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Resumo 

 

As estratégias clássicas de seleção de carteiras de investimento são frequentemente 

utilizadas em contexto real. No entanto, é largamente reconhecido que a abordagem da 

média-variância apresenta graves limitações relativamente à sensibilidade a erros de 

estimação e ao efeito da incerteza dos parâmetros de entrada na solução ótima do 

modelo de otimização. 

São diversas as metodologias que permitem minimizar as consequências destas 

limitações e, portanto, garantir que a solução ótima é relativamente imune à incerteza 

dos parâmetros de entrada e estável face a possíveis erros de estimação. Uma destas 

metodologias é a otimização robusta, cuja origem remete à teoria do controlo robusto. 

Reconhecida como uma alternativa computacionalmente atrativa, a otimização robusta 

não requer a satisfação de todos os pressupostos relativos à distribuição de 

probabilidades dos parâmetros incertos que são considerados em metodologias afins, 

tais como a programação estocástica e a programação dinâmica. 

Motivados pela necessidade de ajustar a abordagem clássica, de forma a ultrapassar as 

suas limitações, e pela atratividade, poder de modelação e extensa aplicabilidade da 

metodologia de otimização robusta, apresentamos um estudo que irá contribuir, assim o 

esperamos, para disseminar esta metodologia entre os gestores de carteiras de 

investimento e sua utilização por parte dos decisores. Neste estudo, são propostos novos 

modelos de otimização robusta de carteiras de investimento e novas medidas de 

robustez, desenvolvidos com base em estratégias reconhecidas nesta área do 

conhecimento. São avaliados os benefícios, para o investidor, das soluções robustas 

propostas de forma a perceber se a metodologia de otimização robusta permite criar 

valor ao processo de tomada de decisão de investimento e permite mitigar os efeitos dos 

erros de estimação no cálculo da solução ótima. São, ainda, comparadas as abordagens 

de robustez absoluta e relativa através da análise da performance das respetivas carteiras 

ótimas, destacando-se as suas principais vantagens e limitações.  

De um modo geral, os resultados deste estudo sustentam o potencial da metodologia de 

otimização robusta na mitigação dos erros de estimação no cálculo da carteira ótima de 

investimento. Os resultados mostram que o desempenho das carteiras propostas supera 
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o desempenho das carteiras de referência implementadas neste estudo, à exceção da 

carteira de variância mínima global. Adicionalmente, as carteiras propostas afiguram-se 

mais robustas e apresentam resultados mais coerentes comparativamente às carteiras de 

referência, robustas e não robustas, utilizadas. A análise dos resultados obtidos para 

diferentes níveis de aversão ao risco confirma que as carteiras propostas se afirmam 

como alternativas válidas para os investidores que poderão ser mais lesados em 

consequência das limitações apontadas à estratégia clássica da média-variância. 

Igualmente, os resultados mostram que a redução da amplitude do período dentro da 

amostra não tem um efeito substancial nem na exposição das carteiras propostas aos 

títulos que as constituem nem na coerência dos resultados obtidos fora da amostra, 

realçando assim a utilidade dos modelos propostos na presença de informação limitada. 

Espera-se, portanto, que os contributos deste estudo constituam novas ferramentas de 

apoio à tomada de decisão no âmbito da teoria da carteira em contexto de incerteza. 

 

Palavras-chave:  Seleção de carteiras de investimento; incerteza; otimização robusta; 

robustez relativa; robustez absoluta.  
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Abstract 

 

Classical portfolio selection strategies are frequently applied in real-life. Nonetheless, it 

is widely acknowledged that the mean-variance based approach presents critical 

shortcomings concerning the sensitivity of the optimal solution to estimation error and 

the effects of the input uncertainty on the outputs of the optimization model. 

There are several methodologies that try to mitigate the impact of the estimation errors 

and try to guarantee that the optimal solution of an optimization problem is assured 

against some worst-case model misspecification, i.e., it is a robust optimal solution. An 

example is the robust optimization methodology, whose roots can be found in the field 

of robust control theory. Recognized as a computationally attractive alternative, the 

robust optimization methodology does not need to satisfy all the assumptions about the 

probability distributions of the uncertain parameters that have to be considered in other 

methodologies, like stochastic programming or dynamic programming. 

Motivated by the need to adjust the mean-variance based approach in order to overcome 

its shortcomings and the computational attractiveness, modelling power and broad 

applicability of the robust optimization methodology, we present a study that, we hope, 

will contribute to enhance the dissemination of the robust optimization methodology 

among quantitative portfolio managers and its use by general decision makers. We 

developed new robust portfolio optimization models and new robustness measures by 

extending and combining established methodologies in this field of research. The real 

benefits of the robust portfolios from the investor perspective were assessed by 

examining whether the robust optimization methodology adds value to the investment 

decision problem and mitigates the impact of the estimation errors on the computation 

of the optimal solution. The relative robust and the absolute robust approaches were 

also compared by analyzing the performance of the optimal portfolios, emphasizing 

their main advantages and limitations. 

Overall, the empirical evidences found in our study support the potential of the robust 

optimization methodology in the mitigation of the estimation errors on the computation 

of the optimal portfolio. The results show that the proposed robust portfolios generally 

outperform the non-robust benchmarks implemented in our study, with the exception of 
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the global minimum variance solution. Furthermore, the proposed robust portfolios are 

generally more robust and provide more consistent results than the non-robust 

benchmarks and other robust solutions already described in the literature. The analysis 

of the results obtained for different levels of the investor’s risk preference confirmed 

that the proposed robust portfolios are valid alternatives for those investors who can be 

more affected by the methodological weakness of the classical mean-variance strategy. 

Furthermore, the empirical evidences show that reducing the in-sample period length 

seems to have no substantial effect either in the exposure of the proposed robust 

portfolios to individual assets or in the consistency of their out-of-sample results, 

highlighting the utility of the proposed robust models in the presence of limited data. It 

is our hope that the results of our study will constitute new tools to support the 

investment decision making process under uncertainty. 

 

Keywords: Portfolio selection; uncertainty; robust optimization; relative robustness; 

absolute robustness. 
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Chapter 1  

 

 

Introduction 

 

 

Faced with the scarcity of resources (wealth), every investor is called upon to make a 

decision that should provide the maximum possible return from the investment of the 

available resources. The investment decision should determine how the available wealth 

is going to be distributed among the chosen set of assets. The complexity of the 

investment decision arises from the fact that it is made before the future returns of the 

assets are known.  

Portfolio selection models are developed with the aim of supporting and assisting the 

investment decision making process. These models attempt to deal with the complexity 

derived from the uncertain evolution of the asset’s prices while capturing the features of 

the decision-making process. The first formulation of the decision-making problem 

concerning the optimal allocation of an investor’s wealth among the possible investment 

choices was formally presented by Harry Markowitz (1952, 1959). Markowitz 

considered that the investment decision should be made on the basis of a trade-off 

between risk and expected return: for any given level of expected return, a rational 

investor would choose the portfolio with minimum risk from the set of all the possible 

portfolios. His formulation of the portfolio selection problem was revolutionary not 

only because it was the first time that this problem was clearly formulated and solved, 

but also because it represented a paradigm shift (Constantinides & Malliaris, 1995).  

Around the same time, Roy (1952) presented a similar approach, considering also that 

choices should be made on the basis of the mean and variance of the portfolio as a 

whole. Comparatively to Markowitz approach, Roy did not consider the non-negativity 

constraint, i.e. that the weights of the assets in the portfolio must be all non-negative, 

and recommended the choice of a specific portfolio (regardless of the risk-return 

preferences of the decision maker). Markowitz considers that although he is often called 
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the father of modern portfolio theory, Roy can claim an equal share of this honor 

(Markowitz, 1999). 

The classical portfolio selection problem, as presented by Markowitz, completely 

disregards the uncertainty of the expected returns and of the covariance matrix of asset’s 

returns. It is assumed that these parameters are capable of representing the inherent 

uncertainty associated with the investment returns. Actually, as these parameters are, 

most of the times, calculated from past data, they are themselves subject to uncertainty. 

It is now widely accepted that not acknowledging the uncertainty in the models’ 

parameters substantially degrades the performance of the optimal solution calculated 

using mean-variance based models (Best & Grauer, 1991a, 1991b; Chopra & Ziemba, 

1993; Michaud, 1989). 

This observation has motivated the development of several strategies that try to mitigate 

the impact of the estimation errors and to guarantee that the optimal solution of an 

optimization problem is assured against some worst-case model misspecification, i.e., it 

is a robust optimal solution. Robustness can be taken into consideration in portfolio 

optimization by using robust estimators for the input parameters (Fabozzi, Kolm, 

Pachamanova, & Focardi, 2007). Robust estimators are less sensitive to extreme events 

and sampling errors. Robustness can also be guaranteed by constraining portfolio 

weights, by applying resampling techniques or by incorporating uncertainty into the 

portfolio selection model itself (Fabozzi et al., 2007). Fabozzi et al. (2007) highlight 

three methods that incorporate uncertainty directly into the computation of the optimal 

solution, overcoming the modern portfolio theory shortcomings concerning the 

sensitivity to estimation error and the effects of the input uncertainty on the outputs of 

the optimization model. These methodologies are stochastic programming, dynamic 

programming and robust methodology (RO). 

Motivated by the need to adjust the classical Mean-Variance (MV) framework in order 

to overcome its shortcomings, we incorporate the uncertainty into the portfolio selection 

model itself using the RO methodology. We have chosen to apply RO since this 

methodology has been recognized as a computationally attractive alternative. In fact, it 

does not need to satisfy all the assumptions regarding the probability distributions of the 

uncertain parameters that have to be considered in other methodologies, like stochastic 

programming or dynamic programming (Fabozzi et al., 2007). 

The main objectives of our research can be briefly described as: 
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1. To develop new robust portfolio optimization models and new robustness 

measures by extending and combining established methodologies in this field of 

research. 

2. To examine the main contribution of the RO methodology when applied to 

portfolio optimization models subject to estimations errors of different 

magnitudes. 

3. To assess the real benefits of the robust portfolios, from the investor perspective, 

by examining whether the RO methodology adds value to the investment 

decision problem and mitigates the impact of the estimation errors on the 

computation of the optimal solution. 

4. To compare the relative robust and the absolute robust approaches, by analyzing 

the performance of relative robust and absolute robust portfolios, emphasizing 

their main advantages and limitations. 

The objectives of our research were defined in order to fill the gaps identified in the 

literature. We believe that the RO methodology has not yet been used to its full 

potential in the field of portfolio selection, mainly because there is a lack of empirical 

studies that deeply explore the characteristics of robust portfolios. With these objectives 

in mind, we propose new robust portfolio optimization models and perform a detailed 

analysis of the robust solutions. We start by focusing our attention on the relative robust 

approach since this is the least studied approach. The lack of studies in the portfolio 

selection field that simultaneously explore both relative robust and absolute robust 

approaches, led us to compare the performance of the relative robust solution and the 

corresponding absolute robust solution. We also develop robust formulations of 

classical portfolio selection models subject to estimation errors of different magnitudes. 

We consider portfolio selection models with different model inputs and different 

uncertain parameters: mean-variance based models that admit uncertainty in both vector 

of expected returns and covariance matrix of asset returns; minimum variance models 

that admit uncertainty only in the covariance matrix of asset returns; and parametric 

models that admit uncertainty in the parameters defining the portfolio’s weights and in 

the assets returns. 

The research presented in this thesis resulted in four robust portfolio optimization 

models that are compiled and organized in the following way. Chapter 2 presents basic 

notation and relevant concepts that will be used in the remaining chapters. The classical 
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formulation of the portfolio selection problem is described, and its main extensions are 

briefly presented. We focus on the main extensions that are more relevant to our study 

and, thus, are essential to fully understand it. A discussion of the limitations and 

misconceptions around the mean-variance framework, addressing the motivation 

underlying our research, is also carried out.  

Chapter 3 starts by introducing the RO methodology and by defining the absolute robust 

and relative robust approaches. In this chapter, we also present a literature review on the 

robust formulation of classical portfolio optimization problems. We focus on the 

application of the RO methodology to the mean-variance portfolio, the maximum 

Sharpe ratio portfolio, the minimum variance portfolio and multi-objective portfolio 

problems. 

Chapter 4 presents an overview of the proposed models and describes a set of 

methodological elements that are common to all the empirical applications 

implemented. In this chapter we present the main contributions of our study, the 

strategy applied in the empirical applications that were implemented, the general 

decisions concerning model settings definition and data selection, solvers used to 

compute the robust solutions, benchmarks and performance measures used to compare 

and assess their performance.  

Chapter 5 presents a new minmax regret portfolio optimization model (model A). 

Regret is defined as the utility loss for the investor resulting from choosing a given 

portfolio instead of choosing the optimal portfolio of the realized scenario for the 

uncertain parameters. An extension to this first model is then presented (model B), 

which builds on the definition of regret and suggests a new way of defining the relative 

robust solution. In this latter case, validation subsamples randomly generated from the 

in-sample data are introduced in the sampling procedure and used to evaluate the 

performance of the minmax regret portfolios in order to define the relative robust 

solution. Furthermore, we implement the corresponding absolute robust expected utility 

optimization model and compare the performances of the relative robust and absolute 

robust solutions. Both approaches were applied assuming constant relative risk aversion 

preferences and considering uncertainty in both the vector of assets’ returns and in the 

covariance matrix of asset returns. For the empirical analysis, historical daily data of the 

stocks of the DAX index was collected from Thomson Reuters Datastream. A first 
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presentation of these works can be found in Caçador, Godinho, and Dias (2020a) and in 

Caçador, Dias, and Godinho (2019). 

Motivated by the stability of the optimal solutions computed by optimizing only the 

second moment, we developed a method for computing relative robust and absolute 

robust minimum variance portfolios, which is presented in Chapter 6. In this robust 

optimization model (model C), uncertainty was allowed in the covariance matrix of 

asset returns only. For the relative robust strategy, where the maximum regret is 

minimized, regret is defined as the increase in the investment risk. The absolute robust 

strategy, which minimizes the maximum portfolio variance, was applied assuming the 

worst-case scenario over the whole uncertainty set. For the empirical analysis, historical 

daily data of the stocks of the EURO STOXX 50 index was collected from Thomson 

Reuters Datastream. An initial version of this work is presented in Caçador, Dias, and 

Godinho (2020b). 

The last robust optimization model (model D) developed is presented in Chapter 7. In 

this work, new relative robust and absolute robust formulations of the parametric 

portfolio policies presented by Brandt, Santa-Clara, and Valkanov (2009) are proposed. 

These authors describe a model that parameterizes the portfolio weight of each stock as 

a function of the firm’s characteristics and estimates the coefficients of the portfolio 

policy by maximizing the average utility the investor would have obtained by 

implementing the policy over the historical sample period. To develop the robust 

versions of this model, uncertainty is considered in the parameters defining portfolio’s 

weights and in the asset returns. The empirical analysis was conducted on the dataset 

with historical daily data regarding the stocks of the EURO STOXX 50 index (also 

collected using the Thomson Reuters Datastream). 

Finally, the main conclusions and limitations of this thesis are presented in Chapter 8. 
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Chapter 2  

 

 

Portfolio selection theory 

 

 

The aim of this chapter is to contextualize the research problem and motivations of our 

study. We start by presenting the classical formulation of the portfolio selection 

problem as first described by Harry Markowitz in 1952. The main extensions of the 

modern portfolio theory are also briefly presented in section 2.1. We give special 

attention to the extensions that are more relevant to the full comprehension of our study. 

Then, a discussion of the limitations and misconceptions around the mean-variance 

framework is carried out in section 2.2. In both sections, basic notation and relevant 

concepts that will be used in the remaining chapters of this thesis are introduced. 

2.1 Modern portfolio theory 

The modern portfolio theory is based on the work presented by Markowitz (1952, 

1959). Markowitz’s work considers two essential concepts: first, the jointly quantitative 

assessment of return and risk by considering the expected return, variances and 

covariances of the securities, and second, the formulation of the portfolio selection 

problem as an optimization problem (Fabozzi et al., 2007). Assuming that the returns of 

the assets are random variables, Markowitz defines the portfolio expected return as the 

weighted average of the expected returns of individual assets and the portfolio risk as a 

function of the variances of, and the covariances between, assets and their weights in the 

portfolio. He formulated the mean-variance portfolio model as follows. Let 𝑁 denote 

the number of assets available for constructing the portfolio at time 𝑡. The investor’s 

decision of how to optimally distribute his wealth, 𝑊, among the 𝑁 assets is described 

by the vector of weights, 𝑤𝑡 = [𝑤𝑡,1 𝑤𝑡,2 …𝑤𝑡,𝑁]
′
, where each 𝑤𝑡,𝑛, 𝑛 = 1,… ,𝑁, 
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represents the wealth percentage assigned to the 𝑛-asset held in the portfolio at time 𝑡, 

and 

 

 

∑ 𝑤𝑡,𝑛

𝑁

𝑛=1

= 1 (2.1) 

 

with 𝑤𝑡,𝑛 ≥ 0, 𝑛 = 1,… ,𝑁. Hence, all the wealth available for investment is allocated 

(completeness constraint) and short sales are not allowed (non-negativity constraint). 

Let 𝑟𝑡,𝑛 represent the return of  asset 𝑛 at time 𝑡, 𝜇𝑡,𝑛 = 𝐸𝑡[𝑟𝑡+1,𝑛] be the expected value, 

at time 𝑡, of the return of asset 𝑛 at time 𝑡 + 1 and 𝜇𝑡 = [𝜇𝑡,1 𝜇𝑡,2 …𝜇𝑡,𝑁]
′
 be the vector 

of expected returns. Then, the expected return of the portfolio, 𝜇𝑡
𝑝
, is given by   

 

 

𝜇𝑡
𝑝 = 𝐸𝑡[𝑟𝑡+1

𝑝 ] = 𝐸𝑡 [∑ 𝑤𝑡,𝑛𝑟𝑡+1,𝑛

𝑁

𝑛=1

] = ∑ 𝑤𝑡,𝑛𝜇𝑡,𝑛

𝑁

𝑛=1

= 𝜇𝑡
′𝑤𝑡. (2.2) 

   

Let 𝜎𝑡,𝑛𝑚 denote the covariance of returns between asset 𝑛 and asset 𝑚 at time 𝑡, such 

that 𝜎𝑡,𝑛𝑛 = 𝜎𝑡,𝑛
2  and 𝜎𝑡,𝑛𝑚 = 𝐸𝑡[(𝑟𝑡,𝑛−𝜇𝑡,𝑛)(𝑟𝑡,𝑚−𝜇𝑡,𝑚)], for 𝑛 ≠ 𝑚. The variance of 

the portfolio is given by 

 

 
𝜐𝑡

𝑝 = 𝐸𝑡 [𝑟𝑡+1
𝑝 − 𝐸𝑡[𝑟𝑡+1

𝑝 ]]
2

= 𝐸𝑡 [∑ 𝑤𝑡,𝑛𝑟𝑡+1,𝑛

𝑁

𝑛=1

− 𝐸𝑡 [∑ 𝑤𝑡,𝑛𝑟𝑡+1,𝑛

𝑁

𝑛=1

]]

2

= ∑ ∑ 𝜎𝑡,𝑛𝑚𝑤𝑡,𝑛

𝑁

𝑚=1

𝑤𝑡,𝑚

𝑁

𝑛=1

  

= 𝑤𝑡
′Σ𝑡𝑤𝑡

 (2.3) 

 

where Σ𝑡 represents the (symmetric) covariance matrix of asset returns. Since variance 

is always nonnegative, it follows that 𝑤𝑡
′Σ𝑡𝑤𝑡 ≥ 0 and, thus, Σ𝑡 is a positive semi-
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definite matrix. Furthermore, Σ𝑡 is generally assumed to be positive definite, which is 

essentially equivalent to assuming that no redundant assets are considered in the 

construction of the portfolio (Cornuejols & Tütüncü, 2006). 

For a given lower limit on the portfolio expected return, 𝜇𝐿
𝑝
, Markowitz’s mean-

variance portfolio model can be formulated as:  

 

 min 
𝑤𝑡∈ℝ𝑁

𝑤𝑡
′𝛴𝑡𝑤𝑡

subject to 𝜇𝑡
′𝑤𝑡 ≥ 𝜇𝐿

𝑝

𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

 (2.4) 

 

where 𝟏 represents the N-column vector of ones and 𝟎 the N-column vector of zeros. A 

solution is feasible if and only if it satisfies all the constraints, i.e., if it presents an 

expected return equal to or higher than 𝜇𝐿
𝑝
 (first constraint), it guarantees that all the 

investor’s wealth is invested (second constraint) and it is a long-only portfolio (third 

constraint). With a strictly convex objective function and a convex (non-empty) set of 

feasible solutions, the quadratic programming problem (2.4), for which the first-order 

conditions are both necessary and sufficient for optimality, has a unique optimal 

solution (Cornuejols & Tütüncü, 2006). 

The set of solutions that minimize the variance for given desired levels of expect return 

was designated by Markowitz (1952) as the set of efficient mean-variance combinations 

and is nowadays known as the Markowitz’s Efficient Frontier (EF). For a given 

covariance matrix estimator, the computation of the EF can be made as follows 

(Cornuejols & Tütüncü, 2006). First, one has to identify the feasible maximum and 

minimum values of 𝜇𝐿
𝑝
. Let 𝜇𝑚𝑎𝑥

𝑝
 represent the maximum expected return of an efficient 

portfolio, which is the maximum expected return of the individual assets. Let 𝜇𝑚𝑖𝑛
𝑝

 

represent the minimum expected return of an efficient portfolio, corresponding to the 

expected return of the optimal solution of the quadratic problem: 
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min 
𝑤𝑡∈ℝ𝑁

𝑤𝑡
′𝛴𝑡𝑤𝑡

subject to 𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

. (2.5) 

 

The optimal solution of problem (2.5) is usually designated by Global Minimum 

Variance (GMV) portfolio, since it corresponds to the efficient solution with the lowest 

variance. Then, for a representative finite set of values of 𝜇𝐿
𝑝
, with 𝜇𝑚𝑖𝑛

𝑝 ≤ 𝜇𝐿
𝑝 ≤ 𝜇𝑚𝑎𝑥

𝑝
, 

problem (2.4) is solved and the optimal solution, 𝑤𝑡
∗, is identified. Let 𝜇𝑡

𝑝∗
 and 𝜎𝑡

𝑝∗
 

represent the optimal portfolio’s expected return and standard deviation, respectively. 

Then, the EF corresponds to the set defined as {(𝜎𝑡
𝑝∗, 𝜇𝑡

𝑝∗): 𝜇𝑡
𝑝∗ = 𝑤𝑡

∗′𝜇𝑡, 𝜎𝑡
𝑝∗ =

√𝑤𝑡
∗′𝛴𝑡𝑤𝑡

∗, ∀𝑤𝑡
∗}. A typical representation of the EF is depicted in Figure 2-1. Once the 

EF is identified, the investor has then to select the optimal portfolio from the set of 

efficient solutions according to his risk-return preferences. 

 

Figure 2-1: Illustration of the set of efficient mean-variance combinations (EF). 

 

The standard deviation of the portfolio (𝜎𝑡
𝑝

) is represented in the horizontal axis, while the 

vertical axis corresponds to the expected return (𝜇𝑡
𝑝

). The efficient portfolio located on left-most 

side of the plot corresponds to the efficient solution with lowest variance and is designated by 

GMV portfolio. 
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Problem (2.3) has equivalent formulations, i.e. it can be formulated in different ways, 

all leading to the same EF. Instead of defining a lower limit for the expect return, one 

could also begin by defining an upper limit on the portfolio variance, which will be 

represented by 𝜐𝑈
𝑝
, and then maximize the expected return of the portfolio: 

 

 

max 
𝑤𝑡∈ℝ𝑁

𝜇𝑡
′𝑤𝑡

subject to 𝑤𝑡
′𝛴𝑡𝑤𝑡 ≤ 𝜐𝑈

𝑝

𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

. (2.6) 

 

Another alternative is to maximize the risk-adjusted expected return of the portfolio: 

 

 max 
𝑤𝑡∈ℝ𝑁

𝜇𝑡
′𝑤𝑡 − 𝜆𝑤𝑡

′𝛴𝑡𝑤𝑡

subject to 𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

 (2.7) 

 

where  𝜆 ∈ ℝ corresponds to the weight given to the portfolio variance representing the 

investor’s risk appetite. 

The mean-variance portfolio theory relies on the following set of theoretical basic 

assumptions: i) the investment opportunity is completely characterized by the 

probability distribution of asset returns (measured over the investment horizon); ii) the 

investment risk is a function of the variability of the asset returns (measured by the 

standard deviation, or equivalently, the variance of returns); iii) the investor bases his 

decision on the first two moments of the probability distribution of asset returns only; 

and iv) for a given value of the return, the investor chooses the portfolio with the lowest 

variance of returns (Francis & Kim, 2013). 

Markowitz established two essential concepts that became the basis of the modern 

portfolio theory. The first one was the formulation of the portfolio selection problem as 

an optimization problem: the selection of the securities must guarantee the 

maximization of the expected return of the portfolio while holding constant the portfolio 

risk, or equivalently, guarantee the minimization of the portfolio risk while holding 
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constant the portfolio expected return. The second one was the joint quantitative 

assessment of return and risk by considering the expected return and covariance of the 

securities. Before Markowitz, the concepts of expected return and risk had not been 

analyzed in an integrated manner (Constantinides & Malliaris, 1995). Main (separated) 

contributions in this field were made by Bernoulli (1738), who presented a new theory 

to define and measure risk, and Fisher (1906), who described asset returns in terms of a 

probability distribution. An early attempt to analyze expected return and risk in an 

integrated way was made by Marschak (1938) who expressed preferences as 

indifference curves in the mean-variance space. The methodological breakthrough was 

only achieved by the axiomatic theory of choice under uncertainty presented by Von 

Neumann and Morgenstern (1947), which represented a critical contribution to the 

development of Markowitz’s portfolio selection theory.  

The joint quantitative assessment of return and risk laid the foundations for the 

diversification principle. Diversification involves combining assets with less-than-

perfect positive correlations in order to reduce the portfolio’s risk without sacrificing its 

return (Francis & Kim, 2013). Markowitz was the first to draw attention to the fact that 

a given security which is risky or conservative, appropriate or inappropriate, for one 

portfolio may be the opposite for another. Therefore, the investor must think of 

selecting a portfolio as a whole, and not each security per se (Markowitz, 1959). Prior to 

Markowitz’s work, the diversification of the investments was based on the premise of 

“not putting all your eggs in one basket”. Hence, there was still lacking “(…)  an 

adequate theory of investment that covered the effects of diversification when risks are 

correlated, distinguished between efficient and inefficient portfolios, and analyzed risk-

return trade-offs on the portfolio as a whole” (Markowitz, 1999, p. 5).  

Further works extended Markowitz’s mean-variance model to incorporate additional 

moments of asset returns like skewness (Chunhachinda, Dandapani, Hamid, & Prakash, 

1997; Yu, Wang, & Lai, 2008) and kurtosis (Jurczenko, Maillet, & Merlin, 2005; Lai, 

Yu, & Wang, 2006). Other works also consider the number of assets in the portfolio 

(cardinality), bounds in the asset weights, dividends, turnover, transaction costs or 

growth in sales. See Aouni, Colapinto, and La Torre (2014), Kolm, Tütüncü, and 

Fabozzi (2014), and Steuer, Qi, and Hirschberger (2008) for further readings. 

While Markowitz analyzed the investment decision problem considering only risky 

assets, Tobin (1958) showed that including a risk-free asset in the investment universe 
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allows to expand the EF and to build portfolios that are more (or equally) efficient than 

the Markowitz’s efficient mean-variance combinations. Tobin considered the possible 

investment combinations of a risk-free asset and a risky mean-variance portfolio, which 

can be represented by straight lines in the risk-return space. For a given risky efficient 

portfolio, the straight line lies above all the others, since the corresponding portfolios 

will have the lowest standard deviation for any given value of expected return. This 

risky efficient portfolio corresponds to the tangency point of the line that passes through 

the point representing the risk-free asset and is tangent to the EF. The optimal 

combinations of the risk-free asset and the tangency portfolio are identified by the 

Capital Market Line (CML). Geometrically, the tangency portfolio corresponds to the 

efficient portfolio that maximizes the slope of all the linear combinations of the risk-free 

asset and risky efficient portfolios, i.e., that maximizes the quantity 

 

 
𝑆(𝑤𝑡) =

𝜇𝑡
′𝑤𝑡 − rt

f

√𝑤𝑡
′𝛴𝑡𝑤𝑡

 (2.8) 

 

where 𝑤𝑡 represents a portfolio in the EF and 𝑟𝑡
𝑓
 represents the time 𝑡 + 1 return of the risk-

free asset. The quantity defined in (2.8) was introduced by Sharpe (1966) to measure the 

performance of mutual funds and is nowadays commonly known as the Sharpe ratio. An 

illustration of the CML is depicted in Figure 2-2. 

The investment decision, in the presence of a risk-free asset, is now reduced to selecting 

a portfolio that is a linear combination of the risk-free asset and the tangency portfolio 

and will depend on the risk preference of the investor. The more (less) risk averse the 

investor is, the more to the left (right) will be the optimal portfolio selected by him/her 

(always in CML). Notice that the weights of the risky assets in the tangency portfolio do 

not depend on the investor’s risk preferences.  

The works developed by Markowitz (1952, 1959) and Tobin (1958) served as starting 

points for the numerous contributions that appeared in the following decades. Based on 

their results, Lintner (1965) and Sharpe (1964) independently developed the Capital 

Asset Pricing Model (CAPM), which became a pillar for modern financial theory. 

Under the assumptions of market efficiency and homogeneity of the investors’ 

expectations, the tangency portfolio corresponds to the market portfolio, i.e. the 
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portfolio where all assets available to investors are held in the proportion to their market 

value relative to the total market value of all assets. Following these assumptions, the 

authors showed how a risky asset should be priced in equilibrium and proved that the 

expected return of an individual risky asset is a positive linear function of its systematic 

risk1 relative to the excess return of the market portfolio. Ross (1976) proposed an asset 

pricing model, alternative to the CAPM, called the Arbitrage Pricing Theory (APT). 

This model asserts that the expected return of an asset is influenced not only by the 

market risk (as suggested by the CAPM), but also by a variety of risk factors. For 

additional readings regarding assumptions, formulation and empirical testing of the 

asset pricing models see Elton, Gruber, Brown, and Goetzmann (2009), Fabozzi et al. 

(2007) and Fama and French (2004). 

The APT does not specify which are the risk factors that influence asset returns. The 

identification of the factors driving asset returns has been studied by several authors in 

the attempt to predict future returns (Carhart, 1997; Chan, Karceski, & Lakonishok, 

1999; Chen, Roll, & Ross, 1986; Fama & French, 1993, 1996; Ferson & Harvey, 1991). 

Chen et al.(1986) show that five economic variables are significant in explaining 

expected stock returns: industrial production, changes in the risk premium, changes in 

the yield curve, unanticipated inflation and changes in expected inflation. Fama and 

French (1993) propose a fundamental three-factor model which defines excess market 

return, size and book-to-market ratio, as the driving forces of asset returns’ variation. 

Based on the Fama-French three-factor model and motivated by its inability to explain 

cross-sectional variation in momentum-sorted portfolio returns, Carhart (1997) suggests 

as an additional factor, the one-year return momentum. 

In the field of portfolio selection, these economic and financial state variables and/or 

firm accounting variables, which influence and explain asset returns, have been used in 

order to estimate the optimal portfolio weights directly. This can be done by 

parameterizing the portfolio weights as functions of these observable quantities and then 

solve the portfolio selection model for the parameters that maximize the investor’s 

expected utility (Brandt, 2010). According to Brandt (2010), parameterizing the 

portfolio weights as functions of observable quantities has conceptual advantages 

comparatively to the traditional portfolio optimization  approach. The estimation errors 

 
1 Systematic risk is the risk that derives from general market and economic conditions that cannot be 

diversified away, while unsystematic risk corresponds to the portion of an asset’s variability that can be 

diversified (Fabozzi et al., 2007). 
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associated with the estimation of the model inputs are avoided and the dimensionality of 

the optimization problem is reduced since the parameter space only increases with the 

number of stock characteristics, rather than with the number of stocks. Furthermore, by 

framing the portfolio optimization as a statistical estimation problem with an expected 

utility objective function, it is possible to test individual and joint hypotheses about the 

optimal portfolio weights. 

 

Figure 2-2: Illustration of the Capital Market Line. 

 

The risk-free asset is represented by the point (0, 𝑟𝑡
𝑓
), where 𝑟𝑡

𝑓
 corresponds to the risk-free 

asset’s return from time 𝑡 to 𝑡 + 1. Point C represents the tangency portfolio and corresponds 

to the mean-variance portfolio in the EF with maximum Sharpe ratio. The points within the 

CML between (0, 𝑟𝑡
𝑓
) and C correspond to investment combinations where the weights of the 

risk-free asset and of the tangency portfolio are both non-negative and lower than 1. The points 

within the CML with higher expected return than the expected return of the tangency portfolio 

(𝜇𝑡
𝐶), correspond to investment combinations where the weight of the risk-free asset is negative 

(lending at the risk-free rate) and the weight of the tangency portfolio is higher than 1. Linear 

combinations of the risk-free asset and efficient portfolios A and B, represented in dashed lines, 

are not optimal since the corresponding portfolios have higher standard deviation 

comparatively to the portfolios in the CML with the same expected return.  

 

Brandt et al. (2009) propose a parametric portfolio policy that optimizes the portfolio 

based on firm characteristics (market capitalization, book-to-market ratio and lagged 

returns). The authors describe a model that parameterizes the portfolio weight of each 
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stock as a function of the firm’s characteristics and estimates the coefficients of the 

portfolio policy by maximizing the average utility the investor would have obtained by 

implementing the policy over the historical sample period. Let p represent the portfolio 

and let 𝑁 be the number of stocks in the investable universe at each period 𝑡. Each stock 

𝑛 has a return of 𝑟𝑛,𝑡+1 from period 𝑡 to 𝑡 + 1 and it is associated with a vector of firm 

characteristics 𝑥𝑛,𝑡 observed at period 𝑡. In their application example, Brandt et al. 

(2009) consider three different firm’s characteristics: the market capitalization (ME), the 

book-to-market ratio (BTM), and the lagged twelve-month return (MOM). They present 

a portfolio selection model that consists of choosing the portfolio weights, 𝑤𝑛,𝑡, that 

maximize the conditional expected utility of the portfolio’s return 𝑟𝑡+1
𝑝

, given by 

 

 max
𝑤𝑡∈ℝ𝑁

𝐸𝑡[𝑢(𝑟𝑡+1
𝑝

)] = max
𝑤𝑡∈ℝ𝑁

𝐸𝑡 [𝑢 (∑ 𝑤𝑛,𝑡𝑟𝑛,𝑡+1

𝑁

𝑛=1

)]. (2.9) 

 

The portfolio weights 𝑤𝑛,𝑡 are a function of the firm characteristics 𝑥𝑛,𝑡 and of a vector 

α of coefficients to be estimated: 𝑤𝑛,𝑡 = 𝑓(𝑥𝑛,𝑡 ; α). 

The authors suggest a linear portfolio weight function: 

 

 
𝑤𝑛,𝑡 = 𝑤̅𝑛,𝑡 +

1

𝑁
𝛼𝑇𝑥̂𝑛,𝑡 , (2.10) 

 

where 𝑤̅𝑛,𝑡 is the weight of stock 𝑛 at date 𝑡 in a benchmark portfolio, such as the value-

weighted market portfolio, 𝛼 is a vector of coefficients to be estimated, and 𝑥̂𝑛,𝑡 are the 

characteristics of stock 𝑛, standardized cross-sectionally to have zero mean and unit 

standard deviation across all stocks at time 𝑡. Thus, the portfolio weights 𝑤𝑛,𝑡 are not 

calculated directly but result instead from the determination of 𝛼. This vector can thus 

be interpreted as a vector of new decision variables. 

In the linear policy case (2.10), Brandt et al. (2009) optimization problem can be 

defined as 
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max
𝛼

1

𝑇
∑ 𝑢

𝑇−1

𝑡=0

(∑ (𝑤̅𝑛,𝑡 +
1

𝑁
𝛼𝑇𝑥̂𝑛,𝑡) 𝑟𝑛,𝑡+1

𝑁

𝑛=1

) . (2.11) 

 

Their empirical results show that the proposed parametric portfolio policies produce 

sensible portfolio weights and offer robust performance in and out-of-sample.  

Behr, Guettler, and Truebenbach (2012) propose an approach that builds on Brandt et al. 

(2009) where industry momentum characteristics are used instead of using single stock 

return characteristics. Their empirical results show that the portfolio policies outperform 

a broad selection of established portfolio strategies in terms of Sharpe ratio and 

certainty equivalent returns. Hjalmarsson and Manchev (2012) study mean-variance 

optimization when the portfolio weights are assumed to have a certain functional 

relationship with the underlying stock characteristics such as value and momentum. The 

authors have found that the direct approach for estimating portfolio weights clearly 

beats a naïve regression-based approach that models the conditional mean. Chavez-

Bedoya and Birge (2014) formulate an index tracking and enhanced indexation model 

using a parametric approach, based on the work of Brandt et al. (2009),  where the 

portfolio weights are modeled as functions of assets characteristics and similarity 

measures of the assets with the index to track. According to the authors, this approach 

allows handling non-linear and nonconvex objective functions that are difficult to 

incorporate in existing index tracking and enhanced indexation models. The results of 

their empirical application reveal that the optimal solution presents a consistent 

performance, i.e., in-sample and out-of-sample performances very close to each other. 

2.2 Limitations of the mean-variance based approach 

Markowitz supported his mean-variance analysis of the investment decision problem on 

mean-variance approximations to the investor’s expected utility, which he described as 

the “MVapproximate” approach: after generating the mean-variance EF, one must 

choose the efficient portfolio that maximizes the mean-variance function, which 

approximates the expected value of the investor’s utility (Markowitz, 2014). In his 

empirical support of the “MVapproximate” approach, the author assumed a quadratic 

utility function and expected returns and covariance matrix of returns as estimators of 
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the input parameters (Markowitz, 1959). In the following years, these two assumptions 

were subject to a great deal of criticism and pointed out as the main limitations of 

Markowitz’s mean-variance framework. In the next paragraphs, we will contextualize 

and explain why these assumptions were pointed out as limitations of the modern 

portfolio theory and address some misconceptions around them. 

Following the maximization of the investor’s utility approach, the portfolio selection 

problem can be formulated as the maximization of the investor’s wealth utility function. 

A wealth utility function represents the utility (or happiness) a person derives from 

different levels of wealth. Consider the notation presented in section 2.1, and let 𝑢(. ) 

represent a generic Von Neumann and Morgenstern utility function. The expected utility 

portfolio maximization problem can be defined as 

 

 max
𝑤𝑡∈𝑋

𝐸𝑡 [𝑢 (𝑊(1 + 𝑟𝑡+1
𝑝 ))] (2.12) 

 

where 𝑋  represents the set of feasible solutions.  

Since utility preference orderings are invariant under a positive linear transformation of 

the utility function and a person’s wealth is a function of the rate of return measuring 

the rate at which wealth is accumulated, the investor’s utility of wealth and utility of 

return functions yield identical preference orderings (Francis & Kim, 2013). Hence, 

problem (2.12) can be written as: 

 

 max
𝑤𝑡∈𝑋

𝐸𝑡[𝑢(1 + 𝑟𝑡+1
𝑝 )]. (2.13) 

 

Although preferences are not equal for all investors and might change along their life 

time (Halek & Eisenhauer, 2001), general assumptions regarding the investor’s 

preferences are frequently used. It is usually assumed that an investor prefers always 

more to less wealth but the marginal utility decreases with increasing wealth (i.e. for 

generic utility function 𝑢 and parameter 𝑥, 𝑢′(𝑥) > 0 and 𝑢′′(𝑥) ≤ 0) (Fabozzi et al., 

2007). The marginal utility of wealth is defined as the additional utility a person gets 

from a small change in his/her wealth. Thus, the marginal utility of wealth of every 
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rational investor will always be positive. Additionally, investors are assumed to be risk-

averse since, when faced with choosing between two investments with the same 

expected return but two different levels of risk, they prefer the one with the lower risk. 

Hence, positive but diminishing marginal utility is one of the characteristics that are 

expected to find in a realistic economic model (Francis & Kim, 2013).  

