
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 1

Abstract—While the traditional Internet of Things (IoT) relies

on electronic sensors/actuators, today's IoT involves a variety of
sensors, comprising not only physical, electronic-based devices,
but also virtual and even human social sensors/actuators. In this
context, how can we efficiently and effectively manage different
types of IoT data sources? In this paper, we propose a solution to
manage different types of sensors/actuators and analyze which
management protocols are best in terms of performance. The
proposal is based on open and broadly adopted technologies in
IoT, with emphasis on the FIWARE middleware. We showed that
the management of the heterogeneity of the sensing/actuating IoT
devices is feasible, by presenting functionalities related to real use-
cases. We took advantage of the implemented prototype to
compare the performances of Lightweight Machine-to-Machine
(LwM2M) and Ultralight device management services in
FIWARE. In addition to demonstrating the viability of the
proposed approach, the obtained results point to mixed
advantages/disadvantages of one protocol over the other.

Index Terms— IoT, Management, FIWARE, LwM2M,
Ultralight

I. INTRODUCTION

HE Internet of Things (IoT) is an extension of the Internet
to encompass all sorts of smart and connected entities

labelled "things". IoT applications cover activities for both
monitoring and tracking purposes, including healthcare, critical
infrastructure protection, and automated diagnostics.

In IoT, sensor nodes are entities in charge of collecting data
from the surroundings and report them to a central unit for
further processing. The concept of sensing has evolved
considerably over the last decade, comprising a broad set of
possibilities to collect data towards the development of smart
applications and services. What is generically called the
Internet of "things" is already the networked connection of
physical things and beyond [1]. Nowadays, IoT involves a
variety of sensors, including not only physical, electronic-based
devices, but also virtual sensors (i.e., software agents that
abstract one or more physical sensors), and even human
sensors, such as human-originated data collected from Online

Submitted for review at 26-June-2020. This paper was carried out within the

scope of the 5G Project (POCI/01/0247/FEDER/024539), co-financed by
COMPETE 2020, Portugal 2020 - Operational Program for Competitiveness
and Internationalization (POCI I), European Union's ERDF (European
Regional Development Fund) and the Portuguese Foundation for Science and
Technology (FCT).

Social Networks (OSN), which we call social sensors. Social
sensors are excellent sources of data for, e.g., data-driven
approaches and artificial-intelligence-based innovative
services, along with traditional IoT-based services, leveraging
emerging technologies such as edge/cloud computing and 5G
networks.

Such heterogeneity of "devices" is inevitable and has an
impact on the ITU reference model [2], that may require a
redefinition of some other concepts already established in the
device layer. Moreover, it is apparent that management
solutions must deal with all sorts of sensors, in a way that is as
transparent as possible. We, nevertheless, expect that different
IoT management protocols will have different capabilities to
deal with different types of sensors/actuators. In this context,
our initial goal was to study the extent to which the existing IoT
management protocols can be used for managing such a wide
variety of entities in the IoT device layer, which deals with
sensors and actuators. Subsequently, from this initial goal, an
approach to the management of heterogeneous IoT
environments was developed, and this is the central outcome
presented in this paper.

The contributions of this paper can be summarized as
follows. We propose and validate a solution for the unified
management of heterogeneous sensing/actuating approaches in
today's IoT. The proposed solution adopts relevant open
standards for both data and device management. We show that
the management of the referred three types of sensing/actuating
devices - namely physical, virtual, and social - is feasible from
a functional point of view. Furthermore, we analyze and
compare the performance of two widely used management
protocols. Specifically, we extensively assessed the latest stable
versions of two relevant protocols for supporting management
architectures, namely Lightweight Machine-to-Machine
(LwM2M) 1.0 and Ultralight 2.0, available as services in a top
reference IoT middleware named FIWARE [3].

The remainder of the paper is organized in the following
way: Section II presents some base concepts and related work;
in Section III, we present the proposed unified management
approach, focusing on its underlying concepts and supporting
technological ecosystem; Section IV is dedicated to the

The authors are with the Centre of Informatics and Systems of the University
of Coimbra (CISUC), 3000-214 Coimbra, Portugal (e-mails:
narmando@dei.uc.pt, sasilva@deec.uc.pt, boavida@dei.uc.pt).

N. A is also with Escola Superior Politécnica do Uíge, Universidade Kimpa
Vita, Nkondo Mbenza, Uíge, Angola.

An Approach to the Unified Management of
Heterogeneous IoT Environments

Ngombo Armando, DEI, University of Coimbra, CISUC, Jorge Sá Silva, DEEC, University of
Coimbra, CISUC, and Fernando Boavida, DEI, University of Coimbra, CISUC

T

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 2

presentation of the setups mounted for the management use-
cases and the assessment of the management protocols in
FIWARE. Both functional and performance results are
presented and discussed in Section V. Lastly, in Section VI, we
summarize the findings and provide guidelines for further work.

II. RELATED WORK

This section starts with an overview of the IEEE 1451
standards family [4] [5], as these standards set a common
language for sensor-based applications. Subsequently, we
address the generic sensing loop concept. Finally, we tackle the
problem of IoT device management by identifying existing
solutions. The concepts and solutions addressed in this section
will be used as the basis for extending IoT to software-based
and human-based entities, and their respective management.

A. IEEE 1451 Standards Family

Transducers (sensors, actuators, filters) are the primary
electronic interfaces to the real world. They are entities that
receive a signal as input and generate a modified signal as
output [6]. In this regard, smart transducers are analog or digital
sensing/actuating units combined with both a processing unit
and a communication interface. The family of smart transducer
standards was created in 2007 under the designation of IEEE
1451, with the objective of facilitating device and data
interoperability in the realm of IoT and Cyber-Physical
Systems. Since then, IEEE 1451 standards have been largely
adopted by the industry [4]. These standards define a set of
common communication interfaces, network services, metadata
concerning transducer connectivity to instruments,
instrumentation systems, and control/field networks, in order to
enable access, management, and control of networked
transducers.

As shown in Fig. 1, the IEEE 1451 standards family defines
two main blocks: i) the Transducer Interface Module (TIM),
widely known in the literature as sensor node; ii) and the
Network Capable Application Processor (NCAP), widely
known in the literature as a network gateway. The TIM block
comprises hard transducer end-units, metadata called
Transducer Electronic Data Sheet (TEDS), signal processing
units, and the necessary communication protocols to deal with
the NCAP driver.

