

Maria de Fátima Alves de Pina

SMOOTHING AND INTERPOLATION ON THE

ESSENTIAL MANIFOLD

Tese no âmbito do Programa Interuniversitário de Doutoramento em
Matemática, orientada pela Professora Doutora Maria de Fátima da Silva

Leite e apresentada ao Departamento de Matemática da Faculdade de
Ciências e Tecnologia da Universidade de Coimbra.

Março de 2020

Smoothing and Interpolation on the
Essential Manifold

Maria de Fátima Alves de Pina

UC|UP Joint PhD Program in Mathematics

Programa Interuniversitário de Doutoramento em Matemática

PhD Thesis | Tese de Doutoramento

March 2020

Acknowledgements

I would like to express my deep gratitude to Professor Maria de Fátima da Silva Leite, for her entire
availability, for all the suggestions and comments throughout the preparation of this work, for her
friendly support, for the ever-present encouragement, for her unconditional understanding and for all
the scientific knowledge shared, that would not otherwise reach. I am extremely grateful for all her
invaluable advices, enthusiasm and continuous guidance over the past years, and there’s no enough
words to express my acknowledgment. For everything, Thank you Doutora Fátima.

My next acknowledgment is dedicated to my closest family, my parents and my brother, for such
a perennial patience and understanding, for all the support, for the affection and for all the motivation.
An acknowledgment is likewise expressed for the rest of my family and for all my friends.

I also would like to thank the present and past steering committees of the UC|UP PhD Program in
Mathematics, and express a special acknowledge to all the Professors that cross my academic path
and contributed to the improvement of my scientific knowledge.

I would like to thank the Department of Mathematics of the University of Coimbra, the Center for
Mathematics of the University of Coimbra and the Institute of Systems and Robotics of the University
of Coimbra for the support provided during this work.

I also acknowledge Fundação para a Ciência e a Tecnologia (FCT-Portugal) and COMPETE 2020
Program through project UID-EEA-00048-2013 and OE - national funds of FCT/MCTES (PIDDAC)
under project UID/EEA/00048/2019, for financial support for this work.

Abstract

Interpolating data in non-Euclidean spaces plays an important role in different areas of knowledge.
The main goal of this thesis is to present, in detail, two different approaches for solving interpolation
problems on the Generalized Essential manifold Gk,n× SO(n), consisting of the product of the
Grassmann manifold of all k-dimensional subspaces of Rn and the Lie group of rotations in Rn. The
first approach to be considered is a generalization to manifolds of the De Casteljau algorithm and the
second is based on rolling motions.

In order to achieve our objective, we first gather information of all the essential topics of Rie-
mannian geometry and Lie theory necessary for a complete understanding of the geometry of the
fundamental manifolds involved in this work, with particular emphasis on the Grassmann manifold
and on the Normalized Essential manifold.

To perform the De Casteljau algorithm in the manifold Gk,n×SO(n) we adapt a procedure already
developed for connected and compact Lie groups and for spheres, and accomplish the implementation
of that algorithm, first for the generation of geometric cubic polynomials in the Grassmann manifold
Gk,n, and then extending it to generate cubic splines in the same manifold. New expressions for the
velocity vector field along geometric cubic polynomials and for its covariant derivative are derived in
order to obtain admissible curves that also fulfil appropriate boundary conditions.

To solve the interpolation problem using the second approach, we propose an algorithm inspired
in techniques that combine rolling/unrolling with unwrapping/wrapping, but accomplishing the
objective using rolling motions only. Interpolating curves given in explicit form are obtained for
the manifold Gk,n×SO(n), which also prepares the ground for applications using the Normalized
Essential manifold. The definition of rolling map is a crucial tool in this approach. We present a
geometric interpretation of all the conditions present in that definition, including a refinement of
the non-twist conditions which allows to prove interesting properties of rolling and, consequently,
simplifies the study of rolling motions. In particular, the non-twist conditions are rewritten in terms of
parallel vector fields, allowing for a clear connection between rolling and parallel transport. When
specializing to the rolling manifold Gk,n×SO(n) the definition of rolling map is adjusted in order
to avoid destroying the matrix structure of that manifold. We also address controllability issues for
the rolling motion of the Grassmann manifold Gk,n. In parallel with a theoretical proof, we present
a constructive proof of the controllability of the kinematic equations that describe the pure rolling
motions of the Grassmann manifold Gk,n over the affine tangent space at a point.

We make connections with other known approaches to generate interpolating curves in manifolds
and point out some directions for future work.

Resumo

A interpolação de dados em espaços não Euclidianos desempenha um papel importante em diferentes
áreas do conhecimento. O objetivo principal desta tese é apresentar, em detalhe, duas abordagens
diferentes para resolver problemas de interpolação na variedade Essencial Generalizada Gk,n×SO(n),
que consiste no produto cartesiano da variedade de Grassmann formada por todos os subespaços
k-dimensionais de Rn e o grupo de Lie das rotações em Rn. A primeira abordagem a ser considerada
é uma generalização para variedades do algoritmo de De Casteljau e a segunda é baseada em certos
movimentos de rolamento.

A fim de alcançar o nosso objetivo, primeiro reunimos informações de todos os tópicos essenciais
de geometria Riemanniana e de teoria de Lie necessários para uma completa compreensão da geome-
tria das variedades fundamentais envolvidas neste trabalho, com particular ênfase na variedade de
Grassmann e na variedade Essencial Normalizada.

Para implementar o algoritmo de De Casteljau na variedade Gk,n×SO(n), adaptamos um pro-
cedimento já conhecido para grupos de Lie conexos e compactos e para esferas, e realizamos a
implementação desse algoritmo, primeiro para a geração de polinómios geométricos cúbicos na
variedade de Grassmann Gk,n, e depois estendemo-lo para gerar splines cúbicos na mesma variedade.
São deduzidas novas expressões para o campo de vetores velocidade ao longo dessas curvas e para
a sua derivada covariante, a fim de obter curvas admissíveis que também satisfaçam condições de
fronteiras apropriadas.

Para resolver o problema de interpolação utilizando a segunda abordagem, propomos um algoritmo
inspirado em técnicas que combinam rolling/unrolling com unwrapping/wrapping, mas cumprindo
o objetivo utilizando apenas movimentos de rolamento. As curvas de interpolação para a variedade
Gk,n×SO(n) são obtidas de forma explícita, o que também prepara o terreno para aplicações utilizando
a variedade Essencial Normalizada. A definição de aplicação rolamento é uma ferramenta crucial
nesta abordagem. Apresentamos uma interpretação geométrica de todas as condições presentes nessa
definição, incluindo um refinamento das condições de non-twist o que permite provar propriedades
interessantes de rolamento e, consequentemente, simplifica o estudo dos movimentos de rolamento.
Em particular, as condições de non-twist são reescritas em termos de campos vectoriais paralelos,
permitindo uma ligação clara entre o rolamento e o transporte paralelo. Quando é especificada para a
variedade de rolamento Gk,n×SO(n), a definição de aplicação rolamento é ajustada de forma a evitar
destruir a estrutura matricial dessa variedade. Também abordamos questões de controlabilidade para
o movimento de rolamento da variedade de Grassmann Gk,n. Em paralelo com uma prova teórica,
apresentamos uma prova construtiva da controlabilidade das equações da cinemática que descrevem
os movimentos de rolamento puro da variedade de Grassmann Gk,n sobre o espaço afim associado ao
espaço tangente num ponto.

viii

Estabelecemos algumas relações com outras abordagens conhecidas para gerar curvas interpolado-
ras em variedades e apresentamos algumas direções para o trabalho futuro.

Table of contents

List of figures xi

1 Introduction 1

2 Preliminary Concepts 5
2.1 Riemannian Metric . 5
2.2 Riemannian Connection and Covariant Derivative 8
2.3 Parallel and Normal Transport . 11
2.4 Geodesics, Distances and Geodesic Completeness 13
2.5 Lie Algebras, Lie Groups and Group Actions . 16
2.6 Matrix Lie Groups . 18

3 The Geometry of our Fundamental Manifolds 25
3.1 The Geometry of the Rotation Group SO(n) . 25
3.2 The Geometry of the Grassmann Manifold Gk,n . 27

3.2.1 Tangent and Normal Spaces . 34
3.2.2 Geodesics and Geodesic Distance . 37
3.2.3 Representing Images by Points in a Grassmann Manifold 39

3.3 Riemannian Structure of the Manifold Gk,n×SO(n) 40
3.3.1 Geodesics and Geodesic Distance . 41

3.4 The Normalized Essential Manifold . 42
3.4.1 Geometric Formulation . 42
3.4.2 Riemannian Structure of the Normalized Essential Manifold 43

4 Polynomial Interpolation using the De Casteljau Algorithm 47
4.1 Introduction . 47

4.1.1 Literature Review . 48
4.1.2 Main Contributions . 48

4.2 Formulation of the Interpolation Problem on Manifolds 49
4.3 Cubic Polynomials in Manifolds, using De Casteljau Algorithm 50

4.3.1 Cubic Polynomials in Rm . 51
4.4 Implementation of the De Casteljau Algorithm in Gk,n 54
4.5 Generating Cubic Splines in Gk,n . 70

4.5.1 Generating the First Spline Segment γ1 . 70

x Table of contents

4.5.2 Generating Consecutive Spline Segments 71
4.6 Cubic Polynomials and Cubic Splines in SO(n) . 71
4.7 Solving the Interpolation Problem for the Normalized Essential Manifold 72

5 Rolling Riemannian Manifolds 73
5.1 Introduction . 73

5.1.1 Literature Review . 74
5.1.2 Main Contributions . 74

5.2 General Definition of Rolling Map . 75
5.2.1 Geometric Interpretation of the Rolling Map Conditions 77
5.2.2 Rolling and Parallel Transport . 82
5.2.3 Properties of Rolling Motions . 83

5.3 Rolling Euclidean Submanifolds . 86
5.3.1 Structure of the Kinematic Equations of Rolling 88
5.3.2 Parallel Transport . 89

5.4 Rolling Gk,n×SO(n) . 90
5.4.1 The Kinematic Equations of Rolling . 92
5.4.2 An Important Observation . 96
5.4.3 Rolling Gk,n×SO(n) along Geodesics . 99

5.5 Controllability Aspects of Rolling Motions . 101
5.5.1 Controllability of the Kinematic Equations for the Pure Rolling of Gk,n . . . 101
5.5.2 Constructive Proof of Controllability for the Grassmann Manifold 105

6 Solving Interpolation Problems using Rolling Motions 111
6.1 Introduction . 111

6.1.1 Literature Review . 111
6.1.2 Main Contributions . 112

6.2 Formulation of the Interpolation Problem on Manifolds 112
6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces . . . 113

6.3.1 Algorithm to Solve the Interpolation Problem when M = Rm 113
6.3.2 Solving the Interpolation Problem when M1 = Gk,n×SO(n) 116

6.4 Implementation of the Interpolation Algorithm in Gk,n×SO(n) 120
6.4.1 Implementation in SO(n) . 121
6.4.2 Implementation in Gk,n . 122

6.5 Implementation of the Algorithm in the Normalized Essential Manifold 124

7 Final Remarks: Related Work and Future Research Directions 127
7.1 Variational Approach to Solve Interpolation Problems 127
7.2 Rolling Motions of Riemannian Symmetric Spaces 128
7.3 Modified De Casteljau Algorithm for Other Riemannian Manifolds 129

References 131

List of figures

3.1 Geometry between two views of the same scene structure. 42

4.1 Cubic polynomial defined by the De Casteljau algorithm in Rm. 52

5.1 Illustration of the rolling conditions for the rolling of the 2-sphere embedded in R3. . 78
5.2 Development curve that performs a twist. 107
5.3 Triangle showing the development curve for the rolling map that generates a slip from

P0 to Q1. 108

6.1 Illustration of (6.5) for the rolling 2-sphere. 114

xi

Chapter 1

Introduction

Solving interpolation problems involving data on manifolds is a hot topic in a growing number of
applications in different areas of our society, ranging from computer vision and robotics, to industrial
and medical applications (see, for instance, Bressan [8]). Research in these areas has been booming
over the past few years and is continuously getting new insights from the rigour of mathematics, in
particular from methods and technics of Differential Geometry.

Computer vision, for instance, is a challenging topic which is being used in a wide variety of
real world applications, such as earth observation, optical character recognition, 3D model building,
medical imaging, machine inspection, automotive safety, match move, motion capture, surveillance,
fingerprint recognition and biometrics. We refer, for instance, Szeliski [71] and references therein for
details concerning multiple applications in this area. The problem of recovering structure and motion
from a sequence of images, also known as stereo matching, is also a crucial problem in computer
vision and continues to be one of the most active research areas with remarkable progress in imaging
and computing hardware (see also Ma et al. [50]).

The real applications previously mentioned served as a motivation for our study about interpolation
problems in the Generalized Essential manifold Gk,n×SO(n), which is the cartesian product of the
real Grassmann manifold Gk,n, consisting of all k-dimensional (linear) subspaces of Rn, and SO(n),
the group of rotations in Rn. One particular case of this is the Normalized Essential manifold,
corresponding to k = 2 and n = 3, which plays an important role in image processing. The classical
problem of reconstructing a scene, or a video, from several images of the scene can be formulated
as an interpolation problem on that manifold, since it encodes the epipolar constraint. Typically, it
is given an ordered set of time-labeled essential matrices, E1, . . . ,En relating n different consecutive
camera views (snapshots), and the objective is to calculate a continuum of additional virtual views by
computing a smooth interpolating curve through the Ei’s, i = 1, . . . ,n.

Although the existence in the literature of different methods for solving interpolation problems in
manifolds, in this thesis we explore two distinct approaches for the Generalized Essential manifold.
The first one, in Chapter 4, is a generalization of the classical De Casteljau algorithm for Riemannian
manifolds, which is a powerful tool widely used to, recursively, generate interpolating polynomial
curves on manifolds. The second one, in Chapter 6, is based on rolling motions of one manifold
over another one which is static, and it is inspired by the work of Hüper and Silva Leite [31]. This
approach allows to solve, efficiently, interpolation problems on manifolds using rolling techniques. By

1

2 Introduction

choosing the static manifold to behave like an Euclidean space, it is possible to transform a difficult
problem on a curved space into an easy problem on a flat space.

For both approaches presented here, the knowledge of explicit formulas for the geodesic that
joins two points on the manifolds under study was crucial to solve explicitly the interpolation data
problems.

There is a considerable number of papers showing applications of cubic splines in the aerospace
and robotics industries, related to air traffic control and path planning. In this context, the manifold
SO(3) plays a crucial role since the configuration space of most mechanical systems, such as airplanes,
underwater vehicles and robots, has components represented by rotations in R3. Most algorithms to
generate smooth paths on that manifold are based on the classical De Casteljau approach in R4, since
3-dimensional rotations can be represented by quaternions. Examples of that are the pioneer work
Shoemake [70] and, for instance, Kim et al. [40], Kang and Park [39], Popiel and Noakes [66], just to
name a few.

There are other engineering problems where rolling methods have been used successfully. We
mention, for instance, Caseiro et al. [12] for an application of rolling to solve multi-class classification
problems in computer vision, Batista et al. [4] to solve object recognition problems across dynami-
cally evolving datasets, and Vemulapalli and Chellapa [72] for an application of rolling rotations to
recognizing human actions from 3D skeletal data.

This thesis is organized in the following way. After this introductory chapter that started with a
motivation based on potential areas of real applications, we proceed with two preliminary chapters
containing the necessary background to help fully understanding the main results in subsequent
chapters and to make this work more self-contained. These are followed by three chapters where the
principal original results are presented, and a final shorter chapter with some remarks to future work
and related problems. The three main chapters, always start with a short introduction, followed by
some literature review, and our contributions to the problems under study.

Next, we give a more detailed outline about the contents of each chapter after the introduction.

In Chapter 2 we recall some essential topics of Riemannian geometry and Lie theory that will be
used throughout the thesis. We start with the notions of Riemannian metric, Riemannian manifold,
Riemannian connection, covariant derivative, parallel and normal transport of vector fields. After
that we review the concepts of geodesics, distances, geodesic completeness, Lie algebras, Lie groups,
group actions, and give particular attention to the description of some properties of matrix Lie groups.

The Chapter 3 is dedicated to study the geometry of the Riemannian manifolds that will play
the main role in this thesis. Particular emphasis on the Grassmann manifold and on the Normalized
Essential manifold is considered. Although regarded as a preliminary chapter, we also present here
some results that, to the best of our knowledge, are new. The importance of the Grassmann manifold
in certain applications dealing with nonlinear data based on images is also highlight.

In Chapter 4, using the classical De Casteljau algorithm and its generalization to geodesically
complete Riemannian manifolds, we present solutions of an interpolation problem that generalize
cubic splines in Euclidean spaces, and pay particular attention to problems with two different types of

3

boundary conditions, the well-known Hermite boundary conditions, and the set of boundary conditions
consisting of initial and final points, initial velocity and initial covariant acceleration.

Further, inspired by Crouch et al. [13], a review of the algorithm to generate cubic polynomials in
the Euclidean space Rm is presented, followed by a detailed description and implementation of that
algorithm for the Grassmann manifold Gk,n, using recursive geodesic interpolation. Geometric cubic
splines are generated from cubic polynomials for the later manifold. This generation is immediate for
the second type of boundary conditions but not for those of Hermite type, which are more natural from
the point of view of applications. To overcome this difficulty, we show how each type of boundary
conditions are related to each other for the interpolation problem in Gk,n, and briefly review the
interpolation problem in SO(n), which has been studied in Crouch et al. [13], in order to extend the
results to Gk,n×SO(n) and, in particular, to the Normalized Essential manifold. The results of this
chapter have been published recently in Pina and Silva Leite [65] and a shorter version, Pina and Silva
Leite [64], has just been submitted.

Chapter 5 looks into the problem of rolling, without slipping and without twisting, two connected
and oriented manifolds of the same dimension, both isometrically embedded in the same Riemannian
complete manifold. One of the embedded manifolds is the rolling manifold and the other is the
static manifold. These rolling motions can be considered as generalizations of rigid body motions,
subject to additional holonomic and nonholonomic constraints. The chapter starts with the definition
of rolling map for manifolds embedded in a general Riemannian manifold, and with a geometric
interpretation of the rolling conditions (holonomic constraints) and of the non-slip and non-twist
conditions (nonholonomic constraints). Using the geometric interpretation of the non-twist conditions,
a clear connection between rolling and parallel transport is fulfilled. Some interesting properties that
allow to reduce the study of any rolling motion to the case where the static manifold is the affine
tangent space at a point of the rolling manifold are also presented. Motivated by the particular situation
when the embedding manifold is an Euclidean space, the general structure for the kinematic equations
of rolling Gk,n×SO(n) is given. The particular case when k = 2 and n = 3, i.e., the rolling motion of
the Normalized Essential manifold that plays an important role in the area of Vision follows from
the previous. Results for the later case have been published in Machado et al. [51]. This chapter
ends with the study of the controllability of the kinematic equations describing the rolling motion
of Grassmann Manifolds over the affine tangent space at a point. These kinematic equations, which
can be seen as a nonlinear nonholonomic control system evolving on a certain Lie group, are proved
to be controllable in some subgroup of the group of isometries of the embedding space of the two
manifolds. Moreover, a constructive proof of controllability of the rolling motion by showing that all
admissible configurations can be recovered by motions that do not violate the non-slip and non-twist
constraints is presented. These results have also been published in Pina and Silva Leite [63].

In Chapter 6, taking advantage of the developments and results in the previous chapter, we
present a simpler approach to solve interpolation problems based only on rolling motions. The basic
idea of this method is projecting the data from the original non-Euclidean manifold to a simpler
manifold, where the problem can be easily solved, and then reversing the process by projecting the
resulting interpolation curve to the original manifold. This procedure, that combines techniques of
unwrapping/wrapping with rolling/unrolling, can be done successfully using rolling motions of the
given manifold over its affine tangent space at a point, and it produces an interpolating curve that is

4 Introduction

given in closed form. For the sake of simplicity, in this chapter, we only give details for a C 2-smooth
interpolating curve that solves a two-boundary value problem of Hermite type, but more general
problems can be solved in a similar way, although computationally more expensive. Further, we
also confirm that the proposed algorithm works for the manifold Gk,n×SO(n), preparing the ground
for applications in the Normalized Essential manifold, and the unwrapping/wrapping techniques of
the presented algorithm are performed with rolling maps. So, contrary to previous works, the main
contribution in this chapter is that we present an implementation of the interpolation algorithm which
is entirely based on rolling motions.

Chapter 7 briefly addresses related work and also points out some open problems and directions
for future research.

Chapter 2

Preliminary Concepts

In this chapter we recall some important preliminary concepts, including essential topics of Riemannian
geometry and Lie theory that will be used throughout the thesis.

The main references used to construct this chapter were the following: Bishop [7], do Carmo [18],
Duistermaat and Kolk [19], Lee [47] and O’Neill [61], for details concerning Riemannian manifolds,
Lie groups and Lie algebras; Absil et al. [1] and Horn and Johnson [27], for topics related with matrix
analysis.

2.1 Riemannian Metric

Let M be a smooth manifold of finite dimension. If p ∈M, we denote by TpM the tangent space of
M at p and by T M the tangent bundle of M, which is the disjoint union of all tangent spaces, i.e.,
T M =

⋃
p∈M TpM, while X(M) denotes the set of all smooth vector fields on M.

The tangent space TpM of M at p is defined as the set of all tangent vectors at the point p, and for
different, but equivalent, definitions of the concept of a tangent space we mention, for instance, Jänich
[33]. We emphasize that, in this work, we will consider two possible approaches of this concept. An
algebraic definition, where briefly, tangent vectors are regarded as derivations acting on real-valued
functions on M, and a geometric definition, where the tangent space TpM of M at p is naturally
identified with the vector space of velocity vectors of differentiable curves in M passing through p at
t = 0, i.e.,

TpM = {γ̇(0) : γ : J→M smooth curve in M and γ(0) = p} ,

where, J ⊂ R is an arbitrary small open interval with 0 ∈ J. Whenever convenient, we consider that γ

is defined on a closed interval J = [a,b], which means that γ = γ̃|[a,b], where γ̃ is a smooth curve in M
defined on an open interval containing J = [a,b].

Let f : M→ N be a smooth map between two smooth manifolds M and N of finite dimension.
The pushforward or differential of f at a point p ∈M, will be denoted by dp f and is the linear map
defined as follows

dp f : TpM −→ Tf (p)N

Xp 7−→ dp f (Xp) =
d
d t

∣∣∣∣
t=0

f (α(t)),
(2.1)

where t 7→ α(t) is a smooth curve in M, satisfying α(0) = p and α̇(0) = Xp.

5

6 Preliminary Concepts

In the course of this work, unless otherwise stated, the manifolds will always be assumed to be of
finite dimension.

Definition 2.1.1 A Riemannian metric on a smooth manifold M is a covariant 2-tensor field g on M
that is symmetric (i.e., g(X ,Y) = g(Y,X), for all X ,Y ∈X(M)), and positive definite (i.e., g(X ,X)> 0,
if X ̸= 0).
A Riemannian manifold is a pair (M,g), where M is a smooth manifold and g is a Riemannian metric
on M.

Whenever there is no ambiguity about the Riemannian metric, the Riemannian manifold (M,g) will
be simply denoted by M.

A Riemannian metric g on M determines an inner product on each tangent space TpM, given by
the nondegenerate bilinear form

gp : TpM×TpM −→ R

(Xp,Yp) 7−→ gp(Xp,Yp),
(2.2)

satisfying

• gp(Xp,Yp) = gp(Yp,Xp); (Symmetry)

• gp(Xp,Xp)≥ 0, and gp(Xp,Xp) = 0, if and only if, Xp = 0. (Positive definiteness)

Therefore, we may use the notation ⟨., .⟩p for the inner product on each tangent space TpM
associated with the metric g, that is, ⟨Xp,Yp⟩p := gp(Xp,Yp), and when it is clear from the context, for
simplicity of notation, we will drop the index p.

Similarly to the Euclidean geometry, if p is a point in a Riemannian manifold (M,g), the length
or norm of any tangent vector Xp ∈ TpM is defined by ∥Xp∥ := ⟨Xp,Xp⟩

1
2 . Moreover, unless otherwise

specified, the angle between two non zero vectors Xp,Yp ∈ TpM is defined as the unique angle θ ∈ [0,π]
satisfying cosθ = ⟨Xp,Yp⟩/(∥Xp∥∥Yp∥) and the vectors Xp and Yp are said orthogonal if their angle is
π/2, or equivalently, if ⟨Xp,Yp⟩= 0. The vectors X1, . . . ,Xk ∈ TpM are called orthonormal if they have
length one and are pairwise orthogonal, or equivalently, if ⟨Xi,X j⟩ = δi j, where δi j, i, j = 1, . . . ,k,
denotes the Kronecker delta function.

Example 2.1.1 One obvious example of a Riemannian manifold is Rm with its Euclidean metric,
which is just the usual inner product on each tangent space, under the natural identification TpRm ∼=
Rm.

Example 2.1.2 Let gl(n) be the set of all n× n matrices with real entries. This set can be easily
identified with Rn2

as follows:

A =
[

a1 a2 . . . an

]
∈ gl(n) ←→ vec(a) =

a1

a2
...

an

 ∈ Rn2

2.1 Riemannian Metric 7

where a1,a2, . . . ,an denote the columns of A. With this identification, the Euclidean metric ⟨., .⟩ of Rn2

can be rewritten, in matrix notation, by:

⟨vec(a),vec(b)⟩= tr(A⊤B), (2.3)

with A, B ∈ gl(n) and where tr(.) denotes the trace of the matrix within the parenthesis.

According with (2.3), the Euclidean metric on gl(n) defined by

⟨A,B⟩= tr(A⊤B), (2.4)

is, usually, called Frobenius metric, and gl(n) with this metric is a Riemannian manifold.

Remark 2.1.1 If (M1,g1) and (M2,g2) are Riemannian manifolds, the product manifold M1×M2

has a natural Riemannian metric g = g1⊕g2, called the product metric, defined by

g(p1,p2)(X1 +X2,Y1 +Y2) = g1 p1
(X1,Y1)+g2 p2

(X2,Y2), (2.5)

where Xi,Yi ∈ TpiMi, i = 1,2, under the natural identification T(p1,p2)(M1×M2) = Tp1M1⊕Tp2M2.

If (M1,g1) and (M2,g2) are two Riemannian manifolds with the same dimension, a diffeomorphism
φ from M1 to M2 is called an isometry if φ ∗g2 = g1, where φ ∗ denotes the pullback of φ . That is, if for
all points p ∈M1 and any tangent vectors X1,Y1 ∈ TpM1, one has g1(X1,Y1) = g2 (dpφ(X1),dpφ(Y1)),
where dpφ denotes the pushforward or differential of φ at p. Also, (M1,g1) and (M2,g2) are isometric
if there exists an isometry between them. It is easy to verify that being isometric is an equivalence
relation on the class of Riemannian manifolds. The Riemannian geometry is concerned primarily with
properties that are preserved by isometries. An isometric embedding of (M,g) in a manifold (M,g) is
a smooth embedding φ : M→M that preserves the Riemannian metric, that is φ ∗g = g.

An isometry φ : M→M is called an isometry of M. Furthermore, since a composition of isometries
and the inverse of an isometry are again isometries, the set of isometries of M forms a group, called
the isometry group of M, usually denoted by Isom(M).

Example 2.1.3 The isometry group of the Euclidean space Rm is the special Euclidean group SE(m).
This is the group of rigid motions in Rm that preserve orientation, and it can be described by rotations
and translations, since SE(m) = SO(m)nRm, where n denotes the semi-direct product and SO(m)

the group of special orthogonal matrices. We will represent elements of SE(m) as pairs (R,s), where
R ∈ SO(m), s ∈ Rm.

Remark 2.1.2 Let M be an (immersed) submanifold of a Riemannian manifold (M,g) and ı : M ↪→M
the inclusion map. The induced metric on M is the 2-tensor g = ı∗(g), which is the restriction of g to
vectors tangent to M. Since the restriction of an inner product is itself an inner product, g defines a
Riemannian metric on M. Then (M,g) is a Riemannian submanifold of (M,g) and ı is an isometric
embedding.

8 Preliminary Concepts

2.2 Riemannian Connection and Covariant Derivative

We start this section by introducing some notations that will be necessary for the right understanding
of some further concepts. As before, M is a smooth manifold and X(M) the set of all smooth vector
fields on M. Let C ∞(M) denote the algebra of all C ∞ real-valued functions on M and, furthermore, if
X ,Y ∈ X(M) and f ∈ C ∞(M), then

(a) X f denotes the smooth real function on M defined by (X f)(p) := Xp(f);

(b) f X denotes the smooth vector field on M defined by (f X)p := f (p)Xp;

(c) [X ,Y] denotes the smooth vector field on M defined by

[X ,Y]p(f) := Xp(Y f)−Yp(X f). (2.6)

It is known that the set of all smooth vector fields on M, equipped with the Lie bracket [., .] defined in
(2.6) forms a Lie algebra.

Definition 2.2.1 A linear connection ∇ on a smooth manifold M is a map

∇ : X(M)×X(M)−→ X(M)

(X ,Y) 7−→ ∇(X ,Y) = ∇XY
(2.7)

that satisfies the following three properties:

1. ∇XY is linear over C ∞(M) in X, i.e.,

∇f1X1+ f2X2Y = f1∇X1Y + f2∇X2Y, for f1, f2 ∈ C ∞(M);

2. ∇XY is R-linear in Y , i.e.,

∇X(a1Y1 +a2Y2) = a1∇XY1 +a2∇XY2, for a1,a2 ∈ R;

3. ∇ satisfies the following product rule:

∇X(fY) = f ∇XY +(X f)Y, for f ∈ C ∞(M).

The vector field ∇XY is called the covariant derivative of Y in the direction of X.

A linear connection on M is also frequently called affine connection on M, or simply connection
on M. Notice that, although a linear connection on M satisfies the product rule mentioned above, since
it is not linear over C ∞(M) in Y , it is not a tensor field. By definition, a linear connection on M is
a way to compute covariant derivatives of vectors fields on M and, it is possible to show that, every
smooth manifold admits a linear connection (see, for instance, Lee [47]).

During this work, given X ∈X(M) and f ∈ C ∞(M), the notation ∇X f will also be used, whenever
convenient, for the directional derivative of f in the direction of X , usually denoted by X f .

Definition 2.2.2 Let (M,g) be a Riemannian manifold. A linear connection on M is said to be:

2.2 Riemannian Connection and Covariant Derivative 9

1. Compatible with the metric g if it satisfies, for all vector fields X ,Y,Z ∈X(M), the product rule:

∇X⟨Y,Z⟩= ⟨∇XY,Z⟩+ ⟨Y,∇X Z⟩. (2.8)

2. Symmetric if, for all vector fields X ,Y ∈ X(M),

[X ,Y] = ∇XY −∇Y X . (2.9)

The next result is a well-known outcome of Riemannian Geometry and its proof can be found, for
instance, in do Carmo [18].

Theorem 2.2.1 (Fundamental Theorem of Riemannian Geometry) Let (M,g) be a Riemannian
manifold. There exists a unique linear connection ∇ on M, that is compatible with the metric g and
symmetric.

The connection mentioned in the Theorem 2.2.1 is called the Riemannian connection or the
Levi-Civita connection of g (or, alternatively, on M (with respect to the metric g)).

Let us now consider (U,x) a local coordinate chart of M in p ∈ M, with local coordinates

x = (x1, . . . ,xm). For the local coordinate vector fields
∂

∂xi
, i = 1, . . . ,m, it holds that,

∇
∂

∂xi

∂

∂x j
=

m

∑
k=1

Γ
k
i j

∂

∂xk
, i, j = 1, . . . ,m, (2.10)

where the m3 smooth functions Γk
i j defined on U are called the Christoffel symbols of the connection

in these coordinates. Furthermore,

Γ
k
i j =

1
2

m

∑
l=1

gkl
(

∂

∂xi
g jl +

∂

∂x j
gli−

∂

∂xl
gi j

)
, (2.11)

where, for i, j = 1, . . . ,m, gi j := ⟨ ∂

∂xi
,

∂

∂x j
⟩ and gi j denote the entries of the inverse matrix of the

matrix [gi j]1≤i, j≤m. Notice that, gi jg jk = δik, where δik, i,k = 1, . . . ,m, denotes the Kronecker delta
function.

Therefore, taking into account the properties present in the Definition 2.2.1, if X , Y ∈ X(U) are

given by X =
m

∑
i=1

X i ∂

∂xi
and Y =

m

∑
j=1

Y j ∂

∂x j
, then in local coordinates

∇XY =
m

∑
k=1

(
XY k +

m

∑
i, j=1

X iY j
Γ

k
i j

)
∂

∂xk
. (2.12)

Example 2.2.1 Let x1, . . . ,xm be the standard coordinates of Rm, X ,Y ∈ X(Rm), with Y =
m

∑
i=1

Y i ∂

∂xi
,

and ∇XY ∈ X(Rm) the vector field on Rm defined by

(∇XY)p =
m

∑
i=1

Xp(Y i)
∂

∂xi

∣∣∣
p
,

10 Preliminary Concepts

where Xp(Y i) = (XY i)(p) is the directional derivative of Y i in the direction of X at the point p.
The map

∇ : X(Rm)×X(Rm)−→ X(Rm)

(X ,Y) 7−→ ∇(X ,Y) = ∇XY =
m

∑
i=1

(XY i)
∂

∂xi

is a linear connection on Rm, called the Euclidean connection. Note that the Christoffel symbols of
this connection in standard coordinates are all zero.

Let γ : J ⊂ R −→ M, be a smooth curve on M. A vector field along the curve γ is a smooth
map V : J −→ T M such that V (t) ∈ Tγ(t)M for all t ∈ J. We will denote the space of smooth vector
fields along γ by X(γ) and, for V ∈ X(γ) and f ∈ C ∞(J), the vector field along γ , defined by
(fV)t = f (t)V (t) will be represented by fV . An obvious example of a vector field along a smooth
curve γ is its velocity vector. We are now able to state the following result, whose proof can be found,
for instance, in Lee [47].

Proposition 2.2.1 Let M be a smooth manifold with linear connection ∇. For each smooth curve
γ : J ⊂ R−→M, the linear connection ∇ determines a unique operator

D
dt

: X(γ) −→ X(γ)

V 7−→ DV
dt

satisfying the following conditions:

1. Linearity over R:

D(a1V1 +a2V2)

dt
= a1

DV1

dt
+a2

DV2

dt
(a1,a2 ∈ R);

2. Product Rule:
D(fV)

dt
=

d f
dt

V + f
DV
dt

(f ∈ C ∞(J));

3. if V is the restriction to γ(t) of some vector field Y ∈ X(M), that is, if for all t ∈ J, V (t) = Yγ(t),
then

DV
dt

= ∇γ̇(t)Y (t ∈ J).

For any V ∈ X(γ), the vector field
DV
dt

, defined in Proposition 2.2.1, is called the covariant
derivative of V along γ .

Example 2.2.2

1. For the special case when M is the Euclidean space Rm and ∇ is the Euclidean connection, the
covariant derivative coincides with the usual derivative.

2.3 Parallel and Normal Transport 11

2. When M is a Riemannian manifold embedded in some Euclidean space Rm, the covariant

derivative of V at t, is the projection of the usual derivative of V at t in Rm,
dV
dt

(t), into

the tangent space of M at γ(t). For instance, in the particular situation when M is the unit
(m−1)-sphere Sm−1, we have that

DV
dt

(t) =
(

I− γ(t)γ(t)⊤
) dV

dt
(t), (2.13)

where I denotes the identity matrix of order m.

During this text we may use the notation γ̇ to denote the velocity vector field
dγ

dt
along γ and,

when convenient, we may also write
Dγ

dt
for the same velocity vector, so that the following definition

makes sense:
Dkγ

dtk :=
D
dt

(
Dk−1γ

dtk−1

)
, for k ≥ 2. (2.14)

Remark 2.2.1 The Euclidean connection ∇ introduced on the Example 2.2.1 is the Levi-Civita
connection of the Euclidean space Rm. Hereafter, for each Riemannian manifold, we will use the
respective Levi-Civita connection on M and the corresponding covariant derivative associated with
this connection.

2.3 Parallel and Normal Transport

Let (M,g) be a Riemannian submanifold of (M,g) (hereafter, written as M ⊂M), and p ∈M. Each
tangent space TpM is, by definition, a nondegenerate subspace of TpM. Consequently, TpM can be
decomposed as a direct sum

TpM = TpM⊕ (TpM)⊥, (2.15)

where (TpM)⊥ is also nondegenerate and denotes the orthogonal complement of TpM with respect
to the metric g in M. Vectors in (TpM)⊥ are said to be normal to M, while those in TpM are said to
be tangent to M. Similarly, a vector field Z on M is normal (respectively, tangent) to M provided
that each value Zp, for p ∈M belongs to (TpM)⊥ (respectively, TpM). Projecting orthogonally, at
each p ∈M, TpM onto the tangent and normal subspaces we get two maps, π⊤ and π⊥, called the
tangential and the normal projections, respectively, defined by

π⊤ : T M|M → T M
X 7→ X⊤

and
π⊥ : T M|M → (T M)⊥

X 7→ X⊥
,

where T M|M := ∪p∈MTpM.

If X ,Y are two vector fields on M, we can extend them to M, apply the ambient connection ∇ (the
Levi-Civita connection with respect to g) and then decompose at points of M to get

∇XY = (∇XY)⊤+(∇XY)⊥. (2.16)

12 Preliminary Concepts

It turns out that the following formula, known as Gauss Formula, holds for vector fields X ,Y , tangent
to M:

∇XY = ∇XY︸︷︷︸
tangent to M

+ (∇XY)⊥︸ ︷︷ ︸
normal to M

, (2.17)

where ∇ is the connection with respect to g.

Considering γ : J ⊂ R−→M, a smooth curve in M ⊂M and V a smooth vector field tangent to
M along γ , the Gauss formula along the curve γ reduces to

DV
dt

=
DV
dt︸︷︷︸

tangent to M

+ Π(γ̇,V)︸ ︷︷ ︸
normal to M

, (2.18)

where D
dt (respectively, D

dt) denote the extrinsic (respectively, intrinsic) covariant derivative along γ .
D
dt is also called the tangent covariant derivative along γ , to distinguish from the normal covariant
derivative, hereafter denoted by D⊥

dt .

Definition 2.3.1 A tangent vector field V along γ is said to be a tangent parallel vector field along γ

if DV
dt ≡ 0.

Usually, if M ⊂M, the geometry of M is considered that of vectors tangent to M. There is, however,
an analogous geometry of vectors normal to M. If X is a tangent vector field to M and Z is a normal
vector field to M, as in (2.16), we have

∇X Z = (∇X Z)⊤+(∇X Z)⊥. (2.19)

The normal connection of M⊂M is the function ∇⊥ that, to each pair (X ,Z) of smooth vector fields, X
tangent to M and Z normal to M, assigns a vector field ∇⊥X Z normal to M, defined by ∇⊥X Z = (∇X Z)⊥.

An analogous to the Gauss formula above, holds for vector fields, X tangent to M and Z normal to
M,

∇X Z = (∇X Z)⊤︸ ︷︷ ︸
tangent to M

+ ∇
⊥
X Z︸︷︷︸

normal to M

. (2.20)

The (tangent) connection ∇ was adapted to tangent vector fields along curves in M ⊂M, to produce
the identity (2.18). Similarly, the normal connection ∇⊥ can also be adapted as follows to normal
vector fields along curves on M. If Z is a normal vector field along a curve γ on M, then its normal
covariant derivative D⊥

dt Z is defined to be the normal component of its M covariant derivative ∇γ̇Z,
and the following holds

∇γ̇Z = (∇γ̇Z)⊤︸ ︷︷ ︸
tangent to M

+
D⊥Z

dt︸ ︷︷ ︸
normal to M

. (2.21)

Definition 2.3.2 A normal vector field Z along γ is said to be a normal parallel vector field along γ if
D⊥Z

dt ≡ 0.

2.4 Geodesics, Distances and Geodesic Completeness 13

The following result holds, both for tangent and for normal parallel vector fields along curves in M.
For more details see, for instance, Lee [47].

Lemma 2.3.1 Let γ : [t0, t1]→M be a smooth curve on M ⊂M.

1. If Y0 is a vector tangent to M at γ(t0), there is a unique tangent parallel vector field Y along γ

such that Y (t0) := Y (γ(t0)) = Y0.

2. If Z0 is a vector normal to M at γ(t0), there is a unique normal parallel vector field Z along γ

such that Z(t0) = Z0.

Definition 2.3.3 Let γ : [t0, t1]→M be a smooth curve satisfying γ(t0) = p and γ(t1) = q. If Y is the
tangent parallel vector field along γ that satisfies Y (t0) = Y0, then

P⊤t0t1 : TpM −→ TqM
Y0 7−→ Y (t1)

(2.22)

defines a linear isomorphism between TpM and TqM, which is called the tangent parallel translation
of Y0 along γ , from the point p to the point q. Similarly, if Z is the normal parallel vector field along γ

that satisfies Z(t0) = Z0, then

P⊥t0t1 : (TpM)⊥ −→ (TqM)⊥

Z0 7−→ Z(t1)
(2.23)

defines a linear isomorphism between (TpM)⊥ and (TqM)⊥, which is called the normal parallel
translation of Z0 along γ , from the point p to the point q.

Remark 2.3.1 Both, tangent and the normal parallel translations are linear isometries. Consequently,
tangent (respectively, normal) parallel translation of a tangent (respectively, normal) frame gives a
tangent (respectively, normal) parallel frame field along γ .

Before finishing this section, we introduce the following proposition, whose proof can be found,
e.g., in Hüper et al. [29] and that will be useful during this work, namely in Chapter 5.

Proposition 2.3.1 Let f : M→M be an isometry and N be an isometrically embedded submanifold
of M. Then, for each p ∈ N, the following identities hold:

dp f (TpN) = Tf (p) f (N), (2.24)

and
dp f

(
(TpN)⊥

)
= (Tf (p) f (N))⊥. (2.25)

2.4 Geodesics, Distances and Geodesic Completeness

In this section we present in detail the concepts of geodesics, lengths of curves and distances between
points. We also study the property of geodesic completeness of a Riemannian manifold which, briefly,
means that all maximal geodesics are defined for all time.

14 Preliminary Concepts

Let (M,g) be a Riemannian manifold and consider γ : J ⊂ R −→ M a curve on M, at least
C 2-smooth, and γ̇ its velocity vector field. Then, we can introduce the following notion.

