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Abstract

Equation of state (EOS) of dense matter has been constrained from the experimental data avail-

able on the properties of finite nuclei and neutron stars. Towards this purpose, a diverse set of nuclear

energy density functionals based on relativistic and non-relativistic mean field models have been em-

ployed. These EOSs are so chosen that they are consistent with the bulk properties of the finite nuclei.

The values of various nuclear matter parameters which predominantly govern the behaviour of the

EOS are determined through their correlations with the properties of the neutron stars such as radii,

tidal deformability and maximum mass of the neutron stars. The nuclear matter parameters considered

are incompressibility, symmetry energy and their density derivatives which appear in the expansion

of the EOS around the saturation density. The radii and tidal deformability of the neutron star with

the canonical mass display strong correlations with the linear combinations of slopes of the incom-

pressibility and symmetry energy coefficients. Similar correlations with the curvature of the symmetry

energy coefficient are also obsvered indicating that the properties of the neutron stars are sensitive to

the high density behaviour of the symmetry energy. It is also shown that the giant resonances in nu-

clei are instrumental in limiting the tidal deformability parameter and the radius of a neutron star in

somewhat narrower bounds. The outcomes of the present thesis is important in view of the fact that

the accurate values of the various neutron star observables as considered are expected to be available

in near future.
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Chapter 1

Introduction

1.1 Opening words

Ernest Rutherford discovered the atomic nucleus in 1911 from the scattering of alpha particles

by gold foil. The nucleus contains positively charged protons and electrically neutral neutrons. The

neutron was discovered in 1932 by James Chadwick. The entire mass of an atom is concentrated

on nucleus whose dimension is few femtometers (10−15 meters) whereas the size of an atom is few

angstroms (10−10 meters). An atom denoted by A
ZX, has mass number A = (N + Z), where N is

the number of neutrons, and Z is the number of protons. The number of electrons is the same as

protons. From various scattering experiments, the nuclear radius is found to be r −∼ r0 × A1/3, where

r0 is the radius constant and is ∼ 1.15 fm. Considering a nucleus to be a classical spherical system the

volume will be V = 4
3
πr3 = 4

3
π(r0A

1/3)3 = 4
3
π(r3

0A). The average nucleon density in the nucleus

is ρ0 = A/V = (4/3πr3
0)−1, which is approximately constant and independent of mass number A

of nuclei. The constant value ρ0 ∼ 0.16 fm−3 identified as the saturation density of a hypothetical

system called nuclear matter, an infinite system of an equal number of neutrons and protons where the

Coulomb interaction is switched off.

On the other extreme, compact stars such as neutron stars (NS), observed as pulsars, are believed

to contain matter at few times nuclear saturation density in its core. Neutron stars (NSs) are the ideal

cosmic laboratories to shed light directly or indirectly on different theories of physics as well as on

the physics beyond the standard scenario. To explain and understand the extreme properties of such

stars, one needs to connect different branches of physics including low energy nuclear physics, QCD

under extreme conditions, general theory of relativity (GR) etc. Born out of Supernova, neutron stars

represent one the densest form of matter in the observable universe. Observed masses lie in the range
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of∼ (1−2)M� with radii∼ (10−15)km, where M� is the mass of the sun. The typical values of the

surface magnetic field of neutron stars may range from (1012 − 1018) Gauss. Those with the strongest

magnetic field are called magnetars, and generally, they belong to Soft Gamma Repeaters (SGRs) or

Anomalous X-ray Pulsars (AXPs) [Gomes et al. 2017]. Typical examples of such magnetars are the

1E 1048.1− 5937 and 1E 2259 + 586 with surface magnetic field Bsurf ∼ 1014 Gauss [Melatos 1999],

4U 0142 + 61 (Bsurf ∼ 1016 Gauss) [Makishima et al. 2014] and SGR 1806− 20 (Bsurf ∼ 1014 Gauss)

[Kouveliotou et al. 1998] etc. One can refer to the magnetars catalog available online for more such

examples [Olausen & Kaspi 2014].

The internal structure of the NS depends on the hydrostatic equilibrium between the inward grav-

itational pull of matter and the outward neutron degeneracy pressure. If we assumed the correctness

of GR, to understand the internal structure of NS predominantly, one needs the theory of the behavior

of matter at extreme conditions, i.e., the theory of infinite nuclear matter equation of state (EOS). At

such high densities, the presence of exotic matter in the core can not be ruled out. A soup of particle

resonances such as Λ0, Σ−,0,+,Ξ−,0, etcor of quarks represents an exciting possibility. A star mainly

composed of neutrons will have neutrons at very high chemical potential compared to those of protons.

To maintain chemical potential, eventual β− decay of neutrons can lead to some fraction of protons

and electrons as,

n→ p+ e− + ν̄, (1.1)

n+ ν → p+ e−. (1.2)

To maintain the neutron star matter charge neutral, muons (µ) will appear when the chemical potential

of the electrons reaches the muon rest mass (mµ = 106 MeV). For a given baryon density (ρ = ρn+ρp),

the charge neutrality is given as,

ρp = ρe + ρµ (1.3)

where ρn, ρp and ρµ are the number density of neutron, proton and muons respectively. The β−
equilibrium condition is given as,

µn = µp + µe and µe = µµ (1.4)

where µn,µp, µe and µµ are the chemical potential of neutron, proton, electron and muon respectively.

Terrestrially high density matter can be produced and probed by heavy-ion collision experiments,

but the main difficulty is that the asymmetry is usually small. Neutron stars being highly asymmetric,
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we need to understand the nuclear EOS, conventionally defined as energy (or pressure) as a function

of density, over a wide range of densities. To a good approximation, the EOS can be decomposed into

two parts, (i) EOS for symmetric nuclear matter e(ρ, 0) (ii) and another part that contains the density

dependent symmetry energy coefficient S(ρ),

e(ρ, δ) −∼ e(ρ, 0) + S(ρ)δ2, (1.5)

where e(ρ, δ) is the energy per nucleon at a given density ρ = ρn+ρp with ρn and ρp being the neutron

and proton densities, respectively, and δ = (ρn−ρp)/ρ is the isospin asymmetry. We can recast the EOS

with various bulk nuclear matter properties at saturation density for the symmetric nuclear matter, the

energy per nucleon e0, incompressibility coefficient K0 = 9ρ2
0

(
∂2ε(ρ,0)
∂ρ2

)
ρ0

, skewness parameter Q0 =

27ρ3
0

(
∂3ε(ρ,0)
∂ρ3

)
ρ0

etc, along with parameters pertaining to asymmetric matter like the symmetry energy

coefficient J0 = 1
2

(
∂2ε(ρ,δ)
∂δ2

)
δ=0

[= S(ρ0)], its slope L0 = 3ρ0

(
∂S(ρ)
∂ρ

)
ρ0

and the curvature Ksym,0 =

9ρ2
0

(
∂2S(ρ)
∂ρ2

)
ρ0

etc. These parameters are density derivatives with of the energy and symmetry energy.

Therefore, by constraining the nuclear matter properties at saturation density we can constrain the

density dependent of the EOS for the asymmetric matter. It is difficult to calculate the EOS from ab

initio QCD calculations, especially at supra-saturation densities (ρ >> ρ0) because of the complicated

nonperturbative feature of QCD. And this is the one fundamental issue in nuclear physics, particle

physics, and astrophysics, which is yet to be explored.

1.2 Constraints from terrestrial and astrophysical Data

Data from terrestrial experiments such as finite nuclei, Heavy Ion Collision (HIC) as well as as-

trophysical observations like neutron stars properties are particularly important to constrain the nuclear

matter EOS as well as nucleon-nucleon interactions at high densities. We now outline those empirical

constraints till date in the subsequent sections.

1.2.1 Finite nuclei

At saturation density, the present nuclear constants pertaining to SNM (ε0 and K0) and symmetry

energy coefficients (J0, L0 and Ksym,0), which determine the density dependent of symmetry energy

are listed in Table 1.2.1. These values refer to infinite nuclear matter, but with roots embedded in finite

nuclear observables. To gain accurate knowledge of these parameters, one should also revert to the
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indirect methods such as the correlations of the finite nuclei observables with them at saturation den-

sity. The coefficients pertaining to SNM and symmetry energy relate to the nuclear masses, isoscalar

giant monopole resonances (ISGMR) and isovector giant dipole resonances (IVGDR) energies of finite

nuclei etc. The values of ε0 = −15.88 ± 0.24 MeV and ρ0 = 0.163 ± 0.005 fm−3 are the averages of

the ’best-selected’ nuclear EOSs that give the best fit to the selected nuclear data [Dutra et al. 2012].

The value of nuclear incompressibility K0 can be settled to K0 ∼ 240± 20 MeV [Avogadro & Bertu-

lani 2013, Niksic et al. 2008, Todd-Rutel & Piekarewicz 2005], which gives good agreement with the

experimentally determined centroids of ISGMR, in particular, for 208Pb , 90Zr and 144Sm nuclei. In

Jiang et al. [2012], we find J0 = 32.10 ± 0.31 by analyzing the compact correlation between the

experimental double differences of symmetry energies of finite nuclei and their mass number. The

recent development of various experiments can probe L0, but values differ from one another. Results

from measurements from different experimental observables such as Neutron-skin thickness [Roca-

Maza et al. 2011], Nuclear masses [Lattimer & Prakash 2016, and references therein], iso-vector giant

dipole resonances [Lattimer & Prakash 2016, and references therein], iso-vector giant quadruple res-

onances [Lattimer & Prakash 2016, and references therein] are presented in Fig.1.1. The overlapping

white region of all experiment in Fig.1.1, is said to be the region of 70% confidence (L0 ∼ 40 - 65

MeV). A recent attempt to tighten the bound on L0 from nuclear masses have been made by micro-

scopic calculations [Agrawal et al. 2012a, 2013] on the neutron skin of heavy nuclei and value of L0

is found to be 59± 13 MeV. Other recent attempts from the analysis of the iso-vector giant dipole and

quadruple resonance in the 208Pb Nucleus [Roca-Maza et al. 2013a, b] give L0 = 43 ± 26 MeV and

37± 18 MeV respectively. The value of Ksym,0 plays quite a significant role in determining the density

dependent symmetry energy behavior, at densities ρ >> ρ0. The value ofKsym,0 is poorly known since

one does not know of any probe which is sensitive to it. Across several nuclear models the values of

Ksym,0 lie within a wide range, −700 MeV < Ksym,0 < 400 MeV. In recent studies [Mondal et al.

2017], a strong correlation has been found between Ksym,0 and 3J0 − L0 by analyzing 500 nuclear

models and the value of Ksym,0 is constrained to be −111.8± 71.3 MeV.

1.2.2 HIC and ab-initio methods

The present empirical constraint on EOS (barring the ones at the saturation density) are listed

in Table 1.2. The rows and columns are self explanatory. The first two rows refer to the pressure

of symmetric nuclear matter (SNM). They are obtained from the analysis of directed and elliptic flow

[Danielewicz et al. 2002] and kaon production [Fantina et al. 2014, Fuchs 2006] in heavy ion collisions
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Table 1.1: The present nuclear constants pertaining to SNM (ε0 andK0) and density dependent symmetry energy

(J0, L0 and Ksym,0) at saturation density ρ0.

NMP empirical value (MeV) References

e0 −15.88± 0.24 Dutra et al. 2012

K0 240± 20MeV Stone et al. 2014

J0 32.10± 0.31 Jiang et al. 2012

L0 40± 20 Lattimer & Prakash 2016

Ksym,0 −111.8± 71.8 Mondal et al. 2017

Table 1.2: The present empirical constant on EOS (P (ρ), εn(ρ) and S(ρ) represent pressure, energy per particle

and symmetry energy respectively) corresponding to the symmetric nuclear matter (SNMX), pure neutron mat-

ter (PNMX) and symmetry energy coefficient (SYMX) together with the range of densities in which they are

determined.

Quantity Density region Band/Range References

(fm−3) (MeV)

SNM1 P (ρ) 0.32 to 0.74 HIC Danielewicz et al. 2002

SNM2 P (ρ) 0.19 to 0.33 Kaon exp Fantina et al. 2014, Fuchs 2006

PNM1 εn(ρ) 0.1 10.9± 0.5 Brown 2013

PNM2 εn(ρ) 0.03 to 0.17 N3LO Hebeler et al. 2013

PNM3 P (ρ) 0.32 to 0.73 HIC Danielewicz et al. 2002

PNM4 P (ρ) 0.03 to 0.17 N3LO Hebeler et al. 2013

SYM1 S(ρ) 0.1 24.1± 0.8 Trippa et al. 2008

SYM2 S(ρ) 0.01 to 0.19 IAS,HIC Danielewicz & Lee 2014, Tsang et al. 2009

SYM3 S(ρ) 0.01 to 0.31 ASY-EOS Russotto et al. 2016
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Figure 1.1: Experimental constraints for symmetry energy parameters from different experiments [Lattimer &

Prakash 2016]

(HIC). The next four rows correspond to pure neutron matter (PNM). Its energy at a density ρ =0.1

fm−3 is taken from the ’best-fit’ Skyrme EDFs [Brown 2013]. The information on the energy and

pressure of low density neutron matter is taken from high precision predictions at next-to-next-to-next-

to-leading order (N3LO) in chiral effective field theory [Hebeler et al. 2013, Sammarruca et al. 2015].

The pressure of PNM is the excess over the pressure of SNM due to symmetry energy. It is constructed

theoretically with two extreme parameterizations, the soft (Asy Soft) and the stiff (Asy Stiff) symmetry

energy [Prakash et al. 1988]. Its values are taken from Ref. [Danielewicz et al. 2002]. The last three

rows refer to the symmetry energy coefficients S(ρ) at the densities mentioned in the Table. They

come from three different sources, namely, simulation of low energy HIC in 112Sn+112Sn and 124Sn

+124Sn [Tsang et al. 2009, 2010], nuclear structure studies involving Isobaric Analogue States (IAS)

[Danielewicz & Lee 2014] and Asy-EOS experiments at GSI [Russotto et al. 2016]. In addition, the

value of S(ρ) at ρ =0.1 fm−3 quoted from microscopic analysis of IVGDR in 208Pb is taken [Trippa

et al. 2008] into consideration. These are shown pictorially in Fig. 1.2. Since much of the data are

theoretical, inputs from astrophysical observations are crucial in further constraining the dense matter

EOS.
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Figure 1.2: The constraint on the pressure P (ρ) for SNM (left upper panel), PNM (left lower panel), energy per

neutron εn of PNM (right upper panel) and symmetry energy coefficient S(ρ) (right lower panel) as a function

of baryon density ρ (see Table 1.2).

1.2.3 Neutron Star mass and radius

Theoretically, the maximum allowable mass and radius depend on nuclear EOS at both low and

high densities. Analogously, precise measurements of both neutron star mass and radii can constrain

the nuclear EOS. Because of enormous distances, the direct measurement of the neutron star radius

is a difficult proposition. However, masses are precisely measured. Future observations such as those

planned by NICER (Neutron star Interior Composition Explorer) mission [Arzoumanian et al. 2014,

Gendreau et al. 2016], eXTP (enhanced X-ray Timing and Polarimetry) Mission [Watts et al. 2019],

LOFT (Large Observatory For X-ray Timing) satellite [Wilson-Hodge et al. 2016], and ATHENA

(Advanced Telescope for High Energy Astrophysics) [Motch et al. 2013] may provide the possible

range for radius of a canonical NS (M = 1.4M�) ‘R1.4’. However, the empirical estimates of R1.4

are equal to R1.4 −∼ (11.9 ± 1.22) km [Bauswein et al. 2017, Lim & Holt 2018, Malik et al. 2018a,

Most et al. 2018, Radice & Dai 2019]. Lately, Precise observations of high mass pulsars such as PSR
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J1614−2230 (M = 1.97±0.04)M� [Demorest et al. 2010], PSR J0348+0432 (M = 2.01±0.04)M�

[Antoniadis & et al. 2013] and the recently detected MSP J0740 + 6620 with a mass 2.14
+0.10

−0.09
M�

[Cromartie et al. 2019] have put a bound on the nuclear EOS, which led to serious considerations on

the role of strong interactions at high densities. The mastery of the behavior of EOS of dense matter

relevant to neutron stars (NSs) is one of the main objectives of both nuclear physics and astrophysics to

date [Haensel et al. 2007, Rezzolla et al. 2018b]. Due to the lack of detailed knowledge of the nuclear

interactions at densities typical of the NS interior, many theoretical models have been exploited [Dutra

et al. 2012, 2014].

1.2.4 Multi messenger era

On August 2017, the Advanced LIGO and Advanced Virgo gravitational-wave observatories de-

tected for the first time gravitational waves (GWs) emitted from the inspiral of two low-mass compact

objects which is consistent with a binary neutron star (BNS) merger [Abbott et al. 2017a] and subse-

quently the electromagnetic counterparts are also observed [Abbott et al. 2017b, c, Coulter et al. 2017,

Goldstein et al. 2017, Haggard et al. 2017, Hallinan et al. 2017, Troja et al. 2017]. This discovery

opens a new window to look into the nuclear matter theories relevant to NS. The tidal deformations

of the NSs that come into the analysis of this GW observation data provide relevant constraints on the

uncertainty of parameters of the nuclear equation of matter EOS.

Astrophysical observations are complementary probes for the information in the region of the

dense-matter EOS, which is not experimentally accessible in the laboratory [Rezzolla et al. 2018b].

The NSs are massive and compact astrophysical objects, the coalescence of binary NS systems is one

of the most promising sources of gravitational waves (GWs) observable by ground-based detectors

[Brillet & et al. Virgo Collaboration, Cutler et al. 1993, Drever 1983, Hough & et al. 1989, Taylor &

Weisberg 1982, Thorne 1987]. The GW signals emitted during a NS merger depends on the behavior

of neutron star matter at high densities. Therefore, its detection opens the possibility of constraining

the nuclear matter parameters (NMP) characterizing the EOS [Duez 2010, Faber 2009]. During the last

stages of the inspiral motion of the coalescing neutron stars(NSs), the strong gravity of each of them

induces a tidal deformation in the companion star. Decoding the gravitational wave phase evolution

caused by that deformation allows the determination of the dimensionless tidal deformability parameter

[Binnington & Poisson 2009, Damour & Nagar 2009, Flanagan & Hinderer 2008, Hinderer 2008,

Hinderer et al. 2010]. It is a measure of the response to the gravitational pull on the neutron star surface

correlating with pressure gradients inside the NS and, therefore, it has been proposed as an effective
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Table 1.3: Present constraint on tidal deformability from GW170817 [Abbott et al. 2019]

Chrip MassM = (m1m2)3/5

(m1+m2)1/5
1.186+0.001

−0.001M�

mass ratio q = m1/m2 0.73− 1.00

m1 (1.16 to 1.36) M�

m2 (1.36 to 1.60) M�

Combined Tidal deformability Λ̃ 300+420
−230

probe of the equation of state (EOS) of nuclear matter relevant for neutron stars [De et al. 2018, Malik

et al. 2018a, 2019b]. In the recent studies possible correlations between the tidal deformability of

a NS with the properties of infinite nuclear matter such as the slope and curvature of the symmetry

energy coefficient have been explored widely [Carson et al. 2019, Fattoyev et al. 2018, Malik et al.

2018a, 2019b, Zhang & Li 2019a, b].

