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Abstract

The motivation of the studies presented in this thesis is the modelling of drug delivery, from polymeric
matrices, enhanced by external stimuli, namely by heat. Drug delivery is a large domain of active
research on the development of new materials and transport systems for efficient therapeutic release
of drugs. Many new drug delivery systems are at an experimental stage. Therefore, mathematical
modelling and numerical simulation of drug release, appears as an important coadjuvant in such
pioneering experimental studies.

In this thesis, we study numerical methods for systems of nonlinear parabolic equations and
systems composed by a nonlinear elliptic equation coupled with two nonlinear parabolic equations.
The first systems can be used to describe drug transport enhanced by heat, while the second one can
be used to describe iontophoresis drug delivery. The numerical methods proposed may be viewed as
finite difference methods as well as fully discrete piecewise linear finite element methods.

Concerning the first class of systems, systems of nonlinear parabolic equations, we analyse their
stability and convergence when the solutions are in H3. We prove that the approximations of the
solutions and their gradients are second order convergent with respect to discrete L2-norms.

Regarding the numerical methods proposed for the second class of systems, a nonlinear elliptic
equation coupled with a system of nonlinear parabolic equations, we prove second order convergence,
with respect to a discrete L2-norm, for the solutions of the parabolic equations. We propose a nu-
merical method for the elliptic equation, whose solutions converge, to the corresponding continuous
solutions, with a second order convergence rate with respect to a discrete version of the usual H1-
norm. Concerning these systems, the main difficulty in the design of efficient and accurate numerical
methods is the dependence of the convective velocity, of one of the time dependent equations, on
the gradient of the solution of the nonlinear elliptic equation. The convergence results established
can be viewed as supraconvergence results, in the framework of finite difference convergence theory,
and supercloseness results, within finite element convergence theory. The stability of the numerical
methods proposed is also addressed. As we are dealing with nonlinear problems, to get local stability,
a usual required assumption is the boundedness of the sequence of numerical solutions. We prove
that this assumption is a consequence of the error properties and therefore we conclude the stability
of the proposed methods. Numerical experiments illustrating the convergence results obtained are
included. These experiments show the sharpness of the smoothness assumptions on the solutions of
the differential problems. From the perspective of drug delivery applications, the qualitative behaviour
of the previous systems is numerically studied in different scenarios: drug transport enhanced by heat
and iontophoresis drug delivery. Finally, we remark that the mathematical models studied before
were established using Fick’s law for the drug flux, which does not take into account the viscoelastic
properties of the matrices where the drug is dispersed. In the last chapter we present an exploratory
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study of pulsatile drug delivery from thermoresponsive polymeric matrices. The model takes into
account the mechanistic properties of the polymeric matrix under the effect of temperature and is
represented by a moving boundary initial value problem. A semi-analytic approach is considered and
the solution of the initial boundary value problem is obtained using Fourier analysis.

Keywords: Stimuli drug delivery - Heat - Finite difference methods - Piecewise finite element
methods - Convergence - Stability



Resumo

A motivação para o estudo apresentado nesta dissertação é a libertação de fármacos de matrizes
poliméricas, estimulada por estímulos externos, nomeadamente pela temperatura. A libertação de
fármacos faz parte de um domínio alargado da investigação ativa do desenvolvimento de novos
materiais e sistemas de transporte para uma eficiente libertação terapêutica de fármacos. Muitos
sistemas de libertação de fármacos mais recentes encontram-se numa etapa experimental. Por esta
razão, a modelação matemática e a simulação numérica de libertação de fármacos surgem como um
coadjuvante importante em tais estudos experimentais pioneiros. Nesta dissertação, estudamos os
métodos numéricos para os sistemas de equações parabólicas não lineares e sistemas de uma equação
elíptica não linear associada a duas equações parabólicas não lineares. Os primeiros sistemas podem
ser utilizados para descrever o transporte de fármacos estimulado pela temperatura, ao passo que o
segundo pode ser utilizado para descrever a libertação de fármacos através da iontoforese. Os métodos
numéricos propostos podem ser vistos como métodos de diferenças finitas, bem como método de
elementos finitos segmentado linear completamente discreto. A respeito dos sistemas de primeira
classe, sistemas de equações parabólicas não lineares, analisamos a sua estabilidade e convergência
quando as soluções estão em H3. Provamos que as aproximações das soluções e os seus gradientes são
convergentes de segunda ordem relativamente às normas-L2 discretas. Quanto aos métodos numéricos
propostos para a segunda classe de sistemas, uma equação elíptica não linear associada a um sistema
de equações parabólicas não lineares, provamos a convergência de segunda ordem, relativamente à
norma-L2 discreta, para as soluções das equações parabólicas. Propomos um método numérico para a
equação elíptica, cujas soluções convergem para as correspondentes derivadas da solução contínua,
com uma taxa de convergência de segunda ordem, relativamente a uma versão discreta da norma-H1

usual. A respeito destes sistemas, a principal dificuldade na conceção de métodos numéricos eficientes
e exatos é a dependência da velocidade convectiva, de uma das equações dependentes do tempo, no
gradiente da solução da equação elíptica não linear.

Os resultados da convergência estabelecida podem ser vistos como resultados de supraconvergên-
cia, no âmbito da teoria da convergência de diferenças finitas e como resultados de superaproximação,
dentro da teoria da convergência de elementos finitos. Também abordamos a estabilidade de méto-
dos numéricos propostos. Visto tratar-se de problemas não lineares, de forma a obter estabilidade
local, uma das imposições comuns necessárias é a limitação da sequência de soluções numéricas.
Provamos que este imposição é uma consequência das propriedades do erro e, portanto, concluímos a
estabilidade dos métodos propostos. Estão incluídas as experimentações numéricas ilustrativas dos
resultados de convergência obtidos. Estas experimentações comprovam a precisão das hipóteses de
regularidade das soluções dos problemas diferenciais. Do ponto de vista das aplicações da libertação
de fármacos, o comportamento qualitativo dos sistemas anteriores é estudado numericamente em
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cenários diferentes: transporte de fármacos estimulado pela temperatura ou libertação de fármacos
através da iontoforese. Por fim, observamos que os modelos matemáticos estudados anteriormente
foram definidos utilizando a Lei de Fick para fluxo de fármacos que não consideram as propriedades
viscoelásticas das matrizes em que os fármacos são distribuídos. Neste último capítulo, apresentamos
um estudo exploratório da libertação pulsátil de fármacos para matrizes poliméricas termoresponsivas.
O modelo tem em consideração as propriedades mecânicas da matriz polimérica sob o efeito da
temperatura e é representado através de um problema de condições iniciais e de fronteira móvel.
é considerada uma abordagem semi-analítica e a solução do problema de condições iniciais e de
fronteira é obtida utilizando a análise de Fourier.

Palavras-chave: Libertação estimulada de fármacos - Temperatura - Método de diferenças Finitas
- Método de Elementos Finitos Segmentado Linear - Convergência - Estabilidade
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Chapter I

Introduction

1 General framework

Drug delivery is a large domain of research on the development of new materials or transport systems,
used for efficient therapeutic release of drugs. It plays a crucial role in disease treatment and it
represents an important tool in the advancement of precision medicine. The most challenging problems
faced by researchers in the area are the development of systems for targeted release, controlled release
or enhanced release. Targeted release refers to systems that directly deliver drugs to specific parts
of the body, avoiding global systemic absorption and degradation within the gastrointestinal tract, if
taken orally. A therapeutic concentration of the drug is achieved at a specific site- the target organ or
tissue- for a desired period without causing undesirable side effects. Examples of targeted delivery
systems are cardiovascular drug delivery stents or intravitreal implants, where the drug is dispersed in
a polymeric platform. In addition, the use of nanoparticles, as drug carriers, has revolutionized how
drugs are delivered. After the drug targets the tissue or organ the release can be sustained or enhanced.
The release is controlled or sustained when it is extended over a period, to keep concentration levels
within a therapeutic window (see Figure I.1). In the case of polymeric implants the release can
be controlled by tuning the properties of the polymer and of the drug-polymer interactions. The
enhancement of drug release and of drug transport through the target tissue or organ is achieved
with different stimuli as chemical enhancers or physical enhancers as electric fields, magnetic fields,
ultrasounds or heat sources. These stimuli can be applied separately or coupled. They are used in
different areas, but oncology is one of the most promising and challenging (see [10], [11], [24], [36]
and [40])). In oncologic diseases, the transport of the chemotherapy cocktails can be made by specific
nanoparticles and the stimuli act to enhance the drug release from the transporter ([19], [29], [35],
[36], [39], [41]).

Another area of application is transdermal delivery where it is crucial to enhance the permeability
of the stratum corneum, the outermost layer of the epidermis. In this case external stimuli as heat,
electric fields or ultrasounds have been used with great success (see for instance [6], [31], [27], [37],
[41], [49] and [56]). Ultrasounds play also a very important role in drug delivery to the brain where
the stimulus act as a disruptor of the blood brain barrier ([34], [55]).

In the present dissertation we are mainly interested on drug delivery systems where the drug
release is enhanced by the temperature. Heat has been used as enhancer in different situations as for

1



2 Introduction

Fig. I.1 Different profiles of release

instance, in transdermal drug delivery. An increasing body of evidence suggests that temperature
largely influences drug distribution, altering rate profile ([31]).

One popular application of heat in transdermal drug delivery are patches. We mention, for example
patches where dispersed iron powder represent a heat source. Oxidation of the iron powder generates
an increase of the temperature that lead to an increase of permeability of the skin as well as a decrease
in its Young modulus ([56]). Consequently, an augmented the drug flux through the skin is observed,
and due to the increase of the superficial blood perfusion, an intensification of the drug absorption
occurs (see [41], [49]). Heat can be also generated by the application of other stimuli as ultrasounds
[27] or electric fields [6].

When temperature increases, the pattern of Brownian motion is altered. In fact the, rate of
diffusion defined by the diffusion coefficient strongly depends on temperature. In the case of spherical
particles, diffusing in a liquid with low Reynolds number, the Stokes-Einstein equation postulates that
the diffusion coefficient D is defined by

D =
KBT
6πηr

,

where T denotes the temperature, KB is the Boltzman constant, r represents the radius of a spherical
drug molecule and η the viscosity.

The diffusion coefficient in solids at a specific temperature T is given by the Arrhenius equation

D = D0 exp
(
−EA

RT

)
, (I.1)

where D0 is the maximal diffusion coefficient (at infinite temperature), EA is the activation energy for
diffusion, and R denotes the universal gas constant.

In Chapter III we describe the drug transport in a tissue or organ Ω, by the convection-diffusion-
reaction equation

∂c
∂ t

+∇.(v(T )c) = ∇.(Dd(T )∇c)+Q(c) in Ω× (0, t f ] (I.2)

where c denotes the concentration and the temperature T is governed by

∂T
∂ t

= ∇.(DT (T )∇T )+G(T ) in Ω× (0, t f ]. (I.3)
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In (I.2), v(T ) denotes the drug release velocity, Dd is the diffusion coefficient and t f denotes the final
time. To describe the dependence of drug distribution on temperature, we assume that Dd in (I.2) is a
function of the temperature T. We observe that equations (I.2) and (I.3) describe the drug evolution in
two different situations: when heat is generated by a source term, like in heat patches applications, or
when heat is generated as a secondary stimulus. Equations (I.2) and (I.3) should be coupled with drug
release equations from a reservoir (nanoparticles loaded with the drug) as well as the equations for
the reservoir transport. Moreover, in equation (I.2), the convective velocity depends explicitly in the
temperature. To complete the model an equation for the velocity can be added [2].

The concentration and temperature equations, (I.2) and (I.3), respectively, are complemented with
homogeneous Dirichlet boundary conditions

c(t) = 0 on ∂Ω× (0, t f ],T (t) = 0 on ∂Ω× (0, t f ], (I.4)

and initial conditions
c(0) = c0 in Ω,T (0) = T0 in Ω. (I.5)

However, heat is also generated as a consequence of the application of other physical enhancers
as electric fields or ultrasounds. We remark that electric fields are currently used to enhance drug
transport through the skin namely for electric charged drug molecules. In this case a convective
drug transport arises induced by the electric field defined by the gradient of the electric potential
([6]). Moreover, nowadays we can assist to the use of electric fields to enhance drug transport and
drug absorption in other contexts like pancreatic cancer ([8], [9]), breast cancer ([33]), ophthalmic
applications (see [40], [28] and the references therein).

Several authors have addressed the problem of drug transport electrically enhanced. We mention
without being exhaustive [6], [16], [42] and [47]. Thereby, in chapter IV is introduced the following
model that includes a nonlinear elliptic equation for the electric field and the two parabolic equations
from the previous model with the necessary adaptations.

−∇.(σ(|∇φ |)∇φ) = f inΩ, (I.6)

∂T
∂ t

= ∇.(DT (T )∇T )+G(T )+F(∇φ) inΩ× (0, t f ] (I.7)

∂c
∂ t

+∇.(v(T,∇φ)c) = ∇.(Dd(T )∇c)+Q(c) inΩ× (0, t f ]. (I.8)

that is completed by the following boundary and initial conditions

φ = 0,T = 0,c = 0 on∂Ω× (0, t f ] (I.9)

and
T (0) = T0, c(0) = c0 inΩ. (I.10)
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In (I.6), f = 0, φ represents the electric potential, σ denotes the electrical conductivity coefficient. In
[6] while studying the transdermal electroporation the authors defined σ by

σ(y) = σ1 +(σ0 −σ1)
e

1
B (y−y1)−1

e
1
B (y−y0)−1

, (I.11)

where σi,yi, i = 0,1, and B are convenient constants that can be computed from laboratorial data. In
the model proposed in this chapter we give equation (I.7), that describes the generation of heat by an
electric field, the form of a modified Pennes’ bioheat equation. Penne’s equation reads

ρks
∂T
∂ t

= ∇.(DT ∇T )−ωmcb(T −Ta)+q+QJ, (I.12)

where T denotes the temperature, ρ represents the tissue density, ks is the specific heat of the tissue,
DT is the thermal conductivity, Ta is the arterial blood temperature, q is the metabolic volumetric
heat generation, ωm is the nondirectional blood flow associated with perfusion, cb is the specific heat
of blood and in (I.13), QJ that denotes the heat generated by the applied potential φ , is given by
QJ = σ |∇φ |2, where σ is the electrical conductivity and |.| represents the Euclidian norm (see for
instance [6]). The modified form of Pennes’ equation adopted in our model, assumes the form

ρks
∂T
∂ t

= ∇.(DT ∇T )−ωmcb(T −Ta)+q+F(∇φ), (I.13)

where F is given by

F(∇φ) = σ(|∇φ |)|∇φ |2, (I.14)

In equation (I.8), Dd is the diffusion coefficient, v is the convective transport, that is related with
the diffusion coefficient via Einstein-Smoluchowski relation, is given by the modified Nernst-Planck
equation

v(T,∇φ) = Dd
zFr

T R
∇φ + vb, (I.15)

where z is the drug valence, Fr Faraday’s constant, R represents the universal gas constant and vb

denotes the electro-osmotic convective velocity.

The main numerical question that arises in the solution of the initial boundary value problem
(IBVP) (I.6)-(I.8), (I.9), (I.10) is the dependence of the concentration variable on the gradient of
the solution of the nonlinear elliptic equation (I.6). If the numerical approximation of the elliptic
equation (I.6) is such that the numerical gradient does not converge to the corresponding continuous
gradient, or if it converges with a lower convergence order, then the numerical approximation for
the concentration does not converge to the corresponding continuous concentration or it converges
with lower convergence order, respectively. This problem was previously studied in [4] for the non
Fickian transport in a porous medium when Darcy’s law is replaced by an elliptic linear equation for
the pressure. Fickian transport in porous media were considered in [25].

In chapter V we study the effect of temperature on drug delivery, when the drug is dispersed
in a thermoresponsive polymer. Thermoresponsive polymers are stimuli-responsive materials that
exhibit a change of their physical properties with temperature. Ideally a thermoresponsive polymer,
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where a drug is dispersed, should retain it at body temperature (37 °C), and release the drug when
the temperature is higher, signalizing an infectious process. As temperature increases, the force that
keeps the atoms together decreases, the polymer collapses and the drug is released. More precisely
thermoresponsive polymers have a phase transition temperature, the so-called Critical Solution
Temperature (CST). A large class of polymers has a Lower Critical Solution Temperature (LCST),
that is the polymers swell for temperatures below the LCST and they shrink when the temperature is
above the LCST. In the case a drug is dispersed in a thermosensitive polymeric matrix, the drug is
released as the polymer shrinks. In the chapters before V, we take into account the influence of the
temperature on the diffusion coefficient and on the convection rate of the drug, but we assume that
there was no effect of the temperature on the properties of the platform where the drug is dispersed.
The model presented in chapter V is based on a different approach. In fact, in thermoresponsive
materials, the phenomena underlying a pulsatile delivery are essentially related with changes in the
properties of the platform.

In the previous chapters, we studied Fickian models that can be used to describe drug transport
enhanced by heat. This means that the parabolic equations for the temperature and for the concentration
are established from Fick’s law for the flux

J(x, t) =−D∇ℓ(x, t) (I.16)

with the mass conservation equation

∂ℓ

∂ t
(x, t)+∇J(x, t) = R(ℓ(x, t)), x ∈ Ω, t ∈ (0, t f ], (I.17)

where ℓ= T,c, and R represents the reaction terms.

2 Thesis description

One of the main objectives of the present work is the convergence analysis of finite difference
methods for systems of nonlinear partial differential equations using lower smoothness assumptions
for the solution than those usually considered. Classically, for linear initial value problems, the
Lax-Richtmeyer equivalence theorem states that a consistent finite difference method is convergent if
and only if is stable ([36]). From this result, a practical strategy used to study convergence of finite
difference methods for linear initial value problems, is defined by

Stability + Consistency =⇒ Convergence,

where the convergence order is at least equal to the consistency order.
When the finite difference methods are defined with nonuniform meshes, the consistency order

can be less than the order of the corresponding finite difference methods defined with uniform meshes.
Consequently, based on the Lax-Richtmeyer theorem, we cannot conclude that the convergence order
on nonuniform meshes is equal to the convergence order on uniform meshes.

There exists a long list of contributions showing that the convergence order of several linear finite
difference methods defined on nonuniform grids is equal to the convergence order of the correspondent
finite difference methods, defined on uniform grids. Without being exhaustive we mention the classical
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papers [26], [38], [18], where the analysis requires smoothness of the solutions of the continuous
problem, and [5], [25], [19] where the convergence analysis requires less smoothness than in the first
group of papers. We notice that only the work [25] deals with a system of partial differential equations
defined by an elliptic equation and a parabolic equation.

We begin in Chapter II by studying a coupled abstract system composed by two nonlinear diffusion
equations - for concentration and temperature. We propose a method that can be viewed as a fully
discrete piecewise linear finite element method and we prove its supraconvergence.

In Chapter III we consider a more general coupled system - equations (I.3) and (I.2)- and we
propose a stable and accurate method to compute numerical approximations for the temperature
and concentration. The method is based on a piecewise linear finite element method combined with
particular integration formulas. Such fully discrete method can be seen as a finite difference method
defined on a nonuniform grid. We prove that the approximations for the temperature and concentration
and their gradients are second order convergent with respect to discrete L2-norms. It is well known
that the piecewise linear finite element method (FEM) leads to first order approximations for the
gradient. Such result shows the supercloseness of the gradient approximations presented in this work.
As the fully discrete FEM is equivalent to a finite difference method defined on a nonuniform grid
with first order truncation error with respect to the norm ∥.∥h,∞. The supraconvergence of the new
method is established. The results in Chapter III are published online in the journal Computers &
Mathematics with Applications.

The system of PDE’s studied in the last chapter is coupled with a nonlinear elliptic equation that
will be presented in the next chapter.

The main objective of chapter IV is to design a numerical method for the IBVP (I.6)-(I.8),
(I.9), (I.10) that leads to second order approximations for the numerical gradient of φ and for the
temperature T , leading consequently to a second order approximation for the approximation of c. The
main ingredient in our study is the extension of the results presented in [5] to the nonlinear elliptic
equation (I.6) and the approach followed in [4] and [25]. The numerical method proposed belongs to
the class of finite difference methods (FDM) but it is equivalent to a fully discrete in space piecewise
linear finite element method (PLFEM). We will show that the FD approximation for φ is second order
convergent to φ with respect a discrete H1-norm while the numerical approximations for T and c are
second order convergent to T and c, respectively, with respect to a discrete L2-norm. These results are
unexpected in the scope of FDM because the truncations errors associated with the FDM are only of
first order with respect to the norm ∥.∥∞ as well as in the scope of FEM because their are based in the
piecewise linear FEM.

Until this point, we studied Fickian models to describe drug transport enhanced by temperature,
in the remain chapter is introduced a hybrid Non Fickian model.

In chapter V, we construct an hybric Non Fickian mathematical model for the drug transport
through the manipulation of an integro-differential equation. For the IBVP’s defined in special spatial
and discrete time domains, are computed the solution.

In chapter VI are addressed some conclusions about the work and referenced a variety of problems
that remain open and that will be subject of study in the future.

To complete this work and cover the results needed in the proofs we attached the Appendix with
relevant definitions and results.



Chapter II

Convergence analysis for an abstract
coupled problem

1 Introduction

In this chapter our objective is to analyse a finite difference scheme for the following system, assuming
that Ω = (a,b), t f denotes a final time and DT is constant:

∂T
∂ t

(x, t) = DT
∂ 2T
∂x2 (x, t),(x, t) ∈ Ω× (0, t f ] (II.1)

and
∂c
∂ t

(x, t) =
∂

∂x

(
Dd(T (x, t))

∂c
∂x

(x, t)
)
,(x, t) ∈ Ω× (0, t f ] . (II.2)

The system (II.1), (II.2) is completed by the boundary conditions

T (t) = 0 and c(t) = 0 on ∂Ω× (0, t f ] (II.3)

and the initial conditions
T (0) = T0 and c(0) = c0 in Ω. (II.4)

To simplify the presentation the following notation are used: if w : Ω× [0, t f ]→ IR, we represent by
w(t) the function w(t) : Ω → IR such that w(t)(x) = w(x, t),x ∈ Ω.

The finite difference method that will be studied is defined on nonuniform grids and it can be seen
as a fully discrete piecewise linear finite element method. The convergence analysis will be performed
assuming that T (t),c(t) ∈ C4(Ω), t ∈ (0, t f ]. We show that the numerical approximations for T (t)
and c(t), Th(t) and ch(t), respectively, are second order accurate approximations.

This chapter is composed by five sections that we describe briefly. In Section 2 we present some
preliminary definitions and results. The first convergence results are presented in Section 3 where
we establish first order estimates for the errors of Th(t) and ch(t), assuming that T (t),c(t) ∈C3(Ω).

The convergence orders established in the previous section are improved in Section 4 assuming that
T (t),c(t) ∈C4(Ω).

7
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2 Preliminary definitions and results

Let Λ be a sequence of vectors h of positive entries (h1, · · · ,hN) such that
N

∑
i=1

hi = b−a and hmax =

max
i

hi, such that hmax → 0. For h ∈ Λ we introduce in Ω the nonuniform grid

Ωh = {xi, i = 0, · · · ,N,xi − xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b}.

We denote by Ωh and ∂Ωh the set of interior nodes Ω ∩ Ωh and the boundary points ∂Ω ∩ Ωh,
respectively.

By Wh we represent the space of grid functions defined in Ωh and the space of grid functions in
Wh that are null at the boundary points is denoted by Wh,0.

We introduce in the following lines, the inner products and norms in Wh and Wh,0, as well as the
finite difference operators that we need at this work. In Wh,0 we define the inner product

(uh,vh)h =
N−1

∑
i=1

hi+1/2uh(xi)vh(xi),uh,vh ∈Wh,0,

where hi+1/2 =
hi +hi+1

2
. The corresponding norm is denoted by ∥.∥h. We also use the related

notations

(uh,vh)+ =
N

∑
i=1

hiuh(xi)vh(xi),uh,vh ∈Wh,

∥uh∥2
+ =

N

∑
i=1

hi(uh(xi))
2.

We introduce now the following finite difference operators:

D−xuh(xi) =
uh(xi)−uh(xi−1)

hi
, i = 1, · · · ,N (II.5)

D∗
xuh(xi) =

uh(xi+1)−uh(xi)

hi+1/2
, i = 1, · · · ,N −1, (II.6)

D2uh(xi) =
D−xuh(xi+1)−D−xuh(xi)

hi+1/2
, i = 1, · · · ,N −1,

where uh ∈Wh.

In the next result we establish a discrete version of the integration by parts rule and a discrete
version of the Poincaré-Friedrich’s inequality.

Proposition 2.0.1 [30] For all uh ∈Wh and vh ∈Wh,0, we deduce that

(−D∗
xuh,vh)h = (uh,D−xvh)+,

(−D2uh,vh)h = (D−xuh,D−xvh)+,
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and
∥vh∥2

h ≤ |Ω|∥D−xvh∥2
+.

where |Ω| denotes the measure of Ω.

Therefore, we are able to present the semi-discrete finite difference method. By Th(t) and ch(t) we
represent the semi-discrete approximations for T (t) and c(t), respectively, defined by the following
ordinary differential systems 

T ′
h(t) = DT D2Th(t) in Ωh × (0, t f ]

Th(t) = 0 on ∂Ωh × (0, t f ]

Th(0) = RhT0 in Ωh

(II.7)


c′h(t) = D∗

x(Dd(MhTh(t))D−xch(t)) in Ωh × (0, t f ]

ch(t) = 0 on ∂Ωh × (0, t f ]

ch(0) = Rhc0 in Ωh,

(II.8)

where Mh denotes the average operator

Mhuh(xi) =
1
2
(uh(xi−1)+uh(xi)), i = 1, . . . ,N,uh ∈Wh. (II.9)

We notice that Th(t) and ch(t) defined by (II.7), (II.8), respectively, can be seen as fully discrete
piecewise linear finite element solutions. In fact, the weak formulation of the initial boundary value
problems (IBVP) (II.1), (II.2), (II.3), (II.4) is given by

(T ′(t),u) = DT

(
∂T
∂x

(t),
∂u
∂x

)
a.e. in (0, t f ],∀u ∈ H1

0 (Ω),

(T (0),u) = (T0,u), ∀u ∈ L2(Ω),
(II.10)

and

(c′(t),w) =
(

Dd(T (t))
∂c
∂x

(t),
∂w
∂x

)
a.e. in (0, t f ],∀w ∈ H1

0 (Ω),

(c(0),w) = (c0,w), ∀w ∈ L2(Ω).
(II.11)

In (II.10), (II.11), a.e. means almost everywhere and by L2(Ω) and H1
0 (Ω) we denote the usual

Sobolev spaces.

Considering that for wh ∈Wh, Phwh denotes the continuous piecewise linear interpolation of wh

with respect to the partition Ωh. The piecewise linear finite element approximations for T (t) and
c(t), defined by (II.10), (II.11), are computed considering the piecewise linear interpolation functions
PhTh(t),Phch(t) ∈ H1

0 (Ω), Th(t),ch(t) ∈Wh,0, that are solutions of the following weak problems:

(PhT ′
h(t),Phuh) = DT

(
∂PhTh

∂x
(t),

∂Phuh

∂x

)
in (0, t f ],∀uh ∈Wh,0,

(PhTh(0),Phuh) = (PhRhT0,Phuh), ∀uh ∈Wh,0,
(II.12)
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and

(Phc′h(t),Phwh) =

(
Dd(PhTh(t))

∂Phch

∂x
(t),

∂Phwh

∂x

)
in (0, t f ],∀wh ∈Wh,0,

(Phch(0),Phwh) = (PhRhc0,Phwh), ∀wh ∈Wh,0,
(II.13)

where Rh : C(Ω)→Wh denotes the restriction operator Rhu(xi) = u(xi), i = 0, . . . ,N.

The two finite problems (II.12), (II.13) are then replaced by the fully discrete piecewise linear
finite element approximations

(T ′
h(t),uh)h =−DT (D−xTh(t),D−xuh)+ in (0, t f ],∀uh ∈Wh,0,

(Th(0),uh)h = (RhT0,uh)h, ∀uh ∈Wh,0,
(II.14)

and
(c′h(t),wh)h =−(Dd(MhTh(t))D−xch(t),D−xwh)+ in (0, t f ],∀wh ∈Wh,0,

(ch(0),wh)h = (Rhc0,wh)h, ∀wh ∈Wh,0.
(II.15)

Finally, choosing in each equation of (II.14), (II.15) a sequence of grid functions where each element
is equal to one in a grid point and zero in the others we deduce the IBVP (II.7) and (II.8).