Definition 2.4.1 A curve γ satisfying the previous conditions is called a geodesic in M if its velocity
vector field γ̇ is a tangent parallel vector field along γ , that is, if

Dγ̇

dt
≡ 0, for all t ∈ J. (2.26)

The equation (2.26) is called geodesic equation and the vector field
Dγ̇

dt
along γ is called the covariant

acceleration along γ .

It is well-known that the geodesics in the Euclidean space Rm are straight lines defined by
γ(t) = c0 + c1t, with c0, c1 ∈ Rm. Also, for the unit sphere Sm−1 ⊂ Rm, with the Riemannian metric
induced by the Euclidean metric of Rm, the geodesics curves are great circles. More examples of
geodesics for other particular manifolds will be, carefully, presented later in this work.

Considering a coordinate system x1,x2, . . . ,xm on an open set U of M, a curve γ : J ⊂R−→U is a
geodesic in M, if and only if, its component functions γ i = xi ◦γ, i = 1, . . . ,m, satisfy the second-order
differential equation:

γ̈k(t)+
m

∑
i, j=1

γ̇ i(t)γ̇ j(t)Γk
i j(γ(t)) = 0, (2.27)

for k = 1, . . . ,m, where m denotes the dimension of the manifold M and Γk
i j the Christoffel symbols

corresponding to the local coordinate system.
Taking into account the standard existence and uniqueness results for ordinary differential equa-

tions, it is possible to prove the following (see, for instance, O’Neill [61]).

Proposition 2.4.1 Let (M,g) be a Riemannian manifold. For every point, p ∈M, and every tangent
vector, v ∈ TpM, there exists an open interval]− ε,ε[(ε > 0) and a geodesic γ :]− ε,ε[⊂ R−→M,
such that γ(0) = p and γ̇(0) = v. Any two such geodesics coincide on their common domain.

As a consequence of the uniqueness of the last result, for every point p ∈M and every vector
v ∈ TpM, there exists a unique maximal geodesic, denoted by γ , such that γ(0) = p, γ̇(0) = v, and
the domain of γ is the largest possible, that is, cannot be extended. This maximal geodesic is usually
called the geodesic with initial point p and initial velocity v.

The property of homogeneity for geodesics ensures that if t 7−→ γ(t) is a geodesic in M, then for
every constant λ , the curve t 7−→ γ(λ t) is also a geodesic in M. Therefore, if γ :]− ε,ε[−→M is a
geodesic with initial conditions γ(0) = p and γ̇(0) = v ̸= 0, using the chain rule, for any constant
λ ̸= 0, the curve t 7−→ γ(λ t), is a geodesic in M such that γ̇(0) = λv.

The notion of distance between two points of a Riemannian manifold is not an immediate concept.
In order to introduce this concept, we start to recall the definitions of a piecewise smooth curve and its
respective length.

Definition 2.4.2 A mapping γ : [a,b] −→ M is a piecewise smooth curve if γ is continuous and if
there is a partition a = t0 < t1 < · · · < tℓ−1 < tℓ = b of the interval [a,b] such that γi = γ|[ti,ti+1]

is
smooth for i = 0,1, . . . , ℓ−1. The map γi is usually called curve segment.

2.4 Geodesics, Distances and Geodesic Completeness 15

Notice that at any connection point, γi−1(ti) = γi(ti), i = 1, . . . , ℓ− 1, but there may be a jump
in the velocity vector of γ . We define γ̇i−1(ti) := γ̇i−1(t−i) and γ̇i(ti) := γ̇i(t+i), i = 1, . . . , ℓ−1. Also,
γ̇0(t0) := γ̇0(t+0) and γ̇ℓ−1(tℓ) := γ̇ℓ−1(t−ℓ).

Definition 2.4.3 The length of a piecewise smooth curve γ : [a,b]−→M is denoted by L(γ), and is
defined as follows

L(γ) =
∫ b

a
∥γ̇(t)∥dt =

∫ b

a

√
g(γ̇(t), γ̇(t))dt. (2.28)

It is well-know that L(γ) is invariant under reparametrization, and that γ is said to be parameterized
by arc length if ∥γ̇(t)∥= 1. Also, a smooth curve γ : J ⊂ R−→M is regular if γ̇(t) ̸= 0, for all t ∈ J,
and a piecewise smooth curve is regular if γi is regular for i = 0,1, . . . , ℓ−1.

In what follows, assume that the Riemannian manifold M is connected. Introducing, for each pair
of points p, q ∈M, the path space of M (from p to q),

Ω(p,q) = {γ : [0,1]−→M : γ is piecewise smooth, γ(0) = p and γ(1) = q}, (2.29)

which is an infinite-dimensional manifold, we can define the distance between two points p, q in M by

d(p,q) := inf{L(γ) : γ ∈Ω(p,q)}, (2.30)

usually, denominated Riemannian distance in M.
A curve γ in M joining two points is said to be minimizing if L(γ)≤ L(γ̃), for any other curve γ̃ in

M, with the same endpoints. Consequently, from (2.30), γ in M is minimizing, if and only if, L(γ) is
equal to the distance between its endpoints.

Remark 2.4.1 A minimizing curve is a geodesic when it is given a unit speed parametrization. Also,
every geodesic in a Riemannian manifold is locally minimizing (see, for instance, Lee [47]).

During this work, a geodesic arc γ will be called minimal if its length is less than or equal to the
length of any other piecewise smooth path joining its endpoints.

Definition 2.4.4 Let p,q ∈M and γ : [0,1]−→M be the minimal geodesic in M such that γ(0) = p
and γ(1) = q. The geodesic distance between the points p and q is denoted by d(p,q) and is equal to
L(γ).

We are now in conditions to introduce the following.

Definition 2.4.5 Let (M,g) be a Riemannian manifold. For every p ∈M, let Dp be the open subset
of TpM given by

Dp = {v ∈ TpM : γ(1) is defined }, (2.31)

where γ is the unique maximal geodesic with initial conditions γ(0) = p and γ̇(0) = v. The map
expp : Dp −→M, defined by expp(v) = γ(1) is called the exponential map.

Definition 2.4.6 A connected Riemannian manifold M is said to be geodesically complete if, for all
p ∈M, expp is defined for every v ∈ TpM, i.e., if all geodesics t 7→ γ(t) in M starting at p are defined
for all t ∈ R.

16 Preliminary Concepts

Remark 2.4.2

1. The definition of geodesically complete is equivalent to have that Dp = TpM, for all p ∈M.

2. Considering p,q∈M contained in a geodesic ball around the point p in M, up to reparametriza-
tion, the radial geodesic from p to q is the unique minimizing curve from p to q in M. For more
details see, for instance, Lee [47].

Next we state the main theorem, and its corollaries, of this section related with the notion of
completeness, whose proofs can be found, for instance, in do Carmo [18].

Theorem 2.4.1 (Hopf-Rinow) If M is a m-dimensional connected Riemannian manifold and p ∈M,
then the following statements are equivalent:

(i) M is geodesically complete.

(ii) The closed and bounded sets of M are compact.

(iii) M is complete as a metric space.

Furthermore, any of the above items implies that:

(iv) for any q ∈M there exists a geodesic γ joining p and q with L(γ) = d(p,q), that is any two points
of M can be joined by a minimal geodesic.

The following two corollaries are immediate consequences of the above theorem.

Corollary 2.4.1 If a Riemannian manifold (M,g) is complete and connected, then for any p ∈M,
expp : TpM→M is surjective.

Corollary 2.4.2 Any connected and compact Riemannian manifold is complete.

2.5 Lie Algebras, Lie Groups and Group Actions

In this section we present a brief overview about Lie algebras and Lie groups, as well as actions of a
Lie group on a manifold. For a recent detailed treatment see, for instance, Duistermaat and Kolk [19].

Definition 2.5.1 A Lie algebra L (over a field K) is a vector space (over K) with a bilinear product
[., .] : L×L→ L, called Lie bracket, satisfying:

(i) [A,B] =−[B,A] (Antisymmetry),

(ii) [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0 (Jacobi Identity),

for all A,B,C ∈ L.

2.5 Lie Algebras, Lie Groups and Group Actions 17

Remark 2.5.1 Considering (L1, [., .]L1) and (L2, [., .]L2) two Lie algebras over a field K, the direct
sum L1⊕L2 of this two Lie algebras is itself a Lie algebra, with Lie bracket defined by

[(X1,X2),(Y1,Y2)]L1⊕L2
:= ([X1,Y1]L1 , [X2,Y2]L2) (2.32)

where (X1,X2), (Y1,Y2) ∈ L1⊕L2.

During this work we will consider R as the field K, and a clear example of a real Lie algebra is the
set of all smooth vector fields on a smooth manifold M, X(M), with the Lie bracket defined in (2.6).

Definition 2.5.2 A Lie group G is an algebraic group that is also a differentiable manifold, with the
property that the two group operations

µ : G→ G

(g,h) 7→ gh
(Product) and

ν : G→ G

g 7→ g−1
(Inverse)

are differentiable mappings.

For each g ∈ G, we define the left translations on G and right translations on G, respectively, by

Lg : G→ G

h 7→ gh
and

Rg : G→ G

h 7→ hg
,

which, taking into account Definition 2.5.2, are diffeomorphisms of G. Another important diffeomor-
phism, called inner automorphism, is defined for each g ∈ G:

Ig : G→ G

h 7→ ghg−1
.

Its differential at the identity eG is denoted by Adg, i.e.,

Adg : TeGG→ TeGG

Y 7→ deGIg(Y)
.

On a Lie group G there are some particular vector fields that play a special role. They are the
left-invariant vector fields and the right-invariant vector fields. A vector field X on G is left-invariant if
∀g,h∈G, dhLg(X(h)) =X(Lgh), and similarly, it is right-invariant if ∀g,h∈G, dhRg(X(h)) =X(Rgh).
It is well-known that both sets, denoted by XL(G) and XR(G), respectively, are closed for the Lie
bracket of vector fields on G, so they form Lie algebras. It turns out that both are isomorphic (as
vector spaces) to the tangent space to G at the identity eG. One can define a Lie bracket of two vectors
in TeGG as being the restriction to eG of the Lie bracket of the corresponding left-invariant vector
fields (or, similarly, of the corresponding right-invariant vector fields). For that reason, we take TeGG
as the Lie algebra of G and denote it by g.

18 Preliminary Concepts

So, Adg defines a Lie algebra automorphism (invertible linear transformation from g to itself that
preserves the Lie bracket). Moreover, the adjoint map

Ad : G→ Aut(g)

g 7→ Adg

is a group homomorphism, called the adjoint representation of G. By differentiating Ad at the identity
eG, one obtains the adjoint representation of g

ad : g→ End(g)

Y 7→ adY
,

where, for each Y ∈ g, adY is the adjoint operator in g, defined by

adY : g→ g

X 7→ adY (X) = [Y,X]
. (2.33)

A Riemannian metric ⟨., .⟩ on G is said to be left-invariant if it is invariant under all left translations,
i.e., if for all v, w ∈ ThG,

⟨dhLg(v),dhLg(w)⟩TghG = ⟨v,w⟩ThG. (2.34)

Similarly, it is said to be right-invariant if it is invariant under all right translations, i.e., if for all
v, w ∈ ThG,

⟨dhRg(v),dhRg(w)⟩ThgG = ⟨v,w⟩ThG. (2.35)

Moreover, a Riemannian metric that is both left and right-invariant is called bi-invariant. It can be
proved that a connected and compact Lie group G can be endowed with a bi-invariant Riemannian
metric ⟨., .⟩ (see, for instance, Lee [47]).

A Lie group G is said to act on a manifold M through the left action φ : G×M→M if φ satisfies

φ(g,φ(h, p)) = φ(Lg(h), p) = φ(gh, p) and φ(eG, p) = p, (2.36)

for all g,h in G, and all p in M. We use φg to denote the diffeomorphism p 7→ φg(p) on M, and if
there is no possibility of confusion we will simply write g(p) for the image of p under φg. A right
action is defined similarly, simply replacing left translations by right translations.

An action of G on M is said to be transitive if for any two points p1, p2 ∈M there exists an element
g ∈ G such that g(p1) = p2.

2.6 Matrix Lie Groups

The most common examples of Lie groups, and those which have the greatest application in computer
vision problems, robotics, engineering and control theory problems, are the matrix groups. These
groups are all subgroups of the General Linear Group GLn(R), the group of all real n×n invertible
matrices, whose Lie algebra is gl(n), the set of all n×n matrices with real entries, equipped with the
commutator of matrices [A,B] = AB−BA as the Lie bracket.

2.6 Matrix Lie Groups 19

We denote elements in a matrix Lie group G by capital letters, as well as for elements in the
corresponding Lie algebra g. The distinction of elements in G from those in g should be clear
from the context. The left translations (similarly, right translations) are expressed simply by matrix
multiplication on the left (similarly, on the right), so that for A ∈ G and X ∈ g, the adjoint map
simplifies to AdA(X) = AXA−1.

Let gl(n) be equipped with the Euclidean inner product

⟨X ,Y ⟩= tr
(
X⊤Y

)
, X ,Y ∈ gl(n). (2.37)

Given X ∈ gl(n), the matrix exponential of X , denoted by eX or exp(X), is the n×n real matrix
given by the sum of the following convergent power series

eX =
+∞

∑
k=0

Xk

k!
,

where X0 is defined to be the identity matrix In.

The vector space of gl(n) consisting of all symmetric matrices is denoted by s(n), while so(n)
denotes the Lie subalgebra of gl(n) consisting of all skew-symmetric matrices. It is well-known that

gl(n) = s(n)⊕ so(n), (2.38)

is a decomposition of the Lie algebra gl(n) and, consequently, any matrix A ∈ gl(n) can be uniquely
decomposed as A = A+A⊤

2 + A−A⊤
2 , where A+A⊤ ∈ s(n) and A−A⊤ ∈ so(n). In particular, one has

[so(n),so(n)]⊂ so(n), [so(n),s(n)]⊂ s(n), [s(n),s(n)]⊂ so(n). (2.39)

Also, so(n) and s(n) are orthogonal with respect to the inner product (2.37).

Furthermore, (see, for instance, Higham [26] and Horn and Johnson [27]) the logarithms of an
invertible matrix B are the solutions of the matrix equation eX = B, and when B is real and doesn’t
have eigenvalues in the closed negative real line, i.e., when σ(B)∩R−0 = ∅, where σ(B) denotes
the spectrum of B, there exists a unique real logarithm of B whose spectrum lies in the infinite
horizontal strip {z ∈ IC : −π < Im(z)< π} of the complex plane. In this work we will only consider
this logarithm, usually called the principal logarithm of B and hereafter denoted by logB. When
B belongs to the rotation group SO(n), then logB belongs to its Lie algebra so(n). Further, when
∥B− I∥< 1, logB is uniquely defined by the following convergent power series:

logB =
+∞

∑
k=1

(−1)k+1 (B− I)k

k
.

This power series defines the principal logarithm for matrices which are close to the identity
matrix. However, for α ∈ [−1,1], log(Bα) = α logB, so that, making α = 1/2k, with k ∈ Z, one has

log
(

B
1

2k

)
=

1
2k logB.

20 Preliminary Concepts

Since lim
k→+∞

(
B

1
2k

)
= I, the previous expression allows to compute logB even for matrices B which

are not close to the identity. This procedure, that can be found for instance in Higham [26], is called
inverse scaling and squaring method.

Before proceeding, we recall some significant properties of the matrix exponential and matrix
logarithm that will play an important role in the derivation of some results that appear throughout this
thesis.

Lemma 2.6.1 Let A, B, C and D be real square matrices and assume that C is invertible and
σ(B)∩R−0 =∅. Then, the following identities hold.

1. C−1eAC = eC−1AC;

2. eADe−A = eadA(D) = D+[A,D]+
1
2!
[A, [A,D]]+ · · · (Campbell-Hausdorff Formula);

3. C−1(logB)C = log
(
C−1BC

)
;

4. log(B−1) =− logB and log(B⊤) = (logB)⊤ ;

5. Bα = eα logB, for α ∈ R;

6. log(eA) = A, whenever log(eA) is defined.

Geometrically, the invertible matrix Bα present in the identity 5. represents the point, correspon-
ding to t = α , on the geodesic that passes through the identity (at t = 0) with initial velocity logB.

In the sequel, we also assume the following notations:

f (z) =
ez−1

z
stands for the sum of the series

+∞

∑
k=0

zk

(k+1)!
, (2.40)

and when |z−1|< 1,

g(z) =
logz
z−1

stands for the sum of the series
+∞

∑
k=0

(−1)k (z−1)k

k+1
. (2.41)

Note that f (z)g(ez) = 1. Below, we state a few results concerning the derivatives of some particular
functions that will be very useful in the development of this work.

Lemma 2.6.2 (Moakher [54]) Let t 7−→ B(t) be a differentiable matrix valued function and assume
that, for each t in the domain, B(t) is a non-singular matrix not having eigenvalues in the closed
negative real line. Then,

d
d t

tr
(
log2 B(t)

)
= 2tr

(
log(B(t))B−1(t)Ḃ(t)

)
. (2.42)

In what follows, we present two equivalent ways of express the derivative of the matrix exponential
of a differentiable matrix valued function. Although equivalent, we decided to introduce both
alternative methods, because in future chapters we use the one that reveals to be more appropriate to
simplify notations and calculations.

2.6 Matrix Lie Groups 21

Lemma 2.6.3 (Sattinger and Weaver [67]) Let t 7−→X(t) be a differentiable matrix valued function.
Then,

1.
d
d t

eX(t) = ∆
L
X(t)(t)e

X(t), (2.43)

where

∆
L
X(t)(t) =

∫ 1

0
euadX(t)(Ẋ(t))du. (2.44)

2.
d
d t

eX(t) = f
(
adX(t)

)(
Ẋ(t)

)
eX(t), (2.45)

where f is defined as in (2.40).

In order to confirm that the relations (2.43) and (2.45) of Lemma 2.6.3 are effectively the same,
notice that, since

euadX(t)(Ẋ(t)) =
+∞

∑
k=0

uk

k!
adk

X(t)(Ẋ(t)),

we have

∆L
X(t)(t) =

∫ 1

0
euadX(t)(Ẋ(t))du

=

[
+∞

∑
k=0

uk+1

(k+1)!
adk

X(t)(Ẋ(t))

]u=1

u=0

=
+∞

∑
k=0

adk
X(t)

(k+1)!
(Ẋ(t))

=
eu−1

u

∣∣∣∣
u=adX(t)

(Ẋ(t)) = f
(
adX(t)

)(
Ẋ(t)

)
.

Remark 2.6.1 When X(t) = f (t)A, with f a real scalar function and A a constant n×n real matrix,
then

d
d t

e f (t)A = ḟ (t)Ae f (t)A = ḟ (t)e f (t)AA.

In particular, this holds for f (t) = t, giving a well-known formula.

The next three propositions will play an important role in future chapters, namely in Chapter 4.

Proposition 2.6.1 Let t 7−→ A(t) be a differentiable matrix valued function. Then

eA(t)
∆

L
−A(t)(t)e

−A(t) =−∆
L
A(t)(t), (2.46)

where ∆L
A(t)(t) denotes the operator defined on (2.44).

22 Preliminary Concepts

Proof. It holds that,

eA(t)∆L
−A(t)(t)e

−A(t) = eadA(t)(∆L
−A(t)(t))

= eadA(t)

∫ 1

0
euad−A(t)(−Ȧ(t))du

= eadA(t)

∫ 1

0
e−uadA(t)(−Ȧ(t))du

= −
∫ 1

0
eadA(t)e−uadA(t)(Ȧ(t))du

= −
∫ 1

0
e(1−u)adA(t)(Ȧ(t))du.

Making a change of variable, considering 1−u = z, we have that du =−dz, u = 0 implies z = 1 and
u = 1 implies z = 0. Then,

−
∫ 1

0
e(1−u)adA(t)(Ȧ(t))du =

∫ 0

1
ezadA(t)(Ȧ(t))dz

= −
∫ 1

0
ezadA(t)(Ȧ(t))dz

= −∆L
A(t)(t).

�

Proposition 2.6.2 Let t 7−→ A(t) be a differentiable matrix valued function. Then, for k = 0,1,(
∆

L
(t−k)A(t)(t)

)∣∣∣
t=k

= A(k), and consequently,
d
d t

∣∣∣∣
t=k

(
e(t−k)A(t)

)
= A(k). (2.47)

Proof. We present here the proof of the statement for k = 0, since for k = 1 the proof is similar.
Therefore, for k = 0, we have that(

∆L
tA(t)(t)

)∣∣∣
t=0

=

(∫ 1

0
eut adA(t)(A(t)+ tȦ(t))du

)∣∣∣∣
t=0

=

(∫ 1

0
eut adA(t)(A(t))du

)∣∣∣∣
t=0

+

(∫ 1

0
eut adA(t)(tȦ(t))du

)∣∣∣∣
t=0

=

(∫ 1

0
A(t)du

)∣∣∣∣
t=0

= A(0).

Consequently,
d
d t

∣∣∣∣
t=0

(
etA(t)

)
=
(

∆L
tA(t)(t)e

tA(t)
)∣∣∣

t=0
= A(0).

�

Proposition 2.6.3 Let t 7−→ A(t) be a differentiable matrix valued function. Then

d
d t

∣∣∣∣
t=0

(
∆

L
tA(t)(t)

)
= 2Ȧ(0) and

d
d t

∣∣∣∣
t=1

(
∆

L
(t−1)A(t)(t)

)
= 2Ȧ(1). (2.48)

2.6 Matrix Lie Groups 23

Proof. To prove the first identity, we have that

d
d t

∣∣∣∣
t=0

(
∆L

tA(t)(t)
)

=
d
d t

∣∣∣∣
t=0

(∫ 1

0
eut adA(t)(A(t)+ tȦ(t))du

)
=

d
d t

∣∣∣∣
t=0

(∫ 1

0
eut adA(t)(A(t))du+

∫ 1

0
eut adA(t)(tȦ(t))du

)
=

d
d t

∣∣∣∣
t=0

(∫ 1

0
A(t)du

)
+

d
d t

∣∣∣∣
t=0

(∫ 1

0
eut adA(t)(tȦ(t))du

)
=

∫ 1

0

d
d t

∣∣∣∣
t=0

(A(t))du+
∫ 1

0

d
d t

∣∣∣∣
t=0

(
eut adA(t)(tȦ(t))

)
du

= Ȧ(0)+
∫ 1

0

d
d t

∣∣∣∣
t=0

(
eutA(t)(tȦ(t))e−utA(t)

)
du

= Ȧ(0)+
∫ 1

0

(
∆

L
utA(t)(t)e

utA(t)(tȦ(t))e−utA(t)

+eutA(t)(Ȧ(t)+ tÄ(t))e−utA(t)+ eutA(t)(tȦ(t))∆L
−utA(t)(t)e

−utA(t)
)∣∣∣

t=0
du

= Ȧ(0)+
∫ 1

0
Ȧ(0)du = 2Ȧ(0).

The proof of the second identity is now immediate, since it is done with similar computations.
�

Notice that, if we differentiate with respect to t the identity elogY (t) = Y (t), using Lemma 2.6.3,
we can obtain the corresponding expression for the derivative of the matrix logarithm valued function,
as set out in the next result.

Lemma 2.6.4 (Batzies et al. [5]) Let t 7−→ Y (t) be a differentiable matrix valued function such that
logY (t) is defined for all real variable t. Then,

d
d t

(logY (t)) =
u

eu−1

∣∣∣∣
u=adlogY (t)

(
Ẏ (t)Y−1(t)

)
, (2.49)

where
u

eu−1
= g(eu), with g defined as in (2.41).

Chapter 3

The Geometry of our Fundamental
Manifolds

In this chapter we review the Riemannian manifolds that will play the main role in the rest of the
thesis, with particular emphasis on the Grassmann manifold and on the Normalized Essential manifold.
For the first one, we also present some results that to the best of our knowledge are new, namely,
Proposition 3.2.1, some identities present in Lemma 3.2.1, Proposition 3.2.2, Proposition 3.2.4,
Proposition 3.2.5 and Proposition 3.2.8. Furthermore, we emphasize the importance of the Grassmann
manifold in certain applications dealing with nonlinear data based on images and explain how it is
possible to represent a set of images by a point in the Grassmann manifold.

The second manifold mentioned, that is the Normalized Essential manifold, turns up as a particular
case of the Generalized Essential manifold, the cartesian product of the real Grassmann manifold
and the rotation group. For this manifold a geometric formulation is presented, as well as, a detailed
description of its Riemannian structure.

The main references used in this chapter were the following: Absil et al. [1] and Batzies et al. [5],
for the geometry of the Grassmann manifold; Hartley and Zisserman [23], Helmke et al. [24], Helmke
and Moore [25] and Longuet-Higgins [48], for details concerning the Normalized Essential Manifold.

3.1 The Geometry of the Rotation Group SO(n)

Let GLn(R) be the set of all real n×n invertible matrices. Then,

SO(n) = {Θ ∈ GLn(R) : Θ
⊤

Θ = I and detΘ = 1},

is a smooth compact and connected manifold of dimension n(n−1)/2 (see, for instance, Lee [47] and
Helmke and Moore [25]). It is well-known that, the tangent space of SO(n) at a point R ∈ SO(n), can
be characterized by

TR SO(n) = {RY : Y ∈ so(n)}. (3.1)

Furthermore, since SO(n) is a compact and connected Lie group, the Riemannian metric in SO(n)
induced by the Frobenius inner product (2.37) is bi-invariant, and it is defined by considering, in each

25

26 The Geometry of our Fundamental Manifolds

tangent space TR SO(n), the inner product

⟨RX ,RY ⟩= ⟨X ,Y ⟩=−tr
(
XY
)
, X ,Y ∈ so(n). (3.2)

Therefore, taking into account (3.2), the orthogonal complement of the tangent space to SO(n) at the
point R, can be characterized by

(TR SO(n))⊥ = {RS : S ∈ s(n)}. (3.3)

The geodesics on SO(n) are translations of one parameter subgroups of SO(n), i.e., given Ω ∈ so(n),
the Lie algebra of SO(n), and t ∈R, then etΩ is a geodesic of SO(n), passing through I at t = 0, while
both RetΩ and etΩR, are geodesics going through R ∈ SO(n) at t = 0. Therefore, geodesics on SO(n)
are completely characterized by a point in SO(n) and a vector tangent to SO(n) at the identity I, that
is, by a rotation matrix and a matrix belonging to so(n).

In fact, we have the following two results, whose proofs are immediate.

Proposition 3.1.1 The unique geodesic t 7→ γ(t) in SO(n), satisfying the initial conditions γ(0) = R
and γ̇(0) = RY , where Y ∈ so(n), is given by

γ(t) = RetY . (3.4)

Remark 3.1.1 We note that any two points in SO(n) can be joined by a geodesic. This follows from
the fact that SO(n) is connected and compact, so by Corollary 2.4.2 it is complete, and by Theorem
2.4.1 it is geodesically complete. In spite of that, an explicit formula for the geodesic that joins two
points requires some restrictions expressed in the following result.

Proposition 3.1.2 Let R1,R2 ∈ SO(n) be such that R−1
1 R2 has no negative real eigenvalues, i.e.,

σ(R−1
1 R2)∩R− =∅. Then, the minimizing geodesic arc with respect to the Riemannian metric (2.37)

that joins R1, at t = 0, to R2, at t = 1, is parameterized explicitly by

γ(t) = R1etY , where Y = log(R−1
1 R2) ∈ so(n),

or, equivalently,

γ(t) = etY R1, where Y = log(R2R−1
1) ∈ so(n).

(3.5)

Remark 3.1.2 Notice that, since σ(R2R−1
1) = σ(R−1

1 R2), the condition σ(R−1
1 R2)∩R− =∅ implies

that σ(R2R−1
1)∩R− =∅, and thus Y is well defined.

The geodesic distance between two points R1 and R2 in SO(n) is the length of the minimal
geodesic curve connecting them. Therefore, considering (3.5), it is possible to obtain the next result,
whose proof is also immediate.

3.2 The Geometry of the Grassmann Manifold Gk,n 27

Proposition 3.1.3 Let R1,R2 ∈ SO(n) be such that σ(R−1
1 R2)∩R− =∅. Then, the geodesic distance

between R1 and R2 is given explicitly by

d2(R1,R2) =−tr
(
log2(R−1

1 R2)
)
,

or, equivalently,

d2(R1,R2) =−tr
(
log2(R2R−1

1)
)
.

(3.6)

3.2 The Geometry of the Grassmann Manifold Gk,n

The contents of this section were inspired by the work of Batzies et al. [5]. The real Grassmann
manifold Gk,n, (0 < k < n), consists of all k-dimensional real subspaces of the Euclidean space Rn.
Each such subspace can be associated to a unique operator of orthogonal projections onto itself, with
respect to the Euclidean metric. It is well-known that these operators (or, equivalently, its matrices,
called projection matrices) are symmetric, idempotent, and have rank k. Therefore, Gk,n can be
defined, alternatively, as:

Gk,n :=
{

P ∈ s(n) : P2 = P and rank(P) = k
}
. (3.7)

It is also known that the real Grassmann manifold Gk,n is a smooth compact connected manifold
of real dimension k(n− k), and moreover it is an isospectral manifold, where each element has the
eigenvalues 1 and 0, with multiplicity k and n− k, respectively.

Taking into account this isospectral feature of Gk,n, another characterization of the real Grassmann
manifold Gk,n is given by:

Gk,n =
{

P = ΘE0Θ
⊤ ∈ s(n) : Θ ∈ SO(n)

}
, where E0 =

[
Ik 0
0 0

]
(3.8)

and where Ik denotes the identity matrix of order k. Also, all matrices of Gk,n are orthogonally similar,
since for each pair of matrices in Gk,n it is possible to find an orthogonal matrix that relates them.
Indeed, if P1 = Θ1E0Θ⊤1 ∈ Gk,n and P2 = Θ2E0Θ⊤2 ∈ Gk,n, with Θ1 ,Θ2 ∈ SO(n), then there exists
Θ = Θ1Θ⊤2 ∈ SO(n) such that P1 = ΘP2Θ⊤.

For P an arbitrary point in the Grassmannian Gk,n, let us define the following sets of matrices

glP(n) := {A ∈ gl(n) : A = PA+AP};

sP(n) := s(n)∩glP(n);

soP(n) := so(n)∩glP(n).

(3.9)

We can now state the following result.

Proposition 3.2.1 Let P1 ,P2 ∈ Gk,n be such that P1 = ΘP2Θ⊤ for some Θ ∈ SO(n). Then,

glP1
(n) = ΘglP2

(n)Θ⊤. (3.10)

28 The Geometry of our Fundamental Manifolds

Proof. Let A ∈ glP1
(n). In order to prove that A ∈ΘglP2

(n)Θ⊤ we need to find B ∈ glP2
(n) such that

A = ΘBΘ⊤. It is enough to consider B = Θ⊤AΘ. The equality A = ΘBΘ⊤ is immediately satisfied.
To show that B = Θ⊤AΘ ∈ glP2

(n), notice that since P2 = Θ⊤P1Θ, B = Θ⊤AΘ and A ∈ glP1
(n), it

holds that
BP2 +P2B = Θ⊤AΘΘ⊤P1Θ+Θ⊤P1ΘΘ⊤AΘ

= Θ⊤AP1Θ+Θ⊤P1AΘ

= Θ⊤ (AP1 +P1A)Θ

= Θ⊤AΘ

= B.

To show the other inclusion let A ∈ ΘglP2
(n)Θ⊤. We have that A = ΘBΘ⊤, with B ∈ glP2

(n). Since
P1 = ΘP2Θ⊤, with a few calculations we get that

AP1 +P1A = ΘBΘ⊤ΘP2Θ⊤+ΘP2Θ⊤ΘBΘ⊤

= ΘBAP2Θ⊤+ΘP2BΘ⊤

= Θ(BP2 +P2B)Θ⊤

= ΘBΘ⊤

= A,

which proves the result.
�

Moreover, the sets defined in (3.9) will play an important role in this work, particularly, due to
their interesting properties listed below.

Lemma 3.2.1 Let P ∈ Gk,n, A, B,C ∈ glP(n) and j ∈ IN. Then, the following holds.

1. PA2 j−1P = 0;

2. A2 j−1 = PA2 j−1 +A2 j−1P;

3. PA2 j = PA2 jP = A2 jP;

4. [P, [P,A2 j−1]] = A2 j−1;

5. APA2 j−1 = A2 j−1PA and A[A2 j−1,P] =−[A2 j−1,P]A;

6. (I−2P)A2 j−1 =−A2 j−1(I−2P) = [A2 j−1,P];

7. (I−2P)A2 j = A2 j(I−2P) =−A[A2 j−1,P];

8. tr([A,P]BC) = 0 and, consequently, tr([A,P][B,C]) = 0.

Proof. Let P∈Gk,n, A, B,C ∈ glP(n) and j ∈ IN. The first three properties can be proved by induction
on j and the proof of them can be found in Batzies et al. [5]. The proof of the other properties doesn’t
need to be done by induction on j, since they can be, easily, derived from the three previous ones. We
prove these properties in detail bellow.

3.2 The Geometry of the Grassmann Manifold Gk,n 29

4. We have
[P, [P,A2 j−1]] = P[P,A2 j−1]− [P,A2 j−1]P

= P
(
PA2 j−1−A2 j−1P

)
−
(
PA2 j−1−A2 j−1P

)
P

= PA2 j−1−PA2 j−1P−PA2 j−1P+A2 j−1P

2.
= A2 j−1.

5. We start to show the first identity, since it will be used to prove the second one. We have that,

APA2 j−1 2.
= A

(
A2 j−1−A2 j−1P

)
= A2 j−A2 jP

3.
= A2 j−PA2 j

=
(
A2 j−1−PA2 j−1

)
A

2.
= A2 j−1PA.

Then,
A[A2 j−1,P] = A

(
A2 j−1P−PA2 j−1

)
= A2 jP−APA2 j−1

3.
= PA2 j−A2 j−1PA

=
(
PA2 j−1−A2 j−1P

)
A

= −[A2 j−1,P]A.

6. Proof of the first identity:

(I−2P)A2 j−1 = A2 j−1−2PA2 j−1

2.
= A2 j−1−2

(
A2 j−1−A2 j−1P

)
= −A2 j−1 +2A2 j−1P

= −A2 j−1 (I−2P) .

Proof of the second identity:

−A2 j−1 (I−2P) = −A2 j−1 +2A2 j−1P

2.
= −PA2 j−1−A2 j−1P+2A2 j−1P

= −PA2 j−1 +A2 j−1P

= [A2 j−1,P].

30 The Geometry of our Fundamental Manifolds

7. Proof of the first identity:

(I−2P)A2 j = A2 j−2PA2 j

3.
= A2 j−2A2 jP

= A2 j (I−2P) .

Proof of the second identity:

A2 j (I−2P) = AA2 j−1 (I−2P)

6.
= −A[A2 j−1,P].

8. In order to prove the first identity it is enough to consider the two identities present in the
property 6. of this Lemma 3.2.1 and some properties of the trace of a matrix. Indeed, we have
that

tr([A,P]BC) = tr((I−2P)ABC)

= −tr(A(I−2P)BC)

= tr(AB(I−2P)C)

= −tr(ABC(I−2P))

= −tr((I−2P)ABC)

= −tr([A,P]BC) ,

and, therefore, tr([A,P]BC) = 0. The second identity is an immediate consequence of the first
one.

�

Remark 3.2.1

1. An immediate consequence of statement 3. of the Lemma 3.2.1 is that[
P,A2 j]= 0, for all P ∈ Gk,n, A ∈ glP(n) and j ∈ IN. (3.11)

2. The identities present on statements 4., 5. and 6. of the Lemma 3.2.1, for the particular situation
when j = 1, have already appeared in Batzies et al. [5].

3. Given P ∈ Gk,n, from the first identity of the property 6. of the Lemma 3.2.1, it is possible to
conclude that:

(a) (I−2P) commute with any product of an even number of matrices in glP(n), i.e.,

(I−2P)A1A2 . . .A2 j = A1A2 . . .A2 j(I−2P), (3.12)

where A1, A2, . . . , A2 j ∈ glP(n) and j ∈ IN, or equivalently, that

[P,A1A2 . . .A2 j] = 0, for all A1, A2, . . . , A2 j ∈ glP(n), j ∈ IN. (3.13)

3.2 The Geometry of the Grassmann Manifold Gk,n 31

(b) (I−2P) anticommute with any product of an odd number of matrices in glP(n), i.e.,

(I−2P)A1A2 . . .A2 j−1 =−A1A2 . . .A2 j−1(I−2P), (3.14)

where A1, A2, . . . , A2 j−1 ∈ glP(n) and j ∈ IN, or equivalently, that if A1, A2, . . . , A2 j−1 ∈
glP(n), then also their product A1A2 . . .A2 j−1 ∈ glP(n).

4. It follows from the proof of the property 8. of the Lemma 3.2.1 that the first equality of this
statement still holds if the product BC is replaced by any product of an even number of matrices
in glP(n).

Taking into consideration the Lemma 3.2.1, we are now in conditions to state the next result that
will be important in further developments.

Proposition 3.2.2 Let P ∈ Gk,n, A ∈ glP(n) and t ∈ R. Then,

(I−2P)etA = e−tA(I−2P), (3.15)

and, consequently,
e2tA(I−2P) = eadtA(I−2P). (3.16)

Proof. Taking into account the definition of matrix exponential, the first identity (3.15) is an immediate
consequence of properties 6. and 7. of Lemma 3.2.1. The second identity (3.16) is obtained from
the first one just by a few computations and considering the Campbell-Hausdorff Formula in Lemma
2.6.1. In fact, from (3.15) we get that

etA(I−2P)etA = (I−2P),

then, multiplying both terms on the left by etA, and on the right by e−tA, we have

e2tA(I−2P) = etA(I−2P)e−tA,

which, according with the Campbell-Hausdorff Formula, proves the identity (3.16).
�

Furthermore, the Lemma 3.2.1 can be used to prove that the restriction to glP(n) of the adjoint
operator at P,

adP|glP(n) : glP(n)→ glP(n)

A 7→ adP(A) = [P,A] ,
(3.17)

is an isometry. Moreover, together with the decomposition (2.38), it can be used to derive the
properties present in the following proposition for the adjoint operator in the sets of matrices defined
in (3.9), whose sketch of proof can be found in Batzies et al. [5]. Also, notice that, using this notation,
it is possible to rewrite some of the results presented before. For instance, (3.11) of Remark 3.2.1 can
now be rewritten as follows:

adP
(
A2 j)= 0, for all P ∈ Gk,n, A ∈ glP(n) and j ∈ IN. (3.18)

32 The Geometry of our Fundamental Manifolds

Proposition 3.2.3 (Batzies et al. [5]) Let P ∈ Gk,n. Then,

1. adP(gl(n)) = glP(n);

2. adP(s(n)) = adP(sP(n)) = soP(n);

3. adP(so(n)) = adP(soP(n)) = sP(n).

Proof. Although in Batzies et al. [5] we can find an outline of the proof of this proposition, in
what follows, for the sake of completeness, we prove in detail, for instance, the first identity present
in property 3.. The inclusion adP(soP(n)) ⊂ adP(so(n)) is immediate. In order to prove the other
inclusion we need to prove that for all X ∈ so(n), there exists Y ∈ soP(n) such that [P,X] = [P,Y], i.e.,
such that adP(X) = adP(Y). We will show that Y = [P, [P,X]] solves the problem. First notice that
[P,X] ∈ sP(n). In fact, [P,X] ∈ s(n) and, furthermore, [P,X]P+P[P,X] = [P,X], since

[P,X]P+P[P,X] = (PX−XP)P+P(PX−XP)

= PXP−XP+PX−PXP

= [P,X].

Therefore, since [P,X] ∈ s(n), it holds that [P, [P,X]] ∈ soP(n). Indeed, [P, [P,X]] ∈ so(n) and

[P, [P,X]]P+P[P, [P,X]] = (PX−2PXP+XP)P+P(PX−2PXP+XP)

= PX−2PXP+XP

= [P, [P,X]],

which means that [P, [P,X]] ∈ soP(n). Consequently, by Lemma 3.2.1, it is immediate that with
Y = [P, [P,X]], we have that

[P,Y] = [P, [P, [P,X]]] = [P,X].

�

Before introduce the next subsection let us present the next results.

Proposition 3.2.4 Let A1, A2 ∈ glP(n) and P ∈ Gk,n. Then,

[A1,P] = [A2,P]⇐⇒ A1 = A2. (3.19)

Proof. By the definition of Lie bracket we have that

[A1,P] = [A2,P] ⇐⇒ A1P−PA1 = A2P−PA2

⇐⇒ A1−PA1−PA1 = A2−PA2−PA2

⇐⇒ A1−2PA1 = A2−2PA2

⇐⇒ (I−2P)A1 = (I−2P)A2

⇐⇒ A1 = (I−2P)−1(I−2P)A2

⇐⇒ A1 = A2.

3.2 The Geometry of the Grassmann Manifold Gk,n 33

Since A1, A2 ∈ glP(n), in the transition from the first line to the second one it was used the fact that
AiP = Ai−PAi, for i = 1,2. Also, in the last equivalence, notice that since P ∈ Gk,n, we have that the
matrix I−2P is orthogonal and symmetric, so its inverse is itself.

�

Remark 3.2.2 Given P ∈ Gk,n, the result (3.19) of Proposition 3.2.4 is equivalent to

[A,P] = 0, A ∈ glP(n)⇐⇒ A = 0. (3.20)

Indeed, one just needs to take into consideration the definition of Lie bracket and the fact that the
matrix I−2P is invertible.

Proposition 3.2.5 Let P ∈ Gk,n and B, X ∈ soP(n). Then, ad2m
B (X) ∈ soP(n), m ∈ IN.

Proof. Let P ∈ Gk,n and B, X ∈ soP(n). In what follows we prove the result for m = 1. The proof for
an arbitrary m ∈ IN is an immediate consequence of the proof for m = 1, and of the definition of the
adjoint operator at B ∈ soP(n).

Proof for m = 1:

Taking into account (2.39), and according with the definition of the adjoint operator, it is immediate
that ad2

B(X) ∈ so(n). Therefore, to prove that ad2
B(X) ∈ soP(n), it remains to show that ad2

B(X)P+

Pad2
B(X) = ad2

B(X). We have that,

ad2
B(X) = [B, [B,X]] = B2X−2BXB+XB2.

On the other hand,
ad2

B(X)P = B2XP−2BXBP+XB2P,

and
Pad2

B(X) = PB2X−2PBXB+PXB2.

