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Resumo
A Computação Evolucionaria agrega um conjunto de algoritmos com aplicação em
múltiplos contextos e num crescente número de indústrias. No seu formato canónico,
os Algoritmos Evolucionários são uma metáfora bem justificada de Selecção Natural.
Em suma, é espectável que a combinação entre alto desempenho e um número pro-
porcional de oportunidades de reprodução conduza a população através do espaço de
procura e em direcção a zonas onde a procura de soluções potencialmente óptimas seja
mais produtivo. Nesta perspectiva, compensar directamente indivı́duos altamente com-
petitivos pode trazer benefı́cios directos ao esforço de procura. No entanto, pode ser
argumentado que numa perspectiva mais alargada e dependendo das caracterı́sticas do
problema alvo, a abordagem pode não ser a mais apropriada. Em problemas multi-
dimensionais, multimodais, cujo espaço de procura seja altamente rugoso, é relevante
explorar outras abordagens capazes de potenciar o processo de procura.

Esta tese apresenta Selecção Sexual através da Escolha de Parceiro como um método
auto-adaptativo alternativo, para a avaliação de candidatos para reprodução. A abor-
dagem afasta-se dos ganhos imediatos resultantes da avaliação por desempenho e in-
troduz um grau de liberdade de escolha no processo de selecção de parceiros. Ao
permitir a cada indivı́duo o uso da sua própria função de avaliação, representada no seu
genótipo, é alcançada uma maior autonomia evolucionária capaz de introduzir forças
divergentes daquela imposta pela Selecção Natural. Como resultado, o processo evolu-
cionário é mais aberto e afasta-se da selecção baseada em aproximação a um ou mais
objectivos. O padrão de evolução resultante é fora do convencional e benéfico para
o processo global de procura, muito devido às sinergias entre as forças de Selecção
Natural e Selecção Sexual. É proposto que modelos de Escolha de Parceiro sigam as
seguintes regras: i) cada indivı́duo deve escolher o seu parceiro de reprodução baseado
na sua própria percepção dos outros e nas suas próprias preferências; ii) as preferências
de escolha deverão estar sujeitas a descendência com modificação, de forma semel-
hante a qualquer outra caracterı́stica; iii) Escolha de Parceiro introduz a sua própria
pressão de selecção e está também sujeita a pressão. Esta tese apresenta uma estrutura
genérica para um algoritmo que modela este processo e ainda duas abordagens dis-
tintas para a representação de preferências usando Programação Genética, cada uma
seguindo as suas próprias regras adicionais. A primeira abordagem sugere que as pre-
ferências sejam representadas como um parceiro ideal, com o qual candidatos possam
ser comparados (PIMP). A segunda abordagem sugere representar uma função que
agregue percepção, preferências e interacção entre sinais num contexto de avaliação
(CMP-GP).

É estudada a hipótese de que Algoritmos Evolucionários que incluam modelos de
Escolha de Parceiro, adoptando assim uma perspectiva mais aberta de procura através
do relaxamento de objectivos, podem trazer melhorias a processos de optimização.
Este estudo abrange as abordagens PIMP e CMP-GP, abordando ainda mecanismos
de Escolha de Parceiro de forma genérica. De forma a estudar o assunto metodica-
mente, a hipótese é desdobrada em várias questões a investigar e que se focam tanto
em indicadores de desempenho como em demonstrar e validar empiricamente os com-
portamentos introduzidos pela Escolha de Parceiro. Estas últimas direccionam-se a
impactos relacionados com selecção, percepção e efeitos a nı́vel de população. Esta
tese faz vários contributos no sentido de integrar e compreender o papel da Escolha
de Parceiro na Computação Evolucionária. A teoria é amplamente discutida, incluindo
marcos históricos no seu estudo e uma sı́ntese moderna, assim como princı́pios e im-
pactos. A modelação de Escolha de Parceiro como um modelo genético e a sua gradual
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adaptação a um operador com aplicações em optimização é também discutida. O es-
tado da arte da sua aplicação com múltiplos fins é apresentado e categorizado. Usando
estas contribuições como base, esta tese apresenta então um modelo genérico de Es-
colha de Parceiro e duas abordagens distintas, que são aplicadas num conjunto de 52
problemas de Regressão Simbólica. Segue-se a análise dos resultados relativos a de-
sempenho e comportamento, com o apoio de um conjunto de métricas que se focam
nas diferentes questões propostas. O estudo é ainda alargado para incluir operadores e
mutação e a sua interacção com Escolha de Parceiro. Por fim, são tiradas conclusões
em relação às questões investigadas e a hipótese central é abordada, confirmando-se o
esperado neste contexto especı́fico.
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Abstract
Evolutionary Algorithms are valuable optimization tools on a wide range of contexts
and with applicability on an increasing number of industries. Their canonical layout
is a well justified metaphor of Natural Selection. Overall, it is expected that matching
high fitness with proportionate reproductive opportunities will guide the population
through the search space, towards areas worth exploiting for possibly optimal solutions.
Rewarding competitiveness can bring direct benefits to search efforts. However, on a
broader perspective and depending on the characteristics of the target problem, the
approach may not be the most appropriate. In multimodal, multidmensional, rough
search landscapes, other strategies are worth exploring in hopes of greater benefit to
the global search process.

This thesis introduces Sexual Selection through Mate Choice as a self-adaptive
alternative for the evaluation of mating candidates. The approach looks away from
immediate fitness gains and introduces a degree of freedom of choice when selecting
mating partners. A much pursued higher evolutionary autonomy is achieved, by al-
lowing individuals to encode and make use of their own evaluation functions, as part
of the genotype. This autonomous choice can introduce selective forces that diverge
from Natural Selection, potentially producing unorthodox search patterns. Overall, this
will impact and benefit the global search effort, despite moving away from objective
oriented selection and introducing a degree of open-ended evolution. Still, synergies
between Sexual and Natural Selection are relevant. It is proposed that Mate Choice
models follow three assumptions: i) individuals must choose who they mate with based
on their perception of others and their own mating preferences; ii) mating preferences
are subject to descent with modification through inheritance like any other trait; iii)
Mate Choice introduces its own selection pressure while being itself subject to pres-
sure. This thesis introduces a framework following these assumptions. Furthermore,
two approaches based on Genetic Programming representations of mating preferences,
each following its own additional and specific assumptions, are studied. The first ap-
proach suggests representing preferences as ideal mating partners to whom candidates
can be measured against (PIMP). The second approach suggests the representation of
a contextualized mate evaluation function, coupling perception, preferences, and inter-
actions between signals (CMP-GP).

It’s hypothesized that Evolutionary Algorithms modeling proper Mate Choice mech-
anisms can improve on optimization by adopting a widening perspective on search and
the relaxation of objectives. This hypothesis is addressed both on PIMP and CMP-GP
and regarding Mate Choice in general. In order to methodically explore the subject, a
number of research questions are introduced, focusing on performance indicators but
also on empirically demonstrating and validating the behavioral changes imposed by
Mate Choice. Particularly, these research questions focus on aspects of selection and
perception, and on the effects that Mate Choice has on populations. This thesis makes
several contributions towards integrating and understanding the role of Mate Choice
in Evolutionary Computation. It covers theory on the subject, focusing on historical
milestones and a modern synthesis, and introduces conditions, principles, and impacts
that are associated with Mate Choice. The modeling of Mate Choice as genetic mod-
els and its transition to optimization operators is also covered, as well as impacts on
search efforts. Furthermore, the state-of-the-art is compiled in comprehensive cate-
gories. Supported by the theoretical discussion, this thesis introduces a general frame-
work and two distinct designs, applied to a set of 52 Symbolic Regression instances.
An analysis of performance and behavior follows, supported by a number of metrics
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that are introduced and focus on the different research questions. This analysis is then
extended to include impacts of mutation in combination with Mate Choice. Finally,
conclusions are drawn on research questions and the proposed hypothesis is confirmed
under the discussed setup and assumptions.
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Chapter 1

Introduction

Nature-inspired algorithms have had increasing attention from researchers over the past
few decades. On the one hand for the purpose of better understanding natural behaviors
through simulation, and on the other hand as optimization tools. Through continuous
efforts, such algorithms have become valuable for targeting a wide range of problems,
and most recently found applicability on multiple industries. Traditional optimization
algorithms have nowadays many flavors, inspired by different behaviors observed in
nature, and focusing on different strategies to build solutions that fit a target objec-
tive. Regarding Evolutionary Algorithms, their canonical layout is well justified as a
metaphor of Natural Selection [68, 101, 131, 203], which has influenced the overall
structure and particular design of operators. In the end, it’s expected that linking high
fitness with matching reproductive opportunities will contribute to population synergies
capable of progressing through the search space, leading to areas that can be exploited
for valuable, possibly optimal solutions.

Rewarding competitiveness and performance through higher reproductive rates is
an intuitive concept, which holds potential search benefits while remaining relatively
simple. Therefore, it may come as a surprise that such a strategy, even when coupled
with mechanisms to introduce diversity, sometimes underperforms. Surely, in uni-
modal or smooth search landscapes, this metaphor of Natural Selection can perform
sufficiently well, even when searching through multiple fitness peaks by leaning on
stochastic initialization, large enough populations, mutation, and adequate selection
pressure. However, as both the research field and industry focus on harder and harder
target problems, that effort may prove to be insufficient. In likely multimodal, mul-
tidimensional, and rough search landscapes, the direct rewarding of proximity to the
objective as evaluated by fitness may be non-advantageous or downright hindering to
the global search efforts. In those scenarios, attributing reproductive opportunities in
proportion to fitness may actually represent a limitation.

As an alternative, search doesn’t have to be explicitly guided by one or multiple
well defined objectives. In the right scenario, widening the search efforts by introduc-
ing open-ended approaches, self-adaptation, or diverging selective forces may allow
for important synergies that on the grand scale contribute positively towards an objec-
tive. The idea may be counter-intuitive or paradoxical, but the search path towards best
results may not follow a straight line but require a wider perspective on the value of the
fitness function and how it translates to reproductive success. This thesis presents an
exploratory study on the possibility of using Mate Choice as a self-adaptive alternative
for the evaluation of individuals, one that is able to look away from immediate fitness
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gains and allow a relative freedom of choice in mating, introducing behaviors that on
the long run may potentially result in a more profiting search effort.

1.1 Background
Since the early days of Evolutionary Computation, models have been tried on a grow-
ing range of problems and contexts. On their canonical form, evolutionary models can
be used for optimization with very few requirements: i) a genotypic representation for
candidate solutions and corresponding mapping to phenotype; ii) and a fitness function
to evaluate and compare between such candidates. However, a lot of effort has been
put into specializing behaviors to better fit certain contexts. Listing them all and their
potential gains would be an unreachable goal, but a few things are worth bringing up
regarding the range of algorithmic solutions that have been brought up over the years:
i) there’s no silver bullet that will ultimately adapt and improve on every context; ii)
domain knowledge is relevant when designing problem specific operators or parame-
ters; iii) custom algorithms can have very slight to very deep modifications; iv) these
mods can take place on different levels of the algorithm, such as using island models
on a population level or imposing specialized mutation operators on the gene level.

Whereas the range of approaches available in the literature is outstanding, the sub-
set that could be said to introduce a degree of open-ended evolution, or to focus on di-
verging selective forces is comparatively small. Both have been customarily explored
in Artificial Life or Evolving Systems to study natural populations, but historically,
when optimization is considered, Natural Selection has an unchallenged central role.
Applications try to make the best of this role, sometimes relying on mechanisms intro-
duced to balance, restrict, or sway an excessive impact, for instance in hopes for higher
diversity. However, whatever the outcome, those scenarios are by design restrained
from achieving the evolutionary freedom of open-ended evolution or other aforemen-
tioned strategies. In order to do so, the roles of selection for reproduction need to
be rethought, for instance by having pairs of individuals selected independently and
valuing different characteristics, or by fomenting partner interactions during selection.

Sexual Selection through Mate Choice can provide a valuable framework for such
interactions by introducing the ability for each individual to choose its mating part-
ner according to its own preferences. The idea has been thoroughly explored in Evo-
lutionary Theory, being first introduced by Darwin [59] and contributed to by many
renowned researchers over the years [12, 54, 97, 307, 322]. A modern view justifies
the emergence of many prominent traits through the impact of Mate Choice rather than
Natural Selection [12, 54], and the number of studies is growing. In Evolutionary Al-
gorithms, Mate Choice can provide for a much pursued evolutionary autonomy, as long
as the models follow appropriate assumptions, and therefore contribute to a degree of
open-ended evolution. It has been shown in Natural Sciences that Mate Choice in-
troduces selective forces divergent from Natural Selection, which in optimization, can
contribute to unorthodox search patterns, potentially better suited for global efforts on
multiple contexts.

1.2 Motivation
The presence of Sexual Selection in optimization research spans over the last couple
of decades. Although the number of studies is somewhat small, they introduce a wide



CHAPTER 1. INTRODUCTION 3

range of ideas. Part of the proposed models focus on introducing particular behaviors
that are characteristic in nature, such as incest prevention or other forms of restricted
mating. Others try to capture the exploitative and exploratory roles of genders, or aim
at improving performance through specialized pairing and reproduction rules. Some
of these mechanisms are designed by analyzing specific contexts and are developed
on purely engineering grounds, for their utility when facing particular challenges. De-
pending on their design, the level of autonomous evolution introduced in the algorithm
may vary, but often is relatively small. There are of course exceptions that allowing for
higher freedom of choice and relative autonomy.

Overall, this reality is contrasting with how Sexual Selection is expressed in nature,
where its self-adaptive character, fueled by autonomous choice and a gene-centered
view of mating preferences, is key. There seems to be a void in Evolutionary Algo-
rithms in regards to approaches that introduce Mate Choice as an open-ended method-
ology rather than a utility focused, conservative, goal-oriented behavior. This may be
partially explained by challenges in designing complex systems, barriers in studying
dynamic behaviors, or an overall resistance to invest in systems that may be difficult to
justify in a purely utilitarian, well established way. Despite those challenges, the trans-
ference of knowledge from Natural Sciences into artificial models has always found
purpose, as shown by the growing range of available algorithms mimicking the behav-
iors of species (ants, bees, birds, etc.). Ways to model Mate Choice in Evolutionary
Algorithms closely following its simplistic, basic assumptions may prove to be a useful
addition.

As suggested, this thesis focuses in studying only Mate Choice approaches that
can introduce a relatively high degree of choice freedom and thus add a possibly di-
verging, self-regulated selection force that emerges in an open-ended fashion. For the
purpose, the models shall follow a small set of assumptions that can be summarized as
such: i) individuals must choose who they mate with based on their perception of oth-
ers and on their own mating preferences; ii) mating preferences are subject to descent
with modification through inheritance like any other trait; iii) mate choice introduces
its own selection pressure while being itself subject to pressure. By following these
assumptions, a framework shall be proposed along with two approaches, each with its
own characteristics in regards to the evaluation of mating candidates and the represen-
tation of mating preferences. For the purpose, the use of trees-based genotypes and
Genetic Programming operators will be explored, as a vehicle to model perception of
distinctive traits, their independent evaluation in light of individual preferences, and
their interactions into evaluation systems of evolving dimensionality and complexity.

1.3 Hypothesis and Research Questions
This thesis follows an inevitable exploratory frame, aiming at transferring knowledge
on Mate Choice coming from Natural Sciences into a proper framework that can in-
troduce new paradigms of search in Evolutionary Algorithms, while proposing mecha-
nisms that can best incorporate autonomous and open-ended evolution in collaboration
with goal oriented efforts. In a performance focused scope, it’s hypothesized that Evo-
lutionary Algorithms coupled with proper Mate Choice mechanisms can improve on
optimization by adopting a widening perspective on search and the relaxation of objec-
tives. While pursuing confirmation for this hypothesis, others have to be considered and
addressed. Particularly, it’s hypothesized that multidimensional mating preferences can
be properly modeled using a Genetic Programming representation, with two particular



4 1.4. CONTRIBUTIONS

approaches in mind: representation of an ideal mating partner to measure candidates
against (PIMP); representation of an explicit perception system, preferences, and inter-
actions, organized as a contextualized mate evaluation function (CMP-GP).

While the stated hypothesis can be partly addressed using performance indicators
and theoretical knowledge, empirically demonstrating the behavioral changes in Evo-
lutionary Algorithms as an impact of Mate Choice can be challenging. In the effort
to do so, a number of research questions were organized. Regarding performance, the
following ones are relevant: i) how do the approaches compare over a large test set
with varying characteristics; ii) are performance differences between approaches sta-
tistically significant; iii) how do design choices, particularly in regards to mutation,
compare in terms of performance gains. Further focusing on behavioral analysis, the
following questions are addressed: i) is Mate Choice truly taking place or are the re-
sults the product of some other unexpected behavior; ii) do mating preferences have
a Fisherian or Wallacean character; iii) does gender emerge with Mate Choice; iv) is
perception of trait variation being promoted with Mate Choice; v) is evaluation contrast
being promoted with Mate Choice; vi) what are the dynamics of preference dimensions
and complexity; is diversity being promoted with Mate Choice; vii) does Mate Choice
promote the emergence of complex innovations; viii) does Mate Choice contribute to
escaping local optima.

1.4 Contributions

This thesis makes several contributions towards the integration and understanding of
Mate Choice in Evolutionary Computation. Firstly, it introduces the subject from a the-
oretical point of view, focusing on relevant background information: i) describes his-
torical breakthroughs in Natural Sciences towards a modern overview of Mate Choice;
ii) further highlights basic conditions and principles for adaptive Mate Choice; iii) dis-
cusses the modeling of Mate Choice in genetic models and the transition from those
models into the application of self-adaptive mate evaluation functions in Evolutionary
Algorithms, through a step-by-step discussion of increasing complexity; iv) compiles
and expands on discussions regarding the impact of Mate Choice in search efforts and
potential resulting advantages; v) summarizes relevant past contributions made in the
context of optimization algorithms or related subjects, organizing diverging designs
into comprehensive categories.

Secondly, supported by the theoretical discussion and the review of existing de-
signs, this thesis also makes the following practical contributions: i) introduces a gen-
eral framework and clarifies which are the necessary assumptions and requirements
for the emergence of Mate Choice in Evolutionary Algorithms; ii) expands on that
framework by introducing two different representations and approaches, distinguish-
ing between them and offering proof of concept for both; iii) applies both approaches
to a set of 52 Symbolic Regression instances, totaling 10 different experimental setups;
iv) introduces metrics for the analysis of each research question and consequently to
the proposed hypothesis; v) shows an extensive, comparative, and well supported dis-
cussion on the impacts of Mate Choice following each approach, both regarding per-
formance and behaviors; vi) discusses the performance impacts of mutation on top of
Mate Choice; vii) draws conclusions on the hypothesis and research questions.
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1.5 Outline
The remaining of this document is organized following the order depicted above. Chap-
ter 2 introduces Sexual Selection and the topic of Mate Choice, covering breakthroughs
in Natural Sciences and culminating on a modern overview on the topic. Chapter 3 fo-
cuses on how to model Mate Choice, beginning with simple genetic models and moving
toward complex mate evaluation functions in Evolutionary Algorithms, also address-
ing impacts and behaviors. Chapter 4 covers related work and previous applications
of Mate Choice in optimization algorithms following a variety of design choices and
assumptions in the literature. Chapter 5 clarifies the assumptions and requirements for
Mate Choice to be modeled in Evolutionary Algorithms, introduces a framework for
doing so, and expands on that framework by suggesting two approaches for the rep-
resentation of mating preferences and the evaluation of mating candidates. Chapter 6
introduces the experimental setup used for studying and comparing each approach, in
regards to performance as well as changes in behavior, detailed by research questions
and associated metrics. Finally, Chapter 7 draws conclusions on the research questions
and the tested hypothesis, suggesting further steps to study Mate Choice in the context
of optimization.
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Chapter 2

Sexual Selection

In 1831 the HMS Beagle departed for what would be a five year voyage. On board
was Charles Darwin, a naturalist that throughout the journey, and his life, would study
and contribute to various research fields, ultimately establishing himself as a prominent
geologist, naturalist and overall science figure. On the course of his studies, Darwin
grew a collection of fossils and other artifacts regarding which he published extensive
analysis. He was also in close contact with a high diversity of fauna and took note of
its distribution and characteristics. Incited by the observation of both, Darwin began a
discussion that would prove to be a breakthrough in Natural Sciences. Either through
drafts in his travel journals or by correspondence with fellow researchers, he lead a
challenge on established ideas on the origin of species and helped bring research on
that topic into a new direction.

2.1 Evolutionary Background
After returning home, Darwin expanded on those ideas and thoroughly studied what
would eventually be regarded as the forces responsible for the evolution of species.
In 1859, as a first synthesis of his findings, he published a new theory on a volume
entitled On the Origin of Species by Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life [58]. The theory of Natural Selection, as
it would be known for the coming ages, was co-proposed and supported by Alfred
Wallace [60, 306], another prominent researcher, and despite initial criticism by the
community, gathered a number of followers and contributors.

2.1.1 Evolution by Natural Selection
As an emerging idea in Natural Sciences, Natural Selection took on itself the main role
in Evolutionary Theory. It was succinctly described by Darwin as the result of com-
petition within or between species affecting their individuals relative rate of survival.
In Layman’s terms, the theory can be described through two key concepts: i) descent
with modification; ii) common descent. Descent with modification is the observable
fact that siblings are slightly different in appearance and behavior when compared with
their parents or each other. Common descent is the hypothesis that all living things
have a common ancestor and although they differ extensively between them, they are
the result of many iterations of descent with modification. Even in present days, we are

7
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limited in observations of common descent, but at Darwin’s time, evidence was mostly
restricted to fossils, anatomy, and species distribution.

Common descent may have been a topic of discussion among naturalists for some
time by the mid 1800s, but the arguments against were simply too big for it be taken
seriously. Researchers found that descent with modification produced random varia-
tion while common descent was the prime of order and complexity. Arguably, random
variation alone could by no means produce order and complexity as observed in nature.
Darwin’s contribution was to show that it was indeed possible, through the introduction
of a selective force which he named as Natural Selection. According to his ideas, this
would be the process by which random changes resulting from descent with modifica-
tion could be selected for by nature in a orderly, non-random way, therefore allowing
for order and complexity to emerge over many generations.

Lacking modern technology for lab experiments, computer simulation, or math-
ematical models, Darwin used selective breeding as an auxiliary tool to explain his
thoughts. Selective breeding has been an ongoing day-to-day part of breeder’s and
farmer’s lives. It has not only allowed the domestication of many species, but has also
introduced speciation to best fit the needs or aesthetic preferences of humans. While
variation is always the result of descent with modification, domestication and artifi-
cial speciation have been achieved by the slow but simple process of granting only the
best regarded specimens a chance to contribute to future generations. The end game of
Darwin’s argument was that nature itself was capable of a similar selection, not by con-
scious choice but because adversity and difficulty to survive introduced environmental
pressure and competition. The result would be akin to indirectly deciding to what ex-
tent new individuals created by descent with modification are allowed to survive and
reproduce. Over many generations, positive traits are maintained and passed on to fu-
ture generations while negative traits are selected against and are eventually discarded,
ultimately adapting living things to their habitats, promoting successful innovations
and speciation as a response to a changing and diverse environment.

Since Darwin, the scientific community contributed extensively to the study of evo-
lution by Natural Selection and provided increasing evidence to support it, having al-
lowed it to overcome competitive ideas into overall acceptance by researchers world-
wide [21]. A genetic basis was established by Mendel [194, 300] and eventually both
works were combined in a framework that includes also contributions from other con-
temporary researchers [66, 71, 99, 102, 252, 256, 319]. This would become known
as the Modern Synthesis [139] and would have continuous impact over many research
fields ever since.

2.1.2 The Enigma of Ornamentation and Mating Behaviour
Despite the community’s acclaim for his work, Darwin continued to further explore
his ideas and battled with what he saw as gaps in the theory of Natural Selection. He
expected to be able to explain the emergence of characteristics across species as adapta-
tions to their respective habitat, so that they were in some way valuable in each species’
struggle for survival. This proved sometimes to be a difficult task. He questioned, for
instance, how was it that conspicuous traits such as animal ornamentation or mating
behavior could be accounted for by survivability. Some of such traits, as he observed
on multiple species (most often on males), were costly to maintain, consumed great
energy, and were complex while adding little to no gain to an individual’s ability to
survive. In fact, in some cases such traits could be deleterious to survival and should
be disfavored in competition. They were therefore an enigma for Darwin, who had
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trouble in seeing their purpose and how they could be maintained under the pressure of
Natural Selection [12, 54, 58].

Evidence has since then been extensively documented, including a wide number
of examples on many animal classes. Conspicuous traits involving coloration, for in-
stance, can be found on multiple species of birds, insects, mammals, and even fish
[12, 54, 59, 197]. In some cases such coloration has been proved to be deleterious to
survival due to increasing exposure to predators [12]. The development of horns or
antlers in males for the purpose of fighting sexually competing peers have also been
studied as traits of little survival value [159]. Calling, which can be found across many
species of birds, insects, mammals, and amphibious such as frogs [119] are also preva-
lent in nature. Scent related traits have also been found relevant in this line of research
[12].

Darwin’s view: Choice by Good Taste

Darwin stood by the ideal that evolution and the emergence of traits were the result
of competition and the relative advantage that they brought in relation to others. Or-
namentation, courtship behavior, means for male competition etc. were to be though
of as any other trait and to have no specially tailored explanation. Given that Natural
Selection explained the evolution of species and the origin of traits as the result of com-
petition for survival, Darwin envisioned the existence of another trait-shaping selection
force, capable of shaping species in complex and diverse ways. The key would still be
competition, but rather than competing for survival, traits emerging through descent
with modification would be selected for their advantages in gaining access to mating
partners. Darwin’s innovative idea was that such features were selected because they
brought males (usually) advantages in access to female partners, in spite of potentially
risking survival abilities [59]. The costs to survival would be compensated by advan-
tages in reproductive success, making features that bring advantage in competing for
mating more likely to pass on to offspring.

Darwin organized his ideas in the theory of Sexual Selection, described as the result
of competition within species affecting its individuals relative rates of reproduction
[59]. There would be of course the question of distinguishing which characteristics
develop under which selection pressure. Darwin answered that question by suggesting
that traits under Sexual Selection would meet certain criteria such as developing only
on sexually active individuals, mostly during mating seasons and were specific to one
gender only. Furthermore, their use would have to be either to fight off other competing
mating candidates or to attract the attention of potential mates through display [12, 59].
Evidences of features that fit such criteria were mostly found on males and were found
to be abounding in nature.

The topic was fascinating to Darwin who first touched the subject in his 1859 pub-
lication [58] and ended up dedicating a full volume to the topic: The Descent of man,
and selection in relation to sex [59]. Two processes were described by Darwin as
contributing to differential mating success: i) intra-sexual selection through competi-
tion of one sex (males usually) for access to individuals of the opposite sex (females
usually); ii) inter-sexual selection due to sexual preferences leading to variable repro-
ductive success (usually female mating preferences acting on male features). The first
one has been popularized as Male Competition while the latter became most known as
Mate Choice. Darwin’s research interests were mostly on Mate Choice, leaving behind
other topics such as how Male Competition contributes to the emergence of weaponry
and sexual dimorphism [59].
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Mate Choice [59] aimed to explain the emergence of aesthetic features such as
ornamentation and courtship behavior in a way that was in line with the pillars of Dar-
win’s evolution theory, or in other words, how they were associated with competitive
advantages. According to Darwin, such competitive advantages were gained by males
meeting the taste of selective females. Those that best fit the mating criteria of females
in the population would gain reproductive advantage by being selected more often for
reproduction, in disregard of being or not among the fittest males in that population.
The idea would conflict with the principle that Natural Selection ruled over reproduc-
tive success, by suggesting that complex and rich ornamentation and behavior was the
result of males competing to meet female taste for splendor and nothing else.

Early days of Sexual Selection and specially Mate Choice were bound with diffi-
culties [54]. Choice was regarded as dependent on consciousness and was seen as an
inherently human capability, while other species were driven by instinct. This feeling
was specially strong when taxa with few apparent senses and intelligence were con-
sidered. Therefore, the idea of female Mate Choice was considered impossible even if
Darwin first promoted it as an instinct based process. Also, it may have been difficult
to advocate in a 19th century Victorian society that roles in evolution could be unbal-
anced between genders the way that Darwin described. A male-centered view of the
world was still in vogue while Mate Choice put females at the guiding role [198]. The
subject of choice was for these reasons a very touchy subject, which led several authors
to publish their views against the idea. Wallace while agreeing on the subject of Nat-
ural Selection, had opposite views on Sexual Selection [307]. Westermarck [15] and
T. H. Morgan [205] later commented on Mate Choice with great criticism as did Hux-
ley [139], who would make great contributions to the modern thesis of Evolutionary
Theory.

Interestingly, choice was accepted as a widespread ability in the animal kingdom.
Food choice for instance was considered as unconscious, even as an inheritable pref-
erence, molded by evolution and varying benefits. Going from there to female Mate
Choice and the resulting inner-species competition was however a big leap, for sure
beyond the limits of acceptable science at the time [196]. Even if Mate Choice was to
be considered as an adapting force, there were still questions regarding its usefulness.
Food choice had arguably emerged because it was purposeful for survival, something
that was more difficult to argue regarding Mate Choice. Because naturalists had at the
time a species thinking of evolution (with adaptations happening for the good of the
species), until Mate Choice could itself be explained as a purposeful result of selective
forces, it would always struggle to be taken seriously by most researchers [12, 54, 307].

In summary, Darwin claimed that conspicuous traits emerged by adapting to the se-
lective forces imposed by female Mate Choice. However, while that could explain the
evolution of ornamentation or courtship behavior, it did little to explain the usefulness
of choice. To the eyes of many, and specially taking into account the possibly dele-
terious aspect of Mate Choice, Sexual Selection as seen by Darwin not only was not
adaptively explained, it had the potential of being maladaptive [12, 54]. Explaining the
origin of Mate Choice (specially the gains of choice for splendor) and consequently the
conditions necessary for Sexual Selection and Natural Selection to co-exist and com-
pete became possibly the biggest challenge for Darwin’s views on Sexual Selection.

Wallace’s view: Choice by Good Sense

Wallace considered Darwin’s views regarding Sexual Selection to be non-realistic. Af-
ter all, Natural Selection was a means of finding an harmonious order and good sense
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in an otherwise chaotic continuous process of descent with variation. In his own way,
Wallace had the same strong will to keep to the ideals of competitiveness and relative
advantage that was characteristic of Darwin. Perhaps even more, and for that reason
he was a strong advocate of Natural Selection. He argued in favor of its central role
in evolution and was not keen on having a second selective force adding complexity.
In a rather simple way, Wallace regarded Sexual Selection as a contributing process of
Natural Selection, not much more than the process by which females selected the best
males to breed. In many cases, features that for Darwin were under the pressure of
Sexual Selection, were described by Wallace as the product of Natural Selection. For
instance, calling may have a significant task in social roles such as warning of predators
in proximity. Antlers, horns and body size can be used for protection from predators,
or ultimately to fight over resources rather than mates. Species identification and sex
recognition can also benefit from such attributes [307].

Wallace was quite successful on such arguments, mostly because he found utility in
features and therefore good reason for its emergence as the result of Natural Selection.
Nonetheless, he could not and did not attempt to overlook the observable fact that
females in many species choose mating partners in favor of certain characteristics.
His idea on the subject was however very different from Darwin’s, as he argued that
choice must be sensible and by no doubt coincide with Natural Selection. Otherwise,
it would be selected against. Simply put, he claimed that Sexual Selection, as an inner-
species force, should reinforce Natural Selection, by sensibly choosing mating partners
in favor of the good of the species. He regarded it as having a secondary role at best
[12, 54, 307], a view that was in-line with the species-level thinking of evolution (with
adaptations happening for the good of the species) that was in vogue at the time.

The subjects that best fit Wallace’s ideas were not the same that best fit Darwin’s
theories on good taste. Darwin had a particular drive to try to explain the exuberance
in certain species. When explaining how was it that females seemed to favor complex
ornamentation or extravagant behavior, Wallace argued that while females seemed to
be selecting aesthetically, they were actually doing so sensibly. By his regards, the most
healthy and vigorous males would be at the same time the most adorned, and so beauty
and quality simply happened to coincide [308]. If the most ornamented males were
not the fittest, they simply couldn’t survive, which would contribute to a correlation. It
should be noted that Wallace did not accept ornamentation to act as honest indicators
of male vigor, health, stamina, sexual maturity, or others, but rather as a side effect.
Selection for those ornaments could happen, not for beauty’s sake, but only as a side
effect of a sensible choice [54, 307].

For Wallace, Mate Choice had only to do with good sense, with females always
going for good and useful qualities in males (by a Natural Selection sense). In his un-
derstanding, ornaments had nothing to do with choice, so that for instance in a species
where males exhibit brightly colored feathers, a colorblind female would still have a
preference for the brightest male simply because she is going for quality and not for
beauty [54]. His theory that mating preferences have emerged because they represent
good sense successfully avoided the problem of explaining the emergence of female
Mate Choice that haunted Darwin’s good taste theory. However, it raised an equally
important problem. If ornamentation and complex behaviors play no role in choice,
how is it that such features have emerged despite the costs of maintaining them. Wal-
lace made an attempt to explain such phenomena by suggesting that characteristics that
may not find usefulness are the result of adaptation to the point where species can put
surplus energy to non-selective goals without risking survivability.

Moreover, as aforementioned, Wallace [307] explained ornamentation as identifi-
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cation badges, allowing individuals to identify peers and possible mating partners. He
also suggested that extravagant displays were the result of nature’s predilection for ex-
uberance in colors, songs, or others, an idea that was extended into courtship behavior.
Arguably, such richness was default and Natural Selection was responsible for inhibit-
ing them outside mating seasons, and more so on females because of their proximity
to offspring [198]. Finally, males would be more likely to shows such displays due to
surplus energy, male vigor, higher health and therefore less need for camouflage, or
simply as non-selective side effects [54] of descent with modification. Such ideas in a
way were add-ons to the simplicity of Natural Selection.

In summary, Wallace claimed that Mate Choice was useful as a process of Natural
Selection, having emerged for the purpose of females selecting the fittest males for
reproduction. While that put Mate Choice as an adaptively explained idea, it failed to
demonstrate the emergence of costly ornamentation and complex courtship behavior.
In the light of Natural Selection, researchers failed to see how did they contribute to
survival. Wallace purposed multiple ideas to explain such features. Still, explaining
the origin of ornamentation and costly behavior would become the main challenge for
Wallace’s good sense theory.

2.1.3 The Interplay of Sexual Selection with Natural Selection
For Darwin, evolution can be seen as the interplay between two major forces, Natural
Selection and Sexual Selection [59]. The first impacts species by favoring adaptations
to the environment that improve survivability. The second affects each gender in rela-
tion to the other in order to maximize their reproductive advantages. On an individual
level, failing according to Natural Selection would mean low survivability, while the
outcome of failing in Sexual Selection would mean few or no offspring. On a genetic
level, either results on less chances for individual genes to replicate themselves into
future generations, thus both Natural Selection and Sexual Selection have an influence
on a population level through its genetic pool, leading to changes over time.

Wallace’s ideas put Sexual Selection on a much weaker role and the majority of
evolutionary power was for Natural Selection. At most, the first was a process of the
second, adapted for the purpose of selecting the fittest mating partners. Maximization
of survival and reproduction abilities would evolve hand in hand, with adaptation to the
environment as a common goal. On an individual level, low survivability and few or
no offspring were both the result of low quality by Natural Selection standards. Genes
associated with higher quality individuals should consequently have a higher chance
of replicating onto future generations both by their relative advantage in survival, and
by the reinforcement provided by Sexual Selection, ending up shaping the population
through its genetic pool. This contribution of Sexual Selection for the benefit of Natural
Selection was attractive to most researchers and their views on species-level evolution.
Although they saw the gaps in the good sense theory, it was still regarded as a better fit
than Darwin’s good taste ideas, specially since they had their own unexplained flaws.

In Darwin’s good taste theory, having Sexual Selection reinforcing Natural selec-
tion by adapting features in the same direction is certainly a possible outcome of the
interplay between them, being up to the researchers to investigate if they are the result
of Natural Selection, both forces, or mostly Sexual Selection. Such scenarios, some
of which have been addressed before, were seen as feasible by researchers [12, 54] as
the result of Darwin’s propositions. For instance, the development of body size and
weaponry as a result of male competition, or certain colors in birds [58], were seen as
possible due to their utilitarian aspect. However, researchers were skeptical on how the
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idea generalized to non-utilitarian characteristics, which Darwin had primarily aimed
to explain. Following his ideas, Sexual Selection opposes Natural Selection many times
which raised questions on how could such scenarios have emerged in nature. This con-
flict was what first attracted Darwin to explore the topic of Mate Choice and Sexual
Selection, but it was also what brought up skepticism from other prominent figures.

Darwin’s ideas may have been ahead of his time, as mathematical and scientific
tools were not yet available that could help support them. Computers and simulations
that could be used as analogy were also yet to be. We know now that choice is not nec-
essarily dependent on consciousness nor is it a characteristic exclusive to humans but
it would take time to reach such knowledge. With the beginning of the 20th century,
Mendel’s work [300] on genetics was blooming, getting the attention of the research
community. This was extremely important to corroborate Darwin and Wallace’s ideas
on Natural Selection, in particular heredity and adaptability, while also bringing new
ideas on mutability. Nonetheless, it deviated attention from other topics. Sexual Selec-
tion was mostly left unstudied as it was, with Wallace’s ideas having perhaps the upper
hand in the works that would come next [12, 54]. The discussion was barely kept alive.

2.1.4 Filling the Gaps
By the late 1880s discussion on Sexual Selection was left at a deadlock. On the one
hand, Darwin could explain the emergence of conspicuous traits and behavior as the
result of taste, but could not clarify the adaptive value of female Mate Choice. On
the other hand, Wallace promoted his ideas on adaptive female choice but struggled to
justify the emergence of ornamentation or costly behavior. In the mean time, despite
having put the discussion away from the research community’s mind, the genetic world
was having an indirect impact on the understanding of Sexual Selection. Researchers
were starting to slowly shift their view of evolution from a species level into a view that
better accommodated intra-species competition, an individual and genetic level. Such
changes would prove to be fruitful for Sexual Selection research and to the work of
filling the gaps left by Darwin and Wallace on their respective theories.

Contributions to the Good Sense Theory

The new perspectives on competition allowed for new understandings on the inner dy-
namics of species. Male-male competition for instance gained a new sense and differ-
ent authors suggested that such an arms race could to some point explain the emergence
of ornamentation. If, for the purpose of competition with their peers, males focused
on evolving certain features rather than diversifying their strategies, the process could
result in over-specialization effects, or in other words, the exaggeration of certain fea-
tures [61, 64]. Arguably, this could explain large body size, certain coloration and
callings, etc. simply as attempts by each male to be better than others. In a way, this
idea could be seen as an extension of pre-existing ideas of male competition [59] for
the evolution of weaponry, but accounting for conspicuous traits as well.

Mate Choice based ideas also started floating around the community. Wallace did
not assume any relation between conspicuous traits and quality in an individual (they
were side effects), however, if one would make such an assumption, then for instance
body size could be seen as a marker for robustness or energy, bright colors could be
seen as markers for male vigor, and so on. The underlying idea was that fitter individ-
uals would be more likely to successfully magnify such features, and so selection for
those features could be useful as they would be honest indicators of gene quality. For
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clarity, selection for those features would not happen because they matter but simply
because they were markers for quality. Still, that would put markers evolving under
the pressure of females attempting to select the best males and males trying to best be
accepted by females [54]. This idea differs from the aforementioned example where
colorblind females would still be able to select the best males, putting them now at a
disadvantage as they would struggle to differentiate between better and worst markers.

Marker utility for ornamentation and other features raised multiple questions. The
idea was founded on the certainty that markers would act as honest indicators of quality,
but if males engaged in the process of over exaggerating their ornaments to seem more
worthy, then they would end up acting as dishonest advertisement. In order for females
to be able to select for quality, they would need to be able to distinguish between
honest and dishonest mating candidates. This would lead to an arms race where both
males and females try harder to outwit each other. In a way, this scenario goes against
Wallace’s view of good for the species evolution, but on an individual level, females
are still trying their best to select mating candidates of higher quality, thus safeguarding
the sensible value of Mate Choice.

These ideas alone were sufficient to revitalize Wallace’s ideas by providing the
means to explain exuberance and therefore fill the gap in the good sense theory. Others
would also contribute. Zahavi may have made the boldest contribution [322] by sug-
gesting that extreme ornamentation could handicap the survivability of individuals, and
advocating that the impact would make them honest advertisement of genetic quality.
Wallace and Zahavi had opposite views regarding the importance of ornamentation and
display costs. The first was a strong advocate that females would select mating partners
independently of the cost of their conspicuous traits while the second suggested that
females would choose rich ornamentation precisely because of their high cost.

Zahavi’s handicap model introduced the idea that beings exhibiting risky displays
such as heavy tails, bright colors, or loud callings would have to compensate such bur-
dens through high survival features. Females would be able to explore the increase in
competition in males, brought by the cost of maintaining such traits, and promote the
behavior by understanding that males that succeed in survival while handicapped likely
hold high genetic quality and are therefore sensible choices for mating. Such advances
on Wallace’s school of though pushed researchers into thoroughly questioning details
more and more. One of the subjects that was perhaps most challenging was the ob-
servable fact that despite having females sensibly choosing for the same goal, heritable
genetic differences were maintained in male populations. Arguably, such differences
should diminish more and more under the pressure of favoring high quality males.

The question was of interest as a general topic in Evolutionary Theory but was
addressed on this specific subject by Hamilton and Zuk [123]. They suggested an arms
race between organisms and their parasites to be at the bottom of it. As they emphasize,
parasites and their hosts are continuously trying to overcome each other, either by
adapting resistance to parasites or trying to beat such resistances. Knowing that males
with parasites would be less healthy and consequently be less capable of appearing
vigorous or maintaining exuberant displays, female choice would be most sensible to
push males into advertising their health. Also, the dynamic nature of the host-parasite
environment would mean that the best males or the best genes at some point, may not
be the best a few generations later (due to adapting parasites). Therefore, there would
not only be an advantage in adapting Mate Choice into favoring apparently healthy
partners but also, and at the same time, there would be a relative advantage for males
in producing extreme traits in order to distance themselves from unhealthy ones. Such
forces could possibly explain the emergence of ornamentation and handicaps, as their
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costs would be most burdening for unhealthy males [123].
Zahavi’s handicap model [322] and Hamilton and Zuk’s model of host-parasites

[123] have been shown to be mathematically and biologically stable, and so the modern
ideas that came to build up on Wallace’s good sense theory brought his legacy into a
new level of discussion. By abiding by the rules set out by Wallace, one might say that
researchers could see a whole picture now, without gaps, explaining both the value of
sensible Mate Choice and the role of conspicuous traits. It could perhaps be said that
some studies brought good sense closer to Darwin’s ideas, by promoting ornamentation
as adapting to female Mate Choice. One should not forget though that choice is in this
case utilitarian and that the main contributions were explaining how utility can shape
traits into such extremes that they seem less than sensible, while still being.

Contributions to the Good Taste Theory

Ronald Fisher, a mathematician that influenced various fields of study, contributed
heavily to tackle the challenging questions that surrounded Darwin’s view on Sexual
Selection: i) are there selective advantages in Mate Choice; ii) what are the selective
forces behind female Mate Choice; iii) can physical traits in males adapt to female
preference. Such questions were not straightforward and as aforementioned, their re-
liance on female taste had a negative impact on the community’s opinions. Still, Fisher
came up with an elegant answer [97, 98], which not only explained the emergence of
Mate Choice but did so while abiding by the main pillars of Darwin’s ideals of com-
petitiveness, without resorting on any specially tailored process or explanation.

He theorized that the tastes of individuals were much like any other characteristic
under the influence of selective pressure and thus subject to evolutionary change. Ac-
cordingly, through descent with modification alone, a mating preference for a specific
characteristic may find itself in relative majority in a population. At that point, males
that best fit the majority preference will be in relative advantage when compared to
others, and thus be selected more often. While this idea was easy to grasp, what was
entirely ground breaking was the suggestion that independently of the survival value of
the majority preferred trait, females would have an advantage in following the prefer-
ence in fashion in the population.

In more detail, reproduction enforces that both preferences and the preferred traits
are passed on to the resulting offspring, independently of their gender and as contribu-
tions coming from both parents, allowing for females to express the preferences and
for males to express the traits in their respective phenotypes. Therefore, following the
largest trend in the population and choosing a fashionable mate should be helpful in
producing attractive male offspring, while choosing otherwise, may produce offspring
that are less likely to be chosen for reproduction in the next generation. This phenom-
ena has been often called the Attractive Sons theory [54] and shows how choosing an
attractive mate can be adaptive for females, even if selecting with no regards for fit-
ness. Simply put, while good taste may result in the selection of traits that reduce the
chances for survival in a lineage, it may also increase the chances of reproduction by
introducing males that are attractive to a larger female base, boosting the potential for
a positive growth rate in future generations.

These ideas were on their own a great contribution from Fisher, as they could the-
oretically explain the emergence of Mate Choice. However, they still could not fully
explain the emergence of complex ornamentation. Fisher showed however that the in-
heritance of mating preferences alone could produce such phenomena. He discussed
that females with a preference for a given feature will breed offspring that inherit both,
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so that the coming generation will experience a genetic connection between the two.
As the preference is more and more expressed, the more the corresponding trait is ge-
netically linked to that preference. Such a linkage is what feeds each growing fashion,
with females with a certain preference becoming increasingly more likely to select
for the corresponding feature and as a side effect, selecting for their taste as well (the
preference genes that are linked to their respective traits) [54, 12].

So what would start as the Attractive Sons effect, with a small but relative advan-
tage for expressing and selecting a given trait, would result in a runaway process of
positive feedback, where both preferences and corresponding features reinforce each
other in a loop with increasing momentum. Arguably, even if the process started with
favoring an utilitarian feature, it would feed itself to the point where there was no longer
utility involved but the preference would be maintained by its own selective pressure.
Eventually, Natural Selection would take its toll due to the excessive cost of a feature
being higher than the reproductive gain provided. Still, such a model of hand-in-hand
evolution of preferences and traits could, according to Fisher, explain the emergence of
exaggerated ornamentation and behavior.

Fisher’s theoretical model implied a number of ideas that are worth mentioning:
i) it saw mate choice as an innate, instinctive and inheritable process, in no way de-
pendent on human consciousness; ii) while observations were most easily found on
species with highly developed perception systems (capable of more intricate ornamen-
tation and complex courtship behaviors), simpler species could as easily maintain their
own processes; iii) it hinted that both mental and physical traits should be regarded as
the product of evolutionary change through descent with modification; iv) the feedback
loop between mating tastes and corresponding features meant that evolution was sub-
ject to a dynamic, self-adaptive environment; v) such an environment was extremely
challenging to analyze using the tools available at the time; vi) the interplay between
Natural Selection and Sexual Selection as suggested by Darwin would have great sig-
nificance.

Despite the effort, Fisher’s work was mostly neglected at his time. While he ad-
dressed some of the most relevant questions brought up regarding Darwin’s proposi-
tions, it was only with a second edition of his 1930’s work [98, 99] in 1985 that interest
in the topic re-emerged. At this point, science was more open minded to the subject
of good taste and female preferences, and Fisher’s Attractive Sons theory implied a
form of good sense in choosing mates by taste, by eyeing its reproductive benefits for
females, an idea that could only be popularized by having an individual-level view
of evolution. Researchers were also better prepared technologically. Mathematical
models have since been proposed to test Fisher’s ideas [157, 168, 211], with highlight
to Kirkpatrick’s two allele model which was one of the earliest models to demon-
strate Fisherian runaway Sexual Selection as a stable mechanism [157]. Over time, the
Fisher-Darwin model of good taste has gained its space in Sexual Selection theory by
showing how good taste and good sense are after all not such opposing ideas.

2.2 Modern Overview
Modern science has recognized the different impacts of Natural and Sexual Selection
but has also realized that it is extremely difficult to have them studied as separate forces
in nature. On the one hand the players in each force have been rightfully recognized:
external environment, physical and biological agents for Natural Selection; sexual mat-
ing candidates and sexual rivals for Sexual Selection [109]. On the other hand, despite
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Figure 2.1: Relations between Sexual and Natural Selection in regards to the emer-
gence and adaptation of traits.(adapted [12]).

depending on such well separated agents, the strict differentiation envisioned by Dar-
win and the deep dependence implied by Wallace continues to be disputed on occasion.
The issue is far from the battle between schools of thought on the turn of the 19th cen-
tury and has in fact matured to a point where researchers have found relevance in both.
Nowadays ideas from both school of thought have shown to have a place in evolution-
ary theory, leading to a sort of balance as is shown by Andersson’s review [12].

2.2.1 Sexual Selection in Neo-Darwinism
Along his review on the subject [12], Andersson promotes Sexual Selection as one
among many forces involved in Natural Selection. As both Natural Selection and Sex-
ual Selection are more and more scrutinized, they’ve come to accommodate different
selective processes, and so its natural that Sexual Selection is now seen as one among
many. This view, as stated above, is not a reinstatement of Wallace’s ideas as by no
means does Sexual Selection have to be a positive reinforcement for traits that make
good sense for Natural Selection. It should be rather viewed as a compromise, where
Sexual Selection plays a part, just not with a role as prominent as Darwin suggested.
As Brown argued [33], when compared to Artificial Selection, the fitting place of Sex-
ual Selection is as a subset of Natural Selection. However, some authors such as Endler
[257] still see usefulness in Darwin’s distinction due to differences in impact between
mating competition and that for survival. This document will keep referring to mating
competition forces as Sexual Selection and other remaining forces as Natural Selection.
This choice is not a matter of disagreement but rather due to usefulness and clarity.

As opposing ideas started merging, the challenges moved from explaining the emer-
gence of mating preferences or ornaments into identifying which traits are promoted by
Natural or Sexual Selection, as well as exploring the mechanisms within Sexual Selec-
tion. These challenges have been demanding since the beginning of studies on sexual
behaviors and, due to its dynamics, continue to be. Figure 2.1 shows the relation be-
tween Sexual and Natural Selection in the emergence and development of features.
As shown, features may belong to one of three groups: i) N is the group of features
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Table 2.1: Processes of Sexual Selection and their impact (adapted [12])
Process Impact

Scrambles Enhanced sensory and motion means; early and fast lo-
cation of mates

Endurance Rivalry Longer reproductive endurance during mating season

Contests Traits that improve success in fights; alternative tactics
to avoid stronger opponents

Mate Choice Ornamentation and behaviour that attract mating part-
ners; offering of resources supporting of breeding

Sperm Competition Strategies that prevent rivals from accessing the mate;
ability to dislodge competing sperm

that have evolved by means of Natural Selection alone, due to their contributions to
survival; ii) S includes features that evolve by means of Sexual Selection alone due to
contributions for mating competition; iii) S+N groups features that are under the influ-
ence of both Natural and Sexual Selection by contributing positively to the struggle of
surviving and that of mating.

Separating observed features by group can be a tricky process, as the role of traits
under consideration need to be carefully investigated. A naive approach could put all
features related with reproduction under the umbrella of Sexual Selection, however
some of such features, for instance traits that improve fertility or pregnancy have no
purpose in mating competition [12]. Therefore, while improving reproductive suc-
cess, they have probably evolved by Natural rather than Sexual Selection. Sensory
or other characteristics that help males find and reach females are also disputable and
difficult to know for sure which force contributed to their emergence. Additionally
and as previously discussed, many features such as body size, weaponry, and calling
can contribute for Sexual Selection while having roles in fending off predators, social
behaviors, among others [12, 54, 59]. In some cases, their usefulness is difficult to at-
tribute to a group of selective influence. For instance, certain frogs use bright colors to
signal predators that they are poisonous unfit prey, which raises the possibility of such
signals being the result of Natural Selection alone. Such hypothesis can raise com-
plex discussions, specially since colorful ornamentation is often the result of Sexual
Selection [12].

These examples bring forth the difficult analysis involved in putting the emergence
of a feature on its rightful group of selective forces. While some characteristics found
in nature are doubtlessly related to Natural Selection and others are doubtlessly related
to Sexual Selection, the borders between each individual group N or S, and group N+S
(from Figure 2.1) can sometimes be fuzzy. As a bottom line, it could be said that traits
in the latter group are those where Sexual Selection points in the same direction as
Natural Selection, while features in the S group result from Sexual Selection pointing
to its opposite direction. However, population and environment dynamics can over time
contribute to this fuzziness. Moreover, as discussed previously, features can emerge
as utilitarian for survival and through a Fisherian process be exaggerated to a point
where they are no longer selected for their survival role but rather for their beauty. The
opposite, where features that emerge to meet female preference end up finding a role
in social behavior or survival is also possible. These processes mean that the evolution
of features can be linked to multiple selective forces over time.

In their endeavor to further explore the connections between sexual behavior and
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evolved characteristics, researchers have focused on the mechanisms of competition
that comprise Sexual Selection. Darwin had initially proposed a combination of two
mechanisms: i) male competition; ii) female mate choice [59]. This simpler model
has since then adapted to accommodate more evidence and knowledge, resulting on
a view that better partitions Sexual Selection into a set of mechanisms: i) scrambles;
ii) endurance; iii) contests; iv) mate choice; v) mate competition. Andersson [12]
addresses each process and an adapted summary of each one can be found in Table 2.1,
which for the purpose of this document will suffice. It’s important to address that these
mechanisms are in themselves not exclusive, in fact some (or all of them) may occur
together, such as scramble preceding contest, followed by Mate Choice. This makes
their relative importance and their links to different features difficult to analyze.

In summary, Sexual Selection is now a process whose place in Evolutionary Theory
is well established, having evolved from two competing theories into a model that has
profited from both Darwin’s and Wallace’s lines of thought. Its relation with Natural
Selection is now more than ever well understood, as one among other selective forces,
although one that may not always point in the same direction as the remaining. Its
selective agents have been described as mating candidates and sexual rivals, which are
also its target, thus making population and social dynamics particularly relevant. Due
to these characteristics, identifying without a doubt which traits are the result of Sexual
Selection, Natural Selection, or both has been a particularly challenging quest. During
their effort to catalog such features, researchers have contributed to a more specific
description of the inner processes of Sexual Selection, as well as to the conditions
under which traits fall under their influence.

2.2.2 Conditions for Sexual Selection
In a very straightforward way, the only conditions for Sexual Selection to happen are
genetic variation in the gender under pressure (most often the males) and means for re-
production. In nature, such variation can manifest itself in different forms of competi-
tion, which vary depending on the particularities of each species. Polygamous species,
where males have access to several females, often present the most extreme behaviors
and ornamentation because higher freedom makes competition more crucial for males:
an opportunity for stronger males and a demand for weaker ones. Such a system em-
phasizes differences between males so that on extreme scenarios the most attractive
male can gain access to all females or the least attractive male can fail to access even
one. The struggle is so that it leads to a stronger investment in Sexual Selection related
features, an effect that is boosted by a greater scrutiny from females who, when facing
wide availability from males, impose more demanding preferences [59, 98, 233].

Polygamous systems are very common but Sexual Selection is present in monoga-
mous species as well. While males are usually ready to mate sooner than females, the
most sexually fit females are also usually ready to mate sooner than others, which in
this case is relevant. For males, this suggests advantages in mating sooner, in order to
hopefully pair with the female who is more likely to produce fit offspring. For females,
mating sooner gives access to a wider range of candidates to select from and so a better
chance of selecting an attractive male. It should be kept in mind that in monogamous
species, unless there’s cheating, when males are selected they cease to be available,
which fuels their struggle to be chosen sooner rather than later by a healthy, fecund
female. Such a competition is rather intense specially if the species has an unbalanced
sex ratio, which can lead to mating candidates to be left out [158, 213, 233]. Overall,
competition for mating can be very intensive early in the season but also very beneficial
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due to the pairing of the best females with the most competitive males.
Across most species, females and males have almost opposing strategies regarding

mating. Females are most often very selective in regards of who they pair with while
males invest in mating with as many females as possible. The reason behind female
choosiness is most likely related to their high parental investment, not only during
pregnancy but also during the first stage of the offspring’s life [12, 241, 317]. Such an
investment keeps females from being able to reproduce again, possibly for a long time,
and for that reason they benefit from being specially exploitative of the male gene pool.
Males on the other hand have a lower certainty of paternity than females, and so take
less benefits from the female approach [6, 181], investing instead in trying to explore as
much as possible the female genetic pool for a chance of producing many, fit, attractive
offspring. It should be noted that exploitation and exploration are here referring to
the genetic level, whereas on an individual level both genders are exploitative, in the
sense that by mating, both males and females will for a period be unavailable to other
individuals (similarly to many other natural resources) [12].

Gender dynamics are interesting and abundant in nature. However, they are not an
absolute necessity for Sexual Selection, given that means for recombination prevail.
Theoretically, a single gender population where individuals are capable of mating with
each other and produce offspring will develop means of competition for mating and
trigger selective forces as a result. The premise is the same as always, that the relative
advantage for each individual to mix its own genes in beneficial ways will be enough
for the emergence of sexual selective strategies. Andersson suggests for instance that
it would not be surprising to find such strategies in bacteria [12]. Regarding the mech-
anisms presented in Table 2.1, intra-sexual [138] processes such as scrambles, contests
and endurance rivalry are still viable as their benefits on a unisex species remain un-
changed, as does for sperm competition, which is a post-copulation mechanism.

Mate Choice, as inter-sexual selection [138], may at first sight lose some of it ad-
vantages specially if the cost of reproduction in females is disregarded (other strategies
may arguably be more beneficial such as mating as many times as possible despite the
quality of mates). However, Fisher-Darwin theory shows that producing attractive off-
spring is beneficial nonetheless. Given that individuals have at least some sensory and
are capable of choice, tastes are bound to emerge and runaway processes are therefore
feasible, as are other behaviors related to Mate Choice. In fact, individuals would ac-
cumulate both the choosiness of females, and the struggle for being fit and attractive,
as is characteristic of males. Overall, it could be said that, despite the possible absence
of reproductive costs, on a genetic level, producing poorly attractive or less than fit
offspring will come with a cost for the genes involved, over a few generations.

2.2.3 Principles of Adaptive Mate Choice
As partly discussed in previous sections, the dynamics between Natural and Sexual
Selection makes it sometimes challenging to establish the source for the emergence
of particular traits. Moreover, as previously demonstrated, Natural Sciences research
has found that Sexual Selection can emerge through a number of processes (see Ta-
ble 2.1). It’s also been discussed that some of these processes represent intra-sexual
competition, such is the case for scrambles, endurance rivalry, or contests. Despite the
occasional exception, it’s been observed in nature a relation between such means of
Sexual Selection and Natural Selection.

The contributions of each selective force for the evolution of features are however
almost never well balanced. For instance, in some species agility can have an important
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role in contests, but it’s likely to be much more under the influence of Natural Selection
than Sexual Selection because of its extreme importance in escaping predators. Antlers
on the other hand can have a role in fighting off predators on occasion but their role
is much more likely to be of higher importance as weaponry in male competition. In
such species, antlers are likely to be more under the influence of Sexual Selection than
Natural Selection.

It’s important to know that the degree of influence that each force can have on each
specific trait is not only unique but also dynamic over time. Most intra-sexual pro-
cesses are likely to fall under the N+S group in Figure 2.1 and thus represent instances
where both Natural and Sexual Selection point in the same direction, although with
different strengths and means for each trait. Notwithstanding the continuous discus-
sion about the connections between Natural and Sexual selection, in these cases it’s not
difficult to come up with a stable system, where both selection forces have a somewhat
harmonious role. Inter-sexual selection by means of Mate Choice is however a more
challenging topic. Conspicuous traits are very often linked to female choice over male
features and behavior, a process that unlike others is often seen as counterproductive
for survival efforts (group S in Figure 2.1). Nonetheless, mating preferences for pos-
sibly detrimental characteristics have been shown to prevail in stable systems. Sexual
Selection through Mate Choice has represented an unique opportunity to explain such
traits and how are they able to exist stably over time.

Adaptive Conspicuous Traits

Historically, selection for conspicuous traits has always been a complex and fractur-
ing subject in evolution research. As discussed above, from the beginning there have
been competing ideas, starting with Darwin’s good taste versus Wallace’s good sense.
Researchers have supported either one, by contributing to filling the gaps in both ide-
ologies. While science has come a long way in many points of Sexual Selection the-
ory, the selective forces responsible for the emergence of conspicuous characteristics
across species are still actively debated. Apart from Mate Choice mechanisms, other
processes have also been brought forward, usually leaning on good sense ideas to ex-
plain the emergence of ornamentation or display by alternative means. Some have been
successfully refuted [109, 257], but the remaining ones are plausible and mutually com-
patible, making them not only difficult to refute but also making it more complex to
determine their exact influence on ornament evolution [12].

Andersson [12] covers some of the theories that have been discussed by the com-
munity. It has been argued for instance that sexual dimorphism can be accounted for
by ecological differences, with sex differences emerging as a response to intra-species
competition for resources [59, 170, 261]. Such dimorphism can arguably emerge by
imperfect genetic correlations between sexes [262], but even if they arise due to Sexual
Selection, Natural Selection may maintain and enlarge its presence due to differences
in selection pressures between sexes [50, 51]. For instance if each sex has a differ-
ent exposure to the habitat then differences in diet or even coloration can be enforced
by Natural Selection alone. While such a theory can account for some dimorphism,
it can hardly explain costly ornamentation, signaling or risky behavior as would be
expected. An alternative theory proposed by Baker and Parker [17] suggested empha-
sized coloration as a signal for predators, warning that they are preying a poisonous or
weaponized individual [280]. By their account, the advantage brought by better avoid-
ing predators would fuel the emergence of such signals. Presently, it’s considered that
such a mechanism may contribute for traits in specific species, specially if strong col-
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oration is present independently of their social or sexual role [17]. Still, the idea fails to
generalize and does not seem to be a global explanation for emergence of conspicuous
traits.

Male competition has also been suggested as a possible source for the emergence
of conspicuous traits. As some authors argue [43, 109, 243, 311, 313, 314], evolution
of these features can be explained by their potential role as badges of vigor or presence,
not by being attractive to females but rather by being intimidating to competing males.
Simply put, some accounts of bright color or other displays may arguably emerge not
by direct Sexual Selection but by making tough competitors recognizable to weaker
ones. Through such signals, stronger individuals should be able to passively fend off
weaker competitors without having to engage in active contests [17]. The relative
advantage pushes males into investing more and more in such displays of strength.
It follows that these characteristics may emerge from social competition for resources
or territory rather than specifically for access to mates.

Unlike adaptation to the environment, such means of male competition would be
enforced by the male population on itself, much like females would impose their pre-
ferred choice on the male population. Instead of being ruled by mating preferences,
such a competition would be ruled by the recognition of strength among males and the
consequent withdrawal of weaker males in benefit of apparently stronger ones. The
parallelisms between ideas regarding the emergence of ornamentation through Male
Competition and Mate Choice are immense. Zahavi [321], among others, has suggested
that alike Mate Choice, the emergence of ornamentation through indicators of strength
can take an unpredictable direction and through successive improvements [314, 323]
lead to divergence in coloration or displays across species as well as produce extreme
ornamentation [243, 314]. The view is consistent with a good sense perspective, where
males should avoid those that show greater ornamentation handicaps, as their show of
extravagance while being capable of escaping predators indicates that they would be
fierce rivals in direct contests [17].

In summary, dimorphism as a result of different ecological opportunities between
genders, as well as the emergence of conspicuous traits as warning signals of unprof-
itable preys for predators may account for a few instances of extravagance in males
but fail to generalize and therefore aren’t regarded as valuable explanations for the
widespread emergence of costly and risky displays. Male Competition however has
obtained respectable opinions from the science community, specially as mathemat-
ical models have suggested that it can lead to instability in traits [12, 221]. It has
been argued that such a strategy based on indicators is sustainable as a stable system
[219, 220, 267]. The similarity of some ideas with those of Mate Choice are great but
should not come as a surprise. In a sense, female Mate Choice is not a contrast of
Male Competition, as males are competing with each other even when females choose
their mates. On the contrary, the notion that Male Competition much like female Mate
Choice may directly or indirectly promote conspicuous or non-conspicuous traits, even
if by different means and with different strength, brings up the inter-linkage between
mechanisms of Sexual Selection.

Female Choice of Male Traits

As of nowadays, different plausible mechanisms have been proposed for the emergence
of conspicuous traits. While some have been addressed already, female Mate Choice
stands as the most well established one in the scientific community. Historically, not
only has Mate Choice been the most prominent focus of Darwin’s and Wallace’s dis-
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cussion on Sexual Selection, many contributions have been accumulated on female
choosiness and the resulting pressure that favors conspicuous traits. In a modern view,
that same relevance is maintained. Despite possible influence by other means of selec-
tion in the emergence of conspicuous traits, Mate Choice is still regarded as the main
motor for the emergence of such features [12, 54], and remains the theory that best ac-
commodates the most amount of evidence, either directly or indirectly. It’s impact can
come in different levels of complexity. For instance and in possibly the most simplistic
scenario, it could be said that male traits may evolve simply because they make males
more easily detectable by females. Therefore, loud callings, bright colors or other sig-
nals may be reinforced because individuals are noticed more often [217, 220, 221, 312].

While such adaptations can bring evolutionary advantages to the best performing
males, it represents a method of improving passive attraction [316]. Much like the
emergence of conspicuous traits by male competition described above, this process is
a way of getting ahead of other males, possibly through a relatively better response
to sensory bias in females, rather than by meeting their specific mating preferences.
Therefore, much like the discussed mechanisms, it doesn’t represent an evolutionary
explanation for mating preferences. As a bundle, all these different particularities
are part of Sexual Selection theory, in the sense that they favor ornaments that best
stimulate their targets [12]. However, its debatable that they represent Mate Choice.
Nonetheless, some authors nowadays define mating preferences and choice in a broadly
way, as patterns that make females more likely to mate with some mating candidate
more often than with others [118, 157, 232]. Even if that makes sense on an individual
or population level, on a genetic level it probably makes better sense to distinguish
which genes are acting in active choice. For that reason, this document will refer to
Mate Choice as the active and direct process where females evaluate and compare sev-
eral males and have a preference for the most attractive ones.

It’s been described in previous sections, among other topics, the chronologies of
research on Mate Choice, specifically focused on the evolutionary value of the process,
and the consequent benefits in evolving both female choice and male traits. Inde-
pendently of the school of thought, the procedure of selection abides by a common
backbone (with possible variations): i) each female is presented with displays of or-
namentation and courtship behavior by multiple males; ii) the male that catches the
female’s eye will be allowed access to reproduction while others will move on. Differ-
ent tactics by females have been observed, for instance the evaluation of multiple male
courtships in parallel and the selection of the most attractive in relation to rivals. Al-
ternatively, sequential comparison is also possible, making it so that competing males
never actually meet each other (interesting as there is less direct intra-sexual compe-
tition and a higher role of inter-sexual selection). Other strategies such as threshold
acceptance of males are also viable, where males are evaluated due to their absolute
rather than relative value, although relative advantage may also result from the benefit
of accessing females earlier rather than later [1].

Preferences and the way that females choose their mates, specifically how female
preferences evolve to favor conspicuous traits, remains a controversial topic in Sexual
Selection [189, 251, 265, 318]. Figure 2.2 shows how Cronin [54] has organized the
bulk of nowadays female Mate Choice theory. At the root, there’s the historical dis-
tinction of ideas, Fisher-Darwin’s good taste on one side and Wallace’s good sense on
the other. Good taste has a certain purity to it, due to its reliance on a simple scheme.
It explains the evolutionary advantage of mating preferences through the Attractive
Sons hypothesis, which shows how the evolution of choosiness can result from a self-
reinforcement loop which enforces that both preferences and preferred traits are passed
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Figure 2.2: Strategies of Female Mate Choice (adapted [54])

onto the next populations. By choosing fashionable males, females can bring adaptive
advantage to their offspring and so to their own mating preferences as well (see Sec-
tion 2.1). Due to the factor that Fisher-Darwin’s mating preferences select features for
beauty’s sake, it may promote those that reduce the viability of males over increases in
attractiveness. For that reason it may some times be referred to as maladaptive [54].

The Wallacean side of the tree is somewhat more complicated. It further distin-
guishes between two types of selection: selection for good genes; selection for good
resources. Choosing males sensibly for good genes is the bottom line of Wallace’s
ideology, and includes preferences for males that show greater energy, agility, etc. or
even the most extreme handicaps. Females can also select for best apparent resistance
to parasites or other honest signals of good genes. Preferences evolve for ornaments
associated with males that can contribute for the breeding of viable, fit children (see
Section 2.1). Within selection for good resources, females are selecting not only for
males themselves but also for the quality of resources that they can provide (such as
nests, food, protection etc.). In some instances, the quality of the resources provided
is dependent on each male’s ability and can be seen therefore as an extension of their
phenotype, an external ornament that results from their genetic quality. In such cases,
female preference for resources can emerge as a mean to sensibly profit from the males
that will pass on the best abilities to offspring. There can therefore be similarities be-
tween choosing males for their physical ornaments or displays, and for their ability to
provide resources, as they both are indicators of genetic quality. Together, they are
sometimes called adaptive, in contrast with maladaptive Fisher-Darwin choosiness.

There is however, an aspect of selection for good resources that is distinctive from
other means. More than an ornament, many resources provided by males have a direct
impact on females rather than on their offspring quality, either benefiting their pro-
tection, food reserves, or exposure to the habitat, among others. Sometimes, females
will end up selecting for resources alone, with no particular interest in deducing which
male may actually have better genes. The differences in resource quality in such cases
may be purely environmental. Still, by contributing to the survival ability of females
and maybe even to that of offspring during their childhood, preferences for relevant re-
sources can be enforced. Due to their significance to female survival, sexual productiv-
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ity or overall fitness, selection for resources may sometime be regarded as direct selec-
tion. By contrast, adaptive or maladaptive selection is sometimes regarded as indirect
selection because appropriate decisions will impact offspring fitness and consequently
bring evolutionary advantage indirectly to mating preferences in future generations.
While direct selection of preferences has been discussed by the research community
[251], indirect selection has represented an overwhelming slice of the whole effort put
into studying Mate Choice, from Darwin’s and Wallace’s time to current mathematical
and computational models.

2.2.4 Some Aspects of Mating Preferences
The widespread recognition of the Fisher-Darwin model as a plausible explanation for
Mate Choice was not immediate. The historical difficulties that it faced, and which
for a long time made Wallace’s school of though more attractive and seemingly more
plausible, have been discussed in previous sections. However, among the many con-
tributions that would result from the Mendelian genetic interpretation of evolutionary
theory [194, 300], emerging views on inheritance would contribute to a new view of
evolution. It was claimed that selection as a whole would be best investigated from the
perspective of genes, instead of regarding individuals or even species as a block unit
in evolution. Among many other research topics, this would have a great impact on
Sexual Selection related research, firstly by re-boosting the interest in Fisher-Darwin
good taste, but also by contributing to other relevant topics on the inner workings of
mating preferences and their impact on a genetic level.

Gene centered evolution

The original Darwinian perspective on evolution explores it as happening at the level
of individual organisms. Briefly, competition for a given resource will result in higher
survival and reproductive rates to the relatively best adapted individuals in a popula-
tion, consequently allowing their features to pass on more often to future generations.
Much like any other study, this individual level view was most certainly bound by the
available tools, capability of observation, and knowledge at the time. Researchers were
also able to observe macro-evolution, at the level of species or above. However it would
be only through the works of Mendel and his successors that evolution would start to
be understood on a smaller scale [194, 300]. Through the study of DNA, inheritance,
and gene-expression, particularly how phenotypes are the expression of an individual’s
genetic code and how only that code is passed on through reproduction, a synthesized
theory of evolution was proposed where the gene takes the main role as the unit of
evolution [62, 63, 120, 122, 227, 317].

Gene centered evolution, or the Selfish Gene theory as was popularized by Richard
Dawkins [63], regards a gene not as being any possible piece of a DNA sequence but
rather as every instance of a particular variation of DNA bit present in nature (also
referred to as allele) [63, 116]. The theory puts competition as truthfully happening
on the gene level. Alleles, while not facing selection directly, express themselves by
influencing phenotypic characteristics which will present variation, given that there is
genetic variation as well. By acting on phenotypic features, selective forces act in-
directly on corresponding genes, allowing the most beneficial ones an advantage that
translates into a wider representation in future generations. Dawkins used the follow-
ing analogy [63]: consider a pool of rowers, some with characteristic A and some with
characteristic B who are randomly assigned to boats; the boats then race in heats and
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there’s a speed advantage to the boats that have most rowers with the same characteris-
tic; between heats, the winners are returned to the rowers pool for the next round. Over
time, a predominantly and then completely taken over pool would show rowers with
the same characteristic.

This analogy tells us several important things about gene centered evolution. Firstly,
it shows that while individuals (boats) are competing with each other, their performance
at each generation (heat) is the expression of the collection of genes that has been at-
tributed to them (rowers). Secondly, genes when combined may cooperate for a mutual
goal but individually are competing with each other, so that over time, either genes
with characteristic A or genes with characteristic B will take over the gene pool and
the other will be depleted. Thirdly, at no point during the analogy is mentioned that
either characteristic A or characteristic B is directly beneficial for the carrying individ-
ual. Genes compete for their increased frequency in the gene pool alone, not for the
benefit of an individual or species. Finally, the time frame of selection for genes is
different than that for individuals which are themselves temporary expressions while
genes are much more persistent through time.

More formally, genes organize themselves in genotypes who express into pheno-
typic features on the individuals that encode them. Such individuals are ephemeral
from a genetic point of view, while genes persist for much longer periods of time
through the lineage and inheritance allowed by many co-existing instances [63]. By
grouping in genotypes, they may cooperate for the global goal of spreading in future
generations but, overall, genes selfishly compete for their own personal propagation.
The effects of genes are dependent on multiple variables, some of which environmental
but also related to gender. For instance, probably most of the genes that affect ornamen-
tation, behavior or mating preferences are encoded in ordinary chromosomes and are
present in both genders, with their expression being activated or inhibited by hormones
[12]. Their phenotypic effect can be beneficial, detrimental or neutral, with their role
being determined both by survival and reproductive success [54]. Overall, their evolu-
tionary success is determined by the cumulative effect on their multiple instances, not
by any one individual particularly.

Such a view of evolution has ideas that align with those of Fisher-Darwin’s Mate
Choice by good taste. As discussed previously, probably the most prevalent criticism
for the idea was the possibility of having detrimental mating preferences (from an indi-
vidual level perspective). Indeed, when comparing with Wallace’s good sense, Fishe-
rian preferences are definitely selfish. Fisher’s self-reinforcement loop suggests prefer-
ences selecting for themselves by correlating increasingly with preferred traits, even at
the risk of decreasing survival abilities. Wallace’s theory by no means loses credibility
with the emergence of gene centered evolution, but the intuitive bias that made it more
attractive for researchers loses its appeal. In fact, in light of gene level competition,
both good sense and good taste are equally viable as they both represent utility-based
means of Mate Choice, ones that can explicitly favor the propagation of genes for their
own selfish gains.

Preexisting preferences

Facing an already developed conspicuous trait and trying to figure out how the corre-
sponding mating preference emerged is usually a defying task. Researchers have to
consider multiple alternatives: i) that the feature was favored by a Fisherian runaway
process, for beauty’s sake; ii) that it serves an utilitarian purpose and has been favored
by good sense; iii) if it’s a resource, that it is being selected for the ability of the male or
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alternatively for its direct profit; iv) that it emerged as a side effect of other adaptations
(non-related to Sexual Selection). If this was not in itself a challenge, by consequence
of the above discussion on gene inheritance, mating preferences may or may not be
expressed in the phenotype and otherwise remain undetected by researchers, unless
triggered.

The simple explanation for such preferences to remain undetected or hidden is that
there may not be variability in males for them to have a role in their evaluation and
differentiation. In Layman’s terms, no male is currently showing the ornaments that
would otherwise be favored by a given preference. Alternatively, all males may be
showing the same ornamentation, as if they were exact copies. In both scenarios, lack
of variability renders selection for that trait as useless [178]. How preferences for a
non-existing trait can emerge requires some explanation. Following Fisher-Darwin’s
ideas, taste can emerge through simple variation. Additionally, preferences may at
some point be relevant and spread in a population and later through speciation, genetic
drift, or other causes, be rendered useless. Moreover, they can be influenced by sen-
sory bias or purely occur arbitrarily or as secondary effects [59]. In such cases while
not being fueled directly by self-reinforcement, they may still be maintained and even
propagate through genetic linkage with favored genes (meaning that they are very often
found together) [52]. While at that point they bring no evolutionary advantage, advan-
tageous genes have no choice but to promote them as companions. So, in contrast with
what would be intuitive, and like any other gene, preferences may remain dormant and
propagate stealthily.

There are many documented observations of preferences that preexist traits in dif-
ferent genus, and that under the right conditions can be activated. Burley for instance
developed an experiment with zebra finches where stripes of randomly selected col-
ors were artificially added to their natural black and white feather patterns. Mating
preferences were found in both males and females for particular colors, and because
such colors had never existed in this finch species, the preferences preexist the traits.
Arguably, and given the opportunity for males to naturally produce such colors, a run-
away process could be in place. How these preferences have come to emerge and be
maintained in zebras finches is highly debatable, possibly through a secondary effect
or a sensory bias [37, 38, 39, 40, 41, 54]. Similarly, Platy fish males whose fins have
been added fake extensions, similar to those of the Swordtail fish, have strongly in-
creased their reproductive success with females even though the species in nature lacks
that feature [24]. Arguably this could be a reemergence of an old preference, as other
species from the same genus such as the Swordtail are known to use that feature in se-
lection. Alternatively it could mean that a preference for long tail features preexists the
self-reinforcing process that lead to that feature in the Swordtail fish. Other examples
are known [54, 119].

By definition, preexisting traits are non-utilitarian, as they have no role in selection
or differentiation of favorable mating partners. At a first glance, they are much more
deeply connected with Fisher-Darwin theory than with Wallace’s selection for good
sense. In a way, preexisting preferences can be a possible origin for Fisherian prefer-
ences, and by variation of male traits trigger a runaway process, however it can’t be
said that this is a sure assumption nor can a broader study be avoided [229]. While the
good sense of preexisting preferences is less intuitive, the resilience and perseverance
of genes in competition can keep them actively replicating even when they don’t con-
tribute directly to increase their chances of replication, making so that once sensible
choices can be kept dormant in future generations. Finally, there can be many multiple
preexisting preferences in a genetic pool at the same time [85, 229], being up for its
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dynamics to determine which may eventually be relevant for Mate Choice and which
may not.

Preferences multicomponency

So far, conspicuous traits have been addresses independently of their frequency in each
individual subject. Theoretically, we could define a base case as one where female
preference emerges for a particular trait alone, with either Fisher-Darwin’s or Wal-
lace’s models applying. Depending on the utility of the developed trait, its purpose
and means for emergence may be determined, the correlation between preferences and
traits could be tracked, as could the propagation of relevant genes on a population.
Possibly, the whole process would be clear, regarding the influence of both natural and
sexual selective forces. There are however many examples of species in nature where
males combine multiple ornaments such as coloration, particularly lengthy tails, call-
ing and so on, sometimes also investing in courtship behavior to best show off their
full display of conspicuous traits. Such scenarios move away from the base case and
by consequence, when preferences for multiple traits are considered, the complexity of
such a study increases dramatically.

Rowe studied animal signaling and reception, showing how complex the issue can
be, as it effects multiple processes, from sensory stimulation, to how they are psycho-
logically processed and responded to [113]. From her analysis, it is shown that multiple
stimuli augments sensory reaction in receiving animals, but more importantly, it dis-
cusses how the combination of multiple sensory can contribute to relevant Mate Choice
related points of interest: i) combining multiple stimuli can improve detection and
recognition thus making a contribution to more ambitious scrambles or passive compe-
tition among males; ii) it can also contribute to a more thorough discrimination between
candidate males, allowing for a multidimensional analysis of male characteristics; iii)
finally, it can improve memorability of signals. Overall, the resulting interactions be-
tween signals shows that multicomponency is more than the sum of each component
[113]. Not only are multiple stimuli apparently capable of producing responses more
effectively, they seem to be much more complex than a linear combination of their
parts, possibly assuming different weights or more complex interactions.

Multicomponency may have great potential, specially in species with more capa-
ble sensory systems or that show higher brain capacity. However, how they operate
is regarded as highly dependent on the psychological aspects of the species in ques-
tion, rather than being a simple direct reaction to sensory stimuli (as could maybe be
assumed in a one-component model), or even a direct combination of stimuli. For
that reason, understanding the workings of female choice relying on multicomponent
preferences is an exponentially more demanding task, one that we can not expect to
understand by studying each part independently. The emergence of multicomponency
in preferences is still a highly debatable subject. Rowe suggests that receiver psy-
chology may have created a strong selective pressure for the emergence of displays
involving multiple signals, due probably to it’s increased informative role benefiting
females [113]. Moller and Pomiankowski discuss that multicomponency is predom-
inantly found in polygamous species of birds rather than on monogamous ones, due
to their increased investment in attractive traits. They conclude that most traits can’t
be considered Wallacean indicators of fitness but are rather likely to have evolved by
Fisherian means [204].
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Speciation and hybridization

Sexual Selection can impact species and populations in deep ways through their ge-
netic pools. As discussed previously, male competition and specially Mate Choice can
drive ornamentation and behaviors to extremes, with sensory constraints often acting
as the main limitation and Natural Selection acting as the controlling force, keeping
self-reinforcement and runaway processes from going too far. Such an evolutionary
engine has been capable of shaping species by influencing the reproductive success of
individuals and consequently, gene frequency [59]. More than that, the enforcement of
mating preferences has been shown capable of speciation [12, 54]. In the early days of
evolutionary theory, speciation was thought of solely the product of isolation leading
to different lineages, to the point where interbreeding was no longer possible. One
of the most illustrative example was that described by Darwin regarding the Galapa-
gos archipelago [58], and how from island to island, variations of tortoises and finches
had resorted on different diets, habits, and acquired different sexual preferences. In a
short summary, migration of sub-populations from island to island resulted on founder-
effects and adaptation to local geographic conditions, thus drifting genetically from
their ancestry into what would become new species [58].

Despite environmental pressure being regarded traditionally as the main cause for
speciation, Mate Choice plays a great role. Firstly, isolation and adaptation may lead
to differences in sensory sensitivity, which can influence means for successfully iden-
tifying mating partners. Mating preferences can be influenced by such changes, by
rendering some of them unusable and leading to the favoring of others. More in-
terestingly, Fisherian self-reinforcement can lead to increasing differences in mating
preferences, also reinforcing mate recognition mechanisms to the point of isolation
[157, 168, 169, 230, 288]. It has been observed that in closely related species, not only
are bigger differences more often found in sexual related features [58, 59, 168] but
also that such differences appear to be poorly related to survival adaptation [12]. It has
been suggested that the phenomena is consistent with Fisherian preference runaway
[168]. Genital stimulation and reproductive organs have also been found to differenti-
ate through means of female choice, sometimes into highly complex systems that make
reproduction between otherwise close species unfeasible, thus further promoting their
isolation [81, 82].

Speciation through habitat isolation is also known as allopatric speciation and rep-
resents one end of the spectrum of possible means of speciation. On the other end,
there’s sympatric speciation, where species emerge from existing ones even when their
populations share the same habitat. Studies have suggested different means for Mate
Choice to give rise to speciation in such cases. Changes in the habitat can lead to a
subset of the population to adapt and either through changes in sensory biases or pref-
erences become the subject of speciation. In some cases, mutation can also account for
partial adaption inside a population. For instance a particular population of finches has
reportedly produced individuals whose beaks abide by two ideal sizes, with selection
against those in between promoting a split in the population [137]. Moreover, signal
exuberance and a reinforcement of complex sensories, can also lead females to be spe-
cially selective with their partners, considering as potential mates only a small fraction
of the whole available males. Frogs for instance are known to be particularly sensible,
with most species of frogs having their own particular calling [28]. The sensibility of
the inner ear of the frog to frequencies also seems to relate to the number of species
in a particular lineage [250]. Finally, females may be particularly sensible for mating
with closely related males in order to avoid interbreeding with other species, which has
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been known to be more prone to produce less attractive or less viable offspring.
Species and population dynamics are not limited to speciation alone. Moreover,

speciation is far from being a clean and sure process. It depends deeply on environ-
mental variables, in some instances it can happen very fast while in other occasions the
differentiation between different species can remain fuzzy for many generations. One
may imagine that on a theoretical island model, given that enough isolation is main-
tained, migration can lead to very fast adaption to new habitats and that a very strict
differentiation between species can emerge, both in terms of survival habits and repro-
duction related traits and behavior. Mechanisms for species differentiation, possibly
incompatible reproductive organs, and overall offspring quality will keep those species
from interbreeding. However, in nature such levels of isolation are often not found,
either when allopatric speciation occurs and most specially when moving in the spec-
trum towards sympatric speciation. Often related populations have contact with each
other and along the process, as long as reproduction is viable, hybridization is a possi-
bility. From an individual or population point of view, there would be more gain in the
exploitation of each population, in hopes of producing viable or attractive offspring.
However, from a genetic point of view, propagation is key and therefore exploration
is as valid a strategy as any. Sometimes hybridization can lead to merging of species,
to one of them being absorbed, but new speciation may also occur [34, 73, 167, 171].
Mating preferences have a major role in allowing for such processes. After all, despite
the role of the reproductive organs, they are what either forbids or allows for such dy-
namics between species, that otherwise would, by force of Natural Selection alone, be
simply adapting to their habitat.



Chapter 3

Modeling Mate Choice

The role of Sexual Selection, and particularly Mate Choice, was for a long time dimin-
ished for several reasons: i) the community wasn’t ready to accept its challenging ideas;
ii) Wallace while gaining the attention of the community put it as a particularity of Nat-
ural Selection; iii) both Darwin’s but also Wallace’s ideas showed important gaps; iv)
there were not enough documented examples nor were there ways and tools to verify
the validity of the ideas. That would change, as has been described in the previous
chapter, with the aid of the Selfish Gene theory and Fisher’s studies which contributed
heavily to reboot interest in the topic. Contributions have been made since then based
on increasing amounts of data related to many species. Despite such progress, Mate
Choice lacked mathematical proof that the discussed ideas could prevail as a stable sys-
tem. The problem was particularly relevant for Fisher-Darwin’s ideology, due to the
potential standoff between Natural and Sexual Selection. Even with good taste being
interestingly sensible on a genetic level, it was questioned if Mate Choice by good taste
could withstand being challenged by Natural Selection.

With the rise of the computer world, simulations within artificial systems mim-
icking the works of nature came as helpful tools for Natural Sciences. They repre-
sented a way to model genetics and test artificial life, in a relatively easy, inexpensive,
time-efficient, and most importantly controlled way. Many of the evolutionary ideas
in Neo-Darwininan science passed the test of simulation and consequently saw their
importance reinforced and mathematically validated. New research fields would arise
from this era of innovation, such as Evolutionary Computation which nowadays en-
compasses several genetic models but has its seeds in the 1950s. Evolutionary Pro-
gramming was introduced by L. Fogel in the 1960s [101], Genetic Algorithms were
proposed by J. Holland in the 1970s [131] and Evolutionary Strategies were developed
by Rechenberg and Schewefel during the 1960s and the 1970s [239, 258]. Genetic Pro-
gramming was first idealized during the 1960s and established itself during the 1990s
[165]. All would follow the popular ideas at the time on genetics, inheritance and
selection by survival value.

