
 

 

 1 

This is the peer reviewed version of the following article:  

Inês Soares, Maria João Alves, Carlos Henggeler Antunes, “A population‐based approach to 

the bi‐level multifollower problem: an application to the electricity retail market”, 

International Transactions in Operational Research, Accepted in 2019. 

which has been published in final form at https://doi.org/10.1111/itor.12710.  

This article may be used for non-commercial purposes in accordance with Wiley Terms and 

Conditions for Use of Self-Archived Versions.

https://doi.org/10.1111/itor.12710


 

 

 2 

A population-based approach to the bi-level multi-follower problem: an 

application to the electricity retail market 

 

Inês Soaresa, Maria João Alvesa,b, Carlos Henggeler Antunesa,c 

 

a Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal 

b CeBER and Faculty of Economics of the University of Coimbra, Coimbra, Portugal 

c Department of Electrical Engineering and Computers, University of Coimbra, Coimbra, Portugal 

inesgsoares@gmail.com; mjalves@fe.uc.pt; ch@deec.uc.pt 

  

Received DD MM YY; received in revised form DD MM YY; accepted DD MM YY 

 

 

Abstract 

Dynamic tariffs are expected to be implemented as commercial offers of electricity retailers in smart 

grids, conveying price signals aimed at shaping usage patterns, with potential benefits to enhance grid 

efficiency and reduce end-users’ costs. Retailers and consumers have divergent goals. While the 

objective of the retailer is maximizing profits, the purpose of consumers is minimizing their electricity 

bill. The interaction between the retailer and consumers can be modeled by means of bi-level (BL) 

programming: the retailer sets the prices to be charged to consumers and these react by scheduling 

flexible appliances according to those prices and their comfort requirements. 

In this work, two hybrid BL optimization approaches are proposed to solve this problem, considering 

one leader (retailer) and multiple followers (consumers). Two population-based approaches were 

developed, a genetic algorithm (GA) and a particle swarm optimization (PSO) algorithm, to deal with 

the upper level problem, both encompassing an exact mixed integer linear programming solver to 

address the lower level optimization problem. Different scenarios were generated, comprising one 

leader (retailer imposing different price schemes) and three followers (with different consumer 

profiles). Typical residential appliances were considered, with different operation cycles. Also, diverse 

tariff structures set by the retailer were analyzed. The performance of the two algorithms was compared. 

Results revealed a consistent superiority of PSO over GA. 

 

Keywords: Bi-level multi-follower optimization; Hybrid algorithms; Genetic algorithms; Particle 

swarm optimization; Dynamic tariffs; Demand response. 
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1. Introduction 

Dynamic tariffs are a pricing strategy in which the supplier sets time-differentiated prices for a product 

or service according to certain conditions that may include congestion, market demands, etc. Dynamic 

tariffs have already been applied in several business areas (e.g. tourism industry, public transport, etc.) 

and it is expected that they may become a common practice in the electricity retail sector in the realm 

of smart grids. In the electricity sector, the retailers buy energy in the liberalized electricity markets and 

make selling contracts with their clients. The energy is typically charged to residential consumers in a 

flat tariff (i.e., considering the same price for an entire day) or in dual time-of-use tariffs (i.e., 

considering two distinct periods of prices within one day, such as the peak period – where the electricity 

price is higher – and the off-peak period – where the electricity price is lower). Consumers buy the 

amount of energy necessary to satisfy their needs, adjusting the consumption according to their own 

budget constraints and comfort requirements. With the implementation of dynamic tariffs, the retailer 

defines distinct ranges of energy prices more or less variable within the day, thus encouraging 

consumers to adopt different patterns of consumption with potential savings. Once the consumers have 

received the information of the prices to be charged, they may react by scheduling the operation cycle 

of their controllable appliances according to their willingness to pay and the flexibility they have in 

changing habitual operation time slots. While the retailer aims to maximize profit, the purpose of 

consumers is to minimize their electricity bill considering preferences and requirements regarding the 

quality of the energy services (electric vehicle charging, laundry, hot water, etc.). The interaction 

between the retailer and consumers can be hierarchically modeled as a bi-level (BL) programming 

problem, where the retailer is the leader (upper level decision maker) and the consumer is the follower 

(lower level decision maker). The retailer decides first, but the consumers’ reaction will affect the 

retailer’s objectives. 

In this work, we formulate the interaction between an electricity retailer and several clusters of 

consumers with different consumption profiles as a BL optimization model with multiple followers. 

The maximization of the retailer’s profit is the upper level objective function and the minimization of 

the consumers’ costs are the lower level objective functions. 

When multiple followers are involved in a BL decision-making process, for each feasible solution 

generated at the upper level, different reactions of the followers could arise at the lower level. Also, 

different relationships among the followers could lead to different decisions of the leader. Lu et al. (Lu 

et al. 2006) generalized a framework for the BL optimization problem with multiple followers by 

describing three different situations that result in nine different types of relationships among the 

followers. The most usual situation is described as uncooperative, where the followers do not share 

decision variables, objectives and constraints among them. In the cooperative situation, there is a 

complete sharing of decision variables among the followers. The third situation is defined as partially 

cooperative, where the followers partially share the decision variables in their objectives and/or 
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constraints. Each of these latter two situations can be split into four sub-cases defined by the 

relationships among the objectives and constrains of the followers. Lu et al. (Lu et al. 2006) proposed 

BL multi-follower (BLMF) decision models for the nine cases, which require different approaches to 

derive an optimal solution. In each model, the authors assumed that the leader has full knowledge about 

the objectives and constraints of the followers as well as the relationships among them. Based on such 

relationships, the leader must be able to anticipate the followers’ reactions to his decisions. 

In this work, we are particularly interested in multi-follower decision problems and how they can be 

tackled. In the following, a brief review of BLMF approaches in several domains is presented. 

Calvete et al. (Calvete and Galé 2007) proved that a linear BL programming problem with a single 

leader and multiple independent followers (i.e., the objective function and the set of constraints of each 

follower only include the leader’s variables and his own variables) can be reformulated as a linear BL 

problem with a single follower. This is accomplished by defining the lower level objective function as 

the sum of the followers’ objective functions subject to the whole set of constraints of all followers.  

Wang et al. (Wang et al. 2009) proposed a fuzzy interactive decision making algorithm to address 

the BLMF model with partially shared variables among followers and separate objective functions and 

constraints. 

Ansari et al. (Ansari and Rezai 2011) presented a new method to solve multi-objective linear BLMF 

programming problems, in which there is no information shared among followers, using fuzzy 

programming and the Kth-best algorithm (Bialas and Karwan 1984). This approach considers multiple 

followers with multi-objective problems at the lower level and also multiple objective functions at the 

upper level. 

Zhou et al. (Zhou et al. 2016) developed a BLMF model with uncertain multiple objectives at the 

upper level to support decision making in low-carbon power dispatch and generation. The leader is the 

regional power grid corporation while the followers are the power generation groups. The leader 

allocates quotas to each follower, while the followers decide on their respective power generation plans 

and prices. The BL problem is then transformed into solvable single level models. 

Islam et al. (Islam et al. 2016) proposed a memetic algorithm for solving BLMF optimization 

problems. The methodology uses a combination of global and local search to consistently reach 

competitive solutions with less function evaluations in comparison with other approaches. The approach 

was tested with both dependent and independent followers using benchmark problems. 

In the context of electricity retail markets, BLMF models are scarce. However, some contributions 

can be found in the literature considering just a single follower. 

Alves et al. (Alves et al. 2016) proposed a BL model for the interaction of a retailer (who aims to 

maximize profit) with a cluster of consumers with similar consumption and demand response profiles 

(who want to minimize costs). A hybrid approach was developed to handle the problem, which consists 

of a genetic algorithm (GA) at the upper level and an exact mixed-integer linear programming (MILP) 

solver at the lower level to solve the consumer’s problem for each retailer’s decision. This work was 
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extended to a semivectorial BL optimization model (Alves and Antunes 2018), in which two 

consumer’s objective functions are considered: minimize electricity bill and minimize the 

dissatisfaction associated with rescheduling the appliance operation. In this case, nondominated 

solutions must be calculated to the lower level problem. The paper deals with the uncertainty about the 

reaction of the consumer, who has to choose a solution among many different tradeoffs for his objective 

functions, and the impact of the consumer’s choice on the retailer's profit. Different types of solutions 

to the semivectoral BL problem are computed, which result from more optimistic or pessimistic 

retailer’s stances regarding the consumer’s option. 