A TEDS contains manufacture-related information that
allows both the self-identification and self-description of
transducers to the system or network. For instance, in a TEDS,
we may find transducers' manufacturer ID, serial number,
measurement ranges, calibration data, and location information.
A TEDS usually resides in embedded memory, typically
EEPROM, within the transducer. The concept of virtual TEDS
extends the benefits of the standardized TEDS to legacy sensors
and applications where embedded memory is not available.
That means a virtual TEDS can exist as a separate file
downloadable from the Internet [7].

The NCAP block comprises communication modules to
drive the Transducer Physical Interface and the essential
functions required to control and manage transducers,
communication protocols, and media-independent TEDS

formats. It also comprises network services, for connectivity
with user applications. The interface between the NCAP block
and the TIM block is called Transducer Physical Interface, and
it includes both serial and wireless links, such as SPI, I2C and
RS-232/UART serial interfaces, defined in IEEE 1451.2, or
wireless interfaces such as IEEE 802.15.1, IEEE 802.15.4, and
6LowPAN. As specified in IEEE 1451.5, 6LowPAN is intended
to allow direct TIM access from the Internet.

B. Generic Sensing Loop

Fig. 2 illustrates a generic sensing loop in today's IoT [1]. In
this sensing loop, sensing/actuating tasks may involve a variety
of devices, comprising not only physical, electronic-based
devices, but also virtual sensors (i.e., software agents that
abstract one or more physical sensors), and even human
sensors, such as human-originated data collected from OSNs.

While the sensors enable applications to monitor and provide
an abstract representation of "things", the actuators enable the
referred applications to interact with them. The heterogeneity in
mechanisms for sensing/actuating leads to challenging
questions in what concerns IoT solutions. For our study, we
were interested in tackling the management of IoT devices
beyond traditional electronic-based devices.

Let us take as an example the measurement of the overall
ambience of a house. To this end, we will set three metrics for
the measurement of the phenomenon under consideration
namely, room temperature, perceived comfort and the mood

Fig. 1. Standardized Smart Transducer Scheme. Adapted from [5]

Transducers
(Sensors & Actuators)

Signal Treatment,
Conditionning , Data

Conversion
TEDS

Communication Protocol

TIM

Common Network Services

Module Communications
NCAP

Transducer Physical Interface

Basic Transducer Services

Network Interface

Users Networks / Internet
(Towards Applications)

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 3

expressed in the (electronic) messages sent by the house
dwellers. To quantify each of these metrics, we will be using
dedicated sensors to provide the inputs for the measurements of
the temperature, comfort, and mood, respectively.

In a traditional approach, we would use an electronic-based
sensor (EBS), e.g., a DHT11, connected to a network gateway
to report the temperature values to the (smart) application. As
for the collection of data that will provide information on
perceived comfort, a computer program would be fed with
measured values from a cloud of electronic devices, providing
air temperature and relative humidity of the house. The comfort
values would then be estimated upon a set of defined rules,
according to both temperature and humidity [8]. The computer
program that runs such a process is a software-based sensor
(SBS) [9]. Lastly, we describe the approach that enables
assessing the mood of the house dwellers. Here, from the
application's perspective, humans play the role of sensing
devices. Indeed, the text they post on OSNs can provide useful
information to infer the overall ambience of the house. Using a
suitable Application Programming Interface (API), the contents
posted in OSNs and the associated metadata can be retrieved,
and subsequently submitted to analytic techniques that produce
scores for the target inference.

As we have seen in the provided example, the sensing
activity may involve physical-electronic means as well as
software-based and human-based sensors (HBS), to enable the
representation of things that are part of the target scenario. We
also highlight that the various types of sensors that make up the
extended IoT environment are complementary, in the sense that
they enrich the IoT data that will be used by applications to
provide the agreed services.

C. Device Management in Today's IoT

Proper management of IoT systems is crucial to their
operation, and this is even more so when dealing with the
extended IoT because the heterogeneity of the involved sensors
adds more complexity to the management platforms. Therefore,
it is essential to have frameworks and architectures for enabling
the abstraction of both technologies and protocols from
different components of the IoT communication systems.

The authors in [10] addressed the complexity of jointly
utilizing information on smart things, people, and the place
where they socially interact. With a platform named Lilliput,

the authors came up with a model for seamless integration of
traditional sensing/actuating objects and OSNs, towards IoT
social networks. They also provided a solution for the Access
Control issue, enabling a trustful interaction between the
"members" of IoT social networks. Finally, they tested the
feasibility of their solution in a case study scenario named
Sorcerer's Book, proving the feasibility of the proposed
platform from three different perspectives, including the
complexity alleviation for application developers who do not
have to worry about IoT or OSN knowledge. The Lilliput
architecture covers the monitoring, management, and security
services involved between external components (covering both
physical and online spaces) and end-user applications providing
simple RESTful APIs for the developers. Although the study
builds a real solution related to unified management of smart
things and people, it does not focus on different IoT platforms.
We believe that many capabilities described in the Lilliput
Architecture can be directly implemented with the enablers
from open and standard-based IoT platforms.

We have recently surveyed the literature on IoT management
protocols and frameworks [11]. We showed that the leading
standardization institutions work to ensure the integration,
interoperation, and management of IoT systems, despite their
growing complexity. Among them, the ITU-T defines common
requirements and capabilities for IoT device management in its
Recommendation Y.4702, oneM2M proposes a management
architecture in its Technical Specification OneM2M-TS-001-
v3.11.0, the Open Connectivity Foundation (OCF) defined a
component for IoT management and control, named the
IoTivity, and finally, the European Commission within the
Seventh Framework Programme (FP7) fostered the
development of FIWARE middleware. Among the available
frameworks, we chose to adopt FIWARE because it offers the
flexibility and scalability that we need for the different studies
we exploit in our research group. Besides, it is a top reference
IoT middleware [3].

The frameworks and architectures found in the literature
offer open interfaces that support some management protocols,
with a growing trend to use the protocol developed by the Open
Mobile Alliance (OMA), named Lightweight Machine-to-
Machine (LwM2M). LwM2M intends to provide a single,
secure protocol for controlling and managing IoT devices and
applications. This means that an IoT device implements and
uses the same agent function for both the sensing/actuating
purposes and management of the IoT device itself. There are
numerous libraries, several products, and broad community
support for LwM2M. The IoT management solutions from top
leaders in the Information Technology market, such as Amazon
Web Services, IBM Watson, and Google Cloud Platform, are
developed for LwM2M. For the future, the new CoAP
Management Interface (COMI), developed by the IETF, seems
to be the most promising management protocol in IoT LwM2M.
COMI will also include LwM2M as part of its IoT resources
management solutions.