Despite their role in the understanding of the biological world, genetic models have
also found other purposes in science and engineering. Evolutionary Algorithms for
instance have since their early days been developed as optimization tools, with grow-
ing applications in many research fields and industries, each with its own challenges
and needs. Customization of Evolutionary Algorithms has been a regular practice to
meet such needs, with researchers often finding it useful to incorporate mathematical
or otherwise engineering mechanisms to improve the application of the algorithms on
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particular problems. Sometimes, it has also been found to be beneficial to incorporate
biological knowledge. While it can’t be expected that all the variables and operators in
today’s understanding of nature to be relevant or even viable in genetic models, some
pieces may be surprisingly fit. The transferring of knowledge between multiple sci-
ences such as Evolutionary Biology, Evolutionary Anthropology [45], or Evolutionary
Psychology [42], and genetic models, has been a relevant part of what the scientific
community deals with. Regarding Mate Choice, genetic models have played a contin-
uous role to a better understanding of Fisher-Darwin’s and Wallace’s schools of thought
[12]. Perhaps more interestingly is the idea that Mate Choice can introduce new poten-
tial in Evolutionary Algorithms to deal with certain optimization tasks.

3.1 Fisherian and Wallacean Models
Mathematical and genetic models have made important contributions to the theory of
Sexual Selection. Ideally, such models mimicking population dynamics and biologi-
cal behavior should achieve generality, precision, realism, and simplicity [12, 179], as
scientific means to reproduce controlled experiments on the behavior of natural popula-
tions. Many times, maintaining the compatibility of such characteristics is an impossi-
ble task, so that models have to be devised to work under assumptions that establish the
conditions under which they are run. Likewise, these assumptions influence how mod-
els are studied, analyzed, and how predictions are made [9, 12]. Common assumptions
have included the male-female distribution in initial populations, number of offspring
in each reproduction step, the initial genetic distribution, the lack of mating cost, or
the disregard of external factors such as mutation of mating preferences. Still, by for-
mulating those assumptions with clarity, comparisons between models can be made,
hypothesis formulation can derive and overall guidance of empirical work benefits.

While state of the art models for Sexual Selection can be quite complex, initial
models were surprisingly simple. Still, they successfully provided mathematical evi-
dence for many of the ideas that were at the base of Sexual Selection theory. O’Donald
was the pioneer of Mate Choice modeling and what would end up being called the
few-locus models (locus refers to the position of genes in a chromosome) [211, 212].
O’Donald relied on a polygenic, diploid, two-locus approach, however simpler mod-
els have been shown to work as well, and while their results have been extended to
polygenic and diploid approaches, neither are necessary requirements for showing the
effects of Mate Choice. The models that came after that of O’Donald, mostly follow
a common backbone which has been summarized in Algorithm 1, with appropriate
assumptions and customization applying when relevant. Analysis also relied on the
following ideas present in the algorithm: i) gene allele frequencies are calculated from
genotypes and compared to those of previous generations; ii) over many generations,
variations are analyzed and conclusions are driven regarding allele frequency evolution
and its effects.

The following subsections cover specifics on models for Fisher-Darwin Sexual Se-
lection as well as Wallace’s fitness indicator mechanisms. For the two-locus model
(Fisherian), Kirkpatrick’s haploid approach [157] as well as Lande’s polygenic model
[168, 169, 170] will be briefly discussed, while for the three-locus model (Wallacean)
three indicator models will be addressed and compared, based on the simulations by
Maynard Smith [192, 263, 265] and other authors [146, 228, 231, 232]. Overall, con-
clusions are in-line with previously discussed theory and while some of the most rele-
vant ideas will be further addressed, full analytic results and discussion are unnecessary
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1 assume initial allele frequencies;
2 assume initial population size and male-female ratio;
3 for n generations do
4 calculate mating frequencies in both sexes based on mating preferences

and other aspects;
5 calculate genotypes frequencies among offspring in new generation;
6 apply natural selection;
7 calculate genotypes frequencies among adults in new generation;
8 calculate allele frequencies from genotypes frequencies;
9 end

10 allele frequencies are assessed throughout the generations;
Algorithm 1: The few locus model

to be presented and can be consulted elsewhere [12]. It should nonetheless be noted
that few-locus models are more tractable than polygenic models, which usually rely on
quantitative genetics and may not produce elegant analytic results or solutions. Still, it
can be concluded that more than ever, Fisher-Darwin’s and Wallace’s ideas can be seen
as closely related, relying on very similar models and mechanisms that differentiate
on a few assumptions. Fisherian models need less assumptions and are therefore more
attractive, however Wallacean models are themselves rendered as very close in terms
of genetic workings.

3.1.1 The Two Locus Model
Kirkpatrick’s model [157] represented individuals as two-locus chromosomes, one for
preferences (P) and one for traits (T ). In the model there are two types of males,
those encoding T1 don’t invest energy on producing an ornament and so have a survival
ability of 1, while those encoding T2 express a conspicuous trait but have their survival
reduced by an established selection coefficient s, 1�s. Accordingly, there are two types
of females, those encoding P1 select mating partners randomly, and those with the P2
allele show a preference for T2 males. For a given preference strength a2, P2 females
mate more often with T2 males than with T1 males. It should be highlighted that, as
described, males carrying a conspicuous trait in this model have a cost on survivability,
but having a preference for that trait has no direct cost for females, either on their ability
to survive or on their certainty to reproduce. There is, therefore, no direct selection of
mating preferences.

As would be theoretically expected, as the model runs following Algorithm 1, a
linkage disequilibrium emerges between the two loci, with the P2 allele becoming as-
sociated with T2 allele through Fisherian self-reinforcement. The simple fact that P2
females tend to mate with T2 males more often allows the allele to spread, not as a
result of a direct selection but rather through maintaining a linkage to alleles that are
favored by Sexual Selection. While T2 has a negative impact on survivability, their
favoring in selection allows the pairing of both preference and conspicuous traits, in
a straight resemblance of the Fisher-Darwin Attractive Sons theory. By assessing the
frequency of T2 and P2 alleles, Kirkpatrick showed that the system is stable along an
equilibrium line (Figure 3.1), along which gene frequencies remain fixed [12, 157].

A few thing are worth notice in regards of the equilibrium line, which is repre-
sented in Figure 3.1: given values for a2 and s, for any frequency of P2 alleles, there



34 3.1. FISHERIAN AND WALLACEAN MODELS

Figure 3.1: Line of equilibria in Kirkpatrick’s model (adapted [12])

is a corresponding frequency of T2; on a first phase (left side of Figure 3.1), if there is
only a rare preference for a trait, its frequency is likely to remain null; however, if for
some reason such as genetic drift or mutation, the preference becomes more common,
the male trait may spread, bringing the process to phase two (right side of Figure 3.1);
if the mating preference is strong enough to overcome s, then the frequency of the male
trait can increase; the equilibrium point will remain along the line and may vary due to
changes in gene frequencies; if changes are small, the equilibrium point tends to return
to the line (usually not to the previous place); large changes may result in boundary
equilibria where the ornament frequency is either lost or fixed in the population. Over-
all, Kirkpatrick’s equilibria line represents a stable model in the sense that deviations
will always lead to the population evolving back to it.

Further research by Seger [259] tested a similar model, although with a tournament
like selection process, where each female chooses a mating partner from among a lek,
or subset of the male population, rather than having potential access to all males. Sim-
ilarly, P1 females choose a male from the lek randomly while P2 females have a higher
chance of mating with a T2 male, if one happens to be present in the lek. Such changes
make it so that when T1 males are common, most tournaments may not include T2
males and the other way around. Depending on the male frequencies, P2 females may
have a chance of choosing according to their preference or not, which results on male
fitness being frequency dependent. The result of such a model is that displacements
away from the equilibrium line are larger and more in accordance with a true runaway
process, causing possible disequilibrium and rapid evolutionary periods in the modeled
population.

Kirkpatrick [157] and Seger’s [259] models, while achieving mathematical proof
for Mate Choice to be possible as a stable system, were simplistic in the sense that
survivability, preferences and conspicuous traits were each the direct result of two loci.
In nature, traits are regarded to be the result of polygenes, with multiple genes having
an additive influence on traits. Lande’s model [168] is as close an approximation to
few-locus models as one could expect, with the difference that preferences and con-
spicuous traits depend on many autosomal genes. Most of the assumptions remain the
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Figure 3.2: Line of equilibria in Lande’s model (adapted [12])

same, females behave similarly, and males can have access to multiple females and
provide only genes. Male survival is maximum when the ornament is of optimum size
and decreases through a Gaussian function whose width represents the selection co-
efficient. Lande tested three approaches for P2 female preferences: i) with absolute
preferences, each female favors a given size for male ornament, with preference de-
creasing through a Gaussian function (similar to Natural Selection but with per female
center and width); ii) with relative preferences, females have a preference for those
ornaments who are relatively larger than average; iii) finally, each female preference
increases exponentially with the size of the male trait.

Results were similar with either approach, with male ornaments being pushed into
optimum size through Natural Selection and at the same time to a larger-than-optimum
size through mating preferences. On the one hand, Natural Selection applied before
reproduction reduces the number of males with larger costly ornaments [12]. On the
other hand, Mate Choice then disfavors those who are less risky with ornament size.
The result is a shift in male trait sizes. If the system has not reached equilibrium,
both preferences and ornaments evolve and develop a covariance by means of self-
reinforcement. The process reaches an equilibrium when the survival cost of an or-
nament is large enough to offset the reproductive advantages. When in equilibrium,
Sexual Selection and Natural Selection balance each other, variation is reduced due to
the removal of extreme individuals until uniformity is found. Mutation can nonetheless
restore variation [168].

Lande also expanded on Kirkpatrick and Seger’s conclusions regarding the equilib-
ria line. While Lande reached similar conclusions as the previous studies, he showed
that the line can represent stable (left side of Figure 3.2) or unstable (right side of
Figure 3.2) models depending on its slope and the slope along which ornaments and
preferences evolve. The system is unstable if females are critical on their choice of
males to the point that Natural Selection becomes relatively weak. This allows for
runaway processes away from the line of equilibria, either pointing toward larger or
smaller ornaments, as previously discussed by Fisher [98]. Natural Selection or other-
wise selection for extreme and rare males establish when such processes end. Overall,
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the two-locus model and later a polygenic alternative have shown that Fisher-Darwin’s
good taste can work under very few assumptions and can produce stable systems, al-
though susceptible to runaway processes.

3.1.2 The Three Locus Model
Individuals in this few locus model are represented as chromosomes encoding the fol-
lowing three locus: the first locus can either encode the presence of an ornament (A)
or its absence (a); the second locus can either represent high (B) or low (b) viabil-
ity; the third locus is for female preference, either preferring ornamented males (C) or
choosing a partner randomly (c). Similarly to the previously discussed models, males
express ornaments and females express mating preferences, while each gender carries
the genes for both. The assumptions also remain mostly the same, however no solu-
tions analytically comparable to the Kirkpatrick’s equilibrium line are achieved. Still,
regular analysis through gene frequency remain helpful in showing that Wallace’s ideas
of ornamentation as indicator mechanisms can prevail as stable systems under certain
assumptions.

Three variants of indicators have been tested and discussed by Maynard Smith
[263, 264, 266] and other authors [8, 10, 11, 156, 228, 231, 232, 289]: i) with pure
epistatic indicators, all males with allele A will express an ornament; ii) with condition-
dependent indicators, males will express an ornament only if they encode allele A si-
multaneously with the allele for high viability B; iii) with revealing indicators, all males
with allele A express an ornament, but while males with allele B keep it in prime shape,
those with allele b keep it in poor shape. In each of the three approaches, females have
no direct cost from mating, however, the allele for general viability makes B females
fitter. The higher the selection coefficient, the bigger the fitness differences from b fe-
males. Regarding males, each approach has its own mean of establishing their viability.
Overall, there is a viability cost for males developing ornaments (all with allele A in
approaches i and iii and those with both allele A and B for approach ii). The cost of
producing an ornament coupled with general viability determines the male’s survival
ability.

There are a few particularities that arise from such model differences. For instance,
in model i all males develop the trait causing those with poor survivability to risk it
even further. They do so in order to join other males in the struggle to access all
available females, both carrying c or C preferences, as to hopefully benefit from it.
Model ii allows only males with high viability to express an ornament, in case they
carry both alleles simultaneously, saving weaker males from accumulating costs but
also making them less attractive to C females. It also makes ornaments honest displays
of virility, in contrast with model i where ornaments may be dishonest. Model iii also
allows for the distinction between male quality through the condition of the displayed
ornament, but adds a cost to all males carrying allele A, independently of their viability.
In all models, the self-reinforcement of ornaments and preferences for such traits is
expected and achieved. If B emerges for instance by mean of mutation, A benefits from
coupling with such individuals, either because the cost of maintaining the ornament
is less impacting on their survival ability or because they are the only ones who have
enough energy to display it. The result over some generations is that ornaments are
more likely found among B carrying males, making C carrying females more likely to
mate with high viability males.

The global result is the coupling of preferences and high viability, C and B, through
the linkage of C and A and the association of A with B. There is a linkage disequilib-
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rium between these alleles, through the association with high viability. As a side effect,
a, b and c gradually become linked as well. The process is in many ways similar with
a Fisherian process, however the assumptions imposed in the model make it so that a
sensible association emerges, in accordance with Wallacean ideas. That similarity was
emphasized by Pomiankowski [228, 231, 232] when comparing the three models, who
also brought up that indicator models by themselves cannot account for the propagation
of ornaments and preferences, requiring a threshold frequency of preferences for orna-
mentation for a self-reinforcement process to kick in. While that would be very much
in line with Fisherian models, no line of equilibria was found to exist. On the contrary,
indicator mechanisms may increase the likelihood of fixation of preferences and traits
and thus may contribute heavily to the emergence of deleterious traits [127, 289].

Analysis has also shown that pure epistatic indicators, on top of seeming less realis-
tic, have a weaker impact as a driving assumption for the emergence of self-reinforcing
selection of mating preferences and respective ornaments [11, 228, 231, 232]. Fur-
thermore, results have shown to generalize to diploid models [289]. Polygenic models
have also been developed, such as the one by Iwasa et al. [146], whose assumptions are
mostly similar to Lande’s Fisherian model [168], with general viability, preferences,
and ornaments depending on various polygenes. In such models, further assumptions
include small fitness variations over phenotypic variations, and a cost for cryptic female
choice. More importantly, in order for Iwasa’s model [146] to work, it must be assumed
that deleterious mutations produce viability loss, and that ornament size increases with
male general viability. This final assumption aligns with condition-dependent and re-
vealing indicator models, partly explaining why they seem to work more often than
models where ornaments are not dependent on male condition [146].

3.1.3 Discussion
Both the schools of thought of Fisher-Darwin and Wallace have one way or another
been demonstrated to be viable through mathematical models, and so have had their
ideas strengthened. In a way, Fisher-Darwin’s models come out on top due to their
acclaimed simplicity, either in few-genes and polygenic models. Ideas such as the
self-reinforcement of preferences and traits through their increased coupling, or run-
away processes, have also had positive arguments in their favor. While maintaining
the required assumptions to a reasonable low, analytic and quantitative analysis have
contributed to the establishment of Fisherian good taste behavior as a viable scenario.
While Wallacean good sense requires more assumptions both in few-genes and poly-
genic models, results are also enthusiastic, even arguably providing better means for
the rapid propagation of conspicuous traits, on specific scenarios.

Such models have shown similar results with diploid and haploid representations,
and identical behaviors are achievable not only with few-genes models but also with
polygenic models, even if requiring a few more assumptions. Although the discussed
experiments rely on populations with two genders, both encode the same locus, ex-
pressing preferences or traits accordingly. As argued, effects are likely to extend to
unisex populations, where individuals may contribute either through a male or a fe-
male role. Also, it may be expected for results to extend to monogamous populations,
even though it’s likely that the spreading of relevant genes takes a slower pace and
reaches less extremes. The studied models also trace only one trait, and so preference
multicomponency and the corresponding expression of multiple ornaments is not ad-
dressed. The models show, however, that ornament adaptation may change direction
due to mutation, drift or other factors followed by new momentum. Given the means to
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express multiple ornaments, evolutionary chances for new preferences and ornaments
to propagate may happen while preference for others recede. Finally, the discussed
models determine their assumptions based on promoting either Fisherian or Wallacean
preferences. Given broader assumptions, both may exist concurrently.

Despite the great value and knowledge provided by the modeling of Mate Choice
in genetic models, and the differences between them, what could be regarded as most
striking is the great similarity between Fisher-Darwin and Wallacean models. On a
close look, the processes behind the emergence of ornaments for good taste or as indi-
cator mechanisms are mostly the same, relying on self-reinforcement through what is
popularly known as the Fisherian feedback loop, even to the point of producing run-
away processes. Simply put, what most influences the ornaments on their purpose is
determined by a few assumptions on how those ornaments express themselves, and
how they impact viability. Such models have therefore contributed to the building of
bridges between both ideologies, bringing them closer together on common ground.

3.2 Selection through Mate Choice in Evolutionary Al-
gorithms

Research in Evolutionary Algorithms has boomed over the past few decades. Inde-
pendently of the reasons that have contributed to this boom, Evolutionary Algorithms
are nowadays regarded has a very successful family of metaheuristics. The family has
since the early days come to accommodate multiple algorithms, relying on a set of op-
erators and strategies to find better solutions to many optimization problems and tasks.
Of course, as metaheuristics, Evolutionary Algorithms don’t aim at finding an optimal
solution (although they may), but rather at finding a good enough solution, given lim-
ited computational resources. Moreover, they may require only broad expertise on the
problem being tackled, making them well tailored for a great number of general prob-
lems, even those where humans lack complete knowledge. In return for relatively low
design effort, the algorithm provides a guided search through a solution space without
having to test every possible variation, even possibly acting as a black box.

Unlike genetic models used for the studying of biological behavior, Evolutionary
Algorithms are invariably goal oriented. It may be said that reaching for that goal is the
essence of an Evolutionary Algorithm, with its inner workings, competitions, and dy-
namics contributing to that global task. While being uncharacteristic of the previously
discussed models, such a view has had a great influence on the developments made
to Evolutionary Algorithms from an effectiveness or efficiency perspective. Overall,
many contributions focused on engineering rather than natural processes have been
made during the years. Still, Evolutionary Algorithms remain relatively faithful analo-
gies of Natural Evolution through Natural Selection. It has been discussed however
that Natural Evolution has found it profitable across many species to include other
forms of competition, among which Sexual Selection through Mate Choice. A paral-
lelism becomes obvious for Evolutionary Algorithms by introducing the idea that the
most advantageous way to reach the best solution for a global task may not be to focus
completely on reaching for that goal but rather to balance that effort with methods ca-
pable of producing other dynamics or even ignoring the goal. The introduction of Mate
Choice may be a viable nature-inspired means to do that.

For the purpose of discussing the possible benefits that Mate Choice can bring to
Evolutionary Algorithms, various important knowledge nuggets relating to the mod-
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1 initialize population;
2 evaluate each individual in the population using fitness function f(i);
3 repeat
4 select individuals for reproduction;
5 breed offspring by applying genetic crossover and mutation;
6 evaluate offspring using fitness function f(i);
7 replace old population with new one;
8 until termination condition is met;
9 return individual with best fitness;

Algorithm 2: A generic Evolutionary Algorithm

eling of Mate Choice are going to be covered in the next subsections. Firstly, Evolu-
tionary Algorithms are going to be compared to other Genetic Models, both covering
similarities and discussing differences. Secondly, a template for Mate Choice is going
to be introduced, its deviation from traditional selection operators reviewed and oppor-
tunities examined. Finally, ways to model multidimensional Mate Choice, or rather the
evaluation of mating candidates in more complex ways will be discussed.

3.2.1 Evolutionary Algorithms vs Genetic Models
Algorithm 2 sums up the steps that usually take place when running an Evolutionary
Algorithm, which may sometimes be subject to changes when convenient, by including
new assumptions. For instance, new offspring may merge into the previously existing
population under certain rules, mutation and crossover may have higher or smaller
chances of happening, sometimes even having zero probability, and so on. Indepen-
dently of whichever tailoring, the assumptions needed for an Evolutionary Algorithm
are different than those for other, previously assessed Genetic Models. This is partic-
ularly true regarding allele frequency. While there is added value in keeping track of
allele frequencies throughout evolution on a Genetic Model (or distinct traits in poly-
genic models), the same isn’t so straightforward for Evolutionary Algorithms. There
are multiple reasons for that being so, which are relevant for studying the impact of
Mate Choice and will be covered independently for clarity.

Firstly, Evolutionary Algorithms rely on stochastic initialization. While Genetic
Models have very well defined initial conditions, under which it should be possible to
predict or follow changes in the population in a clear and noise-free way, traditional ini-
tialization in Evolutionary Algorithms bars that option. Coupled with multiple reruns,
stochastic initialization offers broader search opportunities but makes it harder to pre-
dict the evolutionary path of a population based on its initial conditions. If Mate Choice
is implemented on top of that, its self-adaptive and dynamic nature make the problem
of tracking much harder if using the same means. This situation is further reinforced
if few assumptions are made regarding the expression of ornaments and preferences,
in a closer remark to Fisherian rather than Wallacean preferences. In short, given an
unknown distribution of genes relative to viability, preferences or ornaments, it may
be expected for evolution to take any possible direction, on the one hand pushed by
Natural Selection towards a goal, but on the other hand pushed by Mate Choice and
preferences. As previously discussed, Mate Choice is highly dependent on initial con-
ditions. It may be triggered by an initially established preference or genetic drift mid
run. For that reason, it is likely that its behavior won’t remain stable between runs.
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Secondly, Genetic Models are mostly focused on the studying of evolutionary be-
havior, whereas Evolutionary Algorithms ultimately aim at finding a good solution to
an optimization problem. This difference may have strong implications. In both algo-
rithms, gene level competition is undeniable, however when applying an Evolutionary
Algorithm, individuals as whole organisms have a greater significance than simply be-
ing vessels for genes. Of course, independently of the model, gene competition is
directly influenced by the relative quality of each individual, as aggregates of genes,
and the resulting individual level competition. However, in Evolutionary Algorithms
specifically, individuals are evaluated as whole organisms, and there is an expecta-
tion for the population to produce better and better individuals, due to their roles as
candidate solutions. For these reasons, individual and population levels have a higher
significance than on other Genetic Models, where the gene level is arguably the most
relevant. Regarding Mate Choice, such a view may put a weight on preferences or
traits, and their corresponding genes, to contribute positively to their host individuals
more that focusing on their own selfish gain. In a way, when designing mating pref-
erences, this view could influence the introduction of Wallacean assumptions, with the
good of the individuals or of the population in mind.

Thirdly, polygyny and phenotype mapping also add complexity in Evolutionary Al-
gorithms when compared to other Genetic Models. The few-locus models described
previously map genotype to phenotype nearly directly, and thus have the advantage of
warranting the tracking of gene frequencies, which allows for analytic results and ob-
servations such as the line of equilibrium. It has however been discussed that polygenic
models allow for no such discussion. It does not mean that similar behaviors are not
implicit in their workings but, due to their nature, observations and their discussion
need to be done through the tracking of the phenotypic expression of preferences and
traits. How they relate to specific genes remains, nonetheless, difficult to assert. Still,
assumptions in polygenic models allow for the meaning of preferences and traits to
be directly inferred, mostly because each characteristic depends exclusively on their
corresponding genes. In the end, much like in few-gene models, the mapping between
genotype and phenotype is so that a set of genes influences one and only one aspect of
the phenotype in quite a straightforward way. The same can’t be taken for granted when
dealing with Evolutionary Algorithms. Most often, genotype to phenotype mapping is
much more complex, with genes influencing one or more aspects of the phenotype,
and often not encoding viability in a straightforward way. Alternatively, fitness and
conspicuous characteristics may be extracted from the phenotype through evaluation
or other means. In short, the connection between phenotype and genotype in Evolu-
tionary Algorithms may not be as direct as in other Genetic Models. This characteristic
makes traditional analysis strategies difficult to apply.

In summary, Evolutionary Algorithms and other Genetic Models have different am-
bitions and therefore have design, behavior and analysis differences. Regarding design,
representation and phenotype mapping strongly influences how Sexual Selection may
contribute to achieving a well defined goal in Evolutionary Algorithms, in contrast with
a more behavioral-analysis focused approach, characteristic of other Genetic Models.
On the subject of behavior, it should be expected divergence to result from various dif-
ferences, starting with the stochastic nature of Evolutionary Algorithms, but also from
its dynamics from gene to population level and how they link with its goal-oriented na-
ture. Finally, regarding analysis, polygeny and complex representation of preferences
and traits when tackling specific problems, is likely to render unhelpful traditional anal-
ysis means used in other Genetic Models. While this subsection highlights differences
that are very relevant when considering the transfer of knowledge from other Genetic
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Models into Evolutionary Algorithms, it should be kept in mind that plenty of charac-
teristics are maintained. For that reason, exclusive designs or behaviors should not be
expected, but rather different assumptions and an increase of complexity.

3.2.2 The Mate Choice Operator
Throughout the last few decades, there has been a timid but continuous interest in
introducing Sexual Selection ideas into Evolutionary Algorithms, through the design of
tailored selection operators. This investment has materialized in a reasonable collection
of papers and ideas but, for the most, Sexual Selection through Mate Choice can’t be
said to have had a particularly relevant impact. There are a number of potential reasons
accounting for the topic to remain uninteresting for some, or a curiosity for others:
i) selection inspired by Natural Selection has had a long history within Evolutionary
Algorithms, often regarded as a default or first choice, being distributed with many
frameworks; ii) such operators can often work as black boxes, generalizing to many
problems; iii) they rely on minimum assumptions to work properly, such as fitness
variation within a population; iv) on many applications, Natural Selection inspired
operators achieve satisfying results or at least some mean of progress; v) for that reason,
there’s a certain confidence in the usefulness of such operators; vi) for improvements in
particular domains, researchers often focus on specially tailored approaches to tackle
certain tasks or collections of problems.

In addition to the aforementioned reasons, there are a few additional ones that are
directly related with the complex workings of Sexual Selection through Mate Choice:
i) the process is not straightforward to model, as it may depend on more complex
assumptions to represent mating preferences, ornamentation and choice; ii) many of
the aforementioned particularities of Mate Choice, specially its self-adaptive dynamic
nature and its relation with Natural Selection, increase design complexity; iii) as a
result, its behavior can be difficult to assess and analyze, whereas Natural Selection has
had many means of analysis proposed over the years; iv) such increase in complexity
may require more advanced knowledge than a standard approach, possibly keeping less
skillful researchers (such as those with different backgrounds) from coming aboard.

Despite the challenges, there have been advances in the design of Mate Choice op-
erators, fueled by curiosity, their prospective value, or sometimes as a byproduct of
studies with different focus. The following two subsections aim at highlighting opera-
tional differences when designing a Mate Choice operator. First, traditional selection
will be briefly discussed, and then a template for Mate Choice will be presented and
contrasted. At this point, analysis of the Mate Choice operator will be kept on a high
level, using a mostly general template. Still, the impact that design choices can have
on behavior will be introduced as a relevant topic. Chapter 4 will later cover how Mate
Choice operators can and have been customized over its research history.

Traditional Selection

Figure 3.3 demonstrates how traditional selection works. On a high level, individuals
are selected consecutively and independently from an existing population, by means
of a predefined selection operator. Individuals may be selected from zero to many
times, following the principle that fitter ones have higher chances of reproduction, the
same way that they would access resources more easily. On a more particular level,
on most implementations the selection step takes exactly the same actions every time.
In a form of competition that can rely on various rules, such as proportionate selection
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Figure 3.3: Diagram of traditional selection method

probabilities in Roulette Wheel [16] or best-of-N in Tournament Selection [16], tradi-
tional selection determines the reproductive success of each candidate solution based
solely on its fitness at tackling the target problem. Traditional Selection operators are
therefore metaphors of Natural Selection as the sole meaningful selective force, disre-
garding the impact of Sexual Selection in reproductive success and relying on what can
be reduced to a reproduction-of-the-fittest view. In a way, it’s a good analogy of early
Darwinian and Wallacean views of Natural Evolution.

For their relevance in the ongoing study, there are a few characteristics of these
operators that should be brought up. As seen in Figure 3.3 and as previously introduced,
individuals are selected in an independent fashion, and for all purposes are in isolation.
They are not allowed choice of who they mate with and so, unless designed otherwise,
they are paired randomly. Competitive advantage arises through there being a greater
rather than lesser chance that, when selected, individuals are mating with a partner
whose fitness is above average. Such a selective force impacts offspring in a fitness
improving direction. From a gene level perspective, competitive advantage comes with
coupling with genes for good fitness, for a higher chance of being selected. There is of
course a stochastic factor involved, as a means to give less fit individuals a chance of
competing. While this may sometimes result in short bursts of evolution in diverging
directions, the effect can’t be said to be the result of an active force comparable to
Sexual Selection.

Selection through Mate Choice

The introduction of Mate Choice in Evolutionary Algorithms can drastically change the
structure of selection operators. Individuals are no longer isolated nor are they selected
independently, based on an external evaluation metric alone. As seen in Figure 3.4,
individuals are capable of interaction to a certain degree, allowing them to influence
each other’s and their own reproductive success. On a high level, this is accomplished
by introducing female and male roles in selection, in determent of the gender neutrality
characteristic of traditional selection. The assumption of such roles can have multiple
implications, with Female Mate Choice being by far the most relevant one, a true key
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Figure 3.4: Diagram of selection through Mate Choice

player in the selection of partners for reproduction. As a general template, that alone
can allow for the introduction of new selective forces and inner-population dynamics
singular of Sexual Selection theory. On a particular level, at each selection step an
individual is selected for a female role and, given access to a set of male mating candi-
dates, should be able to perceive information on each of them, and choose as a mating
partner the one that best matches its mating preferences.

As previously stated, despite some fragility, there has been some opportunities for
the discussion of interesting and innovative ideas regarding Mate Choice in Evolution-
ary Algorithms. While Figure 3.4 shows a template or backbone for Mate Choice,
multiple design variants can be found in the literature, each following their own inspi-
rations. In the end, designing a Mate Choice operator requires only a few assumptions,
however, those assumptions can have deep impacts on the workings of an Evolutionary
Algorithm. Some may be more important than others but for the purpose of wholeness,
all will be covered briefly for a better understanding of their influence. This will allow
for a better understanding of Chapter 4, where different examples of multiple design
choices and their application on different problems will be reviewed, particularly re-
garding the variety of design choices that can be found when applying Mate Choice
operators in Evolutionary Algorithms.

As a starting point, there’s the matter of selection of females and male candidates,
and the preliminary step of gender determination. In nature, sex determination is most
often achieved through a main sex locus, whose allele will trigger the expression of
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genes related to male or female characteristics [117] (usually chromosomal differences
are present as well). The same method is simple to achieve in Evolutionary Algo-
rithms during reproduction, by inheritance of sex-determination genes. Alternatively,
approaches that bend the process to meet mathematical or engineering goals can be in-
troduced. For instance, it may be assumed that each reproductive step always produces
a male and a female, or two-step sex determination can be assumed. In that case, on a
first step, all offspring are created, and on a second step gender is determined to meet
certain population criteria (ex: fittest half are female and the remaining are male). In
akin approaches, gender is fixed for the active period of each individual or changed at
well established periods. As a side effect, it implies the partitioning of the population
into two distinct groups.

Perhaps more interestingly, individuals may act as simultaneous hermaphrodites
[22]. Taken for granted that this choice requires no additional energy or other costs,
and by placing adequate restrictions to self-fertilization, such a gender system can pro-
duce interesting dynamics. In that scenario, gender is no longer determined at any
point, giving each individual the opportunity to be selected either as a female or as a
male and temporarily act accordingly. From a gene level perspective, it would mean
that the whole gene pool would be available for both selection processes rather than
being partitioned, allowing the expression of each gender as appropriate. For each in-
dividual and for the system as a whole, such an approach imposes no additional effort,
bringing the advantage of relying on less assumptions on how and when to determine
each individual’s gender.

Independently of which individuals are available for selection as females or males,
there’s always the need to establish the means by which they are selected. Once again,
there are distinctive views that can be adopted. For instance, one may assume that all
females are likely to have a chance at reproducing and make it so that every individual
available as a female reproduces once. On the other hand, such an assumption puts
all females at an equal level, whereas, as previously discussed, variance is likely to
give fitter females advantageous positions towards accessing males. For that reason,
traditional approaches may be suitable for allowing stronger females a higher chance
of producing offspring in their lifetime. Male selection can be a bit more complex
though, specially considering male competition and Mate Choice. Similarly to fe-
males, an approach may put all males as available mating candidates for each selected
female. Alternatively, Natural Selection may be applied to make the fittest ones avail-
able more often than others. Curiously, fitness based approaches may also be suitable
to mimic male competition (ex: tournament between males to determine which one has
access to the female). For that purpose, instead of using raw fitness as a comparison
metric, better suited metrics for the purpose may be considered to determine inner-
gender competitive advantages, although that is likely to require new assumptions to
be included.

Carefully reasoning these choices can be extremely important and may result on
different behaviours within Evolutionary Algorithms. Gender determination and the
operators actively selecting for each role will impact inner-population dynamics in var-
ious ways. Even Natural Selection may be in some way rethought, since on top of its
previous role, its interactions with Sexual Selection will be determining. For instance,
the stricter selection of females is, the more cryptic they will be on males, in the sense
that only a few preferences are taken into consideration, possibly favoring a small sub-
set of males. Over time self-reinforcement is likely to spread such preferences into the
whole population. Following the same idea, the number of male mating candidates as
well as the pressure put in selecting each of them (considered both Natural Selection
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and male competition) can influence the ability of less fit but potentially attractive indi-
viduals to contribute to reproduction. In short, balancing selection pressures is sure to
have an important role in designing Mate Choice operators. The task may be challeng-
ing, depending on each problem and goals. If hermaphrodite models are considered,
then all individuals may be under the pressure of all forces during the same genera-
tion, in turns depending on the selection step taking place. That scenario should be
considered when establishing assumptions on the aforementioned balance.

At the point where there’s a selected female and a set of male mating candidates,
many strategies may be applied for the female to select its mating partner from among
available candidates. In order to do so, females shall access bits of information regard-
ing each mating candidate and give preference to those who best meet their preferences.
What information is displayed by males and accessible by females shall be regulated
by the operator’s assumptions. In the end, such assumptions will determine the rules
of Mate Choice. For instance, assumptions may establish that preference is given for a
certain phenotypic characteristic, or for proficiency on a certain tasks. Also, by adopt-
ing a more goal oriented or engineering view, information access may not be solely
phenotypical (such as expected in nature) but females may access information on spe-
cific locus, genotypical digests, genealogical or other potentially useful information.
Similarly to other Genetic Models, preference may emerge through evolution, in any
direction, under the rules set by assumptions, potentially taking Fisherian or Wallacean
roles, depending on their connection with individual fitness. In previous models, there
has usually been a direct viability cost associated with the display or ornamentation.
In Evolutionary Algorithms, at times that cost results indirectly, through the genetic
impact of developing traits for attractiveness rather than for fitness, instead of being
imposed directly through the assumptions regarding their expression.

In summary, designing a Mate Choice operator involves a few critical steps: i) how
to build female and male selection pools; ii) how to select each female from the cor-
responding pool; iii) how to select a set of mating candidates from the available pool;
iv) how to evaluate each male candidate following the active females preferences; v)
how to select the best candidate for reproduction. Altogether, these steps are drastically
different from a traditional fitness-based selection method. Individually, how each step
is setup will impact the workings of the operator, and should therefore be done in ac-
cordance with the design assumptions and needs. Furthermore, the global design can
influence the balance between Natural and Sexual Selection, through their interaction
means. Particularly of relevance are the assumptions on Mate Choice, or how to eval-
uate and choose the most appropriate mating partner, following a female’s preference.
It could be said that those assumptions are the major player in the strategy. As a re-
sult of applying a Mate Choice operator, behavioral changes should be expected: i) the
reproductive success of individuals is determined by both their survival ability and at-
tractiveness; ii) the mating preferences of individuals will determine which candidates
are good matches and are more likely to pass on their genes. The process changes
from being a struggle for producing fit offspring to a competition involving fitness and
attractiveness, where mating preferences have a ruling role.

3.2.3 Complex Attractiveness Evaluation
The few-locus models previously discussed rely on the expression of a single feature
and the corresponding preference. While, for the purpose of studying the ability of
Fisherian and Wallacean processes to persist in stability, such constraints are sufficient
and lead to a strong performance, they make no contribution to what may happen when
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more than one conspicuous trait is present. Species flaunting more than one ornament
are however very common, which suggests evolutionary advantages under certain con-
ditions. Modeling multiple preferences for Mate Choice in Evolutionary Algorithms
can also represent opportunities, specially in scenarios where information can be ac-
cessed regarding multiple aforementioned characteristics on mating candidates. Miller
and Todd [287] have pointed out that the development of appropriate models that can
account for the interactions and processing of multiple components into an overall mate
value is one of the major challenges of Mate Choice related research. Independently
of the scope, how to model preference multicomponency and complexity, or in simpler
terms, how to model multiple dimensions of preferences and how they may be pro-
cessed together, through the impact that they may have on each other and globally in
the process of Mate Choice, should be further discussed.

Multidimensional preferences

Having Kirkpatrick’s model [157] as a base (for being the one involving less assump-
tions), by deduction, an extension to support the evaluation of multiple traits would
simply imply replacing the trait locus with a vector of locus, one for each ornament.
Similarly, a vector of preference locus would be used, each corresponding to an orna-
ment. Females instead of either choosing partners randomly or for an ornament, may
in this case choose for zero, one or for multiple ornaments. They do so according to
their own preferences. Individual evaluation of each trait can be straightforward: if the
female has a preference for a specific trait and if a mating candidate shows that trait,
then the male should be favored in competition with others. All preferences consid-
ered, those males expressing a larger number of preferred traits should have relative
advantages in Mate Choice. How to combine such individual evaluations of traits into
a single mate value for a mating candidate can have deep impacts even if rather simple
approaches are applied. For instance, an AND operator between female preferences
and male trait vectors can produce a vector marking locus where both preference and
ornaments are active. The number of hits can be used as a function for mate value.
Alternatively, a XNOR operation would produce a vector marking locus where both
preferences and ornaments are either active or inactive. In the latter case, there would
be a benefit for males that don’t express irrelevant ornaments. Other functions may be
applied with little effort, for instance weighted functions that may deem the importance
of each trait as unbalanced.

By moving away from binary representations and generalizing, these mating pref-
erences can be seen as a position on the phenotypic space that represents an ideal mat-
ing partner. Independently of the number of dimensions, that position can be encoded
as a set of coordinates, or as a vector. If similarity between this phenotypic position
and mating candidates represents a likelihood of mating, then this measure can extend
as a function defined over the whole phenotypic space, with the chances of repro-
duction being encoded as an additional dimension. In the end, the model uses n+ 1
dimensions to represent attractiveness (as a height) for each particular female. Miller
and Todd have explored a closely related approach [199, 200, 201, 286, 287, 288].
They describe encoding preferences as cone-shaped probability-of-mating functions,
where genes represent key parameters for that function. In their studies, each individ-
ual has its own sexual reference position, which can be determined in different ways:
i) individual-relative preferences put the sexual reference position at the location of the
individual’s own phenotype; ii) parent relative preferences put it at the location of a
parent’s phenotype; iii) population relative preferences put it at the average location
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of all phenotypes in the population; iv) space-relative preferences put it in an absolute
position in the phenotype space [200, 201, 288]. Given a sexual reference position, the
peak of a probability-of-mating function can be determined in one of two ways: with
non-directional preferences, the cone is centered at the sexual reference position [288];
with directional preferences, the cone is displaced a certain distance in a particular
direction [200].

In order to encode this information, in addition to their phenotypic traits, individu-
als may genetically determine which sexual reference position to rely on (may also be
set as a global assumption), and in case directional preferences are used, the direction
is determined by n genes, one for each dimension, and one for distance. Together, those
genes represent a mate preference vector, or displacement vector for the cone shaped
probability-of-mating function. Moreover, an additional gene determines the width of
the cone, or in other words, the radius of the probability-of-mating function which to
some degree loosely models adaptive cryptic female choice. Over generations, both
genetic material relative to an individual’s own traits and its mating preferences are
subject to change, evolving through selection pressure. If the whole population is con-
sidered, mating functions can easily be stacked, showing which regions of the pheno-
typic space are more attractive following Mate Choice preferences [200].

Miller and Todd’s work adds to the discussion on multidimensional preferences
by showing how functions can be encoded through their key parameters. Therefore,
not only can ideal mating partners be encoded through their phenotypic position, thus
supporting non-binary representations, but also strategies can be evolved. Experiments
mostly focused on populations with neutral Natural Selection, meaning that individuals
were only subjected to Mate Choice. There are however a few experiments where the
relation between Natural and Sexual Selection is addressed to some extent. More on
that topic will be covered ahead. It may be said that the initially described binary
approach, while simple in design, supports multiple dimensions of preferences. If
assumptions are mostly maintained, then the behavior is likely to remain closely similar
to that of an unidimensional scenario, although possibly taking place concurrently on
more than one dimension. The latter approach should also follow suit, while at the same
time allowing further generalization towards real-valued representations and providing
additional control on the behavior of the aggreation function that ties multidimensional
preferences together.

On the other hand, preference complexity can’t be said to be achieved by the ap-
proach. Unless preferences have an associated cost that can indirectly influence the
successful perception of certain traits, which would be very unlikely in an Evolution-
ary Algorithm, then the processing of preferences and traits into a mate value can be
seen as a simple aggregate of different stimuli. There is a strict independence in the ex-
pression of preferences and therefore in the interpretation of multiple ornaments. Such
a model opposes the ideas discussed in Section 2.2.4, where it is suggested that pref-
erences multicomponency is more than the sum of each component, and most likely
much more complex than the linear combination of each part.

Gene Interactions in Preferences

The described model, as succinctly discussed above, supports multidimensional prefer-
ences but not preference complexity. In other words, the evaluation of each single trait
is context free or in total absence of preference interactions. Despite its value, there
is more to multi-preference evaluation than linearity [113]. Lerena [178] has explored
the subject and described the issue using, among others, an illustrative example sim-
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ilar to the following: consider a species where males may express tails and crests as
ornaments; with linear preferences, the contribution of each trait to an attractiveness
value is blind to the presence of the other (displaying a crest should be more attractive
than its absence and flaunting a tail should be more valuable than the opposite); with
complex preferences, the context of all traits is relevant for the attractiveness value of
each one (showing a crest may only be valuable if the tail is in good shape, and hold
no value or even be repulsive if a well shaped tail can’t be maintained). From a genetic
perspective, the principle holds: the contribution of an allele to a female’s preferences
may be subject to context through gene interactions (such as epistasis [226]). In Evolu-
tionary Algorithms, gene interactions and the resulting complexity are usually present,
its significance in the representation and expression of mating preferences should come
with no surprise.

There aren’t many studies in the literature that focus on the artificial modeling of
preference complexity, specially if filtered for optimization algorithms. Still, Lerena’s
study includes important contributions to the current discussion, although focusing on
both Natural and Artificial Systems modeled under very specific assumptions: evolu-
tion is open ended (there’s no Natural Selection applied on traits, or costs associated
with preferences); cognitive and evaluation noise may be present in Natural System re-
lated experiments; preference mutation happens on a perception level; other common
assumptions. These are arguably more appropriate for modeling Natural Systems [178]
and have been adjusted in order to provide relevant knowledge in noise-free Artificial
Systems. Restrictions are also made on preferences, with only two types (with differ-
ent dimensionality or different complexity) evolving concurrently. In the end, insight
is given regarding competition between different levels of complexity, while the inter-
actions themselves are less relevant. It is argued that under Natural Selection, specific
relations may be favored [178].

With that being said, Lerena suggests modeling preference complexity using NK-
models [310] which are mathematical models suitable for representing landscapes of
tunable size and ruggedness. The appeal for using NK-preferences is therefore evident.
The system is individual-based, so that each individual consists of the following two
chromosomes: i) a binary vector of size M, determining which traits are expressed as
ornaments; ii) a binary preferences vector of size N (N  M) ruling which traits are
relevant for Mate Choice, and a NK-table establishing the value of each trait vector
in the light of the preference vector. In a way, the preferences vector is alike to a
sensory system or bias, whereas the NK-table determines, for every possible context,
the contribution of each particular trait to a global attractiveness function).

In other words, the preferences vector determines the input to an evaluation system
whose output is described by the NK-table. N will determine the number of dimen-
sions, or components, while K will determine the degree of interaction between such
components (the complexity). K = 0 corresponds to the previously described system
where each component contributes linearly to the overall attractiveness value. By in-
creasing K, the system allows the contribution of each trait to be dependent on a larger
context (other traits). Gender may be determined randomly at birth [176], or a simul-
taneous hermaphrodites model may apply [178]. Initialization is stochastic on all parts
of the representation and recombination takes place by interchanging chromosomes
and not through intra-chromosomal changes. Mutation may affect both preference
and trait vectors but NK-tables are immutable and are passed on through inheritance.
When evaluating a potential mating partner, each locus in the female’s preference vec-
tor matches a trait locus. Females access the target male’s trait-vector, XOR it with
their own preferences vector, thus producing a comparison vector that encodes the



CHAPTER 3. MODELING MATE CHOICE 49

context under which the male is being evaluated. The NK-table is used to determine
the female’s attractiveness for that particular male.

Lerena’s modeling of preferences is particularly interesting for the control that it
gives over dimensions and complexity. The system allows for the modeling of a NK-
landscape whose size and ruggedness can be easily controlled by the the tuning of
two parameters, N and K. As individuals are only subject to Sexual Selection, their
reproductive success and the evolutionary process are influenced mostly by the degree
of interaction between preferences or the ruggedness of the NK-landscape induced by
mating preferences. The assumptions on the system and the NK-landscape make it so
that the NK-tables set the underlying laws of evolution, by specifying the evaluation
function for Mate Choice. It’s relevant to recall that such rules compete for inheritance
through the production of attractive sons, but that their competition in the genetic pool
is limited, as their are not subject to inner recombination. They are large blocks of im-
mutable genetic code. In the end, results in Artificial Systems point to larger preference
dimensionality, and a smaller number of interactions, having a competitive edge.

Evaluation Functions for Mate Choice

Viewing mate choice as a function, independently of its representation (NK-model or
otherwise) can be quite useful and contributing. While in previously discussed ex-
amples Mate Choice is pretty much an instinctive reply to one stimuli or cumulative
stimuli, functions have a number of implications. Firstly, there is a stricter definition
of each stage of the processes of evaluation and choice. When evaluating a particular
male: i) the female’s sensory system assesses certain traits, building an evaluation con-
text; ii) the stimuli coming from each sense is processed on that context through possi-
bly complex preference interactions that combine stimuli; iii) an overall attractiveness
value is computed. Having evaluated multiple males, comparisons can be made and
choice may result from such comparisons, or by using a threshold. Secondly, from an
engineering perspective, there’s a clearer view of Mate Choice as a procedure or op-
erator, implying an input that is processed to produce an output. Thirdly, assumptions
can be made distinctively for each stage rather than globally, which may prove useful,
simpler, and more detailed.

Focusing on sensory systems first, Lerena’s model [178] relies on an individual-
based encoding which distinguishes itself from previous static systems. While static
systems assume that the whole population (or at least females) shares the same sensors,
and that they remain immutable through the evolution process, dynamic systems allow
for a bigger flexibility. Variation among individuals may help account for those with
sensory deficits (blindness etc.), or biasing of some sensors over others. Also, their
continuous adaptation may reflect more complex phenomena such as the discarding of
non-discriminating sensors. At a first analysis, such diversity may seem counterpro-
ductive. Arguably, not making use of as many sensors as possible may represent an
undesirable handicap, however, that may not be so. Variation and adaptation introduce
an important competition among sensor biases, allowing for the selection of relevant
ones, the reduction of context size by discarding non-relevant ones as well as adjusting
to population conditions. From an optimization perspective, self-adaptive individual-
based sensors are sure to be useful for the above reasons and more. Establishing proper
evaluation contexts for Mate Choice can be a demanding task. Individuals should sense
relevant and informative knowledge on candidate partners, which may often be diffi-
cult to determine. Researchers sometimes have to rely on their knowledge and may
find it useful to round up a set of potentially relevant features, leaving it for the evolu-
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tionary process to select through competition which are more contributing or provide
evolutionary advantage.

Processing the stimuli coming from multiple sensors into an attractiveness value is
for sure the core of designing a Mate Choice operator. After all, independently of the
dimensions or what stimuli are being sensed, this step determines the ruling laws of
Mate Choice, or how such stimuli are processed together. On an alternative perspec-
tive, these rules map into a preferences landscape, with interaction complexity playing
a role in determining the ruggedness of that landscape. In Lerena’s model [178], static
NK-tables are used, which for each context record the weight, or contribution, that each
particular ornament has on a global aggregation function. For the purpose of studying
complexity and dimensions, keeping interactions as static weighted functions makes
sense for comparison purposes, however, such assumptions are somewhat limiting.
After all, recombination and mutation are only allowed on sensory systems, while their
evaluation mechanism is copied. The drifting process along the preferences landscaped
is therefore limited, on the one hand benefiting from reshaping in the preferences vec-
tors but on the other hand being bounded to initial conditions of the NK-tables. Of
course, individual-level adaptive NK-tables are possible, either by mapping the tables
to a vector representation or by applying tailored recombination operators. Table sizes
may present a challenge but nonetheless, such an approach may be fruitful, indepen-
dently of the application being a Natural/Artificial System, or an optimization-focused
Evolutionary Algorithm.

However, even if relying on adaptive laws, NK-models impose a few assumptions
worth discussing. For instance, even if weights fall under evolutionary pressure, the
attractiveness value is always the result of an aggregation function. Different mathe-
matical functions may be applied, from very simple to very complex, but in the end
they remain static and limited. Their role is enormous as they regulate explicitly how
preferences are allowed to interact. The impact of choosing an appropriate function is
certainly meaningful. Additionally, contexts are limited to qualitative ornamentation,
or in other words, to traits either being expressed or not. However, tail length, color
brightness among others are quantitative traits, whose expression can grow or shrink or
evolve in any direction to a certain extent. While contexts where ornament expression
is binary may be suitable for studying complexity and dimensions, they impose a strong
limitation. For the purpose of applying Mate Choice to Evolutionary Algorithms, the
two discussed points may hold particular significance. They impose, firstly, that infor-
mation assessed as ornaments is qualitative rather than quantitative and, secondly, that
the use of that information is subject to a predefined process, which may be limiting to
inner-population competition.

The discussion above focused mostly on Lerena’s model [178], however it can be
easily expanded to many models of Mate Choice. Ideally, such limitations should be
kept to a minimum, both for the purpose of modeling Mate Choice as an unbounded
mechanism but also for a more complete search of preferences and phenotypic land-
scapes. Focusing on viewing Mate Choice for Evolutionary Algorithms as a procedure
is helpful for the purpose and can result in important contributions. A Mate Choice
approach where evaluation is coded as a hardwired computation procedure, where pro-
gramming instructions are followed step by step until an output is produced is viable.
That code would determine the underlying laws of Mate Choice, defining what type of
individual to give preference to under certain contexts, provided as input. Arguably,
given that the operations taking place are well defined and deal with multiple data
types, then the qualitative and quantitative character of Mate Choice can be modeled
simultaneously. Moreover, the operations taking place within a procedure need not
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be limited to weighted functions, logical operators or any other type, given that they
respect the data types involved. Regarding adaptability and the inner workings of the
procedure, there are many alternatives within Evolutionary Algorithms that support the
encoding and evolution of code blocks.

Following this reasoning, techniques for the encoding of computer programs as
genotypes are suitable choices for the representation and evolution of mating pref-
erences as evaluation functions. Genetic Programming [165] (different variants are
available such as Linear Genetic Programming [32], Multi Expression Programming
[214], or Cartesian Genetic Programming [202]), Gene Expression Programming [44]
or Grammatical Evolution [246], are some of the potential candidates for such a task.
As a rule of thumb, such representations require only the definition of a terminal (rep-
resenting sensors) and non-terminal (acting as interactions) sets. Based on such sets,
initialization mechanisms support the generation of evaluation functions that are able to
evolve as part of the genotypes of each individual through the application of traditional
operators. Overall, such representations can have plenty of benefits, while at the same
time relying on less assumptions. Such assumptions are mostly related to what termi-
nals to include, their data types and how to assess their value, and what non-terminals
to allow, how they deal with particular data types and making sure that they produce
feasible chromosomes, usable for calculating an attractiveness value that is meaningful
for comparisons between mating candidates.

As an overview, modeling Mate Choice as a procedure can contribute with the fol-
lowing benefits: i) determining a set of potential qualitative and quantitative sensors
as terminals; ii) allowing through initialization and reproduction the emulation of sev-
eral phenomena such as the activation of multiple sensors simultaneously, or preference
preexistence and dormancy; iii) determining a set of potentially useful operators for the
representation of genetic interactions on a preferences level; iv) emulating multicom-
ponency and gene interactions through the role of operators; v) representing multiple
dimensions as well as different levels of complexity on an individual level; vi) allowing
for the evolution, through inheritance and traditional operators, of both dimensions and
complexity; vii) supporting the evolution of meaningful interactions between sensors
in nontrivial ways; viii) accounting for the representation and adaptation of both Wal-
lacean and Fisherian preferences side-by-side as a generic model. As final remarks on
the subject, it’s relevant to point out that the evolution of Mate Choice through eval-
uation functions is bounded by the terminal and non-terminal sets. Also, it may be
difficult to interpreter and understand complex preferences, even if they could be stud-
ied in isolation within a particular evaluation context, or studied through their impact
on male traits. Moreover, assessing the utility of certain traits can also be difficult, and
thus distinguishing between choice for good-sense or for good-taste can be challeng-
ing.

3.3 Effects of Adaptive Mate Choice
The impacts of Mate Choice on Natural Systems have been thoroughly discussed in
the previous chapter. So far on the current chapter, how to model Mate Choice has
been extensively introduced, a discussion that is probably relevant both for the purpose
of developing Natural/Artificial Systems and Evolutionary Algorithms. Starting with
very simple setups, which have nonetheless proven to be relevant for various reasons,
means to model complex, multidimensional mating preferences have been discussed.
In addition, a view of Mate Choice as computational procedures has been discussed as
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Figure 3.5: Illustration of three individual mating preferences in a multidimensional
system. Each color corresponds to a different dimension and p to each dimension’s
point of most attractiveness.

an approach with good overall potential. Despite the discussion in the context of build-
ing goal-oriented Evolutionary Algorithms, the question of whether or not to introduce
Mate Choice as a selection process remains to be fully answered.

It may be too soon to answer this question with confidence, and the answer may
be all but straightforward. From a purely theoretical perspective it definitely makes
sense. One of the most appealing features of Evolutionary Algorithms is their ability
to discover solutions for optimization problems while requiring little problem-specific
knowledge or interaction from users. Still, it’s often found that problem-specific meth-
ods (although usually costly to develop) add value to the algorithm. Adaptive Mate
Choice may be seen as a means to evolve selection methods that profit from problem-
specific knowledge while putting much less strain on manual development. In more
detail, mating preferences may be seen as adaptive heuristics that improve selection
by continuously incorporating knowledge on the search process, by means of self-
adaptation. Through that knowledge, adaptive mating preferences are able to hold in-
formation on the fitness landscape and, through achievements or misadventures (much
like any other trait subject to evolution) help guide future adaptations.

Such a behavior is likely to bring forth benefits, as it gives the algorithm a selection
mechanism capable of adapting to particular scenarios. From a more practical point
of view, the overhead may or may not be worth it. Reaching a conclusion is difficult,
however, from the perspective of Evolutionary Algorithms as a process of search and
optimization, it’s relevant to take a closer look at how Mate Choice can impact evolu-
tion through the adaptive phenotypic landscape as well as better assess the intertwined
roles of Sexual Selection and Natural Selection. In the following subsections, effects
on the search process of an Evolutionary Algorithm and potential advantages brought
by Mate Choice are going to be discussed.

3.3.1 Walking the Search Space
Analysis of phenotypic landscape (also known as adaptive landscape or fitness land-
scape) has long been a useful exercise for better understanding the workings of Evo-
lutionary Algorithms. On a typical scenario, the landscape is established by external
factors, mostly by the nature of the optimization problem being tackled, and simply
represents the search space which the algorithm has to explore and exploit in its search
for a potential solution. The means by which an algorithm walks that landscape can
be very insightful for multiple ends, including understanding the impact of specific
operators. The introduction and studying of Mate Choice can also benefit from such
an analysis, in a way to sum and illustrate what may be expected from integrating
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self-adaptive mating preferences. Similarly to other self-adaptive approaches, an inter-
mediate landscape, which has sometimes been referred as preferences landscape [200],
will be used as a tool for a simpler and phased analysis. Moreover, in order to ease the
connection between the effects of Natural and Sexual Selection, a landscape of repro-
ductive success will also be used as an illustrative tool. The following subsections will
cover this analysis step by step and offer insight of potential impacts of Mate Choice
on the algorithm’s adaptive walk through the search space.

Preferences Landscape

Multidimensional landscapes have always proven challenging to visualize, requiring
some type of transformation in order to fit them in a number of dimensions appropriate
for drawing. For the upcoming discussion, such visualizations were kept as simple as
possible through a number of plots. In those plots, the y axis represents the preference
strength, or measure of attractiveness. The x axis is shared by multiple dimensions, and
color has been used to distinguish between such dimensions. With that being said, the
x axis represents, for each dimension, the distribution of attractiveness among possible
sensory signals (or trait expressions). Figure 3.5 shows such an example, where p1,
p2 and p3 represent each the point of most attractiveness for each preference on their
respective dimension. As can be seen, Gaussian approximate functions have been used
but for illustrative purposes only, whereas they may actually take any other format.
Still, this choice perfectly serves its purpose on this section.

Figure 3.5, representing the mating preferences of a single individual, shows a
rather clean example, where each preference is well organized around a single peak,
and is assessed in strict independence from other preferences as well as from the current
state of the population. Still, if they are pictured in their full multidimensional charac-
ter, then the preferences landscape is far from smooth, in fact it can be rather irregular,
specially as the number of dimensions increases. If the mating preferences of a whole
population are considered at the same time, then the effect is largely increased, as all
preferences are overlapped in a population-wide landscape that is potentially highly
irregular. In a simple linear scenario, for each preference dimension, the overall attrac-
tiveness distribution is the result of summing the heights of the preference functions
of all females, producing one or multiple basins of attractiveness through the aggre-
gate dimension landscape. Over the multidimensional space, this landscape will take
a rough character and will have an important role in reproductive success. After all,
much like within a fitness landscape, individuals that, through their features, are placed
near peaks in the landscape will be favored by Mate Choice more often and thus will
have a reproductive advantage.

The example above works for all purposes like a static fitness landscape, and much
like such landscapes its tortuousness can be increased. For instance, in each dimen-
sion, preferences may express different functions, with multiple peaks or even tending
to infinity in the limit. However, by moving away from that basic example, important
differences will arise, which make the behavior of a preferences landscape quite singu-
lar. Firstly, its important to remember that mating preferences are genetically encoded
and thus every individual in the population is likely to have its own landscape, so that
the aggregate is likely to look rather chaotic (disregarding potential runaway processes
or genetic takeover at this point). Moreover, preferences are subject to descent with
modification and possibly genetic drift, so that when an individual produces offspring,
their mating preferences may be slightly different, and those of its grandchildren may
be even further different. The effect can be visualized in Figure 3.6. Consider this
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Figure 3.6: Illustration of mating preferences passed on from parent to offspring over
generations. First generation - solid lines; second generation - dashed lines; third gen-
eration - dotted lines.

Figure 3.7: Illustration of a linear aggregate of multiple mating preferences.

effect on an aggregate population-level landscape and unlike the stability of a fitness
landscape, the preference landscape is more like a tempestuous sea where waves come
and go, higher or lower, over time [200].

Given that Evolutionary Algorithms seldom account for perception or evaluation
noise, the way that each particular trait is perceived by individuals is deterministic,
meaning that all individuals share the same perception capabilities or inputs, and that
they remain the same. In a way, it may not make sense to prevent individuals to access
informative cues on potential mating partners. However, in what regards their contri-
bution to the mating value or the way that each trait influences the context under which
each other is evaluated, the story may not be so simple. Interactions between mating
preferences have been previously discussed, and their impact on search in the pref-
erences landscape is quite meaningful. For comparisons purposes, Figure 3.7 shows
an example with linear interactions. The figure shows a cut of the landscape where
p1 = p2 = p3, so that for each point of the x axis, the aggregate attractiveness value is
the sum of the height of the curves shown. The result is drawn in black and shows the
global attractiveness landscape that individuals are to adapt to through Mate Choice, on
a particular generation. Clearly, in this particular scenario, mating candidates that are
more capable of abiding to p1 or p2 (or both), are going to attain a higher reproductive
success.

In the example shown in Figure 3.7, Mate Choice is going to push traits into meet-
ing all three of the expressed preferences and attempt to maximize the reproductive
success associated with those traits. If for some reason, the traits have to be expressed
in a very similar fashion (p1 = p2 = p3), then it is likely also that Mate Choice is going
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Figure 3.8: Illustration of a non-linear aggregate of multiple mating preferences. Top:
lower complexity. Bottom: higher complexity

to push p1 and p2 preferentially for a higher profit, but when preference interactions
are taken into consideration, the result may be much different. Figure 3.8 shows two
illustrative examples of what may happen. Focusing on the top plot, and comparing it
with the one in Figure 3.7, it’s noticeable how the complex evaluation of mating can-
didates can deeply affect the expected reproductive value of the combined traits. In the
presented example, p3 which would normally have a lower contribution to the mating
value ends up being very important while p2 is neutral or borderline detrimental.

These bidirectional influences that preferences have on each other can have vary-
ing impacts on the preferences landscape. Firstly, genetically encoded preferences can
change over time and, consequently, as evaluation contexts change, so does the mating
value of a mating candidate. This is not news, however, what changes with com-
plex preference interactions is that changes may be much more drastic: small, smooth
changes on a particular trait or preference can result on significant changes between
levels of attractiveness. This effect becomes more impactful as the complexity level
rises, causing the landscape to become more rugged, as seen in the bottom plot in Fig-
ure 3.8. In a way, it can be said that complexity allows for a tunneling effect between
levels of attractiveness that would otherwise be distant. Secondly, depending on the
approach, preference interactions may be established as assumptions, initialized but
kept static, or be subjected to evolution. If mating preferences are being modeled as
procedures, then not only are interactions subject to evolution, but also how they are
organized, ordered, and even the complexity level is evolving. This will have an effect
on the constantly changing preferences landscape. Figure 3.9 shows a possible illus-
tration of what it may look like over time. In comparison to the previous metaphor, the
adaptive preferences landscape is likely to look as the perfect storm, with ever chang-
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Figure 3.9: Illustration of attractiveness value resulting from complex interactions,
passed on from parents to offspring

ing waves of varying amplitudes and lengths, moving on all directions with very little
predictability.

Dimensions, Complexity and Contrast

The roles of component interactions in Mate Choice have been previously discussed
to some extent, but further analysis can contribute to understanding their impact on
the search process and to the preferences landscape specifically. Firstly, its important
to understand that in a scenario where both preference dimensions and complex inter-
actions are encoded in the genotype, such as when evolving Mate Choice functions,
these characteristics are under evolutionary pressure as well. In more detail, given that
there’s some variation within the genetic pool of evolving mate evaluation functions,
different dimension levels as well as context sizes and complexity levels will compete
for fixation just as much as the preference interactions themselves. So, Sexual Se-
lection related processes such as Fisherian runaway, sympatric speciation, and others,
are dependent on such competition, whose effects are important to address and have
previously been introduced by Lerena [178].

Expanding on the previous discussion on landscape ruggedness, let’s consider the
simple scenario of Figure 3.7, where complexity is minimum, and two mating candi-
dates being evaluated by a female relying on the represented function. If these can-
didates are very close neighbors in the trait-space, their evaluation will show a high
correlation, or in other words, their mate value will be very similar due to the smooth
slopes in the preferences landscape. Arguably, increasing preference dimensions can
contribute to individuals having an increased chance of perceiving differences among
phenotypical neighboring mating candidates, simply by having more means for com-
parison [204]. On an Evolutionary Algorithm, adding to preference dimensions should
however impose some evolutionary costs. Alternatively, complexity can play a part in
providing higher contrast between closely related individuals, but not without conse-
quences that need to be kept in mind.

It’s been discussed that increasing component interaction in mate evaluation func-
tions increases the ruggedness of its landscape, so that a higher number of interactions
produce not only more peaks but also makes them more steep. As a consequence, when
using non-linear preferences, comparing the evaluation of a particular trait in two com-
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peting mating candidates, on the same context, can show a higher difference. If the size
of that context increases, so will the difference between mate values for that trait. If
two competing mating candidates are up for comparison, and if they share most of their
traits but have a small localized difference, mating preferences of higher complexity are
less likely to attribute similar attractiveness to those traits. Overall, this should allow
for a better contrast between otherwise neighboring (phenotypically similar) individ-
uals. In a population-level view, this can have strong implications. If for instance a
population is grouped in a particular trait-neighborhood, with little variation, complex
preference landscapes can help increase the range of potential reproductive value for
each individual.

Intuitively, based on this discussion, one may argue that in a population where
there’s variation between complexity levels, higher ones should be favored for a higher
return in contrast. However, that benefit is highly dependent on the conditions pre-
sented by the evolving population. High ruggedness can surely evolve and spread
through self-reinforcement, specially when trait variation is low, which would further
increase the benefits that individuals with complex preferences have over those with
simpler ones. However, increasing complexity indefinitely may add little value: while
moving from low to high complexity may result in large improvements in contrast,
moving from high to very high levels of complexity will provide only small improve-
ments, which come with little overall benefit. Moreover, as variation between traits
increases, the gap between high and low complexity is less evident. With individuals
spreading over a larger range of the phenotypic landscape, less complex preferences
are more likely to rate mate values appropriately, with little improvements coming
from increasing the contrast.

Therefore, higher complexity levels may prove beneficial for distinguishing be-
tween individuals in populations where there’s low variation on one or more traits,
however, those benefits are less evident on other scenarios. Moving from a smooth
landscape to a rugged one can often bring overall gain but only to a certain balance,
whereas further adding ruggedness to a landscape can have undesirable implications
such as choice inconsistency, which is a challenge for self-reinforcement. Two factors
account for such a scenario. Firstly, as discussed previously, higher complexity will
result in a less correlated landscape, meaning that small changes in traits can result
in very large changes on attractiveness value. This is specially relevant if evaluation
context is brought up. Secondly, recombination between highly complex preferences
is more likely to be destructive, making it difficult to pass on preferences. These two
factors make consistent choice difficult to maintain, which may for instance make it
difficult over a few generations, to rank a set of mating candidates in the same way.
Taking trait and preference mutation into consideration, the potential for such scenar-
ios increases.

Lower complexity levels face less risks of inconsistent choice, which is likely to
give them an edge in competition. So on the one hand, higher complexity may bring
benefits on certain scenarios through higher contrast and therefore propagate through
self-reinforcement. On the other hand, hindering choice consistency can make that
difficult, allowing for simpler preferences to propagate and gain momentum unless
there’s a specific need for higher contrast between mating candidates. Arguably, after
initialization of an Evolutionary Algorithm, assuming that the population has diver-
sity and is able to maintain it for a few generations, conditions may in general be
better for simpler Mate Choice mechanisms to propagate, possibly through Fisherian
self-reinforcement. Moreover, this effect is likely to last longer in small complexity
scenarios due to the larger size of the basins in the preference landscape, which may be
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beneficial for competition [178]. Basin size and the consequent larger number of Fish-
erian steps is important because as soon as a preference and the related trait is fixated,
its relative evolutionary advantage burns out.

From the perspective of designing Evolutionary Algorithms, competition within
dimension and complexity levels can bring various benefits. As it may seem, the com-
petition is fixed towards takeover from less complex preferences, but complexity can
still play an important role, specially if its given a chance to emerge (possibly through
mutation) at times where less complexity can hinder the capacity of females to contrast
between neighboring individuals in the trait-space. At that point, they may result in a
runaway process. The relation between complexity and consistent choice is at the bot-
tom of its behavior, and so it is also very influenced by recombination and mutation,
which on the one hand can truly have a larger effect on highly complex mating prefer-
ences but can for sure also present opportunities. Higher complexity has been shown
to emerge in situations where there is evaluation noise, or that determinism can’t be
assured in the evaluation of traits. In Evolutionary Algorithms that may sometimes be
significant. Of course, the forces described in this discussion on contrast are only a part
of what effects the whole dimensionality and complexity of preferences.

Phenotypic Landscape

Similarly to preferences landscapes, phenotypic landscapes can often be multidimen-
sional. That depends on the problem being targeted and the corresponding represen-
tation. For the purpose of simplification, the following discussion will focus on uni-
dimensional scenarios, without loss of generalization, and multidimensionality will
be discussed only when relevant. In those cases, the visualization approach followed
in the plots for preference landscapes also applies. In summary, traits or preferences
in multiple dimensions will be represented on a common x axis and the y axis will
represent strength through height in each respective dimension. While in this case
the inner-workings of multiple preferences are not in focus, color will be used to dis-
tinguish between forces, yellow corresponding to fitness (Natural Selection) and red
corresponding to attractiveness (Mate Choice).

The interplay between Natural and Sexual forces is challenging to understand, spe-
cially when their relation with phenotypes is taken into account. Figure 3.10 shows a
straightforward scenario where fitness, preferences, and traits are well defined on one
dimension, and their distributions are also well delimited. The scenario shows there-
fore a landscape where maximum fitness can be achieved by the trait taking value f ,
and the return diminishes as the trait distances itself from f . The presence of that trait
in the population is distributed around t at that particular point in the evolution process,
and hasn’t been fixated so that there is variation, loosely represented by w. Finally, the
population has developed a mating preference for individuals whose trait is distributed
around p, which in this scenario makes the preference to be pointing the trait in the
opposite direction from fitness.

As Figure 3.10 shows, selection has a double action on the distribution of traits.
Survival will give advantage to individuals whose trait is closer to f thus drifting the
distribution closer. Mate Choice on the other hand will favour individuals whose trait
are closer to p, making the distribution shift again in its direction. In this case, as fitness
has a stronger pull than attractiveness, in the end t will move towards f . However, as
survival cuts off those individuals who are not fit enough and Mate Choice cuts off
those who are not attractive enough, w is bound to reduce generation after generation.
If at some point w = 0, then the trait has been fixated in the population and, for being
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Figure 3.10: Example of interaction between Natural and Sexual Selection forces over
a trait.
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Figure 3.11: Aggregation of Natural and Sexual Selection forces.

no longer a distinguishing factor, it’s role in selection is no longer significant. The
fixated trait t in this case isn’t either on f nor p, but on an equilibrium point that can
only change in the presence of variation in traits, preferences, or fitness.

The model aims at demonstrating the effects of preferences and survival on the
distribution of traits, and for that purpose assumes that there’s an established inter-
link between the existing distribution of traits and preferences. The meaning of this
assumption is that all females share a fairly similar preference which remains static
during evolution. If that was not the case, then the behavior would be subject to the
feedback loop between preferences and traits (making it less clear). If this assumption
is removed from the model, various scenarios can emerge: i) the pull from natural se-
lection may successfully fixate the trait at f , eventually fixating p as well; ii) p may
slide quite fast toward t for favoring population density and the advantage of producing
offspring that are within a popular part of the phenotypic space; p may develop enough
strength through self-reinforcement to drag t and start a runaway process. There are
many variables that determine what the outcome will be: i) the cost of developing a
preference for that trait; ii) the initial distribution of the preference for that trait; iii) the
initial distribution of that trait in the population; iv) the pressure of survival on that trait
or the cost to maintain it.

Figure 3.11 combines in the same dimension the landscapes imposed by viability
and attractiveness on a single trait. Together, they can be seen to form a reproductive
landscape [201] that includes both pressure imposed by Natural Selection and Sexual
Selection. Even if only non-complex traits and preferences are considered, this land-
scape can express a very different profile from each of its parts alone. It helps explain
some movements in the phenotypic landscape that may seem unnatural from a fitness-
based view, for instance downhill movement on a fitness landscape can actually be hill
climbing on the combined reproductive landscape. This is made possible by the process
described in Figure 3.10 alone, under the right conditions, and can have quite interest-
ing results. For instance, consider a scenario where there’s a second, higher fitness peak
further right in the landscape. If the population is gathered around the original local op-
tima, crossing the valley between peaks would be a very difficult task due to low-fitness
individuals being unable to compete for reproduction. However, the self-reinforcement
of mating preferences through inheritance can produce a self-imposed reproductive
peak that empowers low-fitness individuals, allowing the population to travel the phe-
notypic landscape more freely. If at some point exploring individuals reach the second
higher peak, they can pull the remaining of the population there through new compet-
itive advantage and genealogy. In a way, a reproductive landscape can explain how
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Figure 3.12: Aggregation of Natural and Sexual Selection forces, accounting for com-
plexity.

Mate Choice allows for tunneling between peaks in a fitness landscape.
To further explore this tunneling effect, the roles of gender, as well as the inter-

actions between evolving mate preferences and phenotypes need to be discussed. It
has been previously discussed how Mate Choice can be modeled in Evolutionary Al-
gorithms by applying different selection strategies for the selection of individuals for
female and male roles. This distinction between selection mechanisms means that the
reproductive landscape discussed above can be different for each gender. For instance,
if females are selected using a fitness-based traditional operator, then in the scenario
of Figure 3.11, they are bound to exploit the phenotypes around f . On the other hand,
assuming that male mating candidates are selected randomly and compete based on
attractiveness alone, then they have no force keeping them around f , but are rather
compelled to try to match p which is imposed by female preference. This means that
they are likely to be more able to wander, due to the adaptive nature of Mate Choice.
In the end, males have a better chance of exploring the search space, finding new fit-
ness peaks, and through reproduction pass on genes that are also inherited by females.
These new phenotypic opportunities, if competitive, can pull the female population fast
through the phenotypic space into new peaks.

This example suggests that females have an exploitative role while males have an
exploratory one. While this can develop as a true behavior, it should be kept in mind
that females have a say in exploration as well, either influencing males by being ever
choosier, but also through the evolving evaluation functions, which encompasses sen-
sory use, perception and choice. While not directly exploring the space of candidate
solutions, they explore the preference landscape, which as demonstrated, as a direct
impact on how search goes in the phenotypic landscape. If they happen to evolve a
strategy that can better evaluate mating candidates, then through cheer competitive ad-
vantage, it is bound to propagate through both females and males, in this case allowing
males to tunnel through the landscape into a place where they can contribute to the re-
production of better functioning females. The same principles apply to hermaphrodite
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Figure 3.13: Illustration of the Evolution of Selection forces over time.

populations as well, where individuals are subject to the reproduction landscape as a
whole. Interestingly, this may give way for the emergence of gender in populations
with no external interference, as individuals climb to each peak, and preferences and
traits fixate in the population.

Most of the relevant aspects of a walk through the phenotypic landscape have been
addressed, in the scope of Mate Choice. However, so far they have been addressed
on a single dimension with simple topographies. It is relevant therefore to expand the
discussion into more complex scenarios. Figure 3.12 shows an example where non-
linear multidimensional fitness and attractiveness functions have been mapped to share
a single x axis. It should be noted that fitness and preferences don’t necessarily exist on
the same dimensions, however for simplification the model assumes that they depend
on the same traits. The model shares most characteristics with previous illustrations
but shows how complexity can make the behavior of an Evolutionary Algorithm with
Mate Choice to be quite unpredictable. It shows also how it may be difficult to attribute
the evolution of certain traits to Natural Selection or Sexual Selection.

For the purpose of the discussion, lets assume that a population is positioned on
the left area of Figure 3.12. Hill climbing through Natural Selection can alone allow
the population to reach the first local optima, possibly even escaping into the second
local optima. However, unless there’s some chance of mutation dragging the popu-
lation further, the probability of reaching the global optima should be low. If Mate
Choice is introduced, that reality may change considerably. Assuming for instance that
as the population drifts from left to right in the phenotypic space of Figure 3.12, its
individuals develop a mating preference for those that are most to the right (which gets
self-reinforced in a Fisherian runaway process). This preference can maintain its mo-
mentum even if the whole population is within the second basin and continuously give
preference to those individuals that are most to the right, even if they are less viable.
At some point, if an individual escapes the basin, it will reach the global optima and
pull the population with it. This effect is sometimes compared to that of a directional,
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Figure 3.14: Illustration of reproductive success resulting from both Natural and Sexual
Selection, passed on from parents to offspring

resistant, macro mutation, due to their similarities [199, 201]
It should be noted though that the process may not stop here, and the Fisherian

process can continue to pull the population into an exaggeration of the features under
sexual pressure, even if that pulls them away from global optima. In Figure 3.12 it
is seen that the point of most success in the reproductive landscape doesn’t share its
location with the global optima but is further to the right. Also, Figure 3.13, shows
the process of self-reinforcement, even to the point where preference is given to traits
that are detrimental. Figure 3.14 shows how reproductive success can be associated
with detrimental traits when Mate Choice takes preferences to extremes. In the end,
even if there’s a clear pull of Natural Selection pressure, Mate Choice can make the
population drift through the phenotypic space impulsively [199, 201]. This drifting
phenomena can sometimes pull the population toward global optima, but can also pull
it into less rewarding parts of the search space. As shown by both figures, only Natural
Selection can put a stop to this type of self-propelled exaggeration.

Its important to realize though that while a Fisherian runaway process evolving one
or various traits may be stopping, another may be starting on other dimensions, on a
different direction. Preferences and traits may be involved in more than one process
at the same time. Also, the interlink between genes, the expression of preferences and
of traits make such processes to be well intertwined (as well as with Natural Selec-
tion), which makes them able to influence each other. Powered by self-adaptive mating
preferences, these effects can continuously push adaptive peaks in the reproductive
landscape, in ways that can be perceived as chaotic. The storm-like character of the
preferences landscape extends therefore to the reproductive landscape, potentially driv-
ing traits into multiple directions, sometimes in the same direction of Natural Selection,
sometimes in opposite directions, sometimes changing directions during the evolution-
ary process. In all likelihood, and given means for variation in preferences and traits,
populations are very unlikely to maintain stationary distributions in the search space,
drifting towards their self-generated peaks [201]. These peaks are combined with those
of Natural Selection, resulting in an adaptive landscape that can be unpredictable.
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3.3.2 Potential Advantages of Mate Choice
As briefly discussed in the beginning of this chapter, Mate Choice can allow for Evo-
lutionary Algorithms to self-adapt the way that individuals are selected and paired for
reproduction, and as a product, take advantage from relevant knowledge regarding the
search process that is progressively included in mating preferences. When discussing
the effects of such a system, they come out as intricate, chaotic or anarchic. While
its true that stochastic initialization can have a significant role, selection pressure sets
structure and self-governance, in a way that is in fact organized, even if the resulting
population dynamics are difficult to predict. The potential effects have been exten-
sively discussed so far and several cues to potential advantages to the search process
of Evolutionary Algorithms can be found scattered through that discussion. For the
purpose of clarity, it makes sense to further present, in a more organized section, the
most relevant potential advantages resulting from Mate Choice.

Miller and Todd have extensively discussed such potential advantages. While they
rely on specific testing setups, it’s reasonable to assume that such advantages can be
generalized and found on many other systems that abide by the ground rules of self-
adaptive Mate Choice. Miller [199] has succinctly listed them: i) increased accuracy
when mapping from phenotype to fitness, therefore reducing the “error” caused by
different forms of Natural Selection; ii) increasing the reproductive variance of popu-
lations by distinguishing between individuals with no survival-relevant (fitness) differ-
ences; iii) help populations escape from local optima through a directional stochastic
process; iv) contribute to the emergence of complex innovations which may eventually
contribute to fitness increasing; v) promote sympatric speciation, diversity and parallel
evolutionary searches. Over the next few subsections, each will be briefly and individ-
ually discussed, relying mostly on Miller and Todd’s studies.

Reducing the Error of Natural Selection

In a nutshell, an individual’s evaluation by Natural Selection works by: i) mapping its
genotype to a phenotype; ii) submitting that phenotype to evaluation on solving a tar-
get problem; iii) returning a proficiency value. For the purpose of selection, that value
alone is used to compare the quality of genes between individuals. On simpler prob-
lems where the contribution of each gene can easily be mapped to fitness, or on target
problems represented by smooth search landscapes, fitness alone can be very informa-
tive. However, when targeting tougher problems with complex genotype-phenotype
mappings, scrutinizing the true value of each gene can be challenging. Of course, there
are advantages in using deterministic fitness functions and there are ways to mitigate
their problems by using fitness scaling or other methods. But in a way, when trying to
assess the genetic quality associated with particular genes, fitness alone can be noisy,
(for instance, by tagging genetically different individuals under the same, or closely
similar, fitness values).

Fitness alone can be a very coarse grained measure of quality, too inaccurate for
an efficient assessment of genetic quality. Mate Choice, can however contribute to
reducing this effect, by selecting on phenotypic traits that while being different from
those selected by Natural Selection, are correlated to fitness. Wallace’s good sense
Mate Choice extensively explores a direct linkage between fitness and ornamentation,
but Fisherian good taste is rightfully capable of promoting the Sexual Selection of traits
that are correlated to fitness as well. In nature, selection for symmetry might be a good
example of a trait that correlates to fitness but is not a direct expression of aptitude
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[201]. In Evolutionary Algorithms, the selection of ornamentation for their functional
rather than beauty value can boost the potential for the emergence of more specific
and informed selection strategies, specially if multiple information bits are available
on mating candidates. In short, preference for aesthetic but useful criteria can help in
the emergence of heuristics that guide evolution [199].

The process works by evolving Mate Choice strategies that reflect internally the
potential consequences of reproducing with different kinds of mating candidates, so
that their attractiveness match the expected fitness of the offspring. For instance, if
a group of alleles has a beneficial effect on the fitness of an individual, and together
influence the expression of an ornament, then mating preferences should evolve to favor
that ornament. By doing so, not only can Mate Choice improve the precision involved
in selection by particularly promoting those specific alleles, but it can also boost the
evolution momentum in a certain direction. Moreover, while Natural Selection can
penalize individuals not showing those alleles only if they have poor fitness (which
may depend on other locus), Mate Choice can in turn penalize individuals on a more
specific basis. The extent on which Mate Choice can do so is highly dependent on
the assumptions of the system, such as what sensory systems are available and how
signals can be combined. This process is of course linked to the previous discussion
on contrasting between mating candidates and variation in reproductive success, and
depends on choice consistency.

Increasing Contrast Between Similar Individuals

After the examination of Mate Choice as a means to reduce the error of evaluation
functions, contrasting between similar individuals is a natural follow up topic, one that
has been addressed previously when discussing the effects of Mate Choice, along with
the main processes that make higher contrasting possible. Potential benefits come from
the ability to convert small differences in male quality into large differences in repro-
ductive success. This is achieved through a self-adaptive, flexible method for fitness
scaling without the need for external assumptions. The evolving mating preferences
rule how scaling is performed on an individual basis, which in turn are under evolu-
tionary pressure to register appropriate differences in the ability of mating candidates.
Mating preferences capable of contrasting between similar individuals in a way that
give the resulting offspring an evolutionary advantage will themselves be inherited and
benefit from that advantage to spread through the population.

As discussed, mating preferences should be able to incorporate information on the
structure of the fitness landscape and hopefully provide better search means. Improving
the ability to perceive differences between small fitness values should provide robust-
ness and momentum, even when populations have began to converge to near-equal
performance [201]. In those scenarios and in the absence of Mate Choice, small differ-
ences in fitness may be insufficient to successfully fuel evolutionary change. However,
if individuals are allowed to do so, they certainly have the incentives to evolve means
to be more selective or choosier and thus avoid population stagnation by promoting
variance. Depending on the assumptions, on an extreme case where Natural Selection
differences are minimum, preferences may discriminate based on differences in one
locus alone. Such chances increase with the number of traits being evaluated, both
assuming that differences in genes are perceptible in differences in traits, and granting
the effects of complex evaluation.
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Escaping Local Optima

In Evolutionary Algorithms, selection is the process that guides the population from
lower to higher peaks in the fitness landscape while recombination and mutation are
the engines that build and propose new candidate solutions for evaluation. Together,
they explore the genetic pool (mutation may also introduce new genes), however their
role is strongly subjected to the pressure of Natural Selection. Firstly, recombination
can only access building blocks that are competitive as whole organisms and withstand
selection, thus keeping genes that are immediately costly to the survival of individuals
from contributing and potentially providing new better candidate solutions in the future.
Secondly, while mutation can successfully introduce new building blocks, unless the
resulting individual can compete immediately in selection, the most likely result is that
such traits are deleted. There is a real struggle to maintain useless adaptations in hopes
of accumulating them into useful ones. Either if they represent small changes or large
disruptive steps, adaptations are bound by their immediate competitive success and as
a consequence, so is exploration.

Mate Choice offers a mean of exploration by reducing the pressure of Natural Se-
lection and influencing the impact of reproduction and mutation. The handover of se-
lective power to mating preferences can allow for a directional Sexual Selection drift,
powered by stochasticity, self-reinforcement, and runaway processes. Ultimately, this
can cause the displacing of populations across the phenotypic space, even in directions
that are potentially hindering to Natural Selection, as previously illustrated [200, 201].
In more detail, Mate Choice can cooperate with recombination and mutation in their
task of building and proposing diverging candidate solutions by allowing them a higher
frequency (by increasing their reproductive success if they abide by mating prefer-
ences) and allowing them to be maintained over a few generations. This contributes
to the opportunity of increasing viability through the combination of multiple varia-
tion operations. Even if they are hindering on their own, they may be beneficial in
accumulation. Natural Selection may then select for and improve on those solutions.

Gender has been shown to play an important role in exploration and the search
for new optima in Mate Choice, by assuring a reduced risk in the process. While
long periods of stasis are unproductive for optimization algorithms, blindly moving
through the search space may also be undesirable. Mate Choice offers a balance. If
for some reason, such as sensory bias or genetic drift in preferences causes a runaway
process, as females are the active choosers, males will be more exposed to change.
So males may be pulled from adaptive peaks in order to remain attractive to females,
consequently looking for new opportunities in the phenotypic space as a byproduct.
Females on the other hand remain closer to adaptive peaks due to the lack of male
choosiness. If new adaptive peaks are not reached by males, not much is lost, an
equilibrium should be found between mating preferences and male dimorphism, and
new runaway processes may still happen. However, if new traits with survival value are
found, then the whole population may tunnel through the phenotypic space through the
effects of self-reinforcement. In summary, the population will have had jumped into a
new optima in their search effort that Natural Selection can further exploit [201]. This
should promote rapid evolutionary steps, much like the process described in the theory
of punctuated equilibria [84]. This division of labor between genders can be be fruitful
[286].

The effect of mating preferences can in some terms be comparable with the effect
of mutation. As described, they share a capability for escaping local optima by intro-
ducing new genetic material that, possibly more often than not, simply produces dele-
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terious traits, but sometimes can produce new viable evolutionary opportunities. They
have nonetheless important differences, on top of what has been discussed. The most
important may be that mutation is non-directional, causing variation as a diffuse mesh
around the location of the population on the phenotypic space [286]. Mate Choice, on
the other hand, should be able to reproduce stronger drifts in the search space through
directional, self-reinforcing mating preferences. This difference gives them the op-
portunity to produce longer walks away from local peaks and therefore promote both
sustainable innovation further away, and a stronger engine for speciation.