Carrasqueira et al. (Carrasqueira et al. 2017) proposed two population-based approaches for both 

upper and lower levels, one based on a GA and another on a PSO algorithm, to address the same problem 

as the one proposed in (Alves et al. 2016) but dealing with a different model, which is not a 

mathematical programming model. Therefore, the lower level problem is also addressed by a 

metaheuristic approach. Soares et al. (Soares et al. 2019) developed a different lower level model 

including shiftable, thermostatic and interruptible loads. The inclusion of a thermostatic load in the 

lower level problem imposes a higher computation effort, which impairs obtaining the optimal solution 

by a state-of-the-art solver. Therefore, the focus of this work is to compute good quality estimates for 

the retailer’s profit. 

Meng and Zeng (Meng and Zeng 2013) proposed a BL model to determine the real-time energy 

prices that maximize the retailer’s profit, while the consumer attempts to minimize the electricity bill 

for such prices. The model is then converted into a single-level problem using the Karush-Kuhn-Tucker 

conditions and it is solved using a branch-and-bound algorithm. The authors further developed BLMF 

models (Meng and Zeng 2013, Meng and Zeng 2014, Meng and Zeng 2015, Meng and Zeng 2016) with 

the same objective functions. Hybrid algorithms were used considering a GA at the upper level and a 

linear programming solver for the consumers’ problems at the lower level.  

Sekizaki et al. (Sekizaki et al. 2016) proposed a BL model in which different types of consumers 

(i.e., not only residential consumers) are considered and flexible responses to the prices set by the 

retailer are allowed. The objective function of each type of consumer is a weighted sum of the cost of 

power purchasing and “disutility” caused by the reduction of the load served. A GA is developed to 

tackle this model. 

With the exception of (Alves et al. 2016, Carrasqueira et al. 2017, Alves and Antunes 2018), all BL 

models described above in the context of the electricity retail market do not incorporate information 

associated with the operation cycles of typical household appliances. However, the inclusion of these 

data into the model leads to a more realistic load characterization, also enabling a more reliable 

representation of the consumers’ goals. Typical appliances used by residential consumers and the 

corresponding operation cycles are characterized by Soares et al. (Soares et al. 2014). 

The BLMF model proposed in this work to deal with the interaction between a retailer and multiple 

consumers also incorporates detailed household appliance operational characteristics, including the 
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information associated with the operation cycles of shiftable loads. The resulting lower level problems 

are mixed-integer non-linear programming problems, which become MILP problems after the 

instantiation of the upper level decision variables (electricity prices). The characteristics of the BLMF 

model prevent the use of algorithms that convert the problem into one level using the KKT conditions, 

or algorithms that use linear programming solvers for the lower level problems (for instance, as the 

ones used by (Meng and Zeng 2013) or (Meng and Zeng 2016)). 

We have developed two hybrid algorithms to deal with the BLMF problem, each one combining a 

population-based algorithm (a GA and a PSO) for the upper level problem and an exact MILP solver to 

the lower level problems. A comparison of these algorithms is presented considering different scenarios 

with a retailer instance and three residential consumers’ profiles. The consumer profiles of each scenario 

differ in the base (uncontrollable) load, the household controllable appliances and their operation cycles, 

the power requested to the grid and the time slots allowed for load operation. Also, different tariff 

structures set by the retailer were analyzed. 

The main contributions of the current paper are: modelling a more realistic situation involving 

different clusters of residential consumers with different appliance ownership and different 

consumption patterns (multiple followers); considering power constraints at the upper level to avoid 

undesirable consumption peaks due to grid management reasons, which may result from technical 

restrictions of power transformers and lines as established by the distribution network operator, and 

therefore the solutions obtained by each follower at the lower level must be aggregated to verify the 

power constraints at the upper level; performing a comparative analysis of the two hybrid BL 

approaches in order to assess their capability to explore the upper level search space aiming to improve 

the retailer’s profit; developing a repair routine for (electricity prices) variables with a fixed number of 

decimals, since it is a common practice in commercial offers by electricity retailers to set energy prices 

with a given number of decimal places. The performance of the two hybrid algorithms developed was 

compared under realistic conditions. This study also enables to assess the interest to consumers to adopt 

dynamic vs. flat tariff schemes. 

The manuscript is organized as follows. In section 2 the main concepts of BL optimization are 

summarized, in particular considering multiple followers. The new formulation to model the interaction 

between a retailer and multiple consumer clusters in the retail electricity market is presented in section 

3. Section 4 describes two hybrid population-based algorithmic approaches, combining either a GA or 

a PSO with a MILP exact solver. In section 5, the results of the study are presented and discussed. The 

conclusions are drawn in section 6. 
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2. Bi-level optimization with multiple followers 

BL programming is a special kind of optimization models involving two optimization problems being 

one problem embedded into the other. The problems are hierarchically related being the upper level 

problem usually referred to as the leader problem, while the lower level optimization problem is 

commonly referred to as the follower problem. The two optimization problems involve different types 

of decision variables and have their individual objective functions subject to specific constraints. The 

leader needs to anticipate the optimal response of the followers. Succinctly, the leader starts by setting 

his decision variable values to which the followers react by choosing the values for their decision 

variables in the set of solutions restricted by the values of the upper level decision variables fixed by 

the leader. The resolution of BL optimization problems remains a great challenge due to their inherent 

non-convexity, and even the linear BL problem is NP-hard (Dempe 2002). 

The general BL programming problem with a single leader and multiple independent followers, 

which do not share variables, constraints and objective functions (uncooperative followers as referred 

to above) can be stated as follows: 

max
𝑥∈𝑋

   𝐹(𝑥, 𝑦1, … , 𝑦𝑁) 

𝑠. 𝑡.    𝐺(𝑥, 𝑦1, … , 𝑦𝑁) ≤ 0 

𝑦𝑘 ∈ arg min
𝑦′

𝑘∈𝑌𝑘

{𝑓𝑘(𝑥, 𝑦′
𝑘): 𝑔𝑘(𝑥, 𝑦′

𝑘) ≤ 0} , 𝑘 = 1, … , 𝑁 

where 𝑋 ⊂ ℝ𝑛 and 𝑌𝑘 ⊂ ℝ𝑚𝑘 are closed sets, n is the number of upper level variables and mk is the 

number of lower level variables of the follower 𝑘 = 1, … , 𝑁, with N being the number of followers. The 

decision variables x are controlled by the leader while the follower 𝑘 controls decision variables yk. 

𝐹(𝑥, 𝑦1, … , 𝑦𝑁) is the leader’s objective function and 𝑓𝑘(𝑥, 𝑦𝑘) is the objective function of the follower 

𝑘 ∈ {1, … , 𝑁}. Variables x are kept constant while the lower level objective functions are optimized 

since each follower 𝑘 optimizes his objective function 𝑓𝑘(𝑥, 𝑦𝑘) after decision variables x are selected 

by the leader. 𝐺(𝑥, 𝑦1, … , 𝑦𝑁) and 𝑔𝑘(𝑥, 𝑦′
𝑘), 𝑘 = 1, … , 𝑁, represent the set of multiple constraint 

functions at the upper and lower levels, respectively. 

Let 𝑥 ∈ 𝑋 be a vector of decision variables fixed by the leader. The feasible and the rational reaction 

sets of the follower 𝑘 ∈ {1, … , 𝑁} are the sets 𝑌𝑘(𝑥) = {𝑦𝑘 ∈ 𝑌𝑘: 𝑔𝑘(𝑥, 𝑦𝑘) ≤ 0} and Ψ𝑘(𝑥) =

{𝑦𝑘 ∈ 𝑌𝑘: 𝑦𝑘 ∈ arg min
𝑦′𝑘∈𝑌𝑘(𝑥)

𝑓𝑘(𝑥, 𝑦′𝑘)}, respectively. The feasible set of the BL problem described above, 

also called inducible region, is 𝐼𝑅 = {(𝑥, 𝑦1, … , 𝑦𝑁): 𝑥 ∈ 𝑋, 𝐺(𝑥, 𝑦1, … , 𝑦𝑁) ≤ 0, 𝑦𝑘 ∈ Ψ𝑘(𝑥), 𝑘 ∈

{1, … , 𝑁}}. 