1.3 Objectives

The equation state of nuclear matter determines the properties of microscopic nuclei and also

macroscopic celestial objects such as neutron stars, supernova and neutron star merger. The EOS

of neutron-rich nucleonic matter, relevant for neutron star, remains very uncertain at supra-saturation

densities. Some progress has been made in constraining the neutron-rich nucleonic matter EOS over

the years. In particular, the EOS parameters like the nuclear incompressibility K0, symmetry energy

J0 and its slope L0 at saturation density are constrained well by the analysis of the terrestrial nuclear

experiment and astrophysical observations. However, the parameters characterizing the high density

behavior of neutron-rich matter, such as the skewness Q0 of SNM, the curvature parameter Ksym,0 and

the skewness parameter Qsym,0 of the symmetry energy are only loosely known till date. The analysis

of directed and elliptic flow [Danielewicz et al. 2002] and kaon production [Fantina et al. 2014, Fuchs

2006] in heavy ion collisions (HIC) provides a reasonably tight bound for the EOS of SNM up to about

4.5ρ0. On the contrary, results from the efforts to constrain the EOS of dense neutron-rich matter using

heavy-ion reactions that may involve rare isotopes with large neutron/proton ratios, currently are not

in general agreement from the analysis of limited data available [Li 2017].

Observables related to neutron stars such as the mass, radius and quadrupole deformation of
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merging neutron stars depend significantly on the EOS of dense neutron rich matter. The very precise

measured most massive pulsar has put a serious constraint on neutron-rich EOS. Future observations

such as those planned by NICER (Neutron star Interior Composition Explorer) mission are expected to

provide the more precise value of neutron star radii in the coming year. In August 2017, the Advanced

LIGO and Advanced Virgo gravitational-wave observatories detected for the first time GWs emitted

from a binary NS inspiral. Remarkably, this discovery opened a new window in the field of multi-

messenger astronomy and nuclear physics. The analysis of GW170817 predicts that the combined

dimensionless tidal deformability of the NS mergerΛ̃ equals to 300+420
−230.

Studies of the correlations between nuclear matter parameters and the tidal deformability, based

on a few selected relativistic mean field models, have shown that measurements of the latter can con-

strain the high density behavior of the nuclear symmetry energy [Fattoyev et al. 2013] as well as

impose bounds on the value of neutron skin thickness [Fattoyev et al. 2018]. In subsequent studies, it

was found that correlations between the various properties of NS and nuclear matter EOS parameters

are significantly affected when a more diverse set of models are employed [Alam et al. 2015, Fortin

et al. 2016]. These preliminary studies need to be validated, further using a more diverse set of models

for the nuclear EOS.

It is also essential to investigate the compatibility of the value of tidal deformability obtained

from astrophysical observations with the EOS constrained by laboratory data on light nuclei. Through

a combination of laboratory data on light nuclei and sophisticated microscopic modeling of the sub-

saturation EOS from CEFT [Lim & Holt 2018, 2019, Tews et al. 2018, 2019], attempts have been made

to arrive at values of the tidal deformability. The connection of the tidal deformability to the laboratory

data is not yet fully explored. The main objectives, in view of the recent observation GW170817, of

this thesis, are:

• To explore the dependence of the tidal deformability on the various nuclear matter parameters

describing the EOS.

• To perform calculations for tidal deformability and various properties of finite nuclei, in partic-

ular, monopole and dipole giant resonances in addition to binding energy and charge radii using

a diverse set of nuclear models.

• To find the agreement of the nuclear equation of state (EOS) deduced from the GW170817 based

tidal deformability with the one obtained from empirical data on microscopic nuclei.
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1.4 Organization of the Thesis

Broadly, this thesis aims to connect the various aspects of nuclear matter paradigm from proper-

ties of finite nuclei to high density aspects obtained from both experiments and observation of neutron

stars. Here we tried to establish the connection between astrophysical observations to the possible fun-

damental nuclear interactions at high densities. And therefore, after introducing the relevant aspects

of nuclear matter in Chapter 1 here, we discuss the theoretical formalism in Chapter 2. Subsequently,

Chapter 3 is dedicated to the study of possible nuclear interactions at high densities, particularly to the

effect of mesonic cross couplings. The correlations of neutron star properties to the underlying EOS

parameters are presented in Chapter 4. In Chapter 5 we have discussed the possible ways to constrain

the dense matter EOS relevant to neutron stars from the terrestrial and astrophysical observations, in-

cluding the recent results from GW170817. The finding of our work and investigations is concluded in

Chapter 6.
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Chapter 2

Formalism

There are four fundamental forces in nature: electromagnetic, gravitational, weak and strong,

of which strong force is the most dominant one in the nuclear range. This is the force which holds

nucleons together inside the nucleus. Thus obtaining the nuclear matter EOS is the nuclear many body

dynamics. In general the models for nuclear EOS can be broadly categorized into two groups (i) the

relativistic and (ii) the non relativistic models. The theoretical frameworks to calculate the EOS and

neutron star properties employed in the present thesis are briefly outline as follows.

2.1 Field theoretical models

The force between two nucleons is realized by the the exchange of mediating particles called

mesons when the nucleons are close together of the order of femtometer (10−15m). This is the basis

of nuclear interaction in relativistic framework. The prominent masons are the σ, ω and ρ mesons

[Boguta & Bodmer 1977, Boguta & Stoecker 1983, Serot & Walecka 1997, Walecka 1974]. The σ

mesons creates a strong attractive central force and influences the spin-orbit potential, on the other

hand ω-mesons are responsible for the repulsive short range force. The protons and neutrons only

differ in terms of their isospin projections, the ρ mesons are included to distinguish between these

baryons. In this approach, the nuclear interactions are described by a Lagrangian densities L and in

the co-variant formalism the Euler-Lagrange equation for a field ϕ is given by,

∂µ

(
∂L

∂ (∂µϕ)

)
=
∂L
∂ϕ

(2.1)

and the stress-energy tensor T µν is,

T µν =
∂L

∂ (∂µϕ)
∂νϕ− gµνL (2.2)
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where gµν are the components of metric tensor and is given by gµν = Diag[1− 1− 1− 1]. The energy

ε and pressure P of the system in static case is then,

ε =< T00 >

P = 1
3
< Tii >

(2.3)

We have employed two types of Lagrangian densities depending on their symmetries which are de-

scribed bellow.

2.1.1 Effective Chiral Model (ECM)

The Chiral Symmetry is a global symmetry of strong interactions in the strong coupling limit.

The axial vector current is conserved under this symmetry. The model contains chiral symmetry at the

Lagrangian level. However, spontaneous symmetry breaking at ground state leads to a mass-less mode

called Goldstone-Boson mode. The models based on chiral symmetry was introduced by Gell-Mann

& Levy [Gell-Mann & Levy 1960].

The complete Lagrangian for the effective model is [Jha et al. 2006]

L = ψ̄B

[(
iγµ∂

µ − gωγµωµ −
1

2
gρ ~ρµ.~τγ

µ

)
− gσ (σ + iγ5~τ .~π)

]
ψB +

1

2
(∂µ~π.∂

µ~π + ∂µσ∂
µσ)

−λ
4

(
x2 − x2

0

)2 − λb

6m2

(
x2 − x2

0

)3 − λc

8m4

(
x2 − x2

0

)4 − 1

4
FµνF

µν +
1

2
g2
ωx

2 (ωµω
µ)

−1

4
~Rµν . ~Rµν +

1

2
m2
ρ

(
~ρµ. ~ρµ

)
(2.4)

The first line of the above Lagrangian ψ along with its adjoint ψ̄ = ψ†γ0 represent the nucleon

isospin doublet, where γµ are the Dirac matrices and τ are the Pauli matrices. In this model for

hadronic matter, the nucleons interact via the exchange of scalar (σ), vector (ω) and isospin triplet (ρ)

mesons. gσ, gω and gρ are the meson nucleon coupling strength of scalar, vector and the iso-vector

fields, respectively. In the Lagrangian above the vector (ω) meson mass is dynamically generated here

and the non linear term in Lagrangian density is able to produce many body interaction, which is very

relevant in high density condition such as the density in the interior Neutron star.

The potential in the Lagrangian density is a Mexican-Hat type potential (Fig. 2.1), which is

spontaneously broken at ground state vacuum expectation value x0 through interaction of the scalar

and the pseudo scalar mesons with the vector boson. The masses of the scalar mesons(mσ), vector

mesons(mω) and nucleons(mB) are then related to vacuum expectation value of scalar field (x0) and

are given by
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Figure 2.1: Effective potential (a) No spontaneous symmetry braking (b) spontaneous symmetry breaking [Koch

1997].

m = gσx0,mσ =
√

(2λ)x0 and mω = gωx0

where, x2 = ~π2 +σ2, λ = (m2
σ−m2

π)
2f2π

and fπ = x0 is the pion decay constant. In the mean field treatment

the explicit roll of pion is ignored and hence mπ = 0. The mesonic fields are then the classical fields

i.e., without any quantum fluctuation.

2.1.2 Relativistic Mean Field Model (RMF)

The effective Lagrangian for the RMF models, we have employed in the present work can be

grouped into two categories, namely (i) the coupling constants are independent of the density and the

mesonic field couples linearly to the nucleons describing their interactions along with the non-linear

terms as well, and (ii) density dependent couplings. The Lagrangian density will be L = LB + Lint,

where

LB = ψ̄

[
γµ
(
i∂µ − gvVµ − gρ~τ .~bµ

)
− (Mn + gsφ)

]
ψ. (2.5)

and

Lint = ψ

[
gσσ − γµ

(
gωωµ +

1

2
gρτ.ρµ +

e

2
(1 + τ3)Aµ

)]
ψ − κ3

6M
gσm

2
σσ

3

− κ4

24M2
g2
σm

2
σσ

4 +
1

24
ζ0g

2
ω(ωµω

µ)2 +
η2ρ

4M2
g2
ωm

2
ρωµω

µρνρ
ν (2.6)

Where the symbols have usual meaning and the details can be found in Refs. [Boguta & Bodmer 1977,

Boguta & Stoecker 1983, Furnstahl et al. 1997, Todd-Rutel & Piekarewicz 2005]. The parameters gσ,

gω and gρ describe the strength of the couplings of baryon(ψ) with σ, ω and ρ mesons.

For the density-dependent meson-exchange model [Lalazissis et al. 2005] interaction part of the

Lagrangian does not contain any non-linear term, but, the meson-nucleon strengths gσ, gω and gρ have

an explicit density dependence in the following form:

gi(ρ) = gi(ρ0)fi(x), for i = σ, ω (2.7)
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where the density dependence is given by

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ ei)2
(2.8)

in which x is given by x = ρ/ρ0, and ρ0 denotes the baryon density at saturation in symmetric nuclear

matter. For the ρ meson, density dependence is of exponential form and given by

fρ(x) = exp(−aρ(x− 1)) (2.9)

The coupling strengths in Eqs. (2.5) and (2.6) are usually calibrated to reproduce the measured binding

energies, charge radii and the properties of giant resonances.

2.2 Non relativistic Model

The non relativistic models are based on the use of nucleon-nucleon potential together with varia-

tional method. The Skyrme-Hartree-Fock model (SHF) is most popular non-relativistic self-consistent

method. Skyrme force is an effective nucleon-nucleon interaction which was originally introduced by

Skyrme in 1956 [Skyrme 1956]. It is a widely used energy density functional which is a zero-range mo-

mentum dependent method employed to describe the gross properties of finite nuclei. This zero-range

interaction is easy to handle in the Hartree-Fock calculation. However, the momentum dependence of

the zero-range force accounts for the finite-range effect between the nucleons. In the Skyrme force, the

effects of many-body interaction are also included through the density dependent two body interaction.

The total energy E of the system can be expressed as,

E =

∫
H(r)d3r (2.10)

where, the Skyrme energy density functional H(r) is given by [Chabanat et al. 1997, Vautherin &

Brink 1972],

H = K +H0 +H3 +Heff +Hfin +Hso +Hsg +HCoul (2.11)

where, K = ~2
2m
τ is the kinetic energy term,H0 is the zero-range term,H3 the density dependent term,

Heff an effective-mass term, Hfin a finite-range term, Hso a spin-orbit term, Hsg a term due to tensor

coupling with spin and gradient andHCoul is the contribution to the energy density due to the Coulomb

interaction. For the Skyrme interaction we have,

H0 =
1

4
t0
[
(2 + x0)ρ2 − (2x0 + 1)(ρ2

p + ρ2
n)
]
, (2.12)
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H3 =
1

24
t3ρ

α
[
(2 + x3)ρ2 − (2x3 + 1)(ρ2

p + ρ2
n)
]
, (2.13)

Heff =
1

8
[t1(2 + x1) + t2(2 + x2)] τρ+

1

8
[t2(2x2 + 1)− t1(2x1 + 1)] (τpρp + τnρn), (2.14)

Hfin =
1

32
[3t1(2 + x1)− t2(2 + x2)] (∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)]

[
(∇ρp)2 + (∇ρn)2

]
, (2.15)

Hso =
W0

2
[J · ∇ρ+ Jp · ∇ρp + Jn · ∇ρn] , (2.16)

Hsg = − 1

16
(t1x1 + t2x2)J2 +

1

16
(t1 − t2)

[
Jp

2 + Jn
2
]
. (2.17)

Here, ρ = ρp + ρn, τ = τp + τn, and J = Jp + Jn are the particle number density, kinetic energy

density and spin density with p and n denoting the protons and neutrons, respectively. We have used the

value of ~2/2m = 20.734 MeVfm2 in our calculations. For the case of uniform matter, Hfin,Hso,Hsg

andHCoul do not contribute.

Further, the H(∇) depends only on the ρp and ρn and is independent of position coordinate r,

H(r) → E(ρp, ρn) The energy per nucleon, ε(ρp, ρn),= E(ρp,ρn)

ρ
can be expressed in terms of the total

density ρ and the asymmetry parameter δ = ρn−ρp
ρ

as,

ε(ρ, δ) =
3

5

~2

2m

(
3π2

2

)2/3

ρ2/3F5/3 +
1

8
t0ρ[2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3ρ

σ+1[2(x3 + 2)− (2x3 + 1)F2]

+
3

40

(
3π2

2

)2/3

ρ5/3

{
[t1(x1 + 2) + t2(x2 + 2)]F5/3 +

1

2
[t2(2x2 + 1)− t1(2x1 + 1)]F8/3

}
(2.18)

Fm(δ) =
1

2
[(1 + δ)m + (1− δ)m] (2.19)

Once the Skyrme parameters are known, the EOS for nuclear matter at any given asymmetry δ can be

obtained using Eq. (2.18). To a good approximation, the EOS can also be expressed in terms of various

nuclear matters calculated at the saturation density ρ0.

2.3 Nuclear matter parameter (NMP)

The EOS to a good approximation can be decomposed into the EOS for the symmetric matter and

the density dependent symmetry energy as,
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ε(ρ, δ) = ε(ρ, δ = 0) + S(ρ)δ2 (2.20)

The EOS for the symmetric nuclear matter ε(ρ, δ = 0) and symmetry energy S(ρ) can be further

expressed in terms of the nuclear matter properties at the saturation density ρ0 as,

ε(ρ, 0) = ε0 +
1

2
K0

(
ρ− ρ0

3ρ0

)2

+
1

6
Q0

(
ρ− ρ0

3ρ0

)3

, (2.21)

S(ρ) = J0 + L0

(
ρ− ρ0

3ρ0

)
+

1

2
Ksym,0

(
ρ− ρ0

3ρ0

)2

. (2.22)

ε0 = ε(ρ0, δ = 0) (2.23)

The quantities appearing in Eqs. (2.21) and (2.23) are the incompressibility coefficient (K0),

skewness parameter(Q0), symmetry energy coefficient (J0), it’s slope (L0) and the curvature parame-

ters (Ksym,0). They are defined as follows,

K0 = 9ρ2
0

(
∂2ε(ρ, 0)

∂ρ2

)
ρ0

(2.24)

Q0 = 27ρ3
0

(
∂3ε(ρ, 0)

∂ρ3

)
ρ0

(2.25)

M0 = 12K0 +Q0 (2.26)

J0 =
1

2

(
∂2ε(ρ0, δ)

∂δ2

)
δ=0

(2.27)

L0 = 3ρ0

(
∂S(ρ)

∂ρ

)
ρ0

(2.28)

Ksym,0 = 9ρ2
0

(
∂2S(ρ)

∂ρ2

)
ρ0

(2.29)

Similarly, the nuclear incompressibility (K) of asymmetric nuclear matter can also be expanded

in terms of δ at ρ0 as K(δ) = K +Kτδ
2 +O(δ4) , where δ = (ρn−ρp)

ρ
is the isospin asymmetry and Kτ

is given by [Chen et al. 2009]

Kτ = Ksym,0 − 6L0 −
Q0L0

K0

, (2.30)

17



2.4 Structure and dynamics of neutron star

The properties of neutron stars can be obtained by solving Tolman-Oppenheimer-Volkoff (TOV)

equations [Weinberg 1972]. The TOV Equation for static and spherical case is,

dP

dr
= −Gε(r)m(r)

c2r2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

m(r)c2

] [
1− 2Gm(r)

c2r

]
(2.31)

dm

dr
= 4πr2ε(r) (2.32)

where, G and c are the gravitational constant and speed of light respectively. P (r), ε(r) and m(r) are

the pressure, energy density and mass of the neutron star which is the function of distance r from the

center of the spherical star. The boundary conditions p(0) = pc and m(0) = 0, where pc and m(0) are

the pressure and mass at the center of the NS. The main physics input to the TOV equations is the

EOS, which are calculated using the models as described in the preceding sections. The solutions of

the TOV equations are the mass-radius for a sequence of static star. These solutions are also used to

calculate the tidal deformability parameter as discussed bellow.