An investor’s aversion to risk is measured by the absolute risk aversion (𝑎𝐴) and the 

relative risk aversion (𝑎𝑅)  coefficients, defined by Pratt (1964) and given by: 

 

 𝑎𝐴(𝑥) = −
𝑢′′(𝑥)

𝑢′(𝑥)
 (2.14) 

 

and 

 

 𝑎𝑅(𝑥) = −
𝑥𝑢′′(𝑥)

𝑢′(𝑥)
. (2.15) 

 

The absolute risk aversion is a measure of how the allocation of wealth in risky assets 

changes with a change in wealth while the relative risk aversion refers to the change in 

the percentage investment in risky assets as wealth changes (Elton et al., 2009). Further 

assumptions associated with the behavior of rational risk-averse investors include 

decreasing absolute risk aversion (DARA) and constant relative risk aversion (CRRA): 

“Although there is much less consensus regarding relative risk aversion than absolute 

risk aversion, it is often assumed that constant relative risk aversion [CRRA] is 

consistent with most investors’ behaviour” while “(…) there is general consensus that 

most investors exhibit decreasing absolute risk aversion [DARA]” (Francis & Kim, 

2013, p. 61). If the investor wants to allocate more wealth in risky investments as his 

wealth increases, it is said that the investor exhibits DARA. So, as the investor gets 

richer, he or she becomes less risk averse. An investor exhibiting CRRA does not 

change the percentage of wealth allocated to risky investments even when his wealth 

changes. 
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The criticism around the assumption that investors have risk-return preferences 

described by a quadratic utility function resulted from the fact that the quadratic utility 

function does not satisfy all the above considerations concerning the behavior of 

rational risk-averse investors. Consider the following quadratic utility function of 

wealth: 

 

 𝑢(𝑥) = 𝛽𝑥 − 𝜃𝑥2 (2.16) 

 

where 𝛽 and 𝜃 are positive coefficients. The coefficients 𝛽 and 𝜃 must be positive in 

order for the utility function to have positive but diminishing marginal utility. The 

absence of a constant term is unimportant because any positive linear transformation of 

a utility function does not affect portfolio rankings (Francis & Kim, 2013). By replacing 

the generic parameter 𝑥 by (1 + 𝑟𝑡+1
𝑝 ) in equation (2.16), the utility can be expressed as 

a quadratic function in 𝑟𝑡+1
𝑝

: 

 

 𝑢(1 + 𝑟𝑡+1
𝑝 ) = (𝛽 − 𝜃) + (𝛽 − 2𝜃)𝑟𝑡+1

𝑝 − 𝜃(𝑟𝑡+1
𝑝 )

2
. (2.17) 

 

The marginal utility of returns is given by 

 

 
𝜕𝑢(1 + 𝑟𝑡+1

𝑝 )

𝜕𝑟𝑡+1
𝑝 = (𝛽 − 2𝜃) − 2𝜃𝑟𝑡+1

𝑝 . (2.18) 

 

Hence, the marginal utility from additional returns is positive only for 𝑟𝑡+1
𝑝 <

𝛽−2𝜃

2𝜃
 (i.e., 

the quadratic function’s marginal utility becomes negative for large wealth levels). 

Additionally, and as shown by Pratt (1964), the quadratic utility function does not 

present a decreasing absolute risk aversion parameter. In fact, the absolute risk aversion 

parameter of a quadratic function, given by 
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 𝑎𝐴(𝑟𝑡+1
𝑝 ) =

2𝜃

(𝛽 − 2𝜃) − 2𝜃𝑟𝑡+1
𝑝  (2.19) 

 

is an increasing function, since 
𝜕𝑎𝐴(𝑟𝑡+1

𝑝
)

𝜕𝑟𝑡+1
𝑝 > 0, for (𝛽 − 2𝜃), 𝜃 > 0 and 𝑟𝑡+1

𝑝 ∈ ℝ. 

These particularities of the quadratic utility function did not represent any drawback for 

Markowitz’s portfolio selection theory since quadratic utility functions are not 

necessary conditions for its applicability. As proved by Markowitz (1959) and Levy and 

Markowitz (1979), the expected utility function can be approximated by a function of 

mean and variance for various utility functions and historical distributions of returns. 

Let us now address the second assumption regarding the use of expected returns and 

covariance matrix of asset returns as model inputs. These parameters are usually 

estimated from historical data or based on some theoretic assumptions about the data 

generating process. The estimation process is extremely important since the use of 

forecasts that do not reflect future expect returns and covariances of assets returns may 

degrade the out-of-sample performance of the mean-variance optimal solution (Chopra 

& Ziemba, 1993).  

The most commonly used approach for estimating expected returns and covariances of 

asset returns is to calculate the sample first and second-order moments from historical 

data (Fabozzi, Focardi, & Kolm, 2006). The problem of using historical data to estimate 

expected returns is that the historical expected returns are generally poor forecasts of 

future performances. Additionally, Best and Grauer (1991a, 1991b) proved that the 

composition of mean-variance portfolios is very sensitive to asset expected returns 

meaning that subtle deviations from the asset expected returns result in substantially 

different optimal solutions. Concerning the composition of MV portfolios, Black and 

Litterman (1992) showed that using historical expected returns leads to optimal 

solutions with extreme negative weights on assets that have performed poorly and 

extreme positive weights on assets that have performed well in the particular historical 

period. Furthermore, when short sales are not allowed, these optimal portfolios present 

extremely low cardinality (are highly concentrated in a reduced number of assets) and, 

thus, are not well-diversified. Hence, the MV portfolios computed using sample 

expected returns are generally highly exposed to individual assets and to the extreme 

events that might negatively affect their performances, often revealing poor out-of-
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sample performance. Regarding the sample second-order moment, the errors in the 

variances and covariances are of less importance in terms of their influence on portfolio 

optimality (Chopra & Ziemba, 1993). Consequently, the GMV portfolio, which relies 

only on estimates of variances and covariances of the asset returns, is less vulnerable to 

estimation error comparatively to other MV portfolios. This outcome helps to explain 

the empirical evidences reported in several studies supporting the outperformance of the 

GMV portfolio, in out-of-sample data, comparatively to other MV portfolios (Chan et 

al., 1999; Jagannathan & Ma, 2003; Jorion, 1985). Furthermore, imposing nonnegativity 

constraints reduces the sampling error associated with the estimation of the covariance 

matrix, enhancing (even more) the out-of-sample performance of the GMV portfolio 

(Jagannathan & Ma, 2003). The absence of estimation errors is also used as an 

argument to support the outperformance of the Equally Weighted (EW) portfolio, which 

equally allocates the wealth by the assets and, hence, requires no input estimation 

(DeMiguel, Garlappi, & Uppal, 2009; Jobson & Korkie, 1981).  

The reason why the sample first and second-order moments fail to forecast future 

expected returns and covariance matrix of asset returns, even when they are estimated 

from large sample periods, is related with the return generating process. For a random 

variable with normal (Gaussian) distribution, its probability density function is 

completely characterized by the first and second-order moments. The use of first and 

second order moments as model inputs by Markowitz, led to the misconception that the 

author assumed the normal distribution of asset returns. But, as Markowitz (2014, p. 

348) states “(…) the formulas relating the expected return and variance of a portfolio to 

the expected values, variances and covariances of return of securities do not depend on 

the form of the probability distribution”. The expected return and variance of a portfolio 

can be computed as long as the expected values, variances and covariances of assets 

returns exist and are finite. Hence, normal distribution of asset returns is not a necessary 

condition of the mean-variance optimization problem. 

Although many financial concepts and models of Modern Finance rest upon the 

assumption that asset returns follow a normal distribution, it is widely acknowledge that 

asset returns are not normally distributed, and, thus, the expected returns and the 

covariances of asset returns are not accurate forecasts of the true first and second order 

moments of the joint assets return distribution. The first empirical evidences showing 

significant deviations of the distribution of asset returns from the normal distribution 
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were presented by Mandelbrot (1963) and Fama (1965). Mandelbrot (1963) analysed 

the distribution of cotton price changes and found what he described as extraordinarily 

long tails and an erratic variation of the sample second moment, which did not seem to 

tend to any limit. Fama (1965) analysed the differences in the logarithm of prices of 

thirty stocks of the Dow Jones Industrial Average index and confirmed the presence of a 

higher peak, caused by too many values near the mean, and heavier tails than the normal 

distribution (characteristics of a leptokurtic distribution). Previous studies also found 

empirical evidences of leptokurtosis (Kendall & Hill, 1953; Moore, 1962), but these 

were generally neglected or treated incorrectly as outliers.  

Studies on the empirical properties of return time series, independently developed by 

different researchers, identified a set of properties that are common across several 

assets, markets and time periods, designated as ‘stylized facts’. Besides presenting too 

many values around the mean (high peaks) and fat tails, time series of asset returns are 

characterized by asymmetric tails caused by large downward movements of asset prices 

and not equally large upward movements. Furthermore, the thickness of the tails 

decreases, i.e. the distribution approaches the normal distribution, as one increases the 

time scale used to compute asset returns, a fact known as the aggregational Gaussianity. 

Additionally, there is no correlation between successive returns which supports the 

assumption that returns are independent random variables with prices following a 

random walk. However, for the independence assumption to hold, non-linear functions 

of returns will also have to be uncorrelated. The analysis of simple non-linear functions 

of returns, such as absolute or squared returns, show a significant positive 

autocorrelation, which disputes the random walk argument. Mandelbrot was the first to 

identify this stylized fact, know as the volatility clustering, which he described as: “(…) 

large changes tend to be followed by large changes – of either sign – and small changes 

tend to be followed by small changes (…)” (Mandelbrot, 1963, p. 418). An extended list 

of the empirical stylized facts of financial time series is presented in the reviews 

performed by Chakraborti, Toke, Patriarca, and Abergel (2011) and Cont (2001).  

In order to successfully fit the distribution of asset returns and explain most of its 

stylized empirical facts, a parametric model must have at least four parameters: i) a 

location parameter; ii) a scale parameter; iii) a parameter describing the decay of the 

tails; and iv) an asymmetry parameter allowing the left and right tails to have different 

behaviours (Cont, 2001). Since the acknowledgement of the inadequacy of the normal 
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distribution to model the distribution of asset returns, alternative parametric models, 

presenting such parameters, have been proposed and empirically tested. An example is 

the stable Paretian or Stable-Lévy distribution, which includes the normal distribution 

as a special case. Several studies tested the stable Paretian distribution for different 

financial assets and found that the financial time series under analysis conform better to 

the stable Paretian distribution than to the normal distribution (Curto, Reis, & 

Esperança, 2003; Fama, 1965; Mandelbrot, 1963). The main limitation of the stable 

Paretian distribution results from the fact that, with the exception of three special cases 

(Gaussian, Cauchy and Lévy distributions), stable Paretian distribution does not have 

closed form expressions for its probability density function and cumulative distribution 

function, increasing the computational time and estimation errors when performing 

numerical approximations (Borak, Misiorek, & Weron, 2011). Another popular 

approach for explaining and fitting leptokurtic distributions is assuming that the 

distribution of asset returns corresponds to a mixture of several normal distributions 

with possibly the same mean but substantially different variances (Fama, 1965). 

Empirical evidences supporting the ability of mixture of normal distributions in 

explaining the return generating process were presented by several researchers (Ball & 

Torous, 1983; Boness, Chen, & Jatusipitak, 1974; Kon, 1984; Ritchey, 1990). Further 

approaches included Student’s t distribution (Blattberg & Gonedes, 1974) and 

hyperbolic distributions (Eberlein & Keller, 1995; Küchler, Neumann, Sørensen, & 

Streller, 1999), among others (see Borak et al., 2011, Peiró, 1994, and Rachev, 2003). 

The assumption of a mixture of normal distributions implies that time series of returns 

are non-stationary processes. The dynamic economic environment and the shifts in the 

characteristics of the firm, like capital structure, financial and operational leverage and 

net financial income, affect asset prices and, consequently, the expected returns and 

covariances of assets returns change over time (Boness et al., 1974; Pagan & Schwert, 

1990; Patell & Wolfson, 1981). Non-stationarity of asset returns is the main reason why 

any forecast of future performance based on historical data does not necessarily reflect 

future performance.  

Although the non-stationarity of asset returns is well documented, a basic requirement 

of any statistical analysis of market data is the existence of some invariance on the 

return generating process, otherwise it would be worthless trying to forecast future asset 

returns (Cont, 2001). Resorting to non-stationarity arguments, different volatility 
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models were proposed in order to capture both volatility clustering and leptokurtosis 

characteristics of financial time series. Autoregressive conditional heteroskedastic 

(ARCH) models and stochastic volatility (SV) models have received considerable 

interest in the field of financial econometrics (see Bollerslev, Chou, and Kroner, 1992, 

Gouriéroux, 2012, Satchell and Knight, 2011, and Taylor, 2008, for further readings).  

In conclusion, quantitative portfolio managers, as well as decision makers, in general, 

have to be aware of the need to adjust the classical mean-variance framework in order to 

overcome its shortcomings, arising from the uncertainty in which the investment 

decisions are made. As previously outlined, the main sources of uncertainty are related 

to the fact that the decision maker has to decide what to do today, without knowing 

what the future will bring regarding the different investment alternatives. Uncertainty 

may also derive from the fact that models are flawed approximations of the true data 

generating process. The impact of data uncertainty on the optimal solution can only be 

reduced, and some worst-case model misspecification avoided, if uncertainty is 

acknowledged and explicitly included in the decision-making process.  
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Chapter 3  

 

 

RO methodology and portfolio selection  

 

 

In this chapter we begin by introducing the RO methodology. A literature review on 

robust portfolio optimization follows. Considering the vast literature associated with 

robust portfolio selection, we focus our literature review in the robust formulation of 

classical portfolio optimization problems, namely the MV, the GMV and the maximum 

Sharpe ratio portfolio optimization strategies. We also consider the robust formulation 

of multi-objective portfolio optimization problems.  

3.1 The RO methodology 

With its roots in the robust control theory, the RO methodology has evolved as a 

distinct research field and its importance has increased in a wide spectrum of domains, 

including finance, statistics and various areas of engineering (Bertsimas, Brown, & 

Caramanis, 2011). Bertsimas et al. (2011) presented a survey of the primary research in 

the area of RO, emphasizing the computational attractiveness, the modelling power and 

the broad applicability of this methodology.  

RO mitigates the effects of uncertainty, leading to an optimal solution that is guaranteed 

to perform reasonably well for all the realizations of the uncertain input parameters 

considered in the uncertainty set (Hauser, Krishnamurthy, & Tütüncü, 2013). Different 

concepts of robust solution emerged in the literature since the decision maker may be 

interested in guaranteeing that the solution will perform reasonably well relatively to its 

feasibility, or its optimality, or both its feasibility and its optimality (Gabrel et al., 

2014). When the uncertainty affects the feasibility of a solution, which happens when 

the uncertain parameter is included in the constraints of the optimization model, the RO 

methodology aims to ensure that the solution will be feasible for all, or at least most of, 
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the realizations of the uncertain parameters. When the uncertain parameter is included 

in the objective function of the optimization model, affecting the optimality of a 

solution, the RO methodology aims to ensure that the feasible solution achieves exactly 

or approximately the optimum value of the objective function, regardless of the 

realizations of the uncertain parameters.  

Thus, the RO methodology requires specifying a (deterministic) uncertainty set for the 

uncertain parameters based on some generally limited information about their values in 

order to find an optimal solution that remains feasible and also close to the optimum for 

any realization of the uncertain parameters within the pre-specified (deterministic) 

uncertainty set. The first to apply this idea was Soyster (1973), who presented a linear 

optimization model to compute a solution that was feasible for all the possible values of 

the uncertain parameter belonging to a convex set (Ben-Tal, El Ghaoui, & Nemirovski, 

2009). While Soyster’s approach achieved the desired outcome of immunizing the 

optimal solution against parameter uncertainty (guaranteeing its feasibility), it was 

widely considered too conservative for practical implementation (Bertsimas & Thiele, 

2006). More than 20 years later, other authors addressed the overconservatism within 

Soyster’s approach and robust optimization began to establish itself as a valuable 

methodology:  

“To the best of our knowledge, in the two subsequent decades [to Soyster’s work] there 

were only two publications on the subject (…). The activity in the area was revived 

circa 1997, independently and essentially simultaneously, in the frameworks of both 

Integer Programming (Kouvellis and Yu) and Convex Programming (Ben-Tal and 

Nemirovski, El Ghaoui and Lebret). Since 2000, the RO area is witnessing a burst of 

research activity in both theory and applications, with numerous researchers involved 

worlwide” (Ben-Tal et al., 2009, p. xvii) 

In order to characterize the uncertainty set, the structure as well as the scale must be 

defined. The structure of the uncertainty set refers to its geometry or shape, while the 

scale is related to the magnitude of the deviations of the uncertain parameters from their 

nominal values and can be thought of as its size (Gregory, Darby-Dowman, & Mitra, 

2011).  

Robust optimization overconservatism has been analyzed through the scale of the 

uncertainty set. The uncertainty set can include every possible realization or just the 

most likely values of the uncertain parameters, ranging from too conservative to less 

conservative approaches, respectively. When a less conservative approach is 
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undertaken, the true value of the uncertain parameter may occur outside the bounds of 

the uncertainty set. In this case, the real optimality will never be achieved since the true 

realization of the uncertain parameter was not included in the computation of the 

optimal solution.  

Within the linear optimization framework, Bertsimas and Sim (2004, p. 38) investigated 

ways to adjust the robustness of the proposed method against the level of conservatism 

of the solution, by introducing an integer parameter that controls the number of 

realizations of the uncertain parameter that are not considered in the construction of the 

interval uncertainty set, in terms of probabilistic bounds of constraint violations: “The 

parameter (…) controls the trade-off between the probability of violation and the effect 

to the objective function of the nominal problem, which is what we call the price of 

robustness”. Following Bertsimas and Sim (2004), Gregory et al. (2011) suggest two 

measures for the cost of robustness that measure the difference between the optimal 

objective of the nominal problem and the objective function value of the nominal 

problem evaluated at the robust optimal solutions, in an absolute and relative way 

respectively. The authors define a first measure that assesses the deviation between the 

value of the non-robust and the robust solutions, and a second measure that gives the 

deviation as a ratio between the return of the asset and the largest expected return, 

which can be thought of as a cost-to-maximum potential reward ratio. 

Other robustness measures, not directly related to the scale of the uncertainty set, were 

suggested. Roy (2010) proposed robustness measures based on two parameters, 𝑏 e 𝑤, 

defined by the investor. Parameter 𝑤 is a guaranteed value under which the investor 

refuses to go, regardless of the realization of the uncertain parameter, while parameter 𝑏 

serves to characterize a value boundary that the investor asks to exceed (or not to 

exceed, accordingly to the definition of the robustness measure) in the greatest possible 

number of realizations of the uncertain parameter. Kaläı, Lamboray, and Vanderpooten 

(2012, p. 727) suggested a robustness measure, the lexicographic 𝛼-robustness, which, 

according to the authors and considering discrete and finite uncertainty sets, mitigates 

some limitations of the absolute robustness approach: “(…)  it takes into account the 

worst scenario (while reducing its weight compared with min–max criteria) as well as 

the concept of quasi-optimality by considering all the scenarios and introducing a 

tolerance threshold 𝛼".  
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A different way to surpass overconservatism was suggested by Lu (2006), who 

presented an alternative for defining the uncertainty sets. Lu (2006) stated that the 

traditional approach for defining uncertainty sets, where one uncertainty set was defined 

for each type of uncertain parameter, can lead to robust portfolios highly non-diversified 

and, thus, too conservative. Therefore, instead of defining independent uncertainty sets 

for first and second moment estimators for the uncertain parameters, the author 

proposed a ‘joint’ uncertainty set that can be constructed as a confidence region 

associated with a statistical procedure applied in the estimation of both model 

parameters.  

Three different structures of uncertainty sets are prevalent in the initial contributions 

within the field of robust portfolio selection: interval uncertainty sets, based on 

confidence intervals defined for a nominal value of the uncertain parameter; ellipsoidal 

uncertainty sets, which allow the inclusion of second moment information about the 

distributions of the uncertain parameters; and polyhedral, defined as an intersection of 

half-spaces. A different way to model uncertainty is to consider discrete uncertainty 

sets. In this case, the uncertainty set corresponds to a set of scenarios, each representing 

a possible value of the uncertain parameters. This technique could lead to a considerable 

number of constraints, which could result into an intractable optimization problem. As a 

result, richer sets ranging from polytopes to more advanced conic-representable sets 

derived from statistical procedures are more frequently applied in the robust portfolio 

selection field (Fabozzi et al., 2007). 

The formal relationship between the structure of the uncertainty set and the risk measure 

selected was independently analyzed by Bertsimas and Brown (2009) and Natarajan et 

al. (2009). Bertsimas and Brown (2009) consider that the uncertainty set is defined by 

the particular risk measure that the decision maker selects, while Natarajan et al. (2009)  

interpret uncertainty sets as being a starting point for arriving at risk measures in 

finance. At this point, it is necessary to introduce some important definitions and 

properties regarding risk measures. We will follow the notation presented by Bertsimas 

e Brown (2009). Consider Ψ a linear space of random variables of a given probability 

distribution. A function 𝜑: Ψ → ℝ, which satisfies, for all variables 𝐴, 𝑍 ∈ Ψ: 

 

 Monotonicity: If 𝐴 ≥ 𝑍, then 𝜑(𝐴) ≤ 𝜑(𝑍), (3.1) 
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and 

 

 Translation invariance: If 𝑐 ∈ ℝ, then 𝜑(𝐴 + 𝑐) = 𝜑(𝐴) − 𝑐, (3.2) 

 

is called a risk measure. The property of monotonicity guarantees that if a portfolio 𝐴 

never performs worse than another portfolio 𝑍, then 𝐴 cannot be riskier than 𝑍. The 

property of translation invariance ensures that if we augment our investment by a 

guaranteed amount 𝑐, then the investment risk is reduced correspondingly by 𝑐.  

A risk measure is called a coherent risk measure if, in addition to the monotonicity and 

translation invariance, it satisfies, for all variables 𝐴, 𝑍 ∈ Ψ: 

 

 Positive homogeneity: If 𝛽 ≥ 0, then 𝜑(𝛽𝐴) = 𝛽𝜑(𝐴), (3.3) 

 

and 

 

 Subadditivity: 𝜑(𝐴 + 𝑍) ≤ 𝜑(𝐴) + 𝜑(𝑍). (3.4) 

 

The positive homogeneity property states that risk scales linearly with the size of a 

position, while the subadditivity axiom ensures that the diversification of positions can 

never increase the risk of the investment. 

Additional properties are defined for comonotonic random variables. Let 𝐴, 𝑍 ∈ Ψ and 

𝑣, 𝑣∗ ∈ Ω, where Ω represents the sample space of the given probability space. Two 

random variables 𝐴, 𝑍 ∈ Ψ that satisfy, for all 𝑣, 𝑣∗ ∈ Ω, 

 

 (𝐴(𝑣) − 𝐴(𝑣∗))(𝑍(𝑣) − 𝑍(𝑣∗)) ≥ 0 (3.5) 

 

are called comonotone. And a risk measure that satisfies, for all comonotone 𝐴, 𝑍 ∈ Ψ, 
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 𝜑(𝐴 + 𝑍) = 𝜑(𝐴) + 𝜑(𝑍), (3.6) 

 

is called comonotonic. Finally, a risk measure 𝜑 that satisfies  

 

 𝜑(𝐴) = 𝜑(𝑍), (3.7) 

 

for all 𝐴, 𝑍 ∈ Ψ, such that 𝐴 and 𝑍 have the same probability distribution, is called law 

invariant. The comonotonic axiom refers to positions that are correlated in a way that 

the risk of their sum corresponds to the sum of their individual risks. The law invariant 

property is related with the possibility of estimating the risk measure from historical 

data. A coherent risk measure that is also comonotonic and law invariant is called a 

distortion risk measure.  

Within the framework of robust optimization for linear problems, Bertsimas and Brown 

(2009) showed that distortion risk measures lead to a tractable optimization problem 

with polyhedral uncertainty sets of a special structure. The authors have also showed 

that the class of all the distortion risk measures and the corresponding polyhedral sets 

are generated by a finite number of conditional value-at-risk measures, when discrete 

probability distributions are used. Natarajan et al. (2009) address ellipsoidal, moment 

cone and moment-generating function uncertainty sets. They found that ellipsoidal 

uncertainty sets map to the mean-standard deviation portfolio risk measure, or to the 

Worst-case Value-at-Risk (WVaR), when the exact distribution is unknown; moment 

cone uncertainty set is equivalent to the Worst-case Conditional Value-at-Risk 

(WCVaR) measure; moment-generating function uncertainty set is equivalent to a 

specific risk measure, corresponding to an upper bound of the Conditional Value-at-

Risk (CVaR) measure, that, although being a weaker approximation to the Value-at-

Risk (VaR) measure when compared to the CVaR, is convex and computationally 

tractable.  

The selection of the structure of the uncertainty set is crucial since it influences the 

nature of the risk measure and the computational tractability of the resulting 

formulations. A drawback of the robust modeling framework with ellipsoidal 
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uncertainty sets is that it increases the difficulty to solve the problem considered, i.e., 

the robust counterpart of a linear programming problem is a second order cone 

programming problem (SOCP), the robust counterpart of an SOCP becames an 

semidefinite programming problem (SDP), while the robust counterpart of an SDP is 

non-deterministic polynomial-time hard (NP-hard) to solve (Bertsimas, Pachamanova, 

& Sim, 2004). Furthermore, ellipsoidal uncertainty sets and other uncertainty sets 

defined by general norms that include second moment information about the 

distribution of the uncertain parameter can be inappropriate or too conservative when 

the uncertainty distributions are asymmetric (Fabozzi et al., 2007).  

Most of the studies in the robust portfolio optimization field aim to optimize the worst-

case realization of the objective function, where the optimal solution is computed 

assuming the worst possible realization within the uncertainty set for the uncertain 

parameters. This constitutes the absolute robust optimization approach (Hauser et al., 

2013). The notion of absolute robustness can be explained resorting to a generic 

portfolio optimization model, which includes the uncertain parameters in the objective 

function. Let 𝑤𝑡 ∈ ℝ𝑁 be the weight combination vector defining the investor’s 

portfolio, 𝑋 the set of feasible solutions, 𝑠 the vector defining the input parameters 

(scenario) and 𝑈 the uncertainty set, i.e. the set of possible scenarios/realizations for the 

vector of realized parameters 𝑠. Then it is possible to define the following portfolio 

(non-robust) optimization model for a given scenario 𝑠: 

 

 max
𝑤𝑡∈𝑋

𝑓(𝑤𝑡, 𝑠), (3.8) 

 

where 𝑓 represents a generic (profit) objective function that depends on 𝑤𝑡 and 𝑠. Then, 

the absolute robust portfolio (maxmin solution) corresponds to the weight combination 

vector 𝑤𝑡 ∈ ℝ𝑁 that solves the optimization model defined by: 

 

 max
 𝑤𝑡∈𝑋

min
𝑠∈𝑈

𝑓(𝑤𝑡, 𝑠). (3.9) 
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The absolute robust approach might not be adequate for all investors. One example is 

when decision makers’ performances are judged relative to their peers’ performance. 

They might prefer to make decisions that avoid falling severely behind their competitors 

under all scenarios, rather than protecting themselves against the worst-case scenarios. 

Following this idea, Kouvelis and Yu (1997) explored the concept of relative robustness 

by analyzing the worst-case in a relative manner, considering the best possible solution 

under each scenario.  

Let us now introduce the notion of relative robustness as presented by Cornuejols and 

Tütüncü (2006). For a given scenario 𝑠, let 𝑓(𝑤𝑡
𝑠∗

, 𝑠) and 𝑤𝑡
𝑠∗

 denote, respectively, the 

optimal objective function value and the vector of optimal weights of problem (3.8). If 

𝑤𝑡 is chosen as the decision vector when 𝑠 is the vector of realized parameter values, 

then the regret associated with having chosen 𝑤𝑡  rather than 𝑤𝑡
𝑠∗

  is defined as follows: 

 

 𝑃𝑠(𝑤𝑡) = 𝑓(𝑤𝑡
𝑠∗

, 𝑠) − 𝑓(𝑤𝑡, 𝑠) (3.10) 

 

Since regret cannot be measured before the realization of vector 𝑠, it is possible to 

consider the maximum regret function instead, which provides an upper bound on the 

true regret: 

 

 𝑃(𝑤𝑡) = max
𝑠∈𝑈

𝑃𝑠(𝑤𝑡) = max
𝑠∈𝑈

(𝑓(𝑤𝑡
𝑠∗

, 𝑠) − 𝑓(𝑤𝑡, 𝑠)). (3.11) 

 

Thus, a relative robust solution 𝑤𝑡 corresponds to the weight combination vector that 

minimizes the maximum regret function and therefore solves the relative robust 

optimization model: 

 

 min
𝑤𝑡∈𝑋

max
𝑠∈𝑈

( 𝑓(𝑤𝑡
𝑠∗

, 𝑠) − 𝑓(𝑤𝑡, 𝑠)). (3.12) 

 

Hence, the relative robust optimization approach leads to three-level optimization 

problems, in contrast with the absolute robust optimization framework which leads to 
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two-level optimization problems (Cornuejols & Tütüncü, 2006; Hauser et al., 2013). 

Considering the relative robust optimization approach, the first optimization level 

corresponds to the computation of 𝑤𝑡
𝑠∗

, which is the optimal portfolio for scenario 𝑠, for 

all scenarios 𝑠 ∈ 𝑈. The second optimization level corresponds to the inner 

maximization problem in (3.12) and allows the computation of the maximum regret for 

each 𝑠 ∈ 𝑈, providing an upper bound on the true regret for the investor. The third 

optimization level corresponds to the outer minimization problem in (3.12), which gives 

the optimal solution that minimizes the maximum regret for all 𝑠 ∈ 𝑈. 

Kouvelis and Yu (1997) presented a collection of discrete robust optimization problems 

based on the relative robustness approach, in the field of operations and production 

management, while Hauser et al. (2013) proposed a relative robust optimization 

modelling methodology on the context of continuous portfolio optimization problems, 

namely under ellipsoidal uncertainty. Both of these works showed that the relative 

robust formulation resulting from many optimization problems can be reduced to one or 

a series of single-level deterministic optimization problems that can be solved using 

deterministic algorithms. These contributions were crucial to the development of 

specialized algorithms for relative robust optimization applications.    

3.2 Robust formulation of classical portfolio optimization models 

3.2.1 Robust formulation of the MV portfolio problem 

Motivated by Markowitz’s mean-variance portfolio selection problem, Halldórsson and 

Tütüncü (2003) developed a polynomial-time interior-point algorithm to solve nonlinear 

saddle-point problems and suggested a robust formulation for model (2.4). Considering 

the uncertainty in the vector of expected returns 𝜇𝑡 and in the covariance matrix of asset 

returns Σ𝑡, the authors presented the following robust formulation for the minimization 

of the variance subject to a lower limit on the expected return: 

 

 min 
𝑤𝑡∈ℝ𝑁

max
Σ𝑡∈𝑈Σ

𝑤𝑡
′𝛴𝑡𝑤𝑡

subject to min
𝜇𝑡∈𝑈𝜇

𝜇𝑡
′𝑤𝑡 ≥ 𝜇0

𝑝

𝑤𝑡 ∈ 𝑿

, (3.13) 
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where the uncertain parameters 𝜇𝑡 and Σ𝑡 are assumed to lie in the uncertainty sets 𝑈𝜇 

and 𝑈Σ, respectively, and 𝑋 denotes the set of feasible portfolios, which may carry 

information on short-sale restrictions, sector distribution requirements, etc. These 

uncertainty sets, bounded respectively by 𝜇𝐿 and 𝜇𝐻, and Σ𝐿 and Σ𝐻, are defined as: 

 

 𝑈𝜇 = {𝜇𝑡: 𝜇
𝐿 ≤ 𝜇𝑡 ≤ 𝜇𝐻} (3.14) 

  

and 

 

 𝑈Σ = {Σ𝑡: Σ
𝐿 ≤ Σ𝑡 ≤ Σ𝐻, Σ𝑡 ≽ 0}, (3.15) 

 

where Σ𝑡 ≽ 0 indicates that Σ𝑡 is a symmetric positive semidefinite matrix. With no 

empirical examples, the authors suggested different ways of defining the extreme values 

of the interval uncertainty sets: 

“An extremely cautious modeler may want to use the historical lows and highs of 

certain input parameters (…). One may generate different estimates using different 

scenarios on the general economy and then combine the resulting estimates. (…) One 

may choose a confidence level and then generate estimates of the covariance and return 

parameters in the form of prediction intervals” (Halldórsson & Tütüncü, 2003, p. 588) 

Based on Halldórsson and Tütüncü’s framework,  Tütüncü and Koenig (2004) presented 

empirical examples and defined the bounds 𝜇𝐿, 𝜇𝐻, Σ𝐿 and Σ𝐻, using percentiles of 

bootstrapped samples of historical data as well as the percentiles of moving averages. 

The authors state that, under the assumptions of nonnegativity weights, allocation of all 

the available wealth and positive semidefiniteness of Σ𝑡, the absolute robust asset 

allocation problem can be reduced to a simple quadratic programming problem: 

expected returns are realized at their lowest possible values (𝜇𝐿) and the covariances are 

realized at their highest possible values (Σ𝐻). Also, when these assumptions do not hold, 

the absolute robust asset allocation problem belongs to a class of nonlinear saddle-point 

problems that involve semidefiniteness constraints on matrix variables that can be 

solved using a polynomial-time interior-point algorithm, as the one suggested by 

Halldórsson and Tütüncü (2003). These results also hold for the robust formulation of 
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the maximization of the risk-adjusted expected return, problem (2.7), also analyzed by 

Tütüncü and Koenig (2004) and given by: 

 

 min 
𝑤𝑡∈ℝ𝑁

max
𝜇𝑡∈𝑈𝜇,Σ𝑡∈𝑈Σ

𝜇𝑡
′𝑤𝑡 − 𝜆𝑤𝑡

′𝛴𝑡𝑤𝑡

subject to 𝑤𝑡 ∈ 𝑋
, (3.16) 

 

where the set of feasible solutions is defined as 𝑋 = {𝑤𝑡 ∈ ℝ𝑁: ∑ 𝑤𝑡,𝑛
𝑁
𝑛=1 = 1,𝑤𝑡,𝑛 ≥

0, 𝑛 = 1,… ,𝑁 }. 

Goldfarb and Iyengar (2003) presented a robust approach for problem (2.4), based on a 

factor model for the estimation of expected returns and admitting ellipsoidal uncertainty 

sets. Let 𝑥~𝑁(𝜇, Σ) represent a random variable with multivariate normal distribution, 

where 𝜇 and Σ correspond to the vector of expected values and the covariance matrix, 

respectively. Goldfarb and Iyengar (2003) define the vector of random asset returns, 𝑟 ∈

ℝ𝑁, as 

 

 r=𝜇 + 𝑉′𝜋 + 𝜀, (3.17) 

 

where 𝑟~𝑁(𝜇, 𝑉′𝐹𝑉 + 𝐷), 𝜇 ∈ ℝ𝑁 is the vector of mean returns, 𝑉 ∈ ℝ𝑀×𝑁 is the 

factor loading matrix, 𝜋~𝑁(0, 𝐹) is the vector of random returns of the 𝑚(< 𝑛) factors 

that drive the market, 𝐹 is the covariance matrix of the factor returns, 𝜀~𝑁(0, 𝐷) is the 

vector of residual returns and 𝐷 is the covariance diagonal matrix of the residual 

returns. 

With the exception of the covariance matrix 𝐹 of the factor returns, the remaining 

parameters are subject to estimation error. Hence, the uncertain parameters 𝐷, 𝑉 and 𝜇 

lie within the corresponding uncertainty sets 𝑈𝐷 , 𝑈𝑉 and 𝑈𝜇, which the authors define as 

follows. Consider that individual diagonal elements of the covariance matrix 𝐷 are 

assumed to lie in an interval [𝑑𝑛, 𝑑𝑛], 𝑛 = 1,… ,𝑁, where 𝑑𝑛 and 𝑑𝑛 represent the 

minimum and maximum elements of the main diagonal, respectively. Let 𝑉0 be the least 

squares estimate of 𝑉, 𝑍𝑛 represent the 𝑛-th column of 𝑍 ∈ ℝ𝑀×𝑁 and ‖𝑥‖𝐺 = √𝑥′𝐺𝑥 
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denote the elliptic norm of vector 𝑥 with respect to a symmetric, positive definite matrix 

𝐺. The authors defined 𝑈𝐷 , 𝑈𝑉 and 𝑈𝜇 as: 

 

 𝑈𝐷 = {𝐷:𝐷 = 𝑑𝑖𝑎𝑔(𝑑), 𝑑𝑛 ∈ [𝑑𝑛, 𝑑𝑛], 𝑛 = 1,… ,𝑁}; (3.18) 

 

 𝑈𝑉 = {𝑉: 𝑉 = 𝑉0 + 𝑍, ‖𝑍𝑛‖𝐺 ≤ 𝜌𝑛, 𝑛 = 1,… , 𝑁}; (3.19) 

 

 𝑈𝜇 = {𝜇: 𝜇 = 𝜇0 + 𝜉, |𝜉𝑛| ≤ 𝜚𝑛, 𝑛 = 1,… ,𝑁}; (3.20) 

 

where the parameters 𝜌𝑛 and 𝜚𝑛 define the confidence level of the uncertainty sets 𝑈𝑉 

and 𝑈𝜇. 

Considering the previous uncertainty sets and under the hypothesis of normality of the 

portfolio return, 𝑟𝑝~𝑁(𝜇′𝑤,𝑤′(𝑉′𝐹𝑉 + 𝐷)𝑤) , Goldfarb and Iyengar (2003) proved 

that model (2.4) can be formulated as the following robust minimum variance portfolio 

selection problem: 

 

 min 
𝑤∈ℝ𝑁

max
V∈𝑈𝑉

(𝑤′𝑉′𝐹𝑉𝑤) + max
D∈𝑈𝐷

(𝑤′𝐷𝑤)

subject to min
μ∈𝑈𝜇

𝜇′𝑤 ≥ 𝜇𝐿
𝑝

𝟏′𝑤 = 1

. (3.21) 

 

Furthermore, and based on previous research of El Ghaoui and Lebret (1997) and Ben-

Tal and Nemirovski (1998), the authors proved that model (3.21) is a SOCP and it can 

be efficiently solved by interior point algorithms. 

Thus, the objective function of the absolute robust minimum variance portfolio 

selection problem (3.21) is to minimize the worst case variance of the portfolio subject 

to the constraint that the worst case expected return on the portfolio is at least 𝜇𝐿
𝑝
. 

Goldfarb and Iyengar also address the maximization of the portfolio’s expected return 

subject to an upper limit on the variance (𝜐𝑈
𝑝
), problem (2.6), and presented its robust 

formulation as a dual problem of (3.21): 
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 min 
𝑤∈ℝ𝑁

min
μ∈𝑈𝜇

𝜇′𝑤

subject to max
V∈𝑈𝑉

(𝑤′𝑉′𝐹𝑉𝑤) + max
D∈𝑈𝐷

(𝑤′𝐷𝑤) ≤ 𝜐𝑈
𝑝

𝟏′𝑤 = 1
𝑤 ≥ 𝟎

 (3.22) 

 

where 𝟎 represents the zero vector.  

Initial contributions in the field of robust portfolio optimization focused on box 

(interval) and ellipsoidal uncertainty sets and on how to formulate and solve robust 

counterparts of classical portfolio selection problems. More recent contributions analyze 

the characteristics of robust portfolios comparatively to the classical mean-variance 

portfolio (Kim, Kim, & Fabozzi, 2013a; Kim, Kim, Kim, & Fabozzi, 2014a) and 

consider different structures of uncertainty sets (Lu, 2006, 2011b). Based on Goldfarb 

and Iyengar’s definition of the uncertainty sets, previously presented, but considering 

the expected return of the assets as the only uncertain parameters, Kim et al. (2013a) 

presented an absolute robust formulation for the dual problem of model (2.7): 

 

 min 
𝑤∈ℝ𝑁

max
μ∈𝑈𝜇̂

𝑤′Σ𝑤 − 𝜆𝜇′𝑤

subject to 𝟏′𝑤 = 1
, (3.23) 

 

where 𝜇 is the estimate of the expected returns and 𝑈𝜇̂  represents the uncertainty set. 

The authors considered two different structures for the uncertainty set, box and 

ellipsoidal, which they defined, respectively, as: 

  

 𝑈𝜇̂ = {𝜇: |𝜇𝑛 − 𝜇̂𝑛| ≤ 𝜌𝑛, 𝑛 = 1,… ,𝑁} (3.24) 

and 

 

 𝑈𝜇̂ = {𝜇: (𝜇 − 𝜇̂)′Σ−1(𝜇 − 𝜇̂) ≤ 𝜚2}, (3.25) 
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where 𝜌𝑛, 𝑛 = 1,… ,𝑁, and 𝜚 are constants that define the size of the uncertainty sets. 

Allowing short-sales and for specific values of the risk-averse coefficient 𝜆, the authors 

compared the robust portfolios computed with box and ellipsoidal uncertainty to the 

MV and GMV portfolios. They analyzed the level of diversification of portfolios by 

comparing the number of assets with non-zero weights contained in the portfolios, the 

exposure of the portfolios to individual stocks by comparing the absolute value of the 

assets’ weight, the portfolio’s correlation with the market portfolio by comparing 

portfolios betas, and the correlation between weight and beta of the assets composing 

the portfolios. Their results revealed that the robust portfolio is less diversified than the 

non-robust portfolio since it contains fewer stocks with non-zero weights, shows lower 

exposure to individual stocks since it  has lower maximum absolute values of asset 

weights, it is more exposed to the systematic risk since it has higher portfolio beta and it 

shows low correlation between weight and beta of the stocks composing the portfolio. 

The authors have also found that the robust solution based on box uncertainty set has a 

lower beta and fewer assets with non-zero weights than the robust portfolio based on 

ellipsoidal uncertainty set, revealing itself as a portfolio less sensitive to systematic risk 

but less diversified and, thus, more exposed to the individual risk of each asset. On the 

other hand, the robust portfolio based on an ellipsoidal uncertainty set has higher 

positive portfolio beta and stronger negative correlation between weight and beta of the 

stocks composing the portfolio. 

Based on the same optimization framework, Kim, Kim, Ahn, and Fabozzi (2013b) 

showed that, comparatively to the mean-variance portfolio, absolute robust portfolios 

consistently show stronger correlation with the three fundamental factors used in the 

Fama-French factor model and that the correlation increases as the robustness of the 

portfolio is increased. Furthermore, the authors found that the absolute robust portfolio 

based on ellipsoidal uncertainty set showed stronger correlation with the three 

fundamental Fama-French factors comparatively to the robust portfolio based on box 

uncertainty set. The three Fama-French factors are: the market risk premium 

corresponding to the difference between the expected return of the market portfolio and 

the risk-free rate; the small minus big (SMB) corresponding to the difference between 

the return on a portfolio of small stocks and the return on a portfolio of large stocks; and 

the high minus low (HML) corresponding to the difference between the return on a 
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portfolio of high-book-to-market stocks and the return on a portfolio of low-book-to-

market stocks (Fama & French, 1996).  