Emergence of Complex Innovations

As a necessary step in the already reviewed means for escaping local optima, the emer-
gence of innovation has been almost sufficiently introduced. There are however a few
particularities that justify being highlighted. Firstly, it has been previously described
that drift or sensory bias can be responsible for the emergence of mating preferences
that enforce new evolutionary paths. However, the same can be achieved through pre-
existing mating preferences. In that case, their effect can stay dormant temporarily (for
instance because there’s lack of variability on the corresponding trait), and simply be-
come relevant due to changes in the traits distribution in the population. In that case,
innovation can emerge due to drift in ornamentation rather than on mating preferences.
Secondly and following on the same discussion, innovation seems to benefit from a
certain degree of neophilia coupled with Mate Choice. Without Mate Choice, inno-
vating traits are treated just like any other, but innovations that emerge through Mate
Choice do so through mating preferences that are liable for their initial maintenance
(as previously discussed). They are therefore maintained not because their are useful
but because they are boosted by Mate Choice.

As previously explained, the retaining of innovations through self-reinforcement
gives them an edge that is unlikely in mutation generated innovations. Whereas dele-
terious novelties are likely to be selected against immediately or on a few generations,
novel traits emerging through Mate Choice can accumulate and thus produce complex
innovations. The taste of females for new ornaments (neophilia) should have a ruling
role in the process. Much like mutation rates determine the amount of innovations that
are introduced and proposed for evaluation [100], the rate of neophilia in a population
determines the rate of innovations allowed to be introduced by Mate Choice. Not only
that but it also determines the degree of cumulative innovations that are allowed to build
up complex innovations [286, 201]. This rate is induced by the population on itself and
is subject to self-adaptation, being capable of changing throughout the evolutionary
process as a product of the distribution of both mating preferences and traits.

Mutation and Mate Choice have been shown to share some characteristics but also
contrast in others. Arguably, both processes together can achieve best results, by being
capable of producing both short-term micro-evolution, and long-term macro-evolution
innovations [286, 201]. Their interactions may not be straightforward. In a standard
scenario where only mutation takes place, innovations can be directly linked to such
operations, however when both mutation and Mate Choice act together, other processes
can arise. Simple mutation-based innovations can still happen, but mutation on either
mating preferences or traits can start new runaway processes. In those cases, ornaments
may be built on and elaborated until a viability breakthrough is achieved. There is also
a chance that this is achieved not by the affected trait directly but as a byproduct, such as
indirect impact of an ornament on others, or on complex mating evaluation functions,
or impact of ornaments on traits that have no Sexual Selection role [201].
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Spontaneous Sympatric Speciation

In models of Natural Selection, speciation is usually credited to the character of the
adaptive landscape. A rugged landscape can present multiple high fitness peaks with
low fitness valleys in between, which as a metaphor can be seen as geographical bar-
riers between habitats. Given an initial population that is distributed between these
peaks, the landscape can alone enforce breeding within peaks. The reason is quite sim-
ply that interbreeding is more likely to produce individuals that will fall in the lower
fitness valleys and are therefore less viable. This alone can account for competitive
advantage arising from sympatric speciation [71], or reproductive isolation. Methods
for preventing cross-breeding and hybridization are therefore a natural outcome [286].

In Evolutionary Algorithms, standard models rely on a global process for selec-
tion, which by themselves have a low grip on hybridization. Given a population split
between two adaptive peaks, selection is likely to pair individuals from either peak
blindly, possibly producing individuals in low-fitness valleys that will in turn have a
small chance in being selected. The effort for interbreeding is a burden on Evolution-
ary Algorithms and therefore various methods have been progressively introduced to
mitigate such pointless crossovers. Niching methods, restricted or assortative mating,
distributed or spatial models, among others, have been introduced to guide selection
towards taking the best profit possible from speciation for the exploitation of different
peaks in the phenotype space [199]. While these methods produce the desired effect,
they ignore the potential of Mate Choice as a nature-inspired, self-adaptive process for
sympatric speciation, with less need for external assumptions. Considering the above
example of a population split apart, mating preferences in each of them can reinforce
mating within each sub-population rather than between them. Even in a united popu-
lation, competing runaway processes can arise at the same time, pushing parts of the
population to drift in different directions.

In that scenario, diverging mating preferences will compete for momentum, point-
ing in different directions. If an equilibrium is maintained so that neither is reabsorbed,
then the population may split and through self-reinforcement maintain itself in isola-
tion. Individuals that try to abide by both will probably struggle to stay in the middle,
in what may be seen as a low-reproduction valley in the preferences landscape. Mate
Choice will work against such individuals, thus further promoting the splitting of the
population. In a different scenario where Mate Choice or other stochastic methods
pushes part of the population into a new high fitness peak of the phenotypic space,
mating preferences can speed up the effects of Natural Selection in the process of split-
ting part of the population into that new peak, given that a subset of the females has
or develops a preference for individuals in that new phenotypic space. In both scenar-
ios, mating preferences have a ruling position in the emergence and maintenance of
sympatric speciation.

In a way, much like traditional methods for speciation, Mate Choice introduces
a two step selection and pairing mechanism, and thus avoids the impacts of a global
selection mechanism. However, contrary to the aforementioned mechanisms, Mate
Choice maintains an adaptive character and a relatively high degree of autonomy, thus
being able to produce different behaviors and adapt to population and landscape dy-
namics. It may happen that splitting sub-populations drift back together in response
to insufficient evolutionary gains and as an attempt for individuals to improve their
reproductive rates [288]. The likelihood of such a process is also dependent on the
characteristics of the phenotype and preferences landscape. Complexity and dimen-
sions for once have an impact on sympatric speciation as they impact the ruggedness
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and character of the preferences landscape.
Arguably, complex preferences are more likely to promote speciation, as small

changes in preferences can represent large changes in the attractiveness value of mating
candidates. Such scaling can contribute to the reproductive isolation of males and
through self-reinforcement contribute to that of females as well [178]. Furthermore,
such an effect can both emerge through preference variation or trait variation. Still,
spontaneous sympatric speciation has been shown to emerge as well in non-complex
and quite distinct scenarios [288, 200, 201].
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Chapter 4

State of The Art

Models of Mate Choice can be found in the literature as early as in the 1970’s, some-
times for the purpose of modeling and studying the dynamics of natural populations
but also with the goal of improving the search proprieties of Evolutionary Algorithms.
While the previous chapter introduced a general model of Mate Choice to which most
approaches can be easily linked to, the literature is replete with approaches that in some
way or another deviate from that model, as will be shown. Because different operators
will at least need to rely on a meaningful representation, this is somewhat expected,
but the spectrum of ideas applied for Mate Choice goes much further than that. In fact,
studies in the literature may diverge in many ways. Some design choices are linked to
problem dependent characteristics but others are the result of different interpretations of
Mate Choice theory. For instance, different authors may apply diverging assumptions
or operators to mimic non-incestuous behaviors, gender attribution, or differences in
mutation rates between genders. On the one hand, this provides a broad range of ideas
to explore but on the other hand it shows some frailties: i) the knowledge and inter-
pretation of theoretic ideas and how to integrate them in useful ways is still on a very
early stage; ii) there is a wide range of problems that have been used for benchmarking,
making it difficult to compare between approaches; iii) while the set of studies related
to Mate Choice is not small, their design choices and applications are sparse and com-
parative studies are very rare to come by. These conditions make it very hard to truly
assess the impact of Mate Choice in the research field.

Besides such differences, some authors choose to follow Mendelian ideas of ge-
netic encoding and inheritance closely, while others rely on higher-level assumptions
to determine the rules of Mate Choice. As a result, Fisherian Mate Choice can some-
times be found in the literature, but Wallacean models much more common. From an
engineering perspective, Wallacean good sense has many favorable arguments, as the
contributions of sensible choice are easier to understand and link to results. Mating
preferences, as the core of the operators, are what influence their behaviors, and like
any other design choice, there’s a large range of setups found in the literature. Some op-
erators rely on fixed population-level choices, others may rely on externally determined
rules to adapt preferences in-run, part of such control may fall under evolutionary pres-
sure for a sense of self-adaptive behavior and, finally, some instances where mating
preferences can be said to be mostly under evolutionary pressure can also be found.
Of course, stating that mating preferences are fully under evolutionary pressure with-
out some external assumptions is challenging. The following subsections will however
illustrate how far or how close research has reached.

71



72 4.1. RELATED WORK

Some additional remarks regarding the set of studies addressed should be made.
The collection of papers has been divided into two groups. Related Work includes
studies that while not being categorized as Mate Choice in its strict sense, are related
in behavior and have been important for inspiration. For that reason, these studies are
very often found to be the source for other relevant studies and are cited often. Studies
on Mate Choice in Evolutionary Algorithms have been organized as a best possible
effort in a set of categories. This is however not bullet proof as some studies cover
more than one category or rely on hybrid operators. In these cases the studies are fully
described but included in the subsection that seems to be the most relevant. Also, not
all studies reviewed have a clear focus on Mate Choice, sometimes even imposing Mate
Choice as a byproduct of their target approach. Because different authors reference the
first and second parents in recombination through different names, hereafter they will
be referred to by their female and male roles. Overall, the descriptions will focus on
the design choices of the operators more than attempting on a comparative study (for
the aforementioned reasons), as a basis to show how diversely Mate Choice can be
interpreted and designed.

4.1 Related Work
Many applications of Mate Choice aim at finding and maintaining multiple local op-
tima in multimodal functions, or alternatively at speeding up the process of finding the
global optima in unimodal functions. The relation between Mate Choice and niching
methods is therefore a closely related one. Not all niching methods are relevant for the
study of Mate Choice. Some share very little with Mate Choice although their histori-
cal relevance may be great, but others share important ideas, inspiration and methods.
The following subsections will cover Fitness Sharing, Restricted Mating and Restricted
Competition, as well as Crowding methods. Their relevance for Mate Choice will be
briefly discussed, in a case by case basis.

4.1.1 Fitness Sharing
Holland [131, 132] was, early in the history of Evolutionary Algorithms, interested in
niching methods, techniques that would be useful for the scaling of individual’s fitness
in relation to others in their neighborhood. Following his ideas, high density areas of
the search landscape, where lots of individuals share high similarity, would contribute
more positively if the fitness was scaled down in proportion to density, rather than
attributing the maximum fitness possible to each individual. For this purpose, either
genotypic or phenotypic metrics may apply to measure the proximity of individuals
and a neophilic character is promoted through the competitive benefit of individuals
that are more isolated in the search space rather than crowded on a space that is unlikely
to provide further innovation. Through this process, the population aims at stability and
exploration, rather than convergence and exploitation of a single search neighborhood.
Algorithms that induce these dynamics are often called sharing methods, due to making
individuals in a population to share their fitness with others in their proximity.

Sharing functions, as put by Goldberg [111], regard fitness as a finite resource that
should be distributed among individuals in the same niche and over all niches, with
niches being delimited by groups of similar individuals. Petrowski [224] on the other
hand suggested that fitness in each niche be taken by the strongest individual, in a
winner-takes-all fashion. Mauldin [191] had an alternative proposal, where instead of



CHAPTER 4. STATE OF THE ART 73

sharing resources between individuals by whatsoever rules, individuals would only be
allowed in the population if their genotype distanced by n bits from others already there,
hence promoting uniqueness. In this method, pressure would be decreased throughout
the evolution process.

Goldberg and Richardson [112] developed a sharing function that based on a pre-
established threshold, determines if two individuals are similar or dissimilar. Sharing
is achieved by reducing each individual’s fitness in relation to the number of similar in-
dividuals in the population, while dissimilar individuals aren’t impacted. They suggest
that phenotypic or genotypic measures can be applied and report maintaining specia-
tion on multimodal functions. A later study [69, 110] compared euclidean (phenotypic)
and hamming (genotypic) distances on the same set of problems, showing advantages
on using the phenotypic measure. Also, restricted mating is used and successfully
contributes to the prevention of destructive crossovers. While fitness sharing is not a
mating strategy by design, it’s niching character is possibly the root of early interest
of the research community in Mate Choice as an engineering, goal oriented strategy,
rather than a method of interest for the study of natural populations.

4.1.2 Restricted Mating
Unlike fitness sharing methods, operations restrictive of mating do share some charac-
teristics with Mate Choice. As a general description, such strategies assess the pair-
ing of individuals for mating and, according to a certain metric or rule, determine if
those individuals are restricted from mating or allowed to reproduce. This shouldn’t
be mixed up with female Mate Choice as an active effort to choose a mating partner,
but as a more high level approach that emulates behaviors often found in nature such
as the prevention of incestuous reproduction. Within restricted mating, two global ap-
proaches can be found in the literature, either similarity-based restrictions (based on a
genotypic or phenotypic measure) or ancestry-based restrictions. These topics will be
covered separately.

Similarity-based Restriction

Booker [30, 31] proposed a method aiming at preventing destructive recombination by
restricting mating between dissimilar individuals. By allowing the pairing of parents
only if they are sufficiently similar to each other, the method promoted the exploitation
of fitness peaks while discouraging mating between individuals whose offspring would
likely fall into low fitness valleys. By doing so, speciation is reportedly maintained on
multiple fitness peaks, with individuals crowding and mating in isolation in each peak.
The approach was tested on a task of message classification where classifiers can only
pair if they are relevant to the same messages. In order to ensure proper maintenance
of species and niches, a crowding mechanism is employed where densely populated
areas of the search space will see their weakest classifiers periodically deleted through
a sharing method.

Eshelman and Schaffe [86, 87, 88] have studied an incest prevention technique
that inhibits mating between individuals whose hamming distance is below a certain
threshold. The approach randomly selects pairs of individuals consecutively until two
parents that meet the criteria come up. At this point, offspring are generated, which
will substitute the worst individuals in the population. Soft restarts are also employed
in order to introduce new genetic material in the population when it gets stuck in a
local optima that prevents new non-incestuous pairs of parents to be selected. The
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threshold at this point may also be relaxed to allow for a higher rate of successful pair-
ings. This technique has been applied to function optimization, one-max, and traveling
salesman problems, showing an ability to increase the productivity of the crossover op-
erator while preserving fast convergence in the population. This threshold based incest
prevention technique has been shown to postpone loss of alleles almost indefinitely in
certain conditions [255].

Ancestry-based restriction

Craighurst and Martin [53] have also addressed the issue of incest prevention by dis-
allowing mating between individuals that are too similar. In their study, instead of
relying in a genotypic or phenotypic metric to measure similarity between individuals,
they rely on their ancestry tree. As individuals store information on their lineage, the
approach is able to measure an ancestry distance between two subjects by searching for
a common ancestor. Reproduction is prevented between individuals whose distance to a
common ancestor (in generations) is bellow an established threshold, thus encouraging
crossover between individuals that are less likely to share genetic material, reportedly
helping maintain diversity in the population through a broader exploration nature. The
authors report performance gains when compared to a traditional Genetic Algorithm
on traveling salesman problems.

Fernandes et al. [96] applied a similar approach (non-incest Genetic Algorithm)
with a steady-state population of varying size to four peaks and royal road problems,
showing both similar behaviors and gains in performance when compared to a standard
Genetic Algorithm. The varying population size allows for offspring and parents to co-
exist and compete in the same population. A later study by Fernandes et al. [93, 94]
proposed a follow-up approach where the incest control threshold adapts dynamically
as a response to the average diversity found in the population. An external rule deter-
mines the direction in which the threshold is adapted: if population diversity decreases,
then the threshold shifts in order to promote dissimilar mating; if population diversity
increases, the threshold is less restrictive on which individuals can be paired. The algo-
rithm takes upon itself to adapt its own behavior without external intervention, although
doing so under the directions of a pre-established rule. When compared with a standard
Genetic Algorithm, non-adaptive non-incest Genetic Algorithm, and both positive and
negative assortative mating, the adaptive threshold method proves to be competitive,
specially when tested on multimodal and deceptive optimization problems, and also
when using smaller populations. When compared with the top performing negative
assortative mating approach, results are reportedly more consistent from run to run,
specially on harder problems.

The discussed approach was later tested by Fernandes et al. [90, 91, 185] on dy-
namic problems , although two modifications were proposed as a better suit to the
effort: the varying size population was adjusted and now employs a replacement strat-
egy where new offspring replace the n worst individuals in the population; the initial
mating threshold was relaxed, thus allowing for more similar individuals to pair. In
tracking the extrema of a set of dynamic adaptive functions, the approach performed
competitively with a standard Genetic Algorithm, standard steady-state Genetic Al-
gorithm, negative and positive assortative mating and two tailored random migration
strategies from the literature [91]. In other published papers, a comparison is made be-
tween static and dynamic environments [185], and a dynamic knapsack problem is also
targeted [90]. In the knapsack problem, the approach performed as well as a standard
Genetic Algorithm, with the lack of difference being related to the problem being less
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hard to tackle, thus mitigating potential advantages. Overall, the approach seems to
outperform others on more difficult instances of the problem and to scale particularly
well as the size of the dynamic function grows, specially on deceptive problems. On
the other hand, the algorithm seems to react better to a low extrema change rate but
struggles to keep up on higher rates. On this topic, negative assortative mating seems
to respond quicker to deep changes while positive assortative mating responds well
to fast, small changes. Regarding its behavior, it’s argued that the adaptive operator
contributes to a higher population diversity, and while making slow fitness gains in the
beginning, it follows the optimum closer and more consistently. Overall, the operator
seems to profit from its ability to emulate negative assortative mating (which seems ap-
propriate for deceptive functions) and from adapting its pressure according to the state
of the search process and as a reaction to changes.

Ting et al. [285] integrated tabu search into a mating strategy by adding two at-
tributes to each individual’s genotype: a clan id, and a tabu list of clan ids with whose
individuals mating is forbidden. At each selection step, two individuals are selected for
the roles of female and male through traditional selection methods, at which point two
criteria are checked for reproduction to go through. Firstly, a potential offspring is pro-
duced and if its fitness is better than the best found in the population, then the offspring
is introduced in the population. Secondly, if the first criteria isn’t met and if neither of
the selected parent’s clan id is featured in each others tabu list, mating is also allowed.
If neither criteria is met, mating is restricted and a few tries are made to select a new
and appropriate male. In a last case scenario, after a limit number of tries is reached,
the selected parents are simply mutated and reintroduced in the population. If a suc-
cessful mating pair is found, their tabu lists are updated to include each others clan id,
using a first-in-first-out approach in case the list is full. Their offspring will, apart from
the remaining genetic material, also inherit the tabu list from one of the parents. As a
result, each individual can keep track, through its own tabu list, of its own ancestry line
(either a patrilinear or a matrilinear one, depending on the inheritance assumptions).
The authors argue that by restricting mating between individuals that share ancestry,
diversity is promoted through outbreeding, a rule whose enforcing pressure can be re-
laxed through the maximum size of the tabu list. In a way, the tabu list is an adaptive
component, as it is inherited and adapts through pre-estabished rules. A comparison
is made between the two-criteria mating strategy coupled with self-adaptive mutation,
and conventional approaches (Genetic Algorithms, tabu search, and a Genetic Algo-
rithm that runs tabu search for local search) on a traveling salesman problem, with
results showing improvements in solution quality and convergence speed.

Al-Madi and Khader [5], while aiming at studying aspects of social interactions
suggest, a restricted mating approach on top of a distributed model of evolution. By
itself, the distributed nodes restrict mating within the sub-populations in each node,
while still allowing migration and the consequent injection of genetic material. Ad-
ditionally, mating is inhibited between genders, and parents and offspring. In order
to achieve this, each individual keeps record of their immediate ancestry (its discussed
adding a second level to inhibit mating with parents and grand-parents) and is attributed
a gender at initialization. The study presents only early stage experiments on a knap-
sack instance.

4.1.3 Restricted Competition
Goldberg et al. [57] bring restrictions to the selection of individuals competing in a
binary tournament selection. Whereas a traditional approach would see two individu-
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als randomly selected in the population, the proposed approach selects one individual
randomly and the second one in a restricted manner. Individuals are randomly selected
until one that is sufficiently similar to the first one comes up (genotypic similarity bel-
low a pre-established threshold). The competitor may not however be the same. If
no such individual can be found after a few tries, the first individual wins the tourna-
ment by absence of opposition and proceeds without being subjected to reproduction.
Mahfound [188] has also tested restricted competition, successfully finding all peaks
on a test function. As a follow-up, restricted mating is enforced, so that parents mate
only if they are satisfyingly similar, otherwise moving on to mutation. The combina-
tion of both restricted competition and mating aims at reducing destructive crossover
and consistently maintains the distribution of the population over the previously found
peaks.

While restricted competition has not been attempted very often, it shares strong
resemblances with restricted mating as well as with crowding mechanisms. The main
differences are that restricted competition imposes selection rules upfront rather than
after the pairing of individuals, such as with restricted mating, or at replacement, such
as with crowding methods. Nonetheless, the elitist nature of the operator is maintained,
successfully influencing the reproduction, or replacement, rates of individuals accord-
ing to their proprieties in comparison with others.

4.1.4 Crowding
De Jong [68] was among the researchers first introducing the concepts of niching and
crowding, having suggested replacement operators that would introduce new individu-
als in the population in substitution of the most similar one. Such methods are inspired
by nature’s geographical barriers and aim at maintaining diversity while searching mul-
tiple parts of the search space simultaneously by avoiding convergence. While their
relation with Mate Choice is not straightforward, the mechanisms used to compare
between individuals have been regarded as relevant, and often cited in Mate Choice
studies. The mechanism introduced by De Jong [68] was inspired not by nature’s mat-
ing dynamics but rather by the competition between individuals of the same ecological
environment for a limited amount of resources. This effect is bound to be more promi-
nent within the same niche or population with closely similar individuals rather than
between dissimilar individuals or different niches. Through competition, stronger in-
dividuals remain while weaker ones are crowded out by lack of access to resources,
thus maintaining the size of the population in balance with the amount of available
resources.

In Evolutionary Algorithms, this allows for a replacement strategy that can hope-
fully better contribute to diversity, and that may be relevant to the study of Mate Choice
because of how selection for replacement can often be akin in strategy with selection
for mating. For instance, De Jong’s crowding strategy [68], applied on a steady state
Genetic Algorithm, worked by producing offspring through a standard operator and
then randomly selecting a set of replacing candidates, from which the most similar (ac-
cording to hamming distance) to the new offspring is selected for replacement. The aim
was at maintaining diversity, which was achieved to some extent, although convergence
reportedly still happens due to drift.

Cedeño and Vemuri [46] suggest an approach that accounts for both similarity and
fitness, in a worst-of-the-closest operator. They rely on positive assortative mating to
select individuals as males to pair with traditionally selected females, but focus on the
role of a replacement strategy that consists of multiple steps: first, multiple groups of
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individuals are randomly selected from the population; secondly, the individual from
each group that is most similar to the offspring being inserted in the population moves
to a second selection pool; thirdly, the worst performing individual in that pool is sub-
stituted by the newly produced offspring. The authors report some ability to maintain
the population spread over various peaks but don’t show how much that may be related
to the composite replacement strategy or rather to the assortative mating operator.

Culberson [56] employs a variation of a replacement strategy that tries to take the
best profit from the crossover operator. The proposed approach restricts mating in
order to promote the pairing of individuals with similar fitness. Each pair, instead of
reproducing once, does so n times and group the corresponding n pairs of offspring in
an intermediate population. Two alternatives are then considered to replace the parents:
i) keep the fittest pair of offspring (fitness of the pair is the fitness of the best individual
in the pair); ii) keep the fittest pair only if they are better than the pair of parents. As
a result, and because no mutation is applied, the algorithm maintains and reorganizes
the genetic pool, promoting fit individuals to mate with fit individuals and unfit to
mate with unfit ones, thus contributing to the emergence of two sub-populations that
become more and more unlikely of mating between them. The replacement strategy
contributes actively to the effect by being elitist, and so does the means by which pair
fitness is calculated. Harik’s [125] method relies on random parent selection and as
two offspring are produced, a replacement pool is gathered also randomly from the
population. Each offspring is compared to the individual in the pool that is his most
similar (by phenotypic measure) and the fittest of the two is maintained. The author
reports being able to reasonably maintain presence of the population among all peaks in
a set of multimodal functions, and regards that the generations span where that behavior
is possible is exponentially related to the size of the replacement pool.

4.2 Mate Choice in Evolutionary Algorithms
The topics covered in the previous section represent an interesting collection, both
on an Evolutionary Algorithms context and specifically for Mate Choice. On top of
knowledge specific to each study, they hint at the engineering perspective that is often
present in Mate Choice strategies. This chapter will show how broad such strategies
can be and how they are inspired by Mate Choice theory, or Sexual Selection as a
whole, in different ways and on different levels. At this point, it’s important to take no-
tice that suggesting that all the approaches discussed in this chapter are indeed means
to introduce Mate Choice in Evolutionary Algorithms might be stretching the truth.
However, because of their parallelism with different aspects of Sexual Selection, a full
review would feel incomplete without mentioning their contributions, even if only for
contrasting purposes. Briefly expanding on this remark, not all approaches in the lit-
erature are centered on mating preferences, gene-centered evolution or female choice,
which are arguably the core of Mate Choice theory, specially if following Fisherian
rather than Wallacean ideas. Still, from an engineering perspective, there are many
ways to introduce behaviors that are related to Mate Choice or Sexual Selection (as
has been already shown in the previous section), and that can often help achieve goals
while maintaining a relative simplicity.

A good number of authors rely purely on external rules to determine the behavior of
individuals along a run, rather than depending on a feedback loop for self-adaptation.
For instance, some studies focus on gender dynamics, such as the alleged exploring role
of males versus the exploiting role of females, and suggest achieving such behaviors
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by using different selection pressures. Gender determination procedures alone may
also have enough impact to impose such behaviors, as well as other. Some focus on
population wide rules for choosing mating partners, which promote certain behaviors.
Others try to evaluate genotypic or phenotypic information on mating candidates, or to
combine different metrics, but approaches that rely solely on fitness based operators can
also be found to successfully control selection pressure or the pairing of individuals.
Furthermore, some authors make an attempt at generalizable methods while others
try to make the best use of problem specific knowledge, whether they are tackling
unimodal, multimodal, multi-criteria, or constrained functions, among others.

Despite the differences between some of these approaches with both the Wallacean
and Fisherian genetic models discussed previously, one can’t but see an implicit rela-
tion. Even without imposing a direct fitness cost on certain features under Mate Choice
pressure, many times there are assumptions that aim at maintaining an healthy popu-
lation and are therefore purely Wallacean as they contribute to the good of the species
(costs are sometimes implicit). Selecting for dissimilar individuals as an attempt to
maintain high diversity is an example of such a scenario. A different example is that
of using fitness as part of the attractiveness value. Choosing for individuals that show
good fitness through their attractiveness can be a way of introducing choice for good
sense. If part of the Mate Choice strategy falls under evolutionary pressure, the same
parallelism is maintained. Depending on the relation between the evaluated features
in mating candidates and fitness, there are instances where a behavior of good taste
for good sense is present. If age of mating candidates (in generations), is assessed
as an indication of how many survival steps it has overcome, female preference for
older individuals may develop due to its implicit benefit. As can be seen, depending
on the external assumptions and how Mate Choice is designed, Wallacean ideals can
be appealing. Still, there are also scenarios of Fisherian self-reinforcement and also in-
stances where it’s remarkably difficult to say for sure if certain features impose or not
fitness costs. The following subsections will cover a collection of studies related with
Mate Choice in Evolutionary Algorithms in an organized and comprehensible way.

4.2.1 Fitness based evaluation
Alleson [7] has suggested that a traditional selection strategy is akin to a model where
all individuals have a mating preference for the fittest individual in the population. A
scenario is described where such a mating preference might be evolved, by splitting
the population in deciles according to fitness, and having each individual’s preferred
decile encoded in the genotype. During Mate Choice, the corresponding gene is used to
guide the selection of mating partners. Inheritance is also discussed as having various
potential behaviors, including inheriting from one parent or combining the preferences
of both parents. While results are not presented for any application, a discussion of
future work involves the integration of phenotypic features other than fitness into at-
tractiveness evaluation. The author suggest that such a model would be more intuitive
and closer to natural behavior, while allowing for problem specific indicators such as
angles, measures, lengths, etc. to be included. This example is a simple, yet purposeful
illustration of how fitness can be used as a mating preference. However, fitness based
selection has been used as a component on very different approaches

Bandyopadhyay et al. [19, 20] implemented a two genders model where each in-
dividual’s sex is determined by a combination of two genes. If both are zero, then the
individual is a female, otherwise it’s a male. While selection for a mating pool is done
from both sub-populations combined, using a traditional fitness based method, pairing
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is afterwards done randomly and with no repetition, between females and males in the
mating pool. Eventually, one of the genders may run out of individuals, at which point
all the remaining individuals will pair with the fittest one remaining (even though they
have the same gender). At initialization, one sub-population is populated randomly
(in one study its the females while on the other is the males, coming nonetheless to
the same end) but the other one is generated in a way that attempts to maximize the
hamming distance to the previous one. Their composition as well as the size of each
sub-population may however change during reproduction, as two offspring will have
their gender attributed through inheritance. Each parent contributes with a a bit, mean-
ing that gender will depend on whether the male parent contributes with a zero or a
one. This may result in the production of two females, two males, or one male and one
female. The approach was tested on various binary function optimization problems
[19] as well as on pattern classification problems [19, 20] (including multidimensional
problems), reaching improved efficiency when compared to a standard Genetic Algo-
rithm. Selection in this case is ruled by fitness, similarly to other standard approaches,
however as discussed by the authors, the initialization strategy was an important con-
tribution which, aided by the two genders mating strategy, introduced dynamics that
helped balance exploration and exploitation.

Chakraborty and Chakraborty [47] suggest two approaches for the pairing of mat-
ing partners, either according to their fitness or according to their age similarity. Their
setup selects individuals from the population and into a parent’s pool using standard
operators, after which pairs are selected randomly. If using the fitness based method,
the normalized fitness difference between the two individuals is first measured and
transformed through a function following a normal distribution. The function returns
a higher mating probability if individuals have similar fitness, and decreases as their
difference increases. The width of the function is controlled by a second function that
depends on the current generation number. The mating probability between similar
individuals is therefore more likely in the beginning of each run in order to promote
exploration (in each niche) of the search space and increasingly narrow by the end of
the run in order to impose convergence. A randomly generated number is used to deter-
mine if two individuals reproduce together according to their mating probability. Al-
ternatively, the age based function measures the average age of two individuals against
the average population age. In this case, new or mutated individuals are attributed age
0 which increases from generation to generation if individuals survive. The approach is
built to give a higher mating probability to individuals whose age is greater than aver-
age, in order to prevent new individuals from fully taking over the search process, thus
promoting exploration, while at the same time relying more on survival proven individ-
uals. The two approaches are tested separately against a standard Genetic Algorithm,
with and without linear fitness scaling, on unimodal and multimodal maximization
problems. Results show that both approaches contribute to a better exploration of the
search space and that the fitness based approach achieved the best solutions. The au-
thors suggest coupling the approaches together as well as with others, and discuss the
tuning of parameters in order to achieve higher exploitation on unimodal functions and
exploration on multimodal ones.

Vrajitoru [301, 302] discusses a model with four genders: males and females can
mate with the opposite sex or any of the two other; self-fertilizing individuals can mate
with any individual including themselves; hermaphrodites can mate with any individ-
ual other than themselves. Other relevant rules apply to the model: if males or females
can’t find an appropriate mate at a given generation, sex changes can occur in order
to escape situations where all individuals have converged to one of these two genders;
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also, if one of the selected parents is a male or a female (from among the four choices),
resulting offspring can either be a male or a female (heterosexual individuals act as a
loosely coupled group). Gender is nonetheless inherited from parents to offspring as
part of the genotype. Initial experiments using fitness proportionate selection and con-
strained pairing show that convergence to a single gender occurs fast and often to self-
fertilizing individuals. This may be the effect of that gender being the only one able to
self-reinforce by choosing individuals of the same gender, thus reaching a higher com-
petitive advantage. Further tests compared the following setups coupled with fitness
proportionate selection: self-fertilizing only; four genders; hetero only (male/female);
hermaphrodites only. On a set of standard and deceptive optimization functions, best
performance was achieved most times by hetero or hermaphrodite setups. The adap-
tive four gender scheme is almost never the best, which suggests that avoiding self-
fertilization can contribute positively. It’s also suggested that hetero strategies can be
a better fit to large populations whereas non-partitioning hermaphrodite populations
have an advantage if they are small.

The study is further expanded by introducing social mating restrictions. During se-
lection, one individual is selected for the role of female through a fitness proportionate
method and the male is selected from her neighborhood, with either first ordering the
population by fitness, or maintaining it disordered; Ordering promotes the pairing of
individuals with similar fitness while the alternative promotes the pairing of individu-
als that were introduced in the population at the same step or closely, which benefits
shared ancestry. The analysis shows that such design choices have a greater impact on
solution quality than the previous reproduction models. It’s also suggested that as the
size of the population increases, differences between mating schemes become less and
less relevant. A later study by Vrajitoru [303] expanded on the topic with two main
experiments using the four genders described above. The first experiment, including
no Natural Selection (random selection) shows that in the short term, sexual differenti-
ation features disappear and over the long term, hermaphrodite individuals are chosen
against as well. Simple asexual reproduction seems to prevail and dominate the popu-
lation through cheer competitiveness. The introduction of Natural Selection shows that
the sexual features of high fitness individuals tend to dominate the population and are
not always the same ones that are found in the setup with no Natural Selection. The
interaction of both forces seems to contribute for individuals with low probabilistic
expectations of survival to remain present in the population.

Zho et al. [327] describe a Genetic Algorithm with a diploid population organized
in two genders. Much like other traits, in this case gender is determined through an
AND operator between both chromosomes, specifically on the last bit or the last three
bits, depending on problem dependent representations. In their approach, restrictions
are imposed through a reproductive age threshold (measured in generations), below
which males can’t be matched to females and can only reproduce asexually. Dur-
ing their mature age, females and males are ordered according to fitness and matched
through their rank, meaning that possibly not all females are allowed to mate. New off-
spring are generated through crossover followed by mutation, which has a higher rate in
males, promoting exploration and exploitation in males and females respectively. The
best performing offspring will go through a replace-worst strategy to enter the popu-
lation, which may have a dynamic size as a result of individuals being excluded when
they reach a given age. The approach was tested on the minimization of five functions.
Reportedly, the approach converges to the global optima on the whole test set and does
so faster than a multi-species Genetic Algorithm used for comparison. The authors
discuss that the behavior is a result of a broader diversity.
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Tahera et al. [281] discuss two approaches for gender assignment in Genetic Algo-
rithms. During initialization, gender is attributed to meet a pre-established male-female
ratio and, when new offspring are spawn, an adaptive assignment approach attributes
gender based on population densities, meaning that if the population count of one gen-
der is low, that gender will be assigned in order to balance the population. Otherwise
gender is attributed randomly. A second strategy attributes gender to individuals at
each generation, by ordering individuals according to fitness and attributing a female
gender to the fittest half and male gender to the bottom half. Independently of the strat-
egy, selection of parents is done in each gender with the same fitness based operator,
so that the only restriction is that male and female pairs have to be formed, arguably
promoting diversity. The approaches were compared to a standard Genetic Algorithm
and a constant gender assignment strategy (one offspring is female and the other is
male), and random assignment, on the design of pressure valves. Results suggest per-
formance gains with both the proposed methods. A different study by the same authors
[282] using the adaptive gender assignment introduced a few other design choices.
When reproduction occurs, the two resulting offspring compete and only the fittest one
is introduced in the new population. Also, reproduction contributes to building half of
the new population, while the remaining half consists of the top 50% of the previous
population. Mutation rates are also different for males and females, with males being
given a higher exploratory character through a higher probability of mutation. The new
approach is applied on the design of tension strings and compared to a standard Ge-
netic Algorithm, an alternative gender-based Genetic Algorithm [79] with standard and
higher mutation rates for males, and adaptive gender assignment with standard muta-
tion. Results achieved by the approach are reportedly competitive, mostly through the
introduction of population diversity.

Sodsee et al. [274, 275] apply a gender based Genetic Algorithm where sex deter-
mination is accomplished through an extra gene in the representation. Initialization is
made so that the corresponding sub-populations have a balanced size and inheritance
aims at maintaining that balance. During selection, individuals are selected through a
fitness proportionate method from the whole population and placed on a mating pool,
from which females and males are randomly selected and paired without replacement.
Reproduction takes place as long as there are two genders in the mating pool and a
crossover probability determines their ability to reproduce. Alternatively to reproduc-
tion, individuals may suffer mutation with different probabilities and operators. Males
are mutated on a higher rate in order to promote exploration. Afterwards, offspring
compete with the previous population for a spot. The approach is applied to multi-
objective functions as well as to a computer network design application. The authors
report finding pareto-optimal solutions on the first and non-dominated solutions on the
latter more efficiently than a standard approach. Despite the approach being generaliz-
able, it seems to struggle with premature convergence on some runs.

Cheng et al. [49] introduce a scheme with simple individually encoded mating pref-
erences. Using a two genders population, they suggest that females encode a preferred
fitness value and that, after a female is selected through a standard operator, the pairing
male is selected in order to best match the female’s preference. After reproduction,
the offspring are attributed a gender based on a replacement strategy that maintains the
sex ratio stable, and females inherit their mother’s mating preference. Preferences are
then adapted through a function that biases it towards the best fitness value found so
far. The approach is therefore not purely self-adaptive, but is rather influenced by a di-
rectional adaptation mechanism. The authors report performance improvements when
compared with a standard Genetic Algorithm on most instances of a set of unimodal
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and multimodal functions for maximization.
Nazmul and Chetty [207] also develop a fitness based approach for Mate Choice.

They propose organizing the population into three clusters labeled best, average, and
worst. Individuals are attributed to each cluster according to their fitness and in a way
that ensures that all three clusters are populated, which is achieved by adjusting the
limits of each cluster as a response to the population. This is done before each selection
phase, at which point three mating candidates groups are also established, one for each
of the clusters and equally labeled. A preference matrix controls how these mating
candidates groups are populated, by registering for each cluster a preference weight
linking to all three clusters. By using the preference matrix, the mating candidates set
of each particular cluster will be filled with individuals in accordance to the weights.
The most preferred cluster will contribute with many candidates, the second preferred
group with an average number of candidates and the least preferred group with only a
few. After all three groups have been built, selection can begin.

All individuals in the population are given a chance to reproduce as a female, and
depending on the cluster that they belong to, they will choose a mating partner from
the corresponding candidates pool. In this scenario, each mating partner is randomly
selected from within the pool. The preferences matrix ensures that each mating pool
keeps a selection of individuals sampled in a way that works best for each cluster,
by dynamically adapting to successful reproduction. At each generation, the success of
each pairing is considered by assessing if the offspring are better than at least one of the
parents, and if the success rates are not in accordance with the weights in the matrix,
they are rotated (this is a lightweight way of changing the sampling priority). The
authors discuss potential benefits brought by this approach on diversity maintenance,
favoring fit individuals while providing a fair chance to less fit ones, and reducing the
chance for takeover. The approach is compared to tournament selection and roulette
wheel selection on a large set of unimodal and multimodal functions. Arguably, the
approach is able to dynamically adapt selection pressure by using feedback, to adjust
the contributions of each cluster to mating candidate pools while ensuring that they all
get a chance to contribute. Overall, the strategy has beneficial effects in convergence
speeds.

4.2.2 Selection pressure
Rejeb and Abuelhaija [240] discuss a two genders approach for Genetic Algorithms.
They suggest ordering the first population according to fitness and attributing a gender
tag (male or female) in an alternating way. The gender tag is encoded as part of the
genotype, so that during reproduction, a male and a female are always bred, assuring
the gender balance in the population. Pairing is done using traditional fitness opera-
tors, although ensuring that mating only happens between a female and a male. The
approach is applied first on multimodal function optimization but also on network par-
titioning problems. When compared to a Genetic Algorithm with no genders on each
test set, the gender based setup finds better performing solutions while requiring fewer
generations. While the approach is purely fitness based by design, the focus on the
comparative study was more on the impact of gender attribution and the splitting of the
population into two subgroups, specially regarding the selection pressure of individu-
als.

Sánchez-Velazco and Bullinaria [253, 254] studied a Genetic Algorithm with two
genders, with selection methods applied independently, favoring competition between
males and co-operation between females. The population is divided at initialization,
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randomly generating individuals for both genders. Two operators are then applied,
selecting one individual from each gender. The male selection operator, favors compe-
tition in fitness, therefore traditional operators can be used. Female selection is done
in order to favor co-operation within the population. The co-operative fitness of each
female is calculated as a weighted function accounting for three factors: competitive
fitness is the standard fitness measure; fertility is determined through a triangular func-
tion centered around the age of maximum fertility (measured in generations) and with
a given width that also sets the lifespan of individuals; female contribution is measured
as the fitness difference between her last male offspring and her potential male partner.
After selection, two offspring are produced, one of each gender, and relying on inde-
pendent crossover points. Special inheritance rules apply: the male offspring inherits
the head of the chromosome coming from the mother and the tail of the father’s chro-
mosome; the female offspring, using a different crossover point, inherits all its genes
from the mother, although inverting the first half. Reparations may be required at this
point and standard mutation applies, with a higher probability on males than on fe-
males, for a higher exploratory character. Interestingly, the study proposes a composite
evaluation metric for females. However the focus is on introducing different selection
pressures to promote different behaviors between genders.

The approach was first applied on a traveling salesman problem and compared to
a standard Genetic Algorithm [253]. On a second study, traveling salesman instances
were also tackled, as well as two test functions for global maximization [254]. Overall,
the authors discuss that the approach contributes to avoiding stagnation and helps main-
tain diversity, reportedly contributing to overcoming standard Genetic Algorithms on
all test functions. The linkage between problems and parameters is also discussed, and
the higher design complexity is weighted against a higher freedom of behavior. The co-
operative fitness weights are discussed as being able to improve the competitive fitness
and diversity of females. A technical report by Deslauriers [70] includes a paramet-
ric study comparing the proposed approach with a standard GA, using roulette wheel,
tournament selection, or a biased tournament operator for the selection of individuals
from each gender. Co-operative fitness is used for female selection nonetheless. The
report suggests that gender based evolution is not always beneficial, depending on the
context. It is argued that while elite individuals benefit from the setup, reaching closer
to optimal values, the population as a whole rarely improves. The author is looking
more into the system for its natural evolution aspects than for the sake of optimization.

Wagner and Affenzeller [304] study the application of different traditional meth-
ods for the selection of female and male parents. The argument made is that male
vigor and female choice can be broadly mimicked by traditional methods and its con-
trol of selection pressure. Using an instance of the traveling salesman problem, the
authors study how the average selection pressure can be adjusted by choosing different
selection schemes for each parent. They suggest using random selection for females
and a higher pressure method such as a fitness based roulette wheel for the selection
of male parents. Nonetheless, their study includes all possible combinations of ran-
dom, roulette wheel, linear ranking and tournament operators of different sizes. They
show that it’s possible to have some control, which should be adapted to the design and
problem at hand.

An alternative study authored by Affenzeller and Wagner [3] also relies on tradi-
tional methods for the selection of parents. However, in this case, their replacement
strategy shows two possible behaviors. They require new offspring to go through a
replace-worst strategy until a pre-established percentage of the population is renewed.
The offspring that have not been accepted are then randomly sampled to fill the re-
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maining spots in the new population, successfully replacing all individuals from the
previous generation. The authors argue that this is similar to having individuals tryout
multiple partners until one or more offspring are successfully accepted in the new pop-
ulation. It’s discussed that such a mechanism is a self-adaptive way of adjusting the
selection pressure to the characteristics of the population. Fewer individuals are pro-
duced when fitness gains are easy and more reproductive steps are necessary when the
population finds it difficult to make performance gains. In the first scenario, there’s a
better chance that more individuals will find their offspring in the following generation.
The approach is tested on various n-dimensional test functions and results show that the
approach is able to find the optima even on highly multimodal instances. The authors
finally argue that the approach is capable of generalization to any representation.

Snijders [273] relied on a two genders Genetic Algorithm to tackle NK-landscape
problems. Individuals are generated randomly and attributed a gender so that the pop-
ulation remains balanced with half females and half males. During selection, a tourna-
ment operator is used on both males and females although with different tournament
sizes. Males are selected through a larger tournament, promoting exploitation, while fe-
male selection uses a smaller tournament, thus giving a higher chance for exploration.
Mutation on the other hand is higher for males, thus also promoting exploration. A
balance between exploration and exploitation is aimed for males. While mutation gen-
erates new individuals, selection keeps a high pressure on new mutations, promoting
profitable mutations but deleting hindering mutations fast. Results show slight perfor-
mance improvements when compared to a baseline approach.

Drezner and Drezner [79] describe a Genetic Algorithm with two genders, male
and female, randomly attributed to the initial population so that the ratio is balanced.
The first parent is selected randomly from the population but the second parent is se-
lected from the subset corresponding to the opposite gender (also randomly). After
recombination, offspring are attributed a gender randomly, therefore gender ratio is
dynamic and doesn’t have to remain balanced. During the experiments, the authors
report not coming across situations where only one gender prevails. The approach is
tested against a standard Genetic Algorithm with no genders on four problems: the
Golf Scramble problem, a distance-dependent Unreliable Multifacility Location Prob-
lem, a Network Design Problem, and a Quadratic Assignment Problem. Overall, the
results were improved on all instances, and the population average diversity measured
through hamming distance was seen to be maintained higher throughout the evolution
process.

Ansótegui et al. [14, 284] consider the use of a population with two genders for
the problem of automatically configuring solvers through the tuning of their parame-
ters. They rely on a tree-based representation to maintain a specific structure between
the evolving variables, and different selection strategies for each gender. The popu-
lation is separated into competitive and non-competitive groups, which are regarded
as females and males respectively. During selection, the fittest 10% of females are
selected for reproduction and 70% of males are selected for mating. Each male is
then randomly assigned to a female and their offspring is randomly attributed a gender.
Elimination of individuals that have been active for three generations keeps the size of
the population from bloating. Reproduction is done through problem-specific opera-
tors. Reportedly, the approach produces gains in configuration time when compared
with other approaches, including a standard Genetic Algorithm. It’s argued that the ap-
proach can reduce the need for testing a lot of bad configurations. The authors discuss
that this may be the result of boldly selecting for the fittest individuals while relying on
non-competitive individuals to provide gene diversity to the search effort.
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Ramezani and Lofti [236] suggest attributing female or male genders randomly
during population initialization in a half-half ratio. During selection, females all have
one chance to reproduce and for each one, a male partner is selected using a tradi-
tional selection mechanism. Furthermore, pairings where the female and male share
one of the progenitors or are themselves related through parenthood are restricted from
mating. New offspring are attributed a random gender and, following mutation, are
added to the population. After each reproduction phase, the population is ordered by
fitness and its initial size is enforced by removing the bottom individuals. As a mecha-
nism to avoid deadlocks caused by the domination of one gender over the other, when
necessary, new randomly generated individuals are introduced in the population. The
approach is tested against a standard Genetic Algorithm on a large set of optimization
problems, showing performance gains on all instances.

Xu et al. [320] suggest applying a two gender approach for constraint satisfac-
tion problems. In their model, at each generation individuals are randomly divided
into males and females, with males competing for n elitism spots for reproduction and
females sharing the same probability for mating. Offspring are generated by pairing
elite males with randomly selected females. Tested on a Traveling Salesman problem,
balanced incomplete Block Design and Langford problems, the approach improves
performance when compared with a standard Genetic Algorithm. The approach is then
introduced in a setup where increasingly complex instances of the problems are tack-
led, with the population of each run being initialized with the best individuals from
the previous one. Results back up the potential benefit of coupling such strategies by
showing that their combination can successfully solve the proposed problems.

4.2.3 Assortative Mating
Assortative mating promotes the selection of the most similar (positive assortative mat-
ing) or the most dissimilar (negative assortative mating) mating candidate. Arguably,
this is the model most found in the literature. In its basic form it relies on a simple
external rule, which can nonetheless impose complex behaviors. Some authors build
on its simplicity by allowing for part of the parameters or assumptions involved to be
encoded in an individual-level approach. Like other models, the impacts highly depen-
dent on initial conditions and the topology of the search space. For instance, positive
assortative mating can lead to rapid convergence in the population and loss of diver-
sity. On the other hand, it may promote niching or speciation through exploitation of
multiple areas in the search space. Negative assortative mating is better regarded for its
contributions to maintaining diversity but can also result on non-productive crossover
operations. In the end, design choices on assortative mating may be worst or better
suited depending on the target problem.

Ratford et al. [237] introduce an attempt at capturing both the behaviors of positive
and negative assortative mating. For doing so, they suggest modeling attractiveness as
a triangular function, limited in [0,1] and with a pre-established center. During evalua-
tion, the hamming distance of each mating candidate to the active female is measured
and normalized, and thereafter fed as input to the function. The output will determine
the attraction value. In this case, the center of the function is set manually and adjusts
the behavior of the algorithm. By setting it closer to the top extreme, negative assorta-
tive mating is valued, while the inverse behavior can be reached by setting the center
closer to the bottom extreme. As a result of the triangular function, not only is the
preference for negative or positive assortative mating modeled, but also a sense of con-
trast through the steepness of the function. The authors also propose substituting the
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triangular function with a skewed bell curve for a more detailed control of its behavior.
As a follow-up, it’s suggested that the center of the function dynamically adapts

at each generation, initially favoring mating between similar individuals but progres-
sively shifting into mating between dissimilar ones. Regarding selection of individuals,
three approaches are discussed: in tournament selection, a female is selected and so is
a set of mating candidates, from which the most attractive will play the role of male; in
marriage selection, after the female is selected, individuals are picked randomly from
the population until one is found to be more attractive than the first one (which acts as a
threshold); in courtship selection, an individual from the population and a threshold are
selected randomly, and if that individual’s attractiveness is above the threshold, then it
will be selected as a pair, otherwise the process is repeated. In the later scenarios, if
no pair is found for a few tries, the most attractive individual evaluated so far is cho-
sen. The Mate Choice approach is coupled with three algorithms: traditional Genetic
Algorithm; a crowding algorithm; and a spatial reproduction algorithm. In all cases
the female is selected according to each algorithm and the male through Mate Choice.
The mix of setups is tested on a large number of multimodal problems using binary
coded representations. Results suggest that the combination of crowding with Mate
Choice produces quite poor quality solutions while coupling Mate Choice with spatial
reproduction performed better than either approach alone. Furthermore, Mate Choice
improved the Genetic Algorithm’s ability to locate and maintain multiple optima.

In a complementary study [238], a broader set of mating strategies were consid-
ered. Firstly, two seduction functions, triangular (not the same as the one above) and
bell shaped functions, whose depth and center are manually controlled, are compared
between them, with no significant differences being pointed out. Secondly, three means
to determine an individuals attractiveness value were proposed: using the seduction
function alone; averaging the seduction function with a normalized fitness; multiplying
the seduction function by a rank based normalized fitness. On preliminary tests, using
seduction alone performed better than the other composite approaches. Preliminary
testing on the use of a phenotypic metric (euclidean) distance and genotypic metric
(hamming) showed that their performance may be problem specific and are thus incon-
clusive. Still, both performed better than a building block metric. The three aforemen-
tioned selection operators (tournament, marriage, and courtship) were also compared,
with courtship consistently outperforming the other two. The setup combining the best
design choices was compared on a set of optimization functions, outperforming tra-
ditional Genetic Algorithms persistently. An additional setup was tested, where Mate
Choice is coupled with an incest prevention threshold, below which attractiveness for
a particular individual is reduced to zero. While preliminary results showed it to be
contributing, an extended study suggests that it may work as an intrinsic part of Mate
Choice with implications hard to isolate.

De et al. [65] propose three approaches for positive assortative mating selection.
The first one selects the fittest individual as female and the individual in the popula-
tion whose hamming distance is minimum but not zero as a male partner. The second
method works similarly on the first selection step but then selects as the next female the
individual whose hamming distance is minimum but not zero to the previous male. The
new male is selected by the same means as in the first operation. In the third approach,
the first female will be the fittest individual in the population and the male will be the
second fittest, and so. In all methods, individuals are allowed to mate only once and
are thus removed from the population. The authors suggest that while hamming dis-
tance is a good genotypic measure, fitness is an appropriate phenotypic measure. The
three approaches were compared to a standard Genetic Algorithm and to Eshelman and
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Schaffe’s non-incest approach [86, 87, 88] in a test set including function optimization
problems, a task of choosing parameters for a multi-layer perceptron, and a problem
involving the extraction of object regions from noisy images using neural networks.
Results show general improvements when compared to a standard Genetic Algorithm.
When compared to the non-incest approach, the first method performs sometimes worst
while the third method is consistently better. As a conclusion, for the particular scenar-
ios tested, fitness-based pairing seems to outperform hamming distance based pairing.

Fernandes et al. [95] have also tested the usefulness of assortative mating as a
selection method. In their approach, an individual is selected for the role of female
using a traditional fitness-based selection operator and a set of mating candidates is
also selected through fitness. Each of the mating candidates is then evaluated according
to its hamming distance to the female and the most fitting one is selected for the role
of male. Two approaches are considered: positive assortative mating favors the most
similar mating candidate; negative assortative mating favors the most dissimilar one.
On a vector quantization problem, similarity was measured using a squared euclidean
distance. The approaches were compared to an iterative search method and Genetic
Algorithms employing the iterative method. While the iterative approach reportedly
found the optima on some instances of the problem, other approaches came very close.

The positive assortative mating approach produced results similar to those of a stan-
dard Genetic Algorithm while the negative approach outperformed both, specially on
more difficult instances. The negative approach seems to become stuck in local op-
tima less often, increasing its chances of finding the global optima. The size of the
set of mating candidates was also discussed. It’s suggested that boosting the selection
pressure by increasing the set size is beneficial for negative assortative mating, due to
promoting the pairing of dissimilar individuals which results on an exploratory behav-
ior. When coupled with a population of varying size, as tested by Fernandes and Rosa
[89, 92], the aforementioned algorithm outperformed a standard Genetic Algorithm
with both variants. Tested in a royal road problem, the negative approach achieved the
best results, most likely due to its increased aptitude to escape local optima.

In two publications, Huang [135, 136] applied negative and positive assortative
mating to royal road problems, relying on hamming distance to measure the distance
between a female parent and each remaining individual in the population, for the role of
male. Initially, it’s suggested selecting the mating candidate whose distance is higher
or lower, in a tournament fashion, but it is also suggested to attribute a selection proba-
bility proportional or inversely proportional to hamming distance. Using Markov chain
analysis, it’s demonstrated that on this particular scenario, dissimilar mating produces
a higher population diversity than similar mating and contributes positively to find-
ing a single top performing solution, an effect which becomes more significant for
performance as the mutation rate is lowered or as the objective function becomes more
complex. Nonetheless, it’s also shown that dissimilar mating can result on a higher rate
of destructive crossovers, disrupting building blocks and causing potential decreases in
the population’s average fitness. Similarity mating is shown to avoid such concerns.

Ishibushi and Shibata [140, 141, 142, 143, 144] couple a mating strategy with tradi-
tional algorithms for multi-objective optimization. Their initial approach [143] selects
an individual for the role of female as well as a set of mating candidates using a bi-
nary tournament operator. Afterwards, mating candidates are evaluated based on either
phenotypic or genotypic (hamming or euclidean) distance to the female and the most
similar or most dissimilar is selected for the male role. On follow-up studies [140, 141],
the same operator and comparisons between the two choices are also included. The ap-
proach is tested on multiple problems such as multi-objective Knapsack, permutation
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Flowshop Scheduling, Onemax and Zeromax problems. An analysis shows that prefer-
ence for dissimilar mates improved performance on smaller instances of the Knapsack
problem while a preference for similar individuals was more valuable for larger in-
stances. Moreover, negative assortative mating seems to have contributed to diversity
in the population, and positive assortative mating to an increased convergence speed
[143]. The effect seems nonetheless to be highly dependent on the problem. Comple-
mentary experiments suggest that positive assortative mating can also contribute to the
maintenance of diversity without compromising convergence [141].

The size of the tournament operator has also been studied, with experiments show-
ing that a higher selection pressure can promote a decrease in the similarity between
mating partners, which may be counter-intuitive (potentially due to pairing individuals
in multiple peaks) but that slows convergence speed [140]. Overall, such effects can be
seen as positive or negative, depending on the target problem. An alternative mating
scheme was also proposed, aiming at better balancing diversity and convergence speed
[142]. The operator works by building two pools, one for the role of female and one
for the role of male, using binary tournament selection for choosing candidates. For
female selection, the center vector of the first pool is calculated and the most distant
candidate is selected. For the role of male, the candidate in the second pool that is
most similar to the female is chosen. The method therefore suggests selecting a pair
that within is closely similar but as distant as possible from a sample’s center, aiming
therefore at means for convergence but exploration at the same time. The authors argue
that the methodology can be compared to attributing a combined fitness value to pairs,
promoting those that are extreme when compared to others [142].

A version where the female is selected either as the most distant candidate or the
most similar candidate to the pool’s center was later studied, as well as the selection
of the male for negative or positive assortative mating [140]. The authors argue for the
flexibility of the system to adapt to any search space through the control of the size
of the pools as well as the metric used for the selection of each gender. Achieving
both convergence speed and diversity shows to be a highly difficult task, where design
choices have a strong impact and are very dependent on the problem and other factors.
An adaptive strategy for the method was also presented [144] focusing on two strate-
gies: focusing on convergence in the beginning of the run and diversity later; focusing
first on diversity and later on convergence. This is achieved by adjusting the candidate
pool sizes to emphasize the desired strategy. Arguably, the method shows potential
for a better control of diversity and convergence, with results consistently improving
in NSGA-II [141, 144]. Overall, they report benefits from combining extreme females
with similar males, mostly because of its positive effect on diversity, rather than con-
vergence speed. Regarding hamming and euclidean distances, it’s discussed that they
perform better or worst depending on the problem and design choices.

Ochoa and Jaffe [209] conducted experiments with both positive and negative as-
sortative mating on a knapsack problem with moving extremes. Their approach selects
individuals for the role of female as well as for the set of mating candidates using tra-
ditional fitness-based methods, and also compares haploid to diploid representations.
Apart from suggesting that haploid representations worked better than diploid, reported
results show that negative assortative mating performed better on the target problem
than a standard Genetic Algorithm, which in turn performed better than positive as-
sortative mating. Interestingly, the study also focuses on the relation between each
approach and mutation rates, and observes that when moving from negative to positive
assortative mating, mutation gains a much more important role in the maintenance of
population diversity, which is directly impacted by the mating strategy.



CHAPTER 4. STATE OF THE ART 89

Further analysis by the same authors [208, 209] on the dynamics between assor-
tative mating and mutation rates, for the goal of maintaining population diversity was
later published. The authors discuss a mutation rate threshold over which building
blocks in genotypes are destroyed at a faster degree than they are reproduced. Results
suggest that the threshold is higher on positive approaches and lower on negative ones.
It’s argued that mating with similar individuals promotes the consistency of the genetic
pool, whereas the opposite can be rather destructive. As a suggestion, mutation rates
should be considered while taking that into consideration in order to achieve a balance
between mutation and assortative mating strategies.

Garcı́a-Martı́nez et al. [108] have studied the application of assortative mating as
defined by Fernandes et al. [92] on the selection of mating partners in a multi-start lo-
cal search method used to enhance particular solutions. When an individual is chosen
for local search, it takes the female role and a set of male mating partners is selected.
For that purpose, assortative mating is performed multiple times, each with a set of
randomly selected mating candidates. Recombination takes place through a multi-
parent uniform crossover operator, relying on all selected parents and producing one
offspring. If the new individual is better than its mother, it takes its place in the popu-
lation. The approach was tested on a large number of target problems such as Onemax,
Maxcut as well as deceptive function, having shown to be capable of outperforming
other traditional local search procedures on most instances.

A more ambitious study by Garcı́a-Martı́nez et al. [182] explored multiple selection
operators to be applied with parent centric crossover operators. Initially, the authors
tested three scenarios: i) selecting the female parent through uniform fertility selection
(individuals have a higher chance of being selected if they had fewer chances to re-
produce in the past) and selecting the male parent through negative assortative mating
[92], coupled with a replace-worst strategy; random selection of both parents with roles
randomly attributed, using a crowding replacement strategy; selecting the best parent
as a female and a set of random male parents, and using a multi-parent crossover oper-
ator to reproduce a set of offspring, from which the best two compete with two random
individuals in the population for their spot. The authors then suggest introducing a gen-
der determination technique instead of allowing the whole population to be eligible for
either role. The proposed method relies on two thresholds: individuals whose fitness
is over the first threshold are put in the female group; individuals whose fitness is over
the second threshold are put in the males groups; the approach allows individuals to
belong simultaneously to both groups. Arguably by tuning each threshold, accuracy
and reliability can be balanced, as can the exploratory or exploitative character of the
evolution process. It’s also discussed adapting between both behaviors dynamically,
focusing on exploration for the first generations and then shifting the behavior towards
being more exploitative.

Experiments on a test set of optimization functions shows that the gender differenti-
ation technique improved results on the three considered approaches, and that the adap-
tive setup performed more robustly than focusing on exploration or exploitation alone.
Garcı́a-Martı́nez and Lozano continued to study the application of their adaptive strat-
egy on further publications [106], using the first selection mechanism described above.
They suggest using a low number of females when tackling unimodal problems, for
a better accuracy and exploitation, and higher number in multimodal problems for a
better exploration. The approach was used on a large set of optimization functions
showing varying behavior depending on the characteristics of the target problem. An
extensive analysis of the algorithm’s behavior is included in a later study [107] where
comparisons are made with multiple optimization algorithms as well as between differ-
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ent parameter setups. Conclusions are in-line with previous studies and contributions
were made regarding design options when focusing on this approach.

Raghuwanshi and Kakde [235] describe a Genetic Algorithm with species and gen-
ders. After initialization of the population, gender determination is done as follows:
each individual is given a number of trial opportunities to mate; at each opportunity,
four partners are randomly selected from the population and parent-centric multi-parent
recombination [126] is performed to generate offspring; if the offspring is better than
its first parent, it takes its place; the process is repeated until all individuals have had
their share of opportunities to mate. At this point, those individuals more successful
than average are labeled as females and the others as males. Success in this case is
measured not by fitness but by the ability of producing offspring that are better than
the first parent. Therefore, during the described process, every time an offspring takes
the place of its parent, a counter for that spot is incremented, for later comparison.
After gender determination, species are organized around each female, and males are
attributed the species of their closest female, according to euclidean distance. A later
study [234] showed how the number of trial opportunities given to each individual to
show its fertility influenced the outcome by either promoting the very elite ones to
females (through a large number of trials) which has been shown to be beneficial for
unimodal functions, or relaxing the pressure (through a smaller number of trials) which
benefits behavior on multimodal functions.

During reproduction, each female selects a number of mating partners randomly
from its species and parent-centric multi-parent recombination takes place. Two possi-
ble operators are applied, one more focused on exploration and the other on exploita-
tion. Which operator is applied is determined through a voting system encompassing
all contributing parents. Each individual’s vote is encoded as an extra gene in their
genotype. Alternatively, exploration is endorsed in the first generations and the strat-
egy is shifted to exploitation towards the end [234]. If a female has no males in its
species, it’s bound to reproduce asexually relying on mutation only. New offspring
compete with their parents for a place in their own species and, if they successfully re-
place a parent, the counter attributed to that species is incremented. If a species shows
poor performance, it is absorbed temporarily by the closest one (in euclidean space)
with all new members acting as males. This composite approach was tested on the
minimization of a set of unimodal and multimodal functions and compared to state of
the art Genetic Algorithms and Evolutionary Strategies [124, 182], with results show-
ing that while being able to successfully find the global optima, its performance was
only competitive in some instances, while performing worst on the others.

A different species assignment strategy was proposed by Patel et al. [222], rely-
ing on a k-means clustering algorithm [187] to distribute the location of species in the
search space, before the evolution process can begin. After the step where females
and males are assigned to a species, here referred momentarily as cluster, the mean of
the cluster is calculated based on its inhabitants, and the female is updated according to
that mean. Males are then reassigned to their closest females (which may have changed
due to females having new locations), and the process is repeated until the females stop
moving. The approach aims at ensuring that females are well distributed in the search
space for a more contributing role in the evolution process. Tests were performed on
unimodal and multimodal functions and compared to previous results [235]. The k-
means strategy shows improvements in regards to the number of function evaluations
required to find the optima. The authors link this behavior to better distributed and sep-
arated species, improvements in diversity and to the self-adaptive nature of the species
assignment algorithm, which automatically detects the number of clusters and initial
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position of centroids depending on the target function and its characteristics.
Gálan et al. [104] study a mating strategy with different mating preferences and

evaluation metrics. Their operator starts by selecting a set of individuals randomly
from the population, from which the fittest one is given the role of female and the
remaining the roles of mating candidates. The candidates are then ordered according
to one of two criteria: fitness or euclidean distance from the female. Their rank is
regarded as a mating index and three selection strategies are analyzed: selecting the
lowest index (fittest or most similar); selecting the highest index (less fit or most dis-
similar); and a self-adaptive scenario where each individual encodes a mating index,
allowing females to choose the mating candidate corresponding to their encoded mat-
ing index. Experiments are conducted also on the size of the candidates pool and index
span. Regarding the self-adaptive scenario, encoded mating indexes are initialized ran-
domly and inherited as part of the chromosome through crossover. Mutation is applied
specifically, allowing for the increase, decrease, or reset of the index. All approaches
are tested on the optimization of unimodal and multimodal functions, and on a trans-
verse analysis results show a great dependence of performance on the candidates pool
size and the preferred mating index. In detail, the higher the rate of multimodality, the
higher the mating index should be. The self-adaptive approach, while achieving good
results on unimodal functions, showed a high dependence on the candidate pool size
on multimodal ones. Regarding the distance metrics used, results are comparable for
a good part of the test set. As future work, the authors discuss controlling the mating
index on a population level or in a deterministic manner, as well as allowing for the
encoding of the mating pool size for a self-adaptive control.

Jung et al. [152] employ a global mating strategy for a two gender population where
all mating pairs are determined simultaneously using an Hungarian method [166]. They
describe three approaches: the first one attempts to minimize the sum of distances be-
tween all mating pairs; the second one aims at maximizing that same sum; the third
one pairs individuals randomly. During selection, as a consequence of the Hungarian
method, all females mate once with a male, producing also a male and a female off-
spring. For testing, they tackle a Traveling Salesman problem using a quotient swap
distance as a phenotypic distance between individuals, and a Graph Bisection problem
for which they rely on quotient hamming distance. On both scenarios, the authors dis-
cuss that the first approach has a strong impact on diversity, causing it to drastically
fall, which accounts for it performing worst than the other two approaches. Through
the analysis of these experiments and the character of the search spaces, the authors
propose an approach where the selection method changes in a deterministic way at
a pre-established generation, so that the benefits of positive and negative assortative
mating (as a global operator) can be better balanced.

In a follow-up study [153, 154], the authors suggest choosing the selection method
for the next generation based on a voting scheme. For that purpose, the authors use two
thresholds to establish three voting intentions (over the higher threshold corresponds to
the first approach, below the lower threshold corresponds to the second method, and in
between corresponds to random pairing). After each reproduction step, a vote is cast
whose value is determined through a function that captures a ratio of distances between
parents, offspring, and within each gender (parent and offspring). As an exception, if
the distance within each gender is zero, the vote goes to the second method. The
authors argue that such an approach allows the population to adaptively choose the
most profiting strategy based on its own constitution and feedback, towards a better
balancing between exploration and exploitation. When compared to their previous
approach, results show improvements.
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4.2.4 Composite attractiveness

This section covers approaches where evaluation of mating candidates is done through
a number of chained rules, such as if-else rules, or attractiveness functions that focus
on the combination of multiple metrics, such as weighted functions. More exotic ap-
proaches for composite attractiveness can nonetheless exist, such as the application of
sub-populations to finding all the peaks in multimodal functions, explored by Ryan
[249]. The approach considers a number of sub-populations equally spaced in the
search space. Individuals are initialized and belong to one or multiple sub-populations,
depending on their distance to the center of each sub-population. Within each sub-
population individuals are evaluated with a weighted product accounting for global
fitness and distance to the center. Therefore, individuals have multiple evaluations that
are dependent and relevant for each particular sub-population that they belong to.

Moreover, each individual carries an extra gene that determines their preference for
outbreeding. During selection, a random sub-population is chosen from which an indi-
vidual for the role of female is selected probabilistically, according to inner-population
fitness. The female’s preference for outbreeding is checked against a pre-established
threshold, if it is below the threshold then it inbreeds, otherwise it will outbreed. The
second parent is selected through the same means according to the female’s breeding
choice. The additional gene is passed on in reproduction through the same means as
other genes and the fitness values of offspring are attributed through the same means as
before. Four approaches are considered for selection: always inbreeding, with or with-
out replacement; control inbreeding through self-adaptation, with or without replace-
ment. Results suggest an increased performance by the self-adaptive method when
compared to others, and also to a standard Genetic Algorithm, and other niching meth-
ods from the literature on tougher instances of the problem.

Matsui [190] proposes combining both fitness and negative assortative mating in a
mating evaluation metric. After an individual has been selected for the role of female, a
mating partner is selected from the population so that it maximizes a weighted function
that combines the candidate’s fitness and hamming distance to the female. Therefore,
the strategy favors mating with high fitness, dissimilar partners. The method was tested
in combination with a replacement strategy where new offspring replace their parents.
As a result of both strategies, the approach improved results when compared with a
standard algorithm in Royal Road problems and Knapsack with moving extremes, ar-
guably as a result of its increased aptitude to maintain population diversity.

Jassadapakorn and Chongstitvatana [149] propose the following method for mate
choice: an individual for the role of female is selected through traditional fitness based
methods, and a set of mating candidates is selected randomly; mating candidates are
evaluated through the product of their fitness with their hamming distance to the fe-
male. The contribution of the hamming distance is however transformed through a
power function. While dissimilar candidates are always favored, the contrast between
distances can be increased by upping the value of the power constant. A constant of
value 0 will correspond to a linear function while higher values will increase the attrac-
tiveness impact of the hamming distance. The authors propose selecting the constant
from an integer interval dynamically and according to its own contribution to the evolu-
tionary process. Initially, the contribution of each possible value for the power constant
is set to 0 and therefore, the value used in each selection step is set randomly. At the
end of each generation, the success of each reproductive step is measured by compar-
ing the fitness of each offspring pair to that of their parents and, if at least one offspring
performs better than the worst performing parent, the contribution counter of the con-
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stant used on that selection step is incremented. In the next generation, constant values
will be chosen following the distribution of contributions. As a result, the use of each
constant value is dynamically set from generation to generation and the preference for
dissimilar individuals is adapted.

The approach is applied to Onemax instances, a deceptive function and a multi-
modal function. Results for the Onemax problem show a tendency for low constant
values, thus less preference for dissimilarity, which causes faster convergence. On
the deceptive problem there’s an initial preference for low constant values which later
changes to higher values in an attempt to escape local optima by promoting diversity.
On the multimodal problem, there’s a preference for higher constant values in order to
promote exploration over the whole run. When compared to manually set values, the
system is able to dynamically go toward optimal values, showing therefore generaliza-
tion properties. Overall, performance was competitive on the test set. The same authors
[150] suggested a different approach where constant values, rather than being dynam-
ically used for selection, are used to control a sub-population each. The performance
of each sub-population, in regards of their best performing individual, is controlled
and poorly performing ones are dropped periodically in order to focus computational
effort on the better performing ones. Results and conclusions regarding behavior and
preferred values was in agreement with the aforementioned discussion.

Fry et al. [103] study the application of Mate Choice in a model using a Genetic
Programming representation. They suggest selecting an individual for the female role
using a standard fitness based approach and evaluating a set of mating candidates to
find a pair. Individuals are evaluated based on fitness and edit distance to the female,
so that similar individuals are penalized. Therefore, individuals that share no edit sim-
ilarities with the female are attributed an attractive value equal to their fitness, while
those that are increasingly similar are penalized proportionally. Two metrics for mea-
suring similarity are considered: relative distance measures how different two specific
trees are; absolute distance measures how different any two trees are. Moreover, self-
adaptation was introduced as a mean to decide which operator to apply for the selection
of males, either tournament selection or Mate Choice.

Two setups were tested: in a population-level approach, the use of each operator is
reinforced from one generation to the next one based on how they succeed to produce
offspring that are fitter than their parents; in an individual-level approach, individuals
encode which operator should be applied, with adaptation relying on inheritance and
mutation. All possible setups combining the above possibilities were tested on Sym-
bolic Regression tasks and a Max function where the goal is to produce the maximum
value possible within a maximum tree depth. The approaches were compared between
them and with a standard Koza [165] approach. The authors report that between the two
metrics tested for similarity, relative edit distance performed better overall, arguably
due to its better ability to contrast on smaller differences, which is beneficial as trees
converge and become more similar. The Mate Choice approach is able to accelerate
evolution and enhance Genetic Programming performance. Regarding self-adaptation,
the authors find it to be valuable, helping balancing exploration and exploitation as a
response to population dynamics over each run. The individual level approach using
the relative edit distance was the overall best performing setup.

Zhang et al. [324] present a scheme where individuals are evaluated through mul-
tiple steps. Firstly, they are evaluated on their performance on the target function, then
their fitness is adjusted through a weighted function that accounts for the fitness of their
parents. This process is inspired by the Baldwin effect [18] and improves the fitness of
individuals whose parents have a higher fitness, while reducing the fitness on individ-
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uals whose parents have a worse fitness. Secondly, sharing is applied to adjust fitness
values of individuals in the same niche. Individuals are randomly attributed a gender
at initialization or after reproduction. Selection takes place in two stages: the top per-
forming individuals in the female and male groups are directly selected through elitism
and paired by rank; tournament selection is then applied on the remaining individuals
in each population separately and females and males are paired randomly.

Crossover and mutation rates are also adapted deterministically, gradually reducing
throughout the generations. When two individuals have been paired, their crossover
rate is also influenced in accordance with their hamming distance, in a bid to pro-
mote mating between similar individuals. The approach is tested on a set of optimiza-
tion functions. The authors argue that such an approach adaptively adjusts the role of
the reproduction operator, to bring up cooperation and competition through different
means, while the Baldwin effect promotes polymorphism. Compared to standard Ge-
netic Algorithms and to an adaptive Genetic Algorithm [278], the algorithm reaches
better results, showing ability to tackle high dimension problems while helping avoid
premature convergence. A second study by Zhang et al. [325] compares the approach
with various state of the art particle swarm optimization algorithms and argues that
the approach can find optimal or close to optimal solutions, maintaining a competitive
performance.

Varnamkhasti and Lee [148, 294] and Varnamkhasti and Vali [293] suggest a strat-
egy for gender determination that at each generation attributes male or female genders
in a sequential and alternating way, in an unsorted population. Also, at each genera-
tion, the order of attribution is switched. The authors compare this methodology with
a similar one but on a fitness sorted population, random attribution, and splitting the
population halfway. The authors consider their approach to bring advantages, probably
related with attributing sibling offspring to different genders [148]. During selection,
a female is selected through tournament selection, a set of mating candidates is ran-
domly selected, each one is assessed using hamming distance to the female and the
most dissimilar one is selected for mating. However, if two or more candidates draw,
the fittest one is given the opportunity, and if there are still draws, the candidate with
highest number of active genes is preferred. If all three criteria fail to differentiate
between candidates, a random one is selected. Reproduction then takes place, with
one study focusing on experiments with fuzzy crossover and mutation operators and
varying probabilities [148]. It is argued that this negative assortative strategy with ad-
ditional rules contributes positively to maintaining diversity and avoiding premature
convergence. The approach is tested on a multidimensional 0/1 Knapsack problem and
shows performance improvements on a standard Genetic Algorithm.

4.2.5 Genetically encoded preferences
Miller [199] as well as Miller and Todd [288] describe an option for adding Mate
Choice to Evolutionary Algorithms as a generalizable approach. They describe that af-
ter a parent has been selected for the role of female, an additional step must take place
so that each female (and potential mating partners) has a chance to sample multiple
potential partners and choose the most attractive based on its own preferences, perhaps
stochastically, and perhaps mutually. The authors propose representing preferences as
probability-of-mating functions, which span over the entire n-dimensional phenotype
space, giving each location and therefore all individuals, a probability of mating or
attractiveness level. A probability-of-mating function can therefore be seen as an ex-
tra dimension where peaks correspond to ideal partners and low peaks correspond to
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unattractive ones. Mating preferences can be encoded as a set of genes that control the
parameters of the probability-of-mating function, built in relation to a sexual reference
position in the phenotype space, which can be determined in one of four ways: i) iden-
tical to the individual’s phenotype location; ii) the phenotypic location of a parent; iii)
the average of all phenotypic locations of the population; iv) an absolute position in
the phenotype space. Which strategy to use can also be determined genetically on an
individual-level. Given this reference position, the function can be built as a radially
symmetric function with a given width, either around it for non-directional preferences
or offset by a given vector for directional preferences. The strategies to determine the
sexual reference position have been extensively discussed [288].

Miller and Todd have strongly advocated for the role of Mate Choice in Nature,
its impact, characteristics and benefits, and have lengthily discussed how Mate Choice
can be critical in speeding optimization, avoiding local optima, developing important
new evolutionary innovations, increasing parallel search, niching and speciation [201].
They have also argued for their approach to be a better alternative than other established
methods in optimization, while maintaining a closer metaphor to nature. Some of
these methods include positive assortative mating for niching and speciation, negative
assortative mating for outbreeding, balancing the two, selective breeding, promotion
of novelty or aesthetic Sexual Selection [199]. Todd and Miller coupled their ideas
with a Genetic Algorithm to study the evolutionary dynamics of populations. They
present a simulation where individuals are placed in a two-dimensional space and are
solely represented by their coordinates, thus evaluating mating candidates based on
those coordinates as well [288]. In a following study, Miller and Todd [200] rely on
parent-relative directional preferences (with an offset). Their individuals encode their
own 2D coordinates, two genes to determine the direction of the offset, and one gene
for the length of the offset vector. An additional gene determines the width of the basin
of attraction and therefore the pickiness of individuals when choosing a partner.

Two scenarios are considered, one where there’s Natural Selection and one where
only Mate Choice occurs. During selection, an individual is selected for the female role
through a traditional fitness-based method or randomly, depending on the scenario. A
mating candidate is selected through the same means, and both the female and the mat-
ing candidate evaluate each other through their personally built probability-of-mating
function. The female in this case uses its directional preference offset while the male
candidate does not. The pair’s probability of mating is the result of the product of
both evaluation results. If they end up pairing, reproduction occurs, otherwise a dif-
ferent mating candidate is selected for a few tries, after which a different female is
chosen. During reproduction, offspring are produced through crossover and mutation.
In a scenario with Sexual Selection alone, the authors initialize the population in the
same location and with directional vectors pointing in the same direction. They ob-
serve that phenotypes follow the direction of the vectors in an attempt to better adapt to
such preferences. They also observe that preferences are able to diverge from their ini-
tial configuration, causing the phenotypes to move in other directions, which through
self-reinforcement, results in drifting in the population. This produces an arms-race
between phenotypes and preferences.

In a scenario with both Natural and Sexual selection, fitness is given so that in-
dividuals in the south-west corner have maximum fitness and those at the north-east
corner have the lowest fitness. A first test where mating preferences point towards
north-east shows the population moving through Sexual Selection, but eventually Nat-
ural Selection takes its toll and promotes those individuals that are fitter for survival.
The mating preference vectors adapt to these phenotypes through self-reinforcement.
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When the population is grouped in the south-west corner, peaking the fitness function,
preferences may again drift and pull the population in a runaway process, showing the
ongoing tug-of-war between the two forces. In a second test where mating preferences
initially point toward south-west, both forces reinforce each other’s effect and the pop-
ulation moves with increased momentum towards the optimum. Eventually they will
reach the described scenario where individuals are packed around the function’s peak
and mating preferences may drift and pull the population through mutation. The au-
thors conclude that Sexual Selection is capable of a strong role in evolution even in the
presence of strong and consistent Natural Selection pressure. A later study by Todd
and Miller [286] further contributed to testing. Applying Sexual Selection alone, in-
dividuals are initialized in the center of the simulation space and directional mating
preferences are initialized in random directions. Results show that the average loca-
tion of the population wanders through the simulation space with individuals moving
towards Mate Choice peaks, which shift unpredictably from time to time, causing the
population to follow. Mating preferences and traits seem in an arms race for adaptation.

A simulation where preferences are non-directional causes the population to jiggle
around its initial location. In the previous scenario but with both Natural and Sexual
selection (fitness function peak is in the center of the simulation space), the interplay
between the two forces is visible, with Natural Selection pushing the population to-
wards the peak and Sexual Selection making it drift towards its own desire. This causes
the population to diverge from the peak, in an effort to escape and explore the search
space. The authors compare the effect with other induced behaviors for escaping local
optima. Finally, in a scenario with only Sexual Selection and non-directional mating
preferences, mating partners are chosen according to each female’s sexual reference
position and choosiness. The scenario shows the ability for sympatric speciation, with
a slower but steadier movement of the population that potentiates splitting. The same
behavior can be observed with directional preferences, but the authors show that in
order to achieve this, they had to double the amount of genes encoding traits and pref-
erences, so that they could slow the effects of mutation. Experiments with the sexual
reference position being determined by the individual’s own phenotype or by an abso-
lute position that is inherited through the genotype, and in a scenario with no Natural
Selection, speciation was observed. The effect was seen to increase with the mutation
rate [288].

Ventrella [295, 298] developed a virtual ecosystem that simulates a 2D pond that is
inhabited by a population of swimmers. These agents encode a genotype that represents
their morphology and control. Their phenotype is focused on producing locomotion,
and apart from having perception systems, these agents are capable of two mindsets:
foraging for food and pursuing mating partners. Depending on their energy level, they
will engage in one of the two tasks. Individuals are not explicitly evaluated, but their
ability to survive and reproduce dictates their success since how much their reproduce
is linked to how much energy they can dispense. Crossover and mutation ensure the in-
heritance and variation of genes from parents to offspring. Among other experiments,
Ventrella [295] adds an extra gene to the genotypic representation that is initialized
randomly to represent a color. This gene represents each individual’s mating prefer-
ence, meaning that when looking at other individuals as potential mating partners, they
will be more attracted to the one most composed by body parts with their preferred
color. While this aesthetic feature has no fitness cost associated to maintain, the au-
thors observe a mean of sympatric speciation, with individuals splitting into smaller
populations that promote reproduction with different colors and that only occasionally
are capable of interbreeding. These sub-populations show a loop between their traits
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and preferences so that individuals prefer to mate with others of the same predominant
color as themselves.

Ventrella [296, 297, 298] later expanded the virtual ecosystem so that body parts
can accommodate more complex formats, thus producing more complex morphology
(such as parts of different size and formats) and behaviors. A preliminary study [296]
using the aforementioned color based preference would prefer mating partners with
more massive parts, because of their higher color area. The authors discussed that
while it was expected that such a scenario would have a negative impact on locomo-
tion and therefore on hunting and mating abilities, efficiency proved to be similar to
experiments without such preferences. This suggests a linkage between evolved col-
ors and high performing individuals. Further experiments [297, 298] used different
mating preferences, this time acting as population-based choices rather than individu-
ally encoded: color (same or different); size (big or small); movement (hyper or still);
length (long or short); shape (straight or crooked). Reported results show that depend-
ing on the mating preference chosen, the corresponding characteristic spreads through
the population and has an impact on the locomotion pattern followed by agents. In this
case, there’s a cost or genetic link between the preferred feature and the survival ability
of each individual. Their struggle for attractiveness impacts their struggle for effec-
tiveness. In some cases, strategies emerged that took advantage of attraction or being
available to many individuals, rather than efficiently tracking for food, while others
balanced both behaviors. A scenario where the preference was skewed to individuals
remaining still has arguably produced polymorphism, with some agents maximizing
attraction and saving energy for reproduction and others moving very fast and acting
as breeders.

Jaffe [147] studied a gene-controlled model with different mating strategies on a
multi-agent simulation where individual behavior is determined by the genotype. The
simulation allows for different kinds of phenotypic interactions that are ruled by diploid
chromosomes and alleles activated randomly. Regarding reproduction through Sexual
Selection, various genes are relevant: one gene determines the gender of the individ-
ual, two establish the sex determination mechanism for offspring, one gene controls
the level of attraction of females towards males, and other control the age for repro-
duction as well as the size of the mating candidates pool to be assessed by females. An
additional gene determines the Mate Choice criteria to be applied by females: random;
high attractiveness as determined by the aforementioned gene; younger or older males;
dissortative mating; good genes for survival; handicaps. The last two are determined by
survivability related genes. Depending on the gender, different genes will be activated.
During selection, females that are allowed to reproduce look for a male of the same
species, analyzing a pool of gene-defined size, using its own strategy and judgment.
During reproduction, standard inheritance rules apply. Two types of experiments were
performed: isolated populations were tested, each using a different selection criteria;
a global population where all strategies are initially uniformly distributed. The author
discusses among other things that individuals whose phenotype is influenced by a large
number of genes are likely to produce good signaling attributes for gene quality, and
that Mate Choice strategies are expected to be sophisticated and assess multiple sig-
nals concurrently, potentially reflecting good genes or similarity. Also, it’s argued that
results are favored by a higher degree of positive assortative mating.

Lerena [177] explored the encoding of complex preferences, by simulating the evo-
lution of a population with two different degrees of complexity competing against each
other. The system relies on Mate Choice alone and introduces varying levels of cog-
nitive and evaluation noise, as a strategy to study complex evaluation of mating candi-
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dates in natural populations. The genotype used in the simulations encodes binary traits
and binary preferences for each trait, and also a NK-table, which is a function defined
over N-dimensions of preference vector, with K interactions within them. During eval-
uation, while the preference vector determines how traits are perceived, the NK-table
determines their combined attractiveness value. During reproduction, each individ-
ual has a chance to take the role of female and is presented with a candidates pool,
randomly drawn from the population. Evaluation is done through a XOR operator be-
tween the female’s preference vector and the candidate’s trait vector, with the resulting
intermediate vector being used as input for the NK-table, which returns the respective
attractiveness value. The most attractive candidate is finally selected for reproduction.
Crossover is applied by switching chromosomes as no intra-chromosomal changes are
permitted. Still, mutation may take place within the traits and preferences chromo-
somes. Over the evolutionary process, NK-tables are inherited but are immutable and
represent the rules of evaluation. Overall, the study suggests that high perception noise
or high rates of mutation give evolutionary advantage to simpler preferences, while the
opposite is true. Regarding evaluation noise, high levels favor complex preferences,
with the reverse happening for low levels. An extensive study later explored the com-
plexity of mating preferences and their response to perception and evaluation noise,
as well as mutation levels [178], extensively discussing implications on natural and
artificial systems.

Beck et al. [25], while focusing mostly on biological behavior, developed simula-
tions with a very large population (10.000 individuals) using Genetic Algorithms with
genotype-encoded mating preferences. Individuals encode a set of genes for survival
purposes but also 10 genes, each corresponding to an age and encoding the probabil-
ity or preference of mating with a candidate with that age. Each individual therefore
has an age propriety that increases at each generation from 1 to 10. The population is
partitioned in half between males and females and during selection, all females have
a chance to reproduce. For each female, candidate males are selected consecutively
until one is accepted or a number of trials is reached, at which point a random candi-
date is accepted. Mating candidates are selected randomly and are evaluated according
to their age and the mating preferences of the female. When a male is accepted as a
mating partner, reproduction occurs and produces four males and four females. Af-
ter all offspring have been generated, a two step survival procedure takes place. First,
individuals in the population are evaluated through a combination of fitness and age,
stochastically removing a subset according to their probability of survival. Individuals
that have reached the age limit are also removed. New offspring go through the same
process but relative to fitness alone, at which point random surviving offspring are se-
lected to be included in the population until its size is back at 5.000 individuals of each
gender.

