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ABSTRACT 

Time-of-use tariffs are a pricing strategy for a product or service in which the supplier establishes time-

differentiated prices. Dynamic (e.g., day-ahead) time-differentiated electricity prices can contribute to 

increase the retailer’s profit, allow end-users to reduce the consumption costs and enhance grid efficiency. 

The electricity retailer and the consumer are hierarchically related. The interaction between them can be 

modeled by a bi-level (BL) optimization model - the retailer is the upper level decision maker and the 

consumer is the lower level decision maker. The retailer and the consumer have different and conflicting 

goals: the retailer establishes the pricing scheme to sell electricity to consumers to maximize his profit; 

the consumer reacts to these prices by determining the operation of the controllable loads in order to 

minimize the discomfort and the electricity bill. 

In this work, a BL optimization model incorporating shiftable, interruptible and thermostatic loads is 

proposed. The upper level problem is tackled by a particle swarm optimization algorithm while the lower 

level problem is solved by an exact mixed-integer programming solver. The inclusion of the thermostatic 

load in the lower level problem imposes a much higher computational burden. Therefore, it may not be 

possible to find the optimal lower level solution, and a sub-optimal lower level solution is infeasible to 

the BL problem. Considering a computational budget, this work proposes an approach to compute good 

quality estimates of bounds for the upper level objective function, providing the leader further information 

and allowing him to make sounder decisions in an adequate time frame. 

 

Keywords: Bi-level optimization; Hybrid algorithms; Dynamic tariffs; Demand response; Pricing 

problem; Electricity retail market. 

 

1. Introduction 

Time-of-use (ToU) tariffs are a pricing strategy for a product or service in which the supplier establishes 

time-differentiated prices, with higher rates being charged during peak demand periods. Dynamic ToU 

tariffs are expected to become a common scheme in smart grids, in which prices are announced with short 

antecedence (e.g. one day-ahead). This type of tariff structure can bring benefits for grid operators 

(contributing to alleviate congestion in distribution networks and enhancing the utilization of renewable 

sources), retailers (enabling to manage wholesale buying and retail selling prices) and consumers 

(engaging in demand response actions to reduce the bill without jeopardizing comfort). The retailer (upper 

level decision maker) defines commercial offers consisting of dynamic ToU tariffs to maximize profits in 

face of variable wholesale and network access prices. The consumer (lower level decision maker) reacts 

to the time differentiated retail prices by resetting/rescheduling (shiftable, interruptible and thermostatic) 

appliance operation to lower priced periods to minimize the electricity bill. Some bi-level (BL) approaches 

for modelling the interaction between electricity retailers and consumers have been developed over the 
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past few years. BL optimization approaches have also been widely used in several research areas to 

address other pricing problems (for instance, see the works by (Labbé and Violin 2016) and (Lunday and 

Robbins 2018)). 

In the context of electricity retail markets, (Zugno et al. 2013) developed a BL model to compute the 

dynamic price signal to maximize the retailer’s profit subject to optimal appliance usage patterns by 

consumers, consisting of the maximization of a utility function minus the electricity procurement costs, 

considering stochastic prices, weather data and must-serve load. The BL model is transformed into a single 

level mixed-integer programming (MIP) problem.  

Some approaches considering BL models have been proposed by Meng and Zeng to determine ToU tariffs 

that maximize the retailer’s profit while minimizing the consumers’ costs at the lower level. (Meng and 

Zeng 2013) reformulated the BL model as a single-level problem by applying the Karush-Kuhn-Tucker 

conditions, which is then solved using a branch and bound algorithm to deal with complementarity 

constraints. These authors then extended this model to distinguish (interruptible and non-interruptible) 

shiftable, non-shiftable and curtailable appliances leading to independent linear sub-problems at the lower 

level. A cost for the waiting time of appliance operation was also included (Meng and Zeng 2016). These 

models are solved using a genetic algorithm (GA) for the upper level problem and a linear programming 

solver for the lower level problems. These models consider that loads should be supplied with a given 

amount of energy for the completion of the service, thus not accounting for the appliance operation cycles 

(e.g., in a washing machine: heating the water, centrifuging, etc.). 

In the work developed by (Sekizaki et al. 2016), a GA is proposed to deal with a BL model that considers 

different types of consumers (residential and not residential). Each type of consumer has an objective 

function that results from a weighted sum of the cost of purchasing power from the retailer and the 

disutility caused by the reduction of the load served. 

In (Alves et al. 2016), a BL programming model was proposed to study the interaction between an 

electricity  retailer and consumers, which was dealt with a hybrid approach including a GA for the upper 

level problem and an exact MIP solver for the lower level problem. This work was then extended to a 

semi-vectorial BL optimization model (Alves and Antunes 2018), by considering two lower level 

objective functions: minimize the consumption costs and minimize the dissatisfaction caused by 

rescheduling the operation of controllable appliances. To address the same BL problem as the one 

presented in (Alves et al. 2016), (Carrasqueira et al. 2017) proposed and compared two novel BL 

population-based algorithms, one based on an evolutionary algorithm and the other on a particle swarm 

optimization algorithm applied to both upper and lower optimization levels. The advantage of these 

approaches is that they can address higher dimension problems because the lower level problem is also 

dealt with a metaheuristic method. However, the optimality of the lower level solution cannot be 
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guaranteed and it is not known how far this solution is from the optimal one, which raises difficulties in 

ensuring the feasibility of the BL solution. 

The BL model proposed in (Alves et al. 2016, Carrasqueira et al. 2017) was pioneering in the context of 

electricity retail market by including detailed appliance data, although just considering shiftable loads.  In 

the BL model proposed in the current paper, the whole range of typical household appliances is 

considered. These appliances are categorized as shiftable, interruptible and thermostatic loads, according 

to the type of control that can be exerted on their operation (Soares et al. 2014). The physical 

characterization of the operation cycles of shiftable appliances (dishwasher, laundry machine, clothes 

dryer), interruptible loads (electric water heater and electric vehicle) and thermostatic loads (an air 

conditioning system) is embedded in the model. The incorporation into the model of the physical 

information associated with the operation and control of all categories of appliances allows a more realistic 

characterization of the loads and enables a more accurate representation of the residential consumer’s 

energy management problem.  

Since the lower level optimization problem arises as a constraint of the upper level problem, it is necessary 

to guarantee obtaining the optimal solution to the lower level problem to ensure BL feasibility. However, 

if the lower level problem is difficult to solve, namely due to its combinatorial nature and/or whenever a 

limited computational budget is available, it may not be possible to obtain its optimal solution, and 

therefore a feasible solution to the BL problem. The modeling of the thermostatically-controlled appliance 

strongly increases the computational difficulty and the time required to solve the consumer’s problem of 

the MIP model presented in section 3. In fact, even after a significant computational time with a state-of-

the-art solver, the MIP gap (relative MIP gap yielded by the cplex solver) is still positive for a problem 

considering a planning period of 24 hours divided into intervals of 15 minutes. In some instances, more 

than 42 hours to obtain a MIP gap just below 5% are necessary and more than 5 days to obtain a MIP gap 

below 2%. This renders the exact approach impractical with a reasonable computational budget, which 

derives from the requisites of the problem. Without being able to guarantee the lower level optimal 

solution, the value obtained for the upper level objective function may be misleading, in the sense that it 

may be better than the optimal solution. In face of this difficulty, the aim is to offer the leader good quality 

estimates of bounds for his objective function, so he can hedge against the risk involved by overestimating 

his outcome and make a sound decision. Sub-optimal solutions to the lower level problem (i.e. for which 

the MIP gap is still positive) are used to determine upper estimates for the leader’s optimal objective 

function value. Lower estimates for the upper level objective function are obtained by exploiting the 

characteristics of the problem, particularly the existence of symmetrical terms in the consumer’s cost 

objective function and in the retailer’s profit objective function. Using an incremental strategy, a set of 

solutions is selected for further analysis, each one being represented by a [lower estimate, upper estimate] 

range for the leader’s objective function. Techniques for comparing interval numbers are then used to 
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offer meaningful information of practical interest to the leader regarding risk vs. opportunity associated 

with different ToU prices (upper level solutions). This methodology can be replicated with the necessary 

adaptations in other BL models concerning pricing problems. 

In summary, the main contributions of the paper are the following: a new comprehensive lower level MIP 

model integrating different types of appliances (shiftable, interruptible and thermostatic loads) considering 

their physical characteristics in a detailed manner; a hybrid algorithm combing a particle swarm 

optimization (PSO) algorithm, which guides the upper level search, with a MIP solver, which provides 

solutions to the lower level model for each instantiation of the upper level variables; a novel approach, 

which makes the most of the structure of the problem, to compute good estimates of bounds for the upper 

level objective function value whenever a limited computational budget exists. This latter issue is of 

utmost importance in face of the computational effort to solve the MIP model to optimality due to the 

detailed physical modelling of the thermostatic load.  

