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Abstract 

Bilevel optimization deals with hierarchical mathematical programming problems in which two decision 

makers, the leader and the follower, control different sets of variables and have their own objective functions 

subject to interdependent constraints. Whenever multiple objective functions exist at the lower-level problem, 

the leader should cope with the uncertainty pertaining to the follower’s reaction. The leader can adopt a more 

optimistic or more pessimistic stance regarding the follower’s choice within his efficient region, which is 

restricted by the leader’s choice. Moreover, the leader may also have multiple objective functions. This paper 

presents new concepts associated with solutions to problems with multiple objective functions at the lower-

level and a single or multiple objective functions at the upper-level, exploring the optimistic and pessimistic 

leader’s perspectives and their interplay with the follower’s choices. Extreme solutions (called 

optimistic/deceiving and pessimistic/rewarding) and a moderate solution, resulting from the risk the leader is 

willing to accept, are defined for problems with a single objective at the upper-level (semivectorial problems). 

Definitions of optimistic and pessimistic Pareto fronts are proposed for problems with multiple objective 

functions at the upper-level. These novel concepts are illustrated emphasizing the difficulties associated with 

the computation of those solutions. In addition, a differential evolution algorithm, approximating the extreme 

and moderate solutions for the semivectorial problem, is presented. Illustrative results of this algorithm 

further stress the challenges and pitfalls associated with the computation and interpretation of results in this 

kind of problems, which have not been properly addressed in literature and may lead to misleading 

conclusions. 
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1 Introduction 

Bilevel optimization deals with hierarchical non-cooperative decision processes in which the upper-level 

decision maker (the leader) and the lower-level decision maker (the follower) control different sets of 

variables and have their own objective functions.  That is, the lower-level problem is embedded in the 

constraints of the upper-level problem. The leader sets first the values of his variables x to optimize his 

objective function, which establishes the feasible region for the follower’s problem. The follower then 

determines the values of his variables y that optimize his objective function within this feasible region. Hence, 

the leader needs to consider the follower’s reaction to the setting of x since this influences feasibility and the 

leader’s objective value. Bilevel optimization models are useful in problems involving hierarchical decision 

processes such as resource management, e.g. relating to planning and operational decision levels, and policy-

making, e.g. regarding the definition of pricing policies (Labbé and Violin, 2013). Overviews of bilevel 

optimization with surveys of algorithms and applications can be found in (Vicente and Calamai, 1994), (Bard, 

1998), (Dempe, 2002), (Colson, Marcotte and Savard, 2005), (Colson, Marcotte and Savard, 2007), and 

(Sinha, Malo and Deb, 2018).  

The multiobjective bilevel problem (MOBP) encompasses multiple objective functions at one or both 

levels. This paper deals with the MOBP in which the lower-level problem has multiple objective functions, 

whereas the upper-level problem may have a single or multiple objective functions. The first case is generally 

designated as semivectorial bilevel problem (SVBP). If multiple objective functions exist at the lower-level, 

then a set of lower-level efficient solutions exists for each leader’s setting of x variables. Therefore, the leader 

should foresee the follower’s choice within his efficient solution set for any instantiation of the x variables. 

Approaches assuming that the leader has information about the follower’s preferences, thus enabling to know 

the follower’s choice within his efficient region, would facilitate the analysis. Indeed, if the leader knew the 

follower’s utility function aggregating his multiple objectives, the uncertainty about the lower-level decision 

would be eliminated. However, this is not realistic in practice and the lower-level efficient region should be 

explicitly considered to find the optimal or efficient solutions to the upper-level problem.  

Almost all works on SVBP and MOBP described in literature have adopted an optimistic approach, i.e., 

they assume that the follower accepts any efficient decision to the lower-level problem or, equivalently, 

chooses among his efficient decisions according to the leader’s preferences (Ruuska and Miettinen, 2012). 

The optimistic approach is also the most often considered in single-objective bilevel optimization when 

alternative optima exist for the follower’s problem, since the pessimistic bilevel formulation is perceived to 

be more difficult to solve. However, the nature of the decisions taken by the follower in SVBP/MOBP is 

quite different from the decisions in single objective bilevel optimization. In the single-objective case, the 

follower’s reaction solutions are alternative optima with the same value for a single objective function. In 

SVBP/MOBP, there is a set of nondominated (efficient) decisions representing different tradeoffs among the 

objectives and one of them is chosen by the follower. It is hardly realistic to consider that the follower is 

indifferent to all these solutions that are possible for a given leader’s decision. Consider, for instance, a toll-

setting problem. The owner of a highway system (leader) sets tolls and wants to maximize total revenue. The 

users of highways (follower) want to minimize travel costs and minimize travel times. For a given leader’s 

decision – toll prices – there is a set of nondominated decisions to the users, ranging from the minimum cost 

solution to the minimum time solution. The minimum time solution (maximum cost) is the one that provides 

the leader the maximum revenue. The optimistic approach would lead the leader to set high toll prices under 

the (very unlikely) belief that users would use highways regardless the price. 

Therefore, the leader may adopt different attitudes regarding his expectation of the follower’s choice. 

Those leader’s attitudes may be more optimistic or more pessimistic vis-à-vis his anticipation of the 

follower’s decision being more or less favorable. The combination of different leader’s attitudes and 

follower’s responses results in different types of solutions that should be exploited to provide useful 

information about possible outcomes and aid the leader in his decision process. For this purpose, novel 

concepts are proposed to the SVBP and the MOBP: in addition to the optimistic and pessimistic solutions, 

definitions of the deceiving, rewarding and moderate solutions are stated for the SVBP and the optimistic 

and the pessimistic Pareto fronts for the MOBP. All these concepts are thoroughly explained herein using 

illustrative graphical examples, which help to emphasize the difficulties associated with the calculation (or 

approximation) of these solutions.  

The works reported in the scientific literature devoted to SVBP have mainly addressed the optimistic 

formulation, i.e. assuming that the follower always chooses the solution of his efficient set that is the best for 

the leader. The SVBP was first dealt with by Bonnel (Bonnel, 2006), who developed necessary optimality 

conditions for an optimistic formulation. Ankhili and Mansouri (Ankhili and Mansouri, 2009), Zheng and 

Wan (Zheng and Wan, 2011), Zheng et al. (Zheng, Chen and Cao, 2014), and Ren and Wang (Ren and Wang, 
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2016) proposed penalty function methods to compute the optimistic solution to the SVBP with a 

multiobjective linear programming (MOLP) problem at the lower-level. Calvete and Galé (Calvete and Galé, 

2011) tackled the SVBP with a MOLP at the lower-level problem reformulating it as an optimization problem 

over a nonconvex region guaranteeing that the optimistic solution is an extreme point of the feasible 

polyhedron. Lv and Wan (Lv and Wan, 2014) used the weighted-sum scalarization to reformulate the linear 

SVBP into a single objective bilevel problem where the lower-level is a parametric linear scalar problem, 

which is then converted into a single level nonlinear, nonconvex programming problem with a linear 

objective function. 

The pessimistic formulation of the SVBP assumes that the follower always chooses the solution of his 

efficient set that is the worst for the leader.  Liu et al. (Liu et al., 2014) converted the pessimistic SVBP into 

a generalized minimax optimization problem with constraints and developed necessary optimality conditions 

for the pessimistic formulation. Lv and Chen (Lv and Chen, 2016) computed the pessimistic solution to a 

SVBP with a convex lower-level problem without upper-level variables in the constraints. Alves et al. (Alves, 

Antunes and Carrasqueira, 2015) introduced the concept of deceiving solution and proposed a Particle Swarm 

Optimization (PSO) algorithm to compute the optimistic, pessimistic and deceiving solutions to the SVBP. 

(Alves and Antunes, 2018a) then presented the concept of rewarding solution and developed a differential 

evolution algorithm to compute the four extreme solutions. These four extreme solutions are also illustrated 

in (Alves, Antunes and Costa, 2019) and their interest in real-world applications has been exploited in a case 

study dealing with the optimization of dynamic time-of-use electricity retail prices (Alves and Antunes, 

2018b). These solutions will be presented in detail in sections 2 and 3. 

The MOBP was addressed by Shi and Xia (Shi and Xia, 1997) transforming it into separate multiobjective 

problems at each level, using in addition a satisfactoriness concept to model the leader’s preferences. The 

interactive incorporation of the leader’s preferences to compute satisfactory solutions was also used by (Shi 

and Xia, 2001) and (Abo-Sinna and Baky, 2007). New theoretical results for the nonlinear nonconvex MOBP 

were proposed by Eichfelder (Eichfelder, 2010). For the linear MOBP, Pieume et al. (Pieume et al., 2011) 

proposed the use of a surrogate single level MOLP problem to generate the complete set of feasible solutions. 