Management capabilities are a cross-layer component
associated with the four layers of the ITU-T IoT reference
model [12]. In each layer, IoT management covers fault,

Fig. 2. Generic Sensing Loop in IoT.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 4

configuration, accounting, performance and security
management capabilities. In its Recommendation Y.4702
(03/2016), the ITU-T defined two categories known as essential
and specific management capabilities. Essential capabilities
include device management, such as remote device activation
and de-activation, diagnostics, firmware and software updating,
device working status management, and traffic and congestion
management. On the other hand, specific management
capabilities are those tightly coupled with each application-
specific requirements.

To the best of oud knowledge, many proposals addressing
IoT management issues are focused on well-established
physical sensing only [11]. Nevertheless, in many extended IoT
applications, one may want to change the algorithm of a virtual
sensor on-the-fly or prevent a social sensor from feeding the
IoT system for a while. This gap in the literature motivated our
proposal of a solution to manage different types of
sensing/actuating devices and analyze which management
protocol would be better suited in terms of performance. Our
unified management approach will be described in the
following section.

III. UNIFIED MANAGEMENT APPROACH

This section presents the proposed unified IoT management
approach. We start by providing a conceptual, high-level view
and, then, proceed to detail its underlying technological
components. Finally, we present the use-case scenario that we
have developed to assess our proposal.

A. Conceptual view

Fig. 3 identifies the main building blocks of the proposed
approach. The IoT middleware is the central component,
enabling the abstraction of both technologies and protocols
used in the various modules of the communication architecture.
This component provides flexibility and scalability to the
architecture. The combination of the flexibility of middleware
with the robustness of well-established management standards
is fundamental to a unified solution for both data and device
management.

The Management Gateway deals with communication with
the various sensing and actuation units for management
purposes. As referred in Section II.A, during the description of
the TIM, the Management Gateway is typically to reside in
smartphones or stationary computing hosts, such as Raspberry

Pi or Arduino-like devices. The IoT Managed Entities in Fig 3
comprise all sorts of heterogeneous elements with sensing or
actuation capabilities, in the extended IoT environment,
encompassing physical, virtual and social sensors/actuators.

The External Services component includes all the remote
entities that can endow the unified management system with
additional capabilities, such as natural language processing
capabilities, machine learning, and other types of knowledge
extraction functionality. Finally, the Management Center in Fig
3 is responsible for monitoring and control of the heterogeneous
IoT environments.

In the proposed unified management approach, displayed in
Fig. 3, FIWARE plays the role of the IoT middleware
component. The documentation section available at http://ieee-
dataport.org/2459 gives comprehensive insights on the
FIWARE platform that we configured for the use-case scenario.
Having designed the main conceptual blocks of the proposed
approach, in the next subsection, we will present the use-case
scenario that we have developed, named ISABELA (for IoT
Student Advisor and Best Lifestyle Analyzer), to prototype and
assess the unified management proposal.

B. The ISABELA Use-case

Initially, the aim of ISABELA was to explore the use of
heterogeneous sensing approaches to infer the impact of the
students' lifestyle on their academic performance [13].
ISABELA provides the students with recommendations for a
set of good practices towards their academic achievement of
better outcomes. Later, ISABELA also became a use-case
scenario of the heterogeneous IoT management paradigm that
we presented in the previous subsection.

Besides the backend, ISABELA has two main components.
First, an Android mobile application that serves as an interface
between the end-users (students) and the IoT resource pool,
including a chatbot. Moreover, the application also serves to
retrieve a set of EBS, SBS and HBS data, namely location,
gyroscope, proximity, light, activity recognition, screen lock,
phone calls and SMS statistics, alarm clock, and objects
provided by Social Sensors. Second, we have developed from
scratch an IoT set called ISABELA box to monitor phenomena
in stationary delimited environments, namely temperature,
humidity, noise and luminosity. All sensor data collected in
ISABELA use-case are used towards the inference of the
impact of the students' lifestyle on their academic performance.

Having designed the unified management solution, we set up
a testbed in order to assess how it would behave under a variety
of circumstances. We were specifically interested in triggering
some essential management capabilities and in assessing the
differences when the management commands were performed
over LwM2M and Ultralight protocols.

IV. CONFIGURATIONS AND SETUPS

This section provides information on the main configurations
made to prototype and assess the unified management proposal,
and to analyze which management protocol would be the best
one to use in terms of performance.

Fig. 3. Generic architecture for a unified management

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 5

A. Main Configuration and Code Adaptations

Although [14] is a recognized implementation of LwM2M,
the software for communication with the FIWARE server had
to be modified to make it work properly. This subsection
presents the main modifications made to the configuration of
both the clients and the server to overcome several
incompatibility issues.

Mobile host LwM2M client

The configuration of the Android clients consisted firstly in
creating a data model and the associated files for each object we
wanted to manage. Then, we added new methods in the
MainActivity.java file. Every time the LwM2M client starts, the
pre-provision of N devices is performed in the agent (Create
operation). The logout from the mobile application triggers the
deregistration and the erasure of the managed object in the agent
(Delete operation).

We used IPSO numbers both for the managed ObjectId and
for the associated ReusableResourcesId, according to the OMA
specifications in [15]. For the cases where we could not find the
ReusableResourcesId for the attribute of an object, we overrode
the one proposed by the OMA, selecting the most facsimile
number possible from the not yet registered numbers, within the
institution's reusable resources range (2048 - 26240) or from the
private resources range (26241 – 32768). For instance, the
"Sample Frequency Value" 26040, was inspired from IPSO
6040 "Sample Frequency". "Sample Frequency" is defined as
"How often, in seconds, the inputs are read/sampled". We admit
that in the physics domain, the units for "Period" would have
been second-1. However, we thought it was more convenient to
be aligned to an already conventional entity instead of creating
another IPSO object such as the "Sample Period" or "Sampling
Period". To summarize, in our study, the "lazy" attribute
labelled "Sample Frequency" is to be interpreted as the one that
drives the throughput of the device's activities, i.e., data
acquisition rate and the actuation minimal intervals.