By Lemma 3.2.1, we know that PB2 = B2P, and since X ∈ soP(n) we obtain that

B2XP+PB2X = B2XP+B2PX = B2(XP+PX) = B2X , (3.21)

and
XB2P+PXB2 = XPB2 +PXB2 = (XP+PX)B2 = XB2. (3.22)

Also, since B, X ∈ soP(n), by (3.13) we know that [BX ,P] = 0. Therefore,

−2BXBP−2PBXB = −2BX(B−PB)−2PBXB

= −2BXB+2(BXP−PBX)B

= −2BXB+2[BX ,P]B

= −2BXB.

(3.23)

34 The Geometry of our Fundamental Manifolds

From (3.21), (3.22) and (3.23), it holds that

ad2
B(X)P+Pad2

B(X) = B2X−2BXB+XB2

= ad2
B(X),

which proves the result for m = 1.

�

3.2.1 Tangent and Normal Spaces

In order to characterize the tangent space of Gk,n at an arbitrary point P in Gk,n, hereafter denoted by
TPGk,n, one has to consider any smooth curve, t ∈ [0,τ] 7→ α(t) ∈ Gk,n (τ > 0), satisfying α(0) = P
and must derive conditions for α̇(0). Therefore, one can obtain the following result.

Proposition 3.2.6 Let P ∈ Gk,n. Then,

TPGk,n = sP(n). (3.24)

Proof. Let t ∈ [0,τ] 7→ α(t), (τ > 0) be a smooth curve in Gk,n such that α(0) = P. Then, since
α(t) ∈ Gk,n, t ∈ [0,τ], we know that

α
2(t) = α(t), for all t ∈ [0,τ].

Therefore, differentiating the last equality with respect to t, it yields that

α̇(t)α(t)+α(t)α̇(t) = α̇(t), for all t ∈ [0,τ].

Then, for t = 0, since α(0) = P, one has

α̇(0)P+Pα̇(0) = α̇(0).

Since for all t, α(t) ∈ s(n), then for all t, α̇(t) ∈ s(n), in particular α̇(0) ∈ s(n). Consequently, from
(3.2.1), denoting α̇(0) by V , we reach the conclusion that

V P+PV =V,

which means that the vector V in TPGk,n belongs to sP(n), and so, we can conclude that TPGk,n⊂ sP(n).
In order to prove the result, we need to show that the inclusion sP(n) ⊂ TPGk,n is also true. Let
A ∈ sP(n). Then, by 2. of Proposition 3.2.3, we have that [P,A] = adP(A) ∈ soP(n). Therefore,
considering the curve β defined by

β (t) = e−[P,A]tPe[P,A]t , t ∈ [0,τ],

3.2 The Geometry of the Grassmann Manifold Gk,n 35

we have that β (0) = P, and for all t ∈ [0,τ], β (t) leaves in Gk,n, because for all t, β (t)⊤ = β (t),
β 2(t) = β (t) and rank(β (t)) = rank(P) = k. Moreover,

β̇ (t) =−[P,A]β (t)+β (t)[P,A],

and so, since β (0) = P, and by 4. of Lemma 3.2.1, we get

β̇ (0) = −[P,A]β (0)+β (0)[P,A]

= −[P,A]P+P[P,A]

= [P, [P,A]] = A,

which means that A ∈ TPGk,n.
�

Taking into account the Lemma 3.2.1 and the relations in (2.39) it is possible to obtain the next
alternative characterization of TPGk,n.

Proposition 3.2.7 Let P ∈ Gk,n. Then,

TPGk,n =
{
[P,Ω] : Ω ∈ soP(n)

}
. (3.25)

Proof. We start to prove that given an arbitrary V ∈ TPGk,n = sP(n), there exists an Ω ∈ soP(n), such
that V = [P,Ω]. For that, we will show that Ω = [P,V] satisfies the requirements. Indeed, from (2.39),
we get that Ω = [P,V] ∈ so(n) and, from 1. of Lemma 3.2.1, we obtain

[P,V]P+P[P,V] = PV P−V P2 +P2V −PV P

= −V P+PV

= [P,V],

which means that Ω = [P,V] ∈ soP(n). Moreover, from 4. of Lemma 3.2.1, we have that [P,Ω] =

[P, [P,V]] = V . In order to prove the other inclusion, let us consider Ω ∈ soP(n). Then, we know
that Ω ∈ so(n) and ΩP+PΩ = Ω. By (2.39), it holds that [P,Ω] ∈ s(n). So, in order to show that
[P,Ω] ∈ sP(n) = TPGk,n, it is enough to prove that [P,Ω]P+P[P,Ω] = [P,Ω]. But, similar to what was
done above, from 1. of Lemma 3.2.1, we can, easily, conclude that

[P,Ω]P+P[P,Ω] = PΩP−ΩP2 +P2Ω−PΩP

= −ΩP+PΩ

= [P,Ω].

�

Remark 3.2.3 Observe that (3.25) can be rewritten as

TPGk,n =
{

adP(Ω) : Ω ∈ soP(n)
}
. (3.26)

36 The Geometry of our Fundamental Manifolds

Then, using previous considerations and results, together with some computations, leads to another
alternative description of the tangent space at a point P ∈ Gk,n, as follows

TPGk,n =
{

ad2
P(S) : S ∈ s(n)

}
, (3.27)

which, in some future developments, will be more convenient to characterize the normal space at P.

Before proceeding, it follows that the Riemannian metric induced by the Euclidean inner product
(2.37) can be defined as

⟨[P,Ω1], [P,Ω2]⟩= ⟨[Ω1,P], [Ω2,P]⟩=−tr
(
Ω1Ω2

)
, (3.28)

for Ω1,Ω2 ∈ soP(n).

Actually, since P ∈ Gk,n, using essentially 1. of Lemma 3.2.1, the fact that Ω1 ∈ soP(n), implies
that Ω1P = Ω1−PΩ1 and some properties of the matrix trace we get,

⟨[P,Ω1], [P,Ω2]⟩ = tr
(
[P,Ω1]

⊤[P,Ω2]
)

= tr
(
(PΩ1−Ω1P)⊤(PΩ2−Ω2P)

)
= tr

(
(−Ω1P+PΩ1)(PΩ2−Ω2P)

)
= tr

(
−Ω1PΩ2 +Ω1PΩ2P+PΩ1PΩ2−PΩ1Ω2P

)
= tr

(
−Ω1PΩ2−PΩ1Ω2P

)
= tr

(
−(Ω1−PΩ1)Ω2−PΩ1Ω2P

)
= tr

(
−Ω1Ω2 +PΩ1Ω2−PΩ1Ω2P

)
= −tr

(
Ω1Ω2

)
+ tr
(
PΩ1Ω2

)
− tr
(
P2Ω1Ω2

)
= −tr

(
Ω1Ω2

)
.

Consequently, from Remark 3.2.3 and by (3.28) it is immediate that the normal space at P, with
respect to the Riemannian metric defined in (3.28), is defined by

(TPGk,n)
⊥ =

{
Z− ad2

P(Z) : Z ∈ s(n)
}
. (3.29)

We note that the descriptions of the tangent and normal spaces mentioned above are in accordance
with the ones that have already appeared in Hüper and Silva Leite [31].

Proposition 3.2.8 Let P ∈ Gk,n and Ω ∈ soP(n). Then,

[Ω, [Ω,P]] ∈ (TPGk,n)
⊥. (3.30)

Proof. Let P ∈ Gk,n, Ω ∈ soP(n) and [Ω1,P], with Ω1 ∈ soP(n), be an arbitrary element of TPGk,n.
Then, taking into account 1. and 3. of Lemma 3.2.1 and some properties of the matrix trace, we have

3.2 The Geometry of the Grassmann Manifold Gk,n 37

that
⟨[Ω1,P], [Ω, [Ω,P]]⟩ = tr

(
[Ω1,P]⊤ [Ω, [Ω,P]]

)
= tr

(
(Ω1P−PΩ1)

⊤ (Ω(ΩP−PΩ)− (ΩP−PΩ)Ω)
)

= tr
(
(−PΩ1 +Ω1P)(Ω2P−2ΩPΩ+PΩ2)

)
= tr

(
(−PΩ1 +Ω1P)(2Ω2P−2ΩPΩ)

)
= 2tr

(
−PΩ1Ω2P+PΩ1ΩPΩ+Ω1PΩ2P−Ω1 PΩP︸︷︷︸

=0

Ω
)

= 2
(
tr(−PΩ1Ω2P)+ tr(PΩP︸︷︷︸

=0

Ω1Ω)+ tr(PΩ1P︸ ︷︷ ︸
=0

Ω2)
)

= 2tr
(
PΩ2Ω1P

)
= 2tr

(
Ω2 PΩ1P︸ ︷︷ ︸

=0

)
= 0.

Consequently, [Ω, [Ω,P]] ∈ (TPGk,n)
⊥. �

3.2.2 Geodesics and Geodesic Distance

In this subsection we present some results in order to compute explicitly, in Gk,n, the geodesic
satisfying some initial conditions, the minimizing geodesic arc joining two points and the geodesic
distance between two points of the manifold.

Proposition 3.2.9 (Batzies et al. [5]) The unique geodesic t 7→ γ(t) in Gk,n, satisfying the initial
conditions γ(0) = P and γ̇(0) = [Ω,P], where Ω ∈ soP(n), is given by

γ(t) = etΩPe−tΩ. (3.31)

Proposition 3.2.10 Let P ∈ Gk,n and γ be the geodesic in Gk,n, as defined in (3.31), then for all t,

Ω ∈ soP(n)⇐⇒Ω ∈ soγ(t)(n). (3.32)

Proof. It is enough to show that Ω ∈ soP(n) implies that Ω ∈ soγ(t)(n), for all t. The other implication
is immediate, since P = γ(0). Therefore, with the assumption that Ω∈ soP(n), we have that Ω∈ so(n)
and ΩP+PΩ = Ω. Thus, for each t,

Ωγ(t)+ γ(t)Ω = ΩetΩPe−tΩ + etΩPe−tΩΩ

= etΩΩPe−tΩ + etΩPΩe−tΩ

= etΩ(ΩP+PΩ)e−tΩ

= etΩΩe−tΩ

= Ω,

which means that Ω ∈ soγ(t)(n), for each t.
�

Remark 3.2.4 With similar arguments to those used in Remark 3.1.1, we can also state that the
Grassmann manifold is geodesically complete, so any two points can be joined by a geodesic. To

38 The Geometry of our Fundamental Manifolds

obtain an explicit formula for such geodesic, we also have to impose a small restriction, as stated in
the next proposition.

The next result gives an explicit parametrization of the minimizing geodesic arc connecting two
points in Gk,n. Although the expression has already appeared in Batzies et al. [5], we present bellow
an easier alternative proof which can be done essentially due to the Proposition 3.2.2.

Proposition 3.2.11 Let P,Q ∈ Gk,n be such that the orthogonal matrix (I − 2Q)(I − 2P) has no
negative real eigenvalues. Then, the minimizing geodesic arc in Gk,n, with respect to the Riemannian
metric (3.28), that joins P (at t = 0) to Q (at t = 1), is parameterized explicitly by

γ(t) = etΩPe−tΩ, (3.33)

with Ω = 1
2 log((I−2Q)(I−2P)) ∈ soP(n).

Proof. Let P,Q ∈ Gk,n and γ(t) = etΩPe−tΩ, t ∈ [0,1] be such that γ(0) = P. In order to prove
the result we need to obtain Ω ∈ soP(n), such that γ(1) = Q, i.e., such that eΩPe−Ω = Q. According
with Proposition 3.2.2, and since the inverse of the matrix I−2P is itself, the following holds.

eΩPe−Ω = Q ⇐⇒ eΩ(I−2P)e−Ω = I−2Q

⇐⇒ e2Ω(I−2P) = I−2Q

⇐⇒ e2Ω = (I−2Q)(I−2P)

⇐⇒ Ω =
1
2

log((I−2Q)(I−2P).

We have that (I−2Q)(I−2P) ∈ SO(n). Then, Ω =
1
2

log((I−2Q)(I−2P)) ∈ so(n). Therefore, in

order to prove that Ω ∈ soP(n), it remains to show that ΩP+PΩ = Ω, which is equivalent to prove
that

2Ω(I−2P)+(I−2P)2Ω = 0.

Taking into account the properties in Lemma 2.6.1, and since (I−2P)2 = I, we get

2Ω(I−2P)+(I−2P)2Ω

= (log((I−2Q)(I−2P)))(I−2P)+(I−2P)(log((I−2Q)(I−2P)))

= (I−2P)(I−2P)(log((I−2Q)(I−2P)))(I−2P)+(I−2P)(log((I−2Q)(I−2P)))

= (I−2P)
(
log((I−2P)(I−2Q)(I−2P)2)

)
+(I−2P)(log((I−2Q)(I−2P)))

= (I−2P)
(
− log(((I−2P)(I−2Q))−1)

)
+(I−2P)(log((I−2Q)(I−2P)))

= (I−2P)(− log((I−2Q)(I−2P)))+(I−2P)(log((I−2Q)(I−2P)))

= 0,

which proves the result.
�

3.2 The Geometry of the Grassmann Manifold Gk,n 39

Remark 3.2.5 Notice that the orthogonal matrix (I − 2Q)(I − 2P) belongs to SO(n), since the
requirement that it has no negative real eigenvalues automatically excludes the orthogonal matrices
with determinant minus one.

To finish this subsection, taking into account the Proposition 3.2.11, we can obtain an explicit
formula to compute the geodesic distance between two points in Gk,n, as follows in the next result
whose proof is immediate.

Proposition 3.2.12 Let P,Q ∈ Gk,n be such that the orthogonal matrix (I − 2Q)(I − 2P) has no
negative real eigenvalues. Then, the geodesic distance between the points P and Q is given, explicitly,
by

d2(P,Q) =−1
4

tr
(
log2((I−2Q)(I−2P))

)
. (3.34)

3.2.3 Representing Images by Points in a Grassmann Manifold

In this subsection, we explain how to associate to a set of images a point in the Grassmann manifold
Gk,n, where n is the dimension of the space of features and k is related to the principal features of the
images. This enlightens the importance of the Grassmann manifold in many engineering applications,
in particular to solve some computer vision problems.

In the context of image processing, a feature vector is a collection of important information that
describes an image, differentiating that image from others. Some examples of features are: colour,
gray levels, pixel intensities, shapes, edges and gradients.

Given a set of m images of the same object, we associate to that set a point in a Grassmann
manifold Gk,n as follows:

1. Each image corresponds to a column matrix in the space of features, so that the m images can
be represented by a rectangular matrix X ∈ Rn×m. We assume that m < n.

2. The matrix X is then decomposed using the Singular Value Decomposition (SVD)

X =U ΣV⊤, (3.35)

where V⊤ denotes the transpose of the matrix V , the matrices U and V are orthogonal of order
n and m respectively (UU⊤ = In, VV⊤ = Im) and Σ is a quasi-diagonal matrix containing the
singular values σ1, · · · ,σm of X , in non-increasing order, along the main diagonal. If rank(X)= r
and ui and vi denote the column vectors of U and V respectively, the SVD decomposition (3.35)
can be written as

X =
r

∑
i=1

σi ui v⊤i . (3.36)

Since XX⊤ =U(ΣΣ⊤)U⊤, the columns of U are the eigenvectors associated to the eigenvalues
λi of XX⊤, which are the non-negative square roots of the singular values and are, by convention,
also descendent sorted (λ1 ≥ λ2 ≥ ...≥ λk ≥ 0). The columns of the matrix U are called the
eigenvectors of the SVD decomposition and the first columns correspond to the main dominant
directions in the image structure.

40 The Geometry of our Fundamental Manifolds

3. When a set of images is SVD transformed it is not compressed. Image compression deals with
the problem of reducing the amount of computer memory required to represent a digital image.
Since the great amount of the image information lies in the first singular values, compression of
data can be achieved replacing the matrix X by a good approximation of smaller rank, say of
rank k < r. The closest matrix of rank k is obtained by truncating the sum in (3.36) after the
first k terms to obtain

X ≈
k

∑
i=1

σi ui v⊤i .

As k increases, the image quality increases, but so does the amount of memory needed to store
the image. This means that smaller rank SVD approximations are preferable, but the choice of
k also depends on the dimensionality of the data. The above truncation corresponds to deleting
the last n− k columns of the orthogonal matrix U , to form the submatrix Sn×k, whose columns
form a k-orthonormal frame in Rn, i.e., S⊤S = Ik.

4. From the previous matrix S, we compute a square matrix of order n, P = SS⊤, which is
symmetric, idempotent (P2 = P) and has rank k.

The matrix P gives a representation of the data in the Grassmann manifold Gk,n.

3.3 Riemannian Structure of the Manifold Gk,n×SO(n)

Let n be a positive integer and let k be a positive integer smaller than n. In what follows, we will
consider the Generalized Essential manifold Gk,n×SO(n), that is the cartesian product of the real
Grassmann manifold Gk,n, consisting of all k-dimensional (linear) subspaces of Rn, and the rotation
orthogonal group SO(n) of all orientation preserving rotational transformations in Rn. Therefore,

Gk,n×SO(n) = {(S,R) : S ∈ Gk,n, R ∈ SO(n)} . (3.37)

Taking into account the isospectral feature of Gk,n, another characterization of the real manifold
Gk,n×SO(n) can be defined as follows

Gk,n×SO(n) =
{

P =
(

ΘE0Θ
⊤,R

)
: Θ,R ∈ SO(n)

}
, (3.38)

with E0 =

[
Ik 0
0 0

]
and where Ik denotes the identity matrix of order k. It is a smooth compact

connected manifold of real dimension k(n− k)+n(n−1)/2.

Since any element of Gk,n×SO(n) is a pair of the form
(
ΘE0Θ⊤,R

)
, with Θ,R ∈ SO(n) we have

that the first component of the previous pair is a symmetric matrix and the second one is a n× n
orthogonal matrix. Then, the manifold Gk,n×SO(n) can be seen as an embedded submanifold of
s(n)×Rn×n, with metric induced by the metric of the embedding manifold which is described by the
relation

⟨(J,K),(L,M)⟩s(n)×Rn×n = ⟨J,L⟩s(n)+ ⟨K,M⟩Rn×n , (3.39)

3.3 Riemannian Structure of the Manifold Gk,n×SO(n) 41

where the metric ⟨., .⟩ in the right hand side is related to the Frobenius norm for matrices, that is,
⟨A,B⟩= tr(A⊤B). Using the characterization (3.38), the tangent space to the manifold Gk,n×SO(n)
at an arbitrary point P0 = (Θ0E0Θ⊤0 ,R0) is given by

TP0 (Gk,n×SO(n)) =
{(

Θ0 [Ω,E0]Θ
⊤
0 ,R0C

)
: Ω ∈ soE0(n),C ∈ so(n)

}
(3.40)

or, equivalently, by

TP0 (Gk,n×SO(n)) =

{(
Θ0

[
0 Z

Z⊤ 0

]
Θ
⊤
0 ,R0C

)
: Z ∈ Rk×(n−k),C ∈ so(n)

}
. (3.41)

Moreover, considering the fact that Gk,n×SO(n) and TP0 (Gk,n×SO(n)) are real manifolds of
dimension k(n− k) + n(n− 1)/2 and the embedding manifold s(n)×Rn×n is a real manifold of
dimension (3n2 +n)/2, the orthogonal complement, (TP0 (Gk,n×SO(n)))⊥, of TP0 (Gk,n×SO(n)) in
s(n)×Rn×n, is given by

(TP0 (Gk,n×SO(n)))⊥ =

{(
Θ0

[
S1 0
0 S2

]
Θ
⊤
0 ,R0S

)
: S1 ∈ s(k),S2 ∈ s(n− k),S ∈ s(n)

}
. (3.42)

Observe that s(i), i = k,n− k,n has real dimension i(i+1)/2.

3.3.1 Geodesics and Geodesic Distance

Considering the results of the previous sections and the expressions of the geodesics on the manifolds
SO(n) and Gk,n we can conclude the following results for the manifold Gk,n×SO(n).

Proposition 3.3.1 Let (P,R) ∈ Gk,n× SO(n), X ∈ soP(n) and Y ∈ so(n). The curve t 7→ γ (t) in
Gk,n×SO(n), defined by

γ (t) = (γ1(t),γ2(t)) =
(
etX Pe−tX ,RetY) , (3.43)

is the unique geodesic in Gk,n×SO(n), satisfying the initial conditions γ (0) = (P,R) and γ̇ (0) =
([X ,P],RY).

Proposition 3.3.2 Let (P1,R1),(P2,R2)∈Gk,n×SO(n) be such that σ(R−1
1 R2)∩R− =∅ and σ((I−

2P2)(I−2P1))∩R− =∅. Then, the minimizing geodesic arc connecting the point (P1,R1) (at t = 0)
to the point (P2,R2) (at t = 1), is given explicitly by

γ (t) = (γ1(t),γ2(t)) =
(
etX P1e−tX ,R1etY) , (3.44)

or, equivalently,
γ (t) = (γ1(t),γ2(t)) =

(
etX P1e−tX ,etY R1

)
, (3.45)

where X = 1
2 log((I−2P2)(I−2P1))∈ soP1(n), Y = log(R−1

1 R2)∈ so(n) and Y = log(R2R−1
1)∈ so(n).

Proposition 3.3.3 Let (P1,R1),(P2,R2)∈Gk,n×SO(n) be such that σ(R−1
1 R2)∩R− =∅ and σ((I−

2P2)(I− 2P1))∩R− = ∅. Then, the geodesic distance between the points (P1,R1) and (P2,R2) is

42 The Geometry of our Fundamental Manifolds

given explicitly by

d2 ((P1,R1),(P2,R2)) =−
1
4

tr
(
log2((I−2P2)(I−2P1))

)
− tr

(
log2(R−1

1 R2)
)
,

or, equivalently,

d2 ((P1,R1),(P2,R2)) =−
1
4

tr
(
log2((I−2P2)(I−2P1))

)
− tr
(
log2(R2R−1

1)
)
.

(3.46)

3.4 The Normalized Essential Manifold

The Normalized Essential Manifold is a particular case of the product manifold presented in the
previous section, corresponding to the choice of k = 2 and n = 3. The reason to single out this
special case is due to its important applications in modern computer vision. As will be explained next,
the Normalized Essential Manifold encodes the so called epipolar constraint between points in two
projective views.

3.4.1 Geometric Formulation

It is well-known from computer vision literature that the intrinsic projective geometry between two
views of the same scene is independent of the scene structure and only depends on the cameras internal
parameters and relative pose (see, for instance, Hartley and Zisserman [23]). In this work we deal
with calibrated cameras, that is, we assume that the camera parameters are known. We also assume
for simplicity that the scene is static and that the images are taken by two identical pinhole cameras,
with focal length equal to one, or equivalently by the same camera at different locations. The two
cameras are denoted by C1 and C2. Each camera is represented by an orthonormal reference frame
and can therefore be described as a change of coordinates relatively to an inertial reference frame.
The corresponding images of the scene structure p are denoted by X1 and X2, respectively, as shown
in schematic Fig. 3.1.

Fig. 3.1 Geometry between two views of the same scene structure.

Without loss of generality, we can assume that the inertial frame corresponds to one of the two
cameras, say C1, while the other is positioned and oriented according to an element (R,s) of the special

3.4 The Normalized Essential Manifold 43

Euclidean group SE(3) = SO(3)nR3, where R denotes a rotation and s represents a translation vector
of the displacement of the first camera C1 into the second one C2. Let s1,s2 and s3 be the coordinates
of s with respect to the first camera basis (s = [s1 s2 s3]

⊤) and x1, x2 ∈ R3 be the homogeneous
coordinates of the projection of the same point p onto the two image planes of the cameras. If we call
X1 ∈ R3 and X2 ∈ R3 the 3D coordinates of the point p relative to the two camera frames, they are
related by a rigid body motion:

X2 = RX1 + s,

where Xi = λixi, i = 1,2, can be written in terms of the image points xi, i = 1,2 and the depths
λi, i = 1,2, (λi > 0). So, the last equation can be written as

λ2x2 = Rλ1x1 + s. (3.47)

Consider the Lie algebra isomorphism

̂: R3 −→ so(3)

s = [s1 s2 s3]
⊤ 7−→ Ŝ :=

 0 −s3 s2

s3 0 −s1

−s2 s1 0

 ,
between R3 equipped with the cross product × and so(3) equipped with the commutator. It is
immediate that for any vector v ∈ R3, Ŝv = s× v. Also, tr

(
Ŝ
⊤

Ŝ
)
= 2∥s∥2. Multiplying (on the left)

both sides of the equation (3.47) by Ŝ we then obtain

λ2Ŝx2 = λ1ŜRx1.

Now, by taking the inner product of both sides of the previous equation with x2, it follows

x⊤2 ŜRx1 = 0, (3.48)

which is called the epipolar constraint (Longuet-Higgins, [48]). This intrinsic constraint is independent
of depth information and decouples the problem of motion recovery from 3D structure. This problem
consists in finding (R,s) ∈ SE(3) from the known image points x1 and x2 and the epipolar constraint.
The matrix E = ŜR in (3.48), which captures the relative orientation between the two cameras, is
called the essential matrix and the set of all such matrices is the so-called Essential Manifold.

3.4.2 Riemannian Structure of the Normalized Essential Manifold

For many of the applications concerning essential matrices, it is enough to work with those where the
translation vector s has norm 1, or equivalently, tr(Ŝ

⊤
Ŝ) = 2. This set, referred in the literature as the

Normalized Essential Manifold, is defined as

E =

{
ŜR : Ŝ ∈ so(3), R ∈ SO(3),

1
2

tr(Ŝ
⊤

Ŝ) = 1
}
. (3.49)

44 The Geometry of our Fundamental Manifolds

We are going to show that this manifold can be realized as a particular case of the product manifold
studied in the previous section and refer to Helmke et al. [24] for details. But first we need a
preliminary result.

Proposition 3.4.1 The Normalized Essential Manifold can be defined, alternatively, by

E =

{
UE0V⊤, where E0 =

[
I2 0
0 0

]
and U,V ∈ SO(3)

}
. (3.50)

Proof. We first show that the set defined in (3.49) is contained in the set defined in (3.50). To see
this, we first prove that every normalized essential matrix E = ŜR has singular values 1,1,0. Recall
that the singular values of E are the nonnegative square roots of the eigenvalues of E⊤E. Since
E⊤E = R⊤Ŝ

⊤
ŜR, the eigenvalues of E⊤E are the same as those of Ŝ

⊤
Ŝ =−Ŝ

2
, which are ∥s∥2,∥s∥2,0.

But ∥s∥ = 1, so 1,1,0 are the singular values of E. As a consequence, given E ∈ E , there exist
matrices U,V ∈ O(3) such that E = UE0V⊤, where E0 = diag(1,1,0). Since when U or V have
negative determinant, they may be replaced by the product of a matrix in SO(3) by diag(1,1,−1)
without affecting the decomposition of E above, we can conclude that

Given E ∈ E , there exist U,V ∈ SO(3) such that E =UE0V⊤. (3.51)

We now show that the set defined in (3.50) is contained in the set defined in (3.49). This follows from
the following observation. Let

A12 =

 0 1 0
−1 0 0
0 0 0

 , so that e−
π

2 A12 =

 0 −1 0
1 0 0
0 0 1

 and A12e−
π

2 A12 = E0.

So, we can write E = UE0V⊤ =
(
UA12U⊤

)(
Ue−

π

2 A12V⊤
)

and conclude that, given U,V ∈ SO(3),
there exist Ŝ=UA12U⊤ ∈ so(3) and R=Ue−

π

2 A12V⊤ ∈SO(3) such that E = ŜR. Moreover, 1
2 tr(Ŝ

⊤
Ŝ)=

1, which concludes the proof.

�

Proposition 3.4.2 The Normalized Essential Manifold E is diffeomorphic to G2,3×SO(3).

Proof. It is enough to show that the mapping

ϕ : E → G2,3×SO(3)
UE0V⊤ 7→

(
UE0U⊤,UV⊤

) (3.52)

is a diffeomorphism. It is easily seen that ϕ is smooth and bijective and its inverse ϕ−1(X ,Y) = XY is
also smooth. So, E is diffeomorphic to G2,3×SO(3).

�

3.4 The Normalized Essential Manifold 45

As a consequence, we may look at the Normalized Essential Manifold as being the 5-dimensional
smooth manifold defined as

E :=

{(
UE0U⊤,R

)
, such that U, R ∈ SO(3) and E0 =

[
I2 0
0 0

]}
. (3.53)

As such it can be considered embedded in the Euclidean space s(3)×R3×3 with the natural metric
defined as

⟨(J,K),(L,M)⟩s(3)×R3×3 = ⟨J,L⟩s(3)+ ⟨K,M⟩R3×3 . (3.54)

With the above parametrization, the tangent space at a point P0 = (Θ0E0Θ⊤0 ,R0) of the Normalized
Essential Manifold, and the corresponding orthogonal space are, respectively, given by:

TP0E =
{(

Θ0 [Ω,E0]Θ
⊤
0 , R0C

)
: Ω ∈ soE0(3),C ∈ so(3)

}
(3.55)

or, equivalently,

TP0E =

{(
Θ0

[
0 Λ

Λ⊤ 0

]
Θ
⊤
0 , R0C

)
: Λ ∈ R2×1,C ∈ so(3)

}
(3.56)

and

(TP0E)⊥ =

{(
Θ0

[
B 0
0 b

]
Θ
⊤
0 , R0S

)
: B ∈ s(2), b ∈ R, S ∈ s(3)

}
. (3.57)

Note that, as expected, the dimensions of the above spaces match with the dimension of the embedding
space, which is fifteen. Indeed, dim(TP0E) = 5 and dim

(
(TP0E)⊥

)
= 10.

Chapter 4

Polynomial Interpolation using the De
Casteljau Algorithm

4.1 Introduction

Interpolation problems of data arise in different areas ranging from robotics, engineering, computer
vision to industrial and medical applications (see, e.g., Bressan [8]). This kind of problems on
manifolds are needed in a growing number of applications and have sparked the research interest of
the mathematical community. A well-known recursive procedure to generate interpolating polynomial
curves in Euclidean spaces is the classical De Casteljau algorithm which was introduced, independently,
by De Casteljau [17] and Bézier [9]. It is a simple and powerful tool widely used in the field
of Computer Aided Geometric Design (CAGD), particularly due to the fact that it is, essentially,
geometrically based.

In this chapter, using the classical De Casteljau algorithm and its generalization to geodesically
complete Riemannian manifolds, we present solutions of an interpolating problem that generalizes
cubic splines in Euclidean spaces. It is well-known that these curves minimize the acceleration,
which makes them particularly useful in many engineering applications. Also having this in mind,
we pay particular attention to problems with two different types of boundary conditions. One are the
well-known Hermite boundary conditions, and the other consists of initial and final points, initial
velocity and initial covariant acceleration.

Based on the work of Crouch et al. [13], concerning the reinterpretation of the De Casteljau
algorithm for connected and compact Lie groups and for spheres, we review the algorithm to generate
cubic polynomials in the Euclidean space Rm, followed by a detailed description and implementation
of that algorithm for the Grassmann manifold Gk,n. The main feature of the algorithm is based
on recursive geodesic interpolation. The generation of a cubic spline from cubic polynomials is
immediate for the second type of boundary conditions but not for those of Hermite type, which are
more natural from the point of view of applications. To overcome this difficulty, we show how each
type of boundary conditions are related to the other for the interpolation problem in Gk,n. We also
briefly review the interpolation problem in SO(n), which has been studied in Crouch et al. [13], in
order to extend the results to Gk,n×SO(n) and, in particular, to the Normalized Essential manifold.

47

48 Polynomial Interpolation using the De Casteljau Algorithm

4.1.1 Literature Review

The De Casteljau algorithm and the Bézier curves have been used for a long time and on a widely
variety of different areas of knowledge. For a general presentation of the De Casteljau algorithm and
an overview of the historical evolution and existing works dealing with this concept we mention, for
instance, Farin [20] and literature cited therein.

Most of the reality problems require the application of the De Casteljau algorithm in manifolds
different from the Euclidean space Rm. In this sense, there are known in the literature many references
of works relating to the study of the algorithm, in other manifolds, and with different approaches. We
start by referring, for instance, the early work of Shoemake [70] and the work of Altafini [2].

Furthermore, interpolation problems on manifolds are needed in a growing number of applications
and have been studied by several authors, starting with the pioneer work of Noakes, Heinzinger and
Paden in [59]. Following this, other authors further developed the theory of geometric splines on
manifolds using a variational approach (see, for instance, Camarinha [10], Crouch and Silva Leite
[14] and [15], and Zhang and Noakes [74]). A more general variational problem, that of fitting a
curve to data points on a Riemannian manifold, was presented and studied in Machado et al. [52].
The main drawback of this approach is that the solution curves are not given explicitly. Instead,
one obtains a highly nonlinear third order differential equation for the velocity vector field. To
overcome the complexity of the previous approach, other procedures have been developed, namely
the generalizations of the classical De Casteljau algorithm for Riemannian manifolds, which can be
found, for instance, in Park and Ravani [62], Crouch et al. [13], J. Jakubiak [32] and Nava-Yazdani
and Polthier [58].

Recently, a modified Casteljau algorithm to solve interpolation problems on Stiefel manifolds was
presented in Krakowski et al. [42] and used in Batista et al. [4] to address multiple source domain
adaptation, by taking advantage of the smoothness of the interpolating curves on the Stiefel manifold
to walk along a set of multiple domains.

The inclusion of the approach of this theme in this work is motivated by the existence in the
literature of an increasing of a recent emerging need for spline interpolation on fields where the
Normalized Essential manifold plays an important role.

4.1.2 Main Contributions

After bringing forward the interpolation problem that will be under study we review the De Casteljau
algorithm to generate cubic polynomials in geodesically complete Riemannian manifolds and its
implementation when the manifold is the Euclidean space Rm.

Following this approach and the work of Crouch et al. [13] for connected and compact Lie groups
and for spheres, one of our main contribution is the implementation of the De Casteljau algorithm for
the generation of cubic polynomials in the Grassmann manifold Gk,n and its application to generating
cubic splines to solve the interpolation problem in the same manifold. In order to generate cubic
splines from cubic polynomials in the Grassmann manifold, we first relate the two types of boundary
conditions mentioned in Section 4.1 and then describe the main steps to obtain the interpolating curve.

Furthermore, we develop expressions for the derivative of the geometric cubic polynomial gene-
rated by the generalized De Casteljau algorithm in Gk,n, and for the covariant derivative of the velocity

4.2 Formulation of the Interpolation Problem on Manifolds 49

vector field along this curve, that to the best of our knowledge are new results. These results have
been published recently in Pina and Silva Leite [65] and a shorter version, Pina and Silva Leite [64],
has just been submitted.

The implementation of the De Casteljau algorithm on the special orthogonal group SO(n) and
on the Grassmann manifold Gk,n provides the groundwork to obtain the solution of the interpolation
problem for the manifold Gk,n×SO(n) and, in particular, for the Normalized Essential manifold.

4.2 Formulation of the Interpolation Problem on Manifolds

Let M be a m-dimensional connected Riemannian manifold, which is also geodesically complete.
Given a set of ℓ+1 distinct points pi ∈M, with i = 0,1, . . . , ℓ, a discrete sequence of ℓ+1 fixed times
ti, where

0 = t0 < t1 < · · ·< tℓ−1 < tℓ = τ,

and the vectors ξ0 tangent to M at p0 and ξℓ tangent to M at pℓ (or, alternatively, the vectors ξ0 and η0

tangent to M at p0), we intend to solve the following problem.

Problem 4.2.1 Find a C 2-smooth curve

γ : [0,τ]→M

satisfying the interpolation conditions:

γ(ti) = pi, 1≤ i≤ ℓ−1, (4.1)

and the boundary conditions:

γ(0) = p0, γ(τ) = pℓ,
γ̇(0) = ξ0 ∈ Tp0M, γ̇(τ) = ξℓ ∈ TpℓM

(4.2)

or, alternatively, the boundary conditions:

γ(0) = p0, γ(τ) = pℓ,

γ̇(0) = ξ0 ∈ Tp0M,
Dγ̇

dt
(0) = η0 ∈ Tp0M.

(4.3)

During this chapter we will consider τ = 1. Notice that there’s no loss of generality, since the
interval [0,1] can be replaced by any other interval [a,b], a < b, just by choosing the reparametrization
(t→ s) defined by t = (s−a)/(b−a).

Solutions of these problems will be called geometric cubic splines, since they are natural extensions
to Riemannian manifolds of Euclidean cubic splines, the curves that minimize acceleration. If no
interpolation conditions (4.1) are required, the solutions of these problems are geometric cubic
polynomials, which happen to be C ∞-smooth. Generalizations to higher degree polynomials would
require more boundary conditions, higher order of smoothness and more elaborate computations. The
cases presented here will give enough insight about the theoretical aspects and the complexity of the
corresponding implementations.

50 Polynomial Interpolation using the De Casteljau Algorithm

The boundary conditions (4.2) are symmetrically defined and are known, in the literature, as
Hermite boundary conditions. The boundary conditions (4.3), which are not symmetrically specified,
have computational advantages whenever instead of polynomial interpolating curves one is interested
in interpolating polynomial spline curves, as we will see.

Problem 4.2.1 can be solved using cubic polynomials generated by the generalized De Casteljau
algorithm on manifolds. The classical version of this algorithm in Rm was developed at 1959 by Paul
De Casteljau [17], and it is a recursive process to generate interpolating polynomial curves of arbitrary
degree in the Euclidean space Rm. These curves are known in the literature as Bernstein-Bézier curves,
or simply, Bézier curves (see, e.g., Bézier [9] and Farin [20]). This process is essentially based on a
geometric and on an algebraic construction in which any two points of Rm are joined by a polynomial
curve, and where each step is described in terms of successive linear interpolation. For an arbitrary
manifold, the linear interpolation is replaced by geodesic interpolation, this being the reason why we
assume that the manifold M is geodesically complete, at least in a sufficiently big neighbourhood of
the given data points. The general De Casteljau algorithm is presented in the next section.

4.3 Cubic Polynomials in Manifolds, using De Casteljau Algorithm

Given a set of four distinct points {x0,x1,x2,x3} in M, a smooth curve

t ∈ [0,1] 7→ β3(t) := β3(t,x0,x1,x2,x3)

in M, joining x0 (at t = 0) and x3 (at t = 1), can be constructed by three successive geodesic interpola-
tion steps as follows.

Algorithm 4.3.1 (Generalized De Casteljau Algorithm)

Given four distinct points x0, x1, x2 and x3 in M:

Step 1. Construct three geodesic arcs β1(t,xi,xi+1), t ∈ [0,1] joining, for i = 0,1,2, the
points xi (at t = 0) and xi+1 (at t = 1).

Step 2. Construct two families of geodesic arcs

β2(t,x0,x1,x2) = β1(t,β1(t,x0,x1),β1(t,x1,x2)),

β2(t,x1,x2,x3) = β1(t,β1(t,x1,x2),β1(t,x2,x3)),

joining, for i = 0,1 and t ∈ [0,1], the point β1(t,xi,xi+1) (at t = 0) with the point
β1(t,xi+1,xi+2) (at t = 1).

Step 3. Construct the family of geodesic arcs

β3(t,x0,x1,x2,x3) = β1(t,β2(t,x0,x1,x2),β2(t,x1,x2,x3)),

joining, for each t ∈ [0,1], the points β2(t,x0,x1,x2) (at t = 0) and β2(t,x1,x2,x3)

(at t = 1).

The curve t ∈ [0,1] 7→ β3(t) := β3(t,x0,x1,x2,x3) obtained in Step 3. of Algorithm 4.3.1 is called
geometric cubic polynomial in M. It is important to observe that this curve joins the points x0 (at

4.3 Cubic Polynomials in Manifolds, using De Casteljau Algorithm 51

t = 0) and x3 (at t = 1), but does not pass through the other two points x1 and x2. These points are
usually called by control points, since they influence the shape of the curve. This algorithm can also
be used to generate C 2-smooth geometric cubic polynomial splines by piecing together, in a smooth
manner, several geometric cubic polynomials and which are interpolating curves of the data.

A few remarks should be made concerning the general applicability of this construction. In
fact, although the geometry of a Riemannian manifold possesses enough structure to formulate the
construction, the basic ingredients used, the geodesic arcs, are implicitly defined by a set of nonlinear
differential equations. Therefore, the Algorithm 4.3.1 can be only practically implemented when we
can reduce the calculation of these geodesic arcs to a manageable form.

For this reason, in what follows we will present the implementation of the Algorithm 4.3.1,
when the manifold M is one of the three particular manifolds, Rm, SO(n) and Gk,n. The result for the
Normalized Essential Manifold E = Gk,n×SO(n), with n = 3 and k = 2, is an immediate consequence
of the implementation on the manifolds SO(n) and Gk,n.

4.3.1 Cubic Polynomials in Rm

For the particular situation when the geodesically complete Riemannian manifold is M = Rm we
recover the classical De Casteljau Algorithm.

Algorithm 4.3.2 (Classical De Casteljau Algorithm)

Given four distinct points x0, x1, x2 and x3 in M = Rm:

Step 1. Construct three straight line arcs joining, for i = 0,1,2, the points xi (at
t = 0) and xi+1 (at t = 1):

β1(t,x0,x1) = tx1 +(1− t)x0,

β1(t,x1,x2) = tx2 +(1− t)x1,

β1(t,x2,x3) = tx3 +(1− t)x2, t ∈ [0,1].

Step 2. Construct two straight line arcs

β2(t,x0,x1,x2) = t2x2 +2t(1− t)x1 +(1− t)2x0,

β2(t,x1,x2,x3) = t2x3 +2t(1− t)x2 +(1− t)2x1.

Step 3. Construct the straight line arc

β3(t,x0,x1,x2,x3) = t3x3 +3t2(1− t)x2 +3t(1− t)2x1 +(1− t)3x0. (4.4)

The curve t ∈ [0,1] 7→ β3(t) := β3(t,x0,x1,x2,x3) is the cubic polynomial that interpolates the points
x0 (at t = 0) and x3 (at t = 1), but does not pass through the control points x1 and x2. We illustrate this
situation in Figure 4.1.

52 Polynomial Interpolation using the De Casteljau Algorithm

Fig. 4.1 Cubic polynomial defined by the De Casteljau algorithm in Rm.