2.4.1 Tidal deformability

The gravitational wave form evolution caused by the tidal deformation of BNS systems depend

on the EOS of high density matter. The tidal deformation during the last orbits before merger has

been studied [Annala et al. 2018, Damour & Nagar 2009, Damour et al. 2012, Favata 2014, Flanagan

& Hinderer 2008, Harry & Hinderer 2018, Hinderer 2008, Hinderer et al. 2010, Messenger & Read

2012, Narikawa et al. 2018, Read et al. 2009, 2013]. The tidal deformability parameter λ is defined as

Qij = −λEij, (2.33)

where Qij is the induced quadrupole moment of a star in a binary due to the static external tidal field

Eij of the companion star. The parameter λ can be expressed in terms of the dimensionless quadrupole

tidal Love number k2 as

λ =
2

3
k2R

5, (2.34)

where R is the radius of the NS. The value of k2 is typically in the range −∼ 0.05 − 0.15 [Hinderer

2008, Hinderer et al. 2010, Postnikov et al. 2010] for NSs and depends on the stellar structure. This

quantity can be calculated using the following expression [Hinderer 2008]

k2 =
8C5

5
(1− 2C)2 [2 + 2C (yR − 1)− yR]× (2.35)
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{
2C (6− 3yR + 3C(5yR − 8))

+4C3
[
13− 11yR + C(3yR − 2) + 2C2(1 + yR)

]
+3(1− 2C)2 [2− yR + 2C(yR − 1)] log (1− 2C)

}−1

,

where C (≡ m/R) is the compactness parameter of the star of mass m. The quantity yR (≡ y(R)) can

be obtained by solving the following differential equation

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (2.36)

with

F (r) =
r − 4πr3 (ε(r)− p(r))

r − 2m(r)
, (2.37)

Q(r) =
4πr

(
5ε(r) + 9p(r) + ε(r)+p(r)

∂p(r)/∂ε(r)
− 6

4πr2

)
r − 2m(r)

− 4

[
m(r) + 4πr3p(r)

r2 (1− 2m(r)/r)

]2

. (2.38)

In the previous equations,m(r) is mass enclosed within the radius r, and ε(r) and p(r) are, respectively,

the energy density and pressure in terms of radial coordinate r of a star. These quantities are calculated

within the nuclear matter model chosen to describe the stellar EOS. For a given EOS, Eq.(2.36) can

be integrated together with the TOV with the boundary conditions y(0) = 2, p(0) = pc and m(0) = 0,

where y(0), pc and m(0) are the dimensionless quantity, pressure and mass at the center of the NS,

respectively. One can then define the dimensionless tidal deformability: Λ = 2
3
k2C

−5. The tidal

deformabilities of the NSs present in the binary neutron star system can be combined to yield the

weighted average as,

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (2.39)

where Λ1 and Λ2 are the individual tidal deformabilities corresponding to the two components in the

NS binary with masses m1 and m2, respectively [Favata 2014, Flanagan & Hinderer 2008] with q =

m2/m1 < 1.
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Chapter 3

Nuclear interactions at high densities in

effective chiral model

3.1 Background

The models based on chiral symmetry was introduced by Gell-Mann & Levy [Gell-Mann & Levy

1960]. The importance of chiral symmetry in the study of nuclear matter was emphasized by Lee &

Wick [Lee & Wick 1974]. However, the linear chiral sigma models fail to describe properties of finite

nuclei. In such models, the normal vacuum jumps to a chirally restored abnormal vacuum (Lee-Wick

vacuum)[Lee & Margulies 1975, Lee & Wick 1974]. This phenomenon is referred to as chiral collapse

problem [Thomas et al. 2004] and it can be overcome mainly in two ways. One of the approaches

is to incorporate logarithmic terms of the scalar field in chiral potentials [Furnstahl & Serot 1993,

Heide et al. 1994, Mishustin et al. 1993, Papazoglou et al. 1997, 1998] which prevents the normal

vacuum from collapsing. This class of chiral models are phenomenologically successful in describing

finite nuclei [Schramm 2002, Tsubakihara & Ohnishi 2007, Tsubakihara et al. 2007, 2010]. However,

these models explicitly break the chiral symmetry and are divergent when chiral symmetry is restored

[Furnstahl & Serot 1993].

Alternatively, the chiral collapse problem is prevented by generating the isoscalar-vector meson

mass dynamically via Spontaneous Symmetry Breaking (SSB) by coupling the isoscalar-vector mesons

with the scalar mesons [Boguta 1983, Sahu et al. 1993]. However, the main drawback of all these

models was the unrealistic high nuclear incompressibility (K). Later on, in several attempts, the higher

order terms of scalar meson field [Jha & Mishra 2008, Sahu & Ohnishi 2000, Sahu et al. 2004] were

introduced to ensure a reasonableK at saturation density. The non-linear terms in the chiral Lagrangian
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can provide the three-body forces [Logoteta et al. 2015] which might have important roles to play

at high densities. The effective chiral model has been used to study nuclear matter aspects such as

matter at low density and finite temperature [Sahu et al. 2004], NS structure and composition [Jha

et al. 2006] and nuclear matter saturation properties. As emphasized in Ref. [Sahu et al. 2004], the

model parameters are constrained and related to the vacuum expectation value of the scalar field. Since

the mass of the isoscalar-vector meson is dynamically generated, practically there are very few free

parameters to adjust the saturation properties. However, this type of models had a couple of drawbacks.

They yield the symmetry energy slope parameter, L ∼ 90 MeV, which is a little too large. Also, the

symmetry energy at 0.1 fm−3 baryon density is∼ 22 MeV, which is lower than the presently estimated

value [Roca-Maza et al. 2013a, Trippa et al. 2008].

In this chapter, we employ the effective chiral model in which chiral symmetry breaks sponta-

neously. We extend this model by including the cross-couplings of σ and ω mesons with the ρ meson.

We would like to see whether these terms in the interaction help in fixing the values of symmetry en-

ergy and its slope parameter at the saturation density. We study the effects of the cross-couplings on

the Equation of State (EOS) for Asymmetric Nuclear Matter (ANM). The effects of the crustal EOS

on the mass and the radius of NS are evaluated using the method suggested recently by Zdunik et al

[Zdunik et al. 2017].

3.2 Mesonic cross coupling

The complete Lagrangian density for the effective chiral model which includes the various cross-

coupling terms is given by,

L = L′ + L×, (3.1)

where,

L′ = ψ̄B

[(
iγµ∂

µ − gωγµωµ −
1

2
gρ ~ρµ.~τγ

µ

)
− gσ(σ + iγ5~τ .~π)

]
ψB +

1

2
(∂µ~π.∂

µ~π + ∂µσ∂
µσ)

− λ

4

(
x2 − x2

0

)2 − λb

6m2
(x2 − x2

0)3

− λc

8m4
(x2 − x2

0)4 − 1

4
FµνF

µν +
1

2
g2
ωx

2 (ωµω
µ)

− 1

4
~Rµν . ~Rµν +

1

2
m′ρ

2
~ρµ. ~ρµ, (3.2)
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and

L× = η1

(
1

2
g2
ρx

2 ~ρµ. ~ρµ
)

+ η2

(
1

2
g2
ρ ~ρµ. ~ρ

µωµω
µ

)
. (3.3)

Here, ψB is the nucleon isospin doublet interacting with different mesons σ, ω and ρ, with the respective

coupling strengths gi, with i = σ, ω and ρ. The b and c are the strength for self couplings of scalar

fields. The γµ are the Dirac matrices and τ are the Pauli matrices. L′ (Eq. (3.2)) is the original

Lagrangian given in Ref. [Jha et al. 2006]. Note that potential for the scalar fields (π, σ) are written in

terms of a chiral invariant field x given by x2 = π2 + σ2.

L× (Eq. (3.3)) is the new additional piece we add to the original Lagrangian given in [Jha et al.

2006]. It contains cross-coupling terms between ρ and ω and also between ρ and σ. The coupling

strength for σ − ρ and ω − ρ are given by η1g
2
ρ and η2g

2
ρ respectively. The interaction of the scalar (σ)

and the pseudo-scalar (π) mesons with the isoscalar-vector meson (ω) generates a dynamical mass for

the ω meson through SSB of the chiral symmetry with scalar field attaining the vacuum expectation

value x0. Then the mass of the nucleon (m), the scalar (mσ) and the vector meson mass (mω), are

related to x0 (vacuum expectation of x) through

m = gσx0, mσ =
√

2λx0, mω = gωx0 , (3.4)

where, λ = (m2
σ−m2

π)
2f2π

and fπ = x0 is the pion decay constant, which reflects the strength of SSB. In Eq.

(3.3) when η1 6= 0 there is a cross-interaction between ρ and σ. Hence a fraction of ρ meson mass will

come from SSB. The mass of ρ meson (mρ) in this model then will be related to vacuum expectation

of x through

m2
ρ = m′ρ

2
+ η1g

2
ρx

2
0. (3.5)

In the mean field treatment the explicit role of pion mass is ignored and hence mπ = 0 and mesonic

field is assumed to be uniform, i.e., without any quantum fluctuation. Then, the isoscalar-vector field ω

is of the form ωµ = ω0δ
0
µ, where δ0

µ is Kronecker delta. Note that ω0 does not depend on space-time but

it depends on baryon density (ρ). The vector field (ω), scalar field (σ) and isovector field (ρ0
3) equations

(in terms of Y = x/x0 = m∗/m) are, respectively, given by:[
m2
ωY

2 + η2Cρm
2
ρ(ρ

0
3)2
]
ω0 = gωρ, (3.6)

(1− Y 2)− b

m2Cω
(1− Y 2)2 +

c

m4C2
ω

(1− Y 2)3

+
2Cσm

2
ωω

2
0

m2
+

2η1CσCρm
2
ρ(ρ

0
3)2

Cωm2
− 2Cσρs

mY
= 0, (3.7)
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m2
ρ

[
1− η1(1− Y 2)Cρ/Cω + η2Cρω

2
0

]
ρ0

3 =
1

2
gρ(ρp − ρn). (3.8)

The quantity ρ and ρS are the baryon and the scalar density defined as,

ρ =
γ

(2π)3

∫ kF

0

d3k, (3.9)

ρs =
γ

(2π)3

∫ kF

0

m∗√
m∗2 + k2

d3k, (3.10)

where, kF is the baryon fermi momentum and γ ( for example, γ = 4 for Symmetric Nuclear Matter

(SNM)) is the spin degeneracy factor. Cσ ≡ g2
σ/m

2
σ , Cω ≡ g2

ω/m
2
ω and Cρ ≡ g2

ρ/m
2
ρ are the scalar,

vector and isovector coupling parameters. The energy density (ε) and pressure (p) for a given baryon

density (in terms of Y = m∗/m) in this model is obtained from the stress-energy tensor, which is given

as

ε =
1

π2

∑
kn,kp

∫ kF

0
k2
√
k2 +m∗2dk +

m2

8Cσ
(1− Y 2)2

− b

12CσCω
(1− Y 2)3 +

c

16m2CσC2
ω

(1− Y 2)4 +
1

2
m2
ωω

2
0Y

2

+
1

2
m2
ρ

[
1− η1(1− Y 2)(Cρ/Cω) + 3η2Cρω

2
0

]
(ρ0

3)2, (3.11)

p =
1

3π2

∑
kn,kp

∫ kF

0

k4

√
k2 +m∗2

dk − m2

8Cσ
(1− Y 2)2

+
b

12CσCω
(1− Y 2)3 − c

16m2CσC2
ω

(1− Y 2)4 +
1

2
m2
ωω

2
0Y

2

+
1

2
m2
ρ

[
1− η1(1− Y 2)(Cρ/Cω) + η2Cρω

2
0

]
(ρ0

3)2. (3.12)

For SNM we have to set kn = kp and ρ0
3 = 0. As our present knowledge of nuclear matter is mainly

confined to normal nuclear matter density (ρ0), coupling constants Cσ ≡ g2
σ/m

2
σ and Cω ≡ g2

ω/m
2
ω are

not free parameters in the Eqs.(3.11,3.12). To obtain Cσ and Cω, we solve the field equations (Eqs.

(3.6-3.8)) self consistently while satisfying the nuclear saturation properties. Note that for different

values of Y = x0/x = m∗/m, we get different values of Cσ and Cω.

After inclusion of cross interactions L× (Eq. (3.3)) the modified symmetry energy S(ρ) in this

model is

S(ρ) =
k2
F

6
√
k2
F +m∗2

+
Cρk

3
F

12π2(m∗ρ/mρ)2
+

η2C
2
ρω

2
0k

3
F

6π2(m∗ρ/mρ)4
−

2η2C
2
ρCωk

9
F

27π6m2
ωY

4(m∗ρ/mρ)4
, (3.13)

where,m∗2ρ = m2
ρ

[
1−η1(1−Y 2)(Cρ/Cω)+η2Cρω

2
0

]
and kF = (3π2ρ/2)1/3. The coupling parameters

Cρ,η1 and η2 can be evaluated numerically by fixing symmetry energy S(ρ) and its slope parameter L

at saturation density (ρ0). Without cross-couplings (η1 = η2 = 0) we revert back to the Lagrangian

given in [Jha et al. 2006]
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Table 3.1: List of the model parameters determined from the properties of SNM such as, energy per nucleon

E0 = −16 MeV, nuclear incompressibilityK = 247 MeV and the nucleon effective mass Y = m∗/m = 0.864

at the saturation density ρ0 = 0.153 fm−3. The scalar and vector meson coupling parameters are Cσ = g2
σ/m

2
σ

and Cω = g2
ω/m

2
ω respectively. B = b/m2 and C = c/m4 are the parameters for the higher order self-couplings

of the scalar field with m being the nucleon mass. The nucleon, ω meson and σ meson masses are 939 MeV,

783 MeV and 469 MeV respectively.

Cσ Cω B C

(fm2) (fm2) (fm2) (fm4)

7.057 1.757 -5.796 0.001

3.3 Symmetric nuclear matter properties

As can be seen from the preceding section that the EOS of the SNM are determined by the

coupling parameters Cσ, Cω, b and c (Eqs. (3.11,3.12)). The values of these coupling parameters and

resulting SNM properties at the saturation density are listed in Table 3.1. The values of the model

parameters lie in the stable region [Sahu et al. 2010].

3.4 Density dependence of symmetry energy S(ρ)

The density dependence of symmetry energy S(ρ) is obtained by using three different variants of

the present model. We consider the case of no cross-coupling (NCC), the σ − ρ cross-coupling (SR)

and the ω − ρ cross-coupling (WR). Since the NCC model has only one free parameter (i.e., Cρ) there

is not enough freedom to vary J0 and L independently. However, the SR and WR models can provide

some flexibility to adjust them. Note that, in comparison to the earlier models (i.e., NCC type), the

inclusion of cross-couplings have important implications on S(ρ). The effects of the cross-couplings

grow stronger at high densities which are relevant for the study of NS properties.

In Table 3.2 we list the values of coupling constants (Cρ, η1 and η2) and the resulting nuclear

matter properties: J0, L, Ksym, Qsym and Kτ at the saturation density ρ0 and J1 - the symmetry energy

at ρ1 = 0.1 fm−3. For the NCC, Cρ is adjusted to yield J0 = 32.5 MeV. For SR(WR) model, the value

of Cρ and η1(η2) are adjusted to yield J0 = 32.5 MeV and L = 65 MeV. These values are compatible

with J0 = 31.6 ± 2.66 MeV and L = 58.9 ± 16 MeV obtained by analyzing various terrestrial

experimental informations and astrophysical observations [Li & Han 2013]. It may be noted that the
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Table 3.2: The values of the coupling constants Cρ, η1 and η2 are determined from various symmetry energy

elements. The mass of the ρmeson is 770 MeV. The values ofCρ are in units of fm2, η1 and η2 are dimensionless.

All the symmetry energy elements are in units of MeV.

NCC SR WR

Parameters Cρ 5.14 12.28 6.08

η1 0 -0.79 0

η2 0 0 6.49

Nuclear Matter J0 32.5 32.5 32.5

J1 22.30 24.49 23.68

L 87 65 65

Ksym -20.09 -59.16 -204.78

Qsym 58.73 356.11 -88.04

Kτ -434 -368 -513

value of J1 obtained for the NCC model shows a significant deviation from 24.1 ± 0.8 MeV [Trippa

et al. 2008] and 23.6±0.3 MeV [Roca-Maza et al. 2013a] obtained by analyzing the experimental data

on isovector giant resonances, whereas, J1 is in good agreement in case of SR and WR models. The

value of L obtained with NCC model is also a little too large. By inclusion of cross-couplings (SR and

WR models) the value of L is reduced by ∼ 25% keeping J0 fixed. In what follows, we shall present

our results for the density dependence of symmetry energy, EOSs for the SNM and PNM and the

NS properties obtained using the NCC, SR and WR models. We shall also compare our EOSs and the

density dependence of symmetry energy with those calculated for a few selected RMF models, namely,

NL3 [Lalazissis et al. 1997], IUFSU [Fattoyev et al. 2010], BSP [Agrawal et al. 2012b] and BKA22

[Agrawal 2010]. The NL3 model does not include any cross-coupling, the IUFSU and BSP models

include the cross-coupling between ω and ρ mesons, while, BKA22 model is obtained by including the

coupling of ρ mesons with the σ mesons.

A lot of progress, both theoretically and experimentally, has been made to constrain symmetry

energy at sub saturation densities. We consider the data from three important sources: simulations

of low energy Heavy Ion Collisions (HIC) in 112Sn and 124Sn [Tsang et al. 2009]; nuclear structure

studies by excitation energies to Isobaric Analog States (IAS) [Danielewicz & Lee 2014] and ASY-

EOS experiment at GSI [Russotto et al. 2016]. The density dependences of the symmetry energy
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Figure 3.1: Symmetry energy as a function of scaled density (ρ/ρ0) is plotted for three different variants of

the effective chiral model as labeled by NCC, SR and WR obtained in the present work and are compared with

those for a few selected RMF models NL3, IUFSU, BSP and BKA22. The constraints on the symmetry energy

from IAS [Danielewicz & Lee 2014], HIC Sn+Sn [Tsang et al. 2009] and ASY-EOS experimental data [Russotto

et al. 2016] are also displayed. The inset shows the blown up behavior of symmetry energy at low densities.

for NCC, SR, WR and selected RMF models are displayed in Fig. 3.1. For comparison we have

depicted the IAS [Danielewicz & Lee 2014], HIC Sn+Sn [Tsang et al. 2009] and ASY-EOS [Russotto

et al. 2016] data in the figure. It is evident that in the absence of any cross-couplings (NCC), the

behavior of symmetry energy as a function of density is not very much compatible with those obtained

by analyzing diverse experimental data. Remarkably the SR model satisfies all the above mentioned

constraints. None of the considered RMF models satisfy all the symmetry energy constraints.

The effects of various cross-couplings on the symmetry energy grow stronger at ρ > ρ0. The

symmetry energy is effectively low in WR model compared to NCC and SR models. Thus one may

expect significant differences in the properties of NS obtained for the SR and WR models. This will

be explored later in the paper.
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The symmetry energy elementsL andKsym predominantly determine the value ofKτ (Eq. (2.30))

which is required to evaluate the incompressibility of ANM. In Fig. 3.2 we compare our values of Kτ

with various Skyrme and RMF model predictions in K vs Kτ plot [Sagawa et al. 2007]. The dashed

lines represent the constraints on Kτ from −840 MeV to − 350 MeV [Li et al. 2010, Pearson et al.

2010, Stone et al. 2014] and K from 220 MeV to 260 MeV [Shlomo et al. 2006] which have been

determined using various experimental data on isoscalar giant monopole resonances. All the three

models NCC, SR and WR satisfy these bounds of K and Kτ . It is to be noted that the models with

a larger nuclear incompressibility (K) tend to have lower Kτ value. As can be seen from Fig. 3.2,

several Skryme models but only three RMF models (NLC, DDME1 and DDME2) satisfy the bounds

for K and Kτ simultaneously. The values of L for the nonlinear model NLC with constant coupling

is 107.97 MeV [Dutra et al. 2014] and that for the DDME models with density dependent coupling

constants are 51− 55 MeV [Dutra et al. 2014]. The value of L for NLC model is very large compared

to presently accepted range. We have also looked into the values of Kτ and K for the several nonlinear

RMF models [Alam et al. 2016]. Among them a few models (BSR type) have L between 60−70 MeV

and satisfy the constraints on K and Kτ . These models includes σ− ρ and ω− ρ both cross-couplings.

3.5 Equation of state

In Fig. 3.3 we plot low density EOS for PNM for all of our three models (NCC, SR and WR).

The low density behavior of energy per neutron for SR model is in good agreement with the results

obtained by microscopic calculations [Gezerlis & Carlson 2010, Hebeler et al. 2013] as shown by the

shaded region. The PNM EOS for NCC and WR models do not have much overlap with the shaded

region. The results for few selected RMF models are also displayed in the figure. Only the BSP model

shows marginal overlap with the shaded region. In Ref. [Alam et al. 2017] two different families of

systematically varied models with σ − ρ and ω − ρ cross-couplings have been employed to study the

low density behavior of asymmetric nuclear matter. It was found that none of the models with σ − ρ
cross-coupling satisfy the low density behavior of the PNM as predicted by Hebeler et al [Hebeler

et al. 2013]. However this constraint on the PNM EOS at low densities are satisfied by a couple

of RMF models with ω − ρ cross-coupling having L ∼ 45 − 65 MeV. The EOS with the current

parameterization is compared in Fig. 3.4 with the experimental flow data obtained from the HIC

[Danielewicz et al. 2002] for SNM and PNM EOSs. The later one is constructed theoretically with
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Figure 3.2: The values of K and Kτ from different models as labeled in [Colo et al. 2014, Sagawa et al.

