
This work proposes a smart orchestration framework based on a hybrid ap-
proach that combines centralized orchestration and distributed choreography to
deal with resource management, as well as a service orchestrator architecture
that includes a depiction of its different modules and the interactions among
them.

To cope with the time constraints for delay-sensitive applications, the orches-
trator must optimize where applications and services are deployed. One of the
modules of the service orchestrator architecture proposed in this work is in charge
of the decision regarding the final placement of application services in a smart
and context-aware manner with the objective of minimizing latency. Particu-
larly, this work presents three different mechanisms for service placement in the
Fog ecosystem, namely, one based in Integer Linear Programming, one based



in Genetic Algorithms, and one based in graph partition using the PageRank
algorithm. All three mechanisms use a combination of metrics that evaluate
characteristics of both the applications as well as the network infrastructure to
guide the placement process. From the network perspective, the propagation
delay is considered; and from the application perspective, the popularity of the
applications (measured by the amount of requests) is used. This approach, un-
like any previous work, leads to the prioritization of popular applications during
the placement process, thus benefiting a larger number of final users.

The mechanisms are tested via simulation under different scenarios and con-
ditions. The experiments show that it is possible to provide lower latency to
popular applications while also reducing the latency of the overall system. Fur-
thermore, for dynamic scenarios, a profiling scheme based on application pop-
ularity allowed to reduce not only the latency but also the jitter for popular
applications.

Keywords: Fog; Latency; Service Orchestration; Service Place-
ment; Popularity



Resumo

Estamos perante uma nova revolução industrial impulsionada por dados
digitais, computação e automação. A atividade humana, processos in-
dustriais e investigação levam à recolha, geração e processamento de

dados numa escala sem precedentes, fomentando novos produtos, serviços e
aplicações. Entre as aplicações que geram mais tráfego, estão as aplicações
relacionadas com realidade aumentada/virtual e transmissão de vídeo. Estas
aplicações têm restrições temporais estritas para serem executadas de acordo
com o esperado pelo utilizador final e, geralmente, recorrem ao uso de com-
putação em Nuvem para alcançar elasticidade, serviços a pedido do utilizador,
agrupamento de recursos e entrega atempada. No entanto, a nova geração de ap-
licações e serviços sensíveis a atraso tem requisitos que são apenas parcialmente
cumpridos pelas soluções de computação em Nuvem existentes.

Recentemente, tem havido uma mudança de paradigma no sentido de trazer os
serviços da Nuvem para a perímetro da rede. Nesta área periférica existe uma
abundância de dispositivos heterogéneos com recursos limitados tanto na geração
como no consumo de dados. Este cenário representa um aumento na quantidade
de dados, que leva ao aumento do tráfego e do tempo de resposta nas comu-
nicações de, e para, a Nuvem. No sentido de ajudar o pré-processamento destes
dados e aliviar a carga enviada através da rede, é possível mudar os dispositivos
de armazenamento e processamento para a extremidade da rede, reduzindo os
tempos de resposta e beneficiando, particularmente, as aplicações sensíveis a
atraso. Esta solução é conhecida como computação em Nevoeiro.

A computação em Nevoeiro é um paradigma importante que ajuda a satisfazer os
requisitos que não são totalmente cobertos pela Nuvem; no entanto, o uso desta
tecnologia cria novos desafios. O Nevoeiro necessita de suportar a orquestração
de aplicações e serviços disponíveis a pedido do utilizador, com adaptabilidade,
e garantindo uma performance flexível e cumpridora das restrições temporais.
Na prática, as abordagens tradicionais de orquestração de serviços aplicadas
aos serviços em Nuvem não são adequadas para a larga escala e dinamismo dos
serviços de Nevoeiro. Assim, existe a necessidade de novos mecanismos para
a coordenação de recursos, aplicações e serviços de Nevoeiro. Este trabalho
propõe uma framework de orquestração inteligente baseada numa abordagem
híbrida que combina orquestração centralizada e coreografia distribuída para
lidar com a gestão de recursos e, ainda, uma arquitetura para um orquestrador
de serviços que inclui uma representação dos seus diferentes módulos e respetivas
interações.

Para lidar com as restrições temporais das aplicações sensíveis a atraso, o or-
questrador deve otimizar onde colocar as aplicações e serviços. Um dos módulos
da arquitetura do orquestrador de serviços proposto neste trabalho é encarregue
da decisão da colocação final dos serviços da aplicação de modo inteligente e
consciente de contexto com o objetivo de minimizar a latência. Este trabalho



apresenta três mecanismos para a colocação de serviços no ecossistema de Ne-
voeiro, nomeadamente, um baseado em programação linear inteira, um baseado
em algoritmos genéticos e um baseado em partição de grafos, utilizando o algor-
itmo PageRank. Todos os mecanismos usam uma combinação de métricas que
avalia as características tanto das aplicações como da infraestrutura da rede e
que guia o processo de colocação. Da perspetiva da rede, é considerado o tempo
de propagação; da perspetiva da aplicação, é utilizada a popularidade das ap-
licações, medida pela quantidade de pedidos. Esta abordagem, contrariamente
aos trabalhos anteriores, leva à priorização das aplicações populares durante
o processo de colocação e, consequentemente, beneficia um maior número de
utilizadores finais.

Os mecanismos são testados via simulação com diferentes cenários e condições.
Os resultados mostram que é possível obter uma latência menor para aplicações
populares e, simultaneamente, reduzir a latência geral do sistema. Além disso,
em cenários dinâmicos, um esquema de perfil baseado na popularidade das ap-
licações permitiu reduzir não só a latência, como também a variação de atraso
das aplicações populares.

Palavras-chave: Nevoeiro; Latência; Orquestração de Serviços;
Colocação de Serviços; Popularidade
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CHAPTER 1. INTRODUCTION

As communications evolve to give space to new applications, such as
augmented reality and virtual reality, and other delay-sensitive ap-
plications, new paradigms arise to provide essential characteristics like

lower latency, mobility support, and location awareness. Such is the case of
Fog computing, which extends from the well known Cloud computing paradigm
by bringing processing, communications, and storage capabilities to the edge of
the network. By offering these novel features, also new challenges emerge that
call for the design and implementation of orchestration mechanisms to deal with
resource management. One of these mechanisms is related to the service place-
ment, which consists in the selection of the appropriate execution node for the
applications according to a specific optimization objective. The work presented
in this thesis aims at proposing service placement mechanisms to reduce the
latency in Fog environments. The motivation, objectives, and contributions of
this work are listed in this chapter, and finally an outline of this document is
provided.

1.1 Motivation and Problem Statement
The development of resource demanding and delay-sensitive applications (e.g.,
emergency communications, augmented and virtual reality, video streaming, on-
line gaming), and the proliferation of applications within the context of the
Smart City and Internet of Things (IoT) paradigms lead to the search of re-
sources that, until certain point, was covered by the use of the Cloud computing
paradigm. The Cloud represents a logically centralized pool of resources that
are exploited by resource-hungry applications. However, this solution does not
satisfy the needs of every application.

The decentralization of the Cloud, by bringing the services and applications
towards the IoT devices and near-user edge devices in order to provide lower
latency, mobility support, and location awareness, led to the advances in newer
paradigms such as Fog computing [Vaquero and Rodero-Merino, 2014]. The Fog
is an extension of the Cloud that brings resources closer to the users, to the
edge of the network, conceived to address applications and services that do not
fit well in the Cloud paradigm. Applications that require characteristics such
as low latency, geo-distribution, mobility, and large-scale distributed systems
benefit from the Fog.

The Fog is located in the vicinity of the user, on the frontier with the IoT,
where there is a plethora of heterogeneous devices that have to work harmoni-
ously to keep the services running with an acceptable Quality of Service (QoS).
This fact calls for the automation of management functions to deal with the
complexity of the scenario. Hence, orchestration functions are required in or-
der to automate the management in such a dense, heterogeneous, and complex
environment.

Orchestration denotes a single centralized executable process that coordinates
the interaction between different applications or services. Hence, orchestration
uses a centralized approach to applications and services composition [Saraiva de
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Sousa et al., 2019]. Even though different orchestration approaches have been
applied to other scenarios such as the Cloud, the Fog has particular character-
istics, including its distributed nature, the heterogeneity of its devices, and the
constraints in their resources, that call for novel orchestration mechanisms.

It is necessary to perform a new revision on orchestration solutions to adapt
them to the Fog, taking into consideration its characteristics. Furthermore, a
review of decentralized choreography principles can be added to the solutions,
in order to provide them dynamism and real-time response at the lower levels
of the infrastructure. Choreography could be defined as a global description of
the participating applications and services, which is specified by the exchange of
information, rules of cooperation and agreements among two or more endpoints;
thereby, this strategy uses a decentralized approach for applications and services
composition [Leite et al., 2013; Bittencourt et al., 2018]. The service orchestrator
must be capable of maintaining resilience, trustworthiness, and low latency in a
dynamic environment, such as the Fog, and also guaranteeing acceptable levels
of QoS, even with massive amounts of data being exchanged.

Regarding these massive amounts of data, about two thirds of the world popula-
tion will have Internet access by 2023 [Cisco, 2020]. The number of devices and
connections is growing faster than the population, increasing the IP traffic, which
is expected to triple by 2022 [Cisco, 2019]. Of this traffic, 82% will correspond
with IP video traffic, with an expected increase of virtual reality and augmented
reality (about 12 times) and Internet video-to-TV traffic (about 3 times). With
this extensive load of data, a rapid exhaustion of the infrastructure resources,
and, therefore, a decrease in the quality of the communications is foreseeable,
which represents another challenge for the orchestrator. Given the predomin-
ance of streaming video in the predictions of the IP traffic, latency becomes one
key aspect to consider to meet delivery constraints of applications.

The service orchestrator is assigned with the task of managing the resources of
the network efficiently, while offering low latency levels. Nevertheless, in more
decentralized scenarios, like the Fog, more complex managing approaches are
required. The Fog needs to support the orchestration of applications and ser-
vices on demand, with adaptability, while providing flexible performance and
low latency. To improve latency levels it is necessary to design and implement
smart solutions, including a set of Planning Mechanisms that must be implemen-
ted, particularly those related to Service Placement. Only bringing the service
instances to the edge of the network is not enough, since the perimeter of the
Cloud can be broad, and in a dense environment such as the Fog, there could
be multiple choices to place the service instances. Thus, it is relevant to select a
metric that allows to guide the placement process. The metric (or set of metrics)
should reflect not only the current state of the network, but also characteristics
intrinsic to the applications themselves, to differentiate them according to their
requirements.

The popularity of the applications (and ultimately, of their services) seems to
be a good option since it would lead the placement of the most popular applic-
ations towards the locations where the most data and service-hungry users are
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stationed, i.e., at the edge of the network. The popularity can be measured by
the number of requests for a given application. On the other hand, popularity as
a metric is not enough to guarantee the QoS requirements for the applications
at the communication infrastructure level, since it does not take into consider-
ation the current status of the network. Thus, combining the popularity of the
applications with a network metric, such as the propagation delay, will lead to
a context-aware orchestrator regarding the service placement process.

1.2 Objectives
The main goal of this work is to propose mechanisms to reduce the latency in
Fog environments. The objectives can be listed as follows:

• Analyze the characteristics of the Fog, focusing on the aspects that dif-
ferentiate it from the Cloud, and that require the development of novel
management techniques. The analysis should also make emphasis on how
the service orchestrator could make an impact on reducing the latency for
final users;

• Design an orchestration architecture for the Fog, taking in consideration
all the challenges newly imposed by the Fog. The solution must be multi-
tiered, including notions of the entire Cloud-to-IoT continuum, setting
tasks to handle all the challenges, but detailing the optimizing mechanisms
regarding latency reduction;

• Conceive a mathematical model to find the optimal location of the services
in order to minimize the latency for the final user;

• Propose a set of service placement mechanisms to minimize the response
time of applications in Fog environments. The idea is to come up with
different strategies to determine the optimal location for a service in a
given scenario;

• Define a set of metrics to guide the service placement decision, and leverage
the determination of where to place the services. The metrics should
include aspects of the applications as well as the network infrastructure;
and

• Evaluate the performance of the mathematical approach and the alternat-
ive service placement mechanisms, by means of simulation, under varying
scenarios. The evaluation must include static and dynamic conditions.

While working on these objectives several contributions were produced, and are
listed in the section below.

1.3 Contributions
Taking in consideration the objectives previously described, the following con-
tributions were achieved:
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• A hybrid approach for Fog orchestration, combining centralized orchestra-
tion for the upper levels closer to the Cloud, and a distributed choreo-
graphy for the lower levels closer to the edge. This would allow to have
a unified centralized vision of the entire system to apply general optim-
izations, while the choreography support for the lower levels will provide
more dynamism to the proposed solution. This is presented in Chapter 3.

• A smart orchestration framework that follows the hybrid approach. The
framework includes capabilities for the Service Repository, the Information
Collection, and the Service Orchestrator. This is described in Chapter 3.

• A Service Orchestrator architecture, enclosed in the orchestration frame-
work, including the depiction of its modules that handle the different or-
chestration strategies, including those related to service placement, but
providing guidelines for other tasks such as security and resource manage-
ment. This is presented in Chapter 3.

• A mathematical model based on Integer Linear Programmings aimed at
maximizing the placement of popular applications while minimizing their
latency. This is depicted in Chapter 4.

• A heuristic based on graph partition to create communities to place applic-
ations, that allows balancing the load among the nodes closer to the vicin-
ity of the final user, to avoid overloading the Gateways. This is presented
in Chapter 4.

• A heuristic based on a multi-objective Genetic Algorithm for application
placement, which fitness function combines application popularity and net-
work propagation delay with resource usage. The heuristic is described in
Chapter 5.

• An application profiling scheme based on application popularity, meas-
ured by the number of requests. The profiles are defined according to
how applications gain or lose popularity over time. This is introduced in
Chapter 5.

The following chapters describe the process followed to achieve the objectives
depicted in Section 1.2. The outline of this document is described in the next
section.

1.4 Outline of the Thesis
This dissertation is distributed in 6 chapters, organized as follows. Chapter 2
presents the research context, including concepts on latency and Fog environ-
ments and its rising challenges, to later introduce a revision on the State-of-the-
Art. Chapter 3 proposes a novel hybrid approach for orchestration in the Fog,
including an architecture for the Fog orchestrator able to be adapted to differ-
ent needs, such as latency reduction, mobility support, or increased resilience.
Chapter 4 introduces two mechanisms for service placement to reduce latency,
one based on Integer Linear Programming (ILP) and one heuristic based on
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graph partition, particularly on the PageRank algorithm. Both mechanisms are
evaluated via simulation using Yet Another Fog Simulator (YAFS). Chapter 5
presents a scheme to profile applications based on their changing popularity.
The PageRank-based heuristic and a new mechanism based on a Genetic Al-
gorithm (GA) are evaluated under dynamic conditions, applying the proposed
profiling scheme, also using YAFS for the simulations. Finally, Chapter 6 shows
a synthesis of the work, listing its contributions and offering future research
paths that can be pursued to advance this work.

— 6 —



Chapter 2
Latency Reduction in Fog
Environments

Contents
2.1 Latency in Communication Networks . . . . . . . . . 8

2.1.1 Sources . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Fog Environments . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Transitioning from Cloud to Fog . . . . . . . . . . 11
2.2.2 Application Scenarios . . . . . . . . . . . . . . . . 12
2.2.3 Research Challenges in Fog Orchestration . . . . . . 14
2.2.4 Latency in Fog Environments . . . . . . . . . . . . 15

2.3 Orchestrating the Fog to Reduce Latency . . . . . . 15
2.3.1 Orchestration . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Smart Routing . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Service Placement . . . . . . . . . . . . . . . . . . 21
2.3.4 Open Issues . . . . . . . . . . . . . . . . . . . . . 24

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . 25

— 7 —



CHAPTER 2. LATENCY REDUCTION IN FOG ENVIRONMENTS

To fully grasp the problem of latency it is important to understand its ba-
sic concepts and the technologies designed to deal with it. This chapter
describes the concept of latency in computer networks, its sources and

metrics, to later introduce the paradigm of Fog Computing as an emerging tech-
nology to deal with latency in telecommunications. Finally, a revision of related
work on reducing latency in Fog environments is discussed.

2.1 Latency in Communication Networks
Latency is the time it takes for a single bit to reach its destination from the
time it was first requested [Briscoe et al., 2014]. The measured bit depends
on the type of application in order to provide end-users a higher perception of
responsiveness. The value of latency is obtained by the addition of different
delays that affect the total time it takes for a bit to be delivered. Some of the
components [Peterson and Davie, 2011] that affect the total delay of the network
are depicted in Figure 2.1.

1 2 1 2

3 4 3 4

5 6

Figure 2.1: Latency Components

1. Coding: The time it takes to code the data, for instance, using a video
codec;

2. End System Processing: The delay caused by the end host application
and operating system, including the time employed by the communication
protocols to perform their tasks;

3. Transmission: Refers to the time from when the first bit of a message is
put in the link until the last bit is put on the link, determined by the data
rate of the link;

4. Propagation: The time it takes for a bit to travel from one place to another
through the transmission media;

5. Queuing: The time a packet stays in a queue in a networking element
(e.g., switches and routers) before it gets processed; and

6. Node Processing: The time necessary for a packet to be handled by a
network node, for instance, to determine the output interface according to
the routing table of a router.
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Many services and applications have severe restrictions on terms of latency in
order to offer a good Quality of Experience (QoE) to final users. Such applic-
ations include emergency communications, eHealth, virtual/augmented reality,
and on-line gaming, among others.

2.1.1 Sources
The sources of delay have been categorized in the following classes [Briscoe et al.,
2014; Ford, 2014]:

• Structural delay: Depending on the structure of the network. Deals with
service and content placement, optimizing routes, and name resolution
among other factors. Corresponds with propagation and transmission
delays;

• Interaction between endpoints: Results of the processing of activities
between endpoints, such as protocol initialization, packet loss recovery,
and security context initialization. Related to end system processing and
transmission delays;

• Intra-end host delays: The latency resulting from processing in the ap-
plications and operating system in the end hosts. Corresponds with end
system processing time and coding delay;

• Delays along the transmission paths: Composed by the sum of delays
caused by different factors, for instance signal propagation, medium ac-
quisition, serialization, link error recovery, switching/forwarding, and
queuing. Related with transmission and queuing delays; and

• Delays related to link capacities: Originated by different causes, like lim-
itations of the link capacity, sending redundant information, the under-
utilized capacity of the links, and the collateral damage, which is a delay
generated by external flows affecting another. Also linked to the transmis-
sion and queuing delays.