The manuscript is organized as follows. In section 2 the main concepts of BL optimization are 

summarized, including a brief review of the main methodological approaches. A new BL model for the 

interaction between a retailer and a cluster of consumers with similar consumption patterns and demand 

responses in the retail electricity market is presented in section 3. Section 4 describes the methodological 

approach to compute lower/upper estimates for the leader’s objective function considering a 

computational budget. The results of the study are presented and discussed in section 5. The conclusions 

are drawn in section 6. 

 

2. Bi-level optimization  

BL optimization involves two optimization problems which are hierarchically associated. The upper level 

refers to the leader’s interests while the lower level problem, which appears in the constraints of the upper 

level problem, concerns the aims of the follower. The leader decides first, and the follower then optimizes 

its objective function within the feasible region set by the instantiations of the leader’s decision variables. 

However, the follower’s decision also affects the leader’s objective value and therefore the leader should 

anticipate the follower’s reaction. 

A BL general optimization problem can be defined as follows: 

max
𝑥∈𝑋

   𝐹(𝑥, 𝑦) 

𝑠. 𝑡.    𝐺(𝑥, 𝑦) ≤ 0 

𝑦 ∈ arg min
𝑦∗∈𝑌

{𝑓(𝑥, 𝑦∗): 𝑔(𝑥, 𝑦∗) ≤ 0} 

where 𝑋 ⊂ ℝ𝑛 and 𝑌 ⊂ ℝ𝑚 are closed sets, n is the number of upper level variables and m is the number 

of lower level variables. The decision variables x are controlled by the leader, while the follower controls 

the decision variables y. 𝐹(𝑥, 𝑦) is the leader’s objective function and 𝑓(𝑥, 𝑦) is the follower’s objective 



   

 

8 

 

 

function. Variables x are kept constant when the lower level objective function is optimized, since the 

follower optimizes his objective function 𝑓(𝑥, 𝑦) after decision variables x are set by the leader. 

Let 𝑥 ∈ 𝑋 be a vector of decision variables set by the leader. The feasible and the rational reaction sets 

of the follower are 𝑌(𝑥) = {𝑦 ∈ 𝑌: 𝑔(𝑥, 𝑦) ≤ 0} and Ψ(𝑥) = {𝑦 ∈ 𝑌: 𝑦 ∈ arg min
𝑦∗∈𝑌(𝑥)

𝑓(𝑥, 𝑦∗)}, 

respectively. The feasible set of the BL problem described above, also called inducible region, is 𝐼𝑅 =

{(𝑥, 𝑦): 𝑥 ∈ 𝑋, 𝐺(𝑥, 𝑦) ≤ 0, 𝑦 ∈ Ψ(𝑥)}. Solving a BL optimization problem is methodologically and 

computationally challenging, since the problem is inherently non-convex. Even the linear BL problem is 

NP-hard (Dempe 2002). 

Classical approaches and several metaheuristics have been developed to address BL problems. Due to the 

difficulties of BL optimization, most of the classical solution methods consider problems where functions 

have convenient properties, such as linearity or convexity. Classical approaches include using the Karush-

Kuhn-Tucker (KKT) conditions, penalty methods and techniques exploring vertices in linear problems 

(among others). The first approach involves replacing the lower level problem by its KKT conditions, thus 

transforming the problem into a single-level problem. The resulting problem with complementary 

constraints is then solved, e.g., by a branch-and-bound method. The second approach consists of 

formulating a nonlinear programming problem approximating the original one, which is solved iteratively 

by means of a penalty function method applied to the lower level problem; this leads, under certain 

conditions, to a sequence of approximated solutions converging to the optimal solution. The third 

approach is based on the property that only vertices of the constraint region need to be considered for the 

computation of the optimal solution to a linear BL problem. Less attention has been given to BL problems 

with integer variables, for which few classical approaches were developed. Surveys on classical methods 

can be found in (Vicente and Calamai 1994, Bard 1998, Dempe 2002, Colson et al. 2005, Colson et al. 

2007, Sinha et al. 2018). 

To cope with the difficulties of solving BL problems, which are further aggravated if the problem has 

nonlinear functions/constraints or integer variables, several metaheuristic approaches have been 

developed. Typical metaheuristics that have been used to deal with BL problems are population-based 

algorithms, including evolutionary algorithms, particle swarm optimization and differential evolution. 

(Sinha et al. 2018) present a recent review on classical and evolutionary approaches to (single and 

multiobjective) BL optimization. 

The BL model we propose in this paper for the interaction of an electricity retailer and consumers can be 

regarded as a price setting problem (Labbé and Violin 2016). The upper level variables (x) are the prices 

and, as in general price setting problems, these variables only appear in the lower level objective function 

and do not figure in the lower level constraints. The lower level is a mixed-integer problem with many 

binary variables; the objective function is nonlinear because prices x multiply by the lower level variables 
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associated with load control. Therefore, for each instantiation of x, a MIP problem results at the lower 

level. Taking profit from this structure, a hybrid approach is developed in this work, in which a PSO 

metaheuristic is used for guiding the upper level search and an exact method is called to solve the lower 

level problem for each instantiation of x. 

 

3. A bi-level model for pricing problems in the residential electricity retail market 

In the electricity market for residential consumers in smart grids, it is expected that retailers define 

commercial offers with dynamic time differentiated electricity prices with the goal of maximizing profits 

(i.e., making the most of buying in wholesale markets and selling to end-users). Consumers respond to 

these ToU prices by resetting controls or rescheduling the operation of appliances in order to minimize 

cost taking into account comfort requirements. This interaction can be modeled as a BL problem with the 

retailer as the upper level decision maker (who sets the prices) and the consumer as the lower level decision 

maker (who optimizes load operation in face of those prices). 

In the current work, a comprehensive BL optimization model is developed encompassing shiftable, 

interruptible and thermostatic loads, with different physical characteristics and type of control. In addition 

to shiftable loads, i.e. appliances whose operation cycle cannot be interrupted once initiated, as in the 

model presented by Alves et al. (Alves et al. 2016),  the model herein proposed considers new types of 

controllable loads: interruptible and thermostatic appliances. Interruptible appliances are loads for which 

the energy supply can be interrupted as long as the required amount of energy is supplied by a certain 

point in time (as a proxy for quality of service). Thermostatic loads are controlled by a thermostat device 

switched by the indoor temperature, which is determined by a thermal model of the space being 

conditioned, exhibiting a hysteresis behavior within a deadband around a reference setpoint established 

by the consumer. The consumer’s cost objective includes energy costs associated with (shiftable, 

interruptible and thermostatic) load operation, costs due to the power peak demand, and a term associated 

with the monetization of indoor temperature discomfort (i.e. deviations from the range of comfort 

temperature). 

The inclusion of the thermostatic load in the lower level problem imposes a much higher computational 

burden, namely regarding modelling the hysteresis operation of the thermostat (which prevents excessive 

switching when the indoor temperature is around the setpoint).  

This BL model of the residential electricity retail market problem is described below in detail. 

The planning period T = {1,… , 𝑇}, with T being the number of time intervals, is divided into I sub-periods 

𝑃𝑖 = [𝑃1𝑖 , 𝑃2𝑖] ⊂ T,  𝑖 ∈ {1,… , 𝐼}, such that ⋃ 𝑃𝑖
𝐼
𝑖=1 = T, 𝑃1𝑖 = 𝑃2𝑖−1 + 1, 𝑖 ∈ {2,… , 𝐼}, with 𝑃11 = 1, and 

𝑃𝑖 = 𝑃2𝑖 − 𝑃1𝑖 + 1 is the amplitude of 𝑃𝑖. Each 𝑥𝑖 (in €/kWh), 𝑖 ∈ {1,… , 𝐼}, is the upper level decision 

variable corresponding to the price of electricity to be charged to the consumers by the retailer in each 
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pre-defined sub-period 𝑃𝑖, with h  being the unit of time the planning period is discretized into (hour, 

minute, quarter of hour, etc.). For each instantiation of prices 𝑥 = (𝑥1, … , 𝑥𝐼) defined by the retailer, a 

lower level problem is solved (consumer’s problem). 

In the upper level problem, the electricity prices set by the retailer are limited to minimum and maximum 

values, 𝑥𝑖 and 𝑥𝑖 respectively, for each sub-period 𝑃𝑖, i.e. 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖, 𝑖 ∈ {1,… , 𝐼}, (constraints (C1) 

and (C2)). Additionally, an average electricity price for the whole planning period T is imposed, 𝑥𝐴𝑉𝐺 =

1

𝑇
∑ 𝑃𝑖
𝐼
𝑖=1 𝑥𝑖 (constraint (C3) in the model, similar to the one considered by (Zugno et al. 2013)), as a proxy 

to model competition in the electricity retail market. 