2007] are compared with our models (NCC, SR and WR). The vertical and horizontal dashed lines represent the

empirical ranges for K and Kτ respectively.

two extreme parameterizations, the weakest (Asy soft) and strongest (Asy stiff) of symmetry energy

as proposed in [Prakash et al. 1988] and as reported in [Danielewicz et al. 2002]. The SNM EOS is

identical for all of our three models, since, the SNM properties are same. It is passing well through

the experimental HIC data. In case of the PNM, the resulting EOSs for NCC and SR models pass

through the upper end of HIC-Asy soft and lower end of HIC-Asy stiff, whereas, the PNM EOS for

the WR model passes through the HIC-Asy soft only. As can be seen from Fig. 3.4 that the influence

of cross-couplings in the effective chiral model at high density is quite strong in comparison to RMF

models with similar type of cross-couplings. The PNM EOS for the WR model is quite softer than

BSP and IUFSU at high densities. Similar differences can also be seen in the case of SR and BKA22

models.
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Figure 3.3: Energy per neutron as a function of scaled neutron density (ρn/ρ0) for three different variants

of the effective chiral model as labeled by NCC, SR and WR obtained in the present work and for a few RMF

models NL3, IUFSU, BSP and BKA22 are compared with microscopic calculations [Gezerlis & Carlson 2010,

Hebeler et al. 2013] as shown by the shaded region.

3.6 Neutron star mass-radius relationship

We extend our analysis to study the mass-radius relationship for static NS composed of beta

equilibrated charge neutral matter. The EOS for the core is obtained from the effective chiral model.

The effects of crustal EOS at low densities on the mass and the radius of NS are considered in two

different ways. We model the crust EOS using BPS EOS [Baym et al. 1971] in the density range

ρ ∼ 4.8 × 10−9 fm−3 to 2.6 × 10−4 fm−3. The crust and the core are joined using the polytropic

form [Carriere et al. 2003] p(ε) = a1 + a2ε
γ , where the parameters a1 and a2 are determined in such

a way that the EOS for the inner crust for a given γ matches with that for the inner edge of the outer

crust at one end and with the edge of the core at the other end. The polytropic index γ is taken to be

equal to 4/3. For γ = 4/3, the values of radius R1.4 corresponding to the canonical mass of NS for
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Figure 3.4: The pressure as a function of scaled density (ρ/ρ0) for the SNM (left) and the PNM (right).

The SNM EOS for the NCC, SR and WR models are exactly the same and is labeled by “this work”. For the

comparison the SNM and PNM EOSs for a few RMF models NL3, IUFSU, BSP and BKA22 are displayed.

The SNM and PNM EOSs shown by shaded regions are taken from Ref. [Danielewicz et al. 2002] (see text for

details)

the NL3 [Carriere et al. 2003] and IUFSU [Piekarewicz et al. 2014] RMF models are with in ∼ 2%

in comparison to those obtained by treating the inner crust in the Thomas Fermi approach [Grill et al.

2014]. Alternatively, we estimate the contributions of the crust EOS to the NS radius and mass using

the core crust approximation approach given in [Zdunik et al. 2017] referred hereafter ZFH method.

This method enables one to estimate total mass and radius of a NS including the crust contributions

very accurately for NS mass larger than 1 M�. In the ZFH method the radius and the mass of NS are

given by

R =
Rcore

1− (α− 1)(Rcorec2/2GM − 1)
, (3.14)

M = Mcrust +Mcore, (3.15)
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with,

Mcrust =
4πPccR

4
core

GMcore

(1− 2GMcore

Rcorec2
). (3.16)

In the above equations α = (µcc/µ0)2, µcc and µ0 are the chemical potential at transition density (ρcc)

and at neutron star surface respectively. Rcore and Mcore are the radius and mass of NS core. Pcc

is pressure at transition density. The transition density (ρcc) is mostly in the range 0.4 to 0.6 ρ0 for

L typically ranging from 30 to 120 MeV [Ducoin et al. 2011]. In the present work we have taken

ρcc/ρ0 = 0.3, 0.4 and 0.5.

Comparison of the results of the two approaches is given in Table 3.6. The maximum mass of the

NS is sensitive neither to the methods used to estimate the crust effects nor to the choice of transition

density. The WR model, which includes ω − ρ cross-coupling, does not satisfy the maximum mass

constraint as imposed by PSR J0348 + 0432 (M = 2.01± 0.04 M�) [Antoniadis & et al. 2013]. This

disfavors the WR model. The values ofR1.4 obtained using BPS EOS for the outer crust and polytropic

EOS for the inner crust are little too large compared to those for the ZFH method. We find that by

including σ−ρ coupling (SR) R1.4 are smaller compare to the NCC model which does not include any

cross-coupling term. The radius of NS is sensitive to transition density. Using the strong correlation

between transition density (ρcc) and L, we found the values of ρcc to be 0.061 fm−3 (∼ 0.4 ρ0) for

NCC and 0.077 fm−3 (∼ 0.5 ρ0) for SR and WR models respectively [Grill et al. 2014]. The

mass radius relationship for the NS for all of our three models obtained using respective values of the

transition densities are plotted in Fig. 3.5. The dashed lines are obtained using the ZFH method in

which the effects of the crust EOS were approximated and the solid lines are obtained using BPS and

the polytropic EOSs for the outer and the inner crust respectively. It is found that the value of R1.4

is decreased by ∼ 0.5 km in SR model compared to NCC model. The R1.4 of SR is consistent with

11.9±1.22 km (90% confidence) obtained by constraining symmetry energy at saturation density from

various experimental information and theory [Lattimer & Lim 2013]. The NS maximum mass Mmax =

2.79, 1.94, 2.02, 2.04 M� and the radius R1.4 = 14.66, 12.49, 12.64, 13.28 km for the selected RMF

models NL3, IUFSU, BSP and BKA22 respectively. The RMF models such as IUFSU and BSP with

ω − ρ cross-coupling readily yield Mmax ∼ 2 M�, since, the softening of the EOS due to the inclusion

of this cross-coupling is not as strong as in the case of effective chiral model.
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Table 3.3: The maximum mass and radius of NS composed of β− equilibrated matter are listed. The total mass

and radii following the ZFH method are obtained by using Eqs. 3.14-3.16. These are compared with the ones

calculated from the BPS and polytropic EOSs for the outer and inner crusts, respectively. ρcc/ρ0 is the scaled

transition density. Mmax , Rmax and R1.4 are the NS maximum mass, radius at maximum mass and the radius

at 1.4 M� respectively.

ρcc
ρ0

Model

BPS+polytropic EOS ZFH method

Mmax Rmax R1.4 Mmax Rmax R1.4

M� km km M� km km

0.3

NCC 1.97 11.55 13.31 1.97 11.48 13.12

SR 1.97 11.24 12.75 1.97 11.20 12.71

WR 1.84 10.74 12.22 1.84 10.67 12.03

0.4

NCC 1.97 11.64 13.57 1.97 11.48 13.12

SR 1.97 11.28 12.87 1.97 11.21 12.72

WR 1.84 10.83 12.41 1.84 10.67 12.03

0.5

NCC 1.97 11.77 13.90 1.97 11.50 13.13

SR 1.97 11.35 13.04 1.97 11.24 12.72

WR 1.84 10.92 12.62 1.84 10.67 12.03
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Figure 3.5: The mass-radius relationships for the NCC, SR and WR models are displayed. The effects of the

crustal EOSs are incorporated by using explicitly the BPS and polytropic EOSs (solid lines) at low densities and

alternatively using the ZFH method (dashed lines).

3.7 Summary

Results obtained for the SR model can be summarized in the following way. It yields symmetry

energy J0 = 32.5 MeV, symmetry energy slope parameter L = 65 MeV, nuclear incompressibility

K = 247 MeV and the asymmetry term of nuclear incompressibility Kτ = −368 MeV at saturation

density ρ0 = 0.153 fm−3. It also yields symmetry energy J1 = 24.49 MeV at density 0.1 fm−3, NS

maximum mass 1.97 M� and radius R1.4 = 12.72 km. All these values are within presently accepted

range. The SR model also satisfies all the discussed constraints from microscopic calculations for low

density PNM EOS, density dependence of symmetry energy, HIC data for SNM EOS and HIC-Asy

stiff data for PNM EOS.

The contributions of the exotic degrees of freedom, such as hyperons, kaons etc. to the properties

of NS are not considered in the present work. In general, the presence of strange particles softens the
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EOS and reduce the NS maximum mass. In particular, the inclusion of hyperons in the effective chiral

model (i.e. NCC type) tend to reduce the NS maximum mass by ∼ 0.3 M� [Jha et al. 2006]. The

influence of hyperons on the NS properties, however, are very sensitive to the choice of the meson-

hyperon couplings. It has been shown that sizable fraction of hyperons may exist in the NS with a mass

2 M� , provided, strong repulsive hyperon-hyperon interaction is introduced through strange φ mesons

[Bizarro et al. 2015, Sulaksono & Agrawal 2012, Weissenborn et al. 2012].
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Chapter 4

Correlations of nuclear matter parameters

with astrophysical observations

4.1 Background

Astrophysical observations are the complementary probe for the information in the region of the

dense-matter EOS which is not experimentally accessible in the laboratory [Rezzolla et al. 2018b].

The NSs are massive and compact astrophysical objects, the coalescence of binary NS systems is one

of the most promising sources of gravitational waves (GWs) observable by ground-based detectors

[Brillet & et al. Virgo Collaboration, Cutler et al. 1993, Drever 1983, Hough & et al. 1989, Taylor &

Weisberg 1982, Thorne 1987]. The GW signals emitted during a NS merger depends on the behavior

of neutron star matter at high densities. Therefore, its detection opens the possibility of constraining

the nuclear matter parameters (NMP) characterizing the EOS [Duez 2010, Faber 2009]. During the last

stages of the inspiral motion of the coalescing neutron stars(NSs), the strong gravity of each of them

induces a tidal deformation in the companion star. Decoding the gravitational wave phase evolution

caused by that deformation allows the determination of the dimensionless tidal deformability parameter

[Binnington & Poisson 2009, Damour & Nagar 2009, Flanagan & Hinderer 2008, Hinderer 2008,

Hinderer et al. 2010]. It is a measure of the response to the gravitational pull on the neutron star

surface correlating with pressure gradients inside the NS and, therefore, it has been proposed as an

effective probe of the equation of state (EOS) of nuclear matter relevant for neutron stars [De et al.

2018, Malik et al. 2018a, 2019b].

Studies of the correlations between nuclear matter parameters and the tidal deformability, based

on a few selected relativistic mean field models, have shown that measurements of the latter can con-
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strain the high density behavior of the nuclear symmetry energy [Fattoyev et al. 2013] as well as put

bounds on the value of neutron skin thickness [Fattoyev et al. 2018]. These preliminary studies need

to be validated further using a more diverse set of models for the nuclear EOS. In earlier studies it was

found that correlations between the various properties of NS and nuclear matter EOS parameters are

significantly affected when a more diverse set of models are employed [Alam et al. 2015, Fortin et al.

2016]. Recently, astrophysical observations of NS, in particular, the maximum mass, the radius of a

canonical 1.4 M� NS, and the tidal deformability, have been used to constrain various parameters of the

EOS [Zhang et al. 2018a]. However, within their assumptions, they found that the tidal deformability

obtained from GW170817 is not very restrictive.

In view of the recent observation GW170817, in this chapter, we will study the dependence of the

tidal deformability Λ on the NMPs describing the EOS. In other words, we shall examine if there is a

unique dependence of Λ on the various nuclear matter properties obtained for a diverse set of nuclear

models. One of the simplest approach is to find then correlation between NS properties and nuclear

matter properties in a diverse set of nuclear models that are constrained by the bulk properties of finite

nuclei [Dutra et al. 2012, 2014] and the observed ≈ 2M� NS maximum mass [Antoniadis & et al.

2013]. We have employed diverse set Relativistic and non relativistic mean field models. For all of

these models, both the NS and nuclear matter properties vary over a wide range [Alam et al. 2016].

4.2 Nuclear models and EOS parameters

The correlations of the properties of neutron stars with the various nuclear matter parameters of

the EOS are studied using a set of eighteen relativistic and twenty-four non-relativistic nuclear mod-

els. These models have been employed for the study of finite nuclei and NS properties. Our set

of models are based on RMF and SHF frameworks. The employed RMF models are BSR2, BSR3,

BSR6 [Agrawal 2010, Dhiman et al. 2007],FSU2 [Chen & Piekarewicz 2014], GM1 [Glendenning

& Moszkowski 1991], NL3 [Lalazissis et al. 1997], NL3σρ4, NL3σρ6 [Pais & Providłncia 2016],

NL3ωρ02 [Horowitz & Piekarewicz 2001], NL3ωρ03 [Carriere et al. 2003], TM1 [Y.Sugahara &

H.Toki 1994], and TM1-2 [Providência & Rabhi 2013]and DD2 [Typel et al. 2010], DDHδ [Gai-

tanos et al. 2004], DDHδMod [Ducoin et al. 2011], DDME1 [Niksic et al. 2002], DDME2 [Lalazissis

et al. 2005], and TW [Typel & Wolter 1999]. The considered SHF models are the SKa, SKb [Kohler

1976], SkI2, SkI3, SkI4, SkI5 [Reinhard & Flocard 1995], SkI6 [Nazarewicz et al. 1996], Sly2, Sly9

[Chabanat 1995], Sly230a [Chabanat et al. 1997], Sly4 [Chabanat et al. 1998], SkMP [Bennour et al.
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Figure 4.1: Probability distributions of energy per nucleon e0 , saturation density (ρ0), incompressibility co-

efficient (K0 ) and skewness parameter(Q0 ) corresponding to the symmetric nuclear matter obtained for a

representative set of RMF and SHF models. The values of mean (µ) and the standard deviations (σ) for each of

the NMP is also given. The NMPs as displayed along the abscissa are obtained by appropriate transformation so

that the spread in their values can be compared. (see text for details).

1989], SKOp [Reinhard 1999], KDE0V1 [Agrawal et al. 2005], SK255, SK272 [Agrawal et al. 2003],

Rs [Friedrich & Reinhard 1986], BSk20, BSk21 [Goriely et al. 2010], BSk22, BSk23, BSk24, BSk25,

and BSk26 [Goriely et al. 2013]. The values of the nuclear matter properties, such as, K0, Q0, M0, J0,

L0 and Ksym,0 vary over a wide range for our representative set of EOSs as can be seen from Table 4.1

and 4.2 for RMF and SHF models, respectively. Further details of the models can be found in [Alam

et al. 2016] and references their in.

In Fig. 4.1, we plot the distributions of e0, ρ0, K0 and Q0 pertaining to the symmetric nuclear

matter obtained using the models listed in Tables 4.1 and 4.2. Similar plots for J0, L0 and Ksym,0 are

shown in Fig. 4.2. The mean (µ) and the standard deviation (σ) for each of the NMPs are indicated in

their respective plots. For the comparison of the spread in the values of these nuclear matter parameters

relative to each other, their values in the figures are transformed as x−µ
µ

, where, x denotes a NMP.

It is evident that the values of e0, ρ0 and K0 are better constrained relative to other nuclear matter
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Table 4.1: The nuclear matter properties for a representative set of RMF models calculated at the saturation

density ρ0. The quantities listed below are the energy per nucleon e0 , incompressibility coefficient (K0 ),

skewness parameter(Q0 ) for the symmetric nuclear matter. The symmetry energy coefficient (J0 ), its slope (L0

) and the curvature (Ksym,0 ) determining the density dependence of the symmetry energy.

Model
ρ0 e0 K0 Q0 M0 J0 L0 Ksym,0

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

BSR2 0.149 -16.03 240 -52.1 2829 31.4 62.2 -3.4

BSR3 0.15 -16.09 230.6 -119.4 2648 32.6 70.5 -7.8

BSR6 0.149 -16.13 235.9 -11.4 2820 35.4 85.6 -47.8

DD2 0.149 -16.02 242.2 167.4 3076 31.7 55 -93.4

DDHδ 0.153 -16.25 240.2 -539.8 2343 25.6 48.6 80.7

DDHδMod 0.153 -16.25 240.2 -539.8 2343 31.9 57.5 80.3

DDME1 0.152 -16.23 243.9 316.2 3249 33.1 55.4 -101.3

DDME2 0.152 -16.14 251.3 479 3493 32.3 51.3 -87.5

FSU2 0.15 -16.28 237.8 -156.1 2698 37.6 112.7 25.4

GM1 0.153 -16.3 300.1 -215.1 3387 32.5 93.9 18

NL3 0.148 -16.25 271.6 205.5 3464 37.4 118.5 100.9

NL3σρ4 0.148 -16.25 271.6 205.5 3464 33 68.3 -26.8

NL3σρ6 0.148 -16.25 271.6 205.5 3464 31.5 55.4 25

NL3ωρ02 0.148 -16.25 271.6 205.5 3464 33.1 68.2 -53.1

NL3ωρ03 0.148 -16.25 271.6 205.5 3464 31.7 55.3 -7.5

TM1 0.145 -16.26 281.2 -286.3 3088 36.9 110.8 33.6

TM1-2 0.145 -16.26 281.2 -199.3 3175 36.9 111.4 41.9

TW 0.153 -16.25 240.2 -539.8 2343 32.8 55.3 -124.8
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Table 4.2: Same as table 4.1, but , for SHF models.

Model
ρ0 e0 K0 Q0 M0 J0 L0 Ksym,0

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

SKa 0.155 -15.99 263.2 -300.3 2858 32.91 74.62 -78.46

SKb 0.155 -16 263 -300.3 2856 23.88 47.6 -78.5

SkI2 0.1575 -15.77 241 -340 2552 33.4 104.3 70.7

SkI3 0.1577 -15.98 258.2 -303.7 2795 34.83 100.5 73

SkI4 0.16 -15.95 247.95 -329 2646 29.5 60.39 -40.56

SkI5 0.156 -15.85 255.8 -302.1 2768 36.64 129.3 159.5

SkI6 0.159 -15.89 248.17 -327.8 2650 29.9 59.24 -46.77

Sly2 0.161 -15.99 229.92 -370.3 2389 32 47.46 -115.13

Sly230a 0.16 -15.99 229.9 -364.2 2394 31.99 44.3 -98.3

Sly4 0.159 -15.97 230 -362.9 2397 32.04 46 -119.8

Sly9 0.151 -15.8 229.84 -355.6 2402 31.98 54.86 -81.42

SkMP 0.157 -15.56 230.87 -342.7 2428 29.89 70.31 -49.82

SKOp 0.16 -15.75 222.36 -390.8 2277 31.95 68.94 -78.82

KDE0V1 0.165 -16.23 227.54 -384.9 2346 34.58 54.69 -127.12

SK255 0.157 -16.33 254.96 -350.2 2709 37.4 95 -58.3

SK272 0.155 -16.28 271.55 -305.2 2953 37.4 91.7 -67.8

Rs 0.158 -15.53 236.7 -348.3 2492 30.58 85.7 -9.1

BSk20 0.16 -16.08 241.4 -282.1 2615 30 37.4 -136.5

BSk21 0.158 -16.05 245.8 -274.1 2676 30 46.6 -37.2

BSk22 0.1578 -16.09 245.9 -275.4 2675 32 68.5 13

BSk23 0.1578 -16.07 245.7 -274.9 2674 31 57.8 -11.3

BSk24 0.1578 -16.05 245.5 -274.4 2672 30 46.4 -37.6

BSk25 0.1587 -16.03 236 -316.3 2516 29 36.9 -28.5

BSk26 0.1589 -16.06 240.8 -282.8 2607 30 37.5 -135.6

39



−0.25 0.00 0.25
J0 (MeV)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

μ=32.39
σ=2.95

−1 0 1
L0 (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

μ=69.09
σ=24.31

−10 0 10
ksym, 0 (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

μ= −30.19
σ=70.23

Figure 4.2: Same as Fig. 4.1, but, for symmetry energy coefficient (J0 ), its slope (L0 ) and the curvature

(Ksym,0 ) which determine the density dependence of the symmetry energy coefficient.

parameters. The values of Q0, L0 and Ksym,0 are poorly constrained. The later quantities are crucial

in determining the behavior of the EOS for the asymmetric nuclear matter. In what follows, we shall

demonstrate how the accurate knowledge of tidal deformability for the neutron stars are essential to

constrain these NMPs which would enable one to understand the behaviour the EOS for the asymmetric

nuclear matter.