This classification can help in identifying specific techniques that can work to-
wards the mitigation of latency in different scenarios.

2.1.2 Metrics
When talking about latency, the metric used is a time unit (i.e., seconds), how-
ever it is important to clarify what is the time to measure, and the process
to achieve such measurement. There does not seem to be a unique means to
accomplish this, on the contrary, a combination of different measurements over
different types of messages and conditions is commonly used.

Two of the most frequently used latency metrics are the Round-Trip Time (RTT)
and the One Way Delay (OWD), both measurements of end-to-end delay [Wang
et al., 2004]. The RTT measures the time it takes for a packet to reach its
destination and come back to its source, while the OWD only accounts the time
it takes to get to the destination. It is important to notice that the RTT does
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not represent twice the time of the OWD, since the reply might travel through
a different path or face different network conditions. Another common way
to measure delay is to quantify the download completion time (for download
content applications) or the service time, that is the time it takes to complete
the service, measured from the initial request [Dukkipati and McKeown, 2006;
Sadfi et al., 2005].

Additionally, other gauges commonly used are the Internet Protocol packet
Transfer Delay (IPTD) and the Internet Protocol packet Delay Variation (IPDV)
[ITU-T, 2013]. The IPTD is similar to the OWD and measures the one-way time
interval from the moment the first bit of the packet traverses the entry point
of the network until the moment the last bit crosses the exit point at the des-
tination. The IPTD is usually just called delay or latency. The IPDV is the
difference between the IPTD of a given packet and the reference IPTD of a
population of interest packets. The IPDV is also referred as jitter. Both IPTD
and IPDV are commonly reported in milliseconds.

Network latency has improved far more slowly than other performance metrics
for commodity computers [Rumble et al., 2011]. The industry used to place the
expected response time in the order of 50ms [Siltanen, 2013]. However, newer
technologies such as 5G are stretching this bar to the order of 1ms for some
applications [Tong and Zhu, 2014; Siddiqi et al., 2019]. With margins this low,
it is clear the importance that is being given to maintaining low levels of latency
for some applications.

2.2 Fog Environments
On the topic of reducing latency, some new technologies have emerged. This is
the case of Fog Computing. The Fog is an environment with a plethora of hetero-
geneous devices that work in a ubiquitous and decentralized manner, communic-
ating and cooperating among themselves [Vaquero and Rodero-Merino, 2014].
Thus, the Fog emerges as an extension of the Cloud paradigm escalating from
the core of the network towards its edge; it is comprised of a heavily virtualized
platform able to perform storage, processing, and networking activities between
the Cloud servers and the end devices [Yi et al., 2015a,b]. The Fog comes to
support novel applications and services that are not completely fit for the Cloud,
granting them ubiquity, high resilience, low latency, decentralized management,
and cooperation [Chiang and Zhang, 2016; Hung et al., 2015].

The OpenFog consortium [OpenFog Consortium, 2017] defines Fog as:

“A horizontal, system-level architecture that distributes computing,
storage, control and networking functions closer to the users along a
cloud-to-thing continuum”.

Figure 2.2 describes the Fog landscape. At the top of the picture is the
Cloud level, that comprises centralized datacenters and offers powerful com-
putational and storage resources. At the edge of the Cloud is the Fog level, that
provides more limited storage and computational resources in a more hetero-
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geneous and mostly wireless connected environment, that allows user access to
the Information and Communication Technology (ICT) and its services. The
bottom level corresponds to the IoT that is composed of sensors and actuat-
ors enabling the data collection for applications such as smart homes, smart
buildings, eHealth and smart transportation.
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Figure 2.2: Fog Environment

The scenario at the edge of the Cloud is vastly different from the one at its core.
Thus, to fully understand its peculiarities, the next subsection reviews the main
aspects where Cloud and Fog diverge.

2.2.1 Transitioning from Cloud to Fog
The Fog introduced a paradigm shift from the traditional concept where the
core of the network is in charge of providing information that will be consumed
at its edge. To address the challenges arising from the transition from Cloud to
Fog computing, the latter has to fulfill the following key features [Dastjerdi and
Buyya, 2016; Vaquero and Rodero-Merino, 2014; OpenFog Consortium, 2017;
Cisco, 2015]:

• Heterogeneity and interoperability, to deal with a broad diversity of phys-
ical and virtualized devices deployed in wide-ranging environments;
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• Edge location, location awareness, and low latency, to guarantee that the
most delay-sensitive data is processed closest to those requesting it;

• Wireless communication, to reach a variety of devices at the edge avoiding
the installation of a fixed communication network and contributing to
reduce the amount of traffic in the core network;

• Real-time support, to satisfy services and applications with time-sensitive
requirements; and

• Mobility support, to allow continuity in the services provided to devices
and final users.

In the Fog, final users (e.g., mobile devices and IoT sensors) generate ample
quantities of data at the edge of the network, making them producers and con-
sumers at the same time. The treatment of this unprecedented quantity of data
represents a challenge for traditional paradigms, like Grid and Cloud computing;
thus the Fog arises to overcome these limitations [Dastjerdi and Buyya, 2016;
Cisco, 2016].

Although Cloud and Fog computing share overlapping features, the Fog becomes
a non-trivial extension of the Cloud that must deal with characteristics inherent
to its placement in the overall network infrastructure, such as location aware-
ness, geographical distribution, low latency, real-time, and mobility support [Yi
et al., 2015a; Bonomi et al., 2014, 2012; Botta et al., 2016]. Another significant
difference regarding the Cloud is that the Fog encompasses a huge set of hetero-
geneous devices, mostly wirelessly connected, that are more constrained in terms
of resources in comparison with the servers that reside in the Cloud [Varshney
and Simmhan, 2017; Jiang et al., 2018].

Fog computing provides to the Cloud an alternative to manipulate exabytes of
data generated daily from the IoT [Cisco, 2016]. With the ability to process the
data near where it is generated and required, it is possible to tackle the challenges
regarding data volume, interoperability, and time-sensitivity. By eliminating
the RTT related to traveling to the Cloud and back, it is feasible to accelerate
the awareness and response time of services and applications. Furthermore, by
preventing the need to send the data to the Cloud, or at least by aggregating
it first, capacity of the communication channel is saved by reducing the amount
of traffic in the core network.

2.2.2 Application Scenarios
The combination of the Fog and IoT paradigms could be used in many
scenarios to achieve and improve application and service requirements. In this
subsection, some examples of the collaborative use of Fog and IoT are described
within four specific areas: Automation, eHealth, Smart Cities, and Infotainment.

Automation
Automation systems refer to the integration of cyber technologies that make
devices Internet-enabled to implement services for different industrial tasks such
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as Internet-based diagnostics, maintenance, and efficient and cost-effective op-
eration [Jazdi, 2014].

Constraints of this scenario include data and service security, scalability, and
minimizing latency and jitter. Moreover, operator infrastructures can contain
devices from multiple manufacturers communicating with different technologies,
sometimes proprietary, creating additional problems regarding interoperability
and service deployment that must rely on manual intervention by network
managers [Rotsos et al., 2016].

eHealth
Another scenario of applicability of Fog computing is eHealth. The processing
of data generated by wearable devices ([Fitbit, Inc., 2020; Apple Technology
Company, 2020]) requires low latency among other requirements related to
the speed of events, such as interoperability, scalability, and security. Fog
computing brings processing to the edge of the network, significantly improving
technical factors that allow shorter responses in emergency scenarios. Fog can
also interface with other paradigms such as Cloud computing, allowing per-
sistent data to be driven by the Clouds for permanent storage and performing
tasks such as analytics.

Smart Cities
The Smart City paradigm emerged to describe the use of new technologies in
everyday urban life, providing the management of its services (e.g., energy, trans-
portation, lighting, public safety) using ICT. These technologies implement a
logical/virtual infrastructure to control and orchestrate physical objects to ac-
commodate the city services to the citizen needs [Borgia, 2014].

In the context of Smart Cities, mobility is a key requirement that should
be explored allowing devices and services to capture information about the
environment and act in real-time. The Orchestrator must be able to maintain
low latency, high resilience, and trustworthiness according to the applications
and users expectations, even in times when the infrastructure is stressed under
heavy loads of traffic.

Infotainment
The term Infotainment refers to a combination of Information and Entertain-
ment served together [Saini et al., 2017], and is used here to group the applica-
tions like virtual reality applications, gaming applications, video streaming, fin-
ancial trading applications among others, which require very low latency levels
(i.e. around tens of milliseconds) [Chiang and Zhang, 2016].

These applications generate and consume heavy traffic loads and have rigorous
demands regarding latency. To efficiently handle these services, new man-
agement functions at Fog level must be conceived to deal with the scenario
requirements efficiently; for flexible connectivity in heterogeneous and highly
mobile environments, with strong latency guarantees, network operators require
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innovative orchestration mechanisms that support dynamic multi-technology
resource management [Rotsos et al., 2017].

Once the features of the scenario are defined, it is important to realize the set of
challenges they impose, and that have to be orchestrated. A discussion on the
challenges that a Fog orchestrator must overcome is presented in the following
subsection.

2.2.3 Research Challenges in Fog Orchestration
As in the Cloud, there is a need to manage the resources in the Fog. Many
solutions have already been developed with this purpose for the Cloud; but even
though the Cloud and the Fog use the same kind of resources (storage, network,
and processing) and share the need for many of the same mechanisms (e.g.,
virtualization), the same procedures can not be migrated from one environment
to the other, given that there are fundamental differences among them [Bonomi
et al., 2014; Hao et al., 2017].

Unlike the Cloud, which is centralized, the Fog is aimed at services and applic-
ations with distributed deployment [Aazam and Huh, 2014]. The management
of the devices in the micro datacenters between the Cloud and the underly-
ing IoT is another requirement for the Fog [Sheng et al., 2015; Aazam and Huh,
2015b]. Fog devices are placed between smart devices and the Cloud; in this
area, the homogeneity of resources that can be found in the Cloud disappears
to give room for a more heterogeneous environment, where the characteristics
and manufacturers of the resources vary [Stojmenovic, 2014].

Furthermore, the devices in the Fog are resource-constrained in comparison with
the resource-rich Cloud counterpart [Luan et al., 2016]; energy, processing, and
storage resources are limited in the Fog. The Fog also deals with mobility,
where mobile and wireless nodes are commonly less reliable in their connectivity
behavior [Aazam and Huh, 2015a]; this can cause drops in the QoE or even
interruption of the services provided. Security also has to be analyzed from a
new perspective. Fog devices face threats that are not present in more controlled
Cloud scenarios, regarding both security and privacy [Stojmenovic and Wen,
2014]. Additional challenges have been identified [Wen et al., 2017] and include
dealing with a larger scale of devices and a highly dynamic environment.

A Fog Orchestrator must be able to maintain low latency, high resilience, and
trustworthiness according to the applications and users expectations, even in
times when the infrastructure is stressed under heavy loads of traffic. The key
issue here is that such loads are intrinsically specific to a particular application
and cannot be reutilized from other scenarios or domains; thus further research
in this direction to achieve the requirements mentioned above is required.
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2.2.4 Latency in Fog Environments
One of the characteristics of Fog environments is that they have the potential
to provide low levels of latency [Vaquero and Rodero-Merino, 2014; OpenFog
Consortium, 2017]. This allows the deployment of a different kind of services
with real-time and low latency restrictions that are not necessarily fit for the
Cloud; but also requires a new set of mechanisms that guarantee that these low
latency levels are met.

Smart routing and forwarding mechanisms should be designed, aiming at faster
response time. A multipath approach [Chen et al., 2013; Pu, 2018] could be
employed to achieve this goal, especially when dealing with huge bulks of data;
however, for small but critical tasks, the use of redundant packets has proven to
be efficient [Vulimiri et al., 2012, 2013].

Another possibility is designing intelligent service placement mechanisms [Moens
et al., 2014; Xiong et al., 2016] for the Orchestrator. It is also important to take
into consideration the mobile nature of the devices (e.g., sensors in cars), for
which location awareness [Steiner et al., 2012; Guerrero et al., 2019a] and dynam-
ism support [Zhang et al., 2012; Wang et al., 2017] must also be included.

Given that the tendency is shifting time-constrained services and applications
towards the edge of the Cloud, into the Fog, it is imperative to guarantee that
the time restrictions are met [Dolui and Datta, 2017]. The service orchestrator
must incorporate novel mechanisms, different from those already available for
other distributed systems such as Cloud, that are sensitive to time constraints,
and that support other features such as dynamism and geo-distribution [Yi et al.,
2015a].

Another issue to take in consideration is the more limited resources regarding the
bandwidth of the links in comparison with Cloud systems, given their wireless
nature and narrower capacity [Osanaiye et al., 2017].

These challenges call for the make-up and development of new orchestration
mechanisms for the Fog to handle the strict latency constraints of services and
applications. These mechanisms are to be executed under the control of a well-
designed orchestrator that takes advantages of the characteristics inherent to the
Fog. Some of the approaches previously explored to handle Fog orchestration,
and particularly latency, are introduced in the following section.

2.3 Orchestrating the Fog to Reduce Latency
The Fog requires a well-constructed orchestrator able to deal with the full man-
agement function for this complex environment, and properly handle all the
challenges previously described. Several efforts have been carried out in the
field of Fog orchestration, and particularly aimed at latency reduction, and the
most relevant are outlined below.
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2.3.1 Orchestration
The concept of orchestration frequently comes around when discussing service
oriented architectures, virtualization, and management of resources in network
infrastructures. The need for automated procedures to deal with different topics
has been explored before in diverse contexts, such as Cloud computing [ETSI
GS NFV-MAN, 2014; OASIS Standards Group, 2013]. More recent works are
focused on orchestration in Fog and edge environments, and a collection of them
is presented in this subsection.

Some efforts have been carried out by standardization organizations to define
ground rules to orchestrate the perimeter, or edge, of the network. ETSI [ETSI
GS MEC, 2016] defines a framework that includes entities at the system level, at
the host level, and at the network level. A reference architecture for orchestration
is also described; its core component, the orchestrator, has a general view of
the entire system, while on the other hand, the hosts provide a virtualization
infrastructure to run applications. The OpenFog Consortium also proposes an
architecture for Fog Computing and its orchestration [OpenFog Consortium,
2017]. Their proposal describes pillars as key attributes needed for a system
to provide the distribution of computing, storage, and communication functions
near the final users. Orchestration is defined as a transversal function among the
pillars or the Fog architecture, including tasks related to security, manageability,
performance, and scaling.

The OASIS Standards Group describes Tosca [OASIS Standards Group, 2013],
a topology and orchestration specification for Cloud applications. Their main
focus is the enhancing of portability and operational management of Cloud ap-
plications that should be taken in consideration during the service orchestration
process. Santoro et al. [Santoro et al., 2017] propose an orchestration platform
to manage applications workload and to control resource usage in Fog environ-
ments. Their proposal is based on open source technologies and is evaluated
in a testbed with different use cases, including face detection and vehicle track-
ing. Hoque et al. [Hoque et al., 2017] analyze different container orchestration
tools (e.g., Kubernetes, Docker Swarm, Apache Mesos-Marathon) with special
emphasis on their Fog requirements support to ultimately propose a container
orchestration framework for the Fog. de Brito et al. [de Brito et al., 2017] pro-
pose an architecture for service orchestration for the Fog, including a prototype
implemented as proof-of-concept. They define the orchestrator and its compon-
ents, as well as the interaction among them.

A distributed computing architecture and a container orchestrator is presented
by Taherizadeh et al. [Taherizadeh et al., 2018]. The architecture allows the
offloading of applications from the edge of the network to other nodes in the
Fog. The architecture also provides mobility support for when the user moves
from one geographical location to another. Kim et al. [Kim et al., 2018] offer a
prototype for network management using container technology. Their proposal
covers security, scalability, and performance tasks for Cloud/Fog environments.
Alam et al. [Alam et al., 2018] introduce a modular framework that provides
orchestration via the use of containers (i.e., Docker) to simplify management
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while enabling distributed deployment of applications.

Particular mechanisms to handle orchestration tasks have also been proposed.
Santos et al. [Santos et al., 2017] describe a framework for management of Fog
functionalities in 5G-enabled Smart Cities. The orchestrator is accompanied by
a Peer-to-PeerP (P2P) Fog protocol based on Open Shortest Path First (OSPF)
for the exchange of information between the Fog nodes. Viejo and Sanchez [Viejo
and Sanchez, 2019] propose security protocols for orchestration and delivery of
IoT services in the Fog. The procedures include setup and user registration, se-
cure orchestration, and secure delivery. For the secure orchestration procedure,
a subset of Fog nodes, following a tree hierarchy, is selected to run a specific pro-
cedure, receiving cryptographic material to be used during the service delivery.
Santos et al. [Santos et al., 2020] present an orchestration mechanism aimed at
the selection of Fog nodes for video content download. The mechanism receives
user feedback to assess the video streaming from the Fog nodes.

Table 2.1 summarizes the works presented in this subsection. Column Archi-
tecture indicates the presence of an architecture proposal for the orchestrator;
column Approach indicates if the solution is centralized or distributed; column
Environment states if the solution is focused only in Cloud, only in Fog, or in
the Cloud-to-Fog continuum (Cloud/Fog); finally, column Implementation gives
information on the implementation details provided in the proposal.

From Table 2.1 three main categories can be identified: (1) works on providing
guidelines for the orchestration process [ETSI GS MEC, 2016; OpenFog Consor-
tium, 2017; OASIS Standards Group, 2013]; (2) works that propose a configur-
ation framework of different technologies and tools that combined would help in
the orchestration [Santoro et al., 2017; Hoque et al., 2017; de Brito et al., 2017;
Taherizadeh et al., 2018; Kim et al., 2018; Alam et al., 2018]; and (3) works that
are focused on proposing a particular mechanism that helps in a given task of
the orchestration process [Santos et al., 2017; Viejo and Sanchez, 2019; Santos
et al., 2020].