 

UPPER LEVEL CONSTRAINTS 

𝑥𝑖 ≤ 𝑥𝑖 ,    𝑖 = 1,… , 𝐼 (C1) 

𝑥𝑖 ≥ 𝑥𝑖 ,    𝑖 = 1,… , 𝐼 (C2) 

1

𝑇
∑ 𝑃𝑖𝑥𝑖
𝐼
𝑖=1 = 𝑥𝐴𝑉𝐺 (C3) 

 

The BL model considers a cluster of consumers with similar consumption and demand response profiles, 

which can be defined using smart meter data. In addition to the controllable load, the model considers a 

base load, which is not deemed for control due to its characteristics (e.g. entertainment, oven, …). The 

base load is denoted by bt (in W) in each time t of the planning period T. Regarding the controllable loads, 

J shiftable appliances (whose operation cycles cannot be interrupted once initiated), K interruptible 

appliances and a thermostatic load (air conditioner) are considered. The retailer also defines levels of 

power demand and the consumer pays for the power level corresponding to the peak, i.e. attained by the 

maximum power requested to the grid at any time of the whole planning period T. 

For the shiftable loads, the consumer should specify the comfort time slot 𝑇𝑗 = [𝑇1𝑗 , 𝑇2𝑗] ⊆ T in which 

each load 𝑗 ∈ {1,… , 𝐽} should operate, according to his preferences and routines. The power requested by 

load j at stage 𝑟 ∈ {1,… , 𝑑𝑗} of its operation cycle is 𝑓𝑗𝑟 (in W), being dj the duration of the working cycle 

of load j. The lower level decision variables associated with shiftable load j are 𝑤𝑗𝑟𝑡 and pjt. Variables 

𝑤𝑗𝑟𝑡 specify whether load j is “on” or “off” at time 𝑡 ∈ 𝑇𝑗 and stage r of its operation cycle; pjt is the power 

(in W) requested to the grid by load j at time 𝑡 ∈ {1,… , 𝑇}. Variables pjt are auxiliary variables depending 

on 𝑤𝑗𝑟𝑡. The set of constraints (C4)-(C11) models the operation of shiftable loads. 

Constraints (C4) and (C5) set the lower level auxiliary variables pjt according to 𝑓𝑗𝑟 and 𝑤𝑗𝑟𝑡. Equations 

(C4) set pjt for 𝑡 ∈ 𝑇𝑗, i.e., when load 𝑗 ∈ {1,… , 𝐽} is allowed to operate. Equations (C5) set 𝑝𝑗𝑡 = 0 for 

intervals in which load j is not allowed to operate due to the consumer’s preferences. 
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Constraints (C6) ensure that, at time t of the planning period, each shiftable load 𝑗 ∈ {1,… , 𝐽} is either 

“off” or “on” at only one stage r of its operation cycle. Constraints (C7) ensure that, if load j is “on” at 

time t and at stage 𝑟 < 𝑑𝑗 of its operation cycle, then it must also be “on” at time 𝑡 + 1 and stage 𝑟 + 1. 

Constraints (C8) guarantee that each shiftable load 𝑗 ∈ {1,… , 𝐽} operates exactly once at stage r and this 

should occur within its comfort time slot. Constraints (C9) guarantee that load j starts its working cycle 

within its allowed comfort time slot, i.e. at most at time 𝑇2𝑗 − 𝑑𝑗 + 1, thus assuring that it never finishes 

later than 𝑇2𝑗. Thus, constraints (C7-C9) ensure that each shiftable load j operates exactly 𝑑𝑗 consecutive 

time intervals, thus forcing the lower level decision variables 𝑤𝑗𝑟𝑡 to be zero whenever load j is “off”. 

Constraints (C10) define 𝑤𝑗𝑟𝑡 as binary variables, where 1 means that load j is “on” and 0 means that it is 

“off” at time 𝑡 ∈ 𝑇𝑗 and at stage r, and (C11) define pjt as non-negative for the whole planning period. 

 

SHIFTABLE LOADS 

𝑝𝑗𝑡 =∑ 𝑓𝑗𝑟𝑤𝑗𝑟𝑡
𝑑𝑗
𝑟=1  , 𝑗 = 1,… , 𝐽 , 𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗   (C4) 

𝑝𝑗𝑡 =0 , 𝑗 = 1,… , 𝐽 , 𝑡 < 𝑇1𝑗 ∨ 𝑡 > 𝑇2𝑗   (C5) 

∑ 𝑤𝑗𝑟𝑡
𝑑𝑗
𝑟=1 ≤ 1 , 𝑗 = 1,… , 𝐽 , 𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗  (C6) 

𝑤𝑗(𝑟+1)(𝑡+1) ≥ 𝑤𝑗𝑟𝑡  , 𝑗 = 1,… , 𝐽 , 𝑟 = 1,… , (𝑑𝑗 − 1) , 𝑡 = 𝑇1𝑗 , … , (𝑇2𝑗 − 1)   (C7)  

∑ 𝑤𝑗𝑟𝑡
𝑇2𝑗
𝑡=𝑇1𝑗

= 1 , 𝑗 = 1,… , 𝐽 , 𝑟 = 1,… , 𝑑𝑗   (C8) 

∑ 𝑤𝑗1𝑡
𝑇2𝑗−𝑑𝑗+1

𝑡=𝑇1𝑗
= 1 , 𝑗 = 1,… , 𝐽 (C9) 

𝑤𝑗𝑟𝑡 ∈ {0,1} , 𝑗 = 1,… , 𝐽 , 𝑟 = 1,… , 𝑑𝑗 , 𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗 (C10) 

𝑝𝑗𝑡 ≥ 0 , 𝑗 = 1,… , 𝐽 , 𝑡 = 1,… , 𝑇 (C11) 

 

Figure 1 displays the control capability of a shiftable load j. 

 

Figure 1. Control of shiftable (non-interruptible) load 𝑗 ∈ {1,… , 𝐽}. 

        𝑇1𝑗   ...          𝑇2𝑗         t 

pjt (W) 

 

𝑟1 𝑟2      …      𝑟𝑑𝑗 

𝑑𝑗 
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For interruptible loads, the consumer should also specify the comfort time slot 𝑇𝑘 = [𝑇1𝑘 , 𝑇2𝑘] ⊆ T in 

which each load 𝑘 ∈ {1,… , 𝐾} should operate. The power requested by each load k is 𝑄𝑘 (in W) and the 

total energy required is 𝐸𝑘 = 𝑑𝑘 × 𝑄𝑘, where dk is the duration of the operation of load k. The lower level 

decision variables for each interruptible load k are 𝑣𝑘𝑡 and qkt. Binary variables 𝑣𝑘𝑡 specify whether load 

k is “on” or “off” at time 𝑡 ∈ 𝑇𝑘; each auxiliary variable qkt is the power (in W) requested to the grid by 

interruptible load k at time 𝑡 ∈ {1,… , 𝑇}, which is either 0 or 𝑄𝑘. The set of constraints (C12)-(C16) 

models the operation of interruptible load. 

Constraints (C12) set the variables qkt for 𝑡 ∈ 𝑇𝑘 as function of 𝑣𝑘𝑡, when the load 𝑘 ∈ {1,… , 𝐾} is allowed 

to operate, and (C13) impose that the power requested to the grid is 0 outside the comfort time slot. 

Constraints (C14) guarantee that the total amount of energy consumed by load k within the comfort time 

slot is 𝐸𝑘. 

Constraints (C15) define 𝑣𝑘𝑡 as binary variables, where 1 means that interruptible load k is “on” and 0 

means that it is “off” at time 𝑡 ∈ 𝑇𝑘,and (C16) define qkt as non-negative for the whole planning period T. 

 

INTERRUPTIBLE LOADS 

𝑞𝑘𝑡 =𝑣𝑘𝑡𝑄𝑘  , 𝑘 = 1,… , 𝐾 , 𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘  (C12) 

𝑞𝑘𝑡 =0 , 𝑘 = 1,… , 𝐾 , 𝑡 < 𝑇1𝑘 ∨ 𝑡 > 𝑇2𝑘               (C13) 

∑ 𝑞𝑘𝑡
𝑇2𝑘
𝑡=𝑇1𝑘

= 𝐸𝑘  , 𝑘 = 1,… , 𝐾               (C14) 

𝑣𝑘𝑡 ∈ {0,1} ,      𝑘 = 1,… , 𝐾, 𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘               (C15) 

𝑞𝑘𝑡 ≥ 0 , 𝑘 = 1,… , 𝐾 , 𝑡 = 1,… , 𝑇               (C16) 

 

Figure 2 displays the control capability of an interruptible load k to which a quantity Ek of energy should 

be supplied. 