Under ellipsoidal uncertainty set assumed for the expected return of assets, as 

previously defined, Kim, Kim, and Fabozzi (2014b) showed that, as the robustness of a 

portfolio increases, its optimal weights approach the portfolio such that variance is 

maximally explained by the three factors. Based on this result, Kim et al. (2014a) 

derived new absolute robust models aiming to obtain optimal robust portfolios that 

match a target factor exposure by adding constraints to the original robust formulation, 

allowing the adjustment of the robustness of the optimal solution and keeping the factor 

dependency to a specified level.  

As previously mentioned, Lu (2006) presented a different way to construct the 

uncertainty set. The author constructed a ‘joint’ uncertainty set as a confidence region 

associated with a statistical procedure applied to simultaneously estimate both model 

uncertain parameters (see Lu, 2006, for further details). Following Goldfarb and Iyengar 

(2003) approach where asset returns are defined by a factor model, Lu (2006) proved 

that the robust maximum risk-adjusted return problem, i.e., the robust formulation of 

model (2.7), under a ‘joint’ ellipsoidal uncertainty set can be reformulated and solved as 

a cone programming problem. The author claims that this ‘joint’ ellipsoidal uncertainty 

set allows to combat the drawbacks, concerning overconservatism and lower 

diversification of the absolute robust solutions, associated to the separate uncertainty 

sets defined by Goldfarb and Iyengar (2003). Results showed that the absolute robust 

portfolio constructed under the ‘joint’ ellipsoidal uncertainty set outperforms Goldfarb 

and Iyengar’s robust portfolio in terms of wealth growth rate and transaction cost and it 

also shows a higher level of diversification (Lu, 2006, 2011a, 2011b). 

Based on the same optimization problem and under joint uncertainty set, Kim, Fabozzi, 

Cheridito, and Fox (2014c) proposed an absolute robust mean–variance approach that 

controls portfolio third and fourth moments, without imposing higher moment terms 

within the portfolio selection model. The absolute robust counterpart of Markowitz’s 

maximum risk-adjusted return problem was defined by the authors as: 

 

 max
𝑧∈ℝ 

𝑧

subject to 𝑧 ≤ 𝑤′𝜇𝑖 − 𝜆𝑤′Σ𝑖𝑤 ,   𝑖 = 1,… , 𝐼 
𝑤 ∈ 𝑿

, (3.26) 
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where 𝑧 represents the minimum value of the portfolio’s risk-adjusted return, 𝑖 identifies 

the 𝑖-th independent and identically distributed (i.i.d.) sample of historical assets 

returns, 𝜇𝑖 and Σ𝑖 are the vector of average returns and the covariance matrix of the 𝑖-th 

sample, respectively, 𝐼 corresponds to the number of realizations of the uncertain 

parameter included in the uncertainty set 𝑈, and 𝜆 represents the weight given to the 

portfolio variance. The authors defined the ‘joint’ uncertainty set 𝑈 as follows. Consider 

𝑟, the vector of asset returns, and 𝑟𝑖 ∈ ℝ𝑛 the 𝑖-th i.i.d. sample of 𝑟, with 𝑖 = 1, … , 𝐼, 

and let 𝜇𝑖 and Σ𝑖 represent the sample mean and the sample covariance matrix of the 𝑖-

th sample, respectively. Also, let 𝐽 be the number of observations in the 𝑖-th sample. 

The ‘joint’ uncertainty set 𝑈 is defined as: 

 

 𝑈 = {(𝜇𝑖, Σ𝑖), 𝑖 = 1,… , 𝐼}, (3.27) 

 

where 

 

 

𝜇𝑖 =
1

𝐽
∑𝑟𝑖𝑗

𝐽

𝑗=1

, 𝑖 = 1,… , 𝐼; 𝑗 = 1,… , 𝐽 (3.28) 

 

and 

 

 

Σ𝑖 =
1

𝐽 − 1
∑(𝑟𝑖𝑗 − 𝜇𝑖)(𝑟𝑖𝑗 − 𝜇𝑖)

′

𝐽

𝑗=1

, 𝑖 = 1,… , 𝐼; 𝑗 = 1, … , 𝐽. (3.29) 

 

Under the previous joint uncertainty set, Kim et al. (2014c) showed that the absolute 

robust portfolios favor skewness and penalize kurtosis, characteristics preferred by 

typical investors, since smaller kurtosis are less associated with extreme events and 

more positively skewed return distributions are less likely to have an extreme left-tail 

event than one in the right-tail. 
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3.2.2 Robust formulation of the maximum Sharpe ratio portfolio problem 

An alternative approach to the construction of portfolios, which is also based on the 

optimization of the first and second order moments, consists of maximizing the Sharpe 

ratio (defined in expression (2.8) and represented by 𝑆(𝑤𝑡)). The Sharpe ratio 

maximization problem can be formulated as: 

 

 
max 
𝑤𝑡∈ℝ𝑁

𝜇𝑡
′𝑤𝑡 − 𝑟𝑡

𝑓

√𝑤𝑡
′𝛴𝑡𝑤𝑡

subject to 𝟏′𝑤𝑡 = 1

. (3.30) 

 

In order to make the optimization problem (3.30) computationally more tractable, given 

that it has a nonlinear and nonconcave objective function, Goldfarb and Iyengar (2003) 

presented an elegant argument that allowed them to transform the previous problem into 

a convex quadratic problem. Since the components of the weight vector 𝑤𝑡 add up to 1, 

it follows that:  

 

 𝜇𝑡
′𝑤𝑡 − 𝑟𝑡

𝑓

√𝑤𝑡
′𝛴𝑡𝑤𝑡

=
(𝜇𝑡 − 𝑟𝑡

𝑓
𝟏)

′
𝑤𝑡

√𝑤𝑡
′𝛴𝑡𝑤𝑡

. (3.31) 

  

Function (3.31) is a homogeneous function of the portfolio represented by the weight 

vector 𝑤𝑡. According to Goldfarb and Iyengar (2003), this implies that the 

normalization condition 𝟏′𝑤𝑡 = 1 can be dropped and the constraint min
𝜇𝑡∈𝑈𝜇

(𝜇𝑡 −

𝑟𝑡
𝑓
𝟏)

′
𝑤𝑡 = 1  added to the robust formulation of the Sharpe ratio optimization problem, 

without any loss of generality. Let 𝟎 be the vector of zeros. Maximizing the Sharpe ratio 

is equivalent to minimizing the worst-case variance of the portfolio, which is a convex 

quadratic function, and, considering the notation presented in section 3.2.1, concerning 

Goldfarb and Iyengar’s robust formulations of the mean-variance optimization models, 

the absolute robust maximization Sharpe ratio problem is formulated as: 
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 min 
𝑤𝑡∈ℝ𝑁

max
V∈𝑈𝑉

𝑤𝑡
′𝑉′𝐹𝑉𝑤𝑡 + 𝑤𝑡

′𝐷̅𝑤𝑡

subject to (𝜇0 − 𝜃 − 𝑟𝑡
𝑓
𝟏)

′
𝑤𝑡 ≥ 1

𝑤𝑡 ≥ 𝟎

 (3.32) 

 

where 𝐷̅ = 𝑑𝑖𝑎𝑔(𝑑) and 𝑤𝑡
′𝐷𝑤𝑡 ≤ 𝑤𝑡

′𝐷̅𝑤𝑡, ∀𝑑𝑛 ∈ [𝑑
𝑛
, 𝑑𝑛] , 𝑛 = 1,… ,𝑁. Furthermore, 

the constraint min
𝜇𝑡∈𝑈𝜇

(𝜇𝑡 − 𝑟𝑡
𝑓
𝟏)

′
𝑤𝑡 = 1 was relaxed by recognizing that the relaxed 

constraint will always be tight at an optimal solution. 

Under the same general assumptions and admitting the uncertainty sets defined by 

Halldórsson and Tütüncü (2003), Tütüncü and Koenig (2004) formulated the following 

(equivalent) robust version of the Sharpe ratio optimization problem: 

 

 min 
𝑤𝑡∈ℝ𝑁

max
k∈𝑈Σ

𝑤𝑡
′𝛴𝑡𝑤𝑡

subject to min
𝜇𝑡∈𝑈𝜇

(𝜇𝑡 − 𝑟𝑡
𝑓
𝟏)

′
𝑤𝑡 ≥ 1

(𝑤𝑡, 𝑘) ∈ 𝑋+

 (3.33) 

 

where 𝑋+ is a cone that lives in a one higher-dimensional space than 𝑋, and 𝑤𝑡 ∈ 𝑋 

implies that 𝟏′𝑤𝑡 = 1. Furthermore, +X is defined by: 

 

 𝑋+ = {𝑤𝑡 ∈ ℝ𝑁 , 𝑘 ∈ ℝ: 𝑘 > 0,
𝑤𝑡

𝑘
∈ 𝑋} ∪ {(𝟎, 0)}, (3.34) 

 

where the vector (𝟎, 0) was added in order to achieve a closed set and 𝑘 is a scaling 

parameter that guarantees the normalization of the optimal solution, defined by 𝑘 =

∑𝑤𝑡,𝑛 , 𝑛 = 1,… ,𝑁; ∀𝑤𝑡 ∈ 𝑋.  

The robust counterparts of problems (3.32) and (3.33) can be reduce to SOCP problems 

(Goldfarb & Iyengar, 2003; Tütüncü & Koenig, 2004).  

A different approach was presented by Deng, Dulaney, McCann, and Wang (2013), who 

defined the uncertainty set directly from the Sharpe ratio estimators, motivated by the 

fact that these estimators are approximately normally distributed even when asset 
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returns are not. The authors proposed an absolute robust portfolio optimization model 

based on Value-at-Risk adjusted Sharpe ratio (𝑆̂𝑉𝑎𝑅), i.e., a model that selects the 

portfolio with the largest worse-case-scenario Sharpe ratio within a given confidence 

interval. The 𝑆̂𝑉𝑎𝑅 optimization problem is defined by 

 

 max 
𝑤𝑡∈ℝ𝑁

min
𝑆(𝑤𝑡)∈𝑈𝑆

𝑆(𝑤𝑡)

subject to 𝟏′𝑤𝑡 = 1
𝑤𝑚𝑎𝑥 ≤ 𝑤𝑡,𝑛 ≤ 𝑤𝑚𝑖𝑛

,

 

(3.35) 

 

where 𝑈𝑆 is an ellipsoidal uncertainty set containing the unknown true value of 𝑆(𝑤𝑡) 

and 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the upper and the lower bounds, respectively, of the assets’ 

weights. The ellipsoidal uncertainty set, 𝑈𝑆, is defined as: 

 

 
𝑈𝑆 = {𝑆(𝑤𝑡): (𝑆(𝑤𝑡) − 𝑆̂) (𝜎̂2(𝑆̂))

−1

(𝑆(𝑤𝑡) − 𝑆̂) ≤ 𝜚2}, (3.36) 

 

where 𝑆̂ represents the Sharpe ratio estimator, 𝜎̂2(𝑆̂) denotes the variance of the Sharpe 

ratio estimator and 𝜚 defines the scale of the uncertainty set and corresponds to the 

confidence level of the VaR estimate. The inner-minimization problem in (3.35) 

computes the 𝑆̂𝑉𝑎𝑅, i.e. the minimum possible value of 𝑆(𝑤𝑡) for each given 𝑤𝑡 in the 

uncertainty set 𝑈𝑆, identifying the portfolio with the largest worst-case Sharpe ratio, and 

is given by: 

 

 𝑆̂𝑉𝑎𝑅(𝜏) = min
𝑆(𝑤𝑡)∈𝑈𝑆

𝑆(𝑤𝑡) = 𝑆̂ − 𝜚𝜎̂(𝑆̂). (3.37) 

 

The empirical examples carried out by Deng et al. (2013), suggest that the 𝑆̂𝑉𝑎𝑅 robust 

portfolio outperforms both the optimal solutions of the classical Sharpe ratio and the 

probabilistic Sharpe ratio maximization problems, by mitigating realized volatility 

without sacrificing realized returns. 
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3.2.3 Robust formulation of GMV portfolio problem 

Based on the optimization of the second order moment, Xidonas, Hassapis, Soulis, and 

Samitas (2017a) presented a relative robust formulation of the GMV problem (the non-

robust formulation of the GMV problem is presented in (2.5)). The authors suggest a 

discrete uncertainty set, 𝑈Σ, corresponding to a finite set of covariance matrix scenarios 

Σ𝑠, 𝑠 = 1,… , 𝑆. Besides the completeness and non-negativity constraints, Xidonas et al. 

(2017a) limit the number of assets in the portfolio to be between a lower (𝐿) and an 

upper bound (𝐻), and define a maximum (𝑤𝑚𝑎𝑥) and minimum (𝑤𝑚𝑖𝑛) weight for each 

asset (applied only if the asset is included in the portfolio). The authors define regret, 

which they designate by variance sacrifice (𝜍), as the relative worst variance increase in 

the robust choice of weights, i.e. the portion of variance that is exchanged for 

robustness, and formulate the relative robust minimum variance portfolio problem as 

follows:  

 

 min 
𝑤𝑡∈ℝ𝑁,𝑡∈ℝ0

+,Σ𝑠∈𝑈Σ

𝜍

subject to 𝑤𝑡
′Σ𝑠𝑤𝑡 ≤ (1 + 𝜍)𝜈𝑠∗

𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

𝐿 ≤ ∑ 𝑞𝑛

𝑁

𝑛=1

≤ 𝐻

𝑤𝑡,𝑛 − 𝑤𝑚𝑎𝑥𝑞𝑛 ≤ 0

,

𝑤𝑡,𝑛 − 𝑤𝑚𝑖𝑛𝑞𝑛 ≥ 0

 

(3.38) 

 

where 𝑞𝑛, 𝑛 = 1, … , 𝑁, are binary decision variables and 𝜈𝑠∗ is the variance of the 

optimal GMV portfolio under scenario 𝑠. In the empirical application, Xidonas et al. 

(2017a) considered different lower bounds (between 5 and 30) and upper bounds 

(between 20 and 60) for the number of assets, a minimum share of 0.1% and a 

maximum share of 20%, and an uncertainty set with three different scenarios: a 3-month 

scenario for the short-term view, a 6-month scenario for the mid-term view and a 12-

month scenario for the long-term view. The results suggest that the proposed relative 

robust minimum variance optimization produces conservative portfolios, since they 

include fewer and less risky assets. Moreover, although the relative robust portfolios do 
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not show superior performance, they are in most cases better than the solution computed 

under the worst performing scenario. 

A different definition for regret was presented by Simões, McDonald, Williams, Fenn, 

and Hauser (2018). Based also on the second order moment optimization and assuming 

uncertainty of the covariance matrix of asset’s returns, the authors define regret as the 

volatility increase one could be getting against the least volatile (best performing) 

benchmark. Let 𝐵 = {𝑏1, … , 𝑏𝑀}  be the set of 𝑀 different benchmarks under 

consideration.  Simões et al. (2018) suggested the following relative robust portfolio 

optimization model: 

 

 min 
𝑤𝑡∈ℝ𝑁

max
Σ𝑠∈𝑈Σ

(√𝑤𝑡
′Σ𝑠𝑤𝑡 − min

𝑏∈𝐵
√𝑏′Σ𝑠b)

subject to 𝑤𝑡 ∈ 𝑋
 (3.39) 

 

where the uncertainty set, 𝑈Σ, is defined as a finite set of scenarios, where each scenario 

represents a possible realization for the sample covariance matrix. 

Furthermore, the authors consider the absolute robust GMV portfolio: 

 

 min 
𝑤𝑡∈ℝ𝑁

max
Σ𝑠∈𝑈Σ

√𝑤𝑡
′Σ𝑠𝑤𝑡

subject to 𝑤𝑡 ∈ 𝑋
, (3.40) 

 

which is used as a benchmark in order to assess and compare the performance of the 

robust portfolios. The results show that the relative robust solution is more diversified, 

less volatile and yields a structurally different portfolio, comparatively to the GMV and 

the absolute robust GMV portfolios. Simões et al. (2018) present further approaches 

using the regret measure as a constraint or, in a proportional manner, defining excess 

volatility not as the difference in volatilities, but instead as the proportion of benchmark 

volatility that is surpassed.  
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3.2.4 Robust formulation of multi-objective portfolio problems 

The robust methodology has been extended to multi-objective problems only very 

recently. The analysis of the investment decision problem as an optimization problem 

that seeks to maximize the expected return of the portfolio while minimizing its risk, i.e. 

as an optimization problem with multiple conflicting objectives, highlights the multi-

objective nature of the portfolio selection problem.  

The concept of optimal solution is different in the multi-objective optimization context. 

Here, it is important to introduce the concept of dominant solution. In the mean-

variance based approach, a dominant portfolio is a feasible solution such that no other 

feasible solution presents, simultaneously, higher return and lower risk. In a multi-

objective optimization problem, one needs to compute the Pareto set, i.e. the set of 

compromise (or non-dominated) solutions that define the best trade-off between the 

competing objectives, and identify the most desirable solution according to the decision 

maker’s preferences. This corresponds to the optimal solution of the multi-objective 

problem and can be achieved by applying different multi-criteria decision aiding 

(MCDA) techniques, like the 𝜀 −constraint, scalarization and the goal programming 

methods, among others. For a detailed coverage of applications of MCDA in financial 

decision making see Bana e Costa and Soares (2001); Zopounidis and Doumpos (2002);  

Zopounidis, Galariotis, Doumpos, Sarri, and Andriosopoulos (2015). 

Admitting uncertainty in the expected assets’ returns and an ellipsoidal uncertainty set, 

Hasuike and Katagiri (2013) presented a bi-objective model that seeks to 

simultaneously maximize the portfolio expected return and maximize the scale of the 

uncertainty set. Let 𝜚 be the robustness parameter setting the size of the uncertainty set 

𝑈𝜇 defined by: 

 

 𝑈𝜇 = {𝜇𝑡: 𝜇𝑡 = 𝜇 + Φ𝑧, ‖𝑧‖ ≤ 𝜚}, (3.41) 

 

where 𝜇 is the vector of mean returns and Φ is a regular matrix representing the relation 

between any two assets. Let 𝜇𝐿
𝑝
 and 𝜇𝐿

𝑝
 be the worst target value and the standard target 

value for the portfolio expected return, respectively, which are initially defined by the 
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investor. Under the absolute robust approach, the authors presented the following robust 

optimization model:  

 

 max 
𝜇𝑡∈𝑈𝜇

max 
𝜇𝑡∈𝑈𝜇

𝜚

𝜇𝐿
𝑝

subject to 𝜇𝑡
′𝑤𝑡 − 𝜚√𝑤𝑡

′Σ𝑡𝑤𝑡 ≥ 𝜇𝐿
𝑝
.

𝜇𝑡
′𝑤𝑡 ≥ 𝜇𝐿

𝑝

𝟏′𝑤𝑡 = 1
𝑤𝑡 ≥ 𝟎

  

(3.42) 

 

The proposed bi-objective model is transformed into a deterministic equivalent problem 

by introducing fuzzy goals and applying an interactive fuzzy satisficing method (see 

Duan and Stahlecker, 2011, and Kato and Sakawa, 2011, for further readings about the 

interactive fuzzy method). The problem is then solved considering the worst-case 

realization of the uncertain parameter and applying deterministic algorithms. The 

numerical application showed that the proposed absolute robust model tends to select 

well-balanced optimal portfolios between both robustness and maximization of the total 

return with regard to investor’s satisfaction levels. Furthermore, the absolute robust 

portfolios outperform, in terms of robustness and total return, other widely applied 

portfolio models used by the authors as benchmarks.  

A different approach is proposed by Fliege and Werner (2014). The authors analyze 

convex parametric multi-objective optimization problems under data uncertainty, 

admitting a convex structure for the uncertainty set, and introduce for the first time a 

robust counterpart to the multi-objective programming problem in the style of Ben-Tal 

and Nemirovski (1998). Their empirical application is based on the bi-objective mean-

variance problem which is solved applying scalarization methods. Considering 

uncertainty in the expected return vector and the covariance matrix of asset returns, the 

authors define a joint ellipsoidal uncertainty set 𝑈, as an ellipsoid around a nominal 

point (𝜇, Σ) of size 𝜚, in the following way: 

 

 𝑈 = {(𝜇𝑡 , Σ𝑡): ‖𝜇𝑡 − 𝜇‖ + 𝑐‖Σ𝑡 − Σ‖ ≤ 𝜚}. (3.43) 
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Then, the absolute robust bi-objective optimization problem is given by:  

 

 min 
𝑤𝑡∈ℝ𝑁

min 
𝑤𝑡∈ℝ𝑁

max
(𝜇𝑡,Σ𝑡)∈𝑈

𝑤𝑡
′Σ𝑡𝑤𝑡 

max
(𝜇𝑡,Σ𝑡)∈𝑈

𝜇𝑡
′𝑤𝑡

subject to 𝑤𝑡 ∈ 𝑋

 . (3.44) 

 

The numerical solution of the robust bi-objective problem boils down to the solution of 

a family of ordinary scalar robust problems and is computed applying deterministic 

algorithms, under the worst-case approach. In their empirical example, the authors 

investigate the relationship between the robust Pareto frontier and the original Pareto 

frontier and show that the robust frontier lies between the original nominal EF and some 

corresponding easy-to-determine upper bound. 

Xidonas, Mavrotas, Hassapis, and Zopounidis (2017b) presented an relative robust bi-

objective optimization problem, that that seeks to simultaneously minimize the mean 

absolute deviation (𝑓1) and maximize the expected portfolio return (𝑓2). The authors 

applied the weighting method in order to calculate the Pareto optimal solution. We 

describe this model with greater detail since it is used as a benchmark in chapter 5. 

Consider that there are 𝑔 weight combinations, each one characterized by the weight 

vector (𝑐1
𝑔
, 𝑐2

𝑔
), with 𝑐1

𝑔
 and 𝑐2

𝑔
 representing the weights of the objective functions 𝑓1 

and 𝑓2, respectively, and 𝑐1
𝑔

+ 𝑐2
𝑔

= 1, ∀𝑔. The optimization model corresponding to 

the maximization of the weighted sum of the two individual objective functions 𝑓1 and 

𝑓2, is given by 

 

min 
𝑤𝑡∈ℝ𝑁

𝑦𝑔

subject to 𝑐1
𝑔 𝑓1,𝑚𝑎𝑥

𝑠 − 𝑓1
𝑠(𝑤𝑡)

𝑓1,𝑚𝑎𝑥
𝑠 − 𝑓1,𝑚𝑖𝑛

𝑠 + 𝑐2
𝑔 𝑓2

𝑠(𝑤𝑡) − 𝑓2,𝑚𝑖𝑛
𝑠

𝑓2,𝑚𝑎𝑥
𝑠 − 𝑓2,𝑚𝑖𝑛

𝑠 ≥ (1 − 𝑦𝑔)𝑧𝑠
𝑔
,   𝑠 ∈ 𝑈

𝑤𝑡 ∈ 𝑋

 (3.45) 

 

where 𝑓
1,𝑚𝑎𝑥
𝑠

, 𝑓
1,𝑚𝑖𝑛
𝑠

, 𝑓
2,𝑚𝑎𝑥
𝑠

 and 𝑓
2,𝑚𝑖𝑛
𝑠

 are the maximum and the minimum values of the 

objective functions 𝑓
1
 and 𝑓

2
, respectively, for a given scenario 𝑠 ∈ 𝑈,  and 𝑧𝑠

𝑔
 is the 

optimal value of the weighted sum of the objective functions for scenario 𝑠 and weight 
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combination 𝑔. The empirical test performed by Xidonas et al. (2017b) considered the 

discretization of the weight space. Eleven different weight combinations and an 

uncertainty set with five scenarios of return and risk evolution were tested. The results 

show that the minmax regret portfolio includes more stocks than the optimal portfolios 

of the individual scenarios, in all the weight combinations, representing a more disperse 

allocation of the total investment universe. Furthermore, the in-sample performance 

analysis revealed that the area of the Pareto front that corresponds to minimizing risk 

against maximizing return (i.e. when minimizing risk is weighted more than 

maximizing return) provides more robust solutions in terms of the minmax regret 

criterion, thus lower minmax regret values, where the minmax regret expresses how far 

one is from the individual optima of each scenario in the worst-case. No out-of-sample 

performance analysis was presented in this study. 
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Chapter 4  

 

 

Overview of the proposed models and methodological elements 

 

 

In this chapter, we start by presenting an overview of the robust portfolio optimization 

models that are proposed in this study, highlighting our main contributions. We describe 

the set of methodological elements that are common to all the empirical applications 

that were implemented in order to test the proposed models. We present and explain the 

strategy applied in the empirical applications, the general decisions concerning model 

settings definition and data selection, the solvers used to compute the robust solutions 

and the benchmarks and performance measures that were used to compare and assess 

the proposed methodologies. 

 

4.1 Main contributions of our study 

After performing an exploratory literature review on the robust portfolio optimization 

field, we realized that, as previously mentioned, the relative robust approach is the least 

studied and applied in the field of robust portfolio selection. This fact helped us set the 

direction of our research and define its main objectives. We centered our research in the 

study of the relative robust portfolio optimization approach and its comparative analysis 

to absolute robust and non-robust portfolio optimization strategies. Hence, the main 

contribution of this study is to propose new robust portfolio optimization models, given 

particular attention to relative robust portfolio models and regret measures.  

We propose new methods to compute absolute and relative robust portfolios by 

extending and combining established methodologies. The development of these 

methods leads to the examination of four other contributions. First, we compare 
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solutions produced by the relative robust and absolute robust formulations of classical 

and parametric portfolio optimization models. Second, the real benefits, from the 

investor perspective, of applying the absolute and relative robustness approaches in 

portfolio selection are analyzed by comparing in-sample and out-of-sample 

performances of robust and non-robust portfolios. Furthermore, the relevance of the 

proposed robust models is analysed for different levels of the investor’s risk preference. 

This analysis also allows the determination of the main strengths of the new 

methodologies proposed since, by locating the computed portfolios in the risk-return 

space and comparing their in-sample and out-of-sample performances, we analyze 

whether the robust methodology allows us to enhance the performance of current 

models available in the literature. Third, by using estimation samples and in-sample sets 

of different lengths, we investigate the effect of considering different number of 

scenarios in the uncertainty set as well as long-term historical data over short-term 

historical data in the definition of the uncertainty set. Finally, the use of an evolutionary 

algorithm capable of solving the robust portfolio problems allowed to simultaneously 

tackle two optimization problem levels, namely transforming the three-level relative 

robust optimization problem into a two-level problem and the two-level absolute robust 

optimization problem into a one-level problem. 

4.2 Rolling window with in-sample and out-of-sample periods 

Rolling windows of two different lengths (long versus short) is used in the empirical 

applications. Long and short historical windows are constructed in a way that the last 

year, defined as the out-of-sample period, is the same in both cases, allowing the 

comparison of the out-of-sample results. Hence, the data from the last year of the 

respective window is used to perform the out-of-sample evaluation of the optimal 

portfolios, while the remaining data is used to perform the in-sample estimations.  

The long and short approaches applied in the construction of the rolling windows are 

depicted in Figure 4-1 and Figure 4-2, respectively. In both cases, a total of 10 historical 

windows are analysed. The long approach considered a rolling window with a constant 

length of 16-years: 15-years data to perform in-sample estimations and an out-of-sample 

evaluation period of 1-year. Thus, for this approach, the first window ranges from 

January 1992 to December 2007 while the last window ranges from January 2001 to 
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December 2016. The short approach considered a rolling window with a constant length 

of 5-years: 4-years data to perform in-sample estimations and an out-of-sample 

evaluation period of 1-year. In this case, the first window ranges from January 2003 to 

December 2007 (in-sample period from 2003 to 2006 and out-of-sample consisting of 

2007) while the last window ranges from January 2012 to December 2016 (in-sample 

period from 2012 to 2015 and out-of-sample consisting of 2016).  

 

Figure 4-1: Rolling window: long approach 

 

This figure represents the rolling window with a constant length of 16 years. Each one of the 10 

historical windows is divided in two periods: the in-sample (IS) period, used for estimating the 

model inputs, and the out-of-sample (OS) period, used to assess the (out-of-sample) 

performance of the implemented strategies. 

 

Figure 4-2: Rolling window: short approach 

 

This figure represents the rolling window with a constant length of 5 years. Each one of the 10 

historical windows is divided in two periods: the in-sample (IS) period, used for estimating the 

model inputs, and the out-of-sample (OS) period, used to assess the (out-of-sample) 

performance of the implemented strategies. 
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The application of historical windows of different lengths allows to analyze the effect of 

considering long-term historical data over short-term historical data in the definition of 

the uncertainty set and, therefore, it allows the investigation of whether the use of long-

term historical data affects the predictive accuracy of the models. Previous studies have 

shown that long-term historical returns (measured over long-term periods) are 

negatively correlated with future returns, a phenomenon referred to as the long-term 

reversal effect (Bondt & Thaler, 1985), while short-term historical returns (measured 

over the last year) are positively correlated with future returns, a phenomenon referred 

to as the momentum effect (Jegadeesh & Titman, 1993). Additionally, the 

implementation of rolling windows of different lengths allows an analysis of the 

usefulness of the proposed models in the presence of limited data. 

4.3 Model settings and Data 

For all the proposed robust approaches, we defined the feasible set in the same way and 

considered a discrete and finite uncertainty set. For the definition of the feasible set 𝑋, 

two constraints were considered, namely the completeness constraint and the non-

negativity constraint. While the completeness constraint guarantees that all the 

investor’s wealth is invested, the non-negativity constraint was included mainly because 

short sales are not allowed or are restricted in the majority of stock exchange markets. 

The set of feasible solutions is, therefore, defined by: 

 

𝑋 = {𝑤𝑡 ∈ ℝ𝑁: ∑ 𝑤𝑡,𝑛 = 1

𝑁

𝑛=1

, 𝑤𝑡,𝑛 ≥ 0, ∀𝑛 = 1,… ,𝑁}, (4.1) 

 

and is considered in all the portfolio optimization strategies implemented in this study, 

as a way of preserving the comparability of the results.  

The uncertainty set 𝑈 is defined as a discrete and finite set of scenarios 

 

𝑈 = { 𝑠1, 𝑠2, … , 𝑠𝑆}, (4.2) 
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where 𝑆 represents the number of scenarios in 𝑈. An identical structure of 𝑈 is 

presented in Kim et al. (2014c). Each scenario 𝑠 ∈ 𝑈 is built considering the 

observations associated with different sampling periods randomly gathered from the 

historical in-sample data.  

To define the procedure for generating the sample returns from the in-sample data, 

consider a universe of 𝑁 assets for which 𝒪 observations regarding consecutive trading 

days are known. A sample of asset returns on J consecutive trading days is used to 

define scenario 𝑠. Specifically, 𝕫(𝑠) is defined as a random value such that 𝕫(𝑠) ∈

{1,… , 𝒪 − 𝐽 + 1}, and all observations between 𝕫(𝑠) and 𝕫(𝑠) + 𝐽 − 1  will constitute 

scenario 𝑠. The sample returns of the N assets during this randomly generated time 

window of length J of scenario 𝑠 will be represented by matrix 𝑅𝑠 ∈ ℝ𝐽×𝑁. The vector 

with the returns of the different assets at time 𝑗 will be represented by 𝑟𝑗𝑠. For each one 

of the proposed models, each scenario 𝑠 ∈ 𝑈 is defined either by a set of input 

estimators or by a set of sample observations, depending on the model under 

consideration. 

To explore the sensitivity of the results to parameters variation, when computing the 

scenarios and the uncertainty set, different cardinalities of the uncertainty set (𝑆) are 

analyzed. Estimations of the model inputs are all performed in R. 

The inputs estimation was made using historical daily data from January 1990 to 

December 2016 of the stocks of two European equity indices: the DAX and the EURO 

STOXX 50. Data was collected from Thomson Reuters Datastream. While long 

historical periods are required in order to estimate expected returns more accurately 

(Elton et al., 2009; Merton, 1980),  the use of daily historical data, comparatively to 

data with lower sampling frequencies, improves the risk estimation process (Clarke, De 

Silva, & Thorley, 2006). 

Adjusted closing prices of the stocks in the constituent list of the indices at the end of 

the in-sample period were collected and daily continuous returns were calculated. In 

order to avoid any survivorship bias in the construction of our portfolios, we selected 

the assets in each of the time windows under analysis in the following way. First, we 

identified the assets in the constituent list of the stock index at the end of the in-sample 

period; then, from those assets, we selected the ones that were listed in the stock 

exchange at the beginning of the in-sample period (regardless of being in the constituent 
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list of the stock index or not). Hence, we are considering a set of assets that does not 

exactly reflect the assets composing the stock index under consideration. 

The evolution of the DAX and the EURO STOXX 50 indexes during the out-of-sample 

years is depicted in Figure 4-3 and Figure 4-4, respectively. While the years 2008  and 

2011 can be characterized by accentuated drops of the price index of both indexes 

(mainly caused by the subprime mortgage crisis, in the former year, and the European 

debt crisis, in the latter one), the years 2009, 2012 and 2013 stand out as periods of 

substantial recoveries. It is also possible to note that the index prices present higher 

volatility in 2015, experiencing severe drops followed by significant recoveries.  

Notice that, from July 2007 to March 2009, the Dax price index fell about 55% (from 

8,100 points to 3,660 points). From then until May 2011, it experiences a significant 

recovery (from 3,660 points to 7,500 points) followed by a severe drop until the end of 

2011 (from 7,500 points to 5,070 points). From 2012 onwards, the market portfolio had 

a remarkable rebound, reaching new historical hights in the beginning of 2015 (from 

5,070 points to 12,370 points). Regarding the EURO STOXX 50, from January 2007 to 

March 2009, the price index experienced a drop of about 56% (from 4,120 points to 

1,810 points). From March 2009 to the end of the out-of-sample period, it is possible to 

notice a significant recovery of the market portfolio (from 1,810 points to 3,291 points), 

however the price index remains about 20% lower than the value observed in the 

beginning of the out-of-sample period.  
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Figure 4-3: Evolution of the DAX index price during the out-of-sample periods. 

 

 

Figure 4-4: Evolution of the EURO STOXX 50 index price during the out-of-sample 

periods. 
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4.4 Solvers used to compute the robust solutions 

As described in section 3.1, the relative robust optimization model is a three-level 

optimization problem. The first optimization process, corresponding to the computation 

of the optimal solution 𝑤𝑡
𝑠∗ for each of the scenarios admitted in the uncertainty set, is 

performed using the CPLEX solver. The second and third optimization levels are 

simultaneously solved using the Genetic Algorithm (GA) toolbox from Matlab R2017a, 

in order to compute the relative robust optimization solution (minmax regret solution). 

There are several deterministic methods available in the literature for solving similar 

minmax optimization problems (Paç & Pınar, 2018; Pınar, 2016; Pınar & Burak Paç, 

2014; Yaman, Karasan, & Pinar, 2007). In this work, a different path was taken. There 

are two main reasons for resorting to GA: with the proposed measures of regret which 

are described in the next section, the developed minmax optimization models became 

nonlinear programming problems; the uncertainty set, as defined in this study, leads to a 

considerable number of constraints, resulting in highly complex optimization problems. 

In fact, the application of evolutionary algorithms, such as GA, to optimization 

problems with non-linear or non-convex objective functions is increasing in the 

portfolio theory literature (Chang, Yang, & Chang, 2009; Kalayci, Ertenlice, Akyer, & 

Aygoren, 2017; Soleimani, Golmakani, & Salimi, 2009; Streichert, Ulmer, & Zell, 

2004; Zhu, Wang, Wang, & Chen, 2011). Their reasonable computational time to solve 

more complex and combinatorial problems is pointed out as their main advantage 

(Soleimani et al., 2009). For the proposed set of robust problems, this approach allows 

the simultaneous optimization of two of the optimization levels as the method is able to 

simultaneously solve the inner maximization and outer minimization levels of the 

proposed robust problems.  

Furthermore, the efficiency of the GA as a tool to overcome the difficulties raised by 

computational complexity when solving (portfolio) optimization problems that address 

future uncertainty has also been reported by some authors (Jin & Branke, 2005; Yang, 

2006). Gen and Cheng (2000) state that the multiple directional and global search 

performed by the GA where a population of potential solutions is maintained from 

generation to generation, is useful when exploring Pareto solutions, which is relevant 

for the investment decision problem since it is, in nature, a multi-objective optimization 

problem with (multiple) conflicting objectives. According to Shoaf and Foster (1998, p. 
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358), the “(…) GA can simultaneously minimize risk and maximize expected return 

(…) This flexibility allows the GA to discover portfolio opportunities which the more 

traditional [programming] approach misses”. 

Finally, by applying both deterministic (when computing the optimal solution for each 

scenario) and evolutionary algorithms, we are conducting a more efficient 

implementation of an algorithm capable of solving our models, as highlighted by Gen 

and Cheng (2000, p. 107): “Because GAs, as a kind of meta-heuristics, provide us with 

great flexibility to incorporate conventional methods into the main framework, we can 

exploit the advantages of both GAs and conventional methods to establish much more 

efficient implementations to problems”.  

Regarding the initial population of the GA, instead of defining a fixed size, as most of 

the authors do (Kalayci et al., 2017), we defined an initial number of individuals that 

depends on the dimension of the problem (number of scenarios). In particular, the initial 

population has twice the size of the uncertainty set and is composed of all the optimal 

solutions 𝑤𝑡
𝑠∗ (for all scenarios admitted in the uncertainty set) and, additionally, of 

other feasible randomly generated solutions. When exploratory experiments showed 

that feeding the initial population of the GA with all the optimal solutions 𝑤𝑡
𝑠∗ caused 

its premature convergence, deteriorating the out-of-sample performance of the robust 

solutions, the initial population was only composed by feasible solutions generated 

randomly (in this case, the initial population has the same size of the uncertainty set).  

Concerning the remaining GA specifications, the most usual options were considered 

(Kalayci et al., 2017). A real valued chromosome representation was used with uniform 

crossover (with probability rate 0.80) and tournament selection. An elitist strategy is 

also defined: a fraction of 5% of the best individuals goes directly to the new 

population, meaning that, on average, 80% of the remaining individuals are generated 

by the crossover operation. Although there is a wide range of options regarding the 

mutation type and rate, it was decided to use uniform mutation with rate of 15% for 

each chromosome (some exploratory experiments indicate that the results show little 

sensitivity to the mutation rate). Finally, instead of applying a fixed number of iterations 

as the termination criterion, it was applied a convergence criterion (tolerance of 1e-16 

for the average relative change in the best fitness function value from one generation to 

the next one), in order to avoid unnecessarily long computational times or suboptimal 

solutions in instances where more computational time is needed. Regarding the 
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individuals’ feasibility, all solutions are feasible because of the way they are represented 

– the weights of each individual are rescaled to one, ensuring its feasibility.  

The GA toolbox from Matlab R2017a, the initial population definition and the GA 

specifications used in order to solve the relative robust three-level optimization problem 

are equally applied in the computation of the corresponding absolute robust two-level 

optimization problem.  

4.5 Benchmarks and performance measures  

In order to investigate the real contribution of robust models within the portfolio 

optimization field of study, the performance of the proposed robust strategies was 

analyzed and compared to classical non-robust optimization strategies, considering both 

in-sample and out-of-sample data. Additionally, and since there is a lack of empirical 

studies that compare the performance of relative robust and absolute robust portfolios, 

the performance of the proposed relative robust solutions is compared to the 

corresponding absolute robust solutions, for some of the developed works. 

The non-robust benchmarks used were the mean-variance and the global minimum 

variance strategies, defined by problems (2.4) and (2.5), respectively. For solving 

problem (2.4), the Markowitz’s efficient frontier was first constructed considering a 

large set of possible values for 𝜇𝐿 (lower limit on the expected return); then, the MV 

portfolio was identified by selecting the efficient portfolio that maximizes the investor’s 

expected utility according to the value of the relative risk aversion parameter under 

consideration, in each of the developed works. Inputs for the classic models were 

estimated within the entire in-sample window, according to the approach (long and/or 

short in-sample length) under consideration. Optimal solutions were computed using 

CPLEX. While selecting Markowitz’s MV portfolio as a benchmark to assess the 

performance of the proposed robust portfolios is almost mandatory, the selection of the 

GMV portfolio as a benchmark is straightforward due to its well established out-of-

sample performance in the portfolio literature. Previous studies have shown that the 

GMV portfolio with non-negativity constraints outperforms the EW portfolio (Chan et 

al., 1999; Jagannathan & Ma, 2003), while it performs as well as those GMV portfolios 

constructed with covariance matrices estimated using factor models and shrinkage 

methods (Jagannathan & Ma, 2003).       
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The EW portfolio, also know as the naïve 1/𝑁 benchmark, which equally allocates the 

wealth among the assets that were included in each of the windows under analysis, was 

constructed. The EW portfolio is also used in this study as a benchmark because 

decision makers continue to use it for allocating their wealth across assets (DeMiguel et 

al., 2009). Additionally, DeMiguel et al. (2009) compared the out-of-sample 

performance of the EW portfolio to the performances of the sample-based mean-

variance model and its extensions designed to reduce estimation error, using different 

performance metrics, and found that no single strategy always dominates the equally-

weighted strategy. The authors pointed out that the 1/𝑁 strategy is more likely to 

outperform when 𝑁 is large because this improves the potential for diversification. 