The works in the first category attempt to define the tasks that should be accom-
plished by an orchestrator, although do not present specific proposals on how
to handle those tasks. Works on the second category are more focused on the
proposal of different software tools, such as container orchestration tools (e.g.,
Kubernetes, Docker Swarm, Apache Mesos-Marathon) to manage, for instance,
application workloads and to control resource usage in Fog environments [San-
toro et al., 2017]. For the works on the third category, they focus on a single
challenge to be handled by the orchestrator (e.g., security [Viejo and Sanchez,
2019], QoE [Santos et al., 2020]) and propose different mechanisms to handle
said issues.

The definition of an architecture for a Fog orchestrator and its constituent mod-
ules has been addressed [ETSI GS MEC, 2016; OpenFog Consortium, 2017; de
Brito et al., 2017; Taherizadeh et al., 2018; Santos et al., 2017]. It is also notice-
able that although many works are solely focused on the Fog [ETSI GS NFV-
MAN, 2014; Santoro et al., 2017; Hoque et al., 2017; de Brito et al., 2017; Kim
et al., 2018], more recent works are moving towards a transversal orchestration
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Table 2.1: Characteristics from Related Work on Orchestration

Work Architecture Approach Environment Implementation

ETSI GS MEC [2016] Yes Centralized Fog
Superficial
guidelines

OpenFog Consortium [2017] No Centralized Cloud/Fog
Superficial
guidelines

OASIS Standards Group [2013] Yes Centralized Cloud
Superficial
guidelines

Santoro et al. [2017] No Centralized Fog
Open source
technologies

Hoque et al. [2017] No Centralized Fog
Configuration
framework

de Brito et al. [2017] Yes Centralized Fog
Configuration
framework

Taherizadeh et al. [2018] Yes Centralized Cloud/Fog
Configuration
framework

Kim et al. [2018] No Distributed Cloud/Fog
Configuration
framework

Alam et al. [2018] No Centralized Cloud/Fog
Configuration
framework

Santos et al. [2017] Yes Distributed Cloud/Fog
P2P protocol
exchange info

Viejo and Sanchez [2019] No Centralized Cloud/Fog
Security
protocol

Santos et al. [2020] No Centralized Cloud/Fog
Node selection
video download

across the Cloud-to-Fog continuum [OpenFog Consortium, 2017; Taherizadeh
et al., 2018; Alam et al., 2018; Santos et al., 2017; Viejo and Sanchez, 2019;
Santos et al., 2020]. The works are also almost entirely focused on centralized
approaches, with some exceptions using a distributed approach [Kim et al., 2018;
Santos et al., 2017].

Among the tasks performed by an orchestrator aimed at reducing the latency,
as seen in Section 2.2.4, are smart routing and smart service placement. The
most relevant works on these topics are discussed in the following subsections,
and the open issues found in the analysis of the related work are discussed in
Subsection 2.3.4.

2.3.2 Smart Routing
Finding the best route could render in better response times. The particu-
larities imposed by the Fog, and detailed in Section 2.2.3, call for a revisit of
existing routing mechanisms to adapt them to the newly established Fog re-
quirements.

Vulimiri et al. [Vulimiri et al., 2012] argue that the use of redundancy is effect-
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ive to reduce latency, particularly for small but critical tasks. They propose
initiating redundant operations and using the first result which completes. The
idea is further studied [Vulimiri et al., 2013], characterizing the situations in
which redundancy can help reducing latency. Okay and Ozdemir [Okay and
Ozdemir, 2018] present a survey on routing for Fog platforms to later introduce
a hierarchical Software Defined Networking (SDN)-based routing architecture
in which Fog controllers manage local frequent events while a Cloud control-
ler takes global actions for rare events. Kadhim and Seno [Kadhim and Seno,
2019] propose a multicast protocol based on SDN for Vehicular Ad-Hoc Net-
works (VANETs). The protocol includes deadline and bandwidth constraints
through a priority based algorithm to schedule multicast requests based on ap-
plication types. OMNETT++ is used for validation.

Lu et al. [Lu et al., 2018] introduce a position-based routing scheme for inter-
vehicle communication in VANETs. They use a greedy forwarding strategy to
send data packets between two junctions, the main goal is to improve packet rate
and end-to-end delay. Authors used ns-2 for the experimental evaluation. Ullah
et al. [Ullah et al., 2020] present a taxonomy of position based routing protocols
for VANETs; furthermore, they propose an architecture that supports position
based routing by using road junctions and Fog nodes for path selection, to im-
prove transmission time and communication costs. Manasrah et al. [Manasrah
et al., 2019] propose an optimized service broker routing policy to minimize re-
sponse time and costs. Their approach is using Genetic Algorithms to select
the optimal datacenter for each user based on the response time and overall
cost. CloudAnalyst was used in the evaluation. Borujeni et al. [Borujeni et al.,
2018] present two Fog-based algorithms for Wireless Sensor Network (WSN), to
find optimal cluster heads according to the remaining energy of the Fog nodes.
Evaluation was carried out via simulations, using CloudAnalyst.

Qiuli et al. [Qiuli et al., 2019] propose a routing protocol for Underwater Acous-
tic Sensor Network (UASN) to reduce packet loss rate and transmission delay.
Random selection and hotspot avoidance mechanisms are included to help solve
the problems of hotspot and load unbalance. OMNET++ was used for the val-
idation. Pu [Pu, 2018] presents a jamming-resilient multipath routing protocol
so that intentional jamming or other failures do not interrupt the performance
of the network. The protocol relies on link quality, traffic load, and spatial
distance to achieve its goal. Simulations were used for evaluation purposes, us-
ing OMNET++ as simulation tool. Wang et al. [Wang et al., 2020] propose
a Fog architecture accompanied by a routing algorithm for WSNs sensors that
takes into consideration hop count and energy consumption. The routing layer
of their Fog architecture is responsible for each sensors final path according to
the scheduling method used in the Fog. Matlab was used for the evalauation.
Naranjo et al. [Naranjo et al., 2017] suggest a routing protocol that prolongs
the stable period of Fog sensor networks by maintaining balanced energy con-
sumption. The protocol organizes the nodes and selects the cluster head in the
WSNs. The evaluation was carried out using Matlab.

Table 2.2 summarizes the works on smart routing presented in this subsec-
tion.
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Table 2.2: Characteristics from Related Work on Smart Routing

Work
Network Optimization

Environment Evaluation
technology factor

Vulimiri et al. [2012] General Latency Unspecified Unspecified
Vulimiri et al. [2013] General Latency Unspecified ns-3
Okay and Ozdemir [2018] SDN Routing delay Cloud/Fog ONE
Kadhim and Seno [2019] SDN/VANET Delay Fog OMNET++
Lu et al. [2018] VANET Delay Fog ns-2

Ullah et al. [2020] VANET
Packet delivery

Fog Unspecified
ratio

Manasrah et al. [2019] General
Response time

Cloud/Fog CloudAnalyst
Cost

Borujeni et al. [2018] WSN
Energy

Cloud/Fog CloudAnalyst
consumption

Qiuli et al. [2019] UASN Reliability Fog OMNET++
Pu [2018] FANET Latency Unspecified OMNET++

Wang et al. [2020] WSN
Throughput

Cloud/Fog Matlab
Delay

Naranjo et al. [2017] WSN
Energy

Fog Matlab
consumption

Former works were focused on redundancy [Vulimiri et al., 2012, 2013], sending
the same duplicated data through different paths, which can lead to excessive
traffic load. The Fog has already been considered as a main scenario for routing
research [Kadhim and Seno, 2019; Lu et al., 2018; Ullah et al., 2020; Qiuli et al.,
2019; Naranjo et al., 2017], although the Cloud-to-Fog continuum has also been
studied [Okay and Ozdemir, 2018; Manasrah et al., 2019; Borujeni et al., 2018;
Wang et al., 2020].

One of the main characteristics of the Fog is its mobility support (see Subsec-
tion 2.2.1). Many works are aimed at VANETs [Kadhim and Seno, 2019; Lu
et al., 2018; Ullah et al., 2020], and Flying Ad-Hoc Networks (FANETs) [Pu,
2018], that handle high mobility, for which routing paths must be frequently up-
dated. WSNs [Borujeni et al., 2018; Wang et al., 2020; Naranjo et al., 2017] and
UASNs [Qiuli et al., 2019], are network technologies that are unstable regarding
their topology, thus potentially requiring to modify the routing paths on each
activation/deactivation of the sensor nodes.

Some works use another Fog characteristic (location awareness) to apply geo-
graphical location for position-based routing [Lu et al., 2018; Ullah et al., 2020],
while others use basic networking principles such as multipath transmission [Pu,
2018; Kadhim and Seno, 2019] and clustering [Naranjo et al., 2017].

Regarding the optimization factor used in the analyzed works, the main focus is
to maintain the routing paths under changing topology conditions [Ullah et al.,
2020; Borujeni et al., 2018; Qiuli et al., 2019], but also to optimize other network
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metrics such as energy consumption [Naranjo et al., 2017; Borujeni et al., 2018],
reliability [Qiuli et al., 2019], network load [Manasrah et al., 2019] and delay [Lu
et al., 2018; Wang et al., 2020; Kadhim and Seno, 2019; Okay and Ozdemir, 2018;
Vulimiri et al., 2012, 2013].

The simulation tools used in most of the works in this selection are simulators
for general networking purposes, such as ns-2 [Lu et al., 2018], ns-3 [Vulimiri
et al., 2013], OMNET++ [Kadhim and Seno, 2019; Qiuli et al., 2019; Pu, 2018],
and ONE [Okay and Ozdemir, 2018]; there is no Fog-based simulation tool used
for these works (only a couple of works using a Cloud-based simulator [Man-
asrah et al., 2019; Borujeni et al., 2018]). Matlab was also used as evaluation
tool [Wang et al., 2020; Naranjo et al., 2017]. Open research issues identified in
this group of works are presented in Subsection 2.3.4.

2.3.3 Service Placement
Although the placement problem has been vastly addressed in the past for
Cloud environments [Moens et al., 2014; Espling et al., 2016; Ghaznavi et al.,
2015; Steiner et al., 2012], new strategies are required for the Cloud/Fog con-
tinuum [Souza et al., 2018].

Skarlat et al. [Skarlat et al., 2017b] analyze the placement of IoT services in the
Fog, according to their QoS requirements. They define an ILP model aimed at
maximizing the utilization of the Fog landscape, while also keeping the resource
usage constraints. Evaluation is carried out using iFogSim [Gupta et al., 2017].
On another work, Skarlat et al. [Skarlat et al., 2017a] present a heuristic based
on a GA to solve the service placement problem. The main purpose of this work
is to maximize the number of services placed, and the usage of Fog devices.
Once again, iFogSim is used as an evaluation tool. The proposed solutions are
compared with a greedy First Fit (FF) approach. The GA provided lower de-
ployment delay by exploiting more Cloud resources. Wang et al. [Wang et al.,
2017] introduce an optimization approach and a heuristic for online scenarios.
Both approaches are evaluated using simulations. Their proposal is O(1) com-
petitive for a broad family of cost functions, meaning its competitive ratio is
given by a constant.

Taneja and Davy [Taneja and Davy, 2017] describe a Module Mapping algorithm
aimed at the optimization of resource utilization for Cloud/Fog scenarios. The
solution is compared with placing the applications entirely in the Cloud, and
the validation is carried out by simulation using iFogSim. Response times and
network usage are reduced when using the Fog compared with a Cloud-only
approach. Lera et al. [Lera et al., 2019a] present a solution for service placement
aimed at improving the availability by placing as many interrelated services as
possible within the proximity of the user. The proposal is compared with an ILP
approach by means of simulation using YAFS [Lera et al., 2019b], and showed
improved QoS and availability. Guerrero et al. [Guerrero et al., 2019a] propose
to place popular services closer to the users (according to the hop-count). The
decision is made in a decentralized fashion by each of the devices. Simulation
(using iFogSim) showed that more popular applications had lower latency while
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less popular applications were affected by a larger delay.

Mahmud et al. [Mahmud et al., 2019] use fuzzy logic to place applications
in the Fog, with the objective of maximizing the QoE. Experimental evalu-
ation is performed using iFogSim. Results show a reduced deployment time
and improved QoE. Brogi and Forti [Brogi and Forti, 2017] propose a model
for the deployment of IoT applications in the Fog. Authors also introduce a
tool, FogTorch, in which the model is prototyped. Guerrero et al. [Guerrero
et al., 2019b] compare three evolutionary algorithms to optimize latency, service
spread, and resource usage. The algorithms are tested using Python. Martin
et al. [Paul Martin et al., 2020] combine service reliability and monetary cost
in a multi-objective optimization for service placement in the Fog. They use a
multiobjective optimization algorithm to minimize cost while at the same time
maximizing reliability. Validation is carried out via simulations, using iFogSim,
and also with a Fog testbed.

Deng et al. [Deng et al., 2016] formulate a workload allocation problem to op-
timize power consumption considering constrained service delay. Their proposal
is based on sacrificing modest computational resources to save bandwidth and
reduce delay. The evaluation is performed via simulation using Matlab. Ven-
ticinque and Amato [Venticinque and Amato, 2019] present a methodology to
address the service placement problem. They use a case study based on an IoT
application in the smart energy domain, for which they extended a software
platform developed and released open source as part of the CoSSMic European
project [SINTEF, 2013]. Their objective is to optimize the Fog landscape util-
ization while satisfying QoS requirements.

Liu et al. [Liu et al., 2018] use queueing theory for multi-objective optimization
for offloading in Fog environments. Their objectives are minimizing energy con-
sumption, execution delay, and cost. A mathematical model is also provided to
complement the proposed algorithm. He et al. [He et al., 2018] present resource
allocation schemes, jointly with admission control and offloading mechanisms,
to support data analytics while maximizing service utilities. For the allocation,
their solution decides how many and which nodes in the Fog would execute jobs.
Authors also provide a simulator in which they evaluated their proposal.

The works reviewed in this section are summarized in Table 2.3. The proposals
are mostly based on Fog environments, with some exceptions considering the
Cloud-to-Fog continuum [Taneja and Davy, 2017; Deng et al., 2016].

An important issue to consider is the decision factor, which refers to the metric
guiding the placement process. Most metrics used are based on network as-
pects such as resource usage [Skarlat et al., 2017b,a; Taneja and Davy, 2017;
Guerrero et al., 2019b], power consumption [Deng et al., 2016; Liu et al., 2018],
availability [Lera et al., 2019a], and latency or some sort of time-related metric
like response time [Guerrero et al., 2019a,b; Deng et al., 2016; Venticinque and
Amato, 2019; Liu et al., 2018; He et al., 2018]. In the case of metrics that con-
cern the applications and their services, the only aspect could be the QoE, that
measures the quality as experienced by the user, but no element that describes
the applications and their services is used during the placement process.
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Table 2.3: Characteristics from Related Work on Service Placement

Work
Decision

Approach Environment Evaluation
Factor

Skarlat et al. [2017b]
Resource

ILP Fog iFogSim
usage

Skarlat et al. [2017a]
Resource

ILP + GA Fog iFogSim
usage

Wang et al. [2017] Cost
LP Mobile Unspecified
+ Heuristic micro-clouds simulator

Taneja and Davy [2017]
Resource Module mapping

Cloud/Fog iFogSim
usage algorithm

Lera et al. [2019a] Availability
2-phase placement

Fog YAFS
+ communities

Guerrero et al. [2019a] Latency
Decentralized

Fog iFogSim
placement

Mahmud et al. [2019] QoE Fuzzy logic Fog iFogSim
Brogi and Forti [2017] QoS Mathematical Fog FogTorch

Guerrero et al. [2019b]
Latency,
service spread, GA Fog Python
resource usage

Paul Martin et al. [2020]
Cost, Heuristic

Fog
iFogSim

reliability Testbed

Deng et al. [2016]
Delay, power Mathematical

Cloud/Fog Matlab
consumption model

Venticinque and Amato [2019]
Response time, BET

Fog Testbed
resource usage method

Liu et al. [2018]
Energy Mathematical Unspecified
consumption, model Fog simulator
delay, cost

He et al. [2018]
Computational, Own
cost, latency, Benchmark Fog simulator
bandwidth

It is also relevant to notice the use of mathematical programming techniques, like
Linear Programming (LP) and ILP [Skarlat et al., 2017b,b; Wang et al., 2017], in
the design of models to find the optimal location for services. Genetic Algorithm
is another technique that is commonly used for the placement heuristics [Skarlat
et al., 2017b; Guerrero et al., 2019b].

Most works use simulation for the validation, varying the tool used, largely
iFogSim [Skarlat et al., 2017a,b; Taneja and Davy, 2017; Guerrero et al., 2019a;
Mahmud et al., 2019; Paul Martin et al., 2020], but also YAFS [Lera et al.,
2019a], FogTorch [Brogi and Forti, 2017], and Matlab [Deng et al., 2016], being
Matlab the only not Fog-based simulation tool.

The open issues identified thus far are presented in the following subsec-
tion.
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2.3.4 Open Issues
After studying the related literature it is feasible to identify possible research
paths, in order to solve the problem of latency mitigation in communication
networks, particularly in Fog environments.

From the analysis of the evaluated State-of-the-Art, some observations arise.
Regarding the orchestration, the main strategy is using a centralized approach,
which generates a single point of failure. An alternative is using a distributed
approach, which leads to a more complex management with a restricted vision
of the entire system. One possibility that has so far not been explored (to the
best of our knowledge) is using a combined approach that takes advantages of
the centralized unified vision of the entire system to apply better optimization
solutions, without suffering of the single point of failure drawback. Another issue
to take into consideration is that being the Fog an extension of the Cloud, it is
natural to consider this environment as a whole, not limiting the orchestration
solution to the Fog but encompassing the entire Cloud-to-Fog continuum.

The works on smart routing are mainly focused on solving the loss of connectiv-
ity or modification of routes due to mobility or changes in the infrastructure,
to maintain the survivability of the applications, and not to improve their per-
formance. The improvement of another factor, such as the latency, comes as
a consequence but not as the main objective. On the other hand, the works
on service placement are mainly focused on enhancing a particular factor (e.g.,
energy consumption, cost, latency).

In regards of the techniques to reduce latency by means of service placement,
there is a lack of works that take into consideration the use of characteristics
intrinsic to the applications and their services that help guiding the placement
process. Most of the works are focused on using network metrics during their se-
lection process. Using an application metric could take advantage of application
profiling analysis since different applications might have different requirements
and/or behavior. Even more, there is a possibility of using a combination of
metrics during the placement process to help in the selection of the optimal
location for a given service.