In bilevel programming, if Ψ𝑘(𝑥) is not uniquely determined for all 𝑥, then either an optimistic or a 

pessimistic approach is usually adopted. The optimistic approach assumes that the follower always takes 

an optimal solution that is the best for the leader, while the pessimistic approach assumes that the 

solution chosen by the follower is the worst for the leader. In the present study, a general MILP solver 
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is used (cplex) to compute optimal solutions to the lower level problems in the framework of the hybrid 

approaches; the solutions found are possible optimal reactions of the consumers to the electricity prices 

set by the retailer. Due to the computation effort associated with the calculation of all alternative optimal 

solutions to each lower level MILP problem instantiated for each 𝑥, we accept the first optimal solution 

given by the solver, which it is not known whether it is the best, the worst or an intermediate solution 

to the retailer. Therefore, neither an optimistic nor a pessimistic perspective is underlying in this study. 

 

3. A bi-level model for residential electricity retail market problems with multiple followers 

In the electricity retail market, the retailer buys energy in the wholesale market to sell to consumers. 

The retailer defines dynamic tariffs, while the consumers react by adjusting the energy consumption 

through the scheduling of load operation. The aim of the retailer is to maximize the profit while the goal 

of consumers is to minimize their electricity bill, satisfying comfort requirements. 

The planning period �̅� = {1, … , 𝑇}, with T being the number of time intervals, is divided into I sub-

periods 𝑃𝑖 = [𝑃1𝑖
, 𝑃2𝑖

] ⊂ �̅�,  𝑖 ∈ {1, … , 𝐼}, such that ⋃ 𝑃𝑖
𝐼
𝑖=1 = �̅� and 𝑃𝑖 = 𝑃2𝑖

− 𝑃1𝑖
+ 1 is the 

amplitude of 𝑃𝑖. The retailer defines the values for the I upper level decision variables, the prices 𝑥 =

(𝑥1, … , 𝑥𝐼) to be charged to the consumers.  𝑥𝑖 (in €/kWh) is the price of electricity in the pre-defined 

sub-period 𝑃𝑖, 𝑖 ∈ {1, … , 𝐼}, where h is the unit of time the planning period is discretized into (hour, 

minute, quarter of hour, etc.). 

The model considers N different clusters of consumers, grouping consumers with similar 

consumption and demand response profiles. For each consumer cluster 𝑘 ∈ {1, … , 𝑁} there is a base 

load bkt (in kW) for each time t in the planning period �̅�, which corresponds to non-controllable loads, 

and Jk different shiftable appliances (whose operation cycle cannot be interrupted once initiated), such 

that each load 𝑗 ∈ {1, … , 𝐽𝑘} requires from the grid a power pkjt (in kW) at time t of the planning period 

�̅� .  

The objective function of the upper level problem (equation (1) in the BLMF model presented 

below) corresponds to the maximization of the retailer’s profit, being defined as the difference between 

the revenue with the sale of energy to consumers and the cost of buying energy in the wholesale market. 

Coefficients 𝜋𝑡 in equation (1) are the prices of energy incurred by retailer at time 𝑡 ∈ {1, … , 𝑇}. In this 

model, 𝜃𝑘, 𝑘 ∈ {1, … , 𝑁}, is the fraction of consumer cluster k in the set of all consumers. 

The electricity prices set by the retailer are limited to a minimum and maximum values, 𝑥𝑖 and 𝑥𝑖 

respectively, for each sub-period 𝑃𝑖, i.e. 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 , 𝑖 ∈ {1, … , 𝐼}, (constraints (2) and (3) in the BL 

model presented below). Additionally, an average electricity price for the whole planning period �̅�  is 
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imposed, 𝑥𝐴𝑉𝐺 =
1

𝑇
∑ 𝑃𝑖

𝐼
𝑖=1 𝑥𝑖 (constraint (4) in the model, similar to the one considered by (Zugno et 

al. 2013)). 

An upper level power constraint imposes the overall power requested from the grid by non-

controllable and flexible loads for each time 𝑡 ∈ {1, … , 𝑇} from all consumer clusters does not exceed 

Ct (constraint (5) in the model).

 

BLMF MODEL 

max
𝑥

𝐹 = ∑ 𝜃𝑘
𝑁
𝑘=1 (∑ ∑ 𝑥𝑖 (𝑏𝑘𝑡 + ∑ 𝑝𝑘𝑗𝑡

𝐽𝑘
𝑗=1 )𝑡∈𝑃𝑖

𝐼
𝑖=1 − ∑ 𝜋𝑡 (𝑏𝑘𝑡 + ∑ 𝑝𝑘𝑗𝑡

𝐽𝑘
𝑗=1 )𝑇

𝑡=1 )    (1) 

s.t. 

𝑥𝑖 ≤ 𝑥𝑖  ,    𝑖 = 1, … , 𝐼         (2) 

𝑥𝑖 ≥ 𝑥𝑖  ,    𝑖 = 1, … , 𝐼         (3) 

1

𝑇
∑ 𝑃𝑖𝑥𝑖

𝐼
𝑖=1 = 𝑥𝐴𝑉𝐺           (4) 

∑ 𝜃𝑘 (𝑏𝑘𝑡 + ∑ 𝑝𝑘𝑗𝑡
𝐽𝑘
𝑗=1 )𝑁

𝑘=1 ≤ 𝐶𝑡 ,    𝑡 = 1, … , 𝑇       (5) 

min
𝑝𝑘,𝑤𝑘

𝑓𝑘 = ∑ ∑ 𝑥𝑖 (𝑏𝑘𝑡 + ∑ 𝑝𝑘𝑗𝑡
𝐽𝑘
𝑗=1 )𝑡∈𝑃𝑖

𝐼
𝑖=1        (6) 

s.t. 

𝑝𝑘𝑗𝑡 = ∑ 𝑓𝑘𝑗𝑟𝑤𝑘𝑗𝑟𝑡
𝑑𝑘𝑗

𝑟=1  , 𝑗 = 1, … , 𝐽𝑘  , 𝑡 = 𝑇1𝑘𝑗
, … , 𝑇2𝑘𝑗

      (7) 

𝑝𝑘𝑗𝑡 = 0 , 𝑗 = 1, … , 𝐽𝑘  , 𝑡 < 𝑇1𝑘𝑗
∨ 𝑡 > 𝑇2𝑘𝑗

       (8) 

𝑏𝑘𝑡 + ∑ 𝑝𝑘𝑗𝑡
𝐽𝑘
𝑗=1 ≤ 𝐶𝑘𝑡 ,      𝑡 = 1, … , 𝑇       (9) 

∑ 𝑤𝑘𝑗𝑟𝑡
𝑑𝑘𝑗

𝑟=1 ≤ 1 , 𝑗 = 1, … , 𝐽𝑘  , 𝑡 = 𝑇1𝑘𝑗
, … , 𝑇2𝑘𝑗

      (10) 

𝑤𝑘𝑗(𝑟+1)(𝑡+1) ≥ 𝑤𝑘𝑗𝑟𝑡  , 𝑗 = 1, … , 𝐽𝑘  , 𝑟 = 1, … , (𝑑𝑘𝑗 − 1) , 𝑡 = 𝑇1𝑘𝑗
, … , (𝑇2𝑘𝑗

− 1)   (11)  

∑ 𝑤𝑘𝑗𝑟𝑡

𝑇2𝑘𝑗

𝑡=𝑇1𝑘𝑗
= 1 , 𝑗 = 1, … , 𝐽𝑘  , 𝑟 = 1, … , 𝑑𝑘𝑗       (12) 

∑ 𝑤𝑘𝑗1𝑡

𝑇2𝑘𝑗
−𝑑𝑘𝑗+1

𝑡=𝑇1𝑘𝑗
≥ 1 , 𝑗 = 1, … , 𝐽𝑘       (13) 

𝑤𝑘𝑗𝑟𝑡 ∈ {0,1} , 𝑗 = 1, … , 𝐽𝑘  , 𝑟 = 1, … , 𝑑𝑘𝑗  , 𝑡 = 𝑇1𝑘𝑗
, … , 𝑇2𝑘𝑗

     (14) 

𝑝𝑘𝑗𝑡 ≥ 0 , 𝑗 = 1, … , 𝐽𝑘  , 𝑡 = 1, … , 𝑇        (15) 

In the lower level problem, consumers react to the electricity prices set by the retailer. For each 

consumer cluster 𝑘 ∈ {1, … , 𝑁}, the objective function in the lower level problem (equation (6)) 

corresponds to the minimization of the electricity bill, i.e. the sum of the cost of the energy consumed 

by uncontrollable and shiftable loads in the planning period �̅�. 