Simulations shows that, while there is no direct link between fitness and age, there’s
a bias towards preferring older males as age is a good honest indicator of good genes.
Also, if survival pressure is increased, that preference is reinforced, while the opposite
behavior is observed if pressure is loosened, which allows females to be less picky with
their mates without risking the survival of their offspring. Despite the preference for
older males, very old males are unlikely to be selected for because they are unlikely to
exits in high numbers. They are however very likely to have passed on their genes at
this point. The authors also discuss that low juvenile mortality and high adult mortality
are a pressuring contribution to female preference, as older male give better proof of
gene quality. If the pressure is inverted, the behavior shifts for a preference to young
to middle aged individuals as old age becomes a less contrasting characteristic for
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quality. Additional effects of preference for older males include a stronger pressure in
males for survival and less deterioration with age, as well as reducing the impact of age
independent factors in evolution.

Omori et al. [215] explore a self-adaptive approach for Mate Choice on a 2-
dimensional search space. Their model relies on two gender sub-populations and pre-
selects females and males for reproduction based on fitness. After pre-selection, each
female gets a chance to choose a mating partner from a candidates set randomly drawn
from the pre-selected males. Males exhibit a vector of n traits on the 2-dimensional
phenotypic trait. During evaluation of a particular male, the difference between each
of its traits and the population’s average is calculated, thus producing a relative vector
of differences. Females will measure the similarity between that vector and a vector
encoded as their own mating preferences, using a cosine function to determine their
attractiveness for that male. The male candidate that produces the smaller similarity
between those vectors is chosen as a mating partner. In other words, females evaluate
how candidates distance themselves from the population’s average on each trait, being
able to adapt their preference closer or more distanced to individuals on each particular
trait.

After reproduction, a male and a female are produced, thus allowing the exchange
of genetic material between each gender’s pool but afterwards, crossover is imposed
within each gender, with individuals being selected randomly. Mutation also plays a
part, with a higher rate for males in order to induce exploration and a lower one for
females leading to more stability and potential in exploitation. Both operators affect
traits and mating preferences. In a follow-up study [216], the idea was expanded into a
parallel model where nodes run sub-populations that follow the aforementioned strat-
egy independently, therefore allowing each node to diverge into different directions in
the search space. Migration between nodes contributes to introduction of new genetic
material that cause sudden bursts in evolution. Overall, four approaches were tested
on flat and multimodal functions: standard Genetic Algorithm, parallel Genetic Al-
gorithm, Mate Choice, and Parallel Mate Choice. Both of the latter, coupling Mate
Choice with different rates of mutation allowed for a broader search and the escape of
local optima, producing in the end better performance.

Smorokdina and Tauritz [272] and also Holdener [129] tested a self-adaptive ap-
proach for Mate Choice where individuals encode their own mate selection function.
Unlike an evaluation function, a selection function takes as input the whole population
as potential mating candidates and returns the one that is chosen as the best choice.
The function is encoded using a Genetic Programming tree, where the terminal set has
a solo item, which is the set of individuals in the population. The non-terminal set on
the other hand contains a large set of operations that sub-divide or join parts of the
input, based on multiple criteria. Such operations may include among others, fitness
based selection, similarity based competitions etc. By combining such operations in a
tree, each individual is capable of reducing the list of mating candidates to one, through
a complex selection method. During selection, the individual for female role is picked
through traditional means, and uses its selection function to choose a mating partner
from the remaining of the population. During reproduction, two inheritance methods
are considered for the selection function: if the fitness of the offspring is higher than
those of the parents, and the improvement is steeper than the slope of maximum plot in
the previous generation, then the offspring inherits the selection function of the female;
otherwise its selection function is the result of recombination of both parents, with a
chance of mutation. The approach was tested against a standard Genetic Algorithm on
a test set including Onemax, SAT, and a variation of DTRAP functions. While per-
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forming better on the first two scenarios, the approach arguably failed to capture the
deceptive nature of DTRAP. The authors suggest that performance may be highly de-
pendent on the non-terminal set which was not fit for deceptive problems, restricting
the features that can be assessed in mating candidates.

Holdener [129] also proposes an approach where individuals encode mating pref-
erences as a vector of desired features. Each allele in this preference vector is linked to
a locus in the candidate solution and is initialized in [0,1], representing how much the
individual wants its partner to encode a 1 in the corresponding locus (binary represen-
tation). The proposed model gives each individual a chance to reproduce as a female
and choose a mating partner. When doing so, a mating candidate is selected randomly,
evaluated by how much it meets the preferences, and a probability of selection is set.
If it gets selected (through dice rolling), a second step takes place where the male eval-
uates the female and likewise may or may not accept it as a partner. If both agree,
reproduction takes place, otherwise another male candidate is selected. Feature eval-
uation is done through a weighted function that takes into account preferences, traits,
and how important it is that they match. Inheritance of preferences is done following
certain rules: offspring inherit preferences in a way that they match the traits inherited
from each parent; the new solution is evaluated and fitness compared to each parent; if
the offspring’s fitness is higher than that of a parent, then its mating choice was positive
and both the parent’s and offspring’s preferences are reinforced for the selected traits;
if offspring fitness is worst than a parent, preferences are penalized; the procedure af-
fects both parents. The approach is compared along with a replace-worst strategy to a
standard Genetic Algorithm on DTRAP. Performance was improved or remained com-
petitive on all instances, while requiring less parameters. Holdener and Tauritz [130]
discuss a similar approach, although selection is done using Gale and Shapley’s oper-
ator for the stable roommates problem [105] which promotes the best overall pairing
possible between males and females, according to preferences. For the purpose, each
individual acts as a female and as a male once, and has to evaluate all others, in this
case with preferences ranging in [�1,1]. After pairing, inheritance and preference tun-
ing takes place as before. Results on DTRAP show competitiveness with a traditional
Genetic Algorithm.

In a later study by Guntly and Tauritz [114], a similar approach is used, although,
preferences are initialized to the opposite value of the encoded traits in each individual.
Selection of females is done randomly, as is the selection of the mating candidates pool.
A population level setup is also discussed, where two centralized preference vectors are
maintained and updated for the whole population, instead of requiring all individuals
to encode their own. The first vector stores how much any individual with an allele
of 0 will want the corresponding allele to be 1, while the second vector encodes how
much any individual with an allele of 1 will want the corresponding allele to be 1 as
well. When evaluating mating candidates, individuals will look up their own alleles
and consult the appropriate vector for preferences. The remaining of the evaluation
process remains the same and the vector is updated at each selection step through the
same feedback process discussed before, linking offspring performance to that of their
parents. The approaches were coupled with a restricted replacement strategy and com-
pared to a standard Genetic Algorithm and an assortative mating approach on DTRAP,
NK-landscapes and Maxsat functions. Overall, the individual based encoding of mat-
ing preference was the most successful, although assortative mating preformed better
on NK-landscapes. The centralized approach was regarded by the authors as competi-
tive.
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4.2.6 Multi-criteria evaluation

Alleson [7], while discussing ideas for a multi-function application of Genetic Algo-
rithms addresses genders as sub-populations but also Mate Choice. It’s discussed that
genders can be used to tackle multiple functions, for instance females targeting one
problem and males targeting another. In the proposed approach reproduction is allowed
only between genders, which are attributed randomly after reproduction or through a
means to maintain a stable sex ratio. Ronald [244] also discussed the topic and intro-
duced a selection model relying on two fitness functions: while individuals are selected
for the role of female through a regular fitness function, they are selected for the role
of male partner through an alternative fitness function. This secondary function was
referred to as seduction function, and although its outcome is not dependent on the
individual acting as female, it allows the evaluation of the population based on features
that are different and only indirectly relevant to their fitness value. For instance, on
a Royal Road problem, seduction may be measured based on unitation features [242]
(ex: number of ones represented). Reported results were poor but potential applications
to multi-objective scenarios were discussed. These ideas would later be expanded to
suit scenarios with multiple evaluation criteria.

Ryan [247] tackles a network sorting problem with two goals in mind: efficiency
and solution size. For the purpose, he relies on two sub-populations, each focusing on
optimizing one of the objectives, rather than balancing both on a common evaluation
function. Individuals are divided into the two groups and during selection one from
each is selected probabilistically, thus putting pressure on both goals simultaneously.
The author reports that the model made individuals more likely to converge on an op-
timal solution while avoiding the effort of weighting the importance of each objective
in a function. An expansion of the proposed strategy was discussed by Ryan [248],
with sub-populations each tackling a particular objective in multi-criteria optimization.
The author describes the previous behavior as a form of outbreeding and suggests in-
troducing and balancing inbreeding as well. During outbreeding an individual from a
sub-population will mate with a selected mate from another sub-population and during
inbreeding the mate will be selected from the same sub-population. As a first approach,
he experiments with multiple population level probabilities of inbreeding, although the
results are inconclusive on an optimal rate.

The study moves on to test self-adaptive approaches, where each individual encodes
its own preference regarding the strategy. During selection, three potential behaviors
are tested: all individuals mate according to a population wide average probability;
individuals in each sub-population mate according to their own sub-population’s av-
erage probability; individuals mate according to their own encoded probability. In all
approaches, preferences are initialized randomly and passed on through inheritance.
All approaches were tested on a range of population sizes and on a set of multi-criteria
functions, with the individual approach achieving best results, both over the average
strategies and the fixed rate approaches. Further experiments were conducted, em-
ploying three alternative mate restriction behaviors: a free choice model, after the first
individual and the mating candidate have been selected accordingly (inbreeding or out-
breeding), allows mating only if the candidate agrees on the strategy, otherwise the
candidate is redrawn; an influential partner model follows the same steps but has the
breeding probability of the candidate influenced by that of the female parent through
a geometric mean; an opinion reinforcement model behaves as the individual-based
model but uses feedback on the quality of the offspring to reinforce their inbreeding
probability in order to promote successful behavior. Among these three behaviors,
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only the last one achieved competitive results when compared to individual-based se-
lection, suggesting that allowing evolution to adapt the breeding preference produces
advantages.

Lis and Eiben [180] suggest using a multi-gender population to tackle the concur-
rent minimization of multiple functions (multi-criteria optimization). They tackle the
problem by adding an extra gene to the individual’s representation, encoding a par-
ticular gender. Each possible gender corresponds to a criteria and to the respective
evaluation function. Therefore, during evaluation individuals are evaluated on a partic-
ular evaluation function alone, according to their own gender gene. For reproduction,
one individual from each gender is selected proportionally to their fitness rank within
their own gender and a multi-parent crossover operator is applied, after which the off-
spring will inherit the gender of the parent that provided the most genes. The authors
argue that results back up the approach’s abilities to find pareto-optimal solutions and
to prevent the population from converging to positions optimal to a specific criterion,
by relying on multiple evaluation functions. A later study by Bonissone and Subbu [29]
proposed alternative means for gender determination in this setup, although applied to
a flexible manufacturing problem. The authors suggest having offspring inherit the
gender corresponding to the criteria in which they perform better, thus requiring their
evaluation on all criteria. Additionally, they study random gender attribution.

Kowalczok and Bialaszewksi [161, 162] apply a multi-gender Genetic Algorithm
in a multi-objective scenario. For that purpose, they suggest organizing the evaluation
criteria into sets and creating a gender by attributing individuals to each set. This is
accomplished by evaluating each individual on each criteria, producing a profit vec-
tor and attributing individuals to genders based on their sub-pareto multi-objective
ranking. The same method is used to determine the gender of newly bred offspring.
However, within each gender, ranking is done through stochastic remainder choice.
During selection, individuals are selected and paired so that inbreeding is restricted,
thus promoting pairing of individuals that specialize on different criteria. An alterna-
tive approach [27, 163, 164] organizes genders in a hierarchical tree that is used for
ranking purposes. In detail, while genders are likewise determined by sets of criteria,
virtual genders are formed in a upper level joining those of the lower level. Multiple
levels repeat this step until a solo virtual gender is found as the tree root. In this case,
individuals are not attributed a gender but are rather fed as input to the tree, which not
only ranks individuals within each gender but also returns a global rank as output. This
is an alternative to pareto assessment. Because individuals are not attributed a gender
but are evaluated on each one and globally, the previous mating restrictions no longer
apply. Both variants are tested on a set of multi-objective functions, both impacting the
dimension of the objective space, helping contrasting between otherwise similar indi-
viduals. This ability ultimately contributes to promoting search in the right direction,
through a more detailed ordering. Moreover, gender attribution and mating restrictions
contributed to diversity and resilience to initial conditions.

Drezewski and Siwik [75, 77, 78] and Drezewski and Cetnarawicz [76] explore
Mate Choice in a co-evolutionary multi-agent system for multi-objective problems.
The model is distributed into nodes that are organized in a torus topology, allowing the
migration of individuals between neighboring nodes. Also, both the environment and
the individuals can maintain resources, that are distributed or shared through different
means, depending on the study. When individuals have enough resources, they can
broadcast a call for reproduction or answer to other calls, after which different mat-
ing strategies may apply. An initial approach [75, 77] relies on gender groups, one
for each criteria in the multi-objective function, with each individual being randomly
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attributed a gender. During evaluation, individuals are assessed on the criteria corre-
sponding to their gender and receive resources accordingly. During mating, they are
limited to pairing with those of other genders. If multiple candidates answer a call for
reproduction, choice is made proportionally to their resources, reproduction occurs,
new offspring inherit part of their parent’s resources, and are inserted in the population
if they dominate one or more individuals, which in turn are eliminated. The model was
tested against classical, non agent-based approaches. While it failed to outperform all
other approaches on the test set, it is argued that diversity improves and that the model
should be further studied.

An alternative approach [78] relies on two genders, attributed randomly during ini-
tialization. During evaluation, individuals are evaluated on all criteria and resources
are transferred between individuals, from pareto-dominated individuals to dominating
ones. During reproduction, individuals are restricted to pairing with the opposite gen-
der and do so according to individual preferences which are encoded in their genotype.
These preferences are represented as a vector of weights, each corresponding to one
criteria, and evaluation of mating candidates is done as a weighted function combin-
ing weights and the performance of each candidate on each particular criteria. While
genes and resources are passed on from parents to offspring, preferences and gender
are initialized randomly. Like the previous approach, non agent-based approaches per-
formed better but the proposed model is arguably faster and advantageous when strict
processing restrictions apply. A third approach [76], for multimodal optimization, at-
tributes a female or male gender to individuals and resources proportionally to fitness.
In this setup, females have a higher cost for reproduction and different strategies ap-
ply: females have a preference for males that are more similar to them according to
euclidean distance; males look for females within their neighborhood. When tested
against standard multi-agent systems, and a deterministic crowding method, results
show the ability to form and maintain niches in local optima basins of attraction.

4.2.7 Complementary selection
Dolin et al. [72] developed a selection strategy specially fit for problems whose fitness
is a composite aggregate of multiple test cases. Their operator tries to improve the
reproduction of offspring by pairing individuals that complement each others weak-
nesses. To do so, they propose choosing an individual for the female role through a
traditional method, and consider the remaining individuals as potential partners. In or-
der to select the one that best complements the female, the vectors of scores of both the
female and each mating candidate are compared, and for each test case the maximum
value is kept. The resulting vector is used to measure the attractiveness of each mating
candidate, which can be calculated traditionally (sum or weighted average etc.). Ties
are solved by selecting the fittest candidate. The authors argue in favor of the general-
ization character of the approach, which is independent of data types, representations,
or performance measures, requiring only a way to determine which score is best. The
approach is compared to fitness proportionate selection and tournament selection on
three problems of Genetic Programming representation: Boolean 6-multiplexer, inter-
twined Spirals Classification, and Sunspot Prediction. The complementary phenotype
selection operator shows performance gains across the whole test set, with further ex-
periments suggesting that gains are not the result of higher selection pressure but that
indeed complementarity is favorable.

Hinterding and Michalewicz [128] propose an approach for constrained optimiza-
tion problems which alters the evaluation function for it to return not only the fitness
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value but also information on each individual’s violated constraints and the extent of
such violations. This information is used both in the selection of individuals for the
female role but also for Mate Choice. Individuals are selected as females through a
binary tournament that prioritizes feasible individuals and fitness (if both are feasible).
If both participants are unfeasible, the one with less violated constraints is selected,
or if there’s a tie, the one that has less extensive violations is selected. Regarding the
selection of males, two mating candidates are selected randomly from the population
and feasibility is preferred. However, when both candidates are unfeasible and satisfy
an equal number of constraints, they are assessed on how much they complement the
female. In other words, the one that together with the female violates less constraints
is chosen as a mating partner. The approach tries to promote complementary parents in
an attempt to produce offspring that satisfy more constraints than each parent individ-
ually. Reproduction takes place through crossover and self-adaptive mutation, with a
parameter for mutation being encoded in each individual and activated on feasible in-
dividuals. The setup is tested on a set of constrained numerical optimization problems
and compared to a state of the art approach for constrained optimization, achieving
competitive results. The authors emphasize that the approach penalizes unfeasible in-
dividuals without the need for a penalty function, while always seeking to optimize or
build feasible individuals from unfeasible ones. For that purpose, the algorithm allows
for unfeasible individuals to remain in the population and contribute with potentially
useful genes, which promotes exploration of the search space.

4.2.8 Co-evolutionary approaches
Hillis [309] applies a positive assortative mating strategy to a problem of minimization
of sorting networks, using a problem specific metric to measure similarity. By rely-
ing on a binomial approximation of the Gaussian distribution, Hillis aims at measuring
the displacement between individuals in the search space and favors mating between
close neighbors. Reported results show competitiveness with a collection of state of
the art search algorithms, although with no improvements. Interestingly, the study
also suggests the co-evolution of test cases and candidate solutions as two independent
sub-populations (a host-parasite model). While candidate solutions are evaluated on
their performance on the evolving test cases, the latter are evaluated by how poorly a
candidate performs on them. In a way, the approach evolves not only a population of
individuals but also how to evaluate them. Results from this approach are reportedly
superior to all but the best of the results found in the literature at the time for Sorting
Network problems. Also, the co-evolutionary approach reportedly produces increas-
ingly complex tests in order to surpass increasingly competitive candidate solutions.

Ochoa and Jaffe [210] performed a set of simulations using Hamilton’s model for
host-parasite interactions [121]. The authors introduce a Mate Choice mechanism
(Hamilton relied on random selection), among other features. Various strategies are
considered: asexual hosts self-replicate; hermaphrodite hosts select a partner from a
mating pool either randomly, favoring the most similar, or favoring the most dissimilar.
The mating pool is sampled randomly from the population, either diploid or haploid
representations are used, and reproduction is achieved through uniform crossover and
mutation, or just mutation in asexual hosts. The simulation, much like any host-parasite
model, enforces a co-evolutionary arms race where hosts and parasites evolve simul-
taneously, in what can be seen as an adaptive fitness landscape that is ever changing.
In experiments where all reproduction strategies are competing, asexual individuals
quickly takeover the population. However, in experiments where all individuals fol-
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low a particular strategy, the asexual population is outperformed by both random and
negative assortative mating, when using a haploid representation. With a diploid rep-
resentation, random selection is disfavored but negative assortative mating remains the
best performing approach. Overall, negative assortative mating performs best by ac-
celerating the evolution of defensive alleles against multiple parasite types.

4.2.9 Offspring competition
Aicklin and Bull [4] tackle two constrained optimization problems, nurse scheduling
and tenant selection, by resorting on a hierarchical pyramidal distributed model. Within
their intricate scheme, they populate nodes that are higher in the pyramid through selec-
tion of parents from lower nodes. For that purpose, they have tested an approach where
an individual for the role of female is selected from a pre-selected sub-population and
a set of mating candidates is selected from another appropriate sub-population. In a
potential reference to certain forms of sperm competition, the female reproduces with
each candidate once and the offspring that achieves the better fitness value is main-
tained while the others are discarded. The authors report a beneficial behavior as a
result of post recombination selection.

Castro et al. [67] discuss a gender based algorithm where individuals carry a ran-
domly initialized gene for gender determination. Their selection operator behaves by
picking a female individual and a set of male mating candidates from each respective
group, using fitness proportionate selection. Then, they suggest simulating reproduc-
tion between the female and each mating candidate and evaluating the prospect off-
spring. The attractiveness value of each candidate results from combining their own
and their offspring’s fitness values. The candidate that is regarded as most attractive is
selected and reproduction takes place. The approach is compared to a standard Genetic
Algorithm and tested on function optimization. Reportedly, it converges faster to the
global optimum, although runs where the evolution process gets stuck in local optima
are not taken into account.

Snijders [273] introduced an approach where paired individuals reproduce multiple
times, thus producing a high number of offspring. A competitive arena is set between
the generated offspring and the top performing two are kept, in a potential analogy of
egg competition in some species. Interestingly, competing offspring are not evaluated
on the fitness function used for survival, but rather on an alternative metric that assesses
only part of the genotype. This approach also achieved slightly better results than a
baseline approach but performed worst than the genders based technique discussed
previously. Both, nonetheless, performed worst than a frequency dependent selection
method.

4.2.10 Distributed and cellular mating
Holland formulated Echo [131, 132, 133, 151] as a simulation tool for ecological sys-
tems, where agents interact with each other and with the environment. The system
consists of a geographical model, divided into sites or nodes. Each node produces re-
sources over time, which may be consumed by agents that inhabit that node. Agents can
take multiple actions and interact with other agents, with their behavior being outlined
by a set of user defined rules and the resources that they own [203]. Echo doesn’t ex-
plicitly evaluate individuals but those that can’t maintain enough resources are bound
to perish, while those that adapt better to the environment (and to other agents) will
have a higher chance of accessing resources and reproducing. At each time-step and
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at each site, agents are randomly selected and given a chance to interact with others.
If they have enough resources, that action may be either asexual reproduction through
cloning or mating with a geographically close agent. Offspring inherit both genetic
material and resources from their parents. Bedau uses a similar agent-based model
[26]. Simulations like Echo often depend on location to determine which individuals
are available for mating with females. Additionally, distributed approaches such as is-
land models or cellular models also impose restrictions on mating, often to those in the
same neighborhood.

A tag-based restriction policy is explored by Spears [277] for the goal of finding
and maintaining all peaks in functions with multiple optima. Initially, a strategy where
each individual has a k-bit tag and mating is restricted to individuals with the same
tag is described. Another approach where a fitness sharing technique distributes fit-
ness within individuals with the same tag, reportedly maintains most of the peaks on
certain functions but sometimes loses presence in lower peaks. More interestingly, an
extension to the approach suggests organizing individuals in a cellular model, using a
ring topology where mating is restricted by both tags and neighborhood (two neighbors
by individual), which successfully favors the maintenance of all peaks. The author re-
ports results comparable to Godlberg’s algorithm [112] without the need of computing
distances between individuals, instead relying on tags for partitioning. On the other
hand, it is questionable how much search can be accomplished with such restrictive
operators, or how much of the results are a direct impact of initial conditions.

Unemi and Nagayoshi [291] study a training strategy for real life robot teams, with
robots being controlled each by their own neural network. Their approach includes
evolution as a coarse grained adaptation mechanism but agents also learn throughout
their life span as a local search method. Their representation uses a chromosome for
neural net weights and a second chromosome with learning related parameters. While
both adapt through evolution, the genes are not changed throughout the life of each
agent to incorporate what they learn while tackling their objective task. Fitness, how-
ever, is influenced by their overall behavior and determines their reproductive success.
After having been evaluated, individuals gather fitness information on closely located
peers and define a mating strategy according to their fitness in relation to others. If an
agent’s fitness is in the top third of the neighborhood, it maintains its behavior. If its on
the second third, it gets information on the genetic code of a random individual from
the top third. If its on the bottom third, the agents right out replace their genetic code
with a mutated version of a randomly selected agent from the upper third. Individuals
in the second third ultimately incorporate knowledge through traditional reproductive
operators on both chromosomes. The approach was tested on a sweeping task, and
multiple parameter setups tested, including varying mating pool sizes, lifespan length,
among others. Overall, results show that the approach works sufficiently well even if
the mating pool is very small. The size of the pool also seems to influence the optimal
lifespan of individuals.

Smith and Tailor [271] presented a framework for evolving multi-agent systems for
optimization. Among other actions, the system allows each agent to determine when
they want to mate, how they advertise their intention, and how they choose their mating
partner. The following functionalities are implemented as a base for the mating mech-
anism: agents can advertise their interest to mate with other agents; they determine
the information that they display to potential partners; agents can hold information on
agents that have shown interest to mate; they can compare between agents based on
such information. At each action cycle in the system, agents seeking to mate check
their list of candidate partners and, if it’s smaller than a given threshold, they promote
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themselves as available to a random agent. When agents receive a signal for mating,
they reply with their own interest in mating. At the moment that an individual has a
full list of candidates, it will sort its interest using its own evaluation metric and the
provided information. On a first scenario, Smith and Tailor [271] tackled a Onemax
problem, where individuals promote the number of active genes to potential partners
and evaluate candidates on fitness. The candidate with higher fitness is selected as
a mating partner, giving place to crossover, mutation, and for a new offspring to be
inserted in the system. Results show that the approach can successfully solve the pro-
posed problem.

The same strategy was applied by Smith et al. [268, 269] on a more complex
problem where agents compete on a dynamic economy where they need to allocate
workers with the aim of maximizing profit. This time, while individuals still adver-
tise the number of active genes and are selected accordingly, that information is not
used as a fitness function, only for candidate evaluation purposes. In this scenario, the
approach achieved better results than randomly selecting mating partners. Smith and
Bonacina [270] applied the system to two multimodal functions with the goal of finding
all local optima. For that purpose, they change the mating strategy so that mating can-
didates are only accepted into the list of each individual if their distance (phenotypic
or genotypic) is lower than a given threshold. This restrictive mating strategy that pro-
motes positive assortative mating is reliant on a pre-defined threshold on euclidean or
hamming distance, therefore individuals advertise information on they phenotypic or
genotypic composition. Results were favorable, with the approach successfully finding
all optima. It should be noted the parallelism between the Onemax approach and a tour-
nament selection operator while operating in a decentralized way. Regarding the sec-
ond approach, the authors discuss the ability to control selection pressure through the
size of the candidates pools and the number of individuals reached by advertisement.
Regarding the third approach, they report being able to control the niching pressure
through the threshold value. Different parameter settings and metrics are also analyzed
[270].

Lee and Antonsson [172] propose a selection strategy for a steady state cellular
Genetic Algorithm. In such a model, individuals are organized similarly to nodes in
a topology (ring, torus, etc.), usually mating with those in their neighborhood. The
author’s approach propose reorganizing the location of individuals through a reinforce-
ment learning strategy based on the reproductive success of individuals. In order to
do so, the authors suggest selecting an individual for the female role and then using a
stochastic method based on a Gaussian distribution centered on the female, to select a
mating partner from among the neighbors. As a result, females have a higher prefer-
ence for those closely located in the topology, depending on the width of the Gaussian
distribution. In the first generation, individuals are sorted using the Manhattan dis-
tance between them, therefore promoting similarity, however, in order to self-organize
the distribution of individuals, the authors describe a methodology that rewards mating
partners that produce good offspring and penalizes the pairings that do not, by either
moving them closer or further to the individual acting as female.

This is achieved through the following steps: after a female has been selected, two
or more individuals are selected for the role of male; reproduction happens between
the female and each male; offspring are compared and, if the farthest male produced
a better offspring, the location of the males are swapped; also, if the best performing
offspring is better than the female, it takes its place in the population. The authors argue
that the approach contributes to an organization of the population that groups together
individuals that reproduce with relative success and promotes mating between them.
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The approach is tested against a standard cellular Genetic Algorithm and a standard
Genetic Algorithm on finding the optima on unimodal and multimodal functions, as
well as on Ising’s model [145], which has been shown to require niching to solve [134].
Results show that the proposed method can outperform the standard Genetic Algorithm
and converges faster to the optima than the cellular approach on all functions.

Wickramasinghe et al. [315] explore a system that aims at being a feasible fully
decentralized approach with survival and selection happening independently in each
node. The proposed system is a cellular GA where individuals are organized in a
topology, communicating and passing information with their neighbors only. Without
a centralized approach, individuals have limited knowledge on the proprieties of the
population and therefore have to make decisions on their behavior locally. The authors
describe each iteration of a node as a set of ordered steps. Firstly, gossiping rounds
allow for the publishing and collection of information between neighbors. Based on
collected knowledge, each node may make estimations on population size or other
metrics as well as make decisions such as stopping evolution if the optimum has been
found. Secondly, adaptation in each node happens, with parameters being adjusted in
response to the data collected in the previous step. Thirdly, evolution happens. During
each step and based on the parameters adapted in the previous step, each node com-
putes its chances of survival and, if it successfully survives, its chances of reproduction.
The same sigmoid function is used on both steps, defined through a center and a steep-
ness variables, showing a linkage between survival and reproductive success. If the
individual reproduces, it chooses a random neighbor that it has knowledge about and
the resulting offspring is introduced as a new neighbor as well. This has the effect of
maintaining relatives close to each other based on ancestry, which suggests a form of
positive assortative mating. After reproduction, the iteration is over. The authors apply
this model on multiple instances of the N Queens problem and report it to be feasible.
Regarding selection, they discuss that maintaining offspring close to their parents was
helpful for the gossiping algorithm to work properly but don’t address its impact on
solution quality or other metrics.



Chapter 5

Evolving Mate Evaluation
Functions

Modeling Mate Choice has been discussed to be an intricate task. While Fisherian
and Wallacen behaviors can be modeled with surprisingly simple representations and a
few assumptions, the introduction of preference multicomponency and the implications
under its veil introduce many challenges. Multi-dimensionality, complex interactions,
pre-existent preferences, and other particularities have been debated as some of the
most difficult barriers involved. This chapter will introduce a framework followed by
two approaches relying on different assumptions – PIMP and CMP-GP. While both
use Genetic Programming encodings, each offers its own potentials, with the second
approach allowing for the explicit modeling of preference multicomponency and com-
plexity through evaluation functions. In the previous chapter, many ways of modeling
Mate Choice or specific behaviors related to Sexual Selection have been described. The
approaches that will be introduced here, while sharing some characteristics with cer-
tain studies, are innovative and distinct in their core elements. This work is therefore
of exploratory nature and will be carefully explained, both regarding the approach’s
inner workings but also their relationship with Natural Selection. Later, means to ana-
lyze behavioral and performance impacts will be addressed. For the purpose of clarity,
problems that have traditionally been tackled through Evolutionary Algorithms will be
used to illustrate and proof the use of these models.

5.1 General Framework
Following the loose classification used in the previous chapter, if one would describe
the proposed model through the same means, it would be included among those that
have genetically encoded preferences, sharing the bulk of its nature-inspired mecha-
nisms, specially regarding inheritance. However, the representation of mate evaluation
functions requires a broader view of Mate Choice, one that focuses not only on pref-
erences as genes, but on a model that takes into consideration a perception system, an
interpretation context for the reckoned traits, and how they are evaluated according to
one’s preferences into an attractiveness value. In Lerena’s studies [176, 177, 178], a
partial distinction can perhaps been seen, with the vector representing the perception
system and context and the NK-table encoding the preferences and evaluation process
for each particular context.
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Figure 5.1: A general framework for Mate Choice with gene encoded preferences.

Figure 5.1 shows a scheme of the proposed model, focusing on representation and
on the candidates evaluation process, and highlighting how each component is built
and interacts with others. On the following subsections, details on conceptual choices
for this general model will be introduced in an orderly fashion, starting with global
assumptions and requirements and then outlining how to properly design mating eval-
uation functions using Genetic Programming trees. Two models for designing and
encoding evaluation functions will be introduced, each with its own inspiration and
characteristics. They can be said to share the same framework and its general outline
but should nonetheless be seen as distinct, and representing different approaches on
male candidates evaluation.

5.1.1 General Requirements and Assumptions
The introduction of complex preferences through Genetic Programming evaluation
functions brings its own assumptions on representation, evaluation, and inheritance.
However, with or without complexity, its important at this point to establish which are
indeed the requirements and assumptions associated with the development of a gen-
eral purpose framework for Mate Choice in Evolutionary Algorithms. Generally, this
depends solely on the successful introduction of selection pressure resulting from ge-
netically encoded mating preferences, and its influence on reproductive success. By
itself, such a scheme should be able to mimic the theoretical behaviors discussed pre-
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viously, at least to some extent (artificial populations and Evolutionary Algorithms are
different from biological ones, having themselves certain assumptions and restrictions).
With that in mind, many studies in the literature introduce assumptions that are unnec-
essary for the modeling of Mate Choice. The remainder of this subsection will aim at
clarifying the requirements and assumptions needed for the spontaneous evolution of
Mate Choice in Evolutionary Algorithms. The remainder subsections will then focus
on the role of Genetic Programming in the introduction of complex mate evaluation
functions.

Spontaneous Evolution of Mate Choice does not require:

Multiple Species
As an inner-process, Mate Choice does not depend on the concurrent initialization of
multiple species in the same simulation. While from an engineering perspective it may
seem useful to organize the population in distinctive species, its explicit impact on
Mate Choice as a restrictive strategy is unnecessary for its emergence. Speciation may
nonetheless occur as an effect of Mate Choice.

Natural Selection
Survival has at most an inhibiting relation with Mate Choice. Elaborate processes
of Sexual Selection are in fact mostly dependent on the self-reinforcement of mating
preferences. Open-ended systems giving rise to runaway Mate Choice are good illus-
trations of that matter. Nonetheless, the combination of Natural and Sexual selection
is likely to be found together in Evolutionary Algorithms. Still, implicit agreements
on the direction of their impact is likely the result of assumptions, design choices, or
initial conditions being favorable, rather than a signal of Wallacean good sense.

Complicated components
While this study particularly focuses on the modeling of complex evaluation of mat-
ing candidates, that is not an absolute requirement. In fact, as shown by the two-locus
and three-locus models, Mate Choice can take place with very simple representations.
The proposed approach doesn’t imply that evolved mating preferences will be com-
plex, but rather allows for complexity to evolve as part of the Genetic Programming
representation.

Gender determination
While gender differentiation is broadly present in natural population, it has been dis-
cussed previously that Mate Choice can emerge in simultaneous hermaphrodite popula-
tions without setbacks. The literature shows many strategies for gender determination,
mainly establishing which individuals are available for selection for each role. How-
ever, allowing all individuals in the population to be selected for either role with no
constraints will not hinder the process. Of course, female and male genders may casu-
ally emerge if there’s an evolutionary edge in specializing on a particular strategy for
being selected (being fit vs. being attractive).

Inheritance rules
Mate Choice abides by the same inheritance rules for preferences as any other trait,
the genetic slice and splash that is commonly embodied by crossover operators. While
in certain contexts it may be fruitful to design specific strategies, the traditional gene-
level competition is the only requirement to ensure the self-organizing behavior of Mate
Choice.
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Self-knowledge
Despite the potential usefulness of incorporating self-related knowledge on the process
of Mate Choice, its emergence is not dependent on doing so. Each individual’s genetic
composition, value or ancestry, among others, can hold important information, however
Mate Choice may rely on the display of phenotypical ornaments and the raw sense of
attractiveness to operate, in a closer resemblance with nature.

External rules
Guidance on how to choose a mating partner may range from very minimal, such as
perception rules, to very conditional, such as enforcing the preference for a certain
characteristic. While modeling Mate Choice will always be dependent on some kind
of external condition or assumption, they can be kept surprisingly simple and limited.

Trait costs
In nature, the expression of ornaments and behaviors will always come with an asso-
ciated cost (which may or may not impact fitness significantly). In artificial systems
that cost may be explicitly set or be an implicit byproduct of certain preferences. In
some cases, it’s difficult to assess if a given preference-trait introduces costs, and how
they relate to fitness (this could make them Wallacean or Fisherian). Independently
of the scenario, spontaneous evolution of Mate Choice is safeguarded because cost is
unnecessary for preferences for beauty’s sake to kick off.

Polygamy
Like in nature, Evolutionary Algorithms don’t have to impose polygamy to mimic Mate
Choice. Despite potential impacts on the speed of preference reinforcement, resulting
from the selection pressure imposed by female choice, the behaviors associated with
Mate Choice are still bound to take place.

Spacial environments
In Evolutionary Algorithms, location is not always accounted for, although it can be
simulated through reproductive barriers such as species, island or cellular models.
While location can introduce behaviors that influence the outcome of Mate Choice,
such as individuals placing themselves accordingly or the development of behaviors
specific to certain geographical neighborhoods, in the absence of location individuals
are still able to influence which ones will be the most attractive, and therefore affect
the outcome of reproduction.

Spontaneous Evolution of Mate Choice requires:

Sexual Reproduction
As the engine of evolution, reproduction has of course a center role in the emergence
of Mate Choice. As shown by Fisher-Darwin theory, there’s a gene-centered character
to Mate Choice, with multiple starting preferences and traits (stochastically generated
for instance) competing on a gene level for reinforcement and proliferation. Moreover,
self-reinforcement implies preferences selecting for themselves, which directly relies
on sexual reproduction rather than duplication or mutation-only scenarios.

Perception capabilities
How individuals perceive each other is also central to Mate Choice. After all, which in-
formation is accessible and relevant for the evaluation of mating candidates will dictate
on what grounds they can be judged. While this study focuses on complex preference
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interactions, which implies a certain degree of perception capabilities, large dimen-
sionality is not a requirement for the spontaneous evolution of Mate Choice. In fact,
minimum capabilities are all that is needed for choice to be possible based on a certain
preference.

Autonomy
Minimum levels of autonomy are required either on an individual level and on a ge-
netic level. In what regards their reproduction, individuals should be able to choose
their mating partner on their own accord, rather than relying on a centralized rule or
population-level operator. Also, genes should be given the freedom of coupling with
whichever other genes as they struggle for competition, in a non-biased, rule-free way.

Genetic Variation
Much like any process of evolution, diversity is key and the lack of variation puts a stop
to any further evolutionary steps. In the event of stagnation, choice can’t be said to be
actually happening because all subjects will be similar and their reproductive success
will not depend on Mate Choice. Expanding on the subject, lack of variation in mat-
ing preferences doesn’t imply stagnation, as contrast between mating candidates and
therefore choice is still possible. However, if all males look the same for all females,
the process of Mate Choice is considered to be stopped (at least temporarily).

Genetically encoded preferences and traits in this study follow the coming as-
sumptions:

Autonomous choice
Following the previous remarks on autonomy, individuals must choose who they mate
with based on their own perception of mating candidates and on their genetically en-
coded mating preferences alone. They should attempt to make the best choice possible,
on a purely selfish manner and with no regards for the good of the population or the
evolutionary process. This is in-line with a selfish gene-centered view of competition.

Unbiased inheritance
Mating preferences should be subject to variation operators (crossover and mutation)
like any other trait, allowing them to evolve strictly under evolutionary pressure and
with no bias, such as having one gender pass on all the genes, or pre-establishing rules
that dictate how preferences in offspring are inherited.

Reproductive success
Individuals, and therefore their genes, should be under scrutiny by both Natural Se-
lection and Sexual Selection, making it so that their reproductive success is the result
of their combined selective pressure. This way, Mate Choice introduces its own se-
lection pressure but is under selection pressure itself. The interplay between the two
forces makes it so that the reproductive success of individuals may depend as much on
choosing appropriate mating partners, as on being highly attractive to others.

Traits as indicators
No explicit relations between traits and fitness are determined by external rules or other
means. Still, this doesn’t mean that the cost of maintaining a certain trait is zero.
Rather, traits may implicitly affect fitness in both simple or complex ways, even if no
assumptions are made. As a result, no Fisherian or Wallacean characters are enforced
but both can emerge and co-exist on different traits (one being preferred for its useful-
ness and another for beauty’s sake). Intricate scenarios can emerge, with traits acting
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as honest, neutral or dishonest indicators of genetic quality, but not always in straight-
forward ways. For instance, traits that risk survival can still be indicative of good genes
(Zahavi’s handicap principle [322]).

Elaboration
The proposed model allows for different degrees of preference elaboration, with effects
ranging from the perception system to the choice process itself. However, assumptions
abstain from settling if complex preferences work better than simple ones. It’s up for
the evolutionary process to determine which will get a competitive edge.

With these general assumptions in mind, the remaining subsections will cover the
most relevant steps in the evolutionary process, from representation of mating prefer-
ences, to evaluation of mating candidates and how evolution can impact them. Finally,
some design choices that are important to the system are discussed. During this discus-
sion, it’s also important to keep in mind that Genetic Programming introduces its own
restrictions and assumptions. This study includes a discussion on the impact of such
assumption only to a reasonably short extent, with most setup picks (such as operators
and parameter) following standard, classic choices.

5.1.2 Representation of Ornaments and Mating Preferences
The proposed model, as can be seen in Figure 5.1, relies on individuals encoding two
chromosomes. The first chromosome represents a candidate solution to the problem
at hand. Depending on the target problem, trees, binary arrays, real arrays, or others
can be used for representation, with no additional assumptions being introduced by the
proposed Mate Choice model. During evaluation, this chromosome is mapped into a
phenotype that is evaluated to determine each individual’s fitness value, for survival
purposes. In addition to being under the direct pressure of Natural Selection, the first
chromosome also encodes the traits that will be made available for Mate selection
purposes. In many cases in the literature, this implies adding a number of genes to the
chromosome, so that part of the chromosome is used to encode the candidate solution
and part is used to encode ornaments, with no overlaps.

However, that is not an absolute requirement, as often the same genes can be
mapped for both purposes (how to do so may be highly problem dependent). In either
case, the effects of Mate Choice and potential costs of ornaments on fitness are assured
through genetic linkage. However, on the second scenario, a stronger polygenic and
pleiotropic character is enforced, with multiple traits (for survival or ornamentation)
being influence by multiple overlapping genes. This results in a closer impact of sex
traits on fitness, as the expression of certain ornaments may impact the overall perfor-
mance of individuals through more than a genetic linkage. Overall, this chromosome
will be directly impacted by both Natural and Sexual Selection, in a dynamic struggle
to produce fit, attractive phenotypes.

The second chromosome represents mating preferences using Genetic Program-
ming trees, which on an all-around perspective has some implications. For instance, in
some scenarios this means that individuals may be composed of chromosomes with two
different representations, one for their own candidate solutions and one for the evalu-
ation of others. A two chromosome setup allows for a greater control regarding these
design choices and offers a stricter regulation of variation operators, making it possible
to apply different operators or different rates on each part of the genetic code and thus
study their impact through a simpler process. Back to the representation of mating
preferences, two possible approaches are considered: i) representing an ideal mating
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partner and relying on a comparison metric to evaluate the distance between that ideal-
ization and each mating candidate (PIMP); ii) representing an evaluation function that
takes as input a set of observed characteristics and processes the interactions between
them into an attractiveness value (CMP-GP).

Each approach will be extensively presented further on, but at this point it’s im-
portant to mention some characteristics of each representation, specifically regarding
their terminal and non-terminal sets. For instance, the PIMP requires that a Genetic
Programming representation is possible for the target problem, so that both mating
preferences and mating candidate phenotypes can be mapped to the same phenotypic
space. It also requires that a distance metric is available for that phenotypic space.
On the other hand, if targeting a scenario that traditionally uses a tree representation,
then the same terminal and non-terminal sets can be used for the initialization of both
chromosomes, without the need for additional design choices or assumptions. CMP-
GP has no requirements on solution representations and distance metrics. However, it
does require that individuals can extract and evaluate characteristics from their mating
candidates. In this case, the terminal set will establish the evaluation of individual traits
or ornaments, while the non-terminal set will provide a number of operators that map
interactions between such individual signals into a complex evaluation function.

CMP-GP introduces therefore a Genetic Programming function as the second chro-
mosome, which models complex interactions between preferences into a single attrac-
tiveness value. In the end, independently of the approach used, the terminal and non-
terminal sets introduce additional assumptions, controlling how mating preferences
evolve and how they should be interpreted. For instance, by changing the terminal pool
or increasing the number of allowed operations between them, results and behaviors
may change drastically. Finally, while this chromosome is not under the influence of
Natural Selection, it’s indirectly impacted by it. It is also under the influence of its
own selection pressure, with the first chromosome acting as an indicator of encoded
preferences, as described by Fisherian self-reinforcement.

5.1.3 Evaluation of Mating Candidates
As previously discussed, Figure 5.1 shows an overall framework for evaluation with
three main components: perception, context interpretation, and a measure of attrac-
tiveness. Also, the complex character of evaluation of mating candidates has been
extensively debated as well as its implications on the design of evaluation functions. In
short, all components involved with evaluation will have a role to play in the model-
ing of complex evaluation functions, specifically in the way that traits are assessed and
weighted into an attractiveness value. Over the design of each step in the evaluation
process there’s an aim to keep assumptions to a minimum, but at the same time to en-
sure a certain freedom for individuals to autonomously make decisions on the value of
traits, their interactions and overall role.

Each of the two representation approaches has its own relation with the three com-
ponents in evaluation. In PIMP, after a female has been selected, its second chro-
mosome is mapped into the phenotype space, as is the first chromosome of a mating
candidate. The similarity between the two is measured through a pre-established met-
ric (for instance a sum function combining multiple factors) and the candidate that
best resembles the mapped preferences (ideal mating partner) is favored in selection.
The approach assumes therefore that: the perception system remains the same for the
whole evolution process and over the whole population; the evaluation context is sta-
ble and course-grained, since the whole phenotype of the candidate is considered for
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evaluation; the measuring function of attractiveness is fixed, which keeps preference
interactions partly non-adaptive. However, because the ideal mating partner is encoded
as a tree, it is debatable how much interactions depend on the encoded preferences
rather than on the metric used to combine factors.

CMP-GP evaluates mating candidates through a different process. Instead of com-
paring mating candidates to an idealization of a mating partner, it evaluates them
through a complex function that encompasses multiple traits. The tree encoded in
the second chromosome represents all three components in evaluation: the input to the
tree establishes the perception system as well as the context under which traits are as-
sessed; the chain of operators combining terminal nodes into an attractiveness value
determines the interactions of each trait in the given context. None of the components
is therefore fixed in the population nor through generations, keeping the whole of the
evaluation process under evolution. During evaluation, each trait in the tree input is
assessed independently and later combined through the chain of inner-tree operations,
thus having its true contribution influenced by others in the context. In the end, the
process is ruled by what terminals and non-terminals are made available for the con-
struction of these mate evaluation functions. Despite its relevance, building these sets
doesn’t have to be perfect. It should be done with the best knowledge available but in
the end, competitiveness will contribute to determining which sensors and interactions
are valuable, harmful, or irrelevant.

5.1.4 Inheritance and Evolving Forces
After two parents have been selected, two offspring are generated by means of tradi-
tional reproductive operators. In the proposed model, operators are applied indepen-
dently at each chromosome, with also independent probabilities. This decision not only
allows for operators suitable for different representations to be applied, but also for dif-
ferent parameters to control the partial search process in each chromosome. After all,
candidate solutions and mating preferences may produce different search spaces, with
different dimensions and sizes, and best tackled through different strategies. Consider-
ing the two proposed approaches, PIMP should produce a preferences landscape simi-
lar to the phenotypic landscape but CMP-GP is very likely to result in an unpredictable
preferences landscape. Still, even if the landscapes are the same, optimal parameters
and design choices may be different for an adequate contribution to the global search
effort.

Following traditional choices, thoroughly discussed by Koza [165], preferences
may be subject to crossover, mutation, or replication. At each reproductive step, one
operator is applied with exclusive probability, meaning that individuals may inherit a
combination of both parent’s preferences, a mutated version or and unchanged copy of
the preferences of one of their parents (mutation and replication are likely to happen
with a much smaller probability than crossover). As previously discussed, the operators
are applied based on probability alone, unbounded by any external inheritance rules.
Therefore, preferences are regarded as any other genetic block, being up to the selective
forces to help shape traits and preferences through cheer competitiveness. Depending
on the approach, this process can impact some or all parts of the process of evaluating
mating candidates.

The representation and inheritance of mating preferences as an additional chromo-
some may raise questions regarding their true relevance in competition. The applica-
tion of operators independently in each chromosome, for instance, may mean that for
genes in the first chromosome to thrive in consecutive generations, they may as well
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simply adapt to the objective function. However, as thoroughly discusses, when Mate
Choice is present, its impact can’t be overseen. Surely the genetic flow is likely to
be more complex and chaotic than the behavior of a standard selection system, but al-
though the dynamics may look unpredictable and somewhat anarchic, they are not left
entirely to chance. In fact, the system is quite autarchic, having Mate Choice as a self-
governing force that is able to determine the population’s trajectory in evolution. A
way to illustrate this is through a simple analysis of cost associated with reproduction
in Evolutionary Algorithms.

Consider a system with Natural Selection alone and a population where there’s
genetic and fitness variation. Because (most often) there’s a limited number of slots
for selection, genes that reduce chances to reproduce have an associated cost. In other
words, individuals with lower fitness pay a higher cost to reproduce than elite ones,
which get to reproduce often with low competitive effort. Moreover, there’s a cost
associated with the pairing of individuals, with those that end up paired with inferior
individuals having to bear the cost of producing low fitness offspring. In summary,
high end individuals pairing among themselves share the lowest cost possible and are
thus favored in competition. The introduction of Mate Choice results in some changes.
Firstly, the cost associated with pairing falls under the control of mating preferences,
so that individuals with good senses or good taste have a lower cost of reproduction,
since their offspring will not only likely be favored but also reinforce their choices
(the attractive sons theory). Secondly, the cost usually associated with fitness becomes
shared between being fit but also attractive, making it so that individuals that are very
fit but non-attractive have a higher cost than before, and those that would have a higher
cost based on low fitness have the chance to pay a lower cost by being attractive. Of
course, these costs are adaptive due to the dynamics of Natural and Sexual Selection.

Therefore, in disregard of how mating preferences are encoded, the impact of evolv-
ing forces in both chromosomes is ensured through their implications in cost. Through
their impact, the emergence of Mate Choice, rather than selecting random mates, is
ensured through the generations not because it is explicitly enforced but because it is
given the means to evolve. This would be akin to individuals in a location based system
moving to certain locations not because they are guided there, nor because they offer
better resources, but because they offer higher chances of being around and available
when reproduction occurs. Neither approach holds objections on this analysis.

5.1.5 Design Choices
The previous subsections have introduced general concepts on the proposed model for
Mate Choice. Two representations have been briefly introduced as well as particu-
larities on how they can be used for evaluating mating candidates. Despite their dif-
ferences, inheritance and evolving forces work through similar means and have been
covered as well. The bulk of the framework has therefore been introduced, however,
there are different design choices that should be briefly considered for discussion, as
they surely influence the behavior of the Mate Choice algorithm. The following topics
are relevant: initialization of mating preferences; variation operators; operators for the
selection of females and mating candidates; probabilities and parameters associated
with each operator. As previously mentioned, most choices have been kept to standard,
well tried choices.

Regarding initialization, Koza’s traditional Ramped Half-and-Half algorithm [165]
is used, which combines both the Grow and Full algorithms with 50% chances. The
Full algorithm always introduces non-terminal nodes until a maximum layer is reached,
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at which point a terminal node is introduced. The Grow method may introduce termi-
nals or non-terminals at any point and therefore may produce unbalanced branches and
not always reach a full sized tree. Moreover, the Ramped method stochastically se-
lects a growth limit for each tree within an interval that is user defined. As a result,
parameterization of the Ramped method controls the initial complexity and size of the
represented trees, while at the same time ensuring that individuals are not all attributed
preferences with the same dimensions and complexity. Unlike in Lerena’s study on
complexity [178], this model doesn’t focus on that feature alone, allowing for a less re-
strained behavior. The initial composition of the trees is ruled, as previously discussed,
by the terminal and non-terminal sets made available to the algorithm.

On the topic of selection, while the process for evaluating mating candidates has
been introduced, preliminary steps until that operation can take place need further cov-
ering. For the purpose, a female and set of male mating candidates for her consideration
need to be selected from the population. The way such individuals are selected can be
quite relevant for the behavior of the population, specially regarding gender dynamics
and the balance between Natural and Sexual Selection pressure. As discussed previ-
ously, simultaneous hermaphrodites offer an opportunity for all individuals to act as
females and males without additional assumptions on gender, and at the same time
making the whole gene pool available for both roles. Consequently, gender roles are
emulated during selection, as often found in the literature. The model works by select-
ing a female through a traditional fitness based tournament operator and presenting that
individual with a set of randomly selected mating candidates. The candidate that best
matches the mating preferences of the female gets selected for the second spot.

These preliminary steps to Mate Choice offer some opportunities: all individuals
are available to be selected as females as well as males; the tournament operator ensures
that all individuals are subject to Natural Selection, so that fitter individuals have a
higher chance of reproducing; the size of the tournament therefore controls survival
pressure, but because it is associated with the selection of females, it also controls the
degree of polygamy induced (a larger tournament increases the chances that only a
small set of elite females are given many chances of reproduction, which contributes to
female choosiness and the rapid spread of a few preferences); the selection of mating
candidates through a random operator ensures that individuals can contribute by being
attractive to others alone, rather than fit; the size of the candidates pool controls the
competitiveness pressure between males (the larger the lek size, the higher the pressure
on meeting female preference, and the less likely unattractive individuals are to mate);
balancing the size of the female’s tournament and the size of the mating candidate’s
pool is therefore key to an appropriate balance of selection pressures.

The context created by these opportunities should be ideal for Mate Choice to
evolve. Polygamy as well as lek-like competition between males, boosted by the fact
that individuals can be left out of reproduction, is bound to put pressure on low fitness
or low attractiveness genes. Given that the initial population is diverse, individuals
selected as females should bias selection towards their own choices. The resulting dif-
ferential mating frequencies should be enough to trigger a Fisherian process. Despite
the runaway process, it doesn’t mean that the preferences involved have to be for good
taste rather than for good choice. It’s true that Fisherian preferences require less as-
sumptions than Wallacean to model, but, as shown by Zahavi, preferred traits may work
as viability indicators if the preferred traits in potential mates correlate with offspring
survival [322]. If, otherwise, they correlate with reproductive success through good
taste or attractiveness of offspring, then the process evolves all the same as shown by
Fisher-Darwin theory [59, 97]. Of course, different traits can play different roles. Also,
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the same trait can be processed for both roles by complex evaluation functions.
Moreover, a simultaneous hermaphrodite population doesn’t necessarily mean that

sex can’t emerge as a specialization. In fact, if runaway sexual selection does result
from this setup, specially in a way where traits are pushed in a direction different than
that of Natural Selection, it is viable that the population experiences a form of sym-
patric speciation through genders. In that case, part of the population may specialize in
being fit and competing as females, and part of the population may specialize in being
attractive and compete as males, both dropping the odds of being selected for the oppo-
site role. The resulting dynamics have been previously discussed. Among them, it has
been discussed that gene dynamics between males and females can act like a means of
macro mutation. Despite the comparison, the effects of (micro) mutation on traits and
preferences are subjected to design choices as well, which can have important impacts
on evolution.

The nature of Koza’s mutation [165] can be quite destructive. It works by select-
ing a node in the target tree and substituting its sub-tree with a newly generated one.
Such an operator can truly impact Mate Choice, both if acting on traits or preferences.
As previously discussed, self-reinforcement of mating preferences relies on mating
preferences choosing for themselves, with traits acting as evidence for the presence
of certain preferences in mating candidates. Therefore, mutations on traits can cause
such evidences to be misleading, disrupting the self-reinforcement process by mak-
ing preferences unknowingly choosing for other competing preferences. Also, choice
consistency, which is critical for self-reinforcement, can be effected by mutation on
preferences. By affecting the way individuals rank mating candidates, the consistent
choice of preferences for themselves throughout the generations can be interrupted.
Still, mutation can be important to counter periods of no evolutionary progress, finding
new search directions and escaping local optima, and should be set accordingly. The
effects of mutation should be specially important when dealing with complex mate
evaluation functions, as inconsistency can be rather easy to come up, moreover if the
mutation point is close to the tree root.

Without mutation, variation is dependent on crossover alone. Koza’s crossover
operator [165] switches sub-trees between individuals, thus producing offspring that
together maintain the genetic material encoded by their parents although reorganized.
This allows the evolutionary process to exploit the existent genetic pool. On the per-
spective of mating preferences, this results in interactions between preferences being
swapped in positions thus affecting also dimensionality and complexity. Arguably, spe-
cific operators dealing with different parts of the evaluation process could have been
used (for mutation also), ensuring terminals could be swapped without effecting the in-
teractions, or the opposite, or other logical behaviors. However, while the standard op-
erator makes no such assumptions, and as a result acts on all components concurrently
with no particular care, it shouldn’t represent a barrier for Mate Choice to emerge.

5.1.6 Restrictions and Generalization
The discussed framework introduces a number of well justified assumptions. How-
ever, two of these assumptions regarding representation of mating preferences can be
seen more as restrictions and need further clarification on how much they impact the
designed approaches. The first regards using a Genetic Programming representation
for the second chromosome and the second one concerns the evaluation of phenotypic
ornamentation only. The introduction of these restrictions was necessary to contain the
scope of the experimental setup to a realistic size. As a trade off, it allowed for the
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opportunity to focus on a deeper analysis of the behaviors and effects of Mate Choice
which should generalize quite well outside of such restrictions.

Within these limitations, CMP-GP shows higher generalization capabilities when
compared with PIMP, as the latter requires a Genetic Programming representation to
be available for the target problem while CMP-GP depends only on the researcher
to find a number of phenotypic features to evaluate as ornament, regardless of the
representation used on the first chromosome. However, if the study was to extend to
allow any representation for the preferences chromosome, then PIMP may always rely
on the same representation for both chromosomes, whatever that may be, which greatly
boosts its applicability to a wide range of problems. In that regard, PIMP really only
depends on a distance metric on the phenotypic space to compare mating candidates to
a reference ideal mating partner. CMP-GP can already be applied to any problem, and
can even accommodate other representations for preferences, as long as they allow for
dimensionality and complexity to evolve explicitly (this is a keystone of the approach),
but with a higher design effort.

That effort may however be reduced by allowing the evaluation of genotypic char-
acteristics as ornamentation. In nature that would be most unusual, however in Evo-
lutionary Algorithms individuals can benefit from direct access to their own genotype
as well as to those of mating candidates. Bluntly, CMP-GP may make it simpler for
researchers to set a number of genotype-based characteristics to be evaluated as orna-
mentation. Arguably they could even be transversal to multiple problems sharing simi-
lar representations for candidate solutions. PIMP would also benefit greatly from being
allowed to work on the genotypic space, as it could make direct genotype-based com-
parisons using an appropriate distance metric. This would allow PIMP to generalize
quite well, making it even easier to apply than CMP-GP. Moreover, in both approaches
the combination of phenotypic and genotypic information on the same evaluation func-
tion would be reasonable, despite making perception less nature-like.

As shown by this discussion, the introduced assumptions on representation of pref-
erences are quite restrictive and have a deep impact on the generalization of the two
proposed approaches, more so on PIMP. Lifting these limitations in future studies may
bring important insights. So far, it’s known that both PIMP and CMP-GP could more
easily generalize to scenarios not covered in this study, which is a quite important char-
acteristic. Moreover, it may be shown that different representations or that relying on
the genotypic space may bring more than those gains, boosting performance for in-
stance while reducing design efforts. However, the necessary experimental setup to
address this question is extensive and will be postponed to future studies.

5.1.7 Two Scenarios for Proof of Concept
The discussion from the previous subsections covers important characteristics of the
proposed framework. However, while the discussion on inheritance and design choices
is somewhat transversal, the one on representation and evaluation can’t avoid focusing
on particularities of each of the proposed approaches in an attempt to give a general
sense of its workings. Hopefully, this will allow for an overview of the whole frame-
work, however it doesn’t provide enough information on the design of each approach
specifically. The following two sections will fully cover each approach and their dis-
tinctive characteristics. In order to help with such analysis, it may help to illustrate
their application on a couple of optimization problems. Moreover, their application
on such problems will contribute to proving the concept, as a preliminary study. The
following two subsections cover the two scenarios considered.
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Figure 5.2: An example of symbolic regression

Symbolic Regression

The straightforward goal of a regression task is to fit a mathematical model to a given
dataset. In a common scenario, a regression function is established beforehand and it’s
up for regression to take upon itself the search for the numerical values of its unknown
parameters. Hopefully, in the end, a function that approximately describes the dataset is
achieved, which can be useful for a variety of tasks. Over the years, multiple regression
analysis algorithms have been introduced. Genetic Algorithms, for instance are suitable
for such a task. By encoding unknown parameters as an array, a standard evolutionary
process can search the associated search space and achieve a suitable setup. In that
scenario, fitness can be measured quite simply: for all input-output pairs in the dataset,
feed the input to the mathematical model and measure the error to the output in the
dataset; after all data points have been covered, aggregate all error values in a final
fitness value; try to minimize the error. An example of an error metric commonly used
is Mean Squared Error over all data points.

It was Koza [165] who introduced the use of Genetic Programming for regression
purposes. Rather than pre-establishing a specific function for regression, it was pro-
posed that the function itself falls under evolutionary pressure. It’s easy to see how
that may be possible by evolving procedures. Instead of providing an initial function
as a starting point, sets of terminals and non-terminals are provided, in this case rep-
resenting input variables and mathematical operators respectively (constants, etc. can
also be included). By combining building blocks from those sets, whole functions can
be built, and their fitness measured against a dataset much like done in any other re-
gression algorithm as seen in Figure 5.2. Given that scenario, the effort is left for the
evolutionary process. This Genetic Programming model has the benefit of not needing
an initial model to evolve, instead searching through the whole search space of poten-
tial functions. On the other hand, such a search space can be quite large in comparison
to evolving only a set of parameters.

Over the years, Symbolic Regression has been extensively used and is broadly re-
garded as a benchmark for Genetic Programming methods [193]. It’s applications to
real world datasets are broad, but they have also been extensively applied in lab like
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Figure 5.3: Optimal solutions for the Circle Packing in Squares problem.

conditions, using equidistant data points generated within an interval of a given func-
tion. Different authors have targeted many different functions, from linear to poly-
nomial, comprising one or multiple dimensions, with multiple degrees of ruggedness,
and using varying combinations of terminal and non-terminal sets. A collection of tar-
get functions for regression, broadly regarded as relevant for benchmarking has been
published by McDermott et al. [193].

Geometrical Optimization

This type of problem aims at finding the best arrangement possible for a group of items
so that they maximize or minimize a given function. Usually, they refer to spatial
arrangement either in the 2D or 3D spaces, and depending on the characteristics of
the items and the interactions between them, many scenarios can be represented. In
this study, two problems of geometry optimization are considered: Circle Packing in
Squares, which takes place on the 2D space; Optimization of Morse Clusters, which
takes place on the 3D space. These problems offer various interesting characteristics:
i) they offer a large range of test instances; ii) as the number of items increases, so does
the complexity and difficulty of the problem; iii) they bring an opportunity for solution
visualization. The last one is of particular interest to help illustrate the workings of the
proposed approaches.

Circle Packing in Squares is a surprisingly challenging geometrical optimization
problem. It consists in finding the spatial disposition of a set of non-overlapping circles
of unitary radius, in a way that minimizes the area needed for a containing square
[186]. Figure 5.3 shows a few examples of known optimal solutions. Optimal solutions
have been found for up to 24 circles and putative optima are available for much larger
sets. For the matter of representation, candidate solutions encode a vector of Cartesian
coordinates representing the absolute position of each circle. These coordinates are
translated to the phenotypic space so that a fitness value can be attributed by measuring
the area of the smallest square that can enclose the resulting circles.

Chemical clusters are also geometrical structures, although on the 3D space, with
Cartesian coordinates being all the same a viable representation for candidate solutions.
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Figure 5.4: Optimal solutions for some instances of Morse clusters

As aggregates of particles ranging from a few to thousands, such structures can be
highly complex. Finding structures of maximal stability is of great relevance to many
research fields [326]. In order to do so, one would look for the geometry of atomic
or molecular clusters so that the potential energy held is minimal (such structures are
consequently more stable). An alternative view of the problem is that of finding the
global minimum on the potential energy surface, which in this scenario corresponds to
a fitness landscape [80]. Potential energy surfaces are multidimensional functions that
describe the interactions between the particles that compose the cluster (3N dimen-
sional when a cluster of N atoms is modeled on the three dimensional space). Such
functions are regarded as highly complex, showing roughed landscapes, rigged with
a large number of local minima and a deep multiple-funnel character [74, 279, 290].
Moreover, the number of attraction basins increases exponentially with cluster size
[48].

Finding the lowest potential energy of a cluster and the corresponding geometry is
a NP-hard task that provides difficult instances to challenge optimization algorithms
[48]. Among the possibilities, Morse clusters [206] are regarded as particularly chal-
lenging [74], more so if modeling short range interactions between particles. They of-
ten represent very different organization motifs depending on the number of particles,
some of which can be seen in Figure 5.4, making it quite difficult to design algorithms
that specialize on a geometric motif alone. Putative optima are available for clusters
ranging up to 80 atoms, making for a good range of testing instances with a variety of
characteristics. For that reason, Cluster Geometry optimization has become relevant
as a test problem to benchmark the effectiveness of global optimization algorithms
[48, 173, 175].

5.2 PIMP: Mating Preferences as Ideal Mating Part-
ners in the Phenotype Space

As briefly covered previously, PIMP relies on two fundamental and interlinked princi-
ples: i) the modeling of taste through the representation of a conceptually ideal mating
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partner; ii) the measuring of attractiveness to mating candidates by comparing how
similar they are to that fantasy representation. Notice the emphasis on the fact that
individuals represent their own taste as an abstract idealization, that may or not be
met to some degree by others. Even though it may not be mandatory in the genetic
space, preferences and solutions share the same phenotypic search space, which may
give an idea that it would be most beneficial for their search process to follow similar
paths. However, Fisher-Darwin theory proves otherwise. Assuming that the approach
complies with the assumptions on Mate Choice, which it does, then the underlying pro-
cesses are bound to emerge. Nonetheless, PIMP adds specifics and new assumptions,
that need covering. The following subsections will do so based on examples.

5.2.1 Representation and Evaluation
Ideal mating partners may be represented in the same phenotypic space either using
the same representation used for the first chromosome or an alternative one. The go-
to choice is most likely to be to use the same representation, as it takes most of the
development effort from researchers. This is arguably one of the most attractive char-
acteristics of the approach. For instance, when tackling symbolic regression tasks,
one would rely on the same terminal and non-terminal sets, as well as use the same
initialization procedure to build both chromosomes and thus successfully minimize
implementation efforts. Figure 5.5 illustrates the discussion with an example. It also
shows how the evaluation of mating candidates is a process that is much similar to that
of fitness evaluation, focusing on the displacement between the female’s phenotypic
mapping of mating preferences and the phenotypic mapping of a mating candidate’s
encoded solution. The attractiveness value is calculated using an aggregation function,
similarly to how fitness is measured (Mean Squared Error for instance). The individual
that minimizes the function is regarded as the most attractive.

Of course, researcher may find it useful for each chromosome to be built under
distinctive rules. Hereafter focusing on Genetic Programming representations, this can
be achieved by either expanding, reducing or changing the available terminals and
non-terminals. Tweaking the parameters associated with initialization, mutation or
crossover (maximum tree size, etc.) may also make sense, depending on the research
objectives. For instance, one may aim at comparing setups where preference chromo-
somes are more or less restricted in size or complexity. While this study doesn’t follow
that research path, it is relevant to point out that PIMP would maintain its core charac-
teristics, even if heavily tweaked, assuming that the phenotypes are mapped with the
same dimensionality or in a away that allows for a distance metric to be employed.

Figure 5.6 shows a potential representation and evaluation scenario for a Circle
Packing in Squares problem, which can easily be projected to the three dimensional
space and to cluster geometry problems. Two thing are relevant to mention regard-
ing this scenario. Firstly, the problem relies on an array representation, which evolves
under traditional Genetic Algorithms operators. While it would be straightforward to
encode preferences (by means of an ideal mating partner) using the same representa-
tion, Figure 5.6 shows that a viable tree representation (circles are placed consecutively
taking as input the position of the last one) that maps to the same phenotype space and
that is subject to the same assumptions and considerations as other preferences encoded
and evolved using Genetic Programming. Secondly, while in the Symbolic Regression
scenario the attractiveness value is calculated as an aggregation of multiple point-to-
point measures, the same can’t be accomplished in this scenario without moving away
from the traditional fitness function. Simply put, an analogous metric would simply
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Figure 5.5: Example of representation and evaluation for a Symbolic Regression prob-
lem. On the right, the preferences of a particular female are shown in red and the
phenotype of a mating candidate is shown in yellow. Distance is shown in blue.

Figure 5.6: Example of representation and evaluation for a Circle Packing in Squares
problem. On the right, the preferences of a particular female are shown in red and the
phenotype of a mating candidate is shown in yellow. Distance is shown in blue.
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compare the area of the containing squares from preferences and candidate solutions,
which is not acceptable under current assumptions and rules. As Figure 5.6 shows, a
metric can still be found on the phenotypic space, by measuring the euclidean distance
between pairs of items and then aggregating their values, using for instance a Mean
Squared Error function.

5.2.2 Assumptions and Considerations
Perception
By definition, PIMP encodes mating preferences as a whole solution. Given that fe-
males have access to the phenotypes of mating candidates without restrictions, they
might as well collect knowledge on whole solutions as well (all data points on Sym-
bolic Regression phenotypes, all circles in Circle Packing problems, and so on). The
upside of doing so is that attractiveness can be computed using full knowledge, which
may or may not be a good idea, since the evaluation of mating candidates introduces
computational overhead. In some scenarios the increase in computational effort can
be significant. Still, PIMP offers the possibility of using only part of the phenotype
for evaluation (data points at every few steps or only some circles) if it’s found that
processing all data points is an overkill. Nonetheless, from a perception perspective,
females have full access to the full phenotype of mating candidates and therefore, no
perception restrictions. Also, perception is immutable throughout evolution.

Context interpretation
Following the discussion above, there may be times when balancing computational
effort and the size of the knowledge base become part of the development effort for
researchers. That issue will be kept out of the scope of this approach, however, it
does bring an important discussion on context. One might think that the size of the
knowledge base has a direct impact on the evaluation context. After all, when looking
at phenotypes, it’s easy to think of data point pairs, or circle pairs (one from the the
female’s phenotype and one from the candidate’s phenotype) as preference-traits pairs,
and attractiveness as the aggregation of very fine grain evaluation measures. While
partly correct, if one looks at this from a genetic level perspective and particularly on
Genetic Programming representations, all points are the expression of the same genes,
which makes it odd to look at each point as isolated traits or preferences. Focusing on
preference encoding, increasing or decreasing the number of points does not influence
the evaluation context (data point pairs are compared with no influence from others).
Moreover, the evolution process, while acting on preference trees, has no effect on the
context. For all purposes, the evaluation context is immutable and coarse-grained.

Aggregation function
One of the main reasons why perception and contexts are static in PIMP is that the
function that ties everything together is externally set. If it were to fall under evolu-
tionary pressure, in the right conditions, the above discussions would be quite differ-
ent. Consider for instance that a Mean function is used for aggregation. It might be
encoded as a Genetic Programming tree, with one operator alone and one terminal for
each comparison value (a very large number of terminals in the Symbolic Regression
scenario), resulting on a shallow but wide tree. If it were given liberty to remove some
of those terminals, or introduce other operators in-between the terminals and the root
node, then it might be said that both context and perception are subject to change (inter-
actions between inputs as well). This would result in a three-chromosome system, one



CHAPTER 5. EVOLVING MATE EVALUATION FUNCTIONS 127

for candidate solutions, one for ideal partner representation, and one for the evaluation
function of candidates. This system will not be pursuit in this study. Still, it grace-
fully illustrates how the aggregation function, by being externally defined, is static and
immutable, and a constraint on the remaining parts.

Preference interactions
Because of how preferences are expressed and how the aggregation function works,
there are no explicit preference interactions in evaluation. However, because of how
they are represented, relying on a coarse-grained way on the same tree, it could be said
that there’s a genetic linkage between preferences. In simpler terms, because a single
tree is used to represent preferences by means of an ideal mating partner, operations
(such as mutation) that could influence one preference, influences all of them. This
doesn’t sustain that there are explicit interactions in evaluation of mating candidates,
but it does support that there are interactions in how preferences are expressed, which
indirectly impacts how they measure attractiveness.

Complexity
The discussion naturally extends to preference complexity. Keeping in mind that there
is no explicit form of assessing evaluation complexity on this particular approach, indi-
viduals are likely capable of influencing complexity indirectly. Because preferences are
encoded using Genetic Programming trees, there are means to assess the complexity
of those trees. While the meaning of such trees is not the same as that of an evaluation
function combining multiple preferences, they do represent how individuals are visu-
alizing their ideal mating partners. They might go for very complex representations
or suit for very simplistic ones. In a Symbolic Regression scenario for instance, they
might choose a polynomial or a linear representation. Arguably this is informative on
how complexity competes in Mate Choice.

5.2.3 Proof of Concept
Symbolic regression offers a simple yet interesting opportunity to apply PIMP with
minimum effort. For those reasons, it has been used for the purpose of proofing the
concept. At this point, the focus is not on developing a benchmarking test set or to
carefully deliberate on the impact of certain design choices, nor on being particularly
attentive on the characteristics of each target instance. There’s been of course an ef-
fort to produce a reasonable experiment, but mostly focused on making sure that the
framework is viable, that it follows the assumptions on Mate Choice that have been
established, and that consequently the means for Mate Choice to emerge are present.
There’s also a particular interest on seeing if preliminary results are promising. Re-
marks on the internal workings of PIMP are left out for a further extensive and careful
analysis on a wider experimental set.

For this experiment, six target functions were used (four keijzer [155], one koza
[165], and one nguyen [292]), with setups similar to those found in McDermott’s paper
on benchmarking Genetic Programming [193]. The three families of functions offer
different test scenarios, and an additional keijzer function is used with three different
intervals for the data set. Overall, the functions should not be too difficult to tackle and
are restrained to one dimension. Later on, other scenarios will be tested. The setup
used was quite straightforward: terminal and non-terminal sets are summarized in Mc-
Dermott’s proposal [193] and in Appendix E; the same sets were used to build both
chromosomes; the same overall parameters and operators are applied to both chromo-
somes as well; crossover is applied with a 90% probability and replication with a 10%
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Table 5.1: Mean Best Fitness obtained over 50 runs obtained with a standard, mate
choice and random approaches on the symbolic regression of 6 functions

Function Standard Mate Choice Random
Keijzer-1 0.0080 0.0059 0.0072
Keijzer-2 0.0063 0.0052 0.0062
Keijzer-3 0.0071 0.0056 0.0067
Keijzer-4 0.0890 0.0833 0.0840
Koza-1 0.0006 0.0014 0.0006
Nguyen-5 0.0014 0.0004 0.0025

Table 5.2: Mean Cumulative Destructive Crossovers obtained by the Standard, Mate
Choice and Random approaches on each function over 50 runs.

Function Standard Mate Choice Random
Keijzer-1 6013.14 7062.88 6484.58
Keijzer-2 5892.56 7149.06 6929.12
Keijzer-3 6173.56 7198.20 6808.86
Keijzer-4 5968.18 7239.40 6805.04
Koza-1 34889.32 36399.72 36797.82
Nguyen-5 27597.62 34656.84 30013.76

probability, mutation is not applied; females are selected through a tournament opera-
tor with five slots and choose their mating partners from a set of five randomly selected
mating candidates; a population of 100 individuals is used for keijzer functions and a
population of 500 individuals was used for other functions; only training data was used
for optimization.

The experimental set consisted of three scenarios: standard selection with both
individuals selected through tournament selection; Mate Choice through PIMP as de-
scribed above; random selection of the male individual. Each approach was run fifty
times and data regarding fitness and the result of crossovers was collected. In the study,
an offspring is considered to be the result of destructive crossover if its fitness is worse
than the female parent. If the offspring has the same fitness as its mother, it is con-
sidered to be the result of neutral crossover. Otherwise, the offspring is the result of
positive or constructive crossover. Offspring are compared to female parents alone
because they are the ones actively choosing a mate whereas males mate indiscrimi-
nately. Table 5.1 shows the obtained fitness results. Tables 5.2 and 5.3 show results on
crossovers. Instances where PIMP performed statistically different from the standard
one are shown (using a Wilcoxon Mann Whitney test [195] with a significance level of
0.01).

As shown in Table 5.1, PIMP outperformed the standard approach in five out of
six instances. The koza-1 function, where it performed worst is however regarded as a
particularly easy one [193], probably mapping into a landscape that is rather smooth,
allowing for the standard approach to effortlessly converge faster and gain advantage
over other, more exploratory strategies. Nonetheless, differences in Mean Best Fitness,
although significant, are not high, with all approaches reaching near optimal fitness
values. This suggests competitiveness. The random approach achieves slightly better
results than the standard approach on the keijzer functions and comparable results on
the koza function, which may indicate that the evolution process may benefit from a
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Table 5.3: Mean Cumulative Neutral Crossovers obtained by the Standard, Mate
Choice and Random approaches on each function over 50 runs.

Function Standard Mate Choice Random
Keijzer-1 3124.60 1760.94 2524.54
Keijzer-2 3278.84 1708.12 2060.58
Keijzer-3 2852.96 1741.40 2187.86
Keijzer-4 2997.26 1528.56 2169.32
Koza-1 8666.42 8016.44 7397.52
Nguyen-5 17749.86 10583.78 15592.58

lower selective pressure. However, results on the nguyen function show that it is not a
given that such a strategy effects performance positively. PIMP results also suggest that
a lower selection pressure may be beneficial but that the directional selection provided
by Mate Choice is more contributing than random selection of male parents.

Regarding the result of crossovers, the summaries in Tables 5.2 and 5.3 show how
the different approaches influence selection and pairing of individuals. Neutral oper-
ations are consistently kept to lower cumulative values when applying PIMP, whereas
a Standard approach ends up promoting so, by being subject to a faster convergence.
Such offspring make no contributions to fitness enhancements nor to exploration or
exploitation. Mate Choice seems to promote destructive crossover, which may indicate
the pairing of individuals that are genetically different, in a negative assortative fash-
ion. This may indicate competitive advantages in exploration in this particular scenario.
Ecological opportunities given to lower fitness individuals may ultimately contribute to
advances in the fitness of the best individual found. A comparison between PIMP and
Random approaches also suggests that both algorithms promote different behaviors.
This indicates that whatever the behavior of PIMP, it is able to evolve something that
is different from a random behavior. A longer discussion can be found on a study by
Leitão et al. [174].

5.3 CMP-GP: Complex Modeling of Mating Preferences
with Genetic Programming

As previously introduced, CMP-GP relies on three principles: i) the perception by
females of a set of characteristics flaunted by male candidates; ii) the evaluation of
characteristics according to female preference, both individually and on a particular
context; iii) the complex modeling of multiple tastes and their interactions into an at-
tractiveness value. The outcome is a scenario that allows for the explicit modeling of
preference multicomponency, by representing preference-trait pairs as terminal nodes
and the interactions between them as non-terminal nodes. The resulting tree represents
a full mate evaluation function whose parts are under the influence of evolutionary
forces. Its multidimensional phenotypic space is certainly different from that of evolv-
ing candidate solutions, potentially following very different (but interlinked) search
paths. As it complies with the assumptions on Mate Choice, it also introduces its own
assumptions and particularities, which will be covered in the following subsections.
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Figure 5.7: An example of an Mating Evaluation Function.

5.3.1 Representation and Evaluation
Mating evaluation functions mean a different search space from that of candidate so-
lutions. Whereas the development effort on PIMP was kept to a minimum through the
use of the same tree building and variation rules for the representation of preferences,
the same opportunity is not given by CMP-GP. It does arguably offer different opportu-
nities that are worth exploring, such as the explicit representation of preferences, a fine
grain perception and assessment of characteristics in mating candidates and their eval-
uation through a clear chain of interactions between them. As previously discussed in
great extent, such a model results in a preference landscape of self-adaptive character,
which, through the influence of various factors, has its ruggedness and overall nature
under constant evolution.

In order to accomplish such an approach, two main design tasks should, for the pur-
pose of clarity, be carefully explained and illustrated through the use of examples: i) the
outline of a a set of terminals representing the perception and evaluation of individual
traits; ii) the planning of a set of non-terminal operators representing potential interac-
tions to be chained into a tree. Figure 5.7 shows how an evaluation tree may look like,
with leaf nodes representing the individual perception and evaluation of traits, and the
branches representing interactions contributing to a global attractiveness value in the
root of the tree. Much like any other tree in Genetic Programming, the sets from which
they are built determine which behaviours they may produce. Obviously, these trees
may make use or not of all available terminals and operators. This freedom of design
is significant specially for terminals, as they allow for an adaption of the perception
system, potentially leaving out the influence of certain traits in Sexual Selection, or
empowering other features through their repeated use.

Regarding the design of the terminal set, a task that might be the most significant
and influencing in CMP-GP, a parallelism with multi-criteria optimization can be done.
After all, as shown by Figure 5.7, multicomponency in Mate Choice implies the eval-
uation of multiple criteria (and its combination into an attractiveness value, analogous
to fitness value in multi-criteria Evolutionary Algorithms). Whereas in multi-criteria
optimization the different objectives or functions are usually established, Mate Choice
relies on human knowledge and depends on problem specific characteristics for de-
termining each individual trait for evaluation. As a general rule, problems can be
subdivided into multiple tasks, offer multiple instances for testing (like geometrical
optimization), are related to other problems, or plainly offer certain characteristics that
can be assessed easily. Usually, the connection of such possibilities with fitness would
be an important question, but for the purpose of Mate Choice, such assumptions are
unnecessary. As long as there’s a chance to extract traits from a phenotype and evalu-
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Figure 5.8: Example of representation and evaluation for a Symbolic Regression prob-
lem. On the right, each red line corresponds to a single trait preference (terminals in
chromosome 2), and the mating candidate’s phenotype is shown in yellow.

ate those traits for the purpose of Mate Choice, Fisherian preferences can be applied.
Nonetheless, there may be a relation between some of those characteristics and fitness
(a cost), either positive or negative, being up to evolutionary forces and competition to
establish which are fruitful or not.

A general equation for the evaluation of individual traits can be thought of as |pn �
f (tn)|, where pn is the preference of a given female (the desired outcome) for trait n,
and fn(tn) is the performance of trait tn on task f (tn). For instance, in the example
shown in Figure 5.8, mating candidates are evaluated on a number of minimization
tasks, f (t1) and f (t3) . For each task, the result is measured against a preferred value,
pn, possibly set to a random number during instantiation. As a result, when evaluating
a single trait, females compare what they observe in males to their own desire. Notice
that the individual evaluation of traits is a minimization scenario, however, that doesn’t
imply that global attractiveness should be a minimization effort, as preference-trait
pairs can be bound to increasing their differences rather than reducing. Assuming
attractiveness as a minimization effort requires extra assumptions.

While these preferences are easy to understand due to their relation to the workings
of PIMP, they might be computationally expensive, depending on the settings. Simpler,
more straightforward traits can be used with no risks. For instance, one might formu-
late preferences in the following format: sample a fixed number of equidistant x values
from the function interval; for each value of x, randomly initialize a preference for the
corresponding y = f (x) value, yp; apply the equation above as |yp � f (x)| as the evalu-
ation of individual preferences. Aggregate single evaluations by applying the function
encoded by the preferences chromosome. Figure 5.9 illustrates such a scenario. While
these preferences are simple and follow all assumptions of Mate Choice, they raise an
few discussion points. Firstly, it’s important to make sure that no further assumptions
are being made on the relation between traits and fitness. This may be tempting on
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Figure 5.9: Example of representation and evaluation for a Symbolic Regression prob-
lem.

problems where the optimal solution is known. For instance, if the values of y were to
be used directly as input for the Mating Evaluation Function, a direct relation between
preferences and optimal values could bias evolution. The use of a preferred value (yp)
helps distance perceived traits and fitness. In an extreme scenario where all points in
the symbolic regression function are analyzed as traits, an ideal mating partner such
as the one from PIMP, could be represented by preferences. CMP-GP refrains from
doing so, which brings up a second topic of discussion. In Figure 5.9, perceived traits
are placed equally distanced in the x axis, which assumes that the perception system
of individuals is built from well defined terminals and can change only within that
space. Alternatively, the perception of traits, through the values of x, can fall under
evolutionary pressure, through appropriate initialization and mutation operators, thus
introducing a new layer to evolution, where not only preferences evolve, but also per-
ception.

The definition of a terminal set for the problem of Circle Packing in Squares demon-
strates a different way that the extraction of traits for evaluation can be done. The
problem is among a family of problems that offers a range of instances of increasing
size and complexity. As shown by Figure 5.10, there’s a relation between those in-
stances which offers an opportunity for the purpose of Mate Choice. Briefly, the figure
shows the optimal solution for the packing of sixteen circles and, in red, how certain
sub-instances are also present in their perfect form, or in an approximate formation.
There are also those sub-instances that are present in a not so good, or even plainly
bad arrangement. Independently of performing well or bad, how an individual behaves
in such sub-tasks is bound to hold information on the genetic quality it holds for the
target instance. Therefore, assessing individuals by how they perform on a subset of
sub-instances (not necessarily all) can provide a good perception system. Some ad-
ditional remarks are worthy. While sometimes the optima has been proven and other
times there is a putative optima, the relationship between instances and sub-instances
is not direct like in the previous example of symbolic regression. In this case, instances
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Figure 5.10: Example of representation and evaluation for a problem of Circle Packing
in Squares.

may be very different in arrangement and motif when compared to others, and so, per-
forming well in one may or may not be an honest indicator of how they perform in
others. Thirdly, for these reasons, assuming pn = 0 for all preferences is suitable. Of
course, other values can be used, but because no assumptions are made on how pn is
related to fitness (it may be positively or negatively related in some instances and not
at all in others), the choice is good enough to meet the assumption on Mate Choice.

In this scenario, a decision on the number of extracted traits, and which, needs to be
made, following suit with the second Symbolic Regression scenario. While many sub-
instances are available, evaluating all of them can be demanding. The same analysis
applies, a number of sub-instances can be pre-selected (equally spaced for instance)
from the full range, or the introduction of initialization and mutation operators that
allow for the variation of the perception system can take place. Of course, the full
analysis on the problem of Circle Packing in Squares also applies to the problem of
optimization of Morse clusters, although on three dimensions rather than two. Finally,
to close the discussion on terminals, its important to notice that none of the preferences
used on any of the examples makes any assumptions on the representation of candidate
solutions.

While the design of a terminal might demand some thought, establishing a non-
terminal set is quite simple. As seen in Figures 5.8, 5.9 and 5.10, arithmetic operators
are used independently of the meaning of each terminal. In these scenarios, all termi-
nals produce real values, within the same order of magnitude, making simple arithmetic
operators a suitable choice. Depending on the data types returned by terminals, adjust-
ments may be needed in other scenarios. For instance, it may make sense to introduce
qualitative data types and problem specific operators to deal with them. Also, operators
combining more than two inputs can also make sense, in order to mirror interactions
that combine many inputs in one step. Such situations will not be experimented with
in the current study, as they shouldn’t represent absolute needs for Mate Choice. As a
non-terminal set is built, it’s up to evolution to select which interactions are competitive
and which are not, both regarding node frequencies and tree size. The resulting behav-
ior might be very difficult to analyze, because operators can have different impacts on
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multiple contexts, either boosting the influence of certain preferences in the presence
of others, or the other way around. Not only that, but the distribution of traits in male
candidates can also influence how interactions impact overall attractiveness.