After determining the optimal solutions of the strategies implemented, in-sample and 

out-of-sample performances were compared by analyzing, in annualized terms, the 

portfolio return, given by 

 

 𝑟𝑡
𝑝 = 𝜇𝑡

′𝑤𝑡, (4.3) 

 

the portfolio variance 

 

 𝜐𝑝 = 𝑑𝑤𝑡
′Σ𝑡𝑤𝑡, (4.4) 

 

where 𝑑 corresponds to the number of observations (trading days) in a year and the 

Israelsen’s modified Sharpe ratio (Israelsen, 2005) defined by 

 

𝑆𝐼 =
𝜇𝑡

′𝑤𝑡 − 𝑟𝑡
𝑓

√𝑑𝑤𝑡
′Σ𝑡𝑤𝑡

((𝜇𝑡
′𝑤𝑡−𝑟𝑡

𝑓
)/𝑎𝑏𝑠(𝜇𝑡

′𝑤𝑡−𝑟𝑡
𝑓
))

, (4.5) 

 

where 𝜇𝑡
′𝑤𝑡 − 𝑟𝑡

𝑓
 represents the annualized excess return of the portfolio comparatively 

to the return of the risk-free asset (𝑟𝑡
𝑓
), and 𝑎𝑏𝑠(. ) is the absolute value function. The 

risk-free asset selected for the computation of the modified Sharpe ratio was the 1-year 
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maturity government triple A bond for the Euro area accessible at 

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_

curves/html/index.en.html. This indicator was only computed for the out-of-sample 

analysis since data on the risk-free asset is only available from September 2004 

onwards. Although there is a wide range of performance measures available in the 

literature (Cogneau & Hübner, 2009), the Israelsen’s modified Sharpe ratio (𝑆𝐼) was 

selected for two main reasons: 1) the 𝑆𝐼 is equal to the standard Sharpe ratio when 

excess return is positive while providing correct rankings regardless of the excess return 

being positive or negative; and 2) comparatively to other performance measures it does 

not require the definition of subjective parameters. For instance, comparatively to 

Sortino ratio, it does not require the definition of the minimum acceptable return, whose 

value depends on the investor’s preferences. 

In addition, the portfolio’s regret is computed, based on the definition of regret 

proposed in each of the developed works, and compared for the in-sample and out-of-

sample periods. Composition, cardinality, turnover, abnormal return and beta of the 

robust and non-robust portfolios are also compared in some of the works developed. 

The computation of the portfolio turnover followed the definition presented by Brandt 

et al. (2009), considering the evolution of the assets returns from 𝑡 − 1 to 𝑡. Hence, the 

portfolio turnover at time 𝑡 (𝑉𝑡) is defined by: 

 

𝑉𝑡 = ∑ 𝑎𝑏𝑠(𝑤𝑛,𝑡 − 𝑤𝑛,𝑡
ℎ )

𝑁

𝑛=1

, (4.6) 

 

where 𝑎𝑏𝑠(. ) is the absolute value function, 𝑤𝑛,𝑡 is the weight of asset 𝑛 at time 𝑡 after 

the rebalancing, and 𝑤𝑛,𝑡
ℎ  is the weight of asset 𝑛 at time 𝑡 before the rebalancing, which 

is given by: 

 

𝑤𝑛,𝑡
ℎ = 𝑤𝑛,𝑡−1

1 + 𝑟𝑛,𝑡

1 + 𝑟𝑡
𝑝 . (4.7) 
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For the computation of the abnormal return, we applied the CAPM and performed a 

linear regression considering the stock index as the proxy for the market portfolio. A 

total of 2540 daily returns (corresponding to the 10 out-of-sample years) were used in 

the regression analysis. The abnormal return (𝐽𝛼) corresponds to the Jensen's alpha in 

the CAPM framework. We also present the portfolios’ beta, which is a measure of their 

systematic risk relative to the excess return of the market portfolio. It is important to 

notice that the comparability to the market portfolio has some limitations since the 

assets used to construct the portfolios vary along the 10 time windows under analysis 

and are not the same as the ones in the constituent list of the stock index during this 

period (as previously explained).  

Results are presented for a given combination of the model parameters. Results for the 

remaining parameterizations can be made available upon request.  
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Chapter 5  

 

 

A relative robust expected utility optimization approach (Models 

A and B) 

 

 

5.1 Introduction 

The out-of-sample performance of relative robust portfolio optimization portfolios is 

still little explored in portfolio literature. Further empirical studies are needed in order 

to unravel their real benefits for the investors. In this study, we present minmax regret 

portfolio optimization models and compare their performance to robust and non-robust 

strategies available in the literature. We define regret as the utility loss for the investor 

resulting from choosing a given portfolio instead of choosing the optimal portfolio of 

the realized scenario for the uncertain parameters. The proposed approach is 

implemented assuming that the investor has CRRA preferences.  

The empirical analysis was conducted on a dataset with historical daily data regarding 

the stocks of the DAX index, from January 1992 to December 2016. Different portfolios 

are computed, corresponding to the application of different methodologies: the proposed 

relative robust portfolio (hereafter represented by RRA, where the last letter, A, 

identifies the model under consideration), the classical MV portfolio, the GMV 

portfolio, the EW portfolio, the relative robust weighted-sum (WS) portfolio presented 

by Xidonas et al. (2017b) and the absolute robust approach developed by Kim et al. 

(2014c). In particular, we extended the works of Xidonas et al. (2017b) and Kim et al. 

(2014c) by analyzing the out-of-sample performance of the robust solutions proposed in 

these studies (which was not undertaken by their authors), allowing us to see if these 

approaches can improve the investment performance. The chosen methodological 
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approaches are compared considering both in-sample and out-of-sample results, where 

return, risk, modified Sharpe ratio and regret are considered.  

The results of this study suggest that the proposed relative robust model has more value 

for risk-taking investors, i.e. for those who can be more affected by the methodological 

weaknesses of the classical mean-variance model, standing out as a valid alternative. 

Moreover, the proposed RRA portfolio outperforms the MV portfolio in many of the 

time windows under analysis. The RRA portfolio also exhibits better out-of-sample 

performance in many of the considered time windows, relatively to the EW portfolio. 

This clearly reinforces the relevance of the proposed methodology since, according to 

DeMiguel et al. (2009), the EW portfolio is difficult to outperform. It is also possible to 

conclude that the GMV portfolio presents a very good performance, sometimes 

outperforming the proposed RRA portfolio, which is in accordance with the results of 

other authors (Chan et al., 1999; Jagannathan & Ma, 2003). Comparatively to the 

minmax regret model presented by Xidonas et al. (2017b) and the absolute robust 

approach developed by Kim et al. (2014c), the proposed relative robust approach offers 

more consistent results since it generates portfolios that present greater stability 

concerning in-sample and out-of-sample performances.   

The remainder of this chapter proceeds as follows. In Section 5.2, the proposed model is 

described. The empirical analysis and major results are presented in Section 5.3. An 

extension to model A is presented in section 5.4. Finally, in Section 5.5, main 

conclusions are highlighted. 

5.2 Methodology 

5.2.1 The relative robust expected utility optimization model 

For describing the investor’s preferences, let 𝑓(. ) be a general utility function of the 

investor. The expected utility of the portfolio, represented by 𝐸[𝑓(𝑟𝑡+1
𝑝 )], can be 

approximated by the second order Taylor expansion of the expected utility function 

around the expected return of the portfolio, 𝐸[𝑟𝑡+1
𝑝 ], as follows: 
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𝐸[𝑓(𝑟𝑡+1

𝑝 )] =
(1 + 𝐸[𝑟𝑡+1

𝑝
])

1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝐸[𝑟𝑡+1

𝑝 ])
−𝛾−1

𝑉[𝑟𝑡+1
𝑝 ], (5.1) 

 

where 𝑉[𝑟𝑡+1
𝑝 ] is the variance of the portfolio returns. 

Let 𝑆 represents the number of elements of the uncertainty set and 𝑠𝑖 ∊ 𝑈, 𝑖 = 1,… , 𝑆, 

represent a given scenario. To avoid cluttering the notation, the 𝑖 index can be dropped 

from the notation, with 𝑠 representing a given scenario. As previously mentioned, the 

proposed relative robust minmax regret approach defines regret as the utility loss for the 

investor resulting from choosing a portfolio characterized by the weight combination 

vector 𝑤𝑡 instead of choosing 𝑤𝑡
𝑠∗ which corresponds to the optimal solution under 

scenario 𝑠.  

Uncertainty is admitted not only in the vector of assets’ returns but also in the 

covariance matrix of returns. A joint uncertainty set is defined for both uncertain 

parameters as in Kim et al. (2014c), based on samples of the asset returns for 

consecutive trading days. Each scenario of the uncertainty set is described by the vector 

of expected asset returns and the covariance matrix of returns for each sample randomly 

gathered from the in-sample data. 

Recall the notation and the general procedure for generating the sample returns from the 

in-sample data, previously described in section 4.3. Each scenario 𝑠 is defined in the 

following way: 

 

 𝑠 = (𝜇𝑠, Σ𝑠), (5.2) 

 

 

𝜇𝑠 =

[
 
 
 
 
 
 
 1

𝐽
∑ 𝑟𝑗1

𝕫(𝑠)+𝐽−1

𝑗=𝕫(𝑠)

⋮

1

𝐽
∑ 𝑟𝑗𝑁

𝕫(𝑠)+𝐽−1

𝑗=𝕫(𝑠) ]
 
 
 
 
 
 
 

, (5.3) 

 

and 
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Σ𝑠 =
1

𝐽 − 1
∑ (𝑟𝑗𝑛 − 𝜇𝑠)(𝑟𝑗𝑛 − 𝜇𝑠)

′

𝕫(𝑠)+𝐽−1

𝑗=𝕫(𝑠)

, 𝑛 = 1, … , 𝑁. (5.4) 

 

Let 𝑟𝑡+1
𝑝𝑠∗ = 𝑟𝑡+1(𝑤𝑡

𝑠∗ ) be the realized return of the optimal portfolio 𝑤𝑡
𝑠∗, under 

scenario s, given by 𝑟𝑡+1
𝑝𝑠∗ = ∑ 𝑤𝑛,𝑡

𝑠∗ 𝑟𝑛,𝑡+1
𝑠𝑁

𝑛=1 , where 𝑤𝑛,𝑡
𝑠∗  represents the weight of asset 𝑛 

in 𝑤𝑡
𝑠∗ and 𝑟𝑛,𝑡+1

𝑠  the respective return, under scenario s. Equivalently, 𝑟𝑡+1
𝑝𝑠 (𝑤𝑡) 

corresponds to the expected return of the portfolio characterized by the weight 

combination vector 𝑤𝑡, under scenario s, which is given by 𝑟𝑡+1
𝑝𝑠 (𝑤𝑡) = ∑ 𝑤𝑛,𝑡𝑟𝑛,𝑡+1

𝑠𝑁
𝑛=1 , 

where 𝑤𝑛,𝑡 represents the weight of asset 𝑛 and 𝑟𝑛,𝑡+1
𝑠  the respective return, under 

scenario s. The regret associated to choosing portfolio 𝑤𝑡 in scenario 𝑠, 𝑃𝑠(𝑤𝑡), is 

defined by 

 

 𝑃𝑠(𝑤𝑡) = 𝐸[𝑓(𝑟𝑡+1
𝑝𝑠∗)] − 𝐸 [𝑓 (𝑟𝑡+1

𝑝𝑠 (𝑤𝑡))] (5.5) 

 

and the maximum regret function, 𝑃(𝑤𝑡), is defined by 

 

 𝑃(𝑤𝑡) = max
𝑠∈𝑈

{𝐸[𝑓(𝑟𝑡+1
𝑝𝑠∗)] − 𝐸 [𝑓 (𝑟𝑡+1

𝑝𝑠 (𝑤𝑡))]}. (5.6) 

 

The objective is to determine the relative robust solution 𝑤𝑡 corresponding to the weight 

combination vector that minimizes the maximum regret function and therefore solves 

the relative robust optimization model: 

 

 min
𝑤𝑡∈𝑋

max
𝑠∈𝑈

{𝐸[𝑓(𝑟𝑡+1
𝑝𝑠∗)] − 𝐸 [𝑓 (𝑟𝑡+1

𝑝𝑠 (𝑤𝑡))]} (5.7) 

 

where the set of feasible solutions is defined as in (4.1).  
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This approach was applied assuming the following utility function of the investor with 

constant relative risk aversion (CRRA) preferences over wealth and constant relative 

risk aversion parameter 𝛾 (𝛾 ∈ 𝐼𝑅+\{1}):  

 

 
𝑓(𝑟𝑡+1

𝑝
) =

(1 + 𝑟𝑡+1
𝑝

)
1−𝛾

1 − 𝛾
. (5.8) 

 

Hence, assuming CRRA preferences, the optimization problem (5.7) can be defined by: 

 

min
𝑤𝑡∈𝑋

max
𝑠∈𝑈

[(
(1 + 𝜇𝑠′𝑤𝑡

𝑠∗)
1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝜇𝑠′𝑤𝑡

𝑠∗)
−𝛾−1

𝑤𝑡
𝑠∗′

Σ𝑠𝑤𝑡
𝑠∗)

− (
(1 + 𝜇𝑠′𝑤𝑡)

1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝜇𝑠′𝑤𝑡)

−𝛾−1
𝑤𝑡

′Σ𝑠𝑤𝑡)] . 

(5.9) 

 

5.2.2 Computing the relative robust portfolio 

The process of computing the relative robust portfolio starts with the construction of the 

uncertainty set. An uncertainty set is constructed by calculating the S scenarios from the 

in-sample period. An estimation window is randomly selected within the in-sample 

period and the sample mean and the sample covariance matrix are computed.  

Then, for each scenario 𝑠 ∈ 𝑈, we solve the following problem: 

 

 
max
𝑤𝑡∈𝑋

(
(1 + 𝜇𝑠′𝑤𝑡)

1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝜇𝑠′𝑤𝑡)

−𝛾−1
𝑤𝑡

′Σ𝑠𝑤𝑡) , (5.10) 

 

in order to determine the optimal solution 𝑤𝑡
𝑠∗, which represents the portfolio on the 

Markowitz’s efficient frontier that maximizes the investor’s expected utility when 
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scenario 𝑠 occurs. This constitutes the first optimization process of our three-level 

optimization problem. 

After computing the optimal solutions for each scenario 𝑠 ∈ 𝑈, the relative robust 

optimization problem (5.9) is solved by a GA. A fitness function that maximizes the 

regret as presented in (5.6) was defined and an initial population composed of all the 

optimal solutions 𝑤𝑡
𝑠∗ and, additionally, by other feasible solutions randomly generated 

was used.   

5.3 Empirical analysis 

5.3.1 Data and model settings 

For the empirical analysis, historical daily data from January 1992 to December 2016 

(25 years) of the stocks of the DAX index was used. Stocks in the constituent list of the 

DAX index at the end of each in-sample period were selected and adjusted closing 

prices of the selected stocks were considered in order to calculate daily continuous 

returns.  

In this chapter, the empirical application considers a rolling window with a constant 

length of 16-years only: 15-years data to perform in-sample estimations and an out-of-

sample evaluation period of 1-year. The description of the rolling windows was 

previously presented in section 4.2. The steps for computing the relative robust solution, 

previously described in section 5.2.2, are iteratively repeated for each of the 10 time 

windows defined.  

To explore the sensitivity of the results to parameters variation, when computing the 

scenarios and the uncertainty set, besides considering different number of scenarios in 

the uncertainty set (𝑆 ∈ {100,200}), different estimation window lengths (𝐽 ∈

{60,120, 252}) were also analyzed. Furthermore, different relative risk aversion values 

(𝛾 ∈ {2,5,10}) were explored. The different values of 𝐽, 𝑆 and 𝛾 yielded in 18 different 

parameters combinations, namely {(𝐽, 𝑆, 𝛾): 𝐽 ∈ {60,120, 252}, 𝑆 ∈ {100, 200}, 𝛾 ∈

{2,5,10}}, and the relative robust model was solved for each one of these combinations. 

Due to the long computational times required to solve each model instance, these 18 

parameter combinations were the only ones investigated.  
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5.3.2 In-sample and out-of-sample performances 

The performance of the relative robust strategy was analyzed both in-sample and out-of-

sample and compared to classical non-robust optimization strategies, to the relative 

robust optimization approach presented by Xidonas et al. (2017b) and to the absolute 

robust approach suggested by Kim et al. (2014c). While the comparison with non-robust 

optimization methodologies allows the recognition of the real contribution of robust 

models within the portfolio optimization field of study, the comparison with absolute 

and relative robust strategies allows the appraisal of the current contribution within the 

field of robust portfolio optimization. 

In order to replicate the relative robust strategy presented by Xidonas et al. (2017b), 5 

scenarios corresponding to the average return and mean absolute deviation from the last 

80, 60, 40, 20 and 10-weeks historical data of the in-sample period were computed. 

Eleven different weight combinations were used, namely (0,1), (0.1,0.9), ..., (0.9,0.1), 

(1,0),  and, for each window under analysis, eleven relative robust portfolios (hereby 

designated by WS1, WS2, ..., WS10 and WS11, respectively) were computed using the 

CPLEX solver.   

Finally, an absolute robust approach was also implemented and used as a benchmark. 

We followed the absolute robust counterpart of the maximum risk-adjusted return 

classical problem proposed by Kim et al. (2014c), which applies a discrete uncertainty 

set corresponding to a finite set of scenarios. The absolute robust counterpart of 

Markowitz’s maximum risk-adjusted return (MRC) problem was defined by the authors 

as: 

 

 max
𝑧∈ℝ 

𝑧

subject to 𝑧 ≤𝑤𝑇𝜇𝑖 − 𝜆𝑤𝑇Σ𝑖𝑤 ,   𝑖 = 1,… , 𝐼 
𝑤 ∈ 𝑿

, (5.11) 

 

where 𝑧 represents the minimum value of the portfolio’s risk-adjusted return, 𝑖 identifies 

the 𝑖-th sample, 𝜇𝑖 and Σ𝑖 are the vector of average returns and the covariance matrix of 

the 𝑖-th sample, respectively, 𝐼 corresponds to the number of scenarios included in the 

uncertainty set 𝑈, which is defined as 𝑈 = {(𝜇𝑖, Σ𝑖)|𝑖 = 1,… , 𝐼}, and 𝜆 represents the 

weight given to the portfolio variance. In order to avoid the nonlinearity of the 
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constraints in Kim et al.’s model and driven by the computationally more tractable 

equivalent formulations of problem (5.11) presented by Goldfarb and Iyengar (2003) 

and Tütüncü and Koenig (2004), we calculated the robust efficient frontier in the 

following way. We started by constructing the uncertainty set, considering the base case 

used by Kim et al. (2014c) and collecting 100 i.i.d. samples, each sample consisting of 

1000 daily returns randomly selected from the in-sample data. For each sample, the 

vector of average returns and the covariance matrix were computed and the scenario 

was defined. Then, we solved problem (2.4) for each lower limit on the expected return 

(𝜇𝐿
𝑝
) and each scenario (𝜇𝑖, Σ𝑖) ∈ 𝑈. For each 𝜇𝐿

𝑝
, we defined the absolute robust 

(maxmin) solution as the optimal portfolio (among the 𝐼 optimal solutions) that presents 

the maximum risk. This allowed us to identify the robust efficient frontier. The MRC 

portfolio corresponds to the optimal solution in the robust efficient frontier that 

maximizes the investor’s expected utility. Computations were performed using CPLEX 

solver. 

After determining RRA, MV, GMV, EW, MRC and WS1 to WS11 portfolios, in-

sample and out-of-sample performances were compared by analyzing portfolio return, 

portfolio variance, Israelsen’s modified Sharpe ratio, 𝑆𝐼, and regret, defined by: 

 

𝑅 = (
(1 + 𝜇𝑠′𝑤𝑡

𝑠∗)
1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝜇𝑠′𝑤𝑡

𝑠∗)
−𝛾−1

𝑤𝑡
𝑠∗′

Σ𝑠𝑤𝑡
𝑠∗)

− (
(1 + 𝜇𝑠′𝑤𝑡)

1−𝛾

1 − 𝛾
−

𝛾

2
(1 + 𝜇𝑠′𝑤𝑡)

−𝛾−1
𝑤𝑡

′Σ𝑠𝑤𝑡) 

(5.12) 

 

where 𝑤𝑡
𝑠∗ represents the optimal portfolio (feasible solution with maximum utility) 

within the sample period under consideration. Portfolio cardinality, turnover and 

abnormal return were also analyzed and compared among the investment strategies that 

were implemented. For the computation of the abnormal return, we applied the CAPM 

and performed a linear regression considering the DAX as the proxy for the market 

portfolio. A total of 120 monthly returns (corresponding to the 10 out-of-sample years) 

were used in the regression analysis. 
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Finally, we analyzed portfolio style and portfolio exposure to risk factors of the relative 

robust solution. We collected international research returns data from the Fama-French 

data library, available at 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. For the 

portfolio style analysis, we followed the methodology presented by Sharpe (1992) and 

designated as strong style analysis by Horst et al. (2004). The goal of return-based style 

analysis is to determine the (positively) weighted style portfolio that is closest to the 

proposed RRA solution in a least squares sense. We solved a quadratic model that 

minimizes the variance of the difference between the return of the RRA portfolio and 

that of a passive (mimicking) portfolio with the same style, subject to portfolio and 

positivity constraints (i.e., factor loadings must be positive and sum up to 1). In order to 

construct the mimicking portfolio, we considered the returns of value and growth 

portfolios available for the German market and based on four different ratios: Book-To-

Market (BTM), Earnings-Price (EP), Cash Earnings to Price (CEP), and Dividend Yield 

(DY). The value portfolios contain firms in the top 30% of the respective ratio and the 

growth portfolios contain firms in the bottom 30%. As for the analysis of the exposure 

to risk factors, and similar to Carhart (1997), we used the Fama-French three factors and 

Momentum (MOM), for the European market, as style indices. Once again, a total of 

120 monthly returns (corresponding to the 10 out-of-sample years) were used for 

performing the time series regressions regarding the analyses of portfolio style and 

portfolio exposure to risk factors. 

5.3.3 Results 

The effect of changing parameters 𝐽, 𝑆 and 𝛾 on the computed portfolios, both in-sample 

and out-of-sample, was analyzed. It is important to notice that, while the different 

values of 𝛾 define different MV and MRC portfolios, since for each value a different 

portfolio is selected from the Markowitz’s efficient frontier (and from its absolute 

robust counterpart), they do not influence the GMV, EW and WS portfolios (only the 

measure of regret corresponding to them). For each of the 18 parameters combinations 

considered, a different RRA portfolio is obtained.  

The analysis starts with the portfolios that have been described in the literature namely 

MV, GMV, EW, MRC and WS portfolios. Afterwards, the effect of the variation of 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


 

76 

 

parameters on the 18 RRA portfolios is analyzed. For each computed portfolio, the 

mean of the portfolio returns (mean return), obtained over the 10 windows, is 

calculated. Additionally, the mean of the portfolio variances (mean risk) and the mean 

of the portfolio regrets (mean regret) are also calculated for each portfolio. Then, in-

sample and out-of-sample portfolio performances are analyzed by comparing mean 

return, mean risk and mean regret. Finally, for each of the 10 windows, in-sample and 

out-of-sample performances of relative robust and non-robust portfolios are compared 

for the parameter combination 𝛾 = 2, 𝑆 = 100 and 𝐽 = 120. For simplification 

purposes, the RRA portfolio will be represented by ‘R’ or ‘RR’ in the figures presented 

in the Results section and the corresponding subsections. 

5.3.3.1 Parameters variation effect  

Figure 5-1 presents in-sample and out-of-sample mean risk and mean return of the MV, 

GMV, EW, MRC and RRA portfolios. It can be observed that, when increasing 𝛾, both 

in-sample mean return and mean risk of the MV portfolio decrease. This is explained by 

the fact that higher levels of  𝛾 result in the selection of an efficient portfolio, from 

Markowitz’s efficient frontier, that is closer to the GMV portfolio. Concerning out-of-

sample results, when  𝛾 increases, mean return increases while mean risk decreases. It 

can also be observed that, when  𝛾 increases, the out-of-sample portfolio return becomes 

closer to the expected return (defined with in-sample data), while the out-of-sample 

portfolio risk is always quite close to the expected risk (defined with in-sample data). 

This clearly indicates a better out-of-sample performance of the classical MV portfolio 

when higher levels of the relative constant risk aversion are considered. It is also quite 

evident that MV portfolios show better in-sample performances comparatively to their 

correspondent out-of-sample performances.  

Analyzing the performances of GMV and EW portfolios, it is evident that while the 

GMV portfolio shows lower in-sample mean risk and mean return comparatively to MV 

portfolios, the EW portfolio presents the worst in-sample performance among non-

robust portfolios. In fact, the EW portfolio is the only one that presents a negative in-

sample mean return. On the other hand, the deviations of these portfolios to their 

expected risk and expected return are not so substantial as those verified by MV 

portfolios. Furthermore, these portfolios outperform MV portfolios when considering 

out of sample mean returns. These results confirm the shortcomings of the MV portfolio 
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concerning its sensitivity to estimation error and the effects of the input uncertainty in 

the optimization process (Best & Grauer, 1991a; Chopra & Ziemba, 1993; DeMiguel et 

al., 2009; Jagannathan & Ma, 2003). Notice that, since the computation of the GMV 

portfolio relies only on estimates of variances and covariances of the asset returns, this 

portfolio is less vulnerable to estimation error comparatively to the MV portfolio. 

 

Figure 5-1: In-sample and out-of-sample mean risk and mean return of the RRA, MRC, 

MV, EW and GMV portfolios. 

 

The optimal portfolios were represented according to the value of the risk aversion parameter 

used in their computation. For instance, ‘MRC2’, ‘MV2’ and ‘R2’ corresponds, respectively, to 

the MRC, MV and RRA portfolios computed using a value of 2 for the risk aversion parameter. 

To avoid cluttering the Figure, the values of S and J are not represented for the RRA portfolios, 

but they will be represented in Figure 5-3. 

 

Assuming that the in-sample results are a measure of the expected performance of the 

portfolios, and the out-of-sample results are a measure of performance that would be 

achieved if the portfolios were chosen in that specific time period, then the ones that 

present the least deviations are the most consistent ones. Analyzing the MRC and the 

RRA portfolios, it can be confirmed that the robust strategies are the ones that generate 
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solutions with smallest distances between in-sample and out-of-sample mean return and 

mean risk and, therefore, their performances are more consistent. Regarding the in-

sample mean results of the MRC portfolio, it is quite evident that the robust efficient 

frontier is completely dominated by the non-robust efficient frontier (suggested by the 

MV portfolios), as it would be expected. Out-of-sample mean results indicate that 

increasing the level of the relative constant risk aversion significantly decreases the 

portfolio’s risk, while the changes observed in the portfolio’s return are not substantial. 

Furthermore, the absolute robust strategy seems to dominate the relative robust strategy, 

with some exceptions verified for the lowest level of the relative risk aversion 

parameter. 

The RRA portfolios are generally located at the left side of the scatter-plot, indicating 

low levels of mean risk, while only one of these portfolios presents negative out-of-

sample mean return (namely -0.00134, which is very close to 0). For higher levels of 𝛾, 

RRA portfolios are more concentrated, presenting similar mean risks and mean returns. 

It is also possible to observe that out-of-sample mean returns are higher than in-sample 

mean returns, except for two of the RRA portfolios.  

It is important to point out that this tendency, of higher out-of-sample returns 

comparatively to in-sample returns, is observed among the majority of the computed 

portfolios and can be explained by the evolution of the stock market, in particular, of the 

DAX index, during the out-of-sample periods (see Figure 4-3). It is also important to 

highlight that the MV and the MRC portfolios are the only ones that do not present the 

tendency of higher out-of-sample returns comparatively to in-sample returns, which 

reinforces its underperformance even in the presence of favorable market conditions. 

The more divergent results observed among all RRA portfolios, are verified, both in-

sample and out-of-sample, for 𝛾 = 2. While some of the portfolios RRA portfolios 

(with 𝛾 = 2) present the highest in-sample mean returns, others are clearly (in-sample) 

dominated solutions. A similar situation is observed when analyzing the out-of-sample 

mean results but, in this case, all RRA portfolios (with 𝛾 = 2) are dominated solutions. 

On the other hand, for 𝛾 = 2, RRA portfolios generally outperform the MV portfolio, 

both in terms of mean risk and mean return. These results suggest that, while the 

proposed relative robust methodology provides better solutions when higher levels of 

the relative constant risk aversion are considered, the RRA portfolio stand out as a 

valuable alternative to the MV portfolio for investors with smaller risk aversion. 
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Additionally, for a relative risk aversion parameter of 2, the majority of the RRA 

portfolios presents lower (mean) out-of-sample risk comparatively to the MRC 

portfolio. 

Furthermore, and concerning the out-of-sample results, it can be observed that the 

majority of the RRA portfolios outperform the EW portfolio, which has been pointed 

out by some authors as a benchmark difficult to outperform (DeMiguel et al., 2009). 

Additionally, the outperformance of the GMV portfolio is verified, even outperforming 

the RRA portfolios, in accordance with the results of previous studies (Chan et al., 

1999; Jagannathan & Ma, 2003).  

In-sample and out-of-sample mean risk and mean return of the WS portfolios are 

presented in Figure 5-2. Concerning WS portfolios, an evident trend is observed, both 

in-sample and out-of-sample. WS portfolios corresponding to lower 𝑐1
𝑔

 weights (when 

maximizing return is weighted more than minimizing risk), namely WS1, WS2, WS3 e 

WS4, underperform comparatively to WS portfolios corresponding to higher 𝑐1
𝑔

 weights 

(when minimizing risk is weighted more than maximizing return), namely WS7, WS8, 

WS9, WS10 and WS11. Comparing in-sample and out-of-sample WS portfolio location 

(in the mean-variance space), it can be observed that the out-of-sample mean risk is 

lower than the in-sample mean risk for all WS portfolios. Moreover out-of-sample mean 

return is higher than the in-sample mean return for WS portfolios corresponding to 

higher 𝑐1
𝑔

 weights, which can be explained by the evolution of the DAX index during 

the out-of-sample periods, as previously pointed out. The deviations of these portfolios 

to their mean expected risk and mean expected return are more pronounced among 

those with lower 𝑐1
𝑔

 weights. These results confirm that WS portfolios corresponding to 

higher 𝑐1
𝑔

 weights are more robust, in terms of the deviation to the expected 

performance, which is in accordance with the (in-sample) empirical results presented by 

Xidonas et al. (2017b). 

Furthermore, the WS portfolios corresponding to lower 𝑐1
𝑔

 weights reveal the highest 

levels of (in-sample and out-of-sample) mean risk, while presenting negative out-of-

sample mean returns. WS11 portfolio (corresponding to the portfolio that minimizes 

mean absolute deviation) underperforms out-of-sample comparatively to GMV portfolio 

while WS1, WS2 and WS3 are dominated solutions relative to MV portfolios (even 

when 𝛾 = 2). 
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Regarding the RRA portfolios, it can be observed that their out-of-sample mean risks 

are always higher than their in-sample mean risks. Additionally, the deviations from 

their mean expected risks and mean expected returns are not as substantial as the 

deviations observed for MV (Figure 5-1) or WS portfolios (Figure 5-2).  

 

Figure 5-2: In-sample and out-of-sample mean risk and mean return of the WS 

portfolios. 

 

The optimal portfolios were represented according to the weight combination of the individual 

objective function used in their computation. For instance, ‘WS1’, ‘WS2’ and ‘WS11’ 

corresponds, respectively, to the WS portfolios computed using the weight vector 

(1,0), (0.1,0.9), and (0,1), respectively. 

 

In order to analyze the effect of the variation of 𝑆 and  𝐽, in-sample and out-of-sample 

mean risk and mean return of the RRA portfolios are presented in Figure 5-3, according 

to the values of the parameters used in their computation. For simplification purposes, 

the parameter 𝑆 was represented by ‘1’ when 𝑆 = 100 and by ‘2’ when 𝑆 = 200. For 

instance, ‘R2260’ corresponds to the RRA portfolio computed for 𝛾 = 2, 𝑆 = 200 and 

𝐽 = 60. Analyzing the effect of the variation of 𝑆 and 𝐽, it seems that their highest 
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values are associated with dominant in-sample solutions (for the same level of 𝛾) while 

no substantial benefits are identified out-of-sample. Notice that, in-sample, R102252 is 

the dominant solution among all the RRA portfolios when 𝛾 = 10, R51252 is the 

dominant solution among all the RRA portfolios when 𝛾 = 5 and R22120 is the 

dominant solution among most of the RRA portfolios when 𝛾 = 2. The respective out-

of-sample dominant solutions are R101120 (except for R102120), R51120 (except for 

R5260 or R5160) and R21120 (except for R2260). These exceptions correspond to 

solutions that reveal higher mean returns and substantially higher mean risks. Hence, 

the proposed relative robust methodology seems to lead to solutions that consistently 

perform better out-of-sample when 𝑆 = 100 and 𝐽 = 120. 

In-sample and out-of-sample mean regrets were also analyzed and are presented in 

Table 5-1. Concerning mean regret, in-sample results show that increasing 𝛾 leads to 

higher levels of mean regret in all of the portfolios computed, which was expected due 

to the better performance of the MV portfolio for lower levels of 𝛾. Out-of-sample 

results show that when 𝛾 is increased, the mean regret of the MV portfolio decreases, 

i.e. the robustness of classical mean-variance methodology, in terms of utility loss for 

the investor, seems to improve, as previously outlined. This outcome generally prevails 

for the GMV portfolio, but the effect of the variation of 𝛾 is not so straightforward. 

Concerning WS portfolios, when 𝛾 increases, the robustness, in terms of utility loss for 

the investor, of the WS portfolios corresponding to lower 𝑐1
𝑔

 weights declines while the 

robustness of the WS portfolios corresponding to higher 𝑐1
𝑔

 weights improves. In-

sample and out-of-sample mean regrets seem to support Xidonas et al. (2017b) results, 

since the WS portfolios corresponding to higher 𝑐1
𝑔

 weights are more robust, relative to 

the WS portfolios corresponding to lower 𝑐1
𝑔

 weights, regardless of 𝛾. It is also worth 

noticing that the lowest mean regrets are usually obtained for γ=5, both for the RRA and 

for the MRC portfolios. Mean regrets of RRA portfolios are also similar for portfolios 

computed with the same level of 𝛾. Moreover, while the variation of 𝑆 and 𝐽 seems to 

have no in-sample substantial effect, the lowest out-of-sample mean regret is obtained 

when 𝑆 = 100 and 𝐽 = 120, regardless of 𝛾. 
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Figure 5-3: In-sample and out-of-sample mean risk and mean return of the RRA 

portfolios. 

 

The optimal portfolios were represented according to the values of the parameters 𝛾, 𝑆 and 𝐽, 

used in their computation. For simplification purposes, the parameter 𝑆 was represented by 1 

when 𝑆 = 100 and 2 when 𝑆 = 200. For instance, ‘R2260’ corresponds to the RRA portfolio 

computed admitting 𝛾 = 2, 𝑆 = 200 and 𝐽 = 60. 

 

Comparing the mean regret of all the computed portfolios, the GMV portfolio is always 

among the portfolios with lowest mean regrets, regardless of 𝛾. In fact, this portfolio is 

outperformed only by WS9 when 𝛾 = 5, and by MV, WS7, WS8, WS9, WS10 and 

WS11, when 𝛾 = 10, while it presents the lowest mean regret when 𝛾 = 2. When 𝛾 =

10, the EW, WS1, WS2, WS3 and WS4 reveal mean regrets which are similar and 

substantially higher comparatively to the other portfolios.  

In the next subsection, the analysis of the in-sample and the out-of-sample performances 

of relative robust and non-robust portfolios, for each of the 10 windows, is presented. 

Results are described for the parameters combination 𝛾 = 2, 𝑆 = 100 and 𝐽 = 120.  
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Table 5-1: In-sample and out-of-sample mean regret of the RRA, MV, EW, GMVand 

WS portfolios.  

Portfolio In-sample mean regret Out-of-sample mean regret 

γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

Rγ160 0.072131 0.071750 0.121632 0.327735 0.249598 0.469121 

Rγ1120 0.061977 0.080818 0.116721 0.309436 0.209987 0.254383 

Rγ1252 0.050515 0.065315 0.106382 0.335656 0.256156 0.351439 

Rγ260 0.076777 0.081479 0.117535 0.319018 0.228061 0.444041 

Rγ2120 0.056501 0.074776 0.111041 0.315629 0.230508 0.277701 

Rγ2252 0.050466 0.068675 0.095739 0.340163 0.241787 0.352217 

MRC 0.026875 0.027173 0.043666 0.296671 0.190008 0.210157 

MV 0.000000 0.000000 0.000000 0.343710 0.199943 0.179465 

EW 0.092742 0.120679 0.226055 0.328676 0.323939 0.998670 

GMV 0.041458 0.034643 0.043965 0.278558 0.181663 0.191338 

WS1 0.137664 0.266424 0.615438 0.370089 0.404113 0.943632 

WS2 0.133456 0.255477 0.574035 0.372119 0.408781 0.965980 

WS3 0.121300 0.218535 0.437290 0.371640 0.407170 0.972191 

WS4 0.101714 0.168661 0.302138 0.353249 0.376462 0.901031 

WS5 0.083856 0.125191 0.216912 0.330803 0.292991 0.549744 

WS6 0.072971 0.102125 0.172536 0.316365 0.234051 0.295680 

WS7 0.065309 0.085723 0.139971 0.299449 0.198295 0.183118 

WS8 0.065721 0.084155 0.137531 0.289680 0.182118 0.146488 

WS9 0.067205 0.086052 0.144526 0.287739 0.179060 0.139712 

WS10 0.068550 0.087503 0.149174 0.292429 0.190286 0.171188 

WS11 0.072094 0.092945 0.160530 0.291728 0.193357 0.185669 

The RRA portfolios were represented according to the values of the parameters 𝑆 and 𝐽 used in 

their computation. For simplification purposes, the parameter 𝑆 was represented by 1 when 𝑆 =

100 and by 2 when 𝑆 = 200. For instance, ‘Rγ160’ corresponds to the RRA portfolio computed 

for a given value of 𝛾 and for the parameters combination 𝑆 = 100 and 𝐽 = 60. 

 

5.3.3.2 Performance of relative robust and non-robust portfolios 

The composition of the portfolios is analyzed by comparing the maximum weight of an 

asset and the sum of the 3 largest weights, in order to assess the exposure to individual 

stocks, and by comparing the cardinality, measured as the number of assets with 

weights higher than 0.1% in each computed portfolio. The obtained results are shown in 
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Table 5-2. The R21120 and MV2 portfolios are hereby designated by RRA and MV 

portfolios, respectively. 

The MV portfolio shows a similar low cardinality among all windows, between 4 and 8, 

resulting in a low-diversified portfolio, with a maximum asset weight varying between 

20% and 53% and, for most of the windows, the allocation of 70% or more of the 

investors’ wealth to 3 assets only. As expected, the GMV portfolio is more diversified, 

since it presents a minimum cardinality of 12 and a maximum of 15, and a lower 

exposure to individual stocks, since the maximum weight of an asset varies between 

14% and 21% and the sum of the 3 largest weights varies between 37% and 53%.  

Concerning WS portfolios, it can be observed that when the  𝑐1
𝑔

 weights are increased, 

the cardinality of the portfolios increases and the exposure to individual stocks 

decreases, resulting in more diversified portfolios. These results were expected since 

highest levels of the  𝑐1
𝑔

 weights correspond to portfolios that mainly aim to maximize 

the expected return while the lowest levels of the  𝑐1
𝑔

 weights correspond to portfolios 

that mainly aim to minimize the mean absolute deviation. Thus, the WS1, WS2, WS3 

and WS4 portfolios are highly concentrated (cardinality between 2 and 5), with 

exposure to a single asset higher than 50% and a cumulative exposure to three assets 

equal to 100%, in most of the windows, while the WS portfolios with the highest  𝑐1
𝑔

 

weights are more diversified (cardinality between 6 and 15), and reveal lower exposure 

to individual stocks, since the maximum weight of an asset varies between 16% and 

62% and the sum of the 3 largest weights varies between 45% and 86%.  