Obtaining the Control Points from the Boundary Conditions

Previously, we introduce the problem of finding a interpolating cubic polynomial curve in M, given
a sequence of four points in the manifold M. However, in most of the problems that arise from
applications we are faced with some boundary constraints, instead of the four points. Therefore, it
is important to know how we can obtain the control points x1 and x2 from the boundary data and,
then, be able to carry out the implementation of the De Casteljau algorithm to get the required cubic
interpolating polynomial. This is what we are going to present in this subsection, when the manifold
M is Rm and when the boundary conditions are of the type (4.2) and of the type (4.3). In coming after
sections, similar work will be done for other manifolds, such as the manifolds Gk,n and SO(n).

• Case 1 - The Boundary Conditions are of the Type (4.2)

Problem 4.3.1 Given two points x0, x3 in Rm and two vectors v0 ∈ Tx0Rm ∼=Rm and v3 ∈ Tx3Rm ∼=Rm,
find a cubic polynomial t ∈ [0,1] 7→ β3(t) in Rm satisfying the boundary conditions:

β3(0) = x0, β3(1) = x3, β̇3(0) = v0 and β̇3(1) = v3. (4.5)

Solution to Problem 4.3.1: From the relation (4.4), we have that

• β̇3(0) = 3(x1− x0),

• β̇3(1) = 3(x3− x2).
(4.6)

4.3 Cubic Polynomials in Manifolds, using De Casteljau Algorithm 53

Then, we just need to choose the control points x1 and x2 necessary to apply the De Casteljau
Algorithm 4.3.2 as

• x1 =
1
3

v0 + x0,

and

• x2 =−
1
3

v3 + x3.

(4.7)

Therefore, the curve t ∈ [0,1] 7→ β3(t) = β3(t,x0,x1,x2,x3), given by the Step 3. of the mentioned
algorithm is the required cubic polynomial.

• Case 2 - The Boundary Conditions are of the Type (4.3)

Problem 4.3.2 Given two points x0, x3 in Rm and two vectors v0,w0 in Tx0Rm ∼= Rm, find a cubic
polynomial t ∈ [0,1] 7→ β3(t) in Rm satisfying the boundary conditions:

β3(0) = x0, β3(1) = x3, β̇3(0) = v0 and β̈3(0) = w0. (4.8)

Solution to Problem 4.3.2: From the relation (4.4), we have that

• β̇3(0) = 3(x1− x0),

• β̈3(0) = 6((x2− x1)− (x1− x0)).
(4.9)

Then, the control points x1 and x2 are given by

• x1 =
1
3

v0 + x0,

and

• x2 =
1
6

w0 +
2
3

v0 + x0.

(4.10)

Consequently, applying the De Casteljau Algorithm, we obtain the required cubic polynomial
given by β3(t) = β3(t,x0,x1,x2,x3), t ∈ [0,1].

Remark 4.3.1

1. When the manifold M is the Euclidean space Rm, the Problem 4.3.1 and the Problem 4.3.2 are
equivalent. In fact, given the boundary conditions of the type (4.2), we can obtain the vector w0

by:

w0 = 6
(
−1

3
v3−

2
3

v0 + x3− x0

)
.

Similarly, given the boundary conditions of the type (4.3), we can obtain the vector v3 by:

v3 = 3
(
−1

6
w0−

2
3

v0 + x3− x0

)
.

2. The Algorithm 4.3.2 can be generalized for polynomials of arbitrary degree r. In this sense,
given a set {x0,x1, . . . ,xr} of r+1 distinct points in the Euclidean space Rm, a smooth curve

54 Polynomial Interpolation using the De Casteljau Algorithm

t ∈ [0,1] 7→ βr(t) := βr(t,x0,x1, . . . ,xr) in Rm joining x0 (at t = 0) and xr (at t = 1), can be
constructed by successive linear interpolation in the following way:

• β0(t,xi) = xi, ∀i = 0, . . . ,r,

• β j(t,xi, . . . ,xi+ j) = tβ j−1(t,xi+1, . . . ,xi+ j)+(1− t)β j−1(t,xi, . . . ,xi+ j−1),

j = 1, . . . ,r, i = 0, . . . ,r− j.

(4.11)

4.4 Implementation of the De Casteljau Algorithm in Gk,n

Although the Grassmann manifold is geodesically complete, we have seen that an explicit formula for
the geodesic that joins two points may be unknown in some particular situations. So, in this case the
implementation of the De Casteljau algorithm is restricted to a convex open subset of the manifold
where the expression to compute the geodesic arc joining two points is well-defined. Having this in
mind, in what follows we begin with a theoretical detailed description of the generalized De Casteljau
algorithm for this particular manifold.

Given four distinct points x0, x1, x2 and x3 in M = Gk,n, the three steps of the Algorithm 4.3.1,
which allows to generate a cubic polynomial t ∈ [0,1] 7→ β3(t) in M, such that β3(0) = x0 and
β3(1) = x3, i.e., joining x0 (at t = 0) and x3 (at t = 1), for this particular manifold, can be described as
follows.

Step 1. For all i = 0,1,2, construct the geodesic arc joining the points xi and xi+1 and given by

β1(t,xi,xi+1) = etΩ1
i xie−tΩ1

i = e
t ad

Ω1
i xi, (4.12)

with Ω1
i =

1
2

log((I−2xi+1)(I−2xi)) ∈ soxi(n).

Step 2. Construct, for each t ∈ [0,1], two geodesic arcs, the first

β2(t,x0,x1,x2) = etΩ2
0(t)β1(t,x0,x1)e−tΩ2

0(t) = e
t ad

Ω2
0(t)β1(t,x0,x1), (4.13)

with Ω2
0(t)=

1
2

log((I−2β1(t,x1,x2))(I−2β1(t,x0,x1)))∈ soβ1(t,x0,x1)(n), joining the point β1(t,x0,x1),

with the point β1(t,x1,x2). The second one

β2(t,x1,x2,x3) = etΩ2
1(t)β1(t,x1,x2)e−tΩ2

1(t) = e
t ad

Ω2
1(t)β1(t,x1,x2), (4.14)

with Ω2
1(t)=

1
2

log((I−2β1(t,x2,x3))(I−2β1(t,x1,x2)))∈ soβ1(t,x1,x2)(n), joining the point β1(t,x1,x2),

with the point β1(t,x2,x3).

Step 3. Construct, for each t ∈ [0,1], the geodesic arc

β3(t,x0,x1,x2,x3) = etΩ3
0(t)β2(t,x0,x1,x2)e−tΩ3

0(t) = e
t ad

Ω3
0(t)β2(t,x0,x1,x2), (4.15)

4.4 Implementation of the De Casteljau Algorithm in Gk,n 55

with Ω3
0(t) =

1
2

log((I − 2β2(t,x1,x2,x3))(I − 2β2(t,x0,x1,x2))) ∈ soβ2(t,x0,x1,x2)(n) connecting the

point β2(t,x0,x1,x2) with the point β2(t,x1,x2,x3).

Therefore, as a result of applying the De Casteljau Algorithm to the given four points in M = Gk,n,
we obtain the next definition of a geometric cubic polynomial in the Grassmann manifold.

Definition 4.4.1 The curve t ∈ [0,1] 7→ β3(t) := β3(t,x0,x1,x2,x3) in M = Gk,n defined by

β3(t) = etΩ3
0(t)etΩ2

0(t)etΩ1
0x0e−tΩ1

0e−tΩ2
0(t)e−tΩ3

0(t)

= e
t ad

Ω3
0(t)e

t ad
Ω2

0(t)e
t ad

Ω1
0 x0,

(4.16)

with Ω1
0, Ω2

0 and Ω3
0 given as mentioned above is called a geometric cubic polynomial in the Grass-

mann manifold, associated to the points xi, i = 0,1,2,3.

Remark 4.4.1 Notice that, as expected, the curve just defined joins the points x0 (at t = 0) and x3

(at t = 1). It is obvious that β3(0) = x0. To see that β3(1) = x3, we start to observe that, from the
definition of Ωi

j, i = 1,2,3, j = 0,1,2, it can be easily derived the following boundary conditions:

• Ω2
0(0) = Ω3

0(0) = Ω1
0 and Ω2

1(0) = Ω1
1;

• Ω2
1(1) = Ω3

0(1) = Ω1
2 and Ω2

0(1) = Ω1
1.

Thus, considering these boundary conditions together with the definition of the geodesic arcs (4.12),
we obtain that

β3(1) = e
ad

Ω3
0(1)e

ad
Ω2

0(1)e
ad

Ω1
0 x0 = e

ad
Ω1

2 e
ad

Ω1
1 e

ad
Ω1

0 x0 = x3. (4.17)

Next, we will present a few results, related with Ωi
j, i = 1,2,3, j = 0,1,2, that will be used later

on.

Lemma 4.4.1 Let Ωi
j, i = 1,2,3, j = 0,1,2 be defined as at the beginning of Section 4.4. Then, the

following identities hold:

(i) e2Ω2
0(t) = e2tΩ1

1e2(1−t)Ω1
0

(ii) e2Ω2
1(t) = e2tΩ1

2e2(1−t)Ω1
1

(iii) e2Ω3
0(t) = e2tΩ2

1(t)e2(1−t)Ω2
0(t).

(4.18)

Proof. The proof of all these identities uses the definition of Ωi
j, i = 1,2,3, j = 0,1,2 and the

Proposition 3.2.2. We prove the last one in detail, the others can be proved using similar arguments,
but have an easier proof. Proof of (iii): From the definition of Ω3

0, we know that

Ω
3
0(t) =

1
2

log((I−2β2(t,x1,x2,x3))(I−2β2(t,x0,x1,x2))).

56 Polynomial Interpolation using the De Casteljau Algorithm

Then, using the relations (4.13) and (4.14), we have that

e2Ω3
0(t) = (I−2β2(t,x1,x2,x3))(I−2β2(t,x0,x1,x2))

= (I−2e
tad

Ω2
1(t)β1(t,x1,x2))(I−2e

tad
Ω2

0(t)β1(t,x0,x1))

= (I−2etΩ2
1(t)β1(t,x1,x2)e−tΩ2

1(t))(I−2etΩ2
0(t)β1(t,x0,x1)e−tΩ2

0(t)).

Therefore, since Ω2
1(t) ∈ soβ1(t,x1,x2)(n) and Ω2

0(t) ∈ soβ1(t,x0,x1)(n), using Proposition 3.2.2 and the
definition of Ω2

0, we obtain that

e2Ω3
0(t) = etΩ2

1(t)(I−2β1(t,x1,x2))e−tΩ2
1(t)etΩ2

0(t)(I−2β1(t,x0,x1))e−tΩ2
0(t)

= e2tΩ2
1(t)(I−2β1(t,x1,x2))(I−2β1(t,x0,x1))e−2tΩ2

0(t)

= e2tΩ2
1(t)e2Ω2

0(t)e−2tΩ2
0(t)

= e2tΩ2
1(t)e2(1−t)Ω2

0(t).

�

Lemma 4.4.2 Let Ωi
j, i = 1,2,3, j = 0,1,2, be defined as in the steps at the beginning of Section 4.4.

Then, the following identities hold:

(i) e
(t−1)ad

Ω2
0(t)e

tad
Ω1

1 = e
tad

Ω2
0(t)e

(t−1)ad
Ω1

0

(ii) e
(t−1)ad

Ω2
1(t)e

tad
Ω1

2 = e
tad

Ω2
1(t)e

(t−1)ad
Ω1

1

(iii) e
(t−1)ad

Ω3
0(t)e

tad
Ω2

1(t) = e
tad

Ω3
0(t)e

(t−1)ad
Ω2

0(t) .

(4.19)

Proof. We will prove the identities (i) and (iii). The proof of the identity (ii) is similar to the proof
of the identity (i). All the proves uses the Lemma 4.4.1, the Proposition 3.2.2, the definition of Ωi

j,
i = 1,2,3, j = 0,1,2 and the definition of the geodesic arcs βi, i = 1,2.

Proof of (i):

Since Ω2
0(t) ∈ soβ1(t,x0,x1)(n) and β1(t,x0,x1) ∈ Gk,n, by the Proposition 3.2.2, we have that

e2Ω2
0(t) (I−2β1(t,x0,x1)) = e

ad
Ω2

0(t) (I−2β1(t,x0,x1)) .

But, from (4.12), we know that β1(t,x0,x1) = e
t ad

Ω1
0 x0, and thus we get

e2Ω2
0(t)e

t ad
Ω1

0 (I−2x0) = e
ad

Ω2
0(t)e

t ad
Ω1

0 (I−2x0) . (4.20)

4.4 Implementation of the De Casteljau Algorithm in Gk,n 57

Then, taking into account the identity (i) of the Lemma 4.4.1 and the Proposition 3.2.2, the
left-hand side of (4.20) can be rewritten as

e2Ω2
0(t)e

t ad
Ω1

0 (I−2x0) = e2Ω2
0(t)et Ω1

0 (I−2x0)e−t Ω1
0

= e2Ω2
0(t)e2t Ω1

0 (I−2x0)

= e2tΩ1
1e2(1−t)Ω1

0e2t Ω1
0 (I−2x0)

= e2tΩ1
1e2Ω1

0 (I−2x0)

= e2tΩ1
1e

ad
Ω1

0 (I−2x0)

= e2tΩ1
1 (I−2x1)

= e
tad

Ω1
1 e

ad
Ω1

0 (I−2x0) .

(4.21)

Therefore, comparing the last right-hand side of (4.21) with the right-hand side of (4.20), we
obtain that e

tad
Ω1

1 e
ad

Ω1
0 (I−2x0) = e

ad
Ω2

0(t)e
t ad

Ω1
0 (I−2x0) . Since (I−2x0)

−1 = (I−2x0), it holds

that e
−ad

Ω2
0(t)e

tad
Ω1

1 e
ad

Ω1
0 = e

t ad
Ω1

0 , which is equivalent to

e
−ad

Ω2
0(t)e

tad
Ω1

1 = e
(t−1)ad

Ω1
0 . (4.22)

Consequently, multiplying the both sides of the last equality (4.22) by e
tad

Ω2
0(t) , we get

e
(t−1)ad

Ω2
0(t)e

tad
Ω1

1 = e
tad

Ω2
0(t)e

(t−1)ad
Ω1

0 ,

which proves the result.

Proof of (iii):

We will start to show that

e
ad

Ω2
0(t)β1(t,x0,x1) = β1(t,x1,x2). (4.23)

From the relation (4.22), it yields that

e
ad

Ω2
0(t) = e

tad
Ω1

1 e
(1−t)ad

Ω1
0 . (4.24)

Then, according with the relations (4.12) and (4.24), we have that

e
ad

Ω2
0(t)β1(t,x0,x1) = e

tad
Ω1

1 e
(1−t)ad

Ω1
0 β1(t,x0,x1)

= e
tad

Ω1
1 e

(1−t)ad
Ω1

0 e
t ad

Ω1
0 x0

= e
tad

Ω1
1 e

ad
Ω1

0 x0

= e
tad

Ω1
1 x1

= β1(t,x1,x2),

58 Polynomial Interpolation using the De Casteljau Algorithm

which proves the identity (4.23). Since Ω3
0(t) ∈ soβ2(t,x0,x1,x2)(n) and β2(t,x0,x1,x2) ∈ Gk,n, by

the Proposition 3.2.2 and by (4.13), we have that

e2Ω3
0(t) (I−2β2(t,x0,x1,x2)) = e

ad
Ω3

0(t) (I−2β2(t,x0,x1,x2))

= e
ad

Ω3
0(t)e

tad
Ω2

0(t) (I−2β1(t,x0,x1)) .
(4.25)

Then, using the Proposition 3.2.2, together with the identity (iii) of the Lemma 4.4.1 and the
equality (4.23), we obtain that the left-hand side of (4.25) can be rewritten as

e2Ω3
0(t) (I−2β2(t,x0,x1,x2)) = e2Ω3

0(t)e2tΩ2
0(t) (I−2β1(t,x0,x1))

= e2tΩ2
1(t)e2(1−t)Ω2

0(t)e2tΩ2
0(t) (I−2β1(t,x0,x1))

= e2tΩ2
1(t)e2Ω2

0(t) (I−2β1(t,x0,x1))

= e2tΩ2
1(t)e

ad
Ω2

0(t) (I−2β1(t,x0,x1))

= e2tΩ2
1(t)
(

I−2e
ad

Ω2
0(t)β1(t,x0,x1)

)
= e2tΩ2

1(t) (I−2β1(t,x1,x2))

= e
tad

Ω2
1(t) (I−2β1(t,x1,x2))

= e
tad

Ω2
1(t)e

ad
Ω2

0(t) (I−2β1(t,x0,x1)) .

(4.26)

Therefore, from (4.25) and (4.26), we get that

e
tad

Ω2
1(t)e

ad
Ω2

0(t) (I−2β1(t,x0,x1)) = e
ad

Ω3
0(t)e

tad
Ω2

0(t) (I−2β1(t,x0,x1)) .

Also, since β1(t,x0,x1)∈Gk,n, we know that (I−2β1(t,x0,x1))(I−2β1(t,x0,x1)) = I, and thus

e
−ad

Ω3
0(t)e

tad
Ω2

1(t)e
ad

Ω2
0(t) = e

tad
Ω2

0(t) .

Consequently,

e
−ad

Ω3
0(t)e

tad
Ω2

1(t) = e
(t−1)ad

Ω2
0(t) ,

and then, multiplying the both sides of this identity by e
tad

Ω3
0(t) , allows to obtain (iii).

�

We are now in conditions to state the following result which contains an alternative way of defining
the geometric cubic polynomial β3 in M = Gk,n. The importance of this result lies in the fact that this
alternative expression will be particularly useful in the computation of the derivatives of the cubic
polynomial at the endpoint (t = 1).

Theorem 4.4.1 Let t ∈ [0,1] 7→ β3(t) be the geometric cubic polynomial in M = Gk,n that results
from the De Casteljau algorithm, which joins the point x0 (at t = 0) to the point x3 (at t = 1) and
having control points x1 and x2. So, according to (4.16),

β3(t) = e
t ad

Ω3
0(t)e

t ad
Ω2

0(t)e
t ad

Ω1
0 x0,

4.4 Implementation of the De Casteljau Algorithm in Gk,n 59

where Ω3
0, Ω2

0 and Ω1
0 are as defined at the beginning of Section 4.4. Define another curve t ∈ [0,1] 7→

γ(t) in M = Gk,n, by

γ(t) = e
(t−1)ad

Ω3
0(t)e

(t−1)ad
Ω2

1(t)e
(t−1)ad

Ω1
2 x3, (4.27)

where Ω2
1 and Ω1

2 are also as defined at the beginning of Section 4.4. Then,

β3(t) = γ(t), t ∈ [0,1].

Proof. Taking into consideration the relation (4.17) and applying the identities (i), (ii) and (iii) of
Lemma 4.4.2, by a few simplifications it holds that, for all t ∈ [0,1]:

γ(t) = e
(t−1)ad

Ω3
0(t)e

(t−1)ad
Ω2

1(t)e
(t−1)ad

Ω1
2 x3

(4.17)
= e

(t−1)ad
Ω3

0(t)e
(t−1)ad

Ω2
1(t)e

(t−1)ad
Ω1

2 e
ad

Ω1
2 e

ad
Ω1

1 e
ad

Ω1
0 x0

= e
(t−1)ad

Ω3
0(t)e

(t−1)ad
Ω2

1(t)e
t ad

Ω1
2 e

ad
Ω1

1 e
ad

Ω1
0 x0

(ii)
= e

(t−1)ad
Ω3

0(t)e
t ad

Ω2
1(t)e

(t−1)ad
Ω1

1 e
ad

Ω1
1 e

ad
Ω1

0 x0

(iii)
= e

t ad
Ω3

0(t)e
(t−1)ad

Ω2
0(t)e

t ad
Ω1

1 e
ad

Ω1
0 x0

(i)
= e

t ad
Ω3

0(t)e
t ad

Ω2
0(t)e

(t−1)ad
Ω1

0 e
ad

Ω1
0 x0

= e
t ad

Ω3
0(t)e

t ad
Ω2

0(t)e
t ad

Ω1
0 x0

= β3(t).

�

We now state some results about derivatives involving Ωi
j, i = 1,2,3, j = 0,1,2 that will be

necessary to fully understand other important developments in this chapter.

Lemma 4.4.3 For j = 2,3, let i = 3− j. Then

1.
d
d t

(
e2Ω

j
0(t)
)∣∣∣∣

t=0
= 2χ0

(
Ω̇

j
0(0)

)
e2Ω1

0 , with χ0 :=
∫ 1

0
e

uad2Ω1
0 du. (4.28)

2.
d
d t

(
e2Ω

j
i (t)
)∣∣∣∣

t=1
= 2χ1

(
Ω̇

j
i (1)

)
e2Ω1

2 , with χ1 :=
∫ 1

0
e

uad2Ω1
2 du. (4.29)

Proof.

1. From Lemma 2.6.3, we have that, for j = 2,3,

d
d t

(
e2Ω

j
0(t)
)

=
∫ 1

0
e

uad
2Ω

j
0(t)(2Ω̇

j
0(t))du e2Ω

j
0(t).

60 Polynomial Interpolation using the De Casteljau Algorithm

Then, evaluating at t = 0, and since Ω
j
0(0) = Ω1

0 for j = 2,3, we obtain

d
d t

(
e2Ω

j
0(t)
)∣∣∣∣

t=0
= 2

∫ 1

0
e

uad2Ω1
0 (Ω̇ j

0(0))du e2Ω1
0

= 2
∫ 1

0
e

uad2Ω1
0 du (Ω̇ j

0(0))e2Ω1
0

= 2χ0

(
Ω̇

j
0(0)

)
e2Ω1

0 ,

with χ0 =
∫ 1

0
e

uad2Ω1
0 du.

2. The result can be proved with similar computations to those made in the proof of statement 1.,
just taking into account Lemma 2.6.3, and the fact that, for j = 2,3 and i = 3− j, we have that
Ω

j
i (1) = Ω1

2 and (
∆

L
2Ω

j
i (t)

(t)
)∣∣∣

t=1
= 2χ1

(
Ω̇

j
i (1)

)
, (4.30)

with χ1 =
∫ 1

0
e

uad2Ω1
2 du.

�

Remark 4.4.2 Notice that χ0 and χ1 defined in Lemma 4.4.3 can be, alternatively, rewritten as

χ0 := f
(

ad2Ω1
0

)
, χ1 := f

(
ad2Ω1

2

)
, (4.31)

where f is given as in (2.40).

Lemma 4.4.4 For j = 2,3, let i = 3− j. Then, from Lemma 2.6.3 replacing X(t) by, respectively,
2(1− t)Ω j

0(t) and 2tΩ j
i (t), we have that(

∆
L
2(1−t)Ω j

0(t)
(t)
)∣∣∣

t=0
=−2Ω

1
0 +2χ0

(
Ω̇

j
0(0)

)
and

(
∆

L
2tΩ j

i (t)
(t)
)∣∣∣

t=1
= 2Ω

1
2 +2χ1

(
Ω̇

j
i (1)

)
,

(4.32)
with χ0 and χ1 defined as in Lemma 4.4.3.

Proof. To show the first identity, we have that, for j = 2,3,(
∆L

2(1−t)Ω j
0(t)

(t)
)∣∣∣∣

t=0
=

(∫ 1

0
e

2(1−t)uad
Ω

j
0(t)(−2Ω

j
0(t)+2(1− t)Ω̇ j

0(t))du
)∣∣∣∣

t=0

=

(∫ 1

0
e

2(1−t)uad
Ω

j
0(t)(−2Ω

j
0(t))du

)∣∣∣∣
t=0

+

(∫ 1

0
e

2(1−t)uad
Ω

j
0(t)(2(1− t)Ω̇ j

0(t))du
)∣∣∣∣

t=0

= −
∫ 1

0
e

2uad
Ω

j
0(0)(2Ω

j
0(0))du+

∫ 1

0
e

2uad
Ω

j
0(0)(2Ω̇

j
0(0))du

= −
∫ 1

0
e

uad2Ω1
0 (2Ω

1
0)du+2

∫ 1

0
e

uad2Ω1
0 du(Ω̇ j

0(0))

= −2Ω1
0 +2χ0

(
Ω̇

j
0(0)

)
.

4.4 Implementation of the De Casteljau Algorithm in Gk,n 61

The proof of the second identity can be achieved with analogous computations, and taking in
consideration that, for j = 2,3 and i = 3− j, it holds that Ω

j
i (1) = Ω1

2.
�

Before proceeding it is important to make the next remark.

Remark 4.4.3 In what follows, we must guarantee that the operators χ0 and χ1 have inverse. From the
definition of f and g, respectively, in (2.40) and (2.41), we know that f (A)g(eA) = I, for ∥eA− I∥< 1.
So, if this restriction holds for A = ad2Ω1

0
and for A = ad2Ω1

2
, taking into account the definition of χ0

and χ1 in Remark 4.4.2, we immediately obtain

χ
−1
0

:= g
(

e
ad2Ω1

0

)
and χ

−1
1

:= g
(

e
ad2Ω1

2

)
. (4.33)

Lemma 4.4.5 For j = 2,3, let i = 3− j. Then

1.
Ω̇

j
0(0) = (j−1)χ−1

0

(
Ω

1
1−Ω

1
0
)
, (4.34)

with χ−1
0

the inverse of the operator χ0 .

2.
Ω̇

j
i (1) = (j−1)χ−1

1

(
Ω

1
2− e2Ω1

2Ω
1
1e−2Ω1

2

)
, (4.35)

with χ−1
1

the inverse of the operator χ1 .

Proof.

1. We will start to show that the identity (4.34) holds for j = 2. Differentiating with respect to t,
both sides of the identity (i) of Lemma 4.4.1, we have that

d
d t

(
e2Ω2

0(t)
)
= 2Ω

1
1e2Ω2

0(t)+ e2tΩ1
1(−2Ω

1
0)e

2(1−t)Ω1
0 ,

and, since Ω2
0(0) = Ω1

0, we have

d
d t

(
e2Ω2

0(t)
)∣∣∣∣

t=0
= 2Ω

1
1e2Ω2

0(0)−2Ω
1
0e2Ω1

0 = 2(Ω1
1−Ω

1
0)e

2Ω1
0 . (4.36)

But, from Lemma 4.4.3, considering j = 2, we also have that

d
d t

(
e2Ω2

0(t)
)∣∣∣∣

t=0
= 2χ0

(
Ω̇2

0(0)
)

e2Ω1
0 , (4.37)

with χ0 =
∫ 1

0
e

uad2Ω1
0 du.

Then, comparing the expressions (4.36) and (4.37) we get

2χ0

(
Ω̇2

0(0)
)

e2Ω1
0 = 2(Ω1

1−Ω1
0)e

2Ω1
0 ⇔ Ω̇2

0(0) = χ−1
0

(
Ω1

1−Ω1
0
)
, (4.38)

which proves the result, for j = 2.

62 Polynomial Interpolation using the De Casteljau Algorithm

Now, we will show that the identity (4.34) also holds for j = 3. Similarly, differentiating with
respect to t, both sides of the identity (iii) of Lemma 4.4.1, and evaluating at t = 0, it yields
that

d
d t

(
e2Ω3

0(t)
)∣∣∣∣

t=0
=

(
∆L

2tΩ2
1(t)

(t)e2Ω3
0(t)+ e2tΩ2

1(t)∆L
2(1−t)Ω2

0(t)
(t)e2(1−t)Ω2

0(t)
)∣∣∣

t=0

=
(

∆L
2tΩ2

1(t)
(t)
)∣∣∣

t=0
e2Ω3

0(0)+
(

∆L
2(1−t)Ω2

0(t)
(t)
)∣∣∣

t=0
e2Ω2

0(0).

(4.39)

Since Ω2
1(0) = Ω1

1, by Proposition 2.6.2, we have that
(

∆L
2tΩ2

1(t)
(t)
)∣∣∣

t=0
= 2Ω2

1(0) = 2Ω1
1. Also,

by Lemma 4.4.4 and, taking into account the relation (4.38), we have(
∆L

2(1−t)Ω2
0(t)

(t)
)∣∣∣

t=0
= −2Ω1

0 +2χ0

(
Ω̇2

0(0)
)

= −2Ω1
0 +2χ0 χ−1

0

(
Ω1

1−Ω1
0
)

= −4Ω1
0 +2Ω1

1.

Consequently, since Ω2
0(0) = Ω3

0(0) = Ω1
0, the relation (4.39) can be rewritten as

d
d t

(
e2Ω3

0(t)
)∣∣∣∣

t=0
= 2Ω1

1e2Ω1
0 +
(
−4Ω1

0 +2Ω1
1
)

e2Ω1
0

= 4
(
Ω1

1−Ω1
0
)

e2Ω1
0 .

(4.40)

Therefore, from (4.40) and Lemma 4.4.3, with j = 3, we get

2χ0

(
Ω̇3

0(0)
)

e2Ω1
0 = 4

(
Ω1

1−Ω1
0
)

e2Ω1
0 ⇔ Ω̇3

0(0) = 2χ−1
0

(
Ω1

1−Ω1
0
)
, (4.41)

which also proves the result, for j = 3.

2. The proof uses identical arguments to those applied to show statement 1., and we present next a
sketch of it. Similar to what was made in the proof of the statement 1., we begin with the proof
of the result for j = 2, since it will be needed to complete the proof of the result when j = 3.

For j = 2:

Start to differentiate with respect to t, both sides of the identity (ii) of Lemma 4.4.1 and
evaluate them at t = 1. The result is then achieved, with a few calculations, considering
Lemma 4.4.3, the identity

(
∆L

2(1−t)Ω1
1
(t)
)∣∣∣

t=1
=−2Ω1

1, the fact that Ω2
1(1) = Ω1

2 and the
relation (4.30), with j = 2 and i = 1.

For j = 3:

Start differentiating with respect to t, both sides of the identity (iii) of Lemma 4.4.1 and
evaluating them at t = 1. Then, with some computations, taking into account Lemma 4.4.3,
Lemma 4.4.4, the relation (4.30), with j = 3 and i = 0, the fact that Ω3

0(1) = Ω2
1(1) = Ω1

2

and that, by Proposition 2.6.2, we have
(

∆L
2(1−t)Ω2

0(t)
(t)
)∣∣∣

t=1
= −2Ω2

0(1) = −2Ω1
1, it

holds that
Ω̇

3
0(1) = Ω

1
2 + Ω̇

2
1(1)−χ

−1
1

(
e2Ω1

2Ω
1
1e−2Ω1

2

)
.

4.4 Implementation of the De Casteljau Algorithm in Gk,n 63

Therefore, making a few calculations, the result is obtained replacing Ω̇2
1(1) by the identity

(4.35), previously proved for j = 2, and attending to the fact that χ1

(
Ω1

2
)
= Ω1

2.

�

We are now in conditions to prove the following result and its corollaries.

Theorem 4.4.2 The polynomial curve t ∈ [0,1] 7→ β3(t) in M = Gk,n defined in (4.16) satisfies the
boundary conditions β3(0) = x0, β3(1) = x3 and

β̇3(t) = [Ω(t),β3(t)], (4.42)

with Ω(t) = ∆L
tΩ3

0(t)
(t)+ e

tad
Ω3

0(t)(∆L
tΩ2

0(t)
(t))+ e

tad
Ω3

0(t)e
tad

Ω2
0(t)Ω1

0 ∈ soβ3(t)(n).

Proof. We have already pointed out in Remark 4.4.1 that β3(0) = x0 and β3(1) = x3. Differen-

tiating (4.16) with respect to t, and since etΩ1
0Ω1

0e−tΩ1
0 = e

t ad
Ω1

0 Ω1
0 = Ω1

0, we obtain

β̇3(t) = ∆L
tΩ3

0(t)
(t)β3(t)+ etΩ3

0(t)∆L
tΩ2

0(t)
(t)e−tΩ3

0(t)β3(t)+
[
etΩ3

0(t)etΩ2
0(t)Ω1

0e−tΩ2
0(t)e−tΩ3

0(t),β3(t)
]

+β3(t)etΩ3
0(t)etΩ2

0(t)∆L
−tΩ2

0(t)
(t)e−tΩ2

0(t)e−tΩ3
0(t)+β3(t)etΩ3

0(t)∆L
−tΩ3

0(t)
(t)e−tΩ3

0(t).

(4.43)
Using Proposition 2.6.1, with A(t) replaced by tΩ j

0(t), for j = 2,3, the fourth and fifth terms in (4.43)
can be rewritten, respectively, as

−β3(t)etΩ3
0(t)∆L

tΩ2
0(t)

(t)e−tΩ3
0(t) and −β3(t)∆L

tΩ3
0(t)

(t).

Then, we get

β̇3(t) =
[
∆L

tΩ3
0(t)

(t),β3(t)
]
+
[
etΩ3

0(t)∆L
tΩ2

0(t)
(t)e−tΩ3

0(t),β3(t)
]

+
[
etΩ3

0(t)etΩ2
0(t)Ω1

0e−tΩ2
0(t)e−tΩ3

0(t),β3(t)
]

= [Ω(t),β3(t)] ,

with
Ω(t) = ∆L

tΩ3
0(t)

(t)+ etΩ3
0(t)∆L

tΩ2
0(t)

(t)e−tΩ3
0(t)+ etΩ3

0(t)etΩ2
0(t)Ω1

0e−tΩ2
0(t)e−tΩ3

0(t)

= ∆L
tΩ3

0(t)
(t)+ e

tad
Ω3

0(t)(∆L
tΩ2

0(t)
(t))+ e

tad
Ω3

0(t)e
tad

Ω2
0(t)Ω1

0 ∈ soβ3(t)(n),

which proves the result. �

Corollary 4.4.1 Let t ∈ [0,1] 7→ β3(t) be the geometric cubic polynomial in M = Gk,n defined in

(4.16) and Ω(t) ∈ soβ3(t)(n) as defined in Theorem 4.4.2. Then,
Dβ̇3

dt
(t) =

[
Ω̇(t),β3(t)

]
.

Proof. Differentiating the relation (4.42) of Theorem 4.4.2 with respect to t, we get

β̈3(t) = [Ω̇(t),β3(t)]+ [Ω(t), β̇3(t)]

= [Ω̇(t),β3(t)]+ [Ω(t), [Ω(t),β3(t)]].

64 Polynomial Interpolation using the De Casteljau Algorithm

By Proposition 3.2.8, we have that [Ω(t), [Ω(t),β3(t)]]∈ (Tβ3(t)Gk,n)
⊥. Therefore, since [Ω̇(t),β3(t)]∈

Tβ3(t)Gk,n, we obtain that
Dβ̇3

dt
(t) =

[
Ω̇(t),β3(t)

]
.

�

Corollary 4.4.2 Let t ∈ [0,1] 7→ β3(t) be the geometric cubic polynomial in M = Gk,n defined in
(4.16) and Ω(t) ∈ soβ3(t)(n) as defined in Theorem 4.4.2. Then,

β̇3(0) = [3Ω
1
0,x0] and

Dβ̇3

dt
(0) = 6

[
χ
−1
0

(
Ω

1
1−Ω

1
0
)
,x0
]
.

Proof. From Theorem 4.4.2, we have that β3(0) = x0 and that

β̇3(0) = [Ω(0),β3(0)],

with Ω(0) =
(

∆L
tΩ3

0(t)
(t)
)∣∣∣

t=0
+
(

∆L
tΩ2

0(t)
(t)
)∣∣∣

t=0
+Ω1

0 ∈ soβ3(0)(n). But, since Ω2
0(0) = Ω3

0(0) = Ω1
0,

from Proposition 2.6.2, we obtain that Ω(0) = 3Ω1
0. Therefore, β̇3(0) = [3Ω1

0,x0]. From Corollary
4.4.1, and since β3(0) = x0, we know that

Dβ̇3

dt
(0) =

[
Ω̇(0),x0

]
. (4.44)

In order to compute Ω̇(0), let us consider ω1(t) := e
tad

Ω3
0(t)(∆L

tΩ2
0(t)

(t)) and ω2(t) := e
tad

Ω3
0(t)e

tad
Ω2

0(t)Ω1
0.

Then, Ω(t) = ∆L
tΩ3

0(t)
(t)+ω1(t)+ω2(t) ∈ soβ3(t)(n) and, differentiating with respect to t, we have that

Ω̇(t) = ∆̇
L
tΩ3

0(t)
(t)+ ω̇1(t)+ ω̇2(t),

with

ω̇1(t) = ∆L
tΩ3

0(t)
(t)ω1(t)+ e

tad
Ω3

0(t)(∆̇L
tΩ2

0(t)
(t))+ e

tad
Ω3

0(t)
(

∆L
tΩ2

0(t)
(t)∆L

−tΩ3
0(t)

(t)
)

=
[
∆L

tΩ3
0(t)

(t),ω1(t)
]
+ e

tad
Ω3

0(t)(∆̇L
tΩ2

0(t)
(t))

and

ω̇2(t) = ∆L
tΩ3

0(t)
(t)ω2(t)+ e

tad
Ω3

0(t)
(

∆L
tΩ2

0(t)
(t)e

tad
Ω2

0(t)Ω1
0

)
+ e

tad
Ω3

0(t)e
tad

Ω2
0(t)
(

Ω1
0∆L
−tΩ2

0(t)
(t)
)

+e
tad

Ω3
0(t)
(

e
tad

Ω2
0(t)(Ω1

0)∆
L
−tΩ3

0(t)
(t)
)

=
[
∆L

tΩ3
0(t)

(t)+ e
tad

Ω3
0(t)
(

∆L
tΩ2

0(t)
(t)
)
,ω2(t)

]
.

Therefore, evaluating at t = 0, and according with Proposition 2.6.2 and Proposition 2.6.3, we get that

Ω̇(0) = 2Ω̇
3
0(0)+ ω̇1(0)+ ω̇2(0),

4.4 Implementation of the De Casteljau Algorithm in Gk,n 65

with
ω̇1(0) = Ω3

0(0)Ω
2
0(0)+2Ω̇2

0(0)−Ω2
0(0)Ω

3
0(0)

=
[
Ω3

0(0),Ω
2
0(0)

]
+2Ω̇2

0(0)

and
ω̇2(0) = Ω3

0(0)Ω
1
0 +Ω2

0(0)Ω
1
0−Ω1

0Ω2
0(0)−Ω1

0Ω3
0(0)

=
[
Ω3

0(0)+Ω2
0(0),Ω

1
0
]
.

Due to the fact that Ω2
0(0) = Ω3

0(0) = Ω1
0, it holds that ω̇1(0) = 2Ω̇2

0(0) and ω̇2(0) = 0. Then, by
Lemma 4.4.5, we can conclude that

Ω̇(0) = 2Ω̇3
0(0)+2Ω̇2

0(0)
= 6χ−1

0

(
Ω1

1−Ω1
0
)
.

(4.45)

Consequently, assuming (4.45), we have that the relation (4.44) can be rewritten as

Dβ̇3

dt
(0) = 6

[
χ
−1
0

(
Ω

1
1−Ω

1
0
)
,x0
]
.

�

On the next result we derive an expression for the derivative of the geometric cubic polynomial β3,
and for the covariant derivative of the velocity vector field along the curve β3, at the endpoint t = 1.
For that, it was fundamental the use of the alternative expression of β3 established in the Theorem
4.4.1.

Theorem 4.4.3 Let t ∈ [0,1] 7→ β3(t) be the geometric cubic polynomial in M = Gk,n given by the
alternative formula present in Theorem 4.4.1. Then,

β̇3(1) = [3Ω
1
2,x3] and

Dβ̇3

dt
(1) = 6

[
χ
−1
1

(
Ω

1
2− e2Ω1

2Ω
1
1e−2Ω1

2

)
,x3

]
. (4.46)

Proof. The alternative formula for β3 present in Theorem 4.4.1 is

β3(t) = e
(t−1)ad

Ω3
0(t)e

(t−1)ad
Ω2

1(t)e
(t−1)ad

Ω1
2 x3. (4.47)

Making a few calculations similar to those that where done in the proof of the Theorem 4.4.2,
it is possible to show that, differentiating with respect to t the alternative expression (4.47), of the
geometric cubic polynomial β3 we obtain that

β̇3(t) = [Ω(t),β3(t)], (4.48)

with Ω(t) = ∆L
(t−1)Ω3

0(t)
(t) + e

(t−1)ad
Ω3

0(t)(∆L
(t−1)Ω2

1(t)
(t)) + e

(t−1)ad
Ω3

0(t)e
(t−1)ad

Ω2
1(t)Ω1

2 ∈ soβ3(t)(n) and
where β3(t) is given by (4.47).

The ingredients to prove the previous identity (4.48) are, essentially, the formula for the derivative
of the exponential map given by Lemma 2.6.3 and the relation in Proposition 2.6.1.

66 Polynomial Interpolation using the De Casteljau Algorithm

Therefore, to obtain the first identity in (4.46), observe that, for j = 2,3 and i = 3− j, we have that

e
(t−1)ad

Ω
j
i (t)

∣∣∣∣
t=1

= I. Furthermore, consider the Proposition 2.6.2 with k = 1, and the Remark 4.4.1,

namely, the fact that Ω2
1(1) = Ω3

0(1) = Ω1
2. All the rest are simple computations.

In order to prove the second identity in (4.46), notice that differentiating (4.48) with respect to t,
using similar arguments to those in the proof of the Corollary 4.4.1, and taking into consideration the
Lemma 2.6.3 and the Proposition 2.6.1, with a few calculations, we get that

Dβ̇3

dt
(t) =

[
Ω̇(t),β3(t)

]
,

with

Ω̇(t) = ∆̇L
(t−1)Ω3

0(t)
(t)+

[
∆L
(t−1)Ω3

0(t)
(t),ω1(t)

]
+ e

(t−1)ad
Ω3

0(t)
(

∆̇L
(t−1)Ω2

1(t)
(t)
)

+
[
∆L
(t−1)Ω3

0(t)
(t)+ e

(t−1)ad
Ω3

0(t)
(

∆L
(t−1)Ω2

1(t)
(t)
)
,ω2(t)

]
,

(4.49)

and, where ω1(t) = e
(t−1)ad

Ω3
0(t)(∆L

(t−1)Ω2
1(t)

(t)) and ω2(t) = e
(t−1)ad

Ω3
0(t)e

(t−1)ad
Ω2

1(t)Ω1
2.

Consequently, evaluating at t = 1 and, essentially, due to Proposition 2.6.3, Lemma 4.4.5, Proposi-
tion 2.6.2 with k = 1, and Remark 4.4.1, we obtain that

Dβ̇3

dt
(1) = 6

[
χ
−1
1

(
Ω

1
2− e2Ω1

2Ω
1
1e−2Ω1

2

)
,x3

]
,

as required. �

Obtaining the Control Points from the Boundary Conditions

In this subsection similar to what was done for M = Rm, we will show how to get the control points
from the boundary conditions in order to, then, implement the De Casteljau algorithm to solve
interpolation data problems that arise from different areas involving the manifold M = Gk,n.