Thus, for the orchestration, one unexplored approach is using a hybrid solu-
tion to handle the management tasks, including a centralized instance in the
Cloud able to apply a general vision into optimization mechanisms while allow-
ing the distributed cooperation of Fog nodes in lower levels for a quick response
time for dynamic reaction. Regarding the service placement, one possibility is
studying the use of hybrid metrics, combining application and network related
metrics that can guide the placement process to an optimal solution to minimize
latency. Both metrics can change during time, adjusting themselves to reflect
the current conditions of the network and the users’ demands, unlike other met-
rics used thus far, such as hop count [Guerrero et al., 2019a]. This work presents
an architecture for a Fog orchestrator following a hybrid approach, as well as
different smart service placement mechanisms that use the popularity of the
applications as well as the propagation delay of the network (source of delay
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related with service and content placement, see Subsection 2.1.1) to guide the
placement process with the objective of minimizing latency.

2.4 Chapter Summary
The research context, including concepts on latency and Fog environments was
provided. Regarding the Fog, a study on its differences from the Cloud was
performed, including the new emerging challenges that derive from the charac-
teristics inherent to the Fog. This led to the conclusion of the need on novel
orchestration approaches that encompass the challenges introduced by the Fog,
taking into consideration its distributed nature.

Once the research niche was defined, a revision on the State-of-the-Art was
carried out. Different works on orchestration, smart routing, and smart service
placement were revised. The analysis that followed prompted the identification
of research paths, that led to the mechanisms for latency reduction on Fog
environments proposed later in this work.

For the orchestration, using a centralized approach for the upper levels and a
distributed one for the lower levels is a possible way to manage this scenario,
taking advantage of its characteristics. Regarding the latency reduction, service
placement mechanisms based on mixed metrics that appraise both the applica-
tions and the current state of the network appear to be a novel solution to tackle
this issue.

The findings presented in this chapter, particularly those related to the identi-
fication of research challenges in Fog orchestration, are reported in the following
publication:

Velasquez, K., Perez Abreu, D., Assis, M. R. M., Senna, C., Bittencourt, L.
F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E., and Madeira, E.
(2018). Fog orchestration for the Internet of Everything: State-of-the-Art
and Research Challenges. Journal of Internet Services and Applications,
9(14):1-23. Springer.

— 25 —





Chapter 3
An Orchestrator for the Fog

Contents
3.1 A Hybrid Approach for Service Orchestration in the

Fog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 A Modular Framework for Smart Orchestration . . . 30

3.2.1 Service Repository . . . . . . . . . . . . . . . . . . 31
3.2.2 Information Collection . . . . . . . . . . . . . . . . 31
3.2.3 Service Orchestrator . . . . . . . . . . . . . . . . . 32
3.2.4 Service Instances . . . . . . . . . . . . . . . . . . 35
3.2.5 Interactions among the Modules . . . . . . . . . . . 36

3.3 An Orchestrator Instance for Mobility Support . . . 38
3.4 Interaction between the Elements of the Orchestrator 39
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . 40

— 27 —



CHAPTER 3. AN ORCHESTRATOR FOR THE FOG

Managing the resources at the Fog is not an easy task. So far, a cent-
ralized approach with a single manager, or Orchestrator, is com-
monly used. This allows having a unified vision to apply general

optimizations to the entire system. However, the response time for managing
tasks is increased when applying this approach, besides generating the typical
problem of centralized solutions, a single point of failure. It is important to
be able to apply general optimizations, but it seems promising to combine this
approach with a distributed one, that allows having quicker response times for
dynamic reaction. In this chapter, a solution to manage resources in the Fog
using a hybrid approach is presented. In the IoT at South-Bound Fog Levels, a
distributed management of applications and services is proposed applying cho-
reography techniques to enable automated fast decision making. A centralized
approach to orchestrate applications and services taking advantage of a global
knowledge of the resources available in the network is suggested for the North-
Bound Fog and Cloud Levels. Furthermore, a smart orchestration framework is
proposed, with special emphasis in its main module, the Service Orchestrator,
for which implementation details are provided.

3.1 A Hybrid Approach for Service Orchestration in the
Fog

To cope with the Fog challenges described in Chapter 2, while still guaranteeing
an efficient resource management, a service orchestrator solution for the Fog
using a hybrid approach combining orchestration and choreography is proposed
in this section. Orchestration denotes a single centralized executable process
that coordinates the interaction between different applications or services [Wen
et al., 2017; Jiang et al., 2018], using a centralized approach to manage applic-
ations and services. On the other hand, choreography could be defined as a
global description of applications and services, enabled by the exchange of in-
formation, cooperation and agreements between two or more endpoints, using a
decentralized approach to manage applications and services [Bittencourt et al.,
2018].

In order to fully understand the approach of orchestration and choreography
of services in the Fog, a complete review of the general scenario is provided.
The scenario, depicted in Figure 3.1, shows three levels: (1) IoT Level, (2)
Fog Level, and (3) Cloud Level. The Virtual Clusters are at the IoT Level;
these are composed by the grouping of terminal communication devices (e.g.,
smartphones, vehicles) that communicate among each other and also with the
devices belonging to neighboring Virtual Clusters. This allows the movement of
the IoT devices granting a higher level of freedom for the users.
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Communication among Virtual Clusters is achieved by the usage of choreography
mechanisms that allow a quick reaction to possible changes in the topology (e.g.,
movement from one Virtual Cluster to another) as well as providing continuity to
the services and thus higher resilience. Furthermore, this approach also benefits
real-time and delay-sensitive applications by allowing a faster response among
the devices (i.e., shorter paths), without the need of intervention of another
device at a higher level of the infrastructure.

Edge Communication Links and Edge Gateways enable the communication of
the IoT and Fog Levels. The Fog Level is sub-divided in the South-Bound
Region and North-Bound Region. The South-Bound Region, closer to the IoT, is
composed of Fog Instances. Each Fog Instance is a set of Fog Computing Devices,
that allow different actions such as the migration of services for processing from
the IoT devices (i.e., code offloading); Fog Communication Devices, that allow
the connection between the various levels of the infrastructure, and also among
the Fog Instances via Access Points and Base Stations; and Fog Storage Devices,
that enable caching of content for nearby Fog and IoT users. This last part is
also achieved by using choreography mechanisms.

For the resource management at the North-Bound Region of the Fog Level and
Cloud Level, an orchestration approach is used. The communication between
the North-Bound Region of the Fog and the Cloud is done via the Fog-Cloud
Gateways and Fog-Cloud Links. The Cloud offers a massive amount of resources
for heavy computation and storage requirements, usually known as Cloud Ana-
lytics. By using an orchestration approach at these levels, it is possible to have
a global view of the system.

With the adoption of a hybrid approach, different advantages are achieved. For
instance, it allows independence of the lower levels for their decision-making pro-
cesses, which enables a quicker reaction in case of failures or topology changes,
and also lower response time for time-constrained applications. Furthermore, in
the upper levels, having a global view of the system allows applying long-term
actions aiming at the optimization of the overall system.

3.2 A Modular Framework for Smart Orchestration
A modular framework based on the hybrid orchestration approach was designed.
The framework will enable the use of smart orchestration schemes, including
service placement, that guarantee the reduction of the latency according to the
current state of the network and the location of users and servers, while taking
advantage of the Fog scenario. The strategy behind the framework is gathering
information from the underlying network and using this information to place
the services in the most convenient locations.

The framework, depicted on Figure 3.2, is composed by three main modules, (1)
Service Repository, (2) Information Collection, and (3) Service Orchestrator,
plus the locations where the service instances are going to be placed. The
upper levels, located at the Cloud, operate using orchestration, while the lower
levels use choreography. The following subsections describe each module and
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the interactions among them.
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Figure 3.2: Modular Framework for Smart Orchestration

3.2.1 Service Repository
The first module is the Service Repository. This is the place where the available
services are stored and categorized via a catalog. By physically locating this
module in the Cloud, it will provide the framework with additional freedom to
move the instances to different locations according to the needs of the users.
Besides the actual services, this module also stores metadata about the services
(e.g., requirements for a specific content) that will influence the location of each
service.

3.2.2 Information Collection
The following module is the Information Collection module. This module will be
in charge of gathering information from the network and about the interaction
among the users and the services requested. This information, together with
the metadata from the services, is going to influence the future tasks related
with the service instances. To implement this module, an option is using the
Application-Layer Traffic Optimization (ALTO) protocol [Alimi et al., 2014;
Seedorf and Burger, 2009]. The ALTO protocol offers a mechanism to perform
better-than-random peer selection in P2P networks, by obtaining information
about the underlying network that helps to create an optimal overlay network,
for instance, grouping devices that are located closer to each other, thus reducing
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the response time in their communication. Among the pieces of information that
can be obtained with the ALTO protocol are routing policies from Autonomous
Systems (AS), bandwidth capacity of the nodes, and hop count. Although it
was originally intended for P2P networks, this protocol can be applied to any
kind of network.

The ALTO protocol uses two main information elements, called network map
and cost map [Faigl et al., 2014]. The network map contains the description
of groups of hosts without including information about the connection between
those groups. For each group of hosts a Provider-defined IDentifier (PID) is
defined; the PID could denote a subnet, a group of subnets, an AS, or a group
of ASs. Thus, the network map describes the topology of the network. The
cost map is associated to a network map and defines unidirectional connections
between PIDs with an associated cost value for each one-way connection. The
cost map also includes the definition of the metric type (e.g., hop count, routing
cost) and the unit type (e.g., numerical, ordinal).

Another option to get information about the network is using the Simple Net-
work Management Protocol (SNMP), that enables the exchange of management
information between network devices [Zhou et al., 2015]. The SNMP model
comprises four key elements: (1) the management station; (2) the agent; (3)
the Management Information Base (MIB); and, (4) the network management
protocol. The management station is the core of the system, in charge of net-
work configuration and troubleshooting, among other tasks. The agents could
be hosts, routers, and bridges; and are responsible for monitoring the network
conditions, thus collecting information that in turn is sent to the management
station. With this information, the topology of the network and its condition
can be obtained. The MIB serves as a collection of objects that represents
the knowledge shared, and the management protocol defines the exchange of
information.

3.2.3 Service Orchestrator
The next module is called Service Orchestrator, which is the core of the frame-
work. This module is going to implement the different global orchestration
strategies, including those that make the decisions about the current location
for every service instance. By using the data provided by the Information Col-
lection module and the metadata from the services, it will be able to request
the corresponding service instance from the Service Repository, and ultimately
locate it in the appropriated location. This model gives the freedom to even
combine some service instances in order to create more complex services. There
are two possibilities to start the tasks of the Service Orchestrator, and they
differ in how the initial placement is done. The first one is doing the initial
placement randomly; and the second one is using a prediction about the state
of the network. In both cases, subsequent placements are done by taking into
account the information about the network.

Algorithm 3.1 shows the functionality for the Service Orchestrator using the
random start approach. In this case, once the Service Orchestrator starts, it
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places the services in random locations, to later adapt to the conditions of the
network, that will be informed by the Information Collection module.

Algorithm 3.1: Service Orchestrator - Random Start
1 locations ← getLocations()
2 instances ← getInstances()
3 metrics ← getMetrics()
4 instances ← requestInstance(service)
5 servicePlacement(random, instances, locations, metrics)
6 do
7 wait(time)
8 maps ← requestMaps()
9 instances ← requestInstances(service)

10 servicePlacement(strategy, instances, locations, maps)
11 while TRUE ;

The algorithm receives as input the locations of the servers (see Section 3.2.4) in
line 1, where the service instances (line 2) are going to be deployed. Since this
algorithm corresponds with a random start, the Service Orchestrator requests
the instances of the services (line 4) and begins to place them randomly in the
servers (line 5). Then, on line 7, a timer is used to allow some interactions that
will feed the Information Collection module with data to create new maps. The
definition of this timer is an important issue to take in consideration, since a
small timer can generate unwanted oscillations in the system, but a large timer
could result in the system not adapting to changes fast enough. The final tun-
ning of the value of this timer will depend on experimental results, that can be
analyzed using big data or machine learning techniques, to enable the definition
of the timer according to each particular system needs. Afterwards, the Service
Orchestrator requests the network and cost maps from the Information Collec-
tion (line 8) and with this data performs an informed placement of services (i.e.,
instances) in the Content Delivery Networks (CDN) servers (i.e., locations) for
subsequent iterations of the algorithm. The strategy refers to the particular
scheme used for the service placement task, such as using an evolutionary ap-
proach, a solution based on linear programming, or in greedy heuristics. This
allows the Service Orchestrator to apply different strategies according to the
needs of the system, defined by the AS administrator.

Algorithm 3.2 reflects the behavior of the Service Orchestrator using the predic-
tion start approach. In this case, the Information Collection module is capable
of creating a map without current information of the underlying network con-
cerning the services that are going to be deployed, but using estimations from
previous knowledge (e.g. traffic conditions) and from some data loaded by the
system administrator, hence creating a “prediction” of the behavior of the net-
work and of future interactions of the users. Loaded with these maps and with
metadata from the Service Repository, the Service Orchestrator performs the
placement of the services.
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Algorithm 3.2: Service Orchestrator - Prediction Start
1 locations ← getLocations()
2 instances ← getInstances()
3 metrics ← getMetrics()
4 do
5 maps ← requestMaps()
6 instances ← requestInstances(service)
7 servicePlacement(strategy, instances, locations, maps)
8 wait(time)
9 while TRUE ;

Once again, in line 1 the algorithm receives the locations as input, as Algorithm
3.1. On line 5, the Service Orchestrator requests the network and cost maps from
the Information Collection module, that on the first iteration will consist on a
prediction based on the conditions of the network and input from the system
administrator (e.g., priority of the services). This information, combined with
the metadata from the services, will allow the Service Orchestrator to perform
a “better-than-random” placement of the services (line 7). Then, a timer is
used to allow the interactions of the users with the Service Instances, which will
generate new metrics for the Information Collection module, which in turn will
create updated network and cost maps for the Service Orchestrator.

3.2.3.1 An Architecture for the Service Orchestrator

To manage the resources and communication in the scenario described in
Figure 3.1, an architecture of the Service Orchestrator is proposed in Fig-
ure 3.3.
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Figure 3.3: Hybrid Orchestrator Architecture

Overlapped instances of this structure ought to be replicated at different levels,
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namely at Fog Instances (Fog Level) and Virtual Clusters (IoT Level), allowing
the implementation of distributed choreography mechanisms; and at the Cloud
Level, where a single logical instance is also deployed for global orchestration
purposes. The orchestrator is composed of different modules. The Commu-
nication Manager controls the communication among the different orchestrator
instances, deployed in Virtual Clusters, Fog Instances, and the Cloud. The Re-
source Manager monitors the resource usage of the various devices, including
which of these resources are being used (and by whom) and which are available
or idle. The Service Discovery module allows lookups for services and applica-
tions that are available and where is the nearest instance being executed. It also
allows the aggregation or removal of services at any time. The Security Manager
provides different mechanisms for authentication and privacy, according to the
applications and services requirements.

The Status Monitor supervises the different activities in the system. It takes
the information from the Resource Manager to guarantee that the required QoS
and QoE levels previously agreed by the users are being met. The Status Mon-
itor also gets information from the Information Collection module from the
orchestration framework. The Planner Mechanisms schedule the execution of
processes throughout the system. They set up where and when each service and
application is going to be executed.

Finally, the Optimizer Mechanisms, only applied at the upper levels of the infra-
structure, where a global view of the system allows making decisions to improve
the QoS and QoE for final users. Both the Planner Mechanisms and Optimizer
Mechanisms can be instantiated according to the particular requirements of the
applications and services running at the Fog Instance or Virtual Cluster. Thus,
resilience-focused mechanisms can be preferred over delay-sensitive or security-
focused mechanisms, according to different needs.

3.2.4 Service Instances
For the Service Instances location, the framework combines paradigms such
that the location of the service is optimized according to its service time. One
of these paradigms is Fog computing. Because the Fog is located at the edge of
the network, some features become attractive as part of the services the Fog can
provide. Examples of these features are location awareness, low latency, support
for mobility, and predominance of wireless access, as previously described in
Chapter 2. The Fog paradigm is ideal to work with other technologies, like CDN.
A Content Delivery Networks is a group of servers, with replicas of the content
and the services from original servers, that allows to offload the work from
those original servers [Krishnamurthy et al., 2001]. Once a request is placed,
the CDN locates a server closer to the user (geographically, topologically, or by
any parameter). By placing the non-original servers at the edge of the network
(i.e., in the Fog), the latency can be reduced. For the proposed framework,
the locations where the Service Instances are going to be placed, refer to CDN
servers positioned in the Fog network.

The Service Orchestrator and the Service Repository, along with some compon-
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ents (for instance, the server) of the Information Collection module could be
deployed in the Cloud, together with the centralized component of the monitor-
ing system in charge of collecting all the information and creating the predictions
to be used. On the contrary, the Service Instances and the rest of the compon-
ents of the Information Collection (e.g., the clients) should be located at the
Fog (using choreography), closer to the users of the services, to take full ad-
vantage of the mobility support, location awareness, and low latency, offered
by the Fog. Service Instances could have an agent deployed from the main or-
chestrator to help in the choreography tasks, sharing information with the main
centralized orchestrator at the upper level via the Communication Manager of
the orchestrator.

3.2.5 Interactions among the Modules
The interactions between the modules are described using sequence diagrams.
As stated in subsection 3.2.3, two approaches have been used for the start-up
process: (1) randomly placing the services for the first time; and, (2) using estim-
ations of the network behavior to locate the service instance on the first attempt.
Figure 3.4 shows the random start approach, where the initial placement is done
randomly.
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Figure 3.4: Sequence Diagram - Random Start

After some interactions with the users, the metrics are gathered by the Inform-
ation Collection module and the network and cost maps are built (depicted by
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the activity block in this module). Then, the maps are requested by the Service
Orchestrator, that uses them to calculate the next best location for the service
instances.