The leader’s preferences are then aggregated using a weighted-sum of the upper-level objective functions. 

However, this scheme is difficult to implement because it consists of optimizing an objective function over 

the efficient set of a MOLP problem. All these works consider an optimistic formulation of the MOBP 

problem, assuming that the leader can choose the follower’s efficient solutions most convenient for himself. 

The concept of optimistic Pareto front in MOBP is further illustrated in (Alves, Antunes and Costa, 2019). 

Metaheuristic approaches have been developed to approximate the Pareto front of the MOBP in order to 

circumvent the difficulties of its exact computation. These approaches have also considered an optimistic 

formulation: Deb and Sinha (Deb and Sinha, 2010) proposed a hybrid evolutionary algorithm with a local 

search phase; Zhang et al. (Zhang et al., 2013) developed a hybrid PSO algorithm with a crossover operator 

using an elitist strategy; Carrasqueira et al. (Carrasqueira, Alves and Antunes, 2015) used a multiobjective 

PSO algorithm, paying special attention to the need to ensure that lower-level solutions are truly efficient to 

be feasible to the MOBP. 

Gupta and Ong (Gupta and Ong, 2015) converted the lower-level problem into a single-objective problem 

by means of scalarization techniques with adaptive parameters (e.g. weights). This process configures an 

optimistic approach, since these weights are then included as leader’s decision variables, thus meaning that 

the leader can determine the most advantageous weights for the follower’s objectives. Ruuska and Miettinen 

(Ruuska and Miettinen, 2012) developed a procedure to construct evolutionary algorithms for the optimistic 

MOBP.  

Sinha et al. (Sinha et al., 2016) considered that the follower’s preferences are represented by a value 

function, which is parameterized by an uncertain preference vector, and proposed a two-step approach: the 

Pareto front is obtained for fixed parameters using the leader’s anticipation about the follower’s preferences 

and then the leader estimates a confidence region around that Pareto front. Sinha et al. (Sinha, Malo and Deb, 

2017) classify the MOBP into: the optimistic formulation; deterministic decisions at lower-level considering 

the leader has perfect information about the follower’s preference structure; lower-level decision uncertainty 

considering that the follower’s preferences are modeled by a random variable.  

 

This paper proposes novel solution concepts in SVBP and MOBP, using illustrative graphical examples 

to shed light on the insights these solutions can offer to support decision processes. The existence of a lower-

level efficient region requires the adoption by the leader of a more optimistic or a more pessimistic attitude, 

thus preparing for the follower’s reaction more in favor or more adverse to the leader’s objectives. This 

interplay between the leader’s and the follower’s decisions are explored to define: in SVBP, the optimistic 

and the pessimistic frontiers, where the extreme optimistic/deceiving and pessimistic/rewarding solutions are 
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located, as well as a moderate solution resulting from the risk the leader is willing to accept vis-à-vis the 

follower’s choice; in MOBP, the optimistic and the pessimistic Pareto fronts.  

In face of the difficulties to determine exact solutions, we present an algorithm based on differential 

evolution (DE), which extends the algorithm proposed in (Alves and Antunes, 2018a) to compute the four 

extreme solutions plus moderate solutions to the SVBP. The analysis of the illustrative results obtained with 

this DE approach enables to unveil pitfalls associated with the interpretation of results and assessment of 

algorithms in SVBP and MOBP. These pitfalls have not been properly addressed in the literature, which may 

lead to misleading conclusions.   

Therefore, the main aim of this paper is to offer solution concepts and focus on relevant issues from the 

decision aid point of view, rather than establishing mathematical conditions for the existence of these 

solutions or necessary conditions for optimality. The moderate solution to the SVBP and the pessimistic 

Pareto front to the MOBP with multiple objective functions at both levels are for the first time presented in 

this paper. The problems addressed are difficult and, even when those solutions do exist, it can be 

impracticable to compute them exactly. Therefore, the use of heuristics and metaheuristics becomes 

imperative in most cases to compute (expectedly good) approximate solutions. 

The paper is organized as follows. In section 2, the MOBP is formulated and the notation is introduced. 

The SVBP is presented in section 3, illustrating the concepts of optimistic/deceiving and 

pessimistic/rewarding solutions located on the optimistic and pessimistic frontiers. Section 4 deals with the 

leader’s decision risk in SVBP, proposing the concept of moderate solution. The bilevel problem with 

multiple objective functions at both levels is addressed in section 5, for which definitions of optimistic and 

the pessimistic Pareto fronts are proposed and illustrated using linear and nonlinear examples with specific 

features. Section 6 presents a DE algorithm to approximate the extreme and moderate solutions to the SVBP 

and discusses illustrative results. Conclusions are drawn in section 7, stressing some pitfalls associated with 

the computation of solutions to the SVBP/MOBP. 

2 Multiobjective Bilevel Programming  

Let us consider the multiobjective bilevel programming (MOBP) problem with k ≥ 2 objective functions 

at the upper-level (leader), or k =1 as a particular case, and m ≥ 2 objective functions at the lower-level 

(follower). This problem can be formulated as follows: 

 

( )

( ) 

1

1

"max" ( , ),...., ( , )

. . ( ) 0

arg max ( , ),..., ( , ) : ( , ) 0

k
x

m
y

F x y F x y

s t G x

y f x y f x y g x y



 

     (MOBP) 

where 1n
x  are the decision variables controlled by the leader and 2n

y are the decision variables 

controlled by the follower. In this formulation, we are assuming that the upper-level constraints ( ) 0G x   

only depend on the upper-level decision variables x, thus not involving the lower-level decision variables y. 

( ), 0g x y  are general constraints, involving both x and y, in the lower-level problem.  

If a single objective function exists at the upper-level (k  = 1) and m ≥ 2, the problem is generally designated 

as semivectorial bilevel problem (SVBP). 

( ) 1

"max" ( , )

. . ( ) 0

arg max ( , ),..., ( , ) : ( , ) 0

x

m
y

F x y

s t G x

y f x y f x y g x y



 

     (SVBP) 

Since the leader has control only over x, the quotation marks in “max” aim to denote the imprecise 

definition of the objective function value(s) ( , )F x y  ( ( , )kF x y ) from the leader’s perspective because, in 

general, a (not singleton) set of efficient solutions to the lower-level problem exists.  

For each upper-level decision x, only efficient (Pareto optimal) solutions to the lower-level problem are 

feasible to the MOBP/SVBP. Let  1 : ( ) 0
n

X x G x=   ,  2( ) : ( , ) 0
n

Y x y g x y=    and assume that 

( )Y x   for  x X  .  
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Definition 1 - f-efficient solution 

For a given 'x X , a solution )'(' xYy  is efficient to the lower-level problem (f-efficient) if and only if 

there is no other )'(xYy  that dominates 'y , i.e. such that )','(),'( yxfyxf jj   for all j = 1,…, m, and 

)','(),'( yxfyxf jj   for at least one j.  

Therefore, the set of all f-efficient solutions for a given 'x X  can be defined as:  

)'(Ef x ={ ' ( ') :y Y x  there is no )'(xYy  such that ( ', ) ( ', ')}x y x yf f  where   denotes the 

dominance relation and ( , )x yf  is the objective vector ( )( , ),..., ( , )mf x y f x y1 . 

The induced region (i.e, feasible region) of the MOBP/SVBP is: 

  1 2
Ef( , ) : , ( )

n n
IR x y x X y x=     . 

For each leader’s decision 'x , the follower has, in general, a set of efficient solutions. Therefore, the leader 

should prepare for any compromise solution selected by the follower within that efficient solution set, which 

may be more or less favorable according to the leader’s single objective (SVBP) or multiple objectives 

(MOBP). This lack of knowledge about the follower’s preferences leading to the choice of a particular 

efficient solution compels the leader to adopt an attitude in face of his expectation of the follower’s choice. 

In fact, it is seldom realistic to consider that the follower is indifferent to all resulting efficient solutions for 

a given leader’s decision 'x , or he chooses according to the leader’s objectives.  

The more optimistic or more pessimistic attitude adopted by the leader foreseeing the follower’s choice 

leads to the computation of different solutions, which provide decision support information regarding 

possible outcomes that define reachable ranges for the upper-level objective function values.  

3 Extreme solutions to the SVBP 

In the optimistic approach (optimistic formulation) to the SVBP, the leader chooses the x assuming that 

the follower selects the solution within Ef ( )x  that gives the best F for the leader. 