5.3.2 Assumptions and Considerations
Perception
It is not in the nature of CMP-GP for individuals to have access to the full phenotype
of mating candidates. Rather, perception of others is bound by the terminal set built
for each problem. It is up to researchers, in a first stage, to determine how many and
which perception abilities are made available in the pool. As discussed, terminals may
be subject to stochastic initialization and may mutate throughout the evolution process,
making it so that the perception of others can vary, potentially finding new traits of
interest to Mate Choice and dropping others. This process is a part of a second stage of
determining perception abilities, which is bound to evolutionary forces. The frequency
of terminals in the population may vary, making it viable for some to be completely
dropped, but also imposing an active competition through self-reinforcement. After all,
perception bias can kick-off Fisherian runaway processes. In summary, perception is
not immutable, being therefore subject to evolutionary forces.

Context interpretation
Following the discussion on perception, context is also bound by the terminal set as
well as by the distribution of terminal nodes in the population. For each particular trait,
context is dependent on what other terminals are present in the particular preference
tree being processed, but also on the non-terminals present and tree depth. Consider
a well balanced tree, with a given depth and two-input operators only. As the tree is
processed from leafs to root, the evaluation context for each particular preference in-
creases exponentially. When processing the leaf layer, each trait-preference relation is
processed independently. When moving to a layer above, the context of each prefer-
ence will be influence by one other. In the layer above it will be influenced by three
other and so on. In the root node, the full evaluation context is present and all inde-
pendent preferences are processed into an attractiveness value that takes into account
the full context. This example generalizes to any tree, either balanced or unbalanced,
of any size and independently of operator characteristics. Tree structures can of course
change during evolution, making context to be under evolutionary forces.

Mate evaluation function
When discussing the aggregation function on PIMP, a three tree system was described.
The system used in CMP-GP is a natural simplification of that system, where the tree
used for the representation of the ideal mating partner has been removed, making the
inputs dependent on the perception system or terminal set defined. Still, the mate eval-
uation function is what ties everything together (perception, context and interactions).
Unlike PIMP, a function is not externally determined, being up for each individual to
encode and apply their own evaluation to mating candidates. As a result, evaluation
functions are able to freely evolve, bounded only by the assumptions on terminal and
non-terminal sets, and on the operators used. These assumptions are however on a
higher level, which better suit the assumptions on Mate Choice that aim at keeping
evolution as less constrained as possible. By keeping the evaluation function away
from rules and constraints, evolutionary freedom is extended to perception, context
and interactions.
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Preference interactions
The modeling of mating preferences through evaluation functions allows for the ex-
plicit representation of preference interactions. Much like perception is controlled by
the terminal set, preference interactions are controlled by the non-terminal set and, as
previously discussed, they also influence context by establishing how preferences are
related. The chain of interactions can transform the impact of each individual pref-
erence in multiple ways. Some preferences can be placed very close to the root of
the evaluation function, having a more direct impact on the attractiveness value, while
others can go through various operations until its influence is determined. Also, the
same way that sub-trees can boost each others impact, they can also null each other.
As a result, parts of preference chromosomes, while present genetically, may have no
expression, which can account for preference pre-existence or dormancy. Mutation or
variation can suddenly cause such preferences to express themselves at some point in
the evolutionary process.

Complexity
Following the discussion on preference interactions, complexity is influenced by two
main factors. Firstly, non-terminals may be n-adic with n� 1, where n= 1 corresponds
to an operation that transforms an input rather than represent an interaction. As n
increases, operators take a higher number of inputs that interact with each other in
increasingly complex ways. Most arithmetic operators are 2-adic, and therefore all
contribute in the same way to complexity. As the second factor will clarify, this doesn’t
mean in no way that complexity is static or restricted by each available non-terminal.
Secondly, while interactions within a single operator may be bound by the number of
inputs accepted, they may be chained in a tree with many layers, thus allowing for
complexity to increase or decrease accordingly and under the influence of evolutionary
pressure. Still, tree size restrictions may keep complexity from growing indefinitely,
but still, it may be assumed that complexity has appropriate means to evolve through
explicit and chained interactions.

5.3.3 Proof of Concept
The two aforementioned problems of geometry optimization have been used for proof-
ing the concepts of the CMP-GP. Similarly to the use of Symbolic Regression in PIMP,
the goal is not to benchmark the approach nor to make a deep analysis of its behav-
ior, nor to study particular design choices. Rather, these applications aim at showing
that the approach fits our general framework, that the general assumptions are being
followed and that an appropriate scenario for Mate Choice is built. It also aims at
demonstrating that the traits chosen for Mate Choice evaluation are suitable. Finally,
there’s an interest in the performance of the algorithm on these two problems, which
constitute large sets of testing instances of increasing challenge. Specially for the opti-
mization of Morse clusters, the collection of testing instances is particularly difficult to
tackle, and so can be indicative of the competitiveness of CMP-GP in hard optimization
tasks, and in comparison to other state of the art methods.

As extensively described, the problem of Packing Circles in Squares consists on
finding the configuration of a set of circles of fixed radius so that they minimize that
area of a containing square [186]. Individuals encode candidate solutions on their first
chromosome using a vector of Cartesian coordinates representing the position of each
circle, which is then mapped so that the area of the enclosing square can be calculated.
Regular Genetic Algorithms operators are applied on this chromosome ensuring ge-
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netic crossover and mutation. For the purpose of encoding mate evaluation functions, a
second chromosome is added with a Genetic Programming representation, which is to
be used by each individual to assess mating candidates based on its own mating pref-
erences. Specifics on the terminal and non-terminal pools can be found in the original
study [186] but relies on the following notes: when tackling an instance with n circles,
all [2,n�1] sub-instances are available in the terminal set; a set of arithmetic operators
are available as non-terminals.

To measure the performance of an individual packing n circles in all instances of
lower dimensionality, one would need to consider a total of Cn

2 +Cn
3 + ...Cn

n�2 +Cn
n�1

arrangements. In order to drastically reduce the computational effort needed for the
evaluation of mating candidates, a simplification was used where only the first k circles
represented in the chromosome are considered, instead of Ck

n possible combinations
of k circles. Other than this process, the setup used was rather straightforward: tradi-
tional operators were used for both chromosomes; the first chromosome is subject to
crossover with a 90% probability and mutation with a 2% probability; the second chro-
mosome is subject to crossover with a 90% probability and no mutation; selection of
females is done through a tournament of 5 individuals; each female chooses its mating
partner from a set of 5 randomly selected mating candidates.

An alternative approach was designed based on the encoding of mating preferences
as a vector of weights, one for each sub-instance being evaluated. The attractiveness of
a candidate male is determined by its performance on each sub-instance and the weights
encoded in the female, combined through the following weighted sum: Ân

k=2 w f
k Pc

k ,
where wi

k is the weight encoded by female f for sub-instance k and Pc
k is the perfor-

mance of candidate c in sub-instance k. Notice that Pc
k values are the same as used

on terminal nodes in the mate evaluation functions (on the Genetic Programing ap-
proach). Therefore, this vector representation evolves only the weights of a predefined
aggregation function, which arguably represents a smaller search landscape. It would
be expected that the evolutionary process could make it so that useful weights evolve,
distinguishing between sub-instances that have a positive, negative or null effect on the
profiting selection of mating candidates.

Four setups were tested: traditional selection with both individuals being selected
through tournament selection; Mate Choice through the encoding of weights; Mate
Choice through the use of mate evaluation functions; random selection of the male
parent. Experiments were run on instances ranging from 2 to 24 circles, for which the
optima is known. Each setup was run thirty times, and final best fitness values were
saved. Table 5.4 shows the Mean Best Fitness values achieved by each setup on each
instance. Experiments where statistical differences (using a Wilcoxon Mann Whitney
test [195] with a significance level of 0.05) from a standard approach were found have
been highlighted. Regarding Mate Choice, the Genetic Algorithms approach achieved
better results in four instances, one with statistical significance, while the CMP-GP
achieved better results on eighteen instances, eight of which with statistical signifi-
cance.

Overall, the obtained results can be summed in the following remarks: random
selection of males performed better than a standard approach, suggesting that the algo-
rithm may benefit from a decrease in selection pressure for a higher exploration effort;
the weights based setup performed below expectations, as it should have been able to
make a better use of information extracted from mating candidates; results suggest that
the tree based encoding of mate evaluation functions contributed positively to a better
performance by the algorithm. Independently of the inner workings of CMP-GP, from
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Table 5.4: Mean Best Fitness over 30 runs obtained with a standard, random, mate
choice with GA representation and mate choice with GP representation on the packing
of N circles in squares

Mate Choice
N Optimal Standard Random GA GP
2 3.4142 3.4142 3.4142 3.4142 3.4142
3 3.9319 3.9320 3.9320 3.9319 3.9319
4 4.0000 4.0266 4.0001 4.0255 4.0001
5 4.8284 5.0056 4.9911 4.9250 4.9475
6 5.3282 5.3669 5.3674 5.3685 5.3804
7 5.7321 5.8227 5.8081 5.8296 5.8098
8 5.8637 6.0212 5.9615 5.9913 5.9898
9 6.0000 6.5184 6.4907 6.5401 6.5154
10 6.7474 6.8936 6.8854 6.9110 6.8536
11 7.0225 7.1619 7.1764 7.2232 7.1564
12 7.1450 7.3966 7.3565 7.4809 7.3438
13 7.4630 7.8088 7.8167 7.8355 7.7147
14 7.7305 8.0705 8.0950 8.1509 8.0048
15 7.8637 8.3324 8.4173 8.4345 8.2581
16 8.0000 8.7014 8.8632 8.8153 8.6012
17 8.5327 8.8765 9.2345 9.0836 8.8665
18 8.6564 9.0996 9.4966 9.2724 9.0984
19 8.9075 9.4442 9.9422 9.6036 9.3511
20 8.9781 9.7212 10.2839 9.7641 9.6030
21 9.3580 9.9788 10.7402 10.1307 9.9425
22 9.4638 10.2610 11.0512 10.3705 10.2693
23 9.7274 10.5201 11.5476 10.6498 10.5892
24 9.8637 10.7725 11.8382 10.8163 10.8034
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the perspective of performance, it could be said that the proposed approach was able
to make good use of the information extracted from mating candidates. This doesn’t
imply the emergence of good sense, as the algorithm is built for self reinforcement
through good taste, but it may point out that good taste can positively contribute to
good sense. Finally, the results back up that Mate Choice emerges in a way that is
fundamentally different from selecting males randomly. A longer analysis of results
can be found in a study by Machado and Leitão [186].

Morse cluster optimization consists in finding the geometry of a cluster so that its
potential energy is minimized. In a way, it’s an extension of the packing problem to
three dimensions, where instead of minimizing an area, the goal is to find an arrange-
ment that minimizes the cluster’s potential energy. Over the range of potential cluster
sizes, CMP-GP has been applied to clusters sizing from 41 to 80 atoms. These 40
instances provide a robust test set, with a diversity of geometric motifs and charac-
teristics that challenge how Mate Choice can be used to tackle each one specifically
without requiring careful customization to each instance. While most of the discussion
on implementing mate evaluation functions through Genetic Programming would be
just an extension of the setup used for the problem of Circle Packing in Squares, there
are a few things worth clarifying: the first chromosome encodes Cartesian coordinates
for the location of each particle in the three dimensional space and evolves through
Genetic Algorithms operators; the second chromosome encodes a mate evaluate func-
tion; the terminal set includes arithmetic operators and the non-terminal set follows the
idea that each individual can also be evaluated on sub-instances of the target problem.
Regarding the terminals, not all sub-instances are available, as it could mean having a
terminal set with up to 80 possible nodes. Instead, 5 equally spaced sub-instances are
used. Details can be found in the full study [173].

CMP-GP was introduced in a state of the art model for tackling the optimization
of Morse clusters, focusing on the importance of maintaining diversity [223]. The
steady-state model relies on a substitution mechanism that controls which offspring are
allowed in the population, therefore assuming a very powerful role. Substitutions are
allowed in two situations: either the new offspring is structurally similar (according to
a distance measure) to one individual in the population, in which case the fittest of the
two is maintained; or the new offspring is structurally dissimilar from all individuals,
in which case it may replace the worst individual if it is fitter; otherwise, the new
offspring is discarded. This replacement mechanism may have a strong enough grip on
the population to effect evolution, after all, producing sexy offspring and reinforcing
mating preferences is secondary if new offspring are unable to be introduced in the
population. In a way, it surely is more important for mating preferences to adapt to
the replacement operator as a strategy to maximize the number of offspring they can
introduce in the population and thus attempt at self-reinforcement.

Table 5.5 shows the success rate at finding the putative optima on 30 runs for each
instance of the problem. This metric as been regularly used for performance assess-
ment on cluster geometry optimization problems. A pairwise proportions test was used
to find significant differences [283], using a significance level of 0.01. Out of 40 in-
stances, CMP-GP was able to achieve a higher success rate on 20 instances, 4 of them
with significant differences. Ties were found on 7 instances as well. Overall, CMP-GP
was able to find all putative optima. From a performance perspective, and even though
Mate Choice is bound by the replacement operator, the strategy seems able to con-
tribute positively to the optimization effort. A deeper analysis on the interplay between
Mate Choice and the replacement operator is worth expanding.

As discussed, the replacement strategy relies on two main rules. In a way, it either
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Figure 5.11: Top: Average substitution rate from 30 runs with clusters of size 61, where
close corresponds to individuals replacing a similar one in the population. Middle:
Average substitution rate from 30 runs with clusters of size 61, where far corresponds
to individuals replacing worst one in the population. Bottom: Cumulative average
number of substitutions obtained in 30 runs with clusters of size 61. A generation
counter is incremented at each 100 individuals bred.
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Table 5.5: Success rate over 30 runs obtained by a standard and mate choice approaches
on the cluster geometry optimization of morse clusters of size N

N 41 42 43 44 45 46 47 48 49 50
Mate Choice 24 21 18 18 12 14 6 16 16 2
Standard 15 12 14 7 5 9 2 14 18 5

N 51 52 53 54 55 56 57 58 59 60
Mate Choice 2 9 4 7 7 11 9 5 3 7
Standard 7 6 5 12 6 11 8 4 2 0

N 61 62 63 64 65 66 67 68 69 70
Mate Choice 1 6 8 8 9 10 5 3 6 6
Standard 1 12 6 11 8 8 5 4 6 8

N 71 72 73 74 75 76 77 78 79 80
Mate Choice 6 3 6 5 5 3 3 4 2 5
Standard 6 7 6 1 2 4 7 3 6 5

allows exploratory offspring that are at least as good as the worst individual in the pop-
ulation or exploitative offspring that improve on the fitness of their closest individual.
The top and middle graphs in Figure 5.11 shows that CMP-GP increases the number of
offspring accepted by both rules. It’s important to notice that the replacement strategy
is quite restrictive, making it so that very few individuals are accepted for every 100
offspring bred (in both approaches). Still, CMP-GP is able to increase the number of
exploratory individuals in the beginning of the population, which may be important for
the population to be more distributed in the search space and therefore able to exploit
more areas concurrently. The increase in exploiting offspring accepted throughout the
runs seems to corroborate this view. Even though Mate Choice can produce a lot more
destructive crossovers, this scenario shows how such a behavior can be important for
exploration and even boost the success of exploitation.

The bottom graph in Figure 5.11 shows the overall impact on accepted offspring,
which increases cumulatively roughly 50%. While such a behavior doesn’t necessarily
translate into better performance, it shows an adaptation to the exploratory and ex-
ploitative rules of replacement. A key factor for this process, which as been previously
discussed, may be the momentum that mating preferences and self-reinforcement give
to newly discovered search areas. Not only does CMP-GP increases the chance of ex-
ploring new areas but also gives them a longer chance to be exploited. This behavior
is different from exploration through mutation, where a new individual may stumble
upon a new search area, but due to its low fitness, is given no further opportunity to
contribute. In the end, the population keeps a less elitist character, benefiting from a
directional drift. As a result, a relation between exploration and exploitation is possi-
ble, accounting for less moments of stasis. A more complete analysis on the behavior
of Mate Choice on the optimization of Morse Clusters is available [173].



Chapter 6

Applications and
Experimentation

The modeling of Mate Choice has been shown to be possible using a general frame-
work. Independently of design choices, or even on the introduction of complex mating
preferences, the proposed framework clarifies which are indeed the requirements and
assumptions behind Mate Choice, and which are not absolutely needed. Moreover,
it outlines the processes of representation, evaluation, inheritance and design choices,
which together determine the workings of evolution. On top of that framework, two ap-
proaches relying on Genetic Programming to represent and evolve mating preferences
have been introduced (PIMP and CMP-GP), both abiding by the rules of Mate Choice,
but also showing diverging inspirations and designs.

Despite the proof of concept of each approach on at least one problem, briefly
discussed in the previous chapter, and the theoretical discussion on behavior included
on Chapter 3, a broader, more complete study would be most beneficial to the study
of Mate Choice and its applications on Evolutionary Algorithms. For that purpose,
the present chapter discusses a large experimental set that has multiple goals. Firstly,
there’s the issue of performance, and how Mate Choice compares to standard selection
in achieved results. Secondly, and while the two approaches were not built as direct
competitors but rather as two choices that may be more or less suitable on different sce-
narios, it should be fruitful to compare the performance of both approaches. Thirdly,
experimentation should bring to light behavioral aspects that may: i) corroborate hy-
pothesis or research questions; ii) contradict theoretical analysis or assumptions; iii)
provide further knowledge on the workings of Mate Choice; iv) contribute with infor-
mation to a better understanding of how Mate Choice may be an asset to Evolutionary
Algorithms.

6.1 Experimental Setup
Symbolic Regression has been chosen as the target problem for experimentation with
Mate Choice. This family of problems has been sufficiently introduced in subsection
5.1.7, and the arguments in favor of its use for benchmarking have also been discussed,
requiring no further comments. Regarding the application of each approach on Sym-
bolic Regression, the scenario has been previously considered as part of the lengthy
introduction on their motivation, particularities, and design, included in sections 5.2

141
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Table 6.1: Operators and Parameters used for experimentation with the standard ap-
proach.

Standard Approach

General Parameters
population size 100
generations 500
elitism 1

Selection of First
Individual

operator tournament
size 5

Selection of Second
Individual

operator tournament
size 5

Individual Builder

operator ramped half-and-half
full tree depth random(2,6)

grow max tree depth random(2,6)
grow probability 0.5

Breeding
crossover prob. 0.9
copy prob. 0.1
mutation prob. 0.0

Crossover node selection
terminals prob. 0.1
non-terminals prob. 0.9
root prob. 0.0

max depth 17

Mutation node selection
terminals prob. 0.1
non-terminals prob. 0.9
root prob. 0.0

grow max tree depth 5

and 5.3. As shown, PIMP has also relied on the scenario for proof of concept, pro-
ducing a restricted study that shall now be expanded. On the other hand, CMP-GP
has not been applied to Symbolic Regression up to this point, but two potential meth-
ods were discussed and illustrated in Figures 5.8 and 5.9. Experimentation will follow
the approach represented by Figure 5.9, whose motivation and outline can be found
in Section 5.3. It should be noted that the standard design considers a number of ter-
minals with fixed spacing between them and random preferences for each, sampled at
instantiation.

The following subsections will complement on the approach’s descriptions for a
complete exposition of the experimental process. A base standard approach, as well as
the two Mate Choice variants are discussed. Firstly, general operators and parameters
are introduced, followed by specifics on the builders and particularities for each ap-
proach. Following, the custom scenarios considered in experimentation are discussed
and the setup and methodology used in each individual experiment is described. Fi-
nally, implementation details are given. Most information has been organized in tables
for easier access, and because many design options follow traditional choices, enough
argumentation has been already included.
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Table 6.2: Operators and Parameters used for experimentation with Mate Choice (both
PIMP and CMP-GP).

Mate Choice

General Parameters
population size

same as standardgenerations
elitism

Selection of Female
Individual

operator tournament
size 5

Selection of Male
Candidates

operator random
pool size 5

First Chromosome
Builder

same as standardBreeding
Crossover
Mutation

Second Chromosome
Builder

same as standardBreeding
Crossover
Mutation

6.1.1 General Operators and Parameters
Tables 6.1 and 6.2 summarize the operators and parameters for the Standard and Mate
Choice approaches respectively. From the chromosome builders to the selection and
breeding operators, as well as general parameters, the whole process is covered. These
setups will be the basis for performance and behavioral analysis, and for comparisons
between approaches. There are two choices that require a brief explanation. Firstly, the
mutation probability on the base scenario is 0%. While mutation may play an important
role in search, its absence makes sense for analysis purposes because: i) mutation is not
a requisite for Mate Choice; ii) behavioral analysis is cleaner without the introduction
of noise through mutation; iii) mutation may share some of the effects of Mate Choice
(for instance higher exploration), which shouldn’t be falsely attributed to the wrong
causes. Scenarios combining Mate Choice and mutation will be discussed later.

Secondly, both Mate Choice approaches rely on the same operators and parameters
on both chromosomes which are also equivalent to those used in the Standard approach.
While on PIMP the search space is similar on both chromosomes, the same can’t be
said about CMP-GP. Also, as previously discussed, mating preferences may benefit
from different search processes, independently of the search space that they correspond
to. A full parametric study would contribute to the discussion of such design choices,
specially on whether the performance and behavior of either approach can be improved
by more carefully chosen operators and parameters. Then again, such choices may be
highly dependent on the context and on the target problem. As this study will focus
on the Symbolic Regression problem family only, it also refrains from including a
complete parametric study, leaving the subject for future efforts. Alternatively, it will
rely on the traditional choices depicted in each table.
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Table 6.3: Non-terminal and terminal sets for the PIMP and CMP-GP approaches.
PIMP

Non-terminals same as first chromosome
Terminals same as first chromosome

CMP-GP
Non-terminals +,-,*,/,%

Terminals l|l 2 S[an,bn,s]⇢
¬n ! |pl � f (tl)|

S[an,bn,s] ⇢ ¬n is s samples equally
spaced in ¬n. In each of the n dimensions,
samples are between an and bn.
For each sample l, there’s a terminal |pl �
f (tl)| comparing a preference-trait pair.
Preferences pl initialization is individual.
Traits tl perception is phenotypical f (tl).

6.1.2 Specifics for Each Approach

While there was an attempt to maintain the design choices as transverse as possible, the
terminal and non-terminal sets are exceptions that need to be addressed independently.
The issue has been extensively discussed in sections 5.2 and 5.3, with each set being
summarized in Table 6.3. As expected, the sets in PIMP are simply dependent on the
terminals and non-terminals used for building the first chromosome, which is deter-
mined by the target problem. Regarding CMP-GP, the two sets can be described as
follows: the terminal set correspond to points equally spaced in each dimension of the
search space (within the intervals shown in function descriptions); for each point, the
corresponding terminal encodes a preferred value that is sampled randomly every time
the terminal is used in initialization or mutation processes; during evaluation of mating
candidates, the value mapped for that point in the phenotype of the candidate is mea-
sured against the encoded preference; the distance is fed as input to the non-terminal
functions; the function set encompasses simple mathematical functions that are suitable
to deal with the real value data type resulting from terminals; these operators represent
interactions between individual preference-trait evaluations.

Although not specially important for the the introduction of Mate Choice, there’s a
second particularity that is worth a brief discussion. The equally spaced points used for
establishing terminals in the CMP-GP are not guaranteed to belong to the set of points
used for fitness evaluation. While some may overlap or be closely similar, others (or
all) may be different. Also, this observation may vary between experiments. As a
result, the relation between trait assessment for Mate Choice and for survival is more
than just considering whether they pull in the same direction or not. For some traits,
the impact of survival may be direct (if the corresponding point is also used for fitness
assessment) or rather indirect, even if impacted by the placement of other points or by
sharing the same genotype. This allows for a certain freedom favoring Mate Choice,
while at the same time keeping ornaments or traits favored by Mate Choice deeply
linked to other traits through the phenotype. It also prevents the need from introducing
further assumptions on the relation between Sexual and Natural Selection. PIMP may
not always be covered by this discussion, as the same parameters and builders are used
for both chromosomes, however, in part of the test set, initialization is done through
a random distribution of points within an interval (see Appendix E), thus allowing for
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Table 6.4: Custom scenarios introducing mutation in addition to Mate Choice.
Trait Mutation

First Chromosome

Breeding
crossover prob. 0.89
copy prob. 0.1
mutation prob. 0.01

Second Chromosome
Breeding same as standard

Preference Mutation
First Chromosome
Breeding same as standard

Second Chromosome

Breeding
crossover prob. 0.89
copy prob. 0.1
mutation prob. 0.01

Trait + Preference Mutation
First Chromosome

Breeding
crossover prob. 0.89
copy prob. 0.1
mutation prob. 0.01

Second Chromosome

Breeding
crossover prob. 0.89
copy prob. 0.1
mutation prob. 0.01

the points used for fitness and attractiveness assessment to be unequal.

6.1.3 Custom Scenarios
The base scenario, which will be most scrutinized to explore the role of Mate Choice,
doesn’t include mutation as one of its operators. As previously discussed, mutation
is not an necessity for Mate Choice, taking no particular role in the development
of self-reinforcement and the resulting runaway processes which is characteristic of
Fisherian Mate Choice. However, there are several arguments in favor of combining
mutation and Mate Choice, even though the reasons may be difficult to discuss with
absolute certainty due to preference complexity and interactions. Nonetheless, both
Fisherian and Wallacean models of Mate Choice discussed in Section 3.1 suggest that
self-reinforcement shall guide the population into a state of equilibrium, where pref-
erences and traits, either for survival or attractiveness purposes, maintain a frequency
distribution that is balanced and unlikely to be disturbed without the intervention of an
external force.
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Such an external force can be determining for a search process, as an extended state
of equilibrium may contribute to a stoppage in the search efforts. In a non-dynamic sce-
nario such as that of Symbolic Regression, such a force is most easily introduced by
means of mutation. Therefore, three setups, each with its own characteristics, have
been idealized as alternatives to the base scenario: i) introducing mutation in mating
preferences; ii) introducing mutation in traits; iii) introducing mutation in both concur-
rently. Table 6.4 summarizes the parameters involved in each approach, which require
a succinct but important discussion on their differences and potential impact. Firstly,
trait mutation has a two fold impact. On the one hand, it introduces variability into
candidate solutions which can produce breakthroughs in terms of fitness that spread
through the population. On the other hand, it can disrupt Mate Choice equilibrium,
by introducing non-existing traits in the population that can either gain advantage in
face of relevant preferences, or trigger pre-existent non-expressed preferences. Alter-
natively, the introduction of preference mutation can both change the perception system
of females, or the role that each individual trait plays in the overall evaluation of mat-
ing candidates (this impact should be seen with the particularities of each approach in
mind, as discussed in Sections 5.2 and 5.3). In either case, mutation can change the way
individuals are ordered when being evaluated for mating, and thus trigger directional
runaway processes in new directions, providing further means for exploration. Finally,
the third scenario combines both previous ones in an attempt to mix both behaviors.

6.1.4 Testing Setup
Symbolic Regression has been established to be the benchmarking problem for the
current study. Ideally, as has been discussed by McDermott et al. [193], a wider test set
would be used, including instances from many families of problems, in an attempt for
orthogonality and a chance to uncover weaknesses that may show in certain domains.
While two other problems were used for proof of concept, in an extent that follows
suit to most of the criteria discussed by McDermott et al. for proper benchmarking
problems (some criteria can be conflicting) [193], the task of tackling the full range
of proposed problems is overwhelming. Although that may be prone to changes, most
studies focus on a particular subset of that set of problems, and so does this one. Still,
the set of Symbolic Regression instances, which has been compiled by McDermott et
al. [193] and originating from a set of studies [155, 160, 165, 218, 292, 299], follows
most of the criteria that make for a good benchmarking set.

The set is composed of 52 target functions showing variance in difficulty (51 in the
revised paper and one more made available with the implementation package by the
same authors), sampling, as well as training and testing approaches. Tunable difficulty
is an important characteristic of this set, with instances ranging from unidimensional,
well understood functions (ex: koza-1 is a quartic function regarded as relatively easy
[193]) to multidimensional, complex functions (ex: pagie-1 is considered particularly
challenging [193, 218]). The number of variables ranges from one to five - 18 with
one variable, 15 with two variables, 2 with three variables and 16 with five variables.
While the distribution is not uniform, it still allows for search spaces with different
characteristics and sizes. Sampling sizes also contribute to that, varying from a few
(ex: 20 in some instances) to many (10.000 in the most extreme case). Moreover, some
instances were meant for optimization while others were intended for regression and
therefore rely on separate training and testing sets [193]. Finally, functions also vary
on their build sets and on how their sample points are generated [193]. It should be
noted that experimentation focused on optimization and relied only on training sets.
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Figure 6.1: The Breeding Pipeline implemented to accommodate both Mate Choice
and breeding assumptions.

For all 52 functions, particularities on the terminal and non-terminal sets for the first
chromosome can be found in the McDermott et al. study [193] as well as in Appendix
E, while the second chromosome is built abiding by the rules discussed in the previous
subsections. The study also summarizes information on training (see Appendix E) and
testing sets and other details. For any instance, each of the following approaches were
run 50 times, and statistical and behavioral data was registered for future analysis:
standard approach; standard approach with mutation (same probability as mutation on
Mate Choice); Mate Choice without mutation; Mate Choice with mutation on the first
chromosome; Mate Choice with mutation on the second chromosome; Mate Choice
with mutation on both chromosomes. Both Mate Choice approaches were tested on all
of the above variations.

6.1.5 Implementation Details
For the current study, Mate Choice has been implemented as a functionality for the
widely used java-based ECJ toolkit [183]. The framework is well known among re-
searchers and enthusiasts as one of the top competing, freely available software and
has an active community, thus being continuously extended and put to the test on many
scenarios. Over time, the toolkit has grown into a full-fledged evolutionary compu-
tation system, and is currently undergoing deep changes for consolidation under its
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version 25 [184]. In what regards Mate Choice, the approaches work all the same
either in the backward-compatible version 24, or in the new version. ECJ offers a cus-
tomizable framework where new paradigms can be introduced without requiring an
overwhelming effort from developers while at the same time accounting for reliability
and consistency. In regards to the Symbolic Regression task at hand, ECJ offers appli-
cation examples describing how to implement and parameterize Genetic Programming
approaches successfully on many scenarios. Moreover, Mcdermott et al. [193] built an
implementation which is now distributed with ECJ covering all 52 function sets, with
their particular building sets, training and testing sets, and so on.

The workings of ECJ on a high level have been covered by Luke on a recent paper
regarding the future of ECJ [184] and can be understood on a low level in its user
manual. In the end, the effort to build the two chromosome Mate Choice was mostly
put on the Breeding Pipeline that connects population N to population N +1 through a
chain of operations covering selection and breeding. Figure 6.1 shows the end result of
the developed functionalities. Two main challenges were found: adapting selection to
abide by the rules of Mate Choice; adapting the Breeding operators to act independently
on traits and preferences. For the first task, as shown in Figure 6.1, the tournament
and random operators were re-purposed to produce individuals from the population,
either for the female role or to populate a pool of mating candidates. A new operator
was coded to accommodate the produced individuals, and to perform the candidate
evaluation and female choice steps, thus returning two individuals, the female and the
chosen male.

For the second task, while ECJ supports the encoding of multiple chromosomes
on the same individual, and thus can encode the two trees for traits and preferences,
it doesn’t abide by the assumptions that chromosomes should change genetic code ac-
cording to their role (traits with traits and preferences with preferences). The two-part
breeding operation was devised to separate operations on each chromosome individu-
ally and therefore to allow a simple parameterization of each step independently. In the
end of the pipeline, two offspring are produced, potentially accommodating changes in
each chromosome in comparison to their parents, which can be introduced into the new
population. The process is repeated until the new population is full. As a side note,
problems that imply two representation schemes, such as the geometric optimization
scenarios used for proof of concept in Section 5.3, require much bigger changes to
ECJ, as the framework expects all chromosomes to be of the same representation type.
Nonetheless, ECJ is designed to be easily hacked, and while depending on changes on
multiple classes, the customization is possible and fruitful.

6.2 Assessment, Metrics and Analysis tools
The evolution of evaluation functions for the purpose of Mate Choice introduces a
paradigm that is not straightforward to study. While a standard application of Evo-
lutionary Algorithms has a population adapt to a static environment, the self-adaptive
character of Mate Choice introduces an ever-adjusting process of evolution, where the
genetic pool is not only adapting to a certain search space, but also to the encompass-
ing population itself. Despite the parallelism with dynamic problems, the resulting
dynamic search space has the particularity of being influenced by the search process
itself, in an entanglement that not only adds unpredictability but also makes it difficult
to assess the emerging behaviors. This feedback process of influence between prefer-
ences and traits, and between preferences and preferences in an indirect way, has an
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impact on how the evolutionary process may be successfully studied.
On top of that, the encoding of mating preferences as trees and the introduction

of complex interactions, independently of the approach being tested, introduces its
own challenges to analysis that should be carefully considered. Moreover, the evalu-
ation of mating candidates through phenotypic characteristics as well as the mapping
of survival and ornamental traits from the same genetic sequence (or the extraction of
ornamental traits from a phenotype for survival) is bound to make the assessment of
the impact of mating preferences on the expression of particular traits a non-trivial task.
The following subsections discuss means for analysis of Mate Choice and how to ad-
dress particular research questions. The discussion will include performance analysis,
which shouldn’t deviate much from traditional means, but also means for behavioural
analysis, which may be quite specific for Mate Choice.

6.2.1 Performance Analysis
The analysis made focuses on end results, which while being coarse grained for be-
havioral analysis, are straight to the point in evaluating evolutionary algorithms as goal
oriented models. When dealing with models with different assumptions and potentially
different behaviors, fitness is one of the few metrics that are transverse to all models
and is therefore appropriate for comparison purposes. There are a few straightforward
yet important questions that should be tackled:

How do the approaches compare in performance over the whole test set?
For each approach and custom scenario, on each test instance, the results from all 50
runs will be summarized using the Mean Best Fitness (MBF) and the associated Sam-
ple Standard Deviation (StDev), shown in Equations 6.1 and 6.2 respectively, where
b fn stands for the best fitness of run n. Moreover, the five number summary regarding
the median and interquartile range is built as well, detailing the minimum, first quar-
tile, median, third quartile, and maximum values. The mean of the average population
fitness of all 50 runs is sometimes also used as an indication of performance, how-
ever, because individuals can be evaluated as infinitely bad, the metric can be skewed
and was opted out. Additionally, several functions, mostly coming from the koza and
nguyen families, may be suitable for comparisons using the number of hits (runs where
the optimum was found with an error below 1E �04). However, on most cases, no hits
are achieved, making it unfeasible to extend this metric to all functions.

MBF =
Â50

n=1 b fn

50
(6.1)

StDev =

s
Â50

n=1(b fn �mb f )2

50�1
(6.2)

These resulting summaries on mean and median values shall be presented in tables
comparing each approach on their non-mutation base scenario, as well as comparing
each base scenario with custom scenarios.

Are performance differences between approaches statistically significant?
On each Symbolic Regression instance, approaches and scenarios will be compared
using the median and a two-sided Wilcoxon Mann Whitney test [195] will be used to
assert if samples are significantly different. Instances where differences are found will
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be flagged and results will be summarized in tables for a course-grained perspective.
Additionally, regarding the number of hits found, a Taillard’s pairwise proportions test
[283] will be used to find significant differences between approach-scenario pairs. An
extensive discussion on why analysis is made based on a non-parametric test rather
than using a parametric test will be included, properly justifying the use of Wilcoxon
Mann Whitney test and the median for comparisons (see Section 6.3.1). The discussion
will be focused on potential assumption violations on parametric tests, specifically
regarding normality, homogeneity of variance, the presence of outliers and the nature
of the samples. For the purpose, interquartile information will be used in addition to
Shapiro-Wilk’s test for normality [260], Bartlett’s test for variance homogeneity [23]
(as a post-hoc to normality tests) and an interquartile range process for the identification
of outliers [305].

How do design choices compare in terms of performance gains?
Focusing on the custom scenarios introduced and looking transversely at the results on
all approaches should allow for a discussion on the impact of mutation as a whole, and
in each chromosome in particular. Moreover, differences between the relation of each
approach and mutation may highlight differences and similarities between them that
may at this point be analyzed, relying on performance alone. This analysis will focus
particularly on the impact of all three mutation setups on each Mate Choice approach
and will then compare the best performing setup to the Standard approach, with and
without mutation.

6.2.2 Behaviours and Associated Metrics
When studying Mate Choice and the underlying behaviors, performance metrics fall
short on providing sufficient information to fully study potential impacts. Relying on
finer-grain levels of information becomes imperative, either encompassing full popula-
tions, focusing on the selection steps or on each individual’s genotype and phenotypic
expression. Such granularity can be demanding computationally, therefore relying on
measures that capture the right level of information becomes critical. Studying models
based on different assumptions also adds to the challenge. While metrics that cover
genotypic or phenotypic information extracted from the first chromosome (such as fit-
ness or diversity measures) may carry comparable information, metrics that focus on
preferences have no counterpart in standard approaches. More importantly, their inter-
pretation is subjected to the underlying assumptions of each model and should be used
carefully even when comparing between Mate Choice approaches. For the purpose
of clarity, and more importantly to bring attention to such challenges, each research
question and the means for analysis is discussed in the remaining of this section.

Is Mate Choice truly taking place or are the results the product of some other un-
expected behaviour?
While the system has been designed, to the best knowledge, to successfully model
Mate Choice processes through the individual encoding of preferences or mate eval-
uation functions and their self-adaptation, the emergence of Mate Choice needs to be
empirically validated. Otherwise, the study would lack an important safeguard from the
possibility that the framework may be incapable of introducing Mate Choice, and that
in fact the end results are the outcome of lower selection pressure or other byproduct
behaviors. Luckily, Mate Choice is dependent only on the self-reinforcement of mat-
ing preferences, which shouldn’t be difficult to demonstrate. It is expected that over the
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generations, females increasingly select males through characteristics that are indica-
tive of the presence of their own mating preferences in the male genotype, therefore
increasing their own reproductive advantage by following the attractive sons theory.
As a result, the distance between female mating preferences and those encoded in se-
lected males should decrease. Two metrics can be considered across both approaches
as indicative of this behavior:

Genotypic distance - Koza [165] suggested comparing individuals in a binary way
(either equal or different) using the whole genotype. As a distance measure, binary
comparison is very coarse grained and little informative, but it does ensure that geno-
types are undoubtedly structurally similar, allowing for no false positives. In this case,
they can be used to compare preferences in females with those of their selected males,
thus checking for self-reinforcement. Other more advanced metrics such as tree edit
distance [225] can be more informative and offer more valuable insight but may also be
prone to errors, for instance due to non-expressed sub-trees. On the one hand, the use
of the binary genetic distance can leave some self-reinforcement occurrences unidenti-
fied, but on the other hand, those that are found are certainly true, which for the current
purpose is advantageous. Therefore, binary comparisons will be used to measure the
rate of matching preferences in selected mating pairs, as a measure of genotypic self-
reinforcement

Phenotypic distance - The genotypic distance is quite strict and, similarly to other
metrics, on scenarios where many-to-one relationships between genotypes and phe-
notyes can happen, it can be lacking [36]. Phenotypic measures can be helpful but
some are dependent on representation. For instance, the Mean Squared Error could
be a good metric for PIMP but would not work to measure the distance between pref-
erences in CMP-GP. Alternatively, the following metric was used on both approaches
at each selection step: i) the female ranks the male candidates according to its prefer-
ences; ii) the selected male ranks the same male candidates (including itself) according
to its preferences; iii) Spearman’s rank correlation coefficient [276] is used to compare
ranks (in the case of tied data such as when all candidates are evaluated as equal, ran-
dom ranks are attributed, which is consistent with the employed selection method and
should result in negative coefficients). The coefficient is used to compare preferences
from totally diverging (�1 coefficient) to absolutely agreeing (1 coefficient).

MD =
Âsteps

n=1 d(p f , pm)

steps
(6.3)

On each run of Mate Choice approaches, both distances are calculated for each
selection step and averaged over the total of selection steps in a generation, as shown by
Equation 6.3. They are then averaged over the whole 50 runs for each generation, and
both the average and each single run is plotted for assessment. For self-reinforcement
to be shown, and therefore for preference distances to decrease, both plotted metrics
should increase to the proximity of 1.

Do mating preferences have a Fisherian or Wallacean character?
As long as Mate Choice has been confirmed, results may be the product of females
developing good sense mating preferences as argued by Wallace, or the implication of
good taste as backed up by Fisher-Darwin theory. Arguably, both may be present, even
within the same mate evaluation function. While fully unveiling which preferences
fall under each category is a complex task, some feedback can be studied regarding
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the overall character of preference functions (for good sense or for good taste). As
previously discussed, the process behind the emergence of ornaments for good taste or
as indicator mechanisms are mostly the same, relying on a Fisherian feedback loop.
Therefore, what most distinguishes ornaments on their purpose are how they impact
viability, in which case Wallacean models imply the coupling of preferences with high
viability.

Both ideas can be studied by looking at which males are being selected and how
they relate to fitness. In short, the correlation between preferred mating candidates
and fitness can be informative. The following metric was used at each selection step:
i) mating candidates are ranked by the female according to attractiveness; ii) mating
candidates are ranked according to fitness; iii) Spearman’s rank correlation coefficient
[276] is used to compare ranks. A coefficient close to 1 would indicate the Wallacean
character of a female’s preferences while a coefficient close to or lower than 0 would
indicate Fisherian preferences. The metric attributes a larger spectrum to Fisherian
preferences, arguably making it rigged in their favor, however, this unbalance is in
agreement with Wallacean preferences relying on more assumptions to emerge. The
mean coefficient over the selection steps as shown by Equation 6.3, averaged over he
whole 50 runs, will be plotted as will the results for each run in an broader attempt to
find multiple strategies emerging.

Does gender emerge with Mate Choice?
While the system’s assumptions don’t imply the explicit definition of genders, it also
doesn’t impose any rules that prevent the specialization of individuals on being male
or female. Specially if males are selected for beauty’s sake, it may happen that indi-
viduals in order to get a chance of selection, have to either specialize on being fit or
on being attractive (individuals in-between may be less competitive and be given fewer
reproduction chances). While it is not a given that individuals selected as males are
unfit, or in that case, that individuals can’t compete both as males and as females, it
would be important to understand exactly how well separate both roles are (or not) in
the evolution process and in the composition of populations.

In order to study the behavior, at each selection phase, one may log how often indi-
viduals are selected as females, or as males (candidates for both positions are selected
randomly, so all should have a fair chance), and consequently study the size and inter-
ception of both groups. In one scenario, the interception may be high, suggesting that
gender separation has an insignificant role. An alternative scenario would show two
well separated groups, with individuals specializing on either role. Visualizing the av-
erage size of the groups over 50 runs will be made possible through generational plots
and allow for conclusions to be taken on the subject.

Is perception of variation being promoted with Mate Choice?
Lerena [178] described perception of variation as the ability to perceive differences in
traits, even if on one locus. While directly assessing how each individual preference
tracks differences in particular traits would be extensive work, it’s expected that such
differences are reflected in fitness and/or attractiveness. Regarding Mate Choice, if
mating preferences aren’t sensible to changes between mating candidates, they may
end up selecting randomly whereas they should be choosing for particular traits. En-
tropy diversity [245] can help out in assessing if Mate Choice is capable of perceiving
variation between mating candidates. Succinctly, entropy identifies the unique values
in a sample and how the sample is distributed among such values. In this particular case
and when applied to fitness, high entropy among a group of mating candidates indicates
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a high variation of fitness, with many unique values and a more evenly distribution of
candidates. In contrast, a low fitness entropy would mean small to no variation of fit-
ness, with many individuals sharing the same evaluations. Likewise, when applied to
attractiveness values on the same group of mating candidates, entropy can show how
well each female’s mate evaluation perceives variation between candidates. Therefore,
after n partitions have been identified, Equation 6.4 shows the procedure for calculat-
ing entropy, either for fitness or for attractiveness, where ck is the portion of candidates
that correspond to partition k.

S =�
n

Â
k=1

ck · lnck ck =
|k|
|c| (6.4)

Because a tournament-like Mate Choice operator is being used, each unique fitness
or attractiveness value is being identified as independent, rather than using intervals,
as they will not compete as equals for selection. At each selection step, after fitness
entropy and attractiveness entropy have been calculated for the set of mating candi-
dates, their difference, Sa �S f can be used to assess if Mate Choice increases (positive
difference), maintains (difference equal to 0) or decreases (negative difference) the
perception of variation for selection of a mating partner, when compared to selection
through fitness (which is akin to a standard tournament). The metric is then averaged
over the selection steps of that generation and plots are included representing, over
the course of the evolution process, how the metric evolves for each run as well as on
average for the 50 runs.

Is evaluation contrast being promoted with Mate Choice?
While entropy gives a good measure of how well mating preferences are able to distin-
guish between mating candidates, it fails to demonstrate the extent of that distinction.
Contrast, as the unsigned difference between the evaluation value of two individuals
should be able to elucidate on that [178]. When assessing a group of mating candidates,
a female’s overall contrast ability can be found by averaging the pairwise contrast be-
tween all elements. Also, as the goal is to compare the contrast between attractiveness
and fitness, their relation may as well be done on a pair to pair basis.

Equation 6.5 shows how contrast can be measured between two values. It should
be noted that because pairwise contrast is within the interval [0,+•], tanh was used as
a squashing function to keep values within [0,1]. Equation 6.6 shows how the overall
contrast can be measured for a single selection step, where n represents the number of
mating candidates and i and j a particular pair of candidates whose attractiveness, a and
fitness, f , difference is calculated. As a result, if the contrast between the evaluation of
mating candidates increases through the use of Mate Choice, when compared to using
fitness, the difference between their respective contrast values should be positive, while
a decreasing contrast leads to a negative value. If the contrast is maintained between
the two scenarios, the difference value will be 0.

c(xi,xk) = tanh(|xi � xk|) (6.5)

OC =
Ân�1

i=1 Ân
k=i+1(c(ai,ak)� c( fi, fk))�n

2
� (6.6)
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Due to the nature of a tournament-like Mate Choice operator, a higher or lower
contrast will play no relevant immediate role, as only the most attractive individual
will be selected, independently of how much it distances from competitors. However,
higher contrast can show robustness in the evaluation process, as the ranking of indi-
viduals is less prone to switching due to small changes in traits (highly depending on
preference dimensionality). As discussed, choice consistency can play an important
role in self-reinforcement and the maintenance of runaway processes. Contrast can be
particularly important if the male population is densely located in a small region of the
phenotypic space, with only small variations between them, making perception more
important. After contrast has been calculated for all selection steps in a generation, its
mean is calculated and plots are included representing, over the course of the evolution
process, how the metric evolves for each run as well as on average for the 50 runs.

What are the dynamics of preference dimensions and complexity?
Perception of variation and contrast are under the direct influence of preference dimen-
sions and complexity. It could be said that, while also depending on the context of eval-
uation, they are the phenotypic expression of the dynamics induced by both features.
As discussed in Chapter 3, mostly in Section 3.3.1, such dynamics are likely to be del-
icate: higher dimensionality should promote higher perception of variation, while low
dimensionality promotes the opposite but is also a better fit for maintaining contrast;
higher complexity is linked to higher contrast but low complexity presents a lower risk
of choice inconsistency; high complexity combined with high dimensionality are the
most prone to choice inconsistency while there’s a clear evolutionary advantage from
simpler mate evaluation functions; such dynamics are very dependent on the extent of
trait variation present in the population, and how they allow for differences to be easily
found.

Given the results presented regarding both perception of variation and contrast, it
is relevant to study their link to dimensionality and complexity as a means to provide
empirical evidence of how such behaviors extend to both the Genetic Programming
representations of PIMP and CMP-GP. Assumptions are particularly important here, as
genotypic information is interpreted. Dimensionality and complexity in PIMP regard
to the composition of the ideal mating partner being represented by the preferences
chromosome, whereas interactions between signals are explicitly modeled in CMP-
GP, making it so that direct comparisons can’t be made between approaches on this
information. Because both dimensionality and complexity evolve freely in the system,
it may be difficult to pin down their impact individually, specially considering the bar-
riers brought by particularities of tree representation. One way to look into the internals
of preferences is by using pseudo-isomorphs [35, 36] to describe trees as tuples with
the following format:

< #(terminals),#(non� terminals),depth >

It should be considered though that constant terminals introduce no increase in di-
mensionality and that non-terminals that have only one input, while transforming and
impacting preferences, don’t represent interactions between singular preferences. Fur-
thermore, it should be kept in mind that while pseudo-isomorphs are simple to compute
and more informative than considering the uniqueness of trees, they are still prone to
some errors (most metrics are). For instance, non-terminals combining two constants
shouldn’t be considered interactions and shouldn’t be considered for complexity anal-
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ysis, but weeding out such situations can be rather complex. With these considerations
in mind, for the purpose of analysis, trees will be summarized a such:

< #(terminalsv),#(non� terminals2c)>

Depth is implicit and adds no further information, being sufficient to use the num-
ber of variables and non-terminals with two children to have a proper indication of
dimensionality and complexity respectively. Firstly, at each selection step the female
preference’s dimensionality and complexity is measured, as is the perception of vari-
ation and contrast. As a global overview, the mean dimensionality and complexity,
and mean entropy and contrast, of the population is calculated for each generation of
each run. An average of all runs is plotted including the four metrics for a sense of
how they relate as preference related features, subject to evolution. Finally, three-axis
graphs comparing, for each female, its dimensionality (x-axis), its complexity (y-axis)
and either its perception of variation or contrast capabilities (color) will be shown. To
populate such graphs, all females in the first 150 generations of all 50 runs will be
used. Arguably, relations between genotypic characteristics and their phenotypic im-
pact should be found. The graphs are limited to the first 150 generations to attempt
at a higher dimensionality and complexity diversity as well as higher trait variability,
which further on may be compromised by means of self-reinforcement.

Is diversity being promoted with Mate Choice?
Two measures of diversity will be considered: fitness entropy as a measure of phe-
notypic diversity and tree edit distance as a measure of genotypic diversity. Entropy
has been described in Equation 6.4 and will be used to measure the distribution of the
population by unique fitness values. A more uniform distribution using many fitness
values (high entropy) will be representative of a higher phenotypic diversity. While
this may seem like a little informative measure, evaluation of solution quality and se-
lection (partially in Mate Choice) acts on this information alone, making it appropriate
to study its distribution. Regarding tree edit distance, the metric works by making
two trees overlap at the root node and measuring how many operations are needed to
transform one tree into the other [36, 83, 115]. Tree edit distance is one of the most
informative diversity measures out there, allowing for a more reliable differentiation of
individuals than pseudo-isomorphism and unique tree differentiation.

Both phenotypic and genotypic diversity will be measured over the whole popula-
tion but will also be measured within the female and male populations. The first sce-
nario will give a sense of the population composition but if genders happen to emerge,
and because of the possibility that self-reinforcing preferences guide the male popu-
lation away from the female neighborhood, then such an overall metric may become
skewed. After all, if females converge to an area of the search space and males con-
verge to a different area, overall analysis may show population diversity, while truth-
fully, the population has converged genetically. Inner gender metrics will allow for a
more detailed analysis of the subject and may be more appropriate as honest indicators
of diversity.

Two characteristics should be noted regarding the metrics used: i) fitness entropy
may be directly linked with selection of females but not with male selection. Nonethe-
less, it should be indicative of how much males differentiate among themselves as
the goal is not to assess directly how they respond to selection. ii) tree edit distance
is a computationally expensive metric to calculate. Following other studies that use
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the metric [36, 115], the edit distance of each individual will be measured against the
fittest individual in the population, at each generation. A population’s average diversity
is measured by summing all individual measures and dividing by the number of oper-
ations. This extends to inner-gender diversity, where individuals are measured against
the most reproductive individual of their gender (as a tie-breaker, the fittest is used).

Plots will show an average population diversity at every 25 generations as well
as inner-gender average diversity measures. Comparisons will be made between ap-
proaches and scenarios. Also, it should be fruitful to measure and show the average
diversity between matching parents. This may not only help explain how the metrics
evolve over generations but will also provide insight on the relation between mating
preferences and diversity, for instance by allowing the analysis of the degree of assor-
tative mating associated with preferences. Preference diversity shall also be considered,
by analyzing the set of active preferences at each generation.

Does Mate Choice promote the emergence of complex innovations?
The rate of neophilia allowed by Mate Choice, potentially promoted by a taste for new
ornaments, directly impacts the rate of innovations allowed to be introduced in the pop-
ulation. Consequently, it also influences the degree of cumulative innovations that are
allowed to account for complex innovations. While measuring the rate of neophilia is
extremely difficult, it has been discussed that Mate Choice can cooperate with recom-
bination and mutation in proposing diverging candidate solutions by allowing them a
higher frequency. Hopefully, studying such behaviours will allow for a comprehension
of the emergence of complex innovations.

The previous analysis on diversity is relevant: diversity may be indicative of the
introduction or maintenance of innovation, specially when considering inner-gender
measures; more importantly, a tendency for pairing dissimilar individuals should be
indicative of a taste for exploration, which can more easily result on innovation when
compared to mating between very similar individuals, even at the risk of destructive
crossover and the possibility of producing low-fitness, low-attractiveness offspring.
However, either metric alone can’t ensure that innovations are sustained for more than
one generation or that they have a chance of reproducing and contributing to complex
innovations and to the search effort as a whole. A metric that relates the survival of
individuals to their dissimilarity should be discussed.

GR = (
#(descendantsc+n)

#(individualsc)
)

1
n �1 (6.7)

As an indication of survival rate, the compound growth rate [13] (adapted follow-
ing inspiration from the survival rate proposed by Gustafson et al. [115]) was used. In
demographics, the metric shows how a population size varies over a number of years,
taking into account that from year to year, a varying size is being studied, thus returning
an adapted growth rate. In this scenario, when applied to generations, the compound
growth rate is indicative of how an individual or group of individuals impacts a future
generation through the presence of its descendants. Equation 6.7 describes the process,
where individualsc is a subset of individuals in generation c, and descendantsc+n rep-
resents their descendants after n generations. A compound growth rate of 0 would show
that after n generations, the presence of descendants of the subset of individuals under
analysis is the same as in generation c, showing that they are successfully reproducing
but not increasing their significance in the population. On the other hand, a positive
compound growth rate would show the ability of a subset of individuals to increase the
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presence of their genes, through their descendants, while a negative growth rate would
show that their presence is diminishing.

The metric is valid for assessing either a single individual or a set of individuals
sharing a particular characteristic, and can be applied on a particular run or covering
a sample of individuals from multiple runs (as if they were in the same population).
It also allows measuring the impact of a subset of individuals on the next generation,
as well as after n generations. In this study, their impact will be studied after 2 gen-
erations, as an indication of how their children are viable or sexy enough to produce
grandchildren, thus showing their potential to contribute to the search effort. In order
to tie survival as measured by the compound growth rate with the level of innovation
associated with each individual, the following process will be followed at each genera-
tion: i) during selection, each female or male’s dissimilarity to its parents same-gender
most-reproductive individual is measured through tree edit distance; ii) its dissimilar-
ity is normalized by the previous generation’s average genotypic diversity (so that 0
means that the individual’s dissimilarity is the same as the previous population’s av-
erage, while a larger value means increased dissimilarity and a smaller value means
decreased dissimilarity); iii) after going through all selected individuals, group them
by gender and by dissimilarity value in one of 50 groups of similar size in the resulting
dissimilarity range; iv) assess the survival rate of each group and plot the results for
each gender separately.

For proper clarification, a few notes on the process should be discussed: i) by cal-
culating an individual’s dissimilarity and comparing it using the previous population, it
is attempted to measure the level of innovation brought by such an individual; ii) indi-
viduals may be present simultaneously in each gender, in which case it’s direct descen-
dants should be considered when acting separately as a male or as a female; iii) only
selected individuals are considered, leaving out those that don’t contribute to future
generations; iv) individuals are grouped so that results can be presented in a less noisy
way; v) the survival rate over two generations should help study how dissimilar indi-
viduals are able to contribute to each gender by providing innovation in a sustainable
way, instead of adding diversity to the population with no impact through reproductive
success. Finally, all runs and generations can be studied together for a larger sample,
which should be detailed for analysis. In this case, the samples are collected at every
25 generations.

Does Mate Choice contribute to escaping local optima?
While males are potentially more exposed to changes and innovations, mostly due to
being subject to Mate Choice, females are likely to remain closer to adaptive peaks
through the lack of direct forces pulling them away. However, while being mostly
subject to Natural Selection, they can still be pulled away from local peaks by genetic
reproduction with males. It may be that males don’t reach new adaptive peaks, but
if they find new traits with survival value, then new highly fit individuals may be pro-
duced, with a high probability of being selected as females, and thus pull the population
into new search areas and successfully escaping local optima.

Identifying instances where such behaviors are empirically observed can be a com-
plex task, however, focusing on females can help look for the effect. For instance,
when a new female is found, one of two aspects can be observed: i) the dissimilarity
between the new individual and the previous most reproductive female is within the
distribution shown by all females in the previous generation, suggesting that the new
peak is the result of exploitation of the same search location; ii) the dissimilarity seems
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to be outside the expected values, which may indicate a disruptive adaptation, away
from the previous search location, and thus being indicative of escaping local optima.

In summary, new females that are regarded as outliers when compared to the pre-
vious female’s generation may be seen as disruptive. In order to identify such outliers,
median and interquartile range information extracted from dissimilarity data is used.
The study focuses on identifying instances that distance 1.5 times the interquartile
range (conventional value) from the third quartile, in the appropriate direction. Other
methods exist for this purpose, based for instance on standard deviation, however the
chosen method relies on no specific distribution assumptions, which should be a bet-
ter fit for this task at any phase of the evolutionary process (such as the initial chaos).
Over 50 runs such occurrences are to be counted at every 25 generations (and compar-
ing with the previous studied generation) and plotted. A more conservative approach
is also considered, where only new females whose fitness is better than the previous
best-so-far are considered. Moreover, the average dissimilarity of dissimilar individ-
uals and their parents are to be measured in an attempt to check which gender makes
direct contributions to such offspring most often. Plots averaging the metric over all
occurrences in the 50 runs are to be included for analysis as well.

6.3 Performance Analysis: a Comparison of Base Sce-
narios

Deciding on the most appropriate way to analyze and compare samples can be far from
straightforward. On the one hand, one should aim for the approach with most statistical
power, but on the other hand it’s extremely important to confidently meet all assump-
tions behind a particular test so that imprecise conclusions are kept at bay. Following
this idea, parametric tests should be first considered, more specifically the Student’s
t-test [2] for independent samples, since it will provide higher statistical power when
compared to non-parametric tests, if (and only if) all its assumptions are met. If such is
not possible, then the roles invert and the conclusions reached through a non-parametric
test will be backed up by stronger statistical inference. In order to study which test is
most appropriate for the collected data, samples of the best individuals will be ana-
lyzed, but five number summaries will also play a role.

6.3.1 Using Parametric Tests vs. Non-parametric Tests

When considering the use of Student’s t-test the following assumptions should be care-
fully confirmed, which will be done in order: i) are the samples collected in an ap-
propriate, independent way and following a fitting scale; ii) do the samples follow a
normal distribution; iii) if so, do samples show variance homogeneity; iv) are there
identifiable outliers and are they potentially influential on the outcome of the tests; v)
do the previous points, in addition to median and interquartile information, back up the
use of parametric tests. At this point it’s important to keep in mind that 10 scenarios are
run on 52 functions, resulting on a large number of samples to be studied. The analysis
will focus on base approaches (with no mutation) for simplification and each particular
function will be considered independently. Arguably, each function may be analyzed
independently using either parametric or non-parametric tests but, as will be shown, a
consensus may be less controversial for a wide analysis.
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Table 6.5: Instances where a Shapiro Wilk test for normality resulted on a p-value
above 0.05, therefore not allowing for the rejection that the population is normally
distributed.

Standard PIMP CMP-GP
korns-5 * * *
korns-6 * * *
korns-8 * *
korns-9 * *
korns-11 *
korns-12 * *
korns-15 * * *
keijzer-8 * * *
keijzer-13 * *
keijzer-14 * * *
keijzer-15 * * *
vladislavleva-1 * * *
vladislavleva-4 *
vladislavleva-5 *
vladislavleva-6 * * *
vladislavleva-7 *

The first point of analysis is quite simple considering the experimental setup. Every
instance in every sample is collected from an independent run, whose components are
strictly its own. Stochastic behavior is based on a disposable seed that isn’t shared or
reused. For these reasons, there’s no hint of implicit factors in the data, and therefore
no correlations or dependencies between them. Instances in a given sample have no
particular order and show no unexpected relational patterns. Regarding the potential
normality of the samples, a Shapiro Wilk test [260] has been run on each available
sample with an alpha level of 0.05. The null hypothesis is that the population repre-
sented by the sample is normally distributed (therefore, in instances where the p-value
is above 0.05 the hypothesis can’t be rejected), and although the test doesn’t offer ex-
planations as to why a sample is non-normal, it also doesn’t require assumptions on the
hypothesized normal distribution (such as the mean and variance), making it suitable
for a direct, simple analysis. Table 6.5 summarizes the results of the test, showing that
normality wasn’t rejected on only a small subset of the samples (log transformations
brought no advantages in finding normality when compared to a no-transformation ap-
proach). As a post-hoc test on the samples that seem to follow a normal distribution and
are comparable, Bartlett’s test with a alpha level of 0.05 was used to assess variance
homogeneity. Its main assumption is that compared samples follow a normal distribu-
tion, which has been covered previously by Shapiro Wilk’s test. Table 6.6 shows the
results obtained by the test, highlighting instances where the null hypothesis that the
samples come from populations with equal variance can’t be rejected.

The results shown in Tables 6.5 and 6.6 suggest that while being a minority, there
are some instances where the assumptions of Student’s t-test are met. This sugges-
tion would point towards the use of parametric tests on a subset of the samples and
non-parametric tests on the remaining. However, it’s important to further scrutinize
the composition of the samples, despite their nature and means for collection being
well established. By looking at the five number summaries in Tables A.7 and A.8
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Table 6.6: Results obtained on Bartlett’s post-hoc test for variance homogeneity, show-
ing instances where the null hypothesis that the samples come from populations with
equal variance can’t be rejected.

Standard Standard PIMP
vs vs vs

PIMP CMP-GP CMP-GP
korns-5 * * *
korns-6 * * *
korns-7
korns-8 *
korns-9 *
korns-12 *
korns-15 * * *
keijzer-13 *
keijzer-14 * * *
keijzer-15 * * *
vladislavleva-1 * * *
vladislavleva-6 * * *

(included in Appendix A), particularly focusing on the relation between quartile place-
ments, hints at the presence of outliers. Further analysis relying on the interquartile
range process for the identification of outliers is summarized in Table 6.7. The study
focuses on identifying instances that distance 1.5 times the interquartile range (con-
ventional value) from the first or the third quartile, in the appropriate direction. While
a more conservative distance could have been used, sensitivity to outliers is helpful
in remaining conservative in regards to meeting test assumptions. As shown by Table
6.7, outliers are found quite often and sometimes in relevant numbers, including in
several instances where normality and variance homogeneity was found, pushing for a
discussion on their influence.

Much like Student’s t-test, both Shapiro Wilk’s and Bartlett’s tests are sensible to
the presence of outliers, potentially raising false positives and thus reducing their sta-
tistical power. One way to overcome such problems would be to trim or winsorize out-
liers, thus removing their possibly deceptive effect. However, doing so would require
plausible justification that such outliers are infiltrators in the populations represented
by the samples, such as by being the result of errors in the processes of running or col-
lecting data. In the studied scenario, such would be very unlikely and thus, the outliers
must be accepted as part of the distribution. Arguably, if the size of the sample was
increased to very large numbers, such instances would no longer be marked as outliers.
As that is not an option, their skewness effect on the mean and variance of the samples
needs to be considered and raises questions on the validity of using Student’s t-test
based on the reported results on normality and variance homogeneity. Alternatively,
rank-based non-parametric tests may be considered as an approach more resistant to
the presence of outliers (due to the use of ranks). Also, such tests make no assump-
tions on the distribution of the samples, which doesn’t mean that they aren’t suitable
for samples following normal distributions.

On the current scenario, and based on this discussion, it may be argued that relying
on non-parametric tests can provide greater statistical power than relying on parametric
tests whose assumptions may be complied with faultily. Moreover, instances where
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Table 6.7: Number of outliers found through the interquartile range process on each
sample.

Standard PIMP CMP-GP
koza-1 8 6 5
koza-2 9 4 2
koza-3 8 7 12
nguyen-1 10 11 11
nguyen-2 6 5 8
nguyen-3 8 9 7
nguyen-4 5 7 9
nguyen-5 5 5 8
nguyen-6 6 10 11
nguyen-7 7 10 11
nguyen-8 9 4 10
nguyen-9 4 3 4
nguyen-10 4 0 1
pagie-2 2 0 0
korns-1 11 7 12
korns-2 9 8 8
korns-3 9 6 12
korns-4 11 2 9
korns-5 2 0 2
korns-8 0 3 0
korns-9 1 4 1
korns-10 10 11 11
korns-11 2 4 0
korns-12 2 1 1
korns-13 10 9 10
korns-14 7 6 12
keijzer-1 0 0 1
keijzer-2 2 1 0
keijzer-3 0 0 1
keijzer-5 8 10 7
keijzer-6 12 12 0
keijzer-7 0 12 0
keijzer-10 2 2 3
keijzer-11 9 4 3
keijzer-12 7 4 5
keijzer-13 0 0 1
vladislavleva-1 0 1 0
vladislavleva-3 0 2 1
vladislavleva-4 6 2 2
vladislavleva-8 1 2 2
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there’s a potential for the use of parametric tests are a minority, and thus applying
the same test, following overall assumptions rather than tailoring tests for subsets can
be beneficial for a wide assertion of the results. Wilcoxon Mann Whitney’s test with
a alpha level of 0.05 has therefore been chosen as the approach to compare between
samples. Moreover, as an extra step to mitigate the effect of outliers, samples will be
compared based on the median best fitness rather than the MBF as it should be a more
resilient metric for their central tendency.

6.3.2 Performance Results and Statistical Analysis
Appendix A details the performance results obtained through the testing of the Standard
approach as well as both PIMP and CMP-GP on the full test set of 52 functions. Firstly,
Tables A.1 through A.6 show information on the best individual found as well as on
the MBF obtained in each sample. Secondly, information on the central tendency of
each sample as well as their variance, based on median and interquartile range, is fully
depicted in Tables A.7 to A.12, and briefly summarized in Tables A.13 to A.18. Ap-
proach to approach comparisons showing statistical significant differences are shown
in full in Table 6.8. Furthermore, available information on hits is shown on Table 6.9
and proportion test results are shown in Table 6.10. A global summary and approach
to approach comparison is shown in Table 6.11.

As previously discussed, median and interquartile range information may be better
suited as metrics for perceiving a sample’s central tendency and spread. Still, tradi-
tional information on fitness can be found in Appendix A, including information on
the best individual found on each 50 run sample, as well as the MBF and standard de-
viation associated. Making a three-way comparison based on this data allows for the
following observations: i) when it comes to obtaining the best individual in all tests,
the Standard approach does so ⇡ 37% of the times, while PIMP is able to do so on
⇡ 17% of the instances, with CMP-GP reaching ⇡ 21% and leaving ⇡ 25% to ties;
ii) however, the Standard approach only obtains the overall lower MBF on ⇡ 17% of
the problems, while PIMP and CMP-GP reach ⇡ 37% and ⇡ 46% respectively; iii) in
regards to variance, the Standard approach shows a lower standard deviation on ⇡ 35%
of the instances, compared to ⇡ 37% and ⇡ 29% measured in either PIMP or CMP-GP.

A bird-eye look at these results brings two conflicting ideas, one being that based
the best individual produced, the Standard approach has a clear advantage, while a
comparison based on the MBF suggests an advantageous performance by Mate Choice.
A pairwise comparison between approaches can bring forth additional information: i)
regarding the best individuals found, the Standard approach wins ⇡ 44% of the times
against PIMP and loses on ⇡ 37% instances, also winning ⇡ 42% of the times against
CMP-GP while losing on ⇡ 40% instances. Between the two Mate Choice approaches,
each one reaches a better solution on ⇡ 38% of the problems; ii) on MBF, each of
PIMP and CMP-GP reach better values on ⇡ 69% and ⇡ 77%, and worst on ⇡ 31%
and ⇡ 23% of the instances respectively, when compared to the Standard approach.
Results between them are split at ⇡ 42% and ⇡ 58%; iii) when considering variance,
Standard has a lower deviation on ⇡ 42% and ⇡ 48% of the problems when compared
to PIMP and CMP-GP respectively, and higher on ⇡ 58% and ⇡ 52% respectively.
Finally, PIMP has a lower standard deviation than CMP-GP on ⇡ 52% of the instances
and higher on ⇡ 48%. Pairwise comparisons can be easily visualized in Table 6.11.

While a three-way comparison suggests that the Standard approach largely outper-
forms the Mate Choice approaches in regards to finding the best solutions to the range
of problems, the pair-wise comparison shows that differences may be smaller than they
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seem. The Standard approach still outperforms both others, however, results suggest
that in instances where PIMP outperforms Standard, so does CMP-GP, and vice versa,
thus accounting for their increase in win rates. This shows that Mate Choice as a strat-
egy may be fruitful in some instances while being less favorable on others, however
doing so on very frail evidence. This analysis is made based on the results of one run
from each approach, that happens to be more successful than average, and is there-
fore subject to fortune. When looking at MBF values, the discussion changes con-
siderably, with both Mate Choice approaches showing approximate competitiveness
between them but both showing much higher performance than the Standard approach,
in both analysis (overall and pair-wise). In fact, they both seem to share similar gains
in comparison to the Standard approach. Arguably, with a larger sample size, or in a
one-run situation, either Mate Choice approach would be a safer choice to achieve best
solutions to most of the problem instances. Similarities between results achieved by
Mate Choice approaches also suggest that performance may rely more on the strategy
than on each particular representation of mating preferences, although they likely also
play a relevant role. A slight advantage in favour of CMP-GP is suggested by the sum-
marized results. Finally, in regards to differences in variance, all approaches seem to
be similarly consistent in their samples.

It’s important at this point to assess if an analysis on median and interquartile in-
formation is in agreement with the previous analysis. Although Tables A.7 to A.12
includes full information, Tables A.13 through A.18 summarize the relevant central
and variance metrics for analysis. Best solution information is not included as it has
been previously discussed. A similar three-way analysis as the one above allows for
the following observations: i) in regards to the median value, the Standard approach
achieves the lowest value on ⇡ 8% of the instances while PIMP and CMP-GP do so on
⇡ 27% and ⇡ 60% respectively; ii) the IQR is shown to be smaller on ⇡ 23% instances
for the Standard approach, on ⇡ 33% instances for PIMP, and on ⇡ 44% instances for
the CMP-GP. A pairwise analysis shows the following: i) regarding the median value,
the Standard approach outperforms PIMP on ⇡ 25% of the instances, in comparison to
its ⇡ 75% rate, while the difference is higher regarding CMP-GP, with a ⇡ 10% win
rate for the Standard approach against a ⇡ 88% rate for the CMP-GP. When comparing
both Mate Choice approaches, PIMP has a lower median on ⇡ 29% of the instances
and CMP-GP has a lower value on ⇡ 65% of the instances; ii) the IQR is smaller for
the Standard approach on ⇡ 33% of the instances when compared to PIMP, against
⇡ 67%, and on ⇡ 37% when compared to CMP-GP, against ⇡ 63%. Between the two
Mate Choice approaches, PIMP has a lower IQR on ⇡ 46% of the instances while
CMP-GP has a lower IQR on ⇡ 54% of the problems. As before, a global view and
approach to approach comparisons can be found in Table 6.11.

In short, the median based comparisons do not disprove most of the summarized re-
sults regarding the mean based analysis, but have the particularity of enhancing differ-
ences in performance comparisons between all three approaches. Notably, a higher per-
formance of Mate Choice when compared with the Standard approach is highlighted,
specially regarding CMP-GP, which in this analysis performs consistently better when
compared against either of the alternatives. In light of having a higher resistance to the
effects of outliers, such differences further back up the choice of Mate Choice as a stur-
dier strategy for tackling Symbolic Regression, despite the Standard samples showing a
better rate of best overall solutions. Moreover, the analysis suggests that representation
in Mate Choice does play a relevant role in behavior, which may affect performance.
In this case, both three-way and pairwise comparisons back up the importance of the
assumptions behind CMP-GP, as a vehicle for gains.
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Table 6.8: Instances where the p-value obtained by the Wilcoxon Mann Whitney test
was below the 0.05 alpha value.

Standard Standard PIMP
vs vs vs

PIMP CMP-GP CMP-GP
koza-1 PIMP CMP-GP CMP-GP
koza-2 CMP-GP
koza-3 PIMP CMP-GP
nguyen-2 PIMP CMP-GP
nguyen-3 PIMP CMP-GP
nguyen-4 PIMP CMP-GP
nguyen-6 PIMP PIMP
nguyen-9 CMP-GP
pagie-1 PIMP CMP-GP
pagie-2 PIMP CMP-GP
korns-1 PIMP CMP-GP
korns-2 PIMP
korns-4 PIMP CMP-GP
korns-6 Standard
korns-13 PIMP CMP-GP
keijzer-3 CMP-GP
keijzer-4 PIMP CMP-GP
vladislavleva-2 PIMP CMP-GP CMP-GP
vladislavleva-7 CMP-GP

While the ongoing discussion is insightful in terms of overall performance differ-
ences between Mate Choice and Standard approaches, as well as between the two Mate
Choice strategies, it falls short in asserting which performance differences are statisti-
cally significant, rather than the possible result of fortuity. Following the discussion in
Section 6.3.1, the Wilcoxon Mann Whitney test has been used to compare pairs of rele-
vant samples, with the instances where significant differences are found being signaled
for analysis in Table 6.8. As shown, it can be said that based on the gathered samples
and with a confidence level of 95%, the approaches perform differently on ⇡ 37% of
the test set, while on ⇡ 63% no performance differences can be backed up with suffi-
cient certainty. Regarding the overall instances where differences are found, a pairwise
analysis is shown, as differences are not always found between all three approaches.

Regarding the subset of functions where statistically significant differences were
found, the following can be observed: i) the Standard approach performs significantly
better than PIMP on only one instance and is unable to outperform CMP-GP; PIMP
and CMP-GP perform significantly better than Standard on ⇡ 74% and ⇡ 84% of the
instances respectively; the subset of instances where PIMP performs better is different
than the one for CMP-GP, although intersecting on ⇡ 63% of the 19 instances; on
⇡ 32% of the instances, only one of the Mate Choice approaches was able to show
significant gains; when comparing between the Mate Choice approaches, PIMP was
significantly better on 2 instances whereas the opposite is true on 1 instance.

An alternative comparison can be made on the number of hits reached by each ap-
proach. Although on most of the test set the optima is considerably difficult to reach,
there is a subset where it may be expected for the optima (or close) to be found, al-
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Table 6.9: Number of runs where the error between the best individual and the optima
was below 1E �4.

Standard PIMP CMP-GP
koza-1 18 27 39
koza-2 23 36 37
koza-3 35 41 42
nguyen-1 34 31 37
nguyen-2 18 27 33
nguyen-3 26 31 28
nguyen-4 14 20 25
nguyen-5 23 27 27
nguyen-6 15 38 25
nguyen-7 22 19 25
nguyen-8 19 20 12
nguyen-9 8 15 13
nguyen-10 12 12 16
korns-1 0 1 0
korns-4 1 0 0
keijzer-1 1 0 1
keijzer-5 2 3 1
keijzer-6 1 0 1

Table 6.10: Instances where the p-value obtainded by Taillard’s proportion’s tests was
below the 0.05 alpha value.

Standard Standard PIMP
vs vs vs

PIMP CMP-GP CMP-GP
koza-1 PIMP CMP-GP CMP-GP
koza-2 PIMP CMP-GP
koza-3 CMP-GP
nguyen-2 PIMP CMP-GP
nguyen-4 CMP-GP
nguyen-6 PIMP CMP-GP PIMP
nguyen-8 PIMP
nguyen-9 PIMP
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lowing for a comparison between approaches regarding their ability to hit the optima
on such a subset. In this case, runs where the error to the optima is below 1E �04 are
considered a hit, which were found at least once on ⇡ 35% of the test functions. The
number of hits found in such functions for the three approaches are shown in Table 6.9,
which can be summarized as such: i) the Standard approach was able to outperform
PIMP and CMP-GP on ⇡ 28% and ⇡ 17% of the instances respectively, while being
overrun on ⇡ 67% of the functions in pairwise comparisons to each Mate Choice ap-
proach; when comparing between those strategies, PIMP performs better on ⇡ 33% of
the instances while CMP-GP does so on ⇡ 56%.

The hit based analysis seems to show an advantage of Mate Choice over the Stan-
dard approach on most instances as well as a slight advantage of CMP-GP over PIMP.
Nonetheless, pair-wise differences on each function must be assessed for statistical sig-
nificance. Taillard’s proportions test [283] is a suitable and rather conservative choice
that requires very little assumptions on the setups. Table 6.10 shows a summary of
such tests for an alpha value of 0.05, which shows the following: i) the hit propor-
tion is significantly higher for PIMP on ⇡ 28% and for CMP-GP on ⇡ 33% of the
functions when compared to the Standard approach; the latter is unable to outperform
either Mate Choice approach; PIMP has a significantly higher hit proportion on two
instances when compared to CMP-GP with the opposite happening on one instance.
Overall, the proportions test confirms a better performance of Mate Choice when com-
pared to the Standard approach, although to a lesser extent, while also showing that
both Mate Choice approaches perform on par, rather than confirming a greater ability
to reach the optima by CMP-GP.

6.3.3 Summary
The previous section includes a descriptive analysis of the performance of each ap-
proach and how they compare with each other according to different metrics, backed
up by well upheld statistical tests. Table 6.11 shows a summary of the results, with
each row showing a different approach and how they compare with those on each col-
umn. Each cell shows how often the pairwise comparison is better. MBF and variance
(IQR) values are shown along with the results of the Wilcoxon Mann Whitney test. Hit
rates and Taillard results are also included. Overall, this table allows for a clear view of
how each approach compares to all others (although losing a sense of how performance
relates to each particular function in the process).

The results summarized in Table 6.11 indisputably show an advantage by Mate
Choice approaches, successfully achieving better win rates when compared to the Stan-
dard approach on all analyzed metrics. The comparison is specially relevant when fo-
cusing on the Wilcoxon Mann Whitney and Taillard results. Such translates to gains by
the Standard approach on only one occasion while showing gains for both Mate Choice
approaches on a significant number of test functions. Arguably, it could be said that
Mate Choice is a safer choice, almost never performing subpar when compared to the
standard approach while bringing gains often. This analysis accounts for performance
only, without considering differences in computational effort. Genetic Programming
makes the issue far from straightforward to address. Nonetheless, as will be shown,
differences are behavioral, more than computational.

When comparing between PIMP and CMP-GP, results show a close tie. Their over-
all performance is quite similar, either when comparing between themselves or against
the Standard approach. Such results suggest that gains may be more of a direct result of
the Mate Choice strategy, despite of representation. Possibly, their population level dy-
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Table 6.11: Summary of the results observed in the full extent of the performance
analysis.

Median
Standard PIMP CMP-GP

Standard 13 5
PIMP 39 15
CMP-GP 46 34

IQR
Standard PIMP CMP-GP

Standard 17 19
PIMP 35 24
CMP-GP 33 28

Mann-Whitney
Standard PIMP CMP-GP

Standard 1
PIMP 14 1
CMP-GP 16 2

Hit Rate
Standard PIMP CMP-GP

Standard 5 3
PIMP 12 6
CMP-GP 12 10

Taillard
Standard PIMP CMP-GP

Standard
PIMP 5 2
CMP-GP 6 1
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namics are similar and affect the search process similarly, however further behavioral
analysis is needed to backup this claim. Nonetheless, there are a few instances where
either approach outperforms the other, and there are also a few instances where they
compare differently to Standard, suggesting that, at least on some instances, perfor-
mance similarities are thinner than they seem by looking at overall results. Following
that line of thought, an advantage may be argued in favor of CMP-GP.

6.4 PIMP: Behavioural Analysis
Following the research questions discussed in Section 6.2.2, the upcoming analysis will
focus on empirically demonstrating (if not all, at least some) the underlying behaviors
of Mate Choice, as well as the relationships of evolving dimensionality and complex-
ity, and its impacts on the evolutionary process. Interpretation of results is subject to
the approach’s assumptions (see Chapter 5), specially regarding representation of pref-
erences and their meaning. The examination will be split into three subsections which
cover different aspects, although topics may overlap: i) selection analysis; ii) percep-
tion analysis; iii) effects analysis. For the purpose, including the analysis of all 52
functions through graphics would be impossible, therefore 4 functions are considered:
nguyen-4 (1 variable), korns-2 (5 variables), keijzer-3 (1 variable), and vladislavleva-7
(2 variables).

6.4.1 Selection Analysis
Data collected regarding Female Choice at each selection step is important for the
purpose of confirming that the proposed model, along with the assumptions that PIMP
follows, is capable of introducing Mate Choice. Additionally, that same data allows for
studying the character of choice and how populations are likely to behave on the grand
scale. The analyzed metrics have been properly introduced in 6.2.2 and the results have
been summarized in Figures 6.2 to 6.5.

The self reinforcing aspect of Mate Choice has been extensively discussed as its
own engine, the origin of runaway processes and the mechanism behind the inter-
linkage between preferences and traits (themselves as the indicators of preferences)
which gives both their competitive edge. Demonstrating the effect should therefore
provide critical and unequivocal evidence of the emergence of Mate Choice through
the proposed assumptions and model. The metrics plotted in Figures 6.2 and 6.3, as
discussed, aim at illustrating the same behaviour either genotypically or phenotypically,
respectively through the ratio of females that select male partners with the same exact
encoded preferences, or through the evaluation correlation between females and their
chosen males. In either case, the data should show how a linkage between preferences
and traits emerges and contributes to the promotion of their own genes selfishly.

As an overview of all functions shown, the figures demonstrate that both metrics,
on average, increase from an initial close to zero value towards values close to one.
This tendency is the expression of positive reinforcement of mating preferences, which
empirically shows the emergence of sustained Mate Choice. While this over-the-top
analysis covers its main goals without requiring further words, interesting illations can
be taken from a closer analysis.

Despite the average value having a stable behavior, the metrics show some disper-
sion when the data from all 50 runs are considered. In both figures, such dispersion
seems more obvious below the average line, however, that’s the result of runs with
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Figure 6.2: Evolution of the ratio of mating pairs that share the exact same preferences
genotype. Results shown for four functions: nguyen-4 (top left); korns-2 (top right);
keijzer-3 (bottom left); vladislavleva-7 (bottom right).

Figure 6.3: Evolution of the Spearman’s correlation between phenotypic attractiveness
rankings obtained by mating pairs. Results shown for four functions: nguyen-4 (top
left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).
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higher-than-average ratios and correlations often reaching the maximum value and re-
maining there, thus having less visual impact, while obviously pulling the average with
them. In such instances, because there is no mutation, preferences getting competitive
edge spread through the whole population and maintain an undisturbed equilibrium.
However, dispersion also shows that such an equilibrium is not always reached, with
variation in ratios and correlations being seen clearly between generations. There are
a few reasons that may account for such dispersion: i) initial conditions may be more
or less favorable, potentially making it difficult in some runs for reinforcement to kick
in; ii) randomness in each selection step may also interfere with the ability of mating
preferences to increase their presence by affecting the candidate pools; iii) competing
preferences can also delay or prevent momentum for each other. Nonetheless, on the
big picture and given the opportunity, Mate Choice seems to provide competitive edge
and emerge.

Although both metrics show the same tendency, Spearman’s average correlation
shows a greater increase speed (specially in the beginning) than the average geno-
typic ratio. Moreover, the spread of singular runs seems less diverging when ana-
lyzing Spearman’s correlation than the ratio (consistent when mapped on the same
scale). This is the result of limitations discussed regarding the genotypic metric count-
ing only equal chromosomes, whereas Spearman’s correlation is a better representation
of choice consistency. The differences between the metrics highlight that choice con-
sistency between two individuals can be achieved even when they encode preference
chromosomes with various degrees of differences. As a result, multiple preferences can
contribute to the same reinforcement process. Regarding the genotypic ratio and de-
spite its shortcomings which cause the metric to be shown as lower than what it should
be, its graphs are better at showing runs where reinforcement peaks to a ratio and cor-
relation of 1 (the first implies the second). They show that the process can kick in at
any stage of the evolution process, depending on existing conditions, and that when it
does, runaway processes can emerge with determination and increasing momentum.

Figure 6.4 says more on the character of evolving mating preferences, specifically
regarding Spearman’s correlation between attractiveness and fitness rankings within
mating candidate pools. As discussed previously, the evolution tendency of the metric
can contribute to assessing a Fisherian or Wallacean character. For all four functions,
the tendency is for a negative correlation to emerge, both seen in the average value but
also in most runs, even though initial conditions seem to be within the positive range.
Such a result is incompatible with a good sense view and rather favors a good taste
model, leading to a rejection of the Wallacean view by not meeting the full extent of
its assumptions. As discussed, runs where the correlation is maintained in the vicinity
of 0 also suggest a Fisherian character which also holds for positive correlations even
if there’s no direct cost for fitness. Nonetheless, the correlation seems to evolve in
a common direction, until a kind of equilibrium is found, allowing ornaments and
preferences to evolve more or less depending on the return they give in reproductive
gains.

Curiously, the keijzer-3 function shows a much higher diversity of behavior than
other functions, which may be related to function specific characteristics of the search
space or of building blocks. While on average there’s a tendency toward negative cor-
relation, although in the vicinity of zero, the behavior doesn’t generalize as well to
all runs. In most runs, the correlation evolves undoubtedly unrelated to good fitness,
however, there are some runs whose attractiveness-fitness correlation remains positive,
even reaching and maintaining itself close to one. This behavior demonstrates situ-
ations where preferences have not evolved in directions that diverge with fitness, but
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Figure 6.4: Evolution of Spearman’s correlation between phenotypic attractiveness
rankings obtained by each acting female and the fitness rankings of it’s mating can-
didates. Results shown for four functions: nguyen-4 (top left); korns-2 (top right);
keijzer-3 (bottom left); vladislavleva-7 (bottom right).

have rather evolved in the same direction, making Natural Selection and Sexual Se-
lection strengthen each other. Interestingly, the korns-2 graph also shows an instance
where a positive correlation of 1 between attractiveness and fitness emerges late in the
run, suggesting a runaway process in directions cooperative with fitness.

Further analysis on the topic is difficult but a few considerations are worth mention-
ing: i) the developed model, as described in Chapter 5 makes no explicit assumptions
on what type of preferences may evolve, which is empirically demonstrated by the
ability of mating preferences to evolve in either direction; ii) agreeing attractiveness
and fitness rankings may either be the result of initial conditions being favorable for
mating preferences to evolve in a particular direction (for instance due to high popula-
tion density making it easier for preferences to benefit from pulling in it’s direction), or
it may be the result of Mate Choice pulling females into new landscape peaks, there-
fore making fitness turn in a direction that agrees with a pre-existing Sexual Selection
pull; iii) such effects seem to be dependent on function specific characteristics such
as the search landscape. In any case, independently of the direction in which prefer-
ences evolve, the underlying process is Fisherian, as there is no direct linkage between
ornamentation and fitness.