 

Figure 2. Control of interruptible load 𝑘 ∈ {1,… , 𝐾}.  
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The thermostatic load is an air conditioner system (AC) that requires from the grid a nominal power 𝑃𝐴𝐶
𝑛𝑜𝑚 

(in W) when it is “on”. The operation of the system depends on outdoor and indoor temperatures, 휃𝑡
𝑒𝑥𝑡 

and 휃𝑡
𝑖𝑛 respectively, for each unit of time 𝑡 ∈ T. The BL model optimizes the operation of the thermostat 

by determining the minimum indoor temperature for which the system should turn on (휃𝑡
𝑚𝑖𝑛). The 

consumer should specify the reference temperature, 휃𝑟𝑒𝑓, the maximum allowed indoor temperature, 

휃𝑚𝑎𝑥, and the absolute minimum allowed indoor temperature, 휃𝐴𝑏𝑠
𝑚𝑖𝑛. The control temperatures 휃𝑚𝑎𝑥 and 

휃𝐴𝑏𝑠
𝑚𝑖𝑛 can also be set automatically with respect to the (setpoint) reference temperature 휃𝑟𝑒𝑓.  The lower 

level variables for the AC are 𝑠𝑡, 휃𝑡
𝑖𝑛, 휃𝑡

𝑚𝑖𝑛, 𝑧𝑡 , 𝑦𝑡 , ∆𝑡
+ and ∆𝑡

−. Decision variables 𝑠𝑡 establish whether 

the AC is “on” (𝑠𝑡 = 1) or “off” (𝑠𝑡 = 0) at time 𝑡 ∈ T; 휃𝑡
𝑖𝑛 and 휃𝑡

𝑚𝑖𝑛 specify the indoor temperature and 

the minimum indoor temperature at each time 𝑡 ∈ T, respectively, which derive from the optimization of 

the thermostat operation; auxiliary variables 𝑧𝑡 and 𝑦𝑡 are used to ensure the consistency between the 

thermostat status and the indoor temperature, at each time t of the planning period; ∆𝑡
+ and ∆𝑡

− are the 

positive and negative deviations, respectively, of the minimum temperature, 휃𝑡
𝑚𝑖𝑛, from the reference 

temperature, 휃𝑟𝑒𝑓 . The discomfort caused by the operation of the AC is measured by these deviations,  

which are included in the consumer’s overall cost objective function. The set of constraints (C17)-(C31) 

models the operation of the AC. 

Figure 3 displays the behavior of thermostat controlling the AC in heating mode, at each time t of T, by 

determining 휃𝑡
𝑚𝑖𝑛. The BL model is developed considering heating mode, but it can be easily adapted for 

cooling mode. 

 

 

Figure 3. Behavior of a thermostat in heating mode at each time t of T. 

 

For each time t of the planning period T, equations (C17) represent the thermal model defining the indoor 

temperature at time t as a function of indoor temperature at time t-1, the outdoor temperature and the 

operation of the AC. Constants 𝛼, 𝛽, and 𝛾 are derived from the building characteristics (area, envelope, 

etc.) and the coefficient of performance of the AC (Antunes et al. 2018). 

      휃𝐴𝐵𝑆
𝑚𝑖𝑛         𝜽𝒕

𝒎𝒊𝒏       휃𝑟𝑒𝑓       휃𝑚𝑎𝑥  휃𝑡
𝑖𝑛 

𝑠𝑡 = 1 

 

 

 

𝑠𝑡 = 0 
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Constraints (C18) ensure that the AC is “on” when the indoor temperature is below the minimum 

temperature, by forcing decision variable 𝑠𝑡 to be 1. Constraints (C19) – (C22) guarantee that the system 

keeps the state “on” or “off” when the indoor temperature lies between the minimum temperature and the 

maximum temperature. Constraints (C23) force 𝑠𝑡 = 0 when the indoor temperature is above the 

maximum allowed temperature, thus ensuring that the AC is “off”.  

Equations (C24) define the discomfort variables ∆𝑡
+ and ∆𝑡

− at each time t of T. Constraints (C25) and 

(C26) ensure that the minimum temperature is always within the bounds defined by the absolute minimum 

temperature and the maximum temperature allowed, respectively. 

Constraints (C27) define the auxiliary lower level variables 𝑧𝑡 and 𝑦𝑡 and the decision variables 𝑠𝑡 as 

binary variables. Constraints (C28) define temperatures and temperature deviations as non-negative 

variables.  

The computational complexity associated with the thermostatic load results from allowing 휃𝑡
𝑚𝑖𝑛 to vary 

in each t of T in order to make the most of time differentiated electricity prices. If 휃𝑡
𝑚𝑖𝑛 was fixed, thus 

defining a thermostat deadband independent of the optimization process, the model could be solved very 

fast. But with 휃𝑡
𝑚𝑖𝑛 being an outcome of the optimization process, the combinatorial nature of the model 

makes it computationally very demanding. The optimization process can set 휃𝑡
𝑚𝑖𝑛 according to what is 

the best for the overall lower level cost function considering the dynamic ToU tariffs set by the retailer 

(only imposing that it is not lower than the minimum allowed 휃𝐴𝑏𝑠
𝑚𝑖𝑛). Therefore, it may be advantageous 

to increase 휃𝑡
𝑚𝑖𝑛 to heat the room in periods of low electricity prices to account for comfort in periods of 

high prices. In this way, the model displays an increased flexibility thus becoming more realistic vis-à-vis 

the implementation of demand response actions to price signals reflecting wholesale prices (e.g. renewable 

generation availability) and grid status (e.g., network congestion). 

Although 휃𝑡
𝑚𝑖𝑛 variables are established as continuous variables in (C28), in practice we have considered 

variables with only one decimal place. The main reason is that they are used together with the reference 

temperature 휃𝑟𝑒𝑓 to define the discomfort values and temperature differences lower than 0.1 ºC should 

not be accounted for because they do not correspond to actual consumer’s discomfort. This change is 

operationalized in the model by defining the 휃𝑡
𝑚𝑖𝑛 variables as integer and replacing  휃𝑡

𝑚𝑖𝑛  with    

 휃𝑡
𝑚𝑖𝑛 × 0.1 in (C24)-(C26). We have implemented the model with this change, which turns it more 

realistic, but further increases the computational effort required to solve the lower level problem, since 

continuous variables become integer variables. 

 

THERMOSTATIC LOAD 

휃𝑡
𝑖𝑛 = 𝛼휃𝑡−1

𝑖𝑛 + 𝛽휃𝑡−1
𝑒𝑥𝑡 + 𝛾𝑠𝑡−1𝑃𝐴𝐶

𝑛𝑜𝑚 ,      𝑡 = 1,… , 𝑇               (C17) 

휃𝑡
𝑖𝑛 ≥ 휃𝑡

𝑚𝑖𝑛 −𝑀𝑠𝑡 ,      𝑡 = 1,… , 𝑇               (C18) 
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휃𝑡
𝑖𝑛 ≤ 휃𝑡

𝑚𝑖𝑛 +𝑀𝑧𝑡  ,      𝑡 = 1,… , 𝑇               (C19) 

휃𝑡
𝑖𝑛 ≥ 휃𝑚𝑎𝑥 −𝑀𝑦𝑡  ,      𝑡 = 1,… , 𝑇               (C20) 

𝑧𝑡 + 𝑦𝑡 − 𝑠𝑡−1 + 𝑠𝑡 ≤ 2 ,      𝑡 = 1,… , 𝑇               (C21) 

𝑧𝑡 + 𝑦𝑡 + 𝑠𝑡−1 − 𝑠𝑡 ≤ 2 ,      𝑡 = 1,… , 𝑇               (C22) 

휃𝑡
𝑖𝑛 ≤ 휃𝑚𝑎𝑥 +𝑀(1 − 𝑠𝑡) ,      𝑡 = 1,… , 𝑇               (C23) 

휃𝑡
𝑚𝑖𝑛 − 휃𝑟𝑒𝑓 = ∆𝑡

+ − ∆𝑡
− ,      𝑡 = 1,… , 𝑇               (C24) 

휃𝑡
𝑚𝑖𝑛 ≥ 휃𝐴𝑏𝑠

𝑚𝑖𝑛 ,      𝑡 = 1,… , 𝑇               (C25) 

휃𝑡
𝑚𝑖𝑛 ≤ 휃𝑚𝑎𝑥 ,      𝑡 = 1,… , 𝑇               (C26) 

𝑠𝑡, 𝑧𝑡 , 𝑦𝑡 ∈ {0,1} ,      𝑡 = 1,… , 𝑇               (C27) 

휃𝑡
𝑖𝑛, 휃𝑡

𝑚𝑖𝑛, ∆𝑡
−, ∆𝑡

+≥ 0 ,      𝑡 = 1,… , 𝑇                (C28) 

 

For the power cost component, the retailer defines L levels of power (in W), 𝑃𝑙
𝐶𝑜𝑛𝑡, 𝑙 ∈ {1,… ,𝐿}, and the 

corresponding prices to be charged to the consumers, 𝑒𝑙 (in €). The lower level decision variables for the 

power component are ul, which specify the peak power level 𝑙 ∈ {1,… , 𝐿} the consumers should pay. 

Constraint (C29) ensures that a single power price should be charged to the consumer in the whole 

planning period. Constraints (C30) guarantee that the total power required from the grid at each time 𝑡 ∈

{1,…𝑇} should satisfy the operation of all types of loads. 