Stationary host LwM2M client

When the stationary host is switched on, a script launches our
tailored NodeJS-based client from [16]. The lwm2mclient.js
creates the managed objects, connects them to the agent and
finally runs the python script that drives the Arduinos sensors
in the ISABELA box, according to a setInterval() scheduler ().
A function in iotagent-lwm2m-client.js, childProcess.exec(),
fetches the stdout result from the Arduino sensor. E.g., the
following code excerpt will enable change updates in the
temperature sensor values provided by the Adafruit-based
python script:

lwm2mClient.registry.setResource('/3303/0', 5700,
stdout.trim(), handleObjectFunction).

Dedicated LwM2M NodeJS Server

Despite both the Android client and the dedicated LwM2M-
iotagent being compliant with the same protocol, namely
LwM2M version 1.0, the latter did not correctly decode the
received values. The client sent the payload in TLV format, but
the read values were in plain text. Concerning the numbers, for

instance, we received values in ASCII instead of float or
double, as sent by the client. Since the imported Leshan files in
the Android clients are protected codes [14], we had to adapt
the server from [17]. Thus, we inserted another layer of
conversion in lwm2m-node-lib/…/InformationReporting.js/
dataHandler: function (chunk) {}, to overcome the received
numerical values format (Float, Double). We also added
reconnection patches in both mobile and stationary hosted
LwM2M clients. Sometimes the former elements disconnect
from the server and do not reconnect by themselves. Eventually,
we created an image of the LwM2M server, with the following
main patches:

 In commonLwm2m.js, a trim() function to delete spaces
was added by the Android LwM2M client at the
beginning of the URI objects;

 In informationRepport.js, we call a config.js file that
accepts text/plain in create.observe() function;

 In deviceManagement.js, we also call a config.js file
that accepts text/plain in createrequest() function.

The payload provisioned to the LwM2M agent is
standardized according to what is known as a device model. In
the next subsection, we will give more details on the configured
LwM2M Device Models.

B. LwM2M Device Models

The device model in Table I is used to configure the Leshan
.xml files embedded in the LwM2M mobile hosted client. Such
files contain the resources, their IPSO number, some metadata,
and their access type. As for the LwM2M stationary hosted
client, the device model also structures the entities to be
provisioned in the IoT agent. Typically, all (Active) attributes
are registered with a Read-only in the .xml file, while the Lazy
attributes are of Read-Write types.

Table 1(a) presents the generic device model in JSON format
that we provided in the IoT agent. For the developed use-case,
we did not make a difference between a managed device and its
corresponding entity. Hence, we have the same value to both
the "device_id" and "entity_name". The (Active) attributes
represent both the state and the activity of the managed devices.
The first three elements of the attributes in Table 1(a) are based
on the TEDS. As a consequence, the attribute "Description"
contains information that describes the device.

We did not adopt the IPSO resource named "Application
Type" (number 5750) [15], because it is a Read-Write attribute
while, in our case, we wanted a Read-only attribute. The
attribute "DateTime Stamp" adds contextualization to the
information reported by the managed entities. Both "Sample
Frequency Value" and "Blocking Status" attributes enable the
tracing of the values reported in "Sample Frequency Value" and
the command "Set Block Status" Lazy attributes, respectively.
As for the Lazy attributes, we implemented one element to
enable the change of the data acquisition rate of the sensors on-
the-fly. This is labelled "Sample Frequency" (see Table 1(a))
corresponding to the IPSO "6040" defined by the OMA. The
Commands attributes in our use-case comprise a single element
to enable blocking and unblocking the activity of the managed

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 6

devices. This provides the IoT system with the capability of
preventing a sensor from sending its readings to the backend.

Based on the structure in Table 1(a), Table 1(b) is the generic
device model for SBS. Thus, Table 1(b) only displays the
elements that are particular to SBS, when compared to Table
1(a). In SBS, it is relevant to track and configure the inputs used
to compute the virtual values. Besides, it is crucial to be able to

configure the formula/algorithm used to compute the indirect
values. For instance, in ISABELA, Sociability is an SBS that
can be calculated in one of several possible ways, depending on
the algorithm we adopt [13].

Also based on the structure from Table 1(a), Table 1(c) is
tailored for HBS. The Active Attributes in Table 1(c) comprise
a "Post_Id" to identify the latest retrieved tweet object in the
Broker, before launching a new query to the OSN.

For instance, the Twitter SDK requires a "Post_Id" from
where it will retrieve the objects in the home_timeline. If the
"Post_Id" is not given, the SDK will retrieve the latest
maximum number of objects, without any reference. Hence,
there will be a risk to send duplicated objects to the Broker.

Finally, Table 1(d) shows the data model for a generic
actuator, an addressable text, that we implemented in the use-
case. The Lazy attribute labelled "Set Parameters" is fed by a
string value from the Management Center. In ISABELA, this
attribute is meant to be updated by a teacher who will send
personalized recommendations to a student or a group.

The recommendations in ISABELA mobile application are
received in the form of notifications and via a chatbot. On their
turn, students can reply to the teacher, by witting a text directly
in the chatbot textbox. This reply text feeds an attribute with the
same name. Since the "Reply Text" is configured as an active
attribute, it is observed by the agent, so that whenever its value
changes, it updates in ORION. The "Set Parameters" attribute
Table 1(d) is designed to contain values for the configuration of
actuation tasks.

C. Testbed Setups

Fig. 4 is the layout set, in-lab, for testing the functionalities
of unified management in the ISABELA use-case. It is an
implementation of the Fig. 3, for a mobile scenario only,
because in this scenario we could perform as many
functionalities as possible for the unified management namely,
the variation of the sensor's data acquisition rate, modification
of addressable parameters for Software-based entities, and
preventing/enabling a managed sensors/actuators to send the
collected data to the backend.