3 Convergence analysis for solutions in C3(Ω)

In this section we establish estimates for the errors ET (t) = RhT (t)−Th(t),Ec(t) = Rhc(t)− ch(t),
where Th(t),ch(t) are given by (II.7), (II.8) or (II.14), (II.15).

We assume that the coefficient function Dd has bounded first derivative, which means that it
belongs to C1

b(IR) and satisfies the following assumption: Dd ≥ β ≥ 0 in IR.

3.1 Temperature

We start by studying the error ET (t) = RhT (t)−Th(t).

Theorem 3.1.1 Let the solution of T (II.1) be in L2(0, t f ,C3(Ω)) and let Th be defined by (II.7), such
that

RhT,Th ∈C1([0, t f ],Wh,0).

Then there exists a positive constant Const, h and t independent, such that ET (t) = RhT (t)−Th(t)
satisfies

∥ET (t)∥2
h +

∫ t

0
∥D−xET (s)∥2

+ds ≤Consth2
max

∫ t

0
∥T (s)∥2

C3(Ω)ds, (II.16)

for t ∈ [0, t f ] and h ∈ Λ.

Proof: Let Tr,T (t) be the truncation error induced by the spatial discretization defined in (II.7).
Taking into account that D2RhT (xi, t) will be obtained through Taylor expansion series, for the
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truncation error, we get the following representation

Tr,T (xi, t) = DT

(
∂ 2T
∂x2 (xi, t)−D2RhT (xi, t)

)
=

DT

6hi+ 1
2

(
h2

i+1
∂ 3T
∂x3 (ηi, t)−h2

i
∂ 3T
∂x3 (ξi, t)

)
,

where ηi,ξi ∈ [xi−1,xi+1], i = 1, . . . ,N −1.

For the error ET (t) we obtain successively

(E ′
T (t),ET (t))h = (RhT ′(t)−T ′

h(t),ET (t))h

=

(
DT Rh

∂ 2T
∂x2 (t)−DT D2Th(t),ET (t)

)
h

= DT (D2ET (t),ET (t))h +(Tr,T (t),ET (t))h

=−DT (D−xET (t),D−xET (t))++(Tr,T (t),ET (t))h, t ∈ (0, t f ].

where t ∈ (0, t f ].

Young’s inequality leads to

1
2

d
dt
∥ET (t)∥2

h +DT∥D−xET (t)∥2
+ ≤ 1

4ε2 ∥Tr,T (t)∥2
h + ε

2∥ET (t)∥2
h,

where ε ̸= 0. Considering now the discrete Poincaré inequality we get

d
dt
∥ET (t)∥2

h +2(DT −|Ω|ε2)∥D−xET (t)∥2
+ ≤ 1

2ε2 ∥Tr,T (t)∥2
h. (II.17)

To establish an estimation for ET (t), we compute an upper bound for ∥Tr,T (t)∥2
h. We have, successively,

∥Tr,T (t)∥2
h ≤

N−1

∑
i=1

D2
T

hi+ 1
2

(
h4

i

18

(
∂ 3T
∂x3 (ξi)

)2

+
h4

i+1

18

(
∂ 3T
∂x3 (ηi)

)2
)

≤
N−1

∑
i=1

D2
T

(h3
i

9
∥T∥2

C3(Ω)+
h3

i+1

9
∥T∥2

C3(Ω)

)
≤ 2

9
D2

T |Ω|∥T∥2
C3(Ω)h

2
max

Then, if we fix ε such that DT − ε2|Ω|> 0, and if we take

Const =
1

18ε2
D2

T |Ω|
DT − ε2|Ω|

,

we establish

d
dt

(
∥ET (t)∥2

h +
∫ t

0
∥D−xET (s)∥2

+ds−Consth2
max

∫ t

0
∥T (s)∥2

C3(Ω)ds

)
≤ 0, t ∈ [0, t f ]. (II.18)

that leads to (II.16)
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3.2 Concentration

In this section we establish an upper bound for the error Ec(t) = Rhc(t)− ch(t), where c is defined by
(II.2). However, c depends on the solution T of (II.1), the upper bound for Ec(t) depends on the error
ET (t) as well as on the truncation error associated with the spatial discretization defined in (II.8).

Theorem 3.2.1 Let the solutions T and c of (II.1) and (II.2), respectively, belong to L2(0, t f ,C3(Ω))

and let Th,ch be defined by (II.7) and (II.8), respectively. Let ET (t) and Ec(t) be the spatial discretiza-
tion errors ET (t) = RhT (t)−Th(t) and Ec(t) = Rhc(t)− ch(t). If

Rhc,ch ∈C1([0, t f ],Wh,0),RhT,Th ∈C([0, t f ],Wh,0),

there exists a positive constant Const, space and time-independent, such that

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥2

+ds ≤Const
(∫ t

0
∥ET (s)∥2

h∥c(s)∥2
C1(Ω)

ds

+h2
max

∫ t

0
∥c(s)∥2

C3(Ω)
(∥T (s)∥2

C2(Ω)
+1)ds+h2

max

)
,

(II.19)

for t ∈ [0, t f ] and h ∈ Λ.

Proof: Let Tr,c(t) be the truncation error induced by the spatial discretization defined in (II.8)

Tr,c(xi, t) =
∂

∂x

(
Dd(T (xi, t))

∂c
∂x

(xi, t)
)
−D∗

x(Dd(MhRhT (xi, t))D−xRhc(xi, t)),

for i = 1, . . . ,N −1. It can be shown that Tr,c(t) admits the representation

Tr,c(t) = D′
d(T (xi, t))

(
hi −hi+1

2

)[
∂ 2T
∂x2 (xi, t)

∂c
∂x

(xi, t)+
∂T
∂x

(xi, t)
∂ 2c
∂x2 (xi, t)

]
+

Dd(T (xi, t))
6hi+1/2

(
h2

i
∂ 3c
∂x3 (ξi, t)−h2

i+1
∂ 3c
∂x3 (ηi, t)

)
+O(h2

max),
(II.20)

where O(h2
max) represents a term, depending on ∥c(t)∥C3(Ω) and ∥T (t)∥C3(Ω), such that

|O(h2
max)| ≤Const h2

max,

where Const represents a positive space and time independent constant.

From (II.20), for ∥Tr,c(t)∥2
h we have, successively,

∥Tr,c(t)∥2
h ≤ 4

N−1

∑
i=1

hi+1/2(D
′
d(Ti))

2(hi −hi+1)
2

[(
∂ 2T
∂x2

)2(
∂c
∂x

)2

+

(
∂T
∂x

)2(
∂ 2c
∂x2

)2
]

+
N−1

∑
i=1

D2
d

9hi+1/2

[
h4

i

(
∂ 3c
∂x3

)2

+h4
i+1

(
∂ 3c
∂x3

)2
]
+O(h4

max)
N−1

∑
i=1

hi+1/2

≤ ∥Dd∥2
C1

b(IR)
|Ω|
(

16h2
max∥T∥2

C2(Ω)∥c∥2
C2(Ω)+

4
9

h2
max∥c∥2

C3(Ω)+O(h4
max)

)
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where, to simplify we omit the arguments of T and c. It is easy then to conclude that

∥Tr,c(t)∥2
h ≤Consth2

max

(
∥T (t)∥2

C2(Ω)∥c(t)∥2
C2(Ω)+∥c(t)∥2

C3(Ω)+h2
max
)
. (II.21)

For the error Ec(t) we have, successively,

(E ′
c(t),Ec(t))h = (Rhc′(t)− c′h(t),Ec(t))h

=−(Dd(MhRhT (t))D−xRhc(t),D−xEc(t))++(Dd(MhTh(t))D−xch(t),D−xEc(t))+

+(Tr,c(t),Ec(t))h

=−([Dd(MhRhT (t))−Dd(MhTh(t))]D−xRhc(t),D−xEc(t))+

− ((Dd(MhTh(t)))D−xEc(t),D−xEc(t))++(Tr,c(t),Ec(t))h. (II.22)

As we have
|([Dd(MhRhT (t))−Dd(MhTh(t))]D−xRhc(t),D−xEc(t))+|

≤ ∥Dd∥C1
b(IR)

√
2∥ET (t)∥h∥c(t)∥C1(Ω)∥D−xEc(t)∥+,

for εi ̸= 0, i = 1,2, considering the assumption H1 we obtain

d
dt
∥Ec(t)∥2

h +2(β − ε
2
1 −|Ω|ε2

2 )∥D−xEc(t)∥2
+

≤ 1
ε2

1
∥Dd∥C1

b(IR)
∥ET (t)∥2

h∥c(t)∥2
C1(Ω)

+
1

2ε2
2
∥Tr,c(t)∥2

h.
(II.23)

Then, fixing constants εi, i = 1,2, such that

2(β − ε
2
1 −|Ω|ε2

2 )> 0,

we guarantee the existence of a positive constant, h and t independent, such that

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥2

+ds ≤Const
∫ t

0
∥ET (s)∥2

h∥c(s)∥2
C1(Ω)

+∥Tr,c(s)∥2
hds (II.24)

finally taking into account the upper bound (II.21) we deduce (II.19).

Corollary 3.2.2 Under the assumptions of Theorems 3.1.1 and 3.2.1 for Ec(t) = Rhc(t)− ch(t) we
have

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥2

+ds ≤ Const h2
max

∫ t

0
∥c(s)∥2

C3(Ω)

(
∥T (s)∥2

C3(Ω)+1
)
ds+h2

max. (II.25)

4 Convergence analysis for solutions in C4(Ω)

In Theorems 3.1.1 and 3.2.1 we establish that if the solutions T (t) and c(t) are in C3(Ω), then

∥ET (t)∥h ≤Consthmax,∥Ec(t)∥h ≤Consthmax,
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and ∫ t

0
∥D−xET (s)∥2

+ds ≤Consth2
max,

∫ t

0
∥D−xEc(s)∥2

+ds ≤Consth2
max, t ∈ [0, t f ], h ∈ Λ.

In this section we increase the convergence orders by increasing the hypothesis on the regularity of
T (t) and c(t), namely we assume that T (t),c(t) ∈C4(Ω).

4.1 Temperature

Theorem 4.1.1 Let the solution T of (II.1) be in L2(0, t f ,C4(Ω)) and let Th be defined by (II.7), such
that

RhT,Th ∈C1([0, t f ],Wh,0).

Then there exists a positive constant Const, space and time independent, such that ET (t) = RhT (t)−
Th(t) satisfies

∥ET (t)∥2
h +

∫ t

0
∥D−xET (s)∥2

+ds ≤Consth4
max

∫ t

0
∥T (s)∥2

C4(Ω)
ds, (II.26)

for t ∈ [0, t f ] and h ∈ Λ.

Proof: As in the proof of the Theorem 3.1.1, we have

1
2

d
dt
∥ET (t)∥2

h +DT∥D−xET (t)∥2
+ = (Tr,T (t),ET (t))h. (II.27)

We establish in what follows an upper bound for (Tr,T (t),ET (t))h. Taking into account that T (t) ∈
C4(Ω), we have for Tr,T (t) the following representation

Tr,T (xi, t) =
DT

3
(hi+1 −hi)

∂ 3T
∂x3 (xi, t)+O(h2

max), (II.28)

where |O(h2
max)| ≤Consth2

max∥T (t)∥C4(Ω). Then for (Tr,T (t),ET (t))h we obtain

(Tr,T (t),ET (t))h =
DT

6

N−1

∑
i=1

h2
i

(
∂ 3T
∂x3 (xi, t)ET (xi, t)−

∂ 3T
∂x3 (xi−1, t)ET (xi−1, t)

)
+(O(h2

max),ET (t))h,

that leads to

(Tr,T (t),ET (t))h =
DT

6

N−1

∑
i=1

h2
i

∂ 3T
∂x3 (xi, t)(ET (xi, t)−ET (xi−1, t))

+
DT

6

N−1

∑
i=1

h2
i

(
∂ 3T
∂x3 (xi, t)−

∂ 3T
∂x3 (xi−1, t)

)
ET (xi−1, t))+(O(h2

max),ET (t))h

≤ DT

6

N−1

∑
i=1

h3
i

∂ 3T
∂x3 (xi, t)D−xET (xi, t)︸ ︷︷ ︸

A

+
DT

6

N−1

∑
i=1

h2
i

∫ xi

xi−1

∂ 4T
∂x4 (x, t)dxET (xi−1, t)︸ ︷︷ ︸

B

+(O(h2
max),ET (t))h

=
DT

6
(A+B)+(O(h2

max),ET (t))h.
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For A and B we have the following upper bounds

|A| ≤ h2
max

√
|Ω|∥T (t)∥C3(Ω)∥D−xET (t)∥+, (II.29)

|B| ≤ h2
max

√
2
∣∣∣∣∣∣∣∣∂ 4T

∂x4 (t)
∣∣∣∣∣∣∣∣

L2(Ω)

∥ET (t)∥h, (II.30)

respectively.

Thus, applying Young’s and Poincaré inequalities to the previous estimates and considering
εi ̸= 0, i = 1,2,3, we conclude

|(Tr,T (t),ET (t))h| ≤ h4
max

(D2
T

36

(
1

4ε2
1
|Ω|∥T (t)∥2

C3(Ω)
+

1
ε2

2

∣∣∣∣∣∣∣∣∂ 4T
∂x4 (t)

∣∣∣∣∣∣∣∣2
L2(Ω)

)
+Const 1

ε2
3
∥T (t)∥2

C4(Ω)

)
+(ε2

1 + |Ω|(ε2
2 + ε2

3 ))∥D−xET (t)∥2
+.

(II.31)
Using this last upper bound in (II.27) we deduce

1
2

d
dt
∥ET (t)∥2

h +(DT − (ε2
1 + |Ω|(ε2

2 + ε
2
3 )))∥D−xET (t)∥2

+

≤ h4
max

(D2
T

36

( 1
4ε2

1
|Ω|∥T (t)∥2

C3(Ω)
+

1
ε2

2

∣∣∣∣∣∣∣∣∂ 4T
∂x4 (t)

∣∣∣∣∣∣∣∣2
L2(Ω)

)
+Const

1
ε2

3
∥T (t)∥2

C4(Ω)

)
,

(II.32)

for t ∈ (0, t f ]. Fixing in (II.32) εi ̸= 0, i = 1,2,3, such that

DT − (ε2
1 + |Ω|(ε2

2 + ε
2
3 ))> 0,

we guarantee the existence of a positive constant Const, h and t independent, such that (II.26) holds.

4.2 Concentration

Theorem 4.2.1 Let the solutions T and c belong to (II.1) and (II.2), respectively, in L2(0, t f ,C4(Ω))

and let Th,ch be defined by (II.7) and (II.8), respectively. Let ET (t) and Ec(t) be the spatial-
discretization errors ET (t) = RhT (t)−Th(t) and Ec(t) = Rhc(t)− ch(t). If

Rhc,ch ∈C1([0, t f ],Wh,0),RhT,Th ∈C([0, t f ],Wh,0),

there exists a positive constant h and t independent such that

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥2

+ds ≤Const
(∫ t

0
∥ET (s)∥2

h∥c(s)∥2
C1(Ω)

ds

+h4
max

∫ t

0
∥c(s)∥2

C4(Ω)
(∥T (s)∥2

C3(Ω)
+1)ds

)
,

(II.33)

for t ∈ [0, t f ] and h ∈ Λ.
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Proof: The truncation error induced by the spatial discretization defined in (II.8) has the represen-
tation

Tr,c(xi, t) = (hi −hi+1)
(1

2
D′

d(T (xi, t))
[

∂ 2T
∂x2 (xi, t)

∂c
∂x

(xi, t)+
∂T
∂x

(xi, t)
∂ 2c
∂x2 (xi, t)

]
+

1
3

Dd(T (xi, t))
∂ 3c
∂x3 (xi, t)

)
+O(h2

max),

where |O(h2
max)| ≤Const∥c(t)∥C4(Ω)

(
∥T (t)∥C3(Ω)+1

)
h2

max.

Let g(xi, t), i = 1, . . . ,N −1, be defined by

g(xi, t) =
(1

3
D′

d(T (xi, t))
[

∂ 2T
∂x2 (xi, t)

∂c
∂x

(xi, t)+
∂T
∂x

(xi, t)
∂ 2c
∂x2 (xi, t)

]
+

1
3

Dd(T (xi, t))
∂ 3c
∂x3 (xi, t)

)
.

Then, as in the proof of Theorem 4.1.1 we have

|(Tr,c(t),Ec(t))h| ≤ 1
2

h2
max

(
∥g(t)∥C(Ω)

√
|Ω|∥D−xEc(t)∥++

√
2
∣∣∣∣∣∣∣∣∂g

∂x
(t)
∣∣∣∣∣∣∣∣

L2(Ω)

∥Ec(t)∥h

)
+|O(h2

max)|∥Ec(t)∥h.

Consequently, the discrete Poincaré-Friedrichs inequality leads to

|(Tr,c(t),Ec(t))h| ≤
(1

2
h2

max

√
|Ω|
(
∥g(t)∥C(Ω)+

√
2
∣∣∣∣∣∣∣∣∂g

∂x
(t)
∣∣∣∣∣∣∣∣

L2(Ω)

)
+ |O(h2

max)|
√

|Ω|
)
∥D−xEc(t)∥+

≤ 1
4ε2

(1
2

h2
max

√
|Ω|
(
∥g(t)∥C(Ω)+

√
2
∣∣∣∣∣∣∣∣∂g

∂x
(t)
∣∣∣∣∣∣∣∣

L2(Ω)

)
+ |O(h2

max)|
√

|Ω|
)2

+ ε
2∥D−xEc(t)∥2

+

≤ 1
2ε2

1
|Ω|
(

h4
max

(
∥g(t)∥2

C(Ω)
+2
∣∣∣∣∣∣∣∣∂g

∂x
(t)
∣∣∣∣∣∣∣∣2

L2(Ω)

)
+ |O(h2

max)|2
)
+ ε

2
1∥D−xEc(t)∥2

+.

where ε1 ̸= 0.
Following the proof of Theorem 3.2.1, instead of the inequality (II.23), we obtain

1
2

d
dt
∥Ec(t)∥2

h +(β − ε
2
1 − ε

2
2 )∥D−xEc(t)∥2

+ ≤ 1
2ε2

2
∥Dd∥C1

b(IR)
∥ET (t)∥2

h∥c(t)∥2
C1(Ω)

+
1

2ε2
1
|Ω|
(

h4
max

(
∥g(t)∥2

C(Ω)
+2
∣∣∣∣∣∣∣∣∂g

∂x
(t)
∣∣∣∣∣∣∣∣2

L2(Ω)

)
+ |O(h2

max)|2
)
.

(II.34)

We notice that fixing ε ̸= 0, i = 1,2, such that β − ε2
1 − ε2

2 > 0, there exists a positive constant Const,
h and t independent, such that, for t ∈ (0, t f ],

d
dt
∥Ec(t)∥2

h +∥D−xEc(t)∥2
+ ≤Const

(
∥ET (t)∥2

h∥c(t)∥2
C1(Ω)

+h4
max∥c(t)∥2

C4(Ω)
(∥T (t)∥2

C3(Ω)
+1)

)
.

(II.35)
Finally, we observe that the inequality (II.35) leads easily to (II.33).

From Theorems 4.1.1 and 4.2.1 we conclude the last result of this chapter where the second
convergence order is established for the solution of (II.8).
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Corollary 4.2.2 Under the assumptions of the Theorems 4.1.1 and 4.2.1 for the error Ec(t)=Rhc(t)−
ch(t) holds the following

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥ 2

+ds ≤Consth4
max

∫ t

0

(
∥T (s)∥2

C4(Ω)
+∥c(s)∥2

C4(Ω)
(∥T (s)∥2

C3(Ω)
+1)

)
ds,

for t ∈ [0, t f ] and h ∈ Λ.

5 Conclusion

In this chapter we establish error estimates for the numerical approximations for the solution of (II.1)
and (II.2) which is a simpler version of the system that we would like to study in the next chapter. The
numerical approximations were defined considering the finite difference methods presented in (II.7)
and (II.8) on non uniform grids. As we noticed, these methods can be seen as fully discrete piecewise
linear finite element methods.

Theorems 4.1.1 and 4.2.1 are the main results of this chapter. In Theorem 4.1.1 is proved that
the finite difference method (II.7) leads to a second order approximations for the solution of (II.1).
This result shows that the method is supraconvergent that is, though the spatial truncation error is
only of first order, the method is second convergence order. In Theorem 4.2.1 we establish an error
estimate for the numerical approximations defined by (II.7) and (II.8). As a corollary of this result, we
conclude that the method (II.7) and (II.8) is also supraconvergent.

The regularity of the solutions of the IBVP (II.1) and (II.2), T (t),c(t) ∈ C4(Ω) is the main
requirement imposed in the proof of the mentioned results. In what follows we intend to obtain the
estimates established in the Theorems 4.1.1 and 4.2.1 but considering T (t),c(t) ∈ H3(Ω).





Chapter III

An accurate discrete model for solutions
in H3(Ω)

1 Introduction

In this chapter III our goal is to study the convection-diffusion-reaction equation for a drug concentra-
tion (I.2), where T denotes the temperature, that is defined by equation (I.3). This system of PDE’s is
coupled with homogeneous Dirichlet boundary conditions (I.4) and initial conditions (I.5).

In Section 2 we present a study of the stability of the continuous coupled model (I.2)-(I.3). The
method proposed to solve numerically the coupled problem is introduced in Section 3. In this section,
the stability of the method is established under certain conditions. In Section 4, an error analysis is
developed which is not based on the use of the truncation error neither on the stability of the method.
Numerical experiments illustrating the convergence results and the behaviour of the concentration and
temperature are included in Section 5. Finally, in Section 6 we present some conclusions.

Note that during this chapter we use ∇u(x, t) to denote
∂u
∂x

(x, t).

2 The continuous model: stability analysis

In this section we study the stability of the coupled problems (I.2)-(I.3). Let c(t),T (t)∈L2(0, t f ,H1
0 (Ω))

be such that

(T ′(t),u) =−(DT (T (t))∇T (t),∇u)+(G(T (t)),u) a.e. in (0, t f ],∀u ∈ H1
0 (Ω), (III.1)

and

(c′(t),w)− (v(T (t))c(t),∇w) =−(Dd(T (t))∇c(t),∇w)+(Q(c(t)),w) a.e. in (0, t f ],∀w ∈ H1
0 (Ω).

(III.2)
In (III.1) and (III.2), (., .) denotes the usual inner product in L2(Ω), ∥.∥ represents the corresponding
norm. The use of a.e. in(0, t f ] stands for almost everywhere in (0, t f ]. We assume the following
conditions:

H1 : DT ∈C1
b(IR) and DT ≥ β0 > 0 in IR,

19
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H2 : |G(y)| ≤ β1|y|, y ∈ IR,

H3 : |v(y)| ≤ β2|y|, y ∈ IR,

H4 : Dd ∈C1
b(IR) and Dd ≥ β3 > 0 in IR,

H5 : |Q(y)| ≤ β4|y|, y ∈ IR,

where Cm
b (IR) denotes the space of bounded functions with bounded m order derivatives in IR. To

obtain upper bounds for the temperature and concentration, the previous assumptions will be used. To
establish the stability of the weak problem (III.1), (III.2), H2, H3 and H5 will be replaced by

H∗
2 : G ∈C2

b(IR),

H∗
3 : v ∈C1

b(IR),

H∗
5 : Q ∈C2

b(IR),

respectively.

2.1 Energy estimates

We present energy estimates for the solution of the system and for the corresponding fully discretized
problem.

Temperature: Taking in (III.1) u = T (t), we get

(T ′(t),T (t)) =−(DT (T (t))∇T (t),∇T (t))+(G(T (t)),T (t))

assuming H1 and H2, we obtain

1
2

d
dt
∥T (t)∥2 +β0∥∇T (t)∥2 ≤ β1∥T (t)∥2.

This inequality leads to

∥T (t)∥2 +2β0

∫ t

0
∥∇T (s)∥2ds ≤ ∥T (0)∥2 +2β1

∫ t

0
∥T (s)∥2ds, (III.3)

If T ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)), by the Gronwall Lemma we conclude

∥T (t)∥2 +
∫ t

0
∥∇T (s)∥2ds ≤ 1

min{1,2β0}
e2β1t∥T (0)∥2, t ∈ [0, t f ]. (III.4)

Concentration: Let w = c(t) in (III.2).

(c′(t),c(t))− (v(T (t))c(t),∇c(t)) =−(Dd(T (t))∇c(t),∇c(t))+(Q(c(t)),c(t)).

Moreover, as H1
0 (Ω) is continuously embedded in C0(Ω) and using H3, H4 and H5, we have

successively

−(Dd(T (t))∇c(t),∇c(t))≤−β3∥∇c(t)∥, (Q(c(t)),c(t))≤ β4∥c(t)∥ and
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|(v(T (t))c(t),∇c(t))| ≤ β2∥T (t)∥L∞(Ω)∥c(t)∥∥∇c(t)∥
≤ 1

4ε2
1
β 2

2 ∥T (t)∥2
L∞(Ω)∥c(t)∥2 + ε2

1∥∇c(t)∥2,
(III.5)

where ε1 ̸= 0 is an arbitrary constant. Then, applying the previous inequalities in (III.2), we easily get

∥c(t)∥2 +2(β3 − ε
2
1 )
∫ t

0
∥∇c(s)∥2ds ≤ ∥c(0)∥2 +

∫ t

0

(
β 2

2

2ε2
1
∥T (s)∥2

L∞(Ω)+2β4

)
∥c(s)∥2ds. (III.6)

If T ∈ C([0, t f ],H1
0 (Ω)) then, for ε1 such that β3 − ε2

1 > 0, we guarantee the existence of two
positive constants γc,i, i = 1,2, such that

∥c(t)∥2 +
∫ t

0
∥∇c(s)∥2ds ≤ γc,1∥c(0)∥2e

γc,2
∫ t

0

(
∥T (s)∥2

L∞(Ω)+1

)
ds
, t ∈ [0, t f ]. (III.7)

provided that c ∈ C1([0, t f ],L2(Ω))∩ L2(0, t f ,H1
0 (Ω)). Furthermore, as ∥T (t)∥L∞(Ω) ≤ ∥∇T (t)∥,

instead of (III.7), we have

∥c(t)∥2 +
∫ t

0
∥∇c(s)∥2ds ≤ γc,1∥c(0)∥2e

γc,2
∫ t

0

(
∥∇T (s)∥2+1

)
ds
, t ∈ [0, t f ]. (III.8)

where the term
∫ t

0
∥∇T (s)∥2ds in (III.4) is bounded, by (III.4) for t ∈ [0, t f ].

However, if instead of considering the estimation (III.5) for the convection term estimate, we
consider |(v(T (t))c(t),∇c(t))| ≤ β2∥T (t)∥∥c(t)∥L∞(Ω)∥∇c(t)∥, as ∥c(t)∥L∞(Ω) ≤ ∥∇c(t)∥ we get

|(v(T (t))c(t),∇c(t))| ≤ β2∥T (t)∥∥∇c(t)∥2, (III.9)

then
1
2

d
dt
∥c(t)∥2 +(β3 −β2∥T (t)∥)∥∇c(t)∥2 ≤ β4∥c(t)∥2.

Consequently, if the drug convection-diffusion equation (I.2) is diffusion dominated in the sense that

β3 −β2∥T (t)∥> γc,c > 0 a.e. in (0, t f ], (III.10)

then c satisfies
∥c(t)∥2 +2γc,c

∫ t

0
∥∇c(s)∥2ds ≤ ∥c(0)∥2e2β4t , t ∈ [0, t f ]. (III.11)

Moreover, if the reaction term Q satisfies

H ′
5 : Q ∈C1(IR), and Q(0) = 0, Q′(c)≤ β4 ≤ 0 in IR,

instead of H5, then (III.11) is replaced by

∥c(t)∥2 +2γc,c

∫ t

0
e2β4(t−s)∥∇c(s)∥2ds ≤ ∥c(0)∥2e2β4t , t ∈ [0, t f ]. (III.12)
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2.2 Stability estimates

Let T, T̃ and c, c̃ be solutions with initial conditions c0, c̃0 and T0, T̃0, respectively. Under the assump-
tions specified before, for T, T̃ and c, c̃ hold the energy estimates previously established. In what
follows we will obtain estimates for T − T̃ and c− c̃.