An alternative yet complementary scrutiny can be done by looking at the distri-
bution of individuals by gender groups. Figure 6.5 allows such a study by presenting
the average size of three groups: i) individuals who are exclusively selected as fe-
males; ii) those which are exclusively selected as males; iii) and individuals who are
simultaneously selected as females and males. As described, candidates for each role
are selected randomly so all individuals have a fair chance of enrolling in each group.
The shown behavior is transverse for all studied functions and shows that throughout
the evolutionary process there’s an increasing separation of genders in the population,
which can be explained through the following analysis: female selection is bound by
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Figure 6.5: Evolution of average population composition by gender. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

the static evaluation function, which asserts pressure; a subset of the population is able
to be selected (females and hermaphrodites); on the other hand, male selection is bound
by preferences, which due to the initialization procedure are likely to have a close to
random behavior in the first generations; at that stage, selection pressure is low, and
the opportunity reaches a wide range of individuals (males and hermaphrodites); were
mating preferences unable to build pressure and that behavior would likely remain
static throughout the evolutionary process, with a few fit individuals being able to act
as females, but also keeping a chance of being selected for the male roles, causing the
intersection group to remain high and probably on a closer level to the other groups;
alternatively, as can be seen in Figure 6.5, as Sexual Selection pressure build up, less
individuals selected for female roles are suitable to act as males (which is in-line with
the previous analysis of choice character), thus explaining the transference of individ-
uals from the intersection group to the females only group. Due to its nature, selection
pressure for males remains smaller than for females, however, there seems to be a slight
pressure increase which translates in the graph as a decrease in the males only group,
resulting from less individuals being able to keep-up with a self-reinforcing choice.

In summary, this analysis validates that the model and its assumptions are suit-
able for emerging Mate Choice through the self-reinforcement of mating preferences
alone. Furthermore, results show that the assumptions, through their simplicity, allow
for Fisherian preferences to evolve in any direction, including in the same direction as
the fitness functions. Overall, there is a strong tendency for preferred phenotypes to
evolve in a direction that is neutral or likely contrary to fitness, which is in-line with
the Fisherian character of the model. Finally, the balance in candidate pool sizes for
each role seems suitable for selection pressure to emerge in regards to Mate Choice,
enforcing an increasing specialization of the population in competing in one of the two
roles, instead of trying to achieve reproductive success through both selection operators
simultaneously. Instances where preferences evolve in the same direction as fitness im-
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Figure 6.6: Evolution of Evaluation Entropy differences between using Mate Choice or
Fitness base selection. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

pose less pressure for specialization, which as seen in Figure 6.5 regarding the keijzer-3
function, results in a higher average number of hermaphrodite individuals.

6.4.2 Perception Analysis
Complexity and Dimensionality analysis and interpretation are strongly tied to the as-
sumptions of the approaches. In regards to PIMP, encoded information represents an
ideal mating partner rather than an evaluation function and as a result, the metrics under
scrutiny in this subsection are relevant to study the composition of such representations,
rather than holding information on perception of mating candidates. In detail, there’s
an adaptive complexity and dimensionality in the expression of ideal mating partners,
rather than on the perception and evaluation of mating candidates, which in this sce-
nario remains static. Nonetheless, entropy and contrast remain valuable phenotypic
measures and the discussion on the four metrics should provide interesting feedback.
To support the analysis, Figure 6.8 allows for a view of how each metric evolves on
average for the four studied functions, while Figures 6.6 and 6.7 show pairwise com-
parisons of entropy and contrast in each selection step obtained through attractiveness
and fitness, averaged over the whole sample.

The ability to distinguish between mating candidates and thus producing positive
entropy is a requirement for Mate Choice, as an entropy of zero would restrict choice
to a random behavior. In this particular case, unless mating candidates are similar, it
is expected that the mate evaluation function can distinguish between them with no
setbacks. After all, evaluation is done in the same fashion as within the fitness function
and relying on the same amount of data points. However, when looking at Figure 6.6,
the differences between fitness and attractiveness entropy can vary, specially in the
beginning of the runs. This is the result of two factors: i) preference initialization is
unbounded, unlike the static fitness function, and therefore can tend to infinity, causing
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Figure 6.7: Evolution of Evaluation Contrast differences between using Mate Choice or
Fitness base selection. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

attractiveness entropy to be lower than fitness entropy on those scenarios; ii) candidates
may encode solutions that are seen as tending to infinity when evaluated for fitness and
not for attractiveness (or the other way around), specially considering that a quadratic
error aggregation is being used.

Regarding the first factor, such individuals are less capable of distinguishing be-
tween mating candidates and will lead to choice operations where attractiveness en-
tropy is lower than fitness entropy, ultimately contributing to negative pairwise com-
parisons, shown on average in the graphs of Figure 6.6, whereas the second factor may
contribute to variations in both positive or negative values. The combination of both
factors, as shown, is more detrimental to attractiveness evaluation in comparison to fit-
ness differentiation, in regards to entropy, which from an intuitive perspective comes
to no surprise. Still, as the graphs in both Figures 6.8 and 6.6 suggest, pairwise differ-
ences between both metrics tend to diminish along the evolutionary process, because
low entropy preferences struggle more than others to self-reinforce. Alternatively but
just as fair, preferences gradually tending to infinity may lead to a pull on candidates
in that same direction, eliminating design benefits from fitness evaluation. It shows
that despite the limitations of PIMP, attractiveness entropy can compete with the static,
hand designed fitness evaluation function.

As to contrast, the results require careful interpretation. Without loss of general-
ization to CMP-GP, the metric can be seen as a way to measure how much candidates
distance from each other according to fitness or to attractiveness. However, whereas in
CMP-GP that is a direct implication of the mate evaluation function and represented in-
teractions, in PIMP that depends merely on the position of the candidates in the search
space. In other words, assuming that fitness and attractiveness are finite points in the
search space used as pivots for measuring linear distances between candidates, contrast
differences should be zero. With that being said, the aforementioned issues with ini-
tialization have an impact on contrast just as they do on entropy, although on a larger
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scale due to the metric being sensible to distances rather than ranking based.
It’s important to keep in mind at this stage that contrast is a lesser metric, one that

while being more sensible to distances, is not necessarily more sensible to the dis-
tinction between candidates (a candidates pool with 4 similar individuals and one that
tends to infinity can have significant contrast), therefore being somewhat skewed as
a representation of the central tendency of a sample. Even with the squashing func-
tion limiting the disproportionate impact of such situations, a comparison between the
behaviors shown in Figures 6.6 and 6.7 illustrate how contrast can overly show the im-
pact of initialization shortcomings. There may be an effect caused by the nature of the
squashing function which may change if others are used.

A closer look at each graph shows a few things worth noting: i) the tendency of
average evaluation contrast differences follows suit with that of entropy for each func-
tion; ii) in function nguyen-4, while entropy variations are generally small or non-
existent, contrast shows variations centered slightly above zero and with a small dif-
fusion; iii) the above zero contrast seems to have no particular impact on entropy; iv)
in the vladislavleva-7 function, the behavior is similar although average contrast dif-
ferences are centered slightly below zero, as are entropy differences, although both
metrics show an adjustment toward zero along the runs; v) the lower contrast by PIMP
seems to be related to its entropy differences; v) in functions korns-2 and keijzer-3
contrast differences seem to follow suit with entropy differences, both recovering from
initial poor values; vi) interestingly, while the first one shows a stabilization on nega-
tive values, the second one evolves towards positive ones, although that seems to hold
no particularly relevant impact on entropy.

When looking at Figure 6.8, some of the described behaviors can be further ex-
plained: i) while in function nguyen-4 contrast differences are centered slightly above
zero, the average contrast of attractiveness slowly reduces, which implies that fitness
contrast does the same; ii) on the vladislavleva-7 function, the same is not true, with
average contrast being higher than on the previous function, although less competitive
with fitness contrast; iii) on the korns-2 function, average attractiveness contrast con-
tinuously improves along the runs even if its competitiveness with fitness contrast is
negative; iv) on the opposite, average contrast difference gains for the keijzer-3 func-
tion seem to be resultant of a drop on the fitness contrast, which is better balanced
in attractiveness despite the drop in average contrast. Overall, attractiveness contrast
either seems to improve but not as competitively as fitness contrast, or to drop slower
that fitness contrast does, showing sturdiness and being more competitive on those sce-
narios.

Additionally, Figure 6.8 shows the relation between evolving average complexity
and dimensionality, and average entropy and contrast. A few things are worth mention-
ing as initial observations: initial conditions are different for each function, hence the
high discrepancies in the graphs; average dimensionality and complexity are locked to
each other, due to node constraints, which is quite visible; there’s a clear tendency for
both to reduce on average over the evolutionary process, although there are peaks of
increasing complexity and dimensionality that can last for relevant periods (up to 50
generations sometimes); despite the consistent drop in both metrics, there seems to be
no immediate connection to the behavior of entropy and contrast, due to the assump-
tions of PIMP.

Nonetheless, addressing why there’s a tendency for simpler preference functions to
be favored over the evolutionary process should be interesting. In a Standard approach,
tree bloating usually emerges as a defense mechanism against destructive crossover,
which may also be true for the first chromosome in the current Mate Choice opera-
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Figure 6.8: Evolution of average Entropy and Contrast as well as average Dimension-
ality and Complexity. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

tor. However, as has been discussed in Section 3.3.1, recombination can be more de-
structive for large preference genetic trees than for smaller ones, mostly because they
aim only for choice consistency. Simple genotypes and corresponding phenotypes are
likely to be less sensible to changes in that regard, giving them competitive advantage
over more complex ones, even if the latter provide additional responsiveness to small
changes. Mate Choice is rather unbounded, allowing preferences to evolve more freely
and fueled by self-reinforcement. As a consequence, and as suggested by the results,
the competitive advantage of simpler functions has a stronger impact, partly explaining
the tendency shown by the dimensionality and complexity metrics. As a side note, it is
likely that such an effect will impact the size of phenotypes being selected for as well.
Still, it should be assessed if entropy and complexity have a saying in the tendency of
the metrics.

Figure 6.8 is useful for a general view of the average tendency of each metric,
but with multiple dimensionality values and complexity values (in this case, regarding
the ideal partner representation) competing among themselves, it’s impossible to re-
late each particular preferences structure with entropy and contrast through that data
alone. It is likely that the average tendency of each metric results from quite different
contributions coming from different competing characteristics. Figures 6.9 and 6.10
shed some light on preferences and the resulting entropy or contrast respectively. Each
graph clusters information from all active females in the first 150 generations over the
whole 50 runs. Consequently, each dot is not the result of a single Mate Choice step
but rather the average of many steps with similar preference characteristics (in regards
to terminals and non-terminals in the ideal partner representation, not necessarily hav-
ing the exact same genotype). With that being said, dots in the lower left corner have
the contribution of many more Mate Choice steps, simply because (as can be seen
through the average values) there are more individuals sporting smaller dimensionality
and complexity.



CHAPTER 6. APPLICATIONS AND EXPERIMENTATION 177

Figure 6.9: Relation between Entropy, Dimensionality and Complexity in the first 150
generations of all runs. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

In each graph, color shows the average entropy or contrast value for a particular pair
of dimensionality and complexity values (which, as discussed, are in lock). The color
range has been adjusted for each particular function, in order to better fit the data, rather
than maintaining a fixed range. This way, a better use of the color pallet is achieved
and differences are more visible, but particular care is needed when comparing between
graphs. As an overall observation, higher entropy seems to be associated with higher
dimensionality and complexity in preference chromosomes. This is particularly easy
to see in the graphs relating to the korns-2 and vladislavleva-7 functions. The keijzer-3
function seems to make it difficult to breed and reproduce high complexity and dimen-
sionality, which is probably a consequence of the terminal and non-terminal sets. Still,
behavior similar to that produced in the above mentioned functions can be observed. In
the nguyen-4 function, a different behavior seems to be promoted, where most extreme
values of entropy, both high and low, are more likely with a higher complexity and
dimensionality, whereas a more stable behavior is seen in the bottom left corner of the
graph. Similar observations are shown regarding complexity in Figure 6.10, although
on a different scale.

In this particular context, and considering the assumptions of the current approach,
a straightforward analysis of the results seems to support that relying on more complex
representations of ideal mating partners promotes a higher evaluation entropy and con-
trast. However, such individuals are likely rare, which calls for an analysis based on
the bottom left corner of the graphs, where most of the considered sample is located.
Focusing on such instances, on all graphs in Figure 6.9, there’s visibly a higher entropy
on simpler individuals when compared to their immediate neighbors. Such behavior is
in agreement with what can be seen in Figure 6.8, where entropy increases while sim-
pler individuals are promoted. Although maximum levels of entropy are not achieved
by such individuals, the relative advantage is likely to contribute to their promotion, re-
inforcing the advantages brought by reproductive crossover. The effect is less visible in
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Figure 6.10: Relation between Contrast, Dimensionality and Complexity in the first
150 generations of all runs. Results shown for four functions: nguyen-4 (top left);
korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

regards to contrast, in Figure 6.10, which nonetheless is also aligned with the behavior
seen in Figure 6.8, and to its lesser role in a tournament like operator.

In summary, close to maximum entropy and contrast seems more likely to be
achieved by individuals carrying high dimensionality and complexity within their pref-
erences representation, but, as such individuals are a small minority in the studied
sample, they fail to take hold through self-reinforcement. Nonetheless, among indi-
viduals of lower complexity and dimensionality, evolutionary advantage should go to
those that achieve higher entropy. According to the studied sample, such is relatively
achieved with success by simpler preferences, which in addition to potential advan-
tages brought by being less exposed to destructive crossover, promotes the decrease
of average complexity and dimensionality while improving the average entropy. The
same is less evident for contrast, which remains less relevant for competition due to the
nature of the Mate Choice operator. As a side note, the ongoing discussion suggests
that, were the genotypic metrics kept higher (possibly by reducing the inherent advan-
tage of smaller sized trees), then it would be easier for entropy and contrast to be kept
at higher values as well.

6.4.3 Effects Analysis
Having looked at the specifics of Mate Choice as a selection operator and it’s ability
to perceive and evaluate mating candidates, it’s important to understand its impacts on
the population as a whole and how the evolution of self-adaptive preferences influences
the search process. A glimpse has been previously included in Figure 6.5, regarding
the distribution of individuals in genders but the current section will expand on that
discussion, mainly by including genotypic and phenotypic measures of diversity and
tackling the approach’s ability to promote and maintain innovation. Figures 6.11 to
6.24 will provide data for the discussion, both on population and inner-gender levels
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Figure 6.11: Population edit tree diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

and with different topics in mind.
Diversity maintenance is regarded as a key factor in search optimization, fueling

upcoming steps with genetic variation, without which search efforts become stale or
rather focused on a local genotypical neighborhood that may not hold a chance for im-
provements. Figure 6.11 gives an overview on population diversity, including each run
and an average tendency for PIMP, and the all-run average value for the Standard ap-
proach as a base line for comparison. First impressions on these graphs alone are rather
optimistic, with PIMP visibly contributing to an increased genetic variation when com-
pared to the Standard approach (at least according to edit tree distances), a difference
that increases along the evolutionary process. Such outcome is the contribution of
many runs successfully promoting population diversity, but still, on functions korns-2
and keijzer-3 results show a subset of experiments where edit tree diversity drops fast
and remains close to zero throughout the evolutionary process. Also, diversity in the
vladislavleva-7 function seems more contained in comparison to other functions. Per-
haps equally relevant is the perceived ability of the Standard approach to maintain or
slightly improve on it’s average variation, despite maintaining a more modest tendency.

These observations require careful analysis and should take into account a number
of relevant factors that strongly influence their interpretation: i) edit tree distances con-
sider tree structures, but not how they translate to phenotypes (in an extreme scenario,
large chunks of a tree may have no phenotypic value, adding non-relevant genetic diver-
sity); ii) the use of a pivot to measure edit distance diversity can be subject to skewness
if, for instance, the fittest individual is an outlier of its population; iii) the observed
metric takes into account the whole population, including those individuals that end
up not reproducing and thus not contributing to the search effort; iv) the splitting of
the population into genders in PIMP can boost the measure towards values that don’t
accurately reflect the genetic diversity found in the population, for instance if the male
population gradually distances itself from the female one. Each of these factors can be
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Figure 6.12: Population entropy diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

studied to some extent and one at a time to rule out potential influencing factors, and
truly address the impact of Mate Choice on diversity.

Addressing the first two discussion points can be tricky. In a perfect scenario,
one would analyze each individual independently and weed out irrelevant parts of the
genotypic trees, however, there’s no straightforward way to do so in bulk. Additionally,
making pairwise comparisons between all individuals in a population can be very com-
putationally demanding. Nonetheless, the absence of mutation should highly reduce
the risk of skewness caused by potential emerging outliers. Alternatively to employing
more demanding methods, one may look at how genotypic and phenotypic diversity
relate to each other in search for clues. Ideally, genetic diversity should translate into
phenotypic diversity, specially if the evaluation function is sensible to changes (Sec-
tions 6.4.2 and 6.5.2 have shown that the evaluation function is quite sturdy in that
regard). With that in mind, one may look at fitness entropy for confirmation of diver-
sity, expecting to find matching behaviors.

Figure 6.12 shows that this is not the case, and specially so for the Standard ap-
proach. In that setup, while tree edit distance suggests an approximately stable genetic
diversity, it translates into a lowering average fitness entropy. On the other hand, en-
tropy is maintained higher for PIMP, closing to maximum values on a large subset
of individual runs as well as on average. Moreover, PIMP shows a more stable be-
havior across generations, even though there seems to be a tendency toward lower
values (most visible in the vladislavleva-7 function despite the initial gains, whereas
korns-2 shows the opposite behavior). Additionally, while some runs show low en-
tropy values, instances of close to zero edit tree diversity seem to have less impact than
otherwise suggested. While this offers no definite proof of higher genetic diversity in
Mate Choice, it does corroborate the differences shown in Figure 6.11, even suggesting
that the Standard approach is unable to truly maintain a stable diversity that can trans-
late into meaningful phenotypic variations. Importantly, confirmation through fitness
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Figure 6.13: Females edit tree diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

entropy keeps some of the risky characteristics of edit tree diversity at bay, such as:
i) impact of non-relevant sub-trees; ii) relying on a pivot for distance measures; iii)
distancing between genders boosting population diversity (because it relies on unique
fitness values, the metric offers a view that isn’t distorted by such separation).

Focusing on the third and forth points of discussion, Figures 6.13 through 6.16 offer
some insights. Figures 6.13 and 6.15 regard edit tree diversity among female and male
populations, while Figures 6.14 and 6.16 show the corresponding fitness entropy met-
ric. For each graph, the sampled individuals are those who have been selected for the
roles of female and male respectively, thus leaving out individuals that end up having
no impact on future generations, while looking at each gender selection dynamics sepa-
rately. For comparison purposes, samples from the Standard approach are also studied,
either being selected by one of the two tournament selection operators. Arguably, this
would be akin to comparing to an approach where the females are selected through
fitness, and give preference to the most fit male among candidates. Nonetheless, be-
cause rules are similar between the two tournament operators, the selected individuals
should equally represent the same asexual population. The plotted Standard approach
behaviors, in either the female or male related graphs are similar, suggesting so.

Overall, the figures further distinguish between PIMP and the Standard approach.
While in PIMP the population wide edit tree diversity seems to extend its impact onto
selected individuals for either role, the same can’t be said for the Standard approach. In
fact, edit tree diversity among selected individuals in the Standard approach is shown
to drop fast and not carrying the higher population wide diversity well. This is a direct
implication of the stranglehold put on by selection, boosted by both operators favoring
the same subset of individuals, which is reinforced over time (specially without muta-
tion). When comparing this behavior to what is shown in Figure 6.11, results highly
suggest that the population wide diversity discussed previously is boosted by individ-
uals that have no competitive potential and thus no particular value, perhaps resulting
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Figure 6.14: Females entropy diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

Figure 6.15: Males edit tree diversity at every 25 generations. Results shown for
four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).
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Figure 6.16: Males entropy diversity at every 25 generations. Results shown for
four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

from destructive crossover operations. This study won’t argue further regarding selec-
tion pressure on tournament operators, as the testing setups have been designed to keep
conditions as similar as possible between approaches.

In comparison, the resulting behavior of PIMP is quite different. It would be unfair
not to acknowledge that in some runs, convergence among selected females does hap-
pen, particularly in the korns-2 and keijzer-3 functions. However, on many runs and on
average, edit-tree diversity among females is kept on considerably higher values than
on the Standard approach, while also showing a steadier tendency, even growing on
average over generations. This difference to the Standard approach is confirmed by
Figure 6.14 which likewise shows an enduring maintenance of fitness entropy, in con-
trast to the noticeable decay in the Standard approach. This achievement may not look
like much but maintaining a healthier distribution of fitness values within the female
population is a signal that more distinct individuals are getting a chance at competition
and thus at reproducing, consequently passing on not only their survival related genes
but also their mating preferences.

This behaviour is surely influenced by lower pressure resulting from having only
one, rather than two, operators selecting for fitness, but it can hardly be pinpointed
solely on that. Even with lower pressure, a slower but noticeable diversity decay would
still be unavoidable. Therefore, the resulting behavior must be a consequence of the
dynamics introduced by Mate Choice. The mechanics that allow for this behavior will
be further explored ahead, however, it’s noticeable in Figure 6.13 that the female role is
not always attributed to similar individuals, and that peaks in average edit tree diversity
can be seen ranging in magnitude, suggesting the introduction of disruptive individuals
in female populations. These may either be hermaphrodite individuals or, as suggested
by Figue 6.5, perhaps individuals that have drifted in the search space while being
competitive fitness wise.

Looking at diversity within the male populations, there are similarities but also dif-
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Figure 6.17: Female preferences edit tree diversity at every 25 generations. Results
shown for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom
left); vladislavleva-7 (bottom right).

ferences worthy of note. Regarding edit tree diversity, the metric generally follows suit
to the behavior shown in the females populations, however, diversity is kept higher and
the tendency to increase on average towards the end of the runs is noticeably stronger.
Exceptions can be found in the korns-2 and keijzer-3 functions, where a subset of runs,
probably those same found in the population and female analysis, shows close to zero
diversity. Regardless, average fitness entropy is initially higher on average and by the
end is somewhat at the same levels as shown for females populations, showing a ten-
dency to decrease that is not observed within female populations. On the one hand, this
shows convergence of selected individuals into a smaller subset of distinct phenotypes
(which is in agreement with Figure 6.5), but on the other hand suggests larger edit tree
distances between those individuals. While female selection is bounded by the fitness
based tournament operator, selection of males is self-regulated and therefore somewhat
unbounded. This aspect should be at the bottom of the differences in diversity between
genders but requires further analysis and careful interpretation.

Higher initial edit tree diversity and fitness entropy in males than in females can
be largely explained by the random character of Mate Choice in initial generations.
However, for edit tree diversity to increase in a sustainable manner, at least one of two
behaviors is expected to be observed: i) preferences evolve in diverging ways, leading
males into different paths whose growing distance fuels the apparent increase in diver-
sity; ii) preferences push for extreme features, therefore giving way for individuals that
are divergent to be selected as males, and consequently increasing the gender’s inner
diversity. Arguably, both behaviors may account for the slow drop of fitness entropy
by cheer force of self-reinforcement, as Mate Choice gradually substitutes random-
ness with a selective force. Figures 6.17 and 6.18 tackle both scenarios respectively.
On the first one, a decrease in edit tree diversity among preferences in active females
is shown, firmly rejecting the first hypothetical behavior described. Despite occasional
runs showing peaks of diversity, average preferences seem to consistently self-reinforce



CHAPTER 6. APPLICATIONS AND EXPERIMENTATION 185

Figure 6.18: Edit tree distance between pairs at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

towards agreement and similar genetic structures. On the other hand, the second figure
seems to show exactly what would be expected for the second hypothetical behavior
to be confirmed. Over time, females on average pair with more and more diverging
males, pushing them to extremes in a negative assortative mating fashion, thus fueling
an increased edit tree diversity in the male population.

There are, nonetheless, instances of positive assortative mating, which are likely
associated with those plotted in Figures 6.11, 6.13 and 6.15 showing small diversity.
It’s very likely that those are the same instances in Figure 6.4 showing a positive corre-
lation. In those runs, Sexual Selection and Natural Selection evolve to benefit the same
individuals, reinforcing each other and pushing female and male sub-populations into
the same region of the search space. As a result, Figure 6.5 shows a higher number
of hermaphrodites on the korns-2 and keijzer-3 functions, due to individuals in those
particular runs being competitive both through fitness and attractiveness. Nonetheless,
most runs show a runaway of male individuals toward high dimorphism, with a driving
momentum that is characteristic of such phenomena. This process is poorly bounded
by Natural Selection since traits add no particular fitness costs (in a gendered popula-
tion with no overlaps, the cost of being poorly fit can be absolutely atoned by being
proportionally attractive), allowing for preferences and traits to reinforce far-off so-
lutions without ever reaching an equilibra. As a side note, data on female and male
behaviors further illustrates the differences between them. Whereas the female popu-
lation is more conservative and exploitative of fit solutions, the male population shows
a more exploratory character, as suggested by Figures 6.15 and 6.18. This can be seen
in the average diversity metrics but also when individual runs are considered, with
the male population reaching a wider range of possible outcomes. These exploitation-
exploration roles are the root of inter-gender dynamics. Despite the risk of destructive
crossovers, the approach seems capable of injecting the female population (which pro-
motes fitness) with diversified solutions that can represent new ecological opportuni-
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Figure 6.19: Survival rate for females from all 50 runs, bucketed and ordered by inno-
vation rate. Quartile information for PIMP included in the bottom x-axis. Quartile in-
formation for the Standard approach shown on the top x-axis. Four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

ties, contributing to progressing steps in the optimization efforts.
Still, a question is raised on whether such diversity has merely an immediate role,

with no lasting consequences other than destructive crossovers punctuated by the occa-
sional fortunate outcome, or if it is indeed capable of contributing to future generations
by having its descendants (and therefore its genes) be present. In other words, is inno-
vation a result of chance similar to what would happen with a mutation operator, or is
it a continuous effort with neophiliac character. Figures 6.19 to 6.24 contribute to this
discussion with different data. Along with plots regarding PIMP, the same metrics for
the Standard approach are included for comparison. However, population conditions
are not quite the same for both scenarios, and interpretation should be done carefully
having each scenario in mind. A step by step description and analysis follows.

Figures 6.19 and 6.20 are particularly challenging to analyze, as they include a large
amount of information. As described in Section 6.2.2, the graphs map innovation to
survivability, through the x and y axis respectively. For each function, individuals are
collected at each 25 generations in all 50 runs and joined together in the same sample,
representative of each approach. They are then organized on the x-axis according to
their prospective innovation, measured according to how each individual is placed in
its parents generation’s inner-gender edit-tree distribution (Section 6.2.2 offers a full
description). While distances are always positive, a sign allows for a sense of direction
so that: i) individuals close to zero are in the neighborhood of last generation’s average
distance, having therefore as much a chance of providing innovative solutions as the
average individual in that population; ii) individuals placed at values smaller than zero
are closer than average to the most reproductive individual, potentially contributing to
the exploitation of that search neighborhood iii) individuals placed at values larger than
zero are further than average to the most reproductive individual, potentially introduc-
ing exploratory solutions.
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Figure 6.20: Survival rate for males from all 50 runs, bucketed and ordered by innova-
tion rate. Quartile information for PIMP included in the bottom x-axis. Quartile infor-
mation for the Standard approach shown on the top x-axis. Four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

The resulting sample of distances-to-average is large, and for clarity purposes has
been ordered and bucketed into 50 groups, 48 of which have equal size (over 500 in-
dividuals each) with the surplus individuals being split into the two remaining groups
(24 individuals or less each). Individuals in these two groups are those at each end
of the ordered sample, likely including any existing extreme outlier, thus controlling
their impact. A five number summary can help assess the composition and distribution
of such a sample. Different samples may have different distributions, therefore, each
graph’s x-axis includes the five number summary for PIMP on the bottom and for the
Standard approach on top, allowing for the data to be interpreted on their appropriate
intervals. As described in Section 6.2.2, the y-axis corresponds to the survival rate over
two generations for each group of individuals. A few characteristics are relevant when
analyzing it’s outcome, specially regarding the tendency for positive rates: i) because
in each figure only the selected females (Figure 6.19) and the selected males (Figure
6.20) are studied, individuals with no survival chances are left out; ii) production of
two offspring gives a chance of exponential growth over two generations; iii) rates
are measured for each bucket, potentially balancing individuals with either none or an
outstanding number of grandchildren; iv) the size of the buckets varies between ap-
proaches and genders, on the one hand influenced by gender distributions as shown in
Figure 6.5, and on the other hand influenced by particularities of sampled generations;
v) finally, the metric is defined in the ]� 1,•[ interval. As a result, conclusions re-
garding growth rates are safe within each approach or gender, but potentially complex
between them.

In summary, Figures 6.19 and 6.20 allow for two major points of discussion: i) the
five number summaries regarding innovation in each approach; ii) the survival rates
of each bucket, as a sense of survivability by level of innovation. Focusing on the
first point, the figures show very different sample characteristics between PIMP and
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Figure 6.21: Cumulative number of female individuals considered as outlier from pre-
vious population’s female individuals distribution, measured at every 25 generations.
Results shown for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3
(bottom left); vladislavleva-7 (bottom right).

the Standard approach, both regarding females and males. Whereas the IQR in the
Standard approach ranges from ⇡ 1.66 to ⇡ 4.79, in PIMP it ranges from ⇡ 17.44 to
⇡ 26.46 , confirming very different variations. The Standard approach is rather con-
servative in regards to producing innovating offspring with no help from mutation, as
expected and partially discussed in regards to population diversity. As a result, the fol-
lowing is observed: i) the median value in all functions is either zero or slightly above,
suggesting that nearly 50% of the produced individuals are closer to the most reproduc-
tive parent of the same gender, in a exploitative or neutral fashion (possibly more than
half if the median is zero); additionally, the third quartile is very close to the median,
showing that of 75% of individuals below, those achieving exploration introduce small
innovations at best; ii) in the korns-2 and the keijzer-3 functions, the first quartile is the
same as the median, with at least 25% of individuals showing no deviation from their
parent’s population average distance; iii) in those same functions, the minimum and
maximum are exceptionally distant from the median, likely representing rare artifacts
in the samples, with most individuals deviating lightly from the median value. These
observations are true for both selection operators in the Standard approach, illustrating
the expected similarity.

In comparison to these observations, the following can be said regarding PIMP: i)
the median value in all functions is positive and larger than in the Standard approach
asserting that at least 50% of selected individuals follow an exploratory character, and
likely more than in the Standard approach in a function-wise comparison; ii) the wider
IQRs further suggest that the most reproductive individuals can themselves be distant
from other individuals in their genders, reinforcing their own and the population’s gen-
eral exploratory character; iii) the third quartile is more distant from the median than
the first quartile, signaling that exploratory individuals are more adventurous in the
search space, in comparison to exploitative ones which remain closer to the previous
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Figure 6.22: Cumulative number of female individuals considered as outlier from pre-
vious population’s female individuals distribution while also surpassing its best fitness
value, measured at every 25 generations. Results shown for four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

population’s central tendency (this is also true in the Standard approach but on a much
smaller scale). These characteristics are true for both females and males in PIMP, with
only slight differences between genders, probably the most relevant being the females
holding a steadier IQR across functions while in males the values vary as a result of
self-ruling preferences producing different behaviors.

Further differences arise when survivability is assessed. In those regards, the fol-
lowing observations are worth noting: i) while the average growth rates remain rather
contained, they show a general propensity for favoring innovative solutions; ii) this ob-
servation holds true for both approaches but on very different conditions; ii) the same
is also true for both genders in PIMP but with different outcomes. At this point, one
should remember that only individuals that successfully reproduce are under analy-
sis, certainly other innovations are unsuccessful on being selected for reproduction.
Going back to the Standard approach, there is indeed a higher growth rate associated
with those individuals that introduce innovation, although it has been discussed that
the extent of such innovations is rather small. Nonetheless, the ecological opportunity
represented by such individuals seems to take hold and reinforce their genetic presence
by reproducing children that are themselves competitive. As expected, the behavior
is similar for both selection operators. When focusing on PIMP, some of these ob-
servations remain true while others require further discussion. Both genders show a
healthier growth rate for innovative individuals, but on a much larger interval than the
Standard approach, suggesting that Mate Choice allows for more extreme innovations
to successfully impact future generations rather than being discarded. The ability seems
particularly relevant for the female population, despite being composed of individuals
that have been selected for their competitive fitness. While there are certainly disrup-
tive individuals that don’t stand a chance at being selected for female roles, the data
indicates that those that are both disruptive and competitive have a relatively higher
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Figure 6.23: Edit distance from female parent for female individuals considered as
outlier from previous population’s female individuals distribution. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

Figure 6.24: Edit distance from male parent for female individuals considered as
outlier from previous population’s female individuals distribution. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).
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impact on future generations through their higher growth rate. As a result, not only is
genetic diversity promoted in female populations but there’s also a chance for genetic
drift towards new areas of the search space where potentially better candidate solutions
can be exploited.

Such a scenario is benefiting for the search effort but would be rather difficult with-
out contributions from the male populations. When looking at associated data, two
observations come to mind: i) the overall growth rate of males is slightly smaller than
those of females; ii) the variation in growth rates between less and more innovative in-
dividuals is less significant. The first observation can be explained by the larger size of
the male group shown in Figure 6.5, which causes growth to be further divided between
more individuals. The second observation should be interpreted taking into account the
overall gender dynamics. As discussed and shown in Figure 6.18, the male population
shows an overall leaning for drifting, pushed by preferences, and making innovation
differences less relevant. Nonetheless, the differences are still there, and show that
diverging yet attractive individuals are favored over others in regards to survivability.
This is in-line with the runaway behavior discussed in regards to diversity and distances
between paired partners. In the end, despite the survival of such individuals, a question
remains regarding how much they can contribute towards feeding the female gender
with genetic variation and ecological opportunities.

While such a linkage between the male and female genders can be complex, Figures
6.21 to 6.24 aim at showing how they can work in cooperation, particularly towards es-
caping local optima or drifting. This capability is an important part of what is expected
from exploration, whereas exploitation can be safely left assured by the fitness based
selection operator. Figure 6.21 shows the cumulative number of selected females that
may be considered to be escaping the previous female population’s genotypical neigh-
borhood by being placed more than 1.5 IQRs over its third quartile. Figure 6.22 focuses
on such individuals that also improve on the best fitness found so far. In both cases,
populations are sampled at every 25 generations, therefore individuals in each popu-
lation are compared to the previous one’s distribution. Figure 6.21 shows that both
approaches are capable of continuously producing individuals that are placed outside
the established interval, although at quite different rates (with only a few runs of PIMP
being stuck at near zero values). The impact of such individuals is quite different. Re-
garding the Standard approach, the IQR is likely small, and escaping individuals are
making small contributions as demonstrated by Figure 6.19, but which can accumulate
towards meaningful ones, as suggested by Figure 6.22. On the other hand, PIMP is less
capable of contributing individuals that escape local optima but that are more likely of
introducing very diverging solutions. These are more likely to result in drastic drifts
in the search space rather than small continuous ones. However, Figure 6.22 suggests
that, with the exception of korns-2 (where the Standard approach performs particularly
sub-par), those contributions are relevant in the beginning of the search process but rare
after the initial period.

While this is in-line with the general idea that exploration has a more important role
in the early generations, it would be benefiting to keep up contributions throughout
the evolutionary process, combining high exploratory capabilities with the ability to
profit from the genes being introduced. Figures 6.23 and 6.24 give some insight on
the nature of the escapee individuals, showing that they are increasingly more distant
from both parents but more so from their mothers, highlighting on the one hand how
exploratory males can contribute to the reproduction of offspring that are competitive
while divergent, but on the other hand, suggesting that such ecological opportunities
can represent large jumps in the search space rather than a slow but continuous drift.
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Given the unbounded nature of the male runaway process, it’s reasonable that male
contributions, despite introducing diversity and novelty through negative assortative
mating, end up being too far away to provide females with a steady rate of cumulative
contributions, rather than punctuated disruptions, which impact the search effort but
not to its full potential.

6.5 CMP-GP: Behavioural Analysis
Following the methodology used for the analysis of PIMP, and the discussion in Sec-
tion 6.2.2, the next subsections will focus on empirically showing the behaviors intro-
duced by Mate Choice with free evolving dimensionality and complexity, as well as its
effects on the evolutionary process. While the same metrics will be used as in the pre-
vious discussion, and which have been discussed in Section 6.2.2, their interpretation
is now subjected to the assumptions of CMP-GP. This is particularly relevant for geno-
typic metrics and for the analysis of perception. The analysis will be again split into
three topics, that may at times overlap: i) selection analysis; ii) perception analysis; iii)
effects analysis. As a note, including the analysis of all 52 functions through graph-
ics would be impossible, therefore, the same four functions as before are considered:
nguyen-4 (1 variable), korns-2 (5 variables), keijzer-3 (1 variable), and vladislavleva-7
(2 variables).

6.5.1 Selection Analysis
Similarly to the discussion in PIMP, analyzing what happens at each selection step
provides important insight, potentially confirming that the model, paired with the as-
sumptions of CMP-GP, is capable of emergent Mate Choice. Moreover, the data is
important to study the character of choice and extend the analysis to a population level.
The metrics involved in this discussion have been properly introduced in Section 6.2.2
and results have been summarized in Figures 6.25 to 6.28.

Just like in PIMP, the first analysis goal is to validate the emergence of Mate Choice
by empirically showing its underlying engine: the self reinforcement of mating pref-
erences through runaway processes and the resulting feedback loop between traits and
preferences. As discussed, the effect provides unequivocal evidence of the emergence
of Mate Choice while abiding by the proposed assumptions. Figure 6.25 shows the
discussed genotypic metric while Figure 6.26 shows the phenotypic metric. Both il-
lustrate how often individuals select mating partners that are consistent in choice with
themselves, however, as previously mentioned, each has its particularities. The geno-
typic metric is quite conservative as it uses binary comparisons that count only selected
pairs whose mating preferences are exact matches, which may be an overstrict view of
consistent choice. The phenotypical metric overcomes such an issue although being
potentially subject to a (quite small) chance of false positives.

Overall, both figures show an expressive tendency for self reinforcement, mapped
by the increase of the average value from a close to zero value to a final close to one
value. The tendency is a clear indication of the feedback loop between mating prefer-
ences, whose role is the cornerstone of emergent and sustained Mate Choice. A closer
analysis of all 50 runs and the dispersion of the collected data should provide for fur-
ther insights on the behavior, as well as for comparisons with the behavior achieved
by PIMP. In each figure, dispersion is more perceptible below the average line, how-
ever, its also noticeable that there are many runs that reach the maximum value on each
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Figure 6.25: Evolution of the ratio of mating pairs that share the exact same preferences
genotype. Results shown for four functions: nguyen-4 (top left); korns-2 (top right);
keijzer-3 (bottom left); vladislavleva-7 (bottom right).

Figure 6.26: Evolution of the Spearman’s correlation between phenotypic attractive-
ness rankings obtained by mating pairs. Results shown for four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).
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function, thus having a less visual impact in the color map but being reflected upon
the average value. Just like in PIMP, the absence of mutation maintains such runs on
an equilibrium where agreeing preferences have spread through the whole population.
However, the same reasons discussed in the analysis of PIMP regarding why not all
runs reach a full equilibrium scenario remain relevant for CMP-GP, such as the impact
of initial conditions, candidate pools randomness, multiple competing preferences and
so on.

Still, in comparison, CMP-GP seems to result in less dispersion. Additionally, av-
erage values of ratio (Figure 6.25) and correlation (Figure 6.26) reach closer to one
despite starting closer to zero, which suggests that the initial response in CMP-GP is
more similar to random behavior than what is achieved in PIMP. This difference may
seem small but in regards to choice consistency, a positive correlation can give an im-
portant boost to preferences in initial populations, giving PIMP an advantage that is
well expressed by the evolution of the average correlation in the initial few genera-
tions. On the other hand, the runaway effect seems on average to kick off later in
CMP-GP, but due to a greater momentum (which can be seen in the slope of aver-
age values), reaches a stronger correlation not only in regards to the average value,
but more often in the run set. Such distinctions are supported by differences between
preference landscapes, both in size and character. Whereas the landscape for PIMP
is similar for both chromosomes, the landscape in CMP-GP depends on the terminal
and non-terminal sets. Arguably, smaller sets would allow for self-reinforcement to
commence sooner and stronger, while larger sets should slow down consistent choice
but introduce complexity, given that a random-like initialization process is maintained.
Comparing between approaches, the behavior of CMP-GP is more consistent with a
less rough landscape with larger basins of attraction that allow for runaway processes
to last longer, thus resulting in higher correlation values. Reduced dispersion between
runs is also in agreement with a smoother landscape. Arguably, by changing the termi-
nal and non-terminal set sizes and compositions, the self-reinforcement process can be
tuned and adjusted, which, as will be seen, can hold interesting potential.

Figure 6.27 shows Spearman’s correlation between attractiveness and fitness rank-
ings among individuals in the same mating pool, which further expands on the character
of evolving mating preferences. Similarly to PIMP, the tendency of the metric goes to-
wards a negative correlation on all four functions, even though there appears to be an
initial bias towards positive correlations. This outcome is not fitting with a Wallacean
good sense view of Mate Choice but is very fitting with a Fisherian good taste model.
Focusing on the assumptions of each model, Fisherian processes can result on orna-
mentation that are either agreeing or disagreeing with fitness valued characteristics,
making it so that the process is undoubtedly Fisherian by rejection of the Wallacean
assumptions. Despite the central tendency of the metric, there’s some dispersion in
individual runs, significantly more than observed in PIMP across all four problem in-
stances. In PIMP, such a behavior was mostly seen on one function, and it has been
suggested that it may be due to function specific particularities. However, the same
can’t be said for CMP-GP, where runs with a high correlation between attractiveness
and fitness (sometimes very high) are more widespread. There are a few interesting
remarks to be made regarding such a behavior: the representation used in PIMP was
known to be able to closely represent the fitness function, thus being certainly capable
of evolving in the same direction; with that being true, the conditions to do so seem
quite challenging, with most runs evolving in the opposite or neutral directions; the
representation used in CMP-GP freely evolves an evaluation function that accesses a
much more limited amount of information, which it combines through interactions; it
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Figure 6.27: Evolution of Spearman’s correlation between phenotypic attractiveness
rankings obtained by each acting female and the fitness rankings of it’s mating can-
didates. Results shown for four functions: nguyen-4 (top left); korns-2 (top right);
keijzer-3 (bottom left); vladislavleva-7 (bottom right).

was not a given that such a representation would be able to evolve evaluation functions
that correlate with fitness.

Despite showing such an ability, the observation does not imply in any way that the
evolved attractiveness functions are similar to the fitness function, nor that the model
has such capabilities. It does however suggest that given appropriate conditions, the
representation is capable of perceiving and selecting mating partners through honest
indicators of fitness. This doesn’t mean that such a behavior should be the preferred
outcome (PIMP results suggest otherwise), an argument that is likely to strongly de-
pend on population status and dynamics. Nonetheless, the contrast between the two
approaches is quite interesting, and suggests a greater freedom of choice (at least re-
garding its correlation with fitness) achieved by CMP-GP, even if relying on less infor-
mation on mating candidates. An increased freedom should contribute positively to the
role of Mate Choice and to its wandering or exploratory character.

Further analysis based on this data alone is difficult, but a few remarks are worth
being summarized about the CMP-GP model , in comparison to the previous one: i)
as described in Chapter 5, the model makes no assumptions on the character of pref-
erences, which is empirically demonstrated by their ability to emerge in various direc-
tions; ii) agreeing attractiveness and fitness rankings are more common in CMP-GP
than in PIMP, showing the representation’s influence on the character of Mate Choice;
iii) initial conditions definitely have an impact on the outcome of evolving mating pref-
erences, with evolving mating functions having an increased freedom when compared
to an ideal partner representation; iv) just like before, agreeing metrics may result from
conditions being favorable for preferences to match the rankings of fitness or due to
an ecological pull on females towards the space favored by pre-existing preferences;
v) the emergence of varying choices seems to be less dependent on function specific
characteristics than what was observed with PIMP.
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Figure 6.28: Evolution of average population composition by gender. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

Gender distribution analysis can further contribute with insights on a population
level. Figure 6.28 shows the following data: i) average number of individuals who are
exclusively selected as females; ii) average number of individuals who are exclusively
selected as males; iii) average number of individuals who are selected simultaneously
as females and males. The same remarks regarding the pool randomness discussed
in the analysis of PIMP apply here. The conclusions are quite similar and are also
transverse to the studied functions, showing the same increased separation of genders
in the population, with individuals specializing in being selected through a specific
role, for an increased competitive chance. The same analysis as before maintains for
CMP-GP, being summarized as such: a subset of the population is able to be selected
for the female role by achieving good enough fitness during evaluation on the target
problem (females and hermaphrodites); male selection is initially likely to be random
so all individuals have fair chance to be selected (males and hermaphrodites); as self-
reinforcement builds pressure on male selection towards a subset of preferences, fewer
and fewer individuals are able to compete for that role, reducing both the size of the
males-only group and the intersection group; as a side effect, the size of the females-
only group increases due to the intersecting group being emptied, even though selection
pressure is likely to promote competitiveness among females. In comparison with
PIMP, there’s a similar tendency in the composition of the groups, however, CMP-GP
seems to assert higher pressure on the selection of males, causing its group size to
decrease more visibly (which is inline with the increased momentum shown in Figure
6.26). Interestingly, a balance in average pressure in the selection of individuals for
each role seems to be achieved at the end of the evolutionary processes.

In summary, similarly to the discussion regarding PIMP, this analysis validates that
the model and its assumptions are suitable for emerging Mate Choice, through the self-
reinforcement of mating preferences alone. Moreover, the results are compatible with
a Fisherian view, with preferences having the liberty to evolve in any direction. When
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compared with PIMP, CMP-GP suggests a higher degree of freedom, potentially due
to differences in representation. While the central tendency of evolving preferences
are to have a neutral or opposing correlation with fitness, there is a wider presence of
varying behaviors, which can’t be disregarded as a particularity of a given function
or other factors. Regarding population composition, there seems to be a balance in
selection pressure for each role towards the end of the evolutionary process, and a
specialization of individuals into one of the two roles for an increased competitive
edge. In comparison with PIMP, this effect seems to emerge with increased strength,
showing a higher pressure in the operation of selecting males.

6.5.2 Perception Analysis
Complexity and Dimensionality analysis, as discussed, is strongly subjected to the as-
sumptions of each approach. Whereas on PIMP, the second chromosome represents
an ideal mating partner, and therefore gathered metrics are related to that representa-
tion, in CMP-GP the second chromosome represents an evaluation function, and so the
interpretation of complexity and dimensionality is that for which they were initially
designed. Dimensionality relates to perception of signals in mating candidates and
complexity relates to interactions between such signals resulting in an attractiveness
value. As introduced, such features freely evolve within the second chromosome along
the evolutionary process. While for each particular approach the metrics are valuable
in their own way, potential comparisons are limited by different interpretations and
assumptions. Despite the limitations, they are still highly valuable for the behavioral
analysis of CMP-GP an should be capable of providing relevant insight. To support the
analysis, Figure 6.31 allows for a view of how each metric evolves on average for the
four studied functions, while Figure 6.29 and Figure 6.30 show a pairwise comparison
of entropy and contrast obtained through attractiveness and fitness in each selection
step, averaged over the whole sample.

Focusing on entropy first, which reflects the ability to distinguish between mating
candidates thus making it a requirement for Mate Choice, it is expected for the evolv-
ing evaluation functions to compete with the fitness metric. Unless mating candidates
are similar, in which case the entropy on any evaluation function is zero, it is expected
that entropy remains above zero for attractiveness, or far away from -1 in the average
pairwise comparison in the graphs in Figure 6.29. Having an entropy difference of -1
would imply that the evolving evaluation functions were incapable of distinguishing
between mating candidates when they should, thus making the choice operation com-
parable to random selection. Although it was already hinted in previous graphs that
such would be unlikely, Figures 6.29 and 6.31 offer proof that the approach succeeds
in doing so competitively with the fitness function on most runs and on average. While
this was more or less a given in PIMP, the outcome is particularly relevant for CMP-GP
as females access only a few pieces of information on each mating candidate, which
may or may not be used in a relevant way to rank them, in contrast to what happens
during fitness evaluation and in PIMP, where whole information is used in a way that
is human designed.

As expected, the behavior is different from what is observed in PIMP. Initializa-
tion of mating preferences abides by different rules (which carry the issue of erroneous
evaluations as infinity but makes it very unlikely) but more importantly, an healthy ini-
tial diversity makes it likely that assessing a few data points as signals is sufficient to
assemble evaluation functions that distinguish between mating candidates just as well
(or closely) as the fitness function. This effect is seen in Figure 6.29 both regarding the
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Figure 6.29: Evolution of Evaluation Entropy differences between using Mate Choice
or Fitness base selection. Results shown for four functions: nguyen-4 (top left); korns-
2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

average difference value and each particular run. However, as the population evolves
and potentially converges, distinction of mating candidates must rely on fewer differ-
ences, which makes the task increasingly more difficult. As shown in Figure 6.29,
entropy differences slowly decay and dispersion between runs becomes more notice-
able. Interestingly, the decaying effect is not ongoing throughout the whole process,
with the average tendency changing direction towards more competitive values in all
four functions. Dispersion is also seen to reduce in later generations after an initial
period. While the differences decay can be traced to an initial yet minimal decrease
in average attractiveness entropy, as shown in Figure 6.31, the later recovery is more
likely a result of a drop of fitness entropy than an ability for the evolutionary process
to increase average attractiveness entropy. Since the evaluation function is static, that
drop is a result of candidates convergence, so that differences are zeroed for any metric.

A few points are worth mentioning: i) it’s likely that for the current setup, the
initialization procedure allows for close to maximum average entropy to be achieved
in initial populations (as shown in Figure 6.31, leaving very little to improve on the
metric; ii) as fitness entropy drops, attractiveness shows sturdiness (probably due to
interactions between signals) which allows it to regain some ground; iii) often, dif-
ferences are zeroed or reduced on average to residual values; iv) a more distinctive
ranking of mating candidates is sometimes achieved by the evolved mate evaluation
functions, on different functions and on different stages of the evolutionary process,
which shows the approach’s ability to do so under certain conditions. Arguably, given
the opportunity for more signals to be accessed on candidates and for larger trees to be
maintained, attractiveness could potentially hold closer or surpass fitness in regards to
entropy, specially for the korns-2 and the vladislavleva-7 functions, which are multidi-
mensional and should represent a larger search space. In the end, while attractiveness
didn’t achieve a positive average entropy difference often, it was able to perform closely
to the fitness function ,which has been designed by hand rather than built and evolved
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Figure 6.30: Evolution of Evaluation Contrast differences between using Mate Choice
or Fitness base selection. Results shown for four functions: nguyen-4 (top left); korns-
2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

based on rather restricted node sets.
Contrast, as previously discussed, is a way to measure how candidates distance

from each other according to a given metric. While for fitness the metric depends
solely on their location in the search space, attractiveness through complex evaluation
functions uses more than an aggregation of signals to determine distances between in-
dividuals, resulting on non-linear relations. Therefore, the fitness and attractiveness
differences of contrast between two individuals is very unlikely to be zero unless the
two individuals are similar. On the one hand, fitness (or PIMP) contrast can rely on
all available data points, but on the other hand, contrast in CMP-GP can profit from
operations between signals to model comparisons between individuals. Still, its char-
acteristics hold: while being more sensible to distances, it’s still a less relevant metric
than entropy in regards to its significance on a tournament like operator; may be skewed
as a central representation of distances within a sample of individuals; the squashing
function mitigates disproportionate differences but may also scale up small ones.

A look into the graphs in Figures 6.30 and 6.31 allows for some relevant observa-
tions: i) there’s a general tendency for attractiveness contrast to decay slowly along the
generations; ii) regarding average contrast differences, the effect is more significant in
multi-variable functions, whereas on 1-variable ones differences are mostly positive;
iii) while the effect on entropy is subtle, there seems to be a linkage between better per-
forming average entropy differences and positive average contrast differences. These
observations fall into what would be expected from freely evolved mate evaluation
functions with non-linear pairwise contrasts. After all, such characteristics are due to
promote a higher variation in attractiveness values, which results in the dispersion be-
tween runs that can be seen in Figure 6.30. Perhaps also interesting are the evidences
that the established conditions for evolving mate evaluation functions are more appro-
priate for 1-variable functions, in regards to promoting high contrast between mating
candidates, hinting that perhaps the ability to maintain larger mate evaluation functions
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Figure 6.31: Evolution of average Entropy and Contrast as well as average Dimension-
ality and Complexity. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

or even using larger terminal and non-terminal sets can improve the impact of Mate
Choice on multi-dimensional search spaces. This analysis is relevant only in regards to
contrast, and may not hold true for population level behaviors.

Just like in PIMP, despite the differences, why there’s an evolutionary tendency
towards simpler mate evaluation functions is a relevant question. Notice that with
this particular representation, the discussion on preferences genotype complexity has
a whole different context from PIMP, with interactions and signals being directly en-
coded in the second chromosome. Nonetheless, the discussion on PIMP as to why
simpler preference trees are less volatile by destructive crossover also applies here, and
partly explains their competitive edge. Still, it’s important to see how dimensionality
and complexity impact entropy and contrast in search for differences that can further
explain the spreading of simpler mate evaluation functions. For the purpose, Figures
6.32 and 6.33 show how such features influence the outcome of evaluating mating part-
ners in a rather straightforward way, and in a different detail attained by Figure 6.31.
In short, they allow for a comparison between multiple dimensionality and complexity
values, competing among themselves as a byproduct of Mate Choice. While they don’t
offer information on the central tendency of the features, or their distribution, the fig-
ures provide means to compare each particular structure with their respective outcome
in regards to entropy and contrast (Figure 6.32 and Figure 6.33 respectively). In each
graph, information from all active females in the first 150 generations of all 50 runs
are clustered together and organized by dimensionality and complexity. As a result,
each represented dot aggregates information from many choice steps where mate eval-
uation functions share the same dimensionality and complexity (not necessarily other
features). For each dot, its color represents the average value obtained by all selection
steps that it represents. Color ranges are adjusted for each particular function to better
fit the data rather than using a fixed range, to better display differences.

Looking at Figure 6.32 first, a few general observations can be made: i) with the ex-



CHAPTER 6. APPLICATIONS AND EXPERIMENTATION 201

Figure 6.32: Relation between Entropy, Dimensionality and Complexity in the first 150
generations of all runs. Results shown for four functions: nguyen-4 (top left); korns-2
(top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

ception of a few settings, entropy seems to maintain reasonably high values throughout
the sample; ii) a closer look shows more extreme values towards the top right corner,
with a higher density of particularly high entropy values clustered in that area; iii) the
effect is more evident on some functions such as in keijzer-3 than in others. When
taking contrast into account, Figure 6.33 shows a higher sensibility, with differences
being easier to spot: i) functions keijzer-3 and vladislavleva-7 show an indisputable in-
crease associated with higher dimensionality and complexity; ii) on function korns-2,
variation is very subtle but still within the expected behavior; iii) in the nguyen-4 func-
tion, extreme values gather at the top right corner, with the remaining area showing
a slow but stable degrading towards to bottom left. While this analysis is relevant, a
more careful look into Figure 6.31 suggest that individuals contributing to the samples
reproduced in Figures 6.32 and 6.33 are not equally distributed, populating mostly the
bottom left area of each graph. This skewness may account for the presence of more
extreme behaviors associated with higher dimensionality and complexity, which may
be more visible due to smaller sample sizes. Therefore, while as a whole the relation of
highest entropy or contrast with large dimensionality and complexity seems sufficiently
clear, a conservative analysis should contribute to better sustained conclusions. For the
purpose, the remaining discussion will focus on instances ranging up to approximately
60 interactions and signals, where the contributing sample of mate evaluating functions
is denser. If one focuses on such a subset, the behaviors observed in all functions are
more in agreement with each other, both regarding entropy and contrast.

Regarding contrast first, the graphs show that for the large majority of dots, their
color represents a higher value than the neighborhood to their left even though differ-
ences are subtle, on a well defined scale from lower to higher contrast (particularities
of each function affect each scale in their own way). Regarding entropy, because of
its rank based nature, the visualized scale is more homogeneous but still present, with
differences being much less visible due to a many-to-one relationship between dis-
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Figure 6.33: Relation between Contrast, Dimensionality and Complexity in the first
150 generations of all runs. Results shown for four functions: nguyen-4 (top left);
korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

tances and ranks. A few considerations are worthy of being highlighted: i) despite the
association of higher entropy with higher dimensionality and complexity, small mate
evaluation functions maintain entropy competitively high, so that the gains of main-
taining high dimensionality and complexity is residual or plainly non-advantageous;
ii) due to the tournament-like dynamic of the operator, the ability to distinguish one
individual from the others may be sufficient for self-sustained Mate Choice, as an ex-
treme case; iii) contrast allows for a more detailed illustration on how dimensionality
and complexity may contribute to choice consistency (in contrast to random choice) if
given the opportunity to make a difference.

The above observations while suggesting a relation between higher dimensionality
and complexity with larger values of entropy and contrast, show that on this particular
context, differences may be too small to leverage benefits for maintaining such fea-
tures. Therefore, they argue in favor of low dimensionality and complexity having a
fair chance of competing to thrive in the population through sufficiently high entropy,
although contrast sustains the theoretical value of mate evaluation functions with higher
dimensionality and complexity to provide better means to distinguish between mating
candidates. Such differences have no chance of truly impacting the tournament-like
operator in a significant way and are thus not directly selected for. Smaller sized trees
have therefore a proper chance at maintaining choice consistency thus explaining the
central tendencies of average metrics in Figure 6.31.

In summary, higher entropy and contrast seem more likely among individuals with
mate evaluation functions of higher dimensionality and complexity. However, on top
of such individuals being less frequent in the studied sample, their gains in entropy and
contrast don’t seem to be sufficiently meaningful to give them evolutionary advantage.
Because simpler trees are able to maintain entropy at sufficiently high levels to success-
fully compete, and due to being boosted by higher resistance to destructive crossover,
mate evaluation functions of lower dimensionality and complexity spread through the



CHAPTER 6. APPLICATIONS AND EXPERIMENTATION 203

Figure 6.34: Population edit tree diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

population more easily. The effect is not due to a lack of ability of preference trees of
higher dimensionality and contrast to promote higher entropy and contrast but rather
due to simpler ones being capable of maintaining competitiveness. Still, differences in
entropy and specially contrast, although sometimes subtle, have been documented.

6.5.3 Effects Analysis
Selection and perception analysis have provided insight into the inner workings of Mate
Choice through evolving mate evaluation functions but have contributed tangentially to
understanding population dynamics and how the process influences search efforts on
a higher level. The current section will expand on that topic, by covering genotypic
and phenotypic measures of diversity within populations and genders as well as by
addressing the algorithm’s ability to promote and maintain innovation. Figures 6.34 to
6.47 will provide backing materials for the discussion, tackling particular and relevant
topics. Moreover, comparisons are going to be made with PIMP, to highlight both
similarities and differences introduced by the two diverging representations.

The importance of diversity maintenance on search optimization has been previ-
ously discussed. For analysis purposes, an overview of how CMP-GP relates to pop-
ulation diversity can be found in Figure 6.34, including each particular run and the
overall average tendency. Moreover, the figure includes the average value for the Stan-
dard approach as a mean for comparison. A first look at the results allows for a few
observations that are worth highlighting: i) the behaviors are different between the
four functions; ii) in functions nguyen-4 and keijzer-3 the average edit tree diversity
increases over time and overcomes the results of the Standard approach; iii) contrarily,
despite an initial boost, the average metric remains more or less stable in functions
korns-2 and vladislavleva-7 at levels below those achieved by the Standard approach.
Comparisons with PIMP add important details, through similarities and differences: i)



204 6.5. CMP-GP: BEHAVIOURAL ANALYSIS

Figure 6.35: Population entropy diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

overall, there’s smaller variation between runs, with CMP-GP being more conservative
with how large population diversity can get, suggesting a less daring character or less
propensity for exploration; ii) the number of runs where the population diversity re-
mains close to zero is slightly larger than seen in the analysis of PIMP. Together, these
factors have a relevant impact on the average edit tree diversity. In korns-2, both factors
are particularly relevant, reinforcing the modest average value, whereas in keijer-3, the
variability, although smaller in CMP-GP, is sufficient to offset the second factor. The
first factor is also largely relevant in vladislavleva-7 while nguyen-4 allows for the
behavior to be more similar to PIMP.

The reasons behind these observations and the differences between Mate Choice
approaches require a deep analysis on the impacts of CMP-GP. Moreover, the analysis
will help contextualizing and interpreting the results in Figure 6.11 by addressing the
following topics: i) trees may be bloated by no-value sub-trees that don’t translate
into phenotypes but are still considered relevant by edit tree distances; ii) the use of
a pivot to measure edit distance diversity can be subject to skewness, depending on
how the pivot positions itself in the population; iii) the observed metric takes into
account the whole population, including those individuals that have no impact on future
generations by not being selected; iv) gender dynamics can interfere with population
diversity and potentially boost it by increasing their distance, reducing its value as an
accurate metric for diversity. Each of this factors can and will be addressed to some
extent and as independently as possibly for proper insight on diversity. Moreover, the
analysis should shed some light on the differences between PIMP and CMP-GP, and
suggest root causes for the discrepancies regarding their effect on population dynamics.

Without relying on the troublesome and demanding work of analyzing each indi-
vidual independently, or making pairwise comparisons in an attempt to address the first
two points of discussion, there are alternative methods that can provide clues. For in-
stance, one may look and compare the behaviors of genotypic and phenotypic diversity
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and seek validation. Ideally, genetic diversity should translate into phenotypic diver-
sity, particularly when using an evaluation function sensible to small changes, which
Sections 6.4.2 and 6.5.2 suggest to be the case. Following the analysis in PIMP, Fig-
ure 6.35 provides data on fitness entropy within each population and on average for
CMP-GP, as well as the average value for the Standard approach. Differences between
genotypic and phenotypic diversity are quite noticeable for both plotted approaches.
Firstly, as discussed before, the apparent maintenance of average edit tree diversity in
the Standard approach is not matched by the same behavior regarding fitness entropy,
which declines over time in a converging behavior. This difference suggests that the ap-
parent genotypic diversity and particularly its stability, can be partially boosted by the
two first presented factors, questioning the approach’s true ability to maintain diversity.
Regarding CMP-GP, the observed behaviour is the opposite, with the average fitness
entropy remaining on average quite close to maximum value and stable along most
runs on all functions. There are however a few other particularities worth bringing up:
i) entropy results on korns-2 and keijzer-3 functions reflect the presence of instances
with small average diversity, both through individual runs and the average value, how-
ever, with the exception of very few runs on the keijzer-3 function, the results discard
the possibility of full phenotypic convergence; ii) on all other instances, even on those
functions where the average edit-tree diversity was subpar to the Standard approach,
results suggest that differences translate better into the phenotypic form. While this
offers no definite proof for improved diversity among CMP-GP experiments, it sug-
gests that while the genetic differences span over a smaller interval for CMP-GP when
compared to the other two approaches, individuals are distinct and vary within that in-
terval. As a side note, entropy analysis offers some advantages such as not considering
potential non-relevant sub-trees and not relying on a pivot for comparisons, or reflect-
ing distances such as those potentially found between genders, offering a non-distorted
view of the population.

Regarding the third and forth discussion points, contributions can be made by as-
sessing inner-gender behaviors. Figures 6.36 and 6.38 show how individuals in CMP-
GP contribute to each gender’s edit-tree diversity. Figures 6.37 and 6.39 show pheno-
typic data. For each graph, the collected samples are those individuals who have been
selected for either reproductive role, thus focusing on their impact rather than on non-
competitive individuals in the population. Regarding the Standard approach plotted for
comparison purposes, the selected samples are the same has discussed in the analysis
of PIMP, being sufficient to say that because similar rules apply to each tournament
operator, the selected individuals are representative of the same asexual population,
which is reflected by mirroring behaviors in the female or male related figures.

Overall, the figures allow for further distinctions between CMP-GP and each of the
other approaches. Interestingly, despite details that will be addressed below, the behav-
iors are much in agreement with what was observed along the analysis of PIMP. Sum-
marizing the observations regarding the Standard approach for reference, the observed
population diversity tendency does not extend into the selected individuals, which,
through the combined selective force of the tournament operators, end up having a
smaller and smaller average diversity. These results are supported by the data in all
four figures (on genotypic and phenotypic measures) and suggest that a part of the
population contributing to higher diversity has no chance to reproduce for not being
sufficiently fit. In comparison, CMP-GP shows a quite different behavior, one that is
for the most part in-line with what was observed with PIMP. Focusing on females first,
the diversity is kept considerably higher than on the Standard approach, even on the
two functions where population edit-tree diversity was inferior. This is supported by
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Figure 6.36: Females edit tree diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

Figure 6.37: Females entropy diversity at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).



CHAPTER 6. APPLICATIONS AND EXPERIMENTATION 207

Figure 6.38: Males edit tree diversity at every 25 generations. Results shown for
four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

both Figure 6.36 and Figure 6.37 and suggests an healthier distribution of reproductive
opportunities among candidates for female roles, allowing a wider variety of genes to
pass on to future generations.

There are however a few remarks that should be brought forward. CMP-GP shows
a slight increase on average edit-tree diversity over the evolutionary process in the
nguyen-4 and keijzer-3 functions, similarly to PIMP, however, it also shows a slight
decrease for the korns-2 and the vladislavleva-7 functions. There’s also likely an im-
pact from close to zero runs on korns-2 and keijzer-3, which becomes more noticeable
when entropy levels are considered. Moreover, the entropy analysis highlights the
lower diversity on the korns-2 and vladislavelva-7 functions, and perhaps more impor-
tantly, a decay in phenotypic diversity on all functions (but more noticeably on these
last two) when compared to PIMP. This last observation is new to CMP-GP and may
represent a starting point to explain the differences in population diversity among the
two Mate Choice approaches. Several interlinked factors may be considered: i) it’s
possible that unlike PIMP, CMP-GP can’t completely counteract the selective pressure
put on females by the fitness based selection operator; ii) the introduction of disruptive
individuals through interactions with males is smaller and thus less impacting than in
PIMP; iii) such individuals have a higher chance of being hermaphrodites, thus having
a greater take over effect in the population.

Continuing the discussion on gender dynamics, analyzing diversity among males
can further make contributions which are also important to address these questions.
Similarly to the female gender, the male population has a considerably higher edit-
tree diversity than seen in the whole population analysis and also in comparison to the
Standard approach. This outcome is analogous to the one achieved by PIMP, despite
representing a higher difference from the female population. Also, just like in PIMP,
variability between runs is quite high on all functions, as an impact of self-evolving
mate evaluation functions and their unpredictability. As a side note, there’s still a
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Figure 6.39: Males entropy diversity at every 25 generations. Results shown for
four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

higher impact of instances with close to zero diversity in both the korns-2 and keijzer-3
functions. When looking at fitness entropy, differences between the approaches be-
come much more visible, particularly on the korns-2 and the vladislavleva-7 functions.
On all four functions the initial and overall value is higher for males than for females
but, while on the other two functions results are in-line with those seen in PIMP, in
these two functions the average entropy decay is very subtle.

As previously explained, a higher initial edit tree diversity and fitness entropy in
males compared to females can be straightforwardly explained through the initial ran-
dom character of Mate Choice. However, explaining the sustainable increase in male
edit-tree diversity requires at least one of two behaviors to take place: i) competing
mate evaluation functions favor two or more lines of evolution in males, whose dis-
tance contributes to the increase in diversity; ii) mate evaluation functions give prefer-
ence for extreme features, selecting the most diverging individuals and thus increasing
male inner diversity. Arguably, both behaviors, as long as they introduce selective pres-
sure on males can account for the drop in fitness entropy, however in order to account
for the differences between the two observed behaviors (in functions ngyuen-4 and
keizjer-3 and in functions korns-2 and vladislavleva-7), further discussion is needed.
Figure 6.40 addresses the first point by showing the average diversity among mating
evaluation functions, which leads to the conclusion that despite occasional variations,
the hypothesis can be rebuked, as preferences strongly converge into an agreeing struc-
ture. Secondly, Figure 6.41 plots the average distance between paired parents, and
while showing an overall tendency for increasing pairing distances, the results show
function-wise differences and meaningful evidence to explain the behavior differences
seen previously.

Focusing on the nguyen-4 function first, the observed behavior is very similar to
that generally produced in PIMP, with preferences convincingly acting in a negative as-
sortative mating fashion, and consequently fueling the male population diversity which
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Figure 6.40: Female preferences edit tree diversity at every 25 generations. Results
shown for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom
left); vladislavleva-7 (bottom right).

Figure 6.41: Edit tree distance between pairs at every 25 generations. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).
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also helps introducing new genetic material in the female one. As a side effect, the in-
creasing distance between genders is noticeable in the overall population diversity. In
the keijzer-3 function, the behavior is overall similar, however, as previously suggested
in Figure 6.27 through the presence of positive correlations between attractiveness and
fitness, evaluation functions can benefit similar thus fit individuals in some runs, in a
somewhat positive assortative mating way. Figure 6.41 shows therefore two strategies,
with the preference for extreme individuals still being capable to offset the other. How-
ever, the impact can still be seen in both female and male populations, where some
instance end up with very little diversity, even though the consequences are smaller in
the comparatively higher average male population diversity. Due to the female pop-
ulation being bounded by the fitness based operator, the effect takes a higher toll by
contributing to all three suggested hypothesis regarding why diversity lowers. In few
words, benefiting males with very low dimorphism will reduce the chances of having
disruptive females, while also allowing individuals to more easily taking over by acting
as both genders (Figure 6.28 shows a higher intersection of genders than in the nguyen-
4 function). Together they contribute to a higher exposure to selection pressure.

A parallelism between nguyen-4 and vladislavleva-7 as well as between keijzer-
3 and korns-2 can be made, particularly in regards to positive correlations in Figure
6.27, however when their full behaviors are compared there’s one major difference
whose root cause has a lot to do with the distance between mating partners. Whereas
in both nguyen-4 and keijzer-3 evolving mate evaluation functions gradually benefit
more and more diverging individuals, allowing for a continuously increasing selective
pressure on males, Figure 6.41 shows that ability to be somewhat limited in the korns-
2 and vladislavleva-7 functions, with distances between mating partners being more
conservative and apparently bounded. As a consequence, the runaway effect in pref-
erences and traits that fuels continuous exploration in the nguyen-4 and keijzer-3 pair
is limited, substituting an increased selective pressure and associated momentum with
an equilibrium between mating preferences and traits, which has a chain effect on all
the metrics considered before. Figure 6.39 shows the reduced pressure put on males,
with reproductive opportunities being more balanced. Diversity within males can still
be maintained but the exploratory factor is contained, as more extreme offspring will
likely be discarded. Consequently, the male population can only drift as far as the pref-
erences push it, remaining in relative proximity to the female population. In a way, this
hinders it’s capacity to explore unbounded, and potentially inject new and ever diverg-
ing genetic material in the female population. Curiously, even though it’s a side effect
of preference representations and tree structure, this control ends up having a similar
effect to what would be expected from associating costs to extreme ornaments, pushing
males toward an equilibria (imposed by female choice rather than by trait cost). The
impact of such a strategy should be similar to assortative mating where preference is
given to individuals that distance just right from females. As a result, female diversity
is kept lower and slowly decaying when comparing with negative assortative mating
examples (such as on the other two functions or on PIMP).

In the end and following this discussion, the relatively small population edit-tree
diversity is a result of three factors: i) smaller male diversity; ii) smaller female diver-
sity; iii) smaller distance between females and males, which impacts both of the others.
Regarding that last factor, a few things are worthy of note. Firstly, the korns-2 function,
as discussed regarding the keijzer-3 function, suffers the same effect caused by positive
correlations found in Figure 6.27, with the main difference being that the approach has
no chance to counteract its effects on the average metrics, making its impact even more
noticeable. Still, it seems more capable of variation than in the vladislavleva-7 func-
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Figure 6.42: Survival rate for females in all 50 runs, bucketed and ordered by innova-
tion rate. Quartile information for CMP-GP shown at the bottom x-axis. Quartile infor-
mation for the Standard approach included in the top x-axis. Four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

tion. Secondly, the Figure 6.28 also shows the increased intersection between genders
for the same reasons regarding keijzer-3. Thirdly, korns-2 and vladislavleva-7 are mul-
tidimensional functions (respectively 5 and 2 variables) which reinforces the idea that
in respect to the current analysis, the size of terminal and non-terminal sets, as well as
the initialization of individual preferences for each signal may not be the most suitable,
potentially holding back the results of CMP-GP, specially regarding its exploratory
potential. This outcome is likely tied to the previous analysis on perception, particu-
larly regarding the ability of preferences to distinguish between mating candidates (see
Section 6.5.2).

Despite the differences between the behaviors produced by CMP-GP, it remains
important to assess the neophiliac character of Mate Choice, in order to verify if the
evolving mate evaluation functions are capable of contributing to innovating solutions
in a sustained effort rather than a fortunate outcome. For the purpose, a similar analysis
to the one covered in PIMP will follow, supported by Figures 6.42 to 6.47 and com-
parisons will be made both with the Standard approach and with PIMP. As a reminder,
population conditions are not the same in the three considered scenarios, and has will
be seen, are impacted by gender dynamics in meaningful ways, making it so that the
analysis needs to be made with such differences in mind.

Figures 6.42 and 6.43 relate innovation to survivability, respectively through the
x and y axis. A full description on how the plots were built can be found in Sections
6.2.2 and 6.4.3. In summary, for each approach, females are collected at each 25 gener-
ations on all runs into one large sample, which is organized along the x-axis according
to how they distance to the their previous generation’s inner-gender edit-tree distribu-
tion. Individuals that are close to zero are in the neighborhood of last generation’s
average distance, representing therefore as much innovation as the average individual
in that population. Those that are placed at negative values are closer than average to
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Figure 6.43: Survival rate for males in all 50 runs, bucketed and ordered by innovation
rate. Quartile information for CMP-GP shown at the bottom x-axis. Quartile informa-
tion for the Standard approach included in the top x-axis. Four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

the most reproductive individual, contributing to the exploitation of that search space,
while those at the positive side are further than average to the most reproductive indi-
vidual, likely exploring diverging solutions. For each function, the collected sample
is ordered and bucketed into 50 groups, 48 of which have equal size (more than 500
individuals each) and the remaining 2 groups split the surplus individuals, having a
size of 24 or less individuals each. These 2 groups include the most extreme sub-
jects at either end of the ordered sample, helping control outliers. As it is, the x-axis
alone includes information regarding the distribution of innovation, summarized in a
five number summary included along the x-axis, on the bottom for CMP-GP and on
top for the Standard approach. Regarding the y-axis, it corresponds to the growth rate,
or survivability of each bucketed group over two generations. A few characteristics are
worth remembering: i) because in each figure only the selected females (Figure 6.42)
and the selected males (Figure 6.43) are studied, unsuccessful individuals are mostly
left out; ii) production of two offspring gives a chance of exponential growth over two
generations; iii) rates are measured for each bucket, potentially balancing individuals
with either none or an outstanding number of grandchildren; iv) the size of the buckets
varies between approaches and genders, on the one hand influenced by gender distri-
butions as shown in Figure 6.28, and on the other hand influenced by particularities
of sampled generations; v) finally, the metric is defined in the ]� 1,•[ interval. As a
result, conclusions regarding growth rates are safe within each approach or gender, but
potentially complex between them.

Regarding the five number summaries, Figures 6.42 and 6.43 show very differ-
ent distributions between approaches, with the Standard showing IQRs in the range of
⇡ 1.66 to ⇡ 4.79 while CMP-GP ranges from ⇡ 11.34 to ⇡ 20.94. Variation in the
Standard approach has been previously discussed, bringing up its exploitative charac-
ter through the fact that most of the sampled individuals introduce small innovations
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Figure 6.44: Cumulative number of female individuals considered as outlier from pre-
vious population’s female individuals distribution, measured at every 25 generations.
Results shown for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3
(bottom left); vladislavleva-7 (bottom right).

at best. The summary for CMP-GP distances itself from such a stranglehold, in-line
with what was discussed regarding PIMP. However, as expected in light of the discus-
sion on diversity, the sample’s variation for CMP-GP is lower than for PIMP, which
ranged between ⇡ 17.44 and ⇡ 26.46. In comparison to the other two approaches, the
following can be said regarding CMP-GP: i) the median in all functions is positive and
larger than in the Standard approach but smaller than in PIMP, showing that at least
50% of selected individuals follow an exploratory character, but on a slightly smaller
proportion than on PIMP; ii) a wider IQR than in the Standard approach reinforces the
exploratory character of CMP-GP, suggesting that even the most reproductive individ-
ual can be distant from the remaining individuals, however more moderately than on
PIMP; iii) the distance from the median to the third quartile is always larger than to the
first quartile, suggesting a tendency for exploratory individuals to venture further away
than exploitative ones, in similarity to what was observed in PIMP. However, differ-
ences in the nguyen-4 function are very small. These characteristics hold true for both
females and males, but whereas the females hold a quite steady IQR across functions
in PIMP, the same can’t be said regarding CMP-GP.

When survivability is considered, further differences are noticeable, but so are im-
portant similarities. It should be recalled for the purpose of the discussion that growth
rates are relevant within each approach and function, and that direct comparisons be-
tween values are not appropriate. Still, insight on their overall behavior and tendency
can be used for comparisons. On a first analysis, the same observations made for the
two other approaches hold true: the average growth rates, despite being contained,
show a tendency for favoring innovative solutions in both genders of CMP-GP, simi-
larly to what is seen in Approach 1 and the Standard approach. The extent of those
innovations are distinctively larger than what is achieved by the Standard approach,
but more moderate than on PIMP, representing nonetheless ecological opportunities
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Figure 6.45: Cumulative number of female individuals considered as outlier from pre-
vious population’s female individuals distribution while also surpassing its best fitness
value, measured at every 25 generations. Results shown for four functions: nguyen-4
(top left); korns-2 (top right); keijzer-3 (bottom left); vladislavleva-7 (bottom right).

for exploratory individuals to act both as females or males and successfully establish a
lineage by producing children that are themselves competitive. This data doesn’t mean
that all individuals that are disruptive will have higher chances of being selected, but
rather that those that are both competitive and disruptive have an edge over the others,
with many others being discarded along the way for sure.

The impact seems more relevant for females, who are bound to be selected by fit-
ness, and who are more likely to benefit from the ability to absorb and exploit disruptive
genes, potentially increasing their diversity or allowing genetic drift towards new areas
of the search space. This behavior requires however contributions from males. When
looking at the associated data two observations made about PIMP hold generally true
also in CMP-GP: i) the overall growth rate of males is smaller than those of females;
ii) the variation in growth rates between less and more innovative individuals is less
significant. Their explanation is similar to that shown when discussing PIMP. How-
ever, some differences are worthy highlighting. Due to the relatively smaller selection
pressure on males in functions korns-2 and vladislavleva-7, reproductive opportunities
are more equally spread, resulting in an noticeably smaller overall growth rate (due to
each bucket representing more individuals) as well on even less differences between
innovation levels. Still, it’s important to keep in mind that the population by itself,
independently of its inner differences, has an exploratory character, drifting to meet
preferences for as far as they push. The bias for innovation shown reflects that effort
which allows the male population to keep contributing to female genetic variation and
search efforts.

Figures 6.44 to 6.47 help illustrate this inter-linkage between males and females,
and how males can contribute to females escaping local optima and drifting in the
search space. Figure 6.44 shows the cumulative number of females that through the
IQR method may be regarded as outside the previous generation’s female population
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Figure 6.46: Edit distance from female parent for female individuals considered as
outlier from previous population’s female individuals distribution. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

distribution through a higher tree edit distance. In addition, Figure 6.45 shows those
individuals that are both outsiders and fitter than the previous best solution, being thus
in a better position to contribute to drifts in the population by having a higher chance
of reproducing. As discussed previously, the Standard approach may be at an advan-
tageous position in this analysis, due to having a quite small IQR. Both PIMP and
CMP-GP, on the other hand, face a much harder challenge. Still, they are both capable
of contributing with a continuous flow of innovative females. Although doing so on a
smaller rate, these individuals have a higher chance of representing larger leaps in the
search space.

In both Mate Choice approaches, as shown in Figure 6.45 the impact seems more
relevant on the beginning of the runs, with new fitness peaks being found more often.
By definition, finding higher and higher fitness peaks becomes a challenge that grows
in difficulty over time. While PIMP performs competitively on initial generations, it
soon falls into stagnation. This brings up differences between PIMP and CMP-GP that
are important to address. While the behaviour of both approaches is quite similar in
the nguyen-4 and keijzer-3 functions, both Figures 6.44 and 6.45 show important dif-
ferences in the korns-2 and vladislavleva-7 functions. In the first one, CMP-GP is able
to remain much more competitive with the Standard approach, despite the much larger
IQR, and on the second one, it shows its capability to continuously find better and
better fitness peaks, avoiding the stagnation found in PIMP. This is achieved through
the equilibrium imposed by the evolved mate evaluation functions, which keep males
closer to females (but not on convergence like in the Standard approach), allowing the
provision of genes that are more easily valuable for the female effort. These contri-
butions while being small, show how cumulative innovations can contribute to fitness
gains continuously and in opposition to drastic changes imposed by males that are lead
further and further away by negative assortative mating. This analysis is supported by
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Figure 6.47: Edit distance from male parent for female individuals considered as
outlier from previous population’s female individuals distribution. Results shown
for four functions: nguyen-4 (top left); korns-2 (top right); keijzer-3 (bottom left);
vladislavleva-7 (bottom right).

Figures 6.46 and 6.47 which, for functions nguyen-4 and keijzer-3 shows that disrup-
tive females are on average more and more distant from their mothers than from their
fathers, while in the other two functions, the distances are smaller and more balanced,
and slightly higher for fathers than for mothers.

6.6 Summarized Comparison of PIMP and CMP-GP
The two discussed Mate Choice approaches have shown to, through their own assump-
tions, be capable of emergent Mate Choice. When looking at the resulting behaviors,
there are plenty of agreeing phenomena between the two, but there are also particular-
ities that are characteristic of each one and can’t be generalized. This section aims at
briefly summarizing the findings, but most importantly it links behaviors with design
choices, clarifying differences and justifying outcomes. For lack of a more complete
analysis, the four studied functions will have to do, supported by the results achieved
by each approach on the analysis set. It should be recalled that no statistically signifi-
cant differences between the two approaches were found on the four studied functions
but that PIMP statistically outperformed the Standard approach on the korns-2 func-
tion while CMP-GP statistically surpassed the Standard approach on the keijzer-3 and
vladislavleva-7 functions. Both approaches successfully statistically distanced them-
selves from the Standard in the nguyen-4 function.

Regarding selection analysis, Mate Choice was shown to emerge by cheer force of
competition and the self-reinforcement of mating preferences. PIMP seems to be in
initial advantage in regards to consistent choice, guiding preferences smoothly towards
close to convergence in a few generations, but CMP-GP shows strong capabilities to
kick off the feedback loop, even if later, and reach higher choice consistency. Addi-
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tionally, both approaches show a Fisherian character and the ability for preferences to
push in different directions, either in a way converging with the fitness function or in
diverging ways. While, by design, it was known that the representation of mating pref-
erences in PIMP was capable of reproducing the target function (even though it can be
a tough task), the same was not a given for the representation of CMP-GP. Interestingly,
the latter shows a higher propensity for guiding search through Mate Choice towards
the same direction as the fitness function (still on a small subset of runs), which not
only illustrates the capacity for mate evaluation functions to freely lead mating part-
ners in diverging directions but also highlights the representation’s tendency for an
open-ended search effort. The impact of initial conditions as well as the particularities
of each search landscape are relevant for the resulting outcome.

Perception analysis is absolutely dependent on the assumptions of each approach
and, particularly regarding genotypic metrics, their interpretations are quite different
and difficult to compare. Nonetheless, entropy and contrast for PIMP remains re-
markably close to that of the fitness function, as was expected since they both access
the same amount of data, which is combined in the same way. There are however
slight frailties, mostly associated with the chance of preferences tending to infinity.
Regarding CMP-GP, the amount of data accessed is much less than that used in the
fitness function or on PIMP. The perceived signals are measured against individual
preferences and their relation combined through interactions. The resulting entropy
is on times smaller than the fitness function, but overall is kept at competitive levels.
Contrast variation is larger, showing higher capabilities on 1-var functions whereas
in multi-var functions the amount of information, initialization of preferences, or the
means to combine them into an attractiveness value seems insufficient in comparison
to the fitness function. Still, both approaches maintain average entropy close to max-
imum levels, and definitely at sufficiently high levels to promote consistent choice.
Interestingly, that is achieved while favoring simpler representations of preferences or
mate evaluation functions, whose average number of terminals and non-terminals drops
consistently on average throughout the evolutionary process. A comparison between
competing dimensionality and complexity levels shows that while higher entropy and
contrast is often associated with larger preference trees in either approach, simpler
ones successfully maintain a competitive edge that allows them to spread through the
population. This is true for both approaches despite interpretation differences.

Finally, effects analysis shows the impact on the evolutionary process on a pop-
ulation level. Firstly, both approaches result in a form of speciation through gender,
with individuals being competitive either for female or male roles in detriment of
simultaneously competing as hermaphrodites. This separation is fueled by the self-
reinforcing of mating preferences and the driving of the male population away from
the female one. PIMP systematically introduces a runaway process of negative assor-
tative mating which continuously increases the distance between genders, in a swiping
motion through the search space. CMP-GP is capable of the same behavior but only
on certain conditions, otherwise, mate evaluation functions have shown to push males
only a certain distance away from the females, reaching a form of equilibra, imposed
by preferences rather than fitness costs. Arguably, this effect generalizes to all func-
tions but depending on the characteristics of the search space, it may be more or less
visible, suggesting that at times the point of equilibria is simply not reached. The
exploitative character of females and the exploratory tendency of males is well illus-
trated in both approaches, with freely evolving preferences leading males to wander
in the search space, hopefully landing on areas that represent ecological opportuni-
ties. Such individuals, by being competitive fitness-wise, have reproductive chances
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as females, injecting new genetic material that can further fuel evolution and result
on genetic drifts. In both approaches and genders, innovative individuals benefit from
a higher survivability, backing up their relevance on upcoming generations, on inner-
gender diversity, and on each gender’s particular role. Overall, this dynamic between
genders contributes to escaping local optima, but with significant differences between
behaviors. In instances where an unbounded runaway process is underway, individuals
pushing females to escape their local neighborhoods are likely highly disruptive, being
closer to their male parent than to the female, consequently introducing large tunnel-
ing behaviors between fitness peaks and punctuated gains in the female population. In
contrast, instances where traits are pushed to an equilibria suggest a more continuous
effort of small changes and gains that accumulate and fuel drift in a more controlled
and sustainable way, while still introducing high levels of innovation.

The similarities shown by both approaches suggest that under the right assump-
tions and independently of the representations, self-adaptive preferences can introduce
Mate Choice and its underlying behaviors without particular troubles. However, the
evolution of mate evaluation functions, with adaptive dimensionality and complexity
can bring forth relevant advantages. Comparing the representations, PIMP is designed
to work at full capacity, profiting from access to full information on each mating candi-
date, a human-designed function, and tailored build sets for each function. On the other
hand, CMP-GP has limited access to signals, and a general purpose build set. It may be
feasible for PIMP, with further customization, to introduce balances between traits and
preferences rather than a growing tendency for extremes, potentially improving on the
benefits brought by exploration, but as it is, CMP-GP shows higher control to introduce
a wider variety of behaviors, even if sometimes risking some of its perception abilities.
Arguably, with special focus on a target function, the terminal and non-terminal sets
as well as build rules can be adjusted to provide customized setups, potentially im-
proving on results. Furthermore, mechanisms to maintain higher dimensionality and
complexity may allow for valuable return.