For controllable loads, each consumer cluster k should specify the preferences, i.e. the comfort time 

slots [𝑇1𝑘𝑗
, 𝑇2𝑘𝑗

] ⊆ �̅� in which each load j, 𝑗 ∈ {1, … , 𝐽𝑘}, should operate and the power requested by 

load j at stage 𝑟 ∈ {1, … , 𝑑𝑘𝑗} of its operation cycle, 𝑓𝑘𝑗𝑟 (in kW), being dkj the duration of the working 

cycle of load j. The lower level decision variables for each consumer cluster k are 𝑤𝑘𝑗𝑟𝑡 and pkjt. 

𝑘 = 1, … , 𝑁 
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Variables 𝑤𝑘𝑗𝑟𝑡 specify whether appliance j is “on” or “off” at time 𝑡 ∈ [𝑇1𝑘𝑗
, 𝑇2𝑘𝑗

] and stage r of its 

operation cycle; pkjt is the power requested to the grid by appliance j at time 𝑡 ∈ {1, … , 𝑇}. 

Constraints (7) and (8) define the lower level variables pkjt. Equation (7) defines pkjt for 

𝑡 ∈ [𝑇1𝑘𝑗
, 𝑇2𝑘𝑗

] , i.e., when load 𝑗 ∈ {1, … , 𝐽𝑘} is allowed to operate. Equation (8) does not allow 

appliance j to operate outside their comfort time slot. 

Constraints (9) impose that the power contracted by consumer cluster 𝑘 ∈ {1, … , 𝑁}, 𝐶𝑘𝑡, is never 

exceed at any 𝑡 ∈ {1, … , 𝑇}. 

Constraints (10) ensure that at time t of the planning period, each load 𝑗 ∈ {1, … , 𝐽𝑘} of consumer 

cluster k is either “off” or “on” at only one stage r of its operation cycle. Constraints (11) ensure that if 

load j is “on” at time t and at stage 𝑟 < 𝑑𝑘𝑗 of its operation cycle, then it must also be “on” at time 𝑡 + 1 

and stage 𝑟 + 1. Constraints (12) guarantee that each load 𝑗 ∈ {1, … , 𝐽𝑘} of consumer cluster k operates 

exactly once at stage r and this should occur within its comfort time slot. Constraints (13) guarantee 

that for each consumer cluster k, load j starts its working cycle within its allowed comfort time slot, i.e. 

at most at time 𝑇2𝑘𝑗
− 𝑑𝑘𝑗 + 1, thus assuring that it never finishes later than 𝑇2𝑘𝑗

. 

Constraints (11-13) ensure that each controllable appliance j of cluster k operates precisely 𝑑𝑘𝑗 

consecutive time intervals, thus forcing the lower level decision variables 𝑤𝑘𝑗𝑟𝑡 to be zero whenever 

appliance j is “off”. 

Constraints (14) define the lower level decision variables 𝑤𝑘𝑗𝑟𝑡 as binary variables, where 1 means 

that appliance j is “on” and 0 means that it is “off” at time 𝑡 and stage r. Constraints (15) define decision 

variables pkjt as non-negative for the whole planning period. 

 

4. Hybrid population-based approaches with MILP solver 

Since the BLMF problem is very difficult to solve, metaheuristics are used to explore the upper level 

search space combined with a MILP solver to find exact lower level solutions. Optimal solutions to the 

lower level problem should be obtained, since sub-optimal lower level solutions are infeasible to the 

BLMF problem. Therefore, the solutions yielded by the hybrid approaches may not be surely optimal 

solution to the BLMF problem, because metaheuristics are not exact methods, but they are certainly 

feasible solutions to the BLMF problem.  

Even being able to compute the optimal solution of each lower level problem in a short time, many 

lower level problems need to be solved at each iteration of the algorithm (at least, one for each electricity 

price instantiation and each follower) and so, a high computational effort is always required at the lower 

level.   

In order to assess the quality of the solution obtained, we have considered the so-called high point 

relaxation, which transforms the BL model into a single-level problem by optimizing the upper level 
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objective function over the region defined by all (upper and lower level) constraints. This problem was 

linearized by transforming the product of binary and continuous variables that appear in the objective 

function (1) in linear terms, using additional binary variables and constraints. This led to a (high 

dimension) MILP model, which was solved by Cplex. However, this information may have low 

practical relevance, since it corresponds to one of the worst options the follower could make regarding 

his interests, which would result in a very high and unrealistic retailer’s profit. These results will be 

presented in section 5.3. 

Two hybrid population-based approaches are proposed to solve the BLMF model presented in 

section 3. These approaches use population-based metaheuristics (PSO and GA) to determine the 

optimal values of the upper level decision variables ((1) – (5)) and call an external MILP solver (cplex) 

to compute the optimal solutions to the lower level problems ((6) – (15)). 

Population-based algorithms allow the simultaneous analysis of different electricity prices set by the 

retailer (upper level variables) for the model described in section 3. For each upper level variable setting, 

the solver obtains the optimal scheduling plans (lower level variables) for flexible loads. 

The proposed hybrid algorithms present a similar structure. The algorithms start by creating an initial 

population of M individuals 𝑥 = (𝑥1, … , 𝑥𝐼) representing the prices of electricity set by the retailer in 

the I sub-periods of the planning period, which should satisfy the upper level constrains (2)-(4). For this 

purpose, each 𝑥𝑖, 𝑖 ∈ {1, … , 𝐼} is randomly generated in the range [𝑥𝑖, 𝑥𝑖], as imposed by the upper level 

constraints (2) and (3), which specify minimum and maximum prices in each sub-period. To ensure that 

each 𝑥 also satisfies the upper level constraint (4), which imposes an average price in the planning 

period, the repair routine described in the sub-section 4.3 is applied. Then, for each individual x, the 

lower level problems (6)-(15) for 𝑘 = 1, … , 𝑁 are solved by cplex. The solutions should satisfy the 

upper level constraint (5) associated with the overall power requested. Therefore, after solving the lower 

level problem for all followers and aggregating the corresponding variable values to obtain the complete 

lower level solution, the algorithm checks the upper level constraint (5); only solutions satisfying all 

the upper level constraints are retained. The solutions at the lower level (𝑤𝑘𝑗𝑟𝑡 and 𝑝𝑘𝑗𝑡, for consumer 

cluster k, shiftable load j, time t of the planning period and stage r of the working cycle of load j) 

indicate the time each shiftable load of each consumer cluster  starts its operation cycle, 𝑦𝑘 =

(𝑦𝑘1
, … , 𝑦𝑘𝐽𝑘

). Each solution (𝑥, 𝑦1, … , 𝑦𝑁) to the BLMF model is then evaluated by the upper level 

objective function given by equation (1), 𝐹(𝑥, 𝑦1, … , 𝑦𝑁) (retailer’s profit). 

The algorithms run a pre-set number of iterations, 𝒬; the best solution in the population in each 

iteration 𝑞 ∈ {1, … , 𝒬} of each algorithm represents the best combination of electricity prices (𝑥𝑏𝑒𝑠𝑡𝑞
) 

that results in the highest profit (𝐹𝑏𝑒𝑠𝑡𝑞
) for the retailer. 
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4.1. Genetic Algorithm 

After randomly creating the initial population of M solutions 𝑥 = (𝑥1, … , 𝑥𝐼) and evaluating their fitness 

𝐹(𝑥, 𝑦1, … , 𝑦𝑁), the GA generates the offspring population. To generate each offspring, the algorithm 

randomly selects two individuals of the current population and the individual with the best F value is 

selected to be one parent. The other parent is randomly selected from the current population. The parent 

solutions are then subject to crossover to generate an offspring xc, having both solutions the same 

probability of being the first or the second parent. If x’ and x” are the first and the second parent 

solutions, the one-point crossover operator produces the child 𝑥𝑐 = (𝑥′1, … , 𝑥′
𝜍, 𝑥"𝜍+1, … , 𝑥"

𝐼), 𝜍 ∈

[2, 𝐼 − 1]. 

Then, a mutation operator with an adaptive probability is applied to xc. For each position 𝑥𝑖
𝑐 , 𝑖 ∈

{1, … , 𝐼} of xc, a perturbation 𝛾 randomly generated in the range [−𝛿 (𝑥𝑖 − 𝑥𝑖) , 𝛿 (𝑥𝑖 − 𝑥𝑖)] is added 

to 𝑥𝑖
𝑐, i.e. 𝑥𝑖

𝑐 ←  𝑥𝑖
𝑐 + 𝛾. Each run of the algorithm is initialized with a mutation probability 𝑝𝑚

0 ; if the 

value of 𝐹𝑏𝑒𝑠𝑡  does not improve over a predefined number L of consecutive iterations 𝑞 ∈ {1, … , 𝒬}, 

then the exploration capability is enhanced by increasing the mutation probability to 𝑝𝑚
1  > 𝑝𝑚

0 . The 

value of the mutation probability decreases back to the previous value, 𝑝𝑚
0 , just when 𝐹𝑏𝑒𝑠𝑡 changes 

above a given threshold. For that purpose, it is considered that the change in Fbest does not lead to a 

change in the mutation probability if inequality (16) is satisfied: 

𝐹𝑏𝑒𝑠𝑡𝑞
− 𝐹𝑏𝑒𝑠𝑡𝑞−1

𝐹𝑏𝑒𝑠𝑡𝑞 < 𝜏     (16) 

being 𝜏 the threshold value.  