Constraints (C31) define the lower level decision variables 𝑢𝑙, 𝑙 ∈ {1,… , 𝐿}, as binary variables, where 1 

means that the consumer should pay for the power price corresponding to the l power level. 

 

POWER COMPONENT  

∑ 𝑢𝑙
𝐿
𝑙=1 = 1  (C29) 

𝑏𝑡 + ∑ 𝑝𝑗𝑡
𝐽
𝑗=1 + ∑ 𝑞𝑘𝑡

𝑘
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚 ≤ ∑ 𝑃𝑙
𝐶𝑜𝑛𝑡𝑢𝑙

𝐿
𝑙=1  ,     𝑡 = 1,… , 𝑇               (C30) 

𝑢𝑙 ∈ {0,1} ,     𝑙 = 1,… , 𝐿               (C31) 

 

In the lower level problem, the consumer’s objective is to minimize the sum of the electricity bill and the 

monetization of the discomfort caused by the thermostatic load (equation (F-LL)), i.e. the sum of the cost 

of the energy consumed by uncontrollable, shiftable, interruptible and thermostatic loads (term (A) in 

equation (F-LL)), the power cost (term (B)) and the costs resulting from the monetization of the positive 

and negative deviations (∆𝑡
+ and ∆𝑡

−, respectively) of the minimum temperature from the reference 

temperature (term (C)). Constants 𝑐+ and 𝑐− in term (C) are the costs (in €/ºCh) incurred by the positive 

and negative temperature deviations, respectively, with 𝑐− > 𝑐+ since we are considering heating mode. 

The factor 
1

1000
 converts the power in W to kW. 
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LOWER LEVEL PROBLEM 

min
𝑝,𝑤,𝑞,𝑣,𝑠,𝑧,𝑦,𝑢,

∆+,∆−,𝜃𝑖𝑛,𝜃𝑚𝑖𝑛

𝑓 =
1

1000
∑ ∑ 𝑥𝑖(𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽
𝑗=1 +∑ 𝑞𝑘𝑡

𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚)𝑡∈𝑃𝑖
𝐼
𝑖=1⏟                                  

(A)

+ ∑ 𝑒𝑙𝑢𝑙
𝐿
𝑙=1⏟      
(B)

+ ∑ (𝑐+∆𝑡
+ + 𝑐−∆𝑡

−)𝑡∈𝑇⏟            
(C)

  (F-LL) 

s.t. 

Constraints (C4) to (C31) 

 

The objective function of the upper level problem (equation (F-UL)) consists of the maximization of the 

retailer’s profit, being defined as the difference between the revenue with the sale of energy to consumers 

(term (A)+(B)) and the cost of buying energy in the wholesale market (term (D)). Coefficients 𝜋𝑡 in 

equation (F-UL) are the prices of energy incurred by retailer at time 𝑡 ∈ {1,… , 𝑇}. 

 

BL MODEL 

max
𝑥
𝐹 =

1

1000
∑ ∑ 𝑥𝑖(𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽
𝑗=1 +∑ 𝑞𝑘𝑡

𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚)𝑡∈𝑃𝑖
𝐼
𝑖=1⏟                                  

(A)

+ ∑ 𝑒𝑙𝑢𝑙
𝐿
𝑙=1⏟      
(B)

−

1

1000
∑ 𝜋𝑡(𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽
𝑗=1 + ∑ 𝑞𝑘𝑡

𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚)𝑇
𝑡=1⏟                                

(D)

  (F-UL) 

s.t. 

       Constraints  (C1) to (C3) 

min
𝑝,𝑤,𝑞,𝑣,𝑠,𝑧,𝑦,𝑢,

∆+,∆−,𝜃𝑖𝑛,𝜃𝑚𝑖𝑛

𝑓 =
1

1000
∑ ∑ 𝑥𝑖(𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽
𝑗=1 +∑ 𝑞𝑘𝑡

𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚)𝑡∈𝑃𝑖
𝐼
𝑖=1⏟                                  

(A)

+ ∑ 𝑒𝑙𝑢𝑙
𝐿
𝑙=1⏟      
(B)

+ ∑ (𝑐+∆𝑡
+ + 𝑐−∆𝑡

−)𝑡∈𝑇⏟            
(C)

  (F-LL) 

s.t.  

      Constraints (C4) to (C31) 

 

 

4. Methodological Approach 

In this section, a hybrid approach for solving the BL model described in the previous section is presented. 

The approach combines a population-based algorithm to solve the upper level problem ((F-UL), (C1) – 

(C3)) and an external MIP solver (Cplex) for the lower level problem ((F-LL), (C4) – (C34)). 

 

4.1. Global framework 

The proposed algorithm starts by creating an initial population of N individuals 𝑥ℎ = (𝑥1
ℎ , … , 𝑥𝐼

ℎ), ℎ =

1,… ,𝑁 , representing the electricity prices set by the retailer in the I sub-periods of the planning period. 

For each 𝑥ℎ, a lower level solution yh is computed, where y denotes the vector of all decision variables of 

the lower level model (see (F-LL), (C4)-(C34)).The following pseudocode summarizes the steps of the 

proposed hybrid approach. 
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PSEUDOCODE OF THE HYBRID APPROACH 

1. Create the initial population Pop of N individuals 𝑥ℎ = (𝑥1
ℎ, … , 𝑥𝐼

ℎ), ℎ = 1,… ,𝑁 

2. Repeat 

2.1. Repair each solution xh, ℎ ∈ {1,… ,𝑁}, of Pop to satisfy the upper level constrains (C1)-

(C3).; 

2.2. Solve the lower level problem ((F-LL), (C4)-(C31)) using Cplex for each xh, ℎ ∈

{1,… ,𝑁}, in Pop to obtain the corresponding yh; 

2.3. Compute 𝐹(𝑥ℎ, 𝑦ℎ) for all (𝑥ℎ, 𝑦ℎ), ℎ ∈ {1,… ,𝑁}, and retain the best solution (𝑥, 𝑦); 

2.4. Modify each solution xh, ℎ ∈ {1,… ,𝑁}, of Pop according to the PSO algorithm (described 

in section 4.2); 

3. Until G iterations are performed; 

4. Output: (𝑥, 𝑦) with the best 𝐹(𝑥, 𝑦). 

 

In step 2.1, if a solution xh, ℎ ∈ {1,… ,𝑁},  does not satisfy the upper level constraints (C1)-(C3), then it 

is repaired using a routine based on the one described in Alves et al. (2016). This routine has been 

improved to cope with a fixed number of decimals since electricity prices are generally given in this way 

(e.g., 5 decimals). Therefore, although the x variables have been defined as continuous in the model, after 

creating or modifying a solution, the x values are truncated and then adjusted by the Repairing routine to 

satisfy the upper-level constraints, while still maintaining the number of decimal places.  

Firstly, if any component 𝑥𝑖
ℎ, 𝑖 ∈ {1, … , 𝐼}, is out of the bounds imposed by constraints (C1) and (C2), then 

it is pushed to the closest bound (minimum 𝑥𝑖 or maximum 𝑥𝑖). Due to the fixed number of decimals, it 

may be not possible to satisfy the constraint (C3) as an equality; therefore, the Repairing routine adjusts 

the solution to satisfy 
1

𝑇
∑ 𝑃𝑖𝑥𝑖
𝐼
𝑖=1 ≤ 𝑥𝐴𝑉𝐺    ∧  

1

𝑇
∑ 𝑃𝑖𝑥𝑖
𝐼
𝑖=1 ≥ 𝑥𝐴𝑉𝐺-휀, i.e. a downward tolerance (휀) with 

respect to the average price 𝑥𝐴𝑉𝐺  is allowed but 𝑥𝐴𝑉𝐺  can never be surpassed (the aim is that the electricity 

prices contracted by the consumer are strictly respected). The Repairing routine consists of an iterative 

process, in which the deviation of the violated inequality is divided by the variables that can still move - 

free variables - defining an amount 𝑎𝑖  that must be added to each 𝑥𝑖
ℎ: a variable is free if it can be increased 

(𝑥𝑖
ℎ is below its maximum) and 𝑎𝑖 is positive, or it can be decreased (𝑥𝑖

ℎ is above its minimum) and 𝑎𝑖  is 

negative. Whenever one or more 𝑎𝑖 cannot be fully added to the respective variable, because it would lead 

𝑥𝑖
ℎ  to be outside its bounds, another iteration of the process is done in which this variable is no longer free. 

It may happen that the Repairing routine stops with an infeasible solution and no free variables, although 

this situation has been rarely observed in practice. In that case the solution is discarded. 
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The output of the hybrid approach is the solution (𝑥, 𝑦) found throughout the 𝐺 iterations of the algorithm 

that gives the highest retailer’s profit 𝐹(𝑥, 𝑦). 

 

4.2. Upper level search based on PSO 

In previous experiments we have done with other BL models, the PSO algorithm revealed a better 

performance in comparison with a GA. Therefore, in the current work, the upper level search of the BL 

model described in section 3 is performed by a PSO algorithm.  