As the mass of the stars in the GW170817 binary is 1.6 M� or smaller, we only consider nucleonic

degrees of freedom. However, a NS with a mass of 1.6 M� could have non-nucleonic degrees of

freedom [Dhiman et al. 2007, Fortin et al. 2017].

The EOSs considered for all the models are consistent with the observational constraint provided

by the existence of 2 M� NS [Alam et al. 2016, Fortin et al. 2016]. Moreover, the considered SHF

models do not become acausal for masses below 2 M�. We have taken unified inner-crust core EOS

for all the models [Fortin et al. 2016] and the EOS of Baym-Pethick-Sutherland [Baym et al. 1971] is

used for the outer crust.

In Fig. 4.3, we plot for NS matter the variation of pressure (p) with the energy density (ε) in

the left panel and the variation of dp/dε with the baryon number density in the right panel for our

representative set of models. The black circles denote the central density corresponding to the NS

maximum mass for each EOS. The dashed line indicates the causality limit (i.e. dp/dε = 1). The

values of dp/dε for SHF models are larger at higher densities (ρ � ρ0) than those for the RMF

models. The maximum mass NS configurations of all models studied are within the causality limit

except for BSk20 and BSk26 EOSs, which are marginally acausal.
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Figure 4.3: Plots for the (a) pressure p as a function of the energy density, and (b) dp/dε as a function of the

baryonic number density for beta equilibrated NS matter obtained using a representative set of RMF (black

dashed lines) and SHF models (red lines). The circles in right panel correspond to the central densities and the

slopes dp/dε at the maximum NS mass for each of the EOS. The BSk20 and BSk26 EOSs are marginally acausal

at the NS maximum masses ∼ 2.2 M� [Alam et al. 2016, Fortin et al. 2016].

4.3 Tidal deformability and Love Number

One of the main focus of the present work is to study the sensitivity of the tidal deformability to

the properties of nuclear matter at saturation density. To facilitate our discussions in the next section,

in Fig. 4.4 the dimensionless tidal deformability Λ (left) and tidal Love number k2 (right) obtained for

our set of EOSs are plotted as a function of the NS mass. The values of k2 show a noticeable spread

across the various models. For instance, at 1.4 M�, the values of k2 are in the range of 0.07 to 0.11.

For the smaller masses the spread in k2 is larger for the SHF models, but for the larger masses RMF

models give on average larger values of k2. One can also see from Fig. 1 of reference [Alam et al.

2016] that the RMF models predict larger radii, in particular, for large NS masses. Consequently, the
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Figure 4.4: (a) Tidal deformability Λ and (b) the Love number k2 as a function of the NS mass (m) for a

representative set of relativistic and non-relativistic models. The SHF model, SkI5, displays markedly different

behavior for Λ as well as for k2.

parameter Λ tends to be larger for the RMF models than for the SHF models. In the following, we will

examine the dependence of Λ on both k2 and R in detail.

In Fig. 4.5 we plot the tidal deformabilities in the phase space of Λ1 and Λ2 associated, respec-

tively, with the high-mass m1 and the low-mass m2 components of the binary, for all the considered

RMF and SHF models. The curves corresponding to every EOS are obtained by varying the high

mass (m1) independently in the range 1.365 < m/M� < 1.60 obtained for GW170817 whereas the

low mass (m2) is determined by keeping the chirp massM = (m1m2)3/5(m1 + m2)−1/5 fixed at the

observed value 1.188 M� [Abbott et al. 2017a]. The dot-dot-dashed and the dot lines represent, re-

spectively, the 90% and 50% confidence limits obtained from the GW170817 for the low spin priors.

One can note that the 90% confidence limit suggests that SkI5 and the family of models NL3X and

TM1X are ruled out except for NL3ωρ03. For the SkI5 the values ofM0 and L0 are 2745 MeV and 129
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Figure 4.5: Tidal deformability parameters for the case of high mass (Λ1) and low mass (Λ2) components of the

observed GW170817. The 90%(dot-dot-dashed) and 50% (dot) confidence lines are taken from Ref. [Abbott

et al. 2017a] corresponding to the low spin priors.

MeV, respectively. For NL3X family the value of M0 is larger than 3400 MeV and L0 is in the range

of 55-70 MeV except for the base model NL3. Whereas, for TM1X family the value of M0 ∼ 3100

MeV and L0 ∼ 110 MeV. This indicates that very high value of M0 and/or L0 may not be favored by

GW170817.

4.4 Nuclear mater parameters and astrophysical observable

In the present section, we study the correlations of the tidal deformability Λ, the Love number

k2 and the radius of NSs R with various nuclear matter parameters. We consider the constraints from

the properties of the binary neutron star that satisfy the low spin prior [Abbott et al. 2017a]. In our
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Figure 4.6: Correlation coefficients R for (a-c) the tidal deformability Λ, (d-f) the radius R, and (g-i) the Love

number k2 with different individual nuclear matter parameters as well as with some selected linear combinations

of them obtained for the NS masses 1.2 M� (top), 1.4 M� (middle) and 1.6 M� (bottom). Results are plotted

only for the cases withR > 0.5 (see tables 4.3 and 4.4 for details).

analysis, the correlation between a pair of quantities is quantified in terms of Pearsons correlation

coefficient, denoted as R [Brandt 1997]. The magnitude of R is at most unity indicating that the pair

of quantities is completely correlated to each other. For |R| < 0.5, the correlations are usually said to

be weak. We calculate the values of the coefficients for the correlation of Λ, k2 and R with the nuclear

matter saturation parameters K0, Q0, M0, J0, L0, Ksym,0 and with several linear combinations of two

parameters, in particular with K0 + αL0, M0 + βL0 and M0 + ηKsym,0. The values of α, β and η are

obtained so that, for each NS mass, they yield optimum correlations. Our correlation systematics is

determined for NS masses in the range of 1.2 − 1.6 M�, since, for the low spin prior analysis, these

masses are close to the ones involved in the GW170817 event. The results for the values of the R
obtained for the correlation of Λ, k2 and R with individual nuclear matter parameters are presented

in Table 4.3. The Table 4.4 contains the results obtained using the linear combinations of the nuclear

matter parameters. The Fig. 4.6 is the pictorial representation of the results presented in Tables 4.3

and 4.4. Only the cases with the correlation coefficients R > 0.5 are displayed. We see from Table

4.3 that for most of the cases, individual EOS parameters seem to be weakly or moderately correlated

with the Λ, k2 and R. Exceptionally, the Λ and R are strongly correlated with the individual nuclear
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Table 4.3: The Pearson correlation coefficients,R obtained for the correlations between various NS and nuclear

matter properties. The values of tidal deformability Λ, radius R and the Love number k2 are evaluated for the

NS masses 1.2−1.6 M�. The nuclear matter incompressibilityK0, the skewnessQ0, slope of incompressibility

M0, symmetry energy J0, slope of symmetry energy L0 and the curvature parameters Ksym,0.

K0 Q0 M0 J0 L0 Ksym,0

Λ1.2 0.68 0.46 0.68 0.58 0.81 0.76

Λ1.3 0.69 0.51 0.72 0.56 0.76 0.74

Λ1.4 0.70 0.57 0.76 0.53 0.71 0.71

Λ1.5 0.71 0.62 0.80 0.50 0.65 0.68

Λ1.6 0.71 0.66 0.82 0.46 0.59 0.64

R1.2 0.65 0.48 0.67 0.65 0.82 0.70

R1.3 0.66 0.51 0.70 0.62 0.79 0.70

R1.4 0.67 0.54 0.72 0.59 0.75 0.69

R1.5 0.68 0.57 0.75 0.56 0.72 0.68

R1.6 0.68 0.60 0.77 0.53 0.68 0.66

k2,1.2 0.57 0.34 0.54 -0.03 0.44 0.79

k2,1.3 0.62 0.47 0.65 0.02 0.43 0.76

k2,1.4 0.64 0.55 0.72 0.05 0.39 0.72

k2,1.5 0.65 0.63 0.77 0.08 0.36 0.66

k2,1.6 0.58 0.59 0.71 0.06 0.26 0.57

matter parameters L0 and M0 for the NS masses 1.2 M� and 1.6 M�, respectively. Let us point out

that the correlation between the radius of low mass NSs and the neutron skin of 208Pb, which is itself

correlated with L0, was first discussed in [Horowitz & Piekarewicz 2001]. It is seen from Table 4.4,

the Λ and R are strongly correlated with M0 +βL0 and M0 + ηKsym,0 over a wide range of NS masses

considered: the values of R of the order of 0.9. The Love number k2 is strongly correlated with

M0 + ηKsym,0. The values of α, β and η decrease monotonically with the NS mass. This indicates that

the density dependence of symmetry energy is less important in determining the values of Λ and R at

higher NS masses. The mass dependence of α, β and η is discussed in some detail in the Appendix A,

where, in particular, an exponential dependence of these parameters on the NS mass is proposed. As
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Table 4.4: The values of the coefficients R obtained for the correlations of Λ, R and k2 with various linear

combinations of EOS parameters. The calculations are performed for the NS masses 1.2− 1.6 M�.

K0 + αL0 M0 + βL0 M0 + ηKsym,0

R α R β R η

Λ1.2 0.88 1.16 0.94 21.22 0.92 6.34

Λ1.3 0.86 0.93 0.93 17.05 0.94 5.55

Λ1.4 0.83 0.74 0.92 13.68 0.95 4.83

Λ1.5 0.80 0.59 0.92 10.91 0.95 4.18

Λ1.6 0.77 0.45 0.91 8.54 0.95 3.62

R1.2 0.88 1.33 0.94 21.75 0.88 5.64

R1.3 0.86 1.14 0.93 19.07 0.90 5.33

R1.4 0.84 0.98 0.93 16.62 0.91 5.00

R1.5 0.82 0.84 0.92 14.38 0.92 4.65

R1.6 0.80 0.71 0.91 12.32 0.93 4.31

k2,1.2 0.62 0.40 0.64 11.18 0.88 9.15

k2,1.3 0.64 0.25 0.70 7.22 0.91 6.83

k2,1.4 0.65 0.16 0.75 4.81 0.92 5.31

k2,1.5 0.66 0.10 0.79 3.34 0.93 4.20

k2,1.6 0.65 0.04 0.81 2.14 0.93 3.52
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Figure 4.7: The probability distribution for the correlations of Λ1.4 with M0 + βL0 (left) and M0 + ηKsym,0

(right) calculated using bootstrap method (see text for details).

an example, in Fig.4.8 we plot M0 + βL0 and M0 + ηKsym,0 as a function of k2 and Λ for 1.4 M� NS.

Since, Λ1.4 is not very well correlated individually with M0, L0 and Ksym,0, its strong correlation with

M0 +βL0 and M0 +ηKsym,0 is of particular importance. In Fig 4.7 we plot the probability distribution

for the correlations of Λ1.4 with M0 + βL0 and M0 + ηKsym,0 calculated using bootstrap method. The

bootstrap method is a statistical tool to build a sufficiently large number of data set by re-sampling the

original one with random replacement. It was introduced by Efron in 1979 [Efron 1979]. It is based on

a simple assumption that the data-set of independent observations contains information on its parent

distribution. To evaluate the confidence intervals of any estimated quantity from the data set, one can

generate a large number of data sets and find the distribution of the estimated quantity. It has been

successfully introduced in nuclear physics [Pastore 2019]. The values of the correlation coefficients

given in the figure are obtained with the entire set of RMF and SHF models as presented in section

4.2. In order to check the model dependence of the correlations, we have determined the correlation

coefficients for the sets of RMF and SHF models separately. The results are given in Table 4.4 which

indicate that the model dependence is only marginal.

The result for the correlations among k2, Λ and various nuclear matter properties as depicted in

Fig. 4.8 may be understood as follows. In Ref. [Alam et al. 2016], it was shown that the NS radius R

is strongly correlated with a linear combination of M0 and L0 over a wide range of NS masses. This

was attributed to the dependence of the pressure on M0 and L0 and to the empirical relation of the star

radius with the pressure at several reference densities, e.g. R × p(ρ)−1/4 = constant for ρ ∼ 1.5 ρ0

and NS masses, 1− 1.4 M�, irrespective of the model [Lattimer & Prakash 2001].

The solid lines in Fig. 4.8 are obtained using linear regression. These linear regressions yield,

M0

MeV
+ 13.68

L0

MeV
= (2.09± 0.14) Λ1.4 + (2383.12± 96.42), (4.1)
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Figure 4.8: (a-b) The M0 + βL0 and (c-d) M0 + ηKsym,0 versus the tidal Love number k2,1.4 (top panels) and

dimensionless tidal deformability Λ1.4 (bottom panels) for a 1.4 M� NS, using a set of RMF and SHF models.

M0

MeV
+ 4.83

Ksym,0

MeV
= (2.11± 0.11) Λ1.4 + (1278.13± 77.76). (4.2)

We need to know the value of Λ1.4 in order to exploit the correlations, as presented in Fig. 4.8, to

estimate the values of nuclear matter properties at the saturation density.

The GW170817 event provides the upper bound on Λ̃ as defined by Eq.(2.39). For the low spin

prior we have to consider masses such that q = m2/m1 > 0.7. We have calculated the Λ̃ using

neutron star masses m = 1.4, 1.17, 1.6 M�, which correspond to the canonical mass and the lower

and upper mass limits covered by the low spin prior analysis. The neutron star binary companion

mass is determined from the chirp mass M = 1.188 M�: m = 1.17, 1.6 M� are, respectively, m2

and m1 corresponding to q = 0.7; for the canonical mass we get q = 0.95 with m1 = 1.40 M� and

m2 = 1.33 M�. Fig. 4.9 shows the variation of Λ1.4 as a function of Λ̃ for all the RMF and SHF

models. The correlation between this two quantities is very strong which enables us to express Λ1.4
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Table 4.5: Values for the correlations coefficients for Λ1.4 and k2,1.4 withM0 +βL0 andM0 +ηKsym,0 obtained

separately for the RMF and SHF models. The values of the correlation coefficients corresponding to all the

models (ALL) are also listed.

M0 + βL0 M0 + ηKsym,0

RMF SHF ALL RMF SHF ALL

Λ1.4 0.92 0.90 0.92 0.88 0.97 0.95

k2,1.4 0.72 0.68 0.75 0.89 0.91 0.92

in terms of Λ̃ as Λ1.4 = 0.859 × Λ̃. Similar studies were performed for the NS with mass m = 1.17

and 1.6 M� and we have obtained Λ1.17 = 2.452 × Λ̃ and Λ1.6 = 0.379 × Λ̃ with an equally strong

correlation. These relations should be compared with the prediction from the expression proposed in

[De et al. 2018]

Λ1 =
13

16
Λ̃

q2(1 + q)4

12q2 − 11q + 12
, (4.3)

obtained by replacing

Λ2 = q−6Λ1 (4.4)

in the Eq.(2.39) for Λ̃. Eq. (4.4) was obtained assuming that the radii of the stars with masses 1.17 <

m < 1.6M� are the same. Using expression (4.3), we get relations between Λi and Λ̃ for mi =

1.17, 1.4, 1.6M� that coincide with ours within the first two digits. We have checked that, in most of

the cases, for our set of models the difference between the radii of stars with a mass in that interval is

not larger than ∼ 0.2 km.

4.5 Constraining M0 and Ksym,0

In the following, we want to constraint M0 and Ksym,0, We will consider the limits imposed on

Λ1.4. This choice is justified because according to the analysis done in [Abbott et al. 2018, De et al.

2018] the limits obtained for Λ̃ are q dependent, and, in particular, in [De et al. 2018] if the double

neutron star or galactic neutron star distributions are considered the maximum Λ̃ value is obtained,

respectively, for q > 0.9 (q > 0.8). For the lower limit the results of [Perego et al. 2017, Radice et al.

2018] were determined for q > 0.85. A lower bound of Λ1.4 > 344 is set by the UV/optical/infrared

counterpart of GW170817 that imposes Λ̃ > 400 [Perego et al. 2017, Radice et al. 2018]. Similarly,

the gravitational-wave observations set an upper bound Λ1.4 < 687 or Λ1.4 < 859, respectively from
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Figure 4.9: The tidal deformability Λ1.4 verses the weighted average Λ̃ as defined in Eq.(2.39) for all the RMF

and SHF models. The solid line represents the best fit. The arrows pointing right and up indicate the lower

bounds on Λ̃ and Λ1.4, respectively. The upper bounds on Λ̃ and Λ1.4 are denoted by left and down arrows,

respectively.

the bounds Λ̃ < 800 [Abbott et al. 2017a] and Λ̃ < 1000 [De et al. 2018]. In what follows, we will use

these bounds on Λ1.4 together with Eqs. (4.1 and 4.2) to constrain the nuclear matter properties.

In Fig. 4.10, the slope of the incompressibility coefficient at the saturation density M0 is plotted

as a function of Λ1.4 for fixed values of L0 using Eq. (4.1). The limiting values of L0 employed in

the plot correspond to L0 = 51 ± 11 MeV [Lattimer & Lim 2013]. This limit on L0 in conjunction

with the bounds on Λ1.4, as discussed above, constrain the M0 as listed in Table 4.6. As referred before

the lower bound on Λ̃ set by [Radice et al. 2018] has several associated uncertainties, and, therefore

the lower bounds obtained for M0 and Ksym,0 suffer from these uncertainties. Notice, however, that

independently of the lower value of Λ̃ we always have M0 > 1500 (1800) MeV according to the

constraints imposed in L0 in [Lattimer & Lim 2013] ( [Oertel et al. 2017]). In the same table we also
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Figure 4.10: Plots for the incompressibility slope parameter M0 versus tidal deformability Λ1.4 at fixed values

of symmetry energy slope parameter L0 (solid lines) obtained using Eq.(4.1). The choices for the values of L0

are discussed in the text. The dot-dot-dashed lines represent the bounds obtained in Fig. 4.9.

present the values of M0 obtained for L0 = 58.7 ± 28.1 MeV [Oertel et al. 2017]. These values of

L0 take into account terrestrial, theoretical and observational constraints. Our values of M0 have a

reasonable overlap with the values M0 = (1800 − 2400) MeV obtained empirically in Ref. [De et al.

2015]. The value of M0 in Ref. [De et al. 2015] was determined using a Skyrme like energy density

functional by imposing the constraint on the incompressibility slope parameter at the crossing density

(∼ 0.1 fm−3) determined from energies of the isoscalar giant monopole resonance in the 132Sn and
208Pb nuclei [Khan & Margueron 2013, Khan et al. 2012].