An EBS is generally hard-programmed to be compliant with
a specific management protocol and its IoT agent in the
middleware. However, some IoT devices may support different
communication protocols. In this context, it is essential to study
the impact of using different protocols and analyze which
aspects are to be considered when choosing the one to use.
Specifically, we wanted to assess the communication

TABLE I
LWM2M DEVICE MODELS

(a) Generic

(b) Software-based Sensors

(c) Human-based Sensors

(d) Actuators

"devices": [{
"device_id": "IPSOObjectName_ISABELAUserId",
"entity_name": "IPSOObjectName_ISABELAUserId",
"entity_type": "Unifiedevice",

"attributes": [
Manufacturer, Model Number, Min & Max Range
Values, Sensor Value, Sensor Units,
Description, Sample Frequency Value,
DateTime Stamp, Blocking Status
],

"lazy": [Sample Frequency],

"Commands": [Set Blocking Status],

"internal_attributes": {
"lwm2mResourceMapping": {
"attributeNamex": {

"objectType": IPSOObjectId,
"objectInstance": 0,
"objectResource": IPSOReusableResourceIdx
}, …}}}}]

…
"attributes": [

Min & Max Range Values, Sensor Value ,
Sensor Units, Description, Sample Frequency
Value, Parameters, Sensor Algorithm,
DataTime Stamp, Blocking Status
],

"lazy": [Sample Frequency,
Set Parameters, Set Algorithm],

…

…
"attributes": [Language, Post Message,

Post Id, Description,
Sample Frequency Value,
DateTime Stamp],

…

…
"attributes": [

description, Parameters, Reply Text,
DataTime Stamp, Blocking Status
],

"lazy": [Set Parameters],

"Commands": [Set Blocking Status],
…

Fig. 4. Setup for management functionalites. Adapted from [19]

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 7

performances of the LwM2M protocol, by comparing it to the
transmission over Ultralight in FIWARE. We worked with
Ultralight 2.0 and LwM2M 1.0 because they were the latest
stable available versions implemented for both Android and
Ubuntu OSes. Table II provides a general view of the various
technologies and communication protocols on which LwM2M
and Ultralight rely. It is important to mention that Ultralight is
a version of a popular IoT standard developed by the Open
Geospatial Consortium named Sensor Model Language
(SensorML) [6], using an extremely simplified JSON
codification for the payload transmitted over HTTP.

To analyze which management protocol would be the best
one to use in terms of performances, we mounted the setup
depicted in Fig. 5, and captured the outbound and inbound
packets from IoT devices and the FIWARE server, respectively.

The whole testbed schematized in Fig. 5 ran inside a personal
computer so that we could control the network conditions,
including both the QoS and synchronization aspects.

The testbed was composed of three modules, namely a
mobile phone, a stationary device, and a server. The mobile
phone runs the ISABELA Android application, which
implements the mobile client module. The Android application
imports the LwM2M library from [14].

Since Ultralight is a simplified JSON codification for the
payload transmitted over HTTP, its corresponding entity in the
mobile application is developed with native libraries from

Android SDK. The stationary device is a Raspberry Pi 3 which
runs both Ultralight and LwM2M clients. The former client
module also includes a python script that creates and sends a
series of sensor values to the Ultralight agent in the server. The
latter client of the testbed is an adaptation of the NodeJS-based
client from Telefónica I+D [17]. Finally, the server module runs
a cloud-based Virtual Machine where we installed a docker
environment, a suite of containers that implement the Generic
Enablers (GEs).

Because resource management systems should be able to
dynamically adapt their operation in order to minimize latency
and maximize throughput [18], we collected data pertaining to
bandwidth occupancy, and delay. We added a third relevant
indicator for assessing the communication performance, which
is the packet loss.

The difference between the time at which a packet is captured
in ORION and the packet timestamp at the source corresponded
to the end-to-end delay. The network delay has been calculated
as the difference between the time at which a packet arrived at
the server interface and the timestamp at which the packet had
left the client interface. The used bandwidth for each scenario
includes all types of packets generated during the tests, such as
connection establishment packets, acks, retransmissions and
posts. Finally, the number of received packets in the Broker
divided by the number of packets sent by the clients provided
the packet delivery ratio, from which we could quickly
determine the packet loss ratio.

We sent the traffic from clients to the server according to four
scenarios, namely:

 Mobile Client to Server over Ultralight;

 Mobile Client to Server over LwM2M;

 Stationary Client to Server over LwM2M;

 Stationary Client to Server over Ultralight.

In each of these scenarios, each client sent 250 sensor
readings to the server, using a given "Sample Frequency".
"Sample Frequencies" ranged from 1 second to 10 seconds. The
datasets from testbed are available at http://ieee-
dataport.org/2459. The root of the dataset comprises a .xlsx file,
where we put the registered downtimes for the LwM2M clients
in both mobile and stationary scenarios. We used Tshark (a
Linux command-based, network packet analyzer) to capture the
packets and generate such registries.

V. TEST RESULTS

In this section, we present and discuss the results concerning
both the management functionalities and performances of the
management services in FIWARE. We remind that for the
latter, we were especially interested in analyzing the
performance of LwM2M and Ultralight, in order to identify the
circumstances under which each of these protocols can lead to
advantages or disadvantages when supporting a solution for the
unified management of heterogeneous environments.

A. Management Functionalities

Data Acquisition Rate

TABLE II
MANAGEMENT TECHNOLOGY STACKS

Standards and Protocols
Communication

LayerS
Management

Layers
Management capabilities -- Software App

IPSO
Objects

Simplified
JSON

-- Data Models

LwM2M 1.0 Ultralight
2.0

-- API and
Services

CoAP HTTP Application --

UDP TCP Transport --

IPV4 or IPV6 Network --

IEEE802.3 or IEEE802.11 Data Link & Phy --

Fig. 5. Setup for the assessment of Ultralight (UL) versus LwM2M (LW)

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 8

While we changed the "Sample Frequency" values, we
registered Short-term History data in the FIWARE COMET
GE. As a result, Fig. 6 depicts the effective variation of the data
acquisition rate following the values of the "Sample Frequency"
attribute. For the setup in Fig. 6, the sensors data embedded the
epoch timestamp of when they were collected. Hence, we could
calculate the delta timestamp between one sensor reading and
its predecessor. The blue/white-dotted graph in Fig. 6
represents these delta values in seconds. We had also recorded
the timestamps when a new "Sample Frequency" was set at
ISABELA mobile application. As a result, we could fill the
dataset represented by the dark-dotted graph in Fig. 6.

Addressable Text and Customizable Colour

We have implemented the addressable text entity according
to the device model in Table I(d). The resulted management
functionality, displayed in Fig. 7, shows how teachers can send
a non-automatic and personalized recommendation to the
students via the ISABELA platform.