Temperature: Considering that T and T̃ satisfy (III.1), for ωT (t) = T (t)− T̃ (t) we obtain

(ω ′
T (t),ωT (t))+(DT (T (t))∇T (t),∇ωT (t))−(DT (T̃ (t))∇T̃ (t),∇ωT (t))= (G(T (t))−G(T̃ (t)),ωT (t))

Adding and subtracting (DT (T̃ (t))∇T (t),∇ωT (t)) we get

1
2

d
dt
∥ωT (t)∥2 +((DT (T (t))−DT (T̃ (t)))∇T (t),∇ωT (t))+(DT (T̃ (t))∇ωT (t),∇ωT (t))

= (G(T (t))−G(T̃ (t)),ωT (t)).

Using the assumption H1 and H∗
2 , we have successively,

−(DT (T̃ (t))∇ωT (t),∇ωT (t))≤−β0∥∇ωT (t)∥ and (G(T (t))−G(T̃ (t)),ωT (t))≤ G′
max∥ωT (t)∥2

and
|((DT (T (t))−DT (T̃ (t)))∇T (t),∇ωT (t))|

≤ ∥D′
T∥L∞(IR)∥ωT (t)∥∥∇T (t)∥L∞(Ω)∥∇ωT (t)∥

≤ 1
4ε2

1
∥D′

T∥2
L∞(IR)∥∇T (t)∥2

L∞(Ω)∥ωT (t)∥2 + ε
2
1∥∇ωT (t)∥2,

(III.13)

where ε1 ̸= 0. Consequently, we obtain

1
2

d
dt
∥ωT (t)∥2 +(β0 − ε

2
1 )∥∇ωT (t)∥2 ≤

(
G′

max +
1

4ε2
1
∥D′

T∥2
L∞(IR)∥∇T (t)∥2

L∞(Ω)

)
∥ωT (t)∥2, (III.14)

If β0 − ε2
1 > 0 and T, T̃ ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1

0 (Ω)∩W 1,∞(Ω)), from (III.14) we obtain

d
dt

(
∥ωT (t)∥2e

−
∫ t

0

(
2G′

max+
1

2ε2
1
∥D′

T ∥2
L∞(IR)∥∇T (µ)∥2

L∞(Ω)

)
dµ

+2(β0 − ε
2
1 )
∫ t

0
e
−
∫ s

0

(
2G′

max+
1

2ε2
1
∥D′

T ∥2
L∞(IR)∥∇T (µ)∥2

L∞(Ω)

)
dµ

∥∇ωT (s)∥2ds
)
≤ 0,

that, applying Gronwall’s Lemma, leads to

∥ωT (t)∥2 +2(β0 − ε
2
1 )
∫ t

0
e
∫ t

s

(
2G′

max+
1

2ε2
1
∥D′

T ∥2
L∞(IR)∥∇T (µ)∥2

L∞(Ω)

)
dµ

∥∇ωT (s)∥2ds

≤ ∥ωT (0)∥2e
∫ t

0

(
2G′

max+
1

2ε2
1
∥D′

T ∥2
L∞(IR)∥∇T (s)∥2

L∞(Ω)

)
ds
, t ∈ [0, t f ].

(III.15)

From (III.15), stability is established for T ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)∩W 1,∞(Ω)) and

T̃ ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)).

Although we have already a stability result we still can obtain an estimation where the smoothness
of T can be weakened, at the cost of imposing a stronger condition on ∥∇T (t)∥. In fact, if rather than
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(III.13), we use the following relation

|((DT (T (t))−DT (T̃ (t)))∇T (t),∇ωT (t))| ≤ ∥D′
T∥L∞(IR)∥∇T (t)∥∥∇ωT (t)∥2.

we deduce, if
β0 −∥D′

T∥L∞(IR)∥∇T (t)∥ ≥ γT > 0 a.e. in (0, t f ], (III.16)

for some positive constant γT , instead of (III.15), we conclude

∥ωT (t)∥2 +2γT

∫ t

0
e2G′

max(t−s)∥∇ωT (s)∥2ds ≤ ∥ωT (0)∥2e2G′
maxt , t ∈ [0, t f ]. (III.17)

which guarantees stability, providing that T satisfies (III.16) and T, T̃ ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)).

Concentration: Let consider c and c̃ that satisfy (III.2), then for ωc(t) = c(t)− c̃(t), we get

(ω ′
c(t),ωc(t))− (v(T (t))c(t),∇ωc(t))+(v(T̃ (t))c̃(t),∇ωc(t))
=−(Dd(T (t))∇c(t),∇ωc(t))+(Dd(T̃ (t))∇c̃(t),∇ωc(t))+(Q(c(t)),ωc(t))− (Q(c̃(t)),ωc(t))

(III.18)
We need an estimative for each parcel. For the convection term we have

|(v(T (t))c(t)− v(T̃ (t))c̃(t),∇ωc(t))|
= |((v(T (t))− v(T̃ (t)))c(t)+ v(T̃ (t))ωc(t),∇ωc(t))|
≤ ∥v′∥L∞(IR)∥ωT (t)∥∥c(t)∥L∞(Ω)∥∇ωc(t)∥+β2∥T̃ (t)∥L∞(Ω)∥ωc(t)∥∥∇ωc(t)∥

≤ 1
4ε2

1
∥v′∥2

L∞(IR)∥c(t)∥2
L∞(Ω)∥ωT (t)∥2 +

1
4ε2

2
β

2
2 ∥T̃ (t)∥2

L∞(Ω)∥ωc(t)∥2 +(ε2
1 + ε

2
2 )∥∇ωc(t)∥2,

(III.19)
with εi ̸= 0, i = 1,2, arbitrary constants. For the diffusion term, adding and subtracting the term
(Dd(T̃ (t))∇c(t),∇ωc(t)), we get

(Dd(T (t))∇c(t)−Dd(T̃ (t))∇c̃(t),∇ωc(t))
= ((Dd(T (t))−Dd(T̃ (t)))∇c(t)+Dd(T̃ (t))∇ωc(t),∇ωc(t)),

where
|((Dd(T (t))−Dd(T̃ (t)))∇c(t),∇ωc(t))|

≤ ∥D′
d∥L∞(IR)∥ωT (t)∥∥∇c(t)∥L∞(Ω)∥∇ωc(t)∥

≤ 1
4ε2

3
∥D′

d∥2
L∞(IR)∥∇c(t)∥2

L∞(Ω)∥ωT (t)∥2 + ε2
3∥∇ωc(t)∥2

(III.20)

and
(Dd(T̃ (t))∇ωc(t),∇ωc(t))≥ β3∥∇ωc(t)∥2.

For the reaction term, using H∗
5 we deduce

(Q(c(t))−Q(c̃(t)),ωc)≤ Q′
max∥ωc∥2.

Then we obtain the differential inequality
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1
2

d
dt
∥ωc(t)∥2 +(β3 − ε

2
1 − ε

2
2 − ε

2
3 )∥∇ωc(t)∥2

≤
(

β 2
2

4ε2
2
∥∇T̃ (t)∥2 +Q′

max

)
∥ωc(t)∥2 +

( 1
4ε2

1
∥v′∥2

L∞(IR)∥c(t)∥2
L∞(Ω)+

1
4ε2

3
∥D′

d∥2
L∞(IR)∥∇c(t)∥2

L∞(Ω)

)
∥ωT (t)∥2 (III.21)

whose solution satisfies

∥ωc(t)∥2 +2(β3 − ε
2
1 − ε

2
2 − ε

2
3 )
∫ t

0
e
∫ t

s

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ

∥∇ωc(s)∥2ds

≤ ∥ωc(0)∥2e
∫ t

0

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ

+
∫ t

0
e
∫ t

s

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ( 1

2ε2
1
∥v′∥2

L∞(IR)∥c(s)∥2
L∞(Ω)+

1
2ε2

3
∥D′

d∥2
L∞(IR)∥∇c(s)∥2

L∞(Ω)

)
∥ωT (s)∥2ds,

(III.22)

for t ∈ [0, t f ] and provided that c∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)∩W 1,∞(Ω)), c̃∈C1([0, t f ],L2(Ω))∩

L2(0, t f ,H1
0 (Ω)), T ∈ L2(0, t f ,L2(Ω)), T̃ ∈ L2(0, t f ,H1

0 (Ω)).

Finally for εi, i = 1,2,3, such that β3 −
3

∑
i=1

ε
2
i > 0, we get the desired upper bound.

To conclude we recall that an upper bound for
∫ t

0
∥∇T̃ (µ)∥2dµ is established in (III.4) and upper

bounds for ∥ωT (t)∥2 are defined in (III.15) or (III.17) when T̃ ∈C1([0, t f ],L2(Ω))∩L2(0,T,H1
0 (Ω))

and T ∈C1([0, t f ],L2(Ω))∩L2(0,T,H1
0 (Ω)∩W 1,∞(Ω)).

From (III.22), the stability of (III.1) and (III.2) is concluded when c ∈ L∞(0, t f ,H1
0 (Ω)∩W 1,∞(Ω))∩

C1([0, t f ],L2(Ω)), T ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)) and assuming that c̃, T̃ ∈C1([0, t f ],L2(Ω))∩

L2(0, t f ,H1
0 (Ω)).

Similarly to the temperature case, we can also get stability estimates under weaker assumption for
the concentration. In order to do that we use ∥ωT (t)∥∞ ≤ ∥∇ωT (t)∥, replacing respectively, (III.19)
and (III.20), by

|(v(T )c(t)− v(T̃ )c̃(t),∇ωc(t))|

≤
( 1

4ε2
1
∥v′∥2

L∞(IR)∥c(t)∥2
L∞(Ω)∥∇ωT∥2 +

1
4ε2

2
β

2
2 ∥∇T̃ (t)∥2∥ωc(t)∥2 +(ε2

1 + ε
2
2 )∥∇ωc(t)∥2

and

|((Dd(T (t))−Dd(T̃ (t)))∇c(t),∇ωc(t))| ≤
1

4ε2
3
∥D′

d∥2
L∞(IR)∥∇c(t)∥2

L∞(Ω)∥∇ωT (t)∥2 + ε
2
3∥∇ωc(t)∥2,

respectively.
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Consequently, (III.22) is replaced by

∥ωc(t)∥2 +2(β3 −
3

∑
i=1

ε
2
i )
∫ t

0
e
∫ t

s

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ

∥∇ωc(s)∥2ds

≤ ∥ωc(0)∥2e
∫ t

0

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ

+
∫ t

0
e
∫ t

s

(
β2

2
2ε2

2
∥∇T̃ (µ)∥2+2Q′

max

)
dµ( 1

2ε2
1
∥v′∥2

L∞(IR)∥c(s)∥2
L∞(Ω)+

1
2ε2

3
∥D′

d∥2
L∞(IR)∥∇c(s)∥2

L∞(Ω)

)
∥∇ωT (s)∥2ds, t ∈ [0, t f ].

(III.23)

An upper bound for
∫ t

0
∥∇T̃ (µ)∥2dµ is given by (III.4). Upper bounds for

∫ t

0
∥∇ωT (s)∥2ds are

defined by (III.15) provided that T ∈ C1([0, t f ],L2(Ω))∩ L2(0, t f ,H1
0 (Ω)∩W 1,∞(Ω)) and for T̃ ∈

C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)); or by (III.17) provided that (III.16) holds and T, T̃ ∈C1([0, t f ],L2(Ω))∩

L2(0, t f ,H1
0 (Ω)).

From (III.23) we conclude the stability of the initial value problem (III.1) and (III.2) for c ∈
L∞(0, t f ,H1

0 (Ω)∩W 1,∞(Ω))∩C1([0, t f ],L2(Ω)), c̃,T, T̃ ∈C1([0, t f ],L2(Ω))∩L2(0, t f ,H1
0 (Ω)).

3 A Finite Element Method that mimics the continuous model: stabil-
ity analysis

3.1 Fully discrete method

In this section we present a fully discrete method that mimics system (III.1) and (III.2).

Regarding the discretization process, we follow the notations introduced in chapter II where the
nonuniform partition of Ω = (a,b) is defined through Λ, the sequence of vectors h. As before Wh

represents the space of grid functions defined in Ωh and Wh,0 = {wh ∈Wh : wh = 0on∂Ωh}.

Moreover, the inner products, norms, operators and results defined in Section 1 of Chapter II hold .

We observe that xi+1/2 = xi +
hi+1

2
, xi−1/2 = xi −

hi

2
. And notice that by ∥.∥1,h we represent the norm

∥uh∥1,h =
(
∥uh∥2

h +∥D−xuh∥2
+

)1/2
.

For wh ∈Wh, Phwh denotes the continuous piecewise linear interpolation of wh with respect to the
partition Ωh.

The piecewise linear finite element approximations for the solutions of (III.1) and (III.2) are
defined as follow: PhTh(t),Phch(t) ∈ H1

0 (Ω) such that ∀uh,wh ∈Wh,0,

(PhT ′
h(t),Phuh) =−(DT (PhTh(t))∇PhTh(t),∇Phuh)+(G(PhTh),Phuh), (III.24)

and

(Phc′h(t),Phwh)− (v(PhTh)Phch(t),∇Phwh) =−(Dd(PhTh(t))∇Phch(t),∇Phwh)+(Q(Phch(t)),Phwh).

(III.25)
To define the fully discrete piecewise linear approximations for the temperature and concentration we
need to define approximations for the integral terms in (III.24) and (III.25).
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Considering the approximation rules defined in [19], we introduce the following approximations:

( f ,g)≃ (Rh f ,Rhg), f ,g ∈C(Ω), (III.26)

where once again Rh denotes the restriction operator,

(a(Phqh)∇Phuh,∇Phwh)≃ (a(Mhqh)D−xuh,D−xwh)+,qh,uh,wh ∈Wh,0, (III.27)

and remembering that Mh is the average operator. The variational problem for the finite element
approximation PhTh(t) is defined by the following fully discrete FEM: compute Th(t) ∈Wh,0 such that

(T ′
h(t),uh)h =−(DT (MhTh(t))D−xTh(t),D−xuh)++(G(Th(t)),uh)h,∀uh ∈Wh,0. (III.28)

To define the fully discrete problem for the concentration, we need to introduce the approximation
of the integral term associated with the convective term (v(PhTh(t))Phch(t),∇Phwh). We consider

(v(PhTh(t))Phch(t),∇Phwh)≃ (Mh(v(Th(t))ch(t)),D−xwh)+.

Using quadrature rules in (III.25), we get the fully discrete FEM: compute ch(t) ∈Wh,0 such that

(c′h(t),wh)h − (Mh(v(Th(t))ch(t)),D−xwh)+ =−(Dd(MhTh(t))D−xch(t),D−xwh)++(Q(ch(t)),wh)h,

(III.29)

∀wh ∈Wh,0.
We remark that the coupled system (III.28), (III.29) can be rewritten as an ordinary differential system.
To do that, we recall the finite difference operator D∗

x(a(Mhqh)D−xuh) defined by

D∗
x(a(Mhqh)D−xuh)(xi) =

1
hi+1/2

(
a(Mhqh(xi+1))D−xuh(xi+1)a(Mhqh(xi))D−xuh(xi)

)
,

for i = 1, . . . ,N −1. For qh,uh ∈Wh,0. By Dc we denote the centered finite difference operator

Dc(uh)(xi) =
uh(xi+1)−uh(xi−1)

hi +hi+1
, i = 1, . . . ,N −1.

We then have the following result.

Proposition 3.1.1 If uh ∈Wh and wh ∈Wh,0 then

(Dcuh,wh)h =−(Mh(uh),D−xwh)+, (III.30)

and
∥Mh(uh)∥h ≤

√
2∥uh∥h. (III.31)
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We introduce now the ordinary differential systems
T ′

h(t) = FT (Th(t)) inΩh × (0, t f ]

Th(t) = 0in∂Ωh × (0, t f ]

Th(0) = RhT0 inΩh,

(III.32)

and 
c′h(t) = Fc(Th(t),ch(t)) inΩh × (0, t f ]

ch(t) = 0in∂Ωh × (0, t f ]

ch(0) = Rhc0 inΩh,

(III.33)

where
FT (Th(t)) = D∗

x(DT (MhTh(t))D−xTh(t))+G(Th(t))

and
Fc(Th(t),ch(t)) = D∗

x(Dd(MhTh(t))D−xch(t))−Dc(v(Th(t))ch(t))+Q(ch(t)).

Considering the inner product of the first equation of (III.32) and (III.33), with respect to (., .)h, by
uh ∈Wh,0 and wh ∈Wh,0, respectively, we get (III.28) and (III.29). These results show the equivalence
between the fully discrete FEM (III.28), (III.29) and the FDMs (III.32) and (III.33), respectively.

3.2 Stability

Firstly, we establish the existence of the semi-discrete approximations, at least locally, this means that
there exists an interval [0, t f ] and functions Th(t),ch(t) solutions of the ordinary differential problems
(III.32) and (III.33).

We observe that the previous coupled problem can be rewritten in the following equivalent form
Z′

h(t) = Fh(Zh(t)) inΩh × (0, t f ],

Zh(0) = Z0,h inΩh,

Zh(t) = 0in∂Ωh × (0, t f ],

(III.34)

where Zh(t) = (Th(t),ch(t)),Z0,h = (RhT0,Rhc0) and

Fh(Zh(t)) = (FT (Th(t)),Fc(Th(t),ch(t))).

Proposition 3.2.1 Under the assumptions H1,H∗
2 , H∗

3 , H4 and H∗
5 ,

Fh : BδT (RhT0)×Bδc(Rhc0)→ [Wh,0]
2

is one-side Lipschitz, where

Bδ (uh) = {zh ∈Wh,0 : ∥zh −uh∥h ≤ δ},

for uh = RhT0,Rhc0, and δ = δT ,δc, and where [Wh,0]
2 =Wh,0 ×Wh,0.
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Proof: Let Zh =(qh,wh), Z̃h =(q̃h, w̃h)∈BδT (RhT0)×Bδc(Rhc0), and ωq = qh− q̃h, ωw =wh−w̃h

and ω = (ωq,ωw). We have, successively, the following

(Fh(Zh)−Fh(Z̃h),ω)[Wh,0]2 = (FT (qh)−FT (q̃h),ωq)h +(Fc(qh,wh)−Fc(q̃h, w̃h),ωw)h,

(FT (qh) −FT (q̃h),ωq)h =−((DT (Mhqh)−DT (Mhq̃h))D−xqh,D−xωq)+

−(DT (Mhq̃h)D−xωq,D−xωq)++(G(qh)−G(q̃h),ωq)h

≤
√

2∥DT∥C1(IR)∥ωq∥h∥D−xqh∥h,∞∥D−xωq∥+−β0∥D−xωq∥2
++G′

max∥ωq∥2
h

≤ (ε2 −β0)∥D−xωq∥2
++

(
∥DT∥2

C1(IR)

2ε2 ∥D−xqh∥2
h,∞ +G′

max

)
∥ωq∥2

h

where ∥uh∥h,∞ = max
i=1,...,N∗

|uh(xi)|, with N∗ = N or N∗ = N −1 depending on the definition of uh.

Moreover, we establish that ∥D−xqh∥h,∞ ≤ 4
h2

min

(
δT +∥RhT0∥h

)2
, then taking ε2 = β0, we deduce

(FT (qh)−FT (q̃h),ωq)h ≤
(

4
β0

1
h2

min

(
δT +∥RhT0∥h

)2
∥DT∥2

C1
b(IR)

+G′
max

)
∥ωq∥2

h

:= LT (h)∥ωq∥2
h.

(III.35)

For (Fc(qh,wh)−Fc(q̃h, w̃h),ωw)h we establish

(Fc(qh,wh)−Fc(q̃h, w̃h),ωw)h =

=−((Dd(Mhqh)−Dd(Mhq̃h))D−xwh,D−xωw)+− (Dd(Mhq̃h)D−xωw,D−xωw)+

+(Mh((v(qh)− v(q̃h))wh),D−xωw)++(Mh(v(q̃h))ωw,D−xωw)++Q′
max∥ωw∥2

h

≤
√

2∥Dd∥C1
b(IR)

∥ωq∥h∥D−xwh∥h,∞∥D−xωw∥+−β3∥D−xωw∥2
+

+
√

2∥v∥C1
b(IR)

∥ωq∥h∥wh∥h,∞∥D−xωw∥++
√

2β2∥q̃h∥h,∞∥ωw∥h∥D−xωw∥++Q′
max∥ωw∥2

h

Since ∥D−xwh∥2
h,∞ ≤ 4

h2
min

(
δc +∥Rhc0∥h

)2
, ∥qh∥2

h,∞ ≤ 2
hmin

(
δT +∥RhT0∥h

)2
and ∥wh∥2

h,∞ ≤ 2
hmin

(
δc +

∥Rhc0∥h

)2
, thus, choosing ε2 = 1

3 β3, we conclude that

(Fc(qh,wh)−Fc(q̃h, w̃h),ωw)h ≤
3
β3

( 4
h2

min
∥Dd∥2

C1
b(IR)

+
2

hmin
∥v∥2

C1
b(IR)

)(
δc +∥Rhc0∥h

)2
∥ωq∥2

h

+
(6β 2

2
β3

1
hmin

(
δT +∥RhT0∥h

)2
+Q′

max

)
∥ωw∥2

h

:= Lc,1(h)∥ωq∥2
h +Lc,2(h)∥ωw∥2

h. (III.36)

From (III.35) and (III.36) we finally obtain

(Fh(Zh) −Fh(Z̃h),Zh − Z̃h)[Wh,0]2 ≤ (LT (h)+Lc,1(h))∥ωq∥2
h +Lc,2(h)∥ωw∥2

h

≤ max{LT (h)+Lc,1(h),Lc,2(h)}∥Zh − Z̃h∥2
[Wh,0]2

.
(III.37)
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We remark that the one-side Lipschitz condition (III.37), established in Proposition 3.2.1, guaran-
tees the existence of the semi-discrete approximations Th(t),ch(t), at least locally.

We observe that if we use the previous result to get upper bounds for ∥ωh(t)∥[Wh,0]2 , where
ωh(t) = Zh(t)− Z̃h(t), Zh(t) = (Th(t),ch(t)) is the solution of (III.34) with initial condition Zh(0), and
Z̃h(t) is the solution of the same problem but with a perturbed initial condition Z̃h(0), then we have

1
2

d
dt ∥ωh(t)∥2

[Wh,0]2
= (Fh(Zh(t))−Fh(Z̃h(t)),ωh(t))[Wh,0]2

≤ max{LT (h)+Lc,1(h),Lc,2(h)}∥ωh(t)∥2
[Wh,0]2

,
(III.38)

where LT (h),Lc,1(h) and Lc,2(h) are defined in Proposition 3.2.1. Consequently, we obtain

∥ωh(t)∥2
[Wh,0]2

≤ e2max{LT (h)+Lc,1(h),Lc,2(h)}t∥ωh(0)∥2
[Wh,0]2

, t ≥ 0. (III.39)

The upper bound (III.39) guarantees the stability of the semi-discretization defined by Fh in
bounded time intervals for each h. However, when h decreases, from this upper bound we are not able
to conclude such stability behaviour. This fact is our motivation to study the stability using the energy
method for each semi-discretization defined by FT and Fc. To obtain the stability upper bounds, we
start by establishing convenient upper bounds for Th(t) and ch(t) which are solutions of (III.28) and
(III.29), respectively.

Energy estimates

Temperature: For the fully discretized problem, for the temperature case we find energy estimates,
replacing uh by Th(t) in (III.28). As before, we have

(T ′
h(t),Th(t))h =−(DT (MhTh(t))D−xTh(t),D−xTh(t))++(G(Th(t)),Th(t))h, (III.40)

and following the proof of (III.4), we easily get

∥Th(t)∥2
h +

∫ t

0
∥D−xTh(s)∥2

+ds ≤ 1
min{1,2β0}

e2β1t∥Th(0)∥2
h, (III.41)

for t ∈ [0, t f ], provided that Th ∈C1([0, t f ],Wh,0).

Concentration: In this case, let consider wh = ch(t) in (III.29). As in the continuous case, we have

(c′h(t),ch(t))h − (Mh(v(Th(t))ch(t)),D−xch(t))+
=−(Dd(MhTh(t))D−xch(t),D−xch(t))++(Q(ch(t)),ch(t))h.

(III.42)

So establishing upper bounds for the terms we get

|(Mh(v(Th(t))ch(t)),D−xch(t))+| ≤
√

2β2∥Th(t)∥h,∞∥ch(t)∥h∥D−xch(t)∥+

≤ 1
2ε2

1
β

2
2 ∥Th(t)∥2

h,∞∥ch(t)∥2
h + ε

2
1∥D−xch(t)∥2

+, (III.43)

and
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−(Dd(MhTh(t))D−xch(t),D−xch(t))+ ≤−β3∥D−xch(t)∥2
+ and (Q(ch(t)),ch(t))h ≤ β4∥ch(t)∥2

h

where ε1 ̸= 0 is an arbitrary constant. Hence, for ε1 such that β3 − ε2
1 > 0, we easily get

∥ch(t)∥2
h +

∫ t

0
∥D−xch(s)∥2

+ds ≤ 1
min{1,2(β3 − ε2

1 )}
∥ch(0)∥2

he
∫ t

0

(
β2

2
ε2
1
∥Th(s)∥2

h,∞+2β4

)
ds
, (III.44)

for t ∈ [0, t f ], provided that ch ∈C1([0, t f ],Wh,0).

From (III.41), the term
∫ t

0
∥D−xTh(s)∥2

+ds is uniformly bounded in [0, t f ], provided that ∥Th(0)∥h

is uniformly bounded in h∈Λ. As
∫ t

0
∥Th(s)∥2

h,∞ds≤ |Ω|
∫ t

0
∥D−xTh(s)∥2

+ds, we have that
∫ t

0
∥Th(s)∥2

h,∞ds≤
1

min{1,2β0}
e2β1t∥Th(0)∥2

h and then

∥ch(t)∥2
h +

∫ t

0
∥D−xch(s)∥2

+ds ≤ γc,1∥ch(0)∥2
he

β2
2

ε2
1

1
min{1,2β0}

e2β1t∥Th(0)∥2
h+2β4t

, t ∈ [0, t f ]. (III.45)

On other hand, if we replace (III.43) by

|(Mh(v(Th(t))ch(t)),D−xch(t))+| ≤
√

2β2∥Th(t)∥h∥ch(t)∥h,∞∥D−xch(t)∥+
≤ ∥Ω∥

√
2β2∥Th(t)∥h∥D−xch(t)∥2

+. (III.46)

we may impose the discrete version of (III.10)

β3 −
√

2∥Ω∥β2∥Th(t)∥h > γc,c > 0 a.e. in (0, t f ),

for some positive constant γc,c, in order to get ch(t) satisfying the following discrete version of (III.11)

∥ch(t)∥2
h +2γc,c

∫ t

0
∥D−xch(s)∥2

+ds ≤ ∥ch(0)∥2
he2β4t , t ∈ [0, t f ]. (III.47)

Remarking that ∥Th(t)∥h is bounded in [0, t f ], according with the result (III.41).

Stability estimates

At this point we are able to establish the stability relations for the discretized problem. That consists in
analysing the differences ωT (t) = Th(t)− T̃h(t),ωc(t) = c(t)− c̃(t), when Th(t), T̃h(t) and ch(t), c̃h(t)
are solutions of (III.29) and (III.28), respectively, with initial conditions Th(0), T̃h(0) and ch(0), c̃h(0),
respectively.

Temperature: For ωT (t) = Th(t)− T̃h(t), we have

1
2

d
dt
∥ωT (t)∥2

h +((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t),D−xωT (t))+

+(DT (MhT̃h(t))D−xωT (t),D−xωT (t))+
= (G(Th(t))−G(T̃h(t)),ωT (t))h.
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We establish the upper bounds

−(DT (MhT̃h(t))D−xωT (t),D−xωT (t))+ ≤−β0∥D−xωT (t)∥2
+ and

(G(Th(t))−G(T̃h(t)),ωT (t))h ≤ G′
max∥ωT (t)∥2

h,

but, to find an upper bound for ((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t),D−xωT (t))+, we need
to impose an additional condition to D−xTh(t).

H6 :
∫ t

0
∥D−xTh(s)∥2

h,∞ds is uniformly bounded in h ∈ Λ , t ∈ (0, t f ].

This way, under the assumption H6, we get

((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t),D−xωT (t))+
≤
√

2∥DT∥C1
b(IR)

∥D−xTh(t)∥h,∞∥ωT (t)∥h∥D−xωT (t)∥+
≤ 1

2ε2
1
∥DT∥2

C1
b(IR)

∥D−xTh(t)∥2
h,∞∥ωT (t)∥2

h + ε2
1∥D−xωT (t)∥2

+.