Several experiments were performed to assess the capability of this operator to enhance the upper level 

search. This adaptive mutation scheme led to improvements in the solutions obtained. In most runs 

(about 70%), this adaptive mutation led to better Fbest values. The average improvement was around 

0.5% after 100 generations. The Fbest values started to be consistently better from around generation 65 

onwards.  

 

A repair routine is then applied to xc (see subsection 4.3) to ensure that upper-level constraints (2)-

(4) are satisfied. This process is repeated until M children are generated constituting the offspring 

population, which will compete with the current population to generate a new population for the next 

generation. 

For each offspring solution xc, the lower level problems (6)-(15) for  

𝑘 = 1, … , 𝑁 are solved. The optimal solution obtained for the lower level problems is 𝑦𝑐 =

(𝑦𝑐
1, … , 𝑦𝑐

𝑁).  The solutions (𝑥𝑐 , 𝑦𝑐) such that 𝑦𝑐  does not satisfy the overall power requested from 

the grid (upper level constraint (5)) are not valid and, thus, they are discarded. Then, the upper level 



 13 

objective function is evaluated for each feasible (𝑥𝑐 , 𝑦𝑐) according to (1), 𝐹(𝑥𝑐 , 𝑦𝑐) =

𝐹(𝑥𝑐 , 𝑦𝑐
1, … , 𝑦𝑐

𝑁).  

To select the population for the next generation, first the solution with the best F value, either in the 

current population or in the offspring set, is selected to the new population. This strategy guarantees 

that the best individual is preserved from one generation to the next. The remaining 𝑀 − 1 individuals 

are selected by binary tournament without replacement between an individual from the current 

population and another one from the offspring, both randomly selected. The individual selected to 

integrate the new population is removed from its original pool (either from offspring or current 

population) preventing the repeated selection of the same individual.  

The process is repeated until a given number of iterations is reached. The output of the algorithm is 

the solution with the highest retailer’s profit. 

 

4.2. Particle Swarm Optimization Algorithm 

The PSO algorithm works with a population of candidate solutions, generally called swarm of particles. 

Each particle has a unique position in the search space. PSO solves an optimization problem by 

considering the movements of each particle in the search space. The velocity vector v of each particle 

x is influenced by the best position in the search space visited by this particle (individual best – xbest) 

and this is guided towards the best known position of the entire swarm (global best – gbest). In each 

iteration, the position of each particle is updated according to its own velocity vector. This procedure, 

guided by xbest and gbest, is expected to move the swarm towards the best solutions. 

After randomly creating an initial population of M solutions 𝑥 = (𝑥1, … , 𝑥𝐼) and evaluating their 

fitness 𝐹(𝑥, 𝑦1, … , 𝑦𝑁), solutions are changed from one iteration to the next by moving them into new 

positions. For each coordinate 𝑖 ∈ {1, … , 𝐼} of each solution x, the corresponding velocity component vi 

for the next iteration q is given by the following equation: 

𝑣𝑖
𝑞 = 𝜂𝑣𝑖

𝑞−1 + 𝛾1𝐶1(𝑥𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑞−1) + 𝛾2𝐶2(𝑔𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑞−1) 

where  is the inertia weight, C1 and C2 are the cognitive and social parameters, 𝛾1 and 𝛾2 are random 

numbers in the interval [0,1]. The new position of the particle (new solution x) is then given by: 

𝑥𝑞 = 𝑥𝑞−1 + 𝑣𝑞 

The individual best, xbest, and the global best, gbest, are updated whenever better positions are found 

by each individual solution x and the best particle of the swarm, respectively. Particles interact with 

each other, as they learn from their own experience, and gradually the members of the population move 

to better regions of the search space.  

Similarly to GA, when the value of Fbest does not improve over a predefined number L of consecutive 

iterations, i.e. when the previous inequality (16) is satisfied through L consecutive iterations, then some 

turbulence in the population is induced with a probability pm. Therefore, for each solution 𝑥𝑞, after its 



 14 

movement has been performed as described above, each coordinate 𝑥𝑖
𝑞 , 𝑖 ∈ [1, 𝐼] is subject to a 

perturbation 𝛾 randomly generated in the range [−𝛿 (𝑥𝑖 − 𝑥𝑖) , 𝛿 (𝑥𝑖 − 𝑥𝑖)], i.e., 𝑥𝑖
𝑞 ←  𝑥𝑖

𝑞 + 𝛾. 

The repair routine (see subsection 4.3.) is then applied to each solution x to ensure that upper-level 

constraints (2)-(4) are satisfied. For each updated and repaired solution, the lower level problems (6)-

(15) are solved for the N followers and the optimal solution 𝑦 = (𝑦1, … , 𝑦𝑁) is obtained. Solutions that 

do not satisfy the upper level constraint (5) are not allowed to move, returning to their previous 

positions. Next, the upper level objective function (1) is evaluated for each (𝑥, 𝑦), 𝐹(𝑥, 𝑦) =

𝐹(𝑥, 𝑦1, … , 𝑦𝑁). 

This process is repeated for all solutions of the population until a given number of iterations is 

reached. The output of the algorithm is the solution (𝑥, 𝑦) = (𝑥, 𝑦1, … , 𝑦𝑁) such that 𝑥 = 𝑔𝑏𝑒𝑠𝑡, which 

gives the highest retailer’s profit 𝐹(𝑥, 𝑦) = 𝐹(𝑥, 𝑦1, … , 𝑦𝑁). 

 

4.3. Repair routine for variables with fixed number of decimals 

Each component xi of x should satisfy constraints (2) – (3) and x must satisfy the average price equality 

constraint (4). At the beginning, each coordinate xi is randomly generated in the range [𝑥𝑖, 𝑥𝑖] satisfying 

constraints (2) and (3). At each iteration, if xi is out of the bounds imposed by such constraints then it 

is pushed to the closest bound. To ensure that x also satisfies constraint (4), the repair routine described 

below is applied. 

Since each xi defines an electricity price for a given period Pi, 𝑖 ∈ {1, … , 𝐼}, i.e. they are components 

of a commercial offer of a retailer, a pre-defined number of decimal places must be considered (5 in 

our study). In this context, electricity prices can be seen as integer variables within a scale factor. The 

repair routine was designed taking into account this condition, which leads to additional computational 

difficulties, namely with respect to the repair routine proposed in (Alves et al. 2016) that did not 

consider this additional condition. For each solution of electricity prices x, the repair routine allows a 

tolerance for the upper level constraint (4). A deviation of 휀 in relation to the average of electricity 

prices is allowed - the average price of x can be lower but not higher than the one imposed in the model 

(i.e., the average price communicated to consumers). The aim is to stay as close as possible to the 

average price, but if it is not possible to meet it exactly, the optimal electricity prices x should not 

disappoint the consumer.  