In the left-up side of Fig. 7, we can see that the value for the
"Set_parameters" is: "It works_yellow_advice". Such content
is divided into three parts split by an underscore. The first part
is the recommendation content, while the second part sets the
colour of the background in the notification icon.

Fig. 6. Management of data acquisition rate

Fig. 7. Management of addressable text and displayed colours

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 9

The third part is tagged advice that is leveraged to
differentiate it from the "Blocking Status" notification type.
Finally, we have configured the Android notification slider so
that when the users click on it, they are directed to the chatbot
from where he can reply. The reply content feeds the
"reply_text" attribute. Hence, its content updates the
corresponding value in the Broker. The content of the
"reply_text" in Fig. 7, i.e., "Ola", appears both in the chatbot
and in the ORION context broker. Through the example in Fig.
7, we can see how the implementation of unified management
can also serve as an instant messaging system.

Blacklisting

In [19], we showed that Human-based sensing was
successfully integrated into the ISABELA system. Posts from
the OSNs were collected and subsequently stored in the
backend for further processing. By toggling the command "Set
Block Status" described in IV.B, we change a Boolean variable
in ISABELA app, that is configured to run or not the Android
service that drives the managed sensors/actuator. This is how
we can blacklist a "Social Sensor". Even if the work in [19] is
focused on HBS, the blocking status works for any managed
sensors/actuator.

B. LwM2M versus Ultralight

Packet Loss

Fig. 8 presents the packet loss values for stationary clients
(Fig. 8a) and mobile clients (Fig. 8b) when using Ultralight or
LwM2M. One crucial observation is that LwM2M leads to a
more reduced packet delivery ratio (i.e., higher packet loss
ratio) for both types of clients, namely stationary clients and
mobile clients. In fact, in many cases, Ultralight led to 0%
packet losses, while in the case of LwM2M losses as high as
32% were registered for mobile clients.

In the case of stationary clients, the results in Fig. 8(a)
globally show low packet losses for LwM2M, starting at 0.8%
and going up to 3.6%. We recall that the LwM2M client for the
stationary scenario was developed by the teams in charge of the
FIWARE server. At first sight, this low packet loss could make
us conclude for relatively good client-server compatibility.
Nevertheless, on closer look, we noticed that, contrary to what
would be natural to expect, packet losses were higher when the
period between samples was longer, i.e., for lower sampling
rates. After careful analysis, such behaviour turned out to be
related to client implementation problems that led to downtimes
whenever the LwM2M client had to run for long periods of
time. The solution for this was to re-launch the client whenever
it crashed, at the expense of higher packet losses.

On the other hand, the mobile client LwM2M
implementation had no such problems. Nevertheless, it was not
problem-free, as it leads to heavy packet losses whenever the
"Sample Frequency" is short, i.e., whenever the load is high, as
can be seen in Fig. 8(b). We recall that the LwM2M
implementation for the mobile scenario was not developed by
the teams in charge of FIWARE, and this probably explains a
lower performance when compared to the stationary scenario.

Bandwidth Occupancy

Fig. 9 presents the bandwidth occupancy values for
stationary clients (Fig. 9a) and mobile clients (Fig. 9b) when
using Ultralight or LwM2M. In both figures, we can see that
bandwidth requirements mostly remain stable over the various
"Sample Frequencies", which was to be expected, as the
number of total samples from the client to the server remains
the same (i.e., 250 samples). The most notable fact in Fig. 9 is
that the bandwidth required by Ultralight is much higher than
the bandwidth required by LwM2M, regardless of the type of
client. Moreover, the difference is higher in the case of mobile
clients. The higher bandwidth occupancy of Ultralight is
probably because this protocol runs over HTTP and TCP, as
opposed to LwM2M, which runs over CoAP and UDP.
Nevertheless, both the mobile and stationary client
implementations are not optimized in terms of bandwidth.

Delay

Table III shows the differences in network delay and end-to-
end delay when dispatching the packets via Ultralight and
LwM2M in FIWARE. So, for instance, positive values mean
that Ultralight has a higher delay than LwM2M.

Some conclusions can be drawn out of Table III. The first
conclusion is that, in most cases, LwM2M leads to lower delays
when compared to Ultralight. Nevertheless, there are cases in
the stationary scenario for which Ultralight leads to better
network delays. The second conclusion is that in the case of the
stationary client's scenario, the differences in network delay and
the end-to-end delay between Ultralight and LwM2M are tiny,
in the order of few milliseconds. Finally, the third conclusion is
that the processing load in mobile clients for the case of
Ultralight is quite large; the difference to LwM2M being in the
order of 700-800 milliseconds. Clearly, as in the case of
bandwidth occupancy, the Ultralight implementation is not
optimized in terms of delay.

VI. CONCLUSION

In this paper, we explored an approach to the unified
management of IoT environments comprising not only
physical/electronic IoT devices but also all types of sensing
devices, such as virtual and/or software-based devices or
human-based devices that build on data extracted from online
social networks data. This mix of heterogeneous sensing
approaches is increasingly being adopted on the Internet, and
tools for the effective monitoring and control of such 'devices'
are needed, as in any management system. Such tools may
allow deciding on which 'sensors' to use or which data to
extract/collect for a given IoT application, and which
information to feedback into the users for their benefit.

The approach presented in this paper was prototyped using
open, widely available protocols and platforms. We set up a
testbed to assess the impact of two different management
protocols on its performance. Due to their importance and
widespread use in IoT management and the FIWARE
middleware, we focused our attention on the comparison of
LwM2M and Ultralight, for mobile and stationary scenarios.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 10

The evaluation results pointed to some limitations/problems
of the existing implementations, namely in what concerns
packet losses, bandwidth requirements, and delay. Ultralight
packet losses are shallow for both stationary and mobile
environments. Nevertheless, its performance in terms of
required bandwidth is quite weak as compared to LwM2M.

As for the network delay, both protocols are quite similar,
whereas Ultralight implementation for mobile clients requires
high processing delay. As each management protocol has
advantages and drawbacks, we can envisage solutions that
dynamically select the best protocol depending on both the
expected performance and the current conditions offered by the
network.

For future work, we plan to deploy the whole testbed in a
distributed scenario to study the variations of the various
metrics further. Moreover, we will extend the functionality of
the unified IoT management solution, especially addressing
human-based sensing and human-in-the-loop concepts.