• Case 1 - The Boundary Conditions are of the Type (4.2)

Problem 4.4.1 Given two points x0, x3 in M = Gk,n and two tangent vectors [V0,x0] ∈ Tx0Gk,n and
[V3,x3] ∈ Tx3Gk,n, find a geometric cubic polynomial t ∈ [0,1] 7→ β3(t) in M satisfying the boundary
conditions:

β3(0) = x0, β3(1) = x3, β̇3(0) = [V0,x0] and β̇3(1) = [V3,x3], (4.50)

where V0 ∈ sox0(n) and V3 ∈ sox3(n).

According to the implementation of the algorithm, in order to generate the cubic polynomial that
satisfies (4.50), we must be able to choose the control points x1 and x2 from those boundary conditions.
The following theorem answers this question.

4.4 Implementation of the De Casteljau Algorithm in Gk,n 67

Theorem 4.4.4 The control points x1 and x2, used in the De Casteljau algorithm to generate the
geometric cubic polynomial β3 in Gk,n that satisfies the boundary conditions (4.50), are given by:

x1 =
1
2

(
I− e

2
3V0(I−2x0)

)
and x2 =

1
2

(
I− (I−2x3)e

2
3V3
)
. (4.51)

Proof. From Corollary 4.4.2, we know that β̇3(0) = [3Ω1
0,x0], with Ω1

0 =
1
2

log((I− 2x1)(I−
2x0)) ∈ sox0(n). Then, considering the expression of β̇3(0) in (4.50) and the Proposition 3.2.4, it
follows that 3Ω1

0 =V0 and thus,

Ω
1
0 =

1
3

V0. (4.52)

According with the definition of Ω1
0, we have that e2Ω1

0 = (I−2x1)(I−2x0), which is equivalent to
I−2x1 = e2Ω1

0(I−2x0). Therefore, solving the last equality in order to get x1, it yields that

x1 =
1
2

(
I− e2Ω1

0(I−2x0)
)
. (4.53)

Furthermore, taking into account the identity (4.53), together with the relation in (4.52), we can
conclude that the control point x1 can be obtained, explicitly, from x0 and V0 as

x1 =
1
2

(
I− e

2
3V0(I−2x0)

)
. (4.54)

To reach, from the boundary conditions, an explicit expression to compute the control point x2

notice that, in the Theorem 4.4.3, we proved that β̇3(1) = [3Ω1
2,x3]. On the other hand, from (4.50),

β̇3(1) = [V3,x3]. So, by the Proposition 3.2.4 we obtain that V3 = 3Ω1
2, which implies that

Ω
1
2 =

1
3

V3. (4.55)

Therefore, from the definition of Ω1
2, we have that e2Ω1

2 = (I− 2x3)(I− 2x2), and, making a few

calculations in order to obtain x2, it holds that x2 =
1
2

(
I− (I−2x3)e2Ω1

2

)
. Thus, replacing in the last

equality Ω1
2 by (4.55), it allows to conclude that the control point x2 can be obtained, explicitly, from

x3 and V3 as

x2 =
1
2

(
I− (I−2x3)e

2
3V3
)
. (4.56)

Consequently, we can conclude that the two control points x1 and x2 can be obtained, explicitly, from
the boundary conditions, as required.

�

We are now able to state that the geometric cubic polynomial β3 in the Grassmann manifold,
satisfying the boundary conditions in (4.50), and which solves the Problem 4.4.1, can be obtained by

68 Polynomial Interpolation using the De Casteljau Algorithm

the implementation, in Gk,n, of the De Casteljau algorithm described at the beginning of Section 4.4,
and using the four points x0, x1, x2, x3 ∈ Gk,n, with the control points x1 and x2 given by (4.51).

• Case 2 - The Boundary Conditions are of the Type (4.3)

Problem 4.4.2 Given two points x0, x3 in M = Gk,n and two vectors [V0,x0] and [W0,x0] in Tx0Gk,n,
find a geometric cubic polynomial t ∈ [0,1] 7→ β3(t) in M satisfying the boundary conditions:

β3(0) = x0, β3(1) = x3, β̇3(0) = [V0,x0] and
Dβ̇3

dt
(0) = [W0,x0], (4.57)

where V0,W0 ∈ sox0(n).

Similar to what was done in Case 1, we can state the forthcoming result.

Theorem 4.4.5 The control points x1 and x2, used in the De Casteljau algorithm to generate the
geometric cubic polynomial β3 in Gk,n that satisfies the boundary conditions (4.57), are given by:

x1 =
1
2

(
I− e

2
3V0(I−2x0)

)
and x2 =

1
2

(
I− e

1
3 χ0 (W0)+

2
3V0 e

2
3V0(I−2x0)

)
. (4.58)

Proof. According with the computations done in Case 1, we know that Ω1
0 is given by (4.52).

Consequently, the control point x1 can also be obtained, explicitly, from the boundary conditions using
the expression provided in (4.54).

In order to obtain the control point x2, notice that taking into account the expressions of
Dβ̇3

dt
(0)

in (4.57) and in the Corollary 4.4.2, from the Proposition 3.2.4, it holds that 6χ−1
0

(
Ω1

1−Ω1
0
)
=W0.

Thus, Ω1
1 =

1
6

χ0(W0)+Ω1
0. Then, considering (4.52), we obtain that

Ω
1
1 =

1
6

χ0(W0)+
1
3

V0. (4.59)

From the definition of Ω1
1, we have that e2Ω1

1 = (I−2x2)(I−2x1), and a few calculations leads to,

x2 =
1
2

(
I− e2Ω1

1(I−2x1)
)
. (4.60)

Therefore, using the relations (4.54) and (4.59), the expression (4.60) to obtain the control point x2

can be rewritten as
x2 =

1
2

(
I− e

1
3 χ0 (W0)+

2
3V0e

2
3V0(I−2x0)

)
,

which ends the proof of the result.
�

Thus, now we have all the ingredients to perform the computation, using the De Casteljau
algorithm, of the required geometric cubic polynomial given by β3(t) = β3(t,x0,x1,x2,x3), t ∈ [0,1],
that solves the Problem 4.4.2.

4.4 Implementation of the De Casteljau Algorithm in Gk,n 69

The Case 1, corresponding to the Hermite boundary conditions, can be considered simpler than
the Case 2, since it doesn’t involves the computation of covariant derivatives. However, the Case 2,
where the data is not symmetrically specified, in some applications, has computational advantages
over the Case 1, namely whenever the goal is to generated cubic splines, i.e., to piecing together
several geometric cubic polynomials so that the overall curve is C 2-smooth.

Therefore, before finishing this section it is important to observe that if we are faced with a
problem involving the boundary conditions of type (4.2), we can transform it into a problem with
boundary conditions of the type (4.3). More precisely, if we have a problem of the type of the Problem
4.4.1, then we can convert it into a problem of the kind of the Problem 4.4.2. The reverse situation is
also true. This is what we state and prove in the next two results, which can be regarded as immediate
consequences of the last two theorems.

Proposition 4.4.1 Every Problem 4.4.1 can be transformed in a Problem 4.4.2, considering W0 ∈
sox0(n) given by

W0 = 3χ
−1
0

(
log
(
(I−2x3)e

2
3V3e

2
3V0(I−2x0)

)
− 2

3
V0

)
, (4.61)

where χ−1
0

= g
(

e
ad 2

3 V0

)
, with g defined as in (2.41).

Proof. Given two points x0, x3 in M = Gk,n and two vectors [V0,x0] ∈ Tx0Gk,n and [V3,x3] ∈ Tx3Gk,n

satisfying (4.50), it is enough to prove how we can construct the vector [W0,x0] ∈ Tx0Gk,n satisfying
(4.57). From (4.59), we have that

2Ω
1
1 =

1
3

χ0(W0)+
2
3

V0. (4.62)

Furthermore, from the definition of Ω1
1, we know that e2Ω1

1 = (I−2x2)(I−2x1) and, from (4.51), it
holds that

(I−2x2) = (I−2x3)e
2
3V3 and (I−2x1) = e

2
3V0(I−2x0).

Therefore, we get that e2Ω1
1 = (I−2x3)e

2
3V3e

2
3V0(I−2x0), and, thus

2Ω
1
1 = log

(
(I−2x3)e

2
3V3e

2
3V0(I−2x0)

)
. (4.63)

Consequently, comparing the expressions for 2Ω1
1 described in (4.62) and in (4.63), we obtain (4.61).

�

Proposition 4.4.2 Every Problem 4.4.2 can be transformed in a Problem 4.4.1, considering V3 ∈
sox3(n) given by

V3 =
3
2

log
(
(I−2x3)e

1
3 χ0 (W0)+

2
3V0(I−2x0)e−

2
3V0
)
, (4.64)

where χ0 = f
(

ad 2
3V0

)
, with f given as in (2.40).

Proof. Let x0, x3 in M = Gk,n and two vectors [V0,x0], [W0,x0] ∈ Tx0Gk,n satisfying (4.57). In order to
prove how we can construct the vector [V3,x3] ∈ Tx3Gk,n satisfying (4.50), it is enough to show that we

70 Polynomial Interpolation using the De Casteljau Algorithm

can obtain V3 ∈ sox3(n) from the conditions of Problem 4.4.2. Indeed, from (4.61) we obtain that

e
1
3 χ0 (W0)+

2
3V0 = (I−2x3)e

2
3V3e

2
3V0 (I−2x0) ,

which is equivalent to (I−2x3)e
1
3 χ0 (W0)+

2
3V0 (I−2x0)e−

2
3V0 = e

2
3V3 . Therefore, the identity (4.64)

comes out.

�

4.5 Generating Cubic Splines in Gk,n

According to the relationship between the two types of boundary conditions, we can concentrate
now in solving the interpolation Problem 4.2.1 in Gk,n with boundary conditions of type (4.3). The
crucial procedure is the generation of the first cubic polynomial, denoted by γ1, joining p0 to p1

and having prescribed initial velocity [V0, p0] and initial covariant acceleration [W0, p0]. Although
this has already been described in the previous section, we summarize the results here for the sake
of completeness. We also adapt the notations so that the curve is given in terms of the data. The
interpolation curve γ of Problem 4.2.1 may be generated by piecing together cubic polynomials
defined on each subinterval [ti, ti+1], i = 0,1, . . . , ℓ. Without loss of generality, we assume that all
spline segments are parameterized in the [0,1] time interval.

4.5.1 Generating the First Spline Segment γ1

Apply the De Casteljau algorithm to obtain

γ1(t) = e
t ad

Ω3
0(t)e

t ad
Ω2

0(t)e
t ad

Ω1
0 p0, (4.65)

where
Ω1

0 =
1
2

log((I−2x1)(I−2p0));

Ω1
1 =

1
2

log((I−2x2)(I−2x1));

Ω1
2 =

1
2

log((I−2p1)(I−2x2));

Ω2
0(t) =

1
2

log((I−2e
t ad

Ω1
1 x1)(I−2e

t ad
Ω1

0 p0));

Ω2
1(t) =

1
2

log((I−2e
t ad

Ω1
2 x2)(I−2e

t ad
Ω1

1 x1));

Ω3
0(t) =

1
2

log((I−2e
t ad

Ω2
1(t)e

t ad
Ω1

1 x1)(I−2e
t ad

Ω2
0
(t)

e
t ad

Ω1
0 p0)),

and the control points are given by

x1 =
1
2
(I− e

2
3V0(I−2p0));

x2 =
1
2
(I− e

1
3 χ0(W0)+

2
3V0 e

2
3V0(I−2p0)).

4.6 Cubic Polynomials and Cubic Splines in SO(n) 71

4.5.2 Generating Consecutive Spline Segments

After having generated the first spline segment, one continues in a similar way for the second
spline segment. Since the cubic spline is required to be C 2-smooth, the initial velocity and initial
covariant acceleration for this second spline segment must equal the end velocity and the end covariant
acceleration of the previous spline segment, which are given by the formulas in Theorem 4.4.3. The
other ℓ−2 consecutive segments are generated similarly. The solution of Problem 4.2.1 is the cubic
spline curve resulting from the concatenation of the ℓ consecutive segments.

Remark 4.5.1 Although the De Casteljau algorithm is theoretically very interesting, it becomes clear
from the previous formulas that its implementation is not straightforward. This is the main reason for
searching alternatives to generate interpolating curves. The method that will be presented in Chapter
5.

4.6 Cubic Polynomials and Cubic Splines in SO(n)

For the sake of completeness, we include here the formulas that can be derived from the results in
Crouch et al. [13] for cubic polynomials obtained by the De Casteljau algorithm when M = SO(n).
Similar to the Grassmann manifold it is necessary to restricted the implementation to a sufficiently big
neighbourhood of the given points where the explicit formula to compute the geodesic arc joining two
arbitrary points that depends only on these points is well-defined.

Given four distinct points x0, x1, x2 and x3 in SO(n), the three steps of the Algorithm 4.3.1, which
allows to generate a cubic polynomial t ∈ [0,1] 7→ β3(t) such that β3(0) = x0 and β3(1) = x3, is briefly
described as follows.

Step 1. For all i = 0,1,2, construct the geodesic arc joining the points xi and xi+1 and given by

β1(t,xi,xi+1) = xietV 1
i , (4.66)

with V 1
i = log(x−1

i xi+1) ∈ so(n).
Step 2. Construct, for each t ∈ [0,1], two geodesic arcs, the first

β2(t,x0,x1,x2) = β1(t,x0,x1)etV 2
0 (t) = x0et V 1

0 etV 2
0 (t), (4.67)

with V 2
0 (t)= log((β1(t,x0,x1))

−1β1(t,x1,x2))= log(e(1−t)V 1
0 etV 1

1)∈ so(n), joining the point β1(t,x0,x1),
with the point β1(t,x1,x2). The second one

β2(t,x1,x2,x3) = β1(t,x1,x2)etV 2
1 (t) = x1etV 1

1 etV 2
1 (t), (4.68)

with V 2
1 (t)= log((β1(t,x1,x2))

−1β1(t,x2,x3))= log(e(1−t)V 1
1 etV 1

2)∈ so(n), joining the point β1(t,x1,x2),
with the point β1(t,x2,x3).

Step 3. Construct, for each t ∈ [0,1], the geodesic arc

β3(t,x0,x1,x2,x3) = β2(t,x0,x1,x2)etV 3
0 (t) = x0etV 1

0 etV 2
0 (t)etV 3

0 (t) (4.69)

72 Polynomial Interpolation using the De Casteljau Algorithm

with V 3
0 (t) = log((β2(t,x0,x1,x2))

−1β2(t,x1,x2,x3)) = log(e(1−t)V 2
0 etV 2

1) ∈ so(n) connecting the point
β2(t,x0,x1,x2) with the point β2(t,x1,x2,x3).

The formulas for the generation of the cubic splines and the solution of Problem 4.2.1 when
M = SO(n) can then be obtained from the results in Crouch et al. [13] for general connected and
compact Lie groups.

4.7 Solving the Interpolation Problem for the Normalized Essential
Manifold

It is clear from the last two sections that the implementation of the De Casteljau algorithm on
both the Grassmann manifold and the special orthogonal group heavily relies on computing matrix
exponentials and matrix logarithms. The same happens if one is interested in extending that procedure
to Gk,n×SO(n). In general, there are no explicit formulas to compute those matrix functions and one
would have to use stable numerical algorithms that are already available, for instance in Higham [26].
However, for the Normalized Essential Manifold E = G2,3×SO(3) we can use the following explicit
formulas to compute exponentials of matrices in so(3) and logarithms of matrices in SO(3) that are
available, for instance, in Murray et al. [56]:

• For any skew-symmetric matrix A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3), we have the following

formula, known as Rodrigues’s Formula:

eA =

I +

sin∥a∥
∥a∥

A+
1− cos∥a∥
∥a∥2 A2, ∥a∥ ̸= 0

I, ∥a∥= 0
, (4.70)

where ∥a∥ :=
√

a2
1 +a2

2 +a2
3.

• And for any orthogonal matrix R ∈ SO(3), such that tr(R) ̸=−1, we have

log(R) =

θ

2sinθ

(
R−R⊤

)
, R ̸= I

0, R = I
, (4.71)

where θ = arccos
(

tr(R)−1
2

)
.

We note that, in the SO(3) case, the condition tr(R) ̸=−1 is equivalent to σ(R)∩R−0 =∅, where
σ(R) denotes the spectrum of the matrix R. So, under our assumption that tr(R) ̸=−1, the formula
(4.71) to compute the principal logarithm is in accordance with a remark in Section 2.6 about the
existence and uniqueness of the principal logarithm for matrices whose spectrum doesn’t intersect R−0 .

Chapter 5

Rolling Riemannian Manifolds

5.1 Introduction

Rolling maps describe how two connected and oriented manifolds M0 and M1 of the same dimension
n, both isometrically embedded in the same Riemannian complete m-dimensional manifold M,
(1≤ n < m), roll on each other without slipping and without twisting.

Rolling motions are rigid-like motions that result from the action of the group of isometries of
the embedding manifold, subject to holonomic constraints (the rolling conditions) and nonholonomic
constraints (the non-slip and non-twist conditions). Throughout the thesis we assume that M0 is static
and M1 is rolling over M0. M1 will be called the rolling manifold.

This chapter starts with the definition of rolling map for manifolds embedded in a general
Riemannian manifold. A geometric interpretation of the rolling conditions and of the non-slip and
non-twist conditions is also presented. Using the geometric interpretation of the non-twist conditions
we will make a clear connection between rolling and parallel transport. We then prove some interesting
properties that allow to reduce the study of rolling motions to the case where the static manifold is the
affine tangent space at a point of the rolling manifold. We then proceed with the particular situation
when the embedding manifold is an Euclidean space. In this case, the holonomic and nonholonomic
constraints can be simplified in order to derive the general structure for the kinematic equations of the
rolling motions. This is then specialized to the case when M1 is the product manifold Gk,n×SO(n).
In particular, when n = 3 and k = 2, this manifold is the Normalized Essential manifold that plays an
important role in the area of Vision, as already mentioned.

The chapter ends with the study of the controllability of the kinematic equations describing the
rolling motion of Grassmann Manifolds over the affine tangent space at a point. These kinematic
equations, which can be seen as a nonlinear nonholonomic control system evolving on a certain Lie
group, are proved to be controllable in some subgroup of the group of isometries of the embedding
space of the two manifolds. Moreover, we also present a constructive proof of controllability of the
rolling motion by showing that the all admissible configurations can be recovered by motions that do
not violate the non-slip and non-twist constraints.

73

74 Rolling Riemannian Manifolds

5.1.1 Literature Review

The operation of rolling a surface over another surface appeared in the literature as early as 1919, in
the work of Paul Appell [3]. The rolling sphere problem, consisting on a 2-sphere rolling on a tangent
plane, is the most classical of all nonholonomic systems and has been studied for a long time due to
its interest in Physics and Engineering. But the first modern treatment of rolling without slip and twist
didn’t appear until 1978, with the work of Nomizu [60]. And a mathematical definition of rolling
map for manifolds embedded in an Euclidean space was presented by Sharpe [68] only in 1997. In
this case, the group of orientation preserving isometries of the ambient space is the special Euclidean
group. Although, according to Nash Theorem [57], every finite dimensional Riemannian manifold
can be smoothly isometrically embedded in a sufficiently high-dimensional Euclidean space, finding
an appropriate embedding is not necessarily an easy task. For that reason, the concept of rolling has
been extended to a more general Riemannian framework in Hüper et al. [29]. This will be our starting
point. The study of rolling motions and the derivation of the corresponding kinematic equations have
also appeared in the literature before. In some cases the study was motivated by real applications,
but quite often it served as an inspiration to reach a generalized theory. Examples of that include
Hüper and Silva Leite [31], Zimmerman [75], Jurdjevic and Zimmerman [38], Hüper et al. [28], and
Krakowski and Silva Leite [44]. For a survey about rolling motions we also refer to Chapter 21 in the
upcoming book edited by Grohs et al. [22].

In which concerns controllability, the existing literature is quite sparse, but we can find partial
results, for instance, in Biscolla [6], Jurdjevic [35], Zimmerman [75], Kleinsteuber et al. [41] and
Marques [53].

5.1.2 Main Contributions

After revisiting the definition of rolling map, which is the key mathematical concept for all the rolling
problems studied here, we give a geometric interpretation of all the conditions in that definition. Our
main contribution is a refinement of the geometric interpretation of the non-twist conditions which
allows to prove other interesting properties of rolling and, consequently, simplifies the study of rolling
motions. In particular, when the non-twist conditions are rewritten in terms of parallel vector fields, a
clear connection between rolling and parallel transport will pop up.

When specializing to the rolling manifold Gk,n×SO(n) we follow the approach in Hüper and
Silva Leite [31], also used successfully in Crouch and Silva Leite [16] and Marques [53] for certain
pseudo-Euclidean manifolds, taking advantage of its matrix representation. The definition of rolling
map is adjusted in order to avoid destroying the matrix structure of that manifold, what otherwise
would bring lots of complicated computations. These results for the case when k = 2 and n = 3, i.e.,
rolling motions of the Normalized Essential Manifold, have already been published in Machado et al.
[51].

Following the approach of Jurdjevic [35], Jurdjevic and Sussmann [37] and Zimmerman [75], we
prove that the kinematic equations that describe the pure rolling motions of the Grassmann manifold
Gk,n over the affine tangent space at a point, is controllable in G = SO(n)× TP0Gk,n, whenever
k(n− k) ̸= 1. Furthermore, inspired by the works of Kleinsteuber et al. [41] and of Biscolla [6], a
constructive proof of controllability of the rolling motion is presented by showing how the forbidden

5.2 General Definition of Rolling Map 75

motions of twisting and slipping can be accomplished by rolling without breaking the nonholonomic
constraints of non-slip and non-twist. These results have already been published in Pina and Silva
Leite [63].

5.2 General Definition of Rolling Map

Let M0 and M1 be two connected and oriented manifolds of the same dimension n, both isometrically
embedded in the same Riemannian complete m-dimensional manifold (M,g) (1≤ n < m). Denote
by ∇ the Riemannian connection associated with the metric g and by G the connected component of
Isom(M) containing the identity eG and preserving orientation.

A rolling motion of M1 over M0, without slipping and twisting, will be described by a rolling map
which is a curve in G that satisfies certain constraints. Assume that J = [0,τ], (τ > 0), is a real interval
and consider a curve in G

h : J→ G

t 7→ h(t)
where

h(t) : M→M

p 7→ q = h(t)(p)
. (5.1)

Before defining the concept of a rolling map, we introduce some helpful notations.

We denote by ḣ(t) := d
dσ

(h(σ))
∣∣
σ=t the vector tangent to the curve σ 7→ h(σ) at t.

The action of G on M induces a natural action on tangent vectors to M, which is the pushforward
or differential of h(t), defined by

dph(t) : TpM→ Th(t)(p)M

η 7→ d
dσ

[(h(t)(y(σ))]

∣∣∣∣
σ=0

,
(5.2)

where y :]− ε,ε[→M is a smooth curve in M, such that y(0) = p and ẏ(0) = η .

The action of G on M also induces the following actions that will be used in the definition of
rolling map (Definition 5.2.1):

ḣ(t) : M→ T M

p 7→ ḣ(t)(p) :=
d

dσ
[h(σ)(p)]

∣∣∣∣
σ=t
∈ Th(t)(p)M,

(5.3)

which is the action of the vector tangent to the curve σ 7→ h(σ) at t on the point p ∈M;

ḣ(t)◦h(t)−1 : M→ T M

p 7→
(
ḣ(t)◦h(t)−1)(p) :=

d
dσ

[
(h(σ)

(
h(t)−1)(p)

)]∣∣∣∣
σ=t
∈ TpM;

(5.4)

76 Rolling Riemannian Manifolds

and

dp
(
ḣ(t)◦h(t)−1) : TpM→ Tḣ(t)◦h(t)−1(p)

(
T M
)

η 7→ dp
(
ḣ(t)◦h(t)−1)(η) :=

d
dσ

[
(ḣ(t)◦h(t)−1)(y(σ))

]∣∣∣∣
σ=0

,
(5.5)

where y and η are as above.

Definition 5.2.1 Let M0 and M1 be two n-dimensional connected and oriented manifolds isometri-
cally embedded in an m-dimensional complete Riemannian manifold M and let G be the connected
component of the group of isometries of M that contains the identity and preserves orientation. A
rolling map of M1 over M0, without slipping and twisting, is a smooth curve h : J→ G, satisfying, for
all t ∈ J, the following constraints:

1. Rolling conditions: There exists a smooth curve α1 : J→M1, such that

(a) h(t)(α1(t)) ∈M0;

(b) Th(t)(α1(t))(h(t)(M1)) = Th(t)(α1(t))M0.

The curve α1 is called the rolling curve and the curve α0 : J→M0, defined by

α0(t) := h(t)(α1(t)), (5.6)

is called the development of α1 on M0.

2. No-slip condition: (
ḣ(t)◦h(t)−1)(α0(t)) = 0. (5.7)

3. No-twist conditions:

(a) (Tangential part)

dα0(t)
(
ḣ(t)◦h(t)−1)(Tα0(t)M0

)
⊂ (Tα0(t)M0)

⊥, (5.8)

(b) (Normal part)
dα0(t)

(
ḣ(t)◦h(t)−1)(Tα0(t)M0)

⊥ ⊂ Tα0(t)M0. (5.9)

Remark 5.2.1

1. In Sharpe [68], it has been proven that given any smooth curve in M1, there exists a unique
rolling map along that curve. This existence and uniqueness property of rolling maps has been
generalized to general Riemannian submanifolds in Hüper et al. [29].

2. Rolling along piecewise-smooth curves doesn’t bring any difficulty. One only has to make a
minor adjustment in the conditions of the previous definition that involve derivatives, namely
replacing “for all t” by “for almost all t”.

5.2 General Definition of Rolling Map 77

3. This definition also makes sense when M1 = M0. In this case h(t) : M→M is the identity map
and the rolling curve coincides with its development.

Throughout this thesis the term "pure rolling" or simply "rolling" will always mean rolling, without
slipping and without twisting.

5.2.1 Geometric Interpretation of the Rolling Map Conditions

The rolling conditions in the Definition 5.2.1 are holonomic constraints since they are restrictions on
the configurations of the two manifolds. We call admissible configurations the configurations imposed
by the rolling conditions. Contrary to that, the no-slip and no-twist conditions being nonintegrable
constraints on velocities are nonholonomic constants. This terminology was introduced by Heinrich
Hertz in the nineteenth century, and details about these restrictions can be found, for instance, in
Lützen [49].

In this section we will give geometric interpretation of the three rolling map conditions of
Definition 5.2.1. Before, we start to observe that the embeddings of M1 and M0 into M split the tangent
space of M into direct sums:

TpM = TpM1⊕ (TpM1)
⊥ , p ∈M1,

TqM = TqM0⊕ (TqM0)
⊥ , q ∈M0,

(5.10)

According to these splittings, if p ∈ M1 any vector V ∈ TpM can be written uniquely as the sum
V =V⊤+V⊥, where V⊤ ∈ TpM1 is tangent to M1 at p, while V⊥ ∈

(
TpM1

)⊥ is normal. Analogous
projections can be defined for M0.

• Geometric Interpretation of the Rolling Conditions

• The first rolling condition means that, during the motion, the development curve α0 is being
drawn on M0 by the point of contact between the moving manifold, which at any instant t is
h(t)M1, and the static manifold M0.

• The second rolling condition means that, at each time t ∈ J, both manifolds h(t)M1 and M0

have the same tangent space.

Note that the second rolling condition is also equivalent to

dα1(t)h(t)
(
Tα1(t)M1

)
= Tα0(t)M0. (5.11)

This is easily seen from the following identities:

dα1(t)h(t)
(
Tα1(t)M1

) by (2.24)
= Th(t)(α1(t))(h(t)M1)

by (1b) of Definition 5.2.1
= Tα0(t)M0.

78 Rolling Riemannian Manifolds

Also, due to the splitting (5.10) and the fact that the differential of h(t) is a linear isomorphism,
the rolling condition (5.11) also implies that

dα1(t)h(t)
(
Tα1(t)M1

)⊥
=
(
Tα0(t)M0

)⊥
. (5.12)

Figure 5.1 illustrates the rolling of the Euclidean 2-sphere over its affine tangent space at the south
pole p0.

Fig. 5.1 Illustration of the rolling conditions for the rolling of the 2-sphere embedded in R3.

• Geometric Interpretation of the No-Slip Condition

The no-slip condition (5.7) is equivalent to

α̇0(t) = dα1(t)h(t)(α̇1(t)). (5.13)

Therefore, this condition has the interpretation that during the rolling motion the velocities of the
rolling curve and of its development at each point of contact are the same.

To show this, first notice that differentiating the expression (5.6) with respect to t yields

α̇0(t) = ḣ(t)(α1(t))+dα1(t)h(t)(α̇1(t)). (5.14)

Assuming that (5.13) holds, we get that

ḣ(t)(α1(t)) = 0⇔
(
ḣ(t)◦h(t)−1)(α0(t)) = 0.

5.2 General Definition of Rolling Map 79

On the other hand, if the condition (5.7) is satisfied, then according with (5.6), we have that
ḣ(t)(α1(t)) = 0. Consequently, taking into account (5.14), one gets the relation (5.13).

• Geometric Interpretation of the No-Twist Conditions

A geometric interpretation for the no-twist conditions will be crucial to prove other important
results. However, that is not so easy to obtain and requires some preliminary considerations.
From relation (5.5), we know that the map dα0(t)

(
ḣ(t)◦h(t)−1

)
maps Tα0(t)M to Tḣ(t)◦h(t)−1(α0(t))

(
T M
)
.

Therefore, according with (5.10), it makes sense to apply dα0(t)
(
ḣ(t)◦h(t)−1

)
to elements of Tα0(t)M0

or to elements of
(
Tα0(t)M0

)⊥.
A vector field V along a curve γ(t) is usually denoted by Vγ(t). However, to simplify notations, we will
denote this vector field simply by V (t), as long as it is clear what is the curve. Let V0(t) ∈ Tα0(t)M. By

the chain rule, we have that

dα0(t)
(
ḣ(t)◦h(t)−1)(V0(t)) =

(
dh(t)−1α0(t)ḣ(t) ◦ dα0(t)h(t)

−1)(V0(t)). (5.15)

Then, since h(t)−1(α0(t)) = α1(t) and dα0(t)h(t)
−1 = (dα1(t)h(t))

−1, we can rewritten the previous
relation (5.15) as

dα0(t)
(
ḣ(t)◦h(t)−1)(V0(t)) = dα1(t)ḣ(t)(dα1(t)h(t))

−1(V0(t)). (5.16)

We are now in conditions to prove the following result.

Proposition 5.2.1 The no-twist conditions of Definition 5.2.1 are, respectively, equivalent to:

1. Tangential part:

(dα1(t)ḣ(t)(V1(t)))⊤ = 0, for all vector fields V1(t) ∈ Tα1(t)M1, and all t ∈ J. (5.17)

2. Normal part:

(dα1(t)ḣ(t)(Y1(t)))⊥ = 0, for all vector fields Y1(t) ∈ (Tα1(t)M1)
⊥, and all t ∈ J. (5.18)

Proof.

1. Let V0(t) ∈ Tα0(t)M0 ⊂ Tα0(t)M. Since (dα1(t)h(t))
−1 maps Tα0(t)M0 to Tα1(t)M1, we get that

(dα1(t)h(t))
−1(V0(t)) =: V1(t) ∈ Tα1(t)M1. Then, taking into account (5.16), we obtain that

dα0(t)
(
ḣ(t)◦h(t)−1)(V0(t)) = dα1(t)ḣ(t)(V1(t)).

Consequently, the condition (5.8) of the tangential part of the no-twist conditions is equivalent
to

(dα1(t)ḣ(t)(V1(t)))⊤ = 0, with V1(t) ∈ Tα1(t)M1.

80 Rolling Riemannian Manifolds

2. The proof of the normal part is similar to the proof of the first part. In fact, if Y0(t) ∈
(Tα0(t)M0)

⊥⊂Tα0(t)M, using (5.16) and the fact that (dα1(t)h(t))
−1 maps (Tα0(t)M0)

⊥ to (Tα1(t)M1)
⊥

we obtain that

dα0(t)
(
ḣ(t)◦h(t)−1)(Y0(t)) = dα1(t)ḣ(t)(Y1(t)), Y1(t) ∈ (Tα1(t)M1)

⊥.

Therefore, the condition (5.9) of the normal part of the no-twist conditions is equivalent to

(dα1(t)ḣ(t)(Y1(t)))⊥ = 0, with Y1(t) ∈ (Tα1(t)M1)
⊥.

�

Proposition 5.2.1 gives an interpretation of the no-twist conditions involving the notions of tangent
and normal projections and allows us to prove the next result, which gives an interpretation of the
same conditions using the concepts of covariant derivative and normal covariant derivative along the
rolling curve.

Notations: Let ∇ be the connection on M compatible with the Riemannian metric g, ∇1 and ∇0 the
connections on M1 and M0 respectively, compatible with the corresponding induced metric. While D

dt
denotes the ambient covariant derivative, in what follows, and to simplify notations, we write D

dt indis-
tinctly for the covariant derivative of vector fields along curves in M1 and M0. But it should be clear
from the context that for a vector field V1(t) along the curve t 7→ α1(t) ∈M1, D

dt V1(t) := ∇1
α̇1(t)V1(t),

and for a vector field V0(t) along the curve t 7→ α0(t) ∈M0, D
dt V0(t) := ∇0

α̇0(t)V0(t). We use the same
abuse of notations for the normal covariant derivative D⊥

dt .

Proposition 5.2.2 The no-twist conditions of Definition 5.2.1 are, respectively, equivalent to:

1. Tangential part:

dα1(t)h(t)
D
dt

V1(t) =
D
dt

dα1(t)h(t)V1(t), (5.19)

for any tangent vector field V1(t) along α1(t), and all t ∈ J.

2. Normal part:

dα1(t)h(t)
D⊥

dt
Y1(t) =

D⊥

dt
dα1(t)h(t)Y1(t), (5.20)

for any normal vector field Y1(t) along α1(t), and all t ∈ J.

Proof.

1. Let V1(t) ∈ Tα1(t)M1 ⊂ Tα1(t)M be a tangent vector field along α1(t). By the product derivative
rule for covariant derivatives we have

D
dt

(
dα1(t)h(t)(V1(t))

)
= dα1(t)ḣ(t)V1(t)+dα1(t)h(t)

(D
dt

V1(t)
)
. (5.21)

According to the Proposition 5.2.1, we know that the tangential part of the no-twist conditions
is equivalent to (5.17). So, using this fact together with (5.21) and the Gauss formula along a

5.2 General Definition of Rolling Map 81

curve, we obtain

(
dα1(t)ḣ(t)V1(t)

)⊤
= 0 ⇔

(
D
dt

(
dα1(t)h(t)V1(t)

)
−dα1(t)h(t)(

D
dt

V1(t))
)⊤

= 0

⇔ D
dt

(
dα1(t)h(t)V1(t)

)
−dα1(t)h(t)

D
dt

V1(t) = 0

⇔ dα1(t)h(t)
D
dt

V1(t) =
D
dt

(
dα1(t)h(t)V1(t)

)
,

which proves the result.

2. Let Y1(t) ∈ (Tα1(t)M1)
⊥ ⊂ Tα1(t)M be a normal vector field along α1(t) on M. Similarly to the

tangential part, and taking into account Proposition 5.2.1, we know that the normal no-twist
condition is equivalent to (5.18). Therefore,

(
dα1(t)ḣ(t)Y1(t)

)⊥
= 0 ⇔

(
D
dt

(
dα1(t)h(t)Y1(t)

)
−dα1(t)h(t)(

D
dt

Y1(t))
)⊥

= 0

⇔ D⊥

dt

(
dα1(t)h(t)Y1(t)

)
−dα1(t)h(t)

D⊥

dt
Y1(t) = 0

⇔ dα1(t)h(t)
D⊥

dt
Y1(t) =

D⊥

dt

(
dα1(t)h(t)Y1(t)

)
.

�

The outcomes of the last two propositions are crucial to prove an interesting geometric interpreta-
tion of the no-twist conditions involving the notion of parallel vectors fields, as shown in the following
result.

Theorem 5.2.1 The no-twist conditions of Definition 5.2.1 are, respectively, equivalent to:

1. Tangential part:

(i) A vector field V1(t) is tangent parallel along the curve α1(t) if, and only if, V0(t) =
dα1(t)h(t)(V1(t)) is tangent parallel along α0(t).

2. Normal part:

(ii) A vector field Y1(t) is normal parallel along the curve α1(t) if, and only if, Y0(t) =
dα1(t)h(t)(Y1(t)) is normal parallel along α0(t).

Proof. We will prove the equivalence of the tangential part. The proof of the equivalence of the
normal part can be done similarly.

We first assume that (5.8) of Definition 5.2.1 holds. Then, by Proposition 5.2.2, (5.8) is equivalent

to the identity (5.19). So, it is clear that
D
dt

V1(t) = 0, if and only if,
D
dt

(
dα1(t)h(t)(V1(t))

)
= 0.

Consequently, condition (5.8) implies condition (i) of Theorem 5.2.1.
To prove that condition (i) of Theorem 5.2.1 implies (5.8) of Definition 5.2.1, let V1(t) be an

arbitrary tangent vector field along the curve α1(t) and {E1(t), . . . ,En(t)} (where n is the dimension
of M0 and M1) be a parallel tangent frame field along the rolling curve α1(t), so that

82 Rolling Riemannian Manifolds

V1(t) =
n

∑
i=1

vi(t)Ei(t) and
D
dt

V1(t) =
n

∑
i=1

v̇i(t)Ei(t).

Considering Êi(t) := dα1(t)h(t)(Ei(t)), and taking into account (i) of Theorem 5.2.1, we can
guarantee that {Ê1(t), . . . , Ên(t)} is a parallel tangent frame field along the development curve α0(t).
Then, since dα1(t)h(t) is a linear map (isomorphism) and according to properties of the covariant
derivative we obtain that

dα1(t)h(t)
(

D
dt

V1(t)
)
=

n

∑
i=1

v̇i(t)dα1(t)h(t)(Ei(t)) =
n

∑
i=1

v̇i(t)Êi(t)

and
D
dt

(
dα1(t)h(t)(V1(t))

)
=

D
dt

(
n

∑
i=1

vi(t)Êi(t)

)
=

n

∑
i=1

v̇i(t)Êi(t).

Therefore,

dα1(t)h(t)
(

D
dt

V1(t)
)
=

D
dt

(
dα1(t)h(t)V1(t)

)
.

Consequently, by Proposition 5.2.2, we can conclude that (i) of Theorem 5.2.1 implies (5.8) of
Definition 5.2.1.

�

Remark 5.2.2

1. Godoy et al. [21] proved the equivalent formulation of the no-twist conditions present in
Theorem 5.2.1 when the manifolds are embedded in an Euclidean space and whenever the
no-slip condition holds. Our proof doesn’t need this assumption what makes the last theorem
even more interesting. This is due to the fact that in some engineering problems the constraint
of no-slip is overlooked.

2. Note that the normal part of the no-twist conditions is always satisfied for manifolds of co-
dimension 1 and the tangential part of the no-twist conditions is always satisfied for manifolds
of dimension 1.

5.2.2 Rolling and Parallel Transport

The non-twist conditions allow to make a connection between rolling motions and parallel transport.
This is better seen from the geometric interpretation of those conditions. To see this, let V0 ∈
Tp0M1 = Tp0M0 and V0(t) be the parallel transport of V0 along the development curve α0. Define
V1(t) := dα0(t)h(t)

−1(V0(t)) ∈ Tα1(t)M1. According to Theorem 5.2.1, V1(t) is parallel along α1 and
V1(0) =V0. This is the only parallel vector field along the rolling curve that satisfies the given initial
condition.

Since the parallel vector fields on Euclidean spaces are the constant vector fields, this explains
the formulas derived in Hüper and Silva Leite [31] for the parallel transport along curves of some
particular manifolds rolling on the affine tangent space at a point. We will come back to this point
later in this chapter.

5.2 General Definition of Rolling Map 83

If one chooses V0 = α̇1(0), it also follows immediately from the above considerations that rolling
along a geodesic always generates a geodesic on the static manifold. This important property has
already been stated in Sharpe [68], but is also included here for the sake of completeness.

Proposition 5.2.3 Let h : J→ G be a rolling map of M1 over M0, with rolling curve α1 and develop-
ment curve α0. The rolling curve α1 is a geodesic on M1, if and only if, the development curve α0 is a
geodesic on M0.

5.2.3 Properties of Rolling Motions

In this section we show two important properties of rolling motions, without slip and twist, namely,
the symmetry and the transitivity. It is important to notice that Proposition 2.3.1, will be useful to
prove these rolling properties. Note also, that given M1 and M2 two differential manifolds of the
same dimension, if f : M1→M2 is a diffeomorphism, then dp f : TpM1→ Tf (p)M2 is an isomorphism
between the tangent spaces. So, it follows that any tangent vector V2 ∈ Tf (p)M2 is always the image of
a tangent vector V1 ∈ TpM1 and vice versa.

Theorem 5.2.2 (Symmetry) Let M1 and M2 be two connected submanifolds, of the same dimension,
of a complete Riemannian manifold M tangent to each other at some point p ∈M1∩M2. Suppose
that:

(i) h : J→G is a rolling map of M1 over M2 with rolling curve α1 : J→M1 and development curve
α2 : J→M2.

Then, it follows that:

(ii) h−1 : J→ G defined by h−1(t) := h(t)−1 is a rolling map of M2 over M1, with rolling curve α2

and development curve α1.

Proof. To prove the result we need to show that, for all t ∈ J, the map h−1 fulfills the properties 1,
2 and 3 of Definition 5.2.1 or, equivalently, properties derived in Section 5.2.1.

1. Proof of the Rolling Conditions:

Since h−1(t)(α2(t)) = h(t)−1(h(t)(α1(t))) = α1(t), it is immediately that h−1(t)(α2(t)) ∈M1

and that α1 is the development curve for h−1. Moreover, by (i), we know that

Tα2(t)(h(t)(M1)) = Tα2(t)M2. (5.22)

Therefore,

Tα1(t)(h
−1(t)(M2)) = Th−1(t)(α2(t))(h

−1(t)(M2))
(2.24)
= dα2(t)h

−1(t)(Tα2(t)M2)
(5.22)
= dα2(t)h

−1(t)(Tα2(t)(h(t)(M1)))
(2.24)
= Th−1(t)(α2(t))h

−1(t)(h(t)(M1))

= Th−1(t)(α2(t))M1

= Tα1(t)M1.