After randomly creating an initial population of N solutions 𝑥ℎ = (𝑥1
ℎ, … , 𝑥𝐼

ℎ), ℎ = 1,… ,𝑁, commonly 

known as a swarm of particles in PSO, and evaluating their fitness 𝐹(𝑥ℎ , 𝑦ℎ), the PSO algorithm 

iteratively moves the particles towards best positions. The movements are influenced by the best position 

visited by each particle xh (personal best – 𝑥ℎ
𝑏𝑒𝑠𝑡

) and guided by the best known position of the entire 

swarm (global best – 𝑔𝑏𝑒𝑠𝑡). 

In each iteration 𝓆, the velocity component 𝑣𝑖
ℎ, 𝑖 ∈ {1,… , 𝐼}, of solution xh is determined according to 

the following expression (Eberhart and Yuhui 2001): 

𝑣𝑖
ℎ𝓆 = 휂𝑣𝑖

ℎ𝓆−1 + 𝑟1𝐶1 (𝑥𝑖
ℎ𝑏𝑒𝑠𝑡 − 𝑥𝑖

ℎ𝓆−1) + 𝑟2𝐶2(𝑔𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

ℎ𝓆−1) 

where  is the inertia weight, C1 and C2 are the cognitive and social parameters, 𝑟1 and 𝑟2 are uniform 

random numbers in the interval [0,1]. The new position of particle xh is then determined by the following 

equation: 

𝑥ℎ
𝓆
= 𝑥ℎ

𝓆−1
+ 𝑣ℎ

𝓆
 

If this solution does not satisfy the upper level constraints (C1)-(C3) then it is repaired. After a feasible 

𝑥ℎ
𝓆
 is obtained, the lower level problem is solved for 𝑥ℎ

𝓆
 and the corresponding optimal lower level 𝑦ℎ

𝓆
 

is computed. The personal best, 𝑥ℎ
𝑏𝑒𝑠𝑡

, and the global best, 𝑔𝑏𝑒𝑠𝑡, are updated whenever better solutions 

according to 𝐹(𝑥ℎ
𝓆
, 𝑦ℎ

𝓆
) are found. 

When the value of Fbest (objective function value for 𝑔𝑏𝑒𝑠𝑡) does not improve over a predefined number 

𝐺′ of consecutive iterations, then the exploration capability is enhanced by inducing some turbulence in 

the population with a probability pm. Therefore, for each solution 𝑥ℎ
𝓆
, after its movement and before 

entering the Repairing routine, each coordinate 𝑥𝑖
ℎ𝓆 , 𝑖 ∈ [1, 𝐼] is subject to a perturbation 휁 randomly 

generated in the range [−𝛿 (𝑥𝑖 − 𝑥𝑖) , 𝛿 (𝑥𝑖 − 𝑥𝑖)], i.e., 𝑥𝑖
ℎ𝓆 ← 𝑥𝑖

ℎ𝓆 + 휁. 

In the current work, it is considered that the value of Fbest does not improve from one iteration to the next 

when the relative change in its value is below a given threshold 𝜏, i.e. the following inequality is satisfied: 
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𝐹𝑏𝑒𝑠𝑡
𝓆
− 𝐹𝑏𝑒𝑠𝑡

𝓆−1

𝐹𝑏𝑒𝑠𝑡
𝓆 < 𝜏 

In previous experiments, this adaptive mutation scheme led to significant improvements in the solutions 

obtained. 

In our implementation, 𝜏 = 0.001 and 𝛿 = 0.2. 𝐺′ = 5 is the number of consecutive iterations without 

improvement of Fbest that triggers turbulence with a probability 𝑝𝑚 = 0.1. The inertia parameter  was set 

to 0.4 and the learning parameters in both cognitive and social components were kept equal, 𝐶1 = 𝐶2 = 1.  

 

4.3. What to do if the computational effort is too high to guarantee lower level optimality? 

Assuming a realistic h for the discretization of the planning period T, the lower level problem may not be 

amenable to exact resolution because it may require a high computational effort due to the combinatorial 

nature of the mathematical model. We have observed, in particular, that the inclusion of the thermostatic 

load strongly increases the computational difficulty and the time required to solve the problem. 

If the lower level problem cannot be solved to optimality (namely due to practical computational budget 

requirements) then it is not possible to guarantee the feasibility of the solution to the BL model. Indeed, 

solutions obtained for the BL model with non-optimal lower level solutions may be better for the upper 

level objective function than the real optimal solution, but these solutions may be misleading. Therefore, 

the aim should be offering the leader good quality estimates of bounds for his objective function in order 

to support informed decisions. 

In the present model, obtaining sub-optimal solutions to the lower level problem enables to approximate 

upper bounds (upper estimates) for the optimal value of the leader’s objective function (𝐹∗). Recall that 

the leader’s objective is to maximize the profit resulting from the revenue with selling electricity to 

consumers minus the cost of buying electricity in the wholesale market; on the other hand, consumers 

want to minimize electricity cost, which corresponds to the leader’s revenue. Hence, sub-optimal solutions 

to consumers, i.e. solutions with higher cost, lead to retailer’s revenues higher than the real ones. Note 

that this is an upper bound for F in solutions with the same x vector and, in theory, this may be not an 

upper bound for F* because the BL optimal solution could be given by another x. However, the incremental 

strategy (described below) to obtain this estimate aims at overcoming this issue in practice, leading to 

relevant information for decision support in face of the rational follower’s reaction. Guaranteed upper 

bounds could be computed using relaxations of the BL problem, which were also tested, but the 

information provided would have considerably less practical value.  

In the current work, we assume that a computational budget exists; our main goal is taking advantage of 

the information that can be obtained within that budget and use it as support to the leader’s decision. A 

reasonable computational time limit of 𝜉1 is defined to solve each instantiation of the lower level problem 
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and, rather than keeping just the best solution, the algorithm stores the 𝒢 solutions with the highest value 

of F.  

When the lower level problem is a MIP, as in the model presented in section 3, the solver provides the 

(relative) MIP gap when the computational budget is attained. If this gap is strictly positive, a non-optimal 

solution may be delivered. In this case, after completing the pre-specified number of iterations G (see 

pseudocode in section 4.1), the lower level problem is solved again for each final individual solution 

𝑥ℊ , ℊ ∈ {1,… , 𝒢}, with an increased time limit of 𝜉2. The solutions obtained, (𝑥ℊ , 𝑦ℊ), ℊ ∈ {1,… , 𝒢}, are 

then evaluated according to F. 

The output of the algorithm is the best solution (𝑥, 𝑦) among the 𝒢 solutions, i.e. the one that presents the 

highest retailer’s profit 𝐹(𝑥, 𝑦). 

Due to the stochastic nature of the PSO procedure, the algorithm is run more than once even if the exact 

optimal solution to the lower level problem can be obtained for each instantiation of the upper level 

variables. Therefore, the algorithm is performed 𝓇 independent runs (each with G iterations and N 

individuals), generating 𝓇 best solutions. Then, a total of  
𝓇

2
 solutions are selected from these 𝓇 best 

solutions for further analysis when the MIP gap is still positive: half of them (
𝓇

4
) are the ones with the 

highest F values and the other half are randomly selected from the remaining solutions. This further 

analysis consists of solving the lower level problem for each upper level vector 𝑥𝜔, 𝜔 ∈

{1,… ,
𝓇

2
} considering a longer time limit, 𝜉3 > 𝜉2. This analysis aims at decreasing, for each 𝑥𝜔, the MIP 

gap of the lower level solution to the optimal one, so that the upper estimate yielded for the leader’s 

objective function value can be tightened still within a reasonable computational time limit, in an 

incremental strategy. Thus, at the end of this process, 
𝓇

2
  solutions (𝑥𝜔, �̂�𝜔) to the BL model are obtained 

with F(𝑥𝜔, �̂�𝜔) values expected to be good upper estimates for 𝐹∗. 

This procedure to derive upper estimates for 𝐹∗ can be adapted for other problems in which the lower 

level problem is defined by a mathematical model, but it is not possible, or practical, to obtain its optimal 

solution due to the need of an excessive computational effort. In particular, this procedure can be 

replicated in pricing problems in which the lower level cost objective function is a part of the upper level 

revenue objective function.  