The analysis of the portfolio’s composition of the robust solutions revealed dissimilar 

results. The MRC portfolio shows a similar low cardinality among all windows, 

between 3 and 10, resulting in a low-diversified portfolio. Furthermore, it presents a 

maximum asset weight varying between 23% and 69% and, for most of the windows, 

the allocation of 60% or more of the investors’ wealth to only 3 assets. While the RRA 

portfolio is more diversified than the rest of the portfolios, it reveals dissimilar results 

concerning cardinality, since it varies between 14 and 24, among the windows. It has 

also the lowest maximum asset weight (varying between 8% and 17%) and the lowest 

largest investors’ wealth allocation to 3 assets (varying between 22% to 45%). 
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Table 5-2: Composition of the RRA, MRC, MV, EW, GMV and WS  portfolios by time window 

  RRA MRC MV EW GMV 
WS 

1 

WS 

2 

WS 

3 

WS 

4 

WS 

5 

WS 

6 

WS 

7 

WS 

8 

WS 

9 

WS 

10 

WS 

11 

1
9
9
2

-2
0
0
7
 Max% 0.14 0.44 0.25 0.05 0.19 0.65 0.71 0.77 0.77 0.69 0.47 0.26 0.28 0.33 0.34 0.34 

Sum3Max% 0.38 0.75 0.70 0.15 0.49 1 1 1 1 1 0.74 0.62 0.61 0.63 0.59 0.59 

Card. 17 5 6 20 13 2 2 3 2 3 7 9 11 10 11 11 

1
9
9
3

-2
0
0
8
 Max% 0.16 0.18 0.44 0.05 0.21 0.52 0.42 0.36 0.42 0.49 0.49 0.42 0.36 0.33 0.28 0.25 

Sum3Max% 0.38 0.49 0.93 0.16 0.52 1 0.87 0.90 0.91 0.82 0.74 0.70 0.69 0.65 0.66 0.67 

Card. 15 10 4 19 13 3 4 4 5 6 8 9 10 11 12 11 

1
9
9
4

-2
0
0
9
 Max% 0.12 0.69 0.51 0.05 0.19 0.42 0.43 0.44 0.49 0.51 0.49 0.45 0.41 0.38 0.33 0.28 

Sum3Max% 0.35 1 0.91 0.15 0.51 1 1 1 1 0.99 0.97 0.91 0.90 0.84 0.76 0.73 

Card. 19 3 5 20 12 3 3 3 3 4 5 6 6 6 8 8 

1
9

9
5
-2

0
1

0
 Max% 0.13 0.37 0.33 0.05 0.18 0.78 0.73 0.62 0.57 0.41 0.34 0.27 0.25 0.28 0.31 0.32 

Sum3Max% 0.32 0.73 0.73 0.14 0.49 1 1 1 0.99 0.79 0.70 0.69 0.62 0.66 0.71 0.73 

Card. 18 6 5 21 13 2 3 3 4 6 6 8 8 10 10 8 

1
9
9
6

-2
0
1

1
 Max% 0.17 0.34 0.42 0.04 0.15 0.78 0.76 0.75 0.74 0.34 0.39 0.52 0.44 0.32 0.28 0.27 

Sum3Max% 0.45 0.76 0.83 0.13 0.42 1 1 1 0.99 0.75 0.70 0.76 0.76 0.83 0.63 0.56 

Card. 14 5 5 23 12 2 2 2 4 6 8 9 8 7 9 10 
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 RRA MRC MV EW GMV 
WS 

1 

WS 

2 

WS 

3 

WS 

4 

WS 

5 

WS 

6 

WS 

7 

WS 

8 

WS 

9 

WS 

10 

WS 

11 

1
9
9
7

-2
0
1
2
 

Max% 0.16 0.26 0.53 0.04 0.14 0.78 0.82 0.77 0.73 0.64 0.48 0.42 0.35 0.33 0.32 0.31 

Sum3Max% 0.36 0.58 0.89 0.12 0.37 1 1 1 1 0.93 0.94 0.87 0.78 0.80 0.81 0.76 

Card. 18 10 6 26 13 2 2 3 3 4 4 6 6 7 6 7 

1
9
9
8

-2
0
1
3
 

Max% 0.14 0.28 0.49 0.04 0.15 0.59 0.60 0.61 0.45 0.35 0.35 0.32 0.27 0.21 0.26 0.28 

Sum3Max% 0.42 0.62 0.85 0.13 0.42 1 1 1 0.87 0.81 0.82 0.76 0.67 0.55 0.60 0.65 

Card. 18 10 7 24 12 3 3 3 5 5 6 8 8 8 10 8 

1
9
9
9

-2
0
1
4
 

Max% 0.08 0.23 0.20 0.04 0.16 0.73 0.76 0.76 0.68 0.37 0.28 0.20 0.17 0.16 0.20 0.26 

Sum3Max% 0.22 0.57 0.56 0.12 0.46 1 1 1 0.98 0.74 0.68 0.54 0.45 0.46 0.53 0.56 

Card. 24 10 8 26 14 2 2 3 4 6 8 11 15 15 15 13 

2
0

0
0

-2
0
1
5
 

Max% 0.09 0.30 0.37 0.04 0.17 0.95 0.97 0.96 0.82 0.66 0.59 0.53 0.46 0.32 0.29 0.27 

Sum3Max% 0.25 0.71 0.77 0.12 0.50 1 1 1 1 0.90 0.86 0.81 0.80 0.70 0.68 0.68 

Card. 22 5 6 26 14 2 2 3 3 6 6 7 8 9 9 9 

2
0

0
1
-2

0
1

6
 Max% 0.11 0.27 0.38 0.04 0.21 0.69 0.67 0.56 0.43 0.23 0.39 0.51 0.54 0.60 0.60 0.62 

Sum3Max% 0.31 0.68 0.81 0.11 0.53 1 1 1 0.94 0.66 0.72 0.84 0.83 0.84 0.86 0.83 

Card. 19 8 6 28 15 2 2 3 4 5 5 6 6 7 6 7 

This table presents the characteristics of the optimal portfolios. The composition of the portfolios regarding the maximum (Max%) and minimum (Min%) 

weights of an asset, the sum of the 3 largest weights in the portfolio (Sum3Max%), and the number of assets with non-zero weights in each computed portfolio 

(Cardinality) is described. As explained before, for measuring the cardinality, only those assets with weights higher than 0.1% are considered. 
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Portfolio turnover was also analyzed and results are displayed in Table 5-3. Yearly 

portfolio turnover is defined as the sum of the absolute value of the trades (changes in 

weights) across the available assets, in that year. The portfolio turnover is then defined 

as the average, over all out-of-sample periods (10 years), of the yearly portfolio 

turnover. It can be observed that the EW and RRA portfolios (the portfolios that present 

higher cardinality) present low levels of turnover. In fact, among the non-robust 

solutions the portfolio with higher turnover is the MV portfolio while the portfolio with 

lower turnover is the EW portfolio. Regarding the robust solutions, the RRA portfolio is 

the solution with lower turnover while all the WS portfolios and the MRC portfolio 

present substantially higher turnover. This result suggests that, in a real investment, the 

implementation of the RRA strategy would entail lower rebalancing  costs 

comparatively to the strategies proposed by Xidonas et al. (2017b) and Kim et al. 

(2014c). A further analysis of the WS portfolios shows that, the ones that present the 

lowest cardinality (between 2 and 5) are the ones that reveal the highest levels of 

turnover, which was an unexpected result. This can be explained by the fact that these 

portfolios select different assets along the different windows under analysis. In fact, the 

majority of the WS portfolios present higher turnover than the absolute robust strategy 

under analysis. Finally, it is important to point out that, comparatively to the non-robust 

solutions, the RRA portfolio presents higher turnover, while similar to the one presented 

by the MV portfolio.  

Results concerning in-sample and out-of-sample risks and returns of all the portfolios 

are presented for all windows in Figure 5-4. Out-of-sample modified Sharpe ratios (𝑆𝐼) 

are shown in Table 5-4. While the analysis of the results for each window supports the 

majority of the outcomes presented in the previous section, some interesting differences 

stand out.  

Analyzing the overall out-of-sample results for the non-robust portfolios, it can be 

confirmed that the classical mean-variance strategy reveals inconsistent results since for 

some windows (1992-2007; 1995-2010; 2000-2015; and 2001-2016) the MV portfolio 

is among those with the highest 𝑆𝐼, while for others (1993-2008; 1996-2011; 1997-

2012) it is among those with the lowest 𝑆𝐼. Furthermore, the MV portfolio stands out in 

some windows (1998-2013 and 1999-2014) as one of the few portfolios with negative 

return. Regarding the EW portfolio, a similar conclusion can be drawn, since it is 

among the portfolios with the highest 𝑆𝐼 in some windows (2003-2007; 2005-2009; 
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2006-2010; 2008-2012) while it presents poor out-of-sample performance in others 

(2007-2011; 2010-2014; 2011-2015; 2012-2016). It is also important to highlight that 

the EW portfolio outperforms the MV portfolio, in terms of risk and/or in terms of 

return, in most of the time windows under analysis. Concerning the GMV portfolio, 

although this portfolio shows worse in-sample mean return comparatively to the MV 

portfolio, a different trend can be observed when comparing out-of-sample 

performances. In fact, the GMV portfolio is a dominant solution comparatively to the 

MV and the EW portfolios in the majority of the time windows. Furthermore, this 

portfolio is among the solutions with the best 𝑆𝐼 in some windows (2004-2008; 2005-

2009; 2007-2011; 2008-2012; 2009-2013; and 2011-2015) while it is located at the left 

side of the scatter-plot in all windows, indicating low levels of risk. 

 

Table 5-3: Turnover of the RRA, MRC, MV, EW, GMV and WS portfolios 

Portfolio Turnover 

RRA 0.799760 

MRC 1.271759 

MV 0.687393 

EW 0.291742 

GMV 0.392018 

WS1 1.939064 

WS2 1.953327 

WS3 1.980119 

WS4 1.952692 

WS5 1.821421 

WS6 1.705526 

WS7 1.514796 

WS8 1.389555 

WS9 1.261189 

WS10 1.205050 

WS11 1.230448 

Portfolio turnover corresponds to the average, over all out-of-sample periods (10 years), of the 

yearly portfolio turnover, with this yearly turnover defined as the sum, for the considered year, 

of the absolute value of the trades (changes in weights) across the available assets. 
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Figure 5-4: In-sample and out-of-sample risks and returns of the RRA, MRC, MV, EW, 

GMV and WS portfolios computed for each time window  
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The optimal portfolios were computed considering the parameters combination γ=2, S=100 and 

J=120. 

 

Regarding WS portfolios, some unexpected outcomes are observed. While the WS 

portfolios corresponding to the highest 𝑐1
𝑔

 weights always present better in-sample 

performances comparatively to the WS portfolios corresponding to the lowest 𝑐1
𝑔

 

weights, this does not always occur out-of-sample. Specifically, in some windows 

(1995-2010; 1997-2012; and 2001-2016), WS1, WS2, WS3 and WS4 portfolios present 

higher 𝑆𝐼 than WS6, WS7, WS8, WS9, WS10 and WS11 portfolios; moreover, WS10 

and WS11 portfolios show negative out-of-sample returns in 1995-2010 and 2001-2016, 

and are the only portfolios with negative out-of-sample returns in 1995-2010. In other 

windows (1992-2007 and 1994-2009), WS1, WS2, WS3, WS4 and WS5 portfolios are 
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the only portfolios that present negative out-of-sample returns. These results unveil lack 

of consistency in the out-of-sample performance of the relative robust methodology 

presented by Xidonas et al. (2017c). 

Some lack of consistency can also be evidenced by the MRC strategy. This absolute 

robust portfolio is among the solutions with best performance in some of the windows 

under analysis (1992-2007 and 2000-2015) while it is among those with worst 

performance in other windows (1994-2009; 1996-2011; 1997-2012; 1999-2014; and 

2001-2016). In the particular period of 1999-2014, the MRC portfolio is one of only 

two solutions that present negative returns. 

 

Table 5-4: Out-of-sample modified Sharpe ratio (𝑆𝐼) of the RRA, MRC, MV, EW, 

GMV and WS portfolios. 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RRA 0.411 -0.222 0.518 0.906 -0.036 0.954 0.325 0.071 0.358 0.270 

MRC 0.814 -0.210 -0.005 0.779 -0.010 1.456 0.940 -0.003 0.801 0.130 

MV 0.650 -0.255 0.068 1.347 -0.063 0.774 -0.021 -0.004 0.754 0.927 

EW 0.571 -0.244 0.465 0.910 -0.067 1.079 1.073 0.053 0.206 0.024 

GMV 0.563 -0.209 0.681 0.564 -0.024 1.264 1.341 0.157 0.600 0.373 

WS1 -0.030 -0.259 -0.008 1.294 -0.067 1.331 0.214 0.076 0.136 0.559 

WS2 -0.033 -0.252 -0.008 1.303 -0.067 1.317 0.220 0.096 0.121 0.557 

WS3 -0.035 -0.239 -0.007 1.090 -0.067 1.341 0.240 0.137 0.119 0.724 

WS4 -0.036 -0.237 -0.005 1.095 -0.065 1.304 0.505 0.245 0.293 0.905 

WS5 -0.018 -0.235 -0.004 0.823 -0.050 1.197 0.700 0.305 0.435 0.743 

WS6 0.000 -0.232 -0.001 0.526 -0.032 0.880 0.781 0.319 0.461 0.548 

WS7 0.181 -0.210 0.180 0.189 -0.017 0.987 0.884 0.531 0.490 0.388 

WS8 0.410 -0.195 0.256 0.000 -0.010 1.064 1.216 0.594 0.514 0.255 

WS9 0.310 -0.189 0.300 -0.004 -0.003 1.170 1.518 0.723 0.567 0.054 

WS10 0.383 -0.178 0.479 -0.007 -0.009 1.193 1.644 0.831 0.527 -0.005 

WS11 0.418 -0.165 0.524 -0.007 -0.013 1.146 1.652 1.115 0.551 -0.005 

This table shows the out-of-sample 𝑆𝐼 of the optimal portfolios by out-of-sample year. Results 

are presented for the parameters combination γ=2, S=100 and J=120. 

 

Our relative robust strategy stands out as a more solid relative robust methodology in 

this sense. First, the RRA portfolio only provides negative out-of-sample returns in 
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periods where all the computed portfolios present negative out-of-sample returns, 

namely in 1993-2008 and 1996-20112. These windows are characterized by out-of-

sample periods of atypically high volatility (see assets risks variation in Figure 5-5) and, 

simultaneously, atypically low assets mean returns (see assets mean returns variation in 

Figure 5-6). Out-of-sample risk of the RRA portfolio is lower or similar to its in-sample 

risk and out-of-sample return of the RRA portfolio is always higher than its in-sample 

return, except for the windows where all portfolios severely underperform out-of-

sample (1993-2008 and 1996-2011) and for the windows where RRA portfolios present 

higher out-of-sample risks but substantially higher out-of-sample returns (1994-2009 

and 2000-2015). As previously pointed out, this tendency of higher out-of-sample 

returns can be explained by the evolution of the DAX index during the out-of-sample 

periods. These results generally prevail regardless of the values of the model 

parameters. 

Additionally, the RRA portfolio stands out as a dominant solution (with higher out-of-

sample 𝑆𝐼) comparatively to the MV portfolio in 5 of the 10 windows, to the EW 

portfolio in 6 of the 10 windows, to the MRC portfolio in 4 of the 10 windows, and to 

some of the WS portfolios in 9 of the 10 windows. Relative to the GMV, and as 

previously pointed out, RRA portfolio stands out as a dominated solution in 8 of the 10 

windows, while it outperforms the GMV in 1995-2010 only, where it shows a higher 𝑆𝐼.  

In order to better understand the consequences, from the investor perspective, of 

applying the proposed relative robustness approach in portfolio selection, we also 

compared the risk-adjusted out-of-sample performance of the RRA portfolio with the 

benchmarks used in the study, by analysing the abnormal return over the entire out-of-

sample period (10 years). Results are presented in Table 5-5. As previously mentioned, 

the abnormal return corresponds to the Jensen's alpha in the CAPM framework, with the 

DAX price index as the proxy for the market portfolio return. We also present the beta 

of the portfolios, which is a measure of their systematic risk relative to the excess return 

of the market portfolio. It is important to notice that the comparability to the market 

portfolio (DAX index) has some limitations since the assets used to construct the 

portfolios vary along the 10 time windows under analysis and are not the same as the 

ones in the constituent list of the DAX index during this period. Regarding the results 

 
2 Notice that the out-of-sample periods of the windows 1993-2008 and 1996-2011 overlapped the 

subprime mortgage crisis and the European debt crisis, respectively. 
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presented in Table 5-5, it can be observed that, the GMV portfolio has the best 

performance, even outperforming the market proxy (presents positive abnormal return), 

which supports the findings previously described. Although presenting negative 

abnormal return, the RRA portfolio outperforms the MRC, the EW and the MV 

portfolios (presents higher abnormal return) and, thus, offers a better performance 

considering its systematic risk. Finally, it is important to highlight that all portfolios 

show a lower systematic risk than the market (proxy) with the exception of the EW 

portfolio, which presents a beta coefficient higher than 1. 

Analyzing the distances between in-sample and out-of-sample portfolios location in 

Figure 5-4, it can be observed that the GMV and the RRA portfolios are more consistent 

comparatively to the MV and the EW portfolios. Relative to the WS portfolios and 

although previous results are generally confirmed, an opposite pattern can be observed 

in the window 1994-2009, since the WS portfolios corresponding to lower 𝑐1
𝑔

 weights 

are more consistent than the WS portfolios corresponding to higher 𝑐1
𝑔

 weights. 

Analyzing the robustness in terms of the utility loss for the investor (Table 5-6), it can 

be observed that the MV portfolio and the WS portfolios with lowest 𝑐1
𝑔

 weights are the 

more robust portfolios (present the lowest regrets) in the windows characterized by out-

of-sample low volatility and high return, like the sample periods 1992-2007, 1995-2000 

and 2001-2016. For out-of-sample periods with atypical out-of-sample volatility and 

returns, like 1993-2008, 1994-2009 and 1996-2011, the more robust portfolios are the 

GMV portfolio, the WS portfolios with highest 𝑐1
𝑔

 weights and the RRA portfolio, since 

they have the lowest regrets. Following no trend concerning volatility or returns, the 

MRC portfolio stands out as one of the more robust solutions in some windows (1992-

2007 and 2000-2015) while it presents the highest regrets in others (1994-2009, 1999-

2014 and 2001-2016). 

While in-sample results support the (in-sample) conclusion presented by Xidonas et al. 

(2017b), in particular the fact that the area of the Pareto front that corresponds to the 

portfolios with highest 𝑐1
𝑔

 weights (when minimizing risk is weighted more than 

maximizing return) provides more robust solutions in terms of the minmax regret 

criterion, out-of-sample results do not corroborate these conclusions. This fact 

underlines the relevance of the out-of-sample performance analysis of new portfolio 

optimization models. 
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Figure 5-5: Variation of the out-of-sample assets risks (variance) computed from daily 

returns. 

 

 

Figure 5-6: Variation of the out-of-sample assets mean returns computed from daily 

returns. 

 

 

It is also important to highlight that the GMV and the RRA portfolios are the only ones 

that are never among the portfolios with the highest regrets. In our opinion, this result 

validates the proposed relative robust methodology, supporting its robustness. 
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Table 5-5: Abnormal returns (𝐽𝛼) and beta of the RRA, MRC, MV, EW and GMV 

portfolios, computed over the entire out-of-sample period (10 years).  

Portfolio 𝑱𝜶 (%) Beta 

RRA -0.0515 0.8977*** 

MRC -0.0584 0.8520*** 

MV -0.0933 0.8525*** 

EW -0.0714 1.0384*** 

GMV 0.0306 0.8133*** 

***Significance level of the regression coefficient (p-value<0.001). The estimation of the 

abnormal return was based on the CAPM, where the DAX index was used as the proxy for the 

market portfolio. A total of 120 monthly observations (corresponding to the monthly returns of 

the 10 out-of-sample years), were used in order to compute monthly abnormal returns. 

 

Table 5-6: Out-of-sample regret of the RRA, MRC, MV, EW, GMV and WS portfolios. 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RRA 0.295 1.753 0.221 0.295 0.407 0.197 0.398 0.334 0.285 0.353 

MRC 0.240 1.429 0.443 0.323 0.249 0.147 0.330 0.363 0.198 0.377 

MV 0.263 2.342 0.356 0.241 0.603 0.209 0.592 0.377 0.205 0.246 

EW 0.273 2.281 0.231 0.295 0.617 0.169 0.311 0.338 0.316 0.409 

GMV 0.274 1.421 0.190 0.353 0.332 0.169 0.299 0.320 0.237 0.334 

WS1 0.546 2.399 0.387 0.232 0.621 0.124 0.415 0.361 0.358 0.287 

WS2 0.562 2.302 0.384 0.235 0.622 0.124 0.414 0.356 0.364 0.288 

WS3 0.575 1.915 0.378 0.269 0.623 0.128 0.410 0.343 0.365 0.255 

WS4 0.582 1.837 0.368 0.271 0.607 0.134 0.373 0.313 0.305 0.226 

WS5 0.474 1.782 0.364 0.314 0.490 0.155 0.350 0.299 0.267 0.265 

WS6 0.368 1.752 0.345 0.356 0.375 0.203 0.342 0.297 0.261 0.301 

WS7 0.331 1.328 0.295 0.403 0.285 0.195 0.333 0.267 0.255 0.330 

WS8 0.294 1.053 0.279 0.431 0.236 0.192 0.307 0.263 0.250 0.355 

WS9 0.310 0.959 0.269 0.463 0.189 0.182 0.286 0.251 0.242 0.396 

WS10 0.297 0.769 0.235 0.481 0.235 0.179 0.275 0.242 0.251 0.438 

WS11 0.291 0.568 0.226 0.488 0.261 0.185 0.273 0.215 0.247 0.440 

This table shows the out-of-sample regret of the optimal portfolios by out-of-sample year. 

Results are presented for the parameters combination γ=2, S=100 and J=120. 

 

The portfolio style analysis of the RRA portfolio is presented in Table 5-7. As 

previously mentioned, a total of 8 value (VP) and growth portfolios (GP) were used. 
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The calculated coefficients indicate a tilt toward assets with low CEP (cash earnings to 

price) ratio, and also some weight of assets with extreme (high or low) dividend yields.  

Finally, the exposure of the RRA portfolio to risk factors was analysed and results are 

presented in Table 5-8. As previously described, we considered 4 factors in the 

regression analysis: the market excess return, SMB, HML, and MOM, for the German 

market, all retrieved from the Fama-French library. Results show that the coefficients 

(estimates) of the market excess return and the HML factors are significantly different 

from zero, and, thus, market excess return and the HML help explain the monthly 

returns of the RRA portfolio during the entire out-of-sample period. There is a positive 

relation with the market excess return, and a negative relation with the HML factor.  

 

Table 5-7: Portfolio style analysis of the RRA portfolio 

 Estimate SE 

BTM VP 0.000000 0.000000 

BTM GP 0.000000 0.000000 

EP VP 0.000000 0.000000 

EP GP 0.000000 0.000000 

CEP VP 0.000000 0.000000 

CEP GP 0.631030 0.002544 

DY VP 0.205116 0.000970 

DY GP 0.163854 0.000755 

 

 

Table 5-8: Exposure to risk factors of the RRA portfolio 

 Estimate SE 

Intercept -0.000426 0.001375 

Market excess return 0.262292*** 0.020748 

SMB -0.037726 0.051802 

HML -0.132032* 0.054058 

MOM -0.033553 0.029848 

Significance levels: *** p-value<0.001; * p-value<0.05. 
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5.4 Refining the relative robust solution through the sampling 

procedure by applying validation subsamples (model B) 

Based on the relative robust portfolio model A presented in the beginning of this 

chapter, we built on the definition of regret and the relative robust expected utility 

optimization model and propose a new way of defining the relative robust solution. We 

introduce validation subsamples, which are randomly generated from the in-sample data 

and used to evaluate the performance of the minmax regret portfolios, in order to define 

the relative robust solution. Furthermore, and since there is a lack of empirical studies 

comparing the performance of relative robust and absolute robust portfolios, we present 

the corresponding absolute robust expected utility optimization model and compare the 

performances of the relative robust and absolute robust solutions. 

For the empirical analysis, we considered the same dataset: a historical period from 

January 1992 to December 2016 of the stocks of the DAX index, collected from 

Thomson Reuters Datastream. We applied also the same rolling window procedure but, 

in this case, we considered long and short rolling windows with constant lengths of 16-

years and 5-years, respectively. The resulting historical windows were previously 

described in section 4.2. 

The different methodological strategies considered are the proposed relative robust 

(RRB) and absolute robust (ARB) portfolios, and some of the benchmarks described in 

section 5.3.2 used for comparison with the performance of the RRA portfolio, namely 

the MV portfolio, the GMV portfolio, the EW portfolio and the WS portfolios. Inputs 

for the MV and the GMV models were estimated within the entire in-sample window, 

namely the in-sample mean and the in-sample covariance matrix were calculated 

considering 15-years data or 4-years data, according to the length of the rolling time 

windows considered. The performances of the different computed portfolios are 

compared considering both in-sample and out-of-sample data, for return, risk, modified 

Sharpe ratio and regret. 

The results of this model suggest that reducing the in-sample period length increases the 

exposure of the computed portfolios to individual stocks while it seems to improve the 

overall out-of-sample performance of the ARB, the RRB and the GMV portfolios and 

substantially deteriorates the out-of-sample performance of the MV portfolio. 
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Regardless of the in-sample period length, it can be observed that the RRB portfolio is 

highly diversified, assigning non-zero weights to the majority of the assets.  

The overall results support previous findings concerning the sensitivity of the MV 

portfolio to the estimation error and the effects of the input uncertainty in the 

optimization process (Best & Grauer, 1991a; Chopra & Ziemba, 1993; DeMiguel et al., 

2009; Jagannathan & Ma, 2003), as well as the outperformance of the GMV portfolio 

(Chan et al., 1999; Jagannathan & Ma, 2003). 

Furthermore, our results suggest that the proposed relative robust model B generates 

optimal portfolios that consistently present low risk, and (non-negative) attractive 

returns, standing out as one of the very few optimal portfolios with no poor 

performances. In fact, the RRB portfolio outperforms the MV portfolio and the EW 

portfolio in many of the windows under analysis, even outperforming the GMV 

portfolio in some windows. This highlights the relevance of the proposed methodology 

among non-robust portfolio optimization methodologies. When compared to the 

minmax regret model presented by Xidonas et al. (2017b), the proposed relative robust 

approach seems to provide more consistent results considering the out-of-sample 

performance of the generated portfolios. 

Finally, the comparison of the proposed relative robust and absolute robust models leads 

to important conclusions concerning the real benefits of the proposed methodology from 

the investors’ perspective. The findings suggest that the proposed RRB portfolio 

generally outperforms the proposed ARB portfolio, even when higher levels of risk 

aversion are considered.  

The remainder of the section proceeds as follows. In Section 5.4.1, the methodology is 

presented. Here, a different structure is followed in order to highlight the main 

differences of the relative robust portfolios proposed in model A and model B. We start 

by explaining the process for computing the relative robust solution (RRB portfolio) 

and present and describe the corresponding absolute robust expected utility optimization 

problem. In Section 5.4.2, we describe the empirical analysis and main results.  
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5.4.1 Methodology  

5.4.1.1 Defining the RRB portfolio 

Consider the notation and the CRRA utility function previously presented in section 

5.2.1. As already mentioned, we build on the relative robust expected utility 

maximization problem presented in (5.9), and propose a new definition for the relative 

robust solution. The new way of defining the relative robust solution is explained 

presenting the steps followed in its computation.  

To avoid reaching a solution strongly dependent on the underlying in-sample data, two 

disjoint subsamples are randomly generated from the in-sample data: an estimation 

subsample used to estimate the inputs of the model and a validation subsample used to 

evaluate its performance. From the estimation subsample, an uncertainty set 𝑈 is 

constructed by calculating the 𝑆 scenarios. We followed the same procedure as in model 

A for building the uncertainty set, which is described in section 5.2.1. Then, for each 

scenario 𝑠 ∈ 𝑈 the maximum expected utility problem, as defined in (5.10), is solved, in 

order to determine the optimal solution 𝑤𝑡
𝑠∗(we followed the steps previously described 

in section 5.2.2). After computing the optimal solutions for each scenario 𝑠 ∈ 𝑈, the 

relative robust optimization problem, as presented in (5.9) is solved using GA. Except 

for the initial population, which in this case was composed only of feasible solutions 

randomly generated, the GA options used in this application were the same as the ones 

previously described and applied in model A.  

The random generation of both estimation and validation subsamples and the GA 

optimization is repeated 𝐸 times, producing different uncertainty sets (𝑈𝑒 , 𝑒 = 1,… , 𝐸) 

and sets of different minmax regret solutions and different validation subsamples. The 

estimation and validation subsamples are generated at the same time, guaranteeing that 

they do not overlap. The validation subsamples are used in a later stage, to assess each 

one of the minmax regret solutions computed. It is, thus, possible to guarantee that each 

minmax regret solution is tested in at least one validation subsample that does not 

overlap with its estimation subsample.   

For testing each minmax regret solution in each one of the validation subsamples, regret 

was defined as the difference between the utility of the optimal portfolio (solution on 

the Markowitz’s efficient frontier that maximizes the investor’s expected utility) in the 
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validation subsample period and the utility of the minmax regret solution. Then, the 

corresponding maximum regret is found. By considering the worst-case for each 

minmax regret solution, all possible bias, deriving from testing these solutions in 

validation subsamples that could overlap with their corresponding estimation 

subsamples, is avoided. Finally, the RRB portfolio defined as the minmax regret 

solution presenting the best performance in the worst-case is identified.  

Figure 5-7 illustrates the flowchart of the proposed methodology for computing the 

relative robust portfolio.  

 

Figure 5-7: Flowchart of the method for computing the relative robust solution. 

 

 

5.4.1.2 The absolute robust expected utility optimization model  

The absolute robust portfolio optimization problem (model B), which admits the worst-

case realization within the uncertainty set for the uncertain parameters, is defined as 

follows: 
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−𝛾−1
𝑤𝑡

′Σ𝑠𝑤𝑡)
 (5.13) 

 

where 𝑈 is defined as 𝑈 = {𝑈𝑒 , 𝑒 = 1,… , 𝐸}. Hence, the ARB portfolio (maxmin 

solution) corresponds to the weight combination vector 𝑤𝑡 that solves problem (5.13).  

Concerning the computation of the ARB portfolio, a similar process was applied. From 

each estimation subsample, an uncertainty set 𝑈 is constructed as previously described. 

After computing the 𝑆 scenarios, the maxmin solution is calculated by solving problem 

(5.13) using the GA. In this case, the fitness function was defined as the minimum 

portfolio’s expected utility for all the scenarios considered in 𝑈 (inner maximization 

problem in (5.13)). Hence, the optimization is performed assuming the worst-case 

performance over the whole uncertainty set. The initial population and the GA options 

used were the same as the ones defined in section 5.4.1.1. Then, each maxmin solution 

is tested in each one of the validation subsamples. The expected utility of the maxmin 

solution in each validation subsample is calculated and the minimum expected utility is 

considered. Finally, the absolute robust portfolio defined as the maxmin solution 

presenting the best performance in the worst-case (highest minimum expected utility) is 

identified. 

5.4.2 Empirical analysis 

5.4.2.1 Model settings 

The steps for computing the absolute robust and relative robust solutions are iteratively 

repeated for each of the time windows defined. For each of the time windows under 

analysis, the random generation of the estimation and validation subsamples and the GA 

optimization are repeated 100 times (𝐸 = 100). A constant length of 1-year 

observations was defined for each subsample; hence, the estimation and validation 

subsamples correspond to a 2-years in-sample period of consecutive daily returns. A 

total of 100 scenarios (𝑆 = 100) are computed for each estimation subsample. Each 
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scenario, defined by the sample mean and the sample covariance matrix, is computed 

considering an estimation window length of 120 consecutive daily returns. Estimations 

of the model inputs are performed in R. 

To explore the sensitivity of the results to the variation of the relative risk aversion 

parameter, different values (𝛾 ∈ {0.5,2,5}}) were explored and the absolute robust and 

relative robust models as well as the classical MV model were solved for each one of 

these values. As explained in section 5.3.1, the different values of 𝛾 define different 

ARB, RRB and MV portfolios while they only influence the corresponding measure of 

regret of the GMV, EW and WS portfolios. 

After determining ARB, RRB, MV, GMV, EW and WS1 to WS11 portfolios, in-sample 

and out-of-sample performances were compared by analyzing the portfolios annualized 

return, variance and (modified) Sharpe ratio, as defined in section 4.5. In addition, the 

regret, as defined in (5.12), was calculated and compared for the in-sample and out-of-

sample periods.  

5.4.2.2 Results 

The effect of the variation of both the in-sample period length and the relative risk 

aversion parameter is analyzed by comparing the composition and the performance of 

the RRB, the MV and the GMV portfolios. In particular, the composition of the 

portfolios concerning the maximum weight of an asset (Max%), the sum of the 3 largest 

weights in the portfolio (Sum3Max%) and the number of assets with non-zero weights 

in each computed portfolio (Cardinality) are identified. Mean values obtained over the 

10 windows are presented. Since the optimal portfolios have some assets with very 

small but not necessarily zero weights, we measure cardinality as the number of assets 

with weights higher than 0.1%. Acknowledging the limitations of using the average 

return as the sole comparison measure, the portfolios’ performances are analyzed, both 

in-sample and out-of-sample, by comparing the mean of the portfolios’ returns (mean 

return) and the mean of the portfolios’ variances (mean risk), obtained over the 10 

windows. Additionally, the mean of the portfolios’ regrets (mean regret) and the mean 

of the portfolios’ (out-of-sample) modified Sharpe ratio (𝑆𝐼), obtained over the 10 

windows, are also analyzed for all the computed portfolios. The consistency of the 

portfolios in terms of the proximity to their expected performance is assessed by 
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comparing the in-sample and out-of-sample results. The portfolios’ regrets reflect the 

robustness of the optimal solutions in terms of the utility loss for the investor resulting 

from choosing a given portfolio instead of choosing the optimal portfolio of the realized 

scenario for the uncertain parameters. 

Then, the composition and the in-sample and out-of-sample performances of relative 

robust and non-robust portfolios are compared for each of the 10 windows. Finally, the 

performances of the RRB and the ARB portfolios are compared in each one of the out-

of-sample years. Results are presented for the in-sample period length and the values of 

the risk aversion parameter associated with the best (mean) performances for both in-

sample and out-of-sample datasets. For simplification purposes, the RRB and ARB 

portfolios will be represented by ‘RR’ and ‘AR’, respectively, in the figures presented 

in this Results section. 

5.4.2.2.1 Effect of the variation of the in-sample period length and the risk 

aversion parameter 

Table 5-9 presents the composition of the RRB, MV and GMV portfolios by length of 

the in-sample period and/or the value of the risk aversion parameter considered for their 

computation. Only average results for the 10 windows are shown. It can be observed 

that, for higher levels of risk aversion and regardless of the in-sample period length, the 

exposure of the RRB and MV portfolios to individual stocks decreases since the mean 

of the maximum values of the assets’ weights (Max% and Sum3Max%) decreases and 

the mean number of assets with non-zero weights (Cardinality) increases. 

Furthermore, when the length of the in-sample period is reduced (from 15 to 4 years), 

the exposure of the portfolios to individual stocks increases in the three optimal 

portfolios, since the mean of the maximum values of the assets’ weights (Max% and 

Sum3Max%) increases and the mean number of assets with non-zero weights 

(Cardinality) decreases. This result is verified regardless of the risk aversion 

parameter’s value, except for the RRB portfolio computed using a value of 0.5 for the 

risk aversion parameter. Although the cardinality slightly decreases for this portfolio, 

the mean of the maximum values of the assets’ weights decreases when the in-sample 

length is reduced. It is also possible to observe that, regardless of the in-sample period 

length, the MV portfolio is the less diversified portfolio while the RRB portfolio is the 

most diversified one. 
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Table 5-9: Composition of the RRB, MV and GMV portfolios by length of the in-

sample period and/or the value of the risk aversion parameter considered for their 

computation. 

Portfolio Max% Sum3Max% Cardinality 

RRB40.5 0.323 0.723 18 

RRB42 0.215 0.519 19 

RRB45 0.144 0.353 22 

RRB150.5 0.500 0.794 19 

RRB152 0.168 0.422 21 

RRB155 0.113 0.278 23 

MV40.5 0.893 1.000 2 

MV42 0.625 0.925 4 

MV45 0.462 0.881 5 

MV150.5 0.733 0.956 3 

MV152 0.393 0.797 6 

MV155 0.251 0.611 8 

GMV4 0.263 0.600 10 

GMV15 0.175 0.470 13 

This table presents the characteristics of the optimal portfolios. Here, the composition of the 

portfolios regarding the maximum weight of an asset (Max%), the sum of the 3 largest weights 

in the portfolio (Sum3Max%), and the number of assets with non-zero weights in each computed 

portfolio (Cardinality) are described. As explained before, for measuring the cardinality, only 

those assets with weights higher than 0.1% are considered. Only average results for the 10 

windows are shown. The optimal portfolios were represented according to the length of the in-

sample period and the value of the risk aversion parameter used in their computation. For 

instance, ‘RRB155’, ‘MV155’ and ‘GMV15’ corresponds, respectively, to the RRB, MV and 

GMV portfolios computed using 15-years data to perform in-sample estimations and, in the 

case of the RRB and the MV portfolios, using a value of 5 for the risk aversion parameter. 

 

The in-sample and the out-of-sample mean risk and mean return of the RRB, MV and 

GMV portfolios are presented in Figure 5-8. The optimal portfolios were represented 

according to the length of the in-sample and/or the value of the risk aversion parameter 

considered in their computation. This means that RRB155 represents the relative robust 

portfolio computed using an in-sample period of 15 years and a value of 5 for the risk 

aversion parameter while GMV4 represents the global minimum variance portfolio 

based on an in-sample period of 4 years, for instance. 

Analysing the effect of the length of the in-sample period in the portfolios’ 

performance, it can be observed that, when reducing the length of the in-sample period 

(from 15 years to 4 years), the in-sample mean return and mean risk of the MV portfolio 

increase. Notice that, while the mean return suffers a substantial increase regardless of 
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the value of the risk aversion parameter, the increment of the mean risk is more 

accentuated for lower risk aversion. A similar trend is observed among the RRB 

portfolios. Reducing the length of the in-sample period (from 15 years to 4 years) 

increases both the in-sample mean return and mean risk of the RRB portfolios. It is also 

quite evident that the window length seems to have a more substantial effect in the in-

sample mean return of the RRB portfolio, since the mean risk is very similar when the 

risk aversion parameter is 5 or 2; for a value of the risk aversion parameter of 0.5, the 

overall in-sample performance of the RRB portfolio is improved when reducing the 

length of the in-sample period since the RR40.5 portfolio presents higher mean return 

and lower mean risk comparatively to the RR150.5 portfolio. Regarding the GMV 

portfolio, its overall in-sample performance is improved when reducing the length of the 

in-sample period as the in-sample mean return substantially increases while the in-

sample mean risk decreases.  

Except for the parametrization described by an in-sample period of 15 years and a value 

of 5 for the risk aversion parameter, it can be confirmed that the RRB always reveals 

lower in-sample mean risk comparatively to the corresponding MV portfolio (for a 

given parametrization). Additionally, the MV portfolio presents the best (highest) in-

sample mean return and the GMV portfolio presents the best (lowest) in-sample mean 

risk.  

Concerning the effect of the in-sample period length in the out-of-sample performance 

of the optimal solutions, it can be observed that, when the length is reduced, the out-of-

sample mean return of the RRB portfolio is improved, regardless of the value of the risk 

aversion parameter. On the other hand, reducing the length of the in-sample period 

seems to improve the out-of-sample mean risk when the risk aversion parameter is 5 or 

0.5; for a value of 2, the mean risk slightly worsens (from 0.054 to 0.061, 

approximately) when the in-sample period length is reduced. It is also important to 

highlight that the RR152 is the only RRB portfolio that presents negative (-0,010%, 

very close to 0%) out-of-sample mean return. 

Analyzing the MV portfolio, its general out-of-sample performance deteriorates when 

reducing the in-sample period length since the mean return decreases while its mean 

risk increases, regardless of the value of the risk aversion parameter. It is also quite 

clear that the overall out-of-sample performance of the MV portfolio is improved when 

the value of the risk aversion parameter is increased, regardless of the in-sample period 
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length used in its computation. The worst performances are presented by the MV42, 

MV40.5 and MV150.5 portfolios, which present the lowest (negative) out-of-sample 

mean returns and the highest out-of-sample mean risks.  

An opposite trend is observed for the GMV portfolio, since its out-of-sample mean 

return increases while its out-of-sample mean risk decreases, revealing an improvement 

in its overall out-of-sample performance. Here, an unexpected result is found regarding 

the GMV portfolio: although the exposure of the portfolio to individual stocks increased 

when reducing the length of the in-sample period, as previously verified (Table 5-9), 

both the in-sample and the out-of-sample mean risks of the GMV portfolio have 

decreased. A similar behaviour can be observed by the RRB portfolios computed using 

a risk aversion parameter of 5 or 0.5; for the remaining portfolios, the decrease in the 

diversification level caused, as expected, an increase in their mean risk. 

It is important to highlight that, when reducing the length of the in-sample period, the 

RRB becomes a dominant solution when compared to the corresponding MV portfolio 

since it presents better out-of-sample performance in all of the performance measures 

considered for the analysis. Furthermore, regardless of the length of the in-sample 

period and the value of the risk aversion parameter, the GMV portfolio is a dominant 

solution when compared to the RRB and the MV portfolio, presenting better out-of-

sample performance in all of the performance measures under consideration. This result 

is in accordance with previous studies (Chan et al., 1999; Jagannathan & Ma, 2003) 

supporting the outperformance of the GMV portfolio. 

The distances between in-sample and out-of-sample portfolios’ locations can be 

observed in Figure 5-8, allowing us to draw some conclusions about the consistency 

between the expected and the realized performances of the portfolios. The portfolios 

that present the smallest distances between in-sample and out-of-sample mean return 

and mean risk and, therefore, are more consistent concerning the proximity to the 

expected performance, are the GMV portfolio (regardless of the length of the in-sample 

period) and RRB portfolio computed using the in-sample period length of 15 years 

(regardless of the risk aversion parameter).  

The same cannot be stated for the MV portfolio and the RRB portfolio computed using 

an in-sample period length of 4 years. The proximity to the expected performance of the 

optimal portfolio RRB seems to be negatively affected when the length of the in-sample 

period is reduced, especially when mean returns are considered. It is also important to 
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highlight that the proximity to the expected performance of the RRB portfolio computed 

using an in-sample period length of 4 years seems to be improved when higher levels of 

risk aversion are considered.  

 

Figure 5-8: In-sample and out-of-sample mean risk and mean return of the RRB, MV, 

GMV portfolios. 

 

The optimal portfolios were represented according to the length of the in-sample period and the 

value of the risk aversion parameter used in their computation. For instance, ‘RRB155’, 

‘MV155’ and ‘GMV15’ corresponds, respectively, to the RRB, MV and GMV portfolios 

computed using 15-years data to perform in-sample estimations and, in the case of the RRB and 

the MV portfolios, using a value of 5 for the risk aversion parameter. 

 

Considering the MV portfolio, it presents the largest distances between in-sample and 

out-of-sample portfolio locations, with the higher distance occurring for the MV 

computed based on an in-sample period of 4 years (regardless of the risk aversion 

parameter). Thus, reducing the length of the in-sample period from 15 to 4 years seems 

to negatively affect the proximity to the expected performance of the MV solution. 

Increasing the value of the risk aversion parameter seems to positively affect the 
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proximity to the expected performance of the MV solution since the distances between 

in-sample and out-of-sample mean return and mean risk decrease. This is a similar 

situation as observed for the RRB portfolio computed based on an in-sample period of 4 

years. 