 

Repair Routine 

1. 𝑠 = ∑ 𝑃𝑖
𝐼
𝑖=1 𝑥𝑖 

2. 𝐴 = {1, … , 𝐼} (A is the set of indices i of xi that are allowed to be changed) 

3. while 𝐴 ≠ ∅ then 

4.  if 𝑠 < (𝑥𝐴𝑉𝐺 − 휀)𝑇 or 𝑠 > (𝑥𝐴𝑉𝐺)𝑇 then 
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5.   ∇= 𝑇(𝑥𝐴𝑉𝐺 − 휀/2) − 𝑠 

6.   𝑃 = ∑ 𝑃𝑖𝑖∈𝐴  

7.   for 𝑥𝑖 , 𝑖 ∈ 𝐴 do 

8.    𝑥𝑖 ← 𝑥𝑖 +
∇

𝑃
 

9.   end for 

10.  end if 

11.  for 𝑖 = 1, … , 𝐼 do 

12.   if 𝑥𝑖 < 𝑥𝑖  then 

13.    𝑥𝑖 ← 𝑥𝑖 and 𝐴 ← 𝐴\{𝑖} 

14.   else if 𝑥𝑖 > 𝑥𝑖  then 

15.    𝑥𝑖 ← 𝑥𝑖 and 𝐴 ← 𝐴\{𝑖} 

16.   end if 

17.  end for 

18.  𝑠 = ∑ 𝑃𝑖
𝐼
𝑖=1 𝑥𝑖 

19.  if 𝑠 ∈ [(𝑥𝐴𝑉𝐺 − 휀)𝑇, (𝑥𝐴𝑉𝐺)𝑇] then 

20.   Stop and return x 

21.  else if 𝐴 = ∅ then 

22.   Stop and discard x 

23.  else 

24.   Go to 4. 

25.  end if 

26. end while 

 

 

5. Experimental results and discussion 

Given the complexity of solving a BL optimization model with multiple followers, the main focus of 

the current work is the algorithmic comparison between the two population-based optimization 

algorithms, GA and PSO, coupled with a MILP solver presented in the previous section. In the 

following, the problem data and the model features are described, and the results obtained are presented 

and analyzed. 

 

5.1. Problem data 

A planning period of 24 hours was considered, which was split into intervals of 15 minutes, generating 

a planning period of 96 units of time, i.e.,  �̅� = {1, … ,96} where each unit 𝑡 ∈ �̅�  represents a quarter-

hour. The original data for periods of 1 minute were thus aggregated for the quarter-hour time units by 

considering average values of intervals of 15 minutes. Analogously, the prices in €/kWh were converted 

into quarter-hour periods (i.e. converted into €/kWh with h=1/4 h) 
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In order to perform a comparative analysis between the hybrid GA and PSO algorithms, a number 

of realistic problems were generated. First, four consumer profiles and four retailer instances were 

created. The electricity prices (table 1) are based on time-of-use tariffs presently used in Portugal, 

incorporating also information from ongoing pilot projects of dynamic tariff components (namely 

concerning network access terms). Comfort slots for appliance operation (table 2) are derived from 

energy audits in previous R&D projects and time use surveys. The power required by the appliance 

operation cycles (table 3) result from manufacturers data and energy audits carried out in previous 

projects. 

Then, in order to assess different combinations of consumer profiles and retailers, ten problems were 

generated, each one consisting of a retailer and three consumer profiles randomly selected among those 

previously defined. Note that the retailers are not competitors, but distinct instances of leaders created 

for experimental purposes. 

The electricity prices (π𝑡 , 𝑡 ∈ {1, … ,96}, in €/kWh) that the retailers pay in the spot market can be 

seen in Table SM-1 (Supplementary Material). Regarding the electricity prices charged to the 

consumers by the retailer, tariffs with 7 sub-periods 𝑃𝑖 = [𝑃1𝑖
, 𝑃2𝑖

] ⊂ �̅�,  𝑖 ∈ {1, … ,7}, were considered 

for all retailer instances. The lower limit of the sub-period 𝑃𝑖,  𝑖 ∈ {2, … ,7}, 𝑃1𝑖
, is always one unit of 

time above the upper limit of the previous sub-period, i.e. 𝑃1𝑖
= 𝑃2𝑖−1

+ 1. For the first sub-period 

𝑃11
= 1. 

Table 1 displays the minimum, the maximum and the average electricity prices (𝑥𝑖, 𝑥𝑖 and xAVG, 

respectively) to be charged to consumers in each sub-period 𝑃𝑖 ,  𝑖 ∈ {1, … ,7} for the four retailer 

instances. The maximum power requested to the grid Ct =2500W, 𝑡 ∈ {1, … , 𝑇}, for each retailer 

instance. 

  

Table 1. Minimum (𝑥𝑖), maximum (𝑥𝑖) and average (xAVG) of the electricity prices (in €/kWh) that can be 

charged to the consumers by all retailer instances, in each sub-period 𝑃𝑖 ,  𝑖 ∈ {1, … ,7}. 

Prices 

(€/kWh) 

P1 

[1,28] 

P2 

[29,38] 

P3 

[39,44] 

P4 

[45,60] 

P5 

[61,76] 

P6 

[77,84] 

P7 

[85,96] 
xAVG 

Retailer 1 
𝑥𝑖 0.039 0.081 0.048 0.090 0.045 0.099 0.042 

0.116 
𝑥𝑖 0.102 0.270 0.210 0.282 0.150 0.300 0.111 

Retailer 2 
𝑥𝑖 0.030 0.075 0.040 0.088 0.041 0.092 0.038 

0.098 
𝑥𝑖 0.092 0.200 0.170 0.240 0.135 0.270 0.108 

Retailer 3 
𝑥𝑖 0.050 0.090 0.055 0.120 0.053 0.102 0.048 

0.140 
𝑥𝑖 0.092 0.200 0.170 0.240 0.135 0.270 0.108 

Retailer 4 
𝑥𝑖 0.050 0.090 0.055 0.120 0.053 0.102 0.048 

0.158 
𝑥𝑖 0.110 0.300 0.240 0.320 0.178 0.342 0.118 

 

Regarding the consumer profiles, a total of five shiftable loads (𝐽 = 5) were considered: dishwasher 

(DW), laundry machine (LM), clothes dryer (CD), electric vehicle (EV) and electric water heater 

(EWH). The operation cycle of each controllable appliance (flexible load) can be scheduled within the 
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planning period and the corresponding working slot can be shifted according to the consumers’ 

preferences and the electricity prices. The comfort time slots [𝑇1𝑘𝑗
, 𝑇2𝑘𝑗

] ⊆ �̅� allowed for the operation 

of each controllable appliance 𝑗 ∈ {1, … , 𝐽𝑘} of the consumer cluster k are displayed in Table 2. The 

power requested to the grid (𝑓𝑘𝑗𝑟) by each controllable appliance 𝑗 ∈ {1, … , 𝐽𝑘} at stage 𝑟 ∈ {1, … , 𝑑𝑘𝑗} 

of its operation cycle is displayed in Table 3. 

 

Table 2. Comfort time slots, [𝑇1𝑘𝑗
, 𝑇2𝑘𝑗

] for 𝑗 ∈ {1, … , 𝐽𝑘}, allowed for the operation cycles of the flexible loads 

of each consumer profile 𝑘 ∈ {1, … ,4}. 

Consumer 

Profiles 

Shiftable Appliances 

DW LM CD EV EWH 

Profile 1 [1,36] [32,60] [76,96] [1,48] [24,40] 

Profile 2 [1,31] [32,58] [70,91]   

Profile 3  [35,55] [75,93]   

Profile 4  [1,36] [75,93] [4,48] [32,60] 

 

Table 3. Operation cycles of the controllable loads for all consumer profiles. 

Consumer 

Profiles 
Appliance 

Power required by the appliance at each stage of its operation cycle 
(W) 

1 2 3 4 5 6 7 8-31 32-36 

Profile 1 

DW 1724 1272 104 1676 799     

LM 2040 1028 88 180 228 215    

CD 1808 1740 282       

EV 1500 1500 1500 1500 1500 1500 1500 1500 1500 

EWH 1500 1500 1500 1500 1500     

Profile 2 

DW 1634 805 1047 974      

LM 1704 404 195 219      

CD 1808 1740 282       

Profile 3 
LM 2040 1028 88 180 228 215    

CD 1808 1763 1250 282      

Profile 4 

LM 2040 1028 88 180 228 215    

CD 1500 1500 1500 1500 1500     

EV 1500 1500 1500 1500 1500 1500 1500 1500  

EWH 1808 1763 1250 282      

 

Fig. 1 and Table SM-2 display the base load for all consumer profiles (𝑏𝑘𝑡, 𝑘 ∈ {1, … ,4} and 𝑡 ∈

{1, … ,96}), which corresponds to the power requested to the grid by appliances that are not deemed for 

control. Consumer clusters 1 and 4 demand the same base load and thus the corresponding lines in the 

diagram overlap. 
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Fig. 1. Power requested to the grid by (non-controllable) base load for all consumer profiles. 

 

Each consumer cluster has a given pattern of contracted power (Ckt in (9)) with two levels. For 𝑡 ∈

[28, 84], 𝐶1𝑡 = 𝐶3𝑡 = 4600 W and 𝐶2𝑡 = 4000 W. For the other 𝑡 ∈ �̅�, 𝐶1𝑡 = 𝐶3𝑡 = 3000 W and 

𝐶2𝑡 = 2500 W. For the consumer profile 4, 𝐶4𝑡 = 4800 W, 𝑡 ∈ [29,88], and 𝐶4𝑡 = 2800 W for the 

other 𝑡 ∈ �̅�. 