The above analysis is dependent on the star mass used to calculate the tidal deformability. How-

ever, it is important to notice that the contribution of M0 to the linear combination M0 + βL0 is max-

imum for the larger star masses, so large star masses that satisfy the q constraints should be chosen.
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Table 4.6: The empirical values of M0 and Ksym,0 derived for different limits on Λ1.4 and L0. The bounds on

Λ1.4 > 344 and < 687(859) obtained from Fig. 4.9 are considered. The ranges of L0 = 40 − 62 MeV and

L0 = 30− 86 MeV are taken from Refs. [Lattimer & Lim 2013, Oertel et al. 2017].

L0 Λ1.4 M0 Ksym,0

(MeV) (MeV) (MeV)

40 62 344 687 2254 3272 -113 -52

344 859 2254 3631 -112 -52

30 86 344 687 1926 3409 -141 16

344 859 1926 3768 -140 16

Taking Λ1.6 (q = 0.7) to constraint M0 the upper limits would have been ∼ 5− 10% lower.

We have next considered the range of acceptable values for M0 just determined, together with the

bounds on Λ1.4 and Eq. (4.2), to set also constraints on Ksym,0. The results are presented in Table 4.6:

the ranges −113 < Ksym,0 < −52 MeV are obtained for the constraints on the symmetry energy slope

from [Lattimer & Lim 2013] and −141 < Ksym,0 < 16 MeV imposing the constraints from [Oertel

et al. 2017]. The symmetry energy curvature is a quantity that is still not constrained experimentally.

In [Mondal et al. 2017], the authors have obtained from the universality of the correlation structure

between the different symmetry energy elements and from some well known nuclear matter properties

the range Ksym,0 = −111.8 ± 71.3 MeV. Our bounds discussed above are in a quite good agreement

with these values.

4.6 Neutron star radius and tidal deformability

Fig. 4.11 displays the tidal Love number k2,1.4 (top panel) and the dimensionless tidal deforma-

bility Λ1.4 (bottom panel) as a function of NS radius R1.4. It is evident from the Eq. (2.34) that the tidal

deformability depends mainly on the NS radius and the Love number k2. The Λ1.4 is expected to be

strongly correlated with R1.4 provided either k2 is model independent or it is correlated with R1.4. We

observed from Fig. 4.4 that the value of k2 is sensitive to the model used which might influence the cor-

relation between Λ1.4 andR1.4. However, the k2,1.4 is moderately correlated withR1.4 (top panel) which

ensures the persistence of the strong correlation (R = 0.98) between Λ1.4 andR1.4 (bottom panel). The

solid line in the bottom panel represent the fitted curve with equation Λ1.4 = 9.11×10−5 (R1.4

km
)6.13. This

equation can be rewritten in a form similar to the relation obtained in [De et al. 2018], that expresses
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Figure 4.11: (a) The variation of tidal Love number k2,1.4 and (b) the dimensionless tidal deformability Λ1.4

with the radius R1.4 obtained for the RMF (black squares) and SHF (red circles) models. The solid lines in the

top and bottom panels are the best fitted linear and curve lines, respectively. The horizontal dot-dot-dashed lines

represent the bounds obtained in Fig. 4.9.

the tidal deformability in terms of the compactness parameter of the star β = Gm/(Rc2),

Λ = aβ−6,

having the exponent 6.13 instead of 6. We have verified that the exponent is mass dependent although

close to 6: taking m = 1.17M� and m = 1.60M� the exponent is respectively, 5.84 and 6.58. In our

analysis we use a set of models different from the one used in [De et al. 2018], and besides, we have

only considered unified inner crust-core EOS, while in [De et al. 2018] all the EOS have a common

crust EOS. These two aspects could explain some of the differences. Using the derived bounds on Λ1.4,

the value of R1.4 is found to be in the range 11.82 13.22 (11.82 13.72) km for Λ1.4 in the range of 344

687 (344 859). These ranges for R1.4 lie almost within the bounds of 8-14 km and 10.5 - 13.3 km as

estimated from GW170817 in Refs. [Abbott et al. 2018, De et al. 2018]. Further, our predictions are in
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harmony with R1.4 = 11.5 13.6 km [Li & Steiner 2006] as constrained by the slope of the symmetry

energy which was extracted using the terrestrial laboratory data on the isospin diffusion in heavy-ion

reactions at intermediate energies.

4.7 Summary

Constraints set on key parameters of the nuclear matter equation of state (EOS) by the values of

the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic

and non-relativistic mean field models. These models are consistent with bulk properties of finite nu-

clei as well as with the observed lower bound on the maximum mass of neutron star∼ 2 M�. The tidal

deformability shows a strong correlation with specific linear combinations of the isoscalar and isovec-

tor nuclear matter parameters associated with the EOS. Such correlations suggest that a precise value

of the tidal deformability can put tight bounds on several EOS parameters, in particular, on the slope of

the incompressibility and the curvature of the symmetry energy. The tidal deformability obtained from

the GW170817 and its UV/optical/infrared counterpart sets the radius of a canonical 1.4 M� neutron

star to be 11.82 6 R1.4 6 13.72 km. In future, precise measurement of tidal deformability will provide

an alternative and accurate estimate of nuclear mater parameters.
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Chapter 5

Constraining dense matter EOS from

terrestrial and astrophysical observations

After the detection of gravitational waves from the GW170817 binary neutron star merger event

[Abbott et al. 2017a], the rich connection between the very large and the very small nuclear objects has

developed more intensely. During the last stages of the inspiral motion of the coalescing neutron stars

(NSs), the strong gravity of each of them induces a tidal deformation in the companion star. Decoding

the gravitational wave phase evolution caused by that deformation [Flanagan & Hinderer 2008] allows

the determination of the dimensionless tidal deformability parameter Λ [Damour et al. 2012, Hinderer

2008, Hinderer et al. 2010]. It is a measure of the response to the gravitational pull on the neutron

star surface correlating with pressure gradients inside the NS and, therefore, it has been proposed as an

effective probe of the equation of state (EOS) of nuclear matter relevant for neutron stars [Read et al.

2009, Thorne 1987]. A comparatively large value of Λ, for example, points to a neutron star of large

radius [Annala et al. 2018, De et al. 2018, Malik et al. 2018a]. This translates into a stiffer nuclear

matter EOS and, hence, a comparatively larger neutron skin of a heavy nucleus on the terrestrial plane

[Fattoyev et al. 2018]. Early analysis of the GW170817 event [Abbott et al. 2017a] puts an upper limit

to the binary tidal deformability Λ̃ at ≈ 800 for the component neutron stars with masses in the range

≈ 1.17− 1.6 M� involved in the merger event under the low spin prior scenario. Λ̃ is defined as

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (5.1)

where Λ1,2 are the tidal deformabilities of the neutron stars of massesM1 andM2 and q = M2/M1 ≤ 1

is the binary’s mass ratio. The masses of the binary components are constrained by the chirp mass

M = (M1M2)3/5/(M1 + M2)1/5 = 1.188M� for GW170817 event, where M� is the solar mass.
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When q = 1, Λ̃ reduces to Λ and is calculated from Λ = 2
3
k2[ c

2R
GM

]5, where k2 is the second Love

number [Abbott et al. 2017a], R being the radius of the neutron star. After the initial proposition, the

value of Λ̃ has gone through several revisions [Abbott et al. 2018, 2019, De et al. 2018]. Ref. [De

et al. 2018] reported Λ̃ = 222+420
−138 for a uniform component-mass prior at the 90% credible level; with

a few plausible assumptions, a restrictive constraint is now set for a canonical Λ (=Λ1.4, for a neutron

star of mass 1.4M�) at 190+390
−120 [Abbott et al. 2018] and the radii of both the lighter and the heavier

neutron stars in the merger event at R1,2 = 11.9 ± 1.4 km. From the spectral parameterization of

the defining function p(ρ) (p=pressure) to fit the observational template, the pressure inside the NS

at supranormal densities is also predicted. Complementing the electromagnetic probes that determine

the maximum mass of neutron stars (2.01+0.04
−0.04 ≤ Mmax

NS /M� ≤ 2.16+0.17
−0.15) [Antoniadis & et al. 2013,

Demorest et al. 2010, Rezzolla et al. 2018a], GW-based probes of the neutron star structure thus set

the stage for exploring the nuclear matter EOS at large densities.

First-principle calculations of nuclear matter EOS at subsaturation densities in chiral effective

field theory (CEFT) [Tews et al. 2013] and at very high densities in perturbative QCD [Fraga et al.

2016, Kurkela et al. 2010] are robust. The problem of generating the most generic family of NS-matter

EOS at intermediate densities that interpolates between these reliable theoretical estimates consistent

with the observational constraints on Mmax
NS and the tidal deformability has been recently addressed

[Annala et al. 2018]. A significant constraint on the nuclear matter EOS is found from the inspec-

tion that the low density EOS must be stiff enough to support a NS of mass ≈ 2M� but soft enough

so that Λ̃ < 800 [Abbott et al. 2019]. Revisiting this problem with a huge number of parametri-

cally constructed plausible different EOSs connecting the low density and the high density end, Most

et .al [Most et al. 2018] find that, for a purely hadronic star, the tidal deformability is constrained at

Λ1.4 > 375 at 2σ confidence level. A non-parametric method for inferring the universal neutron star

matter EOS from GW observations is also reported recently [Landry & Essick 2019] with the canonical

deformability Λ1.4 = 160+448
−133 at 90% confidence level. A lower bound on the tidal deformability≈ 400

is also set from the analysis of the UV-optical-infrared counterpart of GW170817 complemented with

numerical relativity results [Radice et al. 2018]. Similar analysis, but, with a larger number of models

pushes the lower bound to ≈ 200 [Bauswein et al. 2017].

Through a combination of laboratory data on light nuclei and sophisticated microscopic model-

ing of the sub-saturation EOS from CEFT [Lim & Holt 2018, 2019, Tews et al. 2018, 2019], attempts

have been made to arrive at values of the tidal deformability. Using a relativistic mean field (RMF)

inspired family of EOS models calibrated to provide a good description of a set of selective proper-
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ties of finite nuclei, the impact of the tidal deformability on the neutron-skin of 208Pb and on the NS

mass and radius has also been addressed [Fattoyev et al. 2018]. The varying outcomes point to the

fact that the connection of the tidal deformability to the laboratory data is not yet fully transparent and

that more stringent constraints on the isovector sector of the effective interaction are needed. From

new-found strong correlations of Λ1.4 and R1.4 with a set of selective linear combinations of isoscalar

and isovector properties of nuclear matter, it is realized that such constraints may be provided by the

isovector giant resonances in conjunction with the isoscalar resonances in finite nuclei. To have a better

understanding of these particularities, in this communication, we perform an analysis of the suitability

of some often-used Skyrme models to explain isoscalar and isovector giant resonance data and exam-

ine their predictions for Λ1.4. Simultaneously, attention is given to the analysis of the astrophysical

constraint on the neutron star maximum mass Mmax
NS [Antoniadis & et al. 2013, Demorest et al. 2010];

this encodes pressure gradient information from mapping the varying neutron-proton asymmetry over

a large density range. Later, by fitting a broader-based set of isoscalar and isovector data along with

the observed NS mass constraint, we propose a new EOS with the uncertainties estimated within the

covariance analysis and check its compatibility with the GW data. The calculation is model dependent

in the sense that the EOS is taken to be a smooth function of density and avoids possibilities of phase

transitions to exotic form of matter when more drastic changes in the density behavior of the EOS are

considered.

5.1 Motivation from existing trends

We resort to the Skyrme framework for this study. For the suitability analysis of the Skyrme

EDFs, we choose among them twenty eight EDFs that are more representative. They include the set

of thirteen ’best’ EDFs (CSkP set) used in Ref. [Brown 2013]. These are: KDE0v1, LNS, NRAPR,

Ska25s20, Ska35s20, SKRA, SkT1, SkT2, SkT3, SQMC700, Sv-sym32, Sly4, SkM*. Another set of

thirteen Skyme EDFs used in Ref. [Alam et al. 2016] are also taken to examine the correlation of the

neutron star radius with some key parameters of symmetric and asymmetric nuclear matter. They are:

Ska, Skb, SkI2, SkI3, SkI5, SkI6, Sly2, Sly230a, Sly9, SkMP, SkOP, SK255 and SK272. To this list

of twenty six, two recent EDFs, Skχm∗ [Zhang et al. 2018b] and KDE0-J34 [Roca-Maza et al. 2015]

are further included; they are compliant with the measured dipole polarizability of few nuclei. The

Skχm∗ EDF, in addition, reproduces the theoretical predictions on properties of asymmetric nuclear

matter from CEFT [Wellenhofer et al. 2015, 2016]. All these EDFs provide a satisfactory reproduction
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of the binding energies of finite nuclei and their charge radii, and obey reasonable constraints on the

properties of symmetric nuclear matter such as the energy per nucleon (e0 = −15.8 ± 0.5 MeV), the

saturation density (ρ0 = 0.16 ± 0.01 fm−3), the isoscalar nucleon effective mass (m
∗
0

m
=0.6-1.0) and

the isoscalar nuclear incompressibility ( K0 = 240± 30 MeV).

The twenty eight EDFs mentioned above were constructed with emphasis on different biases for

the selection of data on finite nuclei and nuclear matter properties. We would like to have a closer look

into these EDFs by analyzing their ability to explain few further significant data related to isoscalar and

isovector properties of finite nuclei and draw inference on the consistency of the EDFs in explaining

observables concerning neutron star masses and their tidal deformability. The experimental data of

particular interest for finite nuclei are the centroid energy Ec
GMR of the isoscalar giant monopole reso-

nance (ISGMR), the peak energyEp
GDR of the isovector giant dipole resonance (IVGDR) and the dipole

polarizability αD, all for the heavy nucleus 208Pb. The dipole polarizability αD and the GDR peak en-

ergies are measures of the isovector parameter Θv that defines the isovector effective nucleon mass

m∗v,0 [Zhang & Chen 2016] in the Skyrme methodology. In conjunction with the isoscalar effective

mass m∗0, this determines the isovector-splitting of the nucleon effective mass [∆m∗0 ≡ (m∗n−m∗p)/m],

which is directly related with the isovector properties of the nuclear interaction. Concerning the astro-

physical context, the data include the observed lower limit of the maximum mass Mmax
NS of the neutron

star [Antoniadis & et al. 2013, Demorest et al. 2010], (Mmax
NS = 2.01± 0.04M� ).

The constraints provided by these empirical data allow to choose the most plausible EDFs con-

sidering the neutron star maximum mass and its radius, and the tidal deformability parameter along

with other properties of nuclear matter like m∗0 or ∆m∗0. For the selected twenty eight EDFs, we find

the effective mass m∗
0

m
lying between ≈0.6-1.0 with ∆m∗0 distributed nearly evenly with positive and

negative signs. This is shown as (+) and (−) signs for ∆m∗0 superimposed on the symbols in Fig.5.1(a)

where the calculated values of the maximum neutron star mass Mmax
NS are given as a function of the

tidal deformability parameter Λ1.4 for the given EDFs. To focus on the role of m∗0 in determining the

ISGMR energy and the maximum mass of the neutron star, m
∗
0

m
of the EDFs are sorted in three groups,

0.60 ≤ m∗
0

m
< 0.65 (red solid circle), 0.65 ≤ m∗

0

m
< 0.75 (blue solid square) and 0.75 ≤ m∗

0

m
≤ 1.0

(green solid pentagon). The red dashed horizontal lines in all the four panels in Fig.5.1 show the lower

bound of the observed maximum value of the NS mass (= 1.97M�) that an acceptable EDF must

support. To calculate the neutron star properties, the EOS for its crust is taken from the Baym, Pethick

and Sutherland model [Baym et al. 1971] in the density range ρ ≈ 4.8×10−9 fm−3 to 2.6×10−4 fm−3.

The structure of the core is calculated from the EDFs with the assumption of a charge neutral uniform
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Figure 5.1: The maximum neutron star mass Mmax
NS versus the tidal deformability parameter Λ1.4 obtained from

the 28 selected EDFs. The red dashed lines refer to 1.97M�, the observed lower bound for Mmax
NS . For more

details , see text.

plasma of neutrons, protons, electrons and muons in β- equilibrium. The EOS for the region between

the inner edge of the outer crust and the beginning of outer core defined by the crust-core transition

density is appropriately interpolated using a polytropic form [Carriere et al. 2003]. This method may

introduce uncertainties in the determination of the radius of low and intermediate NS masses [Fortin

et al. 2016, Pais & Providłncia 2016, Piekarewicz et al. 2014]. We have estimated an average uncer-

tainty of ≈2% on Λ1.4 by comparing the present results with the ones obtained from unified EOSs.

Fig.5.1(a) shows that the constraint on the NS maximum mass alone filters out some EDFs. A good

fraction of the EDFs with effective masses above 0.75 m fails to achieve the lower bound on Mmax
NS .

EDFs that fulfill the constraint imposed by the ISGMR centroid energy in 208Pb (14.17±0.28

MeV ) are represented by additional open circle in Fig.5.1(b). The EDFs with effective masses in the
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lower end of the spectrum (red solid circles, m∗
0

m
< 0.65) are seen to be excluded from consideration;

lower effective masses tend to yield higher values of ISGMR energies than desired. The further con-

straint of satisfying the IVGDR peak energy (13.43 MeV; in Ref. [Dietrich & Berman 1988], a large

width of 4.07 MeV is ascribed to it. We take a conservative estimate of 2 MeV for the width) for 208Pb

(marked with further magenta-colored star) eliminates few more EDFs as shown in Fig.5.1(c) and, as

is also seen there that, it forces the focus on effective mass values in the middle range (0.65-0.75)m.

On top of these, imposition of the next constraint concerning the dipole polarizability αD for 208Pb

(19.6 ±0.6 fm3) leaves open the question of the suitability of most of the EDFs, as is seen from the

inspection of Fig.5.1(d). EDFs satisfying the constraint on αD are marked by orange diamonds, those

satisfying criteria concerning both the IVGDR peak energy and αD are marked by yellow triangles (see

Table I of the Supplemental Material [Malik et al. 2019a] for details on 28 EDFs). Fig.5.1(d) shows

that among the selected twenty eight EDFs, only three satisfy all the constraints considered. They

are the interactions Sly2, Sly4 and KDE0-J34. For these three EDFs, the effective mass is ≈ 0.7m,

and the isovector mass splitting ∆m∗0 is negative. It is of interest to note that the constraints on the

maximum NS mass and the ISGMR datum in 208Pb can not delineate the sign of the values of ∆m∗0,

positive or negative; the extra constraint on the peak energy of IVGDR in 208Pb is in favour of a neg-

ative ∆m∗0, the final constraint on the dipole polarizability settles this issue. The value of the nucleon

effective mass (0.7m) is in very good agreement with that obtained from the optical model analysis

of nucleon-nucleus scattering [Li et al. 2015], but the negative value of the isospin-splitted effective

mass, at variance with most theoretical predictions [Agrawal et al. 2017, Baldo et al. 2017, Holt et al.

2016, Kong et al. 2017, Li & Han 2013, Li et al. 2018, 2015, Mondal et al. 2017, Zhang & Chen 2016],

needs possibly a more critical examination. Presently we do not discuss this matter except mentioning

that a recent EDF [Malik et al. 2018b] based on the Gibbs-Duhem relation and specifically designed

to fit a wide variety of ’pseudo data’ corresponding to infinite nuclear matter and the experimental

energy weighted sum rule for a few nuclei yields a value for the nucleon effective mass that is very

close (m
∗
0

m
= 0.68) to what we find from this analysis and also gives a negative value for ∆m∗0(=−0.2δ).