The out-of-sample (OS) performances of the optimal relative robust and non-robust 

portfolios concerning regret and modified Sharpe ratio (𝑆𝐼) are described in Table 5-10. 

The results are presented according to the in-sample period length and for a risk 

aversion parameter equal to 5. Even though the results are not presented for the 

remaining values of the risk aversion parameter, the conclusions are valid for all the 

parametrizations considered. Notice that, the computation of the EW and WS portfolios 

is not influenced by the variation of the in-sample period length or the risk aversion 

parameter. The values presented correspond to the mean of the portfolios’ regrets and 

mean of the portfolios 𝑆𝐼, obtained over the 10 time windows.  

It can be observed that reducing the in-sample period length leads to lower levels of out-

of-sample mean regret for the RRB and GMV portfolios. In the case of the MV 

portfolio the mean regret has a slight increase. Concerning the mean 𝑆𝐼, the results 

confirm that reducing the in-sample period length seems to substantially improve the 

performance of the RRB and GMV portfolios, while deteriorating the overall out-of-

sample performance of the MV portfolio. Regarding the EW and the WS portfolios, 

which are not influenced by the in-sample period length, the results are already 

described in section 5.3.3.1.  

Finally, it is important to outline some relevant results based on an in-sample period of 

4 years. The RRB presents itself as a more robust solution than the MV, the EW and the 

majority of the WS portfolios, in terms of utility loss for the investor, since it shows a 

lower out-of-sample mean regret. Comparing the out-of-sample mean 𝑆𝐼 of all the 

computed portfolios, it is possible to observe that the RRB, GMV and WS11 portfolios 

show similar performances, with the best performance achieved by the RRB portfolio. 

On the contrary, the worst performances are observed for the EW portfolio and the WS 

portfolios, corresponding to lower 𝑐1
𝑔

 weights.  
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Table 5-10: Out-of-sample regret and modified Sharpe ratio (𝑆𝐼) of the RRB, MV, GM, 

EW and WS portfolios.  

Portfolio 
OS Regret OS 𝑺𝑰 

15Years 4Years 15Years 4Years 

RRB 0.25350 0.19833 0.48734 0.57761 

MV 0.19994 0.21983 0.48688 0.43926 

GMV 0.18166 0.15336 0.53089 0.54749 

EW 0.32394 0.40703 

WS1 0.40411 0.32463 

WS2 0.40878 0.32534 

WS3 0.40717 0.33024 

WS4 0.37646 0.40022 

WS5 0.29299 0.38958 

WS6 0.23405 0.32499 

WS7 0.19830 0.36022 

WS8 0.18212 0.41041 

WS9 0.17906 0.44457 

WS10 0.19029 0.48574 

WS11 0.19336 0.52163 

This table presents the OS performances of the optimal portfolios concerning regret and 

modified Sharpe ratio (𝑆𝐼) by length of the in-sample period and considering a value of 5 for the 

risk aversion parameter. The values presented correspond to the mean of the portfolios’ regrets 

and mean of the portfolios 𝑆𝐼, obtained over the 10 time windows. For computing the mean 

regret of the RRB portfolio, the worst result was not considered since it showed an atypical 

regret value (twenty-two hundred times higher than the highest of the remaining values) in the 

out-of-sample year of 2008.  

 

The analysis of the in-sample and the out-of-sample performances of relative robust and 

non-robust portfolios, for each of the 10 windows, is presented next. Since the RRB 

portfolio, as well as the GMV portfolio, generally present better performances for the 

in-sample period length corresponding to 4 years of historical data and/or a value of 5 

for the risk aversion parameter, results are described for this particular case. However, 

we note that the results that will be presented in the next section generally prevail 

regardless of the length of the in-sample period and the risk aversion parameter. 

5.4.2.2.2 Performance of relative robust and non-robust portfolios 

Before analyzing the performance of the optimal portfolios, it is important to examine 

their characteristics concerning composition in order to identify similarities as well as 

the main differences between robust and non-robust solutions. The results are shown in 
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Table 5-11. The RRB portfolio reveals a minimum cardinality of 19 and a maximum of 

27, while it presents a maximum asset weight varying between 10% and 35%, and a 

maximum investors’ wealth allocation to 3 assets varying between 25% and 61%. The 

MV portfolio presents a low diversification level since its cardinality is between 3 and 

7, it has a maximum asset weight varying between 23% and 68% and, for most of the 

windows, it allocates 81% or more of the investors’ wealth to only 3 assets. 

Comparatively to the MV portfolio, the GMV portfolio is more diversified, presenting a 

minimum cardinality of 8 and a maximum of 12, and a lower exposure to individual 

stocks, since the maximum weight of an asset varies between 18% and 34% while the 

sum of the 3 largest weights varies between 48% and 70%. Although the results 

obtained for the EW and the WS portfolios are already presented in Table 5-2 and 

described in section 5.3.3.2, we decided to report them once again in Table 5-11 in 

order to facilitate the comparison of the results.  

Therefore, and comparatively to all the optimal solutions with the exception of the EW 

portfolio, the RRB portfolio has the lowest maximum asset weight and the lowest 

maximum wealth allocation to 3 assets, revealing itself as the optimal solution with 

lower exposure to individual stocks. Regarding cardinality, similar results can be 

observed when comparing the RRB and the EW portfolios, suggesting that the proposed 

methodology tends to assign non-zero weights to the majority of the assets. It is 

important to highlight that these results are not in accordance with the results 

concerning the absolute robust portfolios described in the literature (Kim et al., 2013a; 

Kim et al. 2014b). 

 

  



 

 

Table 5-11: Composition of the RRB, MV, EW, GMV and the WS portfolios by time window.  
  RRB MV EW GMV 

WS 

1 

WS 

2 

WS 

3 

WS 

4 

WS 

5 

WS 

6 

WS 

7 

WS 

8 

WS 

9 

WS 

10 

WS 

11 

2
0
0
3

-2
0
0
7
 Max% 0.16 0.68 0.05 0.34 0.65 0.71 0.77 0.77 0.69 0.47 0.26 0.28 0.33 0.34 0.34 

Sum3Max% 0.41 1 0.15 0.70 1 1 1 1 1 0.74 0.62 0.61 0.63 0.59 0.59 

Card. 19 3 20 10 2 2 3 2 3 7 9 11 10 11 11 

2
0
0
4

-2
0
0
8
 Max% 0.35 0.41 0.05 0.21 0.52 0.42 0.36 0.42 0.49 0.49 0.42 0.36 0.33 0.28 0.25 

Sum3Max% 0.61 0.93 0.16 0.48 1 0.87 0.90 0.91 0.82 0.74 0.70 0.69 0.65 0.66 0.67 

Card. 19 5 19 11 3 4 4 5 6 8 9 10 11 12 11 

2
0
0
5

-2
0
0
9
 Max% 0.12 0.35 0.05 0.28 0.42 0.43 0.44 0.49 0.51 0.49 0.45 0.41 0.38 0.33 0.28 

Sum3Max% 0.31 0.81 0.15 0.60 1 1 1 1 0.99 0.97 0.91 0.90 0.84 0.76 0.73 

Card. 20 5 20 9 3 3 3 3 4 5 6 6 6 8 8 

2
0

0
6
-2

0
1

0
 Max% 0.11 0.34 0.05 0.27 0.78 0.73 0.62 0.57 0.41 0.34 0.27 0.25 0.28 0.31 0.32 

Sum3Max% 0.31 0.75 0.14 0.55 1 1 1 0.99 0.79 0.70 0.69 0.62 0.66 0.71 0.73 

Card. 21 6 21 8 2 3 3 4 6 6 8 8 10 10 8 

2
0
0
7

-2
0
1

1
 Max% 0.10 0.23 0.04 0.25 0.78 0.76 0.75 0.74 0.34 0.39 0.52 0.44 0.32 0.28 0.27 

Sum3Max% 0.27 0.63 0.13 0.57 1 1 1 0.99 0.75 0.70 0.76 0.76 0.83 0.63 0.56 

Card. 22 7 23 10 2 2 2 4 6 8 9 8 7 9 10 
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  RRB MV EW GMV 
WS 

1 

WS 

2 

WS 

3 

WS 

4 

WS 

5 

WS 

6 

WS 

7 

WS 

8 

WS 

9 

WS 

10 

WS 

11 

2
0
0
8

-2
0
1
2
 Max% 0.13 0.64 0.04 0.27 0.78 0.82 0.77 0.73 0.64 0.48 0.42 0.35 0.33 0.32 0.31 

Sum3Max% 0.37 0.90 0.12 0.67 1 1 1 1 0.93 0.94 0.87 0.78 0.80 0.81 0.76 

Card. 26 5 26 11 2 2 3 3 4 4 6 6 7 6 7 

2
0
0
9

-2
0
1
3
 Max% 0.12 0.35 0.04 0.27 0.59 0.60 0.61 0.45 0.35 0.35 0.32 0.27 0.21 0.26 0.28 

Sum3Max% 0.36 0.96 0.13 0.63 1 1 1 0.87 0.81 0.82 0.76 0.67 0.55 0.60 0.65 

Card. 22 4 24 9 3 3 3 5 5 6 8 8 8 10 8 

2
0
1
0

-2
0
1
4
 Max% 0.12 0.55 0.04 0.26 0.73 0.76 0.76 0.68 0.37 0.28 0.20 0.17 0.16 0.20 0.26 

Sum3Max% 0.31 0.92 0.12 0.62 1 1 1 0.98 0.74 0.68 0.54 0.45 0.46 0.53 0.56 

Card. 23 5 26 9 2 2 3 4 6 8 11 15 15 15 13 

2
0

1
1
-2

0
1
5
 Max% 0.12 0.51 0.04 0.31 0.95 0.97 0.96 0.82 0.66 0.59 0.53 0.46 0.32 0.29 0.27 

Sum3Max% 0.32 0.91 0.12 0.68 1 1 1 1 0.90 0.86 0.81 0.80 0.70 0.68 0.68 

Card. 20 5 26 10 2 2 3 3 6 6 7 8 9 9 9 

2
0

1
2

-2
0
1

6
 

Max% 0.11 0.57 0.04 0.18 0.69 0.67 0.56 0.43 0.23 0.39 0.51 0.54 0.60 0.60 0.62 

Sum3Max% 0.25 1 0.11 0.49 1 1 1 0.94 0.66 0.72 0.84 0.83 0.84 0.86 0.83 

Card. 27 3 28 12 2 2 3 4 5 5 6 6 7 6 7 

This table presents the characteristics of the optimal portfolios. The composition of the portfolios regarding the maximum weight of an asset (Max%), the sum 

of the 3 largest weights in the portfolio (Sum3Max%), and the number of assets with non-zero weights in each computed portfolio (Cardinality) is described. 

As explained before, for measuring the cardinality, only the number of assets with weights higher than 0.1% is considered.  
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Figure 5-9 shows the in-sample and out-of-sample risks and returns of all the optimal 

portfolios by time window under analysis. Out-of-sample modified Sharpe ratios (𝑆I) 

are presented in Table 5-12. The results of the MV, EW, GMV and WS portfolios are 

described in section 5.3.3.2. Recall that our findings suggested lack of consistency in 

the out-of-sample performance of the relative robust methodology presented by Xidonas 

et al. (2017b). The empirical results show that the proposed relative robust approach 

stands out as a solid relative robust methodology. We notice that the RRB portfolio 

provides negative out-of-sample returns in time windows characterized by out-of-

sample periods of high volatility (the variance of returns of individual assets for the out-

of-sample years is shown in Figure 5-5) and, simultaneously, low mean returns (the 

mean return of individual assets for the out-of-sample years is shown in Figure 5-6). 

Specifically, the worst performances of the RRB portfolio occur in 2004-2008, 2007-

2011 and 2012-2016, where the majority of the optimal portfolios perform poorly. 

 

Figure 5-9: In-sample and out-of-sample risks and returns of the RRB, MV, EW, GMV 

and WS portfolios computed for each time window. 
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The optimal portfolios were computed considering the in-sample period length of 4 years and 

the parameters combination 𝛾 = 5,𝐸 = 100, 𝑆 = 100 and 𝐽 = 120. 
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The RRB portfolio is located at the left side of the scatter-plot, among the optimal 

solutions with the lowest risk and it even shows lower risk in out-of-sample data than in 

in-sample data, in many of the windows under analysis. Considering the 𝑆𝐼 measure and 

the out-of-sample results, the RRB solution outperforms some of the WS portfolios in 9 

of the 10 windows, and it always outperforms the WS portfolios in 3 of the 10 windows. 

It outperforms the MV portfolio in 7 of the 10 windows, the EW portfolio in 7 of the 10 

windows and the GMV portfolio in 3 of the 10 windows. These results clearly reinforce 

the relevance of the proposed methodology, since previous studies confirmed the good 

performances of both the EW portfolio (DeMiguel et al., 2009) and the GMV portfolio 

(Chan et al., 1999; Jagannathan & Ma, 2003). 

Furthermore, the out-of-sample return of the RRB portfolio is higher than its in-sample 

return in several windows under analysis. In fact, the tendency of higher out-of-sample 

returns comparatively to in-sample returns can be explained by the evolution of the 

stock market, in particular of the DAX index during the out-of-sample periods, depicted 

in Figure 4-3 and explained in section 4.3. The MV portfolio and some of the WS 

portfolios corresponding to the lowest 𝑐1
𝑔

 weights do not show the propensity to higher 

out-of-sample returns comparatively to in-sample returns, which reinforces the 

underperformance of these portfolios even in favorable market conditions. 

Figure 5-9 also allows the observation of the proximity to the expected performance of 

the optimal portfolios by analyzing the distances between in-sample and out-of-sample 

portfolios’ location. Although none of the portfolios systematically reveals greater 

proximity to the expected performance in all of the windows under analysis, it can be 

observed that, in many of these windows, the MV and the WS portfolios corresponding 

to the lowest 𝑐1
𝑔

 weights (WS1, WS2, WS3 and WS4) stand out as the solutions that 

exhibit the highest deviations to their expected performances and, thus, are the less 

consistent solutions as previously outlined. It can also be observed that, while the RRB 

portfolio exhibits similar deviations to its expected performance comparatively to the 

other portfolios in many time windows, in those where the deviations from the expected 

performance are substantially larger, the RRB portfolio stands out as one of the optimal 

solutions with highest out-of-sample return.  

Analyzing the robustness in terms of the utility loss for the investor (Table 5-13), it can 

be observed that the RRB portfolio is systematically more robust than the EW and the 

majority of the WS portfolios, revealing lower regrets in most of the windows. 
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Additionally, the RRB portfolio is more robust than the MV and the GMV portfolios in 

5 of the 10 windows. 

To conclude, it is also important to highlight that the GMV and the RRB portfolios are 

among the portfolios with the lowest regrets in the majority of the time windows under 

analysis, which, in our opinion, validates the proposed relative robust methodology, 

supporting its robustness. 

 

 

 



 

121 

 

Table 5-12: Out-of-sample modified Sharpe ratio (𝑆𝐼) of the RRB, MV, EW, GMV and WS portfolios. 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RRB 0.825 -0.275 0.594 0.712 -0.033 1.474 1.572 0.212 0.508 0.188 

MV 0.306 -0.279 0.432 0.636 -0.020 0.447 1.482 0.468 0.940 -0.019 

EW 0.571 -0.244 0.465 0.910 -0.067 1.079 1.073 0.053 0.206 0.024 

GMV 0.245 -0.179 0.800 0.484 -0.003 1.517 1.269 0.322 0.872 0.148 

WS1 -0.030 -0.259 -0.008 1.294 -0.067 1.331 0.214 0.076 0.136 0.559 

WS2 -0.033 -0.252 -0.008 1.303 -0.067 1.317 0.220 0.096 0.121 0.557 

WS3 -0.035 -0.239 -0.007 1.090 -0.067 1.341 0.240 0.137 0.119 0.724 

WS4 -0.036 -0.237 -0.005 1.095 -0.065 1.304 0.505 0.245 0.293 0.905 

WS5 -0.018 -0.235 -0.004 0.823 -0.050 1.197 0.700 0.305 0.435 0.743 

WS6 0.000 -0.232 -0.001 0.526 -0.032 0.880 0.781 0.319 0.461 0.548 

WS7 0.181 -0.210 0.180 0.189 -0.017 0.987 0.884 0.531 0.490 0.388 

WS8 0.410 -0.195 0.256 0.000 -0.010 1.064 1.216 0.594 0.514 0.255 

WS9 0.310 -0.189 0.300 -0.004 -0.003 1.170 1.518 0.723 0.567 0.054 

WS10 0.383 -0.178 0.479 -0.007 -0.009 1.193 1.644 0.831 0.527 -0.005 

WS11 0.418 -0.165 0.524 -0.007 -0.013 1.146 1.652 1.115 0.551 -0.005 

This table shows the out-of-sample 𝑆𝐼 of the optimal portfolios by out-of-sample year. Results are presented for the in-sample period length of 4 years and the 

parameters combination 𝛾 = 5, 𝐸 = 100, 𝑆 = 100 and 𝐽 = 120. 
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Table 5-13: Out-of-sample regret of the of the RRB, MV, EW, GMV and WS portfolios. 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RR 0.108 132.315 0.126 0.159 0.599 0.066 0.109 0.204 0.168 0.247 

MV 0.190 103.397 0.155 0.167 0.383 0.166 0.104 0.171 0.091 0.552 

EW 0.136 51.794 0.162 0.133 1.476 0.088 0.135 0.238 0.236 0.313 

GMV 0.183 10.449 0.093 0.186 0.174 0.069 0.129 0.188 0.106 0.253 

WS1 0.567 52.260 0.357 0.091 1.510 0.060 0.244 0.306 0.325 0.179 

WS2 0.605 49.858 0.350 0.092 1.517 0.060 0.242 0.298 0.337 0.179 

WS3 0.636 36.598 0.340 0.114 1.519 0.061 0.237 0.278 0.337 0.144 

WS4 0.655 33.841 0.320 0.114 1.451 0.065 0.192 0.232 0.243 0.117 

WS5 0.419 32.160 0.314 0.145 0.975 0.078 0.169 0.203 0.191 0.144 

WS6 0.241 31.699 0.283 0.181 0.574 0.112 0.161 0.197 0.182 0.176 

WS7 0.195 20.804 0.213 0.228 0.351 0.104 0.152 0.162 0.174 0.206 

WS8 0.159 14.707 0.193 0.258 0.243 0.100 0.130 0.155 0.167 0.235 

WS9 0.179 12.848 0.181 0.298 0.163 0.092 0.113 0.142 0.155 0.288 

WS10 0.167 9.241 0.143 0.321 0.240 0.090 0.106 0.133 0.163 0.350 

WS11 0.161 5.984 0.135 0.333 0.289 0.094 0.105 0.111 0.158 0.355 

This table shows the out-of-sample regret of the optimal portfolios by out-of-sample year. Results are presented for the in-sample period length of 4 years and 

the parameters combination 𝛾 = 5,𝐸 = 100, 𝑆 = 100 and 𝐽 = 120. 
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5.4.2.2.3 Performance of relative robust and absolute robust portfolios 

As previously mentioned, there is a lack of empirical studies that compare the 

performance of relative robust and absolute robust portfolio models. For that reason, the 

performance of the proposed RRB and ARB portfolios were also compared in each of 

the out-of-sample years and the main results are now presented for the same 

parametrization (in-sample period length of 4 years and a value of 5 for the risk 

aversion parameter).  

Figure 5-10 shows the out-of-sample risks and returns of the RRB and ARB portfolios 

by out-of-sample year under analysis. The proximity between the RRB and ARB 

portfolios’ location in the risk/return space shows in a clear way that the RRB and ARB 

portfolios reveal similar performances in the majority of the out-of-sample years. 

However, in some cases, substantial differences can be observed. 

 

Figure 5-10: Out-of-sample risks and returns of RRB and ARB portfolios. 

 

Portfolios’ risk and return were computed by out-of-sample year and considering an in-sample 

period length of 4 years and the parameters combination 𝛾 = 5, 𝐸 = 100, 𝑆 = 100 and 𝐽 =

120. 

 

The ARB portfolio is a dominant solution comparatively to the RRB portfolio only in 

the out-of-sample years where all the optimal portfolios presented in the empirical 
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application revealed poor performances, namely in the out-of-sample years 2008 and 

2011, previously described as periods of high volatility and, simultaneously, low mean 

returns. For the remaining out-of-sample years, the RRB portfolio generally presents 

identical risks levels (except in 2009 and 2015) while it always presents higher returns, 

comparatively to the ARB portfolio.  

Out-of-sample regret and 𝑆𝐼 support the previous outcome. In fact, the RRB solution 

outperforms the ARB portfolio when the 𝑆𝐼 measure is considered (see Table 5-12 and 

Table 5-14) while it is systematically more robust, revealing lower regrets than the ARB 

portfolio, in most of the windows (see Table 5-13 and Table 5-14).  

 

Table 5-14: Out-of-sample regret and Sharpe ratio (𝑆𝐼) of the ARB portfolio  

Measure 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

𝑺𝑰 0.782 -0.210 0.579 0.732 -0.029 1.402 1.564 0.177 0.544 0.160 

Regret 0.113 26.045 0.127 0.157 0.517 0.075 0.111 0.208 0.159 0.253 

This table shows the out-of-sample regret and 𝑆𝐼 of the ARB portfolios by out-of-sample year. 

Results are presented for the in-sample period length of 4 years and the parameters 

combination 𝛾 = 5, 𝐸 = 100, 𝑆 = 100 and 𝐽 = 120. 

 

It was also observed that, although reducing the in-sample period length has an 

improving effect in the overall performance of both the ARB and RRB portfolios, this 

effect is more substantial in the RRB portfolio. Finally, an important fact concerning the 

investor’s risk preferences was also observed. Since the absolute robust approach is 

described in the robust optimization theory as a more conservative methodology, a 

better performance of the ARB portfolio for higher levels of the risk aversion parameter 

would be expected. While, on the one hand, the ARB portfolio always presents lower 

(mean) risk comparatively to the RRB portfolio (0.058 versus 0.065, when 𝛾 = 0.5; and 

0.044 versus 0.051, when 𝛾 = 5), on the other hand, it reveals worst (mean) risk-

adjusted return, measured by the 𝑆I (0.528 versus 0.529 when 𝛾 = 0.5, and 0.570 versus 

0.578 when 𝛾 = 5). The values previously presented were verified for an in-sample 

period of 4 years. These results clearly reinforce the relevance of the relative robust 

methodology within the robust portfolio theory. 
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5.5 Conclusions  

In this chapter, a new minmax regret portfolio optimization model is presented. Regret 

is defined as the utility loss for the investor resulting from choosing a given portfolio 

instead of choosing the optimal portfolio of the realized scenario for the uncertain 

parameters. Two different ways of defining the relative robust solution are proposed. In 

the first approach (model A), we construct one uncertainty set for the entire sample 

period and the relative robust portfolio is defined as the minmax regret solution 

presenting the best performance in the worst-case scenario. In the second approach 

(model B), we introduced validation subsamples in the sampling procedure and repeat 

the computational procedure (implemented and described in model A) for different 

estimation and validation subsamples, producing different uncertainty sets and sets of 

different minmax regret solutions. Then, for each one of these sets, the minmax regret 

solution with maximum regret (corresponding to the difference between the utility of 

the optimal portfolio in the validation subsample period and the utility of the minmax 

regret solution) is identified. The relative robust portfolio is defined as the minmax 

regret solution presenting the best performance in the worst-case (for all the uncertainty 

sets and all the scenarios under consideration). In both cases, it is assumed that the 

investor has constant relative risk aversion preferences. The empirical applications 

presented in this chapter were based on historical daily data of the stocks of the 

constituent list of the DAX index. 

The results regarding the performance of the non-robust portfolios support previous 

findings concerning the sensitivity of the MV portfolio to estimation error and the 

effects of the input uncertainty in the optimization process (Best & Grauer, 1991b; 

Chopra & Ziemba, 1993; DeMiguel et al., 2009; Jagannathan & Ma, 2003), as well as 

the good performance of the GMV portfolio (Chan et al., 1999; Jagannathan & Ma, 

2003). The out-of-sample performance of the non-robust portfolios show that reducing 

the in-sample period length seems to improve the overall performance of the GMV 

while substantially deteriorating the out-of-sample performance of the MV portfolio, 

whose exposure to individual stocks is considerably increased.  

Our overall empirical results suggest that the proposed relative robust models have 

more value for risk-taking investors, i.e. for those who can be more affected by the 

methodological weakness of the classical mean-variance model, standing out as a valid 
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alternative. The proposed relative robust methodology generates, in both approaches, 

optimal portfolios that are highly diversified and consistently present low risk, even in 

out-of-sample periods characterized by atypical high volatility, and (non-negative) 

attractive returns. Their consistency and in-sample and out-of-sample robustness 

(concerning utility loss for the investor) were confirmed, standing out as one of the very 

few optimal portfolios with no poor performances. Furthermore, the RRA and RRB 

portfolios outperforms the MV portfolio and the EW portfolio, in many of the windows 

under analysis and for the majority of the performance measures applied in our study, 

which enhances the relevance of the proposed methodology among non-robust portfolio 

optimization methodologies.  

Our findings suggest that the proposed relative robust strategies generally outperform 

the relative robust and absolute robust methodologies implemented in this chapter. 

Analysing the proposed relative robust models individually, it can be observed that the 

RRA portfolio provides more consistent results comparatively to the robust solutions 

generated by the minmax regret model presented by Xidonas et al. (2017b) and the 

absolute robust approach developed by Kim et al. (2014c) concerning their out-of-

sample performance. Additionally, it presents lower exposure to individual stocks 

(higher cardinality) and substantially lower turnover levels than the robust solutions 

generated by those robust methodologies. The portfolio style analysis suggests a higher 

representation of assets with low CEP ratio and extreme (either high or low) dividend 

yield. Concerning the exposure of the RRA portfolio to risk factors, a positive relation 

with the market excess return and a negative relation with the HML factor were found. 

Regarding model B, the worst performance of the RRB portfolio occurs in time 

windows characterized by out-of-sample periods of high volatility and, simultaneously, 

low assets mean returns, where the majority of the optimal portfolios perform poorly. 

Furthermore, the consistency of the proposed relative robust model B was confirmed 

when compared to the minmax regret model presented by Xidonas et al. (2017b). 

Finally, the findings suggest that the proposed RRB portfolio generally outperforms the 

proposed ARB portfolio, even when higher levels of risk aversion are considered.  

Although the RRA and RRB portfolios were not directly compared, a particular result 

can be confronted in order to better understand the real contribution of introducing 

validation subsamples in the sampling procedure. The out-of-sample mean regret of the 

RRA and the RRB portfolios computed for the parameters combination 𝛾 = 5, 𝑆 = 100 
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and 𝐽 = 120, are displayed in Table 5-1 and Table 5-10, respectively. As it can be 

observed, the RRA portfolio presents a lower mean regret (0.20999) comparatively to 

the RRB portfolio (0.25350), suggesting that the introduction of the validation sets in 

the sampling procedure increases the utility loss (regret) of the investor. This result is 

not surprising since the proposed model B contemplates 100 times more scenarios and, 

thus, results in a more (and, probably, too) conservative approach. Additionally, we 

must also bear in mind that the latter methodology increases significantly the number of 

instances of the relative robust optimization problem, and, thus, the computational time 

necessary to compute the relative robust solution. 

Besides unravelling the real benefits, from the investor perspective, of applying the 

absolute and relative robustness approaches in portfolio selection, this study clearly 

contributes to reinforce the relevance of RO methodologies, in particular of relative 

robust models, within the field of portfolio selection under uncertainty. 
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Chapter 6  

 

 

A robust minimum variance optimization approach (model C) 

 

 

6.1 Introduction 

In order to further investigate the real contribution of the RO methodology, in particular 

of the relative robust approach, in the field of portfolio selection, we develop robust 

formulations of classical portfolio selection models with different model inputs and 

different uncertain parameters. In this chapter, we are motivated to extend the literature 

on the stability of optimal solutions by optimizing only the second moment and 

applying the RO methodology. Hence, this research presents new methods for 

computing relative robust and absolute robust minimum variance portfolios. An 

empirical application is introduced to comparatively assess the performance of the two 

alternative robust optimization methods against non-robust portfolios already described 

in the portfolio theory literature. 

Comparatively to the relative robust minimum variance approach presented by Xidonas 

et al. (2017a), and previously introduced in section 3.2.3, our approach considers both 

absolute robust and relative robust minimum variance solutions, includes a wider 

uncertainty set (the authors define 3 scenarios while we define a minimum number of 

scenarios of 100) and examines the effect of the in-sample period length for the 

estimation of the model parameters, by considering long-term past data over short-term 

past data in their computation. 

The results of our empirical application suggest that increasing the in-sample period 

length for the estimation of the model parameters has no substantial effect in either the 

composition or the performance of the robust portfolios, which highlights the utility of 

the proposed models in the presence of limited data. It is possible to observe that the 
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proposed robust methodologies generate optimal portfolios that consistently present out-

of-sample portfolio risk measures that lie between the risk measures of the GMV and 

the EW portfolios. Out-of-sample portfolio returns are between, or higher, than the 

portfolio returns of the two benchmarks. Additionally, for most of the windows under 

analysis, the proposed relative robust (RRC) and absolute robust (ARC) portfolios 

outperform the EW portfolio. This finding enhances the relevance of the proposed 

methodology since it has been pointed out by some authors as a benchmark difficult to 

outperform (DeMiguel et al., 2009). The results also support previous findings 

concerning the good performance of the GMV portfolio (Chan et al., 1999; Jagannathan 

& Ma, 2003). Furthermore, robust solutions and non-robust solutions present similar 

behaviours concerning robustness and negative (loss) versus positive (gain) returns, 

which suggests that the proposed methodologies are as consistent as the benchmarks 

used for comparing portfolios’ performances.  

The remainder of the chapter proceeds as follows. In Section 6.2, the methodology is 

described. Section 6.3 describes the empirical analysis and presents its main results. 

Finally, the main conclusions are highlighted in Section 6.4. 

6.2 Methodology 

6.2.1 The robust minimum variance optimization models 

We start by defining the uncertainty set used in this model. The uncertainty set, 𝑈, is 

defined as a finite set of scenarios, where each scenario represents a possible realization 

of the sample covariance matrix. Each scenario 𝑠𝑖, 𝑖 = 1,… , 𝑆, is described by the 

sample covariance matrix, Σ𝑠, as defined in section 5.2.1.  

For computing the RRC portfolio, regret is defined as the increase in the investment risk 

resulting from investing in a portfolio characterized by the weight combination vector 

𝑤𝑡 instead of investing in 𝑤𝑡
𝑠∗, which corresponds to the optimal solution (global 

minimum variance portfolio) under scenario 𝑠. Let 𝑤𝑡
𝑠∗ be the global minimum variance 

portfolio for the scenario 𝑠. The regret associated to choosing portfolio 𝑤𝑡 in scenario 𝑠, 

𝑃𝑠(𝑤𝑡), is defined by 
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 𝑃𝑠(𝑤𝑡) = 𝑤𝑡
′Σ𝑠𝑤𝑡 − 𝑤𝑡

𝑠∗′
Σ𝑠𝑤𝑡

𝑠∗ (6.1) 

 

and the maximum regret function, 𝑃(𝑤𝑡), is defined by 

 

 𝑃(𝑤𝑡) = max
𝑠∈𝑈

𝑤𝑡
′Σ𝑠𝑤𝑡 − 𝑤𝑡

𝑠∗′
Σ𝑠𝑤𝑡

𝑠∗. (6.2) 

 

The relative robust portfolio (RRC) corresponds to the weight combination vector 𝑤𝑡 

that solves the minmax regret optimization model: 

 

 min
𝑤𝑡 ∈𝑋

max
𝑠∈𝑈

𝑤𝑡
′Σ𝑠𝑤𝑡 − 𝑤𝑡

𝑠∗′
Σ𝑠𝑤𝑡

𝑠∗ (6.3) 

 

where 𝑋 corresponds to the set of feasible solutions. 

For computing the ARC portfolio, we solve the absolute robust optimization model 

defined by: 

 

 min
 𝑤𝑡∈𝑋

max
𝑠∈𝑈

𝑤𝑡
′Σ𝑠𝑤𝑡. (6.4) 

 

6.2.2 Computing the relative robust and absolute robust portfolio 

The computation of the RRC portfolio runs as follows. An uncertainty set 𝑈 is 

constructed by calculating the S scenarios. For each scenario 𝑠 ∈ 𝑈, an estimation 

window is randomly selected from the in-sample period, and the corresponding 

covariance matrix is computed. Then, for each scenario 𝑠 ∈ 𝑈 the following problem is 

solved 

 

 min
𝑤𝑡∈𝑋

𝑤𝑡
′Σ𝑠𝑤𝑡 , (6.5) 
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in order to determine the optimal solution 𝑤𝑡
𝑠∗, which represents the portfolio on the 

Markowitz’s efficient frontier with minimum variance. This constitutes the first 

optimization process of the proposed thee-level optimization. 

After computing the optimal solution for each scenario 𝑠 ∈ 𝑈, the relative robust 

optimization problem (6.3) is solved using the GA. A fitness function that maximizes 

the regret as presented in (6.2) and corresponding to the increase in the investment risk 

resulting from investing in a portfolio characterized by the weight combination vector 

𝑤𝑡 instead of investing in the optimal solution of the realized scenario, was defined. The 

initial population is twice the size of the uncertainty set and is comprised of all the 

optimal solutions 𝑤𝑡
𝑠∗ as well as other feasible randomly generated solutions.  

Regarding the absolute robust optimization solution, after computing the 𝑆 scenarios, as 

previously described, problem (6.4) is solved. In this case, the fitness function was 

defined as the maximum portfolio variance function (inner maximization problem in 

(6.4)). Hence, the optimization is performed assuming the worst-case performance over 

the whole uncertainty set.  

6.3 Empirical analysis 

6.3.1 Data and model settings 

For the empirical analysis, we used historical daily data from January 1992 to 

December 2016 of the stocks of the EURO STOXX 50 index. Adjusted closing prices 

of the stocks in the constituent list of the EURO STOXX 50 index at the end of the in-

sample period were collected and daily continuous returns were calculated. We 

considered rolling windows of two different lengths. As previously described in section 

4.2, a long rolling window with a constant length of 16-years and a short rolling 

window with a constant length of 5-years. Uncertainty sets with different number of 

scenarios (𝑆 ∈ {100,200,500}) were analyzed. Each scenario considers an estimation 

window length of 120 consecutive daily returns. Estimations of the model inputs were 

performed in R. 

The steps for computing the robust solutions, described in section 6.2.2, are iteratively 

repeated for each of the time windows. Once the RRC and ARC portfolios are 
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computed for each of the time windows under analysis, in-sample and out-of-sample 

performances are analyzed. 

6.3.2 In-sample and out-of-sample performances 

The performances of the robust strategies were analyzed and compared to classical non-

robust portfolio selection strategies, considering both in-sample and out-of-sample data. 

The non-robust optimization portfolio that was considered as benchmark was the GMV 

portfolio. Problem (2.5) was solved and the GMV portfolio was identified. Inputs were 

estimated for the entire in-sample window, namely the in-sample covariance matrix was 

calculated considering 15-years data or 4-years data, according to the window length 

under consideration. The EW portfolio was also created and also used as a benchmark 

in this chapter. 

After determining RRC, ARC, GMV and EW portfolios, in-sample and out-of-sample 

performances were compared by analyzing the portfolios annualized return, risk and the 

Israelsen modified Sharpe ratio (𝑆𝐼). In addition, the regret, defined by 

 

 𝑅 = 𝑤𝑡
′Σ𝑤𝑡 − 𝑤𝑡

∗′Σ𝑤𝑡
∗ (6.6) 

 

and representing the increase in the investment risk resulting from investing in a 

portfolio characterized by the weight combination vector 𝑤𝑡 instead of investing in the 

optimal portfolio 𝑤𝑡
∗ (feasible solution with minimum variance) of the sample period 

under consideration, was calculated and compared for the in-sample and out-of-sample 

periods. 

6.3.3 Results 

We start by analyzing how the composition and the performance of the optimal 

solutions are influenced by the in-sample period length. In particular, we analyze the 

composition of the portfolios regarding the maximum weight of an asset (Max%), 

minimum weight of an asset (Min%), the sum of the 3 largest weights in the portfolio 

(Sum3Max%) and the number of assets with non-zero weights in each portfolio 
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(Cardinality). Mean values obtained over the 10 windows are presented. Cardinality is 

measured as the number of assets with weights higher than 0.1%, since the optimal 

portfolios have some assets with very small but not necessarily zero weights. The 

portfolios’ performances are analyzed, both in-sample and out-of-sample, by comparing 

the mean of the portfolios’ returns (mean return) and the mean of the portfolios’ 

variances (mean risk), obtained over the 10 windows. Additionally, the mean of the 

portfolios’ regrets (mean regret) and the mean of the portfolios’ out-of-sample modified 

Sharpe ratio (𝑆𝐼), obtained over the 10 windows, are also analyzed for all the computed 

portfolios. The consistency of the portfolios in terms of the deviation from their 

expected performance is assessed by comparing the in-sample and out-of-sample 

results. The portfolios’ regrets reflect the robustness of the optimal solutions in terms of 

the increase in the investment risk resulting from choosing a given portfolio instead of 

choosing the optimal portfolio for the realized scenario. 

Then, the in-sample and out-of-sample performances of robust and non-robust 

portfolios are compared for each of the 10 windows. Results are presented for the in-

sample period length associated with the best mean performances for both in-sample 

and out-of-sample datasets. For simplification purposes, the RRC and ARC portfolios 

will be represented by ‘RR’ and ‘AR’, respectively, in the figures presented in the 

Results section and the corresponding subsections. 

6.3.3.1 Effect of the variation of the in-sample period length 

Table 6-1 presents the composition of the RRC, ARC, GMV and EW portfolios, taking 

into account the length of the in-sample period considered for their computation. The 

optimal portfolios were represented according to the length of the in-sample period and 

the number of scenarios (only the first digit was used to keep the representation simpler) 

used in their computation. Hence, RR151 represents the relative robust minimum 

variance portfolio computed using an in-sample period of 15 years and an uncertainty 

set with 100 scenarios, while AR45 represents the absolute robust minimum variance 

portfolio based on an in-sample period of 4 years and an uncertainty set with 500 

scenarios. The representation of the GMV portfolio was made according to the length of 

the in-sample period only. 

Analyzing the overall results, it is possible to observe that, regardless of the in-sample 

period length, the GMV portfolio is the less diversified portfolio while the robust and 
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the EW portfolios are the most diversified ones. Concerning the robust portfolios, and 

although they present very similar compositions, it can be observed that using longer in-

sample periods seems to slightly decrease the exposure of these portfolios to individual 

stocks, since the RRC and ARC computed with an in-sample period of 15 years present 

lower values in the maximum weight of an asset (Max%) and in the sum of the 3 largest 

weights in the portfolio (Sum3Max%). Just as the EW portfolio, the robust portfolios 

assign non-zero weights to all the assets in the dataset, regardless of the in-sample 

period length and of the number of scenarios in the uncertainty set. A closer 

examination of the results allows us to confirm that both the robust and the GMV 

portfolios assign largest weights to the same assets. 

Some analysis can be made concerning the portfolios’ cardinality results. The GMV 

portfolio is highly concentrated in a lower number of assets. Previous studies claim that 

the minimum variance portfolio has a maximum of 40 assets for large samples 

(Jagannathan & Ma, 2003) and that it usually over-weights stocks with low market beta, 

underperforming in bull markets and outperforming in bear markets (Chow, Hsu, Kuo, 

& Li, 2014). The EW portfolio might be more protected against extreme events since it 

is more diversified than the GMV portfolio (DeMiguel et al., 2009). Therefore, the 

robust portfolios seem to embrace the potential for diversification of the equally-

weighted strategy, while assigning maximum weights to the same assets selected by the 

minimum variance strategy. 

The results presented in Table 6-1 also indicate that there are no substantial differences 

between the RRC and ARC portfolios computed using the same in-sample period 

length. In fact, an unexpected result was obtained concerning the optimal solutions 

yielded by the relative robust and absolute robust formulations of the global minimum 

variance model, which deserves a closer examination. As suggested in Table 6-1, the 

RRC and ARC portfolios are identical when the in-sample length is 4 years and number 

of scenarios in the uncertainty set is 100 or 200, and when the in-sample length is 15 

years and the number of scenarios in the uncertainty set is 200. For all the other 

combinations of these parameters (in-sample length and number of scenarios in the 

uncertainty set) the computed solutions are different. 
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Table 6-1: Composition of the RRC, ARC, EW and GMV portfolios. 

Portfolios Max% Min% Sum3Max% Cardinality 

RRC151 6.4 1.1 14.3 41 

RRC152 6.5 1.1 14.8 41 

RRC155 6.4 1.1 14.8 41 

ARC151 6.4 0.9 14.9 41 

ARC152 6.5 1.1 14.8 41 

ARC155 6.6 1.1 15.0 41 

RRC41 6.5 0.9 15.1 41 

RRC42 7.1 1.2 15.7 41 

RRC45 7.0 1.2 15.8 41 

ARC41 6.5 0.9 15.1 41 

ARC42 7.1 1.2 15.7 41 

ARC45 7.0 1.2 15.8 41 

EW 2.4 2.4 7.3 41 

GMV15 19.6 <0.1 42.0 15 

GMV4 21.1 <0.1 41.9 10 

 

This table presents the characteristics of the optimal portfolios. Here, the composition of the 

portfolios regarding the maximum (Max%) and minimum (Min%) weights of an asset, the sum 

of the 3 largest weights in the portfolio (Sum3Max%), and the number of assets with non-zero 

weights in each computed portfolio (Cardinality) are described. As explained before, for 

measuring the cardinality, only those assets with weights higher than 0.1% are considered. 