In the end, statistical differences between the Mate Choice approaches are difficult
to find in the full test set, but in comparison to the Standard approach, evolving mate
evaluation functions seems to take the lead, with much more room for further improve-
ments. As it turns out, deviating from a goal oriented search effort where fitness is
promoted through higher reproductive chances, can introduce behaviors that are bene-
ficial on a population level, even if the male half of the population is entirely focused
on adapting to a goal that is likely to be completely outside of the scope of the fitness
function (unless preferences take a Wallacean character). Interestingly, that behavior
is not imposed by any rule that promotes exploration or exploitation, but simply by the
selfishness of genes, including those representing preferences, whose aim is to replicate
and survive by reproducing sexy sons, in disregard of their contributions to fitness.

6.7 Effects of Mutation: Performance and Statistical
Analysis

Mate Choice following the proposed assumptions was shown to deeply impact the be-
havior of evolutionary algorithms, introducing search dynamics that emerge through
self-adaptive mechanisms. Moreover, the changes in behavior have repercussions on
the algorithm’s performance, which have been discussed in Section 6.3.2. During the
corresponding experimental setup, mutation was left out in order to reduce noise and
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aid in matching design choices to results with as much precision as possible. However,
mutation is regarded as an important part of evolutionary algorithms, an operator that
can introduce variation in a population with simplicity, despite it’s canonical blindness.
From a performance point of view, mutation may result in meaningful gains for the
Standard approach, which are worth addressing. In regards to Mate Choice, mutation
can also have important impacts, potentially bringing benefits through the introduction
of variation in preferences or traits. While a full behavioral analysis, following the re-
search questions and methodology suggested in Section 6.2.2, would greatly bloat the
current study, performance impacts can easily be addressed. The following subsections
will address the impact of mutation on each Mate Choice approach, exploring the ap-
plication of the operator on each or both chromosomes. Moreover, the effects will be
compared to the Standard approach, with and without mutation.

6.7.1 Impacts on Mate Choice
The full extent of the analysis can be found in Appendixes B and C, with results be-
ing summarized in Tables 6.12 and 6.13. Both a best-overall or a pairwise analysis of
the different setups on each particular function can bring forth interesting details, but
the summarized information in this section is sufficient to highlight deep differences
in performance and compare the impact of mutation through each setup. Overall, the
data shows in a straightforward way that both Mate Choice approaches can benefit
immensely from the introduction of mutation, specially on both chromosomes simul-
taneously, easily overcoming the results achieved by the base setup or any of the other
mutation setups, both regarding sample medians and hit rates. A closer look at each
approach will allow to further explore how that is achieved.

Looking at the two setups where mutation is exclusively applied to one of the two
chromosomes, a few observations are worth listing regarding PIMP: i) mutation on
the first chromosome outperforms the base approach on ⇡ 81% of the instances, and
on ⇡ 44% with statistical significant gains; ii) mutation on the second chromosome
achieves better outcomes than the base approach on ⇡ 56% of the problems but only
gets statistically significant differences on ⇡ 4%; iii) mutation on both chromosomes
improves on base results in all but one function (which is a tie between all setups), cor-
responding to a gain of ⇡ 21% and ⇡ 76% over each of the single approaches respec-
tively; iv) regarding statistical significant gains, the last setup achieves better results
than the base on ⇡ 56%, corresponding to gains of ⇡ 26% and 1350% over each of the
single mutation approaches; v) pairwise comparisons between mutation setups follow
suit with the results obtained individually in relation to the base setup. These results
suggest that, within the assumptions of PIMP, mutation of traits is far more important
than mutation of preferences, outperforming the base approach on over two thirds of
the test instances and showing statistical gains on more than half. The results achieved
by mutation of preferences alone are more moderate. While better results are achieved
on almost half the test set, their relevance is shorter, only being statistically relevant on
a very small subset.

The performance changes shown in CMP-GP are quite similar to those discussed
regarding PIMP: i) mutation on the first chromosome increases performance on ⇡ 77%
of the instances when compared to the base approach, with statistical differences in
⇡ 44%; ii) regarding the second chromosome, mutation boosts results on ⇡ 54% of
the problems, and statistically significant gains are found on ⇡ 2% instances; iii) when
applied on both chromosomes, mutation outperforms the base setup on ⇡ 75% of the
times, which represent gains of ⇡�3% and ⇡ 39% when compared to both other mu-
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Table 6.12: Comparison between different Mutation setups for the PIMP Approach.
Summary of the results observed in the full extent of the performance analysis.

Median
Base Mutation 1 Mutation 2 Mutation Both

Base 9 21
Mutation 1 42 36
Mutation 2 29 15
Mutation Both 51 51 51

IQR
Base Mutation 1 Mutation 2 Mutation Both

Base 21 26 15
Mutation 1 31 36 23
Mutation 2 26 16 13
Mutation Both 37 29 39

Mann-Whitney
Base Mutation 1 Mutation 2 Mutation Both

Base 2
Mutation 1 23 21 1
Mutation 2 2 1 1
Mutation Both 29 3 26

Hit Rate
Base Mutation 1 Mutation 2 Mutation Both

Base 4 3 6
Mutation 1 12 9 6
Mutation 2 11 6 5
Mutation Both 12 9 12

Taillard
Base Mutation 1 Mutation 2 Mutation Both

Base
Mutation 1 2 2
Mutation 2 1 1
Mutation Both 4 2 3
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Table 6.13: Comparison between different Mutation setups for the CMP-GP Approach.
Summary of the results observed in the full extent of the performance analysis.

Median
Base Mutation 1 Mutation 2 Mutation Both

Base 11 23 12
Mutation 1 40 42 18
Mutation 2 28 10 9
Mutation Both 39 33 43

IQR
Base Mutation 1 Mutation 2 Mutation Both

Base 17 25 13
Mutation 1 35 36 22
Mutation 2 27 16 15
Mutation Both 39 30 37

Mann-Whitney
Base Mutation 1 Mutation 2 Mutation Both

Base
Mutation 1 23 20 1
Mutation 2 1
Mutation Both 28 4 26

Hit Rate
Base Mutation 1 Mutation 2 Mutation Both

Base 4 8 3
Mutation 1 10 12 6
Mutation 2 8 4 5
Mutation Both 15 10 13

Taillard
Base Mutation 1 Mutation 2 Mutation Both

Base 1
Mutation 1 1 3 2
Mutation 2 1 1
Mutation Both 2 1 4
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tation setups; iv) regarding statistically significant differences, the setup outperforms
the base on ⇡ 54% instances, corresponding to gains of ⇡ 22% over mutating the first
chromosome and ⇡ 2700% over mutating the second chromosome; v) pairwise com-
parisons between mutation setups are in agreement with this analysis. These results
reinforce that mutation of traits can be more valuable in regards to performance than
mutation of preferences, extending the analysis to the assumptions of CMP-GP. It is
likely that independently of the representation, the differences in relevance generalize
to Mate Choice as a strategy. As a side note, comparisons between PIMP and CMP-GP
are not viable through these tables as they each compare to their own base setups. As
shown in Table 6.11 regarding base setups, CMP-GP gains over PIMP in median dif-
ferences with and without statistical significance. The base is therefore likely tougher
to beat, but a useful comparison will be included in the next subsection.

Comparisons between mutation setups are nonetheless important to discuss further.
The differences in mutation relevance in either chromosome is expected and compar-
isons on which one performs better are unfair. After all, mutation on the first chromo-
some can directly influence the quality of solutions and potentially introduce new, bet-
ter performing individuals, which will likely impact the behavior of the female gender.
As a consequence, if preferences are yet to converge, shifts in the process of reinforce-
ment can occur. Moreover, mutation can introduce diversity into the male population,
potentially unlocking periods of stasis and rebooting competition for attractiveness, or
even introducing traits that make pre-existent preferences relevant. On the other hand,
mutation on preferences has at best an indirect impact on solution quality. Still, they
can have meaningful effects. They can slow the process of self-reinforcement or even
shift its direction but perhaps more importantly, they can interrupt equilibra and rein-
troduce competition. Moreover, they can make traits that were overlooked be relevant
or the other way around. Likely, mutation on preferences will impact the exploratory
character of males which may consequently impact female exploitation through gender
synergies. The results show however that the simultaneous introduction of both muta-
tion operators provides best gains. The results clearly shows that adding mutation on
the first chromosome to a setup where mutation exists on the second chromosome can
boost results many-fold but, it’s also important to mention that the opposite scenario
bring gains in between ⇡ 20% and ⇡ 30%, which are not residual. Interestingly, when
mutation on the second chromosome is added, gains seem to be larger on setups that
already have mutation on the first chromosome than when adding to the base setup,
which shows that both operators can cooperate towards a better outcome.

As a side note, the samples IQR range is also impacted by the introduction of muta-
tion, following different behaviors: i) regarding the introduction of mutation in the first
chromosome, there’s smaller variation on about two thirds of the functions, suggesting
higher consistency among results; ii) in relation to mutation on the second chromo-
some, variation reduces on about approximately one half of the functions and increases
on the other half, showing no special tendency for higher consistency, ultimately de-
pending on the function; iii) when both are introduced, variation reduces in nearly three
quarters of the function, again suggesting a reinforcement of consistency brought by
the application of both operators simultaneously. In regards to hit rates, improvements
are brought following the same tendency as results on median, although in some cases
results are already difficult to beat, making differences hard to come by.
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6.7.2 Comparison with impacts on Standard Approach
Extending the study on mutation, it’s useful to look at results in perspective of how
they can improve those of the Standard approach, with a few questions in mind: i) what
gains can mutation bring to the Standard approach; ii) how does Mate Choice, using
the base setup, perform as an alternative to mutation; iii) how do the Mate Choice ap-
proaches, in their best setup, compare with each other and with the Standard approach
with mutation. In order to address these questions, the initial study comparing the three
base approaches shown in Section 6.3.2 will be broadened with additional information.
The full studied information has been organized in Appendix D and summarized in
Table 6.14. In answer to the first question, mutation does a reasonable job in improv-
ing the Standard approach, overcoming the base setup in ⇡ 62% of the instances, but
only with statistical significance in ⇡ 10% of the test set. As an alternative, PIMP
without mutation improves on the Standard base approach on ⇡ 75% of the test set, in-
cluding ⇡ 27% where statistical significant gains were found, whereas CMP-GP (also
without mutation) brings improvements on ⇡ 88% instances, with statistical significant
improvements being found on ⇡ 31% of them. In comparison to using mutation, Mate
Choice therefore represents gains in regards to median values of ⇡ 22% for PIMP and
⇡ 44% for CMP-GP. When statistical significant differences are considered, the gains
are ⇡ 180% and ⇡ 220% respectively. Overall, the results show that Mate Choice can
provide a viable and alternative strategy to improve search efforts.

Tables 6.12 and 6.13 show that the best performing setup used mutation on both
chromosomes, which therefore improve even further the gains shown when compared
to the Standard approach with and without mutation. When comparing between the
two Mate Choice approaches, differences are more dim: i) performance wins are dis-
tributed as ⇡ 38% for PIMP and ⇡ 60% for CMP-GP; ii) when statistical differences
are considered, PIMP outperforms CMP-GP on ⇡ 6% instances while the opposite hap-
pens on ⇡ 15%; iii) when measuring against the Standard approach without mutation,
statistical significant gains are found on ⇡ 62% of instances for PIMP and on ⇡ 71%
for CMP-GP; iv) a similar comparison to the Standard approach with mutation shows
gains on ⇡ 71% for PIMP and on ⇡ 69% for CMP-GP. Regarding hit rates, both Mate
Choice approaches show close results that distance themselves from those achieved
by the Standard approach, and on a relevant subset showing statistically significant
differences.

In summary, Mate Choice has been shown not only to be a viable alternative to mu-
tation but also to improve on its performance, approximately doubling its gains on both
approaches. No doubt, this is a direct impact of its ability to maintain a higher diversity
and of gender synergies, which materialize in a higher exploration and the feeding of
exploitative efforts. Moreover, rather than used as an alternative, Mate Choice can be
paired with mutation, in which case it has been shown to profit from the induced vari-
ability and reach significant performance gains that further improve its performance.
Among the tested setups, introducing mutation on both chromosomes shows the best
gains. Between the two Mate Choice approaches, both show competitiveness, with
CMP-GP taking the lead by a slight margin, in agreement to the same comparison re-
garding Mate Choice without mutation, but showing nonetheless a larger difference
than before. In conclusion, in the context scoped by this study, Mate Choice improves
on search performance, and is a stronger alternative than mutation. In combination,
their performance gains are very significant, and, if a Mate Choice approach has to be
chosen, then CMP-GP seems to be a safer, higher performing choice.
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Table 6.14: Comparison between Standard Approach with and without Mutation and
both Mate Choice approaches with Mutation on both chromosomes. Summary of the
results observed in the full extent of the performance analysis.

Median
Standard Mutation PIMP CMP-GP

Standard 19 3 4
Mutation 32 5 3
PIMP 49 46 20
CMP-GP 48 48 31

IQR
Standard Mutation PIMP CMP-GP

Standard 24 14 1
Mutation 28 11 1
PIMP 38 41 9
CMP-GP 51 51 43

Mann-Whitney
Standard Mutation PIMP CMP-GP

Standard
Mutation 5
PIMP 32 37 3
CMP-GP 37 36 8

Hit Rate
Standard Mutation PIMP CMP-GP

Standard 11 3 2
Mutation 5 2 0
PIMP 13 15 7
CMP-GP 15 16 10

Taillard
Standard Mutation PIMP CMP-GP

Standard 1
Mutation 3 1
PIMP 8 9 3
CMP-GP 11 10 3



Chapter 7

Conclusions

The research conducted for this thesis has an exploratory character and focuses on the
role of Mate Choice as a self-adaptive model that allows individuals to choose mating
pairs following their own preferences. It promotes a higher degree of autonomous evo-
lution through partner interactions, and therefore introduces a chance of following self-
regulated diverging evolutionary paths, in a combination of open-ended evolution with
the goal-focused character of optimization algorithms. The study aims at the develop-
ment of a framework to model Mate Choice based on a strong theoretical background.
It clarifies assumptions and requirements to keep applications simple yet powerful and
discusses likely impacts and potential advantages. For the purpose of representation of
mating preferences, Genetic Programming trees are considered and two approaches are
introduced, one that represents preferences ideal mating partners to which candidates
proximity is measured (PIMP), and one that profits from explicitly encoding a per-
ception system, corresponding signals and preferences, and means to combine simple
evaluations into complex functions (CMP-GP).

7.1 Summary
The thesis offers strong theoretical background behind the mechanisms of Sexual Se-
lection, and particularly Mate Choice, in Chapter 2, by following historical steps from
early views to a modern synthesis. It starts by introducing Darwin’s good taste and
Wallace’s good sense schools of thought, how they aim at explaining the emergence
of conspicuous traits (or other relevant aspects), their strengths, and their caveats. It
further explores contributions made to both views, progressively filling the gaps left
behind by both Darwin and Wallace, towards a modern overview of Sexual Selection.
The growing discussion clarifies the place of Sexual Selection in evolutionary theory
and its relation with Natural Selection, in a synthesis that profited from both Darwin
and Wallace aligned ideas. So as to clarify modern interpretations of Sexual Selection
and particularly Mate Choice, inner processes are discussed in a structured manner,
focusing on conditions for Sexual Selection, principles of adaptive Mate Choice, and
relevant aspects of mating preferences.

The thesis moves on to bridging between theoretical knowledge and evolutionary
models in Chapter 3. It discusses the first genetic models used for mathematical val-
idation of Mate Choice, both for Darwin’s and for Wallace’s views. Respectively, the
two-locus and the three-locus models are introduced, along with their assumptions and
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resulting observations. Together, they provide extra knowledge on the genetic relation
between preferences and traits, and comparatively, they further explore the proximity
between both models, despite diverging assumptions. A parallelism is made between
genetic models for the studying of natural behaviors and evolutionary algorithms for
the purpose of optimization, and how principles can be transferred. With its behaviors
being demonstrated, Mate Choice as an operator for optimization is discussed, covering
its design steps and impacts: i) how to build female and male selection pools; ii) how
to select each female from the corresponding pool; iii) how to select a set of mating
candidates from the available pool; iv) how to evaluate each male candidate following
the active females preferences; v) how to select the best candidate for reproduction.

The subject of complex evaluation of mating candidates is finally introduced, mov-
ing away from few-locus models and steadily introducing more and more features. In
the end, the self-adaptation of mate evaluation functions is discussed, as a represen-
tation that allows for the simultaneous evolution of dimensions and complexity along
preferences, while emulating a variety of relevant behaviors that are difficult to model
otherwise. The paradigm imposes serious changes in the way the search space is ex-
plored, which is discussed in detail, as are the potential benefits and impacts of Mate
Choice, particularly regarding: i) reducing the error of Natural Selection; ii) increas-
ing contrast between similar individuals; iii) escaping local optima; iv) emergence of
complex innovations; v) spontaneous sympatric speciation.

Having covered relevant theoretical knowledge on Sexual Selection through Mate
Choice as an important topic in natural sciences, as well as having addressed the incre-
mental introduction of more and more complete gene-centered, self-adaptive operators
in Evolutionary Algorithms, this thesis moves on to cover existing practical applica-
tions of Mate Choice in optimization as well as other relevant operators and contexts,
in Chapter 4. It offers a structured and thorough look at the state of the art, providing
insight on the different sources of inspiration for Sexual Selection related behaviors for
optimization, on the wide range of design choices and applications, but most impor-
tantly, on the innovations brought by the proposed model by contrast with other studies.
It completes the previous theoretical analysis on Mate Choice with a full description of
what can be found in relevant literature, on the one hand showing how similarly they
follow the discussed ideas, but on the other hand showing also how they deviate.

Within the context laid out so far, Chapter 5 contributes with a general framework
for the modeling of Mate Choice as a selection operator, clarifying what assumptions
and requirements should absolutely be present but also discussing those that are some-
times found in the literature but don’t need to be enforced. It also establishes the
framework’s underlying evolutionary steps, particularly regarding representation of or-
namentation and mating preferences, evaluation of mating candidates, inheritance and
evolving forces, and design choices. By doing so, it synthesizes the discussion so far
and clears up what are in fact the needs of a Mate Choice model to introduce appropri-
ate freedom of choice and autonomous evolution.

On top of the proposed framework, two approaches for the representation of mating
preferences and evaluation of mating candidates are proposed: i) the representation of
mating preferences through an ideal mating partner to which candidates are measured
against (PIMP); ii) the explicit representation of signals, preferences and their com-
plex interactions towards an attractiveness value (CMP-GP). For each approach, full
descriptions are provided regarding representation and evaluation, as well as specific
assumptions and considerations on how each of them impacts perception, context inter-
pretation, aggregation function / mate evaluation function, preference interactions, and
complexity. Furthermore, proof of concept is provided on different hard optimization
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problems, with performance being compared to a Standard Approach and an approach
where mating partners are selected randomly. The results and behaviors are briefly
analyzed but only as a validation of the proposed approaches, rather than focusing on
answering the declared hypothesis or research questions.

That particular effort has been made on its own well defined application and ex-
perimental setup, laid out in Chapter 6. Both approaches have been tested on a set
of 52 Symbolic Regression instances and compared to a Standard Approach. In order
to limit noise, the base scenario avoids the use of mutation, which is later introduced,
independently on traits and preferences and simultaneously on both, in order to study
its impact and relation with Mate Choice. Specifics for each approach on the context
of Symbolic Regression are also described and justified. The means for analysis are
extensively discussed, both regarding performance and behavior. While performance
analysis follows well known metrics, behavioral analysis presents multiple challenges.
Each research question regarding behavior is addressed in turn, and the means and
metrics used for analysis are discussed in detail.

Finally, the discussed performance metrics are used to compare the Mate Choice
approaches along with a Standard approach. Furthermore, each Mate Choice approach
is extensively discussed in regards to behavior, focusing on three scopes: selection,
perception, and effects. Comparisons are made when possible, even thought the in-
terpretation of metrics is sometimes dependent on the assumptions of each approach.
Finally, mutation is introduced and comparisons in regards to performance are made,
within each Mate Choice approach, so as to single out the impacts of mutation and its
relation with traits and preferences. Comparisons are also made between PIMP and
CMP-GP with mutation and a Standard approach with and without mutation.

7.2 Declared Hypothesis and Experimental Outcomes
The main hypothesis brought up by this thesis is that Evolutionary Algorithms cou-
pled with proper Mate Choice mechanisms can improve on optimization by adopting
a widening perspective on search and the relaxation of objectives. This study focuses
on the modeling of mating preferences through Genetic Programming trees, applied
to the context of Symbolic regression, which itself relies on a Genetic Programming
representation. For the purpose of proof of concept, Approach 2 has also been tested
on problems combining Genetic Algorithms and Genetic programming representations
and operators. On the one hand, the study falls short on testing Mate Choice, as set
out by the described assumptions, on the full range of available algorithms and repre-
sentations (which is a growing range). On the other hand, it offers supporting evidence
that the emergence of Mate Choice should hold independently of the representation, by
being the product of sheer self-reinforcement, as long as the assumptions are followed.

With that in mind, increasing the range of problems targeted by Mate Choice would
provide growing evidence to address performance. Nonetheless, along the different
stages of this study, families of hard optimization problems have been discussed, which
account for a wide range of test instances corresponding to search landscapes with
varying roughness, from smooth to rigged with local optima, and deep multiple-funnel
characters. Globally, Mate Choice has been empirically shown to represent a safer
choice for optimization, consistently showing performance improvements across the
test instances. Particularly on Symbolic Regression, improvements have been found
on most of the 52 test instances, and statistically significant gains on nearly a third of
them, when the base setup is considered. When mutation is introduced, the number of
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instances where statistically significant gains can be found grows to over two thirds.
This analysis holds true for both Mate Choice approaches, although small variations
are found between the two, in which case Approach 2 seems to take the lead.

Despite the discussed shortcoming on the range of the study, the presented results
confirm the declared hypothesis as far as the scope of this thesis goes. Moreover,
the behavioral analysis on both Mate Choice approaches suggests that performance
gains are a result of a self-regulated widening search effort, attained by promoting the
reproduction of individuals that abide to mating preferences rather than to the objective
function. For the purpose, the self-adaptive character of mating preferences provides
means for a degree of open-ended evolution that ultimately leads to an (almost always)
diverging selective force. In combination with Natural Selection, Mate Choice affects
the exploratory effort of the algorithm and the contributions made to the exploitative
one, through the emergence of genders and the synergies between them.

To achieve such behaviors and results, the representation of mating preferences,
following PIMP and CMP-GP, have been demonstrated to provide appropriate models.
They have been extensively discussed in Sections 6.4 and 6.5 by means of the research
questions introduced in Section 6.2.2. They have been compared and discussed in
Section 6.6, showing many similarities but also important differences. Despite those
differences, both models have shown to be appropriate for Mate Choice, each under
its own assumptions for the representation of preferences and the evaluation of mating
candidates. The behavioral analysis suggests so, particularly in regards to selection
analysis. There are nonetheless potential shortcomings, discussed mostly in the anal-
ysis of perception, but in any case, the global results and the effects analysis together
confirm the secondary hypothesis declared, that multidimensional mating preferences
can be appropriately modeled using Genetic Programming representations. In order to
better understand potential shortcomings as well as unexplored aspects of Mate Choice,
future work should be considered.

7.3 Future work
The subject of Mate Choice is immensely vast and ever growing. In natural sciences,
its mechanisms and impacts are yet not fully understood and continuous contributions
are likely to be seen in the future. On top of studies on natural populations and evi-
dences, the integration of growing amounts of knowledge in computational models for
validation is likely to take place. Apart from these behavioral focused studies, there’s
room for the transference of knowledge into optimization algorithms, even if the result-
ing models are non-aligned with a standard, canonical view of goal focused evolution.
When that happens, a methodology similar to that taking place in this thesis can be
beneficial, by not focusing solely on the algorithm’s outcome, but also on studying the
inner workings of the algorithm and the potential impacts of Mate Choice, whatever
the involved assumptions may be.

Focusing on this particular framework, and the discussed approaches, there are
also good opportunities for future work besides the obvious need to apply and validate
the models on more contexts and families of problems, both from academia and with
practical applications. The most important return on that effort, other than testing per-
formance, would be to assess how easily terminal and non-terminal sets can be built for
CMP-GP, and how often is PIMP viable. Perhaps more interestingly, it would be par-
ticularly relevant to test the framework as a setup for multi-objective optimization and
on dynamic problems. Regarding multi-objective optimization, the evolution of mate



CHAPTER 7. CONCLUSIONS 229

evaluation functions using single objectives as terminals should be easy to setup and
gives the algorithms a self-regulated chance to build complex functions that behave dif-
ferently from traditional evaluation means. There are many particularities on that topic
worth addressing, specially considering the relation between single objectives and fit-
ness. In regards to dynamic problems, the emergence of diverging evolutionary forces
may give the algorithm an edge for adapting faster to changes in the fitness landscape,
which is worth exploring.

Stepping away from specific applications, there should also be value in further
studying the relation of Sexual Selection and Natural Selection. For the purpose, mul-
tiple research venues should be considered. Firstly, the application of Mate Choice
on open-ended evolution, thus totally or partly removing the impacts of Natural Selec-
tion, should provide further means to study the relation between the two evolutionary
forces, how they balance or restrict each other. Secondly, a parametric study on the
size of candidates pools, for the roles of females and males, should be considered, thus
adjusting the pressure put by fitness or attractiveness on the population. Additionally,
other selection operators could be considered, potentially mimicking behaviors that di-
verge from the lek-like character of tournament selection, which potentially impacts
selection pressure. Finally, the combination of fitness and attractiveness for the selec-
tion of males, as a metaphor of male competition, should be further studied and the
impacts for optimization considered.

In regards to the setups analyzed in this study, further work should be considered.
First of all, a full grid-search of parameters and operators should be considered, not
only regarding pool sizes (as discussed above) but taking into account the whole de-
sign choices described in Sections 6.1.1 to 6.1.3. The benefits may be two-fold: i)
finding the configuration that performs better on the target problem or specifically for
each instance; ii) providing empirical data to study the behavior of each Mate Choice
approach on a wide range of setups, allowing for behavioral comparisons and poten-
tially overcoming drawbacks. Perhaps a more detailed analysis should be considered
regarding the terminal and non-terminal sets for CMP-GP as well, testing different
sizes as well as operators with different characteristics, such as combining more than
two inputs. As a follow up, the initialization of preferences in CMP-GP may also need
further analysis.

Such an analysis should provide a way to look more thoroughly at dimensionality
and complexity. The behaviors described in this thesis in regards to these topics, while
being properly justified, suggest that there may be much room for improvements. A
detailed analysis on the topic may benefit from the already mentioned parameteriza-
tion effort but other aspect should be fruitful to cover. It’s important to understand
under which conditions does high entropy and contrast become differentiating aspects
and when do individuals with high perception capabilities achieve evolutionary advan-
tages. The lack of that behavior may simply be the result of the search landscape, but
it may also be due to operators or other design choices. Finding and testing setups that
can be regarded as fairer for competition between multiple dimensionality and com-
plexity values should provide valuable insights into the true value of modeling and
self-adapting those features.

Moreover, the research questions should be extended to include a few aspects that
are relevant for optimization efforts. For instance in the context of Symbolic Regres-
sion, it should be valuable to assess the size of the resulting solutions, as an additional
metric for performance. It has been shown that the quality of the solutions is glob-
ally better, but they may also be bloated, or surprisingly more simple than the ones
developed by a Standard approach. Also in regards to performance, the evolution of



230 7.3. FUTURE WORK

average and best fitness should be considered, in order to have a sense of how soon
are good quality solutions found. Perhaps Mate Choice takes a large number of gen-
erations to surpass the Standard Approach, doing so later in the runs, or perhaps high
quality solutions can often be found sooner in the run, potentially allowing for fewer
generations to be used with little impact on performance. Visualization tools such as
Elicit [55] can contribute not only to this analysis but to the discussion of all research
questions by allowing views on different levels, from population to individual levels,
or even on each particular chromosome. Population level visualizations can provide
additional evidence of self-reinforcement, or the effects of Mate Choice, while more
detailed views can allow for an individual by individual analysis that would otherwise
demand an outstanding effort.

Finally, the computational costs of Mate Choice should be studied in depth, which
due to representation and evaluation issues, is not a simple subject. It’s undeniable
that at each selection step, Mate Choice introduces overhead, through the evaluation
of mating candidates. However, particularly for CMP-GP, how much overhead is in-
volved is highly depended on a number of characteristics: the size of terminal and
non-terminal sets, the size of evaluation trees, the range of active traits and preferences
in the populations, diversity among preferences and male candidates, among others.
Regarding PIMP, as discussed, the number of data points used for comparison between
phenotypes and preferences can also be tuned, although statically rather than dynami-
cally as an effect of the evolutionary process. These reasons make it so that calculating
the overhead is more than simply measuring the number of evaluated individuals, and
requires therefore a better weighted methodology.
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Full experimental results
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Table A.1: Best Fitness, MBF and sample Standard Deviation obtained by the Standard
Approach on 50 runs tackling each of the 52 Symbolic Regression instances (First part).

Standard
Best MBF StDev

koza-1 0.00E+00 1.66E-03 3.72E-05
koza-2 2.46E-08 3.18E-03 7.22E-05
koza-3 0.00E+00 5.21E-04 2.41E-06
nguyen-1 0.00E+00 8.29E-04 4.34E-06
nguyen-2 0.00E+00 1.51E-03 1.01E-05
nguyen-3 0.00E+00 3.80E-03 2.20E-04
nguyen-4 0.00E+00 2.66E-03 2.50E-05
nguyen-5 1.12E-07 1.39E-03 3.55E-05
nguyen-6 0.00E+00 1.34E-02 4.94E-04
nguyen-7 0.00E+00 1.99E-03 1.06E-04
nguyen-8 1.53E-12 1.45E-02 2.74E-03
nguyen-9 0.00E+00 1.05E-02 1.61E-04
nguyen-10 0.00E+00 1.45E-02 5.18E-04
pagie-1 5.14E-04 7.03E-02 4.11E-03
pagie-2 7.88E-03 1.92E-01 3.54E-03
korns-1 2.75E-01 8.46E+04 3.02E+10
korns-2 1.83E+04 2.57E+08 2.76E+18
korns-3 2.37E+03 1.92E+11 7.45E+23
korns-4 6.83E-05 1.61E-01 1.96E-01
korns-5 4.87E+29 5.00E+29 2.20E+55
korns-6 4.90E+29 5.01E+29 2.28E+55
korns-7 3.49E+23 1.55E+26 6.07E+51
korns-8 4.91E+29 5.00E+29 2.36E+55
korns-9 7.64E+29 7.75E+29 1.49E+55
korns-10 7.10E+03 3.90E+11 7.51E+24
korns-11 5.93E+01 6.11E+01 6.73E+00
korns-12 1.08E+00 1.13E+00 2.24E-02
korns-13 3.56E+07 1.96E+14 1.67E+30
korns-14 5.37E+05 3.92E+09 6.44E+20
korns-15 5.82E+29 5.93E+29 1.98E+55
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Table A.2: Best Fitness, MBF and sample Standard Deviation obtained by the Standard
Approach on 50 runs tackling each of the 52 Symbolic Regression instances (Second
part).

Standard
Best MBF StDev

keijzer-1 3.88E-05 6.85E-03 1.57E-05
keijzer-2 9.39E-03 4.81E-02 1.36E-04
keijzer-3 9.35E-02 1.23E-01 1.60E-04
keijzer-4 7.63E-03 8.11E-02 6.17E-04
keijzer-5 6.17E-05 8.33E-02 9.18E-03
keijzer-6 3.55E-05 1.90E-01 9.03E-02
keijzer-7 1.73E-03 4.20E-01 1.70E-01
keijzer-8 0.00E+00 0.00E+00 0.00E+00
keijzer-9 2.07E-04 6.82E-01 2.43E-01
keijzer-10 3.83E-03 2.72E-02 5.80E-05
keijzer-11 2.07E-02 8.41E-01 3.49E+00
keijzer-12 2.50E+00 1.26E+02 3.27E+04
keijzer-13 1.75E-01 5.49E+00 9.38E+00
keijzer-14 1.27E-01 5.81E-01 6.30E-02
keijzer-15 1.66E-01 3.62E+00 3.01E+00
vladislavleva-1 8.58E-04 1.65E-02 7.31E-05
vladislavleva-2 3.73E-04 4.20E-02 7.32E-04
vladislavleva-3 4.14E-01 9.54E-01 4.39E-02
vladislavleva-4 1.91E-02 4.58E-02 1.32E-03
vladislavleva-5 1.21E-02 2.15E-01 1.16E-02
vladislavleva-6 7.92E-01 5.31E+00 5.04E+00
vladislavleva-7 9.66E-01 6.79E+00 7.53E+00
vladislavleva-8 7.83E-02 1.08E+00 5.98E-01



234

Table A.3: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach on 50 runs tackling each of the 52 Symbolic Regression instances (First
part).

PIMP
Best MBF StDev

koza-1 0.00E+00 6.56E-03 8.49E-04
koza-2 0.00E+00 8.09E-05 2.26E-08
koza-3 0.00E+00 2.81E-04 1.19E-06
nguyen-1 0.00E+00 1.56E-02 3.19E-03
nguyen-2 0.00E+00 3.52E-04 7.02E-07
nguyen-3 0.00E+00 6.43E-04 1.72E-06
nguyen-4 0.00E+00 1.34E-03 1.46E-05
nguyen-5 0.00E+00 4.53E-04 5.50E-07
nguyen-6 0.00E+00 7.13E-03 3.69E-04
nguyen-7 0.00E+00 3.64E-02 4.64E-03
nguyen-8 0.00E+00 2.07E-03 1.71E-05
nguyen-9 0.00E+00 3.60E-03 2.99E-05
nguyen-10 0.00E+00 8.33E-03 8.81E-05
pagie-1 9.21E-04 6.49E-02 3.59E-03
pagie-2 4.19E-02 1.75E-01 2.61E-03
korns-1 7.54E-05 5.44E+04 2.21E+10
korns-2 1.85E+02 1.76E+07 1.30E+16
korns-3 3.09E+03 1.23E+12 4.28E+25
korns-4 8.35E-03 8.50E-03 9.24E-09
korns-5 4.86E+29 5.00E+29 3.05E+55
korns-6 4.85E+29 4.99E+29 2.97E+55
korns-7 3.34E+25 1.74E+26 6.12E+51
korns-8 4.86E+29 5.01E+29 3.20E+55
korns-9 7.65E+29 7.77E+29 1.59E+55
korns-10 2.27E+04 8.33E+11 3.45E+25
korns-11 5.86E+01 6.17E+01 1.75E+01
korns-12 1.08E+00 1.11E+00 1.31E-04
korns-13 3.47E+07 3.26E+11 2.81E+24
korns-14 3.42E+05 7.59E+08 1.36E+19
korns-15 5.83E+29 5.95E+29 2.69E+55
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Table A.4: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach on 50 runs tackling each of the 52 Symbolic Regression instances (Second
part).

PIMP
Best MBF StDev

keijzer-1 7.70E-04 6.72E-03 1.59E-05
keijzer-2 1.06E-02 4.75E-02 1.03E-04
keijzer-3 5.85E-02 1.16E-01 3.45E-04
keijzer-4 1.52E-02 7.49E-02 6.54E-04
keijzer-5 2.45E-06 9.06E-02 1.07E-02
keijzer-6 4.29E-04 1.76E-01 8.47E-02
keijzer-7 6.82E-04 2.31E-01 1.37E-01
keijzer-8 0.00E+00 0.00E+00 0.00E+00
keijzer-9 5.34E-03 5.78E-01 2.73E-01
keijzer-10 9.96E-04 2.61E-02 4.32E-05
keijzer-11 4.44E-02 6.90E-01 1.45E+00
keijzer-12 2.04E+00 1.22E+02 3.36E+04
keijzer-13 3.78E-01 5.47E+00 5.63E+00
keijzer-14 1.78E-01 6.06E-01 6.52E-02
keijzer-15 2.56E-01 4.08E+00 4.10E+00
vladislavleva-1 2.11E-03 1.64E-02 7.22E-05
vladislavleva-2 2.88E-03 4.25E-02 7.35E-04
vladislavleva-3 2.20E-01 9.25E-01 3.77E-02
vladislavleva-4 2.69E-02 3.71E-02 3.09E-05
vladislavleva-5 6.05E-03 1.95E-01 9.73E-03
vladislavleva-6 1.46E+00 5.38E+00 4.92E+00
vladislavleva-7 1.12E+00 4.69E+00 4.30E+00
vladislavleva-8 7.64E-02 1.11E+00 7.56E-01
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Table A.5: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach on 50 runs tackling each of the 52 Symbolic Regression instances (First
part).

CMP-GP
Best MBF StDev

koza-1 0.00E+00 1.71E-03 1.33E-04
koza-2 0.00E+00 6.60E-05 7.86E-09
koza-3 0.00E+00 9.89E-05 6.86E-08
nguyen-1 0.00E+00 1.07E-02 1.25E-03
nguyen-2 0.00E+00 3.63E-04 1.10E-06
nguyen-3 0.00E+00 1.03E-03 1.10E-05
nguyen-4 0.00E+00 9.19E-04 4.59E-06
nguyen-5 0.00E+00 5.22E-04 2.62E-06
nguyen-6 0.00E+00 1.54E-02 8.08E-04
nguyen-7 6.57E-07 1.96E-02 2.69E-03
nguyen-8 0.00E+00 2.74E-03 2.31E-05
nguyen-9 0.00E+00 3.77E-03 2.41E-05
nguyen-10 0.00E+00 9.17E-03 3.85E-04
pagie-1 6.26E-04 4.69E-02 2.63E-03
pagie-2 4.19E-02 1.71E-01 2.40E-03
korns-1 9.00E-04 4.62E+04 1.89E+10
korns-2 1.40E+04 1.21E+07 2.83E+15
korns-3 2.25E+04 4.87E+13 1.18E+29
korns-4 6.15E-04 1.56E-01 6.24E-01
korns-5 4.84E+29 5.00E+29 2.63E+55
korns-6 4.90E+29 5.00E+29 2.49E+55
korns-7 3.59E+25 1.66E+26 6.54E+51
korns-8 4.90E+29 4.99E+29 2.03E+55
korns-9 7.65E+29 7.76E+29 1.95E+55
korns-10 2.21E+04 4.10E+12 8.41E+26
korns-11 6.00E+01 6.09E+01 2.10E-01
korns-12 1.07E+00 1.11E+00 1.42E-04
korns-13 1.89E+07 2.12E+10 7.07E+21
korns-14 5.10E+05 7.97E+09 3.02E+21
korns-15 5.87E+29 5.95E+29 2.07E+55
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Table A.6: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-GP
Approach on 50 runs tackling each of the 52 Symbolic Regression instances (Second
Part).

CMP-GP
Best MBF StDev

keijzer-1 3.43E-05 6.15E-03 3.70E-05
keijzer-2 1.63E-02 4.80E-02 1.17E-04
keijzer-3 6.82E-02 1.18E-01 2.41E-04
keijzer-4 1.05E-02 7.06E-02 7.00E-04
keijzer-5 5.75E-06 8.10E-02 7.25E-03
keijzer-6 2.80E-05 2.58E-01 1.11E-01
keijzer-7 2.88E-04 3.14E-01 1.66E-01
keijzer-8 0.00E+00 0.00E+00 0.00E+00
keijzer-9 3.69E-03 6.07E-01 2.71E-01
keijzer-10 5.57E-04 2.64E-02 5.39E-05
keijzer-11 8.62E-02 6.35E-01 1.31E+00
keijzer-12 8.61E-01 1.08E+02 4.16E+04
keijzer-13 3.50E-01 4.62E+00 8.36E+00
keijzer-14 1.18E-01 5.79E-01 7.43E-02
keijzer-15 4.85E-01 3.68E+00 3.12E+00
vladislavleva-1 1.27E-03 1.55E-02 8.21E-05
vladislavleva-2 1.29E-03 2.56E-02 7.03E-04
vladislavleva-3 2.02E-01 9.38E-01 6.15E-02
vladislavleva-4 2.43E-02 3.81E-02 2.33E-04
vladislavleva-5 8.85E-03 1.79E-01 1.18E-02
vladislavleva-6 1.53E+00 4.89E+00 2.94E+00
vladislavleva-7 1.48E+00 4.57E+00 4.90E+00
vladislavleva-8 5.91E-02 9.56E-01 6.40E-01
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Table A.7: Full 5 number quartile information for the Standard Approach on each of
the 51 Symbolic Regression test instances (First part).

Standard
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0.00E+00 1.69E-05 2.66E-04 6.40E-04 4.21E-02
koza-2 2.46E-08 6.89E-06 1.32E-04 2.88E-04 3.31E-02
koza-3 0.00E+00 5.62E-06 2.67E-05 1.44E-04 7.38E-03
nguyen-1 0.00E+00 0.00E+00 9.71E-06 3.98E-04 1.23E-02
nguyen-2 0.00E+00 2.09E-05 4.25E-04 1.39E-03 1.91E-02
nguyen-3 0.00E+00 6.74E-06 8.36E-05 1.35E-03 1.02E-01
nguyen-4 0.00E+00 9.25E-05 3.96E-04 3.09E-03 2.85E-02
nguyen-5 1.12E-07 2.73E-05 1.25E-04 8.48E-04 4.22E-02
nguyen-6 0.00E+00 9.02E-05 5.24E-04 1.84E-02 8.96E-02
nguyen-7 0.00E+00 4.87E-05 1.19E-04 5.33E-04 7.28E-02
nguyen-8 1.53E-12 4.88E-05 1.01E-03 4.42E-03 2.89E-01
nguyen-9 0.00E+00 4.72E-04 5.01E-03 1.47E-02 5.20E-02
nguyen-10 0.00E+00 1.18E-04 1.78E-03 2.13E-02 9.81E-02
pagie-1 5.14E-04 1.35E-02 4.86E-02 1.19E-01 2.30E-01
pagie-2 7.88E-03 1.61E-01 1.99E-01 2.35E-01 3.10E-01
korns-1 2.75E-01 7.65E+01 7.80E+01 1.10E+03 4.56E+05
korns-2 1.83E+04 8.89E+04 2.12E+05 7.26E+05 1.17E+10
korns-3 2.37E+03 3.19E+07 7.70E+08 1.51E+10 5.65E+12
korns-4 6.83E-05 8.47E-03 8.56E-03 1.78E-02 2.07E+00
korns-5 4.87E+29 4.98E+29 5.00E+29 5.03E+29 5.13E+29
korns-6 4.90E+29 4.98E+29 5.01E+29 5.04E+29 5.13E+29
korns-7 3.49E+23 9.06E+25 1.69E+26 2.17E+26 2.75E+26
korns-8 4.91E+29 4.97E+29 4.99E+29 5.03E+29 5.11E+29
korns-9 7.64E+29 7.73E+29 7.75E+29 7.78E+29 7.84E+29
korns-10 7.10E+03 1.86E+05 1.07E+07 2.31E+08 1.94E+13
korns-11 5.93E+01 6.03E+01 6.07E+01 6.11E+01 7.82E+01
korns-12 1.08E+00 1.10E+00 1.11E+00 1.12E+00 2.15E+00
korns-13 3.56E+07 6.22E+08 2.35E+09 1.44E+10 9.11E+15
korns-14 5.37E+05 3.28E+06 7.91E+06 8.44E+07 1.79E+11
korns-15 5.82E+29 5.90E+29 5.93E+29 5.96E+29 6.01E+29
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Table A.8: Full 5 number quartile information for the Standard Approach on each of
the 51 Symbolic Regression test instances (Second part).

Standard
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 3.88E-05 2.65E-03 8.04E-03 1.18E-02 1.31E-02
keijzer-2 9.39E-03 4.09E-02 5.59E-02 5.59E-02 5.80E-02
keijzer-3 9.35E-02 1.12E-01 1.30E-01 1.30E-01 1.52E-01
keijzer-4 7.63E-03 5.97E-02 9.22E-02 1.01E-01 1.22E-01
keijzer-5 6.17E-05 1.85E-02 6.51E-02 7.78E-02 3.19E-01
keijzer-6 3.55E-05 1.01E-02 1.85E-02 2.37E-01 8.37E-01
keijzer-7 1.73E-03 3.06E-02 1.35E-01 8.53E-01 9.10E-01
keijzer-8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
keijzer-9 2.07E-04 2.18E-02 1.01E+00 1.03E+00 1.22E+00
keijzer-10 3.83E-03 2.26E-02 2.75E-02 3.16E-02 4.05E-02
keijzer-11 2.07E-02 3.68E-01 4.08E-01 4.97E-01 1.19E+01
keijzer-12 2.50E+00 8.08E+00 6.72E+01 1.19E+02 7.42E+02
keijzer-13 1.75E-01 2.72E+00 5.83E+00 7.59E+00 1.30E+01
keijzer-14 1.27E-01 4.03E-01 6.01E-01 7.37E-01 1.15E+00
keijzer-15 1.66E-01 2.61E+00 3.81E+00 4.79E+00 6.74E+00
vladislavleva-1 8.58E-04 1.16E-02 1.62E-02 2.30E-02 3.36E-02
vladislavleva-2 3.73E-04 1.03E-02 5.26E-02 5.51E-02 9.65E-02
vladislavleva-3 4.14E-01 7.74E-01 9.63E-01 1.18E+00 1.18E+00
vladislavleva-4 1.91E-02 3.27E-02 3.68E-02 4.00E-02 2.36E-01
vladislavleva-5 1.21E-02 1.18E-01 1.96E-01 3.18E-01 4.00E-01
vladislavleva-6 7.92E-01 3.49E+00 5.45E+00 6.88E+00 1.04E+01
vladislavleva-7 9.66E-01 5.05E+00 7.45E+00 8.97E+00 1.11E+01
vladislavleva-8 7.83E-02 4.65E-01 9.80E-01 1.62E+00 3.62E+00
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Table A.9: Full 5 number quartile information for the PIMP Approach on each of the
51 Symbolic Regression test instances (First part).

PIMP
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0.00E+00 0.00E+00 6.37E-05 6.53E-04 1.94E-01
koza-2 0.00E+00 2.55E-06 1.49E-05 1.08E-04 8.86E-04
koza-3 0.00E+00 1.05E-06 1.09E-05 5.91E-05 7.39E-03
nguyen-1 0.00E+00 0.00E+00 0.00E+00 1.46E-03 3.30E-01
nguyen-2 0.00E+00 0.00E+00 3.62E-05 2.85E-04 4.94E-03
nguyen-3 0.00E+00 0.00E+00 1.44E-05 6.02E-04 6.92E-03
nguyen-4 0.00E+00 3.52E-05 1.58E-04 7.97E-04 2.28E-02
nguyen-5 0.00E+00 9.89E-06 7.43E-05 6.05E-04 2.72E-03
nguyen-6 0.00E+00 0.00E+00 6.37E-06 9.09E-05 8.03E-02
nguyen-7 0.00E+00 2.27E-05 1.70E-04 2.82E-02 2.40E-01
nguyen-8 0.00E+00 4.51E-05 2.61E-04 2.36E-03 1.84E-02
nguyen-9 0.00E+00 0.00E+00 7.74E-04 6.18E-03 1.87E-02
nguyen-10 0.00E+00 2.09E-04 1.34E-03 1.88E-02 2.54E-02
pagie-1 9.21E-04 1.04E-02 4.28E-02 1.22E-01 2.37E-01
pagie-2 4.19E-02 1.43E-01 1.80E-01 2.31E-01 2.49E-01
korns-1 7.54E-05 1.19E+01 6.96E+01 7.75E+01 4.57E+05
korns-2 1.85E+02 3.14E+04 7.00E+04 3.59E+05 8.05E+08
korns-3 3.09E+03 2.62E+07 2.25E+08 3.85E+09 4.36E+13
korns-4 8.35E-03 8.46E-03 8.48E-03 8.53E-03 9.06E-03
korns-5 4.86E+29 4.96E+29 4.99E+29 5.04E+29 5.13E+29
korns-6 4.85E+29 4.95E+29 4.99E+29 5.03E+29 5.09E+29
korns-7 3.34E+25 1.06E+26 1.85E+26 2.41E+26 2.92E+26
korns-8 4.86E+29 4.98E+29 5.00E+29 5.04E+29 5.15E+29
korns-9 7.65E+29 7.75E+29 7.78E+29 7.79E+29 7.86E+29
korns-10 2.27E+04 9.34E+05 7.22E+06 4.03E+07 4.15E+13
korns-11 5.86E+01 6.05E+01 6.08E+01 6.11E+01 7.91E+01
korns-12 1.08E+00 1.10E+00 1.11E+00 1.11E+00 1.14E+00
korns-13 3.47E+07 2.79E+08 1.26E+09 4.54E+09 1.09E+13
korns-14 3.42E+05 1.97E+06 8.31E+06 2.33E+07 2.45E+10
korns-15 5.83E+29 5.92E+29 5.95E+29 5.98E+29 6.07E+29
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Table A.10: Full 5 number quartile information for the PIMP Approach on each of the
51 Symbolic Regression test instances (Second part).

PIMP
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 7.70E-04 2.72E-03 8.04E-03 1.18E-02 1.22E-02
keijzer-2 1.06E-02 4.10E-02 4.81E-02 5.59E-02 5.90E-02
keijzer-3 5.85E-02 1.00E-01 1.30E-01 1.30E-01 1.45E-01
keijzer-4 1.52E-02 5.45E-02 6.66E-02 1.01E-01 1.20E-01
keijzer-5 2.45E-06 1.01E-02 6.27E-02 8.07E-02 3.38E-01
keijzer-6 4.29E-04 4.58E-03 1.01E-02 1.90E-01 7.15E-01
keijzer-7 6.82E-04 1.20E-02 3.06E-02 6.31E-02 1.02E+00
keijzer-8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
keijzer-9 5.34E-03 1.76E-02 1.01E+00 1.01E+00 1.32E+00
keijzer-10 9.96E-04 2.15E-02 2.67E-02 3.05E-02 4.43E-02
keijzer-11 4.44E-02 3.66E-01 4.67E-01 5.34E-01 7.88E+00
keijzer-12 2.04E+00 8.63E+00 5.74E+01 1.48E+02 9.07E+02
keijzer-13 3.78E-01 4.00E+00 5.89E+00 7.25E+00 9.27E+00
keijzer-14 1.78E-01 3.67E-01 5.86E-01 7.78E-01 1.23E+00
keijzer-15 2.56E-01 2.86E+00 4.17E+00 5.41E+00 8.76E+00
vladislavleva-1 2.11E-03 1.05E-02 1.51E-02 2.26E-02 4.10E-02
vladislavleva-2 2.88E-03 1.49E-02 5.32E-02 5.40E-02 1.01E-01
vladislavleva-3 2.20E-01 8.32E-01 9.27E-01 1.02E+00 1.18E+00
vladislavleva-4 2.69E-02 3.33E-02 3.71E-02 3.95E-02 5.40E-02
vladislavleva-5 6.05E-03 9.05E-02 2.16E-01 2.65E-01 3.98E-01
vladislavleva-6 1.46E+00 4.08E+00 5.30E+00 6.73E+00 1.06E+01
vladislavleva-7 1.12E+00 2.97E+00 4.51E+00 6.42E+00 9.23E+00
vladislavleva-8 7.64E-02 4.92E-01 8.66E-01 1.51E+00 3.84E+00
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Table A.11: Full 5 number quartile information for the CMP-GP on each of the 51
Symbolic Regression test instances (First part).

CMP-GP
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0.00E+00 0.00E+00 1.38E-07 7.91E-05 8.15E-02
koza-2 0.00E+00 4.69E-06 3.37E-05 1.04E-04 4.31E-04
koza-3 0.00E+00 4.45E-06 7.99E-06 2.97E-05 1.16E-03
nguyen-1 0.00E+00 0.00E+00 0.00E+00 3.50E-04 2.25E-01
nguyen-2 0.00E+00 0.00E+00 1.75E-05 1.55E-04 6.62E-03
nguyen-3 0.00E+00 0.00E+00 3.96E-05 3.72E-04 1.71E-02
nguyen-4 0.00E+00 0.00E+00 9.61E-05 5.58E-04 1.05E-02
nguyen-5 0.00E+00 1.44E-05 5.21E-05 3.52E-04 1.12E-02
nguyen-6 0.00E+00 7.26E-06 1.10E-04 1.44E-02 1.10E-01
nguyen-7 6.57E-07 2.79E-05 1.08E-04 2.65E-03 2.14E-01
nguyen-8 0.00E+00 1.11E-04 4.74E-04 1.73E-03 1.69E-02
nguyen-9 0.00E+00 3.09E-05 1.30E-03 5.64E-03 1.59E-02
nguyen-10 0.00E+00 1.94E-05 4.74E-04 1.83E-02 1.29E-01
pagie-1 6.26E-04 2.90E-03 2.02E-02 1.15E-01 1.42E-01
pagie-2 4.19E-02 1.40E-01 1.60E-01 2.33E-01 2.49E-01
korns-1 9.00E-04 1.32E+01 3.33E+01 7.83E+01 4.61E+05
korns-2 1.40E+04 3.66E+04 1.11E+05 1.29E+06 3.62E+08
korns-3 2.25E+04 7.44E+06 1.34E+08 8.67E+09 2.42E+15
korns-4 6.15E-04 8.45E-03 8.52E-03 8.57E-03 5.30E+00
korns-5 4.84E+29 4.97E+29 5.00E+29 5.03E+29 5.14E+29
korns-6 4.90E+29 4.96E+29 5.00E+29 5.03E+29 5.12E+29
korns-7 3.59E+25 8.50E+25 1.67E+26 2.40E+26 2.85E+26
korns-8 4.90E+29 4.95E+29 4.99E+29 5.01E+29 5.10E+29
korns-9 7.65E+29 7.74E+29 7.77E+29 7.80E+29 7.85E+29
korns-10 2.21E+04 7.80E+05 7.28E+06 6.86E+07 2.05E+14
korns-11 6.00E+01 6.06E+01 6.09E+01 6.13E+01 6.22E+01
korns-12 1.07E+00 1.10E+00 1.10E+00 1.11E+00 1.13E+00
korns-13 1.89E+07 1.84E+08 6.36E+08 3.25E+09 5.64E+11
korns-14 5.10E+05 2.39E+06 5.92E+06 1.79E+07 3.89E+11
korns-15 5.87E+29 5.91E+29 5.95E+29 5.98E+29 6.05E+29
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Table A.12: Full 5 number quartile information for the CMP-GP on each of the 51
Symbolic Regression test instances (Second part).

CMP-GP
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 3.43E-05 2.52E-03 4.27E-03 8.21E-03 4.05E-02
keijzer-2 1.63E-02 3.99E-02 5.59E-02 5.59E-02 6.63E-02
keijzer-3 6.82E-02 1.08E-01 1.30E-01 1.30E-01 1.33E-01
keijzer-4 1.05E-02 4.51E-02 6.49E-02 1.01E-01 1.01E-01
keijzer-5 5.75E-06 3.88E-02 5.68E-02 7.68E-02 3.27E-01
keijzer-6 2.80E-05 3.76E-03 1.02E-02 6.78E-01 8.71E-01
keijzer-7 2.88E-04 1.98E-02 3.43E-02 8.53E-01 1.21E+00
keijzer-8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
keijzer-9 3.69E-03 1.74E-02 1.01E+00 1.01E+00 1.69E+00
keijzer-10 5.57E-04 2.22E-02 2.55E-02 2.97E-02 4.53E-02
keijzer-11 8.62E-02 3.80E-01 4.40E-01 4.89E-01 8.05E+00
keijzer-12 8.61E-01 4.73E+00 2.09E+01 1.04E+02 9.54E+02
keijzer-13 3.50E-01 2.11E+00 4.76E+00 6.42E+00 1.29E+01
keijzer-14 1.18E-01 4.05E-01 5.30E-01 8.10E-01 1.21E+00
keijzer-15 4.85E-01 2.33E+00 3.74E+00 5.02E+00 7.43E+00
vladislavleva-1 1.27E-03 1.00E-02 1.44E-02 2.21E-02 3.52E-02
vladislavleva-2 1.29E-03 7.49E-03 1.12E-02 5.29E-02 1.01E-01
vladislavleva-3 2.02E-01 8.23E-01 9.72E-01 1.18E+00 1.18E+00
vladislavleva-4 2.43E-02 3.22E-02 3.56E-02 3.97E-02 1.39E-01
vladislavleva-5 8.85E-03 9.99E-02 1.80E-01 2.61E-01 3.76E-01
vladislavleva-6 1.53E+00 3.52E+00 4.61E+00 6.37E+00 8.67E+00
vladislavleva-7 1.48E+00 2.84E+00 4.00E+00 5.93E+00 9.77E+00
vladislavleva-8 5.91E-02 3.70E-01 7.91E-01 1.25E+00 3.88E+00
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Table A.13: Median and interquartile range information obtained by the Standard Ap-
proach on all 51 instances of Symbolic Regression problems (First part).

Standard
Median IQR

koza-1 2.66E-04 6.23E-04
koza-2 1.32E-04 2.81E-04
koza-3 2.67E-05 1.38E-04
nguyen-1 9.71E-06 3.98E-04
nguyen-2 4.25E-04 1.37E-03
nguyen-3 8.36E-05 1.34E-03
nguyen-4 3.96E-04 3.00E-03
nguyen-5 1.25E-04 8.21E-04
nguyen-6 5.24E-04 1.83E-02
nguyen-7 1.19E-04 4.84E-04
nguyen-8 1.01E-03 4.37E-03
nguyen-9 5.01E-03 1.42E-02
nguyen-10 1.78E-03 2.12E-02
pagie-1 4.86E-02 1.05E-01
pagie-2 1.99E-01 7.38E-02
korns-1 7.80E+01 1.03E+03
korns-2 2.12E+05 6.37E+05
korns-3 7.70E+08 1.50E+10
korns-4 8.56E-03 9.37E-03
korns-5 5.00E+29 5.20E+27
korns-6 5.01E+29 6.50E+27
korns-7 1.69E+26 1.26E+26
korns-8 4.99E+29 6.60E+27
korns-9 7.75E+29 4.47E+27
korns-10 1.07E+07 2.30E+08
korns-11 6.07E+01 8.37E-01
korns-12 1.11E+00 1.86E-02
korns-13 2.35E+09 1.38E+10
korns-14 7.91E+06 8.11E+07
korns-15 5.93E+29 5.96E+27
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Table A.14: Median and interquartile range information obtained by the Standard Ap-
proach on all 51 instances of Symbolic Regression problems (Second part).

Standard
Median IQR

keijzer-1 8.04E-03 9.16E-03
keijzer-2 5.59E-02 1.50E-02
keijzer-3 1.30E-01 1.82E-02
keijzer-4 9.22E-02 4.11E-02
keijzer-5 6.51E-02 5.92E-02
keijzer-6 1.85E-02 2.27E-01
keijzer-7 1.35E-01 8.22E-01
keijzer-8 0.00E+00 0.00E+00
keijzer-9 1.01E+00 1.01E+00
keijzer-10 2.75E-02 9.07E-03
keijzer-11 4.08E-01 1.29E-01
keijzer-12 6.72E+01 1.11E+02
keijzer-13 5.83E+00 4.86E+00
keijzer-14 6.01E-01 3.34E-01
keijzer-15 3.81E+00 2.18E+00
vladislavleva-1 1.62E-02 1.13E-02
vladislavleva-2 5.26E-02 4.47E-02
vladislavleva-3 9.63E-01 4.06E-01
vladislavleva-4 3.68E-02 7.23E-03
vladislavleva-5 1.96E-01 2.00E-01
vladislavleva-6 5.45E+00 3.40E+00
vladislavleva-7 7.45E+00 3.92E+00
vladislavleva-8 9.80E-01 1.16E+00
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Table A.15: Median and interquartile range information obtained by the PIMP Ap-
proach on all 51 instances of Symbolic Regression problems (First part).

PIMP
Median IQR

koza-1 6.37E-05 6.53E-04
koza-2 1.49E-05 1.05E-04
koza-3 1.09E-05 5.81E-05
nguyen-1 0.00E+00 1.46E-03
nguyen-2 3.62E-05 2.85E-04
nguyen-3 1.44E-05 6.02E-04
nguyen-4 1.58E-04 7.62E-04
nguyen-5 7.43E-05 5.95E-04
nguyen-6 6.37E-06 9.09E-05
nguyen-7 1.70E-04 2.81E-02
nguyen-8 2.61E-04 2.31E-03
nguyen-9 7.74E-04 6.18E-03
nguyen-10 1.34E-03 1.86E-02
pagie-1 4.28E-02 1.12E-01
pagie-2 1.80E-01 8.83E-02
korns-1 6.96E+01 6.56E+01
korns-2 7.00E+04 3.28E+05
korns-3 2.25E+08 3.82E+09
korns-4 8.48E-03 7.16E-05
korns-5 4.99E+29 7.90E+27
korns-6 4.99E+29 8.20E+27
korns-7 1.85E+26 1.35E+26
korns-8 5.00E+29 5.70E+27
korns-9 7.78E+29 3.90E+27
korns-10 7.22E+06 3.94E+07
korns-11 6.08E+01 6.14E-01
korns-12 1.11E+00 1.45E-02
korns-13 1.26E+09 4.26E+09
korns-14 8.31E+06 2.14E+07
korns-15 5.95E+29 6.19E+27
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Table A.16: Median and interquartile range information obtained by the PIMP Ap-
proach on all 51 instances of Symbolic Regression problems (Second part).

PIMP
Median IQR

keijzer-1 8.04E-03 9.09E-03
keijzer-2 4.81E-02 1.50E-02
keijzer-3 1.30E-01 2.97E-02
keijzer-4 6.66E-02 4.62E-02
keijzer-5 6.27E-02 7.07E-02
keijzer-6 1.01E-02 1.85E-01
keijzer-7 3.06E-02 5.11E-02
keijzer-8 0.00E+00 0.00E+00
keijzer-9 1.01E+00 9.94E-01
keijzer-10 2.67E-02 8.99E-03
keijzer-11 4.67E-01 1.69E-01
keijzer-12 5.74E+01 1.39E+02
keijzer-13 5.89E+00 3.25E+00
keijzer-14 5.86E-01 4.12E-01
keijzer-15 4.17E+00 2.55E+00
vladislavleva-1 1.51E-02 1.21E-02
vladislavleva-2 5.32E-02 3.91E-02
vladislavleva-3 9.27E-01 1.91E-01
vladislavleva-4 3.71E-02 6.22E-03
vladislavleva-5 2.16E-01 1.75E-01
vladislavleva-6 5.30E+00 2.65E+00
vladislavleva-7 4.51E+00 3.44E+00
vladislavleva-8 8.66E-01 1.01E+00
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Table A.17: Median and interquartile range information obtained by the CMP-GP Ap-
proach on all 51 instances of Symbolic Regression problems (First part).

CMP-GP
Median IQR

koza-1 1.38E-07 7.91E-05
koza-2 3.37E-05 9.93E-05
koza-3 7.99E-06 2.52E-05
nguyen-1 0.00E+00 3.50E-04
nguyen-2 1.75E-05 1.55E-04
nguyen-3 3.96E-05 3.72E-04
nguyen-4 9.61E-05 5.58E-04
nguyen-5 5.21E-05 3.38E-04
nguyen-6 1.10E-04 1.44E-02
nguyen-7 1.08E-04 2.62E-03
nguyen-8 4.74E-04 1.62E-03
nguyen-9 1.30E-03 5.61E-03
nguyen-10 4.74E-04 1.83E-02
pagie-1 2.02E-02 1.12E-01
pagie-2 1.60E-01 9.23E-02
korns-1 3.33E+01 6.51E+01
korns-2 1.11E+05 1.26E+06
korns-3 1.34E+08 8.66E+09
korns-4 8.52E-03 1.16E-04
korns-5 5.00E+29 6.10E+27
korns-6 5.00E+29 7.60E+27
korns-7 1.67E+26 1.55E+26
korns-8 4.99E+29 6.00E+27
korns-9 7.77E+29 5.68E+27
korns-10 7.28E+06 6.79E+07
korns-11 6.09E+01 6.74E-01
korns-12 1.10E+00 1.62E-02
korns-13 6.36E+08 3.06E+09
korns-14 5.92E+06 1.56E+07
korns-15 5.95E+29 6.74E+27
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Table A.18: Median and interquartile range information obtained by the CMP-GP Ap-
proach on all 51 instances of Symbolic Regression problems (Second part).

CMP-GP
Median IQR

keijzer-1 4.27E-03 5.69E-03
keijzer-2 5.59E-02 1.60E-02
keijzer-3 1.30E-01 2.26E-02
keijzer-4 6.49E-02 5.57E-02
keijzer-5 5.68E-02 3.80E-02
keijzer-6 1.02E-02 6.74E-01
keijzer-7 3.43E-02 8.33E-01
keijzer-8 0.00E+00 0.00E+00
keijzer-9 1.01E+00 9.92E-01
keijzer-10 2.55E-02 7.52E-03
keijzer-11 4.40E-01 1.09E-01
keijzer-12 2.09E+01 9.90E+01
keijzer-13 4.76E+00 4.31E+00
keijzer-14 5.30E-01 4.05E-01
keijzer-15 3.74E+00 2.69E+00
vladislavleva-1 1.44E-02 1.21E-02
vladislavleva-2 1.12E-02 4.54E-02
vladislavleva-3 9.72E-01 3.60E-01
vladislavleva-4 3.56E-02 7.48E-03
vladislavleva-5 1.80E-01 1.61E-01
vladislavleva-6 4.61E+00 2.85E+00
vladislavleva-7 4.00E+00 3.08E+00
vladislavleva-8 7.91E-01 8.85E-01
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Table B.1: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on the first chromosome on 50 runs tackling each of the 51
Symbolic Regression instances (First Part).

Mutation 1
Best MBF StDev

koza-1 0,00E+00 4,20E-04 9,15E-07
koza-2 0,00E+00 1,37E-04 2,27E-07
koza-3 0,00E+00 2,33E-04 9,92E-07
nguyen-1 0,00E+00 3,99E-03 1,44E-04
nguyen-2 0,00E+00 3,57E-04 1,02E-06
nguyen-3 0,00E+00 5,03E-04 1,31E-06
nguyen-4 0,00E+00 6,71E-04 3,13E-06
nguyen-5 4,20E-09 2,39E-04 2,59E-07
nguyen-6 0,00E+00 5,94E-04 6,19E-06
nguyen-7 1,00E-07 1,51E-03 3,02E-05
nguyen-8 0,00E+00 1,88E-03 1,74E-05
nguyen-9 0,00E+00 1,63E-03 6,56E-06
nguyen-10 0,00E+00 1,20E-03 1,81E-05
pagie-1 2,10E-03 3,98E-02 1,91E-03
pagie-2 2,18E-02 1,52E-01 2,52E-03
korns-1 1,75E-01 3,96E+03 2,60E+08
korns-2 1,82E+02 4,63E+06 8,97E+14
korns-3 1,65E+03 5,36E+12 9,58E+26
korns-4 7,47E-05 7,15E-03 8,62E-06
korns-5 4,86E+29 4,99E+29 2,09E+55
korns-6 4,89E+29 4,99E+29 2,65E+55
korns-7 1,62E+20 1,37E+26 4,72E+51
korns-8 4,89E+29 5,00E+29 2,30E+55
korns-9 7,68E+29 7,75E+29 1,26E+55
korns-10 1,22E+04 2,88E+09 2,28E+20
korns-11 5,95E+01 6,06E+01 2,85E-01
korns-12 1,08E+00 1,11E+00 1,73E-04
korns-13 2,77E+07 1,27E+12 7,50E+25
korns-14 3,79E+05 1,59E+08 9,58E+17
korns-15 5,86E+29 5,94E+29 3,05E+55
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Table B.2: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on the first chromosome on 50 runs tackling each of the 51
Symbolic Regression instances (Second part).

Mutation 1
Best MBF StDev

keijzer-1 8,36E-04 3,84E-03 5,82E-06
keijzer-2 1,52E-02 3,88E-02 9,10E-05
keijzer-3 6,14E-02 1,07E-01 1,73E-04
keijzer-4 1,39E-02 6,46E-02 6,30E-04
keijzer-5 1,31E-05 1,20E-02 2,60E-04
keijzer-6 6,11E-05 9,18E-03 2,29E-04
keijzer-7 1,71E-04 3,86E-02 1,51E-02
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 3,45E-04 1,50E-01 1,08E-01
keijzer-10 5,33E-04 1,88E-02 1,07E-04
keijzer-11 4,35E-02 5,13E-01 7,48E-01
keijzer-12 5,33E-03 2,94E+01 5,22E+03
keijzer-13 2,61E-01 3,76E+00 5,46E+00
keijzer-14 2,45E-02 4,16E-01 7,79E-02
keijzer-15 3,71E-01 2,75E+00 2,68E+00
vladislavleva-1 1,04E-03 7,60E-03 2,48E-05
vladislavleva-2 3,57E-04 2,77E-02 5,61E-04
vladislavleva-3 1,54E-01 8,07E-01 3,99E-02
vladislavleva-4 2,31E-02 3,39E-02 2,69E-05
vladislavleva-5 1,20E-02 1,67E-01 7,19E-03
vladislavleva-6 2,04E+00 4,77E+00 3,66E+00
vladislavleva-7 1,55E+00 4,87E+00 5,03E+00
vladislavleva-8 2,38E-01 8,63E-01 2,41E-01
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Table B.3: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on the second chromosome on 50 runs tackling each of the 51
Symbolic Regression instances (First part).

Mutation 2
Best MBF StDev

koza-1 0,00E+00 3,45E-04 8,26E-07
koza-2 0,00E+00 2,65E-04 1,57E-06
koza-3 0,00E+00 3,67E-04 2,74E-06
nguyen-1 0,00E+00 6,13E-03 1,90E-04
nguyen-2 0,00E+00 5,22E-03 5,75E-04
nguyen-3 0,00E+00 2,67E-03 1,27E-04
nguyen-4 0,00E+00 3,95E-03 5,19E-04
nguyen-5 0,00E+00 2,58E-04 2,86E-07
nguyen-6 0,00E+00 1,04E-02 6,34E-04
nguyen-7 4,37E-07 2,70E-02 3,01E-03
nguyen-8 0,00E+00 2,16E-03 2,45E-05
nguyen-9 0,00E+00 5,17E-03 4,53E-05
nguyen-10 0,00E+00 1,30E-02 2,83E-04
pagie-1 2,43E-04 4,95E-02 2,44E-03
pagie-2 2,61E-02 1,88E-01 2,51E-03
korns-1 2,04E-06 1,27E+05 4,21E+10
korns-2 9,93E+02 1,15E+07 3,33E+15
korns-3 2,88E+03 3,15E+12 4,77E+26
korns-4 1,09E-05 9,28E-03 2,55E-05
korns-5 4,89E+29 4,99E+29 2,59E+55
korns-6 4,90E+29 5,00E+29 2,09E+55
korns-7 1,02E+23 1,36E+26 6,39E+51
korns-8 4,90E+29 4,99E+29 2,83E+55
korns-9 7,63E+29 7,76E+29 2,41E+55
korns-10 5,09E+04 4,86E+11 1,02E+25
korns-11 5,97E+01 6,11E+01 6,17E+00
korns-12 1,09E+00 1,13E+00 1,99E-02
korns-13 3,66E+07 4,17E+12 8,62E+26
korns-14 1,16E+06 1,72E+10 9,07E+21
korns-15 5,83E+29 5,95E+29 3,03E+55
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Table B.4: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on the second chromosome on 50 runs tackling each of the 51
Symbolic Regression instances (Second part).

Mutation 2
Best MBF StDev

keijzer-1 4,15E-04 6,76E-03 1,34E-05
keijzer-2 1,57E-02 4,43E-02 1,59E-04
keijzer-3 5,00E-02 1,18E-01 3,58E-04
keijzer-4 1,88E-02 7,21E-02 6,04E-04
keijzer-5 3,09E-06 1,15E-01 1,40E-02
keijzer-6 1,64E-04 1,75E-01 8,49E-02
keijzer-7 7,10E-04 3,56E-01 1,83E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 3,59E-03 4,59E-01 2,55E-01
keijzer-10 1,03E-03 2,59E-02 5,22E-05
keijzer-11 8,32E-02 1,04E+00 7,32E+00
keijzer-12 2,37E-03 4,42E+01 1,83E+04
keijzer-13 4,29E-01 5,10E+00 8,69E+00
keijzer-14 9,49E-02 5,62E-01 7,84E-02
keijzer-15 3,60E-01 3,85E+00 4,23E+00
vladislavleva-1 5,08E-04 1,41E-02 6,02E-05
vladislavleva-2 1,27E-03 3,69E-02 7,95E-04
vladislavleva-3 5,05E-01 9,25E-01 3,16E-02
vladislavleva-4 2,60E-02 3,57E-02 2,16E-05
vladislavleva-5 1,12E-02 2,27E-01 1,24E-02
vladislavleva-6 1,33E+00 5,05E+00 4,28E+00
vladislavleva-7 1,28E+00 4,45E+00 4,33E+00
vladislavleva-8 2,08E-01 1,34E+00 9,36E-01
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Table B.5: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on both chromosomes on 50 runs tackling each of the 51
Symbolic Regression instances (First part).

Mutation Both
Best MBF StDev

koza-1 0,00E+00 8,72E-04 1,35E-05
koza-2 0,00E+00 4,36E-05 4,34E-09
koza-3 0,00E+00 4,40E-05 7,67E-09
nguyen-1 0,00E+00 4,72E-04 5,41E-06
nguyen-2 0,00E+00 3,72E-04 6,04E-07
nguyen-3 0,00E+00 2,91E-04 3,54E-07
nguyen-4 0,00E+00 3,77E-04 3,16E-07
nguyen-5 0,00E+00 4,18E-04 4,54E-07
nguyen-6 0,00E+00 5,31E-05 3,06E-08
nguyen-7 9,11E-07 1,60E-04 5,94E-08
nguyen-8 1,45E-07 1,91E-03 1,62E-05
nguyen-9 0,00E+00 1,37E-03 3,97E-06
nguyen-10 0,00E+00 7,42E-04 6,16E-06
pagie-1 3,66E-04 3,04E-02 1,83E-03
pagie-2 4,42E-02 1,51E-01 2,45E-03
korns-1 2,74E-02 6,52E+03 1,35E+09
korns-2 7,29E-02 1,87E+05 5,79E+11
korns-3 9,07E+02 3,26E+16 5,27E+34
korns-4 5,41E-05 8,28E-03 2,33E-05
korns-5 4,87E+29 4,99E+29 2,43E+55
korns-6 4,89E+29 5,01E+29 2,41E+55
korns-7 9,93E+22 1,38E+26 4,49E+51
korns-8 4,93E+29 5,00E+29 1,94E+55
korns-9 7,65E+29 7,76E+29 1,68E+55
korns-10 1,95E+04 9,30E+08 2,42E+19
korns-11 5,92E+01 6,05E+01 3,62E-01
korns-12 1,09E+00 1,11E+00 1,80E-04
korns-13 5,06E+07 6,29E+10 8,68E+22
korns-14 4,74E+05 1,31E+08 2,37E+17
korns-15 5,79E+29 5,93E+29 3,13E+55
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Table B.6: Best Fitness, MBF and sample Standard Deviation obtained by the PIMP
Approach with mutation on both chromosomes on 50 runs tackling each of the 51
Symbolic Regression instances (Second part).

Mutation Both
Best MBF StDev

keijzer-1 2,35E-04 3,91E-03 1,00E-05
keijzer-2 2,63E-02 3,94E-02 5,38E-05
keijzer-3 1,22E-02 1,03E-01 3,54E-04
keijzer-4 1,90E-02 6,51E-02 6,01E-04
keijzer-5 1,76E-05 2,47E-02 3,58E-03
keijzer-6 9,73E-05 4,58E-02 2,60E-02
keijzer-7 3,30E-04 1,68E-02 1,52E-04
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 2,00E-04 1,21E-01 9,27E-02
keijzer-10 1,28E-03 1,63E-02 9,00E-05
keijzer-11 6,83E-02 3,65E-01 1,99E-02
keijzer-12 2,03E-05 1,25E+01 2,94E+02
keijzer-13 2,38E-01 3,29E+00 3,42E+00
keijzer-14 1,14E-02 4,13E-01 7,92E-02
keijzer-15 4,39E-02 1,76E+00 2,84E+00
vladislavleva-1 1,23E-03 7,50E-03 3,52E-05
vladislavleva-2 1,03E-03 3,07E-02 5,49E-04
vladislavleva-3 2,66E-01 8,21E-01 3,19E-02
vladislavleva-4 2,49E-02 3,50E-02 1,85E-05
vladislavleva-5 2,38E-03 1,54E-01 8,59E-03
vladislavleva-6 6,46E-01 4,53E+00 4,56E+00
vladislavleva-7 1,26E+00 4,91E+00 4,70E+00
vladislavleva-8 6,37E-02 7,20E-01 2,26E-01
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Table B.7: Full 5 number quartile information for PIMP with mutation on the first
chromosome on each of the 51 Symbolic Regression test instances (First part).

Mutation 1
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 5,61E-05 2,34E-04 4,33E-03
koza-2 0,00E+00 2,47E-06 2,44E-05 1,29E-04 3,37E-03
koza-3 0,00E+00 4,10E-06 1,93E-05 7,34E-05 6,98E-03
nguyen-1 0,00E+00 0,00E+00 0,00E+00 2,46E-04 5,80E-02
nguyen-2 0,00E+00 0,00E+00 3,00E-05 2,23E-04 6,25E-03
nguyen-3 0,00E+00 0,00E+00 7,36E-05 4,17E-04 6,47E-03
nguyen-4 0,00E+00 3,34E-05 1,14E-04 8,02E-04 1,22E-02
nguyen-5 4,20E-09 8,49E-06 3,22E-05 2,09E-04 2,93E-03
nguyen-6 0,00E+00 0,00E+00 3,06E-07 7,09E-05 1,54E-02
nguyen-7 1,00E-07 2,12E-05 5,37E-05 2,27E-04 2,74E-02
nguyen-8 0,00E+00 3,59E-05 2,09E-04 1,55E-03 1,88E-02
nguyen-9 0,00E+00 0,00E+00 6,74E-04 2,08E-03 1,28E-02
nguyen-10 0,00E+00 8,87E-06 2,54E-04 4,60E-04 2,25E-02
pagie-1 2,10E-03 9,28E-03 2,35E-02 5,15E-02 1,78E-01
pagie-2 2,18E-02 1,25E-01 1,59E-01 1,88E-01 2,42E-01
korns-1 1,75E-01 6,14E+00 1,19E+01 4,68E+01 8,03E+04
korns-2 1,82E+02 2,85E+04 6,56E+04 2,79E+05 2,12E+08
korns-3 1,65E+03 2,31E+06 1,04E+08 1,91E+09 2,18E+14
korns-4 7,47E-05 8,40E-03 8,47E-03 8,52E-03 8,62E-03
korns-5 4,86E+29 4,95E+29 5,00E+29 5,03E+29 5,05E+29
korns-6 4,89E+29 4,96E+29 5,00E+29 5,02E+29 5,09E+29
korns-7 1,62E+20 7,64E+25 1,38E+26 1,96E+26 2,73E+26
korns-8 4,89E+29 4,96E+29 5,01E+29 5,02E+29 5,09E+29
korns-9 7,68E+29 7,72E+29 7,76E+29 7,78E+29 7,84E+29
korns-10 1,22E+04 4,20E+05 4,67E+06 7,02E+07 1,06E+11
korns-11 5,95E+01 6,03E+01 6,06E+01 6,10E+01 6,17E+01
korns-12 1,08E+00 1,10E+00 1,11E+00 1,12E+00 1,14E+00
korns-13 2,77E+07 3,73E+08 1,40E+09 1,10E+10 6,13E+13
korns-14 3,79E+05 1,64E+06 4,80E+06 2,47E+07 6,94E+09
korns-15 5,86E+29 5,89E+29 5,94E+29 5,97E+29 6,09E+29
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Table B.8: Full 5 number quartile information for PIMP with mutation on the first
chromosome on each of the 51 Symbolic Regression test instances (Second part).

Mutation 1
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 8,36E-04 2,33E-03 2,99E-03 4,49E-03 1,06E-02
keijzer-2 1,52E-02 3,42E-02 3,82E-02 4,59E-02 5,61E-02
keijzer-3 6,14E-02 1,02E-01 1,10E-01 1,13E-01 1,30E-01
keijzer-4 1,39E-02 4,70E-02 6,16E-02 9,26E-02 1,01E-01
keijzer-5 1,31E-05 5,84E-04 4,88E-03 1,54E-02 7,18E-02
keijzer-6 6,11E-05 1,24E-03 3,94E-03 1,01E-02 8,91E-02
keijzer-7 1,71E-04 5,96E-03 1,19E-02 2,81E-02 8,53E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 3,45E-04 1,02E-02 1,74E-02 2,18E-02 1,02E+00
keijzer-10 5,33E-04 1,16E-02 2,01E-02 2,63E-02 3,67E-02
keijzer-11 4,35E-02 3,11E-01 4,36E-01 5,00E-01 6,41E+00
keijzer-12 5,33E-03 1,87E+00 7,06E+00 1,59E+01 4,62E+02
keijzer-13 2,61E-01 1,55E+00 3,59E+00 5,46E+00 9,28E+00
keijzer-14 2,45E-02 2,33E-01 3,84E-01 5,42E-01 1,06E+00
keijzer-15 3,71E-01 1,04E+00 2,71E+00 4,29E+00 5,87E+00
vladislavleva-1 1,04E-03 3,85E-03 6,62E-03 1,06E-02 2,07E-02
vladislavleva-2 3,57E-04 7,78E-03 1,54E-02 5,30E-02 8,54E-02
vladislavleva-3 1,54E-01 7,12E-01 8,54E-01 9,54E-01 1,03E+00
vladislavleva-4 2,31E-02 3,05E-02 3,33E-02 3,79E-02 4,38E-02
vladislavleva-5 1,20E-02 1,03E-01 1,60E-01 2,21E-01 3,67E-01
vladislavleva-6 2,04E+00 3,17E+00 4,42E+00 5,89E+00 9,56E+00
vladislavleva-7 1,55E+00 2,74E+00 4,53E+00 6,62E+00 1,02E+01
vladislavleva-8 2,38E-01 5,01E-01 7,44E-01 1,17E+00 2,19E+00
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Table B.9: Full 5 number quartile information for PIMP with mutation on the second
chromosome on each of the 51 Symbolic Regression test instances (First part).

Mutation 2
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 3,21E-05 2,39E-04 5,54E-03
koza-2 0,00E+00 6,62E-07 1,16E-05 8,65E-05 8,82E-03
koza-3 0,00E+00 2,48E-07 5,45E-06 4,03E-05 9,23E-03
nguyen-1 0,00E+00 0,00E+00 0,00E+00 3,83E-04 5,48E-02
nguyen-2 0,00E+00 0,00E+00 2,10E-05 5,06E-04 1,28E-01
nguyen-3 0,00E+00 0,00E+00 2,38E-05 3,43E-04 6,63E-02
nguyen-4 0,00E+00 2,09E-06 1,27E-04 6,78E-04 1,61E-01
nguyen-5 0,00E+00 1,43E-06 2,60E-05 1,30E-04 2,18E-03
nguyen-6 0,00E+00 0,00E+00 3,05E-05 9,84E-04 8,82E-02
nguyen-7 4,37E-07 3,26E-05 2,77E-04 2,51E-02 2,00E-01
nguyen-8 0,00E+00 1,03E-05 2,04E-04 1,35E-03 2,41E-02
nguyen-9 0,00E+00 0,00E+00 1,06E-03 1,31E-02 2,38E-02
nguyen-10 0,00E+00 9,50E-05 1,26E-02 2,07E-02 9,76E-02
pagie-1 2,43E-04 3,85E-03 2,64E-02 1,06E-01 1,51E-01
pagie-2 2,61E-02 1,59E-01 1,86E-01 2,33E-01 2,84E-01
korns-1 2,04E-06 2,00E+01 7,73E+01 4,47E+05 4,62E+05
korns-2 9,93E+02 3,09E+04 1,54E+05 5,18E+05 4,02E+08
korns-3 2,88E+03 1,65E+07 8,94E+07 1,59E+09 1,55E+14
korns-4 1,09E-05 8,42E-03 8,49E-03 8,53E-03 3,37E-02
korns-5 4,89E+29 4,96E+29 4,99E+29 5,02E+29 5,09E+29
korns-6 4,90E+29 4,96E+29 5,01E+29 5,04E+29 5,10E+29
korns-7 1,02E+23 6,81E+25 1,26E+26 2,18E+26 2,50E+26
korns-8 4,90E+29 4,94E+29 4,99E+29 5,01E+29 5,12E+29
korns-9 7,63E+29 7,73E+29 7,76E+29 7,79E+29 7,85E+29
korns-10 5,09E+04 1,51E+06 9,57E+06 1,41E+08 2,26E+13
korns-11 5,97E+01 6,04E+01 6,07E+01 6,11E+01 7,79E+01
korns-12 1,09E+00 1,10E+00 1,11E+00 1,12E+00 2,10E+00
korns-13 3,66E+07 3,16E+08 1,39E+09 1,09E+10 2,08E+14
korns-14 1,16E+06 5,79E+06 4,27E+07 3,28E+08 6,59E+11
korns-15 5,83E+29 5,91E+29 5,95E+29 5,98E+29 6,07E+29
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Table B.10: Full 5 number quartile information for PIMP with mutation on the second
chromosome on each of the 51 Symbolic Regression test instances (Second part).

Mutation 2
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 4,15E-04 3,05E-03 8,04E-03 8,84E-03 1,27E-02
keijzer-2 1,57E-02 3,67E-02 4,23E-02 5,59E-02 7,76E-02
keijzer-3 5,00E-02 1,05E-01 1,30E-01 1,30E-01 1,38E-01
keijzer-4 1,88E-02 5,52E-02 6,27E-02 1,01E-01 1,11E-01
keijzer-5 3,09E-06 3,72E-02 4,73E-02 2,69E-01 3,24E-01
keijzer-6 1,64E-04 1,01E-02 1,02E-02 6,46E-02 7,19E-01
keijzer-7 7,10E-04 1,75E-02 4,68E-02 8,53E-01 1,11E+00
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 3,59E-03 1,74E-02 2,18E-02 1,01E+00 1,08E+00
keijzer-10 1,03E-03 2,18E-02 2,74E-02 3,15E-02 3,56E-02
keijzer-11 8,32E-02 3,91E-01 4,35E-01 4,80E-01 1,52E+01
keijzer-12 2,37E-03 3,60E+00 7,94E+00 2,29E+01 9,36E+02
keijzer-13 4,29E-01 3,05E+00 5,65E+00 7,24E+00 1,31E+01
keijzer-14 9,49E-02 3,60E-01 5,44E-01 7,42E-01 1,22E+00
keijzer-15 3,60E-01 2,27E+00 4,19E+00 5,31E+00 1,01E+01
vladislavleva-1 5,08E-04 9,71E-03 1,20E-02 1,79E-02 3,24E-02
vladislavleva-2 1,27E-03 8,11E-03 4,83E-02 5,35E-02 1,01E-01
vladislavleva-3 5,05E-01 8,32E-01 9,16E-01 1,02E+00 1,18E+00
vladislavleva-4 2,60E-02 3,25E-02 3,51E-02 3,92E-02 4,48E-02
vladislavleva-5 1,12E-02 1,62E-01 2,43E-01 3,29E-01 4,18E-01
vladislavleva-6 1,33E+00 3,45E+00 4,65E+00 6,62E+00 9,50E+00
vladislavleva-7 1,28E+00 2,57E+00 4,40E+00 5,61E+00 9,03E+00
vladislavleva-8 2,08E-01 6,22E-01 1,02E+00 1,87E+00 4,50E+00
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Table B.11: Full 5 number quartile information for PIMP with mutation on both chro-
mosomes on each of the 51 Symbolic Regression test instances (First part).