Table 4 summarizes the data of the ten problems randomly created with one leader and three 

followers, corresponding to distinct scenarios of retail pricing values and consumption patterns, for 

algorithm assessment purpose in a range of plausible scenarios with diversity of retailer prices and 

consumption patterns. The leader in each problem was randomly chosen among the four retailer 

instances defined. Similarly, three followers were randomly selected from the four possible consumer 

profiles. 

 

Table 4. Retailer instances and consumer profiles of the ten problems (scenarios) randomly generated with one 

retailer and three consumer profiles. 

Problems 
Retailer instances Consumer profiles 

1 2 3 4 1 2 3 4 

Problem 1 x    x x  x 

Problem 2   x   x x x 

Problem 3  x   x x  x 

Problem 4  x   x x x  

Problem 5    x x x x  

Problem 6 x     x x x 

Problem 7  x    x x x 

Problem 8 x    x  x x 

Problem 9    x x x  x 

Problem 10   x  x  x x 
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The number of lower level binary and continuous variables as well as the number of lower level 

constraints for each upper level variables configuration are displayed in Table 5. There are seven upper 

level variables (periods) for each resolution of the MILP lower level problems for the 3 followers. 

 

Table 5. Dimension of the lower level problems 

Consumer 

Profiles 

Number of Variables Number of Constraints 

Binary 

(wkjrt) 

Continuous 

(pkjt) 
Inequality Equality 

Profile 1 2230 151 2281 206 

Profile 2 298 80 389 91 

Profile 3 202 40 292 50 

Profile 4 1832 129 1890 175 

 

5.2. Parameters of the algorithms 

In the computational experiments, both hybrid algorithms GA and PSO were run 20 independent times 

for each problem. Each lower level MILP problem is solved to optimality by CPLEX for each price 

setting (and this resolution is very fast, about 1/9 sec). However, since stochastic optimizers are used to 

explore the upper level solution space, a sufficient number of independent runs of the hybrid algorithms 

should be performed to assess the statistical validity of conclusions.    

Each run consisted of 100 iterations, with a population of 30 individuals (price settings). These 

values were tuned after experimentation regarding the algorithm performance vis-à-vis the number of 

iterations and population size. When the parameter 𝒬 increases above 100 iterations, slight or no 

improvements were observed. Nevertheless, decreasing the value of 𝒬 below 100 iterations could 

impair convergence. For the parameter M (population size in the GA and PSO algorithms), the values 

M=20 and M=30 have been tested and slightly better results were observed considering M=30.  Time 

units of 5 minutes and 1 minute (respectively, 𝑇 = 288 and 𝑇 = 1440) were studied but the 

computational effort showed impracticable. Therefore, the planning period discretization in units of 15 

minutes (which leads to 𝑇 = 96) was considered in this study. 

The two algorithms were implemented under similar configurations to ensure fair comparisons. The 

upper-level search parameters fixed for each algorithm are described below. 

Both algorithms were written in R language and all the runs were carried out in a computer with an 

Intel Core i7-7700K CPU@3.6GHz and 64GB RAM. On average, the time spent in performing one 

iteration is similar in the two hybrid approaches – approximately 10 seconds. One iteration involves the 

upper level operations plus solving 90 MILP problems (30 individuals × 3 followers). 

In both algorithms, 𝜏 = 0.001 in (16) and the parameter 𝛿 = 0.2 in the mutation process. L=5 is the 

number of consecutive iterations without improvement of Fbest  that leads to the change of pm in GA or 

to trigger mutation in PSO. The probability values adopted for the adaptive mutation in the GA were 
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𝑝𝑚
0 = 0.05 and 𝑝𝑚

1 = 0.1, and the mutation probability considered in the PSO was pm=0.1. In the PSO, 

the inertia parameter  was set to 0.4 and the learning parameters in both cognitive and social 

components were kept equal, 𝐶1 = 𝐶2 = 1.  

In the repair routine, for each electricity prices solution, x, the parameter 휀 = 0.0001 in the two 

algorithms. 

All parameters were set after experimentation, considering the quality of results obtained vs. the 

computational effort. 

 

5.3. Results 

The two population-based algorithms were tested on ten problems, which are summarized in Table 4. 

Information about the best solutions, the ones presenting the highest value for F, in both approaches is 

presented in Table 6. The maximum, minimum, median and the inter-quartile range (IQR) of Fbest for 

the twenty runs in the ten problems are displayed for the GA and PSO algorithms. 

 

Table 6. Statistics of Fbest in 20 independent runs with 100 iterations each for the 10 problems. 

Problems Algorithm 
Fbest 

Maximum Minimum Median IQR 

Problem 1 
PSO 1294.579 1276.385 1287.464 7.123 

GA 1293.530 1259.623 1279.621 9.964 

Problem 2 
PSO 1015.265 1006.015 1012.429 0.534 

GA 1012.509 1005.650 1010.117 3.355 

Problem 3 
PSO 877.167 844.637 873.188 8.882 

GA 871.06 847.116 862.671 9.063 

Problem 4 
PSO 662.298 633.622 660.114 1.043 

GA 658.491 632.551 641.738 13.361 

Problem 5 
PSO 1352.069 1347.120 1349.983 1.983 

GA 1350.940 1331.664 1345.397 4.820 

Problem 6 
PSO 847.374 832.703 846.503 2.304 

GA 841.942 815.291 832.324 2.075 

Problem 7 
PSO 545.298 540.829 542.684 1.910 

GA 541.115 515.228 530.517 6.475 

Problem 8 
PSO 1251.595 1229.085 1248.637 7.129 

GA 1250.669 1223.703 1243.225 6.541 

Problem 9 
PSO 1897.617 1874.349 1894.486 4.710 

GA 1896.272 1867.233 1889.448 12.780 

Problem 10 
PSO 1336.982 1335.057 1335.649 1.071 

GA 1334.953 1327.800 1334.071 1.772 
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The Mann-Whitney test for the median at the 5% significance level was performed for each problem, 

indicating a statistically significant difference between PSO and GA for all problems, with PSO being 

better than GA in all problems. The better median values are displayed in bold in Table 6. 

Table 6 shows that the PSO algorithm obtained the best solutions in all problems, regarding the 

maximum and the median values of Fbest values over the 20 runs. The minimum value of Fbest is also 

higher for PSO in almost all problems. Only Problem 3 displays a minimum value of Fbest slightly 

smaller for PSO than for GA. The information in Table 6 also shows that the PSO algorithm has a 

smaller variability across runs, as measured by IQR. PSO displays a marginally higher variability only 

in problems 6 and 8. In general, the results obtained reveal the robustness of the PSO algorithm to obtain 

consistently better solutions than those reached by GA. 

Fig. 2 shows the behavior of Fbest over 100 iterations considering the average value of the different 

runs for the GA and PSO algorithms.  

  

Fig. 2. Behavior of the average Fbest over the iterations for the GA and PSO algorithms. 

 

Since the pattern of results is similar on the ten problems, with PSO consistently better than GA, the 

description and analysis are also quite similar. Therefore, Problem 1 is explored with more detail. The 

results for the remaining problems are included as supplementary material. 

Regarding the PSO algorithm, the solution with the maximum Fbest value in the twenty runs of 

Problem 1 presents a retailer’s profit 𝐹 = 1294.579€ and consumers’ costs 𝑓1 = 3433.438€, 𝑓2 =

1445.757€ and 𝑓4 = 2672.778€ for the three consumer profiles involved. Concerning the GA, the 

solution of Problem 1 with maximum Fbest  value in the 20 runs results in a retailer’s profit F of 

1293.530€ and consumers’ costs of 𝑓1 = 3431.87, 𝑓2 = 1438.706 and 𝑓4 = 2671.659. The 

electricity prices charged by the retailer to the consumers in each of the seven sub-periods of the 

planning period time (in €/KWh) are displayed in Table 7 (upper-level solutions). Table 8 shows the 

appliance working intervals of the best solution of each algorithm for each consumer profile 𝑘 ∈ {1,2,4} 
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considered in the Problem 1 (lower-level solutions). The corresponding schedule plans are illustrated 

in load diagrams of Fig. 3. 

 

Table 7. Electricity prices (€/kWh) in the seven sub-periods of �̅� that result in the maximum Fbest value for the 

20 runs of Problem 1. 