Only average results for the 10 windows are shown. The optimal portfolios were represented 

according to the length of the in-sample period and the value of the risk aversion parameter 

used in their computation. For instance, ‘RRC155’, ‘ARC155’ and ‘GMV15’ corresponds, 

respectively, to the RRC, ARC and GMV portfolios computed using 15-years data to perform in-

sample estimations and, in the case of the RRC and the ARC portfolios, using a value of 5 for 

the risk aversion parameter. 

 

Analyzing the RRC and ARC solutions computed using the same uncertainty set, it is 

possible to verify that when changes in the variance of the optimal solutions are small 

(i.e. up to 5.7E-05), the RRC and ARC tend to yield identical solutions. When there is a 

small subset of scenarios in which the optimal solution (global minimum variance 

portfolio) of each one of those scenarios presents atypical variance (much higher 

variance comparatively to the remaining global minimum variance portfolios), the 

relative robust and absolute robust models yield different solutions. The reason is that, 
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in the former case (similar variance for all scenarios), the second term of (6.3), 

corresponding to the risk of the optimal portfolio when scenario s occurs, becomes quite 

similar for all scenarios and acts as if it was a constant; thus, problem (6.3) and problem 

(6.4) instances become equivalent, leading to the same solution, and we end up with 

identical RRC and ARC portfolios. In the latter case, the second term in (6.3) may 

become much different for some scenarios, leading to a significantly different problem 

instance from (6.4). 

Table 6-2 presents some statistics regarding the standard deviations of the optimal 

portfolios’ returns associated to all scenarios considered in the uncertainty set, for the 

in-sample period length of 4 years. Results for the in-sample period length of 15 years 

are presented in Table 6-3.  

  

Table 6-2: Some statistics regarding the standard deviations of the optimal solutions 

(GMV portfolios) for the scenarios belonging to the uncertainty set, for the in-sample 

period length of 4 years. 

Statistics 
Number of scenarios in the uncertainty set  

100 200 500 

Mean 2.6469E-03 2.6426E-03 2.7962E-03 

St.Deviation 6.9540E-03 7.1180E-03 7.5007E-03 

1st quartile 6.0840E-07 6.0004E-07 5.3675E-07 

2nd quartile 1.3133E-06 1.4928E-06 1.4183E-06 

3rd quartile 2.1814E-05 1.8888E-05 1.4342E-05 

99th percentile 2.9207E-02 2.9460E-02 3.0376E-02 

Maximum 2.9215E-02 3.0064E-02 4.0459E-02 

2nd maximum 2.8387E-02 2.9462E-02 3.4491E-02 

3rd maximum 2.6780E-02 2.9215E-02 3.4471E-02 

Minimum 4.1181E-08 4.1181E-08 3.2147E-08 

This table presents measures of centre and dispersion of the standard deviations of the GMV 

portfolios associated to all scenarios considered in uncertainty set, for different number of 

scenarios and for an in-sample period length of 4 years. 

 

It can be observed that the standard deviations of the optimal solution corresponding to 

an uncertainty set with 500 scenarios generally present lower quartiles and higher 

maximum value, which suggests a wider dispersion of the standard deviations. This is 
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confirmed when the 3 maximum values are analyzed together with the 99th percentile, 

supporting the wider variation of the standard deviations values for the uncertainty set 

with 500 scenarios. For the uncertainty sets with 100 and 200 scenarios, in which the 

models yielded identical solutions, it is possible to observe that the 99th percentile value 

is between the three largest values and these three largest values are closer and, thus, 

less dispersed. This result prevails regardless of the in-sample period length, explaining 

also why we have the same solution for both models when the in-sample period length 

is 15 years and the number of scenarios in the uncertainty set is 200. 

 

Table 6-3: Some statistics regarding the standard deviations of the optimal solutions 

(GMV portfolios) for the scenarios belonging to the uncertainty set, for the in-sample 

period length of 15 years. 

Statistics 
Number of scenarios in the uncertainty set  

100 200 500 

Mean 1.4464E-04 2.1475E-04 2.1476E-04 

St.Deviation 4.2803E-04 7.1953E-04 6.7444E-04 

1st quartile 7.0613E-14 1.1360E-13 6.5133E-14 

2nd quartile 1.9073E-12 1.9562E-12 1.4937E-12 

3rd quartile 8.9307E-06 2.2073E-05 4.9216E-06 

99th percentile 2.3935E-03 2.6159E-03 3.2412E-03 

Maximum 2.3952E-03 7.9947E-03 6.4770E-03 

2nd maximum 2.2255E-03 2.6202E-03 3.6437E-03 

3rd maximum 1.4662E-03 2.1900E-03 3.6025E-03 

Minimum 1.3027E-15 8.0469E-16 6.8155E-16 

This table presents measures of centre and dispersion of the standard deviations of the GMV 

portfolios associated to all scenarios considered in uncertainty set, for different number of 

scenarios and for an in-sample period length of 15 years. 

 

The in-sample and the out-of-sample mean risk and mean return of the RRC, ARC, 

GMV and EW portfolios are presented in Figure 6-1 (in-sample), Figure 6-2 (out-of-

sample) and Figure 6-3 (both in-sample and out-of-sample).  

Analyzing the effect of the length of the in-sample period in the in-sample performance 

(Figure 6-1), it is quite evident that the length seems to have no substantial effect in the 

in-sample mean return of the robust portfolios, while increasing the in-sample length 
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from 4 to 15 years, seems to improve (decrease) their in-sample mean risk. Comparing 

RRC and ARC portfolios, we conclude that the worst performances are obtained when 

the uncertainty set has 100 scenarios, regardless of the in-sample length. 

Regarding the GMV portfolio, its overall in-sample performance is improved when 

reducing the length of the in-sample period since the in-sample mean return increases 

while the in-sample mean risk slightly decreases. Concerning the EW portfolio, notice 

that the in-sample length and the number of scenarios in the uncertainty set do not 

influence its calculation; nevertheless, its in-sample performance, and consequently its 

location in the risk-return space, is different for different in-sample lengths.  

 

Figure 6-1: In-sample mean risk and mean return of the RRC, ARC, EW and GMV 

portfolios.  

 

The optimal portfolios were represented according to the length of the in-sample period and the 

number of scenarios considered in the uncertainty set used in their computation. For instance, 

RR151 and AR45 correspond, respectively, to the RRC portfolio computed using an in-sample 

period of 15 years and an uncertainty set with 100 scenarios, and the ARC portfolio based on 

an in-sample period of 4 years and an uncertainty set with 500 scenarios. 
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Regardless of the length of the in-sample period, the results obtained from the 

experiment confirm that the robust portfolios always reveal worse overall in-sample 

performance comparatively to the non-robust GMV portfolio and better overall in-

sample performance comparatively to the EW portfolio. Furthermore, the GMV 

portfolio is the only one that presents positive in-sample mean returns. Although robust 

portfolios present negative mean returns, these values are close to 0% and represent 

substantially smaller losses than those incurred by the EW portfolio. 

Concerning the effect of the in-sample period length in the out-of-sample performance 

of the optimal solutions (Figure 6-2), it can be observed that, apart from the fact that all 

computed portfolios have negative mean returns in the out-of-sample data, the overall 

results, previously described for the in-sample performance, continue to occur. This 

significant and important finding provides evidence of how the implemented strategies 

may produce similar performance stability when applied to new data sets. 

Before proceeding with the out-of-sample results, it is important to address the fact that 

all the implemented portfolio optimization strategies present negative out-of-sample 

returns, when mean results are analyzed. This outcome can be explained by the 

evolution of the EURO STOXX 50 index during the out-of-sample period considered in 

this study (January 2007 to December 2016), depicted in Figure 4-4 and explained in 

section 4.3.  

Returning to the out-of-sample results (Figure 6-2), it can be confirmed that the 

portfolio with worst overall out-of-sample performance is the EW portfolio and the best 

is the GMV portfolio (with higher return and lower risk when the in-sample length is 4 

years). This latter result is in accordance with previous studies (Chan et al., 1999; 

Jagannathan & Ma, 2003) supporting the outperformance of the GMV portfolio. 

Analyzing the out-of-sample performance of the robust portfolios, the out-of-sample 

mean return of the robust portfolios is substantially improved while no substantial effect 

in the out-of-sample mean risk is observed when the in-sample length is increased. In 

fact, the best out-of-sample performance seems to be achieved when the robust 

solutions are computed using an uncertainty set with 200 scenarios, regardless of the in-

sample length used to calculate the scenarios. Except for the RR41 and AR41 portfolios 

(RRC and ARC portfolios computed with an in-sample period length of 4 years and an 

uncertainty set with 100 scenarios), the robust portfolios present a mean risk higher than 

the GMV portfolio and lower than the EW portfolio, while their mean returns are 
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(again) between the mean returns of these two benchmarks. It is clear that the majority 

of the robust portfolios are dominant solutions comparatively to the EW portfolio. 

 

Figure 6-2: Out-of-sample mean risk and mean return of the RRC, ARC, EW and GMV 

portfolios. 

 

The optimal portfolios were represented according to the length of the in-sample period and the 

number of scenarios considered in the uncertainty set used in their computation. For instance, 

RR151 and AR45 correspond, respectively, to the RRC portfolio computed using an in-sample 

period of 15 years and an uncertainty set with 100 scenarios, and the ARC portfolio based on 

an in-sample period of 4 years and an uncertainty set with 500 scenarios. 

 

The distances between in-sample and out-of-sample portfolios’ locations can be 

observed in Figure 6-3, allowing to draw some conclusions about the consistency of the 

portfolios concerning deviation to the expected performance (calculated with in-sample 

data). The GMV portfolio presents the largest distances between in-sample and out-of-

sample portfolio locations, regardless of the length of the in-sample period. The 

remaining portfolios present very similar distances between in-sample and out-of-

sample mean returns and mean risks. The length of the in-sample period seems to have 

RR151

RR152

RR155

EW

GMV15

AR151

AR152

AR155

AR45

AR41

AR42

GMV4

RR41

RR42
RR45

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

0.04 0.045 0.05 0.055 0.06 0.065 0.07

M
e
a
n
 r

e
tu

rn

Mean risk

Out-of-sample



 

142 

 

no substantial effect on the performance consistency, in terms of the deviation to the 

expected performance of the robust portfolios, since RRC and ARC portfolios present 

similar distances between in-sample and out-of-sample performances. However, it can 

be observed that the deviations from the expected mean returns are slightly smaller for 

the robust portfolios computed with an in-sample period length of 15 years while the 

deviations from the expected mean risks are slightly smaller for the robust portfolios 

computed with an in-sample period length of 4 years. 

 

Figure 6-3: In-sample and out-of-sample mean risk and mean return of the RR, AR, EW 

and GMV portfolios. 

 

The optimal portfolios were represented according to the length of the in-sample period and the 

number of scenarios considered in the uncertainty set used in their computation. For instance, 

RR151 and AR45 correspond, respectively, to the RRC portfolio computed using an in-sample 

period of 15 years and an uncertainty set with 100 scenarios, and the ARC portfolio based on 

an in-sample period of 4 years and an uncertainty set with 500 scenarios.  

 

The analysis of Figure 6-3 also reveals that the out-of-sample mean performance is 

worse than the in-sample mean performance for all the computed portfolios. Moreover, 

RR151

RR152

RR155

EW15

GMV15

AR151AR152

AR155
AR45
AR41

AR42

EW4

GMV4

RR41

RR42

RR45

RR151

RR152

RR155 EW

GMV15

AR151

AR152AR155

AR45

AR41 AR42

GMV4

RR41 RR42

RR45

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.025 0.035 0.045 0.055 0.065 0.075

M
e
a
n
 r

e
tu

rn

Mean risk

In-sample Out-of-sample



 

143 

 

an interesting result is confirmed both in-sample and out-of-sample: almost all of the 

robust portfolios are located between the GMV and EW portfolios, in terms of return 

and risk. Therefore, except for the RR41 and AR41 portfolios, the proposed relative 

robust and absolute robust portfolios have lower mean returns and higher mean risk than 

the GMV portfolio and higher mean return and lower mean risk than the EW portfolio. 

Table 6-4 presents the in-sample and the out-of-sample performances of the optimal 

portfolios concerning regret and modified Sharpe ratio (SI). The values presented 

correspond to the mean of the portfolios’ regrets and mean of the portfolios SI, obtained 

over the 10 time windows. It can be observed that increasing the in-sample period 

length leads to lower levels of in-sample mean regret of the RRC, ARC and EW 

portfolios. When different, the RRC and ARC portfolios present very similar (in-sample 

and out-of-sample) mean regrets. 

It can also be observed that increasing the in-sample period length has different effects 

in the out-of-sample mean regret of the robust portfolios since mean regret generally 

decreases for the RRC portfolios while it slightly increases for the ARC portfolio. 

Concerning the mean SI, the results confirm that increasing the in-sample length seems 

to substantially improve the performance of the RRC and ARC portfolios, which 

supports the results previously described that associate better performances of the robust 

portfolios with the longer in-sample period length. Concerning the GMV portfolio, the 

increase of the in-sample period length leads to higher mean regrets and lower SI, which 

also supports the results previously described. Additionally, the GMV portfolios are the 

optimal portfolios with the lowest mean regrets. 

Finally, it is important to outline that although the robust portfolios present similar 

mean regrets for the different in-sample lengths under analysis, the mean 𝑆𝐼 is 

substantially higher for the in-sample period of 15 years. In fact, for this in-sample 

length, both RRC and ARC portfolios have higher average 𝑆𝐼 than the GMV and the 

EW portfolios. This result is somewhat unexpected, since the GMV portfolio estimated 

with an in-sample period of 15 years shows a higher average expected return and a 

lower average risk than the robust portfolios estimated with the same in-sample period 

length. However, as we will see in the next sub-section, for the 1998-2013 window, the 

GMV portfolio has a low out-of-sample return (close to 3%) while the robust portfolios 

show high returns (between 15% and 20%). Since the out-of-sample portfolio risk 
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measures are low in this window, the use of a ratio between return and risk amplifies the 

difference in returns and ends up leading to a higher average 𝑆𝐼 for the robust portfolios. 

The analysis of the in-sample and out-of-sample performances of robust and non-robust 

portfolios, for each of the 10 windows, is presented next. Since the RRC and the ARC 

portfolios generally present better performances for the in-sample period length 

corresponding to 15 years of historical data, results are described for this particular case. 

The results that will be presented in the next section generally prevail regardless of the 

length of the in-sample period.  

 

Table 6-4: In-sample and the out-of-sample regret and modified Sharpe ratio (𝑆𝐼) of the 

RRC, ARC, EW and GMV portfolios  

Portfolios IS Regret OS Regret OS 𝑺𝑰 

RR151 1.6326E-02 3.5854E-02 1.7319E-01 

RR152 1.6002E-02 3.6250E-02 1.8731E-01 

RR155 1.5909E-02 3.5820E-02 1.7815E-01 

AR151 1.6410E-02 3.5791E-02 1.8482E-01 

AR152 1.6002E-02 3.6250E-02 1.8731E-01 

AR155 1.5794E-02 3.6011E-02 1.7548E-01 

RR41 1.9436E-02 3.5410E-02 1.3233E-01 

RR42 1.9350E-02 3.5836E-02 1.4440E-01 

RR45 1.9191E-02 3.5854E-02 1.3969E-01 

AR41 1.9436E-02 3.5410E-02 1.3233E-01 

AR42 1.9350E-02 3.5836E-02 1.4440E-01 

AR45 1.9191E-02 3.5854E-02 1.3969E-01 

EW15 2.2957E-02 
4.3142E-02 1.5341E-01 

EW4 3.1416E-02 

GMV15 0.0000E+00 2.3958E-02 1.6597E-01 

GMV4 0.0000E+00 1.9956E-02 2.3685E-01 

This table presents the IS and OS performances of the optimal portfolios concerning regret and 

modified Sharpe ratio (𝑆𝐼) by length of the in-sample period and by risk aversion parameter 

used in their computation. The values presented correspond to the mean of the portfolios’ 

regrets and mean of the portfolios 𝑆𝐼, obtained over the 10 time windows.  
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6.3.3.2 Performance of relative robust and non-robust portfolios 

Figure 6-4, Table 6-5 and Table 6-6 shows the performance, in each window, of the 

portfolios calculated with an in-sample period length of 15 years. We start the analysis 

with in-sample performance results, where the same conclusions can be drawn for all 

the windows considered. The GMV portfolio is the dominant solution comparatively to 

all the other portfolios under analysis. The EW is the worst-performing portfolio, 

presenting lower returns and higher risk than the remaining portfolios. The ARC and 

RRC portfolios present very similar performances and are always located between the 

GMV and the EW portfolios, in terms of both return and risk. Regarding the location of 

the robust portfolios in the risk-return space, it is also important to point out that they 

are always closer to the EW portfolio than to the GMV portfolio.  

Concerning the out-of-sample performance, some differences can be observed 

comparatively to the in-sample results previously described. In particular, the GMV 

portfolio is not a dominant solution in all of the out-of-sample years under analysis. In 

fact, the outperformance of the GMV portfolio is only confirmed when comparing out-

of-sample portfolio risk measures, presenting the lowest risk in all windows, except for 

the 1992-2007 period where the robust portfolios present themselves as dominant 

solutions. The GMV portfolio underperforms, comparatively to the other portfolios, 

when out-of-sample returns are compared in the (out-of-sample) years 2007, 2009, 

2010, 2012 and 2013, where this portfolio presents the lowest return or is among those 

with the lowest returns. Recall that 2009, 2012 and 2013 were previously described as 

periods where the EURO STOXX 50 index experienced significant recoveries. 

Additionally, and comparatively to the other portfolios, the GMV portfolio reveals the 

highest return in the years 2008 and 2011, where all the computed portfolios present 

negative returns. These results support previous findings concerning the 

underperformance of the GMV portfolio in bull markets and its outperformance in bear 

markets (Chow et al., 2014). 

Considering the EW portfolio, the underperformance is generally confirmed both in 

terms of risk and return. This portfolio always presents the highest risk with the 

exception of the 1992-2007 period, where it is the GMV portfolio that shows the highest 

risk. Concerning out-of-sample returns, conflicting results can be observed since the 

EW portfolio is among those with best performance in some out-of-sample years (2009, 
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2012 and 2013) while it reveals the worst performance in others (2007, 2008, 2010, 

2011 and 2014).  

 

Figure 6-4: In-sample and out-of-sample risks and returns of the RRC, ARC, EW and 

GMV portfolios computed for each time window.   
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The optimal portfolios were computed considering the in-sample period length of 15 years and 

represented according to the value of the risk aversion parameter used in their computation. 

For instance, ‘AR155’ and ‘RR155’ corresponds, respectively, to the ARC and RRC portfolios 

computed using 15-years data to perform in-sample estimations and a value of 5 for the risk 

aversion parameter. 

 

Analyzing the out-of-sample performance of the robust portfolios, it can be confirmed 

that the robust solutions present very similar performances, as previously suggested by 

the mean results. In fact, there is no ARC or RRC portfolio that systematically stands 

out as a dominant solution comparatively to the other robust portfolios. Furthermore, 

the dominance of the robust solutions over the EW portfolio is confirmed for the 

majority of the RRC and ARC portfolios and for all the windows under analysis, except 
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in the out-of-sample years 2009, 2012, 2013, 2015 and 2016. Although the robust 

portfolios are not dominant solutions comparatively to the EW portfolios in these 

periods, they generally outperform when the 𝑆𝐼 measure is considered (Table 6-5). In 

fact, the robust portfolios present higher 𝑆𝐼 than the EW portfolio in all of the windows 

under analysis with the only exception for 2013. Comparatively to the GMV portfolio, 

the robust portfolios do not (generally) stand out as dominant solutions, but they present 

higher out-of-sample returns in 5 of the 10 windows (1992-2007, 1994-2009, 1995-

2010, 1997-2012 and 1998-2013), namely in periods characterized by significant 

recoveries of the EURO STOXX 50 index. Moreover, the majority of the robust 

solutions present higher 𝑆𝐼 than the GMV portfolio in 3 of the 10 windows (1992-2007, 

1994-2009, 1995-2010). 

A consistent result is the fact that the robust solutions always present risk measures 

between the risk measures of the GMV and the EW portfolios, with the only exception 

being the 1992-2007 period where they outperform both benchmarks. In relation to the 

returns of the robust solutions, it can be confirmed that, for the majority of the windows 

under analysis and for the majority of the robust solutions, their returns are between the 

returns of the 2 benchmarks. Only in 2 of the 10 windows some of the robust solutions 

have the lowest out-of-sample returns (2000-2015 and 2001-2016) while in 4 of the 10 

windows some of these robust solutions present the highest returns (1992-2007, 1994-

2009, 1995-2010 and 1997-2012). It is also important to highlight that in 5 of the 10 

windows the robust portfolios present out-of-sample portfolio risk measures lower than 

those computed using in-sample data. Finally, except for one of the windows under 

analysis (2000-2015) in which the GMV portfolio is the only computed solution with 

positive out-of-sample return, in all the other windows, the computed portfolios seem to 

behave in the same way, either all presenting gains (positive returns) or all presenting 

losses (negative returns). 

Figure 6-4 also allows the observation of the consistency of the optimal portfolios in 

terms of the deviation to the expected performance, by analyzing the distances between 

in-sample and out-of-sample portfolios’ location. Although none of the portfolios 

systematically reveals better consistency in all of the windows under analysis, it can be 

observed that in 4 of the 10 windows the robust portfolios exhibit the lowest deviations 

to the expected performances and, thus, can be considered the more consistent solutions.  
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Analyzing the robustness of the computed portfolios in terms of the regret (measured as 

the increase in the investment risk), it can be observed, in Table 6-6, that the RRC and 

ARC portfolios present similar robustness and are systematically more robust than the 

EW presenting lower regrets in all of the windows under analysis. Additionally, the 

GMV portfolio stands out as the most robust solution in all of the windows except in 

1992-2007, where the robust solutions show a smaller regret. 

To conclude, it is also important to highlight that the robust portfolios are never the 

worst-performing portfolios since they are not simultaneously dominated by both 

benchmarks used in this study. Furthermore, the robust portfolios reveal the potential 

for diversification similar to the EW strategy, while assigning maximum weights to the 

same assets selected by the minimum variance strategy (low-beta assets). In favorable 

market conditions, we can generalize our findings accordingly: the robust portfolios 

present lower risk than EW portfolios and higher returns when compared to GMV 

portfolios. These results clearly reinforce the relevance of the proposed methodology, 

since previous studies confirmed the good performances of both the EW benchmark 

(DeMiguel et al., 2009) and the GMV portfolio (Chan et al., 1999; Jagannathan & Ma, 

2003).  
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Table 6-5: Out-of-sample modified Sharpe ratio (𝑆𝐼) of the RRC, ARC, EW and GMV portfolios.  

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RR151 0.21197 -0.21522 0.26161 -0.01302 -0.06161 0.41860 1.02401 0.11343 -0.00077 -0.00715 

RR152 0.20740 -0.22314 0.39865 -0.01189 -0.06224 0.45473 0.98369 0.13454 -0.00146 -0.00714 

RR155 0.21077 -0.22102 0.26274 -0.01021 -0.05990 0.43796 1.00640 0.16390 -0.00201 -0.00713 

AR151 0.21260 -0.21880 0.33267 -0.01154 -0.06125 0.43010 1.03418 0.13964 -0.00291 -0.00654 

AR152 0.20740 -0.22314 0.39865 -0.01189 -0.06224 0.45473 0.98369 0.13454 -0.00146 -0.00714 

AR155 0.20929 -0.22185 0.24225 -0.01147 -0.06069 0.45712 0.99285 0.15655 -0.00203 -0.00721 

EW 0.05408 -0.23593 0.33675 -0.01990 -0.07670 0.40281 1.04944 0.03305 -0.00230 -0.00717 

GMV 0.07392 -0.18573 0.13811 -0.01569 -0.02101 0.46983 0.17611 0.58913 0.44079 -0.00573 

This table shows the out-of-sample 𝑆𝐼 of the optimal portfolios by out-of-sample year. The optimal portfolios were computed considering the in-sample period 

length of 15 years and represented according to the value of the risk aversion parameter used in their computation. For instance, ‘AR155’ and ‘RR155’ 

corresponds, respectively, to the ARC and RRC portfolios computed using 15-years data to perform in-sample estimations and a value of 5 for the risk 

aversion parameter. 
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Table 6-6: Out-of-sample regret of the RRC, ARC, EW and GMV portfolios. 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RR151 0.01334 0.09974 0.05467 0.03223 0.06276 0.02833 0.01022 0.01172 0.02604 0.01949 

RR152 0.01302 0.10905 0.05396 0.02994 0.06071 0.02915 0.00982 0.01114 0.02567 0.02003 

RR155 0.01296 0.10627 0.05392 0.03057 0.05952 0.02851 0.00991 0.01097 0.02567 0.01989 

AR151 0.01348 0.10429 0.05115 0.03261 0.05949 0.02982 0.01005 0.01140 0.02562 0.02000 

AR152 0.01302 0.10905 0.05396 0.02994 0.06071 0.02915 0.00982 0.01114 0.02567 0.02003 

AR155 0.01308 0.10706 0.05417 0.03168 0.05970 0.02832 0.00988 0.01114 0.02563 0.01946 

EW 0.01432 0.11141 0.07332 0.03953 0.07668 0.03651 0.01219 0.01362 0.02669 0.02715 

GMV 0.01484 0.09525 0.02292 0.02438 0.02855 0.01056 0.00730 0.00592 0.02464 0.00522 

This table shows the out-of-sample regret of the optimal portfolios by out-of-sample year. The optimal portfolios were computed considering the in-sample 

period length of 15 years and represented according to the value of the risk aversion parameter used in their computation. For instance, ‘AR155’ and 

‘RR155’ corresponds, respectively, to the ARC and RRC portfolios computed using 15-years data to perform in-sample estimations and a value of 5 for the 

risk aversion parameter.  
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6.4 Conclusions 

This work extends and combines recognized methodologies to develop a method of 

calculating relative robust and absolute robust portfolios. For the relative robust 

strategy, where the maximum regret is minimized, regret is defined as the increase in 

the investment risk resulting from investing in a given portfolio instead of choosing the 

optimal portfolio for the realized scenario. In the absolute robust strategy, minimization 

of risk was applied to the worst-case scenario over the whole uncertainty set. 

The results suggest that increasing the in-sample period length for the estimation of the 

model parameters has no substantial effect on the composition and performance of the 

robust portfolios, which highlights the usefulness of the proposed models in the 

presence of limited data. ARC and RRC portfolios always assign non-zero weights to 

all the assets in the dataset, thereby capturing the potential for diversification of the 

equally-weighted strategy. Moreover, the robust portfolios assign maximum weights to 

the same assets selected by the minimum variance strategy. 

The proposed robust portfolios consistently present out-of-sample portfolio risk 

measures that lie between the portfolio risk measures of the GMV portfolio and those of 

the EW portfolio.  For the majority of the windows, out-of-sample returns of the robust 

portfolios are between, or higher, than the portfolio returns of the two benchmarks. 

Hence, two major conclusions can be drawn. The consistent outperformance (in terms 

of return, risk or modified Sharpe ratio) of the robust portfolios comparatively to the 

EW portfolio confirms the benefits of investing in the optimal portfolio instead of 

simply allocating the investor’s wealth equally among the assets. In the presence of 

favorable market conditions, where the GMV portfolio performs poorly, the robust 

portfolios exhibit substantially higher returns. These conclusions support the ability of 

the robust strategies to optimize the first and second moments of portfolio returns. 

Additionally, the empirical results suggest that when the distribution of the variances of 

the optimal portfolios associated with the scenarios belonging to the uncertainty set is 

less dispersed, the relative robust and absolute robust models may often yield identical 

solutions. Since the probability of less dispersed values is higher for shorter in-sample 

period lengths, this is an important outcome to take into consideration in the presence of 

limited data. Similar behaviours were also observed among the robust solutions and the 
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non-robust solutions when losses (negative returns) versus gains (positive returns) are 

compared. This finding, together with the outcomes regarding the robustness and the 

consistency of the proposed portfolios, in terms of increase in the investment risk 

(regret) and deviations to their expected performances, suggests that the proposed 

methodologies are as consistent as the benchmarks used for comparing portfolios’ out-

of-sample performances which, in our opinion, validates the proposed methodologies.  

Overall, the results presented in this work reinforce the relevance of robust optimization 

within the field of portfolio selection under uncertainty. 
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Chapter 7  

 

 

A robust parametric portfolio policy (model D) 

 

 

7.1 Introduction 

Traditional portfolio optimization approaches, like the mean-variance optimization 

problem, are generally a two-step procedure: in a first step, the model inputs are 

estimated based on some theoretic assumptions about the data generating process; then 

the optimal portfolio weights, modeled as functions of those estimators, are computed. 

A different approach consists in parameterizing the portfolio weights as functions of 

observable quantities, estimating these weights directly, and then solving the portfolio 

selection model for the parameters that maximize the investor’s expected utility (Brandt, 

2010).  

The aim of our study is to build on the parametric portfolio policies presented by Brandt 

et al. (2009) by incorporating the uncertainty into the optimization model itself using 

the RO methodology and assessing the performance of the proposed robust parametric 

portfolio policies by comparing them to the (non-robust) parametric portfolio policies 

proposed by Brandt et al. (2009) and other (non-robust) classical portfolio strategies.  

The empirical analysis uses historical daily data from the stocks of the EURO STOXX 

50 index. Different optimal portfolios are computed and compared, considering both in-

sample and out-of-sample data, for turnover, abnormal return, beta (systematic risk), 

location in the risk-return space, modified Sharpe ratio and regret. The considered 

portfolios are the proposed relative robust parametric portfolio policy (RRD), the 

absolute robust parametric portfolio policy (ARD), the MV portfolio, the GMV 

portfolio, the EW portfolio and the parametric portfolio policies (PPP) proposed by 

Brandt et al. (2009). 
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The empirical analysis suggests that the ARD portfolio generally outperforms the 

remaining investment strategies applied in this study in at least one of the considered 

performance measures. Although outperforming the PPP portfolio in many of the time 

windows under analysis, the RRD portfolios do not reveal results as good and as 

consistent as the ARD portfolio. The analysis of the coefficients of the ARD, RRD and 

PPP portfolios reveals that, regardless of the value of the risk aversion parameter, the 

deviation of the optimal solution from the benchmark portfolio decreases with the 

firm’s size. Concerning the book-to-market ratio, the RRD and the PPP portfolios 

present a similar behavior: both assume larger positions in value firms’ stocks for low 

values of the risk aversion parameter, and larger positions in growth firms’ stocks for 

high values of the risk aversion parameter. Considering the momentum, it is possible to 

observe that ARD and the PPP portfolios present a similar behavior: both assume larger 

positions in past losers for lower levels of risk aversion and larger positions in past 

winners for higher levels of risk aversion. Results also suggest that both absolute robust 

and relative robust parametric portfolio policies seem to benefit from the use of long-

term past data in order to estimate the input parameters, while the non-robust parametric 

portfolio policy benefits from its reduction. Thus, our findings confirm that the robust 

methodology promotes the enhancement of the performance of current models available 

in the literature, specifically of the parametric portfolio policies presented by Brandt et 

al. (2009), reinforcing the relevance of robust optimization within the field of portfolio 

selection under uncertainty. 

The remainder of this chapter proceeds as follows. In Section 7.2, the proposed robust 

parametric portfolio policies are presented and the process for computing the robust 

parametric portfolios is described. The empirical analysis is presented and main results 

are described in Section 7.3. Finally, in Section 7.4, the main conclusions are 

highlighted. 

7.2 Methodology 

7.2.1 The robust parametric portfolio policies 

In this work, we propose robust optimization models based on the parametric portfolio 

policies presented by Brandt et al. (2009) and previously described in section 2.1. To 
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develop a robust version of this model, uncertainty was considered in the asset weights, 

in the asset characteristics and in the asset returns.  

Recall the notation and the general procedure for generating the sample returns from the 

in-sample data, previously described in section 4.3. The uncertainty set corresponds to a 

finite set of scenarios, 𝑠𝑖 ∈ 𝑈, where each 𝑠𝑖 is described by a set of asset returns (𝑟𝑛,𝑡), 

a set of asset weights (𝑤̅𝑛,𝑡) and a set of asset characteristics (𝑥̂𝑛,𝑡), and is defined in the 

following way (to avoid cluttering the notation, we drop the index 𝑖 from 𝑠𝑖 in this 

definition): 

 

 𝑠 = (𝑅𝑠, 𝑊̅𝑠, 𝐶̂𝑠) (7.1) 

 

with 𝑅𝑠 = [𝑟𝑛𝑡
𝑠 ], 𝑊̅𝑠 = [𝑤̅𝑛𝑡

𝑠 ], 𝐶̂𝑠 = [𝑥̂𝑛𝑡
𝑠 ],  𝑛 = 1,… ,𝑁, 𝑡 = 𝕫(𝑠),… , 𝕫(𝑠) + 𝐽 − 1. 

The proposed relative robust parametric portfolio policy defines regret as the utility loss 

for the investor resulting from choosing a portfolio characterized by the vector of 

coefficients 𝛼 instead of choosing 𝛼𝑠∗ which corresponds to the optimal vector of 

coefficients under scenario 𝑠. The vector of coefficients 𝛼 represents the over or 

underweighting of each stock, relative to the benchmark portfolio, based on the firm’s 

characteristics. Let 𝑟𝑡+1
𝑝𝑠 ∗  be the realized return of the optimal portfolio under scenario s, 

calculated using 𝛼𝑠 as 𝑟𝑡+1
𝑝𝑠 ∗ = ∑ (𝑤̅𝑛,𝑡

𝑠 +
1

𝑁
𝛼𝑠𝑇𝑥̂𝑛,𝑡

𝑠 ) 𝑟𝑛,𝑡+1
𝑠𝑁

𝑛=1 . Vector 𝛼𝑠∗ is the optimal 

solution of the following problem:   

 

 

max
𝛼𝑠

1

𝐽
∑ 𝑢

𝕫(𝑠)+𝐽−1

𝑡=𝕫(𝑠)

(∑ (𝑤̅𝑛,𝑡
𝑠 +

1

𝑁
𝛼𝑠𝑇𝑥̂𝑛,𝑡

𝑠 ) 𝑟𝑛,𝑡+1
𝑠

𝑁

𝑛=1

). (7.2) 

 

Equivalently, 𝑟𝑡+1
𝑝𝑠 (𝛼) corresponds to the expected return of the portfolio p, under 

scenario s, calculated using the vector of coefficients 𝛼 as 𝑟𝑡+1
𝑝𝑠 (𝛼) = ∑ (𝑤̅𝑛,𝑡

𝑠 +𝑁
𝑛=1

1

𝑁
𝛼𝑇𝑥̂𝑛,𝑡

𝑠 ) 𝑟𝑛,𝑡+1. The regret associated with scenario 𝑠 when vector 𝛼 is considered, 

𝑃𝑠(𝛼), is defined by 
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 𝑃𝑠(𝛼) = 𝐸[𝑢(𝑟𝑡+1
𝑝𝑠 ∗

)] − 𝐸 [𝑢 (𝑟𝑡+1
𝑝𝑠 (𝛼))]= 𝐸 [𝑢 (𝑟𝑡+1

𝑝𝑠 (𝛼𝑠∗))] −

𝐸 [𝑢 (𝑟𝑡+1
𝑝𝑠 (𝛼))] 

(7.3) 

 

and the maximum regret function, 𝑃(𝛼), is defined by 

 

 𝑃(𝛼) = max
𝑠∈𝑈

𝐸[𝑢(𝑟𝑡+1
𝑝𝑠 ∗

)] − 𝐸 [𝑢 (𝑟𝑡+1
𝑝𝑠 (𝛼))] . (7.4) 

 

The minmax regret solution 𝛼 corresponds to the vector of coefficients that optimizes 

the relative robust optimization model 

 

 min
𝛼

max
𝑠∈𝑈

𝐸[𝑢(𝑟𝑡+1
𝑝𝑠 ∗

)] − 𝐸 [𝑢 (𝑟𝑡+1
𝑝𝑠 (𝛼))], (7.5) 

 

and satisfies the non-negativity constraint. As suggested by Brandt et al. (2009), we 

imposed this constraint by truncating and renormalizing the relative robust portfolio 

weights. Hence, instead of considering the 𝑤𝑛,𝑡 weights, as defined in (2.10), we 

considered the non-negative weights 𝑤𝑛,𝑡
+, defined as follows: 

 

 
𝑤𝑛,𝑡

+ =
𝑚𝑎𝑥[0,𝑤𝑛,𝑡]

∑ 𝑚𝑎𝑥[0,𝑤𝑚,𝑡]
𝑁
𝑚=1

. (7.6) 

 

Note that problem (7.5) is a three-level optimization problem. The computation of 

vectors 𝛼𝑠∗, ∀𝑠, which represent the optimal solution for each scenario 𝑠,  constitutes 

the first optimization level. The inner maximization problem in (7.5) constitutes the 

second optimization level and allows the computation of the maximum regret for each 

𝑠 ∈ 𝑈, providing an upper bound on the true utility loss for the investor. Finally, the 

third optimization level corresponds to the outer minimization problem in (7.5), which 

gives the optimal solution that minimizes the maximum regret for all 𝑠 ∈ 𝑈.  
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For the absolute robust parametric portfolio policy, the absolute robust portfolio 

(maxmin solution) corresponds to the weight combination vector that solves the 

absolute robust optimization model defined by 

 

max
  𝛼

min
𝑠∈𝑈

𝐸 [𝑢 (𝑟𝑡+1
𝑝 (𝛼))] = max

  𝛼
 min
𝑠∈𝑈

1

𝐽
∑ 𝑢 (∑ (𝑤̅𝑛,𝜏

𝑠 +
1

𝑁
𝛼𝑇𝑥̂𝑛,𝜏

𝑠 ) 𝑟𝑛,𝜏+1
𝑠

𝑁

𝑛=1

)

𝕫(𝑠)+𝐽−1

𝜏=𝕫(𝑠)

 (7.7) 

 

and satisfies the non-negativity constraint (previously explained and defined in (7.6)). 

7.2.2 Computing the robust parametric portfolios 

We begin by explaining the computation of the relative robust portfolio. We start by 

constructing the scenario set 𝑈 calculating the 𝑆 scenarios, as already described. The set 

of stock returns 𝑟𝑛,𝑡
𝑠 , weights 𝑤̅𝑛,𝑡

𝑠  and characteristics 𝑥̂𝑛,𝑡
𝑠 , defining a scenario 𝑠, is used 

in order to solve problem (7.2) and to determine the optimal solution 𝛼𝑠∗ (which 

characterizes the portfolio that maximizes the average utility the investor would have 

obtained by implementing the parametric portfolio policy over the period of the 

estimation window). This constitutes the first optimization process of the proposed 

three-level optimization problem. 

After computing the optimal solutions for each scenario 𝑠 ∈ 𝑈, the relative robust 

optimization problem (7.5) is solved using the GA. The fitness function considers the 

maximization of the regret as presented in (7.4) and corresponding to the utility loss for 

the investor resulting from choosing, under scenario s, a portfolio calculated using 

coefficients 𝛼 instead of 𝛼𝑠∗. The population considered has twice the size of the 

uncertainty set, and it is initially composed of all the optimal solutions 𝛼𝑠∗, ∀𝑠, and 

other feasible solutions randomly generated. The estimated portfolios are assessed by 

considering out-of-sample data corresponding to the next year. 

Concerning the computation of the absolute robust portfolio, a similar process was 

applied. The uncertainty set 𝑈 is constructed as previously described. After computing 

the 𝑆 scenarios, the maxmin solution is calculated by solving problem (7.7) using the 

GA. In this case, the fitness function was defined as the minimum portfolio’s expected 
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utility for all the scenarios considered in 𝑈 (inner maximization problem in (7.7). 

Hence, the optimization is performed assuming the worst-case realization of the 

uncertain parameters over the whole uncertainty set.  

7.3 Empirical analysis 

7.3.1 Data and model settings 

Stocks in the constituent list of the EURO STOXX 50 index at the end of the in-sample 

period were identified and historical daily data from January 1990 to December 2016 

(27 years) was used. As Brandt et al. (2009), we considered the following three firm 

characteristics: ME, BTM, and MOM. These characteristics were calculated from the 

following Thomson Reuters Datastream variables: total assets (WC02999), total 

liabilities (WC03351), deferred taxes and investment tax credits (WC03263), preferred 

stock value (WC03451), common shares outstanding (WC05301) and price per share 

(P). If total assets, liabilities, price or shares outstanding were missing, the observation 

was not included in the data set. Consider the book equity (be), corresponding to the 

total assets minus total liabilities plus deferred taxes and investment tax credits minus 

preferred stock value, and the market equity (me), corresponding to the price per share 

times shares outstanding. Then, the BTM and ME characteristics are defined as follows: 

 

 
𝐵𝑇𝑀 = 𝑙𝑜𝑔 (1 +

𝑏𝑒

𝑚𝑒
) (7.8) 

 

and 

 

 𝑀𝐸 = 𝑙𝑜𝑔(𝑚𝑒). (7.9) 

 

Daily continuous returns were calculated from the adjusted closing prices of the stocks. 

Momentum (MOM) was defined as the daily compounded return between days 𝑡 − 254 

and 𝑡. To make sure that only the information from an already published annual report 



 

163 

 

of the firm is reflected in the portfolio determination, we follow Brandt et al. (2009) 

suggestion and we allow a minimum of six-month lag between the fiscal year end of the 

accounting variables considered and the returns. The accounting variables were 

constructed at the end of the fiscal years from 1990 to 2016. Data from the first two 

years of each in-sample period is exclusively used to calculate the lagged values of the 

firm’s BTM and ME.  