Figure 3.5 shows the prediction start approach. In this case, the Information
Collection module calculates the network and cost maps based on the prediction
about the network behavior. These maps are then delivered to the Service
Orchestrator upon request, which in turn uses them to calculate the optimal
locations for the service instances. After the services are placed, the interactions
with the users begin, thus generating new metrics that will feed the Information
Collection module to generate new network and cost maps, updated with the
current information from the network.
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Figure 3.5: Sequence Diagram - Prediction Start

In both cases, the network and cost maps will continuously get updated by the
collection of new metrics, as was depicted by Algorithms 3.1 and 3.2. This will
influence future service orchestration decisions, such as those related to service
placement. Additionally, the service instances will have some metadata that will
help in the decision making process of the Service Orchestrator.

The hybrid orchestration approach described thus far allows the execution of
complex management actions required in Fog environments. To demonstrate its
usage, an example based on Smart City mobility support is provided next.
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3.3 An Orchestrator Instance for Mobility Support
The orchestrator presented in Subsection 3.2.3.1 can be instantiated according
to the requirements of the applications being executed in the different levels of
the infrastructure. The modules of the orchestrator can be adapted to diverse
needs to provide optimized solutions. This section describes the instantiation of
the orchestrator to offer mobility support in a Smart City scenario.

Given the mobility of many devices in the IoT (e.g., connected vehicles, cyclists,
and pedestrians), the Fog orchestrator must manage the Fog resources according
to the demands required by such applications. Figure 3.6 shows the orchestrator
instance that handles the mobility use-case. The Status Monitor, Resource
Manager, Service Discovery, Security Manager, and Communication Manager
modules remain the same, with the functionalities described in Section 3.2.3.1.
The Optimizer is redefined with mechanisms specifically focused on mobility as
well as the Planner.
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Figure 3.6: An Orchestrator Instance for Mobility Support

For this orchestrator instance, the Planner is composed of four specific mechan-
isms to support mobility. The Mobility Predictor deals with the precalculation
of estimation regarding user mobility patterns. The mobility prediction could
be carried out using machine learning techniques [Anagnostopoulos et al., 2011;
Tang et al., 2019]. This estimation feeds the Path Calculation mechanisms, that
determine the best route between the mobile devices and Fog Instances. The
Benchmark Monitor works together with the Status Monitor to decide if the
task offloading is actually needed, and if so, determines the optimal location
for the services that belong to an application. To achieve this, the Benchmark
Monitor evaluates the available resources both in the device and in the Fog In-
stances and also the expected QoS and QoE of applications and services. The
Code Partition mechanisms determine which services are to be offloaded to the
Fog Instance.
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3.4 Interaction between the Elements of the Orches-
trator

To understand how these mechanisms work together, a sequence diagram is
shown in Figure 3.7. Three actors are involved in this example: the Status
Monitor, the Planner, and the Virtual Machine (VM)/Container. The locally
executed applications and services are monitored, and according to the resource
demand can be migrated to a specific Fog Instance that guarantees the QoS
and QoE requirements of applications and services. Once a request is received,
the Planner must determine where the application (or parts of it) is going to be
executed. The Status Monitor searches for information about the user device to
determine if the application can be executed locally, or on the other hand, if it
must identify the nearest Fog Instance that represents the best option for the
user. According to the resource demand from the applications and the resources
available in the Fog Instance, the Planner should select which tasks will have to
be migrated from the IoT device to the Fog.
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Figure 3.7: Sequence Diagram - Code Offloading in a Mobility Scenario

Given the mobility of the devices, the application should preferably be executed
in the Fog Instances that offer the best conditions to the user while he is mov-
ing. In this context, it can be required to migrate an application from one Fog
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Instance to another to offer the best execution conditions while the device is
in movement. The Planner can select the Fog instances to act in the path. In
the selection process, the Planner uses the device mobility data (provided by
the Status Monitor), trajectory predictions (from the Mobility Predictor mech-
anisms) and data obtained using choreography from other Fog Instances (e.g.,
location and available resources).

From a set of preselected Fog Instances, the Planner can define which Fog In-
stance best fits the user in a specific point of its future path (Path Calculation).
Another functionality that can be inferred from such path is the possibility to
minimize the number of migrations among the Fog Instances. The applications
can be distributed between the Fog Instances that will be available for longer
within the device’s route, before needing a new migration. The next step is
offloading the code to the VM located on the selected Fog Instance.

In a normal flow of execution, the Status Monitor will oversee the methods
of applications running in a VM/Container. The Planner will keep in touch
with the application in order to identify the methods that can be migrated to
the Fog without compromising its execution. The Status Monitor will oversee,
in real-time, the resource demand for each method selected by the Planner.
The data about the application resource demand and the available resources,
both locally and remotely, is evaluated by the Status Monitor module. If the
resources available in the device satisfy the application demands, then it will be
executed locally. On the other hand, if the application requires a vast amount
of resources, and the Fog Instance with which the device already established a
connection offers enough resources, the Planner can conclude that offloading the
application is the most beneficial procedure to the user.

After the process of offloading is completed, the application is executed in the
Fog Instance inside of a VM/Container as long as this state is the most beneficial
for the application. The Status Monitor registers data from the connection qual-
ity and idle resources in neighboring Fog Instances. This data helps the Planner
to select the best location to place the application given the user movement in
case of a needed migration.

This example is focused on the mobility support, as the other modules inside
the orchestrator (e.g., Communication Manager and Resource Manager) will
continue to carry out their basic tasks. Additionally, this example illustrates how
the orchestrator can be adapted to handle specific use-cases inside a scenario as
complex as a Smart City.

3.5 Chapter Summary
A hybrid approach to manage the Fog is proposed, using the combination of
orchestration and choreography styles of management for different regions of
the infrastructure. The solution outlined enables a global view which allows
general optimization, and also automated dynamic reactions at the lower levels.
Additionally, a modular framework for smart orchestration is presented. The
framework defines the location for the smart orchestrator at the Cloud level,
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with the service instances at the Fog, cooperating among them using choreo-
graphy. For the service placement tasks, the framework is able to locate services
in convenient servers at the Fog level (edge of the network) and continuously
migrate these services according to the changing conditions of the network and
status of the users, by learning information from the communication environ-
ment.

An architecture for the smart orchestrator is also outlined, including its mod-
ules and specific jobs for monitoring, resource managing, and optimizing the
different administrative tasks in the Fog, including those of service placement.
Moreover, by using different instances of the orchestrator, it is possible to apply
different optimization goals according to the requirements of the applications.
An example instance for mobility support is provided. The proposals presented
in this chapter are partially reported in the following publications.
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The architecture presented in the previous chapter could be adapted to
different requirements, while taking advantage of the Fog. The Plan-
ner Mechanisms module implements different mechanisms to deal with

resource management. One of these mechanisms is related to the service place-
ment, which consists in the selection of the appropriate execution node for the
applications, according to specific optimization objectives. Different metrics can
be used to guide the placement process. So far, works related to placement in
the Fog have used metrics associated to the communication infrastructure (e.g.,
energy consumption, propagation delay, hop count) or to the application (e.g.,
QoS). On the contrary, this chapter proposes a novel approach that combines
two metrics, one related to the communication infrastructure (i.e., propagation
delay) and one related to the applications (i.e., popularity) with the objective
to prioritize popular applications and minimize their latency.

Two mechanisms are presented in this chapter, the first one is an ILP formu-
lation to find the optimal solution for service placement based on popularity,
aimed at the reduction of latency in Fog environments. This approach will
provide the lowest theoretical latency bound. The second mechanism is a heur-
istic called Popularity Ranked Placement (PRP), based on graph partition, to
offer an option close in quality to the optimal solution, while being significantly
less time-consuming. Both mechanisms are evaluated via simulation.

4.1 An Optimal Solution for Service Placement using Integer
Linear Programming

This section introduces an ILP model to maximize the placement of popu-
lar applications, while minimizing the latency for final users in Fog environ-
ments.

A lexicographic formulation of the optimization problem is considered. First,
with the goal of serving the largest number of users, the problem consists of
maximizing the selection of accepted requests, given the popularity of the ap-
plications. Then, the second problem consists of placing the services that belong
to an application in the Fog nodes that minimize latency, given the selection of
the requests obtained in the first problem. The constraints from the first prob-
lem are kept for the second in order to ensure feasibility. The goal is to reduce
the latency; hence the overall solution of solving both problems should provide
a lower latency to the maximum amount of users.

4.1.1 Parameters and Variables
Table 4.1 summarizes the parameters and variables for the model. Regarding
the parameters, the set of entry points from where requests are generated is
labeled as GW ; these correspond to the gateways from where clients access the
Fog environment. The instance matrix I reflects the micro-services that compose
the applications. This means that an application can be built by the combination
of a set of services. Ia,s = 1 if service s ∈ S belongs to application a ∈ A, and
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0 otherwise. The cost matrix C contains the propagation delay (as a source of
latency impacting placement decisions, see Subsection 2.1.1) from the shortest
path that connects each pair of nodes n ∈ N and gateways gw ∈ GW .

Table 4.1: Parameters and Variables for the ILP Model

Parameters

Parameter Description

S Set of services to be placed
N Set of nodes where the service can be executed
GW Set of gateways
A Set of applications. An application is composed by a set of services
R Set of requests for all the applications
Qa Sum of requests for a ∈ A

Ωn CPU capacity for n ∈ N (GHz)
Φn Memory capacity for n ∈ N (GB)
ωs CPU requirement for s ∈ S (GHz)
ϕs Memory requirement for s ∈ S (GB)
I Instance matrix. An |A| × |S| matrix
C Cost matrix. An |N | × |GW | matrix

Variables

Variable Description

K Acceptance matrix. An |A| × |R| matrix
P Placement matrix. An |A| × |R| × |S| × |N | matrix

Concerning the variables, the acceptance matrix, K is a binary matrix that
indicates which requests are accepted for each application. Ka,r = 1 if the r-
th request for application a ∈ A is accepted, and 0 otherwise. P represents
the placement matrix, indicating the final location for the services. The matrix
relates the requests per application, and the nodes where the services belonging
to those applications are finally placed; P a,r

s,n = 1 indicates that service s ∈ S is
executed on node n ∈ N to satisfy request r ∈ R for application a ∈ A, and
P a,r

s,n = 0 otherwise.

4.1.2 Maximizing the Placement of Popular Applications
The first step in the optimization solution is to select the applications with
the highest amount of requests, which are considered as the most popular. By
prioritizing the most popular applications a larger number of final users will
benefit from lower latency. Equation (4.1) depicts the main objective function
of the ILP model. Since the main objective is to maximize the selection of
popular applications, the set of requests per application is used to determine
which applications have higher priority in the selection.
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max
∑
a∈A

Qa ×
∑
r∈R

Ka,r (4.1)

The first constraint in the model, shown in Equation (4.2), is meant to ensure
that the selection of applications is only carried out when the request can be
fulfilled entirely. The constraint in Equation (4.3) guarantees that the services
that belong to an application selected are executed in only one server. Equa-
tion (4.4) forces that all the services belonging to an application can be executed
before selecting it for execution.

P a,r
s,n ≤ Ka,r ∀a ∈ A, r ∈ R, s ∈ S, n ∈ N (4.2)

∑
n∈N

P a,r
s,n ≤ 1 ∀a ∈ A, r ∈ R, s ∈ S (4.3)

Ka,r × Ia,s =
∑
n∈N

P a,r
s,n ∀a ∈ A, r ∈ R, s ∈ S (4.4)

Memory and CPU restrictions are also imposed as constraints to the model,
to enforce resource limits in the execution nodes. Equation (4.5) describes the
CPU constraint and Equation (4.6) does the same for the memory constraint.
For both equations, the sum of processing requirements from all services can not
surpass the available resources in the nodes.

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ωs ≤ Ωn ∀n ∈ N (4.5)

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ϕs ≤ Φn ∀n ∈ N (4.6)

While the resources of the nodes are usually fixed and well known, an estimate
is used for the resource requirements of the services (i.e., CPU and memory).
Service profiles can be created by gathering information from previous execu-
tions. In this work, services requirements are generated using a bounded random
approach (see Section 4.3).

— 46 —



CHAPTER 4. POPULARITY-BASED SERVICE PLACEMENT

4.1.3 Minimizing the Latency
The second optimization goal is to reduce the latency of the most popular ap-
plications, selected on the first optimization problem. Equation (4.7) depicts the
formulation. The main idea is to minimize cost, represented by the propaga-
tion delay of the links towards a node (Cn,gw). The propagation delay is one of
the latency components related with placement tasks, as stated in Chapter 2,
Section 2.1. The cost can be changed to another gauge, e.g., energy consump-
tion, to model a different requirement but continue to use the same optimization
model.

min
∑
a∈A

∑
r∈R

∑
n∈N

∑
s∈S

∑
gw∈GW

P a,r
s,n × Cn,gw (4.7)

In order to guarantee that the results from the first optimization step are main-
tained (i.e., the popular applications are still selected), the acceptance matrix
resulting from the first optimization problem is now a parameter matrix and
used as input for the placement process in the second optimization problem.
Therefore, during this step of the optimization, the services are placed in the
most convenient nodes in the Fog, aiming at the reduction of the latency of the
services; see Equation (4.8).

∑
s∈S

Ka,r × Ia,s =
∑
s∈S

P a,r
s,n ∀a ∈ A, r ∈ R, n ∈ N (4.8)

Constraints from the first optimization problem (i.e., Equation (4.2) through
(4.6)) are kept in this step to guarantee feasibility. In the following section, an
alternative heuristic based on the PageRank algorithm is proposed.

4.2 A Ranked-based Heuristic for Service Placement in the
Fog

Although optimization solutions are often used for offline environments and as
a theoretical threshold, they are not usually applied in online or more realistic
scenarios given their lack of adaptability and also their high response times [Lee
and El-Sharkawi, 2008]. Furthermore, by optimizing the selection of requests
that come from the gateways, the procedure will most likely place the majority
of the applications in the same Fog nodes, thus potentially creating an overload
in the same nodes and links in case of heavy load. To overcome this issue,
one alternative is using graph partition to create communities in which the
applications can be deployed, balancing the load among the nodes inside the
community [Lera et al., 2019a; Naas et al., 2018; Skarlat et al., 2017a].

There are several option to partition a graph, including Fluid Communities
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[Parés et al., 2018], Girvan-Newman [Newman and Girvan, 2004], and label
propagation [Liu and Murata, 2010]. However, only grouping the nodes is not
enough, since a neighbor node could have higher latency that a non-neighbor
node. Hence, ranking the nodes for the community creation process (e.g., via
probability propagation) is a better option. Using the probability of the node
to appear in the shortest path of communication for a source node would lead to
a better community to eventually minimize latency. The PageRank algorithm
[Page et al., 1999] can also be used to partition graphs, with the particularity
that the partition process is guided by a metric. In this case, the propagation
delay is used as a metric for the community creation process. The original
PageRank algorithm is introduced next in this section to later on describe how
it is adapted for the PRP heuristic.

4.2.1 The PageRank Algorithm
The PageRank algorithm was first introduced to rank web pages in a search
engine, and it was based on a summation derived from bibliometrics research
(i.e., the analysis of the citation structure among academic papers) [Page et al.,
1999]. The idea behind the PageRank algorithm is to rank the nodes in a graph
via probability propagation. To understand how it works, an example is provided
in Figure 4.1. Consider the graph G = (V, E), where V = {A, B, C, D} and
E = {(A, B), (A, C), (B, D), (C, A), (C, B), (C, D), (D, C)}. At the beginning of
the algorithm, it is assumed that all the nodes in set V have the same rank
r = 1

n
, where n denotes the cardinality of set V .

A B

DC

Figure 4.1: A Graph Example to Illustrate the PageRank Algorithm

Nodes are ranked following an iterative approach, according to Equation (4.9)
where Bni

is the set of nodes pointing into node ni and deg+(nj) is the number
of out-links from node nj. Let rk+1(ni) be the rank of node ni at iteration k + 1.
The ranking process begins with r0(ni) = 1

n
for all nodes and is repeated until

the PageRank scores converge to final stable values [Langville and Meyer, 2012].
The values obtained after applying the first three iterations of Equation (4.9) to
the graph depicted in Figure 4.1 are shown in Table 4.2.

rk+1 (ni) =
∑

nj∈Bni

rk (nj)
deg+ (nj)

(4.9)

The implementation of the PageRank algorithm could be sped-up using
matrices [Langville and Meyer, 2012]. The idea is to use an N × N matrix
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Table 4.2: PageRank Values per Iterations

Iteration 0 Iteration 1 Iteration 2 PageRank

r0(A) = 1
4 r1(A) = 1

12 r2(A) = 1.5
12 1

r0(B) = 1
4 r1(B) = 2.5

12 r2(B) = 2
12 2

r0(C) = 1
4 r1(C) = 4.5

12 r2(C) = 4.5
12 4

r0(D) = 1
4 r1(D) = 4

12 r2(D) = 4
12 3

H in combination with a 1×N row vector πT , which holds the PageRank value
of all nodes in each iteration. The matrix H is a row normalized hyperlink
matrix with Hij = 1

deg+(nj) if there is a link from node ni to node nj, and 0,
otherwise. Thus, nonzero elements in H represent the transition probability
from one node to another. The corresponding H matrix for the graph depicted
in Figure 4.1 is shown in Equation (4.10).

H =


0 0 1

3 0
1
2 0 1

3 0
1
2 0 0 1
0 1 1

3 0

 (4.10)

The nonzero elements of row i in H correspond to the out-link nodes of node i;
meanwhile, the nonzero elements of column i denote the in-link nodes of node i.
Regarding the rank of the nodes, the row vector π(k)T represents the PageRank
vector at the k-th iteration of the algorithm. Consequently, Equation (4.9) can
be written using a matrix notation as shown in Equation (4.11).

π(k+1)T = π(k)T H (4.11)

From Equation (4.11), the following observations arise [Langville and Meyer,
2012]:

• Each iteration requires one vector-matrix multiplication, considering that
H is a very sparse matrix, the vector-matrix operation is reduced to O(n)
computational effort;

• The iterative method used is a linear stationary process performed apply-
ing the power method to matrix H; and

• H could be seen as a stochastic transition probability for a Markov chain,
where the dangling nodes of the graph create 0 rows in the matrix and the
other rows belong to the non-dangling node keeping stochastic values.

Consequently, H is considered a sub-stochastic matrix. In this work, the PageR-
ank algorithm described above is adapted to rank the nodes in a network to-
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pology using the Propagation Delay (PD) of the links to weight the transition
probability between nodes. A heuristic based on this ranking process is described
next.