84 Rolling Riemannian Manifolds

2. Proof of the No-Slip Condition:

Considering the no-slip condition (5.13), we need to prove that α̇1(t) = dα2(t)h
−1(t)(α̇2(t)).

By (i), we know that α̇2(t) = dα1(t)h(t)(α̇1(t)). Then, (dα1(t)h(t))
−1(α̇2(t)) = α̇1(t), and since

dα2(t)h
−1(t) = (dα1(t)h(t))

−1, we get

α̇1(t) = dα2(t)h
−1(t)(α̇2(t)).

3. Proof of the No-Twist Conditions:

In what follows we will show the tangential part of the no-twist conditions. The proof of the
normal part is similar. According with Theorem 5.2.1 we just need to prove that a vector field
V2(t) is tangent parallel to M2 along the curve α2(t), if and only if, V1(t) = dα2(t)h

−1(t)(V2(t))
is tangent parallel along the curve α1(t). By (i), we have that V1(t) is tangent parallel to M1

along the curve α1(t), if and only if, V2(t) = dα1(t)h(t)(V1(t)) is tangent parallel to M2 along
the curve α2(t). From the last equality, we obtain that:

(dα1(t)h(t))
−1(V2(t)) =V1(t),

which, since h(t)−1(α2(t)) = α1(t) and dα2(t)h
−1(t) = (dα1(t)h(t))

−1, is equivalent to V1(t) =
dα2(t)h

−1(t)(V2(t)). Therefore, we conclude the result.

�

Theorem 5.2.3 (Transitivity) Let M1, M2 and M3 be three connected submanifolds, of the same
dimension, of a complete Riemannian manifold M tangent to each other at some point p ∈M1∩M2∩
M3. Suppose that the following two conditions hold:

(i) h1 : J→ G is a rolling map of M1 over M2 with rolling curve α1 : J→M1 and development
curve α2 : J→M2.

(ii) h2 : J→ G is a rolling map of M2 over M3 with rolling curve α2 : J→M2 and development
curve α3 : J→M3.

Then, it follows that:

(iii) h2 ◦h1 : J→G defined by (h2 ◦h1)(t) := h2(t)h1(t) is a rolling map of M1 over M3, with rolling
curve α1 and development curve α3.

Proof. We will prove that, for all t ∈ J, the map h2 ◦ h1 satisfies the properties 1, 2 and 3 of
Definition 5.2.1.

1. Proof of the Rolling Conditions:

By (i),
α2(t) = h1(t)(α1(t)) ∈M2

and
Tα2(t)(h1(t)(M1)) = Tα2(t)M2. (5.23)

5.2 General Definition of Rolling Map 85

By (ii),
α3(t) = h2(t)(α2(t)) ∈M3

and
Tα3(t)(h2(t)(M2)) = Tα3(t)M3. (5.24)

Then,
(h2 ◦h1)(t)(α1(t)) = h2(t)h1(t)(α1(t))

= h2(t)(h1(t)(α1(t)))
= h2(t)(α2(t))
= α3(t) ∈M3,

and
Tα3(t)((h2 ◦h1)(t)(M1)) = Th2(t)(α2(t))(h2(t)(h1(t)(M1)))

(2.24)
= dα2(t)h2(t)(Tα2(t)(h1(t)(M1)))

(5.23)
= dα2(t)h2(t)(Tα2(t)M2)

(2.24)
= Tα3(t)(h2(t)(M2))

(5.24)
= Tα3(t)M3.

2. Proof of the No-Slip Condition:

Taking into consideration the geometric interpretation of the no-slip condition (5.13), it is
enough to prove that α̇3(t) = dα1(t)(h2 ◦h1)(t)(α̇1(t)). By (i), α̇2(t) = dα1(t)h1(t)(α̇1(t)), and
by (ii), α̇3(t) = dα2(t)h2(t)(α̇2(t)). Then,

α̇3(t) = dα2(t)h2(t)(α̇2(t))
= dα2(t)h2(t)(dα1(t)h1(t)(α̇1(t)))
= dα2(t)h2(t)dα1(t)h1(t)(α̇1(t))
= dh1(t)(α1(t))h2(t)dα1(t)h1(t)(α̇1(t))
= dα1(t)(h2(t)h1(t))(α̇1(t))
= dα1(t)(h2 ◦h1)(t)(α̇1(t)).

3. Proof of the No-Twist Conditions:

In what follows we will show the tangential part of the no-twist conditions. The proof of
the normal part is similar. According with Theorem 5.2.1 we just need to prove that a vector
field V1(t) is tangent parallel to M1 along the curve α1(t), if and only if, V3(t) = dα1(t)(h2 ◦
h1)(t)(V1(t)) is tangent parallel along the curve α3(t). By (i), we have that V1(t) is tangent
parallel to M1 along the curve α1(t), if and only if, V2(t) = dα1(t)h1(t)(V1(t)) is tangent parallel
to M2 along the curve α2(t). Moreover, by (ii), we have that V2(t) = dα1(t)h1(t)(V1(t)) is
tangent parallel to M2 along the curve α2(t), if and only if, V3(t) = dα2(t)h2(t)(V2(t)) is tangent

86 Rolling Riemannian Manifolds

parallel to M3 along the curve α3(t). Therefore, since

V3(t) = dα2(t)h2(t)(V2(t))
= dα2(t)h2(t)(dα1(t)h1(t)(V1(t)))
= dh1(t)(α1(t))h2(t)(dα1(t)h1(t)(V1(t)))
= dα1(t)(h2 ◦h1)(t)(V1(t))

we conclude that D
dt V3(t) = dα1(t)(h2 ◦h1)(t) D

dt V1(t) , and the result follows.

�

Remark 5.2.3 These rolling properties will prove to be important because they allow to reduce the
study of rolling maps to the rolling of a manifold on the affine tangent space at an arbitrary point.
It turns out that such rolling motions play an important role in finding simple solutions for certain
interpolation problems on manifolds, as we will see on Chapter 6.

5.3 Rolling Euclidean Submanifolds

In what follows we particularize the general case to the special situation when M0 and M1 are manifolds
isometrically embedded in the Euclidean space M = Rm and, consequently, the isometry group G
reduces to the special Euclidean group SE(m) = SO(m)nRm. This is the group of rigid motions
in Rm that preserve orientation, and can be described by rotations and translations. We represent
elements of G = SE(m) as pairs (R,s), where R ∈ SO(m), s ∈ Rm, so that the group operations are
defined by:

(R2,s2)(R1,s1) := (R2R1,R2s1 + s2) (product rule),

(R,s)−1 := (R−1,−R−1s) (inverse rule),

and (Im,0) denotes the identity element. The group G = SE(m) acts on points of Rm in the usual way
via:

σ : G×Rm −→ Rm

((R,s), p) 7−→ Rp+ s
, (5.25)

and, for each (R,s) ∈ G, this action defines a mapping

σ(R,s) : Rm −→ Rm

p 7−→ Rp+ s
,

which induces the differential mapping between TpRm ∼=Rm and TRp+sRm ∼=Rm, sending every vector
ξ ∈ TpRm to the vector Rξ in TRp+sRm.

For this particular case, a smooth curve

h : [0,τ] −→ SE(m)

t 7−→ h(t) = (R(t),s(t))
,

is a rolling map of M1 over M0, without slipping and twisting, along a smooth curve α1 on M1, if
it satisfies the properties 1, 2 and 3 of the Definition 5.2.1, with the natural action of the group

5.3 Rolling Euclidean Submanifolds 87

SE(m) on Rm given by (5.25). In order to specialize the Definition 5.2.1 for the rolling of Euclidean
submanifolds we first rewrite the expressions (5.3) - (5.5) adapting them to our specific situation.

Let p ∈ Rm be a point and η ∈ TpRm ∼= Rm be a tangent vector at p. This means that there exists
a smooth curve y :]− ε,ε[→ Rm such that y(0) = p and ẏ(0) = η . Then, the expression (5.3) can be
rewritten as follows:

ḣ(t)(p) =
d

dσ
[h(σ)(p)]

∣∣∣∣
σ=t

=
d

dσ
[R(σ)p+ s(σ)]

∣∣∣∣
σ=t

= Ṙ(t)p+ ṡ(t).

Taking in consideration the definition of the group operations, we have

h(σ)h(t)−1 = (R(σ)R(t)−1,−R(σ)R(t)−1s(t)+ s(σ)) ∈ SE(m).

Consequently, the expression (5.4) can be rewritten as

(
ḣ(t)◦h(t)−1

)
(p) =

d
dσ

[(
h(σ)h(t)−1

)
(p)
]∣∣∣∣

σ=t

=
d

dσ

[
R(σ)R(t)−1 p−R(σ)R(t)−1s(t)+ s(σ)

]∣∣∣∣
σ=t

=
d

dσ

[
R(σ)R(t)−1(p− s(t))+ s(σ)

]∣∣∣∣
σ=t

= Ṙ(t)R(t)−1(p− s(t))+ ṡ(t),

(5.26)

and the expression (5.5) simplifies to

dp
(
ḣ(t)◦h(t)−1

)
(η) =

d
dσ

[(
ḣ(t)◦h(t)−1

)
(y(σ))

]∣∣∣∣
σ=0

=
d

dσ

[
Ṙ(t)R(t)−1(y(σ)− s(t))+ ṡ(t)

]∣∣∣∣
σ=0

= Ṙ(t)R(t)−1η .

(5.27)

So, for this particular situation, we can rewrite the definition of a rolling map as follows.

Definition 5.3.1 Let M0 and M1 be two n-dimensional connected manifolds isometrically embedded
in the Euclidean space Rm. A rolling map of M1 over M0, without slipping and twisting, is a smooth
curve t 7→ (R(t),s(t)) in SE(m), satisfying, for all t ∈ J, the following three properties:

1. Rolling conditions: There exists a smooth curve α1 : J→M1, such that

(a) R(t)α1(t)+ s(t) =: α0(t) ∈M0;

(b) Tα0(t)(R(t)M1 + s(t)) = Tα0(t)M0.

2. No-slip condition:
Ṙ(t)R(t)−1 (α0(t)− s(t)))+ ṡ(t) = 0. (5.28)

88 Rolling Riemannian Manifolds

3. No-twist conditions:

(a) (Tangential part)
Ṙ(t)R(t)−1Tα0(t)M0 ⊂ (Tα0(t)M0)

⊥. (5.29)

(b) (Normal part)
Ṙ(t)R(t)−1(Tα0(t)M0)

⊥ ⊂ Tα0(t)M0. (5.30)

5.3.1 Structure of the Kinematic Equations of Rolling

The kinematic equations describe the velocity vector of the rolling map, that is the rotational and
translational velocities of the rolling motion. In the situation when the manifolds M1 and M0 are
isometrically embedded in the Euclidean space Rm and, consequently, rolling maps are of the form
t 7→ h(t) = (R(t),s(t)), the kinematic equations can be written as: Ṙ(t) = A(t)R(t)

ṡ(t) = u(t)
,

for some matrix function A taking values in the Lie algebra so(m) and some vector valued function u
taking values in Rm. Conditions on these functions are determined from the holonomic and nonholo-
nomic constraints.

Assumption: Assume that the orthogonal group SO(m) acts transitively on the rolling manifold M1

and that M0 = T aff
p0

M1 := p0 +Tp0M1, for some p0 ∈M1. This is not a significant restriction since, due
to the transitivity property of rolling maps, we can always reduce to this situation.

Since SO(m) acts transitively on M1, the rolling curve is always generated by the action of this
group on a point, that is, α1(t) = Q(t)p0, for some Q(t)∈ SO(m), with Q(0) = Im. The corresponding
rolling map h(t) = (R(t),s(t)) must satisfy the first rolling condition, so α0(t) = R(t)Q(t)p0 + s(t) ∈
p0 +Tp0M1. Choose Q(t) = R(t)−1 and s(t) ∈ Tp0M1, so that s(0) = 0, α1(t) = R(t)−1 p0 and α0(t) =
p0 + s(t). For this choice, the first rolling condition is clearly satisfied. We will show that h(t) =
(R(t),s(t)) and α1(t) = R(t)−1 p0 also satisfy all the other conditions of Definition 5.3.1. So, due
to the uniqueness of the rolling map, t 7→ (R(t),s(t)) ∈ SE(m) is a rolling map with rolling curve
t 7→ R(t)−1 p0 ∈M1.
Since in this case Tα0(t)M0 =Tp0M0 =Tp0M1, the second rolling condition is equivalent to Tα0(t)h(t)M1 =

Tp0M1. We show that this equality holds.
First, we prove that Tα0(t)h(t)M1 ⊂ Tp0M1. Let v(t) ∈ Tα0(t)h(t)M1. So, there exists a curve σ 7→
γt(σ) ∈ h(t)M1 such that γt(0) = α0(t) and γ̇t(0) = v(t). Define a curve σ 7→ βt(σ) = γt(σ)− s(t).
This is a curve in M1 due to the transitive action of SO(m) on M1. It happens that βt(0)= γt(0)−s(0)=
α0(t) and β̇t(0) = v(t). So, v(t) ∈ Tp0M1. The prove that Tp0M1 ⊂ Tα0(t)h(t)M1 is similar.
Now, since s(t) = α0(t)− p0 ∈ T aff

p0
M1, the no-slip condition reduces to

ṡ(t) =−A(t)p0, (5.31)

5.3 Rolling Euclidean Submanifolds 89

with A(t) = Ṙ(t)R(t)−1 ∈ so(m). The structure of A(t), t ∈ [0,τ] is determined from the no-twist
conditions

A(t)Tα0(t)M0 ⊂ (Tα0(t)M0)
⊥,

A(t)(Tα0(t)M0)
⊥ ⊂ Tα0(t)M0.

So, for an appropriate choice of coordinates, the matrix function A has the following structure

A(t) =

[
0 A1(t)

−A⊤1 (t) 0

]
, (5.32)

with A1(t) ∈ Rn×(m−n), where n is the dimension of M1. Finally, from (5.31) and (5.32), we can
conclude that the kinematic equations for rolling the manifold M1 over M0 = T aff

p0
M1 are: Ṙ(t) = A(t)R(t)

ṡ(t) =−A(t)p0

, (5.33)

where the matrix function A has the structure (5.32).

Remark 5.3.1 When M1 is the (m−1)-dimensional sphere centered at the origin, with radius r, and
p0 is its south pole, then

A1(t) =

u1(t)

...
um−1(t)

 ,

for some scalar functions u1, . . . ,um−1. Hence, if Ai, j = eie⊤j − e je⊤i , where eℓ, ℓ= 1, . . . ,m, denote
the unitary canonical vectors of Rm, are the elementary skewsymmetric matrices, we can write that

A(t) =
m−1

∑
i=1

ui(t)Ai,m, and then, the equations (5.33) for rolling the sphere on its affine tangent space

at the south pole reduce to the well-known kinematic equations Ṙ(t) =
m−1

∑
i=1

ui(t)Ai,mR(t)

ṡ(t) = ru(t)

.

5.3.2 Parallel Transport

Under the assumption that M0 = T aff
p0

M1, if t 7→ h(t) = (R(t),s(t)) ∈ SE(m) is a rolling map with
rolling curve t 7→ α1(t) = R(t)−1 p0 ∈M1 and V0 ∈ Tp0M1 = Tp0M0, then the parallel transport of V0

along α0 is the constant vector field V0(t) =V0. So, according to Subsection 5.2.2,

V1(t) := dα0(t)h(t)
−1(V0(t)) = R(t)−1V0

is the parallel transport of V0 along the rolling curve α1(t).

90 Rolling Riemannian Manifolds

5.4 Rolling the Riemannian Manifold Gk,n×SO(n)

In this section we specify the rolling maps to the particular situation when M1 is the manifold
Gk,n×SO(n) and M0 its affine tangent space at a point P0. Both manifolds are isometrically embedded
in the vector space of matrices M = s(n)×Rn×n, endowed with the Euclidean Riemannian metric
defined in (3.39). This approach follows that of Hüper and Silva Leite [31], where the rolling of
Grassmann manifolds and of rotation groups has been studied. We recall that, according to our
representation of the manifold Gk,n×SO(n) given in (3.38), its elements are represented by pairs.
Take G = SO(n)×SO(n)×SO(n). G acts on M1 = Gk,n×SO(n) via

φ : G×M1 → M1

((U,V,W),(A,B)) 7→ (UAU⊤,V BW⊤)
,

and this action is transitive. Indeed, given (Θ1E0Θ⊤1 ,R1) and (Θ2E0Θ⊤2 ,R2) in M1 = Gk,n×SO(n),
there exists (U,V,W)∈G such that φ((U,V,W),(Θ1E0Θ⊤1 ,R1)) = (Θ2E0Θ⊤2 ,R2). It is easily checked
that U = Θ2Θ⊤1 , V = R2 and W = R1 comply to the requirements.

Now, define G := GnM, which is a connected Lie group with product rule(
U1,V1,W1,X1,Y1

)(
U2,V2,W2,X2,Y2

)
=
(

U1U2,V1V2,W1W2,U1X2U⊤1 +X1,V1Y2W⊤1 +Y1

)
,

identity element eG = (I, I, I,0,0), and inverse rule(
U,V,W,X ,Y

)−1
=
(

U⊤,V⊤,W⊤,−U⊤XU,−V⊤YW
)
. (5.34)

• The action of G on M1, extends to the following action of G on the vector space M = s(n)×Rn×n:

φ : G× (s(n)×Rn×n) −→ s(n)×Rn×n(
(U,V,W,X ,Y),(A,B)

)
7−→

(
UAU⊤+X ,V BW⊤+Y

) . (5.35)

Indeed, for every E and F in G and (A,B) in s(n)×Rn×n, the following easily checked identities
hold:

φ
(
eG,(A,B)

)
= (A,B);

φ (EF,(A,B)) = φ (E,φ(F,(A,B))) .

• For each fixed element E = (U,V,W,X ,Y) ∈ G, the mapping

φE : s(n)×Rn×n −→ s(n)×Rn×n

(A,B) 7−→
(
UAU⊤+X ,V BW⊤+Y

)
is an isometry of M = s(n)×Rn×n, that is, φE is a diffeomorphism and

d(A,B)φE : s(n)×Rn×n −→ s(n)×Rn×n

(ξ ,η) 7−→
(
UξU⊤,V ηW⊤

)

5.4 Rolling Gk,n×SO(n) 91

is a linear isometry. This can be easily checked by showing that for every (ξ1,η1) and (ξ2,η2)

belonging to s(n)×Rn×n, the following holds:

⟨dφE(ξ1,η1),dφE(ξ2,η2)⟩= ⟨(ξ1,η1),(ξ2,η2)⟩ .

• For each (U,V,W) ∈ G = SO(n)× SO(n)× SO(n), the action of G on M1 = Gk,n× SO(n)
induces the mapping

ψU,V,W : Gk,n×SO(n) −→ Gk,n×SO(n)
(ΘE0Θ⊤,R) 7−→

(
UΘE0Θ⊤U⊤,V RW⊤

) . (5.36)

Remark 5.4.1 It is not clear if G is indeed the whole connected component of the isometry group of
s(n)×Rn×n which contains the identity and preserves orientation. However, as will be clear soon,
these isometries are enough to perform the rolling motion.

The transitive action of G = SO(n)× SO(n)× SO(n) on M1 = Gk,n× SO(n) ensures that any
curve t 7→ α1(t) ∈M1, satisfying α1(0) = (Θ0E0Θ⊤0 ,R0) is defined by

α1(t) =
(
U(t)Θ0E0Θ

⊤
0 U(t)⊤,V (t)R0W (t)⊤

)
,

with t 7→U(t), t 7→V (t) and t 7→W (t) curves in SO(n) that satisfy U(0) =V (0) =W (0) = I.

In what follows, we will show under which conditions the map

h :
[
0,τ
]
−→ G

t 7−→ h(t) = (U(t)⊤,V (t)⊤,W (t)⊤,X(t),Y (t))
, (5.37)

is a rolling map of the manifold Gk,n×SO(n) over its affine tangent space T aff
P0

(Gk,n×SO(n)), along

α1(t) =
(
U(t)Θ0E0Θ

⊤
0 U(t)⊤,V (t)R0W (t)⊤

)
,

with development curve

α0(t) = h(t)(α1(t)) =
(
Θ0E0Θ

⊤
0 +X(t),R0 +Y (t)

)
= P0 +Z(t) ∈M0, (5.38)

where Z(t) = (X(t),Y (t)) ∈ s(n)×Rn×n.

In order to do that, we must adapt the notations in Section 5.3 to the present matrix representation.
First, we rewrite the expressions (5.3) - (5.5) for this new situation.

Let (A,B) be a point in s(n)×Rn×n and (ξ ,η) ∈ s(n)×Rn×n be a tangent vector to a smooth
curve y : t ∈]− ε,ε[7−→ y(t) =

(
A(t),B(t)

)
∈ s(n)×Rn×n that satisfies y(0) =

(
A(0),B(0)

)
= (A,B)

and ẏ(0) =
(
Ȧ(0), Ḃ(0)

)
= (ξ ,η). Then, since

h(t)((A,B)) = (U(t)⊤AU(t)+X(t),V (t)⊤BW (t)+Y (t)),

92 Rolling Riemannian Manifolds

one gets

ḣ(t)((A,B)) =
d

dσ
[h(σ)((A,B))]

∣∣∣∣
σ=t

=
d

dσ

[
U(σ)⊤AU(σ)+X(σ),V (σ)⊤BW (σ)+Y (σ)

]∣∣∣∣
σ=t

=
(
U̇(t)⊤AU(t)+U(t)⊤AU̇(t)+ Ẋ(t),V̇ (t)⊤BW (t)+V (t)⊤BẆ (t)+ Ẏ (t)

)
.

This is the counterpart of (5.3). Now, taking into account the group operations we have that

h(σ)h(t)−1 =
(
U(σ)⊤U(t),V (σ)⊤V (t),W (σ)⊤W (t),−U(σ)⊤U(t)X(t)U(t)⊤U(σ)+X(σ),

−V (σ)⊤V (t)Y (t)W (t)⊤W (σ)+Y (σ)
)
∈ G.

Hence, the counterpart of (5.4) is(
ḣ(t)◦h(t)−1

)
((A,B))

=
d

dσ

[(
h(σ)h(t)−1

)
((A,B))

]∣∣∣∣
σ=t

=
d

dσ

∣∣∣∣
σ=t

[(
U⊤(σ)U(t)AU(t)⊤U(σ)−U⊤(σ)U(t)X(t)U⊤(t)U(σ)+X(σ),

V⊤(σ)V (t)BW (t)⊤W (σ)−V (σ)⊤V (t)Y (t)W (t)⊤W (σ)+Y (σ)
)]

=
(
U̇(t)⊤U(t)A+AU(t)⊤U̇(t)−U̇(t)⊤U(t)X(t)−X(t)U(t)⊤U̇(t)+ Ẋ(t),

V̇ (t)⊤V (t)B+BW (t)⊤Ẇ (t)−V̇ (t)⊤V (t)Y (t)−Y (t)W (t)⊤Ẇ (t)+ Ẏ (t)
)
.

(5.39)

Finally, the counterpart of (5.5) is written as

d(A,B)
(
ḣ(t)◦h(t)−1

)
((ξ ,η)) =

d
dσ

[(
ḣ(t)◦h(t)−1

)
(A(σ),B(σ))

]∣∣∣∣
σ=0

=
(
U̇(t)⊤U(t)ξ +ξU(t)⊤U̇(t),V̇ (t)⊤V (t)η +ηW (t)⊤Ẇ (t)

)
.

(5.40)

5.4.1 The Kinematic Equations of Rolling

In this section we derive the kinematic equations for the rolling motion by imposing the no-slip and
no-twist conditions on h(t) given by (5.37). Taking into account (5.39) and the expression for α0

given by (5.38), the no-slip condition (5.7), for all t ∈ J, can be rewritten as U̇(t)⊤U(t)Θ0E0Θ⊤0 +Θ0E0Θ⊤0 U(t)⊤U̇(t)+ Ẋ(t) = 0

V̇ (t)⊤V (t)R0 +R0W (t)⊤Ẇ (t)+ Ẏ (t) = 0
.

In what follows, for the sake of simplicity, whenever convenient we will omit the dependency on the
parameter t.

5.4 Rolling Gk,n×SO(n) 93

If we define the skew-symmetric matrices ΩU , ΩV and ΩW of so(n) by

ΩU := Θ
⊤
0 U̇⊤UΘ0, ΩV := R⊤0 V̇⊤V R0 and ΩW := R0Ẇ⊤WR⊤0 , (5.41)

the no-slip condition takes the form Ẋ(t) =−Θ0
[
ΩU(t),E0

]
Θ⊤0

Ẏ (t) = ΩW (t)R0−R0ΩV (t)
, for all t ∈ J. (5.42)

Now, using (5.40), the tangential part of the no-twist conditions is equivalent to showing that, for
all (ξ ,η) ∈ Tα0(t)M0, (

U̇⊤Uξ +ξU⊤U̇ ,V̇⊤V η +ηW⊤Ẇ
)
∈ (Tα0(t)M0)

⊥, (5.43)

and similarly, the normal part of the no-twist conditions is equivalent to showing that, for all (ξ ,η) ∈
(Tα0(t)M0)

⊥, (
U̇⊤Uξ +ξU⊤U̇ ,V̇⊤V η +ηW⊤Ẇ

)
∈ Tα0(t)M0. (5.44)

But, Tα0(t)M0 = TP0(Gk,n×SO(n)) (and, similarly, for the normal space). So, taking into account
the notations (5.41), we have that

U̇⊤U = Θ0ΩU Θ
⊤
0 , V̇⊤V = R0ΩV R⊤0 , W⊤Ẇ =−R⊤0 ΩW R0. (5.45)

Consequently, the normal part of the no-twist conditions (5.44) is equivalent to([
Θ0ΩU Θ

⊤
0 ,ξ

]
,R0ΩV R⊤0 η−ηR⊤0 ΩW R0

)
∈ TP0(Gk,n×SO(n)), (5.46)

for all (ξ ,η) ∈ (TP0(Gk,n×SO(n)))⊥. But, according to (3.42), for (ξ ,η) ∈ (TP0(Gk,n×SO(n)))⊥,
we have that

ξ = Θ0

[
S1 0
0 S2

]
Θ
⊤
0 , S1 ∈ s(k), S2 ∈ s(n− k) and η = R0S, S ∈ s(n).

Hence, writing the skew-symmetric matrix ΩU as

ΩU =

[
Ω1 Ω2

−Ω⊤2 Ω3

]
,

where Ω1 ∈ so(k), Ω2 ∈ Rk×(n−k), Ω3 ∈ so(n− k), and taking into account that

[
Θ0ΩU Θ

⊤
0 ,ξ

]
= Θ0

[
[Ω1,S1] Ω2S2−S1Ω2

−Ω⊤2 S1 +S2Ω⊤2 [Ω3,S2]

]
Θ
⊤
0 ,

the characterization of the tangent space (3.41) enables us to conclude that

[Ω1,S1] = 0, for all S1 ∈ s(k) (5.47)

94 Rolling Riemannian Manifolds

and
[Ω3,S2] = 0, for all S2 ∈ s(n− k). (5.48)

The relations (5.47) and (5.48) imply, respectively, that Ω1 = 0 and Ω3 = 0. Therefore, we obtain that
the skew-symmetric matrix ΩU must have the constrained structure

ΩU =

[
0 Ω2

−Ω⊤2 0

]
.

Additionally, the second component present in relation (5.46), with η = R0S, S ∈ s(n), should be
of the form R0C, with C ∈ so(n). This requires that the matrix

(
ΩV S−SR⊤0 ΩW R0

)
should be skew-

symmetric, for all S ∈ s(n). Using this requirement, and after some simple calculations, one concludes
that this is equivalent to [

ΩV ,S
]
+
[
R⊤0 ΩW R0,S

]
= 0, for all S ∈ s(n),

which means that [
ΩV +R⊤0 ΩW R0,S

]
= 0, for all S ∈ s(n).

Hence, ΩV +R⊤0 ΩW R0 = 0, that is
ΩV =−R⊤0 ΩW R0.

Therefore, the normal part of the no-twist conditions for the manifold Gk,n×SO(n) is equivalent to
requiring that

ΩU =

[
0 Ω2

−Ω⊤2 0

]
and ΩV =−R⊤0 ΩW R0. (5.49)

Finally, we must impose the tangential part of the no-twist conditions. But, it turns out that if the
above conditions (5.49) hold, the tangential part of the no-twist conditions holds as well. Indeed, by
(5.45), the relation (5.43), for all (ξ ,η) ∈ Tα0(t)M0, is equivalent to([

Θ0ΩU Θ
⊤
0 ,ξ

]
,R0ΩV R⊤0 η−ηR⊤0 ΩW R0

)
∈ (Tα0(t)M0)

⊥. (5.50)

So, since (ξ ,η) ∈ Tα0(t)M0 = TP0(Gk,n×SO(n)), we must have

ξ = Θ0

[
0 Z

Z⊤ 0

]
Θ
⊤
0 , Z ∈ Rk×(n−k) and η = R0C, C ∈ so(n).

Hence, using (5.49), after some calculations we obtain that

[
Θ0ΩU Θ

⊤
0 ,ξ

]
= Θ0

[
Ω2Z⊤+ZΩ⊤2 0

0 −Ω⊤2 Z−ZΩ2

]
Θ
⊤
0 ,

which is in accordance with the characterization of the orthogonal complement (3.42). Moreover, the
second component present in relation (5.50) should be of the form R0S, with S ∈ s(n) and, taking into
account (5.49), this requires that the matrix (ΩVC+CΩV) should be symmetric, for all C ∈ so(n). A

5.4 Rolling Gk,n×SO(n) 95

few computations show that this requirement is verified. Thus, the no-twist conditions reduce to the
equations (5.49).

Now, if the second condition in (5.49) is used in (5.42), one obtains Ẋ(t) =−Θ0
[
ΩU(t),E0

]
Θ⊤0

Ẏ (t) =−2R0ΩV (t)
, for all t ∈ J. (5.51)

The no-slip condition reduces to equations (5.51).

We can now state the main theorem of this section.

Theorem 5.4.1 For t ∈ J, let ΩU(t), ΩV (t) ∈ so(n) with ΩU(t) =

[
0 Ω2(t)

−Ω⊤2 (t) 0

]
, and where

t 7→ Ω2(t)∈Rk×(n−k). If (U,V,W,X ,Y) is the solution of the following system of differential equations,
evolving on G,

U̇(t) =−U(t)Θ0ΩU(t)Θ⊤0

V̇ (t) =−V (t)R0ΩV (t)R⊤0

Ẇ (t) =W (t)ΩV (t)

Ẋ(t) =−Θ0
[
ΩU(t),E0

]
Θ⊤0

Ẏ (t) =−2R0ΩV (t)

, (5.52)

with initial condition (U(0),V (0),W (0),X(0),Y (0)) = (I, I, I,0,0), then

t 7→ h(t) = (U(t)⊤,V (t)⊤,W (t)⊤,X(t),Y (t)) ∈ G

is a rolling map (in the sense of Definition 5.2.1) of the manifold Gk,n×SO(n) over the affine tangent
space at the point P0 = (Θ0E0Θ0

⊤,R0), along the rolling curve

t 7→ α1(t) =
(
U(t)Θ0E0Θ

⊤
0 U(t)⊤,V (t)R0W (t)⊤

)
,

with development curve
t 7→ α0(t) =

(
Θ0E0Θ

⊤
0 +X(t),R0 +Y (t)

)
.

Proof. We have already proved, before the statement of the theorem, that equations (5.52)
encode the no-slip and the no-twist conditions. Since the curve α1 clearly lives in the manifold
Gk,n×SO(n) and α0(t)= h(t)(α1(t))=P0+Z(t), with Z(t)= (X(t),Y (t))∈ s(n)×Rn×n, to complete
the proof it is enough to show that Z(t) ∈ TP0

(
Gk,n×SO(n)

)
. But since ΩU(t) and ΩV (t) are skew-

symmetric, it follows from the last two equations of (5.52) that Ż(t) ∈ TP0

(
Gk,n× SO(n)

)
. This,

together with the initial condition Z(0) = (0,0), implies that Z(t) ∈ TP0

(
Gk,n × SO(n)

)
, that is,

α0(t) ∈ T aff
P0

(
Gk,n×SO(n)

)
.

�

96 Rolling Riemannian Manifolds

Remark 5.4.2 Equations (5.52), which encode the non-holonomic constraints of no-slip and no-twist
are called the kinematic equations for rolling Gk,n×SO(n) over the affine tangent space at the point
P0. The choice of ΩU and ΩV completely determines the solutions of the kinematic equations and,
consequently, the rolling curve (and its development). For that reason, we say that these two functions
are the “control functions” of the motion.

Remark 5.4.3 Notice that we have started with a general curve in M1 and ended up with restrictions
in order that it is a rolling curve. This seems to contradict the statement made in Sharpe [68] that
for each curve there is a rolling map that rolls the manifold on that curve. The next subsection is
introduced here to show that there is no contradiction.

5.4.2 An Important Observation

We consider the two manifolds separately, starting with the Grassmann manifold, and will show that
in each case the rolling curve can always be expressed in a more simplified form.

First case: M1 = Gk,n

In this case, G = SO(n) is the connected Lie group that acts transitively on M1. Fix the point E0

in Gk,n and let K be the isotropy subgroup at E0, i.e., K := {θ ∈ SO(n) : θE0θ⊤ = E0}. Then

K =

{[
θ1 0
0 θ2

]
: θ1 ∈ SO(k), θ2 ∈ SO(n− k)

}
∼= SO(k)×SO(n− k). (5.53)

The Lie algebra so(n) admits a direct sum decomposition (Cartan decomposition)

so(n) = k⊕p,

where k is the Lie algebra of K and p is a vector space of so(n). More precisely,

k=

{[
A1 0
0 A2

]
: A1 ∈ so(k), A2 ∈ so(n− k)

}
∼= so(k)× so(n− k);

p=

{[
0 B
−B⊤ 0

]
: B ∈ Rk×(n−k)

}
.

The following commutation relations hold:

[k,k]⊂ k, [p,p]⊂ k, [k,p]⊂ p. (5.54)

Notice that p is AdK-invariant, that is, AdK(p) ⊂ p. Indeed, for every h ∈ K and B ∈ p, we have
Adh(B) = hBh−1. Since the exponential map is surjective for special orthogonal groups, h = eA, for
some A ∈ k. But then,

Adh(B) = eABe−A = B+[A,B]+
1
2!
[A, [A,B]]+ · · · ∈ p, since [k,p]⊂ p.

5.4 Rolling Gk,n×SO(n) 97

Now, let α1 be any curve in Gk,n, starting at the point E0. Due to the transitive action of G on Gk,n,
α1(t) = θ(t)E0θ(t)−1, for some θ(t) ∈ SO(n). We will show that there exists θ1 ∈ SO(n), such that

1. θ1(t)−1 θ̇1(t) ∈ p;
2. α1(t) = θ1(t)E0θ1(t)−1.

Indeed, since θ ∈ SO(n), θ̇(t) = θ(t)Ω(t), for some Ω(t) ∈ so(n). Due to the Cartan decomposi-
tion above, Ω(t) decomposes uniquely as Ω(t) = A(t)+B(t), with A(t) ∈ k and B(t) ∈ p. Now define
a new curve in SO(n) by θ1(t) := θ(t)H(t), where H(t) ∈ K is the unique solution of the initial value
problem Ḣ(t) =−A(t)H(t), H(0) = In. It turns out that, due to the fact that K keeps E0 invariant,

θ1(t)E0θ1(t)−1 = θ(t)H(t)E0H(t)−1
θ(t)−1 = θ(t)E0θ(t)−1 =: α1(t),

and, moreover, using the above assumptions we have

θ̇1(t) = θ̇(t)H(t)+θ(t)Ḣ(t) = θ(t)Ω(t)H(t)−θ(t)A(t)H(t)
= θ(t)B(t)H(t) = θ(t)H(t)H(t)−1B(t)H(t) = θ1(t)(H(t)−1B(t)H(t)).

Finally, since H(t) ∈ K and B(t) ∈ p, the AdK-invariance of p guarantees that H(t)−1B(t)H(t) ∈ p,
concluding our proof.

Second case: M1 = SO(n)

The same arguments can be used when M1 is the rotation group, but the calculations get more
involved because the group G has an extra component in this case.

Indeed, when M1 = SO(n), G = SO(n)×SO(n) is a Lie group that acts transitively on M1 via

φ : G×M1 → M1

((V,W),R) 7→ V RW⊤
.

Without loss of generality fix the point In ∈ SO(n), so that the isotropy subgroup of G at In is
given by K := {(V,V) ∈ G : V ∈ SO(n)}. The Lie algebra of G, so(n)⊕ so(n), admits a direct sum
decomposition (Cartan type decomposition)

so(n)⊕ so(n) = k⊕p, (5.55)

where k= {(Ω,Ω) : Ω ∈ so(n)} is the Lie algebra of K and p= {(ψ,−ψ) : ψ ∈ so(n)} is a vector
space of so(n)⊕ so(n). It is easy to see that given (A,B) ∈ so(n)⊕ so(n), there exist unique elements
in k and p that confirm (5.55). Indeed,

(A,B) =
(

1
2
(A+B),

1
2
(A+B)

)
︸ ︷︷ ︸

∈k

+

(
1
2
(A−B),−1

2
(A−B)

)
︸ ︷︷ ︸

∈p

. (5.56)

It is also easy to check that

98 Rolling Riemannian Manifolds

[k,k]⊂ k, [p,p]⊂ k, [k,p]⊂ p,

and, moreover, p is AdK-invariant. This last statement also uses the fact that the exponential map in
SO(n) is surjective, so that every element of SO(n) is of the form eA, for some A ∈ so(n). To check
the invariance, let H = (eA,eA) ∈ K and (ψ,−ψ) ∈ p. Then, it holds that,

AdH(ψ,−ψ) = H(ψ,−ψ)H−1 = (eA,eA)(ψ,−ψ)(e−A,e−A) = (eA
ψe−A,−eA

ψe−A) ∈ p,

as required.

Now, let α1(t) = V (t)InW (t)⊤, for some V (t),W (t) ∈ SO(n), be a curve in SO(n), satisfying
α1(0) = In. Our goal now is to show that there exists (V1(t),W1(t)) ∈ G = SO(n)×SO(n), such that,
for all t,

1. (V1(t)−1 V̇1(t),W1(t)−1Ẇ1(t)) ∈ p;
2. α1(t) =V1(t)InW1(t)⊤.

To prove 1., first note that

V̇ (t) =V (t)Ω(t), Ẇ (t) =W (t)ψ(t), (5.57)

for some Ω(t),ψ(t) ∈ so(n), and, according to (5.56),

(Ω(t),ψ(t)) =
(

1
2
(Ω(t)+ψ(t)) ,

1
2
(Ω(t)+ψ(t))

)
+

(
1
2
(Ω(t)−ψ(t)) ,−1

2
(Ω(t)−ψ(t))

)
,

with the first term of the second member of this equality belonging to k and the second one belonging
to p. Secondly, define a new curve in G = SO(n)×SO(n) by:

(V1(t),W1(t)) := (V (t),W (t))(Y (t),Y (t)) = (V (t)Y (t),W (t)Y (t)) , (5.58)

where Y (t) is the unique solution of the initial value problem in SO(n) given by
Ẏ (t) =−1

2
(Ω(t)+ψ(t))Y (t)

Y (0) = In

. (5.59)

Then, using the identities in (5.57), (5.58) and (5.59), we can write the following where, for the sake
of simplicity, we don’t specify the dependency on t:(

V̇1,Ẇ1
) (5.58)

=
(
V̇Y +VẎ ,ẆY +WẎ

)
(5.57)
=

(5.59)

(
V ΩY − 1

2
V ΩY − 1

2
V ψY,WψY − 1

2
WΩY − 1

2
WψY

)
=

(
V

1
2
(Ω−ψ)Y,W

(
−1

2
(Ω−ψ)

)
Y
)

=

(
VYY−1 1

2
(Ω−ψ)Y,WYY−1

(
−1

2
(Ω−ψ)

)
Y
)
.

5.4 Rolling Gk,n×SO(n) 99

Defining B(t) :=
1
2
(Ω(t)−ψ(t)) and Y (t) = e−C(t),C(t) ∈ so(n), we get

(
V̇1(t),Ẇ1(t)

)
=
(

V1(t)eC(t)B(t)e−C(t),W1(t)eC(t)(−B(t))e−C(t)
)
,

that is, V1(t)−1 V̇1(t) = eC(t)B(t)e−C(t) ∈ so(n) and W1(t)−1Ẇ1(t) = eC(t)(−B(t))e−C(t) ∈ so(n). So,(
V1(t)−1 V̇1(t),W1(t)−1Ẇ1(t)

)
∈ p,

as required in 1.. To check 2., just note that

V1(t)InW1(t)⊤
(5.59)
= V (t)Y (t)InY (t)⊤W (t)⊤ =V (t)InW (t)⊤ = α1(t).