Here, δ is the isospin asymmetry of nuclear matter defined as δ = (ρn − ρp)/ρ, ρn and ρp being the

neutron and proton densities, respectively.

The role of the empirical data in sensitively constraining the tidal deformability parameter Λ

should now be stressed. One sees from Fig.5.1 that from the total twenty eight EDFs chosen, Λ1.4

stretches out from 100 to 1000, the NS mass constraint shrinks the band width to ≈ 270-1000, the

ISGMR datum shrinks it to ≈270-760, the IVGDR peak energy squeezes it further to ≈270-590 and
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Table 5.1: Parameters for the model SkΛ267 and the resulting nuclear matter and neutron star properties along

with their errors in the parenthesis. J0 is the symmetry energy coefficient, L0 is related to its density derivative

[Malik et al. 2018b].
t0 ( MeVfm3 ) t1 ( MeVfm5 ) t2 ( MeVfm5 ) t3( MeVfm3+3α ) x0 x1 x2 x3 α W0 ( MeVfm5 )

-2481.08 482.51 -516.17 13778.74 0.93 -0.53 -0.97 1.54 0.167 121.38

(89.05) (50.41) (407.22) (123.72) (0.28) (0.89) (0.20) (0.58) (0.018) (9.35)

e0(MeV) ρ0(fm−3) K0(MeV) m∗0/m J0(MeV) L0(MeV) ∆m∗0/δ Λ1.4 R1.4 (km) Mmax
NS (M�)

16.04 0.162 230.2 0.70 31.4 41.1 -0.25 267 11.6 2.04

( 0.20 ) (0.002) (6.4) (0.05) ( 3.1) ( 18.2) (0.35) (144) ( 1.0) (0.15)

Λ1.4 settles it at≈ 290-330 when filtered through the choices of all the data considered; it lies in midway

of the observed band width for Λ1.4 deduced from the GW170817 event [Abbott et al. 2018]. This

survey suggests that there are models that can endure the constraint on the observedMmax
NS , but many of

them would not fit the experimental data on the properties of the ISGMR and IVGDR simultaneously

due to the weak correlations among them as discussed later. We would like to emphasize that the

conclusion drawn from Fig.5.1 is only indicative of the value of the tidal deformability and serves as

the motivation for the quantitative investigation that follows.

5.2 Constraining tidal deformability from measured properties of

finite nuclei

To reassess the bounds on the tidal deformability more accurately, a new Skyrme EDF calibrated

with a wider fit data base is proposed. The constraints include the observed maximum NS mass Mmax
NS ,

the binding energies of spherical magic nuclei, their charge radii, the ISGMR energy of 208Pb and its

dipole polarizability. In addition, the ISGMR energies of 90Zr and 120Sn and the dipole polarizibility

αD of 48Ca, 68Ni and 120Sn are included in the fitting protocol.

It is observed that for the models employed in Fig.5.1,Ec
GMR, αD andMmax

NS are weakly correlated

among themselves (Pearson correlation coefficients r are ≈ 0.5). Simultaneously constraining these

quantities may impose strong restrictions on the model parameters. The IVGDR peak energies are left

out of the fitting protocol deliberately. Calculations with the selected EDFs reveal the existence of

an anti-correlation of Ep
GDR for 208Pb with Mmax

NS when the EDFs are sorted in groups within narrow

windows in m∗0/m. For illustration, this anti-correlation is displayed in the Fig.5.2(a) for effective

masses in the range 0.65 ≤ m∗0/m < 0.75 with the selected EDFs. The correlation coefficient is
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Figure 5.2: Correlation of Ep
GDR and Mmax

NS obtained using (a) the set of selected models as in Fig.5.1 with

effective mass m∗0/m in the range 0.65 -0.75 and (b) a set of systematically varied models with chosen fixed

effective masses in the present work.

r = −0.69. However, we see that the aforesaid correlation shoots up to nearly unity when calculated

with the systematically varied models obtained with fixed values of m∗0/m as displayed in the Fig.

5.2(b). For given values of Mmax
NS and m∗0/m, Ep

GDR is the outcome of the calculation keeping all other

data in the fitting protocol unchanged.

The optimized χ2-function from the fit to all the input data (Mmax
NS and measured properties of

finite nuclei as mentioned) yields the EDF parameters. They are listed in Table 5.1 along with their

errors obtained within the covariance method [Dobaczewski et al. 2014, Mondal et al. 2015, Zhang

et al. 2018b]. Some selected properties of nuclear matter and neutron stars are also presented in the

table. Since the central value of Λ1.4 comes out to be 267, we hereafter name this EDF as SkΛ267.

The nuclear matter constants obtained for SkΛ267 are in excellent agreement with their fiducial values.

The lower bound on Mmax
NS is comfortably obeyed; the tidal deformability parameter (Λ1.4) and the NS
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Figure 5.3: Pressure of β-equilibrated neutron star matter displayed as a function of density. The shaded region

represents the constraints from GW170817 event (B.P. Abbott et. al 2018: [Abbott et al. 2018]).

radius R1.4 are also found to be in very good agreement with that reported in Ref. [Abbott et al. 2018],

the errors are more contained though. The value of the neutron-skin ∆rnp for 208Pb is 0.15± 0.05 fm.

Since the experimental value of tidal deformability is not yet settled, tolerance of the fit of the

calculated observables with the data is further tested by arbitrarily constraining Λ1.4 to different values.

As a demonstrative example we use an extra constraint in our fit Λ1.4 = 500 ± 100. The outcome

is model SkΛ484 with Λ1.4 = 484 (see Table IV of the Supplemental Material [Malik et al. 2019a]

for the parameters). The model SkΛ267 is found to be more compatible with the measured properties

of finite nuclei. A comparison of different observables related to nuclear matter and NS properties

calculated with SkΛ267 and SkΛ484 is given in Table III and IV of the Supplemental Material [Malik

et al. 2019a]. One may note the closeness of the nuclear matter observables obtained from SkΛ267 and

those from the interaction SLy4 [Chabanat et al. 1997]. In SLy4, instead of the IVGDR as fit data as

used in this paper, the isotopic properties of forces beyond the β- stability line were dictated by having

a good reproduction of neutron-matter EOS obtained variationally by Wiringa et. al [Wiringa et al.

1988, Wiringa 1993].

The prediction of the EOSs SkΛ267 and SkΛ484 for the pressure of the neutron star matter as a

function of density is displayed in Fig.5.3 and compared with that deduced from the GW170817 event
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[Abbott et al. 2018]. As expected, SkΛ267 is somewhat softer than SkΛ484. Overall, the agreement

between theory and experiment is very good; the delineation among the two theoretical EOSs is, how-

ever, done through the microscopic lens of the measured properties of finite nuclei as already stated.

Both EDFs maintain causality in the density range encountered in the interior of the neutron stars;

they become acausal beyond ρ ≈ 8ρ0 which is slightly higher than the central density ≈ 7.0ρ0 for the

maximum mass.

5.3 Summary

The agreement of the nuclear equation of state (EOS) deduced from the GW170817 based tidal

deformability with the one obtained from empirical data on microscopic nuclei is examined. It is found

that suitably chosen experimental data on isoscalar and isovector modes of nuclear excitations together

with the observed maximum neutron star mass constrain the EOS which displays a very good congru-

ence with the GW170817 inspired one. The giant resonances in nuclei are found to be instrumental in

limiting the tidal deformability parameter and the radius of neutron star in somewhat narrower bounds.

At the 1σ level, the values of the canonical tidal deformability Λ1.4 and the neutron star radius R1.4

come out to be 267± 144 and 11.6± 1.0 km, respectively.
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Chapter 6

Conclusion

The equation state of nuclear matter is determined to take into consideration not only the finite

nuclear properties but also neutron star observations. And therefore it is important to pinpoint the

symmetry energy at high densities as well as the underlying nuclear interactions. The primary goal

of this thesis is to bridge the various aspects of nuclear matter at a various range of densities to the

terrestrial experiments whatever available and also the celestial observations. Here we outline the

major findings of our work as specified in Chapters 3-5.

In Chapter 3, we presented the extension of the effective chiral model by including σ − ρ and

ω − ρ cross-couplings. The motivation was to improve upon the value of symmetry energy both at

saturation and the crossing densities. We find that the low-density behavior of PNM EOS for both

NCC (no cross coupling) and WR (ω− ρ) models do not match well with the range of values proposed

by microscopic calculations [Gezerlis & Carlson 2010, Hebeler et al. 2013]. The WR model gives

NS maximum mass to be 1.86 M� which is very less compare to the mass observed for the PSR

J0348 + 0432 (M = 2.01± 0.04 M�) [Antoniadis & et al. 2013]. In the case of the SR (σ−ρ) model,

the density dependence of the symmetry energy is found to be consistent with IAS, HIC Sn+Sn and

ASY-EOS data. The symmetry energy at the crossing density (ρ1 = 0.1 fm−3) is also in harmony with

the available empirical data. The value of the symmetry energy slope and the curvature parameters are

in accordance with those deduced from the diverse set of experimental data for the finite nuclei. The

pure neutron matter EOS at sub-saturation densities passes well through the range of values suggested

by the microscopic models [Gezerlis & Carlson 2010, Hebeler et al. 2013]. The obtained NS maximum

mass is 1.97 M� which is consistent with the observational data. The value of R1.4 (canonical radius)

is within the empirical bounds. The SR model satisfies all the discussed constraints which suggest

that the inclusion of σ − ρ cross-coupling in the effective chiral model is indispensable. We have
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also compared our results with a few selected RMF models. In general, it is found that the effects of

various cross-couplings within the RMF models are weaker compare to those in the effective chiral

model. This effects are more prominent for the models with ω − ρ cross-coupling.

The tidal deformability inferred from a very recent binary NS mergers event, i.e., GW170817,

presents one interesting way to constrain the EOS of dense matter. Complemented with the detection

of the UV/optical/infrared counterpart of GW170817, a lower bound on tidal deformability parameter

is suggested [Radice et al. 2018]. In Chapter 4 we have used a diverse set of relativistic and nonrela-

tivistic mean field models to look for correlations of tidal deformability Λ with several nuclear matter

parameters characterizing the EOS such as the nuclear matter incompressibility and symmetry energy

coefficients, and their density derivatives. All the models selected are consistent with the bulk proper-

ties of finite nuclei as well as with the observation of NS with mass of ∼ 2M�. Nevertheless, across

these models, the values of Λ and of the various nuclear matter parameters associated with different

EOSs vary over a wide range. The tidal deformability is found to be weakly or only moderately corre-

lated with the individual nuclear matter parameters of the EOS. The stronger correlation of Λ is found

only for specific choices of the linear combinations of the isoscalar and isovector EOS parameters.

The parameter Λ is strongly correlated with the linear combination of the slopes of incompressibility

and symmetry energy coefficients, i.e., M0 + βL0. Further, the parameter Λ and the Love number k2

both are strongly correlated with the linear combination of M0 + ηKsym,0. We show that the bound

on weighted average of tidal deformability for a system of binary neutron star, obtained from comple-

mentary analysis [Abbott et al. 2017a, De et al. 2018, Radice et al. 2018] of GW170817, yields the

tidal deformability for NS with mass 1.4 M� in the range of 344 < Λ1.4 < 859. With the aid of the

correlations of Λ1.4 with linear combinations of nuclear matter parameters as considered together with

the bounds on Λ1.4 and the empirical ranges of L0 obtained in Ref. [Lattimer & Lim 2013, Oertel et al.

2017], we have constrained the values of M0 and Ksym,0 to lie in the intervals 2254 < M0 < 3631

MeV and −112 < Ksym,0 < −52 MeV or 1926 < M0 < 3768 MeV and −140 < Ksym,0 < 16

MeV, depending on the constraints set on L0. The strong correlation of tidal deformability with the NS

radius for a 1.4 M� NS yields R1.4 in the range 11.82 - 13.72 km. The precise measurement of tidal

deformability will provide an alternative and accurate estimate for M0, Ksym,0 and R1.4.

GW-based measurements of the macroscopic properties of neutron stars offer a very promising

means of looking deeper into the nuclear microphysics governing the internal structure of the neutron

stars and of obtaining sound informative constraints on the nuclear EOS at subnormal and supranormal

densities. In chapter 5, we have explored in this communication how the low density laboratory-
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data inspired nuclear matter EOS connects with that obtained from GW-based data. We show that the

pressure-density variation deduced from GW analysis is in very good agreement with a parametric form

of the EOS designed to comply with properly chosen nuclear observables sensitive to the isoscalar and

isovector parts of the nuclear interaction together with the NS mass constraint. The tidal deformability

parameter is now constrained at ≈ 267± 144 (267± 236) at 1σ level (90% confidence level). We note

that a recent reanalysis [Narikawa et al. 2018] of the GW-based data leads to a considerable stretching

of the bounds on the tidal deformability although the central value (≈ 200) maintains an extremely

good consistency with those obtained earlier or with that obtained by us. On the other hand, the EOS

derived from a neural network [Fujimoto et al. 2019] having as input observational data from several

neutron stars leads to Λ1.4 = 320 ± 120 which is entirely consistent with the values derived here.

Constraining NS properties from low-energy nuclear physics thus seems very meaningful. All nuclear

properties, both isoscalar and isovector, derived from our EOS are in very comfortable agreement

with their fiducial values. The values of the incompressibility, the symmetry energy and its density

derivative indicate that the EOS is soft at densities near saturation; the conformity of the low value of

the tidal deformability with the most recent estimates shows that the EOS is soft over a wider range

of densities and thus leaves the question open on how to identify a possible phase transition in the

neutron star core. Future detection of binary star mergers by the LIGO-Virgo collaboration may settle

this issue.
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Chapter 7

Future Scope of the Work

In recent years our understanding of the dense matter EOS has been greatly improved. However,

there are scope for extension of the present work in the thesis, related to neutron stars. We already

have started working on such possible extensions in the light of the results from recent and upcoming

developments of the facilities available worldwide and also from different theoretical, observational,

experimental or empirical perspectives.

Few of our ongoing works are listed bellow.

• On the possibility of having a Dark Matter (DM) in neutron stars– Observation of the kinemat-

ics of self-gravitating objects such as galaxies and clusters of galaxies give a strong hint of the

existence of dark matter (DM). Cosmological observations rules out normal baryonic like DM

particles. The DM seems to interact very weakly with standard model particles and therefore its

coupling is very uncertain. However extensive studies on the particle physics dark matter mod-

els have put strong constraints on the coupling constant and mass of the dark matter particles.

Among different proposals of dark matter, weakly interacting massive particle (WIMP) scenario

has gained favor because it gives the correct prediction of the measured relic abundance of the

dark matter today very naturally. The effects of different types of dark matter on dense matter

EOS is one of the future scopes of research. The dark matter will softness the EOS, it may pos-

sible some ruled out stiff EOS by GW170817 may explain observed neutron star properties with

the inclusion of dark matter in the EOS.

• Constraints on EOS in a model independent way– Correlation analysis between nuclear matter

parameters and NS properties have been explored using several nuclear models. These corre-

lations studies, however, show a considerable model dependence. Since different models with
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similar values of nuclear matter parameters may result in different EOSs. We are interested in

further future exploration of correlations of nuclear matter parameters with various astrophysical

observables in a model independent approach .

• Machine Learning approach to nuclear matter studies– The correlation analysis are only sen-

sitive to linear dependencies. It may possible that exact dependency of astrophysical observables

with nuclear mater parameters are complicated and nonlinear. These non-linear maps can be en-

coded by supervised machine learning methodology which has already been applied to neutron

star physics in , where a Deep Neural Network (DNN) was used as an efficient procedure for

mapping from a finite set of mass-radius observational data onto the equation of state plane.

• On the possible existence of exotic particle in the core of neutron stars– The compactness

parameter of massive neutron star observed recently indicates a possible existence of baryonic

resonances such as Λ0,Σ+,0,−,Ξ−,0,Ω− in the core of neutron stars. Moreover, Neutrons at very

high momentum states will be unstable and therefore it is more likely that baryonic resonances be

there at lower momentum states. Their presences will result in more massive stars with smaller

radius. Studies has reviled that the presence of exotic particles lowers the pressure and hence

one obtains soft EOS at higher densities. Such studies can also through light on the possible

interactions between them.

• Neutron stars with high magnetic field– Born out of massive interstellar gases over millions

of years, the magnetic field present in these compact structures can be very high, although the

origin of these high fields is still not well understood. The typical values of surface magnetic

field of neutron stars ranges from 1012 to 1015 Gauss. It is speculated that the field intensity can

be even more at the core. A fraction of the population, having the strongest surface magnetic

fields ∼ (1012 − 1015) Gauss are called the magnetars and generally they belong to Soft Gamma

Repeaters (SGRs) or Anomalous X-ray Pulsars (AXPs). Therefore, it is desirable to incorporate

the magnetic field effects to determine the composition and the gross structural properties of

these neutron stars with high magnetic field. Apart from the static structural properties of the

magnetars, magnetic fields also play an important role in the physics of compact star mergers.