VII. REFERENCES

[1] N. Armando, A. Rodrigues, V. Pereira, J. S. Silva, and F. Boavida,

“An Outlook on Physical and Virtual Sensors for a Socially

Interactive Internet,” Sensors, vol. 18, no. 8, p. 2578, Aug. 2018.

[2] ITU-T Study Group 20, Common requirements and capabilities of

device management in the Internet of things. Geneva, Switzerland,

2016, p. 22.

[3] Pierre Audoin Consultants (PAC) GmbH, “FIWARE | IoT Platform

Survey | IoT Survey,” PAC, 2019. [Online]. Available:

https://www.iot-survey.com/fiware. [Accessed: 13-Mar-2019].

[4] A. Kumar, V. Srivastava, M. K. Singh, and G. P. Hancke, “Current

Status of the IEEE 1451 Standard-Based Sensor Applications,” IEEE

Sens. J., vol. 15, no. 5, pp. 2505–2513, May 2015.

[5] K. Lee, IEEE 1451 and Wireless Sensor Standard. USA:

https://www.nist.gov/sites/default/files/documents/el/isd/ieee/Inform

ation-on-1451_1588-V36.pdf, 2002, pp. 1–6.

a) Stationary Scenario

b) Mobile Scenario

Fig. 8 Packet loss

a) Stationary Scenario

b) Mobile Scenario

Fig. 9. Bandwidth occupancy

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 11

TABLE III*
REGISTERED DELAYS

(A) ABSOLUTE VALUES IN STATIONARY SCENARIO

“Sample
Frequency”
(in seconds)

Network End-to-End

Ultralight LwM2M Ultralight LwM2M

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode

1 4.36 4.34 4.05 5.54 5.51 5.48 47.28 44.69 17.07 37.4 34.44 14.16

2 4.86 4.8 4.53 6.28 6.23 6.23 42.67 42.26 15.79 33.91 32.79 14.47

3 4.09 4.04 4.21 5.85 5.84 5.86 43.14 41.81 41.07 32.83 31.53 14.1

4 4.33 4.27 4.06 5.48 5.45 5.47 43.41 41.01 15.32 34.51 32.49 13.88

5 3.91 3.82 3.73 4.55 4.54 4.56 44.67 43.18 45.3 35.03 33.35 15.58

6 3.19 3.08 2.9 0.52 0.33 0.38 43.37 41.8 27.63 33.8 31.08 9.42

7 2.99 2.9 2.5 2.04 2.03 1.98 44.27 41.51 15.22 30.55 29.16 11.37

8 1.89 1.8 1.78 1.88 1.87 1.9 41.02 39.9 16.48 32.55 31.59 9.33

9 1.58 1.45 1.47 0.85 0.77 0.75 44.16 42.29 12.69 34.54 28.8 9.68

10 1.02 0.97 0.97 0.45 0.39 0.36 54.54 47.13 12.12 31.18 31.08 10.71

(B) ABSOLUTE VALUES IN MOBILE SCENARIO

1 8.69 8.57 8.35 4.91 4.28 4.22 1500.21 1491.15 1491.34 700.83 684.01 660.57

2 8.31 7.97 7.77 4.3 4.23 4.21 1502.46 1497.44 1454.09 713.38 683.78 660.75

3 8.24 7.99 7.82 4.21 3.94 3.84 1495.78 1490.44 1452.04 728.43 691.24 660.6

4 8.21 7.83 7.72 3.31 3.21 3.24 1493.7 1488.33 1454.82 758.82 684.45 661.48

5 8.8 7.9 7.89 3.42 3.24 3.11 1505.27 1491.07 1455.2 759.56 686.77 659.91

6 7.33 7.08 6.88 3.39 3.3 3.3 1517.67 1511.97 1452.03 720.91 683.93 661.78

7 6.89 5.31 5.32 3.24 2.98 3.02 1526.91 1486.42 1451.02 752.03 687.74 659.2

8 5.11 4.73 4.56 1.84 1.82 1.6 1504.73 1488.8 1449.1 761.23 681.85 660.61

9 4.19 4.11 4.08 1.49 1.45 1.37 1484.59 1479.65 1446.95 757.95 684.03 683.54

10 3.78 3.68 3.78 0.79 0.79 0.69 1488.59 1485.69 1447.18 775.36 682.95 659.29

(C) DELAY DIFFERENCES BETWEEN ULTRALIGHT AND LWM2M ABSOLUTE VALUES (EXAMPLE: 4.36 -5.54 = -1.18, 1488.59-775.36 = 713.23)

--

Stationary Scenario Mobile Scenario

Network End-to-End Network End-to-End

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode

1 -1.18 -1.17 -1.43 9.88 10.25 2.91 3.78 4.29 4.13 799.38 807.14 830.77

2 -1.42 -1.43 -1.70 8.76 9.47 1.32 4.01 3.74 3.56 789.08 813.66 793.34

3 -1.76 -1.80 -1.65 10.31 10.28 26.97 4.03 4.05 3.98 767.35 799.20 791.44

4 -1.15 -1.18 -1.41 8.90 8.52 1.44 4.90 4.62 4.48 734.88 803.88 793.34

5 -0.64 -0.72 -0.83 9.64 9.83 29.72 5.38 4.66 4.78 745.71 804.30 795.29

6 2.67 2.75 2.52 9.57 10.72 18.21 3.94 3.78 3.58 796.76 828.04 790.25

7 0.95 0.87 0.52 13.72 12.35 3.85 3.65 2.33 2.30 774.88 798.68 791.82

8 0.01 -0.07 -0.12 8.47 8.31 7.15 3.27 2.91 2.96 743.50 806.95 788.49

9 0.73 0.68 0.72 9.62 13.49 3.01 2.70 2.66 2.71 726.64 795.62 763.41

10 0.57 0.58 0.61 23.36 16.05 1.41 2.99 2.89 3.09 713.23 802.74 787.89

(D) SUMMARISED VALUES

Mean -0.12 -0.15 -0.28 11.22 10.93 9.60 3.87 3.59 3.56 759.14 806.02 792.60

Median -0.32 -0.40 -0.48 9.63 10.27 3.43 3.86 3.76 3.57 756.53 804.09 791.63

Mode -- -- -- -- -- -- -- -- -- -- -- 793.34

*Except for the “Sample Frequency”, all values in Table III are in milliseconds

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3037141, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, NO. XX, MONTH YY, 2020 12

[6] D. W. Michael E. Botts, Alexandre Robin, Jim Greenwood, OGC

SensorML: Model and XML Encoding Standard.

http://www.opengeospatial.org/standards/sensorml, 2014, pp. 1–196.