4.2.2 Ranking nodes to create Communities
To avoid the potential issue concerning the overload of the nodes close to the
gateways and the gateways themselves, an alternative is to create communities
that can share the load of the gateways while keeping the applications deployed
in their proximity, as explored in other works [Skarlat et al., 2017a; Lera et al.,
2019a]. However, only selecting neighboring nodes to share the load could be
restrictive since there is a chance that a non-neighbor is better qualified than
the neighbors (e.g., has lower latency connectivity). Thus, ranking the nodes
according to the probability in which they would communicate (e.g., be chosen
in the shortest path) represents a better selection criterion to build these sharing
groups or communities. In this work, the ranking process described above is used
to create those communities.

The heuristic takes advantage of the low latency levels in the Fog by deploy-
ing the modules of the applications through the Fog infrastructure, and near
to the final users whenever possible. When the Fog runs out of resources, de-
ployment in the Cloud will be carried out. The ranking of the nodes is created
according to the procedure described in Subsection 4.2.1. For a weighted graph,
the probability of moving from one node to the next will not only depend on
the presence of a link but on a metric based on the weights of the edges. In
this work, the Propagation Delay is used as a metric of the link latency. Thus,
nodes connected through a link with a lower PD will have a higher probability
to connect since they will be part of the shortest path towards the destination
node.

The community-building process is described in Algorithm 4.1. The first step
is to get the topology graph (line 1), and to remove the Cloud node since it
will not be part of any community (i.e., only being used when there are no
resources available in the Fog), and also transforming it as a complete directed
graph. Following this, the nodes are ranked using the process described in
Subsection 4.2.1. The PD is used to weight the transition probability from one
node to another in the graph (line 2).

The communities are built by selecting all the nodes with a transition probability
higher than a threshold (line 7). For this work, the threshold was defined in
0.1, to create bigger communities, but the value could be adapted following a
different criterion. After this, a community is created by combining this initial
community with all the communities of its initial members (line 14).

All the Fog nodes that were not assigned to any community during this process
are grouped in the final step, as shown in line 16. The results of this process
include (see line 17):

• A structure with the communities for all nodes;
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Algorithm 4.1: Build Communities
Result: Communities for all nodes in the infrastructure

1 topology ← getTopology()
2 prank ← PageRank(topology, weight=PD)
3 communities ← ∅
4 non_communities ← ∅
5 foreach node in topology do
6 foreach element in prank do
7 if prank[element] > threshold then
8 Add element to communities[node];
9 end

10 end
11 end
12 avg_size ← getCommunitySize(communities)
13 foreach node in topology do
14 mergeCommunities(node, communities);
15 end
16 non_communities← prank − communities;
17 return communities, non_communities, avg_size

• A structure with the nodes that do not belong to any community; and

• The average size of the initial communities.

Once the communities are built, the deployment process begins, as explained in
the following subsection.

4.2.3 Popularity Ranked Placement
The heuristic proposed, called Popularity Ranked Placement, uses the com-
munities described in the previous subsection for the placement process, and is
presented in Algorithm 4.2. After creating the communities (line 3), the applic-
ations to deploy are ranked according to their requests (i.e., to prioritize popular
applications, as in the ILP model described in Section 4.1), as shown in line 5.
Also, the nodes in each community are ranked according to the probabilities
calculated in the previous step.

The first option is to deploy the modules of the applications within the com-
munity of the Gateway (GW) from which the request to said application was
launched. The search space inside the community is limited by an expanding
window, which size is set according to the average size of the initial communit-
ies (line 6). The expanding window technique allows to minimize the internal
fragmentation of resources inside of the nodes, while allowing to place a less de-
manding module in the already explored nodes of the community. The searching
process within the windows follows a Round Robin (RR) approach until no more
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Algorithm 4.2: Popularity Ranked Placement
Result: Placement of applications’ modules

1 placement_matrix ← ∅
2 topology ← getTopology();
3 community, non_community ← Build Communities()
4 reqs ← getRequests();
5 apps ← rankApps();
6 expWin ← getAvgCommunitySize();
7 foreach req in reqs do
8 while req > max(WindowNodeCapacity) ∧
9 ¬ ReachCommunitySize do

10 Expand expWin;
11 end
12 if req ≤ max(WindowNodeCapacity) then
13 deploy(placement_matrix, community);
14 else
15 if req ≤ max(NonComNodeCapacity) then
16 deploy(placement_matrix, non_community);
17 else
18 deploy(placement_matrix, Cloud);
19 end
20 end
21 end
22 return placement_matrix

resources are available to host the module. In the case that the deployment suc-
ceeds, the RR pointer is updated accordingly.

When the community window runs out of resources to deploy the module of the
application, the size of the expanding window is augmented by the average size
of the initial communities, until the size of the community is reached, and a
new search process to find the hosting node is carried out (lines 8 - 11). The
process is also illustrated in Figure 4.2. The community for node A is shown
in Figure 4.2(a). The initial window size in this example is 3 (i.e., the average
size of the initial communities). Once the subset contained inside the expanded
window runs out of resources (there is no node that can host the application’s
module to deploy), the window is augmented by its original size, 3 in this case,
as depicted in Figure 4.2(b). This process is repeated until finding a node
with enough resources to fit the application’s module to deploy, or until the
community size is reached, as seen in Figure 4.2(c).

If the expanding window reaches its maximum size (i.e., the community size)
and there are not enough resources to satisfy the request, a new search process
is initiated in the non-community nodes (also a resulting structure from the
previous step, see Subsection 4.2.2) following a First Fit approach (lines 15 -
16). Thus, Fog nodes are prioritized for placement before trying to deploy the
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A B C D E F G H

A B C D E F G H

A B C D E F G H

(a) Extended Community with initial expanding window (size = 3)

(b) Extended Community with augmented  expanding window (size = 6)

(c) Reaching the Extended Community Size (size = 8)

Figure 4.2: Expanding Window

application’s modules in the Cloud. If all previous attempts fail, the module is
deployed in the Cloud (line 18).

The validation of the mechanisms presented in this chapter is carried out via
simulation experiments, as it was seen in Chapter 2 that it was commonly used
to evaluate the performance of this type of mechanisms. The evaluation setup
is described in the next section.

4.3 Experimental Evaluation
The workflow for the experimental evaluation is depicted in Figure 4.3. Config-
uration parameters are used to generate three files: one for the definition of the
network topology, one for the definition of the applications, and one final file for
the user definition, indicating the gateways from which the requests are origin-
ated. This information is used to create the orchestration catalog, that is going
to contain information regarding the network, applications, and users (e.g., re-
quests by application or popularity, requirements of the services, resources of
the nodes). With the catalog ready, the mechanisms are executed to determine
the locations where the services are going to be placed and use this information
for the simulations using YAFS. The raw data generated by YAFS is used to
plot the results that are presented in the following section.

The main goal of the service placement mechanisms was to minimize the latency
of the entire system, while prioritizing popular applications. Thus, the exper-
iments were designed to measure the latency of the system, and to observe
with a finer granularity level the performance of popular applications regarding
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latency.

Experiment 
Configuration

Topology
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Application
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User 
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Figure 4.3: Evaluation Workflow

The validation was performed using YAFS [Lera et al., 2019b] because of its
strong support of Fog critical features and high granularity of reported res-
ults [Perez Abreu et al., 2020]. The experiments were conducted on a PC
with 32GB 2400MHz DDR4 RAM and 2.80GHz Intel Core i7-7700HQ with
4 cores and 8 threads (2 threads per core) processor. The PC was running Mi-
crosoft Windows 10 Pro (Build 18363) operating system. Python 2.7.16 was
used for YAFS. For the ILP model, the IBM CPLEX Optimizer version 12.9
was used [IBM, 2019].

Regarding the network topology, a graph was generated according to the complex
network theory, following a random Barabasi-Albert network [Jalili and Perc,
2017]. 50 Fog nodes comprise the network, and an additional node was added
to represent the centralized Cloud. This node is connected to the Fog nodes
with the highest betweenness centrality in the graph. The nodes with lowest
betweenness centrality were appointed as GW, representing the nodes at the
edge of the network.
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Applications were randomly generated following a Growing Network graph struc-
ture [Yao et al., 2014]. This means a vertex is added one at a time with an edge
to the last added vertex. Two types of applications were modeled. The first type
is depicted in Figure 4.4, where the communication flows in a single direction.
This allows modelling typical IoT applications, such as sensing applications,
commonly used in Smart City scenarios. We called this type of applications
Fire&Forget, based on their messaging pattern [Davies et al., 2008; Gutierrez,
2017].

Figure 4.4: Fire&Forget Applications

A second type of applications, shown in Figure 4.5, was used to model a broader
spectrum of services. Applying the same approach as before and after the graph
is complete, two vertices are randomly selected (excluding the source) to generate
an information flow to the source vertex. This allows simulating delay-sensitive
applications that can be deployed at Cloud/Fog environments. For instance,
an augmented reality application that can capture location-related information,
process it, and send a reply to the user; or an eHealth application where some
medical values are captured from the patient, processed and/or stored for later
analysis, and sent to the health specialist for evaluation, or to regulate a patient’s
medication. Based on their messaging pattern [Gutierrez, 2017], we called these
applications Asynchronous Response.

Figure 4.5: Asynchronous Response Applications

The network load was varied to evaluate the performance of the proposals under
different conditions. Four scenarios were defined: (1) tiny: 5 different applic-
ations, (2) small: 10 applications, (3) medium: 15 applications, and (4) large:
20 applications. Each of the applications has at least one request. To simulate
the popularity of the applications, the number of requests was determined using
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a uniform distribution. All the scenario setup, as well as the source code, is
available via a GitLab repository [Velasquez et al., 2019].

The parameters were set according to the values displayed in Table 4.3, for
each network link, Fog node, GW, and application. Similar values have been
previously used in related work [Lera et al., 2019a]. The application demands
are measured using the YAFS’ resources unit, defined as a vector containing the
capacity of different computational resources (e.g., number of cores for CPU,
GB for memory, or TB for the hard disk).

Table 4.3: Parameters Values for Experiments

Parameter Value
(min - max)

Network Propagation Delay (ms) 2 - 10
Bandwidth (bytes/ms) 75000

Fog Resources (units) 10 - 25
Speed (instr/ms) 500 - 1000

GW Request rate (1/ms) 1/1000 - 1/200
Popularity (prob) 0.25

Application

Services (number) 2 - 8
Resources (units) 1 - 5
Execution (instr/req) 20000 - 60000
Message size (bytes) 1500000 - 4500000

The ILP solution and the proposed heuristic (PRP) are compared with the
well known FF algorithm, as it was used in other works for evaluation pur-
poses [Skarlat et al., 2017a,b]. For the FF algorithm, the nodes were organized
according to their resources, from lowest to highest, to prioritize nodes with less
resources that usually are deployed at the edge of the network, closer to the
users. All solutions were executed once before the simulations, i.e., a static ser-
vice placement is considered, and 30 simulations were executed using these static
placements to mitigate the statistical error, including 95% confidence intervals
in the plots.

4.4 Results and Analysis
The performance of each placement method (ILP model, PRP, and FF) is
presented in this section. The first metric to evaluate is the latency (for this
case, the OWD as defined in Chapter 2 is reported). The latency is calculated as
the sum of the transmission times among the application’s modules [Lera et al.,
2019b]. The results are grouped by scenario and displayed in milliseconds.

Figure 4.6 depicts the results for the Fire&Forget applications while Figure 4.7
shows the performance of the Asynchronous Response applications. It is possible
to note that in both cases, the best results correspond to the ILP optimization
model, as expected. As the load grows, the latency increases, which is also
expected.
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Figure 4.6: Total Latency by Scenarios - Fire&Forget Applications
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Figure 4.7: Total Latency by Scenarios - Asynchronous Response Applications
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For the smallest load (i.e., tiny scenario) in both application types, PRP shows
an exceeding latency of about 3 times the values obtained with the ILP place-
ment, while FF shows an extra of about 5 times regarding the ILP latency.
These discrepancies are reduced in higher load scenarios. Nevertheless, while
the breach is reduced between ILP and PRP, it is more prominent for FF, es-
pecially in the Fire&Forget applications. For instance, in the large scenario
for the Fire&Forget applications, PRP showed a slight increment (about 1.1
times) over ILP; while FF had a significantly larger increment of around 2 times
over ILP. Simultaneously, for the Asynchronous Response applications in the
medium scenario, FF shows an increase of 3 times respecting the ILP approach,
while PRP only shows 1.5 times more latency.

Grouping the nodes in communities (PRP) showed better results than perform-
ing a linear search (FF). As the scenario got more complex, the improvement is
more noticeable; in general, the results of PRP are closer to the optimal than FF.
It is also noticeable that the Asynchronous Response applications (i.e., there is
a response from two services to the source), shown in Figure 4.7 have a similar
trend than the Fire&Forget applications. For the Fire&Forget applications, PRP
shows results closer to ILP than for the Asynchronous Response applications,
which might be caused by the extra messages sent to the source.

The following experiments were focused on the network transmission, including
the application messages forwarded and the average network buffer occupancy
(i.e., the average amount of messages kept in node’s network buffers waiting for
link availability). Figure 4.8 depicts the results for the Fire&Forget applications
and Figure 4.9 does the same for the Asynchronous Response applications.

From these results, it is important to point out that the ILP method forwar-
ded the lowest amount of messages, thus generating less traffic and, ultimately,
less congestion. PRP values remained close to the theoretical optimum (ILP),
especially for the larger scenarios in the Fire&Forget applications. As the load
increases, so does the number of messages forwarded. Also, for the Asynchronous
Response applications, there is a larger number of messages exchanged, which
is caused by the two extra edges added to the application graph for this type of
applications.

FF showed to be the least efficient method; the nodes with the lower amount of
resources are selected first, saturating the network buffers as the load increases.
For the application messages, since FF does not take into consideration the
interaction between nodes and the nodes are selected in a RR fashion, modules
from the same application can be placed in different nodes; thus, the amount
of messages forwarded is larger. Furthermore, these different nodes can even
be distant (i.e., several hops, higher propagation delay), since they are only
organized by their resources; hence, the latency incurred by this mechanism is
higher.

The Asynchronous Response applications also showed more messages transmit-
ted, as expected since they have two services sending extra messages to the
source. The trends in the results remained similar among the different types
of applications for all the evaluated scenarios, which indicates that there is no
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significant impact on varying the type of applications in the performance of the
placement mechanisms regarding the network metrics.
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Figure 4.8: Network Transmission - Fire&Forget Applications

The next experiment was aimed at the resource usage. Figure 4.10 illustrates the
results for the Fire&Forget applications and Figure 4.11 for the Asynchronous
Response applications.

The first metric is the number of nodes used by each method; this means the
number of nodes where the modules of the applications were placed. The second
metric is the number of modules placed on the busiest node; this is the node
where more modules were deployed. Since the placement was statically per-
formed before the simulations, there are no variations in the results and thus no
confidence intervals shown.

The ILP model led to the concentration of the placement of modules in the
nodes closer to the request points (i.e., the GW), saturating these nodes, and
therefore creating a new issue in the form of overloading of the nodes and the
links connected to said nodes. As the load increases, the advantages of the
optimization are missed by the overload created. On the other hand, PRP uses
more nodes for the two smallest scenarios, thus having impact on the energy
consumption. For the two larger scenarios, the number of nodes used tends to
stabilize in all the placement approaches, and for the two types of applications,
given that the increase of the load begins to saturate the network resources.

The next experiment depicts a comparison of the latency obtained by each ap-
plication considering the amount of requests it has (i.e., popularity). The results
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Figure 4.9: Network Transmission - Asynchronous Response Applications
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Figure 4.10: Module Placement Metrics - Fire&Forget Applications

are similar for the different scenarios, and to ease the readability only the res-
ults related to the large scenario are presented in this section, in Figure 4.12 for
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Figure 4.11: Module Placement Metrics - Asynchronous Response Applications

the Fire&Forget applications and in Figure 4.13 for the Asynchronous Response
applications, respectively. Results for the rest of the scenarios are presented in
Appendix A.

Overall, the ILP model obtained the best results, while FF got the worst. It
is noticeable that as the application has more requests (i.e., more popularity),
it shows lower latency for ILP and PRP. Furthermore, ILP and PRP results
are relatively close, with ILP showing the lowest latency values. It is clear that
there are three tiers regarding the latency response per application, being the
lowest the one corresponding to the ILP model, the following to PRP, and the
highest to FF. It is also important to point out that the most popular applic-
ations showed lower latency levels than less popular applications. The trend is
maintained for all the scenarios and for both application types. These results
confirm that while the overall latency was reduced, popular applications received
a better treatment by the Orchestrator, thus the categorization of applications
proved to be effective.

Finally, Table 4.4 shows the average execution time, in seconds, for the place-
ment methods, by scenario. Since FF has the most straightforward logic, it has
also the lowest execution times, followed closely by PRP. The times for ILP are
significantly higher since this method evaluates all possible solutions in order
to find the optimal result. The times obtained by the ILP model could not be
suited for more complex and dense realistic scenarios.

In general, the ILP approach got the best results regarding latency, but the worst
on execution time and in node overload. The latency values obtained with PRP
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Figure 4.12: Latency by Application - Fire&Forget Applications - Large Scenario

Application

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Requests

1

2

11

2

111

5

11

3

11111

33

1

La
te

nc
y 

(m
s)

0

5

10

15

20

25

ILP PRP FF

Figure 4.13: Latency by Application - Asynchronous Response Applications -
Large Scenario
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Table 4.4: Execution time (in seconds)

Scenario ILP PRP FF

Tiny 19.191 0.017 0.005
Small 47.382 0.019 0.007

Medium 104.983 0.022 0.011
Large 313.588 0.031 0.0019

are close to the ones reported by ILP while getting significantly lower execution
times. Furthermore, since the PageRank can be calculated dynamically, it is
possible to apply this solution in case of variations in the network infrastructure
and user requests. Finally, by creating communities, the load is spread among
different nodes, which could lead to other issues such as higher energy consump-
tion, that are not being considered in this work. This spread also means lower
congestion levels in both the Fog nodes and communication links for PRP. The
different types of applications did not show any significant difference among
them, depicting similar behavior in the evaluations performed.