The optimistic formulation of the SVBP can be stated as follows, in which the upper-level optimization is 

taken with respect to x and y: 

     

,

Ef

max ( , )

. . ( ) 0

( )

x y
F x y

s t G x

y x





   (Optimistic formulation) 

Definition 2 - Optimistic solution 

An optimistic solution, 
o o( , )x y , is a solution that optimizes the optimistic formulation. 

Thus, in the optimistic formulation of the SVBP, the solution to the lower-level problem for each x is the 

f-efficient solution offering the best value of the upper-level objective function. 

 

In the pessimistic approach (pessimistic formulation) to the SVBP, the leader chooses the x that leads to a 

solution with best F in face of the follower’s decisions y that are the worst for the leader. 

The pessimistic formulation of the SVBP can be stated as follows, in which a max-min problem is 

considered at the upper-level: 

Ef

max min ( , )

. . ( ) 0

( )

yx
F x y

s t G x

y x





  (Pessimistic formulation) 
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Definition 3 - Pessimistic solution 

A pessimistic solution, 
p p( , )x y , is a solution (if it exists) that optimizes the pessimistic formulation. 

Thus, in the pessimistic formulation of the SVBP, the solution to the lower-level problem for each x is the 

f-efficient solution leading to the worst value of the upper-level objective function. 

 

From a theoretical perspective, the existence of the pessimistic solution requires more restrictive 

assumptions than the optimistic solution (see e.g. (Lucchetti, Mignanego and Pieri, 1987), (Dassanayaka, 

2010)). Figure 1 illustrates a case where no pessimistic solution exists. Let

 Ef( ) min ( , ) : ( )p
y

x F x y y x =   be the worst upper-level objective function values achievable within the 

efficient reaction set for each x. The pessimistic solution is the one that maximizes ( )p x  for x X . The 

pessimistic solution does not exist but solutions very close to it exist, as x'0 in the figure. This solution can be 

considered a good approximation to the pessimistic solution, which can be useful for the leader’s decision 

process in the context of a practical problem.  

 

 
Figure 1 – Illustration of a case where the pessimistic solution does not exist 

 

In addition to the optimistic and pessimistic solutions, other types of solutions can be defined. These 

solutions offer useful information to the leader’s decision process on possible outcomes and ranges of values 

resulting from different decisions in an SVBP:  the result of a failed optimistic approach – deceiving solution 

– and the result of a successful pessimistic approach – rewarding solution (Alves and Antunes, 2018a) (Alves, 

Antunes and Costa, 2019). 

 

Definition 4 - Deceiving solution 

Let 
o o( , )x y  be an optimistic solution. A deceiving solution, ( )d d,x y , is obtained when the leader 

makes the optimistic decision ox  but the follower’s reaction is the least favorable to the leader, i.e., 

( ) ( )d d o d, ,x y x y=  where  d o o
Efarg min ( , ) : ( )

y

y F x y y x  . 

Definition 5 - Rewarding solution 

Let 
p p( , )x y  be a pessimistic solution. A rewarding solution, ( )r r,x y , is obtained when the leader makes 

a pessimistic decision px  but the follower’s reaction is the most favorable to the leader, i.e., 

( ) ( )r r p r, ,x y x y=   where  r p p
Efarg max ( , ) : ( )

y

y F x y y x  . 

Therefore, according to the more optimistic or more pessimistic leader’s attitude in the SVBP, the 

optimistic and pessimistic approaches can be distinguished, in which four extreme solutions may be 

identified: the optimistic solution, which is obtained when the follower decides in the most favorable way for 

the leader leading to his best possible objective function value; the deceiving solution, when the leader sets 

his variables x embodying an optimistic attitude but the follower’s choice is the worst for the leader; the 

pessimistic solution, in which the leader obtains his best objective function value when the follower’s choice 

x 
0x 

0'x

 )(x
p


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for each upper-level variables x is the worst for the leader; the rewarding solution, when the leader adopts a 

pessimistic attitude setting his variables x but the follower’s reaction is the most favorable to the leader. 

Let us define the optimistic frontier as the set of feasible solutions such that the follower’s efficient 

solutions are the best for the leader and the pessimistic frontier as the set of feasible solutions such that the 

follower’s efficient solutions are the worst for the leader. 

Definition 6 - Optimistic frontier (Of) 

The optimistic frontier is  1 2( , ') : ( ) 0, ' ( )
n n

Of x y G x y O x=      with 

 Ef( ) arg max ( , ) : ( )
y

O x F x y y x
 

=  
 

. 

Definition 7 - Pessimistic frontier (Pf) 

 The pessimistic frontier is  1 2( , ") : ( ) 0, " ( )
n n

Pf x y G x y P x=      with 

 Ef( ) arg min ( , ) : ( )
y

P x F x y y x
 

=  
 

. 

The optimistic and the pessimistic solutions are the feasible solutions with maximum (best) value of F in 

the optimistic frontier and in the pessimistic frontier, respectively. The optimistic and rewarding solutions 

belong to Of, while the pessimistic and deceiving solutions belong to Pf. 

 

Remark 1 – The value 
d d( , )F x y  of the deceiving solution can be worse and is never better than the 

value 
p p( , )F x y  of the pessimistic solution. 

This remark is justified as follows. The pessimistic solution ( )p p p, ( )x y P x  is the best solution 

according to ( , )F x y  on Pf (definition 3). The deceiving solution ( )d d d, ( )x y P x  also belongs to Pf 

(definition 4). Thus, the deceiving solution must satisfy 
d d p p( , ) ( , )F x y F x y , otherwise it would be the 

pessimistic solution itself.  

 

In order to illustrate these four solutions, let us consider the linear SVBP in Example 1, with one upper-

level variable (x) and two lower-level variables (y1 and y2):  

 

Example 1 

max  F(x, y) = x + 2y1 − y2 

s.t.    

       2 ≤ x ≤ 5  

max  f1(y) =  y1 + 2y2 

max  f2(y) =  y1 −  y2 

 s.t. 

  y1  ≤ 6 

  y1 + y2 ≤ 9 – x  
      y2 ≤ x  

y1 , y2 ≥ 0  

 

This problem is represented in Figure 2, where the set of all lower-level efficient solutions, ΨEf (x) for all 

feasible x, is displayed by the darker faces. Figure 3 shows the F values on Of and on Pf of the linear SVBP 

of Figure 2. 

In this example there is a significant difference between the optimistic and the deceiving solutions for the 

leader’s objective function F (Fo = 15 and Fd  = 6), being the F value in the rewarding solution (Fr = 14) close 

to the optimistic F. Therefore, if the leader adopts an optimistic approach he takes a high risk, since the 

deceiving solution is significantly worse than the pessimistic one (Fp = 10). This would not be the case if Fd 

was close to Fp, in which the optimistic approach could be more attractive than the pessimistic one. 
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Figure 2 – Example 1 of a linear SVBP, showing the optimistic, pessimistic, deceiving and rewarding solutions in 

the decision variable space. 

 

Figure 3 – F values in the optimistic and pessimistic frontiers of Example 1. 

4 Dealing with the leader’s decision risk in SVBP – moderate solutions 

In SVBP, the leader may take a high risk engaging in an optimistic attitude if the deceiving solution is 

significantly worse than the pessimistic one. If the leader adopts a pessimistic attitude, he still has the 

opportunity to obtain the rewarding solution, which may be close to the optimistic one, as in Example 1. 

Therefore, for decision support purposes, it is important to offer the leader other types of solutions besides 

the four extreme ones proposed above. These moderate solutions are more balanced regarding pure optimistic 

vs. pessimistic approaches, i.e., a moderate solution provides the highest expected value for F(x,y) 

considering an optimism/pessimism index (e.g., probabilities of the follower’s decision being in favor or 

against the interests of the leader).  

 

Definition 8 - Moderate solution 

 Let p1 ∈ [0,1] be an optimism index defined by the leader representing the probability perceived by leader 

for the follower choosing, for each x, the solution Ef ( )y x  that is the best for the leader; p2 ∈ [0,1], p2 = 

(1 − p1), is the pessimism index (probability for the follower choosing, for each x, the solution Ef ( )y x  

that is the worst for the leader). The moderate solution, ( )m m,x y , is the one that optimizes the expected 

value problem (EVP): 

Ef

1 2

max ( , )

. . ( ) 0

( )

         ( , ) ( , ') ( , ")

        ' ( ),   " ( )
    

x
F x y

s t G x

y x

F x y p F x y p F x y

y O x y P x





 +

 

       (EVP) 
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In practice, the values of p1 (p2) may be derived from the experience of the leader regarding the follower’s 

reaction to his decisions. Moreover, solving the expected value problem for different values that cover the 

whole range of p1 (p2) offers the leader an overview of the variation of F, and then information enabling to 

hedge against (different probabilities) of the follower’s decision being in favor or against the interests of the 

leader.  