(III.48)

where ε1 ̸= 0.
For ε1 such that β0 − ε2

1 > 0, it can be shown that

∥ωT (t)∥2
h +2(β0 − ε

2
1 )
∫ t

0
e
∫ t

s

(
1

ε2
1
∥DT ∥2

C1
b (IR)

∥D−xTh(µ)∥2
h,∞+2G′

max

)
dµ

∥D−xωT (s)∥2
+ds

≤ ∥ωT (0)∥2
he
∫ t

0

(
1

ε2
1
∥DT ∥2

C1
b (IR)

∥D−xTh(s)∥2
h,∞+2G′

max

)
ds
, t ∈ [0, t f ].

(III.49)

The assumption H6 guarantees that the upper bound in (III.49) is bounded by Const.∥ωT (0)∥2
h in

[0, t f ]. Consequently we conclude the stability of the FEM (III.28), or equivalently, the stability of the
FDM (III.32), in Th(t). We observe that it remains to analyse when H6 effectively holds.

We can obtain another upper bound avoiding the assumption H6. Firstly, we observe that (III.48)
can be replaced by

((DT (MhTh(t))−DT (MhT̃h(t)))D−xTh(t),D−xωT (t))+
≤ ∥DT∥C1

b(IR)
∥D−xTh(t)∥+∥ωT (t)∥h,∞∥D−xωT (t)∥+

≤ |Ω|∥DT∥C1
b(IR)

∥D−xTh(t)∥+∥D−xωT (t)∥2
+,

(III.50)

since ∥ωT (t)∥h,∞ ≤ |Ω|∥D−xωT (t)∥+. Thus, we establish, by Gronwall Lemma, that

∥ωT (t)∥2
h +2γT

∫ t

0
e2G′

max(t−s)∥D−xωT (s)∥2
+ds ≤ ∥ωT (0)∥2

he2G′
maxt , t ∈ [0, t f ], (III.51)

provided that
β0 −|Ω|∥DT∥C1

b(IR)
∥D−xTh(t)∥+ ≥ γT > 0 a.e. in (0, t f ], (III.52)

for some positive constant γT .

From (III.50) we conclude the stability of (III.28) or equivalently (III.32) in Th(t) provided that (III.52)
holds. Condition (III.52) means that ∥Th(t)∥1,h is a.e bounded in (0, t f ] uniformly in h ∈ Λ.
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Concentration: Defining ωc(t) = ch(t)− c̃h(t), we get

(ω ′
c(t),ωc(t))h − (Mh(v(Th(t)))ch(t),D−xωc(t))++(Mh(v(T̃h(t)))c̃h(t),D−xωc(t))+

=−(Dd(MhTh(t))D−xch(t),D−xωc(t))++(Dd(MhT̃h(t))D−xc̃h(t),D−xωc(t))+
+(Q(ch(t))−Q(c̃h(t)),ωc(t))h

(III.53)

Then, let treat each parcel separately. For the convective term, if we add and subtract the term
(Mh(v(T̃h(t)))ch(t),D−xωc(t))+ we deduce

|(Mh
(
v(Th(t))ch(t)− v(T̃h(t))c̃h(t)

)
,D−xωc(t))+|

= |(Mh
(
v(Th(t))− v(T̃h(t))

)
ch(t),D−xωc(t))++(Mh

(
v(T̃h(t))

)(
ch(t)− c̃h(t)

)
,D−xωc(t))+|

≤
√

2∥v∥C1
b(IR)

∥ωT (t)∥h∥ch(t)∥h,∞∥D−xωc(t)∥++
√

2β2∥T̃h(t)∥h,∞∥ωc(t)∥h∥D−xωc(t)∥+

≤ 1
2ε2

1
∥v∥2

C1
b(IR)

∥ωT (t)∥2
h∥ch(t)∥2

h,∞ +
1

2ε2
2

β
2
2 ∥T̃h(t)∥2

h,∞∥ωc(t)∥2
h +(ε2

1 + ε
2
2 )∥D−xωc(t)∥2

+,

(III.54)
with εi ̸= 0, i = 1,2, are arbitrary constants.

For the diffusion terms we get

|((Dd(MhTh(t))−Dd(MhT̃h(t)))D−xch(t),D−xωc(t))+|
≤
√

2∥Dd∥C1
b(IR)

∥ωT (t)∥h∥D−xch(t)∥h,∞∥D−xωc(t)∥+
≤ 1

2ε2
3
∥Dd∥2

C1
b(IR)

∥ωT (t)∥2
h∥D−xch(t)∥2

h,∞ + ε2
3∥D−xωc(t)∥2

+

(III.55)

and
(Dd(MhT̃h(t))D−xωc(t),D−xωc(t))+ ≥ β3∥D−xωc(t)∥2

+.

For the reaction term, we get

(Q(ch(t))−Q(c̃h(t)),ωc(t))≤ Q′
max∥ωc(t)∥2

h.

Following the steps used to establish (III.22) with the convenient adaptations, it can be show that, for

εi ̸= 0, i = 1,2,3, such that β3 −
3

∑
i=1

ε
2
i > 0, we have

∥ωc(t)∥2
h +

∫ t

0
e
∫ t

s

(
β2

2
ε2
2
∥T̃h(µ)∥2

h,∞+2Q′
max

)
dµ

∥D−xωc(s)∥2
+ds

≤ 1
min{1,2(β3 −∑

3
i=1 ε2

i )}

(
∥ωc(0)∥2

he
∫ t

0

(
β2

2
ε2
2
∥T̃h(s)∥2

h,∞+2Q′
max

)
ds
+
∫ t

0
e
∫ t

s

(
β2

2
ε2
2
∥T̃h(µ)∥2

h,∞+2Q′
max

)
dµ

( 1
ε2

1
∥v∥2

C1
b(IR)

∥ch(s)∥2
h,∞ +

1
ε2

3
∥Dd∥2

C1
b(IR)

∥D−xch(s)∥2
h,∞

)
∥ωT (s)∥2

hds
)
, t ∈ [0, t f ].

(III.56)

To conclude the stability of (III.28) and (III.29), we recall that an upper bound for ∥ωT (t)∥2
h in

[0, t f ] is established in (III.49) (provided that H6 holds) or (III.51) (provided that (III.52) holds). To
guarantee that the previous estimate holds, we need to assume that Th, T̃h,ch, c̃h ∈ C1([0, t f ],Wh,0).

However, the obtained upper bound will be h-dependent. To get a stability estimate h-independent,
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we need to assume that∫ t

0
∥T̃h(s)∥2

h,∞ds and
∫ t

0

(
∥ch(s)∥2

h,∞ +∥D−xch(s)∥2
h,∞

)
∥ωT (s)∥2

hds

are uniformly bounded in h ∈ Λ. As
∫ t

0
∥T̃h(s)∥2

h,∞ds ≤ ∥Ω∥
∫ t

0
∥D−xT̃h(s)∥2

+ds, then, by (III.41) or

(III.44),
∫ t

0
∥T̃h(s)∥2

h,∞ds is uniformly bounded in h ∈ Λ. To find an upper bound to
∫ t

0

(
∥ch(s)∥2

h,∞ +

∥D−xch(s)∥2
h,∞

)
∥ωT (s)∥2

hds, we need to guarantee that
∫ t

0

(
∥ch(s)∥2

h,∞ + ∥D−xch(s)∥2
h,∞

)
ds is uni-

formly bounded in h ∈ Λ. As we will see later, to do that we assume an additional condition on the
spatial grids Ωh,h ∈ Λ, and we show that ch(t) is a second order approximations for c(t).

Analogously to the continuous case, as well as the temperature discrete case, we are able to obtain
another stability estimate if instead of using the bounds (III.54) and (III.55) we use, respectively, the
following

|(Mh
(
v(Th)ch(t)− v(T̃h)c̃h(t)

)
,D−xωc(t))+|

≤ 1
2ε2

1
∥v∥2

C1
b(IR)

∥D−xωT (t)∥2
+∥ch(t)∥2

h +
1

2ε2
2

β
2
2 ∥D−xT̃h(t)∥2

+∥ωc(t)∥2
h +(ε2

1 + ε
2
2 )∥D−xωc(t)∥2

+

(III.57)
considering ∥ωT (t)∥∞ ≤ ∥D−xωT (t)∥+ (for above and below) and ∥T̃ (t)∥h,∞ ≤ ∥D−xT̃ (t)∥+ (for
above), and

|((Dd(MhTh)−Dd(MhT̃h))D−xch(t),D−xωc(t))+|
≤ ∥Dd∥C1

b(IR)
∥ωT (t)∥∞∥D−xch(t)∥+∥D−xωc(t)∥+

≤ ∥Ω∥
4ε2

3
∥Dd∥2

C1
b(IR)

∥D−xωT (t)∥2
+∥D−xch(t)∥2

++ ε2
3∥D−xωc(t)∥2

+.

(III.58)

Thus, in conclusion, (III.56) is replaced by

∥ωc(t)∥2
h +

∫ t

0
e
∫ t

s

(
β2

2
ε2
2
∥D−xT̃h(µ)∥2

++2Q′
max

)
dµ

∥D−xωc(s)∥2
+ds

≤ 1
min{1,2(β3 −∑

3
i=1 ε2

i )}

(
∥ωc(0)∥2

he
∫ t

0

(
β2

2
ε2
2
∥D−xT̃h(s)∥2

++2Q′
max

)
ds
+
∫ t

0
e
∫ t

s

(
β2

2
ε2
2
∥D−xT̃h(µ)∥2

++2Q′
max

)
dµ

( 1
ε2

1
∥v∥2

C1
b(IR)

∥ch(s)∥2
h +

∥Ω∥
2ε2

3
∥Dd∥2

C1
b(IR)

∥D−xch(s)∥2
+

)
∥D−xωT (s)∥2

+ds
)
, t ∈ [0, t f ].

(III.59)

In this case, upper bounds for
∫ t

0
∥D−xT̃h(s)∥2

+ds can be easily obtained from (III.41). An estimate

for
∫ t

0
∥D−xωT (s)∥2

+ds is established in (III.49) or (III.51). To conclude from (III.59) the stability

of (III.28) and (III.29), we need to guarantee that ∥ch(s)∥2
h +∥D−xch(s)∥2

+ is bounded a.e. in (0, t f ),

uniformly in h ∈ Λ. We observe that, from (III.45) or (III.47), ∥ch(t)∥h, and
∫ t

0
∥D−xch(s)∥2

+ds

are bounded for all t ∈ [0, t f ], uniformly in h ∈ Λ, and consequently, ∥ch(t)∥2
h + ∥D−xch(t)∥2

+ is
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bounded a.e. in (0, t f ), uniformly in h ∈ Λ. In fact, if
∫ t

0
∥D−xch(s)∥2

+ds ≤ K,∀t ∈ [0, t f ],∀h ∈ Λ,

then ess sup
(0,t f )

∥D−xch∥+ ≤ K,∀h ∈ Λ (Theorem 2.14, [1]).

Thus, we conclude the desired stability. It remains, now, to justify assumption H6, in order to
guarantee that (III.56) also gives us stability.

We remark that the assumption H6 is verified if Th and ch verify

∥ET (t)∥2
h +

∫ t

0
∥D−xET (s)∥2

+ds ≤Ch4
max, t ∈ [0, t f ], (III.60)

and
∥Ec(t)∥2

h +
∫ t

0
∥D−xEc(s)∥2

+ds ≤Ch4
max, t ∈ [0, t f ], (III.61)

where ET (t) = RhT (t)−Th(t), Ec(t) = Rhc(t)− ch(t), and under the assumption on the spatial grids
of the sequence Λ

h4
max

hmin
≤Const,h ∈ Λ. (III.62)

In fact, ∫ t

0
∥D−xTh(s)∥2

h,∞ds ≤ 2
∫ t

0
∥D−xEh(s)∥2

h,∞ds+2
∫ t

0
∥∇T (s)∥2

∞ds

≤ 2
hmin

∫ t

0
∥D−xEh(s)∥2

+ds+2
∫ t

0
∥∇T (s)∥2

∞ds

≤C
h4

max

hmin
+2∥T∥2

L2(0,t f ,C1(Ω)).

In the following proposition we summarize our stability result for (III.28) and (III.29).

Proposition 3.2.2 Under the assumptions H1 −H5, H∗
2 ,H

∗
3 and H∗

5 , if Ωh,h ∈ Λ, satisfy (III.62),
Th,ch ∈C1([0, t f ],Wh,0),h ∈ Λ, satisfy (III.60), (III.61), respectively, then there exists a set of positive
constants Ci, i = 1, . . . ,6, h-independent, such that, for T̃h, c̃h ∈C1([0, t f ],Wh,0), and ωT (t) = Th(t)−
T̃h(t), ωc(t) = ch(t)− c̃h(t), h ∈ Λ, we have

∥ωT (t)∥2
h +

∫ t

0
e2G′

max(t−s)∥D−xωT (s)∥2
+ds ≤C1∥ωT (0)∥2

h (III.63)

∥ωc(t)∥2
h +

∫ t

0
e2Q′

max(t−s)∥D−xωc(s)∥2
+ds

≤ eC2∥T̃h(0)∥2
h+C3

(
C4∥ωc(0)∥2

h +∥ωT (0)∥2
h

(
C5 +C6∥ch(0)∥2

h

))
, t ∈ [0, t f ].

(III.64)

We establish in the next section the error estimates (III.60) and (III.61).

4 Convergence analysis

In this section, our goal is to introduce a new approach for the analysis of convergence, distinct from
the one studied in chapter II and highlight the advantages of doing the convergence study following
this line.
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This comparative study will focus on the order of convergence as well as in the function’s regularity
demands. A majority of the results are consequence of Bramble-Hilbert Theorem ([11]), which are
presented particularly as in [5] and also [4],[19], [22].

In what follows we use the following notation

(g)h(xi) =
1

|✷i|

∫
✷i

g(x)dx,xi ∈ Ωh,

with ✷i = [xi−1/2,xi+1/2].

4.1 Error estimate for the temperature Th(t)

Our aim is to establish the upper bound (III.60) for the error ET (t) = RhT (t)−Th(t), where Th(t) is
defined by (III.28). We have successively

(E ′
T (t),ET (t))h = ((RhT ′(t))h,ET (t))h − (T ′

h(t),ET (t))h (III.65)

Adding and subtracting ((T ′(t))h,ET (t))h we get

(E ′
T (t),ET (t))h = ((T ′(t))h,ET (t))h − (T ′

h(t),ET (t))h + τd(ET (t))
= ((∇(DT (T (t))∇T (t)))h,ET (t))h +DT (Mh(Th(t)))D−xTh(t),D−xET (t))+
+((G(T (t)))h,ET (t))h −G(Th(t)),ET (t))h + τd(ET (t)),

(III.66)

Thus, we add and subtract the terms (DT (Mh(RhT (t)))D−xRhT (t),D−xET (t))+ and (RhG(T (t)),ET (t))
and organize expressions as follows

(E ′
T (t),ET (t))h =−(DT (Mh(RhT (t)))D−xRhT (t)−DT (Mh(Th(t)))D−xTh(t),D−xET (t))+
+(RhG(T (t))−G(Th(t)),ET (t))h + τd(ET (t))+ τDT (ET (t))+ τG(ET (t)),

(III.67)
where

τd(ET (t)) = (RhT ′(t)− (T ′(t))h,ET (t))h, (III.68)

τDT (ET (t)) = ((∇(DT (T (t))∇T (t)))h,ET (t))h +(DT (Mh(RhT (t)))D−xRhT (t),D−xET (t))+

and
τG(ET (t)) = ((G(T (t)))h,ET (t))h − (RhG(T (t)),ET (t))h.

In order to establish an estimation to (IV.40) we need to estimate the introduced error terms. In
this regard, we will start by proving the next propositions that will give us upper bound for the τ’s
terms.

Proposition 4.1.1 If T ′(t) ∈ H2(Ω) then

|τd(ET (t))| ≤Const
( N

∑
i=1

h4
i ∥T ′(t)∥2

H2(Ii)

)1/2
∥D−xET (t)∥+. (III.69)
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Proof: First of all, we consider τd(ET (t)) = (RhT ′(t)− (T ′(t))h,ET (t))h. Let rename RhT ′(xi, t)
by g(xi, t), noting that our goal is to reuse later the estimations that we will find for g, just replacing it
by other convenient functions.

Let, then, find an upper bound for (g(t),ET (t))h − ((g(t))h,ET (t))h. We have that

(g(t),ET (t))h − ((g(t))h,ET (t))h

=
N−1

∑
i=1

hi+ 1
2
g(xi, t)ET (xi, t)−

N−1

∑
i=1

(∫ xi+1/2

xi−1/2

g(x, t)dx
)

ET (xi, t)

=
N−1

∑
i=1

(hi

2
g(xi, t)−

∫ xi

xi−1/2

g(x, t)dx
)

ET (xi, t)+
N−1

∑
i=1

(hi+1

2
g(xi, t)−

∫ xi+1/2

xi

g(x, t)dx
)

ET (xi)

=
N

∑
i=1

(hi

2
g(xi, t)−

∫ xi

xi−1/2

g(x, t)dx
)

ET (xi, t)+
N

∑
i=1

(hi

2
g(xi−1, t)−

∫ xi−1/2

xi−1

g(x, t)dx
)

ET (xi−1, t),

adding and subtracting the following terms,

N

∑
i=1

hi

4
g(xi−1, t)ET (xi, t),

N

∑
i=1

hi

4
g(xi, t)ET (xi−1, t),

N

∑
i=1

1
2

(∫ xi

xi−1/2

g(x, t)dx
)

ET (xi−1, t), and
N

∑
i=1

1
2

(∫ xi−1/2

xi−1

g(x, t)dx
)

ET (xi, t)

and organizing sums we gather information as follows,

A =
N

∑
i=1

1
2

[
hi

2
(g(xi, t)+g(xi−1, t))−

∫ xi

xi−1

g(x, t)dx
]
(ET (xi, t)+ET (xi−1, t))

B =
N

∑
i=1

1
2

[
hi

2
(g(xi, t)−g(xi−1, t))−

(∫ xi

xi−1/2

g(x, t)dx−
∫ xi−1/2

xi−1

g(x, t)dx
)]

(ET (xi)−ET (xi−1)).

Now, we reduce the problem to the estimation of A and B. For A we apply Lemma 4.0.3
(Appendix), so we have

|A| ≤
N

∑
i=1

1
2

∣∣∣∣hi

2
(g(xi, t)+g(xi−1, t))−

∫ xi

xi−1

g(x, t)dx
∣∣∣∣ |ET (xi, t)+ET (xi−1, t)|

≤
N

∑
i=1

1
2

Ch2
i ∥g′′(t)∥L1(xi−1,xi)|ET (xi, t)+ET (xi−1, t)|

≤ C
2

[
N

∑
i=1

h2
i ∥g′′(t)∥L2(Ii)

√
hi|ET (xi, t)|+

N

∑
i=1

h2
i ∥g′′(t)∥L2(Ii)

√
hi|ET (xi−1, t)|

]
≤

√
2C
2

( N

∑
i=1

h4
i ∥g′′(t)∥H2(Ii)

)1/2
∥ET (t)∥h.

Thus, applying Poincaré inequality we deduce

|A| ≤Const
( N

∑
i=1

h4
i ∥g(t)∥H2(Ii)

)1/2
∥D−xET (t)∥+ (III.70)
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For B, we use Lemma 4.0.4,

|B| ≤
N

∑
i=1

1
2

∣∣∣∣hi

2
(g(xi, t)−g(xi−1, t))−

(∫ xi

xi−1/2

g(x, t)dx−
∫ xi−1/2

xi−1

g(x, t)dx
)∣∣∣∣ |ET (xi, t)−ET (xi−1, t)|

≤
N

∑
i=1

1
2

Chi∥g′(t)∥L1(xi−1,xi)|ET (xi, t)−ET (xi−1, t)|

≤ C
2

N

∑
i=1

h2
i ∥g′(t)∥L2(Ii)

√
hiD−xET (xi, t)

≤ C
2

( N

∑
i=1

h4
i ∥g(t)∥2

H1(Ii)

)1/2( N

∑
i=1

hi(D−xET (xi, t))2
)1/2

from here we get,

|B| ≤Const
( N

∑
i=1

h4
i ∥g(t)∥H1(Ii)

)1/2
∥D−xET (t)∥+ (III.71)

At this point we are able to replace back g by RhT ′ and obtain

|τd(ET (t))| ≤Const

[( N

∑
i=1

h4
i ∥T ′(t)∥H2(Ii)

)1/2
+
( N

∑
i=1

h4
i ∥T ′(t)∥H1(Ii)

)1/2
]
∥D−xET (t)∥+ (III.72)

To reach the result we remark that H1(Ω)⊆ H2(Ω).

Proposition 4.1.2 If T (t) ∈ H3(Ω)∩H1
0 (Ω), then

|τDT (ET (t))| ≤Const∥DT∥C1
b(IR)

(
1+∥T (t)∥C1(Ω)

)( N

∑
i=1

h4
i ∥T (t)∥2

H3(Ii)

)1/2
∥D−xET (t)∥+. (III.73)

Proof: For τDT (t) we have

τDT (t) = (
(

∇

(
DT (T (t))∇T (t)

))
h
,ET (t))h +(DT (T̂h(t))D−xRhT (t),D−xET (t))+

−(DT (T̂h(t))D−xRhT (t),D−xET (t))++(DT (Mh(RhT (t)))D−xRhT (t),D−xET (t))+
:= τ1(t)+ τ2(t),

where

τ1(t) =
((

∇

(
DT (T (t))∇T (t)

))
h
,ET (t)

)
h
+(DT (T̂h(t))D−xRhT (t),D−xET (t))+,

τ2(t) =−(DT (T̂h(t))D−xRhT (t),D−xET (t))++(DT (Mh(RhT (t)))D−xRhT (t),D−xET (t))+

and T̂h(t)(xi) = T (xi−1/2, t).
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• For τ1(t) we have sucessively

τ1(t) = (∇
(

DT (T (t))∇T (t))h,ET (t))h +(DT (T̂h(t))D−xRhT (t),D−xET (t))+

=
N−1

∑
i=1

(∫ xi+1/2

xi−1/2

∇(DT (T (t))∇T (x, t))dx
)

ET (xi, t)+
N

∑
i=1

hiDT (T̂h(t))D−xRhT (xi, t)D−xET (xi, t)

=
N−1

∑
i=1

DT (T (xi+1/2))∇T (xi+1/2, t)ET (xi, t)−DT (T (xi−1/2, t))∇T (xi−1/2, t)ET (xi, t)

+
N

∑
i=1

hiDT (T (xi−1/2, t))D−xRhT (xi, t)D−xET (xi, t)

=
N

∑
i=1

hiDT (T (xi−1/2))
[
D−xRhT (xi, t)−∇T (xi−1/2, t)

]
D−xET (xi, t)

= (DT (T̂h(t))(D−xRhT (t)− R̂h∇T (t)),D−xET (t))+

where R̂h∇T (xi, t) = ∇T (xi−1/2, t).

Thereby, applying Lemma 4.0.2, we guarantee the existence of a constant Const such that

|τ1(t)| ≤
N

∑
i=1

hi
∣∣DT (T (xi−1/2, t))

∣∣ ∣∣D−xRhT (xi, t)−∇T (xi−1/2, t)
∣∣ |D−xET (xi, t)|

≤
N

∑
i=1

Const h2
i

∣∣DT (T (xi−1/2, t))
∣∣∥T (3)(t)∥L1(xi−1,xi)|D−xET (xi, t)|

≤ Const
( N

∑
i=1

h4
i

∣∣DT (T (xi−1/2, t))
∣∣2 ∥T (t)∥2

H3(Ii)

)1/2
∥D−xET (t)∥+

≤ Const∥DT∥C1
b(IR)

( N

∑
i=1

h4
i ∥T (t)∥2

H3(Ii)

)1/2
∥D−xET (t)∥+ (III.74)

• To get an estimate for τ2(t) first observe that

τ2(t) = (DT (MhRhT (t))D−xRhT (t),D−xET (t))+− (DT (T̂h(t))D−xRhT (t),D−xET (t))+

=
N

∑
i=1

hi(DT (MhRhT (xi, t))−DT (T̂h)(xi, t))D−xRhT (xi, t)D−xET (xi, t)

=
N

∑
i=1

hi

(
DT

(
T (xi, t)+T (xi−1, t)

2

)
−DT (T (xi−1/2, t))

)
D−xRhT (xi, t)D−xET (xi, t)

≤ ∥DT∥C1
b(IR)

N

∑
i=1

hi

(
T (xi, t)+T (xi−1, t)

2
−T (xi−1/2, t)

)
D−xRhT (xi, t)D−xET (xi, t)

(III.75)
Then, by Lemma 4.0.2, we have
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|τ2(t)| ≤ ∥DT∥C1
b(IR)

N

∑
i=1

Consth2
i ∥T (2)(t)∥L1(xi−1,xi)|D−xRhT (xi)||D−xET (xi)|

≤ Const∥DT∥C1
b(IR)

N

∑
i=1

h2
i ∥T (2)(t)∥L1(xi−1,xi)|D−xRhT (xi)|

√
hi|D−xET (xi)|

≤ Const∥DT∥C1
b(IR)

( N

∑
i=1

h4
i ∥T (t)∥2

H2(Ii)
∥T (t)∥2

C1(Ii)

)1/2
∥D−xET (t)∥+

We conclude for |τDT (ET (t))| the next estimate

|τDT (ET (t))| ≤Const∥DT∥C1
b(IR)

(( N

∑
i=1

h4
i ∥T (t)∥2

H3(Ii)

)1/2

+
( N

∑
i=1

h4
i ∥T (t)∥2

C1(Ii)
∥T (t)∥2

H2(Ii)

)1/2)
∥D−xET (t)∥+,

that lead to (IV.45).

Proposition 4.1.3 If G ∈C2
b(IR) and T (t) ∈ H2(Ω)∩H1

0 (Ω), then

|τG(ET (t))| ≤Const∥G∥C2
b(IR)

(1+∥T (t)∥C1(Ω))
( N

∑
i=1

h4
i ∥T (t)∥2

H2(Ii)

)1/2
∥D−xET (t)∥+. (III.76)

Proof: We consider τG(ET (t)) = ((G(T (t)))h,ET (t))h − (RhG(T (t)),ET (t))h, we may observe
that the computation of τG is analogous to the τd case, so if we consider that in (III.70) and (III.71), g
is replaced by G(T ), we deduce the following upper bound for τG(ET (t)),

|τG(ET (t))| ≤Const
( N

∑
i=1

h4
i ∥G(T (t))∥H2(Ii)

)1/2
∥D−xET (t)∥+.

Then applying H2-norm definition and taking into account the assumption H∗
2 we conclude

(III.76).

Now we are able to establish the major result that guarantees the upper bound for ET (t) :

Theorem 4.1.4 We assume that

T ∈ L2(0, t f ,H3(Ω)∩H1
0 (Ω))∩H1(0, t f ,H2(Ω)),

RhT,Th ∈C1([0, t f ],Wh,0),

the coefficient functions DT and G satisfy the assumptions H1,H2, respectively, as well as the as-
sumption of Propositions 4.1.2 and 4.1.3. Then, for ε such that β0 − 4ε2 > 0, the error ET (t) =
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RhT (t)−Th(t) satisfies the following

∥ET (t)∥2
h +

∫ t

0
e
∫ t

s

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (µ)∥2

∞+2G′
max

)
dµ

∥D−xET (s)∥2
+ds

≤ 1
min{1,2(β0 −4ε2)}

e
∫ t

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (µ)∥2

h,∞+2G′
max

)
ds(

∥ET (0)∥2
h

+
1

2ε2

∫ t

0
e
−
∫ s

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (µ)∥2

∞+2G′
max

)
dµ

τT (s)ds
)
, t ∈ [0, t f ],

(III.77)

where

τT (t) =Const
(

1+∥T (t)∥C1(Ω)

)2 N

∑
i=1

h4
i

(
∥T (t)∥2

H3(Ii)
+∥T ′(t)∥2

H2(Ii)

)
.