4.5 Chapter Summary
An ILP model for service placement, aimed at maximizing the placement of
popular applications, while minimizing their latency is proposed. Moreover, a
heuristic based on the PageRank algorithm, called Popularity Ranked Place-
ment, is also introduced. PRP ranks the applications according to their requests
as a measurement of their popularity, and also ranks the nodes in the net-
work topology to create communities with the nodes with the highest transition
probability; this way, the placement load is divided among the nodes within
the community, avoiding congestion while also maintaining low latency levels.
An expanding window controls the placement among the nodes in the com-
munity.

The performance of the ILP model and the PRP solution were tested us-
ing YAFS, and are also compared with the well known FF approach. Simu-
lation results show that while the ILP model had the lowest latency for all the
scenarios, it also had the highest concentration of placement in the same nodes,
thus generating congestion in the processing nodes and for the communication
links. PRP kept latency at low levels, close to the ILP results, but the load was
balanced between the nodes in the communities. The use of popularity proved to
be effective in the results, prioritizing applications with higher request numbers
for both ILP and PRP. PRP showed significantly lower execution times than
the ILP model, which makes it more suitable for more complex and dense scen-
arios, and is the option that should be deployed in practical realistic situations.
The results did not show significant variations regarding the application types
(i.e., Fire&Forget vs. Asynchronous Response applications).

The mechanisms presented in this chapter could be integrated in the Service Or-
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chestrator architecture (depicted in Section 3.2.3) presented in Chapter 3, thus
combining the different contributions from this work. The proposals presented
in this chapter are partially reported in the following publications.

Description of the ILP model and the heuristic based on the PageRank al-
gorithm, called PRP:

Velasquez, K., Perez Abreu, D., Paquete, L., Curado, M., and Monteiro,
E. (2020). A Rank-based Mechanism for Service Placement in the Fog.
In 2020 IFIP Networking Conference (Networking), pages 64-72, Paris,
France. IEEE.

Analysis of different Fog simulators to select the proper simulation tool for the
validation process:

Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2020).
A comparative analysis of simulators for the Cloud to Fog continuum.
Simulation Modelling Practice and Theory, 101(1):102029. Elsevier.
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The mechanisms presented in the previous chapter have a static beha-
viour, in the sense that the placement is carried out once and no new
requests or placements are performed. The ILP model provides a the-

oretical threshold of minimized latency, but this type of solutions is not always
well-suited for dynamic, more realistic scenarios given their time and resource
consumption to reach a solution [Lee and El-Sharkawi, 2008]. However, the
PRP heuristic could be adapted for dynamic scenarios to further evaluate its
performance regarding latency reduction.

One possibility to add dynamism to the simulated scenario is to apply a time
window approach [Wang et al., 2017; Zhang et al., 2012], in which the time is
divided into slots and for each time slot the requests are evaluated and placed
according to the updated network conditions; this approach is the same as de-
scribed in Chapter 3 for random start and prediction start. The Service Or-
chestrator collects statistics from the Information Collection module about the
status of the network, the amount of requests and their locations, and based on
this information performs the placement decisions for each time window.

By using time windows it is possible to model changing conditions in the ap-
plications, for instance those related to their popularity. The popularity of the
applications could vary over time, increasing or decreasing. This leads to the
possibility to categorize the applications according to their popularity over time,
and using said categorization for the placement process. This chapter proposes
a profiling system based on application popularity for service placement in dy-
namic scenarios.

The already introduced PRP is compared with an additional heuristic, based on
a Genetic Algorithm. The GA proposed combines two objectives using weighted
sums for the fitness function. Validation of both solutions under dynamic con-
ditions via simulations is provided.

5.1 Profiling Applications according to their Popularity
Placement in Cloud/Fog environments can have a crucial impact on reducing
the latency. Using characteristics from the applications has proven to be useful
for the placement process, prioritizing the applications according to a given
criterion such as popularity, as seen on the previous chapter, since it might
favor a majority of users.

The Service Orchestrator has to monitor the deployment infrastructure (i.e.,
nodes, links, services, and users) to make smart informed decisions that will
affect the system behavior. One of the modules of the Orchestrator, presented
in Chapter 3, is dedicated to the execution of planning and placement mech-
anisms in charge of the selection of optimal location to deploy the application
components. To improve the performance of the placement mechanisms, it is
essential to provide them with knowledge not only about the substrate network,
but also of the entire system including users and applications. The use of a

— 66 —



CHAPTER 5. SERVICE PLACEMENT VIA APPLICATION PROFILING

behavior profiling approach for this goal would provide to the Orchestrator the
possibility to respond to the changing conditions in the environment.

The devices in the Fog are notoriously resource constrained in comparison with
the Cloud [Skarlat et al., 2017a]. However, in these tiers final users will benefit
from lower latency. Thus, it is critical to determine the proper location in which
to deploy the services. For this particular scenario, having knowledge of the
behavior of application components would benefit the decision making for the
Orchestrator. This knowledge has to cover past behavior and current conditions
to be able to react to dynamic situations such as traffic load variations.

Although the use of profiling has been explored in the context of Cloud, the ad-
option of the microservices architecture and the constraints inherent to the Fog
bring new challenges. To the best of our knowledge, the use of behavior profiling
in Cloud to IoT scenarios has not been successfully exploited so far from the
academic point of view because of the complexity of the landscape and the lack
of datasets available for study to apply data analytics techniques. Nevertheless,
there have been some recent efforts to gather real-time data in this kind of en-
vironment that are still in an early stage [Khan et al., 2018]. There have also
been efforts in the categorization of applications in Fog environments by using
their requirements (i.e., latency, bandwidth, processing, and memory) to group
them [Ding and Janssen, 2018; Siddiqi et al., 2019]. Such a categorization is
presented in Table 5.1, listing applications typically used in Fog environments
and their resource requirements, as established for 5G environments. Applica-
tions are grouped by domains, displaying their resource demands estimate.

Table 5.1: Application Profiling by Domain

Domain Application Latency Bandwidth Processing Memory
Video UHD/3D Low Ultra high High High

Optimized Virtual reality Low Ultra high High High
broadband Augmented reality Low Ultra high High High

Cloud games Low Ultra high High High
Industrial automation Low/Ultra-low High Medium/Low Low

Ultra-reliable Critical mission Low/Ultra-low High Medium/Low Low
communications Driver-less car Low/Ultra-low High Medium/Low Low

Health care Low/Ultra-low Medium/High Medium/Low Low
Massive Smart homes Medium/High Low Low Low
machine Smart offices Medium/High Low Low Low
communications Sensor networks Medium/High Low Low Low

Given the lack of datasets available regarding the behavior of Fog applications, a
possibility not yet explored is to profile the applications according to their pop-
ularity measured by their requests, as listed in Table 5.2. Using the popularity
of the applications to prioritize their placement has proven to be effective, as
seen on the previous chapter.

For this work, in each time window the amount of requests and their originat-
ing locations (i.e., source gateway) were modified to model the variations in the
request rate at different times. Four patterns, listed in Table 5.2, were modelled
for the request rate. These changes will influence not only the amount of ap-
plication instances to place, but also the resource consumption in the network,

— 67 —



CHAPTER 5. SERVICE PLACEMENT VIA APPLICATION PROFILING

Table 5.2: Application Profiling by Popularity

Profile Description
Fixed The same amount of requests is maintained

Mixed The amount of requests oscillates, increasing or
decreasing in each time window according to a rate

Up The amount of requests is increased according to a rate
Down The amount of requests is decreased according to a rate

including the node resources needed to place the services and the amount of
traffic that affects the communication among the services. The different pop-
ularity patterns will allow to model a more realistic environment in which the
request rates change. Again, as the application shows a higher popularity value,
it should be benefited with a placement that favors it by lowering its perceived
latency.

Figure 5.1 describes the overall placement process proposed in this work, includ-
ing the use of information about application behavior.
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Figure 5.1: Planner Mechanisms in the Service Orchestrator

Users place their requests on different applications. The Orchestrator (based on
the architecture presented in Chapter 3) collects this information and uses it
to generate smart informed decisions. Particularly, the Planner Mechanisms, in
charge of determining the location to deploy the applications, apply a categor-
ization based on the popularity of the applications, and also a categorization of
the substrate components of the deployment infrastructure (i.e., node resources
and propagation delay) to make a placement decision. The Orchestrator will
re-evaluate the placement decisions over time using a time window to update
the values regarding the popularity of the applications, as well as the revised
information about the deployment infrastructure.
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To determine if the profiling based on application popularity impacts the final
performance of the applications, particularly the latency perceived by end-users,
this chapter uses the heuristic presented in the previous chapter (PRP) adap-
ted for dynamic environments, and an additional heuristic based on Genetic
Algorithms. The newly proposed heuristic is described in the following sec-
tion.

5.2 A Heuristic based on Genetic Algorithms
Genetic Algorithms are a family of computational models inspired by evolu-
tion. These algorithms model the problem solution as a chromosome-like data
structure and apply them simple combinatory operators to try to keep crit-
ical information while enhancing the final solution [Whitley, 1994]. The main
objective is to move forward a chromosome from one generation to the next us-
ing genetics-inspired operators of crossover, mutations, and inversion [Mitchell,
1998]. Each chromosome consists of genes (i.e., bits), the selection operator
chooses the chromosomes in the population that will be reproduced in the next
generation, with the goal of producing offspring from the fittest chromosomes.
The fitness of the chromosomes is defined by a fitness function, which is based
on the objectives to optimize and defines the quality of the solution. Common
selection operators include mutation (i.e., random change in one gene or group
of genes) and crossover (i.e., merge of two individuals). Solutions in GA are usu-
ally represented in n-dimensional arrays that represent the chromosome, where
each element of the array is called gene [Gen and Cheng, 2000].

Genetic Algorithms are often viewed as function optimizers and have previously
been used to solve service placement problems [Moens et al., 2014; Skarlat et al.,
2017a; Khebbache et al., 2018; Guerrero et al., 2019b]. However, popularity has
not been used as a metric in GAs for the placement of applications. From the
different variants of GAs and evolutionary algorithms used for service place-
ment in the Fog, the Weighted Sum Genetic Algorithm (WSGA) showed a good
compromise regarding the execution time and fitness values obtained, while also
exhibiting lower convergence times [Guerrero et al., 2019b] which led to the se-
lection of this algorithm. The WSGA is described in the following section.

5.2.1 Weighted Sum Genetic Algorithm
The Weighted Sum Genetic Algorithm consists on a transformation that normal-
izes the values of multiple objective functions to the unit interval, and weights
them to obtain a final result. The calculation is shown in Equation 5.1, where
ωi is the scaling factor, θi is the weight, and Xi is the value of the objective
function.

∑
i∈numObj

ωi × θi ×Xi (5.1)
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Table 5.3 lists the parameters and variables used by the GA-based heuristic
implemented in this work. The resource unit is used for the variables ωs and
Ωn, where a resource unit reflects the resources (i.e., CPU, memory, storage) of
node n ∈ N . The cost matrix contains the cost (in terms of latency) to reach a
node from a gateway. Cn,gw equals the propagation delay of the shortest path
that connects n ∈ N to gw ∈ GW . The instance matrix identifies the services
that compose an application. Ia,s equals 1 if service s ∈ S belongs to application
a ∈ A, and 0 otherwise. Finally, the placement matrix relates the request per
application and the node that is selected as the location for the services. P a,r

s,n = 1
if service s ∈ S is located in node n ∈ N to satisfy request r ∈ R for application
a ∈ A, and 0 otherwise.

Table 5.3: Parameters and Variables for the GA Heuristic

Parameters

Parameter Description

S Set of services to be placed
N Set of nodes where the service can be executed
GW Set of gateways
A Set of applications. An application is composed by a set of services
R Set of requests for all the applications
Qa Sum of requests for a ∈ A

Ωn Resource capacity for n ∈ N

ωs Resource requirement for s ∈ S

C Cost matrix. An |N | × |GW | matrix
I Instance matrix. An |A| × |S| matrix

Variables

Variable Description

P Placement matrix. An |A| × |R| × |S| × |N | matrix

For the GA implemented in this work, individuals are modeled using the place-
ment matrix P . For a solution to be valid, the genes or bits in P must reflect
valid requests according to R, the proper services s ∈ S that compose a ∈ A
according to the information from the instance matrix I, and must comply with
feasibility restrictions of node capacities imposed by Ω.

The mutation is carried out by keeping fixed the information regarding the
requests (r ∈ R), applications (a ∈ A), and services (s ∈ S), and altering
the information of the nodes n ∈ N . This way, the same services placed in a
previous solution are moved to a different location generating a new solution.
The selection operator used is a binary tournament, using two parent solutions
to mix. A random amount of services from the first parent and their locations
are combined with the rest of the services from the second parent and their
locations. If a solution is invalid, a fitness value of infinite is assigned, so that
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it is not passed to the next generation.

Algorithm 5.1 shows the basic procedure of this GA. It starts at line 1 by
randomly generating popSize (population size) solutions to create the first gen-
eration of solutions. The objective function values are calculated for the first
generation (line 2) and the fitness value is calculated (line 3). Then, at line 4,
for each generation, it initializes the offspring population as the empty set, as
seen on line 5.

Algorithm 5.1: Weighted Sum Genetic Algorithm
Result: solution

1 Pt ← generateRandomPopulation(popSize)
2 objValues ← getObjValues(Pt)
3 fitness ← ws(objValues, ω, θ)
4 foreach i in generations do
5 Poff ← ∅
6 foreach j in popSize do
7 parent1 ← selectParent(Pt, fitness)
8 parent2 ← selectParent(Pt, fitness)
9 child1,child2 ← crossover(parent1, parent2)

10 if random() ≤ mutationProb then
11 mutate(child1, child2, numGenes)
12 end
13 Poff ← Poff ∪ child1, child2
14 end
15 objValues ← getObjValues(Poff)
16 fitnessOff ← ws(objValues, ω, θ)
17 fitness ← fitness ∪ fitnessOff
18 Poff ← Poff ∪ Pt
19 Poff ← order(Poff, fitness)
20 Pt ← Poff[1..popSize]
21 end
22 solution ← min (Pt, fitness)
23 return solution

On each generation, and for each individual in the population, the parents are
selected from a binary tournament selection operator (line 7), this is, choosing
the individual with the best fitness from a subset of the population. The pro-
cess is repeated for the second parent (line 8). After selecting the parents, the
children are created by applying a crossover operator (line 9), and then mutat-
ing them with a probability of mutationProb, as seen in line 11. The crossover
consists on mixing a portion from the first solution (i.e., parent1) with the re-
maining portion of the second solution (i.e., parent2). The children solutions
are mutated with an uniformily distributed probability (25% in this case), as
shown in line 10. The mutation selects a node from the solution and changes it
for a different node (i.e., for a given service of a given application and a given
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request, the location is updated). The amount of nodes to update (i.e., mutate)
in the children solutions represents 10% of the total of services in the solution,
indicated by numGenes parameter in line 11.

In line 13, the newly created children join the new population (offspring). The
fitness value is calculated in line 15, as described by Equation 5.2 and Equa-
tion 5.3, illustrated in the following section. Both objectives are combined with
Equation 5.1 in line 16. All the fitness values are combined in line 17, and all
the population members are joined in line 18. All the elements of the population
(including the newly created children) are sorted by their fitness value, in line
19. Only the best popSize elements of the population will survive for the next
generation (line 20). After iterating for generation times, the returned solution
will be the one with best fitness value, shown in line 23. The fitness function
used in this algorithm is described in the following section.

5.2.2 Calculating the Fitness Value
Latency and resource usage are the two different objectives that are combined in
the fitness function, using Equation 5.1. Latency is calculated using the propaga-
tion delay of the links in the network topology (as a latency source impacting
placement decisions, see Section 2.1.1), and the resource usage is calculated us-
ing the YAFS resource unit [Lera et al., 2019b]. The goal is minimizing both
objectives prioritizing the latency, using the weight factor (i.e., θ) for this pur-
pose. Since the main goal in this work is to minimize the latency, this objective
value received a weight of 0.9, and the resource usage only 0.1. The resource
usage aims at minimizing the amount of free resources on the network, thus max-
imizing the amount of accepted applications, as with the ILP model discussed
in the previous chapter.

To evaluate the latency, information about the propagation delay (i.e., matrix
C) is added for the services that belong to application a ∈ A (i.e., matrix I)
of the placed applications (i.e., matrix P ). This value is weighted according to
the popularity of the application, as stated by Equation 5.2; where Qa is the
amount of requests for application a ∈ A measuring its popularity.

∑
a∈A

∑
r∈R

∑
s∈S

∑
n∈N

∑
gw∈GW

1
Qa

×
[
P a,r

s,n × Ia,s × Cn,gw

]
(5.2)

Regarding the second objective function, resource usage, it is calculated by
adding the resources used by each node, as shown in Equation 5.3, where ωs is
the amount of resources required by service s ∈ S, and Ωn denotes the amount
of resources of node n ∈ N . Thus, Equation 5.3 depicts the free resources of
nodes n ∈ N .
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1−
∑

a∈A

∑
r∈R

∑
s∈S

∑
n∈N

[
P a,r

s,n × Ia,s × ωs

]
∑

n∈N Ωn

(5.3)

Both objectives are combined in Equation 5.1, and minimized in Algorithm 5.1
in line 22.

Simulation experiments were carried out to validate this proposal; the experi-
mental setup is described in the following section.

5.3 Experimental Evaluation
The evaluation was performed via simulation using YAFS, given its strong sup-
port for Fog features [Perez Abreu et al., 2020]. The experiments were con-
ducted using a PC with 32GB 2400MHz DDR4 RAM and 2.80GHz Intel Core
i7-7700HQ with 4 cores and 8 threads (2 threads per core) processor. The oper-
ating system used was Windows 10 Pro (Build 18363). The version of Python
used for YAFS was 2.7.16.

The entire evaluation workflow is depicted in Figure 5.2. Once the configuration
parameters are defined, three files are created: one for the definition of the
topology, one for the definition of the applications (generated using the Growing
Network approach), and one for the definition of the users, (i.e., network load),
which represents the number of requests for each applications and the originating
gateways.

These files are combined in the catalog, describing service requirements, applic-
ation popularity, and other information needed for the simulation. With the
catalog ready, the mechanisms are executed, indicating the nodes where the
services are going to be placed, and this information is provided to YAFS so
the simulations can take place. The process is repeated for each time window,
updating the catalog in each iteration, thus generating new placement decisions.
With the raw data reported by YAFS, the final plots can be created.