5.4.3 Rolling Gk,n×SO(n) along Geodesics

For the special situation where the control functions are constant (n×n) skew-symmetric matrices,

let us say, ΩU(t) = ΩU =

[
0 Ω2

−Ω⊤2 0

]
, Ω2 ∈ Rk×(n−k) and ΩV (t) = ΩV , the kinematic equations

(5.52) can be solved explicitly and

U(t) = Θ0e−tΩU Θ⊤0

V (t) = R0e−tΩV R⊤0

W (t) = etΩV

X(t) =−tΘ0
[
ΩU ,E0

]
Θ⊤0

Y (t) =−2tR0ΩV

. (5.60)

In this case, the rolling curve

t 7→ α1(t) =
(

Θ0e−tΩU E0etΩU Θ
⊤
0 ,R0e−2tΩV

)
(5.61)

is a geodesic on Gk,n×SO(n), passing through P0 at t = 0 with velocity

α̇1(0) =
(

Θ0 [−ΩU ,E0]Θ
⊤
0 ,−2R0ΩV

)
=
(

Θ0 [E0,ΩU]Θ
⊤
0 , 2R0Ω

⊤
V

)
and, consequently,

t 7→ α0(t) = P0 +Z(t) = P0 +(X(t),Y (t)) = P0 + t
(

Θ0 [E0,ΩU]Θ
⊤
0 , 2R0Ω

⊤
V

)
is also a geodesic in the affine tangent space T aff

P0
(Gk,n×SO(n)) satisfying α0(0) = P0. The second

statement is obvious since a geodesic in the affine space is a straight line. The first statement can be
checked differentiating α1 twice and noticing that α̈1(t) belongs to (Tα1(t) (Gk,n×SO(n)))⊥. Indeed,

100 Rolling Riemannian Manifolds

differentiating (5.61), with respect to t, we obtain that

α̇1(t) =
(

Θ0e−tΩU
[
E0,etΩU ΩU e−tΩU

]
etΩU Θ

⊤
0 , R0e−2tΩV (−2ΩV)

)
. (5.62)

Then, using the fact that etΩU ΩU e−tΩU = ΩU and the anticommutativity of the matrix commutator,
we can write

α̇1(t) =
(

Θ0e−tΩU [−ΩU ,E0]etΩU Θ
⊤
0 , R0e−2tΩV (−2ΩV)

)
∈ Tα1(t) (Gk,n×SO(n)) (5.63)

which, is in accordance with (3.40). Therefore, differentiating (5.63), with respect to t, a few
computations leads to

α̈1(t) =
(

Θ0e−tΩU [[E0,ΩU] ,ΩU]etΩU Θ
⊤
0 , R0e−2tΩV (4Ω

2
V)
)

(5.64)

Hence, taking into account that

[[E0,ΩU] ,ΩU] =

[
−2Ω2Ω⊤2 0

0 2Ω⊤2 Ω2

]
,

with −2Ω2Ω⊤2 ∈ s(k) and 2Ω⊤2 Ω2 ∈ s(n− k), we have that

α̈1(t) =

(
Θ0e−tΩU

[
−2Ω2Ω⊤2 0

0 2Ω⊤2 Ω2

]
etΩU Θ

⊤
0 , R0e−2tΩV (4Ω

2
V)

)
(5.65)

which, is in accordance with (3.42). So, α̈1(t) belongs to (Tα1(t) (Gk,n×SO(n)))⊥. Therefore, the
covariant derivative of α̇1, for all t, is identically zero and, thus, (5.61) is a geodesic on Gk,n×SO(n),
passing through P0 at t = 0. We summarize the previous in the following corollary of Theorem 5.4.1.

Corollary 5.4.1 If the control functions ΩU and ΩV are constant skew-symmetric matrices, then

h(t) =
(

Θ0etΩU Θ
⊤
0 , R0etΩV R⊤0 , e−tΩV ,−tΘ0

[
ΩU ,E0

]
Θ
⊤
0 ,−2tR0ΩV

)
is the rolling map of Gk,n×SO(n), without slipping and twisting, along the geodesic

t 7→ α1(t) =
(

Θ0e−tΩU E0etΩU Θ
⊤
0 ,R0e−2tΩV

)
∈ Gk,n×SO(n) (5.66)

with development curve

t 7→ α0(t) = P0 +Z(t) = P0 +(X(t),Y (t)) = P0 + t
(

Θ0 [E0,ΩU]Θ
⊤
0 , 2R0Ω

⊤
V

)
, (5.67)

also a geodesic in the affine tangent space T aff
P0

(Gk,n×SO(n)), satisfying α0(0) = α1(0) = P0.

5.5 Controllability Aspects of Rolling Motions 101

5.5 Controllability Aspects of Rolling Motions

Controllability deals with the ability of a system with noholonomic constraints to generate all the
forbidden motions. In this section we deal with controllability aspects for the pure rolling of the
Grassmann manifold Gk,n over its affine tangent space at a point, and consider two aspects of the
same problem. The first deals with the controllability of the kinematic equations and the second is a
constructive proof of controllability.

The controllability of the kinematic equations for the rolling of SO(n) has already been proved in
Marques [53]. So, we concentrate here on the Grassmann manifold only.

5.5.1 Controllability of the Kinematic Equations for the Pure Rolling of Gk,n

In which concerns the Grassmann manifold rolling over the affine tangent space at a point P0,

M1 = Gk,n, M0 = T aff
P0

Gk,n := P0 +TP0Gk,n, M = s(n),

and the isometry group of M is the semi-direct product

G = SO(n)n s(n).

Elements in G are represented by pairs (U,X), and the action of G on s(n) is defined by (U,X)S =

USU⊤+X .

Assume, without loss of generality, that P0 = E0 =
[Ik 0

0 0

]
. Notice that Gk,n∩T aff

P0
Gk,n = {P0}. A

rolling map consists of a curve in G whose velocity vector field is restricted to a certain distribution
due to the nonholonomic constraints of no-slip and no-twist. This distribution characterizes the
kinematic equations of the rolling motion.

• Kinematic Equations

From (5.52) and defining the matrices

A(t) :=−ΩU(t) =

[
0 −Ω2(t)

Ω⊤2 (t) 0

]
and B(t) :=−[ΩU(t),P0] =

[
0 Ω2(t)

Ω⊤2 (t) 0

]
,

with t 7→Ω2(t) ∈Rk×(n−k), it is possible to conclude the following result that has already been derived
in Hüper and Silva Leite [31], and that will be the starting point for the main results of this section.

Theorem 5.5.1 If (U,X) is the solution of the following coupled system of differential equations (the
kinematic equations) {

U̇(t) =U(t)A(t)

Ẋ(t) = B(t)
(5.68)

102 Rolling Riemannian Manifolds

and satisfying (U(0),X(0)) = (In,0n), then t 7→ h(t) = (U⊤(t),X(t)) ∈ G is a rolling map along the
curve t 7→ α1(t) =UP0U⊤(t) ∈ Gk,n, with development curve t 7→ α0(t) = P0 +X(t) ∈ T aff

P0
Gk,n.

Remark 5.5.1 When Ω2 is constant, the kinematic equations can be solved explicitly to obtain{
U(t) = etA

X(t) = tB
, (5.69)

with A =

[
0 −Ω2

Ω⊤2 0

]
and B =

[
0 Ω2

Ω⊤2 0

]
constant matrices.

In this case the rolling curve α1(t) = etAP0e−tA is a geodesic in Gk,n and its development α0(t) =
P0 + tB is a geodesic in T aff

P0
Gk,n.

It is clear that the choice of the function Ω2 completely determines the rolling curve (or equivalently
its development, since α0(t) = h(t)α1(t)). So, the kinematic equations (5.68) may be seen as a control
system, with unrestricted controls given by the entries of the matrix function Ω2, evolving on the
Lie group G = SO(n)×V, where V= TP0Gk,n is an additive Lie group. A natural question to ask is
whether or not this system is controllable. This issue will be addressed bellow, following a procedure
that has been used to prove controllability of the rolling sphere in Jurdjevic [35] and Zimmerman [75].

• Controllability of the Kinematic Equations

In the language of geometric control theory, the kinematic equations (5.68) form a sub-Riemannian
control system without drift, evolving on the connected Lie group G = SO(n)×V, where V= TP0Gk,n.
The Lie algebra of this group is L (G) = so(n)⊕V, equipped with the Lie bracket which is the
commutator in the first component and the trivial bracket in the second component of this direct sum.
Controllability means that every two points in G can be joined by trajectories of the system in finite
time.

In which concerns proving controllability of the kinematic equations, the first thing that needs to
be checked is the algebraic property, known in the literature as bracket generating property. This is a
necessary condition for controllability but, in general, it is not sufficient. We refer to Jurdjevic and
Sussmann [37] and Jurdjevic [35] for details concerning controllability of systems evolving on Lie
groups. However, in the present situation, we can use a pioneer result about control systems on Lie
groups which guarantees that, under some conditions, the bracket generating property is equivalent to
controllability.

Theorem 5.5.2 below is a paraphrase of Theorem 7.1 in Jurdjevic and Sussmann [37]. Although
the statement of the theorem in Jurdjevic and Sussmann [37] is for right-invariant control systems, it
is also true for left-invariant control systems, since these two classes of control systems are equivalent

5.5 Controllability Aspects of Rolling Motions 103

via inversion. More precisely,

Ż = ZW (t)⇐⇒ Ẏ =−W (t)Y, where Y = Z−1.

Theorem 5.5.2 A left-invariant control system without drift and unrestricted controls, evolving on a
connected Lie group G, is controllable if and only if the control vector fields generate the Lie algebra
of G, i.e., satisfy the bracket generating property.

It is not clear from the kinematic equations (5.68) that we are in the presence of a control system
that fits the conditions of this theorem, namely that it is a left-invariant control system. To convince
the readers that this is the case, we rewrite (5.68) in the form

Ż(t) = Z(t)

(
r

∑
i=1

ui(t)Wi

)
︸ ︷︷ ︸

W (t)

, Z ∈ G, Wi ∈L (G),

where r = k(n− k). For that, define Z in terms of U and X , and W in terms of the matrices A and B,
as block diagonal matrices:

Z := diag

(
U,

[
In X
0n In

])
,

W := diag

(
A,

[
0n B
0n 0n

])
.

(5.70)

With these identifications, a simple calculation shows that the kinematic equations (5.68) can be
written as

Ż(t) = Z(t)W (t), (5.71)

which is a left-invariant control system without drift, evolving on the connected Lie group G =

SO(n)×V. So, according to Theorem 5.5.2, all we need to prove is that the control vector fields
generate the Lie algebra of G. To do this without getting too weird notations, we work with the first
representation of the kinematic equations, i.e., with equations (5.68).

Let Ei, j denote the square matrix with entry (i, j) equal to 1 and all other entries equal to 0. Define
the elementary skewsymmetric matrices Ai, j := Ei, j−E j,i, and the elementary symmetric matrices
Bi, j := Ei, j +E j,i. A canonical basis for the Lie algebra L (G) is defined as:

{(Ai, j,0), 1≤ i < j ≤ n} ∪ {(0,Bi,k+ j), i = 1, · · · ,k; j = 1, · · · ,n− k}. (5.72)

The left-invariant control vector fields in (5.68) can be identified with the following elements in
L (G):

{(Ai,k+ j,Bi,k+ j), i = 1, · · · ,k; j = 1, · · · ,n− k}. (5.73)

Note that dim(L (G)) = k(n− k)+n(n−1)/2, while the system has only k(n− k) control func-
tions, which are the entries of the matrix function U . So, we are in the presence of an underactuated

104 Rolling Riemannian Manifolds

control system. The following commutator properties, where δi j denotes the Kronecker delta (which
is 1 if i = j and 0 if i ̸= j), will be important:[

Ai, j,A f ,l
]
= δilA j, f +δ j f Ai,l−δi f A j,l−δ jlAi, f . (5.74)

In our situation, to prove that the kinematic equations (5.68) are controllable reduces to showing
that every element in the canonical basis (5.72) can be written as linear combinations of the k(n− k)
control vector fields in (5.73) and their Lie brackets.

Theorem 5.5.3 The control vector fields in (5.68) are bracket generating, except when k(n− k) = 1.

Proof. It is enough to show that every element in the canonical basis (5.72) can be written as linear
combinations of the k (n− k) elements in (5.73) and their Lie brackets. Recall that if (Y1,Z1) and
(Y2,Z2) belong to L (G) = so(n)⊕V, then

[(Y1,Z1),(Y2,Z2)]L (G) = ([Y1,Y2]so(n),0). (5.75)

Using (5.74) and (5.75), we show that all the basis elements can be obtained by, at most, second order
brackets of control vector fields in (5.73).
First, we generate basis elements of the form (Ai, j,0) and (Ai,k+ j,0):

For 1≤ i < j ≤ k, and any l ∈ {1, · · · ,n− k},

(Ai, j,0) =−
[
(Ai,k+l,Bi,k+l),(A j,k+l,B j,k+l)

]
;

(5.76)

For 1≤ i, j ≤ n− k, and any m ∈ {1, · · · ,k},

(Ak+i,k+ j,0) =
[
(Am,k+ j,Bm,k+ j),(Am,k+i,Bm,k+i)

]
.

(5.77)

Second, we generate basis elements of the form (Ai,k+ j,0) using elements from (5.73) and from (5.76):

For i = 1, · · · ,k; j = 1, · · · ,n− k,

(Ai,k+ j,0) =
[
(Ai,l,0),(Al,k+ j,Bl,k+ j)

]
.

(5.78)

Finally, we generate elements of the form (0,Bi,k+ j) using elements from (5.73) and from (5.78):

For i = 1, · · · ,k; j = 1, · · · ,n− k,

(0,Bi,k+ j) = (Ai,k+ j,Bi,k+ j)− (Ai,k+ j,0).
(5.79)

This completes the decoupling and proves the statement.
Notice that we have to exclude the situation when k(n− k) = 1, or equivalently k = 1 and n = 2,
since in this case dim(L (G)) = 2 and there is only one control vector field that can’t generate a
2-dimensional Lie algebra.

�

5.5 Controllability Aspects of Rolling Motions 105

Corollary 5.5.1 Whenever k(n−k) ̸= 1, the control system (5.68), describing the pure rolling motions
of the Grassmann manifold Gk,n over the affine tangent space at the point P0, is controllable in
G = SO(n)×TP0Gk,n.

This is the counterpart of a result about controllability of the rolling n-sphere that can be found,
for instance, in Jurdjevic [35] and Zimmerman [75].

5.5.2 Constructive Proof of Controllability for the Grassmann Manifold

Due to the nonholonomic constraints of the rolling, there are some motions resulting from the
action of G on Gk,n that are forbidden. These are the slips and the twists. A constructive proof of
controllability for this rolling system consists in showing how the forbidden motions can be generated
from admissible motions, that is by rolling without twisting and without slipping. We first give precise
definitions of the forbidden motions.

Definition 5.5.1 A slip is any motion of Gk,n that results from the action of elements in G of the form
(In,X), where X ∈ TP0Gk,n. That is, a slip is a pure translation (in the embedding space) by the vector
X.

Definition 5.5.2 A twist is any motion that results from the action of elements in G that keep P0

invariant.

Remark 5.5.2 Notice that for (U,X) to keep P0 invariant we must have UP0U⊤+X = P0, and this
identity implies that P0−X ∈ Gk,n∩T aff

P0
Gk,n. But the only point that belongs to this intersection is P0,

so X = 0. Moreover, we must have UP0U⊤ = P0, that is, U belongs to the isotropy subgroup of SO(n)
at P0, which is defined as

K := {U ∈ SO(n), such that UP0U⊤ = P0}.

We conclude that twists are generated by elements in G of the form (U,0), with U ∈ K. Also notice
that elements in K have the following structure:

K =

{
U =

[
U1 0
0 U2

]
, U1 ∈ SO(k),U2 ∈ SO(n− k)

}
.

A natural question to ask at this point is: how can we generate forbidden motions? The generation
of the forbidden motions using only admissible motions is similar to what happens for the rolling
sphere. Cartan decompositions of the Lie algebra so(n) and corresponding decompositions of SO(n)
play a crucial role to address this problem, but for a particular case, such as the Grassmann manifold,
those decompositions only appear implicitly. We are inspired by the work of Kleinsteuber et al. [41]
to generate twists and by the work of Biscolla [6] to generate slips.

106 Rolling Riemannian Manifolds

How to Generate Forbidden Motions

• Generating Twists

It is known that any element in SO(n) can be written as a finite product of Givens rotations, which
are elements of the form eτAi, j , τ ∈ R (see, for instance, Kleinsteuber et al. [41] for some details). So,
every twist can also be decomposed as a finite product of elements of the form[

eτ1Ai, j 0
0 eτ2Ak+l,k+m

]
, (5.80)

where 1≤ i < j ≤ k and 1≤ l < m≤ n− k.

In order to generate a twist out of admissible motions it is enough to show that each one of the
block diagonal elements in (5.80) can be decomposed into products of Givens rotations generated
by elements of the form Ar,k+s, for r = 1, · · · ,k and s = 1, · · · ,n− k, so that the sum of all angles of
rotation adds up to zero. Note that these are the elements in the Lie algebra of SO(n) related to the
control vector fields.

In order to show that this is indeed possible, we first prove the following result.

Proposition 5.5.1 Let A,B and C be any three square matrices of the same arbitrary order that satisfy
the following commuting relations:

[A,B] =C and [A,C] =−B. (5.81)

Then, for any real parameter τ ,

eτC = e(π/2)AeτBe−(π/2)A

= e−(π/2)A e−τB e(π/2)A,

(5.82)

and, consequently,
eτC = e(π/2)A e(τ/2)B e−πA e−(τ/2)B e(π/2)A. (5.83)

Proof. The proof of the identity (5.83) is based on the commuting relations above and on properties
of the exponential mapping, including the Campbell-Hausdorff formula

etA Be−tA = etadA B =
+∞

∑
i=0

t i

i!
adi

A B,

where adA is the adjoint operator defined by adA B := [A,B], and adi
A B := adi−1

A (adA B), for i= 2,3, · · · .
Indeed, when the commuting relations (5.81) hold, then

etA Be−tA = B cos t +C sin t,

5.5 Controllability Aspects of Rolling Motions 107

and so, choosing t =±π/2, we get

C = e±(π/2)A (±B)e∓(π/2)A,

which implies
eτC = e±(π/2)A e±τB e∓(π/2)A.

The identity (5.83) is obtained from the previous, with a convenient choice of the signals, as follows.

eτC = e(τ/2)C e(τ/2)C

= e(π/2)A e(τ/2)B e−πA e−(τ/2)B e(π/2)A.

�

When A,B and C are skewsymmetric matrices of the form Ai, j, each term in (5.83) is a plane
rotation (in the plane spanned by ei and e j) and Figure 5.2 illustrates the rectangle, in that plane, that
is the development curve of the rolling motion that performs the twist eτC.

Fig. 5.2 Development curve that performs a twist.

Corollary 5.5.2 The following identities hold:

a) For 1≤ i < j ≤ k, l ∈ {1, · · · ,n− k} and τ1 ∈ R,

eτ1Ai, j = e(π/2)A j,k+l e(τ1/2)Ai,k+l e−πA j,k+l

e−(τ1/2)Ai,k+l e(π/2)A j,k+l .

b) For 1≤ l < m≤ n− k, i ∈ {1, · · · ,k} and τ2 ∈ R,

eτ2Ak+l,k+m = e(π/2)Ai,k+m e(τ2/2)Ai,k+l e−πAi,k+m

e−(τ2/2)Ai,k+l e(π/2)Ai,k+m .

Proof. This is an immediate consequence of the fact that the triples

{A j,k+l,Ai,k+l,Ai, j} and {Ai,k+m,Ai,k+l,Ak+l,k+m}

108 Rolling Riemannian Manifolds

satisfy the commuting relations (5.81), as the triple {A,B,C} does.

�

• Generating Slips

Without loss of generality, we may restrict to the situation of a slip from the point P0 to the
point Q1 = P0 + τB1,k+1, for some τ > 0. This is a pure translation in the ambient space by the
vector τB1,k+1 ∈ TP0Gk,n. The distance from P0 to Q1 is easily computed, since we know that
t 7→ β (t) = P0 + tB1,k+1 is the geodesic that satisfies β (0) = P0 and β (τ) = Q1, and

d(P0,Q1) =
∫

τ

0
∥ β̇ (t) ∥ dt = τ

√
tr(B2

1,k+1) = τ
√

2.

There are two situations to consider, the first one when τ is a multiple of 2π , and the second one
otherwise. The corresponding development curves are shown in Figure 5.3, and details about this
construction are given in what follows.

Fig. 5.3 Triangle showing the development curve for the rolling map that generates a slip from P0 to
Q1.

1. τ is a multiple of 2π , say τ = 2πl.

In this case, the slip can be generated by rolling (without slip or twist) Gk,n along a geodesic arc so
that its development curve is the geodesic arc in T aff

P0
Gk,n that joins P0 to Q1. This geodesic arc is

represented in the previous figure by the red line. The corresponding rolling map is

h(t) =
(
etA1,k+1 , t B1,k+1

)
.

At t = 2πl, we have

h(2πl) =
(

e2πlA1,k+1 ,2πl B1,k+1

)
= (In,2πl B1,k+1).

5.5 Controllability Aspects of Rolling Motions 109

So, we have generated the slip from P0 to Q1 by rolling without twist or slip.

2. τ is not a multiple of 2π .

In this case, we can generate the slip by rolling (without slip or twist) along a broken geodesic
composed of two geodesic arcs of equal length. These arcs, which are represented in the previous
figure by the blue lines, form an isosceles triangle together with the geodesic arc joining P0 to Q1.
There are many possible choices for the plane where such triangle lives, and one possible choice for
the third vertex Q2 is

Q2 = Q1 + τ1B1,k+2 = P0 +
τ

2
B1,k+1 + τ1B1,k+2,

where Q1 is the midpoint between P0 and Q1 and τ1 must be chosen so that

d(P0,Q2) = d(Q1,Q2) = 2
√

2πr, for some r ∈ IN.

The first equality follows from the requirement that the triangle is isosceles, and the second equality
ensures that rolling along each one of the equal sides of the triangle generates a slip. A simple
calculation shows that τ1 must satisfy

τ
2
1 = 4π

2r2− τ
2/4, for some r ∈ IN.

Rolling Gk,n along that broken geodesic arc will not affect its orientation and generates the slip from
P0 to Q1, as required.

Therefore, we have shown how the forbidden motions of twist and slip can be generated just by
rolling without twisting and without slipping.

Chapter 6

Solving Interpolation Problems using
Rolling Motions

6.1 Introduction

We return to interpolation problems on manifolds in order to present a simpler approach based on
rolling motions that somehow overcomes the drawbacks of other interpolating techniques, such as the
De Casteljau Algorithm previously presented. In this chapter, the basic idea to solve an interpolation
problem on a non-Euclidean manifold is to project the data from that manifold to a simpler manifold,
where the problem may be easily solved, and then reversing the process by projecting the resulting
interpolation curve to the original manifold. As we will explain, this can be done successfully using
rolling motions of the given manifold over its affine tangent space at a point. Since there are several
useful algorithms to solve interpolation problems on vector spaces, and consequently also on affine
spaces, what needs to be explained is how to project data from one manifold to another one using
rolling motions. The interesting observation is that this technique is coordinate-free and it produces an
interpolating curve that is given in closed form. This is particularly useful for solving real problems,
such as motion planning for robots or other mechanical systems whose configuration spaces contain
components which are Lie groups or symmetric spaces, or to reconstruct a video from several images
of a scene, using the Normalized Essential manifold.

For the sake of simplicity, in this chapter we only give details for a C 2-smooth interpolating curve
that solves a two-boundary value problem of Hermite type, but more general problems can be solved
in a similar way, although computationally more expensive.

6.1.1 Literature Review

Interpolation schemes for manifolds with a complicated geometry, based on the idea of projecting the
interpolating data to a simpler manifold using local diffeomorphisms, have already appeared in the
literature before. A scheme that combines rolling with other local diffeomorphisms was proposed
for the first time in Jupp and Kent [34] for the S2 sphere and in Hüper and Silva Leite [30] to solve
spherical interpolating problems on any dimension. In this context, the term unwrapping was used to

111

112 Solving Interpolation Problems using Rolling Motions

describe how the diffeomorphism mapped data on the n-sphere to data on the tangent hyperplane at a
point and the term wrapping to describe the inverse diffeomorphism. These unwrapping/wrapping
techniques combined with rolling/unrolling have been applied to SO(3) in Shen et al. [69], to other
Euclidean submanifolds in Hüper and Silva Leite [31], to some pseudo-Euclidean manifolds in
Marques [53] and to ellipsoids equipped with a left-invariant metric in Krakowski and Silva Leite
[43]. This combination of techniques reduces distortions introduced by flattening the manifold (see,
for instance, Vemulapalli and Chellapa [72]).

6.1.2 Main Contributions

After formulating the interpolation problem that will be under study, we first unify existing solutions
of the problem for manifolds embedded in Euclidean spaces with the additional condition that the first
component of the isometry group, acts transitively on the rolling manifold and keeps this manifold
invariant. This condition was seemingly overlooked in Hüper and Silva Leite [31], the first work
to propose an interpolation algorithm on manifolds. The main advantage of the solution presented
here is that the interpolating curve is given in closed form. We also confirm that the proposed
algorithm works for the manifold Gk,n×SO(n), which is isometrically embedded in the matrix space
M = s(n)×Rn×n, endowed with the Euclidean Riemannian metric defined in (3.39). The main result
concerning interpolating curves for SO(n) and for the Grassmann manifolds has already appeared
in Hüper and Silva Leite [31], but its proof was only given for the first case. So, for the sake of
completeness, we include here details of the proof for the Grassmann manifold. The proposed
algorithm was implemented in Hüper and Silva Leite [31] for spheres only, using rolling maps
and stereographic projection on the affine tangent space at the south pole. Here we implement the
algorithm on the rotation group and on the Grassmann manifold, preparing the ground for applications
in the Normalized Essential manifold, and the unwrapping/wrapping techniques are performed with
rolling maps. So, contrary to previous works, the implementation of the interpolation algorithm on
manifolds presented here is based on rolling motions only.

6.2 Formulation of the Interpolation Problem on Manifolds

Let M1 be a connected and oriented smooth n-dimensional manifold isometrically embedded in a
Riemannian complete m-dimensional manifold (M,g), with 1≤ n < m. Given a set of ℓ+1 distinct
points pi ∈M1, with i = 0,1, . . . , ℓ, a discrete sequence of ℓ+1 fixed times ti, where

0 = t0 < t1 < · · ·< tℓ−1 < tℓ = τ, (6.1)

and two tangent vectors ξ0 and ξℓ to M1 at p0 and pℓ respectively, we intend to solve the interpolation
problem stated at the beginning of Chapter 4, with boundary data of Hermite type. We repeat here its
formulation:

Problem 6.2.1 Find a C 2-smooth curve

γ : [0,τ]→M1 (6.2)

6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces 113

satisfying the interpolation conditions:

γ(ti) = pi, 1≤ i≤ ℓ−1, (6.3)

and the boundary conditions:

γ(0) = p0, γ(τ) = pℓ,
γ̇(0) = ξ0 ∈ Tp0M1, γ̇(τ) = ξℓ ∈ TpℓM1.

(6.4)

6.3 Solving the Interpolation Problem on Manifolds Embedded in Eu-
clidean Spaces

In order to be able to apply rolling techniques to solve the interpolation problem, we have to make
some assumptions.

Assumptions:

1. Assume that the given Riemannian manifolds M1 and M0 = T aff
p0

M1 are both isometrically
embedded in some Euclidean space M.

This is not very restrictive since Whitney’s Theorem (Whitney [73]) guarantees that such
embedding is always possible.

2. Assume that G = GnM is the isometry group of the embedding space.

In case M = Rm, G = SE(m) = SO(m)nRm.

3. Assume that the action of G keeps M1 invariant and is transitive. Assume further that if
t→ h(t) = (g(t),s(t))∈G is a rolling map of M1 on M0, along a curve α1 satisfying α1(0) = p0,
then s(t) = α0(t)− p0, where α0 is the development curve.

6.3.1 Algorithm to Solve the Interpolation Problem when M = Rm

The algorithm that generates a solution for the interpolation Problem 6.2.1 is based on a mixed
technique of rolling/unrolling and unwrapping/wrapping and is described in the following five steps.

Algorithm 6.3.1 (Interpolation Algorithm)

Step 1. Choose an arbitrary smooth rolling curve α1 : [0,τ]−→M1, connecting p0 with
pℓ, i.e., such that α1(0) = p0 and α1(τ) = pℓ.

Step 2. Unwrap the boundary data from M1 to M0 by rolling M1 along α1, with rolling
map h(t) = (R(t),s(t)), so that:

p0 = α1(0) ∈M1 7→ q0 := α0(0) = p0 ∈M0

pℓ = α1(τ) ∈M1 7→ qℓ := α0(τ) ∈M0

ξ0 ∈ Tp0M1 7→ η0 := dα1(0)h(0)(ξ0) = ξ0 ∈ Tq0 (M0)

ξℓ ∈ TpℓM1 7→ ηℓ := dα1(τ)h(τ)(ξℓ) ∈ Tqℓ (M0)

114 Solving Interpolation Problems using Rolling Motions

Step 3. While performing Step 2. in the [0,τ] interval, unwrap the remaining inter-
polating points pi at ti, i = 1, . . . , ℓ− 1, from M1 to M0, using a suitable local
diffeomorphism φ : V ⊂M1 −→ φ

(
V
)
⊂M0, with V an open neighbourhood of

p0, satisfying the conditions φ(p0) = p0 and dp0φ = id, and indexed by the rolling
map h, so that

pi 7→ qi := φ
(
h(ti)pi−α0(ti)+ p0

)
+α0(ti)− p0

= φ
(
R(ti)pi

)
+ s(ti).

(6.5)

Step 4. Solve the interpolating problem on M0 for the projected data {q0, . . . ,qℓ;η0,ηℓ},
to generate a C 2-smooth curve β : [0,τ]−→M0 satisfying

β (ti) = qi, i = 0, . . . , ℓ , β̇ (0) = η0 and β̇ (τ) = ηℓ.

Step 5. Wrap β ([0,τ]) onto the manifold M1 using φ−1, while unrolling M1 along α1 (in
reverse time), to produce a curve γ , defined by the following explicit formula.

γ(t) := h(t)−1
(

φ−1
(
β (t)−α0(t)+ p0

)
+α0(t)− p0

)
= h(t)−1

(
φ−1

(
β (t)− s(t)

)
+ s(t)

)
.

(6.6)

The curve β will be a cubic spline that can be easily obtained, for instance using the classical De
Casteljau algorithm presented in Chapter 4. Figure 6.1 illustrates the formula (6.5) when M1 is the
Euclidean 2-sphere.

Fig. 6.1 Illustration of (6.5) for the rolling 2-sphere.

Before we prove that this algorithm produces the solution of the formulated problem, we make
some remarks.

Remark 6.3.1

1. The expression (6.5) for the points qi, i= 1, . . . , ℓ−1, is well defined. In fact, with the assumption
that the orthogonal group SO(m) acts transitively on the rolling manifold M1, R(ti)pi belongs
to M1 and, consequently, φ

(
R(ti)pi

)
and qi = φ

(
R(ti)pi

)
+ s(ti), i = 1, . . . , ℓ−1, belong to M0.

6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces 115

2. The expression (6.5) is also valid for i = 0 and for i = τ , as can be easily showed using the
conditions on the diffeomorphism φ and on the rolling map h. Indeed, for i = 0 we have

p0 7→ φ
(
R(0)p0

)
+ s(0) = φ

(
p0
)
+ s(0) = φ

(
p0
)
= p0,

and for i = τ we get

pl 7→ φ
(
R(τ)pℓ

)
+ s(τ) = φ

(
R(τ)α1(τ)

)
+ s(τ)

= φ
(
α0(τ)− s(τ)

)
+ s(τ) = φ(p0)+ s(τ) = p0 + s(τ) = α0(τ) = ql.

3. It is not necessary that all points pi are in the neighborhood V . What we have to guarantee
is that the diffeomorphism φ and the interpolating curve β on M0 are chosen so that, for all
i = 0, . . . , ℓ, R(ti)pi belongs to V and, for all t ∈ [0,τ], β (t)−α0(t)+ p0 belongs to φ

(
V
)
.

We are now in conditions to prove the main result of this section.

Theorem 6.3.1 Under the assumptions on M1 given at the beginning of this section, the curve
γ : [0,τ]−→M1 defined by (6.6) solves the Problem 6.2.1.

Proof. Since h(t) = (R(t),s(t)) ∈ G = SE(m) is a rolling map of M1 on M0 along the smooth rolling
curve α1(t)=R(t)−1 p0, joining p0 (at t = 0) to pℓ (at t = τ), with development curve α0(t)= s(t)+ p0,
then h(t)−1 = (R(t)−1,−R(t)−1s(t)). Then a simple calculation allows to rewrite the relation (6.6) as

γ(t) = R(t)−1 (
φ
−1(β (t)− s(t))+ s(t)

)
−R(t)−1s(t)

= R(t)−1
φ
−1(β (t)− s(t)).

(6.7)

Therefore, since β (ti) = qi and (6.5) holds, we have β (ti)− s(ti) = φ
(
R(ti)pi

)
and, consequently,

γ(ti) = R(ti)−1
φ
−1(

β (ti)− s(ti)
)

= R(ti)−1
φ
−1 (φ (R(ti)pi))

= pi, for i = 0, . . . , ℓ,

that is, the curve γ interpolates the points pi at time ti, for all i = 0, . . . , ℓ.
To show that γ also satisfies the boundary velocities, take derivatives on both sides of (6.7) to

obtain
γ̇(t) = Ṙ(t)−1(φ−1(

β (t)− s(t)
)
)+R(t)−1d(

β (t)−s(t)
)φ−1(

β̇ (t)− ṡ(t)
)
.

Now, the no-slip condition (5.31) enables to conclude that ṡ(t) = R(t)α̇1(t), and taking into considera-
tion that β (0) = p0, β̇ (0) = η0, φ(p0) = p0 and dp0φ = id, we obtain

γ̇(0) = Ṙ(0)−1
φ
−1(

β (0)− s(0)
)
+R(0)−1d(

β (0)−s(0)
)φ−1(

β̇ (0)− ṡ(0)
)

= Ṙ(0)−1
φ
−1(p0)+ β̇ (0)− ṡ(0)

= Ṙ(0)−1 p0 +η0− α̇1(0)

= η0 = ξ0.

116 Solving Interpolation Problems using Rolling Motions

Furthermore, since β (τ) = α0(τ) = s(τ)− p0, we have that β (τ)− s(τ) = p0. Therefore, taking also
into account that β̇ (τ) = ηℓ, we get

γ̇(τ) = Ṙ(τ)−1
φ
−1(

β (τ)− s(τ)
)
+R(τ)−1d(

β (τ)−s(τ)
)φ−1(

β̇ (τ)− ṡ(τ)
)

= Ṙ(τ)−1
φ
−1(p0)+R(τ)−1(

β̇ (τ)− ṡ(τ)
)

= Ṙ(τ)−1 p0 +R(τ)−1
ηℓ− α̇1(τ)

= R(τ)−1
ηℓ = R(τ)−1R(τ)ξℓ = ξℓ.

Finally, the resulting curve γ is C 2-smooth by construction, since h and φ are smooth and β is
C 2-smooth. This concludes the proof. �

Remark 6.3.2 It is clear that the degree of smoothness of the interpolating curve only depends on the
degree of smoothness of the curve β . So, this algorithm can be easily extended to generate C k-smooth
interpolating curves, for k > 2, as long as we are given enough boundary conditions.

6.3.2 Solving the Interpolation Problem when M1 = Gk,n×SO(n)

For this manifold, the embedding space is M = s(n)×Rn×n, endowed with the Euclidean Riemannian
metric defined in (3.39) and the first component of the isometry group G := GnM which is G =

SO(n)×SO(n)×SO(n), acts transitively on Gk,n×SO(n) and keeps this manifold invariant. So, this
manifold fits in the general framework of Euclidean submanifolds that satisfy the assumptions at the
beginning of Section 6.3, simply replacing SO(n) by SO(n)×SO(n)×SO(n) and Rm by s(n)×Rn×n.
For the sake of completeness, we give an independent proof that the proposed algorithm indeed solves
Problem 6.2.1 for this particular manifold.

In order to achieve this goal, we start with M1 = Gk,n followed by M1 = SO(n). The interpolating
points pi of Problem 6.2.1 will be denoted by Si when M1 = Gk,n, and by Ri when M1 = SO(n).

• Solving in the Grassmann Manifold Gk,n

Before proving that Algorithm 6.3.1 solves the smooth interpolation problem in Gk,n, we rewrite
some of the formulas derived in the previous Chapter 5 in a more convenient form.

Let h(t) = (U(t)⊤,X(t)) ∈ G = SO(n)n s(n) be a rolling map of M1 = Gk,n rolling over M0 =

T aff
S0

Gk,n, with S0 = Θ0E0Θ⊤0 ∈ Gk,n. Then, we can write the following.

• The rolling curve is given by α1(t) = U(t)S0U(t)⊤ and the development curve is given by
α0(t) = S0 +X(t), with X(t) ∈ s(n).

6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces 117

• The no-slip condition (first equation in (5.51)) can be rewritten as

Ẋ(t) =−Θ0
[
ΩU(t),E0

]
Θ
⊤
0

=−Θ0
[
Θ
⊤
0 U̇(t)⊤U(t)Θ0,E0

]
Θ
⊤
0

=−
[
U̇(t)⊤U(t),Θ0E0Θ

⊤
0
]

=−
[
U̇(t)⊤U(t),S0

]
=
[
S0,U̇(t)⊤U(t)

]
.

Then, since α̇1(t) = U̇(t)S0U(t)⊤+U(t)S0U̇(t)⊤, we have that

U(t)⊤α̇1(t)U(t) =U(t)⊤
(

U̇(t)S0U(t)⊤+U(t)S0U̇(t)⊤
)

U(t)

=U(t)⊤U̇(t)S0 +S0U̇(t)⊤U(t)

=−U̇(t)⊤U(t)S0 +S0U̇(t)⊤U(t)

=
[
S0,U̇(t)⊤U(t)

]
= Ẋ(t).

• From Section 5.4.3, the rolling curve

α1(t) = Θ0e−tΩU E0etΩU Θ
⊤
0

= Θ0e−tΩU Θ
⊤
0 Θ0E0Θ

⊤
0 Θ0etΩU Θ

⊤
0

= e−t(Θ0ΩU Θ⊤0)Θ0E0Θ
⊤
0 et(Θ0ΩU Θ⊤0)

= etΩ1S0e−tΩ1 ,

with Ω1 =−Θ0ΩU Θ⊤0 ∈ soS0(n), is a geodesic on M1 = Gk,n, passing through S0 at t = 0 with
velocity

[
Ω1,S0

]
. Also, the development curve α0 on M0 = T aff

S0
Gk,n can be rewritten as

α0(t) = S0 + t
[

Ω1,S0
]
,

and is a geodesic on M0, satisfying α0(0) = S0.

• In this case dα1(τ)h(τ)(ξℓ) =U(τ)⊤ξℓU(τ) and so, ηℓ :=U(τ)⊤ξℓU(τ).

Using the previous, if the Algorithm 6.3.1 is applied to the manifold M1 = Gk,n, we obtain the
counterpart of the curve in (6.6):

γ(t) =U(t)φ
−1(β (t)−X(t))U(t)⊤. (6.8)

118 Solving Interpolation Problems using Rolling Motions

We are, now, in conditions to prove the following result.

Theorem 6.3.2 The curve γ : [0,τ]→ Gk,n given by (6.8), where t 7→ h(t) = (U(t)⊤,X(t)) is the
rolling map along a smooth rolling curve α1 that joins S0 (at t = 0) to Sℓ (at t = τ), and β is the curve
in T aff

S0
Gk,n obtained in Step 4. of Algorithm 6.3.1, solves the interpolation Problem 6.2.1 for Gk,n.

Proof. Let h(t)= (U(t)⊤,X(t))∈G= SO(n)ns(n) be the rolling map of M1 =Gk,n on M0 = T aff
S0

Gk,n

along a smooth rolling curve α1 that joins S0 (at t = 0) to Sℓ (at t = τ), with development curve α0

and such that h(0) = eG. According with the formulas derived above and Section 5.4, we have
that X(t) = α0(t)−S0, and the rolling curve can be defined by α1(t) =U(t)S0U(t)⊤. Furthermore,
h(t)−1 = (U(t),−U(t)X(t)U(t)⊤) and a simple calculation allows to rewrite the curve (6.6) as

γ(t) =U(t)
(
φ
−1(β (t)−X(t))+X(t)

)
U(t)⊤−U(t)X(t)U(t)⊤

=U(t)φ−1(β (t)−X(t))U(t)⊤.
(6.9)

Since h(ti)Si = (U(ti)⊤,X(ti))Si =U(ti)⊤SiU(ti)+X(ti), we have that h(ti)Si−X(ti) =U(ti)⊤SiU(ti).
Then, from β (ti) = φ

(
h(ti)Si−X(ti)

)
+X(ti) = φ

(
U(ti)⊤SiU(ti)

)
+X(ti), we obtain that β (ti)−

X(ti) = φ
(
U(ti)⊤SiU(ti)

)
. Consequently, for all i = 0,1, . . . , ℓ we have that

γ(ti) =U(ti)φ−1(β (ti)−X(ti))U(ti)⊤

=U(ti)φ−1
(

φ(U(ti)⊤SiU(ti))
)

U(ti)⊤

= Si.

Moreover, from (6.9) we get that

γ̇(t) = U̇(t)φ−1 (β (t)−X(t))U(t)⊤+U(t)d(β (t)−X(t))φ
−1(

β̇ (t)− Ẋ(t)
)
U(t)⊤

+U(t)φ−1(
β (t)−X(t)

)
U̇(t)⊤.

To prove that γ satisfies the boundary conditions, note that from the no-slip condition we conclude
that Ẋ(t) =U(t)⊤α̇1(t)U(t). Also, from h(0) = eG, we have that U(0) = In and X(0) = 0. Therefore,
taking into consideration that β (0) = S0, β̇ (0) = η0, φ(S0) = S0 and dS0φ = id, we have that

γ̇(0) = U̇(0)φ−1 (β (0)−X(0))U(0)⊤+U(0)d(β (0)−X(0))φ
−1(

β̇ (0)− Ẋ(0)
)
U(0)⊤

+U(0)φ−1(
β (0)−X(0)

)
U̇(0)⊤

= U̇(0)φ−1 (S0)+dS0φ
−1(

β̇ (0)− Ẋ(0)
)
+φ

−1(S0
)
U̇(0)⊤

= U̇(0)S0 + β̇ (0)− Ẋ(0)+S0U̇(0)⊤

= α̇1(0)+η0− α̇1(0)

= η0 = ξ0.

Furthermore, since β (τ) = α0(τ) = X(τ)− S0, we have that β (τ)−X(τ) = S0. Therefore, taking
also into account that β̇ (τ) = ηℓ and U(τ)⊤ξℓU(τ) = ηℓ, we get that

6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces 119

γ̇(τ) = U̇(τ)φ−1 (β (τ)−X(τ))U(τ)⊤+U(τ)d(β (τ)−X(τ))φ
−1(

β̇ (τ)− Ẋ(τ)
)
U(τ)⊤

+U(τ)φ−1(
β (τ)−X(τ)

)
U̇(τ)⊤

= U̇(τ)φ−1 (S0)U(τ)⊤+U(τ)dS0φ
−1(

β̇ (τ)− Ẋ(τ)
)
U(τ)⊤+U(τ)φ−1(S0

)
U̇(τ)⊤

= U̇(τ)S0U(τ)⊤+U(τ)
(
β̇ (τ)− Ẋ(τ)

)
U(τ)⊤+U(τ)S0U̇(τ)⊤

= α̇1(τ)+U(τ)β̇ (τ)U(τ)⊤−U(τ)Ẋ(τ)U(τ)⊤

= α̇1(τ)+U(τ)ηℓU(τ)⊤− α̇1(τ)

=U(τ)ηℓU(τ)⊤

= ξℓ.