Other approaches may involve eliciting the follower’s preferences, for instance using 

aspiration/reservation levels for the objective function values or weighting techniques. Solutions to 

SVBP/MOBP for different preference settings provide relevant information regarding the balance risk vs. 

opportunity associated with each leader’s decision vis-à-vis the follower’s possible choices. 

Associated with the moderate solution, we can define for the same leader’s decision (
mx ) the solutions 

obtained on the optimistic frontier and on the pessimistic frontier: ( )m , 'x y  with m' ( )
    
y O x  and ( )m , "x y  

with m" ( )
    
y P x . These can be seen as the rewarding and the deceiving solutions for a moderate approach 

for a given p1, which are also obtained when solving (EVP). These solutions may convey useful information 

to frame the possible outcomes for the leader if he takes that moderate decision. 

 

Figure 4 shows, for Example 1, the lines of F values for different values of p1. The optimistic frontier 

corresponds to p1 = 1 and the pessimistic frontier corresponds to p1 = 0. In this example, for values of the 

optimism index p1 from 1 to 0.8, the best leader’s decision x according to the (EVP) formulation is the 

optimistic one, xo; for p1 = 0.8, the F expected value is equal for the leader’s decisions xo and xp; for p1 < 0.8, 

the best leader’s decision x according to (EVP) is the pessimistic one, xp. This information complements the 

analysis above of the four extreme solutions concerning the assessment of the leader’s risk associated with 

his decisions. 

 

 
Figure 4 - Example 1: F values for different p1 values and the best leader’s option for each one. 

 

Example 2 refers to a nonlinear SVBP with all objective functions to be minimized. This problem is 

adapted from a MOBP in (Deb and Sinha, 2009) considering only the first upper-level objective function. 

 

Example 2 
2 2 2

1 2

2 2
1 1 2

2 2
2 1 2

1 2

min ( , ) ( 1)

. . min ( , )

        min ( , ) ( )

      1 , , 2

x

y

y

F x y y y x

s t f x y y y

f x y y x y

s.t. y y x

= − + +

= +

= − +

−  

 

 

For a given value of x, the efficient solutions Ef (x) to the lower-level problem are: 

 
 

1 22
1 2

1 2

0, , 0 for 0 2
( , ) :

for -1 0,0 , 0

y x y x
y y

xy x y

  =  
    =
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Figure 5 - Example 2: optimistic (O), pessimistic (P), deceiving (D) and rewarding (R) solutions 

 

In Figure 5, the shaded area Ef  represents the induced region, i.e. Ef (x) for all x. The level curves of F 

(x, y) are circles centered at the point (y1, x) = (1, 0). Figure 5 displays only the variables y1 and x because y2 

= 0 for all efficient solutions to the lower-level problem. This graph also shows the optimistic and pessimistic 

frontiers (Of and Pf). Note that, for each x other than x = 2, only one point belongs to each frontier; for x = 2, 

Of  also has only one point (y1 = 1) but two points belong to Pf (y1=0 and y1 = 2), because there are two 

efficient solutions to the lower-level problem that provide the worst value for the leader (F = 5). 

 

 
 

Figure 6 – Example 2: F values on the Optimistic frontier, Pessimistic frontier and on the frontiers for different p1 

values; the best leader’s option for each p1. 

 

Figure 6 shows, for Example 2, the curves of F values for different values of the optimism index p1. The 

best F value for each p1 is depicted in the solid black line. In this nonlinear example, each different p1 leads 

to a different leader's best decision x according to the EVP, i.e., to different moderate solutions. Unlike in 

Example 1, the leader’s decision that provides the best expected value is not only the optimistic or the 

pessimistic solution, but rather a continuous range of values from xo to xp that vary with p1. 

Figure 7 shows the F value as function of the optimism index. For instance, for p1 = 0.5, the moderate 

solution gives an F value to the leader slightly over 0.8. We can see this value in the two graphs of Figure 7; 

it is possible to determine analytically that the exact value of F is 0.833. 

 

To sum up, different types of solutions can provide broader information to support the leader’s decision 

process in SVBP. The optimistic, pessimistic, deceiving and rewarding solutions characterize distinct 
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attitudes of the leader and the follower, delimiting the ranges of possible optimal values for the leader 

considering the follower’s extreme decisions. Further information is offered by moderate solutions, which 

optimize the expected value for the leader’s objective function considering different probabilities of the 

follower’s decision being in favor or against the interests of the leader. 

 

 
Figure 7 – Example 2: F values value as function of the optimism index p1. 

 

5 Optimistic and Pessimistic Pareto Fronts to the MOBP 

Concerning the bilevel problem with multiple objective functions at both levels, the aim of most 

procedures referred to in the literature has been to approximate the whole upper-level optimistic Pareto front 

or they consider that the follower’s preferences are known, thus reducing the MOBP to a BP with multiple 

objective functions at the upper-level and a single objective function at the lower-level. 

Recall the definition of induced region:  1 2
Ef( , ) : , ( )

n n
IR x y x X y x=     . 

Let ( , )x yF  denote the objective vector ( )( , ),..., ( , )kF x y F x y1 . A solution ( , )x y  dominates ( ', ')x y  

according to the upper-level objective functions, ( , ) ( ', ')x y x yF F , if ( , ) ( ', ')j jF x y F x y  for all j=1,…,k, 

and ( , ) ( ', ')j jF x y F x y  for at least one j.  

 

Definition 9 – Optimistic F-efficient solution 

A feasible solution ( ', ')x y IR  to the MOBP is optimistic F-efficient if there is no other ( , )x y IR  that 

dominates ( ', ')x y , i.e. such that ( , ) ( ', ')x y x yF F . 

 

This definition assumes an optimistic approach because it presumes that the leader can take any solution 

of IR or, in other words, the follower only selects f-efficient solutions to his problem that are also efficient 

for the leader, thus leading to a subset of IR containing the best solutions to the leader, i.e., all his efficient 

solutions. 

 

The Optimistic Pareto Front (OPF) to the MOBP is composed by all optimistic F-efficient solutions (x,y).  

 

 The existing algorithms that aim to approximate the OPF (e.g. (Deb and Sinha, 2010), (Zhang et al., 

2013), (Carrasqueira, Alves and Antunes, 2015)) employ the following general scheme: an upper-level search 

is performed for different x; for each 'x X , a lower-level search approximates Ef ( ')x  by keeping an 

temporary archive A(x') of solutions (x', y) that do not dominate each other according to the lower-level 

objective functions f; once the search for approximating Ef ( ')x  has been finished, the solutions (x', y)  
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A(x') are compared with the solutions (x, y) in an external archive A such that only solutions that are not 

dominated by any other according to the upper-level objective functions F remain in A. At the end of the 

algorithm, A is the approximation of the OPF. We can observe that, although the concept of optimistic Pareto 

optimal (F-efficient) solution to a MOBP is well defined, it can be very difficult to implement a procedure to 

compute solutions in the OPF using this scheme, even if the aim is just to compute some solutions, for two 

main reasons: 

- the algorithm should ensure that the lower-level solutions y (for a given x) are f-efficient; otherwise 

they are not feasible to the MOBP; 

- to guarantee that optimistic F-efficient solutions ( , )x y  are yielded , the algorithm should ensure that 

no other 'x X exists such that some ( ', ')x y , with 'y  being f-efficient, dominates ( , )x y . 

 

Similar concepts associated with a pessimistic approach are more difficult to define in bilevel problems 

with multiple objective functions at both levels, and they may not be consensual. Let us consider the following 

principle: for a given x, the follower’s decisions that are the worst for the leader are the solutions in Ef ( )x  

that are the “most dominated” ones for the leader, if different ranks of dominance (for the upper-level) exist 

among the solutions in Ef ( )x . For instance, consider three f-efficient solutions for the same x, 

1 2 3( , ), ( , ), ( , )x y x y x y , with 1 2 3
Ef, , ( )y y y x , and 1 2 3( , ) ( , ) ( , )x y x y x yF F F , where a b  denotes 

that a is dominated by b. Then, a pessimistic approach may assume that the follower chooses y1, the worst 

option for the leader. Therefore, for each x, the solutions in Ef ( )x  that do not dominate any other in Ef ( )x  

are retrieved as the pessimistic ones. 