Mutation Both
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 1,15E-04 4,57E-04 2,60E-02
koza-2 0,00E+00 1,78E-06 1,02E-05 6,58E-05 2,79E-04
koza-3 0,00E+00 1,83E-06 6,85E-06 4,11E-05 3,47E-04
nguyen-1 0,00E+00 0,00E+00 0,00E+00 6,88E-05 1,64E-02
nguyen-2 0,00E+00 0,00E+00 3,41E-05 3,70E-04 3,51E-03
nguyen-3 0,00E+00 0,00E+00 6,65E-05 1,92E-04 3,01E-03
nguyen-4 0,00E+00 4,49E-05 1,40E-04 4,83E-04 2,59E-03
nguyen-5 0,00E+00 2,52E-05 9,83E-05 3,24E-04 2,83E-03
nguyen-6 0,00E+00 0,00E+00 0,00E+00 2,08E-05 1,16E-03
nguyen-7 9,11E-07 1,32E-05 6,32E-05 2,20E-04 1,35E-03
nguyen-8 1,45E-07 7,60E-05 3,28E-04 1,37E-03 2,05E-02
nguyen-9 0,00E+00 0,00E+00 1,73E-04 2,08E-03 7,13E-03
nguyen-10 0,00E+00 6,00E-07 7,28E-05 2,47E-04 1,63E-02
pagie-1 3,66E-04 4,54E-03 1,48E-02 3,62E-02 2,19E-01
pagie-2 4,42E-02 1,20E-01 1,59E-01 1,82E-01 2,43E-01
korns-1 2,74E-02 7,55E+00 1,22E+01 5,23E+01 2,52E+05
korns-2 7,29E-02 1,79E+04 3,75E+04 1,34E+05 5,41E+06
korns-3 9,07E+02 5,81E+06 2,44E+07 6,53E+08 1,62E+18
korns-4 5,41E-05 8,43E-03 8,47E-03 8,51E-03 3,76E-02
korns-5 4,87E+29 4,95E+29 4,98E+29 5,02E+29 5,10E+29
korns-6 4,89E+29 4,97E+29 5,01E+29 5,04E+29 5,12E+29
korns-7 9,93E+22 8,19E+25 1,47E+26 1,95E+26 2,62E+26
korns-8 4,93E+29 4,97E+29 5,00E+29 5,02E+29 5,11E+29
korns-9 7,65E+29 7,74E+29 7,75E+29 7,79E+29 7,83E+29
korns-10 1,95E+04 2,02E+05 1,51E+06 8,89E+06 3,40E+10
korns-11 5,92E+01 5,99E+01 6,05E+01 6,10E+01 6,16E+01
korns-12 1,09E+00 1,10E+00 1,11E+00 1,12E+00 1,14E+00
korns-13 5,06E+07 3,88E+08 2,46E+09 1,74E+10 2,07E+12
korns-14 4,74E+05 2,26E+06 5,52E+06 3,67E+07 3,23E+09
korns-15 5,79E+29 5,89E+29 5,94E+29 5,97E+29 6,03E+29
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Table B.12: Full 5 number quartile information for PIMP with mutation on both chro-
mosomes on each of the 51 Symbolic Regression test instances (Second part).

Mutation Both
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 2,35E-04 1,80E-03 2,48E-03 5,50E-03 1,23E-02
keijzer-2 2,63E-02 3,44E-02 3,99E-02 4,57E-02 5,60E-02
keijzer-3 1,22E-02 9,46E-02 1,05E-01 1,14E-01 1,32E-01
keijzer-4 1,90E-02 4,80E-02 5,72E-02 9,20E-02 1,01E-01
keijzer-5 1,76E-05 4,98E-04 3,55E-03 2,74E-02 3,53E-01
keijzer-6 9,73E-05 1,06E-03 2,66E-03 1,01E-02 6,78E-01
keijzer-7 3,30E-04 5,39E-03 1,37E-02 3,06E-02 5,00E-02
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 2,00E-04 8,29E-03 1,74E-02 1,77E-02 1,02E+00
keijzer-10 1,28E-03 8,50E-03 1,66E-02 2,31E-02 3,79E-02
keijzer-11 6,83E-02 2,50E-01 3,86E-01 4,60E-01 6,66E-01
keijzer-12 2,03E-05 2,19E+00 5,84E+00 1,57E+01 7,78E+01
keijzer-13 2,38E-01 1,68E+00 3,20E+00 4,49E+00 7,56E+00
keijzer-14 1,14E-02 1,80E-01 3,77E-01 6,15E-01 1,34E+00
keijzer-15 4,39E-02 4,96E-01 9,71E-01 2,76E+00 6,59E+00
vladislavleva-1 1,23E-03 3,28E-03 5,58E-03 8,36E-03 2,51E-02
vladislavleva-2 1,03E-03 9,16E-03 1,67E-02 5,31E-02 7,89E-02
vladislavleva-3 2,66E-01 7,19E-01 8,68E-01 9,30E-01 1,16E+00
vladislavleva-4 2,49E-02 3,26E-02 3,49E-02 3,80E-02 4,39E-02
vladislavleva-5 2,38E-03 8,07E-02 1,36E-01 2,26E-01 3,73E-01
vladislavleva-6 6,46E-01 2,83E+00 4,40E+00 5,93E+00 1,13E+01
vladislavleva-7 1,26E+00 2,63E+00 4,63E+00 6,88E+00 9,31E+00
vladislavleva-8 6,37E-02 3,29E-01 5,73E-01 1,03E+00 1,90E+00
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Table B.13: Median and interquartile range information obtained by PIMP with mu-
tation on the first chromosome on all 51 instances of Symbolic Regression problems
(First part).

Mutation 1
Median IQR

koza-1 5,61E-05 2,34E-04
koza-2 2,44E-05 1,27E-04
koza-3 1,93E-05 6,93E-05
nguyen-1 0,00E+00 2,46E-04
nguyen-2 3,00E-05 2,23E-04
nguyen-3 7,36E-05 4,17E-04
nguyen-4 1,14E-04 7,68E-04
nguyen-5 3,22E-05 2,00E-04
nguyen-6 3,06E-07 7,09E-05
nguyen-7 5,37E-05 2,06E-04
nguyen-8 2,09E-04 1,51E-03
nguyen-9 6,74E-04 2,08E-03
nguyen-10 2,54E-04 4,51E-04
pagie-1 2,35E-02 4,22E-02
pagie-2 1,59E-01 6,26E-02
korns-1 1,19E+01 4,07E+01
korns-2 6,56E+04 2,50E+05
korns-3 1,04E+08 1,91E+09
korns-4 8,47E-03 1,27E-04
korns-5 5,00E+29 7,40E+27
korns-6 5,00E+29 6,20E+27
korns-7 1,38E+26 1,20E+26
korns-8 5,01E+29 6,10E+27
korns-9 7,76E+29 5,21E+27
korns-10 4,67E+06 6,97E+07
korns-11 6,06E+01 6,73E-01
korns-12 1,11E+00 1,52E-02
korns-13 1,40E+09 1,06E+10
korns-14 4,80E+06 2,31E+07
korns-15 5,94E+29 7,97E+27
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Table B.14: Median and interquartile range information obtained by PIMP with mu-
tation on the first chromosome on all 51 instances of Symbolic Regression problems
(Second part).

Mutation 1
Median IQR

keijzer-1 2,99E-03 2,15E-03
keijzer-2 3,82E-02 1,17E-02
keijzer-3 1,10E-01 1,12E-02
keijzer-4 6,16E-02 4,56E-02
keijzer-5 4,88E-03 1,48E-02
keijzer-6 3,94E-03 8,89E-03
keijzer-7 1,19E-02 2,21E-02
keijzer-8 0,00E+00 0,00E+00
keijzer-9 1,74E-02 1,16E-02
keijzer-10 2,01E-02 1,47E-02
keijzer-11 4,36E-01 1,89E-01
keijzer-12 7,06E+00 1,40E+01
keijzer-13 3,59E+00 3,91E+00
keijzer-14 3,84E-01 3,09E-01
keijzer-15 2,71E+00 3,24E+00
vladislavleva-1 6,62E-03 6,75E-03
vladislavleva-2 1,54E-02 4,52E-02
vladislavleva-3 8,54E-01 2,41E-01
vladislavleva-4 3,33E-02 7,42E-03
vladislavleva-5 1,60E-01 1,18E-01
vladislavleva-6 4,42E+00 2,72E+00
vladislavleva-7 4,53E+00 3,89E+00
vladislavleva-8 7,44E-01 6,74E-01
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Table B.15: Median and interquartile range information obtained by PIMP with muta-
tion on the second chromosome on all 51 instances of Symbolic Regression problems
(First part).

Mutation 2
Median IQR

koza-1 3,21E-05 2,39E-04
koza-2 1,16E-05 8,59E-05
koza-3 5,45E-06 4,00E-05
nguyen-1 0,00E+00 3,83E-04
nguyen-2 2,10E-05 5,06E-04
nguyen-3 2,38E-05 3,43E-04
nguyen-4 1,27E-04 6,76E-04
nguyen-5 2,60E-05 1,29E-04
nguyen-6 3,05E-05 9,84E-04
nguyen-7 2,77E-04 2,51E-02
nguyen-8 2,04E-04 1,34E-03
nguyen-9 1,06E-03 1,31E-02
nguyen-10 1,26E-02 2,06E-02
pagie-1 2,64E-02 1,02E-01
pagie-2 1,86E-01 7,48E-02
korns-1 7,73E+01 4,47E+05
korns-2 1,54E+05 4,87E+05
korns-3 8,94E+07 1,57E+09
korns-4 8,49E-03 1,11E-04
korns-5 4,99E+29 6,20E+27
korns-6 5,01E+29 7,70E+27
korns-7 1,26E+26 1,49E+26
korns-8 4,99E+29 7,10E+27
korns-9 7,76E+29 5,87E+27
korns-10 9,57E+06 1,39E+08
korns-11 6,07E+01 7,52E-01
korns-12 1,11E+00 1,59E-02
korns-13 1,39E+09 1,06E+10
korns-14 4,27E+07 3,22E+08
korns-15 5,95E+29 6,76E+27
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Table B.16: Median and interquartile range information obtained by PIMP with muta-
tion on the second chromosome on all 51 instances of Symbolic Regression problems
(Second part).

Mutation 2
Median IQR

keijzer-1 8,04E-03 5,79E-03
keijzer-2 4,23E-02 1,92E-02
keijzer-3 1,30E-01 2,47E-02
keijzer-4 6,27E-02 4,56E-02
keijzer-5 4,73E-02 2,32E-01
keijzer-6 1,02E-02 5,45E-02
keijzer-7 4,68E-02 8,35E-01
keijzer-8 0,00E+00 0,00E+00
keijzer-9 2,18E-02 9,93E-01
keijzer-10 2,74E-02 9,68E-03
keijzer-11 4,35E-01 8,95E-02
keijzer-12 7,94E+00 1,93E+01
keijzer-13 5,65E+00 4,19E+00
keijzer-14 5,44E-01 3,81E-01
keijzer-15 4,19E+00 3,04E+00
vladislavleva-1 1,20E-02 8,21E-03
vladislavleva-2 4,83E-02 4,54E-02
vladislavleva-3 9,16E-01 1,86E-01
vladislavleva-4 3,51E-02 6,71E-03
vladislavleva-5 2,43E-01 1,67E-01
vladislavleva-6 4,65E+00 3,18E+00
vladislavleva-7 4,40E+00 3,04E+00
vladislavleva-8 1,02E+00 1,25E+00
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Table B.17: Median and interquartile range information obtained by PIMP with muta-
tion on both chromosomes on all 51 instances of Symbolic Regression problems (First
part).

Mutation Both
Median IQR

koza-1 0,00E+00 4,57E-04
koza-2 1,78E-06 6,40E-05
koza-3 1,83E-06 3,92E-05
nguyen-1 0,00E+00 6,88E-05
nguyen-2 0,00E+00 3,70E-04
nguyen-3 0,00E+00 1,92E-04
nguyen-4 4,49E-05 4,38E-04
nguyen-5 2,52E-05 2,98E-04
nguyen-6 0,00E+00 2,08E-05
nguyen-7 1,32E-05 2,07E-04
nguyen-8 7,60E-05 1,29E-03
nguyen-9 0,00E+00 2,08E-03
nguyen-10 6,00E-07 2,47E-04
pagie-1 4,54E-03 3,17E-02
pagie-2 1,20E-01 6,14E-02
korns-1 7,55E+00 4,47E+01
korns-2 1,79E+04 1,16E+05
korns-3 5,81E+06 6,47E+08
korns-4 8,43E-03 8,85E-05
korns-5 4,95E+29 6,40E+27
korns-6 4,97E+29 7,90E+27
korns-7 8,19E+25 1,13E+26
korns-8 4,97E+29 5,60E+27
korns-9 7,74E+29 5,61E+27
korns-10 2,02E+05 8,69E+06
korns-11 5,99E+01 1,04E+00
korns-12 1,10E+00 2,12E-02
korns-13 3,88E+08 1,70E+10
korns-14 2,26E+06 3,44E+07
korns-15 5,89E+29 8,00E+27
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Table B.18: Median and interquartile range information obtained by PIMP with muta-
tion on both chromosomes on all 51 instances of Symbolic Regression problems (Sec-
ond part).

Mutation Both
Median IQR

keijzer-1 1,80E-03 3,70E-03
keijzer-2 3,44E-02 1,13E-02
keijzer-3 9,46E-02 1,96E-02
keijzer-4 4,80E-02 4,40E-02
keijzer-5 4,98E-04 2,69E-02
keijzer-6 1,06E-03 9,05E-03
keijzer-7 5,39E-03 2,52E-02
keijzer-8 0,00E+00 0,00E+00
keijzer-9 8,29E-03 9,43E-03
keijzer-10 8,50E-03 1,46E-02
keijzer-11 2,50E-01 2,10E-01
keijzer-12 2,19E+00 1,35E+01
keijzer-13 1,68E+00 2,81E+00
keijzer-14 1,80E-01 4,35E-01
keijzer-15 4,96E-01 2,26E+00
vladislavleva-1 3,28E-03 5,08E-03
vladislavleva-2 9,16E-03 4,39E-02
vladislavleva-3 7,19E-01 2,11E-01
vladislavleva-4 3,26E-02 5,38E-03
vladislavleva-5 8,07E-02 1,45E-01
vladislavleva-6 2,83E+00 3,09E+00
vladislavleva-7 2,63E+00 4,25E+00
vladislavleva-8 3,29E-01 6,96E-01
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Table B.19: Comparison between different Mutation setups for the PIMP approach.
Instances where the p-value obtained by the Wilcoxon Mann Whitney test was below
the 0.05 alpha value are identified (First part).

Base Base Base
vs vs vs

Mutation 1 Mutation 2 Mutation Both
koza-3
nguyen-5
nguyen-6
nguyen-7 Mut 1 Mut B
nguyen-9
nguyen-10 Mut 1 Mut B
pagie-1 Mut B
pagie-2 Mut 1 Mut B
korns-1 Mut 1 Base Mut B
korns-2 Mut B
korns-7 Mut 1 Mut 2 Mut B
korns-9 Mut 1
korns-10 Mut B
korns-11 Mut B
korns-14 Base
keijzer-1 Mut 1 Mut B
keijzer-2 Mut 1 Mut B
keijzer-3 Mut 1 Mut B
keijzer-4 Mut 1 Mut B
keijzer-5 Mut 1 Mut B
keijzer-6 Mut 1 Mut B
keijzer-7 Mut 1 Mut B
keijzer-9 Mut 1 Mut B
keijzer-10 Mut 1 Mut B
keijzer-11 Mut B
keijzer-12 Mut 1 Mut 2 Mut B
keijzer-13 Mut 1 Mut B
keijzer-14 Mut 1 Mut B
keijzer-15 Mut 1 Mut B
vladislavleva-1 Mut 1 Mut B
vladislavleva-2 Mut 1 Mut B
vladislavleva-3 Mut 1 Mut B
vladislavleva-4 Mut 1
vladislavleva-5 Mut B
vladislavleva-6 Mut B
vladislavleva-8 Mut B
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Table B.20: Comparison between different Mutation setups for the PIMP approach.
Instances where the p-value obtained by the Wilcoxon Mann Whitney test was below
the 0.05 alpha value are identified (Second part).

Mutation 1 Mutation 1 Mutation 2
vs vs vs

Mutation 2 Mutation Both Mutation Both
koza-3 Mut 2 Mut B
nguyen-5 Mut 1 Mut 2
nguyen-6 Mut 1 Mut B
nguyen-7 Mut 1 Mut B
nguyen-9 Mut B
nguyen-10 Mut 1 Mut B
pagie-1
pagie-2 Mut 1 Mut B
korns-1 Mut 1 Mut B
korns-2 Mut B Mut B
korns-7
korns-9
korns-10 Mut B
korns-11 Mut B
korns-14 Mut 1 Mut B
keijzer-1 Mut 1 Mut B
keijzer-2 Mut 1 Mut B
keijzer-3 Mut 1 Mut B
keijzer-4
keijzer-5 Mut 1 Mut B
keijzer-6 Mut 1 Mut B
keijzer-7 Mut 1 Mut B
keijzer-9 Mut 1 Mut B
keijzer-10 Mut 1 Mut B
keijzer-11 Mut B
keijzer-12
keijzer-13 Mut 1 Mut B
keijzer-14 Mut 1 Mut B
keijzer-15 Mut 1 Mut B Mut B
vladislavleva-1 Mut 1 Mut B
vladislavleva-2
vladislavleva-3 Mut 1 Mut B
vladislavleva-4
vladislavleva-5 Mut 1 Mut B
vladislavleva-6
vladislavleva-8 Mut 1 Mut B
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Table B.21: Comparison between different Mutation setups for the PIMP approach.
Number of runs where the error between the best individual and the optima was below
1E �4.

Base Mutation 1 Mutation 2 Mutation Both
koza-1 27 30 32 24
koza-2 36 35 39 43
koza-3 41 40 43 44
nguyen-1 31 34 36 39
nguyen-2 27 31 30 32
nguyen-3 31 29 28 29
nguyen-4 20 22 23 24
nguyen-5 27 33 33 26
nguyen-6 38 39 29 43
nguyen-7 19 31 20 30
nguyen-8 20 20 19 15
nguyen-9 15 17 16 24
nguyen-10 12 20 13 33
korns-1 1 0 1 0
korns-4 0 1 1 1
keijzer-5 3 5 3 1
keijzer-6 0 2 0 1
keijzer-12 0 0 0 1

Table B.22: Comparison between different Mutation setups for the PIMP approach.
Instances where the p-value obtainded by Taillard’s proportion’s tests was below the
0.05 alpha value are identified.

Base Base Base
vs vs vs

Mutation 1 Mutation 2 Mutation Both
koza-2 Mut B
nguyen-1 Mut B
nguyen-6 Mut 2
nguyen-7 Mut 1 Mut B
nguyen-8
nguyen-9 Mut B
nguyen-10 Mut 1

Mutation 1 Mutation 1 Mutation 2
vs vs vs

Mutation 2 Mutation Both Mutation Both
koza-2 Mut B Mut 1
nguyen-1
nguyen-6 Mut 1 Mut B
nguyen-7 Mut 1 Mut B
nguyen-8
nguyen-9 Mut B
nguyen-10 Mut B
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Table C.1: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on the first chromosome on 50 runs tackling each of the
51 Symbolic Regression instances (First part).

Mutation 1
Best MBF StDev

koza-1 0,00E+00 2,58E-04 4,19E-07
koza-2 0,00E+00 4,86E-05 5,89E-09
koza-3 0,00E+00 2,24E-04 7,72E-07
nguyen-1 0,00E+00 1,54E-04 2,31E-07
nguyen-2 0,00E+00 4,79E-04 1,66E-06
nguyen-3 0,00E+00 8,26E-04 5,16E-06
nguyen-4 0,00E+00 9,02E-04 1,21E-05
nguyen-5 6,16E-08 2,55E-04 1,64E-07
nguyen-6 0,00E+00 1,92E-04 5,18E-07
nguyen-7 0,00E+00 7,99E-04 1,17E-05
nguyen-8 0,00E+00 2,66E-03 3,26E-05
nguyen-9 0,00E+00 1,64E-03 3,47E-06
nguyen-10 0,00E+00 4,93E-04 4,71E-07
pagie-1 2,12E-03 5,02E-02 1,90E-03
pagie-2 9,13E-03 1,52E-01 2,42E-03
korns-1 4,03E-02 2,00E+03 1,80E+08
korns-2 5,80E+01 2,62E+05 3,70E+11
korns-3 2,72E+03 8,99E+11 3,40E+25
korns-4 1,07E-05 8,24E-03 2,25E-05
korns-5 4,87E+29 5,00E+29 2,03E+55
korns-6 4,85E+29 4,99E+29 1,81E+55
korns-7 1,53E+25 1,44E+26 6,80E+51
korns-8 4,91E+29 5,00E+29 2,03E+55
korns-9 7,64E+29 7,75E+29 2,31E+55
korns-10 1,48E+04 3,49E+12 3,00E+26
korns-11 5,96E+01 6,06E+01 3,64E-01
korns-12 1,07E+00 1,11E+00 2,04E-04
korns-13 2,20E+07 1,22E+11 1,85E+23
korns-14 3,41E+05 3,79E+07 1,75E+16
korns-15 5,87E+29 5,95E+29 1,85E+55
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Table C.2: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on the first chromosome on 50 runs tackling each of the
51 Symbolic Regression instances (Second part).

Mutation 1
Best MBF StDev

keijzer-1 4,65E-04 3,87E-03 7,58E-06
keijzer-2 2,05E-02 3,91E-02 4,88E-05
keijzer-3 7,94E-02 1,04E-01 1,23E-04
keijzer-4 2,01E-02 6,21E-02 4,32E-04
keijzer-5 4,05E-05 3,21E-02 3,46E-03
keijzer-6 1,29E-04 3,99E-02 1,41E-02
keijzer-7 1,63E-04 4,08E-02 1,49E-02
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 7,93E-04 1,55E-01 1,11E-01
keijzer-10 9,84E-04 1,67E-02 1,15E-04
keijzer-11 3,50E-02 5,32E-01 4,69E-01
keijzer-12 1,01E-02 1,29E+01 1,04E+03
keijzer-13 2,86E-01 3,73E+00 5,69E+00
keijzer-14 4,21E-02 4,29E-01 8,53E-02
keijzer-15 2,52E-01 2,61E+00 4,10E+00
vladislavleva-1 9,23E-04 6,48E-03 1,96E-05
vladislavleva-2 9,45E-04 2,11E-02 4,60E-04
vladislavleva-3 3,51E-01 8,65E-01 2,91E-02
vladislavleva-4 2,16E-02 3,35E-02 2,22E-05
vladislavleva-5 4,78E-03 1,34E-01 9,50E-03
vladislavleva-6 1,23E+00 4,36E+00 3,49E+00
vladislavleva-7 1,05E+00 4,19E+00 4,08E+00
vladislavleva-8 1,53E-01 8,99E-01 3,63E-01
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Table C.3: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on the second chromosome on 50 runs tackling each of
the 51 Symbolic Regression instances (First part).

Mutation 2
Best MBF StDev

koza-1 0,00E+00 5,77E-03 1,27E-03
koza-2 0,00E+00 7,04E-05 2,44E-08
koza-3 0,00E+00 4,45E-04 2,49E-06
nguyen-1 0,00E+00 7,82E-03 1,32E-03
nguyen-2 0,00E+00 1,10E-03 2,55E-05
nguyen-3 0,00E+00 9,98E-04 1,34E-05
nguyen-4 0,00E+00 5,56E-04 1,60E-06
nguyen-5 0,00E+00 4,52E-04 7,99E-07
nguyen-6 0,00E+00 1,88E-02 1,04E-03
nguyen-7 0,00E+00 1,39E-02 1,74E-03
nguyen-8 3,16E-11 4,56E-03 6,73E-05
nguyen-9 0,00E+00 5,43E-03 4,30E-05
nguyen-10 0,00E+00 7,00E-03 8,96E-05
pagie-1 2,57E-04 5,41E-02 2,65E-03
pagie-2 1,39E-02 1,74E-01 3,43E-03
korns-1 8,98E-02 4,61E+04 1,88E+10
korns-2 1,34E+02 2,10E+08 2,15E+18
korns-3 3,95E+03 9,66E+11 1,98E+25
korns-4 3,01E-05 4,98E-02 5,83E-02
korns-5 4,84E+29 4,99E+29 2,90E+55
korns-6 4,90E+29 5,01E+29 1,71E+55
korns-7 2,66E+25 1,47E+26 7,12E+51
korns-8 4,89E+29 5,00E+29 2,93E+55
korns-9 7,70E+29 7,76E+29 1,47E+55
korns-10 1,58E+04 1,17E+13 6,80E+27
korns-11 5,94E+01 6,08E+01 3,34E-01
korns-12 1,08E+00 1,11E+00 1,20E-04
korns-13 5,09E+07 7,99E+10 1,01E+23
korns-14 5,50E+05 1,30E+09 4,89E+19
korns-15 5,85E+29 5,95E+29 2,57E+55
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Table C.4: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on the second chromosome on 50 runs tackling each of
the 51 Symbolic Regression instances (Second part).

Mutation 2
Best MBF StDev

keijzer-1 4,08E-04 7,03E-03 1,63E-05
keijzer-2 8,71E-03 4,51E-02 1,15E-04
keijzer-3 6,26E-02 1,18E-01 2,69E-04
keijzer-4 2,76E-02 7,47E-02 6,51E-04
keijzer-5 8,88E-07 6,12E-02 5,19E-03
keijzer-6 4,79E-05 1,96E-01 9,21E-02
keijzer-7 1,38E-04 3,61E-01 1,77E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 5,32E-03 6,64E-01 2,48E-01
keijzer-10 5,51E-03 2,53E-02 3,99E-05
keijzer-11 1,15E-01 1,22E+00 4,95E+00
keijzer-12 3,56E-01 4,51E+01 6,56E+03
keijzer-13 3,71E-01 4,74E+00 8,98E+00
keijzer-14 3,68E-02 5,66E-01 6,06E-02
keijzer-15 2,16E-01 3,61E+00 2,83E+00
vladislavleva-1 2,44E-03 1,47E-02 8,09E-05
vladislavleva-2 1,24E-04 2,89E-02 7,77E-04
vladislavleva-3 1,32E-01 8,94E-01 5,66E-02
vladislavleva-4 2,52E-02 3,73E-02 4,36E-04
vladislavleva-5 3,08E-02 1,71E-01 1,15E-02
vladislavleva-6 1,78E+00 4,63E+00 2,94E+00
vladislavleva-7 1,33E+00 4,54E+00 5,27E+00
vladislavleva-8 1,36E-01 1,12E+00 7,15E-01
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Table C.5: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on both chromosomes on 50 runs tackling each of the 51
Symbolic Regression instances (First part).

Mutation Both
Best MBF StDev

koza-1 0,00E+00 2,02E-04 2,69E-07
koza-2 0,00E+00 5,78E-05 6,42E-09
koza-3 0,00E+00 7,70E-05 3,74E-08
nguyen-1 0,00E+00 1,03E-03 3,17E-05
nguyen-2 0,00E+00 7,43E-04 1,03E-05
nguyen-3 0,00E+00 1,15E-03 1,42E-05
nguyen-4 0,00E+00 4,45E-04 1,15E-06
nguyen-5 0,00E+00 1,95E-04 1,18E-07
nguyen-6 0,00E+00 1,16E-03 1,78E-05
nguyen-7 0,00E+00 2,43E-04 2,88E-07
nguyen-8 1,12E-07 1,82E-03 1,29E-05
nguyen-9 0,00E+00 1,90E-03 5,48E-06
nguyen-10 0,00E+00 6,18E-04 1,74E-06
pagie-1 1,11E-03 3,23E-02 1,20E-03
pagie-2 5,40E-03 1,25E-01 2,86E-03
korns-1 4,90E-03 3,93E+03 7,63E+08
korns-2 3,24E+01 5,83E+06 9,72E+14
korns-3 2,91E+03 1,40E+10 4,48E+21
korns-4 3,46E-05 7,05E-03 4,02E-05
korns-5 4,89E+29 5,01E+29 2,18E+55
korns-6 4,88E+29 5,01E+29 2,57E+55
korns-7 2,33E+21 1,18E+26 6,61E+51
korns-8 4,90E+29 5,00E+29 2,97E+55
korns-9 7,67E+29 7,75E+29 1,46E+55
korns-10 1,74E+04 5,02E+08 8,75E+18
korns-11 5,95E+01 6,05E+01 2,38E-01
korns-12 1,08E+00 1,11E+00 1,72E-04
korns-13 4,29E+07 1,36E+11 2,95E+23
korns-14 5,97E+05 6,53E+07 3,39E+16
korns-15 5,83E+29 5,94E+29 2,39E+55
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Table C.6: Best Fitness, MBF and sample Standard Deviation obtained by the CMP-
GP Approach with mutation on both chromosomes on 50 runs tackling each of the 51
Symbolic Regression instances (Second part).

Mutation Both
Best MBF StDev

keijzer-1 2,44E-05 3,72E-03 1,01E-05
keijzer-2 1,64E-02 3,54E-02 8,11E-05
keijzer-3 5,37E-02 1,02E-01 2,35E-04
keijzer-4 5,50E-03 4,85E-02 6,36E-04
keijzer-5 5,63E-06 2,88E-02 2,28E-03
keijzer-6 1,66E-04 3,38E-02 1,77E-02
keijzer-7 1,84E-04 1,79E-02 4,51E-04
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 6,29E-04 6,98E-02 4,61E-02
keijzer-10 7,39E-04 1,72E-02 1,14E-04
keijzer-11 9,53E-02 3,91E-01 3,21E-02
keijzer-12 1,66E-05 8,21E+00 1,36E+02
keijzer-13 3,70E-01 3,35E+00 4,39E+00
keijzer-14 1,80E-02 4,00E-01 6,93E-02
keijzer-15 1,32E-01 2,05E+00 2,83E+00
vladislavleva-1 6,94E-04 6,34E-03 2,10E-05
vladislavleva-2 3,51E-04 2,26E-02 4,44E-04
vladislavleva-3 3,11E-01 8,68E-01 3,76E-02
vladislavleva-4 1,60E-02 3,24E-02 3,05E-05
vladislavleva-5 3,75E-04 1,07E-01 7,15E-03
vladislavleva-6 1,61E+00 4,54E+00 3,14E+00
vladislavleva-7 1,32E+00 4,59E+00 4,93E+00
vladislavleva-8 9,23E-02 6,80E-01 2,12E-01
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Table C.7: Full 5 number quartile information for CMP-GP with mutation on the first
chromosome on each of the 51 Symbolic Regression test instances (First part).

Mutation 1
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 2,20E-05 2,04E-04 4,09E-03
koza-2 0,00E+00 1,29E-06 1,20E-05 7,72E-05 3,40E-04
koza-3 0,00E+00 1,91E-06 8,09E-06 4,58E-05 4,86E-03
nguyen-1 0,00E+00 0,00E+00 0,00E+00 3,02E-05 2,35E-03
nguyen-2 0,00E+00 0,00E+00 3,23E-05 2,27E-04 6,44E-03
nguyen-3 0,00E+00 0,00E+00 1,02E-04 3,70E-04 1,29E-02
nguyen-4 0,00E+00 2,83E-07 5,80E-05 4,43E-04 2,42E-02
nguyen-5 6,16E-08 1,36E-05 7,16E-05 2,36E-04 1,65E-03
nguyen-6 0,00E+00 0,00E+00 0,00E+00 3,12E-05 4,47E-03
nguyen-7 0,00E+00 1,51E-05 6,66E-05 2,09E-04 2,17E-02
nguyen-8 0,00E+00 4,57E-05 3,12E-04 2,56E-03 3,20E-02
nguyen-9 0,00E+00 1,37E-06 9,58E-04 2,01E-03 6,92E-03
nguyen-10 0,00E+00 8,11E-06 2,27E-04 5,61E-04 2,83E-03
pagie-1 2,12E-03 1,44E-02 3,54E-02 7,80E-02 1,36E-01
pagie-2 9,13E-03 1,24E-01 1,62E-01 1,82E-01 2,49E-01
korns-1 4,03E-02 8,82E+00 1,16E+01 3,96E+01 9,48E+04
korns-2 5,80E+01 1,59E+04 4,31E+04 1,60E+05 2,94E+06
korns-3 2,72E+03 1,53E+06 1,00E+08 1,56E+09 4,12E+13
korns-4 1,07E-05 8,43E-03 8,47E-03 8,54E-03 3,46E-02
korns-5 4,87E+29 4,97E+29 4,99E+29 5,03E+29 5,10E+29
korns-6 4,85E+29 4,97E+29 4,99E+29 5,01E+29 5,08E+29
korns-7 1,53E+25 6,55E+25 1,31E+26 2,30E+26 2,74E+26
korns-8 4,91E+29 4,96E+29 5,00E+29 5,02E+29 5,08E+29
korns-9 7,64E+29 7,71E+29 7,75E+29 7,78E+29 7,88E+29
korns-10 1,48E+04 5,53E+05 5,30E+06 9,75E+07 1,11E+14
korns-11 5,96E+01 6,01E+01 6,05E+01 6,09E+01 6,19E+01
korns-12 1,07E+00 1,10E+00 1,11E+00 1,12E+00 1,15E+00
korns-13 2,20E+07 3,11E+08 1,11E+09 2,10E+10 2,22E+12
korns-14 3,41E+05 1,45E+06 6,28E+06 2,34E+07 9,10E+08
korns-15 5,87E+29 5,92E+29 5,95E+29 5,98E+29 6,04E+29
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Table C.8: Full 5 number quartile information for CMP-GP with mutation on the first
chromosome on each of the 51 Symbolic Regression test instances (Second part).

Mutation 1
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 4,65E-04 1,95E-03 2,86E-03 4,73E-03 1,37E-02
keijzer-2 2,05E-02 3,42E-02 3,87E-02 4,46E-02 5,60E-02
keijzer-3 7,94E-02 9,71E-02 1,05E-01 1,12E-01 1,32E-01
keijzer-4 2,01E-02 5,07E-02 5,99E-02 7,34E-02 1,01E-01
keijzer-5 4,05E-05 1,21E-03 5,29E-03 4,17E-02 2,59E-01
keijzer-6 1,29E-04 9,67E-04 4,13E-03 1,10E-02 6,77E-01
keijzer-7 1,63E-04 5,68E-03 1,35E-02 3,06E-02 8,61E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 7,93E-04 7,16E-03 1,74E-02 4,70E-02 1,01E+00
keijzer-10 9,84E-04 4,44E-03 1,89E-02 2,52E-02 3,73E-02
keijzer-11 3,50E-02 3,24E-01 4,21E-01 5,17E-01 4,17E+00
keijzer-12 1,01E-02 1,69E+00 3,49E+00 9,62E+00 2,04E+02
keijzer-13 2,86E-01 1,65E+00 3,70E+00 4,95E+00 9,12E+00
keijzer-14 4,21E-02 1,88E-01 3,71E-01 5,97E-01 1,16E+00
keijzer-15 2,52E-01 8,65E-01 2,17E+00 4,14E+00 9,04E+00
vladislavleva-1 9,23E-04 3,43E-03 5,10E-03 8,33E-03 1,96E-02
vladislavleva-2 9,45E-04 4,97E-03 1,10E-02 3,87E-02 8,87E-02
vladislavleva-3 3,51E-01 7,52E-01 9,20E-01 9,69E-01 1,18E+00
vladislavleva-4 2,16E-02 3,11E-02 3,35E-02 3,68E-02 4,21E-02
vladislavleva-5 4,78E-03 6,48E-02 1,09E-01 1,98E-01 4,17E-01
vladislavleva-6 1,23E+00 3,11E+00 3,95E+00 5,46E+00 8,86E+00
vladislavleva-7 1,05E+00 2,48E+00 3,94E+00 5,71E+00 8,87E+00
vladislavleva-8 1,53E-01 4,07E-01 7,77E-01 1,29E+00 2,52E+00
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Table C.9: Full 5 number quartile information for CMP-GP with mutation on the sec-
ond chromosome on each of the 51 Symbolic Regression test instances (First part).

Mutation 2
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 1,96E-05 2,21E-04 2,52E-01
koza-2 0,00E+00 1,39E-06 1,53E-05 7,36E-05 1,04E-03
koza-3 0,00E+00 1,79E-06 9,94E-06 2,62E-05 8,28E-03
nguyen-1 0,00E+00 0,00E+00 5,13E-06 4,02E-04 2,53E-01
nguyen-2 0,00E+00 0,00E+00 7,00E-06 1,32E-04 3,49E-02
nguyen-3 0,00E+00 0,00E+00 1,02E-05 1,45E-04 2,08E-02
nguyen-4 0,00E+00 1,64E-07 8,06E-05 4,68E-04 5,80E-03
nguyen-5 0,00E+00 3,22E-06 5,63E-05 4,92E-04 4,67E-03
nguyen-6 0,00E+00 6,97E-06 2,24E-04 3,47E-02 1,20E-01
nguyen-7 0,00E+00 1,88E-05 8,30E-05 5,52E-04 2,01E-01
nguyen-8 3,16E-11 2,50E-04 6,97E-04 5,60E-03 4,54E-02
nguyen-9 0,00E+00 2,79E-04 1,92E-03 1,20E-02 1,99E-02
nguyen-10 0,00E+00 1,02E-04 5,56E-04 1,50E-02 2,57E-02
pagie-1 2,57E-04 5,45E-03 3,47E-02 1,15E-01 1,36E-01
pagie-2 1,39E-02 1,43E-01 1,59E-01 2,32E-01 3,10E-01
korns-1 8,98E-02 1,45E+01 7,68E+01 3,57E+02 4,62E+05
korns-2 1,34E+02 2,44E+04 6,01E+04 2,53E+05 1,04E+10
korns-3 3,95E+03 9,09E+06 1,22E+08 3,88E+09 2,90E+13
korns-4 3,01E-05 8,44E-03 8,48E-03 8,52E-03 1,70E+00
korns-5 4,84E+29 4,96E+29 4,99E+29 5,03E+29 5,12E+29
korns-6 4,90E+29 4,99E+29 5,01E+29 5,04E+29 5,09E+29
korns-7 2,66E+25 6,90E+25 1,37E+26 2,32E+26 2,88E+26
korns-8 4,89E+29 4,97E+29 5,00E+29 5,04E+29 5,09E+29
korns-9 7,70E+29 7,73E+29 7,75E+29 7,78E+29 7,87E+29
korns-10 1,58E+04 8,48E+05 6,23E+06 5,69E+07 5,83E+14
korns-11 5,94E+01 6,05E+01 6,07E+01 6,11E+01 6,26E+01
korns-12 1,08E+00 1,10E+00 1,11E+00 1,11E+00 1,13E+00
korns-13 5,09E+07 2,12E+08 1,12E+09 5,81E+09 2,13E+12
korns-14 5,50E+05 2,36E+06 8,33E+06 5,08E+07 4,86E+10
korns-15 5,85E+29 5,91E+29 5,94E+29 5,98E+29 6,09E+29
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Table C.10: Full 5 number quartile information for CMP-GP with mutation on the
second chromosome on each of the 51 Symbolic Regression test instances (Second
part).

Mutation 2
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 4,08E-04 2,87E-03 8,04E-03 1,18E-02 1,50E-02
keijzer-2 8,71E-03 3,78E-02 4,64E-02 5,59E-02 5,64E-02
keijzer-3 6,26E-02 1,05E-01 1,30E-01 1,30E-01 1,32E-01
keijzer-4 2,76E-02 5,41E-02 7,09E-02 1,01E-01 1,16E-01
keijzer-5 8,88E-07 1,30E-02 4,50E-02 7,36E-02 3,07E-01
keijzer-6 4,79E-05 1,38E-03 1,01E-02 6,77E-01 8,40E-01
keijzer-7 1,38E-04 1,58E-02 3,06E-02 8,54E-01 1,09E+00
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 5,32E-03 2,18E-02 1,01E+00 1,02E+00 1,34E+00
keijzer-10 5,51E-03 2,13E-02 2,48E-02 2,83E-02 4,53E-02
keijzer-11 1,15E-01 4,13E-01 4,73E-01 5,67E-01 9,07E+00
keijzer-12 3,56E-01 4,56E+00 1,02E+01 6,91E+01 4,04E+02
keijzer-13 3,71E-01 2,18E+00 4,29E+00 6,93E+00 1,15E+01
keijzer-14 3,68E-02 4,45E-01 5,53E-01 7,44E-01 1,08E+00
keijzer-15 2,16E-01 2,88E+00 3,57E+00 4,70E+00 6,43E+00
vladislavleva-1 2,44E-03 8,44E-03 1,29E-02 1,76E-02 3,73E-02
vladislavleva-2 1,24E-04 6,98E-03 1,64E-02 5,30E-02 1,01E-01
vladislavleva-3 1,32E-01 7,51E-01 9,30E-01 1,05E+00 1,18E+00
vladislavleva-4 2,52E-02 3,09E-02 3,42E-02 3,79E-02 1,77E-01
vladislavleva-5 3,08E-02 8,34E-02 1,48E-01 2,18E-01 4,60E-01
vladislavleva-6 1,78E+00 3,34E+00 4,52E+00 5,61E+00 8,85E+00
vladislavleva-7 1,33E+00 2,46E+00 4,43E+00 6,23E+00 9,33E+00
vladislavleva-8 1,36E-01 5,00E-01 8,15E-01 1,85E+00 4,01E+00
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Table C.11: Full 5 number quartile information for CMP-GP with mutation on both
chromosomes on each of the 51 Symbolic Regression test instances (First part).

Mutation Both
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 5,98E-06 1,64E-04 3,05E-03
koza-2 0,00E+00 2,89E-06 1,81E-05 8,95E-05 3,38E-04
koza-3 0,00E+00 2,42E-06 1,12E-05 4,31E-05 1,04E-03
nguyen-1 0,00E+00 0,00E+00 0,00E+00 1,87E-05 3,90E-02
nguyen-2 0,00E+00 0,00E+00 1,40E-05 8,08E-05 2,24E-02
nguyen-3 0,00E+00 0,00E+00 4,08E-05 4,61E-04 2,35E-02
nguyen-4 0,00E+00 1,42E-05 1,19E-04 3,90E-04 5,46E-03
nguyen-5 0,00E+00 2,04E-06 3,22E-05 2,23E-04 1,37E-03
nguyen-6 0,00E+00 0,00E+00 1,47E-05 1,52E-04 2,16E-02
nguyen-7 0,00E+00 7,64E-06 5,20E-05 1,95E-04 2,74E-03
nguyen-8 1,12E-07 5,92E-05 3,20E-04 1,33E-03 1,63E-02
nguyen-9 0,00E+00 0,00E+00 5,86E-04 3,57E-03 7,18E-03
nguyen-10 0,00E+00 6,01E-06 2,38E-04 5,69E-04 8,05E-03
pagie-1 1,11E-03 8,28E-03 2,45E-02 4,02E-02 1,63E-01
pagie-2 5,40E-03 8,69E-02 1,36E-01 1,59E-01 2,65E-01
korns-1 4,90E-03 7,10E+00 9,51E+00 1,78E+01 1,95E+05
korns-2 3,24E+01 1,34E+04 3,42E+04 7,88E+04 2,19E+08
korns-3 2,91E+03 6,42E+05 1,38E+07 6,01E+08 4,53E+11
korns-4 3,46E-05 2,53E-04 8,42E-03 8,51E-03 3,63E-02
korns-5 4,89E+29 4,98E+29 5,01E+29 5,03E+29 5,11E+29
korns-6 4,88E+29 4,98E+29 5,02E+29 5,03E+29 5,12E+29
korns-7 2,33E+21 6,09E+25 7,76E+25 2,10E+26 2,63E+26
korns-8 4,90E+29 4,96E+29 4,99E+29 5,04E+29 5,12E+29
korns-9 7,67E+29 7,73E+29 7,76E+29 7,78E+29 7,84E+29
korns-10 1,74E+04 1,06E+06 5,25E+06 2,47E+07 2,10E+10
korns-11 5,95E+01 6,01E+01 6,05E+01 6,09E+01 6,14E+01
korns-12 1,08E+00 1,10E+00 1,11E+00 1,12E+00 1,14E+00
korns-13 4,29E+07 3,04E+08 1,48E+09 1,20E+10 3,50E+12
korns-14 5,97E+05 2,08E+06 7,81E+06 1,74E+07 1,13E+09
korns-15 5,83E+29 5,92E+29 5,94E+29 5,97E+29 6,04E+29



APPENDIX C. IMPACTS OF MUTATION ON CMP-GP 285

Table C.12: Full 5 number quartile information for CMP-GP with mutation on both
chromosomes on each of the 51 Symbolic Regression test instances (Second part).

Mutation Both
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 2,44E-05 1,59E-03 2,58E-03 5,15E-03 1,37E-02
keijzer-2 1,64E-02 2,78E-02 3,64E-02 4,25E-02 5,59E-02
keijzer-3 5,37E-02 9,44E-02 1,04E-01 1,14E-01 1,30E-01
keijzer-4 5,50E-03 2,69E-02 5,35E-02 6,25E-02 9,85E-02
keijzer-5 5,63E-06 1,35E-03 1,10E-02 4,37E-02 2,90E-01
keijzer-6 1,66E-04 9,91E-04 4,36E-03 1,01E-02 6,77E-01
keijzer-7 1,84E-04 2,38E-03 1,05E-02 3,06E-02 1,18E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 6,29E-04 1,02E-02 1,74E-02 1,78E-02 1,01E+00
keijzer-10 7,39E-04 6,69E-03 1,87E-02 2,49E-02 3,85E-02
keijzer-11 9,53E-02 2,98E-01 3,86E-01 4,86E-01 1,25E+00
keijzer-12 1,66E-05 1,26E+00 4,66E+00 1,02E+01 5,47E+01
keijzer-13 3,70E-01 1,85E+00 3,35E+00 4,38E+00 1,02E+01
keijzer-14 1,80E-02 1,68E-01 3,51E-01 5,71E-01 9,84E-01
keijzer-15 1,32E-01 5,83E-01 1,60E+00 3,15E+00 6,33E+00
vladislavleva-1 6,94E-04 2,90E-03 5,29E-03 7,27E-03 1,79E-02
vladislavleva-2 3,51E-04 7,00E-03 1,17E-02 4,96E-02 5,49E-02
vladislavleva-3 3,11E-01 7,57E-01 9,14E-01 9,87E-01 1,18E+00
vladislavleva-4 1,60E-02 2,83E-02 3,32E-02 3,57E-02 4,35E-02
vladislavleva-5 3,75E-04 4,45E-02 8,78E-02 1,48E-01 3,23E-01
vladislavleva-6 1,61E+00 3,06E+00 4,50E+00 6,10E+00 8,00E+00
vladislavleva-7 1,32E+00 2,76E+00 4,28E+00 6,05E+00 9,43E+00
vladislavleva-8 9,23E-02 3,27E-01 5,60E-01 9,20E-01 1,84E+00
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Table C.13: Median and interquartile range information obtained by CMP-GP with
mutation on the first chromosome on all 51 instances of Symbolic Regression problems
(First part).

Mutation 1
Median IQR

koza-1 2,20E-05 2,04E-04
koza-2 1,20E-05 7,59E-05
koza-3 8,09E-06 4,39E-05
nguyen-1 0,00E+00 3,02E-05
nguyen-2 3,23E-05 2,27E-04
nguyen-3 1,02E-04 3,70E-04
nguyen-4 5,80E-05 4,43E-04
nguyen-5 7,16E-05 2,22E-04
nguyen-6 0,00E+00 3,12E-05
nguyen-7 6,66E-05 1,94E-04
nguyen-8 3,12E-04 2,51E-03
nguyen-9 9,58E-04 2,01E-03
nguyen-10 2,27E-04 5,53E-04
pagie-1 3,54E-02 6,36E-02
pagie-2 1,62E-01 5,80E-02
korns-1 1,16E+01 3,08E+01
korns-2 4,31E+04 1,44E+05
korns-3 1,00E+08 1,56E+09
korns-4 8,47E-03 1,11E-04
korns-5 4,99E+29 5,80E+27
korns-6 4,99E+29 4,60E+27
korns-7 1,31E+26 1,65E+26
korns-8 5,00E+29 5,90E+27
korns-9 7,75E+29 7,31E+27
korns-10 5,30E+06 9,69E+07
korns-11 6,05E+01 8,62E-01
korns-12 1,11E+00 1,72E-02
korns-13 1,11E+09 2,07E+10
korns-14 6,28E+06 2,20E+07
korns-15 5,95E+29 6,00E+27
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Table C.14: Median and interquartile range information obtained by CMP-GP with
mutation on the first chromosome on all 51 instances of Symbolic Regression problems
(Second part).

Mutation 1
Median IQR

keijzer-1 2,86E-03 2,77E-03
keijzer-2 3,87E-02 1,04E-02
keijzer-3 1,05E-01 1,48E-02
keijzer-4 5,99E-02 2,27E-02
keijzer-5 5,29E-03 4,05E-02
keijzer-6 4,13E-03 1,00E-02
keijzer-7 1,35E-02 2,49E-02
keijzer-8 0,00E+00 0,00E+00
keijzer-9 1,74E-02 3,98E-02
keijzer-10 1,89E-02 2,07E-02
keijzer-11 4,21E-01 1,93E-01
keijzer-12 3,49E+00 7,93E+00
keijzer-13 3,70E+00 3,30E+00
keijzer-14 3,71E-01 4,09E-01
keijzer-15 2,17E+00 3,27E+00
vladislavleva-1 5,10E-03 4,90E-03
vladislavleva-2 1,10E-02 3,37E-02
vladislavleva-3 9,20E-01 2,17E-01
vladislavleva-4 3,35E-02 5,69E-03
vladislavleva-5 1,09E-01 1,33E-01
vladislavleva-6 3,95E+00 2,35E+00
vladislavleva-7 3,94E+00 3,23E+00
vladislavleva-8 7,77E-01 8,80E-01
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Table C.15: Median and interquartile range information obtained by CMP-GP with
mutation on the second chromosome on all 51 instances of Symbolic Regression prob-
lems (First part).

Mutation 2
Median IQR

koza-1 1,96E-05 2,21E-04
koza-2 1,53E-05 7,22E-05
koza-3 9,94E-06 2,44E-05
nguyen-1 5,13E-06 4,02E-04
nguyen-2 7,00E-06 1,32E-04
nguyen-3 1,02E-05 1,45E-04
nguyen-4 8,06E-05 4,68E-04
nguyen-5 5,63E-05 4,88E-04
nguyen-6 2,24E-04 3,47E-02
nguyen-7 8,30E-05 5,33E-04
nguyen-8 6,97E-04 5,35E-03
nguyen-9 1,92E-03 1,17E-02
nguyen-10 5,56E-04 1,49E-02
pagie-1 3,47E-02 1,10E-01
pagie-2 1,59E-01 8,83E-02
korns-1 7,68E+01 3,42E+02
korns-2 6,01E+04 2,29E+05
korns-3 1,22E+08 3,87E+09
korns-4 8,48E-03 8,08E-05
korns-5 4,99E+29 6,70E+27
korns-6 5,01E+29 5,40E+27
korns-7 1,37E+26 1,63E+26
korns-8 5,00E+29 7,90E+27
korns-9 7,75E+29 4,59E+27
korns-10 6,23E+06 5,61E+07
korns-11 6,07E+01 6,47E-01
korns-12 1,11E+00 1,51E-02
korns-13 1,12E+09 5,60E+09
korns-14 8,33E+06 4,85E+07
korns-15 5,94E+29 7,11E+27
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Table C.16: Median and interquartile range information obtained by CMP-GP with
mutation on the second chromosome on all 51 instances of Symbolic Regression prob-
lems (Second part).

Mutation 2
Median IQR

keijzer-1 8,04E-03 8,94E-03
keijzer-2 4,64E-02 1,81E-02
keijzer-3 1,30E-01 2,49E-02
keijzer-4 7,09E-02 4,66E-02
keijzer-5 4,50E-02 6,07E-02
keijzer-6 1,01E-02 6,76E-01
keijzer-7 3,06E-02 8,38E-01
keijzer-8 0,00E+00 0,00E+00
keijzer-9 1,01E+00 1,00E+00
keijzer-10 2,48E-02 7,01E-03
keijzer-11 4,73E-01 1,53E-01
keijzer-12 1,02E+01 6,45E+01
keijzer-13 4,29E+00 4,76E+00
keijzer-14 5,53E-01 2,99E-01
keijzer-15 3,57E+00 1,82E+00
vladislavleva-1 1,29E-02 9,17E-03
vladislavleva-2 1,64E-02 4,60E-02
vladislavleva-3 9,30E-01 2,94E-01
vladislavleva-4 3,42E-02 6,96E-03
vladislavleva-5 1,48E-01 1,34E-01
vladislavleva-6 4,52E+00 2,27E+00
vladislavleva-7 4,43E+00 3,77E+00
vladislavleva-8 8,15E-01 1,35E+00
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Table C.17: Median and interquartile range information obtained by CMP-GP with
mutation on both chromosome on all 51 instances of Symbolic Regression problems
(First part).

Mutation Both
Median IQR

koza-1 5,98E-06 1,64E-04
koza-2 1,81E-05 8,66E-05
koza-3 1,12E-05 4,07E-05
nguyen-1 0,00E+00 1,87E-05
nguyen-2 1,40E-05 8,08E-05
nguyen-3 4,08E-05 4,61E-04
nguyen-4 1,19E-04 3,76E-04
nguyen-5 3,22E-05 2,21E-04
nguyen-6 1,47E-05 1,52E-04
nguyen-7 5,20E-05 1,87E-04
nguyen-8 3,20E-04 1,27E-03
nguyen-9 5,86E-04 3,57E-03
nguyen-10 2,38E-04 5,63E-04
pagie-1 2,45E-02 3,19E-02
pagie-2 1,36E-01 7,17E-02
korns-1 9,51E+00 1,07E+01
korns-2 3,42E+04 6,54E+04
korns-3 1,38E+07 6,00E+08
korns-4 8,42E-03 8,26E-03
korns-5 5,01E+29 5,00E+27
korns-6 5,02E+29 5,10E+27
korns-7 7,76E+25 1,49E+26
korns-8 4,99E+29 8,20E+27
korns-9 7,76E+29 5,12E+27
korns-10 5,25E+06 2,36E+07
korns-11 6,05E+01 7,48E-01
korns-12 1,11E+00 1,76E-02
korns-13 1,48E+09 1,17E+10
korns-14 7,81E+06 1,54E+07
korns-15 5,94E+29 5,12E+27
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Table C.18: Median and interquartile range information obtained by CMP-GP with
mutation on both chromosome on all 51 instances of Symbolic Regression problems
(Second part).

Mutation Both
Median IQR

keijzer-1 2,58E-03 3,56E-03
keijzer-2 3,64E-02 1,47E-02
keijzer-3 1,04E-01 1,98E-02
keijzer-4 5,35E-02 3,56E-02
keijzer-5 1,10E-02 4,23E-02
keijzer-6 4,36E-03 9,12E-03
keijzer-7 1,05E-02 2,82E-02
keijzer-8 0,00E+00 0,00E+00
keijzer-9 1,74E-02 7,61E-03
keijzer-10 1,87E-02 1,83E-02
keijzer-11 3,86E-01 1,88E-01
keijzer-12 4,66E+00 8,90E+00
keijzer-13 3,35E+00 2,53E+00
keijzer-14 3,51E-01 4,03E-01
keijzer-15 1,60E+00 2,57E+00
vladislavleva-1 5,29E-03 4,36E-03
vladislavleva-2 1,17E-02 4,26E-02
vladislavleva-3 9,14E-01 2,30E-01
vladislavleva-4 3,32E-02 7,42E-03
vladislavleva-5 8,78E-02 1,04E-01
vladislavleva-6 4,50E+00 3,04E+00
vladislavleva-7 4,28E+00 3,28E+00
vladislavleva-8 5,60E-01 5,93E-01
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Table C.19: Comparison between different Mutation setups for CMP-GP. Instances
where the p-value obtained by the Wilcoxon Mann Whitney test was below the 0.05
alpha value are identified (First part).

Base Base Base
vs vs vs

Mutation 1 Mutation 2 Mutation Both
nguyen-1
nguyen-6 Mut 1 Mut B
nguyen-7 Mut 1 Mut B
nguyen-8
nguyen-9
nguyen-10 Mut 1 Mut B
pagie-1
pagie-2 Mut B
korns-1 Mut 1 Mut B
korns-2 Mut 1 Mut 2 Mut B
korns-3 Mut B
korns-4 Mut 1 Mut B
korns-6
korns-7 Mut B
korns-9 Mut 1
korns-11 Mut 1 Mut B
keijzer-1 Mut 1 Mut B
keijzer-2 Mut 1 Mut B
keijzer-3 Mut 1 Mut B
keijzer-4 Mut B
keijzer-5 Mut 1 Mut B
keijzer-6 Mut 1 Mut B
keijzer-7 Mut 1 Mut B
keijzer-8
keijzer-9 Mut 1 Mut B
keijzer-10 Mut 1 Mut B
keijzer-11 Mut B
keijzer-12 Mut 1 Mut B
keijzer-13 Mut B
keijzer-14 Mut 1 Mut B
keijzer-15 Mut 1 Mut B
vladislavleva-1 Mut 1 Mut B
vladislavleva-3 Mut 1 Mut B
vladislavleva-4 Mut 1 Mut B
vladislavleva-5 Mut 1 Mut B
vladislavleva-8
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Table C.20: Comparison between different Mutation setups for CMP-GP. Instances
where the p-value obtained by the Wilcoxon Mann Whitney test was below the 0.05
alpha value are identified (Second part).

Mutation 1 Mutation 1 Mutation 2
vs vs vs

Mutation 2 Mutation Both Mutation Both
nguyen-1 Mut 1
nguyen-6 Mut 1 Mut B
nguyen-7
nguyen-8 Mut B
nguyen-9 Mut 1 Mut B
nguyen-10 Mut 1 Mut B
pagie-1 Mut B
pagie-2 Mut B Mut B
korns-1 Mut 1 Mut B
korns-2
korns-3 Mut B
korns-4 Mut B Mut B
korns-6 Mut 1 Mut 1
korns-7
korns-9
korns-11 Mut B
keijzer-1 Mut 1 Mut B
keijzer-2 Mut 1 Mut B
keijzer-3 Mut 1 Mut B
keijzer-4 Mut 1 Mut B Mut B
keijzer-5 Mut 1 Mut B
keijzer-6 Mut 1 Mut B
keijzer-7 Mut 1 Mut B
keijzer-8
keijzer-9 Mut 1 Mut B
keijzer-10 Mut 1 Mut B
keijzer-11 Mut 1 Mut B
keijzer-12 Mut 1 Mut B
keijzer-13 Mut B
keijzer-14 Mut 1 Mut B
keijzer-15 Mut 1 Mut B
vladislavleva-1 Mut 1 Mut B
vladislavleva-3
vladislavleva-4
vladislavleva-5 Mut B
vladislavleva-8 Mut B
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Table C.21: Comparison between different Mutation setups for the CMP-GP approach.
Number of runs where the error between the best individual and the optima was below
1E �4.

Base Mutation 1 Mutation 2 Mutation Both
koza-1 39 33 31 35
koza-2 37 42 41 38
koza-3 42 42 40 43
nguyen-1 37 42 32 41
nguyen-2 33 33 37 39
nguyen-3 28 25 35 30
nguyen-4 25 31 27 23
nguyen-5 27 29 31 34
nguyen-6 25 42 20 35
nguyen-7 25 32 27 32
nguyen-8 12 16 9 17
nguyen-9 13 13 11 18
nguyen-10 16 19 12 17
korns-4 0 2 1 9
keijzer-1 1 0 0 2
keijzer-5 1 4 3 2
keijzer-6 1 0 1 0
keijzer-12 0 0 0 1

Table C.22: Comparison between different Mutation setups for CMP-GP. Instances
where the p-value obtainded by Taillard’s proportion’s tests was below the 0.05 alpha
value are identified.

Base Base Base
vs vs vs

Mutation 1 Mutation 2 Mutation Both
koza-1 Mut B
nguyen-1
nguyen-3
nguyen-4
nguyen-6 Mut 1 Mut B
nguyen-8
korns-4 Mut B

Mutation 1 Mutation 1 Mutation 2
vs vs vs

Mutation 2 Mutation Both Mutation Both
koza-1
nguyen-1 Mut 1 Mut B
nguyen-3 Mut 2
nguyen-4 Mut 1
nguyen-6 Mut 1 Mut 1 Mut B
nguyen-8 Mut 1 Mut B
korns-4 Mut B Mut B
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Table D.1: Best Fitness, MBF and sample Standard Deviation obtained by Standard
Approach with mutation. Results from 50 runs tackling each of the 51 Symbolic Re-
gression instances (First part).

Standard with Mutation
Best MBF MBF stdev

koza-1 0,00E+00 5,02E-04 2,04E-06
koza-2 8,82E-09 3,35E-04 1,44E-06
koza-3 0,00E+00 5,23E-04 1,70E-06
nguyen-1 0,00E+00 2,05E-03 5,63E-05
nguyen-2 0,00E+00 2,04E-03 1,14E-04
nguyen-3 0,00E+00 7,40E-03 1,94E-03
nguyen-4 0,00E+00 1,51E-03 1,10E-05
nguyen-5 1,25E-08 7,04E-04 2,29E-06
nguyen-6 0,00E+00 1,92E-02 8,52E-04
nguyen-7 1,36E-06 1,25E-02 1,12E-03
nguyen-8 0,00E+00 1,77E-02 2,69E-03
nguyen-9 0,00E+00 7,49E-03 7,11E-05
nguyen-10 0,00E+00 1,44E-02 5,82E-04
pagie-1 1,80E-03 5,96E-02 2,79E-03
pagie-2 2,61E-02 1,88E-01 3,18E-03
korns-1 2,92E+00 1,28E+05 4,27E+10
korns-2 6,73E+02 2,44E+06 1,49E+14
korns-3 1,07E+04 1,42E+17 6,23E+35
korns-4 2,47E-04 1,00E-01 1,66E-01
korns-5 4,88E+29 5,00E+29 2,99E+55
korns-6 4,88E+29 5,00E+29 2,39E+55
korns-7 2,92E+25 1,70E+26 5,58E+51
korns-8 4,86E+29 5,00E+29 2,88E+55
korns-9 7,65E+29 7,76E+29 1,91E+55
korns-10 2,04E+04 1,48E+17 1,09E+36
korns-11 5,86E+01 6,13E+01 6,64E+00
korns-12 1,08E+00 1,11E+00 1,62E-04
korns-13 5,35E+07 8,04E+11 2,23E+25
korns-14 1,11E+06 3,39E+08 2,25E+18
korns-15 5,83E+29 5,94E+29 2,53E+55
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Table D.2: Best Fitness, MBF and sample Standard Deviation obtained by Standard
Approach with mutation. Results from 50 runs tackling each of the 51 Symbolic Re-
gression instances (Second part).

Standard with Mutation
Best MBF MBF stdev

keijzer-1 1,04E-03 7,18E-03 1,63E-05
keijzer-2 1,61E-02 4,84E-02 1,60E-04
keijzer-3 5,82E-02 1,20E-01 3,12E-04
keijzer-4 6,92E-03 7,56E-02 7,68E-04
keijzer-5 1,99E-04 9,62E-02 7,44E-03
keijzer-6 2,36E-04 2,04E-01 8,98E-02
keijzer-7 5,03E-04 2,14E-01 1,16E-01
keijzer-8 0,00E+00 0,00E+00 0,00E+00
keijzer-9 4,88E-04 6,40E-01 2,45E-01
keijzer-10 7,51E-04 2,55E-02 8,19E-05
keijzer-11 2,13E-02 1,09E+00 5,94E+00
keijzer-12 5,36E-01 1,57E+02 6,85E+04
keijzer-13 3,87E-01 4,70E+00 8,58E+00
keijzer-14 1,15E-01 5,51E-01 5,43E-02
keijzer-15 3,00E-01 3,72E+00 3,82E+00
vladislavleva-1 7,04E-04 1,86E-02 8,50E-05
vladislavleva-2 6,11E-04 3,17E-02 9,08E-04
vladislavleva-3 6,66E-02 9,20E-01 7,10E-02
vladislavleva-4 2,30E-02 3,87E-02 2,00E-04
vladislavleva-5 1,59E-02 1,75E-01 9,41E-03
vladislavleva-6 6,58E-01 5,24E+00 3,68E+00
vladislavleva-7 1,10E+00 6,96E+00 7,66E+00
vladislavleva-8 3,46E-02 1,23E+00 7,65E-01
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Table D.3: Full 5 number quartile information for Standard Approach with mutation.
Results for the 51 Symbolic Regression test instances (First part).

Standard with Mutation
Minimum 1st Quartile Median 3rd Quartile Maximum

koza-1 0,00E+00 0,00E+00 1,70E-05 3,74E-04 9,06E-03
koza-2 8,82E-09 7,07E-06 2,26E-05 1,01E-04 8,13E-03
koza-3 0,00E+00 7,94E-06 1,98E-05 1,58E-04 5,56E-03
nguyen-1 0,00E+00 0,00E+00 0,00E+00 3,05E-04 4,15E-02
nguyen-2 0,00E+00 0,00E+00 2,81E-05 4,10E-04 7,53E-02
nguyen-3 0,00E+00 6,38E-07 2,24E-04 1,58E-03 3,12E-01
nguyen-4 0,00E+00 9,89E-05 3,06E-04 1,45E-03 1,70E-02
nguyen-5 1,25E-08 4,97E-06 2,98E-05 6,58E-04 8,22E-03
nguyen-6 0,00E+00 8,55E-05 1,09E-03 3,34E-02 1,03E-01
nguyen-7 1,36E-06 6,01E-05 2,59E-04 4,48E-03 1,96E-01
nguyen-8 0,00E+00 2,80E-04 8,62E-04 5,98E-03 2,48E-01
nguyen-9 0,00E+00 9,37E-04 4,14E-03 1,34E-02 3,12E-02
nguyen-10 0,00E+00 6,77E-04 5,27E-03 1,90E-02 1,16E-01
pagie-1 1,80E-03 1,07E-02 3,99E-02 1,16E-01 1,85E-01
pagie-2 2,61E-02 1,58E-01 1,94E-01 2,35E-01 2,90E-01
korns-1 2,92E+00 2,01E+01 7,77E+01 4,48E+05 4,92E+05
korns-2 6,73E+02 3,77E+04 8,08E+04 3,91E+05 8,55E+07
korns-3 1,07E+04 1,78E+07 2,54E+08 1,04E+10 5,34E+18
korns-4 2,47E-04 8,47E-03 8,52E-03 8,75E-03 2,38E+00
korns-5 4,88E+29 4,97E+29 4,99E+29 5,03E+29 5,11E+29
korns-6 4,88E+29 4,97E+29 5,00E+29 5,03E+29 5,11E+29
korns-7 2,92E+25 8,37E+25 1,85E+26 2,29E+26 2,70E+26
korns-8 4,86E+29 4,97E+29 5,01E+29 5,04E+29 5,13E+29
korns-9 7,65E+29 7,73E+29 7,76E+29 7,79E+29 7,84E+29
korns-10 2,04E+04 6,47E+05 9,85E+06 7,12E+07 7,39E+18
korns-11 5,86E+01 6,06E+01 6,09E+01 6,14E+01 7,85E+01
korns-12 1,08E+00 1,10E+00 1,11E+00 1,12E+00 1,14E+00
korns-13 5,35E+07 5,59E+08 3,38E+09 1,53E+10 3,34E+13
korns-14 1,11E+06 3,61E+06 1,24E+07 5,07E+07 1,01E+10
korns-15 5,83E+29 5,90E+29 5,95E+29 5,98E+29 6,07E+29
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Table D.4: Full 5 number quartile information for Standard Approach with mutation.
Results for the 51 Symbolic Regression test instances (Second part).

Standard with Mutation
Minimum 1st Quartile Median 3rd Quartile Maximum

keijzer-1 1,04E-03 2,70E-03 8,05E-03 1,18E-02 1,30E-02
keijzer-2 1,61E-02 4,16E-02 5,59E-02 5,60E-02 7,16E-02
keijzer-3 5,82E-02 1,13E-01 1,30E-01 1,30E-01 1,34E-01
keijzer-4 6,92E-03 5,61E-02 8,37E-02 1,01E-01 1,16E-01
keijzer-5 1,99E-04 5,30E-02 7,07E-02 8,32E-02 3,31E-01
keijzer-6 2,36E-04 9,33E-03 2,29E-02 6,77E-01 8,35E-01
keijzer-7 5,03E-04 2,02E-02 3,49E-02 1,61E-01 1,01E+00
keijzer-8 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
keijzer-9 4,88E-04 1,75E-02 1,01E+00 1,01E+00 1,35E+00
keijzer-10 7,51E-04 2,05E-02 2,66E-02 3,14E-02 4,06E-02
keijzer-11 2,13E-02 3,78E-01 4,76E-01 5,46E-01 1,31E+01
keijzer-12 5,36E-01 6,93E+00 4,18E+01 1,59E+02 1,13E+03
keijzer-13 3,87E-01 2,41E+00 4,32E+00 7,74E+00 9,64E+00
keijzer-14 1,15E-01 4,01E-01 5,07E-01 7,50E-01 9,92E-01
keijzer-15 3,00E-01 2,43E+00 3,73E+00 4,84E+00 8,78E+00
vladislavleva-1 7,04E-04 1,29E-02 1,97E-02 2,54E-02 3,56E-02
vladislavleva-2 6,11E-04 6,80E-03 1,60E-02 5,42E-02 1,01E-01
vladislavleva-3 6,66E-02 8,54E-01 9,69E-01 1,16E+00 1,18E+00
vladislavleva-4 2,30E-02 3,40E-02 3,65E-02 4,04E-02 1,16E-01
vladislavleva-5 1,59E-02 8,66E-02 1,79E-01 2,61E-01 4,23E-01
vladislavleva-6 6,58E-01 3,48E+00 5,46E+00 6,76E+00 8,73E+00
vladislavleva-7 1,10E+00 5,29E+00 7,22E+00 8,88E+00 1,19E+01
vladislavleva-8 3,46E-02 6,36E-01 1,00E+00 1,65E+00 3,51E+00
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Table D.5: Median and interquartile range information obtained by the Standard Ap-
proach with mutation. Results for the 51 instances of Symbolic Regression problems
(First part).

Standard with Mutation
Median IQR

koza-1 1,70E-05 3,74E-04
koza-2 2,26E-05 9,40E-05
koza-3 1,98E-05 1,50E-04
nguyen-1 0,00E+00 3,05E-04
nguyen-2 2,81E-05 4,10E-04
nguyen-3 2,24E-04 1,58E-03
nguyen-4 3,06E-04 1,35E-03
nguyen-5 2,98E-05 6,53E-04
nguyen-6 1,09E-03 3,33E-02
nguyen-7 2,59E-04 4,42E-03
nguyen-8 8,62E-04 5,70E-03
nguyen-9 4,14E-03 1,24E-02
nguyen-10 5,27E-03 1,83E-02
pagie-1 3,99E-02 1,05E-01
pagie-2 1,94E-01 7,72E-02
korns-1 7,77E+01 4,48E+05
korns-2 8,08E+04 3,53E+05
korns-3 2,54E+08 1,04E+10
korns-4 8,52E-03 2,85E-04
korns-5 4,99E+29 6,90E+27
korns-6 5,00E+29 5,80E+27
korns-7 1,85E+26 1,45E+26
korns-8 5,01E+29 7,20E+27
korns-9 7,76E+29 5,65E+27
korns-10 9,85E+06 7,06E+07
korns-11 6,09E+01 7,80E-01
korns-12 1,11E+00 1,81E-02
korns-13 3,38E+09 1,47E+10
korns-14 1,24E+07 4,71E+07
korns-15 5,95E+29 7,35E+27
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Table D.6: Median and interquartile range information obtained by the Standard Ap-
proach with mutation. Results for the 51 instances of Symbolic Regression problems
(Second part).

Standard with Mutation
Median IQR

keijzer-1 8,05E-03 9,10E-03
keijzer-2 5,59E-02 1,43E-02
keijzer-3 1,30E-01 1,71E-02
keijzer-4 8,37E-02 4,47E-02
keijzer-5 7,07E-02 3,02E-02
keijzer-6 2,29E-02 6,68E-01
keijzer-7 3,49E-02 1,41E-01
keijzer-8 0,00E+00 0,00E+00
keijzer-9 1,01E+00 9,97E-01
keijzer-10 2,66E-02 1,09E-02
keijzer-11 4,76E-01 1,68E-01
keijzer-12 4,18E+01 1,53E+02
keijzer-13 4,32E+00 5,33E+00
keijzer-14 5,07E-01 3,49E-01
keijzer-15 3,73E+00 2,41E+00
vladislavleva-1 1,97E-02 1,24E-02
vladislavleva-2 1,60E-02 4,74E-02
vladislavleva-3 9,69E-01 3,08E-01
vladislavleva-4 3,65E-02 6,39E-03
vladislavleva-5 1,79E-01 1,74E-01
vladislavleva-6 5,46E+00 3,27E+00
vladislavleva-7 7,22E+00 3,59E+00
vladislavleva-8 1,00E+00 1,02E+00
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Table D.7: Comparison between Standard with and without Mutation and each Mate
Choice approach with Mutation on both chromosomes. Instances where the p-value
obtained by the Wilcoxon Mann Whitney test was below the 0.05 alpha value are iden-
tified (First part).

Standard Standard Standard
vs vs vs

Standard Mut PIMP Mut B CMP-GP Mut B
koza-1 Std Mut CMP-GP
koza-2 Std Mut PIMP CMP-GP
koza-3 PIMP
nguyen-1 CMP-GP
nguyen-2 Std Mut PIMP CMP-GP
nguyen-3
nguyen-4 PIMP CMP-GP
nguyen-5 CMP-GP
nguyen-6 PIMP CMP-GP
nguyen-7 PIMP CMP-GP
nguyen-8
nguyen-9 PIMP CMP-GP
nguyen-10 PIMP CMP-GP
pagie-1 PIMP CMP-GP
pagie-2 PIMP CMP-GP
korns-1 PIMP CMP-GP
korns-2 Std Mut PIMP CMP-GP
korns-3 PIMP CMP-GP
korns-4 PIMP CMP-GP
korns-5
korns-7 CMP-GP
korns-10
korns-11
keijzer-1 PIMP CMP-GP
keijzer-2 PIMP CMP-GP
keijzer-3 PIMP CMP-GP
keijzer-4 PIMP CMP-GP
keijzer-5 PIMP CMP-GP
keijzer-6 PIMP CMP-GP
keijzer-7 Std Mut PIMP CMP-GP
keijzer-9 PIMP CMP-GP
keijzer-10 PIMP CMP-GP
keijzer-11
keijzer-12 PIMP CMP-GP
keijzer-13 PIMP CMP-GP
keijzer-14 PIMP CMP-GP
keijzer-15 PIMP CMP-GP
vladislavleva-1 PIMP CMP-GP
vladislavleva-2 CMP-GP
vladislavleva-3 PIMP CMP-GP
vladislavleva-4 CMP-GP
vladislavleva-5 PIMP CMP-GP
vladislavleva-6
vladislavleva-7 PIMP CMP-GP
vladislavleva-8 PIMP CMP-GP
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Table D.8: Comparison between Standard with and without Mutation and each Mate
Choice approach with Mutation on both chromosomes. Instances where the p-value
obtained by the Wilcoxon Mann Whitney test was below the 0.05 alpha value are iden-
tified (Second part).

Standard Mut Standard Mut PIMP Mut B
vs vs vs

PIMP Mut B CMP-GP Mut B CMP-GP Mut B
koza-1 CMP-GP
koza-2 PIMP
koza-3 PIMP
nguyen-1
nguyen-2
nguyen-3 PIMP CMP-GP
nguyen-4 PIMP CMP-GP
nguyen-5 CMP-GP
nguyen-6 PIMP CMP-GP PIMP
nguyen-7 PIMP CMP-GP
nguyen-8 PIMP CMP-GP
nguyen-9 PIMP CMP-GP
nguyen-10 PIMP CMP-GP
pagie-1 PIMP CMP-GP
pagie-2 PIMP CMP-GP CMP-GP
korns-1 PIMP CMP-GP
korns-2 PIMP CMP-GP
korns-3 PIMP CMP-GP
korns-4 PIMP CMP-GP
korns-5 PIMP
korns-7 PIMP CMP-GP
korns-10 PIMP PIMP
korns-11 PIMP CMP-GP
keijzer-1 PIMP CMP-GP
keijzer-2 PIMP CMP-GP CMP-GP
keijzer-3 PIMP CMP-GP
keijzer-4 PIMP CMP-GP CMP-GP
keijzer-5 PIMP CMP-GP
keijzer-6 PIMP CMP-GP
keijzer-7 PIMP CMP-GP
keijzer-9 PIMP CMP-GP
keijzer-10 PIMP CMP-GP
keijzer-11 PIMP CMP-GP
keijzer-12 PIMP CMP-GP
keijzer-13 PIMP CMP-GP
keijzer-14 PIMP CMP-GP
keijzer-15 PIMP CMP-GP
vladislavleva-1 PIMP CMP-GP
vladislavleva-2 CMP-GP
vladislavleva-3 PIMP CMP-GP
vladislavleva-4 CMP-GP CMP-GP
vladislavleva-5 CMP-GP CMP-GP
vladislavleva-6 PIMP CMP-GP
vladislavleva-7 PIMP CMP-GP
vladislavleva-8 PIMP CMP-GP
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Table D.9: Comparison between Standard Approach with and without Mutation with
each Mate Choice approach with Mutation on both chromosomes. Number of runs
where the error between the best individual and the optima was below 1E �4.

Standard Standard Mut PIMP Mut B CMP-GP Mut B
koza-1 18 35 24 35
koza-2 23 36 43 38
koza-3 35 35 44 43
nguyen-1 34 35 39 41
nguyen-2 18 30 32 39
nguyen-3 26 20 29 30
nguyen-4 14 13 24 23
nguyen-5 23 29 26 34
nguyen-6 15 13 43 35
nguyen-7 22 15 30 32
nguyen-8 19 8 15 17
nguyen-9 8 4 24 18
nguyen-10 12 7 33 17
korns-4 1 0 1 9
keijzer-1 1 0 0 2
keijzer-5 2 0 1 2
keijzer-6 1 0 1 0
keijzer-12 0 0 1 1
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Table D.10: Comparison between Standard Approach with and without Mutation and
each Mate Choice approach with Mutation on both chromosomes. Instances where the
p-value obtainded by Taillard’s proportion’s tests was below the 0.05 alpha value are
identified.

Standard Standard Standard
vs vs vs

Standard Mut PIMP Mut B CMP-GP Mut B
koza-1 Std Mut CMP-GP
koza-2 Std Mut PIMP CMP-GP
koza-3 PIMP CMP-GP
nguyen-1 CMP-GP
nguyen-2 Std Mut PIMP CMP-GP
nguyen-3
nguyen-4 PIMP CMP-GP
nguyen-5 CMP-GP
nguyen-6 PIMP CMP-GP
nguyen-7 PIMP CMP-GP
nguyen-8 Std Mut
nguyen-9 PIMP CMP-GP
nguyen-10 PIMP
korns-4 CMP-GP

Standard Mut Standard Mut PIMP Mut B
vs vs vs

PIMP Mut B CMP-GP Mut B CMP-GP Mut B
koza-1 Std Mut CMP-GP
koza-2 PIMP
koza-3 PIMP CMP-GP
nguyen-1
nguyen-2 CMP-GP
nguyen-3 PIMP CMP-GP
nguyen-4 PIMP CMP-GP
nguyen-5 CMP-GP
nguyen-6 PIMP CMP-GP PIMP
nguyen-7 PIMP CMP-GP
nguyen-8 PIMP CMP-GP
nguyen-9 PIMP CMP-GP PIMP
nguyen-10 PIMP CMP-GP PIMP
korns-4 CMP-GP CMP-GP
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Appendix E

Experimental Function Set

Table E.1: Function Sets for studied functions. Terminals for variables (x, y, z, v, w)
not shown. Vladislavleva’s constants are functions with arguments, not terminals: e
is a uniform random value from [�5,5]. Koza’s function set traditionally has optional
[�1,1) constants: but no constants are assumed by default. (Adapted from [193]).

Functions Constants (ERC)
Koza + � ⇥ % sin cos en ln(|n|) None
Korns + � ⇥ % sin cos en ln(|n|) Random finite 64

n2 n3 pn tan tanh -bit IEEE double
Keijzer + ⇥ 1

n �n
p

n Random value from
N(µ = 0,s = 5)

Vladisdalvela-A + � ⇥ % n2 ne n+ e ne
Vladisdalvela-B + � ⇥ % n2 en e�n ne n+ e ne
Vladisdalvela-C + � ⇥ % n2 en e�n sin cos ne n+ e ne
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Table E.2: Symbolic Regression Functions. U [a,b,c] is c uniform random samples
drawn from a to b, inclusive, for the variable. E[a,b,c] is a grid of points evenly spaced
(for this variable) with an interval of c, from a to b inclusive (First Part, adapted from
[193])

Vars Objective Function Training Set
Koza-1, Nguyen-2 1 x4 + x3 + x2 + x U [�1,1,20]
Koza-2 1 x5 �2x3 + x U [�1,1,20]
Koza-3 1 x6 �2x4 + x U [�1,1,20]
Nguyen-1 1 x3 + x2 + x U [�1,1,20]
Nguyen-3 1 x5 + x4 + x3 + x2 + x U [�1,1,20]
Nguyen-4 1 x6 + x5 + x4 + x3 + x2 + x U [�1,1,20]
Nguyen-5 1 sin(x2)cos(x)�1 U [�1,1,20]
Nguyen-6 1 sin(x)+ sin(x+ x2) U [�1,1,20]
Nguyen-7 1 ln(x+1)+ ln(x2 +1) U [0,2,20]
Nguyen-8 1

p
x U [0,4,20]

Nguyen-9 2 sin(x)+ sin(y2) U [0,1,20]
Nguyen-10 2 2sin(x)cos(y) U [0,1,20]
Pagie-1 2 1

1+x�4 +
1

1+y�4 E[�5,5,0.4]
Korns-1 5 1.57+24.3v U [�50,50,10000]
Korns-2 5 0.23+14.2 v+y

3w U [�50,50,10000]
Korns-3 5 �5.41+4.9 v�x+ y

w
3w U [�50,50,10000]

Korns-4 5 �2.3+0.13sin(z) U [�50,50,10000]
Korns-5 5 3+2.13ln(w) U [�50,50,10000]
Korns-6 5 1.3+0.13

p
x U [�50,50,10000]

Korns-7 5 213.80940889(1� e�0.54723748542x) U [�50,50,10000]
Korns-8 5 6.87+11

p
7.23xvw U [�50,50,10000]

Korns-9 5
p

x
lny

ex

v2 U [�50,50,10000

Korns-10 5 0.81+24.3 2y+3z2

4(v)3+5(w)4 U [�50,50,10000]
Korns-11 5 6.87+11cos(7.23x3) U [�50,50,10000]
Korns-12 5 2�2.1cos(9.8x)sin(1.3w) U [�50,50,10000]
Korns-13 5 32�3 tan(x)

tan(y)
tan(z)
tan(v) U [�50,50,10000]

Korns-14 5 22�4.2(cos(x)� tan(y)) tanh(z)
sin(v) U [�50,50,10000]

Korns-15 5 12�6 tan(x)
ey (ln(z)� tan(v)) U [�50,50,10000]
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Table E.3: Symbolic Regression Functions. U [a,b,c] is c uniform random samples
drawn from a to b, inclusive, for the variable. E[a,b,c] is a grid of points evenly spaced
(for this variable) with an interval of c, from a to b inclusive (Second Part, adapted
from [193])

Vars Objective Function Training Set
Keijzer-1 1 0.3xsin(2px) E[�1,1,0.1]
Keijzer-2 1 0.3xsin(2px) E[�2,2,0.1]
Keijzer-3 1 0.3xsin(2px) E[�3,3,0.1]
Keijzer-4 1 x3e�x cos(x)sin(x)(sin2(x)cos(x)�1) E[0,10,0.05]
Keijzer-5 3 30xz

(x�10)y2 x,z : U [�1,1,1000]
y : U [1,2,1000]

Keijzer-6 1 Âx
i

1
i E[1,50,1]

Keijzer-7 1 lnx E[1,100,1]
Keijzer-8 1

p
x E[0,100,1]

Keijzer-9 1 arcsinh(x) E[0,100,1]
Keijzer-10 2 xy U [0,1,100]
Keijzer-11 2 xy+ sin((x�1)(y�1)) U [�3,3,20]
Keijzer-12 2 x4 � x3 + y2

2 � y U [�3,3,20]
Keijzer-13 2 6sin(x)cos(y) U [�3,3,20]
Keijzer-14 2 8

2+x2+y2 U [�3,3,20]

Keijzer-15 2 x3

5 + y3

2 � y� x U [�3,3,20]

Vladislavleva-1 2 e�1(x�1)2

1.2+(y�2.5)2 U [0.3,4,100]
Vladislavleva-2 1 e�xx3(cosxsinx)(cosxsin2 x�1) E[0.05,10,0.1]
Vladislavleva-3 2 e�xx3(cosxsinx)(cosxsin2 x�1)(y�5) x : E[0.05,10,0.1]

y : E[0.05,10.05,2]
Vladislavleva-4 5 10

5+(x�3)2+(y�3)2+(z�3)2+(v�3)2+(w�3)2 U [0.05,6.05,1024]

Vladislavleva-5 3 30 (x�1)(z�1)
y2(x�10) x : U [0.05,2,300]

y : U [1,2,300]
z : U [0.05,2,300]

Vladislavleva-6 2 6sin(x)cos(y) U [0.1,5.9,30]
Vladislavleva-7 2 (x�3)(y�3)+2sin((x�4)(y�4)) U [0.05,6.05,300]
Vladislavleva-8 2 (x�3)4+(y�3)3�(y�3)

(y�2)4+10 U [0.05,6.05,50]
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[80] Nazim Dugan and Şakir Erkoç. Genetic algorithm-Monte Carlo hybrid geome-
try optimization method for atomic clusters. Computational Materials Science,
45(1):127–132, 2009.

[81] William G. Eberhard. Species Isolation, Genital Mechanics, and the Evolu-
tion of Species-Specific Genitalia in Three Species of Macrodactylus Beetles
(Coleoptera, Scarabeidae, Melolonthinae) . Evolution, 46(6):1774–1783, 1992.

[82] William G. Eberhard. Sexual Selection and Animal Genitalia, volume 244. Har-
vard University Press Cambridge, MA, 2014.
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