We also follow Brandt et al. (2009) regarding the choice of the benchmark portfolio and 

we consider the value-weighted portfolio. Thus, the weight of stock 𝑛 at date 𝑡 in the 

benchmark portfolio (𝑤̅𝑛,𝑡) is defined as: 

 

 𝑤̅𝑛,𝑡 =
𝑚𝑒𝑛,𝑡

∑ 𝑚𝑒𝑛,𝑡
𝑁
𝑛=1

. (7.10) 

 

The empirical analysis used rolling windows of two different lengths. In one case, a 

rolling window with a constant length of 18-years is defined: 17-years data to perform 

in-sample estimations and an out-of-sample evaluation period of 1-year. In this case the 

first window ranges from January 1990 to December 2007 (in-sample period from 1990 

to 2006 and out-of-sample consisting of 2007) while the last window ranges from 

January 1999 to December 2016 (in-sample period from 1999 to 2015 and out-of-

sample consisting of 2016). In the second case, a rolling window with a constant length 

of 7-years is considered: 6-years data to perform in-sample estimations and an out-of-

sample evaluation period of 1-year. The first window now ranges from January 2001 to 

December 2007 (in-sample period from 2001 to 2006 and out-of-sample consisting of 

2007) while the last window ranges from January 2010 to December 2016 (in-sample 

period from 2010 to 2015 and out-of-sample consisting of 2016).  

Similarly to Brandt et al. (2009), we assume constant relative risk aversion (CRRA) 

preferences over wealth and constant relative risk aversion parameter (𝛾 ∈ ℝ+ ∖ {1}), 

for describing the investor’s preferences. Different values of the relative risk aversion 

parameter (𝛾 ∈ {0.5,2,5}) were used in order to explore the sensitivity of the results to 

this parameter. The absolute robust and relative robust models, as well as the parametric 

portfolio policy proposed by Brandt et al. (2009) and the classical mean-variance model, 

were solved for each one of these values.  
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The steps for computing the absolute robust and relative robust solutions, described in 

the previous section, are iteratively repeated for each of the time windows defined. Each 

scenario 𝑠, defined by the set of sample returns 𝑟𝑛,𝑡
𝑠 , weights 𝑤̅𝑛,𝑡

𝑠  and characteristics 

𝑥̂𝑛,𝑡
𝑠 , is computed considering an estimation window length of 120 consecutive daily 

returns. Estimations of the model inputs are performed in R. Once the robust and non-

robust portfolios are computed for each of the time windows under analysis, in-sample 

and out-of-sample performances are analyzed. 

7.3.2 In-sample and out-of-sample performances 

In order to conclude whether robust models can be an added-value for portfolio 

optimization, the in-sample and out-of-sample performances of the proposed relative 

robust and absolute robust parametric portfolio policies were analyzed and compared to 

the parametric portfolio policy presented by Brandt et al. (2009) as well as to classical 

non-robust optimization strategies (benchmarks). The parametric portfolio policy 

model, described in (2.11), was applied and the PPP optimal solution was computed. 

The benchmark portfolio considered in its computation was the value-weighted 

portfolio (defined in (7.10)). The classical non-robust portfolios considered in the 

performance analysis were the EW, GMV and the MV portfolios.  

The performance analysis starts by investigating the parameters’ variation effect over 

the proposed robust solutions. We consider the results over the entire out-of-sample 

period (10 years) and analyze the variation of the number of scenarios admitted in the 

uncertainty set (𝑆), the risk aversion parameters (𝛾) and the length of the in-sample 

period (𝑌), by comparing the RRD and ARD portfolios’ location in the risk-return 

space. Then, for a given parameter combination (𝑌, 𝑆), we compare the composition, 

cardinality, turnover, abnormal return and beta of the RRD, ARD and PPP portfolios. 

The computation of the portfolio turnover followed the definition presented by Brandt 

et al. (2009), considering the evolution of the assets returns from 𝑡 − 1 to 𝑡, as defined 

in (4.6).  

For the computation of the abnormal return (𝐽𝛼), we applied the CAPM and performed a 

linear regression considering the EURO STOXX 50 index as the proxy for the market 

portfolio. A total of 2540 daily returns (corresponding to the 10 out-of-sample years) 

were used in the regression analysis. We also present the portfolios’ beta, which is a 
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measure of their systematic risk relative to the excess return of the market portfolio. It is 

important to notice that the comparability to the market portfolio (EURO STOXX 50 

index) has some limitations since the assets used to construct the portfolios vary along 

the 10 time windows under analysis and are not the same as the ones in the constituent 

list of the EURO STOXX 50 index during this period.  

Finally, in-sample and out-of-sample results are examined for each of the 10 time 

windows and portfolios’ location in the risk-return space and modified Sharpe ratio are 

compared. For the RRD, ARD and PPP portfolio, we also compare the regret, defined 

by 

 

 

𝑅 =
1

𝑇
[(∑

(1 + ∑ (𝑤̅𝑛,𝑡
𝑠 +

1
𝑁

𝛼𝑠∗𝑇𝑥𝑛,𝑡
𝑠 ) 𝑟𝑛,𝑡+1

𝑠𝑁
𝑛=1 )

1−𝛾

1 − 𝛾

𝑇−1

𝑡=0

)

− (∑
(1 + ∑ (𝑤̅𝑛,𝑡

𝑠 +
1
𝑁 𝛼𝑇𝑥𝑛,𝑡

𝑠 ) 𝑟𝑛,𝑡+1
𝑠𝑁

𝑛=1 )
1−𝛾

1 − 𝛾

𝑇−1

𝑡=0

)], 

(7.11) 

 

where 𝛼𝑠∗ represents the vector coefficients of the optimal portfolio (feasible solution 

with maximum utility) within the sample period under consideration, with no portfolio 

weight constraint. After imposing the no-short-sale constraint, the optimum of the 

objective function is no longer guaranteed. Thus, in order to define regret, we 

considered the objective function value of the optimal solution 𝛼𝑠∗ without imposing 

any portfolio weight constraints. 

7.3.3 Results 

7.3.3.1 Parameter variation effect 

As previously mentioned, a sensitivity analysis regarding the considered parameters has 

been made. We consider the results over the entire out-of-sample period (10 years) and 

analyze the variation of the number of scenarios admitted in the uncertainty set (𝑆), the 

risk aversion parameters (𝛾) and the length of the in-sample period (𝑌), by comparing 

the RRD and ARD portfolios’ location in the risk-return space. Acknowledging the 
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limitations of using the average return as the sole comparison measure, the portfolios’ 

performances are analyzed, both in-sample and out-of-sample, by comparing the mean 

of the portfolios’ returns (mean return) and the mean of the portfolios’ variances (mean 

risk), obtained over the 10 windows. Out-of-sample results are presented in Figure 7-1. 

For simplification purposes, the RRD and ARD portfolios will be represented by ‘RR’ 

and ‘AR’, respectively, in the figures presented along the Results section and 

corresponding subsections. 

 

Figure 7-1: Out-of-sample mean risk and mean return of the RRD and ARD portfolios. 

 

The optimal portfolios were represented according to the in-sample period length (𝑌), the 

number of scenarios in the uncertainty set (𝑆) and the risk aversion parameter (𝛾), used in their 

computation. For simplification purposes, the parameter 𝑆 was represented by 1, 2 or 5 when 

𝑆 = 100, 𝑆 = 200 or 𝑆 = 500, respectively.For instance, RR1710.5 corresponds to the RRD 

portfolio computed using an in-sample period of 17 years, an uncertainty set with 100 scenarios 

and a risk aversion parameter of 0.5.  

 

It can be observed that the ARD portfolios are more concentrated in the upper left 

corner of Figure 7-1, while the RRD portfolios are more dispersed and always present 

negative mean returns, regardless of the in-sample period length used in their 

computation. This clearly suggests a better general performance of the proposed 

absolute robust approach comparatively to the relative robust approach. It can also be 
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observed that the robust solutions computed with an in-sample period length of 17 years 

are also more concentrated in the upper left corner comparatively to the robust solutions 

computed with an in-sample period length of 6 years. Thus, both absolute robust and 

relative robust methodologies seem to benefit from the use of long-term past values in 

order to estimate the input parameters. Concerning the number of scenarios, increasing 

this number generally improves both the return and the risk of the ARD portfolios. The 

effect of increasing the number of scenarios is not so straightforward for the RRD 

portfolios. For instance, while the RR1725 portfolio is a dominated solution 

comparatively to the RR1715 and the RR1755 portfolios, the RR655 portfolio is a 

dominated solution comparatively to the RR615 and the RR625 portfolios. In fact, a 

closer analysis  allows us to conclude that for 𝑆 = 100 and 𝑆 = 500, the RR17 

portfolios (RRD portfolios computed using an in-sample period length of 17 years) are 

dominant solutions comparatively to the RR6 portfolios (RRD portfolios computed 

using an in-sample period length of 6 years); when 𝑆 = 200, the opposite occurs, i.e. 

the RR6 portfolios are dominant solutions comparatively to the RR17 portfolios. 

The analysis of the mean results is extended in order to compare the overall 

performances of robust and non-robust portfolios. The in-sample and the out-of-sample 

mean risk and mean return of the ARD, RRD, PPP, MV, GMV and EW portfolios are 

compared and the results are presented in Figure 7-2 and Figure 7-3. The optimal 

portfolios were represented according to the in-sample period length (𝑌) and/or the 

number of scenarios of the uncertainty set (𝑆) used in their computation. Results are 

presented for two values of the risk aversion parameter: 0.5 and 5. 

The analysis of the effect of the length of the in-sample period in the portfolios’ 

performance shows that reducing the length of the in-sample period (from 17 years to 6 

years) improves both in-sample and out-of-sample overall performances of the MV 

portfolio, regardless of the value of the risk aversion parameter. A different behaviour 

can be observed for the GMV portfolio. Whilst the GMV17 portfolio is a dominant 

solution in-sample, with out-of-sample data it presents higher return and higher risk, 

comparatively to the GMV6 portfolio. It is also important to notice that the GMV is the 

optimal solution with the lowest out-of-sample mean risk. Regarding the PPP portfolio, 

its overall in-sample performance deteriorates when the length of the in-sample period 

is reduced, as the in-sample mean return substantially decreases while the in-sample 

mean risk increases. Out-of-sample, the opposite occurs: the PPP6 portfolio stands out 
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as a dominant solution comparatively to the PPP17 portfolio. Furthermore, the PPP17 

solution is among the optimal solutions with best in-sample performances, while it is 

among the optimal solutions with worst out-of-sample performances. These results are 

confirmed regardless of the value of the risk aversion parameter. 

 

Figure 7-2: In-sample and out-of-sample mean return and mean risk of the RRD, ARD, 

PPP, MV, EW and GMV portfolios computed using a risk aversion parameter of 0.5.  

 

The optimal portfolios are represented according to the in-sample period length (𝑌) and the 

number of scenarios in the uncertainty set (𝑆), used in their computation. For simplification 

purposes, the parameter 𝑆 was represented by 1, 2 or 5 when 𝑆 = 100, 𝑆 = 200 or 𝑆 = 500, 

respectively. Results are presented for the risk aversion parameter of 0.5. For instance, RR171 
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performance is achieved for the in-sample period length of 17 years and the uncertainty 

set with 100 scenarios, while the dominance is, once again, confirmed comparatively to 

the PPP and the MV17 portfolios. Once again, these results are verified regardless of 

the value of the risk aversion parameter. 

It should also be pointed out that all the implemented portfolio optimization strategies 

present negative out-of-sample returns, when mean results are analyzed. This outcome 

can be explained by the evolution of the EURO STOXX 50 index during the out-of-

sample period considered in this study (January 2007 to December 2016), depicted in 

Figure 4-4 and explained in section 4.3.  

 

Figure 7-3: In-sample and out-of-sample mean return and mean risk of the RRD, ARD, 

PPP, MV, EW and GMV portfolios computed using a risk aversion parameter of 5.  
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number of scenarios in the uncertainty set (𝑆), used in their computation. For simplification 

purposes, the parameter 𝑆 was represented by 1, 2 or 5 when 𝑆 = 100, 𝑆 = 200 or 𝑆 = 500, 

respectively. Results are presented for the risk aversion parameter of 5. For instance, RR171 

corresponds to the RRD portfolio computed using an in-sample period of 17 years and an 

uncertainty set with 100 scenarios, and PPP6 corresponds to the parametric portfolio policy 

proposed by Brandt et al. (2009) computed using an in-sample period length of 6 years. 
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In what follows, we analyse more closely the proposed robust solutions and the 

parametric portfolio policy presented by Brandt et al. (2009). Coefficients of the 

parametric portfolio policies, composition, cardinality, turnover, abnormal return and 

beta of the ARD, RRD and PPP portfolios, are presented in Table 7-1, according to the 

risk aversion parameter used in their computation. 

The analysis of the coefficients of the parametric portfolio policies presented in Table 

7-1 allows us to conclude that, regardless of the value of the risk aversion parameter and 

for all the investment strategies (ARD, RRD and PPP), the weight of an asset in the 

optimal solution decreases with the firm’s size (present negative market capitalization’s 

coefficient). Additionally, for lower levels of risk aversion, the representation of larger 

firms’ stocks becomes sparser in the optimal solution, since the market capitalization 

(negative) coefficient decreases. Concerning the BTM ratio, the RRD and the PPP 

portfolios present a similar behavior: the weight of an asset in the optimal solution 

increases with the firm’s BTM ratio for low levels of risk aversion, while it decreases 

for higher levels of risk aversion. Thus, RRD and PPP optimal solutions assume larger 

positions in value firms’ stocks for low values of the risk aversion parameter, and larger 

positions in growth firms’ stocks for high values of the risk aversion parameter. The 

ARD portfolios present larger positions in growth firms’ stocks regardless of the value 

of the risk aversion parameter (they show a consistent BTM coefficient near -3). 

Furthermore, the weight of an asset in the optimal solution increases with the firms’ 

one-year lagged return for the RRD approach (regardless of the value of the risk 

aversion parameter), and for the ARD and PPP approaches when considering higher 

levels of risk aversion. For lower levels of risk aversion, the ARD and PPP portfolios 

assume larger positions in past losers (present negative momentum coefficient).  

Table 7-1 shows that, for all the ARD, RRD and PPP portfolios, the maximum weight 

of an asset in the portfolio decreases while the cardinality slightly increases for higher 

levels of risk aversion. Thus, the exposure to individual assets decreases when the risk 

aversion parameter increases. Although the cardinality is very similar among investment 

strategies and regardless of the value of the risk aversion parameter, the cardinalities of 

the ARD portfolios are slightly higher than those of the RRD and the PPP portfolios. 

Despite presenting the highest cardinality, ARD portfolios reveal the lowest turnover, 

regardless of the value of the risk aversion parameter, while the highest turnover is 

exhibited by the RRD portfolios. Furthermore, for all the ARD, RRD and PPP 
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portfolios, the turnover decreases when higher levels of risk aversion are considered. 

These results suggest that, for higher levels of risk aversion, the daily absolute weight 

changes decrease over time and, thus, the investment strategies tend to select the same 

assets over the different periods.  

Regarding the results for the abnormal return and the portfolio beta, it can be observed 

that the ARD portfolios have the best performance, even outperforming the market 

proxy (they present positive abnormal returns), for all the values of the risk aversion 

parameter. The RRD portfolios present positive abnormal return except for the risk 

aversion value of 0.5. Regardless of the value of the risk aversion parameter, both ARD 

and RRD portfolios outperform the PPP portfolios (that is, they present higher abnormal 

return) and, thus, offer a better performance considering their systematic risk. Finally, it 

is important to highlight that the ARD and RRD portfolios show a lower systematic risk 

than the market (proxy) with the exception of the RRD portfolio computed assuming a 

risk aversion parameter of 0.5 (which presents a beta coefficient higher than 1). With 

higher systematic risk (even higher than the market) and negative abnormal return, the 

PPP portfolios stand out as the worst performing strategy. 

To analyze the effect of the variation of the in-sample period length, we considered a 

risk aversion parameter of 0.5 and an uncertainty set with 500 scenarios. The results are 

shown in Table 7-2. It is possible to conclude that decreasing the in-sample period 

length leads to a higher representation (higher absolute coefficients’ values) of  value 

firms, small firms and past winners in the PPP portfolio, to a higher representation of  

growth firms, small firms and past winners in the ARD portfolio, and to a lower 

representation of  value firms and higher representation of small firms and past losers in 

the RRD portfolio. Moreover, decreasing the in-sample period length seems to slightly 

reduce the exposure to individual assets and the turnover of the PPP portfolio, while it 

seems to have no substantial effect over the cardinality. For the ARD and RRD 

strategies, decreasing the in-sample period length seems to slightly increase the 

exposure to individual assets, the cardinality and the turnover of the optimal solutions.  
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Table 7-1: Variation of the risk aversion parameter 

 PPP RRD ARD 

 𝛾 = 0.5 𝛾 = 2 𝛾 = 5 𝛾 = 0.5 𝛾 = 2 𝛾 = 5 𝛾 = 0.5 𝛾 = 2 𝛾 = 5 

α BTM 4.473 0.551 -0.277 16.607 -9.093 -4.484 -2.985 -3.055 -3.003 

α ME -62.628 -17.901 -8.368 -214.486 -21.786 -9.502 -3.361 -3.160 -2.713 

α MOM -0.871 0.032 0.192 13.849 7.336 3.230 -0.199 -0.079 0.059 

Max 𝒘𝒕,𝒏 0.147 0.142 0.135 0.138 0.128 0.125 0.111 0.107 0.107 

Min 𝒘𝒕,𝒏 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Card. 18.310 18.693 19.344 18.145 17.617 18.435 20.255 20.537 21.064 

Turnover 6.01E-03 5.63E-03 5.18E-03 6.75E-03 6.21E-03 5.74E-03 4.20E-03 4.07E-03 3.96E-03 

𝑱𝜶 -4.88E-05 -4.35E-05 -3.53E-05 -1.06E-05 1.32E-05 1.90E-05 2.37E-05 3.58E-05 4.13E-05 

Beta 1.133 1.118 1.093 1.076 0.926 0.910 0.883 0.878 0.871 

This table shows the out-of-sample results concerning the coefficients of the parametric portfolio policy for the three characteristics (BTM, ME and MOM), 

the maximum weight of an asset (Max 𝑤𝑡,𝑛), the minimum weight of an asset (Min 𝑤𝑡,𝑛), the cardinality (card.), the turnover, the abnormal return (𝐽𝛼) and the 

beta of the ARD, RRD and PPP portfolios, according to the value of the risk aversion parameter (𝛾) used in their computation. Results are presented for the 

in-sample period length of 17 years and the uncertainty set with 500 scenarios. After computing the portfolio policy’s coefficients, out-of-sample daily 

portfolios are formed using those coefficients in the next year. Values for the portfolio policy’s coefficients, the maximum and minimum weights, and the 

cardinality, are averages, for the 10 out-of-sample periods under study. For measuring the cardinality, only those assets with weights higher than 0.1% are 

considered. The portfolio turnover corresponds to the average, over all out-of-sample periods (10 years), of the daily portfolio turnover as defined in (4.6). 

The estimation of 𝐽𝛼 was based on the CAPM, where the EURO STOXX 50 index was used as the proxy for the market portfolio. A total of 2540 daily 

observations (corresponding to the daily returns occurred in the 10 out-of-sample years), were used in order to compute daily abnormal returns. 
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Table 7-2: Variation of the in-sample period length 

 PPP RRD ARD 

 𝑌 = 6 𝑌 = 17 𝑌 = 6 𝑌 = 17 𝑌 = 6 𝑌 = 17 

α BTM 14.3342 4.4730 8.7883 16.6072 -6.5373 -2.9850 

α ME -89.7758 -62.6282 -216.8923 -214.4863 -123.6033 -3.3610 

α MOM 7.8518 -0.8706 -45.1860 13.8489 3.8224 -0.1992 

Max 𝒘𝒕,𝒏 0.1323 0.1467 0.1508 0.1381 0.1223 0.1112 

Min 𝒘𝒕,𝒏 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Card. 18.3893 18.3100 18.4369 18.1449 21.3057 20.2550 

Turnover 5.880E-03 6.008E-03 6.805E-03 6.746E-03 5.066E-03 4.197E-03 

𝑱𝜶 -4.948E-05 -4.882E-05 1.550E-05 -1.064E-05 2.191E-05 2.369E-05 

Beta 1.1330 1.1330 1.0100 1.0760 0.9523 0.8831 

This table shows the out-of-sample results concerning the coefficients of the parametric portfolio policy for the three characteristics (BTM, ME and MOM), 

the maximum weight of an asset (Max 𝑤𝑡,𝑛), the minimum weight of an asset (Min 𝑤𝑡,𝑛), the cardinality (card.), the turnover, the abnormal return (𝐽𝛼) and the 

beta of the ARD, RRD and PPP portfolios, according to the in-sample period length (𝑌) used in their computation. Results are presented for risk aversion 

parameter of 0.5 and the uncertainty set with 500 scenarios. After computing the portfolio policy’s coefficients, out-of-sample daily portfolios are formed 

using those coefficients in the next year. Results for the portfolio policy’s coefficients, the maximum and minimum weights, and the cardinality, are averages, 

for the 10 out-of-sample periods under study.  For measuring the cardinality, only those assets with weights higher than 0.1% are considered. The portfolio 

turnover corresponds to the average, over all out-of-sample periods (10 years), of the daily portfolio turnover as defined in (4.6). The estimation of 𝐽𝛼was 

based on the CAPM, where the EURO STOXX 50 index was used as the proxy for the market portfolio. A total of 2540 daily observations (corresponding to 

the daily returns occurred in the 10 out-of-sample years), were used in order to compute daily abnormal returns. 
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Finally, the RRD portfolio is the only optimal solution that seems to benefit from the 

reduction of the in-sample period length, presenting higher (positive) abnormal return 

and lower beta when using an in-sample period of 6 years in its computation. For the 

ARD and PPP solutions, the reduction of the in-sample period generally deteriorates 

abnormal returns and increases the portfolio’s beta. 

7.3.3.2 Performance of robust and non-robust portfolio 

We will now analyse the in-sample and the out-of-sample performances of robust and 

non-robust portfolios, for each of the 10 windows. The performance analysis starts with 

the examination of in-sample and out-of-sample risks and returns of all ARD, RRD, 

PPP, MV, GMV and EW portfolios by time window. Results are described for the in-

sample period length corresponding to 17 years of historical data and a value of 0.5 for 

the risk aversion parameter and are presented in Figure 7-4. 

By analyzing the results for the non-robust portfolios, it can be confirmed that the 

classical mean-variance strategy reveals conflicting results when comparing in-sample 

and out-of-sample performances, since it stands out, simultaneously, as the solution 

with best in-sample performance and one of the portfolios with worst out-of-sample 

performances, in many of the time windows. These results support previous findings 

concerning the sensitivity of the MV portfolio to the estimation error and the effects of 

the input uncertainty in the optimization process (Best & Grauer, 1991a; Chopra & 

Ziemba, 1993; DeMiguel et al., 2009; Jagannathan & Ma, 2003). Regarding the EW 

portfolio, it is among the portfolios with lowest in-sample return, being the only 

portfolio with negative return in some windows (1996-2013; 1997-2104; 1998-2015; 

and 1999-2016). Out-of-sample, the EW solution is never the worst performing 

portfolio in terms of return, for all windows, and in terms of risk, for the majority of the 

windows.  

Concerning the GMV portfolio, although this portfolio shows worse in-sample return 

comparatively to the MV portfolio, a different trend can be observed when comparing 

out-of-sample performances. In fact, the GMV portfolio is a dominant solution 

comparatively to the MV and the EW portfolios in the majority of the time windows. Its 

better performance, relatively to the MV portfolio, can be explained by the fact that its 

computation requires only the estimates of variances and covariances of the asset 

returns, becoming less vulnerable to estimation errors. Furthermore, this portfolio is 
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located at the left side of the scatter-plot in all windows, indicating low levels of risk, 

both in-sample and out-of-sample. Similarly to the MV portfolio, the PPP solution 

presents conflicting in-sample and out-of-sample results. In-sample, this portfolio is 

among the optimal solutions with higher return and lower risk, while out-of-sample, the 

PPP portfolio is among the optimal solutions with worst overall performance, in some 

of the windows under analysis (1990-2007; 1991-2008; 1998-2015; 1999-2016). 

Regarding the ARD solution, this portfolio is generally located at the left side of the 

scatter-plot, among the optimal solutions with the lowest (in-sample and out-of-sample) 

risk and it even shows lower risk in out-of-sample data than in in-sample data, in some 

of the windows under analysis. Furthermore, the ARD portfolio stands out as a 

dominant solution comparatively to the PPP portfolio in 8 of the 10 windows, the MV 

portfolio in 7 of the 10 windows and the EW portfolio in 8 of the 10 windows. When 

compared to the GMV portfolio, the ARD presents higher return or lower risk, in the 

majority of the windows. Results presented in Table 7-4, regarding modified Sharpe 

ratio of all the investment strategies implemented in this study, also show that the ARD 

portfolio presents higher modified Sharpe ratio comparatively to the GMV portfolio in 6 

of the 10 windows, comparatively to the MV portfolio in 7 of the 10 windows, and 

comparatively to the EW portfolio in 9 of the 10 windows. These results clearly 

reinforce the relevance of the proposed absolute robust methodology, since previous 

studies have confirmed the good performances of both the EW benchmark (DeMiguel et 

al., 2009) and the GMV portfolio (Chan et al., 1999; Jagannathan & Ma, 2003).  

The RRD portfolio does not reveal results as good and consistent as the ARD portfolio, 

since it is among the portfolios with best performance in some of the windows under 

analysis (1991-2008; 1992-2009; 1995-2012; 1996-2013) and it is among the worst 

performing solutions in others (1993-2010; 1994-2011; 1997-2014). As for the modified 

Sharpe ratio, the RRD portfolio presents higher modified Sharpe ratio comparatively to 

the GMV portfolio in 3 of the 10 windows, and comparatively to the MV and EW 

portfolios in 5 of the 10 windows (Table 7-4). 
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Figure 7-4: In-sample and out-of-sample risks and returns of the RRD, ARD, PPP, MV, 

EW and GMV portfolios computed for each time window. 
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The optimal portfolios were computed considering the in-sample period length of 17 years and 

the parameters combination 𝛾 = 0.5 and 𝑆 = 500. 

 

From the analysis of Figure 7-4 it is also possible to observe how much each portfolio 

deviates from what would be expected looking at the corresponding in-sample 

performances. No portfolio has an out-of-sample performance that is systematically 

close to the in-sample performance in all of the windows under analysis. Actually, it can 

be observed that, in many of these windows, the MV approach stands out as generating 

the solutions that exhibit the highest deviations from the in-sample performances and, 

from that point of view, are the less consistent solutions. 
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The outperformance of the ARD portfolio comparatively to the RRD and PPP portfolios 

is confirmed when out-of-sample regret (Table 7-3) and modified Sharpe ratio (Table 

7-4) are compared. The ARD portfolio presents higher modified Sharpe ratio 

comparatively to the PPP portfolio in 9 of the 10 windows (except in 1996-2013), and 

comparatively to the RRD portfolio in 8 of the 10 windows. Analyzing the robustness in 

terms of the utility loss for the investor (regret), it can be observed that the ARD 

portfolio is systematically more robust than the PPP and the RRD portfolios, revealing 

lower regrets in most of the windows. In fact, the ARD portfolio presents lower regret 

comparatively to the PPP portfolio in 9 of the 10 windows, and comparatively to the 

RRD portfolio in 6 of the 10 windows.  

 

Table 7-3: Out-of-sample regret of the RRD, ARD and PPP portfolios  

 PPP RRD ARD 

2007 2.496E-02 2.489E-02 2.480E-02 

2008 7.679E-03 7.120E-03 7.070E-03 

2009 3.565E-04 2.908E-04 2.949E-04 

2010 9.170E-03 9.367E-03 9.140E-03 

2011 8.052E-03 8.253E-03 8.043E-03 

2012 4.007E-04 3.224E-04 3.639E-04 

2013 2.055E-02 2.056E-02 2.060E-02 

2014 2.097E-03 2.145E-03 2.082E-03 

2015 1.178E-02 1.163E-02 1.172E-02 

2016 1.148E-02 1.146E-02 1.141E-02 

This table shows the out-of-sample regret of the optimal portfolios by out-of-sample year. 

Results are presented for the in-sample period length of 17 years and the parameters 

combination 𝛾 = 0.5 and 𝑆 = 500.  

 

The analysis of the characteristics’ coefficients of the ARD, RRD and PPP portfolios by 

out-of-sample year revealed no pattern between the value of the coefficient and the 

performance of the optimal solutions. 
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Table 7-4: Out-of-sample modified Sharpe ratio (𝑆𝐼) of the RRD, ARD, PPP, MV, 

GMV and EW portfolios  

  PPP RRD ARD MV GMV EW 

2007 -3.412E-03 -2.340E-03 -6.219E-04 1.715E+00 -5.030E-04 -1.436E-03 

2008 -8.538E-02 -4.186E-02 -3.942E-02 -8.704E-02 -4.095E-02 -5.380E-02 

2009 2.923E-01 4.385E-01 6.950E-01 -2.669E-02 2.968E-01 4.090E-01 

2010 -1.801E-03 -8.959E-03 -4.326E-04 -8.371E-03 -3.577E-03 -4.588E-03 

2011 -1.318E-02 -2.518E-02 -1.031E-02 -1.381E-02 -4.757E-03 -1.549E-02 

2012 4.840E-01 6.933E-01 7.447E-01 3.629E-01 3.515E-01 3.566E-01 

2013 1.496E+00 1.502E+00 1.471E+00 6.988E-02 2.085E-01 1.136E+00 

2014 1.414E-01 -1.559E-04 2.085E-01 8.388E-01 6.459E-01 1.299E-02 

2015 -3.351E-03 2.664E-02 -1.974E-03 6.749E-01 4.755E-01 -6.220E-05 

2016 -2.189E-03 -1.685E-03 -4.429E-04 -3.072E-03 -1.220E-03 -5.366E-04 

This table shows the out-of-sample modified Sharpe ratio (𝑆𝐼) of the optimal portfolios by out-

of-sample year. Results are presented for the in-sample period length of 17 years and the 

parameters combination 𝛾 = 0.5 and 𝑆 = 500. 

 

7.3.3.3 Effect of the in-sample period variation over the PPP portfolio 

The out-of-sample risks and returns of the PPP portfolios proposed by Brandt et al. 

(2009) were also compared in each of the out-of-sample years, according to the in-

sample period length used in their computation. Results are presented for a value of 0.5 

for the risk aversion parameter in Figure 7-5, but  general conclusions prevail for all the 

risk aversion parameter’s values under study.  

Although, the PPP17 (PPP portfolio computed using an in-sample period length of 17 

years) and the PPP6 (PPP portfolio computed using an in-sample period length of 6 

years) are very similar in some of the out-of-sample years, in terms of the location in the 

risk/return space, an important outcome can be observed. The PPP6 portfolio is a 

dominant solution comparatively to the PPP17 portfolio in 6 of the 10 out-of-sample 

years, while it presents higher out-of-sample return in 7 of the 10 out-of-sample periods 

and lower risk in 8 of the 10 out-of-sample periods under analysis. In fact, the PPP17 

portfolio is a dominant solution comparatively to the PPP6 portfolio in only 1 of the 10 

out-of-sample periods. This important observation suggests that the parametric portfolio 

policy is sensitive to the length of the in-sample period. As analysed in Table 7-2, when 
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the in-sample period length is reduced, the parametric portfolio policy tends to increase 

the representation of value firms (by increasing the value of the BTM coefficient), small 

firms (by decreasing the value of the ME coefficient) and past winners (by increasing 

the value of the MOM coefficient). 

 

Figure 7-5: Out-of-sample risks and returns of the PPP portfolio.  

 

Portfolios’ risk and return were computed by out-of-sample year and considering an in-sample 

period length of 17 years and a value of 0.5 for the risk aversion parameter.   

 

7.4 Conclusions 

In this chapter we propose a relative robust and absolute robust parametric portfolio 

policies. For the relative robust parametric portfolio approach, where the maximum 

regret is minimized, regret is defined as the utility loss for the investor resulting from 

choosing a given portfolio instead of choosing the optimal portfolio for the realized 

scenario. In the absolute robust approach, the minimum investor’s expected utility in the 

worst-case scenario is maximized. Results are analyzed for different in-sample period 

lengths and values of the risk aversion parameter, and relevant conclusions are drawn 

regarding the real benefits of the proposed methodology comparatively to the non-
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robust parametric portfolio policies presented by Brandt et al. (2009) and other 

benchmarks established in the portfolio selection theory. 

The results suggest that both absolute robust and relative robust parametric portfolio 

policies seem to marginally benefit from the use of long-term past data in order to 

estimate the input parameters. Concerning the uncertainty set cardinality, increasing the 

number of scenarios generally improves the overall performance of the ARD portfolio, 

while it seems to have no direct effect over the RRD portfolio. Regarding the PPP 

portfolio, its overall in-sample performance deteriorates when reducing the length of the 

in-sample period. Looking at out-of-sample results, an important outcome concerning 

the effect of the in-sample period length stands out. Results suggest that the parametric 

portfolio policy is sensitive to the length of the in-sample period, benefiting from its 

reduction. 

The overall results suggest that the proposed absolute robust parametric portfolio 

generally outperforms the remaining investment strategies applied in this study, in at 

least one of the performance measures considered - abnormal return, return, risk, 

modified Sharpe ratio and/or regret. These results clearly reinforce the relevance of the 

proposed absolute robust parametric portfolio policy, since previous studies have 

confirmed the good performances of both the EW benchmark (DeMiguel et al., 2009) 

and the GMV portfolio (Chan et al., 1999; Jagannathan & Ma, 2003). Although 

outperforming the PPP portfolio in many of the windows under analysis, the RRD 

portfolios do not show results as good and consistent as the ARD portfolio, since they 

are among the portfolios with the best performance in some of the windows under 

analysis and they are among the worst performing solutions in others. This was an 

unexpected finding comparatively to the results presented by Caçador et al. (2019) who 

confirmed the dominance of the relative robust approach over the absolute robust 

approach. These dissimilar outcomes suggest that the performance of the different 

robust optimization approaches is model-dependent. 

Overall, our findings confirm  that the robust methodology leads to the performance 

enhancement of known models described in the literature, specifically of the parametric 

portfolio policies presented by Brandt et al. (2009), reinforcing the relevance of robust 

optimization within the field of portfolio selection under uncertainty.  
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Chapter 8  

 

 

Final considerations 

 

 

 

The work developed and the main results achieved have been described in the preceding 

sections. We believe that our study constitutes a valuable contribution for the assertion 

of robust optimization, in particular of relative robust models, within the field of 

portfolio selection under uncertainty. Nonetheless, we are aware of the numerous 

alternative directions that could have been taken in order to deeply explore the benefits 

of applying the RO methodology to the portfolio selection theory. It is now time to 

address the main limitations of our study and to suggest directions for future research. 

We developed new robust portfolio optimization models and new robustness measures 

by extending and combining established methodologies in this field of research. By 

presenting different relative robust models under different definitions of regret, based on 

different objective functions, we examined the main contribution of the RO 

methodology when applied to portfolio optimization models subject to estimation errors 

of different magnitudes. In chapter 5, we developed a regret measure corresponding to 

the investor’s utility loss (resulting from choosing a given portfolio instead of choosing 

the optimal portfolio of the realized scenario for the uncertain parameters) using a 

CRRA utility function and its approximation given by the second order Taylor 

expansion of the expected utility function around the expected return of the portfolio. 

Both models proposed in this chapter (models A and B) used this regret measure and 

considered uncertainty in the first and second order moments of asset returns and the 

portfolio’s weights as decision variables. In chapter 7, a measure of regret based on the 

investor’s utility loss and the same CRRA utility function was also presented but, in this 

case, we considered the average utility the investor would have obtained by 

implementing the methodology over the historical sample period instead of its 
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approximation given by the second order Taylor expansion. Also, in this chapter (model 

D), the portfolio’s weights were defined as a function of the firm’s characteristics 

(hence, the model’s decision variables corresponded to the coefficients of the firm’s 

characteristics) and uncertainty was considered in the asset returns, the asset weights in 

the benchmark portfolio used and in the asset characteristics. An essentially different 

measure of regret was presented in chapter 6, where regret was defined as the increase 

in the investment risk resulting from choosing a given portfolio instead of choosing the 

optimal portfolio of the realized scenario for the uncertain parameters. In this model 

(model C), the decision variables corresponded to the portfolio’s weights and 

uncertainty was considered in the sample covariance matrix only. 

The real benefits of the robust portfolios from the investor perspective were assessed by 

examining whether the RO methodology adds value to the investment decision problem 

and mitigates the impact of the estimation errors on the computation of the optimal 

solution. All the proposed models were tested through the implementation of empirical 

applications that compared in-sample and out-of-sample performances of robust and 

non-robust portfolios, applying a large set of different performance measures. 

Furthermore, we located the computed portfolios in the risk-return space, highlighting 

the dominant strategies from the set of the implemented strategies in each chapter. For 

each of the proposed robust portfolios, we used its non-robust counterpart, as well as 

other non-robust and robust portfolios, as benchmarks in the performance assessment in 

order to analyze whether the robust methodology allowed the improvement of the 

performance of current models available in the literature. We confirmed that the 

proposed robust portfolios generally outperform the non-robust benchmarks 

implemented in our study, with the exception of the GMV portfolio. Furthermore, the 

proposed robust portfolios are generally more robust (concerning utility loss for the 

investor) and provide more consistent results (between in-sample and the out-of-sample 

performances) comparatively to the non-robust benchmarks. These results were also 

verified when the proposed robust portfolios were compared with other robust solutions 

already described in the literature. Overall, the empirical evidences found in our study 

support the potential of the RO methodology in the mitigation of the estimation errors 

on the computation of the optimal solution. We also examined the relevance of the 

proposed robust models for different levels of the investor’s risk preference. This 

analysis confirmed the main strengths of the new methodologies proposed that can be 
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seen as valid alternatives for those investors who can be more affected by the 

methodological weakness of the classical MV strategy. Finally, we investigated the 

effect of considering uncertainty sets with different number of scenarios as well as long-

term historical data over short-term historical data in the definition of the uncertainty set 

by estimating samples and in-sample sets of different lengths. The empirical evidences 

showed that reducing the in-sample period length seems to have no substantial effect 

either in the exposure of the proposed robust portfolios to individual assets or in the 

consistency of their out-of-sample results. These outcomes highlight the utility of the 

proposed robust models in the presence of limited data. The use of the GA played an 

essential role in this latter analysis. The evolutionary algorithm was fundamental to 

overcome the difficulties raised by computational complexity of the robust portfolio 

optimization problems and to explore more parameter combinations without sacrificing 

the computational times and the research objectives.  

The relative robust and the absolute robust approaches were compared by analyzing the 

performance of relative robust and absolute robust portfolios, emphasizing their main 

advantages and limitations. Generally, no substantial differences concerning the 

performances of the relative robust portfolio and the corresponding absolute robust 

portfolio were found. Both relative robust and absolute robust strategies generated 

robust solutions that were highly diversified and showed similar (low) risk, similar 

consistency between in-sample and out-of-sample results and similar robustness in 

terms of utility loss for the investor.  Nonetheless, in some of the developed works, the 

general dominance of the relative robust approach over the absolute robust approach 

was confirmed, while in others the opposite was found. These dissimilar outcomes 

observed among the relative robust model and the corresponding absolute robust model, 

defined for different objective functions and subject to estimations errors of different 

magnitudes, suggest that the overperformance of one of the robust optimization 

approaches comparatively to the other is model-dependent.  

It is important to notice that the results that were presented and previously outlined were 

obtained for a particular asset class. We used the stocks in the constituent list of two of 

the most important indices of Europe: the Dax and the EURO STOXX 50 indexes. 

Hence, it is not possible to generalize our results to other asset classes due to the 

particular characteristics of these assets. We consider this the major limitation of our 

study. But that are other limitations that deserve our attention. The datasets used in the 
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empirical applications had a small number of assets: between 19 and 28 for the dataset 

constructed with the assets in the constituent list of the DAX index  and between 28 and 

48 for the datasets constructed with the assets in the constituent list of the EURO 

STOXX 50 index. While considered a limitation, the selection of stocks in the 

constituent list of market indices is a common practice in the portfolio selection 

literature. In particular, the selection of indices with a small number of stocks reduces 

the dimensionality of the optimization problem and, thus, the computational time 

necessary to compute the optimal solutions. We highlight one other limitation related to 

the confirmation of our results. We did not perform the analysis of the statistical 

significance of the differences found between the performance of the proposed robust 

portfolios and the performance of the benchmarks used in this study. Two main reasons 

explain this decision. The first reason lies in the characteristics of the OS periods. We 

used annual OS periods and computed annualized performance measures, resulting in an 

insufficient number of observations to that end. Increasing the number of time windows 

was also not possible, since we used a risk-free asset that has data only available from 

September 2004 onwards for computing the modified Sharpe ratios. The second reason 

is related to the main objectives of our study. We were not overly concerned with the 

statistical significance of the differences that were found; instead we were more 

concerned in analyzing the behavior of the proposed robust methodologies, in 

comparison with alternative robust and non-robust methodologies, and we feel that we 

were already doing it by using a large set of different performance measures.  

Future research will focus on overcoming some of the limitations previously described. 

Namely, in analysing the performance of the proposed robust methodologies in different 

datasets: with a larger number of assets, with different asset classes. Furthermore, we 

intend to deeply analyze the behavior of the proposed robust methodologies with 

lengthier series of asset prices, allowing us to calculate the statistical differences 

between the performance measures. We are also interest in deeply analyzing the 

characteristics of the assets that are selected by the non-robust and the proposed robust 

models in order to understand their similar, yet different, performances.  

While the RO methodology is gaining significant relevance within the theory of 

portfolio selection under uncertainty, we believe that it has not yet been used to its full 

potential in this field of research. We hope that this study will contribute to enhance its 
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dissemination among quantitative portfolio managers and its use by general decision 

makers.  
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