The next step is to derive good quality lower estimates for the upper level objective function. This should 

be accomplished by profiting from the characteristics of the problem to narrow as much as possible the 

interval defined by lower/upper estimates for the leader’s objective function. Thereafter, these intervals 

will be assessed through standard techniques for comparison of interval numbers with the aim of providing 

meaningful information to the leader. 
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In order to compute lower estimates for 𝐹∗, the following characteristics of the problem are considered: 

the lower level objective function includes a term associated with the monetized discomfort of the indoor 

temperature controlled by the air conditioner, which does not constitute a revenue of the retailer (term (C) 

in F-LL); the revenue terms of the upper level objective function are terms (A) and (B), which are the 

energy costs and the power costs for the operation of all types of loads incurred by the consumer; therefore, 

if the discomfort component (C) is removed from the lower level objective function, by defining null 

temperature deviation costs, and only the energy and power components are considered, then this leads to 

minimum cost solutions at lower level and consequently to minimum retailer’s revenues. Note that this 

option also induces, in general, the air conditioner to work just to guarantee the minimum indoor 

temperature allowed, because the temperature deviation is discarded from the analysis, which further leads 

to lower revenues for the leader. This information is used to compute realistic good quality lower estimates 

for the leader’s objective function. So, the discomfort component is removed from the lower level 

objective function and the lower level problem is solved for each upper level vector 𝑥𝜔, 𝜔 ∈ {1,… ,
𝓇

2
}  

considering the time limit 𝜉3 (the same used before for computing the upper estimates for 𝐹∗). At the end 

of this process, 
𝓇

2
  solutions (𝑥𝜔, �̌�𝜔) are obtained with F(𝑥𝜔, �̌�𝜔) values expected to be good lower 

estimates for 𝐹∗. As a result, the retailer’s profit estimates obtained with an acceptable computational 

effort can be used as decision support information to establish the electricity prices (i.e., a commercial 

offer in the retail market).   

The comparison between the 
𝓇

2
  objective function values represented by interval numbers, i.e. uncertain 

but limited, [𝐹(𝑥𝜔, �̌�𝜔), 𝐹(𝑥𝜔, �̂�𝜔) ], 𝜔 ∈ {1,… ,
𝓇

2
} , is made using the relation proposed by (Jiang et al. 

2012). Being A and B two interval numbers, the reliability-based possibility of 𝑃(𝐴 ≤ 𝐵) is determined 

as 

𝑃(𝐴 ≤ 𝐵) = min{max{
𝐵𝑅 − 𝐴𝐿

2𝐴𝑤 + 2𝐵𝑤
, 0} , 1} 

where the subscripts R and L denote the right and the left limits and w denotes the amplitude of the interval 

number. Other equivalent expressions for this purpose exist. 

The computation of 𝑃(𝐴 ≤ 𝐵) for all pairs of lower/upper estimates for the F values enables to assess the 

strength of this relation as well as ranking the interval numbers [lower estimate, upper estimate] ([LE, 

UE]) and eventually recognizing a solution, i.e. a vector of electricity prices 𝑥𝜔, as an interesting one (in 

some way balancing risk vs. opportunity to obtain a higher profit) in face of the impossibility of 

guaranteeing the optimality of lower level solutions. 

At this point we would like to emphasize that, even if the optimal solution to lower level problem can be 

obtained for each x-vector, the global optimal solution and the F* value may not be obtained because a 
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meta-heuristic is used to explore the upper level solution space. However, the main difference between 

obtaining optimal solutions and sub-optimal solutions to the lower level is that, in the first case, the value 

obtained for the upper level (maximizing) function, say F’, certainly satisfies F’  F* because the 

algorithm only works with feasible solutions; in the latter case, the final value of F may be less or greater 

than F* because sub-optimal solutions to the lower level are infeasible to the BL problem. Therefore, 

obtaining good upper/lower estimates for F* is of utmost importance in the latter case. 

 

5. Experimental results and discussion 

The computational budget to solve the lower level optimization model presented in section 3 renders 

impossible, in general, to obtain its optimal solution, namely due to the modelling of the thermostatic load. 

Therefore, the aim is to offer the retailer insights to assist him in making a decision regarding the prices 

to be imposed to consumers employing the methodology described in section 4. In the following, the 

problem data and the parameters of the algorithm are described; then the results obtained are presented 

and analyzed. 

 

5.1. Data and Parameters 

In the experiments carried out, a planning period of 24 hours was considered, split into intervals of 15 

minutes, leading to a planning period of 96 units of time. Then,  T = {1,… ,96} where each time unit 𝑡 ∈

T represents a quarter-hour (i.e. h = 1/4 h). 

In this study, dynamic tariffs with 𝐼 = 6 sub-periods of energy prices charged to the consumers by the 

retailer, 𝑃𝑖 = [𝑃1𝑖 , 𝑃2𝑖] ⊂ T,  𝑖 ∈ {1,… ,6}, were considered. Also, 𝐿 = 9 power levels were considered for 

the power cost component. Detailed data, regarding the prices the retailer buys energy in the spot market 

(€/kWh), the minimum/maximum and average energy prices the retailer can sell energy in the retail market 

(€/kWh; e.g., to comply with competition of commercial offers), and the power level prices (€) are 

displayed in Tables SM-1, SM-2 and SM-3 (Supplementary Material). 

Six appliances were considered in the lower level model: three shiftable non-interruptible loads (𝐽 = 3) – 

dishwasher (DW), laundry machine (LM) and clothes dryer (CD); two interruptible loads (𝐾 = 2) – 

electric vehicle (EV) and electric water heater (EWH); one thermostatic load – air conditioner system 

(AC). The information related with the operation cycles of controllable appliances, the thermostatic load, 

as well as non-controllable (base) load is displayed in Table SM-4 to Table SM-8. 

Typical values for the parameters 𝛼, 𝛽 and 𝛾 (defining constraint (C17) in the model) were considered: 

0.8569, 0.1431 and 0.002775, respectively, for a time discretization of 15 minutes (Antunes et al. 2018). 

The temperature deviation costs in heating mode were defined as 𝑐+ = 0.005 and 𝑐− = 0.010 (€/ºCh). 

Given the range of temperatures, the value of the big number M was defined as 100. 
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In each instantiation of the upper level variables, the number of binary and continuous variables as well 

as the number of constraints in the lower level problems are displayed in Table 1 (with and without the 

thermostatic load). The upper level problem has 6 decision variables and 13 constraints (lower/upper 

bounds for the prices plus the average price constraint). 

 

Table 1. Dimension of the lower level problem 

 
Number of Variables Number of Constraints 

Binary Continuous Inequality Equality 

with all loads 839 535 1346 354 

without the thermostatic load 551 151 578 162 

 

In the computational experiments, the hybrid BL algorithm was run 𝓇 = 20 independent times, each one 

consisting of 𝐺 = 70 iterations with a population size of 𝑁 = 20 individuals. These settings resulted from 

preliminary studies, which showed that no further improvement usually occurred for the upper level 

objective function by increasing the number of iterations or the population size. 

In each run, a total of 1400 MIP problems, i.e. 20 individuals × 70 iterations, are solved (plus the 

corresponding upper level operations), with a computation time limit of 𝜉1 = 15 s for the resolution of 

each instantiation of the lower level problem by the MIP solver. After completing the 70 iterations, the 

lower level problems are solved again for a final set of the 𝒢 = 10 best solutions of that run, with an 

increased time limit of the MIP solver of 𝜉2 = 60 𝑠 aiming to further improve them. These lower level 

solutions are then evaluated according to the upper level objective function and the best one is the output 

of the run.  

Therefore, after running the algorithm 𝓇 = 20 independent times, then  
𝓇

2
= 10 solutions are selected 

from the set of 20 solutions for further analysis. For this purpose, the lower level problem for each best 

(upper level) solution is solved again allowing a longer time limit of 𝜉3 = 5 min for the MIP solver. This 

incremental strategy aims to use the computational budget in more promising solutions to further improve 

the MIP gap of the lower level solutions and, consequently, better approximate the true value of the upper 

level objective function. 

Several experiments were performed to fine tune the values of time limit parameters 𝜉𝑘 , 𝑘 = 1, 2, 3.  The 

values used in the experiments revealed a suitable compromise between running time and convergence 

for good quality results. 

The algorithm was written in R language and all runs were carried out in a computer with an Intel Core 

i7-7700K CPU@3.6GHz and 64GB RAM. In summary, one iteration involves the upper level operations 
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plus solving 20 MIP problems. Each complete run involves 70 iterations plus resolving 10 extra lower 

level problems, taking approximately 6 hours and 10 minutes. 

Considering a similar BL model but without the thermostatic load, the algorithm runs fast and is able to 

obtain optimal solutions at the lower level; in this case, one complete run performs in approximately 13 

minutes.  

 

5.2. Results 

The upper level vectors associated with the 
𝓇

2
= 10 solutions selected from the set obtained in all the runs 

(with a computational time limited to 60 seconds for the resolution of each lower level problem) are 

displayed in Table SM-9 (Supplementary Material). Statistics about these 10 solutions are presented in 

Table 2: the maximum, minimum, average and standard deviation of the retailer’s profit, F, and the 

corresponding consumers’ costs, f , as well as the relative MIP gaps. 

 

Table 2. Statistics of the 10 selected solutions with a limited computational time to solve the lower level 

problem. 