[7] National Instruments, An Overview of IEEE 1451.4 Transducer

Electronic Data Sheets (TEDS). USA:

https://standards.ieee.org/develop/regauth/tut/teds.pdf, 2006, pp. 1–

19.

[8] S. Sharanya and S. John, “Comfort Sensor Using Fuzzy Logic and

Arduino,” in Proceedings of 2nd International Conference on

Intelligent Computing and Applications: ICICA 2015, 2017, pp. 155–

160.

[9] C. Sarkar, V. S. Rao, R. Venkatesha Prasad, S. N. Das, S. Misra, and

A. Vasilakos, “VSF: An Energy-Efficient Sensing Framework Using

Virtual Sensors,” IEEE Sens. J., vol. 16, no. 12, pp. 5046–5059, Jun.

2016.

[10] J. Byun, S. H. Kim, and D. Kim, “Lilliput: Ontology-based platform

for IoT social networks: Towards socialized people, objects, and

places,” in Proceedings - 2014 IEEE International Conference on

Services Computing, SCC 2014, 2014, pp. 139–146.

[11] S. Sinche et al., “A Survey of IoT Management Protocols and

Frameworks,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp.

1168–1190, 2020.

[12] ITU-T Study Group 20, Overview of the Internet of things. Geneva,

Switzerland: https://www.itu.int/rec/T-REC-Y.2060-201206-I, 2012,

pp. 1–22.

[13] J. Fernandes et al., “ISABELA – A Socially-Aware Human-in-the-

Loop Advisor System,” Online Soc. Networks Media, vol. 16, p.

100060, Mar. 2020.

[14] R. Haydarov, “LwM2M Demo Client Android,” Ericsson, 2017.

[Online]. Available:

https://github.com/ApplicationPlatformForIoT/LwM2MDemoClient

Android. [Accessed: 14-Mar-2019].

[15] Open Mobile Alliance, “LwM2M Registry and Resources.” [Online].

Available:

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MR

egistry.html. [Accessed: 15-Apr-2019].

[16] S. A. . Telefonica Investigación y Desarrollo, “IoT Agent Client.”

[Online]. Available: https://github.com/telefonicaid/lwm2m-node-

lib/blob/master/bin/iotagent-lwm2m-client.js. [Accessed: 30-Jul-

2019].

[17] Telefónica I+D, “lightweightm2m-iotagent.” [Online]. Available:

https://github.com/telefonicaid/lightweightm2m-iotagent.git.

[Accessed: 30-Jul-2019].

[18] A. V. Dastjerdi and R. Buyya, “Fog Computing: Helping the Internet

of Things Realize Its Potential,” Computer (Long. Beach. Calif)., vol.

49, no. 8, pp. 112–116, Aug. 2016.

[19] N. Armando, J. M. Fernandes, A. Rodrigues, J. S. Silva, and F.

Boavida, “Exploring Approaches to the Management of Physical,

Virtual, and Social Sensors,” in IEEE INFOCOM 2020 - IEEE

Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2020, pp. 954–959.

NGOMBO ARMANDO received the M.Eng. degree
in information and communication technologies from
IMT Lille-Douai, France, in 2010. He is currently a
PhD candidate in information science and technology
at the University of Coimbra, Department of
Informatics Engineering (DEI), Coimbra, Portugal.
He is a Member of IEEE. From 2010 to 2012, he was
a telecoms consultant for Altran-T&M, Paris, France.
Since 2013, he is a senior lecturer at Universidade
Kimpa Vita, Escola Superior Politécnica do Uíge

(ESPU), Uíge, Angola. At ESPU, he also heads the project management service
in charge of both IT management and support, statistics and working good
practices. Since 2018 he is a research fellow for 5G products at the Centre of
Informatics Engineering of University of Coimbra (CISUC), Coimbra,
Portugal. His research interests include IoT, Devices Management, 5G products
and services. (https://www.cienciavitae.pt/en/5916-4A11-E165)

JORGE SÁ SILVA received his PhD in Informatics
Engineering in 2001 from the University of Coimbra,
where is Associate Professor with Habilitation at the
Department of Electrical and Computer Engineering
of Sciences and Technology of the University of
Coimbra and a Senior Researcher of LCT, Portugal.
His main research interests are IoT, Network
Protocols, M2M, and WSNs. He has been serving as a
reviewer and publishing in top conferences and
journals in his expertise areas. His publications

include 2 books, 5 book chapters and over 170 papers in refereed national and
international conferences and magazines. He participated in European
initiatives and projects such as FP5 E-NET, FP6 NoE E-NEXT, FP6 IP EuQoS,
FP6 IP WEIRD and FP7 Ginseng (as Portuguese Leader). He actively
participated in the organization of several international conferences and
workshops, (e.g. he was the Workshop Chair of IFIP Networking2006,
Publicity Chair of EWSN2009, General Co-Chair of EWSN2010, General Co-
Chair of Mobiquitous2015, General Vice-Chair of WoWMoM2016) and he was
also involved in program committees of national and international conferences.
He is a senior a Member of IEEE, and he is a licensed Professional Engineer.
(http://www.dei.uc.pt/sasilva)

FERNANDO BOAVIDA received his PhD in
Informatics Engineering in 1990, and he currently is
Full Professor at the DEI of the Faculty of Sciences
and Technology of the University of Coimbra. His
main research interests are people-centric Internet of
Things, wireless sensor networks, mobility, and
quality of service. He is author/co-author of more than
170 international publications (books, book chapters,
refereed journals and conference proceedings) and 50
national publications. He was the chairman of the

Program Committee of QofIS'2001, IDMS-PROMS'2002, NETWORKING
2006, WWIC 2007, FMN 2008, EWSN 2010, FMN 2012, IWQoS 2012, ACM
SIGCOMM FhMN 2013, Mobiquitous 2015, and WoWMoM 2016
international conferences/ workshops. He is a senior Member of the IEEE and
a licensed Professional Engineer. He is a member of the Editorial Advisory
Board of the Computer Communications journal.

(http://www.uc.pt/go/boavida)

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 12,2021 at 09:17:10 UTC from IEEE Xplore. Restrictions apply.