Proof: From (IV.40), applying H1 and Mean Value Theorem, we get

• |((DT (MhRhT )−DT (MhTh))D−xRhT,D−xET )+| ≤ ∥DT∥C1
b(IR)

√
2∥ET∥h∥D−xRhT∥∞∥D−xET∥+

• −(DT (MhTh)D−xET ,D−xET )≤−β0∥D−xET∥+

• (RhG(T ),ET )h − (G(Th),ET )h = G′
max∥ET∥2

h

hence, using Propositions 4.1.1, 4.1.2 and 4.1.3, we easily arrive to

1
2

d
dt
∥ET (t)∥2

h +β0∥D−xET (t)∥2
+

≤
√

2∥DT∥C1
b(IR)

∥ET (t)∥h∥D−xRhT (t)∥h,∞∥D−xET (t)∥+

+G′
max∥ET (t)∥2

h +
1

4ε2 τT (t)+3ε
2∥D−xET (t)∥2

+,

(III.78)

where ε ̸= 0 is an arbitrary constant.
The inequality (III.78) leads to

e
−
∫ t

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (µ)∥2

h,∞+2G′
max

)
dµ d

dt
∥ET (t)∥2

h

+2(β0 −4ε
2)e

−
∫ t

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (s)∥2

h,∞+2G′
max

)
ds
∥D−xET (t)∥2

+

≤ e
−
∫ t

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (s)∥2

h,∞+2G′
max

)
ds( 1

ε2 ∥DT∥2
C1

b(IR)
∥D−xRhT (t)∥2

h,∞

+2G′
max
)
∥ET (t)∥2

h +
1

2ε2 e
−
∫ t

0

(
1

ε2 ∥DT ∥2
C1

b (IR)
∥D−xRhT (s)∥2

h,∞+2G′
max

)
ds

τT (t),

(III.79)

for t ∈ [0, t f ]. Finally, choosing ε such that β0 −4ε2 > 0 and considering the continuous imbedding
of H3(Ω) in C1(Ω), we conclude (III.77).

Corollary 4.1.5 Under the assumptions of Theorem 4.1.4, if Th(0) = RhT (0) then there exists a
positive constant C such that the error ET (t) satisfies

∥ET (t)∥2
h +

∫ t

0
e2G′

max(t−s)∥D−xET (s)∥2
h,+ds ≤Ch4

max, t ∈ [0, t f ].
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If the sequence Λ of the spatial vectors h satisfies the assumption (III.62), then the sequence of
approximations for the temperature Th,h ∈ Λ, is uniformly bounded in the sense

∥Th(t)∥h,∞ ≤C,
∫ t

0
e2G′

max(t−s)∥D−xTh(s)∥2
+ds ≤C, t ∈ [0, t f ],h ∈ Λ.

4.2 Error estimate for the concentration ch(t)

Considering the error Ec(t) = Rhc(t)−ch(t), where Th(t) and ch(t) are defined by (III.28) and (III.29)
and proceeding similarly to the temperature case, we get successively

(E ′
c(t),Ec(t))h = ((c′(t))h,Ec(t))h − (c′h(t),Ec(t))h + τd(Ec(t))

=−(Dd(Mh(RhT (t)))D−xRhc(t)−Dd(Mh(Th(t)))D−xch(t),D−xEc(t))+
+(Mh(Rh(v(T (t))c(t))),D−xEc(t))+− (Mh(v(Th(t))ch(t)),D−xEc(t))+
+(RhQ(c(t))−Q(ch(t)),Ec(t))h + τd(Ec(t))+ τDd (Ec(t))+ τv(Ec(t))+ τQ(Ec(t)),

(III.80)

where τd(Ec(t)) is defined by (III.68) with T (t) and ET (t) replaced by c(t) and Ec(t), respectively,
and the other τs are given as

τDd (Ec(t)) = ((∇(Dd(T (t))∇c(t)))h,Ec(t))h +(Dd(Mh(RhT (t)))D−xRhc(t),D−xEc(t))+,

τv(Ec(t)) =−(
(
∇.(v(T (t))c(t))

)
h,Ec(t))h − (Mh(Rh(v(T (t))c(t))),D−xEc(t))+, (III.81)

and
τQ(Ec(t)) = ((Q(c(t)))h,Ec(t))h − (RhQ(c(t)),Ec(t))h.

Let establish through the next Propositions upper bounds for the previous τ’s.

Proposition 4.2.1 If c′(t) ∈ H2(Ω) then

|τd(Ec(t))| ≤Const
( N

∑
i=1

h4
i ∥c′(t)∥2

H2(Ii)

)1/2
∥D−xEc(t)∥+. (III.82)

Proof: This result follows exactly the proof of Proposition 4.1.1, just replacing T by c.

Proposition 4.2.2 If Q ∈C2
b(R) and c(t) ∈ H2(Ω)∩H1

0 (Ω), then

|τQ(Ec(t))| ≤Const∥Q∥C2
b(IR)

(
1+∥c(t)∥C1(Ω)

)( N

∑
i=1

h4
i ∥c(t)∥2

H2(Ii)

)1/2

∥D−xEc(t)∥+. (III.83)

Proof: This result is completely analogous to the previous result for τG(ET (t)), just replacing G
by Q and T by c.
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Proposition 4.2.3 If T (t) ∈ H2(Ω)∩H1
0 (Ω) and c(t) ∈ H3(Ω)∩H1

0 (Ω), then

|τDd (ET (t))| ≤Const∥Dd∥C1
b(IR)

(( N

∑
i=1

h4
i ∥c(t)∥2

H3(Ii)

)1/2
+∥c(t)∥C1(Ω)

( N

∑
i=1

h4
i ∥T (t)∥2

H2(Ii)

)1/2
)

∥D−xEc(t)∥+.
(III.84)

Proof: In this proof we follow almost all the steps of the proof of Proposition 4.1.2, with relevant
changes. We consider the following estimates for τ1 and τ2

|τ1(t)| ≤Const∥Dd∥C1
b(IR)

( N

∑
i=1

h4
i ∥c(t)∥2

H3(Ii)

)1/2
∥D−xEc(t)∥+

|τ2(t)| ≤Const∥Dd∥C1
b(IR)

( N

∑
i=1

h4
i ∥T (t)∥2

H2(Ii)
∥c(t)∥2

C1(Ii)

)1/2
∥D−xEc(t)∥+

Whereby result that

|τDd (t)| ≤Const∥Dd∥C1
b(IR)

[( N

∑
i=1

h4
i ∥c(t)∥2

H3(Ii)

)1/2
+
( N

∑
i=1

h4
i ∥T (t)∥2

H2(Ii)
∥c(t)∥2

C1(Ii)

)1/2
]
∥D−xEc(t)∥+

which leads us to (III.84).

Proposition 4.2.4 If v(T (t))c(t) ∈ H2(Ω)∩H1
0 (Ω) then

|τv(ET (t))| ≤Const
( N

∑
i=1

h4
i ∥v(T (t))c(t)∥2

H2(Ii)

)1/2
∥D−xEc(t)∥+. (III.85)

Proof: From (III.81) we have that

τv(Ec(t)) =−
((

∇(v(T (t))c(t))
)

h
,Ec(t)

)
h
− (Mh(Rh(v(T (t))c(t))),D−xEc(t))+

=−
N−1

∑
i=1

∫ x
i+ 1

2

x
i− 1

2

∇(v(T )c)(x, t)dxEc(xi, t)−
N

∑
i=1

hi
(v(T )c)(xi+1, t)+(v(T )c)(xi, t)

2
D−xEc(xi, t)

=
N

∑
i=1

hi(v(T )c)(xi− 1
2
, t)D−xEc(xi, t)−

N

∑
i=1

hi
(v(T )c)(xi+1, t)+(v(T )c)(xi, t)

2
D−xEc(xi, t)

Then, applying modulus, and using Lemma (4.0.5) we obtain the estimate
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|τv(Ec(t))| ≤
N

∑
i=1

hi

∣∣∣∣(v(T )c)(xi− 1
2
, t)− (v(T )c)(xi+1, t)+(v(T )c)(xi, t)

2

∣∣∣∣ |D−xEc(xi, t)|

≤
N

∑
i=1

Consth2
i ∥(v(T )c)′′(t)∥L1(xi−1,xi)|D−xEc(xi, t)|

≤
( N

∑
i=1

Consth4
i ∥(v(T )c)′′(t)∥2

L2(xi−1,xi)

)1/2( N

∑
i=1

hi(D−xEc(xi, t))2
)1/2

≤
( N

∑
i=1

Consth4
i ∥(v(T )c)′′(t)∥2

L2(xi−1,xi)

)1/2
∥D−xEc(t)∥+

≤ Const
( N

∑
i=1

h4
i ∥v(T )c(t)∥2

H2(Ii)

)1/2
∥D−xEc(t)∥+

Thus we conclude (III.85).

Theorem 4.2.5 Let us suppose that

T,c ∈ L2(0, t f ,H3(Ω)∩H1
0 (Ω))∩H1(0, t f ,H2(Ω)),

RhT,Rhc,Th,ch ∈C1([0, t f ],Wh,0),

the coefficient function DT and G satisfy the assumptions H1,H2, respectively, Q,G ∈C2
b(IR), v and

Dd satisfy the assumption H3,H4, respectively, and v(T (t))c(t) ∈ H2(Ω)∩H1
0 (Ω). If the sequence Λ

of the spatial vectors h satisfies the assumption (III.62), then for the error Ec(t) = Rhc(t)− ch(t) we
have

∥Ec(t)∥2
h +

∫ t

0
e
∫ t

s

(
1

ε2 β 2
2 ∥Th(µ)∥2

h,∞+2Q′
max

)
dµ∥D−xEc(s)∥2

+ds

≤ 1
min{1,2(β3 −7ε2)}

e
∫ t

0

(
1

ε2 β 2
2 ∥Th(s)∥2

h,∞+2Q′
max

)
ds
(
∥Ec(0)∥2

h

+
∫ t

0 e−
∫ s

0

(
1

ε2 β 2
2 ∥Th(µ)∥2

h,∞+2Q′
max

)
dµ
( 1

ε2 ∥Dd∥2
C1

b(IR)
∥D−xc(s)∥2

h,∞

+
1
ε2 ∥v∥2

C1
b(IR)

∥c(s)∥2
h,∞
)
∥ET (s)∥2

hds+
1
ε2

∫ t

0
e−

∫ s
0

(
1

ε2 β 2
2 ∥Th(µ)∥2

h,∞+2Q′
max

)
dµ

τc(s)ds
)
, t ∈ [0, t f ],

(III.86)
where ε ̸= 0 is such that β3 −7ε2 > 0, ∥ET (t)∥2

h is bounded in (III.77) and

τc(t) =Const
( N

∑
i=1

h4
i ∥c′(t)∥2

H2(Ii)
+

N

∑
i=1

h4
i

(
∥c(t)∥2

H3(Ii)
+∥c(t)∥2

C1(Ω)
∥T (t)∥2

H2(Ii)

)
+

N

∑
i=1

h4
i ∥v(T (t))c(t)∥2

H2(Ii)

)
.

(III.87)

Proof: From Theorem 4.1.4, ∥Th(t)∥h,∞,h ∈ Λ, is uniformly bounded in [0, t f ].

From (III.80), applying H3, H4 and the Mean Value Theorem, we get

• ([Mh(Rh(v(T )))−Mh(v(Th))]c,D−xEc)+ ≤
√

2∥v∥C1
b(IR)

∥ET∥h∥c∥h,∞∥D−xEc∥+
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• (Mh(v(Th))Ec,D−xEc)+ ≤
√

2β2∥Th∥h,∞∥Ec∥h∥D−xEc∥+

• |((Dd(MhRhT )−Dd(Mhch))D−xRhc,D−xEc)+| ≤ ∥Dd∥C1
b(IR)

√
2∥Ec∥h∥D−xRhc∥h,∞∥D−xEc∥+

• −(Dd(MhTh)D−xEc,D−xEc)≤−β3∥D−xEc∥2
+

• (RhQ(c),Ec)h − (Q(ch),Ec)h = Q′
max∥Ec∥2

h

Thus arise from here that

1
2

d
dt ∥Ec(t)∥2

h +β3∥D−xEc(t)∥2
+

≤
(√

2∥Dd∥C1
b(IR)

∥D−xRhc(t)∥h,∞ +∥v∥C1
b(IR)

√
2∥c(t)∥h,∞

)
∥ET (t)∥h∥D−xEc(t)∥++Q′

max∥Ec(t)∥2
h

+
√

2β2∥Th(t)∥h,∞∥Ec(t)∥h∥D−xEc(t)∥++ τd(Ec(t))+ τDd (Ec(t))+ τv(Ec(t))+ τQ(Ec(t)).

Consequently, Ec(t) satisfies

d
dt
∥Ec(t)∥2

h +2(β3 −7ε
2)∥D−xEc(t)∥2

+

≤
( 1

ε2 ∥Dd∥2
C1

b(IR)
∥D−xRhc(t)∥2

h,∞ +
1
ε2 ∥v∥2

C1
b(IR)

∥Rhc(t)∥2
h,∞
)
∥ET (t)∥2

h

+
( 1

ε2 β
2
2 ∥Th(t)∥2

h,∞ +2Q′
max
)
∥Ec(t)∥2

h +
1
ε2 τc(t),

(III.88)

where ε ̸= 0 is an arbitrary constant, and τc(t) is given by (III.87).

The inequality (III.88) is equivalent to the following one

∥Ec(t)∥2
h +2(β3 −7ε

2)
∫ t

0
∥D−xEc(s)∥2

+ds

≤ ∥Ec(0)∥2
h +

∫ t

0

( 1
ε2 ∥Dd∥2

C1
b(IR)

∥D−xRhc(s)∥2
h,∞ +

1
ε2 ∥v∥2

C1
b(IR)

∥c(s)∥2
h,∞
)
∥ET (s)∥2

hds

+
∫ t

0

( 1
ε2 β

2
2 ∥Th(s)∥2

h,∞ +2Q′
max
)
∥Ec(s)∥2

hds+
1
ε2

∫ t

0
τc(s)ds,

that leads to (III.86).

By Corollary 4.1.5, for the error ET (t) we have the following

∥ET (t)∥2
h ≤Ch4

max, t ∈ [0, t f ].

Then, from Theorem 4.2.5, we finally conclude the next estimate.

Corollary 4.2.6 Under the assumptions of Theorems 4.1.4 and 4.2.5, if Th(0) = RhT (0), ch(0) =
Rhc(0), then there exists a positive constant C such that the error Ec(t) satisfies

∥Ec(t)∥2
h +

∫ t

0
e2Q′

max(t−s)∥D−xEc(s)∥2
+ds ≤Ch4

max, t ∈ [0, t f ].
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5 Numerical simulations

5.1 Convergence rates

In this section our goal is to illustrate the main results in chapter III: Theorems 4.1.4 and 4.2.5. We
consider t f = 0.1, and we introduce in [0, t f ] the uniform grid {tm,m = 0, . . . ,M} with stepsize ∆t
such that ∆t ≤Consth2

max.

As we intend to illustrate the convergence rates established in Theorems 4.1.4 and 4.2.5, we consider
the differential equations (I.2) and (I.3) with reaction terms f2(t) and f1(t), respectively. These
new reaction terms generate in (III.28), (III.29), the new terms (( f1(t))h,uh)h and (( f2(t))h,wh)h,
respectively, or equivalently in the semi-discrete FD problems (III.32) and (III.33) the new reaction
terms ( f1(t))h and ( f2(t))h, respectively. These terms will be fixed in order to have problems with
known solutions.

To avoid the computation of the solution of non-linear systems, the new version of the semi-discrete
FE problem (III.28), (III.29), or equivalently the new version of the semi-discrete FD problem (III.32)
and (III.33), are integrated in time using Euler’s method following an implicit-explicit approach
(IMEX approach)

(T m+1
h ,φh)h +∆t(DT (MhT m

h )D−xT m+1
h ,D−xφh)+ = (T m

h ,φh)h

+∆t(G(T m
h ),φh)h +∆t(( f1(tm))h,φh)h,

m = 0, . . . ,M−1,∀φh ∈Wh,0,

T 0
h = RhT0,

(III.89)

and
(cm+1

h ,ψh)h −∆t(Mh(v(T m
h )cm+1

h ),D−xψh)++∆t(Dd(MhT m
h )D−xcm+1

h ,D−xψh)+

= (cm
h ,ψh)+∆t(Q(cm

h ),ψh)h +∆t(( f2(tm))h,ψh)h,

m = 0, . . . ,M−1,∀ψh ∈Wh,0,

c0
h = Rhc0.

(III.90)

The fully discrete FE discretizations (III.89), (III.90) are equivalent to the following FD discretiza-
tions 

T m+1
h −∆tD∗

x

(
DT (MhT m

h )D−xT m+1
h

)
= T m

h +∆tG(T m
h )+∆t( f1)

m
h ,

in Ωh, m = 0, . . . ,M−1,
T 0

h = RhT0 inΩh,

T m
h = 0on∂Ωh,m = 1, . . . ,M,

(III.91)


cm+1

h +∆tDc
(
(v(T m+1

h )cm+1
h )−∆tD∗

x(Dd(MhT m+1
h )D−xcm+1

h ) = cm
h

+∆tQ(cm
h )+∆t( f2)

m
h in Ωh, m = 0, . . . ,M−1,

c0
h = Rhc0 inΩh,

cm
h = 0on∂Ωh,m = 1, . . . ,M.

(III.92)

The numerical temperature at time level m+ 1, T m+1
h is evaluated solving the linear system

equivalent to (III.91). As in (III.92) the temperature T m+1
h is computed in the previous first step, the
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numerical concentration at time level m+1 is obtained solving the linear system equivalent to (III.92).
This approach is particularly recommended in this case.

In the error tables that we present in what follows, we illustrate the behaviour of the errors

Errorℓ,h = max
j=1,··· ,M

(
∥E j

ℓ∥
2
h +∆t

j

∑
i=1

∥D−xE i
ℓ∥2

+

)
, ℓ= T,c,

where
E j
ℓ = Rhℓ(t j)− ℓ j

h, j = 1, . . . ,M,

and ℓ j
h is the approximation for ℓh(t j) defined by the IMEX method (III.89), (III.90) (or (III.91),

(III.92)). We also include the convergence rates Rateℓ defined considering the following formula

Rateℓ =
log
(

Errorℓ,hmax,i
Errorℓ,hmax,i+1

)
log
(

hmax,i
hmax,i+1

) , ℓ= T,c,

where hmax,i and hmax,i+1 are defined by two consecutive grids Ωh,i and Ωh,i+1.

We consider DT (T ) = DT , with DT = 10−3(cm2/s), and the diffusion coefficient for the con-
centration given by the Arrhenius equation (I.1), with R = 8.3144621, Ea = 1.60217662× 10−19,
D0 = 10−1(cm2/s). Moreover, to simplify, we assume that the convective velocity is defined by
v(T ) = bT (cm/s), where b = 10−1(cm/soK). We also take G = Q = 0 and ∆t = 10−6(s).

In the first example we consider f1 and f2 such that the differential system (I.2), (I.3) has the
following solution

T (x, t) = e−DT tsin(πx),
c(x, t) = e−tsin(2πx), for x ∈ [0,1], t ∈ [0, t f ].

(III.93)

In Table III.1 we include the errors for the numerical approximations for ET and Ec obtained with
(III.89), (III.90) (or (III.91), (III.92)). We also exhibit the correspondent convergence rates Rateℓ, ℓ=
T,c. The results included in this table illustrate Theorems 4.1.4 and 4.2.5 when T and c are smooth
functions.

Npoints hmax ET RT Ec Ratec

40 3.75×10−2 2.66001×10−5 —— 4.33994×10−3 ——
80 1.875×10−2 1.16484×10−5 1.19130 1.12487×10−3 1.94791

160 9.375×10−3 3.75280×10−6 1.63409 2.82498×10−4 1.99345
320 4.6875×10−3 1.0090×10−6 1.89504 7.09491×10−5 1.99338
640 2.34375×10−3 2.56835×10−7 1.97401 1.77873×10−5 1.99594
1280 1.171875×10−3 6.44969×10−8 1.99354 4.48864×10−6 1.98649

Table III.1 Convergence rates of the numerical approximations for the smooth solutions (III.93).
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To illutrate the sharpness of our convergence results, in what concerns the smoothness assumptions
for the solutions, we consider now the differential system (I.2), (I.3) with solution

T (x, t) = e−DT tsin(πx)|2x−1|α ,
c(x, t) = e−tx(1− x)|2x−1|α , for x ∈ [0,1], t ∈ [0, t f ].

(III.94)

We observe that T (t),c(t) ∈ H3(Ω) for α > 3, and T (t),c(t) ∈ H2(Ω) for α ∈ (2,3]. In Tables III.2
and III.3 we include the errors and the correspondent convergence rates obtained for α = 3.1 and
α = 2.1, respectively. The results show that when the solutions T and c do not satisfy the smoothness
assumption T (t),c(t) ∈ H3(Ω), then we lose the second order convergence rates.

Npoints hmax ET RT Ec Ratec

40 3.75×10−2 8.02419×10−5 —— 5.20569×10−4 ——
80 1.875×10−2 3.37646×10−5 1.24885 1.33263×10−4 1.96581

160 9.375×10−3 1.06791×10−5 1.66072 3.37786×10−5 1.98009
320 4.6875×10−3 2.88317×10−6 1.88907 8.49696×10−6 1.99109
640 2.34375×10−3 7.39408×10−7 1.96321 2.13042×10−6 1.99581
1280 1.171875×10−3 1.86910×10−7 1.98403 5.32633×10−7 1.99992

Table III.2 Convergence rates for the α-solution numerical approximation with α = 3.1

Npoints hmax ET RT Ec Rc

40 3.75×10−2 1.11053×10−4 —— 4.07632×10−4 ——
80 1.875×10−2 5.09896×10−5 1.12297 1.46949×10−4 1.47195

160 9.375×10−3 2.06318×10−5 1.30533 6.00531×10−5 1.29101
320 4.6875×10−3 9.77867×10−6 1.07715 2.65040×10−5 1.18003
640 2.34375×10−3 5.36280×10−6 0.86665 1.21129×10−5 1.12967
1280 1.171875×10−3 2.90522×10−6 0.88434 5.61021×10−6 1.11041

Table III.3 Convergence rates for the α-solution numerical approximation with α = 2.1

5.2 Qualitative behaviour

In this section we illustrate the effectiveness of the temperature as a drug release enhancer. We
consider an isotropic and homogeneous tissue where a drug is initially dispersed. The assumptions on
the properties of the tissue allow us to replace the 3D drug release problem by a 1D problem.

In order to observe the behaviour of the drug transport enhanced by the temperature variations, we
will point three distinct situations:

(I) The heat source is in contact with the tissue at the boundaries,

(II) The heat source is applied to the full tissue during a defined time interval,

(III) The heat source is in contact with one of the boundaries where the flux of drug is proportional
to the amount of drug that is already in the blood.
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From the biological literature we know that the increase of the temperature increases the tissue
permeability, the body fluid circulation, the blood vessel wall permeability, the rate-limiting membrane
permeability and the drug solubility. These phenomena explain the reason why heat sources are drug
delivery enhancers.

(I) Heat source term at the boundaries

In this first case, those phenomena are macroscopically taken into account in the convective
velocity v(T ) and in the drug diffusion coefficient Dd(T ) that we assume to be given by the
Arrhenius equation (I.1).

We consider that the heat sources are applied at the boundaries of the domain Ω = (0,1).
Initially, the drug concentration is defined by c(x,0) = x(1− x) (g/cm3) , x ∈ (0,1). We
consider G = 0 and t f = 104 (s), DT = 10−7 (cm2/s), D0 = 10−4 (cm2/s). We take ∆t = 10−1

(s) and h = 1.25×10−2 (cm).

• In what follows we consider that the heat is generated by T (0, t) = T (1, t) = 310+0.1t
(oK) for an activation energy Ea such that Ea/R = 4.43×102 (s), and v(t) = 0.

In Figure III.1 we plot the temperature curves for different times. As the heat sources
are localized at the boundaries, we observe an increasing of the temperature from the
boundaries to the interior. The evolution of the concentration when the diffusion coefficient
depends on the temperature is illustrated in Figure III.2. In this case we consider the
temperature given in Figure III.1. As the time increases, an increasing on the transport
near the left and right boundaries is observed. This fact is consequence of the increasing
on the temperature observed in these zones. The correspondent released mass Mr(t) =

M(0)−
∫

Ω

c(x, t)dx is plotted in Figure III.3. The released mass increases when the drug

transport is enhanced by the temperature.
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Fig. III.1 Plots of the temperature for T (0, t) = T (1, t) = 310+0.1t at t = 0, 103, 3×103, 5×103,
7×103, 104. The right figure is a zoom of the left figure.

• We assume now that the heat is generated by T (0, t) = T (1, t) = 310+5×10−4t (oK), for
t > 0, and the heat induces a convective transport given by v(T ) = bT, with b = 5×10−4,

(cm/soK). We assume that the activation energy Ea is such that Ea/R = 103 (s).
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Fig. III.2 Plots of the concentration when the heat sources are defined by T (0, t) = T (1, t) = 310+0.1t
and v = 0 at t = 0, 103, 3×103, 5×103, 7×103, 104. The right figure is a zoom of the left figure.
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Fig. III.3 Evolution of the released drug mass Mr: under the effect of the temperature (dashed line);
without the temperature effect (continuous line) for the diffusion coefficient Dd = 10−4, T (0, t) =
T (1, t) = 310+0.1t and v = 0.

Figure III.4 illustrates the behaviour of the temperature. As we can see, it increases when
t increases from the boundaries, where the heat sources are located, to the interior. In
Figure III.5 we plot the evolution of the corresponding drug concentration. As v(T ) = bT,
with b = 5×10−4, the heat generates a convective term that induces a displacement of
the drug concentration from left to the right. Moreover, the highest concentration value
decreases in time due to the drug release and this value moves from the left to the right and
such displacement increases with time. The behaviour of the released drug mass Mr(t) is
illustrated in Figure III.6. The heat, generated by the sources applied at the boundaries of
the domain, increases the transport from the left to the right and, consequently, it increases
the released drug. In this case, we observe that the drug mass was completely released at
t ≃ 5×103 while in the absence of the heat stimulus at t = 104 the drug release continues.
The increase of the temperature in live tissues, like the skin, leads to an increase of the
drug permeation through the tissue, an increase of the skin perfusion and an increase
to the clarence to systemic circulation ([31]). These complex alterations in the tissue
were mathematically translated by Dd(T ), a temperature depending diffusion coefficient
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which is an increasing function of the temperature, and by the convective term v(T ). The
obtained results are physically sound.
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Fig. III.4 Plots of the temperature for T (0, t) = T (1, t) = 310+ 5× 10−4t at t = 0, 103, 3× 103,
5×103,7×103, 104. The right figure is a zoom of the left figure.
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Fig. III.5 Plots of the concentration when the heat source is given by T (0, t) = T (1, t) = 310+5×
10−4t and v(T ) = 5×10−4T at t = 0, 103, 3×103, 5×103, 7×103, 104. The right figure is a zoom
of the left figure.
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Fig. III.6 Evolution of the released drug mass Mr: under the effect of the temperature (dashed
line); without the temperature effect (continuous line) for the diffusion coefficient Dd = 10−4 and
v(T ) = 5×10−4T .

(II) Heat source applied to the full tissue during a defined time interval
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We consider for this approach the initial temperature and concentrations given by T (x,0) =
310x(1−x)(oK) and c(x,0) = x(1−x)(g/cm3). The reaction term is inexistent. The convective
term is a linear function of the temperature considering b = 0.01, and for the diffusion functions
we assume, in this case that, both functions are given by Arrhenius equation with Ea = 10,
R = 8.314, D0,T = 10−2 and D0,c = 10−2. With respect time step we consider ∆t = 10−2 and
we take t f = 10; regarding the space stepsize we consider h = 10−2 (to simplify uniform grids
are used). The source term is the following

G(T ) =

312−2cos(3t), t < 0.4

0, t ≥ 0.4.
(III.95)

The effect of heat is taken into account through diffusion for temperature and through diffusion
and convection for the drug concentration. We will focus on two different aspects when we
consider a source term (through function G(T )) applied to the full spatial domain. The first
aspect regards the effect on the total mass released when a heat source is applied to the entire
domain during a certain time. We exhibit in (III.7) the evolution of temperature (left) and the
evolution of drug concentration inside the domain. We observe that for t = 1 the total mass of
drug, under the action of the heat source, has been totally released.

As we can observe the difference between the two cases is obvious and gives a natural justifica-
tion for instance for the use of patches at its effectiveness.