Computational time to solve the 

lower level problem 
 Maximum Minimum Average 

Standard 

Deviation 

 F 4.36875 4.31026 4.33793 0.01810 

60 seconds f 7.31917 7.23766 7.29493 0.02228 

 MIP gap 5.43% 4.67% 5.02% 0.28% 

 F 4.36493 4.23427 4.27368 0.03677 

5 minutes f 7.28510 7.19252 7.23547 0.02370 

 MIP gap 4.33% 2.85% 3.70% 0.45% 

 

The results displayed in Table 2 show that, for a computational time limited to 60 seconds, the lower level 

computations produce solutions with relatively high MIP gap values (average gaps of approximately 5%), 

which do not reduce significantly if the computational time is extended to 5 minutes (MIP gap average 

value of 3.7%).  

According to the methodology described in section 4, the coefficients of the monetized discomfort 

component of the lower level objective function are then set to 𝑐+ = 𝑐− = 0. The aim is to have a good 

estimate of the lower bound for the retailer’s objective function. This lower estimate can be defined as the 

difference between the minimum retailer’s revenue (i.e., the consumer’s cost obtained with null 

temperature deviation costs) and the maximum retailer’s acquisition cost (i.e., the maximum value 
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between the cost of energy acquisition with 𝑐+ = 𝑐− = 0 and the cost of energy acquisition with 𝑐+ =

0.005 and 𝑐− = 0.010). The corresponding results are displayed in Table 3. 

 

Table 3. Statistics of the 10 solutions corresponding to the lower estimates of F, with a computational 

time limited to 5 minutes to solve the lower level problem. 

 Maximum Minimum Average 
Standard 

Deviation 

F 4.26037 4.14528 4.22618 0.03577 

f 7.14236 7.01616 7.11241 0.03592 

MIP gap 5.87% 4.72% 5.43% 0.38% 

 

The values in Table 3 show lower consumer’ costs, i.e. lower values of f in comparison with the ones 

obtained with positive temperature deviation costs. However, disregarding the discomfort cost from the 

consumer’s objective function leads to a higher variability of f across runs, as measured by the standard 

deviation. Also, the relative MIP gap values corresponding to the best solutions obtained with the 

computational budget are higher than the ones obtained with 𝑐+ = 0.005 and 𝑐− = 0.010. 

Therefore, the objective function values obtained with positive values of c+ and c- can be assumed as upper 

estimates for the retailer’s profit; objective function values obtained with null values of c+ and c- are used 

to compute the lower estimates. Figure 4 and Table 4 display the [lower estimate, upper estimate] intervals 

([LE,UE]) for the retailer’s profit in each of the 10 selected final solutions. 
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Fig. 4. Retailer’s profit intervals, [LE,UE], in the 10 final solutions. 

 

Table 4. Retailer’s profit intervals, [LE,UE], in the 10 final solutions. 

Solution 
Lower 

Estimate 

Upper 

Estimate 
Average 

UE

maxUE
 

LE

maxUE
 

LE

maxUE
 

1 3.53006 4.31436 3.922208 98.84% 91.22% 80.87% 

2 3.50489 4.36493 3.934908 100.00% 90.57% 80.30% 

3 3.56940 4.23427 3.901835 97.01% 92.23% 81.77% 

4 3.48438 4.28127 3.882823 98.08% 90.04% 79.83% 

5 3.68842 4.26254 3.975478 97.65% 95.31% 84.50% 

6 3.59667 4.25229 3.924480 97.42% 92.94% 82.40% 

7 3.65836 4.26216 3.960260 97.65% 94.53% 83.81% 

8 3.61796 4.26536 3.941655 97.72% 93.49% 82.89% 

9 3.52595 4.25124 3.888593 97.40% 91.11% 80.78% 

10 3.86998 4.24842 4.059195 97.33% 100.00% 88.66% 

 

The maximum lower estimate and upper estimate for the retailer’s profit obtained for these 10 solutions 

are marked with a large circle (in red) in Figure 4, which correspond to solutions 10 and 2, respectively 

(in bold in Table 4). Table 4 shows that all upper estimates are within a 3% range with respect to the 

maximum upper estimate. The lower estimates are distant of the maximum lower estimate at most 10%. 
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Solution 10 has the higher lower estimate and the higher average retailer profit. Additionally, solution 10 

presents good values of lower estimate and upper estimate with respect to the best ones, also displaying 

the best relation between the lower estimate and the upper estimate values. This suggests that solution 10 

may be an adequate option for a risk-averse decision maker. 

Table 5 displays the reliability-based possibility of 𝑃(𝐴 ≤ 𝐵), where A and B represent the F interval 

values [LE,UE] for the 10 solutions. The column “Count  

𝑃(𝐴 ≤ 𝐵) ≥ 0.5” in Table 5 gives the frequency of 𝑃(𝐴 ≤ 𝐵) ≥ 0.5, thus stating the superiority of B. 

The column “Rank” gives the ranking of the interval solutions according to the frequency of  𝑃(𝐴 ≤ 𝐵) ≥

0.5. This analysis corroborates that solution 10 seems to be superior to the other solutions. Solutions 5 

and 7 are also good options for a decision maker not willing to engage in a high risk, while solution 2 may 

yield a very good objective function value but with a higher risk of obtaining a low value.    

 

Table 5. 𝑃(𝐴 ≤ 𝐵), where A and B represent the F interval values [LE,UE] for the 10 solutions. 

𝑃(𝐴 ≤ 𝐵) 
A Count  

𝑃(𝐴 ≤ 𝐵) ≥ 0.5 
Rank 

1 2 3 4 5 6 7 8 9 10 

B 

1  0.492 0.514 0.525 0.461 0.498 0.473 0.486 0.522 0.382 3 7 

2 0.508  0.522 0.531 0.472 0.507 0.483 0.496 0.529 0.400 5 5 

3 0.486 0.478  0.513 0.441 0.483 0.454 0.470 0.510 0.349 2 8 

4 0.475 0.469 0.487  0.432 0.471 0.445 0.459 0.496 0.350 0 10 

5 0.539 0.528 0.559 0.568  0.541 0.513 0.528 0.567 0.412 8 2 

6 0.502 0.493 0.517 0.529 0.459  0.472 0.487 0.526 0.370 4 6 

7 0.527 0.517 0.546 0.555 0.487 0.528  0.515 0.554 0.400 7 3 

8 0.514 0.504 0.530 0.541 0.472 0.513 0.485  0.539 0.385 6 4 

9 0.478 0.471 0.490 0.504 0.433 0.474 0.446 0.461  0.345 1 9 

10 0.618 0.600 0.650 0.650 0.588 0.630 0.600 0.615 0.655  9 1 

 

The structure of prices of solution 10 is presented in Table 6, which leads to a retailer’s profit in the 

interval [3.86998, 4.24842]. 

 

Table 6. Electricity prices (in €/kWh) of solution 10. 

Solution 

Prices 

(€/kWh) 

P1 

[1,28] 

P2 

[29,44] 

P3 

[45,56] 

P4 

[57,72] 

P5 

[73,84] 

P6 

[85,96] 

10 0.0996 0.2739 0.2828 0.0817 0.1548 0.1438 
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6. Conclusions 

In this work, a novel BL model of the interaction between a retailer and consumers in the electricity retail 

market was developed, including shiftable, interruptible and thermostatic loads, which can be controlled 

by an energy management system. The aim is to determine the optimal dynamic ToU electricity prices to 

be established by a retailer to maximize profits in face of consumers’ demand response to minimize costs 

considering comfort requirements of time slots for shiftable load operation, energy supplied to 

interruptible loads and indoor temperature range for the thermostatic load. The BL model is dealt with a 

hybrid approach based on a PSO algorithm that calls a MIP solver to deal with the consumer’s problem 

of appliance scheduling and thermostat setting for a given instantiation of electricity prices (upper level 

decision variables).  

The consideration of the thermostatic load in the MIP model imposes a high computational burden, due 

to the combinatorial nature of the model, which impairs obtaining the lower level optimal solution in an 

acceptable computational time. Since only optimal solutions to the lower level problem are feasible to the 

BL problem, non-optimal solutions to the lower level problem may lead to misleading solutions to the BL 

problem, i.e. solutions that may display better upper level objective function values but are indeed 

infeasible. However, sound information that can be exploited in practice should be given to the (upper 

level) decision maker. For this purpose, we propose a novel approach to compute lower/upper estimates 

for the optimal solution of the BL problem when a computational budget should be considered to obtain 

solutions to the lower level problem. Solutions to the lower level problem are identified and successively 

refined, within a given computational budget compatible with the decision time frame, to obtain upper 

estimates for the upper level objective function. Good quality lower estimates are determined by making 

the most of the characteristics of the problem, in particular the relations between the upper level and the 

lower level objective functions. A set of solutions for the leader is obtained, each one giving an interval 

number for the upper level objective function. Additional information to support decision making is 

obtained by comparing interval numbers defined by the lower/upper estimates previously computed.  

In this setting, we intend to further develop techniques to derive risk vs. opportunity indexes useful to 

inform the upper level decision making process whenever lower level optimal solutions cannot be 

guaranteed due to the computational difficulties of the lower level problem. Furthermore, we intend to 

consider the lower level problem as a multi-objective model by explicitly including cost and comfort 

objective functions. 
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