 

Definition 10 – “Most dominated” solutions for the leader 

 A lower level efficient solution Ef' ( ')y x  is said to be “most dominated” for the leader, i.e., worst for 

the leader, for a given upper level solution x', if there is no other Ef ( ')y x  that is dominated by y' according 

to the upper level objective functions, i.e., such that ( ', ) ( ', ')}x y x yF F . 

 

Definition 11 – Induced pessimistic region 

 Let Ef-worstF( )x = { Ef' ( ) :y x  there is no other Ef ( )y x  such that ( , ) ( , ')}x y x yF F  denote the 

set of all “most dominated” solutions for the leader for each x X  . The induced pessimistic region to the 

MOBP is  1 2
worstF Ef-worstF( , ) : , ( )

n n
IR x y x X y x=     . 

 

Definition 12 – Pessimistic F-efficient solution 

A feasible solution worstF( ', ')x y IR  to the MOBP is pessimistic F-efficient if there is no other 

worstF( , )x y IR  that dominates ( ', ')x y , i.e. such that ( , ) ( ', ')x y x yF F . 

 

The Pessimistic Pareto Front (PPF) to the MOBP is composed by all pessimistic F-efficient solutions 

( , )x y . 

 

The following MOBP examples illustrate these concepts. 

Let us first consider the nonlinear problem presented in Example 2 with a second upper-level objective 

function (problem 3 in (Deb and Sinha, 2009)). 

 

Example 3 
2 2 2

1 1 2

2 2 2
2 1 2

2 2
1 1 2

2 2
2 1 2

1 2

min ( , ) ( 1)

min ( , ) ( 1) ( 1)

. . min ( , )

        min ( , ) ( )

      1 , , 2

x

x

y

y

F x y y y x

F x y y y x

s t f x y y y

f x y y x y

s.t. y y x

= − + +

= − + + −

= +

= − +

−  
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The lower-level efficient solutions are the same as in Example 2, represented by the shaded area in Figure 

8. In all lower-level efficient solutions, y2 = 0. The level curves of F1(x, y) and F2(x, y) are circles centered at 

the points (y1, x) = (1,0) and (y1, x) = (1, 1), respectively. If separately considered, the objective functions 

F1(x, y) and F2(x, y) have the same optimistic frontier (Of) and the same pessimistic frontier (Pf) for the 

corresponding SVBL problems. Of and Pf are represented in Figure 8. Therefore, the OPF to the MOBP is 

located on the common Of of F1(x, y) and F2(x, y) between their individual optima (O1 and O2). 

O1: (x, y1, y2) = (0.5, 0.5, 0), (f1, f2) = (0.25, 0), (F1, F2) = (0.5, 0.5). 

O2: (x, y1, y2) = (1, 1, 0), (f1, f2) = (1, 0), (F1, F2) = (1, 0). 

Pf  indicates the subset of the follower’s efficient solutions that are “worst for the leader”. Therefore, the 

PPF, according to the above definition for this MOBP, is located on the common Pf  between the individual 

pessimistic solutions (P1 and P2) to F1(x, y) and F2(x, y). 

P1: (x, y1, y2) = (0, 0, 0), (f1, f2) = (0, 0), (F1, F2) = (1, 2). 

P2: (x, y1, y2) = (1, 0, 0), (f1, f2) = (0, 1), (F1, F2) = (2, 1). 

 

Thus, OPF is obtained for x[0.5, 1], y1 = x, y2 = 0; PPF is obtained for x[0, 1], y1 = y2 = 0. 

 

Note that, although this example is nonlinear, it is easier to analyze than a general MOBP problem, due to 

the fact that Of and Pf are coincident for F1 and F2 when considered separately. That is, for each x, the lower-

level efficient solution Ef' ( )y x  that is the best for F1 is also the best for F2 and Ef" ( )y x that is the 

worst for F1 is also the worst for F2. As a result, there is one solution for each x that dominates all the others 

w.r.t. the upper-level objective functions and there is only one solution that is the “most dominated”.  

Figure 9 shows the (coincident) Of and Pf of F1 and F2, as well OPF and PPF in the upper-level objective 

function space.  

 
Figure 8 – Example 3: Optimistic Pareto Front (OPF) and Pessimistic Pareto Front (PPF) in the variable space 
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Figure 9 – Values of the upper-level objective functions in the Optimistic Pareto Front (OPF) and in Pessimistic 

Pareto Front (PPF)  

 

Remark 2. Nondominated solutions according to the upper-level objective functions within each Ef ( )x  

are not necessarily efficient solutions to the leader. 

 

This remark can be easily shown using the previous example. Consider, for instance,  x = 2: for this value 

of x, there is one solution (2, y) that dominates all the others (2, y') with y, y'  Ef (2)  according to the upper-

level objective functions; this nondominated solution within Ef (2)  is (x, y1, y2) = (2, 1, 0) belonging to Of, 

where (F1 , F2) = (4, 1). However, considering x=1, the solution (x, y1, y2) = (1, 1, 0) has (F1, F2) = (1,0), 

which dominates the previous solution. The point (1, 1, 0) also belongs to Of (point O2 in Fig. 8), i.e., it is a 

nondominated solution within Ef (1) . We can further observe that all solutions within Ef (1)  dominate (x, 

y1, y2) = (2, 1, 0) even the “most dominated” one: (x, y1, y2) = (1, 0, 0), point P2 in Fig. 8, with (F1, F2) = (2, 

1),  dominates (x, y1, y2) = (2, 1, 0), with (F1 , F2) = (4, 1) on the edge of Of. This can also be observed in Fig. 

9. 

Therefore, solutions that are nondominated within each Ef ( )x  may be not efficient to the leader, 

considering optimistic F-efficiency or even pessimistic F-efficiency. 

 

Remark 3. OPF and PPF are not necessarily disjoint, i.e., there may exist solutions that belong to both 

OPF and PPF. 

 

This remark will be shown in the next MOBP example, which further illustrates the difficulties when Of 

and Pf  are not coincident for F1 and F2. 

For the sake of clarity in the graphical visualization, we consider a MOBP with linear objective functions 

and constraints and one upper-level integer variable. 

 

Example 4 

max  F1(x, y) =  x + 2y1 − y2 

max  F2(x, y) = −1/2 x + 2y1 + y2 

s.t.    

       2 ≤ x ≤ 5 , x integer 

max  f1(y) =  y1 + 2y2 

max  f2(y) =  y1 −  y2 

 s.t. 

  y1  ≤ 6 

  y1 + y2 ≤ 10 – x  
      y2 ≤ x  

y1 , y2 ≥ 0  
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This problem is represented in Figure 10. In Figure 10(a) the constraint region with continuous x is 

displayed; Figure 10(b) represents the constraint region for x integer, the case considered in Example 4, where 

the set of all lower-level efficient solutions Ef ( )x for each x = 2,…,5 is highlighted by darker thick lines. 

Figure 11 shows separate graphs for each x. This figure distinguishes the subset of solutions within each 

Ef ( )x  that are dominated for the leader (dashed lines) from those that are nondominated (in solid black) 

which are: the line segments [AB] for x = 2 and [CD] for x = 3; the vertices E for x = 4 and F for x = 5. The 

corresponding upper-level objective values [F1, F2] are displayed next to each vertex.  

Although nondominated solutions within a Ef ( )x  may be not efficient (i.e., they are not really 

nondominated) for the leader, as stated in Remark 2, for the sake of simplicity of the language, we will simply 

use the term non-dominated to designate solutions (x, y) for which there is no other (x, y'), Ef' ( )y x  that 

dominates it. As can be seen in Fig. 10 and Fig. 11, only for x = 4 and x = 5 a single non-dominated solution 

exists among Ef ( )x  for the upper-level objective functions (points E and F, respectively), a similar situation 

to the one observed in the Example 3 for every x. For x = 2, all Ef (2)  are non-dominated for the leader, 

and for x = 3 there are non-singleton subsets of Ef (3)  with dominated and non-dominated solutions for the 

leader. Thus, when separately considered, the objective functions F1 and F2 do not have the same Of and Pf. 

 

 

(a) x continuous  
 

(b) x integer 

Figure 10 – Representation of the constraint region of Example 4. 
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Figure 11 – Representation of Example 4 for each x = 2, 3, 4, 5. For each vertex of Ef ( )x , the upper-level objective 

values [F1, F2] are displayed. 
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Figure 12 – Upper-level objective values in the lower-level efficient solutions for each x. 