Prices 

(€/kWh) 
Algorithm 

P1 

[1,28] 

P2 

[29,38] 

P3 

[39,44] 

P4 

[45,60] 

P5 

[61,76] 

P6 

[77,84] 

P7 

[85,96] 

Retailer 1 
PSO 0.10200 0.26972 0.10260 0.10296 0.04500 0.26164 0.04200 

GA 0.10200 0.27000 0.10296 0.10360 0.04688 0.24968 0.04640 

 

Table 8. Working intervals, [initial time, final time], for the operation cycles of the controllable appliances for 

each consumer profile 𝑘 ∈ {1,2,4} of Problem 1. 

Consumer 

Profiles 
Algorithm 

Shiftable Appliances 

DW LM CD EV EWH 

Profile 1 
PSO [1,5] [41,46] [94,96] [5,40] [36,40] 

GA [1,5] [41,46] [88,90] [5,40] [36,40] 

Profile 2 
PSO [1,4] [39,42] [85,87]   

GA [1,4] [39,42] [88,90]   

Profile 4 
PSO  [1,6] [87,90] [4,35] [39,44] 

GA  [1,6] [85,88] [4,35] [39,44] 

 

 Profile 1 Profile 2 Profile 4 

PSO 

   

GA 

   

 

Fig. 3. Load diagrams corresponding to the best solution in both algorithms for the consumer profiles 𝑘 ∈
{1,2,4} of Problem 1. 

 

The PSO algorithm outperforms GA since it consistently provided the highest profit to the retailer. In 

what concerns the load diagrams of the schedule plans of each consumer profile in both algorithms, the 
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difference for the common controllable appliances resides in the starting time of the clothes dryer 

operation (working intervals marked in bold in Table 8). However, the times set by the two algorithms 

to begin the work cycle of this appliance are inside the same sub-period of electricity prices defined by 

the retailer instance of Problem 1. 

Notice that the BL problem is the leader's problem and thus the optimal solution is the one resulting 

in the highest retailer’s profit. The consumers react to the electricity prices defined by the retailer by 

scheduling the loads. The optimal solution for the retailer does not have to lead to global minimum 

costs to the consumers. On the contrary, since the retailer seeks to maximize its revenue, the consumers’ 

cost is generally higher in the bilevel optimal solution than in other feasible solutions (i.e., solutions 

that optimize the lower level problems for different pricing settings). 

Although the BL problem is seen from the retailer’s perspective, a further analysis of the solutions 

from the consumers’ point of view can be performed. Considering Problem 1, some experiments with 

a flat tariff were done. The idea is to mimic the retail electricity market in which consumers are allowed 

to choose the tariff that better suits their needs. Different commercial offers with a fixed tariff for whole 

planning period were assessed, namely adopting a flat tariff equal to the average electricity price defined 

by the retailer and considering flat tariffs giving the retailer the same revenue as the one obtained with 

the PSO and GA algorithms. Table 9 shows the consumers’ costs for two different flat tariffs: xFT-avg 

=0.116 €/kWh, which is equal to the xAVG value set by Retailer 1, the retailer considered in Problem 1; 

xFT-TR =0.13463 €/kWh, the price for a flat tariff that would provide the retailer a Total Revenue similar 

to the one obtained with the best solution given by PSO for the dynamic tariff (whose prices are shown 

in the first row of Table 7). We have considered herein the solution given by PSO to define the flat 

tariff but, if the solution given by GA was used instead this price would be 0.13445 €/kWh, which is 

very close to the one given by PSO. The consumers’ costs for the best retailer’s solution obtained with 

the two hybrid algorithms with dynamic tariffs (solutions in Table 8 for prices in Table 7) are also 

presented.  

 

Table 9. Costs for each consumer profile 𝑘 ∈ {1,2,4} (€/kWh) in Problem 1. 

Costs 

 (€/kWh) 

Flat tariff 

(€/kWh) 

Dynamic tariff 

(€/kWh) 

PSO GA 

xFT-avg =0.116 xFT-TR =0.13463 xAVG = 0.116 

Profile 1 2806.562 3257.191 3433.438 3431.871 

Profile 2 1236.299 1434.803 1445.757 1438.706 

Profile 4 2464.304 2859. 979 2672.778 2671.659 

 

Table 9 shows that consumer profiles 1 and 2 are better off with a flat tariff while consumer profile 4 

profits from a dynamic tariff in comparison with the flat tariff defined assuming the same retailer’s 

revenue (i.e., 0.13463 €/kWh).  
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Further experiments were carried out considering different values of xAVG higher than 0.116 €/kWh. 

Table 10 shows: the consumers’ costs in the solutions obtained by PSO and GA for Problem 1 with 

xAVG =0.165; the consumers’ costs with a flat tariff of xFT-avg =0.165; and the consumers’ costs with a 

flat tariff of xFT-TR =0.163, which has been defined on the basis that the retailer’s total revenue is equal 

to the one obtained with the solution given by PSO for the dynamic tariff.  

 

Table 10. Costs for each consumer profile 𝑘 ∈ {1,2,4} (€/kWh) in Problem 1 for xAVG = 0.165. 

Costs 

 (€/kWh) 

Flat tariff 

(€/kWh) 

Dynamic tariff 

(€/kWh) 

PSO GA 

xFT-avg =0.165 xFT-TR =0.163 xAVG = 0.165 

Profile 1 3992.093 3943.704 3968.282 3968.170 

Profile 2 1758.529 1737.213 1956.422 1955.851 

Profile 4 3505.260 3462.772 3218.726 3218.613 

 

As can be seen in Table 10, when the average price increases, the comparison between dynamic tariffs 

and flat tariffs leads to different conclusions concerning consumers’ outcomes. For xAVG =0.165 vs. a 

flat tariff with equal price xFT-avg, consumer profiles 1 and 4 gain with the dynamic tariff and only 

consumer profile 2 has a lower cost with the flat tariff.  If the flat tariff is defined assuming the same 

retailer’s revenue as in the dynamic tariff, the resulting price (xFT-TR =0.163) is lower than xAVG. For this 

electricity price, profile 4 still profits from a dynamic tariff but consumer profiles 1 and 2 are better off 

with the flat tariff. 

Note that, independently of the value of xAVG considered, there are always some consumers that 

benefit from a flat tariff xFT-TR and others that get a higher cost in comparison with dynamic tariffs with 

an average price xAVG, because the total revenue for the leader is kept constant. 

It is noteworthy that for each combination of electricity prices decided by the retailer in the BLMF 

model, the upper level power constraints limit the power requested to the grid by all consumer clusters 

in each time unit. This can influence the corresponding appliances schedule, thus leading to higher costs 

for the consumers. 

To further assess the quality of the solutions, the high point relaxation of the BL problem was solved 

for problem 1, giving the upper level objective function value of 2794.374. As expected, this 

information has low practical relevance (please compare with values in Table 6 for problem 1) since it 

corresponds to one of the worst options the follower would make regarding his interests. Therefore, this 

solution is not useful to assess the metaheuristic outcome because it is too far from the feasible solutions 

of the BL problem. 
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6. Conclusions 

In this work, two BL hybrid population-based approaches were developed to deal with the interaction 

between a retailer (the leader) and multiple consumers (followers) in the retail electricity market. One 

approach is based on a GA and the other on PSO. The retailer controls the upper level variables of the 

BL model, the aim being to determine the optimal electricity prices that should be charged to the 

consumers in order to maximize his profit. Consumers react to these prices set by the retailer through 

the scheduling of their loads within time slots defined for appliance operation according to comfort 

requirements in order to minimize their electricity bills. The proposed algorithms use an exact MILP 

solver to obtain optimal solutions to the lower level problems for a given upper level solution. In spite 

of the lower level problems being high dimensional MILP problems, they were solved very fast by an 

external solver. 

To assess the ability of the proposed algorithms to deal with this type of model, ten problems with 

distinct retailer instances and consumer profiles were generated. The results obtained consistently 

revealed that the PSO algorithm performed better than GA to compute the best solution. Also, PSO 

generally presented a smaller variability than GA. Only in two problems a higher variability of PSO 

was observed, but the corresponding IQR values are quite similar to those presented by GA. The results 

also enabled to assess the interest to consumers to engage in dynamic tariff schemes. 

In the future, we intend to include other appliances into the model, namely interruptible and 

thermostatically controlled appliances in both single and multi-follower BL models. Further work will 

also contemplate expanding the model to consider other types of consumers beyond those of the 

residential sector. Algorithmic developments are underway to obtain better estimates for the leader’s 

objective function upper bounds in order to evaluate more precisely the quality of solutions computed 

by metaheuristics and hybrid approaches. 
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