Fig. III.7 Evolution of the temperature (on the left) and concentration inside the domain (on the right)
for G(T ) given by (III.95)

The second aspect we want to address is to illustrate the dependence of the drug release pattern
on the duration of heat application. The heat source is defined in (III.95), but instead of assuming
t < 0.4, we consider that source acts during the intervals [0,1], [0,3], [4,7], [1,10] and [8,10].

Observing the Figure (III.9) we conclude that the time interval [0,3] guarantees a very efficient
release, the total mass of drug being totally released during the action of the heat source.

(III) The heat source is in contact with one of the boundaries and the flux of drug is proportional to
the concentration of drug in the blood
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Fig. III.8 Evolution of the released drug mass G(T ) given by (III.95)

Fig. III.9 Evolution of the released drug mass for the source applied during distinct time intervals

In this case, we consider that the drug concentration that enters the blood at x = 1 is represented
by a Robin boundary condition of type

−Dd(T )
∂c
∂x

(1, t) = α(c(1, t)− cB) (III.96)

where α and cB are positive constants. In (III.96) α represents the permeability of the interface
drug domain/ release medium and cB is the concentration of drug in the blood. We recall that
for the boundaries the drug is immediately washed out that is we have c(0, t) = 0. The discrete
version of the Boundary conditions is given by

−Dd(T m
N )

cm+1
N − cm+1

N−1

hN = α(cm+1
N − cB)

cm
0 = 0, for m = 1, · · · ,M
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In the numerical simulations of problem (III) we consider the initial functions T (x,0) =
310+ 10sin(πx)(oK) and c(x,0) = sin(πx)(g/cm3), for the temperature and concentration,
respectively. Assuming that G(T ) = 0, Q(c) = 0, v(T ) = bT , DT (T ) = Dd(T ) = DT , where
b = D = 0.01. Moreover, we fix t f = 0.01, ∆t = 0.001 and h = 5×10−3.

Fig. III.10 Comparison of mass released for different α’s assuming cB = 0.001(g/cm3)

We observe that when we decrease α we are decreasing the membrane permeability, conse-
quently the mass released is smaller when α goes to zero. On the other hand, as we can see in
Figure (III.11), if cB increases that will cause a decrease of the mass released, at certain time.

Fig. III.11 Comparison of mass released fixing α = 1 and varying the values of cB

6 Conclusions

The use of heat as an external stimulus to enhance drug release is nowadays a common approach in
several medical applications (see [14], [15], [34], [46] and [53]). Mathematically, the drug release
enhanced by the temperature is described by a diffusion-reaction equation for the temperature and
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a convection-diffusion-reaction equation for the drug, where the convective and the drug diffusion
coefficients depend on the temperature.

In this Chapter we propose a numerical method to compute the temperature and the drug concen-
tration. The method is based on the piecewise linear finite element method, combined with special
quadrature rules. It leads to second order numerical approximations for the temperature and for
the concentration provided that both solutions are in H3(Ω)∩H1

0 (Ω) (Theorems 4.1.4 and 4.2.5).
The proposed method mimics the continuous coupling in what concerns the stability behaviour as
it was shown, in Section 2, for the continuous coupling, and, in Subsection 3.2, for the numerical
coupling problem. The main stability result - Proposition 3.2.2 - establishes that the fully discrete
finite element method (III.28), (III.29) or, equivalently, the finite difference method (III.32), (III.33) is
stable. This result was proved under assumption H6, that is a consequence of the second convergence
order established in Theorems 4.1.4 and 4.2.5.

We reinforce the fact that the convergence analysis presented in this chapter is not based on the
classical approach: consistency and stability imply convergence. The error analysis is based on the
analysis of the error equation and on the use of the approach introduced by one of the authors in [5],
and used later for the coupling between an elliptic equation and an integro-differential equation in [4],
and for the coupling between a hyperbolic equation and a convection-diffusion equation that arises in
models for drug delivery enhanced by ultrasounds in [22].

Numerical results were included to illustrate the main convergence results. The rates of conver-
gence presented in Tables III.1, III.2 and Table III.3 illustrate the sharpness of our results in what
concerns the smoothness assumptions for the temperature and concentration.

The numerical results presented in Figures III.3, III.6 and III.8 illustrate the use of heat to
enhance drug release is an effective procedure. It is observed that if the drug transport is enhanced by
temperature then the drug delivery attains its steady state very quickly. These results are physically
sound because the increase of temperature in live tissues, like the skin, leads to an increase of the drug
permeation through the tissue, an increase of the skin perfusion and an increase in the clearance to
systemic circulation ([31]).



Chapter IV

Coupling nonlinear electric fields:
stability and convergence analysis

1 Introduction

As it was already mentioned this system can be used to describe the drug transport through a target
tissue when an electric field is used as enhancer (see for instance [6], [16], [42], [47]).

The expressions for the functions σ , DT , v, Dd , F , G and Q were defined in chapter I. Their
smoothness will be specified throughout the body of the chapter.

In what concerns the organization of the chapter we start by introducing the preliminary notations
and definitions in Section 2. In Section 3 we analyse the stability and convergence properties of
the discretization of the elliptic equation (I.6). The convergence properties of the semi-discrete
approximations for T and c are studied in Section 4 and 5, respectively. Finally, in Section 6 we
present numerical experiments illustrating the main convergence results as well as the qualitative
behaviour of the solution of the IBVP (I.6)-(I.8), (I.9), (I.10). Some conclusions are presented in
Section 7.

2 Preliminary notations and definitions

As mentioned before, by L2(Ω) and H1
0 (Ω) we denote the usual Sobolev spaces and, for m ∈ IN0, by

Hm(0, t f ,V ) we represent the space of functions w : Ω× [0, t f ]→ IR such that w( j)(t)∈V, j = 0, . . . ,m,

where w( j)(t) is the weak time derivative of order j.

The weak solution of the IBVP (I.6)-(I.8), (I.9), (I.10) is defined by

(φ ,T,c) ∈ H1
0 (Ω)× [L2(0, t f ,H1

0 (Ω))∩H1(0, t f ,L2(Ω))]2

such that
(σ(|∇φ |),∇ψ) = ( f ,ψ), ∀ψ ∈ H1

0 (Ω), (IV.1)

55
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(T ′(t),w)+aT (T (t),w) = (G(T (t)),w)+(F(∇φ),w) a.e. in(0, t f ),∀w ∈ H1
0 (Ω), (IV.2)

(c′(t),u)+ac(c(t),u) = (Q(c(t)),u) a.e. in(0, t f ),∀u ∈ H1
0 (Ω), (IV.3)

and

(T (0),w) = (T0,w), ∀w ∈ L2(Ω), (c(0),u) = (c0,u), ∀u ∈ L2(Ω). (IV.4)

In (IV.2) and (IV.3) the following notation were used

aT (T (t),w) = (DT (T (t))∇T (t),∇w),

ac(c(t),u) = (Dd(T (t))∇c(t),∇u)− (v(T (t),∇φ)c(t),∇u).

To introduce the piecewise linear FE approximations for φ ,T (t) and c(t), we consider the sequence
Λ of vectors h = (h1, · · · ,hn) introduced in chapter II, assuming Ii = (xi−1,xi). We recall that Wh and
Wh,0 represent, respectively, the vector space of grid functions defined in Ωh and the subspace of Wh of
functions null on the boundary points ∂Ωh = {x0,xN}. For uh ∈Wh, by Phuh we denote the piecewise
linear interpolation of uh.

The piecewise linear FE approximations for φ ,T (t) and c(t) are then the solution of the following
system

(σ(|∇Phφh|),∇Phψh) = ( f ,ψh), ∀ψh ∈Wh,0, (IV.5)

(PhT ′
h(t),wh)+aT (PhTh(t),Phwh) = (G(PhTh(t)),Phwh)+(F(∇Phφh),Phwh) a.e. in(0, t f ), (IV.6)

∀wh ∈Wh,0,

(Phc′h(t),uh)+ac(Phch(t),Phuh) = (Q(Phch(t)),Phuh) a.e. in(0, t f ), (IV.7)

∀uh ∈Wh,0,

(PhTh(0),Phwh) = (PhRhT0,Phwh), ∀whWh,0,

(Phch(0),Phuh) = (PhRhc0,Phuh)∀uh ∈Wh,0.
(IV.8)

In (IV.8), Rh denotes the following restriction operator Rh : C(Ω)→Wh, Rhg(xi) = g(xi), i = 0, . . . ,N,

g ∈C(Ω).

Once more D−x denotes the usual backward finite difference operator and for the operators D∗
x ,

Dc and Mh we consider the expressions introduced in (II.5) and (II.9). The finite difference operator
Dh is given by:

Dhuh(xi) =
hi+1D−xuh(xi)+hiD−xuh(xi+1)

hi+1 +hi
, i = 1, · · · ,N −1,

where hi+1/2 =
hi +hi+1

2
.
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If g ∈ L2(Ω), then by (g)h we represent the following discrete function

(g)h(x0) =
1
h1

∫ x1/2

x0

g(x)dx,

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x)dx, i = 1, . . . ,N −1,

(g)h(xN) =
1

hN

∫ xN

xN−1/2

g(x)dx.

(IV.9)

In what concerns the inner products and norms we keep the notations stated previously.

Then the fully discrete FE approximations for φ ,T (t),c(t) ∈ H1
0 (Ω) are defined by

(σ(|D−xφh|)D−xφh,D−xψh)h,+ = (( f )h,ψh)h, ∀ψh ∈Wh,0, (IV.10)

(T ′
h(t),wh)h +aTh(Th(t),wh) = (G(Th(t)),wh)h +(F(Dhφh),wh)h in (0, t f ], ∀wh ∈Wh,0, (IV.11)

(c′h(t),uh)h +ach(ch(t),uh) = (Q(ch(t)),uh)h in (0, t f ], ∀uh ∈Wh,0, (IV.12)

Th(0) = RhT0, ch(0) = Rhc0 in Ωh, (IV.13)

where
aTh(Th(t),wh) = (DT (MhTh(t))D−xTh(t),D−xwh)+,

and

ach(ch(t),uh) =−(Mh(v(Th(t),Dhφh)ch(t)),D−xuh)++(Dd(MhTh(t))D−xch(t),D−xuh)+.

We remark that the fully discrete FE approximations defined by (IV.10)-(IV.12), (IV.13) can be
obtained solving the following nonlinear finite difference system

−D∗
x(σ(|D−xφh|)D−xφh) = ( f )h in Ωh, (IV.14)

T ′
h(t) = D∗

x(DT (Mh(Th(t)))D−xTh(t))+G(Th(t))+F(Dhφh) in Ωh × (0, t f ], (IV.15)

c′h(t)+Dc(v(Th(t),Dhφh)ch(t)) = D∗
x(Dd(Mh(Th(t)))D−xch(t))+Q(ch(t)) in Ωh × (0, t f ], (IV.16)

where take Dhφh(x0) = D−xφh(x1) and Dhφh(xN) = D−xφh(xN). System (IV.14)-(IV.16) is completed
with the initial conditions (IV.13) and the boundary conditions

Th(t) = ch(t) = 0 on ∂Ωh × (0, t f ]. (IV.17)
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3 A Finite element method for the nonlinear elliptic equation

In this Section we study the stability and convergence properties of the piecewise linear FEM (IV.10)
or equivalently the FDM (IV.14).

3.1 Stability: a first approach

To study the stability of the nonlinear finite difference operator defined by (IV.14) with Dirichlet
boundary conditions we consider φ̃h as the solution of (IV.14) with ( f )h replaced by f̃h. Then for
ωp = φh − φ̃h we have

(σ(|D−xφh|)D−xφh,D−xωp)+−σ(|D−xφ̃h|)D−xφ̃h,D−xωp)+ = (( f )h − f̃h,ωp)h,

that leads to

(σ(|D−xφ̃h|)D−xωp,D−xωp)+ = ((σ(|D−xφ̃h|)−σ(|D−xφh|))D−xφh,D−xωp)++(( f )h − f̃h,ωp)h.

We need to impose the following smoothness assumption on σ :

H7 : σ ∈C1
b(IR

+
0 ) and σ ≥ β5 ≥ 0 inIR+

0 .

where C1
b(IR

+
0 ) denotes the space of real functions with bounded derivative in IR+

0 and with norm
denoted by ∥.∥C1

b(IR
+
0 )
.

Under the assumption H7 we conclude

β5∥D−xωp∥2
+ ≤ ∥σ∥C1

b(IR
+
0 )
∥D−xφh∥∞∥D−xωp∥2

++∥( f )h − f̃h∥h∥ωp∥h, (IV.18)

where
∥D−xφh∥∞ = max

i=1,...,N
|D−xφh(xi)|.

As for uh ∈Wh,0 holds the discrete Friedrichs-Poincaré inequality ∥uh∥h ≤ |Ω|∥D−xuh∥+, where |Ω|
denotes the measure of Ω, from (IV.18) we get

(β5 −∥σ∥C1
b(IR

+
0 )
∥D−xφh∥∞ − ε

2|Ω|2)∥D−xωp∥2
+ ≤ 1

4ε2 ∥( f )h − f̃h∥2
h, (IV.19)

where ε ̸= 0. If we are able to fix ε such that

β5 −∥σ∥C1
b(IR

+
0 )
∥D−xφh∥∞ − ε

2|Ω|2 > 0,h ∈ Λ, (IV.20)

then we conclude the stability of (IV.14). The condition (IV.20) requires that there exists a positive
constant Const such that

∥D−xφh∥∞ ≤Const, h ∈ Λ. (IV.21)

In what follows we show that the condition (IV.21) is consequence of the accuracy of φh.
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3.2 Supraconvergence-supercloseness

Theorem 3.2.1 Let Eφ = Rhφ −φh where φ and φh are defined by (I.6) and (IV.14), respectively. If
φ ∈ H3(Ω)∩H1

0 (Ω), σ satisfies the assumption H7 and β5 −∥σ∥C1
b(IR

+
0 )
∥φ∥C1(Ω) > 0 then there exist

constants Const > 0 such that

∥D−xEφ∥2
+ ≤Const

N

∑
i=1

h4
i ∥φ∥2

H3(Ii)
. (IV.22)

Proof: It can be shown that for the error Eφ holds the following equation

(σ(|D−xφh|)D−xEφ ,D−xEφ )+ = (σ(|D−xφh|)D−xRhφ ,D−xEφ )+− (( f )h,Eφ )h. (IV.23)

For (( f )h,Eφ )h we deduce

(( f )h,Eφ )h =
N−1

∑
i=1

∫ xi+1/2

xi−1/2

−∇(σ(|∇φ |)∇φ)dxEφ (xi)

=
N

∑
i=1

hiσ(|∇φ(xi−1/2)|)∇φ(xi−1/2)D−xEφ (xi)

= (R̂h(σ(|∇φ |)∇φ),D−xEφ )+

where R̂hg(xi) = g(xi−1/2), i = 1, . . . ,N.

Inserting the last representation in (IV.23) we obtain

(σ(|D−xφh|)D−xEφ ,D−xEφ )+ = (σ(|D−xφh|)D−xRhφ − R̂h(σ(|∇φ |)∇φ),D−xEφ )+. (IV.24)

As

σ(|D−xφh|)D−xRhφ − R̂h(σ(|∇φ |)∇φ)

= (σ(|D−xφh|)−σ(|D−xRhφ |))D−xRhφ +(σ(|D−xRhφ |− R̂hσ(|∇φ |))D−xRhφ)

+R̂hσ(|∇φ |)(D−xRhφ − R̂h∇φ),

from (IV.24) we also obtain

(σ(|D−xφh|)D−xEφ ,D−xEφ )+ =
3

∑
i=1

τi, (IV.25)

where
τ1 = ((σ(|D−xφh|)−σ(|D−xRhφ |))D−xRhφ ,D−xEφ )+,

τ2 = ((σ(|D−xRhφ |)− R̂hσ(|∇φ |))D−xRhφ ,D−xEφ )+

and
τ3 = (R̂hσ(|∇φ |)(D−xRhφ − R̂h∇φ),D−xEφ )+.

In what follows we deduce estimates for τi, i = 1,2,3.
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i) For τ1 we easily establish

|τ1| ≤ ∥φ∥C1(Ω)∥σ∥C1
b(IR

+
0 )
∥D−xEφ∥2

+. (IV.26)

ii) To obtain an estimate for τ2 we start by remarking that

|τ2| ≤ ∥D−xRhφ∥∞∥σ∥C1
b(IR

+
0 )

N

∑
i=1

hi|D−xφ(xi)−∇φ(xi−1/2)||D−xEφ (xi)|

and
hi|D−xφ(xi)−∇φ(xi−1/2)|= |λ (1)−λ (0)−λ

′(
1
2
)|

with λ (ξ ) = φ(xi−1 +ξ hi). As Bramble-Hilbert lemma leads to

|λ (1)−λ (0)−λ
′(

1
2
)| ≤Const

∫ 1

0
|λ (3)(ξ )|dξ ≤Const h2

i

√
hi∥φ∥H3(Ii),

we conclude

|τ2| ≤Const∥D−xRhφ∥∞∥σ∥C1
b(IR

+
0 )

( N

∑
i=1

h4
i ∥φ∥2

H3(Ii)

)1/2
∥D−xEφ∥+

that is

|τ2| ≤Const
1
ε2 ∥D−xRhφ∥2

∞∥σ∥2
C1

b(IR
+
0 )

N

∑
i=1

h4
i ∥φ∥2

H3(Ii)
+ ε

2∥D−xEφ∥2
+. (IV.27)

iii) Analogously, for τ3 we have

|τ3| ≤Const
1
ε2 ∥σ∥2

C1
b(IR

+
0 )

N

∑
i=1

h4
i ∥φ∥2

H3(Ii)
+ ε

2∥D−xEφ∥2
+. (IV.28)

Inserting (IV.26)-(IV.28) into (IV.25) we establish

(
β5 −2ε

2 −∥φ∥C1(Ω)∥σ∥C1
b(IR

+
0 )

)
∥D−xEφ∥2

+ ≤Const
1
ε2 ∥σ∥2

C1
b(IR

+
0 )

(
1+∥φ∥2

C1(Ω)

) N

∑
i=1

h4
i ∥φ∥2

H3(Ii)
.

(IV.29)
Finally, if β5 −∥σ∥C1

b(IR
+
0 )
∥φ∥C1(Ω) > 0 we guarantee the existence of a positive constant Const such

that (IV.22) holds.

Corollary 3.2.2 Under the assumptions of Theorem 3.2.1 we have

∥Rhφ −φh∥1,h ≤Consth2
max. (IV.30)
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Corollary 3.2.3 Let us suppose that the sequence of grids Ωh,h ∈ Λ, is such that there exists a
positive constant CΛ that satisfies

hmax

hmin
≤CΛ, (IV.31)

where hmin = min
i=1,...,N

hi. Then, under the assumptions of Theorem 3.2.1, there exists a positive constant

Const, h independent, such that (IV.21) holds.

Proof: We remark that, for i = 1, . . . ,N, we have

|D−xφh(xi)| ≤ 1
hmin

N

∑
j=1

h j|D−xEφ (x j)|+ |D−xφ(xi)|

≤ 1
hmin

√
|Ω|∥D−xEφ∥++∥φ∥C1(Ω)

≤ hmax

hmin

√
|Ω|Const hmax +∥φ∥C1(Ω)

that conclude the proof.

3.3 Stability: second approach

As we have shown in the beginning of this section, to establish the stability of (IV.14), with Dirichlet
boundary conditions, in φh,h ∈ Λ, we need to impose the boundness of ∥D−xφh∥∞,h ∈ Λ. Corollary
3.2.3 establishes that, under the assumptions of Theorem 3.2.1, if the sequence of grids Ωh,h ∈ Λ,

satisfies the condition (IV.31) then the boundness condition (IV.21) holds.

Theorem 3.3.1 Under the assumptions of Theorem 3.2.1, Ωh,h ∈ Λ, satisfies the condition (IV.31),

β5 −∥σ∥C1
b(IR

+
0 )
∥D−xφh∥∞ > 0,h ∈ Λ, (IV.32)

and φ̃h ∈ Wh,0,h ∈ Λ, is defined by (IV.14) with ( f )h replaced by f̃h, then there exists a positive
constant Const, h independent, such that

∥φh − φ̃h∥1,h ≤Const∥( f )h − f̃h∥h, h ∈ Λ. (IV.33)

Moreover, if f̃h ∈ B̄ρh(( f )h) = {gh is defined in Ωh : ∥gh − ( f )h∥h ≤ ρh}, h ∈ Λ, where ρh ≤
ρhmax,h ∈ Λ, then ∥D−xφ̃h∥∞ ≤Const,h ∈ Λ, with Const h independent.

Proof: As we have

∥D−xφ̃h∥∞ ≤ ∥D−x(φ̃h −φh)∥∞ +∥D−xφh∥∞ ≤Const
1

hmin
∥( f )h − f̃h∥h +∥D−xφh∥∞,

we conclude the proof using the uniform boundness of ∥D−xφh∥∞,h∈Λ, and the fact f̃h ∈ B̄ρh(( f )h),h∈
Λ, with ρh ≤ ρhmax,h ∈ Λ.

To conclude the stability analysis of the finite difference discretization of the nonlinear elliptic
operator we establish the final stability result.
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Corollary 3.3.2 Under the assumptions of Theorem 3.3.1, if f ∗h , f̃h ∈ B̄ρh(( f )h),h ∈ Λ, with ρh ≤
ρhmax,h ∈ Λ, and φ ∗

h , φ̃h ∈Wh,0 are solutions of the finite difference equations

−D∗
x(σ(|D−xφ ∗

h |)D−xφ ∗
h ) = f ∗h in Ωh,

−D∗
x(σ(|D−xφ̃h|)D−xφ̃h) = f̃h in Ωh,

then ∥D−xφ ∗
h ∥∞ ≤Const,∥D−xφ̃h∥∞ ≤Const,h ∈ Λ, with Const h independent, and if

β5 −∥σ∥C1
b(IR

+
0 )
∥D−xφ

∗
h ∥∞ > 0 or β5 −∥σ∥C1

b(IR
+
0 )
∥D−xφ̃h∥∞ > 0,

for h ∈ Λ, then
∥φ

∗
h − φ̃h∥1,h ≤Const∥ f ∗h − f̃h∥h, h ∈ Λ. (IV.34)

4 Temperature - second order error estimates with respect to the dis-
crete L2-norm

4.1 Stability

We start this section by establishing energy estimates for the discrete temperature Th(t) ∈Wh,0 defined
by (IV.11) or (IV.15) and with initial condition Th(0). We assume that the coefficient function DT

satisfy H1, the assumption on G is replaced by the less restrictive condition H2:

H2 : G(0) = 0,(G(uh)−G(wh),uh −wh)h ≤ β1∥uh −wh∥2
h, uh,vh ∈Wh,0,

and F satisfy

H8 : F(0) = 0 and F is a Lipschitz function with Lipschitz constant β6.

The previous assumptions are assumed only for theoretical purposes. For instance, if we consider
Pennes’ equation (I.13), we have G(x) = −ωmcbx that satisfies H2. However, F defined by (I.14)
satisfies H8 only locally.

Theorem 4.1.1 Under the assumptions H1,H2 and H8, if the sequence of grids Ωh,h ∈ Λ, satisfies
the condition (IV.31) and Th ∈C1([0, t f ],Wh,0) then

∥Th(t)∥2
h+2β0

∫ t

0
e(2β1+1)(t−s)∥D−xTh(s)∥2

+ds≤ e(2β1+1)t∥Th(0)∥2
h+

2β 2
6 CΛ

2β1 +1
(
e(2β1+1)t −1

)
∥D−xφh∥2

+,

(IV.35)
for t ∈ [0, t f ].

Proof: Fixing in (IV.11) wh = Th(t) and considering the assumptions H1,H2 and H8 and the
condition (IV.31) we easily obtain

d
dt
∥Th(t)∥2

h +2β0∥D−xTh(t)∥2
+ ≤ 2β1∥Th(t)∥2

h +2
√

2β6
√

CΛ∥D−xφh∥+∥Th(t)∥h, t ∈ (0, t f ],
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that leads to

d
dt

(
e−(2β1+1)t∥Th(t)∥2

h +2β0

∫ t

0
e−(2β1+1)s∥D−xTh(s)∥2

+ds

−
2β 2

6 CΛ

2β1 +1
(
1− e−(2β1+1)t)∥D−xφh∥2

+

)
≤ 0, t ∈ (0, t f ].

Using the smoothness assumption for Th(t) we finally conclude (IV.35).

The combination of Theorem 4.1.1 with Corollary 3.2.3 allow us to conclude that ∥Th(t)∥2
h +

2β0

∫ t

0
∥D−xTh(s)∥2

+ds is uniformly bounded for t ∈ [0, t f ] and for h ∈ Λ, provided that 2β1 +1 ≥ 0.

To study the stability of Th(t) ∈ Wh,0 defined by (IV.11) or (IV.15) with respect to the initial
condition, we consider two solutions Th, T̃h ∈C1([0, t f ],Wh,0) with initial condition Th(0) and T̃h(0)
but both computed with φh ∈Wh,0, defined by the fully discrete FEM (IV.10) or equivalently the FDM
(IV.14).

Let ωT (t) be defined by ωT (t) = Th(t)− T̃h(t). Following [24], for ωT (t) we easily get

1
2

d
dt
∥ωT (t)∥2

h +(DT (MhTh(t))D−xωT (t),D−xωT (t))+

≤ ((DT (MhT̃h(t))−DT (MhTh(t)))D−xT̃h(t),D−xωT (t))++β1∥ωT (t)∥2
h,

and then, using H1 and H2, we establish

d
dt
∥ωT (t)∥2

h+2β0∥D−xωT (t)∥2
+≤ 2β1∥ωT (t)∥2

h+2
√

2∥DT∥C1
b(IR)

∥D−xT̃h(t)∥∞∥ωT (t)∥h∥D−xωT (t)∥+,

and consequently we have

d
dt
∥ωT (t)∥2

h +(2β0 − ε
2)∥D−xωT (t)∥2

+ ≤
( 2

ε2 ∥DT∥2
C1

b(IR)
∥D−xT̃h(t)∥2

∞ +2β1

)
∥ωT (t)∥2

h, (IV.36)

for t ∈ (0, t f ]. From (IV.36) we conclude

∥ωT (t)∥2
h +(2β0 − ε

2)
∫ t

0
e

∫ t

s
(

2
ε2 ∥DT∥2

C1
b(IR)

∥D−xT̃h(µ)∥2
∞ +2β1)dµ

∥D−xωT (s)∥2
+ds

≤ e

∫ t

0
(

2
ε2 ∥DT∥2

C1
b(IR)

∥D−xT̃h(µ)∥2
∞ +2β1)dµ

∥ωT (0)∥2
h, t ∈ [0, t f ].

(IV.37)

We notice that the stability inequality (IV.37) with Th(t) replaced by T̃h(t) can be easily established
because

((DT (MhT̃h(t))−DT (MhTh(t)))D−xT̃h(t),D−xωT (t))+
=−(DT (MhT̃h(t))D−xωT (t),D−xωT (t))++((DT (MhT̃h(t))−DT (MhTh(t)))D−xTh(t),D−xωT (t))+.

To guarantee stability from (IV.37) we need to prove that
∫ t

0
∥D−xT̃h(µ)∥2

∞dµ or
∫ t

0
∥D−xTh(µ)∥2

∞dµ

are uniformly bounded for h ∈ Λ and t ∈ [0, t f ].
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4.2 Convergence analysis

Let ET (t) = RhT (t)−Th(t). An estimate for ∥ET (t)∥h is established in the next result whose proof
follows the proof of Theorem 1 of [24].

Theorem 4.2.1 Let T and Th be solutions of the IBVP (I.7) and (IV.15), with homogeneous Dirichlet
boundary conditions and initial values T (0) and Th(0), respectively. Let φ and φh be solutions of the
elliptic equations (I.6) and (IV.10), with homogeneous Dirichlet boundary conditions, respectively. We
suppose that

T ∈ H1(0, t f ,H2(Ω))∩L2(0, t f ,H3(Ω)∩H1
0 (Ω)),φ ∈ H3(Ω)∩H1

0 (Ω),

RhT,Th ∈C1([0, t f ],Wh,0), G(T (t)) ∈ H2(Ω).