The gravitational waves emitted at the late stage of the merger process can possibly be detected

directly and are sensitive to the EOS of the dense matter. The magnetic field in a merger process

can possibly become extremely large due to magneto-rotational instability and the magnitude

can be large enough to affect the EOS of dense matter.
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Appendix A

Mass dependence of correlations parameters

The coefficients α, β and η are obtained in such a way that they optimize the correlations of Λ, for

a given NS mass, with the linear combinations K0 + αL0, M0 + βL0 and M0 + ηKsym,0. The value of

these coefficients are given in Table B.2 for a few selected NS masses. In Figure A.1, we plot the mass
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Figure A.1: The values of α, β and η obtained by optimizing the the correlations of Λ with the linear combina-

tions K0 + αL0, M0 + βL0 and M0 + ηKsym,0 are plotted as a function of NS mass.

dependence of α, β and η. These coefficients can be easily fitted to the exponential decay like function

which can be expressed as α = −0.13 + 14.87 exp(−m/0.49), β = −1.90 + 265.02 exp(−m/0.49)

and η = −1.4 + 29.81 exp(−m/0.89), where the NS mass m is in the unit of solar mass.
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Appendix B

The properties of finite nuclei, nuclear matter,

and neutron stars
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Figure B.1: Deviations of the dipole polarizability

∆αD and the peak energy ∆EpGDR from their exper-

imental values obtained with the SkΛ267 and SkΛ484
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Figure B.2: The pressure P (ρ) for SNM (upper panel)

and PNM (lower panel) as a function of baryon density

ρ for the parameter sets SkΛ267 and SkΛ484. Con-

straints from different previous studies e.g. Kaon exp

[Fantina et al. 2014, Fuchs 2006], HIC [Danielewicz

et al. 2002] and N3LO [Hebeler et al. 2013] are pro-

vided for comparison.
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Table B.1: Some selected properties of nuclear matter such as binding energy per nucleon e0, nuclear matter

incompressibility coefficient K0, its skewness Q0, symmetry energy coefficient J0, its slope L0, effective mass
m?0
m , isovector splitting of nucleon effective mass ∆m?0

δ calculated at saturation density density ρ0 for the repre-

sentative set of Skyrme models considered. The models are arranged according to increasing order of m?0
m . The

values for various quantities associated with 208Pb nucleus and those for neutron star as employed in Fig.1 of the

main text are also listed.
Model ρ0 e0 K0 Q0 J0 L0

m?0
m

∆m?0
δ

αD Ep
GDR Ec

GMR Mmax
NS R1.4 Λ1.4

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (fm3) (MeV) (MeV) (M�) (km)

SkI3 0.16 -15.98 258.20 -303.88 34.83 100.53 0.58 -0.32 21.99 12.20 14.76 2.24 13.5 783
SkI5 0.16 -15.85 255.80 -301.97 36.64 129.33 0.58 -0.32 23.95 11.90 14.72 2.24 14.0 1014
Skb 0.16 -15.99 263.16 -300.14 23.88 47.54 0.61 0.22 26.86 13.00 15.15 2.18 12.2 468
Ska 0.16 -15.99 263.16 -300.14 32.91 74.62 0.61 0.22 22.31 14.05 14.85 2.20 12.9 563
SkI6 0.16 -15.92 248.60 -327.35 30.09 59.70 0.64 -0.26 20.65 12.70 14.38 2.18 12.5 486
SkMP 0.16 -15.56 230.88 -338.06 29.89 70.31 0.65 0.15 23.82 13.30 14.08 2.10 12.5 482
SLy9 0.15 -15.80 229.85 -350.43 31.98 54.86 0.67 -0.22 20.81 12.40 13.80 2.15 12.4 448
SkI2 0.16 -15.78 240.94 -339.72 33.37 104.34 0.68 -0.20 23.48 12.05 14.37 2.16 13.4 762
NRAPR 0.16 -15.85 225.66 -362.55 32.78 59.63 0.69 0.21 20.58 13.45 13.84 1.94 12.0 294
SLy4 0.16 -15.97 229.92 -363.12 32.00 45.94 0.69 -0.18 19.76 12.55 13.98 2.05 11.7 296
SLy230a 0.16 -15.99 229.89 -364.20 31.99 44.32 0.70 -0.42 19.14 12.00 14.02 2.09 11.8 328
Sly2 0.16 -15.99 229.92 -364.23 32.00 47.45 0.70 -0.18 19.55 12.70 13.99 2.04 11.8 300
KDE0J34 0.16 -16.11 228.84 -373.63 34.00 59.00 0.72 -0.10 19.56 13.00 14.07 2.03 12.1 332
QMC750 0.17 -16.23 231.03 -380.53 34.28 65.43 0.74 0.21 18.61 14.05 14.60 1.87 11.7 243
KDE0v1 0.17 -16.23 227.55 -384.88 34.58 54.69 0.74 -0.13 18.60 12.80 14.06 1.97 11.6 265
SKRA 0.16 -15.78 216.99 -378.78 31.32 53.03 0.75 0.29 21.23 13.10 13.62 1.77 11.4 213
Skχ m? 0.17 -16.06 230.36 -376.37 30.93 45.55 0.75 0.12 19.68 13.50 14.08 1.82 11.1 191
SK272 0.16 -16.28 271.52 -305.32 37.40 91.67 0.77 0.29 21.00 12.95 14.88 2.23 13.3 643
SkMs 0.16 -15.77 216.62 -386.10 30.03 45.78 0.79 0.33 21.71 13.05 13.56 1.62 10.6 129
SK255 0.16 -16.33 254.94 -350.11 37.40 95.05 0.80 0.37 21.76 12.75 14.41 2.14 13.1 587
LNS 0.18 -15.32 210.79 -382.57 33.43 61.45 0.83 0.22 19.57 12.85 13.80 1.72 11.1 168
SkOp 0.16 -15.75 222.33 -390.77 31.95 68.93 0.90 0.05 21.88 11.80 13.66 1.97 12.3 360
SV-sym32 0.16 -15.94 233.81 -380.13 32.00 57.07 0.90 0.47 20.86 12.60 14.07 1.72 11.6 232
Ska25s20 0.16 -16.07 220.76 -413.47 33.78 63.81 0.98 -0.01 20.02 12.35 14.10 1.86 11.9 271
SkT2 0.16 -15.95 235.74 -382.68 32.00 56.16 1.00 0.00 20.90 11.50 14.22 1.84 11.7 259
SkT1 0.16 -15.98 236.17 -383.54 32.02 56.18 1.00 0.00 20.91 11.50 14.21 1.84 11.7 260
SkT3 0.16 -15.94 235.75 -382.71 31.50 55.31 1.00 0.00 20.79 11.55 14.26 1.85 11.7 260
Ska35s20 0.16 -16.08 240.27 -378.66 33.57 64.83 1.00 0.00 20.06 12.25 14.68 1.96 12.3 350
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Table B.2: Experimental values of the fit data and adopted errors on them for SkΛ267. For SkΛ484 we have

taken additional fit data Λ1.4 = 500± 100.

Quantity Nuclei Exp. value Adopted error

Binding energy (MeV)

208Pb -1636.43 1

40Ca -342.05 3

132Sn -1102.84 1

16O -127.62 4

48Ca -416.00 1

56Ni -483.99 2

100Sn -825.30 2

24O−16 O -41.34 2

charge radii (fm)

208Pb 5.50 0.02

40Ca 3.48 0.02

132Sn 4.71 0.02

16O 2.70 0.04

48Ca 3.48 0.04

56Ni 3.75 0.18

αD (fm3)

208Pb 19.60 0.6

120Sn 8.59 0.36

48Ca 2.07 0.22

Ec
GMR (MeV)

208Pb 14.17 0.28

120Sn 15.70 0.5

90Zr 17.89 0.2

Mmax
NS ( M�) 2.16 0.15
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Table B.3: Dipole polarizability αD, peak energy of IVGDR Ep
GDR , centroid energy of ISGMR Ec

GMR for

different nuclei [Col et al. 2013] and neutron skin thickness ∆rnp of 208Pb are listed for SkΛ267 and SkΛ484

models. The corresponding experimental values are also provided for comparison.

Quantity Nuclei Experiment SkΛ267 SkΛ484

208Pb 19.6(6) 19.42(50) 20.67(84)

αD
120Sn 8.59(36) 8.99(25) 9.58(36)

(fm3) 68Ni 3.88(31) 3.97(12) 4.25(17)

48Ca 2.07(22) 2.36(16) 2.52(15)

208Pb 13.43 12.40 12.15

Ep
GDR

120Sn 15.00 14.30 14.00

(MeV) 68Ni 17.10 17.30 15.95

48Ca 18.90 18.20 16.90

208Pb 14.17(28) 14.04(11) 13.95(12)

Ec
GMR

120Sn 15.70(10) 16.46(13) 16.42(27)

(MeV) 90Zr 17.81(20) 18.36(12) 18.34(13)

∆rnp
208Pb 0.16(03)∗ 0.15(05) 0.21(04)

(fm)

∗Obtained from the systematic analysis of measured electric dipole polarizability [Roca-Maza et al. 2015].
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Table B.4: Values of the parameters for the SkΛ267 and SkΛ484 models along with their errors. Different

properties of nuclear matter and neutron star resulting from both the parameter sets are also listed. Definitions

of the different nuclear matter properties are used as in Ref. [Dutra et al. 2012].

Quantity SkΛ267 SkΛ484

t0 (MeV fm3) −2481.08± 89.05 −2488.70± 76.02

t1 (MeV fm5) 482.51± 50.41 500.07± 30.47

t2 (MeV fm5) −516.17± 407.22 −503.49± 224.21

t3 (MeV fm3(1+α)) 13778.74± 123.72 13675.87± 250.29

x0 0.93± 0.28 0.57± 0.35

x1 −0.53± 0.89 −0.68± 1.22

x2 −0.97± 0.20 −0.97± 0.14

x3 1.54± 0.58 1.01± 0.77

α 0.167± 0.018 0.16± 0.01

W0 (MeV fm5) 121.38± 9.35 116.94± 13.97

ρ0 (fm−3) 0.161± 0.002 0.161± 0.002

e0 (MeV) −16.04± 0.20 −16.10± 0.16

K0 (MeV) 230.19± 6.41 232.32± 5.05

Q0 (MeV) −366.75± 11.96 −363.77± 10.23

J0 (MeV) 31.41± 3.13 34.87± 3.03

L0 (MeV) 41.10± 18.23 76.32± 28.94

Ksym,0 (MeV) −123.90± 70.19 −28.35± 130.68

m∗0/m0 0.70± 0.05 0.69± 0.03

∆m∗0/δ −0.25± 0.35 −0.30± 0.51

MNS
max/M� 2.04± 0.15 2.10± 0.04

R1.4 (km) 11.6± 1.0 13.1± 1.1

Λ1.4 267± 144 484± 215
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Research Interest:

I work in the domain of Nuclear-Astrophysics. Here I am interested in working on problems
related to Neutron stars, such as
• Symmetry energy & its implication on Equation of State of dense nuclear matter,
• Neutron star structure, composition and dynamics,
• Gravitational waves from Neutron Stars.
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IInd Semester
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Optics Laboratory
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3. Senior Research Fellow (SRF) at IIT Kharagpur (March 2004 - April 2007).
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TITLE OF THESIS : Study of hot rotating nuclei in a functional integral approach

THESIS SUPERVISOR : Professor A. Ansari

AREA OF RESEARCH INTEREST :

Nuclear Structure, Nuclear Astrophysics

Awards and Honours

• BSc. Gold Medal

• SINP Foundation Day Award 2014

POST DOCTORAL EXPERIENCE

1. May 1996 - April 1997 : Visiting Scientists at Bhabha Atomoc Research Centre, Bombay.

2. May 1997 - August 1997 : Visiting Fellow at Institute of Physics, Bhubaneswar.

3. September 1997 - September 2000 : Research associate at Saha Institute of Nuclear Physics, Kolkata.

4. November 2001 - December 2004 : Research associate at Cyclotron Institute, Texas A&M University, USA.

ACADEMIC VISITS

1. RIKEN, Nishina Center for Accelerator Based Science,Japan March 15th - 31st, 2014.

2. Institute of Physics, Bhubaneshwar, India, May 18th- 2nd June 2013.

3. Dipartimento di Fisica, Universit degli Studi di Milano, Italy from May 18th - 25th June , 2012.

4. Radioactive Ion Beam Facility, Oak Ridge National Laboratory, USA 9th-29th March 2011.

5. Institute of Mathematical Sciences, Chennai, July 12 - 20, 2007.

6. Vellore Institute of Technology, Vellore, July 25 - August 1, 2007.

7. Himachal Pradesh University, Shimala, May 22nd- 30th June, 2006.

Invited Talks

1. The journey from terrestrial nuclei to extraterrestrial neutron stars Banasthali Vidyapith, 28th March, 2017

2. The journey from finite nuclei to neutron stars, University of Rajasthan, Dept. of Physics, 30th March 2017

3. The journey from terrestrial nuclei to extraterrestrial neutron stars, BITS Pilani Goa Campus, 22nd March,

2016.

4. Sensitivity of symmetry energy content of nuclear matter to the properties of neutron rich systems, Recent

Trends in Nuclear Structure and its implication in Astrophysics 2016 Puri Jan. 4-8 2016.

5. Probing the nuclear symmetry energy, Academic session of the Annual function of Alumni Association, Institute

of Physics, 3rd Sept. 2015

6. Nuclear Physics Meet 2015, Institute of Physics, Bhubaneswar 26th -30th June,2015

7. Nuclear symmetry energy from nuclear observables, RIKEN, Nishina Center for Accelerator Based Sci-

ence,Japan March 25th 2014.

8. Density content of symmetry energy from neutron-skin, nuclear masses and giant resonances, DAE Symposium

on Nuclear Physics Dec.2-6 2013 BARC, Mumbai.

9. Probing the density content of nuclear symmetry energy, National Conference on Nuclear Physics School of

Physics, March 01-03, 2013 Sambalpur University Sambalpur, Odisha, India

10. Nuclear symmetry energy at nuclear saturation, Nuclear Dynamics and Nuclear Astrophysics’ February 5-6,

2013, Department of Physics, University of Calcutta, India

11. Recent updates on Nuclear Symmetry Energy , BARC, 27th Dec. 2012, Mumbai.
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12. Nuclear Symmetry Energy :An overview ”International Conference on Recent Trends in Nuclear Physics-2012”

Nov. 19-21, 2012 Chitkara University,Solan India.

13. ”Exisistence of Hyperons in the PSRJ1614-2230, ”The nuclear dipole polarizability and its impact on nuclear

structure and astrophysics” ECT* Trento, Italy, June 18-22, 2012.

14. ”Can Hyperons exsist in the 2M� pulsar?, INFN, Milano, Italy June 8 2012.

15. ”Some results for the Extended Relativistic mean field models” Workshop on Neutron Skin and E1 Strength”,

Oak Ridge National Laboratory USA, 18 March 2011.

16. ”Quarks in Astrophysics and Cosmology” in Toshali Sands”, Puri, India, 15-17 February, 2008

17. ”Neutron Stars : An Astrophysical Laboratory”, Vellore Institute of Technology, Vellore, July 27th, 2007.

18. ”Skyrme interactions: Past, Present and Future” Institute of Physics, Bhubaneswar, Jan. 30th, 2005.

19. ”Breathing mode energy and nuclear matter incompressibility coefficient within the relativistic and nonrela-

tivistic models”, International conference on Exotic Nuclei and Atomic Masses, Callway Garden Atlanta, USA,

Sept. 12-16 2004.

20. ”Path integral approach to nuclear partition function and its application”, 3rd national workshop on nuclear

structure physics, Pantnagar India, Dec. (1996).

Invited Talks

1. Spectroscopic properties of nuclei in generalized seniority scheme, Bhoomika Maheshwari and Bijay Kumar

Agrawal, CRC Press

2. Symmetry energy of warm nuclear system, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles and X.

Vinas, Eur. Phys. J. A50, 19 (2014).

Research Guidance

A. Ph. D. Thesis

1. Tuhin Malik, BITS Pilani, K. K. Birla, Goa Campus, working under my supervision (as co-guide) for his Ph. D.

thesis work. We are looking the various issues concerning the tidal deformability inferred from the observation

of the gravitional waves from GW1708817 event. We wish to implement Bayesian methods to extend our work

and extract reasonable constraint on the equation of state using the gravitational wave data from LIGO-Virgo

collaboration planned for the future.

2. Chiranjib Mondal has completed his Ph. D. thesis work under my supervision at Saha Institute of Nuclear

Physics. We have developed an improved nuclear energy density functional with particular emphasis on the error

propagation and the covariance analysis. We have shown using a simple form for the nuclear energy density

functional that the curvature of symmetry energy can be expressed conveniently in terms of the symmetry

energy and its slope. The universality of this analytical finding is verified using the results from 500 different

nuclear energy density functionals consistent with the nuclear properties.

3. Naosad Alam has completed his Ph. D. thesis work under my supervision at Saha Institute of Nuclear Physics.

We have mainly focussed on probing the equation of state (EOS) of dense matter in terms of the the correlations

of the various bulk properties of neutron star with the key parameters of the EOS.

4. I have provided research guidance to O. Pochivalov who is a Ph. D. student of Prof. S. Shlomo at Texas A& M

University, Texas, USA. I first trained him to carryout HF based RPA calculations for the response function for

various giant multipole resonance. Then, our next step was to use the microscopic transition densities (obtained

from HF-RPA) to calculate the cross-section for the various isoscalar giant multipole resonances excited by the

inelastic scattering of α-particles.
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5. I have supervised V. Kim Au who is Ph. D. student of Prof. S. Shlomo at Texas A& M University, Texas.

I trained him to carry out numerical calculations using Hartree-Fock approach applied to the Skyrme type

effective nucleon-nucleon interaction. Later on we published an article in which we provided for the first time

the solution to the problem associated with the value of the nuclear matter incompressibility yielded by the

relativistic and non-relativistic HF-RPA calculations.

6. I have supervised Raj Kumar Jagota, H. P. University, Shimla. We have studied the naturalness behaviour of

the parameters of the extended field theoretical (EFT) model which includes the self and mixed interaction

terms for the σ, ω and ρ mesons upto the quartic order. We show that the ω meson self coupling not only

modifies the high density behaviour of the equation of state, but, it also affects crucially the overall naturalness

of the parameters of the EFT model. Next, we studied in detail that up to what extent the properties of

non-rotating and rotating neutron stars can be affected when the high density behaviour of the equations of

state is appropriately varied within the EFT model.

B. Post M. Sc. review & summer projects

1. Tanmoy Ghosh, SINP, P. MSc. project on ’The beryllium anamoly and new physics, January - March, 2019.

2. Rashika Gupta, SINP, P. MSc. project on ’Anamoly of Berillium’, April - June, 2018.

3. Upalaparna Banerjee, IIT Kharagpur, completed her summer project Numerical solution of Woods-Saxon

potential using basis expansion method, duirng May - June, 2018.

TEACHING

1. Six lectures on ’Microscopic methods in nuclei’ to the P. MSc. students, SINP Jan. -March, 2019.

2. Four lectures on ’Developing Skyrme-Hartee Fock code’, during ’School cum First collaboration Meeting on

computational Nuclear Structure & Reaction’ during Jan. 2 - 22, 2018 (CMNSR2018), Saha Institute of Nuclear

Physics / Variable Energy Cyclotron Center, Kolkata.

3. Six lectures on ”Nuclear Energy Density Functionals within Relativistic Mean Field approach and their param-

eterizations”, ”SERC School on Modern Microscopic Approaches in Nuclear Physics”, University of Kashmir,

Srinagar, 17th May-6th June, 2016.

4. Three lectures for the ”CNT lectures on Selected Topics in Nuclear Theory”(STNT2016) during 15th-25th

February, 2016, on Numerical Optimization and Error Analysis”

5. Two lectures for the Post M.Sc. 2015-2016 as a part of the course on the Numerical Method.

Organization of school/conference

Proposed and organized ’School cum First collaboration Meeting on computational Nuclear Structure & Reaction’

during Jan. 2 - 22, 2018 (CMNSR2018), Saha Institute of Nuclear Physics / Variable Energy Cyclotron Center,

Kolkata.

The CMNSR2018 was proposed by me with the following motivation in the mind. Most of the theoretical work in

the area of nuclear structure and reactions carried out at present in our country are based mainly on the computer

codes developed at foreign institutions / universities. Consequently, our Ph. D. students are gradually loosing skills

of developing their own computer codes.

During the three week long school we trained the 40 students in learning some basic numerical techniques essential

in developing useful codes for the study of nuclear structure and reactions. Long computer sessions were organized

to encourage the students to develop their own computer codes.
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REVIEW WORK

1. Examined 4 Ph. D. thesis.

2. Reviewed a book proposal: Recent Highlights in Nuclear Structure Physics : A Theoretical Treatise for CRC

Press — Taylor & Francis Group.

3. Reviewed manuscripts for the following journals

(a) Pramana, Journal of Physics

(b) Indian Journal of Physics

(c) Journal of Nuclear Physics, Material Sciences, Radiation and Applications

(d) Physical Review C.

(e) Europeon journal Physics.

(f) Zeitschrift fur Physik A.

(g) International Journal of Modern Physics

4. Reviewed research proposals submitted to:

(a) Department of Science & Technology Government of India

(b) National Science Center, Poland.

Best Cited Articles (according to Google scholar)

Journal Ref. Times cited

Physical Review C 85, 041302 ,2012 193

Physical Review C 72 , 014310, 2005 167

Physical Review C 68, 031304, 2003 132

Physical Review C 88, 024316,2013 99

Physical Review C 87, 034301 ,2013 99

Physical Review C 92, 064304, 2015 90

Physical Review C 73, 034316, 2006 90

Physical Review C 81, 034323 ,2010 76

Physical Review C 76, 045801, 2007 71

Physical Review C 73, 034319, 2006 71

Physical review letters 109 , 262501, 2012 67

Physical Review C 98, 035804, 2018 56
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