 

In Figure 12, the values of the upper-level objective functions F1 and F2 in all solutions of Ef ( )x  for 

each x are displayed, i.e. solutions in IR.  

Figure 13(a) shows the values of F1 and F2 in Ef ( )x  that are the best solutions for the leader (i.e. non-

dominated solutions for the leader within Ef ( )x ): [AB], [CD], E and F in Figures 12 and 13. The OPF (Fig. 

13b) results from selecting the solutions that do not dominate each other among the best solutions for the 

leader (Fig. 13a);  this consists of selecting the solutions that do not dominate each other among the whole 

IR (Fig. 12). In Figure 13(b), the point A with (F1, F2) = (13.5, 11.5) is weakly efficient. 

 

 

(a) 

 

(b) 

Figure 13 – Best solutions for the leader among the lower-level efficient solutions for each leader’s decision (a) and 

the Optimistic Pareto Front (b). 

 

Let us now suppose that the leader adopts a pessimistic approach. In this case, the leader assumes that the 

follower will choose a solution from the worst solutions for the leader in Ef ( )x . As can be observed in 

Figure 12, for x = 2 there is no solution in Ef (2)  that dominates another one according to the upper-level 

objective functions. Therefore, all of them are retrieved. For x = 3, the worst solution for the leader is the one 

with (F1, F2) = (8, 9.5). For x = 4 and x = 5, there is also one point in each Ef ( )x  that is the worst for the 

leader: (F1, F2) = (4, 6) and (0, 2.5), respectively. Figure 14(a) shows the values of F1 and F2 in the worst 
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solutions for the leader for each x ( worstFIR ) and Figure 14(b) shows the PPF, which results from selecting 

the solutions that do not dominate each other among the solutions in worstFIR . Note that PPF = [BA], which 

includes part of OPF ([BA’[) and other solutions that are dominated by solutions in OPF. The solutions in 

PPF that do not belong to OPF are [A’A], where A’ (Fig.13b) has (F1, F2) = (13.5, 11.5) and A (Fig.13a) has 

(F1, F2) = (14, 11). 
 

 

(a) 

 

(b) 

Figure 14 – Worst solutions for the leader among the lower-level efficient solutions for each leader’s decision (a) and 

the Pessimistic Pareto Front (b). 

The PPF may be very difficult to compute, even more than the OPF, because it requires to isolate the 

solutions belonging to worstFIR  and to select the non-dominated solutions within this set (and only within this 

set). Solutions in worstFIR  may be difficult to identify when the worst solutions in Ef ( )x for each Fj, j=1,..,k 

do not coincide (i.e., the Pf  for each Fj are different ): in order that a feasible solution can enter into  worstF ,IR

it must be assured that no other solution for the same x is dominated by it according to the upper-level 

objective functions.  

Finally, solutions belonging to both OPF and PPF may be interesting because they have associated low 

risk. The leader’s decisions x in a common set of OPF and PPF lead to efficient solutions to the leader 

regardless of the follower’s choices.        

 

6 A Differential Evolution algorithm to compute the extreme and moderate 

solutions in SVBP 

The DE algorithm presented herein aims to compute the four extreme solutions and a moderate solution to 

the SVBP given an optimism index p1 chosen by the leader.  

The algorithm uses a population Pop of individuals, which is split into three sub-populations that share the 

same upper-level x vectors: 'Pop , "Pop  and Pop +  aiming at approximating, respectively, the optimistic 

frontier (where the optimistic and rewarding solutions will be searched for), the pessimistic frontier (for the 

pessimistic and deceiving solutions) and the frontier to search for the moderate solution, which we will call 

moderate frontier. 

Let Nu be the number of upper-level individuals. Each sub-population has the following configuration: 

 1 1 2 2( , ), ( , ),..., ( , )Nu Nux y x y x y , where y = 'y , "y or y+ , respectively in 'Pop , "Pop  and Pop + .  

DE operations are employed to evolve the population for the upper-level search and, for each vector xi, 

i=1,…,Nu, a lower-level DE algorithm (LLROUTINE) is used to determine '( , )i ix y , "( , )i ix y  and ( , )i ix y+ .  

Considering the usual nomenclature of DE variants (Price, Storn and Lampinen, 2006), the DE variant 

DE/rand/1/bin has been adopted for the upper-level search and DE/best/1/bin has been used for the lower-

level search, since this combination has revealed to have, in general, a better performance than the variants 

rand-rand or best-best in the two levels. For each individual i  (here generically representing an upper-



 19 

level vector x or a lower-level vector y), both variants randomly select two individuals 1r , 2r ; 

DE/rand/1/bin also selects 3r  randomly, while DE/best/1/bin assigns to 3r  the best individual in the current 

population. This latter variant is only used for the lower-level, where the best individual depends on whether 

the search is oriented towards the optimistic, pessimistic or moderate frontier respectively. In any variant, a 

trial vector i is created as follows, where D denotes the dimension of the vectors  and , F  is the mutation 

scaling factor and CR is the crossover rate. We have used F =0.7 and CR=0.9, which are standard parameter 

values. 

 

DEoperator 3, )i r ( : 

  jrand = randint(1,D)      

  For j =1 to D do 

  
3, 1, 2,

,
,

( ) if rand(0,1) < CR or = 
otherwise

r j r j r j rand
i j

i j

j j   +  −
 = 

F
 

 

Concerning the satisfaction of constraints, if an upper-level solution does not satisfy the constraints,

,ix X an attempt is made to repair it: if X is a set of box constraints only, then each variable of x  is repaired 

by pulling it into its closest bound; if there are more general constraints difficult to meet, then the solution is 

penalized in the evaluation function F. 

The output of the algorithm is: the optimistic solution (xo, yo); the pessimistic solution (xp, yp); the deceiving 

solution (xd, yd); the rewarding solution (xr, yr); and the moderate solution (xm, ym). During the algorithm run 

these are incumbent solutions, which are initialized as follows: 

(xo, yo)  arg max {F(x, y): (x, y)  Pop'}. Let i1 be the index of (xo, yo) in Pop';   

(xd, yd)  "
1 1( , )i ix y  Pop"; 

(xp, yp)  arg max {F(x, y): (x, y)  Pop"}. Let i2 be the index of (xp, yp) in Pop";   

(xr, yr)  
2 2( , ' )i ix y  Pop' ; 

(xm, ym)  arg max {F(x, y): (x, y)  Pop+}.  

 

 

After the individuals have been changed, the incumbent solutions are updated. Let iu be a trial upper-level 

vector obtained from ix  and let '( , )i iu w , "( , )i iu w , ( , )i iu w+  be the complete solutions corresponding to each 

sub-population obtained after the LLROUTINE (presented below in Algorithm 2) has been called. The optimistic 

/ pessimistic / rewarding solution is updated, respectively with '( , )i iu w  / "( , )i iu w  / ( , )i iu w+  if this solution 

improves the corresponding incumbent solution. If the optimistic solution is updated with '( , )i iu w  then the 

deceiving solution takes "( , )i iu w , and the reverse for the pessimistic/rewarding solutions.  

The trial vector iu  is accepted (ACCEPT function in Algorithm 1) when at least one of the solutions ( , )i iu w  

with ' "{ , , }i i i iw w w w+  improves the value of F with respect to the corresponding ( , )i ix y  with 

' "{ , , }.i i i iy y y y+ If the trial vector is accepted, the three new solutions ( , )i iu w , ' "{ , , }i i i iw w w w+  replace 

( , )i ix y , ' "{ , , }i i i iy y y y+  in 'Pop , "Pop  and Pop + , respectively. 

The general scheme for the upper-level search is described in Algorithm 1. 

 

Algorithm 1: Upper-level search 

parameters: Nu (population size), Tu (number of generations), p1 (optimism index) 

Create a random initial population of Nu upper-level vectors: , 1,...,ix X i Nu =  

For i =1 to Nu do  

 LLROUTINE ( ix , '
iy , "

iy , iy+ ) 

 Insert '( , )i ix y  in Pop', "( , )i ix y  in Pop" and ( , )i ix y+  in Pop+ 

End For i 

Initialize the incumbent solutions (xo, yo), (xp, yp), (xd, yd), (xr, yr), (xm, ym) 

 For t =1 to Tu do  

   For i =1 to Nu do  

   ( , )m
i iu DEoperator x x  
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   LLROUTINE ( iu , '
iw , "

iw , iw+ ) 

Update the incumbent solutions with '( , )i iu w , "( , )i iu w , ( , )i iu w+  if these improve the current 

ones. 