If the assumptions H1,H2 and H8 hold and the sequence of grids Ωh,h ∈ Λ, satisfies the condition
(IV.31), then for the error ET (t) = RhT (t)−Th(t) holds the following

∥ET (t)∥2
h +2(β0 −5ε

2)
∫ t

0
e

∫ t

s

(
1
ε2 ∥DT∥2

C1
b(IR)

∥T (µ)∥2
C1(Ω)

+2β1 +2δ
2
)

dµ

∥D−xET (s)∥2
+ds

≤ ∥ET (0)∥2
he

∫ t

0

(
1
ε2 ∥DT∥2

C1
b(IR)

∥T (µ)∥2
C1(Ω)

+2β1 +2δ
2
)

dµ

+
∫ t

0
e

∫ t

s

(
1
ε2 ∥DT∥2

C1
b(IR)

∥T (µ)∥2
C1(Ω)

+2β1 +2δ
2
)

dµ( 1
δ 2CΛ∥D−xEφ∥2

++Γ(s)
)

ds,

(IV.38)
where Eφ = Rhφ −φh, ε ̸= 0,δ ̸= 0, and

|Γ(t)| ≤Const
1
ε2

(
1+∥DT∥2

C1
b(IR)

(1+∥T (t)∥2
C1(Ω)

)
)

( N

∑
i=1

h4
i

(
∥T ′(t)∥2

H2(Ii)
+∥T (t)∥2

H3(Ii)
+∥G(T (t))∥2

H2(Ii)
+∥φ∥2

H3(Ii)

)
+

N−1

∑
i=1

(h4
i +h4

i+1)∥φ∥2
H3(Ii∪Ii+1)

)
(IV.39)

Proof: It can be shown that

(E ′
T (t),ET (t))h =−(DT (Mh(RhT (t)))D−xRhT (t)−DT (Mh(Th(t)))D−xTh(t),D−xET (t))+
+(RhG(T (t))−G(Th(t)),ET (t))h +(F(DhRhφ)−F(Dhφh),ET (t))h

+τd(ET (t))+ τDT (ET (t))+ τG(ET (t))+ τF(ET (t)),
(IV.40)

where
τd(ET (t)) = (RhT ′(t)− (T ′(t))h,ET (t))h,

τDT (ET (t)) = ((∇(DT (T (t))∇T (t)))h,ET (t))h +(DT (Mh(RhT (t)))D−xRhT (t),D−xET (t))+

τG(ET (t)) = ((G(T (t)))h,ET (t))h − (RhG(T (t)),ET (t))h

and
τF(ET (t)) = ((F(∇φ))h,ET (t))h − (F(DhRhφ),ET (t))h.
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We establish a convenient representation of the three first terms of the right-hand side of (IV.40).
For the first term we have

−(DT (Mh(RhT (t)))D−xRhT (t)−DT (Mh(Th(t)))D−xTh(t),D−xET (t))+
=−(DT (MhTh(t))D−xET (t),D−xET (t))+
−((DT (MhTh(t))−DT (MhRhT (t)))D−xRhT (t),D−xET (t))+

and considering the assumption H1 we deduce

−(DT (Mh(RhT (t)))D−xRhT (t)−DT (Mh(Th(t)))D−xTh(t),D−xET (t))+
≤−β0∥D−xET (t)∥2

++
√

2∥DT∥C1
b(IR)

∥T (t)∥C1(Ω)∥ET (t)∥h∥D−xET (t)∥+.
(IV.41)

Considering the assumption H2, we get for the second term the estimate

(RhG(T (t))−G(Th(t)),ET (t))h ≤ β1∥ET (t)∥2
h. (IV.42)

Considering now the assumption H8 and assuming that the sequence of spatial grids Ωh,h∈Λ, satisfies
the condition (IV.31), it can be shown that for the third term holds the following

(F(DhRhφ)−F(Dhφh),ET (t))h ≤
√

2β6
√

CΛ∥D−xEφ∥+∥ET (t)∥h. (IV.43)

Estimates for τd(ET (t)), τDT (ET (t)), and τG(ET (t)) in (IV.40) were obtained in the proof of
Theorem 1 of [24].

1. For τd(ET (t)) we have

|τd(ET (t))| ≤Const
( N

∑
i=1

h4
i ∥T ′(t)∥2

H2(Ii)

)1/2
∥D−xET (t)∥+. (IV.44)

provided that T ′(t) ∈ H2(Ω).

2. For τDT (ET (t)) it can be shown that

|τDT (ET (t))| ≤Const∥DT∥C1
b(IR)

(
1+∥T (t)∥C1(Ω)

)( N

∑
i=1

h4
i ∥T (t)∥2

H3(Ii)

)1/2
∥D−xET (t)∥+.

(IV.45)
provided that T (t) ∈ H3(Ω)∩H1

0 (Ω).

3. For τG(ET (t)) holds the following

|τG(ET (t))| ≤Const
( N

∑
i=1

h4
i ∥G(T (t))∥2

H2(Ii)

)1/2
∥D−xET (t)∥+. (IV.46)

provided that G(T (t)) ∈ H2(Ω).

4. To estimate the error term τF(ET (t)) we observe that this error term admits the representation

τF(ET (t)) = τ1(t)+ τ2(t),



66 Coupling nonlinear electric fields: stability and convergence analysis

where
τ1(t) = ((F(∇φ))h,ET (t))h − (RhF(∇φ),ET (t))h,

and
τ2(t) = (RhF(∇φ),ET (t))h − (F(DhRhφ),ET (t))h.

As for τG(ET (t)), for τ1(t) we have the following

|τ1(t)| ≤Constβ6

( N

∑
i=1

h4
i ∥φ∥2

H3(Ii)

)1/2
∥D−xET (t)∥+,

provided that φ ∈ H3(Ω). To establish an estimate for τ2(t) we remark that using the Lipschitz
condition for F we have

|τ2(t)| ≤ β6

N−1

∑
i=1

hi+1/2|∇φ(xi)−Dhφ(xi)||ET (xi, t)|

≤ β6

N−1

∑
i=1

1
2
|λ (g)||ET (xi, t)|

(IV.47)

where
λ (g) = g′(ζ )− ζ̂ (g(1)−g(ζ ))− 1

ζ̂
(g(ζ )−g(0)),

and g(µ) = φ(xi−1 +µ(hi +hi+1)), ζ =
hi

hi +hi+1
and ζ̂ =

hi

hi+1
. The Bramble-Hilbert lemma

guarantees the existence of a positive constant Const such that

|λ (g)| ≤Const
∫ 1

0
|g(3)(µ)|dµ ≤Const(hi +hi+1)

2
∫ xi+1

xi−1

|φ (3)(x)|dx.

Inserting the last upper bound in (IV.47) we easily get

|τ2(t)| ≤Constβ6

(N−1

∑
i=1

(h4
i +h4

i+1)∥φ∥2
H3(Ii∪Ii+1)

)1/2
∥D−xET (t)∥+

provided that φ ∈ H3(Ω)∩H1
0 (Ω).

Consequently, for τF(ET (t)) we conclude

|τF(ET (t))| ≤Constβ6

((N−1

∑
i=1

(h4
i +h4

i+1)∥φ∥2
H3(Ii∪Ii+1)

)1/2
+
( N

∑
i=1

h4
i ∥φ∥2

H3(Ii)

)1/2)
∥D−xET (t)∥+.

(IV.48)

Taking into account in (IV.40) the upper bounds (IV.41)-(IV.43) and the error estimates (IV.44),
(IV.45), (IV.46), (IV.48) we arrive to

d
dt
∥ET (t)∥2

h +2(β0 −5ε
2)∥D−xET (t)∥2

+

≤ (
2
ε2 ∥DT∥2

C1
b(IR)

∥T (t)∥2
C1(Ω)

+2β1 +2δ
2)∥ET (t)∥2

h +
1

δ 2CΛ∥D−xEφ∥2
++Γ(t),

(IV.49)
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where ε ̸= 0,δ ̸= 0, and |Γ(t)| is bounded by (IV.39). Finally, the inequality (IV.49) leads to (IV.38).

Corollary 4.2.2 Under the assumptions of Theorems 3.2.1 and 4.2.1, there exists a positive constant
Const, h-independent, such that

∥ET (t)∥2
h +

∫ t

0
∥D−xET (s)∥2

+ds ≤Const
(
∥ET (0)∥2

h +h4
max

)
, t ∈ [0, t f ]. (IV.50)

Proof: It is enough to fix in (IV.38) ε and δ such that

β0 −5ε
2 > 0

and
1
ε2 ∥DT∥2

C1
b(IR)

∥T (µ)∥2
C1(Ω)

+2β1 +2δ
2 > 0.

4.3 Revisiting stability

Let us consider again (IV.37). To conclude stability, we need to guarantee that
∫ t

0
∥D−xT̃h(s)∥2

∞ds or∫ t

0
∥D−xTh(s)∥2

∞ds are uniformly bounded in t ∈ [0, t f ] and h ∈ Λ. From Corollary 4.2.2, if T̃h(0) ∈

Br(RhT (0)) or Th(0) ∈ Br(RhT (0)), with r =
√

hmax, then, from (IV.50), for uh(t) = Th(t) or uh(t) =
T̃h(t), we obtain

∥RhT (t)−uh(t)∥2
h +

∫ t

0
∥D−x(RhT (s)−uh(s))∥2

+ds ≤Consthmax, t ∈ [0, t f ].

Then ∫ t

0
∥D−xuh(s)∥2

∞ds ≤ 2
hmin

∫ t

0
∥D−x(RhT (s)−uh(s))∥2

+ds+2
∫ t

0
∥T (s)∥2

C1(Ω)
ds

≤ 2
hmax

hmin
+2

∫ t

0
∥T (s)∥2

C1(Ω)
ds

≤ 2CΛ +2
∫ t

0
∥T (s)∥2

C1(Ω)
ds,

for t ∈ [0, t f ] and h ∈ Λ.

From (IV.37), if T̃h(0) ∈ Br(RhT (0)) or Th(0) ∈ Br(RhT (0)), with r =
√

hmax, we conclude that
for ωT (t) = Th(t)− T̃h(t), where Th(t) and T̃h(t) are defined by (IV.15) with φh given by the fully
discrete FEM (IV.10) or equivalently the FDM (IV.14),

∥ωT (t)∥2
h +

∫ t

0
∥D−xωT (s)∥2

+ds ≤Const∥ωT (0)∥2
h, t ∈ [0, t f ],h ∈ Λ, (IV.51)

provided that
2
ε2 ∥DT∥2

C1
b(IR)

∥D−xT̃h(t)∥2
∞ +2β1 ≥ 0, t ∈ [0, t f ].

The inequality (IV.51) shows the stability of (IV.15) with Dirichlet boundary conditions.
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5 Concentration - second order error estimates with respect to the dis-
crete L2-norm

5.1 Stability

In this section in (I.8) we impose that Dd satisfies H4 and that the assumptions H3 and H5 for v and Q,
respectively are replaced the following less stringent assumptions:
H3 : v(0,0) = 0, |v(x,y)− v(x̃, ỹ)| ≤ β2(|x− x̃|+ |y− ỹ|),x, x̃,y, ỹ ∈ IR,
H5 : Q(0) = 0,(Q(uh)−Q(wh),uh −wh)h ≤ β4∥uh −wh∥2

h, uh,wh ∈Wh,0.

The assumptions H3 −H5 were introduced only for theoretical purposes. In fact, we notice that the
convective velocity v given by (I.15) does not satisfy the assumption H3. This function is not defined
at x = 0 and is a Lipschitz function only in a bounded set of IR2.

We start by establishing energy estimates for ch(t) defined by (IV.14), (IV.15), (IV.16) with
homogeneous Dirichlet boundary conditions (or by (IV.10), (IV.11), (IV.12)) and initial conditions
Th(0),ch(0) for the temperature and concentration, respectively.

Theorem 5.1.1 Let us suppose that the conditions H3 −H5 hold and ch ∈ C1([0, t f ],Wh,0) and let
φh,Th(t),ch(t) ∈ Wh,0 defined by (IV.14), (IV.15), (IV.16) with homogeneous Dirichlet boundary
conditions (or by (IV.10), (IV.11), (IV.12)) and initial conditions Th(0),ch(0) for the temperature
and concentration, respectively. We have

∥ch(t)∥2
h +2(β3 − ε

2)
∫ t

0
e

∫ t

s

( 1
ε2 β

2
2
(
∥Th(µ)∥2

∞ +∥D−xφh∥2
∞

)
+2β4

)
dµ

∥D−xch(s)∥2
+ds

≤ ∥ch(0)∥2
he

∫ t

0

( 1
ε2 β

2
2
(
∥Th(µ)∥2

∞ +∥D−xφh∥2
∞

)
+2β4

)
dµ

, t ∈ [0, t f ].

(IV.52)

Proof: Taking in (IV.12) uh = ch(t) and considering the assumptions H3 −H5 we deduce

1
2

d
dt
∥ch(t)∥2

h +β3∥D−xch(t)∥2
+ ≤

√
2β2
(
∥Th(t)∥∞ +∥D−xφh∥∞

)
∥ch(t)∥h∥D−xch(t)∥+

+β4∥ch(t)∥2
h, t ∈ (0, t f ].

Then we arrive to

d
dt
∥ch(t)∥2

h +2(β3 − ε
2)∥D−xch(t)∥2

+ ≤
( 1

ε2 β
2
2
(
∥Th(t)∥2

∞ +∥D−xφh∥2
∞

)
+2β4)∥ch(t)∥2

h, t ∈ (0, t f ],

that leads to (IV.52).
From Corollary 3.2.3 we conclude that ∥D−xφh∥∞,h ∈ Λ, is bounded. Moreover, under the

assumptions of Theorem 4.1.1, as ∥Th(t)∥∞ ≤
√
|Ω|∥D−xTh(t)∥+, if 2β1 + 1 ≥ 0, and ∥Th(0)∥h ≤

Const,h ∈ Λ, we get ∫ t

0
∥Th(s)∥2

∞ ≤Const, t ∈ [0, t f ],h ∈ Λ,

where Const is h and t independent. Furthermore, if

1
ε2 β

2
2
(
∥Th(t)∥2

∞ +∥D−xφh∥2
∞

)
+2β4 ≥ 0, t ∈ [0, t f ],h ∈ Λ,
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with ε such that β3 − ε2 > 0, then

∥ch(t)∥2
h +

∫ t

0
∥D−xch(s)∥2

+ds ≤Const, t ∈ [0, t f ],h ∈ Λ,

provided that ∥ch(0)∥h,h ∈ Λ, is bounded. Consequently∫ t

0
∥ch(s)∥2

∞ds ≤Const, t ∈ [0, t f ],h ∈ Λ. (IV.53)

Theorem 5.1.2 Let Th, T̃h,ch, c̃h ∈C1([0, t f ],Wh,0) be defined by (IV.15), (IV.16) with homogeneous
Dirichlet boundary conditions (or by (IV.11), (IV.12)) and initial conditions Th(0), T̃h(0),ch(0), c̃h(0),
where φh ∈Wh,0 is defined by (IV.14) or (IV.10). Under the assumptions H3−H5, for ωc = ch(t)− c̃h(t),
ωT (t) = Th(t)− T̃h(t) we have

∥ωc(t)∥2
h +2(β3 −2ε

2)
∫ t

0
e

∫ t

s
gh(µ)dµ

∥D−xωc(s)∥2
+ds ≤ ∥ωc(0)∥2

he

∫ t

0
gh(µ)dµ

+
1
ε2 |Ω|

∫ t

0
e

∫ t

s
gh(µ)dµ(

∥Dd∥2
C1

b(IR)
∥D−xch(s)∥2

++β2∥c̃h(s)∥2
h

)
∥D−xωT (s)∥2

+ds,

(IV.54)
for t ∈ [0, t f ] and with

gh(µ) =
( 1

ε2 β
2
2 (∥Th(µ)∥∞ +∥D−xφh∥∞)

2 +2β4
)
,µ ∈ [0, t f ].

Proof: It can be shown that

1
2

d
dt
∥ωc(t)∥2

h +(Dd(MhT̃h(t))D−xωc(t),D−xωc(t))+

≤ ((Dd(MhTh(t))−Dd(MhT̃h(t)))D−xch(t),D−xωc(t))+
+(Mh(vh(t)ch(t)− ṽh(t)c̃h(t)),D−xωc(t))++β4∥ωc(t)∥2

h,

(IV.55)

where vh(t) = v(Th(t),Dhφh) and ṽh(t) = v(T̃h(t),Dhφh).

For the term (Mh(vh(t)ch(t)− ṽh(t)c̃h(t)),D−xωc(t))+ , using the assumption H3, it is a straight-
forward task to show that

(Mh(vh(t)ch(t)− ṽh(t)c̃h(t)),D−xωc(t))+
≤
√

2β2

(
∥Th(t)∥∞ +∥D−xφh∥∞

)
∥ωc(t)∥h +

√
2β2∥c̃h(t)∥h∥ωT (t)∥∞

)
∥D−xωc(t)∥+.

(IV.56)

As for ((Dd(MhTh(t))−Dd(MhT̃h(t)))D−xch(t),D−xωc(t))+ we have

((Dd(MhTh(t))−Dd(MhT̃h(t)))D−xch(t),D−xωc(t))+≤
√

2∥Dd∥C1
b(IR)

∥D−xch(t)∥+∥ωT (t)∥∞∥D−xωc(t)∥+
(IV.57)



70 Coupling nonlinear electric fields: stability and convergence analysis

from (IV.55), taking (IV.56) and ∥ωT (t)∥∞ ≤
√
|Ω|∥D−xωT (t)∥+ we deduce

d
dt
∥ωc(t)∥2

h +2(β3 −2ε
2)∥D−xωc(t)∥2

+

≤
( 1

ε2 β
2
2 (∥Th(t)∥∞ +∥D−xφh∥∞)

2 +2β4
)
∥ωc(t)∥2

h

+
1
ε2 |Ω|

(
∥Dd∥2

C1
b(IR)

∥D−xch(t)∥2
++β2∥c̃h(t)∥2

h

)
∥D−xωT (t)∥2

+, t ∈ (0, t f ],

(IV.58)

that leads to (IV.54).

From (IV.54), to conclude the stability result, we need only to notice that

∥D−xch(t)∥+, ∥D−xωT (t)∥+, ∥c̃h(t)∥h

are uniformly bounded in Λ, a.e. in [0, t f ]. In fact, this conclusion holds for ∥D−xch(t)∥+ and ∥c̃h(t)∥h

due to the Theorem 5.1.1 provided ∥ch(0)∥h ≤Const,h ∈ Λ. The inequality (IV.51) leads to the same
conclusion for ∥D−xωT (t)∥+ provided that ∥ωT (0)∥h ≤Const,h ∈ Λ.

5.2 Convergence analysis

We establish in what follows an estimate for the error Ec(t) = Rhc(t)− ch(t). We follow the proof of
the Theorem 2 of [24]. The novelty of the new result lies on the fact that the behaviour of Ec(t) is
not only determined by the error ET (t) = RhT (t)−Th(t), as in the Theorem 2 of [24], but also by the
error Eφ = Rhφ −φh.

Theorem 5.2.1 Let

T,c ∈ L2(0, t f ,H3(Ω)∩H1
0 (Ω)), c ∈ H1(0, t f ,H2(Ω)),

φ ∈ H3(Ω)∩H1
0 (Ω),

be solutions of the IBVP (I.6)-(I.8), (I.9), (I.10). Let φh,Th and ch be the corresponding approximations
defined by (IV.14)-(IV.16) with homogeneous Dirichlet boundary conditions and initial conditions
Th(0) and ch(0). If

Rhc,ch ∈C1([0, t f ],Wh,0),
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the assumption H3−H5 hold and Q(c(t))∈ H2(Ω), then for Ec(t) = Rhc(t)−ch(t),ET (t) = RhT (t)−
Th(t) and Eφ = Rhφ −φh, there exists a positive constant Const, h and t independent, such that

∥Ec(t)∥2
h +2(β3 −6ε

2)
∫ t

0
e

∫ t

s
gh(µ)dµ

∥D−xEc(s)∥2
+ds

≤ ∥Ec(0)∥2
he

∫ t

0
gh(µ)dµ

+4
β 2

2
ε2

∫ t

0
e

∫ t

s
gh(µ)dµ(

∥ET (s)∥2
h +∥D−xEφ∥2

+

)
∥c(s)∥2

C1(Ω)
ds

+
∫ t

0
e

∫ t

s
gh(µ)dµ

Γ(s)ds, t ∈ (0, t f ],

(IV.59)
where ε ̸= 0,

gh(µ) = 4
β 2

2
ε2

(
∥Th(µ)∥2

∞ +∥D−xφh∥2
∞

)
∥c(µ)∥2

C1(Ω)
+2β4,

|Γ(t)| ≤ 1
ε2Const

( N

∑
i=1

h4
i ∥c′(t)∥2

H2(Ii)

+(∥Dd∥2
C1

b(IR)
+1)(∥c(t)∥2

C1(Ω)
+1)

N

∑
i=1

h4
i
(
∥v(T (t),∇φ)c(t)∥2

H2(Ii)
+∥φ(t)∥2

H3(Ii)

)
+

N−1

∑
i=1

(h4
i +h4

i+1)∥φ(t)∥2
H3(Ii∪Ii+1)

+
N

∑
i=1

h4
i ∥Q(c(t))∥2

H2(Ii)

)
.

(IV.60)

Proof: Following the proof of the Theorem 2 of [24], it can be shown that Ec(t) is solution of the
following differential problem

(E ′
c(t),Ec(t))h =−(Dd(Mh(RhT (t)))D−xRhc(t)−Dd(Mh(Th(t)))D−xch(t),D−xEc(t))+

+(Mh(Rh(v(T (t),DhRhφ))c(t))),D−xEc(t))+− (Mh(v(Th(t),Dhφh)ch(t)),D−xEc(t))+
+(RhQ(c(t))−Q(ch(t)),Ec(t))h + τd(Ec(t))+ τDd (Ec(t))+ τv(Ec(t))+ τQ(Ec(t)),

(IV.61)
where

|τd(Ec(t))|= |(Rhc′(t)− (c′(t))h,Ec(t))h| ≤Const
( N

∑
i=1

h4
i ∥c′(t)∥2

H2(Ii)

)1/2
∥D−xEc(t)∥+,

provided that c′(t) ∈ H2(Ω),

|τDd (Ec(t))|= |− (Dd(R̂hT (t))R̂h∇c(t),D−xEc(t))++(Dd(MhRhT (t))D−xRhc(t),D−xEc(t))+|

≤Const∥Dd∥C1
b(IR)
(
∥c(t)∥C1(Ω)+1

)(
∑

N
i=1 h4

i
(
∥T (t)∥2

H2(Ii)
+∥c(t)∥2

H3(Ii)

))1/2
∥D−xEc(t)∥+,
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provided that T (t) ∈ H2(Ω),c(t) ∈ H3(Ω),

|τv(Ec(t))|= |(v(R̂hT (t), R̂h∇φ)Rhc(t),D−xEc(t))+− (Mh(v(R̂hT (t),DhRhφ)Rhc(t)),D−xEc(t))+|
≤ |(v(R̂hT (t), R̂h∇φ)Rhc(t),D−xEc(t))+− (Mhv(R̂hT (t),Rh∇φ)Rhc(t),D−xEc(t))+|
+|(Mhv(R̂hT (t),Rh∇φ)Rhc(t),D−xEc(t))+− (Mh(v(R̂hT (t),DhRhφ)Rhc(t)),D−xEc(t))+|

≤Const

(( N

∑
i=1

h4
i ∥v(T (t),∇φ)c(t)∥2

H2(Ii)

)1/2
+∥c(t)∥C1(Ω)

(N−1

∑
i=1

(h4
i +h4

i+1)∥φ∥2
H3(Ii∪Ii+1)

)1/2
)

∥D−xEc(t)∥+,

provided that and v(T (t),∇φ)c(t) ∈ H2(Ω) and φ ∈ H3(Ω),

|τQ(Ec(t))|= |((Q(c(t)))h −RhQ(c(t)),Ec(t))h| ≤Const
( N

∑
i=1

h4
i ∥Q(c(t))∥2

H2(Ii)

)1/2
∥D−xEc(t)∥+,

provided that Q(c(t)) ∈ H2(Ω).

Analogously to (IV.57) and (IV.56), we have

((Dd(MhRhT (t))−Dd(MhTh(t)))D−xRhc(t),D−xEc(t))+
≤
√

2
√
|Ω|∥Dd∥C1

b(IR)
∥c(t)∥C1(Ω)∥D−xET (t)∥+∥D−xEc(t)∥+

(IV.62)

and

(Mh(v(RhT (t),DhRhφ)Rhc(t))−Mh(v(Th(t),Dhφh)ch(t)),D−xEc(t))+
≤
√

2β2

((
∥ET (t)∥h +∥D−xEφ∥+

)
∥c(t)∥C1(Ω)+

(
∥Th(t)∥∞ +∥D−xφh∥∞

)
∥Ec(t)∥h

)
∥D−xEc(t)∥+,

(IV.63)
respectively.

As
|(RhQ(c(t))−Q(ch(t)),Ec(t))h| ≤ β4∥Ec(t)∥2

h, (IV.64)

taking (IV.62), (IV.63) and (IV.64) in (IV.61) we arrive to

d
dt
∥Eh(t)∥2

h +2(β3 −6ε
2)∥D−xEc(t)∥2

+

≤+
(

4
β 2

2
ε2

(
∥Th(t)∥2

∞ +∥D−xφh∥2
∞

)
∥c(t)∥2

C1(Ω)
+2β4

)
∥Ec(t)∥2

h

+4
β 2

2
ε2

(
∥ET (t)∥2

h +∥D−xEφ∥2
+

)
∥c(t)∥2

C1(Ω)
+Γ(t), t ∈ (0, t f ],

(IV.65)

where Γ is bounded in (IV.60). Finally, the inequality (IV.65) leads to (IV.59).

Corollary 5.2.2 Under the assumptions of the Theorems 3.2.1, 4.2.1 and 5.2.1, with Th(0)=RhT (0),ch(0)=
Rhc(0), the error Ec(t) = Rhc(t)− ch(t) satisfies

∥Ec(t)∥2
h +

∫ t

0
∥D−xEc(s)∥2

+ds ≤Consth4
max, t ∈ [0, t f ],h ∈ Λ. (IV.66)

The estimate (IV.66) shows that the errors Eφ and ET (t) do not deteriorates de quality of the
semi-discrete approximation ch(t). We notice that (IV.66) is a supraconvergence result in the finite
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difference community but it can be seen also as a supercloseness result in the finite element community
because our finite difference discretization (IV.14)-(IV.16) is equivalent to the fully discrete finite
element discretization (IV.10)-(IV.12).

6 Numerical experiments

In what follows we illustrate the qualitative behaviour of the IBVP (I.6)-(I.8), (I.9), (I.10) using the
finite difference method (IV.14)-(IV.16) with the boundary and initial conditions (I.9), (I.10). The
accuracy of the method was established in Theorems 3.2.1, 4.2.1 and 5.2.1. From these results we
believe that the numerical plots that we present in what follows describe accurately the behaviour of
the correspondent continuous model.

In [0, t f ] we introduce the uniform grid {tm,m = 0, . . . ,M, t0 = 0, tM = t f ,∆t = tm − tm−1,m =

1, . . . ,M}. We integrate in time (IV.15) and (IV.12) using the next IMEX (implicit-explicit) approach
T m+1

h = T m
h +∆tD∗

x(DT (Mh(T m
h ))D−xT m+1

h )+∆tG(T m
h )

+F(Dhφh)+ f m
1,h in Ωh,m = 0, . . . ,M−1,

T 0
h = RhT0 inΩh,

T m
h = 0on∂Ωh,m = 1, . . . ,M,

(IV.67)

where G(T m
h )(xi) = G(T m

h (xi)), F(Dhφh)(xi) = F(Dhφh(xi)), i = 1, . . . ,N − 1, and φh is defined by
(IV.14), 

cm+1
h +∆tDc(v(T m+1

h ,Dhφh)cm+1
h ) = ∆tD∗

x(Dd(Mh(T m+1
h ))D−xcm+1

h )

+∆tQ(cm
h )+ f m

2,h in Ωh,m = 0, . . . ,M−1,
c0

h = Rhc0 inΩh,

cm
h = 0on∂Ωh,m = 1, . . . ,M,

(IV.68)

where Q(cm
h )(xi) = Q(cm

h (xi)), i = 1, . . . ,N −1. The grid function f m
ℓ,h, ℓ= 1,2, in (IV.67), (IV.68) are

introduced only to illustrate the convergence results. In this case, these functions are such that the
correspondent continuous problems have known solutions.