A graph was generated for the network topology using the complex network
theory, following a Barabasi-Albert network model [Jalili and Perc, 2017]. One
hundred (100) Fog nodes were created, and an additional node represents the
Cloud, for a total of one hundred one (101) nodes in the topology. The Cloud
node is the one connected to the Fog nodes with the highest betweenness central-
ity in the graph. In contrast, the Fog nodes with lowest betweenness centrality
in the graph were designated as GWs, representing the nodes at the edge of the
network.

The applications were randomly generated following the Growing Network graph
structure, in which the vertices are added one by one with an edge to the last
added vertex [Yao et al., 2014]. Finally, two vertices (except the source) are
randomly selected to generate an information flow towards the source vertex.
This allows modeling applications that collect data and send an automated
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Figure 5.2: Evaluation Workflow for Dynamic Scenarios

asynchronous answer (e.g., eHealth, augmented reality).

Regarding the network load, three different scenarios were modelled, in order to
evaluate the performance of the placement mechanisms with varying conditions:
(1) small: 5 different applications; (2) medium: 10 different applications, and;
(3) large: 15 different applications. Each application has at least one request,
and follows one of the four application profiles described in Section 5.1. The
number of requests was determined using a uniform distribution. Ten (10) time
windows were used for each simulation, with a duration of 10000 time units. All
the scenario setup, the source code, and additional material (i.e., plots, charts)
are available via a GitLab repository [Velasquez et al., 2020].

The three different network loads were used to determine the amount of gen-
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erations needed to converge to a solution. Figures 5.3, 5.4, and 5.5 show the
evolution of the fitness value for the three different loads.
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Figure 5.3: Fitness - Small Scenario
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Figure 5.4: Fitness - Medium Scenario

It is noticeable that for all cases, around 250 generations are needed to converge
at a relatively stable fitness value, with a slight improvement until reaching
generation 400. The plots also show that as the load in the scenario grows, so
does the fitness values obtained. This is an expected behavior since that by
increasing the load so does the amount of resources used and the traffic in the
network, which directly impacts the latency.

The configuration parameters for the experiments are summarized in Table 5.4,
for the network links, Fog nodes, GWs, applications and services.
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Figure 5.5: Fitness - Large Scenario

Table 5.4: Parameters Values for Dynamic Experiments

Parameter Value
(min - max)

Network Propagation Delay (ms) 2 - 10
Bandwidth (bytes/ms) 75000

Fog Resources (units) 10 - 25
Speed (instr/ms) 500 - 1000

GW Request rate (1/ms) 1/1000 - 1/200
Popularity (prob) 0.25

Application

Services (number) 2 - 8
Resources (units) 1 - 5
Execution (instr/req) 20000 - 60000
Message size (bytes) 1500000 - 4500000
Population size 100

Genetic Generations 400
algorithm Mutation probability 0.25

Num. indiv. to mutate 10% total services
Tournament size 2

Values similar to these were used in previous work ([Lera et al., 2019a; Guerrero
et al., 2019b]) and in the previous chapter. The requirements for each application
service are measured using the YAFS resource unit [Lera et al., 2019b], which
is a vector that contains the capacity of different computational elements (e.g.,
memory, CPU, hard disk).

The two proposed mechanisms, PRP and GA, are compared with the well known
FF algorithm, as it was done in similar works for evaluation purposes [Skarlat
et al., 2017a,b], and also in the previous chapter. In the case of the FF al-
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gorithm, the nodes were organized from lowest to highest according to their
available resources. This way the nodes with less resources are prioritized, these
nodes usually correspond with the nodes deployed at the edge of the network.
30 simulations were executed to mitigate the statistical error, including 95%
confidence intervals in the plots. The simulation results are presented in the
next section.

5.4 Results and Analysis
The performance of PRP and the genetic approach, GA, are evaluated in this
section. Figure 5.6 shows the total latency by scenarios. PRP always reported
the lowest latency, followed by GA and FF.
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Figure 5.6: Total Latency by Scenarios

As the load grows, so does the latency for all the mechanisms, as expected. The
traffic increases, saturating the nodes and communication links, influencing the
overall latency of the system. For the smallest load (i.e., small scenario), GA
showed an exceeding latency of twice the values reported by PRP, while FF
showed a surmount of around 5 times over PRP. This breach shrinks as the
load grows, as seen in the large scenario, where GA is only slightly better than
FF. This is because as the load grows, the feasibility condition to validate solu-
tions generated by the GA (i.e., not exceeding the capacities of the nodes) was
more difficult to reach via the mutations introduced by the algorithm, generat-
ing solutions with elevated fitness values that were discarded for the following
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generations, thus evolving slower. More generations are going to be needed as
the load grows to attain better results, increasing also the execution time.

The following plots also show the latency, but with a finer granularity level.
The latency is shown by mechanism, by scenario, and by application. The mean
value of the boxplot determines the average latency of the application, while the
boxplot itself reflects the variation of the latency values, i.e., the jitter exper-
ienced by the application, that can be calculated due to the dynamism in the
scenario. Different colors are used to code the profile to which the application
belongs to (see Section 5.1), and finally the dashed line shows the average pop-
ularity (i.e., amount of requests) of the application during the entire simulation
(i.e., among all the time windows).

Figures 5.7, 5.8, and 5.9 show the results for the small scenario for PRP, GA,
and FF, respectively.
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Figure 5.7: Latency and Jitter per Application - PRP - Small Scenario

The first observation that arises is that PRP showed the lowest latency values,
followed by GA and FF, as it was depicted in Figure 5.6. On the other hand, the
smallest jitter was shown by GA, followed closely by PRP and then by FF. How-
ever, for PRP, it is noticeable that with higher popularity, the latency variation,
i.e., jitter, is lower, giving a clearer advantage to the most popular applications.
This means that PRP showed a better treatment of the applications according
to their profile. In the case of FF, not only the latency and jitter are very su-
perior to the two heuristics, but also there is no differentiation in the treatment
of the applications regarding their popularity.
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Figure 5.8: Latency and Jitter per Application - GA - Small Scenario
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Figure 5.9: Latency and Jitter per Application - FF - Small Scenario
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Figures 5.10, 5.11, and 5.12 show the results for the medium scenario for PRP,
GA, and FF respectively. For PRP, it is noticeable that applications with a
fixed popularity value have different performance when their popularity is lower
(see Application 0) or higher (see Application 1), but for applications with an
increasing popularity profile (see Applications 2 and 7) both the latency and
jitter are lower.
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Figure 5.10: Latency and Jitter per Application - PRP - Medium Scenario

For the applications that have oscillating popularity values the jitter is more er-
ratic, since for some time windows they were gaining popularity and for others
they were losing popularity, thus having less stable results. Finally, for ap-
plications that constantly lost popularity (see Applications 3 and 6) the jitter
is higher. The overall latency was also the lowest among all the mechanisms
evaluated.

The advantages of having a lower jitter as the application has more popular-
ity are less evident with the GA, although the mixed behavior for oscillating
applications is also present. In the case of applications constantly losing pop-
ularity (see Application 3 and Application 6) the mean latency values are lower,
this might be caused by a high popularity in early time windows (which favours
them in the beginning of the simulation) that was constantly decreasing. This
behaviour affects the jitter of these applications, as seen in the boxplots.

GA outperformed FF in both latency and jitter. FF showed the highest latency
and jitter values, as well as less discrepancies among applications regarding their
popularity levels and profiles.
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Figure 5.11: Latency and Jitter per Application - GA - Medium Scenario
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Figure 5.12: Latency and Jitter per Application - FF - Medium Scenario
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Figures 5.13, 5.14, and 5.15 show the results for the large scenario for PRP, GA,
and FF respectively.

PRP showed the best results regarding latency. The most popular applications
were benefited in comparison with less popular applications, for latency as well
as jitter. The profiles that were benefited the most by this mechanism were Up
and Fixed, particularly regarding the jitter.

For GA, the applications with the highest jitter were the least popular as well
(Down and Mixed profiles); although in general, this mechanism showed higher
levels of latency than PRP. FF showed to be the least efficient mechanism in
the evaluation, displaying the highest observed latency and jitter, as well as
no evident differentiation in the treatment of applications according to their
profile.

As in the previous scenarios, PRP displayed a clear advantage for the applica-
tions according to their profiles, followed by GA. FF did not show any difference
in the treatment of the applications according to their profile.
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Figure 5.13: Latency and Jitter per Application - PRP - Large Scenario

For all the scenarios, with PRP and GA it is noticeable that as the popularity
grows or remains the same, the latency tends to remain stable, with smaller jitter
values. On the other hand, as the popularity decreases or oscillates, the latency
shows significant variations, increasing the jitter. FF showed less differentiating
behavior regarding the popularity of the applications, as well as displaying the
highest latency and jitter values. The jitter can be particularly damaging for
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Figure 5.14: Latency and Jitter per Application - GA - Large Scenario
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Figure 5.15: Latency and Jitter per Application - FF - Large Scenario
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certain types of applications, such as real-time communications, virtual/aug-
mented reality, and Cloud games. The mechanisms shown in this chapter (es-
pecially PRP) could be adapted to use a different profiling system, not based
on the popularity of the applications but in other relevant factors, for instance
how sensitive they are to jitter. This type of profiling system could prioritize
jitter-sensitive applications, offering them lower jitter values while maintaining
low latency levels for the overall system.

5.5 Chapter Summary
The PRP mechanism presented in the previous chapter was evaluated under
dynamic conditions. An additional heuristic based on Genetic Algorithms was
also introduced. Both mechanisms take into consideration the popularity of the
applications as well as the propagation delay as metrics to guide the placement
process. An application profiling system based on changing popularity was also
presented.

The simulations were conducted using YAFS, and FF was used as benchmark
for evaluation purposes. The experimental evaluation showed that PRP out-
performed the GA in every scenario, which in turn also outperformed FF. The
advantages of using the GA are diminished as the load increases, and more gen-
erations are needed to reach better results, which implies higher execution times.
An additional advantage of using the profiling system proposed was observed in
the results, as more popular applications (growing and fixed popularity) suffered
lower jitter than less popular applications (oscillating or decreasing popularity).
This profiling system prioritizes popular applications, but a profiling system
that organizes applications from more sensitive to less sensitive to jitter could
be used instead of the popularity to benefit this type of applications.

As it was with the previous chapter, the mechanisms presented here for dynamic
scenarios could also be integrated in the Service Orchestrator (depicted in Sec-
tion 3.2.3) presented in Chapter 3. The proposals presented in this chapter are
partially reported in the following publication.

Description of the Genetic Algorithm-based heuristic, and the modifications on
the PRP heuristic for dynamic scenarios, and the profiling of applications based
on their popularity:

Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro, E. (2021). Ser-
vice Placement for Latency Reduction in the Fog via Application Profiling.
Submitted for publication to IEEE Access, pages 1-15. IEEE.
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The development and deployment of IoT devices enable the proliferation
of new services and applications. Among them, augmented reality and
virtual reality, as well as video over IP, constitute the more significant

portion of IP traffic for the upcoming years. These types of applications have
special requirements, including low latency and jitter. In many cases, the re-
quirements established by the applications cannot be met by the IoT devices.
The Cloud paradigm offers a solution for some of these applications, but other
applications and services are not particularly fit for the Cloud. The Fog extends
the idea of the Cloud bringing resources to the edge of the network, closer to
the final user, enabling lower latency levels, location awareness, and mobility
support among other advantages.

The Fog encompasses a highly complex scenario with a huge amount of different
devices that must cooperate with each other. This requires effective orches-
tration mechanisms to guarantee the smooth performance of applications and
services. However, mechanisms typically applied to the Cloud can not directly be
migrated to the Fog given its particular characteristics. This calls for the design
and development of new orchestration mechanisms for the Fog, particularly to
handle the demands of low latency.

6.1 Synthesis of the Thesis
In this thesis, a hybrid approach to manage the Fog is proposed, using the
combination of orchestration and choreography styles of managing for different
regions of the infrastructure. The solution outlined enables a global view which
allows general optimizations, and also automated dynamic reactions at the lower
levels. A framework for smart orchestration and an architecture for the Service
Orchestrator are introduced. The Service Orchestrator architecture is detailed
enough that it incorporates the description of its modules and how those modules
could interact.

The proposed architecture for the Service Orchestrator allows the use of multiple
instances so that different tenants could adapt it to their particular requirements.
By using different instances of the orchestrator, it is possible to apply different
optimization goals according to the requirements of the applications.

For the module Planner Mechanisms in the Service Orchestrator, different ser-
vice placement solutions were proposed, using mixed metrics that consider the
network infrastructure and the applications simultaneously. An ILP model for
service placement, aimed at maximizing the placement of popular applications,
while minimizing their latency is described. Moreover, a heuristic based on
the PageRank algorithm, called Popularity Ranked Placement, is also intro-
duced. PRP ranks the applications according to their requests as a measure of
their popularity, and also ranks the nodes in the network topology to create
communities with the nodes with the highest transition probability; this way,
the placement load is divided among the nodes within the community, avoid-
ing congestion while also maintaining low latency levels. An expanding window
controls the placement among the nodes in the community.
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The performance of both the ILP model and the PRP solution were tested us-
ing YAFS, and are also compared with the FF approach. Simulation results show
that while the ILP model had the lowest latency for all the scenarios, it also had
the highest concentration of placement in the same nodes, thus generating con-
gestion in the processing nodes and for the communication links. PRP kept the
latency at low levels, close to the ILP results, but the load was balanced between
the nodes in the communities. Both mechanisms were able to favour popular ap-
plications, prioritizing them for the latency reduction. Moreover, PRP showed
significantly lower execution times than the ILP model, which makes it more
suitable for more complex and dense scenarios, and is the option that should be
deployed in practical realistic situations.

Once that it was determined that using the popularity of the applications resul-
ted in differentiating the perceived latency of the applications, a profiling system
for the applications based on their modifying popularity was suggested. This
profiling system was evaluated with the use of PRP and an additional heuristic,
based on Genetic Algorithms. A time window approach was applied to modify
the traffic conditions in the network and creating a dynamic scenario by altering
the current request rate, i.e., popularity, of the applications by following the
different profiles in the system. The profiling system proved to have an impact
in the final placement of the applications, benefiting those applications with
growing popularity levels, providing them not only lower latency but also lower
jitter.

The experiments were also conducted using YAFS, and showed that PRP main-
tained the lowest overall latency in comparison with GA, both mechanisms dif-
ferentiated the perceived latency by the applications according to their popular-
ity profile. Applications that constantly gained popularity over time or that
maintained their popularity value, obtained lower latency and lower jitter over
time, while applications that lowered or oscillated their popularity level suffered
from higher latency and jitter. A different profiling system could be adapted to
benefit time and jitter-sensitive applications, while maintaining the rest of the
mechanisms as described in this work.

6.2 Contributions
The following contributions were achieved during this research:

• A proposal of a hybrid approach for orchestration in Fog environments,
combining orchestration in the upper layers and choreography for the lower
layers;

• A smart orchestration framework, following the proposed hybrid approach;

• An architecture for a Service Orchestrator that can be instantiated with
different optimization goals, including the characterization of its modules
and their interaction;

• A mathematical model based on Integer Linear Programming, to optimize
the service placement based on the popularity of the applications, aimed
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at reducing the latency;

• A heuristic based on graph partition, that prioritizes popular applications
obtaining latency levels close to the optimal solution;

• A proposal of application profiling based on the popularity patterns of the
applications; and

• A multi-objective heuristic based on a Genetic Algorithm that weights the
applications according to their popularity, to minimize latency.

All the mechanisms proposed were evaluated using YAFS. Simulations showed
that PRP had results close to the ones obtained with the optimization model,
but with a considerable reduction in node congestion and execution time. Also,
PRP and GA were able to improve application performance providing them
lower latency and lower jitter, according to their popularity profiles in dynamic
scenarios. These proposals, as well as the literature review performed, produced
four international conference papers (three as first author) and four journal
articles (three as first author). Furthermore, cooperative work connected with
this research resulted in additional publications, namely, two journal articles
and six international conference papers.

6.3 Future Work
Possible research paths to follow up this work include taking in consideration
mobile users in the placement process, to automate the decision about migrating
the services according to the final user movement. The migration could be
predicted using machine learning techniques [Anagnostopoulos et al., 2011; Tang
et al., 2019].

The placement mechanisms could also be enhanced by modifying their main
optimization goal and including additional metrics in the placement decision,
such as node availability, so in the case of failures the application remains act-
ive. It would also be interesting to determine the impact in the resource usage
of the communication infrastructure by altering the optimization goals of the
placement mechanisms.

Another possibility is designing additional mechanisms for the remaining mod-
ules in the service orchestrator architecture, and not only focusing on placement
mechanisms for the Planner and Optimizer modules. For instance, for the Se-
curity Manager, mechanisms regarding authentication and privacy are needed.
Furthermore, the Communication Manager should be further explored, since
it allows the interaction of different orchestrator instances. This module also
enables the communication and cooperation with other Management and Or-
chestration (MANO) instances such as the ones described for 5G and Network
Function Virtualization (NFV) architectures [Yousaf et al., 2019; Mechtri et al.,
2017].

Regarding the profiling analysis for the applications, it would be interesting to
use a different approach and instead of using the popularity of the applications
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use their domains. This is, if they need to have a reliable services, optimized
bandwidth or delay.

Finally, another approach could be exploring machine learning techniques with
alternative heuristics for the service placement [Rahbari and Nickray, 2020]. For
this, it is necessary to have access to datasets that contain enough information
for the learning process.

These extensions will strengthen the orchestration tasks, completing a fuller
function. Some limitations should be taken into consideration before delving
into the development of these works, such as the need of proper datasets required
for the machine learning techniques.
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Appendix

A Results - Latency by Application
This appendix presents the results for the experiments to measure the latency
of each application considering its popularity in static scenarios. These plots
complement the results presented in Chapter 4, Section 4.4, showing the same
trends.
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Figure A.1: Latency by Application - Fire&Forget Applications - Tiny Scenario
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Figure A.2: Latency by Application - Asynchronous Response Applications -
Tiny Scenario
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Figure A.3: Latency by Application - Fire&Forget Applications - Small Scenario
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Figure A.4: Latency by Application - Asynchronous Response Applications -
Small Scenario
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Figure A.5: Latency by Application - Fire&Forget Applications - Medium Scen-
ario
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Figure A.6: Latency by Application - Asynchronous Response Applications -
Medium Scenario
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