   If  ACCEPT( iu ) then   

i ix u  and replace the i-th solutions of Pop' , Pop" and Pop+ with '( , )i iu w , "( , )i iu w and 

( , )i iu w+ , respectively.  

  End For i 

End For t 

Output: (xo, yo), (xd, yd), (xp, yp), (xr, yr), (xm, ym) 

 

The LLROUTINE ( , ', ", )x y y y+  aims at computing, for a given x, two extreme efficient solutions to the 

lower-level problem, one belonging to the optimistic frontier, ( , ')x y Of , and another belonging to the 

pessimistic frontier, ( , ")x y Pf , plus the follower’s efficient solution ( , )x y+  in the moderate frontier. This 

routine employs two phases: phase 1 attempts to converge to a population Popy  of efficient solutions to the 

lower-level problem polarized to the extreme values of F, the minimum and the maximum; the phase 2 is 

oriented to more central follower’s efficient solutions, in order to properly approximate the moderate solution. 

Let Tl  be the number of lower-level generations in each phase. The number of individuals y in a lower-

level search is Nl (an even number). 

In the phase 1, the first Nl/2 individuals of Popy  are oriented to 'y  while the remaining Nl/2 individuals 

are oriented to "y . Therefore, for each iy Popy , the DEoperator randomly selects r1  r2, with r1, r2 

{1,…,Nl/2} for i ≤ Nl/2 and r1, r2 {Nl/2+1,…,Nl} for i > Nl/2; besty  is 'y  for the first half part of the 

population and "y  for the second part. In the phase 2, there is no division of the population and besty y+= . A 

trial vector iv  is created by the DEoperator for each iy  

Whenever a lower-level iy  is randomly generated or a trial vector iv  is computed, box constraints (if they 

exist) are ensured by pulling the variables out of bounds into the closest bounds. If more general constraints 

( , ) 0ig x y   are violated, then another iy  is drawn in the initial population for at most three trials; if all these 

trials are infeasible, the solution with the smallest overall violation of constraints is selected. During the 

evolution process, solutions that do not satisfy general constraints are penalized in the acceptance criterion. 

The acceptance criterion (ACCEPT_LL function in Algorithm 2) determines whether the new individual iv  

is accepted or not to replace iy  in the next population. It firstly observes whether the solutions ( , )ix v  and 

( , )ix y  satisfy the lower-level constraints g(x, y) ≤ 0, privileging the feasible solution if one of them is 

infeasible. If both solutions satisfy the constraints, then it is checked whether they are nondominated with 

respect to the current set of efficient solutions (Eff). If one of the solutions iv  or iy  is nondominated (i.e., it 

belongs to Eff) and the other is dominated, the nondominated solution is selected. If  both solutions have the 

same status, the selection is based upon the upper-level objective function value: in Phase 1, for i ≤ Nl/2 (sub-

population oriented to the Of) the individual with highest F is selected; for i > Nl/2 (sub-population oriented 

to Pf) the individual with lowest F is selected; in Phase 2, 1 1* ( , ') (1 ) ( , ")
    
F p F x y p F x y= + −  is used as the 

reference value and the solution ( , )ix v  or ( , )ix y with F closest to F* , *F F , is chosen. 

 

Algorithm 2: LLROUTINE ( , ' , " , )x y y y+     

PHASE 1: 

Step 1 - Create a random initial population: Popy  = , 1,...,iy Y i Nl =  

Step 2 - Define Eff with the solutions in Popy that satisfy ( , ) 0ig x y   and are mutually 

nondominated.  

Step 3 - Initialize y' and y": 

     ' arg max ( , ) :
y

y F x y y Eff    ;   " arg min ( , ) :
y

y F x y y Eff    

  Step 4 - 

  For t =1 to Tl do  

     For i =1 to Nl do  

     If i ≤ Nl/2 then  
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      ( , ')i iv DEoperator y y   

     Else   ( , ")i iv DEoperator y y  

    End For i 

 Insert in Eff the mutually nondominated (x, iv ), Nli ,...,1=  that satisfy ( , ) 0ig x v   and are not 

dominated by any member of Eff. Delete solutions that become dominated in Eff. 

    For i =1 to Nl do 

      If   (i ≤ Nl/2  and ACCEPT_LL( iv , highest F) or  

(i > Nl/2  and ACCEPT_LL( iv , lowest F)  then   

  Replace iy  in Popy with iv  

    End For i 

   Update the incumbent solutions y' and y" as in Step 3 

  End For t 

 

PHASE 2: 

      Let 1 1* ( , ') (1 ) ( , ")    F p F x y p F x y= + −  

Steps 1 and 2 – similar to steps 1 and 2 of phase 1. 

Step 3 - Initialize y+:   arg max ( , ) : , ( , ) *
y

y F x y y Eff F x y F+         

  Step 4 - 

  For t =1 to Tl do  

     For i =1 to Nl do  

     ( , )i iv DEoperator y y+   

    End For i 

 Insert in Eff the mutually nondominated (x, iv ), Nli ,...,1=  that satisfy ( , ) 0ig x v   and are not 

dominated by any member of Eff. Delete solutions that become dominated in Eff. 

    For i =1 to Nl do 

      If ACCEPT_LL( iv , F*)  then   

  Replace iy  in Popy with iv  

    End For i 

   Update the incumbent solution y+ as in Step 3 of phase 2. 

  End For t 

Output: 'y  , "y , y+  

 

Some options adopted in this algorithm have been tuned within the algorithm for Phase 1 presented in 

(Alves and Antunes, 2018a). For instance, in a first version of the algorithm, the set Eff was not used for the 

acceptance criterion, which only compared the two candidate solutions, iv  and iy , checking whether one 

dominated the other or not. However, the algorithm revealed a very poor convergence of the population to 

efficient solutions, which was overcome with the current strategy. 

Eff is sorted by decreasing order of F and a predefined maximum size L is imposed in order to control the 

growth of Eff. In each generation, if |Eff| > L, some elements are successively removed until L solutions remain 

in Eff: in Phase 1 the removed elements are the most central ones (i.e. the most distant from the maximum and 

the minimum of F), while in Phase 2 the opposite is done; the first removed elements are the ones in the top 

of Eff with F > F* and then, if necessary, elements in the bottom are removed. 

Note that the lower-level search scheme employed in this algorithm combines the search for the optimistic 

and pessimistic frontiers in the same phase because: (a) when the optimistic solution is updated with a solution 

in the optimistic frontier, the corresponding solution (with the same x) in the pessimistic frontier should also 

be available to update the deceiving solution; equivalently for updating the pessimistic and rewarding 

solutions; (b) solutions that are interesting for one frontier may emerge in the sub-population oriented to the 

other frontier. The lower-level search for the moderate frontier is performed separately in a second phase 

because '
    
y  and "

    
y  (obtained in the first phase) are needed to define the expected value of F, according to the 

EVP defined above. Moreover, finishing first the search for these solutions may expectedly lead to better 

approximate solutions in the moderate frontier. 

It is worthwhile to mention that the DE algorithm presented herein also computes the solutions on the 

optimistic frontier and on the pessimistic frontier associated with the moderate solution, i.e., the rewarding 

and deceiving outcomes of the moderate approach for a given p1. For the sake of readability of the algorithm, 
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these solutions, which are initialized and updated together with the moderate solution, have been omitted in 

the formal presentation of the algorithm.   

 

 

6.1. Illustrative results 

The DE algorithm was implemented in Delphi language (Embarcadero®). In order to illustrate results of 

the DE algorithm and possible pitfalls associated with their interpretation, we will use the problem of Example 

2 for which exact solutions are known. 

We have used the following parameter values: Nu = 50; Tu = 50; Nl = 100; Tl = 100; L = 100. We have 

considered 3 values for the optimism index: p1 = 0.25; p1 = 0.5; p1 = 0.75. Thirty independent runs of the 

algorithm were performed for each value of p1, each one aiming at approximating the four extreme solutions 

and the moderate solution corresponding to that value of p1. Since the same seed value was used for the 

generation of random numbers, the results for the four extreme solutions are the same for all values of p1. 

Table 1 presents the average and the standard deviation of F obtained for the four extreme solutions and 

the moderate solutions over the 30 runs. Table 2 shows the values of F, f1, f2 and all variables in the best 

(minimum F) optimistic, pessimistic and moderate solutions and in the corresponding deceiving/rewarding 

solutions. In order to facilitate the analysis and assess the quality of the results obtained, we also include the 

exact values (obtained analytically), which are in bold face near each approximate value. 