Finally, the C 2-smoothness of the resulting curve γ is obtained by construction, since h and φ are
smooth and β is C 2-smooth. This concludes the proof.

�

• Solving in the Rotation Group SO(n)

The counterpart of the last theorem when M1 = SO(n) was proved in Hüper and Silva Leite [31]
and we only include its statement below. However, as a preparation for the implementation of the
algorithm in the next section, we rewrite next some of the formulas that will be needed. Considering
h(t) = (V (t)⊤,W (t)⊤,Y (t)) ∈ G = SO(n)×SO(n)nRn×n a rolling map of M1 = SO(n) rolling over
M0 = T aff

R0
SO(n), with R0 ∈ SO(n), we have that:

• The rolling curve is given by α1(t) =V (t)R0W (t)⊤ and the development curve is defined by
α0(t) = R0 +Y (t), with Y (t) ∈ Rn×n.

• From Section 5.4.3, the rolling curve

α1(t) = R0e−2tΩV = R0etΩ2 ,

with Ω2 := −2ΩV ∈ so(n), is a geodesic on M1 = SO(n), passing through R0 at t = 0 with
velocity Ω2. Also, the development curve α0 on M0 = T aff

R0
SO(n) can be rewrite as

α0(t) = R0 + tR0Ω2,

and is a geodesic on M0, satisfying α0(0) = R0.

• In this case, dα1(τ)h(τ)(ξℓ) =V (τ)⊤ξℓW (τ) and so ηℓ :=V (τ)⊤ξℓW (τ).

Then, the curve (6.6) obtained at the last step of the Algorithm 6.3.1 when M1 = SO(n) simplifies to

γ(t) =V (t)φ−1(β (t)−Y (t))W (t)⊤, (6.10)

120 Solving Interpolation Problems using Rolling Motions

and the counterpart of Theorem 6.3.2, whose proof appears in Hüper and Silva Leite [31], can be state
in the following way:

Theorem 6.3.3 The curve γ : [0,τ]→ SO(n) given by (6.10), where t 7→ h(t) = (V (t)⊤,W (t)⊤,Y (t))
is the rolling map along a smooth rolling curve α1 that joins R0 (at t = 0) to Rℓ (at t = τ), and β is
the curve in T aff

R0
SO(n) obtained in Step 4. of Algorithm 6.3.1, solves the interpolation Problem 6.2.1

for SO(n).

To conclude this section we write down the explicit formula for the interpolating curve on
the product manifold Gk,n×SO(n). Here the local diffeomorphism φ that is used to perform the
unwrapping/wrapping will be denoted by φ1 when M1 = Gk,n and by φ2 when M1 = SO(n). Similarly,
the cubic spline β that solves the interpolation problem on M0, will be denoted by β1 when M0 =

T aff
S0

Gk,n and by β2 when M0 = T aff
R0

SO(n).

Corollary 6.3.1 The curve γ : [0,τ]−→M1 defined by

γ(t) = (γ1(t),γ2(t))

=
(
U(t)φ−1

1 (β1(t)−X(t))U(t)⊤,V (t)φ−1
2 (β2(t)−Y (t))W (t)⊤

) (6.11)

solves the Problem 6.2.1 when M1 = Gk,n×SO(n).

Remark 6.3.3 Although Corollary 6.3.1 guarantees that an explicitly solution to the smooth inter-
polation problem on Gk,n×SO(n) exists, it says nothing about its uniqueness. It is clear that the
interpolating curve depends on the choice of a rolling curve and a local diffeomorphism.

6.4 Implementation of the Interpolation Algorithm in Gk,n×SO(n)

Theoretically, the proposed algorithm always generates an interpolating curve which depends on the
choice of a rolling map and of a local diffeomorphism. In practice, it is important that the algorithm
can be implemented. In which concerns the rolling/unrolling, the rolling curve should be chosen so
that the kinematic equations of rolling can be solved explicitly. The obvious choice is the geodesic
joining the first point (at t = 0) to the last point (at t = τ). In which concerns the wrapping/unwrapping,
our choice for the local diffeomorphism are the so called normal coordinates, which always exist
for the Levi-Civita connection of a Riemannian manifold and can also be described by rolling along
geodesics. So, our implementation of the algorithm depends on rolling along geodesics only. This
will be made more precise for the manifolds Gk,n and SO(n), where we use h1 and φ1 for the rolling
map and local diffeomorphism in the first manifold and h2 and φ2 for the rolling map and local
diffeomorphism in the second. The result for the manifold Gk,n×SO(n) is an immediate consequence.
In the sequel, we keep the notations introduced at the end of the previous section.

6.4 Implementation of the Interpolation Algorithm in Gk,n×SO(n) 121

6.4.1 Implementation in SO(n)

Choosing the Rolling Curve:

Consider as rolling curve the geodesic arc α1 : [0,τ]→ SO(n) joining R0 (at t = 0) to Rℓ (at t = τ),
which is defined as

α1(t) = R0etΩ2 , (6.12)

with Ω2 =
1
τ

log(R⊤0 Rℓ)∈ so(n). Then, according to the developments in Chapter 5, the corresponding

rolling map to unwrap the boundary data on T aff
R0

SO(n) is given explicitly by

h2(t) = (R0e−
1
2 tΩ2R⊤0 , e

1
2 tΩ2 , tR0Ω2), (6.13)

and, consequently,

h2(t)−1 = (R0e
1
2 tΩ2R⊤0 , e−

1
2 tΩ2 ,−tR0e

1
2 tΩ2Ω2e

1
2 tΩ2) = (R0e

1
2 tΩ2R⊤0 , e−

1
2 tΩ2 ,−tR0Ω2etΩ2). (6.14)

So, we already have the following data that enters in the expression of the interpolating curve (6.10):

Y (t) = tR0Ω2, V (t) = R0e
1
2 tΩ2R⊤0 and W (t)⊤ = e

1
2 tΩ2 .

Choosing the Local Diffeomorphism:

The local diffeomorphism φ2 used to unwrap the intermediate interpolation points, is chosen so that
the image of a point R in a neighbourhood V2 of R0 is the point in T aff

R0
SO(n) that results from rolling

SO(n) over the affine tangent space at R0, along the geodesic that joins R0 to R.

Therefore,
φ2 : V2 ⊂ SO(n) −→ φ2(V2)⊂ T aff

R0
SO(n)

R 7−→ φ2(R) = R0 +R0Y ,
(6.15)

with Y = log(R⊤0 R) ∈ so(n), and

φ
−1
2 : φ2(V2)⊂ T aff

R0
SO(n) −→ V2 ⊂ SO(n)

R = R0 +R0Y 7−→ φ
−1
2 (R) = R0eR⊤0 (R−R0) = R0eY .

(6.16)

But in order to prove that this diffeomorphism is appropriate, we need to show that it satisfies the
two requirements: φ2(R0) = R0 and dR0φ2 = id. This is what we do next.

Since φ2(R0) = R0 +R0Y , with Y = log(R⊤0 R0) = log(I) = 0, we immediately have φ2(R0) = R0.
Furthermore,

dR0φ2 : TR0 SO(n) −→ TR0

(
T aff

R0
SO(n)

)
≡ TR0 SO(n)

R0A 7−→ d
d t

[φ2(R(t))]
∣∣∣∣
t=0

=
d
d t

[R0 +R0Y (t)]
∣∣∣∣
t=0

= R0Ẏ (0),

122 Solving Interpolation Problems using Rolling Motions

where t 7→ R(t) is a curve in SO(n), satisfying R(0) = R0 and Ṙ(0) = R0A, with A ∈ so(n). Since,
Y (t) = log(R⊤0 R(t)), from Lemma 2.6.4, we obtain that

Ẏ (t) =
d
d t

(
log(R⊤0 R(t))

)
=

u
eu−1

∣∣∣∣
u=adlog(R⊤0 R(t))

(
R⊤0 Ṙ(t)R−1(t)R0

)
.

Evaluating at t = 0, we get

Ẏ (0) =
d
d t

[
log(R⊤0 R(t))

]∣∣∣∣
t=0

= R⊤0 R0AR−1
0 R0 = A.

Therefore, dR0φ2(R0A) = R0Ẏ (0) = R0A, which proves that dR0φ2 = id.

6.4.2 Implementation in Gk,n

Similarly to what was done for the manifold SO(n), we need to define explicitly the rolling and the
local diffeomorphism.

Choosing the Rolling Curve:

Consider the rolling curve the geodesic arc α1 : [0,τ]−→ Gk,n that joins the point S0 (at t = 0) with
the point Sℓ (at t = τ), and which is defined, explicitly, as

α1(t) = etΩ1S0e−tΩ1 , (6.17)

with Ω1 =
1

2τ
log((I−2Sℓ)(I−2S0)) ∈ soS0(n).

From Chapter 5, the corresponding rolling map h1 to unwrap the boundary data on T aff
S0

Gk,n by
rolling Gk,n along the curve α1 is defined, explicitly, by

h1(t) = (e−tΩ1 , t
[

Ω1,S0
]
), (6.18)

and, then

h1(t)−1 =
(

etΩ1 ,−tetΩ1
[

Ω1,S0
]

e−tΩ1
)
=
(

etΩ1 ,−t
[

Ω1,e
tad

Ω1 (S0)
])

. (6.19)

Consequently, in the expression of the interpolating curve (6.8), we get

U(t) = etΩ1 and X(t) = t
[

Ω1,S0
]
.

Choosing the Local Diffeomorphism:

Set up the local diffeomorphism φ1, to perform the unwrapping technique, between an open neigh-
bourhood V1 ⊂Gk,n of S0 and φ1(V1)⊂ T aff

S0
Gk,n, by using rolling motions along geodesic arcs joining

the point S0 with a point S ∈ V1, as follows

φ1 : V1 ⊂ Gk,n −→ φ1(V1)⊂ T aff
S0

Gk,n

S 7−→ φ1(S) = S0 +[Λ,S0] ,
(6.20)

6.4 Implementation of the Interpolation Algorithm in Gk,n×SO(n) 123

where Λ =
1
2

log((I− 2S)(I− 2S0)) ∈ soS0(n) and [Λ,S0] denotes the velocity of the geodesic arc
connecting S0 to S.

To compute the inverse of this diffeomorphism, notice that from Λ =
1
2

log((I−2S)(I−2S0)) we
can solve for S in the following way:

Λ =
1
2

log((I−2S)(I−2S0))⇐⇒ e2Λ = (I−2S)(I−2S0)⇐⇒ S =
1
2
(
I− e2Λ(I−2S0)

)
,

and applying Proposition 3.2.2, we have

S =
1
2
(
I− eΛ(I−2S0)e−Λ

)
= eΛS0e−Λ.

Consequently,
φ
−1
1 : φ1(V1)⊂ T aff

S0
Gk,n −→ V1 ⊂ Gk,n

S = S0 +[Λ,S0] 7−→ φ
−1
1 (S) = eΛS0e−Λ.

(6.21)

Now, to show that the diffeomorphism φ1, thus defined, satisfies φ1(S0) = S0 and dS0φ1 = id, observe
that, for S = S0 ∈ V1 we obtain

Λ =
1
2

log((I−2S0)(I−2S0)) =
1
2

log(I) = 0.

Consequently, φ1(S0) = S0 +[0,S0] = S0. In order to show that dS0φ1 = id, note that

dS0φ1 : TS0Gk,n −→ TS0

(
T aff

S0
Gk,n

)
≡ TS0Gk,n

[ψ,S0] 7−→
d
d t

(φ1(S(t))
∣∣∣∣
t=0

=
d
d t

(S0 +[ψ(t),S0])

∣∣∣∣
t=0

=
[
ψ̇(0),S0

]
,

where t 7→ S(t) is a curve in Gk,n, satisfying S(0) = S0 and Ṡ(0) = [ψ,S0] , with ψ(t) =
1
2

log((I−
2S(t))(I− 2S0)) ∈ soS0(n). Let us consider the matrix valued function L defined by L(t) = (I−

2S(t))(I−2S0). Then, L(0) = I and, with this notation, we have that ψ(t) =
1
2

log(L(t)). Therefore,
from Lemma 2.6.4, we obtain that

ψ̇(t) =
1
2

d
d t

log(L(t))

=
1
2

u
eu−1

∣∣∣∣
u=adlog(L(t))

(−2Ṡ(t)(I−2S0)(I−2S0)
−1(I−2S(t))−1)

=
1
2

u
eu−1

∣∣∣∣
u=adlog(L(t))

(−2Ṡ(t)(I−2S(t))−1).

Consequently, at t = 0,

ψ̇(0) =
1
2

u
eu−1

∣∣∣∣
u=adlog(L(0))

(−2Ṡ(0)(I−2S(0))−1)

=
1
2
(−2)Ṡ(0)(I−2S0)

=− [ψ,S0] (I−2S0) =− [ψ,S0]+2 [ψ,S0]S0.

124 Solving Interpolation Problems using Rolling Motions

Furthermore, from Lemma 3.2.1, and since S2
0 = S0, we have that

2 [ψ,S0]S0 = 2(ψS2
0−S0ψS0) = 2ψS0.

Therefore, since ψ ∈ soS0(n), we obtain ψ̇(0) =− [ψ,S0]+2ψS0 = ψS0 +S0ψ = ψ. Consequently,

dS0φ1([ψ,S0]) =
[
ψ̇(0),S0

]
= [ψ,S0] ,

which proves that dS0φ1 = id.

Remark 6.4.1

The C 2-smooth interpolating curves β2 in T aff
R0

SO(n) and β1 in T aff
S0

Gk,n can be obtained using the
classical De Casteljau Algorithm (Chapter 4), which works well for these affine spaces.

To conclude, from the previous two subsections, and taking into consideration Corollary 6.3.1, the
implementation of the algorithm to obtain an explicitly solution to the smooth interpolation Problem
6.2.1 in Gk,n×SO(n) is clear, and the interpolating curve (6.11) is given by,

γ(t) =
(

etΩ1φ
−1
1

(
β1(t)− t

[
Ω1,S0

])
e−tΩ1 , R0e

1
2 tΩ2R⊤0 φ

−1
2

(
β2(t)− tR0Ω2

)
e

1
2 tΩ2

)
, (6.22)

with Ω1 =
1

2τ
log((I−2Sℓ)(I−2S0)) ∈ soS0(n) and Ω2 =

1
τ

log(R⊤0 Rℓ) ∈ so(n).

Before finishing this section it is important to notice that the implementation of the algorithm
in Gk,n and in SO(n) (and, consequently, in Gk,n×SO(n)), requires that one knows how to compute
matrix exponentials of skewsymmetric matrices and logarithms of orthogonal matrices. This is a major
problem that for n ̸= 3 can only be solved numerically. Fortunately, there are numerical methods to
compute these matrix functions that are stable in the sense that each step of the algorithm produces a
matrix that leaves in the right space. The interested reader can see, for instance, Cardoso and Silva
Leite [11] and Higham [26]. When n = 3, there are explicit formulas to compute exponentials of
matrices in so(3) and logarithms of matrices in SO(3) and, for that reason, the implementation of the
interpolating algorithm on the Normalized Essential manifold can be performed with exact formulas,
as will be seen in the next section.

6.5 Implementation of the Interpolation Algorithm in the Normalized
Essential Manifold

The interpolation algorithm in the Normalized Essential manifold E = G2,3×SO(3) may be regarded
as a particular case of the previous Section 6.4. Although, using the results obtained in that section,
in this section we will give other details for the curve in E , that interpolates the points Pi = (Si,Ri)

in E (at t = ti) , for i = 0, . . . , ℓ, and which has initial and final velocity prescribed. From Section
6.4, we know that this interpolating curve is defined, in closed form by (6.22), with Ω1 ∈ soS0(3) and
Ω2 ∈ so(3).

6.5 Implementation of the Algorithm in the Normalized Essential Manifold 125

Furthermore, for all i = 0, . . . , ℓ, we have that

β1(ti) = φ1
(
e−tiΩ1SietiΩ1

)
+ ti
[

Ω1,S0
]

= S0 +[Λi,S0]+
[
ti Ω1,S0

]
= S0 +

[
Λi + tiΩ1,S0

]
,

with Λi =
1
2

log
(
(I−2e−tiΩ1SietiΩ1)(I−2S0)

)
∈ soS0(3), and

β2(ti) = φ2
(
R0e−

1
2 tiΩ2R⊤0 Rie−

1
2 tiΩ2

)
+ tiR0Ω2

= R0 +R0Y i + tiR0Ω2 = R0 +R0
(
Y i + tiΩ2

)
,

with Y i = log
(

e−
1
2 tiΩ2R⊤0 Rie−

1
2 tiΩ2

)
∈ so(3).

Consequently, applying the classical De Casteljau Algorithm, respectively, on T aff
S0

G2,3 (j = 1)
and on T aff

R0
SO(3) (j = 2), it is possible to obtain the C 2-smooth interpolating curve β j, j = 1,2 that

interpolates the points β j(ti), for all i = 0, . . . , ℓ and j = 1,2.
For all t ∈ [0,τ], β1(t) ∈ T aff

S0
G2,3, and thus β1(t) = S0 +[υ(t),S0], with υ(t) ∈ soS0(3). Then, we

have that υ(t) = [β1(t),S0] and, since X(t) = t
[

Ω1,S0
]
, we get

φ
−1
1 (β1(t)−X(t)) = φ

−1
1 (S0 +

[
υ(t)− tΩ1,S0

]
)

= eυ(t)− tΩ1S0e−(υ(t)− tΩ1).

Similarly, for all t ∈ [0,τ], β2(t) ∈ T aff
R0

SO(3), and thus β2(t) = R0 +R0A(t), with A(t) ∈ so(3).
Then, we obtain that A(t) = R⊤0 (β2(t)−R0) = R⊤0 β2(t)− I3 and, since Y (t) = tR0Ω2, we get

φ
−1
2 (β2(t)−Y (t)) = φ

−1
2

(
R0 +R0

(
A(t)− tΩ2

))
= R0eA(t)− tΩ2 .

Therefore, after knowing how φ
−1
j and β j, j = 1,2 are defined in terms of the data, we can conclude

that the C 2-smooth interpolating curve (6.22) in the Normalized Essential manifold E , can be rewritten
just in terms of the data by

γ(t) =
(

etΩ1eυ(t)− tΩ1S0e−(υ(t)− tΩ1)e−tΩ1 , R0e
1
2 tΩ2eA(t)− tΩ2e

1
2 tΩ2

)
. (6.23)

To finish, it is important to notice that, contrary to all other situations, for the Normalized Essential
manifold E we can go a step further in the computation of the interpolating curve, because in this
case there are explicit formulas (4.70) and (4.71) to compute, respectively, exponentials of matrices in
so(3) and logarithms of matrices in SO(3).

Chapter 7

Final Remarks: Related Work and
Future Research Directions

We end with some final comments about work that is related to the topics of this thesis and also point
out some directions for future research.

7.1 Variational Approach to Solve Interpolation Problems

Although this thesis is about solving interpolation problems on manifolds, it doesn’t cover all possible
methods available in the literature. In particular, the variational approach that produces Riemannian
cubic polynomials, curves that minimize a certain energy functional, was only briefly mentioned in
Subsection 4.1.1. These polynomial curves have been defined as the extremal curves for the problem

min
γ∈Ω

L
(
γ
)
=

1
2

∫ 1

0

〈D2γ

dt2 ,
D2γ

dt2

〉
dt

over the family Ω of smooth paths γ :
[
0,1
]
→M that satisfy the boundary conditions:

γ(0) = p0, γ(1) = p1,

dγ

dt
(0) = v0,

dγ

dt
(1) = v1,

where p0 and p1 are given points in M, v0 ∈ Tp0M and v1 ∈ Tp1M are prescribed initial and final
velocities.

These problems, and even higher-order variations of them, have been extensively studied by
several authors, starting with the pioneer work of Noakes, Heinzinger and Paden in [59], followed by
Crouch and Silva Leite [14, 15], Camarinha [10], and Zhang and Noakes [74], just to name a few.

It is known that Riemannian cubic polynomials are solutions of the Euler-Lagrange equations
associated to the optimization problem above. These differential equations evolving in M are 4th-order,
highly nonlinear, with complicated coupled boundary conditions. They are of the form:

127

128 Final Remarks: Related Work and Future Research Directions

D4γ

dt4 +R
(

D2γ

dt2 ,
dγ

dt

)
dγ

dt
= 0,

where R denotes the curvature tensor. In Rm this reduces to
d4γ

dt4 , giving rise to Euclidean cubic
polynomials. On other Riemannian manifolds, however, solving the Euler-Lagrange equations is a big
challenge and in spite of some progress for particular cases, explicit formulas for Riemannian cubic
polynomials have not been found yet. This emphasizes the importance of alternative methods, such as
those studied throughout this thesis.

Since the solution curves of this problem minimize the average covariant acceleration, which is an
important property in many real applications, knowing approximated solutions might be particularly
useful. Such solutions could be used to compare cubic polynomial curves on Riemannian manifolds
produced by the variational approach with those generated by the De Casteljau geometric construction,
an issue that, to the best of our knowledge, has not yet been addressed properly. It may also inspire
appropriate modifications in the later algorithm in order that the resulting curve is closer to the
optimal one obtained with the variational approach. However, solving the Euler-Lagrange equations
numerically requires the use of numeric integrators on manifolds, a subject that is out of our objective
at the moment.

7.2 Rolling Motions of Riemannian Symmetric Spaces

In this section we briefly recall the essentials of Riemannian symmetric spaces and present a simple
description of the kinematic equations of the rolling motion of such Riemannian manifolds.

We assume that a Lie group G acts transitively on a Riemannian manifold M and use the notations
defined in Section 2.5 for this action. In particular, we write g(p) for the image of a point p ∈M
under the diffeomorphism φg : M→M associated to the action φ : G×M→M.

For a fixed point p0 ∈M, let K be the isotropy subgroup at p0, and assume that the Lie algebra g

of G admits a direct sum decomposition
g= k⊕p,

where k is the Lie algebra of K and p is a vector space of g, satisfying the following commutator
relations:

[k,k]⊂ k, [p,p]⊂ k, [k,p]⊂ p. (7.1)

Notice that the last of the previous relations implies that p is AdK-invariant, i.e., AdK(p)⊂ p. Also, by
differentiating the action with respect to p0, one obtains an isomorphism between p and Tp0M.

Under the above assumptions, M is a Riemannian symmetric space (symmetric space for short)
that can be identified with the quotient G/K.

It happens that every curve in M is the projection (under the natural projection π : G→M = G/K
given by π(g) = φg(p0)) of a horizontal curve in G. A curve t 7→ g(t) in G is said to be horizontal if
ġ(t) = g(t)Ω(t) with Ω(t) ∈ p. For more details about these statements, we refer to Jurdjevic [36].

The Riemannian manifolds that appear in this thesis are particular cases of symmetric spaces. In
Subsection 5.4.2 we have already described the transitive action of a certain Lie group on each of
those manifolds and all the other ingredients that make them symmetric spaces. So, it is natural to

7.3 Modified De Casteljau Algorithm for Other Riemannian Manifolds 129

look at the rolling motions of the Grassmann manifold and of SO(n) as particular cases of rolling
motions of general symmetric spaces. This has not been the objective of our thesis, but at this point it
is important to have a broader picture of the results already presented, also having in mind the work
that has appeared, in the meanwhile, in Krakowski et al. [46] and Krakowski and Silva Leite [45]. In
these papers, the authors have shown that the natural decomposition of the Lie algebra associated to a
symmetric space provides the structure of the kinematic equations that describe the rolling motion of
that space upon its affine tangent space at a point. This is clearly observed in our particular cases.

The following statement gives a clear and simple description of the kinematic equations of rolling
a symmetric space on the affine tangent space at a point, along a curve starting at p0, under the
assumption that it has no flat points.

Theorem 7.2.1 Let t 7→ α(t) = π(g(t)) be a curve in M starting at the point p0, where t 7→ g(t) is a
horizontal curve in G starting at eG, i.e., ġ(t) = g(t)Ω(t) with Ω(t)∈ p. Then, the kinematic equations
for the rolling motion of the symmetric space M = G/K along the curve t 7→ α(t) are given by:{

ġ(t) = g(t)Ω(t)
ṡ(t) = deGπ (Ω(t))

, (7.2)

and t 7→ (g(t)⊤,s(t)) is the corresponding rolling map.

7.3 Modified De Casteljau Algorithm for Other Riemannian Manifolds

On a recent article, Modin et al. [55] presented a numerical algorithm for C 2-smooth splines on
symmetric spaces based on the Bézier curves. In terms of computational efficiency and numerical
tractability, the new method surpasses those based on Riemannian cubics. This is not a surprise since
the later are solutions of a highly nonlinear boundary value problem, while the curves obtained by
the former approach are given in closed form. Nevertheless, since the C 2-smoothness conditions
are significantly more complicated in the presence of Hermite boundary conditions, the numerical
algorithm presented in Modin et al. [55] may help in the comparison between the interpolating curves
produced by distinct approaches, in particular those already mentioned in the previous section.

The classical De Casteljau algorithm and its generalizations, such as the one presented in this
thesis, is based on successive geodesic interpolation and, so, can be implemented whenever there is an
explicit formula for geodesics joining two points. But contrary to most symmetric spaces, such as
Grassmann manifolds and special orthogonal groups, such explicit formulas do not exist for certain
manifolds that are particularly important in many applications. This is the case, for instance, in
the Stiefel manifold, consisting of k-orthonormal frames in Rm. However, a modification of the De
Casteljau algorithm, presented in Krakowski et al. [42], where geodesic interpolation was replaced by
quasi-geodesic interpolation turned out to be successful to generate C 1-smooth interpolating curves
defined in closed form. An interesting open problem is to solve the C 2-smoothness condition on
the Stiefel manifold, which is significantly more complicated than the C 1-smooth condition. Stiefel
manifolds are particularly important in computer vision, and the C 2-smooth condition is often required
in applications to avoid discontinuities in accelerations. We hope to be able to address this issue in the
future, inspired by the modifications of the De Casteljau algorithm in Krakowski et al. [42].

References

[1] Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization Algorithms on Matrix Manifolds.
Princeton University Press, New Jersey.

[2] Altafini, C. (2007). The De Casteljau Algorithm on SE(3). Lecture Notes in Control and
Information Sciences.

[3] Appell, P. (1919). Traite de Mecanique Rationnelle. Gauthiers-Villars, Paris.

[4] Batista, J., Krakowski, K., and Silva Leite, F. (2017). Exploring Quasi-geodesics on Stiefel
Manifolds in order to Smooth Interpolate between Domains. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), Melbourne, VIC, pages 6395–6402.

[5] Batzies, E., Hüper, K., Machado, L., and Silva Leite, F. (2015). Geometric Mean and Geodesic
Regression on Grassmannians. Linear Algebra and its Applications, 466:83–101.

[6] Biscolla, L. O. (2005). Controlabilidade do Rolamento de uma Esfera sobre uma Superfície de
Revolução. PhD thesis, University of São Paulo, Brazil.

[7] Bishop, R. L. (2013). Riemannian Geometry. University of Illinois at Urbana-Champaign, United
States, pages 1–64.

[8] Bressan, B. (2014). From Physics to Daily Life: Applications in Informatics, Energy, and
Environment. Wiley-Blackwell, Germany.

[9] Bézier, P. (1986). The Mathematical Basis of the UNISURF CAD System. Butterworths, London.

[10] Camarinha, M. (1996). The Geometry of Cubic Polynomials in Riemannian Manifolds. PhD
thesis, Department of Mathematics, University of Coimbra, Portugal.

[11] Cardoso, J. R. and Silva Leite, F. (2010). Exponentials of Skew-symmetric Matrices and Loga-
rithms of Orthogonal Matrices. Journal of Computational and Applied Mathematics, 233(11):2867–
2875.

[12] Caseiro, R., Martins, P., Henriques, J. F., Silva Leite, F., and Batista, J. (2013). Rolling
Riemannian Manifolds to Solve the Multi-class Classification Problem. Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2013).

[13] Crouch, P., Kun, G., and Silva Leite, F. (1999). The De Casteljau Algorithm on Lie Groups and
Spheres. Journal of Dynamical and Control Systems, 5(3):397–429.

[14] Crouch, P. and Silva Leite, F. (1991). Geometry and the Dynamic Interpolation Problem. In:
Proc. American Control Conference Boston, pages 1131–1137.

[15] Crouch, P. and Silva Leite, F. (1995). The Dynamic Interpolation Problem: on Riemannian
Manifolds, Lie Groups and Symmetric Spaces. Journal of Dynamical and Control Systems,
1(2):177–202.

131

132 References

[16] Crouch, P. and Silva Leite, F. (2012). Rolling Maps for Pseudo-Riemannian Manifolds. Proc.
IEEE-CDC 2012, Hawaii, USA.

[17] de Casteljau, P. (1959). Outillages Méthodes Calcul. Technical Report - André Citroën Automo-
biles SA.

[18] do Carmo, M. P. (1993). Riemannian Geometry. Birkhäuser Basel, Boston, second edition.

[19] Duistermaat, J. J. and Kolk, J. A. C. (2000). Lie Groups. Springer-Verlag, Berlin.

[20] Farin, G. (2002). Curves and Surfaces for Computer-Aided Geometric Design - A Practical
Guide. Academic Press, United States of America, fifth edition.

[21] Godoy, M., Grong, E., Markina, I., and Silva Leite, F. (2012). An Intrinsic Formulation of
the Problem on Rolling Manifolds. International Journal of Dynamical and Control Systems,
18(2):181–214.

[22] Grohs, P., Holler, M., and Weinmann, A., editors (2020). Handbook of Variational Methods for
Nonlinear Geometric Data. Springer Nature Switzerland AG, first edition.

[23] Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge, United Kingdom, second edition.

[24] Helmke, U., Hüper, K., Lee, P. Y., and Moore, J. (2007). Essential Matrix Estimation Using
Gauss-Newton Iterations on a Manifold. International Journal of Computer Vision, 74(2):117–136.

[25] Helmke, U. and Moore, J. B. (1996). Optimization and Dynamical Systems: With Foreword by
Roger W. Brockett. Springer-Verlag, London, second edition.

[26] Higham, N. (2008). Functions of Matrices: Theory and Computation. SIAM.

[27] Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press,
New York.

[28] Hüper, K., Kleinsteuber, M., and Silva Leite, F. (2008). Rolling Stiefel Manifolds. International
Journal of Systems Science, 39(8):881–887.

[29] Hüper, K., Krakowski, K. A., and Silva Leite, F. (2011). Rolling Maps in a Riemannian
Framework. Textos de Matemática. Department of Mathematics, University of Coimbra, Portugal,
43:15–30. Editors: J. Cardoso, K. Hüper and P. Saraiva.

[30] Hüper, K. and Silva Leite, F. (2002). Smooth Interpolating Curves with Applications to Path
Planning. Proc. 10th IEEE Mediterranean Conference on Control and Automation (MED 2002).
Instituto Superior Técnico, Lisboa, Portugal.

[31] Hüper, K. and Silva Leite, F. (2007). On the Geometry of Rolling and Interpolation Curves on
Sn, SO(n) and Grassmann Manifolds. Journal of Dynamical and Control Systems, 13(4):467–502.

[32] J. Jakubiak, F. Silva Leite, R. R. (2006). A Two-step Algorithm of Smooth Spline Generation
on Riemannian Manifolds. Journal of Computational and Applied Mathematics, 194(2):177–191.

[33] Jänich, K. (2001). Vector Analysis. Springer-Verlag, New York, first edition.

[34] Jupp, P. E. and Kent, J. T. (1987). Fitting Smooth Paths to Spherical Data. 36(1):34–46.

[35] Jurdjevic, V. (1997). Geometric Control Theory. Number 52 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge.

[36] Jurdjevic, V. (2016). Optimal Control and Geometry: Integrable Systems. Number 154 in
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

References 133

[37] Jurdjevic, V. and Sussmann, H. (1972). Control Systems on Lie Groups. Journal of Differential
Equations, 12(2):313–329.

[38] Jurdjevic, V. and Zimmerman, J. (2008). Rolling Sphere Problems on Spaces of Constant
Curvature. Mathematical Proceedings of the Cambridge Philosophical Society, 144(3):729–747.

[39] Kang, I. G. and Park, F. C. (1999). Cubic Spline Algorithms for Orientation Interpolation.
International Journal for Numerical Methods In Engineering, 46:45–64.

[40] Kim, M.-J., Kim, M.-S., and Shin, S. Y. (1995). A General Construction Scheme for Unit
Quaternion Curves with Simple High Order Derivatives. In SIGGRAPH ’95: Proceedings of the
22nd annual Conference on Computer Graphics and Interactive Techniques, pages 369–376.

[41] Kleinsteuber, M., Hüper, K., and Silva Leite, F. (2006). Complete Controllability of the n-sphere
– a Constructive Proof. In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006,
Proceedings from the 3rd IFAC Workshop (F. Bullo and K. Fujimoto, editors).

[42] Krakowski, K., Machado, L., Silva Leite, F., and Batista, J. (2016). A Modified Casteljau
Algorithm to Solve Interpolation Problems on Stiefel Manifolds. Journal of Computational and
Applied Mathematics, 311.

[43] Krakowski, K. and Silva Leite, F. (2014). An Algorithm Based on Rolling to Generate Smooth
Interpolating Curves on Ellipsoids. KYBERNETIKA, 50(4):544–562.

[44] Krakowski, K. and Silva Leite, F. (2016). Geometry of the Rolling Ellipsoid. KYBERNETIKA,
52(2):209–223.

[45] Krakowski, K. and Silva Leite, F. (2018). Controllability of Rolling Symmetric Spaces. In IEEE
Xplorer, Proc. of the International Conference on Automatic Control and Soft Computing, pages
7–12.

[46] Krakowski, K. A., Machado, L., and Silva Leite, F. (2015). Rolling Symmetric Spaces, pages
550–557. Springer International Publishing, Cham.

[47] Lee, J. M. (1997). Riemannian Manifolds - An Introduction to Curvature. Graduate Texts in
Mathematics. Springer-Verlag, New York.

[48] Longuet-Higgins, H. (1981). A Computer Algorithm for Reconstructing a Scene from two
Projections. Nature, 293:133–135.

[49] Lützen, J. (2005). Mechanistic Images in Geometric Form: Heinrich Hertz’s Principles of
Mechanics. Oxford University Press, Oxford.

[50] Ma, Y., Soatto, S., Kosecká, J., and Sastry, S. (2004). An Invitation to 3D Vision: From Images
to Geometric Models. Springer-Verlag, New York.

[51] Machado, L., Pina, F., and Silva Leite, F. (2015). Rolling Maps for the Essential Manifold,
chapter 21. Mathematics of Planet Earth: Dynamics, Games and Science. Springer.

[52] Machado, L., Silva Leite, F., and Krakowski, K. (2010). Higher-order smoothing splines versus
least squares problems on Riemannian manifolds. Journal of Dynamical and Control Systems,
16(1):121–148.

[53] Marques, A. (2015). Rolamentos sem Deslize nem Torção em Variedades Pseudo-Riemannianas.
PhD thesis, Department of Mathematics, University of Coimbra, Portugal.

[54] Moakher, M. (2005). A Differential Geometric Approach to the Geometric Mean of Symmetric
Positive-Definite Matrices. SIAM Journal on Matrix Analysis and Applications, 26(3):735–747.

134 References

[55] Modin, K., Bogfjellmo, G., and Verdier, O. (2018). Numerical Algorithm for C 2− splines on
Symmetric Spaces. SIAM Journal on Numerical Analysis, 56(4):2623–2647.

[56] Murray, R., Li, Z., and Sastry, S. (1994). A Mathematical Introduction to Robotic Manipulation.
CRC Press, New York.

[57] Nash, J. (1956). The Imbedding Problem for Riemannian Manifolds. The Annals of Mathematics,
63(1):20–63. Second Series.

[58] Nava-Yazdani, E. and Polthier, K. (2013). De Casteljau’s Algorithm on Manifolds. Computer
Aided Geometric Design, 30(7):722–732.

[59] Noakes, L., Heinzinger, G., and Paden, B. (1989). Cubic Splines on Curved Spaces. IMA Journal
of Mathematics Control and Information, 6:465–473.

[60] Nomizu, K. (1978). Kinematics and Differential Geometry of Submanifolds. Tôhoku Math.
Journal, 30:623–637.

[61] O’Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity. Academic Press,
Inc., New York.

[62] Park, F. and Ravani, B. (1995). Bézier Curves on Riemannian Manifolds and Lie Groups with
Kinematics Applications. ASME Journal of Mechanical Design, 117:36–40.

[63] Pina, F. and Silva Leite, F. (2018). Controllability of the Kinematic Equations Describing Pure
Rolling of Grassmannians. In IEEE Xplorer, Proc. of the International Conference on Automatic
Control and Soft Computing, pages 1–6.

[64] Pina, F. and Silva Leite, F. (2020a). Cubic Splines in the Grassmann Manifold. Submitted to
14th APCA International Conference on Automatic Control and Soft Computing (CONTROLO
2020), Portugal.

[65] Pina, F. and Silva Leite, F. (2020b). Cubic Splines in the Grassmann Manifold Generated by
the De Casteljau Algorithm. Pré-Publicações DMUC. Department of Mathematics, University of
Coimbra, Portugal, (20–07).

[66] Popiel, T. and Noakes, L. (2006). C 2 Spherical Bézier Splines. Computer Aided Geometric
Design, 23(3):261–275.

[67] Sattinger, D. H. and Weaver, O. L. (1986). Lie Groups and Algebras with Applications to Physics,
Geometry, and Mechanics. Number 61 in Applied Mathematical Sciences. Springer-Verlag, New
York.

[68] Sharpe, R. (1997). Differential Geometry. Springer-Verlag, New York.

[69] Shen, Y., Hüper, K., and Silva Leite, F. (2006). Smooth Interpolation of Orientation by Rolling
and Wrapping for Robot Motion Planning. In Proc. of the 2006 IEEE International Conference on
Robotics and Automation, Orlando, USA, pages 113–118.

[70] Shoemake, K. (1985). Animating Rotation with Quaternion Curves. In SIGGRAPH ’85:
Proceedings of the 12th annual Conference on Computer Graphics and Interactive Techniques,
volume 19, pages 245–254.

[71] Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Texts in Computer Science.
Springer-Verlag, London.

[72] Vemulapalli, R. and Chellapa, R. (2016). Rolling Rotations for Recognizing Human Actions
From 3D Skeletal Data. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas Nevada, pages 4471–4479.

References 135

[73] Whitney, H. (1935). Differentiable Manifolds in Euclidean Space. Proceedings of the National
Academy of Sciences of the United States of America, 21(7):462–464.

[74] Zhang, E. and Noakes, L. (2019). Optimal Interpolants on Grassmann Manifolds. Mathematics
of Control, Signals, and Systems.

[75] Zimmerman, J. (2005). Optimal Control of the Sphere Sn Rolling on En. Mathematics of Control,
Signals, and Systems, 17(1):14–37.

	Table of contents
	List of figures
	1 Introduction
	2 Preliminary Concepts
	2.1 Riemannian Metric
	2.2 Riemannian Connection and Covariant Derivative
	2.3 Parallel and Normal Transport
	2.4 Geodesics, Distances and Geodesic Completeness
	2.5 Lie Algebras, Lie Groups and Group Actions
	2.6 Matrix Lie Groups

	3 The Geometry of our Fundamental Manifolds
	3.1 The Geometry of the Rotation Group SO(n)
	3.2 The Geometry of the Grassmann Manifold Gk,n
	3.2.1 Tangent and Normal Spaces
	3.2.2 Geodesics and Geodesic Distance
	3.2.3 Representing Images by Points in a Grassmann Manifold

	3.3 Riemannian Structure of the Manifold Gk,nSO(n)
	3.3.1 Geodesics and Geodesic Distance

	3.4 The Normalized Essential Manifold
	3.4.1 Geometric Formulation
	3.4.2 Riemannian Structure of the Normalized Essential Manifold

	4 Polynomial Interpolation using the De Casteljau Algorithm
	4.1 Introduction
	4.1.1 Literature Review
	4.1.2 Main Contributions

	4.2 Formulation of the Interpolation Problem on Manifolds
	4.3 Cubic Polynomials in Manifolds, using De Casteljau Algorithm
	4.3.1 Cubic Polynomials in Rm

	4.4 Implementation of the De Casteljau Algorithm in Gk,n
	4.5 Generating Cubic Splines in Gk,n
	4.5.1 Generating the First Spline Segment 1
	4.5.2 Generating Consecutive Spline Segments

	4.6 Cubic Polynomials and Cubic Splines in SO(n)
	4.7 Solving the Interpolation Problem for the Normalized Essential Manifold

	5 Rolling Riemannian Manifolds
	5.1 Introduction
	5.1.1 Literature Review
	5.1.2 Main Contributions

	5.2 General Definition of Rolling Map
	5.2.1 Geometric Interpretation of the Rolling Map Conditions
	5.2.2 Rolling and Parallel Transport
	5.2.3 Properties of Rolling Motions

	5.3 Rolling Euclidean Submanifolds
	5.3.1 Structure of the Kinematic Equations of Rolling
	5.3.2 Parallel Transport

	5.4 Rolling Gk,nSO(n)
	5.4.1 The Kinematic Equations of Rolling
	5.4.2 An Important Observation
	5.4.3 Rolling Gk,nSO(n) along Geodesics

	5.5 Controllability Aspects of Rolling Motions
	5.5.1 Controllability of the Kinematic Equations for the Pure Rolling of Gk,n
	5.5.2 Constructive Proof of Controllability for the Grassmann Manifold

	6 Solving Interpolation Problems using Rolling Motions
	6.1 Introduction
	6.1.1 Literature Review
	6.1.2 Main Contributions

	6.2 Formulation of the Interpolation Problem on Manifolds
	6.3 Solving the Interpolation Problem on Manifolds Embedded in Euclidean Spaces
	6.3.1 Algorithm to Solve the Interpolation Problem when M=Rm
	6.3.2 Solving the Interpolation Problem when M1=Gk,nSO(n)

	6.4 Implementation of the Interpolation Algorithm in Gk,nSO(n)
	6.4.1 Implementation in SO(n)
	6.4.2 Implementation in Gk,n

	6.5 Implementation of the Algorithm in the Normalized Essential Manifold

	7 Final Remarks: Related Work and Future Research Directions
	7.1 Variational Approach to Solve Interpolation Problems
	7.2 Rolling Motions of Riemannian Symmetric Spaces
	7.3 Modified De Casteljau Algorithm for Other Riemannian Manifolds

	References