 
Table 1. Average and standard deviation of F in Example 2, obtained in 30 independent runs for each p1 value. 

Example 2 Average F Stand. Dev. F Exact 

F 

 Sol.o 0.49832 0.00051 0.5 

 Sol.d 1.24924 0.01388 1.25 

 Sol.p 0.99445 0.00098 1 

 Sol.r 0.99047 0.00470 1 

p1=0.25 Sol.m 0.94432 0.00050 0.95 

p1=0.5 Sol.m 0.82923 0.00067 0.83333 

p1=0.75 Sol.m 0.67586 0.00066 0.67857 

 

Table 2. Best optimistic, pessimistic (and corresponding deceiving, rewarding) and moderate solutions. 

Example 2 F  f1  f2  x  y1  y2  

 Sol.o 0.49729 0.5 0.26525 0.25 0.00001 0 0.51195 0.5 0.51502 0.5 -0.0010 0 

 Sol.d 1.25887 1.25 0 0 0.26044 0.25 0.51195 0.5 0.00161 0 0.00016 0 

 Sol.p 0.99375 1 0.00001 0 0 0 0.00407 0 0.00314 0 0.00019 0 

 Sol.r 0.99375 1 0.00001 0 0 0 0.00407 0 0.00314 0 0.00019 0 

p1=0.25 Sol.m 0.94301 0.95 0.0028 0.00212 0.02612 0.0237 0.21453 0.2 0.05291 0.04606 0.00144 0 

p1=0.5 Sol.m 0.82754 0.83333 0.0224 0.02255 0.03012 0.03355 0.32321 0.33333 0.14966 0.15016 0.00014 0 

p1=0.75 Sol.m 0.67458 0.67857 0.08443 0.08792 0.0152 0.01744 0.41387 0.42857 0.29057 0.29651 0.00013 0 

Figure 15 displays a screenshot of the algorithm being run with Example 2, showing the populations and 

the current incumbent solutions (extreme solutions and moderate solution for p1 = 0.5) after 10 iterations, 

i.e., 10 upper-level generations.    
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Figure 15- Screen of the algorithm being run with Example 2 (for p1 = 0.5). 

 

When a heuristic algorithm is applied to an optimization problem, the intention is to obtain an optimal or 

near-optimal solution; so, the solution with minimum objective function value (assuming minimization, as in 

this problem) is chosen. This is what we have done to select the solutions presented in Table 2. However, 

there are additional issues in assessing solutions in SVBP and MOBP that can lead to misleading 

interpretations. These pitfalls are very difficult to avoid in general problems for which the exact solutions are 

not known. Nevertheless, we wish to draw attention to some of them using this example. 

Consider, for instance, the best solution (presented in Table 2) for the optimistic solution. It has F = 

0.49729, which is better than the real value, F = 0.5. The optimistic solution is the best solution to the leader 

in the whole induced region, so the reason to obtain a better F value is that the solution is infeasible because 

it is not efficient to the lower level problem. The upper-level solution in Sol.o is x = 0.51195; we can realize 

that, for this x, the lower-level solution that is efficient and the best for the leader is (y1, y2) = (0.51195, 0), 

with (f1, f2) = (0.26209, 0) leading to F = 0.5003. Note that (f1, f2) = (0.26209, 0) dominates (f1, f2) = (0.26525, 

0.0001) in Sol.o.  F = 0.5003 is worse than the true optimal value (0.5003>0.5) because the optimal optimistic 

solution is obtained for a different x. 

Actually, only efficient solutions to the lower-level problem are feasible to the SVBP, but this is very 

difficult to ensure using approximate methods, leading the algorithm to yield apparently better results with 

invalid solutions. Therefore, during the evolution process, an exact optimal solution (in any frontier) can be 

disregarded because it is worse in F than other solutions that are not efficient to the lower-level problem 

(although they may be very close to the efficient solution set). 

But, even when the lower-level solutions are efficient, other difficulties arise in evaluating solutions in 

frontiers other than the optimistic one. Consider, for instance, solutions in the pessimistic frontier: approximate 

solutions may have an F value better than the true optimal values because they are not the worst for the leader 

for that specific value of x, i.e., they are not really in the pessimistic frontier. This drawback may lead to retain 

false pessimistic and deceiving solutions, which may also occur in the computation of solutions in other 

frontiers. 

Moreover, solutions closer to the optimal ones may be obtained in other runs of the algorithm. However, 

since they have a worse F value, they are not chosen as the best solutions. Consider, for instance, the moderate 

solution for p1 = 0.5, for which the exact F value is 0.83333 and (x, y1, y2) = (0.33333, 0.15016, 0). The solution 

selected as the best one (presented in Table 2) is the one with best (lower) F: (x, y1, y2) = (0.32321, 0.14966, 

0.00014), F = 0.82754. However, we could observe that there are solutions provided by other runs, e.g. (x, y1, 

y2) = (0.33537, 0.152865, 0.00035), F = 0.83011, which could better approximate the moderate solution, 

although they would never be selected.  

 
Consequently, approximate algorithms, e.g. stochastic optimizers as DE, may lead to apparently better 

solutions to SVBP/MOBP than the exact optimal/Pareto optimal ones. However, those solutions, even being 

good approximations to optimal/Pareto optimal solutions, may not be efficient to the lower-level problem, 

therefore leading to overestimated results. I.e., a better Pareto front does not imply a better performance of the 

algorithm if the lower-level solutions are not truly efficient for each instantiation of the upper-level variables.  

The computation and interpretation of results in this type of problems should take thoroughly into account the 

pitfalls herein illustrated to avoid erroneous conclusions. This issue has been completely disregarded in the 

literature for the comparison of algorithms; the authors often claim that a new MOBP algorithm outperforms 

other algorithms based only on the comparison of the respective upper-level Pareto fronts. 

7 Conclusions and further research 

A relevant challenge in bilevel problems with multiple objective functions at both levels or only at the 

lower-level (MOBP/SVBP) is to guarantee the feasibility of solutions, because solutions that are not efficient 

to the lower-level problem are infeasible to the bilevel problem. In addition, since, in general, the leader does 

not possess information on the follower’s preferences within his efficient region, the effectiveness of the 

decision support process requires that solutions deriving from more optimistic or more pessimistic leader’s 

attitudes and more favorable or more adverse follower’s reactions should be explored. 

For this purpose, this paper proposes solution concepts in SVBP and MOBP, which explore the interaction 

between the leader’s and the follower’s decisions to define: - in SVBP, the optimistic and the pessimistic 

frontiers, where the extreme optimistic/deceiving and pessimistic/rewarding solutions are located, as well as 

moderate solutions according to the risk the leader is willing to take; - in MOBP, the Optimistic and the 
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Pessimistic Pareto Fronts. These novel concepts are illustrated through graphical examples to cast light on 

the insights these solutions can offer to support decision processes based on SVBP and MOBP models.  

We have paid particular attention to pessimistic approaches since most algorithms developed thus far for 

SVBP/MOBP are mainly dedicated to the computation of the optimistic solution/Pareto front (which 

subsumes the unlikely assumption that the follower is indifferent to all efficient solutions obtained for a given 

decision of the leader). The graphical examples of linear and nonlinear problems enabled to ascertain critical 

issues, such as that the Pessimistic Pareto Front may include part of the Optimistic Pareto Front. The 

definitions of Optimistic and the Pessimistic Pareto Fronts herein proposed lay the foundations for the 

development of algorithms to compute them so that the leader can be offered information about the risk vs. 

opportunity associated with his decisions. 

Population-based meta-heuristics have been increasingly used to deal with SVBP/MOBP. It should be 

noted that, being approximate algorithms, these approaches may lead to seemingly better solutions. However, 

these solutions may not be actually efficient to the lower-level problem (even being good approximations) 

and therefore be taken by the algorithms in detriment of the true efficient solutions thus leading to misleading 

results. I.e., a better front does not imply a better performance of the algorithm if the efficiency of lower-

level solutions is not ensured. An algorithm based on differential evolution for the SVBP has been presented, 

which aims to approximate the extreme and moderate solutions. The discussion of the results of this algorithm 

enabled to highlight those pitfalls. 

The judicious combination of meta-heuristics for the upper-level search with exact solvers for the lower-

level problem can contribute to mitigate that drawback, in cases where this combination is possible (e.g., 

when the lower-level problem is a mixed-integer linear programming problem after the instantiation of the 

upper-level variables). 

Further work will include the development of algorithms to approximate the Optimistic and the Pessimistic 

Pareto Fronts of the MOBP. 
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