6.1 Convergence results

In this section we illustrate the error results obtained in this work - Theorems 3.2.1, 4.2.1 and 5.2.1.
We use the following notations:

Errorφ = ∥D−xEφ∥2
+,

ErrorT = max
j=1,··· ,M

(
∥E j

T∥
2
h +∆t

M

∑
i=1

∥D−xE i
T∥2

+

)
,

where E i
T (xℓ) = RhT (x j, ti)−T i

h(x j), j = 0, . . . ,N,

Errorc = max
j=1,··· ,M

(
∥E j

c∥2
h +∆t

M

∑
i=1

∥D−xE i
c∥2

+

)
.
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with E i
c(x j) = Rhc(xℓ, ti)− ci

h(x j), j = 0, . . . ,N. The convergence rates Rateℓ are computed by

Rateℓ =
ln
(

Errorℓ,hmax,i

Errorℓ,hmax,i+1

)
ln
(

hmax,i

hmax,i+1

) , ℓ= φ ,T,c,

where hmax,i,hmax,i+1 are the maximum stepsizes of the grids Ω
(i)
h ,Ω

(i+1)
h , respectively, being the last

two grids defined by the vectors h(i),h(i+1), where h(i+1) is obtained from h(i) introducing the middle
point of each interval [x j,x j+1].

• Smooth solutions: We start by considering the differential problems (I.6), (I.7), (I.8) with t f = 1,
σ defined by (I.11), σ0 = 2× 10−3, σ1 = 1.6× 10−1, E0 = 40000, E1 = 90000, B = 30 (see
[6]) and DT (T ) = 1, G(T ) = 0, F(y) = σ(|y|)y, v(x,y) = 10−5ye−x, Dd(T ) = 1 and Q(c) = 0,
adding to the last two equations the reaction terms f1 and f2 that are such that these problems
have the following solutions

φ(x) = sin(πx)|2x−1|α ,
T (x, t) = e2tex|2x−1|β +1,
c(x, t) = etex|2x−1|γ ,x ∈ [0,1], t ∈ [0, t f ].

(IV.69)

We remark that the coefficient functions introduced before do not satisfy all the assumptions
H1 −H5 and H7 −H8. However, we will show that, even in this case, the convergence orders
stated in Theorems 3.2.1, 4.2.1 and 5.2.1 are observed. To have φ ,T (t),c(t) ∈ H3(0,1)∩
H1

0 (0,1) we take α = 3.1, β = 3.1, γ = 3.1. In Table IV.1 and Figure IV.1 (left side), we present
the numerical results with ∆t = 10−4. We notice that the convergence rates Rateℓ, ℓ= φ ,T,c
are approximately 2 which is in agreement with the error estimates stated in Theorems 3.2.1,
4.2.1 and 5.2.1.

N hmax Eφ Rateφ ET RateT Ec Ratec

50 7.3569×10−2 1.5656×10−2 —— 5.1084×10−2 —— 5.1206×10−2 ——
100 3.6785×10−2 3.9062×10−3 2.0029 1.27121×10−2 2.0067 1.2842×10−2 1.9954
200 1.8392×10−2 9.7615×10−4 2.0006 3.0864×10−3 2.0422 3.2168×10−3 1.9972
400 9.1962×10−3 2.4404×10−4 1.9999 6.8725×10−4 2.1669 8.0849×10−4 1.9923
800 4.5981×10−3 6.1006×10−5 2.0001 1.49730×10−4 2.1985 2.0642×10−4 1.9696

Table IV.1 Convergence rates for smooth solutions (α = β = γ = 3.1).

• Non smooth solutions: To illustrate the sharpness of the smoothness assumptions in Theorems
3.2.1, 4.2.1 and 5.2.1 we consider now the solutions (IV.69) with α = 1.6, β = 1.6, γ = 1.6.
In this case φ ,T (t),c(t) ∈ H2(0,1)∩H1

0 (0,1). In Table IV.2 and Figure IV.1 (right side) we
present the numerical results obtained in this case that illustrate that Rateℓ, ℓ = φ ,T,c are
approximately 1.
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N hmax Eφ Rateφ ET RateT Ec Ratec

25 1.3768×10−1 3.0229×10−2 —— 1.3906×10−2 —— 5.3434×10−2 ——
50 6.8842×10−2 7.7112×10−3 1.9709 4.9451×10−3 1.4916 2.1863×10−2 1.2892
100 3.4421×10−2 4.7356×10−3 0.7034 2.4472×10−3 1.0149 1.3877×10−2 0.6557
200 1.7211×10−2 2.2403×10−3 1.0798 1.2192×10−3 1.0052 6.5674×10−3 1.0794
400 8.6053×10−3 7.3566×10−4 1.6066 6.5727×10−4 0.8914 2.1729×10−3 1.5956

Table IV.2 Convergence rates for non smooth solutions (α = β = γ = 1.6).
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Fig. IV.1 Plots of the errors Eφ ,ET and Ec for α = β = γ = 3.1 (at left) and α = β = γ = 1.6 (at right)

6.2 Qualitative behaviour

In this section our aim is to illustrate the behaviour of the systems of partial differential equations
studied in this chapter considering a transdermal iontophoresis application (as in Figure IV.2).

Fig. IV.2 Illustration of the process of iontophoresis [23]

To simplify, we consider the skin as a single layer defined by [0,L], L = 1.1515×10−3m ([6]). The
applied potential φ is defined by equation (I.6) with f = 0 and the boundary conditions φ(0) = 0 and
φ(L) = φL, where φL depends on the application protocol that we intend to illustrate. The boundary
conditions for the concentration are defined by c(0) = cext and c(L) = 0 which means that at the
skin surface we have a known concentration of drug and that all the drug that arrives to x = L is
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immediately removed by the blood vessels. In this case the coefficient functions are defined as follows:
the electrical conductivity σ is defined by (I.11) with σ0 = 2× 10−3S/m, σ1 = 1.6× 10−1S/m,

y0 = 40000V/m, y1 = 90000V/m and B = 30, DT (T (t)) =
k

ρks
, G(T (t)) = − 1

ρks
ωmcb(T (t)−Ta),

F(∇φ) =
1

ρks
σ(|∇φ |)|∇φ |2, Dd(T ) = D, v is defined by (I.15) with vb = 0, and Q(c) = 0. The

parameter values are included in Table IV.3 ([6], [7]).

Symbol Definition Value Units
ρ Density 1116 kg/m3

ks Heat capacity (specific) 3800 J/kgK
k Thermal conductivity 0.293 W/mK

ωm Perfusion 2.33 kg/m3s
cb Perfusion of blood 3800 J/kgK
Ta Arterial Blood Temperature 310.15 K
D Drug diffusivity 10−12 m2/s
Fr Faraday constant 9.6485×104 C/mol
R Gas constant 8.3144 J/Kmol
z Valence ±1 -

Table IV.3 Parameters and values

The behaviour of the drug transport, enhanced by the electric field, is illustrated in what follows
considering protocols based on two scenarios:

• Low Voltage (LV)- φ(L) = 45V during 250ms followed by a pause of 100ms,

• High Voltage (HV) - φ(L) = 500V during 500µs followed by a pause of 500µs.

We consider the following protocols:

• 3LV in a total of 1.05s,

• 3HV in a total of 3×10−3s,

• 3HV +3LV in a total of 1.053s.

In the first protocol we take φ(L) = 45V during 250ms followed by a pause of 100ms. This
procedure is repeated during 3 times. In the second protocol we take φ(L) = 500V during 500µs
followed by a pause of 500µs. This procedure is repeated 3 times. The third protocol is defined
applying the first one followed by the second one. The results are compared with the drug transport
through the skin without the presence of the electric field which defines the control scenario.

In Figure IV.3 we plot the temperature (left) and drug (right) for t ∈ [0,2s] when the first protocol
3LV is applied. The time axis is the vertical axis while space axis is the horizontal axis. The effect of
the three impulses applied at x = L on the temperature distribution is well illustrated by this picture
as well as on the drug distribution. While the effect of the applied potential on the temperature is
felt in all space domain, the corresponding effect on the drug distribution is felt only in the first part
of the skin. To clarify these conclusions, in Figures IV.4 and IV.5 we plot the temperature and drug
concentration evolution in several points of the spatial domain.
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Fig. IV.3 Temperature (oC) (left) and drug distributions (kg/m3) (right) for t ∈ [0,2s] enhanced by the
electric field defined by the 3LV protocol
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Fig. IV.4 Evolution of the temperature at x = 0.1,0.2,0.3,0.4 for t ∈ [0,2s] for the 3LV protocol.

To compare different protocols, we compute the absorbed drug mass at x = L,

Mℓ(t) =
∫ t

0
Jd,ℓ(s)ds,

for ℓ= control,3LV,3HV,3HV +3LV, where Jd,ℓ(t) is the drug flux at x = L,

Jd,ℓ(t) =−(Dd(T (L, t))∇c(L, t)+ v(T (L, t),∇φ(L, t)),

with the potential φ depending on time because the potential at x = L is time dependent function.
In Figure IV.6 we plot the absorbed masses for the protocols 3LV , 3HV , 3HV + 3LV and control
for t ∈ [0,6s]. Zooming these plots, we notice that there exists a time t1 such that for t ≥ t1 the
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Fig. IV.5 Evolution of the concentration at x = 0.1,0.2,0.3,0.4 for t ∈ [0,2s] for the 3LV protocol.

protocols 3LV,3HV + 3LV lead to similar results and Mℓ(t) for ℓ = 3HV,control, have analogous
behaviour and M3LV (t)≤ M3HV+3LV (t),Mcontrol(t)≤ M3HV (t), t ≤ t1 (see Figure IV.7). Moreover, for
t ∈ [0, t1] the protocols 3HV,3HV +3LV lead to similar results and Mcontrol(t)≤ M3LV (t)≤ Mℓ(t), ℓ=
3HV,3HV +3LV (see Figure IV.8). From Figure IV.9 we observe that there is a time interval [t1, t2]
where M3HV (t) is an increasing function being its increasing smaller than the increasing of M3LV (t).
Finally, in Figure IV.10 we plot Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV , for [t ∈ [0,10min].
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Fig. IV.6 Plots of Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV, for t ∈ [0,6s].

The results presented in Figure IV.10 show, as noticed before, that as time increases, the protocols
3LV and 3HV + 3LV lead to similar results while the results obtained with the protocol 3HV are
similar to the results obtained without the electric field. Moreover, the drug mass transported through
the skin is larger for the first set of protocols.

The zooms of the plots in Figure IV.10, Figures IV.11 and IV.12, show that for large times
M3LV (t)≥ M3HV+3LV (t) while Mcontrol(t)≤ M3HV (t).

To end, we conclude the following:
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Fig. IV.7 Plots of Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV , t ∈ [0,6×10−2s].
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Fig. IV.8 Plot of Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV , for t ∈ [0, t1].
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Fig. IV.9 Plots of Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV , for t ∈ [t1, t2].

P1 For small times, protocols defined by high intensity impulses followed by smaller intensity
impulses are more effective than the protocols defined only by high intensity impulses or lower
intensity impulses and protocols defined only by high intensity impulses are more effective that
protocols defined by lower intensity impulses (see Figure IV.8).

P2 There exists a time interval [t∗1 , t
∗
2 ] such that, protocols defined by high intensity impulses

followed by smaller intensity impulses are more effective than the protocols defined only by
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Fig. IV.10 Plots of Mℓ(t), ℓ= control,3LV,3HV,3HV +3LV, for t ∈ [0,10min].
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high intensity impulses or lower intensity impulses and protocols defined only by lower intensity
impulses are more effective that protocols defined by high intensity impulses (see Figure IV.6).
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P3 For t ≥ t∗2 , protocols based on lower intensity impulses are more effective than protocols based
on high intensity impulses (see Figure IV.9).

7 Conclusions

In this chapter, the coupling between a nonlinear elliptic equation (I.6) and two parabolic equations:
a diffusion equation (I.7) and a convection-diffusion equation (I.8), where the convective velocity
of the second parabolic equation depends on the gradient of the solution of the elliptic equation, is
studied from numerical point of view. The main problem when we solve numerically system (I.6),
(I.7) and (I.8) is the computation of the numerical approximation for the elliptic problem because if its
numerical gradient does not have the right convergence order then the numerical approximation for
the convection-diffusion can be deteriorated.

We propose a finite difference discretization (IV.14), (IV.15), (IV.16) that can be seen as a fully
finite element method (IV.10), (IV.11), (IV.12) that leads to second order approximations .More
precisely for the solution of the nonlinear elliptic equation, we use a discrete version of the usual
H1-norm; for the solutions of the two parabolic equations we consider a discrete version of the usual
L2-norm. The error estimates were established in the main results of the chapter: Theorems 3.2.1,
4.2.1 and 5.2.1. These results can be interpreted as a supraconvergence results if we look to the
discretizations as finite differences; otherwise they can be interpreted as supercloseness results if the
discretization is seen as a fully discrete piecewise linear finite element method. In Theorem 3.2.1 we
extend the results included in [5], to nonlinear problems. The convergence results were established
assuming that the solution of the elliptic equation and the solutions of the parabolic equations, for
each time t, are in H3(Ω). Numerical simulations illustrating the convergence results and showing the
sharpness of the smoothness assumptions were also included in this chapter.

The stability of the coupled problem (IV.14), (IV.15), (IV.16) was also studied. As we were dealing
with nonlinear problems, for stationary problem (IV.14) or for the evolution problems (IV.15), (IV.16),
the stability analysis presents some difficulties because the uniform boundness of the numerical
approximations is required. As in [10], we get the desired results using the convergence results.

As mentioned in the introduction, the system (I.6), (I.7) (I.8) can be used to describe the drug
transport through a medium, enhanced by an electric field. Numerical experiments in the scope of this
application, where different protocols were used, were also included. From the numerical experiments,
we observe, in short, that the application of long and low intensity protocols enhance the drug release
and the use of protocols of short and high intensity does not differ significantly from the typical
diffusion as can be seen in Figures IV.6 and IV.10.





Chapter V

Influence of temperature on mechanical
behaviour: towards non Fickian models

1 Introduction

The mathematical modelling of the drug release from a temperature sensitive polymer was considered
in [50] using a Fickian description for the drug transport. The author assumes that the temperature
effects on the polymer states occurs discretely in times. Moreover, the spatial domain has two different
configurations and the drug transport is described by diffusion equations. In this chapter, although
considering the effect of the temperature on the behaviour of the polymer as described in [50], the
viscoelastic effect of the polymeric structure on the drug transport is taken into account. In this chapter
we assume that the polymer has two different states: the swollen and shrinking states that change
discretely in time. Each state is characterized by different Young modulus that are associated with
the density of cross-links between the polymeric chains. In Section 2 we present the mathematical
model for the drug transport that is represented by an integro-differential equation. An equivalent
differential equation will be established. The computation of the solution of the differential problem
whose spatial domain and differential equation change discretely in time is presented in Section 3.
Some conclusions are presented in Section 4.

2 A hybrid Non Fickian mathematical model

Let Ω(t), t ∈ [0, t f ] be the spatial domain where the drug is dispersed. As the domain is composed
by a thermoresponsive polymer it changes in time: the domain swells for temperatures lower than
the LCST and it shrinks for temperatures higher than the LCST. We consider Ω(t) = (−H(t),H(t))
and that the concentration has a symmetric profile with respect the origin. Consequently, we take
Ω(t) = [0,H(t)], where for x = 0 we impose symmetry boundary conditions and at x = H(t) we
assume that all the drug that attains the boundary is immediately removed. For x ∈ Ω(t), the drug
concentration is described by the conservation equation

∂c
∂ t

=−∇(JF(t)+ JNF(t)). (V.1)

83
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In (V.1), JF(t) is defined by (I.16) and JNF(t) is a non Fickian flux defined by

JNF(t) =−Dv(T )∇σ(t)

where Dv stands for a viscoelastic diffusion coefficient and σ(t) represents the polymeric stress. The
liquid, in the release medium, strains the polymeric matrix that, while swelling, exerts a stress that
acts as a barrier to the incoming fluid and to the release of drug (see [21] and [30]). We define the
stress through a generalized Maxwell–Wiechert model with two arms as

σ(t) =−
∫ t

0

E0 +E1e
−

E1(t − s)
µ

 ∂ε

∂ s
ds, (V.2)

where E0,E1 represent the Young modulus of the spring elements, that depend on the temperature
T (t). In (V.2) µ denotes the viscosity of the polymer-solvent solution and ε represents the polymeric
strain. If we assume that ε = λc, then for the concentration we get

∂c
∂ t

(t) = ∇(D(T (t))∇c(t))

−λ∇

Dv(T (t))∇
∫ t

0

E0(T (t))+E1(T (t))e

−E1(T (θ))
µ(T (θ))

(t−θ)

 ∂c
∂θ

(θ)dθ

 , in (0,H(t)),

(V.3)
for t ∈ (0, t f ], completed with the boundary conditions

∇c(0, t) = 0, c(H(t), t) = 0, t ∈ (0, t f ]. (V.4)

and initial condition
c(0) = g in (0,H(0)). (V.5)

In equation (V.3) the temperature T acts on the release process, through the diffusion coefficient of the
drug and also through the properties of the polymeric, namely the Young modulus and the viscosity.
The IBVP (V.3), (V.4), (V.5) should be coupled with (I.17) for the temperature and a mathematical
law for H(t).

Following [50] we consider a switch of the temperature between two different values. We further
assume that this switch leads to two different values in the diffusion coefficient of the drug and the
Young modulus. To keep the model analytically manageable we suppose that the polymer viscosity is
constant. We also assume that a swelling and shrinking of the domain occurs. Thereby [0, t f ] is split
into

[0, t f ] = ∪n−2
i=0 [ti, ti+1)∪ [tn−1, tn], t0 = 0, tn = t f .

We suppose that the release system is in the collapsed state during the first time interval, which
means that the temperature is above the critical temperature solution. Consequently, in ∪i=0[t2i, t2i+1)

the polymeric structure is in the collapsed state and in the swollen state in ∪i=1[t2i−1, t2i). Let the
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subscripts c and s stand respectively for collapsed and swollen. For [t j, t j+1) we have

σℓ(t) =−λ (E1,ℓ+E0,ℓ)cℓ(t)+λ

E0,ℓ+E1,ℓe
−

E1,ℓ

µℓ
(t−t j)

cℓ(t j)+λ
E2

1,ℓ

µℓ

∫ t

t j

e
−

E1,ℓ

µℓ
(t−θ)

cℓ(θ)dθ

(V.6)
for ℓ= c,s. Taking in (V.3) the expression (V.6) we deduce the following integro-differential equation

∂cℓ
∂ t

(t) = (D−Dv,ℓλ Êℓ)∆cℓ(t)+Dv,ℓλ
E2

1,ℓ

µℓ

∫ t

t j

e−
E1,ℓ
µℓ

(t−θ)
∆cℓ(θ)dθ

+Dv,ℓλ

(
E0,ℓ+E1,ℓe

−
E1,ℓ
µℓ

(t−t j)
)

∆cℓ(t j),

(V.7)

where Êℓ = E0,ℓ+E1,ℓ, for ℓ= c,s.

Finally, it is easy to show that cℓ satisfies

∂ 2cℓ
∂ t2 +αℓ

∂cℓ
∂ t

= D1,ℓ∆
∂cℓ
∂ t

+D2,ℓαℓ∆cℓ+βℓαℓ∆cℓ(t j) in (0,Hℓ)× (t j, t j+1), (V.8)

where αℓ =
E1,ℓ

µℓ
, D1,ℓ = D−Dv,ℓλ Êℓ, D2,ℓ = D−Dv,ℓλE0,ℓ, βℓ = Dv,ℓλE0,ℓ, Hℓ = H(tℓ) and ℓ= c,s.

Equation (V.8) is complemented with the boundary conditions

∇cℓ(0, t) = 0,cℓ(Hℓ, t) = 0, t ∈ (t j, t j+1). (V.9)

The main problem now is the definition of the initial conditions. It is clear that when t ∈ [t0, t1), the
initial conditions are given by  cc(0) = g

∂cc

∂ t
(0) = D∆g in (0,Hc),

(V.10)

Where Hc represents the domain in the initial collapsed state. To define the initial conditions for (V.8),
from (V.7) we get

∂cℓ
∂ t

(t j) = D∆cℓ(t j) in (0,Hℓ).

A question remains without solution: What is the definition of cℓ(t j)? If in the interval (t j−1, t j) the
polymeric structure is in the collapsed state, then a solution cc defined in [0,Hc]× [t j−1, t j) is computed.
However the initial conditions for (V.8) involve a function defined in [0,Hs]. One possibility to define
the initial conditions for (V.8) is to extend cc to [0,Hs] constructing cc,ext such that

∫ Hc

0
cc(x, t j)dx =

∫ Hs

0
cc,ext(x)dx, (V.11)

Equation (V.11) represents the conservation of the mass of drug when a switch in the temperature and
consequently, in the volume phase occurs: the total mass at t = t j in the collapsed polymer Hc, is the
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initial mass for the next swollen state Hs. Then the initial conditions for (V.8) are defined by cs(t j) = cc,ext
∂cs

∂ t
(t j) = D∆cc,ext in (0,Hc).

(V.12)

Summarizing, we introduce in the procedure proposed in [50] the viscoelastic effect of the polymer
and then we propose the following algorithm to solve our problem. If the polymer is in the collapsed
state at t = 0 then:

1. Solve the IBVP
∂ 2cc

∂ t2 +αc
∂cc

∂ t
= D1,c∆

∂cc

∂ t
+D2,cαc∆cc +βcαc∆g in(0,Hc)× (t0, t1],

∇cc(0, t) = 0,cc(Hc, t) = 0, t ∈ [t0, t1],

cc(x,0) = g(x),
∂cc

∂ t
(x,0) = D∆g(x), x ∈ [0,Hc],

(V.13)

2. Extend cc(t1) to [0,Hs] by constructing cc,ext such that

∫ Hc

0
cc(x, t1)ds =

∫ Hs

0
cc,ext(x)dx. (V.14)

3. For i = 1, . . . ,n−1, solve the IBVP
∂ 2cℓ
∂ t2 +αℓ

∂cℓ
∂ t

= D1,ℓ∆
∂cℓ
∂ t

+D2,ℓαℓ∆cℓ+βℓαℓ∆cext(ti) in (0,Hℓ)× (ti, ti+1],

∇cℓ(0, t) = 0, cℓ(Hℓ, t) = 0, t ∈ [ti, ti+1],

cℓ(x, ti) = cext(x, ti),
∂cℓ
∂ t

(x, ti) = D
∂cext

∂ t
(x, ti), x ∈ [0,Hℓ],

(V.15)

with ℓ= c or ℓ= s for i even or odd, respectively, and cext is the extension of cℓ(ti) defined in
[0,H∗] with H∗ = Hs or H∗ = Hc for i even or odd, respectively, satisfying

• if i is even ∫ Hs

0
cs(x, ti) =

∫ Hc

0
cs,ext(x)dx, (V.16)

• if i is odd ∫ Hc

0
cc(x, ti) =

∫ Hs

0
cc,ext(x)dx. (V.17)

3 An analytic solution

In this section, using Fourier analysis, we introduce the general explicit expressions for the solutions
of the IBVP’s defined in the previous Section. In the first result we establish a formal representation
for the solution of the IBVP (V.13).
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Theorem 3.0.1 If g ∈ L2(Ω) is such that ∇g ∈ L2(Ω) and g(0) = ∇g(Hc) = 0, then

∑
n∈Ic,P

cos
(
(2n+1)π

2Hc
x
)
(A0

neω+,ct +B0
neω−,ct)

+ ∑
n∈Ic,H

cos
(
(2n+1)π

2Hc
x
)

eRect(C0
ncos(ωct)+D0

nsin(ωct))−
βc

D2,c
g(x)

(V.18)

for x ∈ [0,Hc], t ∈ [t0, t1], defines a formal solution cc(x, t) of the IBVP (V.13).

In (V.18), Ic,P = {n ∈ IN0 : n ≥ n+ or n ≤ n−}, Ic,H = {n ∈ IN0 : n− < n < n+},

n± =
1
2

(2Hc
√

αc

π

√
D2,c ±

√
D2,c −D1,c

D1,c
−1
)
, (V.19)

provided that

√
1− D1,c

D2,c
+
√

D1,c

√
D1,c

D2,c

π

2Hc
√

αc
< 1,

γc =

(
(2n+1)π

2Hc

)2

, (V.20)

ω±,c =
−(αc + γcD1,c)±

√
(αc + γcD1,c)2 −4γcαcD2,c

2
, (V.21)

Rec =−αc + γcD1,c

2
, (V.22)

ωc =
√

−(α + γcD1,c)2 +4γcαcD2,c, (V.23)

and the Fourier coefficients A0
n,B

0
n,C

0
n ,D

0
n are given by

A0
n =

D2,cDĝ′′
(n)−ω−,c(D2,c +βc)ĝ(n)
D2,c(ω+,c −ω−,c)

, (V.24)

B0
n =

ω+,c(D2,c +βc)ĝ(n)−D2,cDcĝ′′
(n)

D2,c(ω+,c −ω−,c)
, (V.25)

C0
n =

(D2,c +βc)ĝ(n)
D2,c

, (V.26)

and

D0
n =

D2,cDĝ′′
(n)−Rec(D2,c +βc)ĝ(n)

D2,cωc
(V.27)

where the notation f̂ (n) =
2

Hc

∫ Hc

0
f (x)cos

(
(2n+1)π

2Hc
x
)

dx was used.
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Proof: We start by the following convenient change of variable

cc(x, t) = uc(x, t)−
βccc(x,0)

D2,c
(V.28)

that converts the nonhomogeneous IBVP (V.13) in the homogeneous one

∂u2
c

∂ t2 +αc
∂uc

∂ t
= D1,c∆

(
∂uc

∂ t

)
+D2,cαc∆uc(x, t),(x, t) ∈ (0,Hc)× (t0, t1],

uc(x,0) =
(

1+
βc

D2,c

)
g(x),

∂uc

∂ t
(x,0) = Dg′′(x), x ∈ [0,Hc],

uc(Hc, t) = 0, ∇uc(0, t) = 0, t ∈ [t0, t1].

(V.29)

To obtain the solution of the new IBVP (V.29), we apply the method of separation of variables,
defining uc(x, t) = X(x)T (t). Hence, replacing it in the partial differential equation of (V.29) we get

T
′′
(t)X(x)+αcX(x)T

′
(t) = D1,cX

′′
(x)T

′
(t)+D2,cαcX

′′
(x)T (t),

that leads to
T

′′
(t)+αcT

′
(t)

D1,cT ′
(t)+D2,cαcT (t)

=
X

′′
(x)

X(x)
=−γ.

From the boundary conditions we obtain X(Hc)T (t) = 0 and X
′
(0)T (t) = 0 and consequently, we

should have X(Hc) = 0 and X ′(0) = 0. Then for X we obtain the boundary value problemX
′′
(x)+ γX(x) = 0, x ∈ (0,Hc),

X ′(0) = 0,X(Hc) = 0,
(V.30)

and for T we deduce
T

′′
(t)+(αc + γD1,c)T

′
(t)+ γD2,cαcT (t) = 0.

We remark that if γ ≤ 0, then X(x) = 0 that leads to the null solution. So, γ > 0, and

X(x) = A0
ncos(

√
γx)+B0

nsen(
√

γx).

As X(Hc) = 0 and X
′
(0) = 0, we obtain

X(x) = cos
(
(2n+1)π

2Hc
x
)
,n ∈ N0,

and γc is given by (V.20).

On the other hand, to obtain T we notice that z2 +(αc + γcD1,c)z+ γcαcD2,c = 0. Thus

z =
−(αc + γcD1,c)±

√
(αc + γcD1,c)2 −4γcαcD2,c

2
. (V.31)

The definition of T depends on the nature of the roots defined by (V.31).
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• If (αc + γcD1)
2 −4γcαcD2,c ≥ 0, (V.31) have the roots (V.21) and consequently, T is given by

T (t) = A0
neω+,ct +B0

neω−,ct . (V.32)

• If (αc + γcD1)
2 −4γcαcD2,c < 0, then

T (t) =
(

C0
ncos(ωct)+D0

nsin(ωct)
)

eRect (V.33)

where Rec and ωc are given by (V.22) and (V.23).

To conclude the expression of uc we need to specify the set of n ∈ IN0 such that (αc + γcD1)
2 −

4γcαcD2,c ≥ 0 or (αc + γcD1)
2 −4γcαcD2,c < 0 holds. Let n+ and n− be defined by (V.19) which are

the real zeros of (αc + γcD1)
2 −4γcαcD2,c. Then, for n ∈ Ic,P =]−∞,n−]∪ [n+,+∞[, T (t) is given by

(V.32) and, for n ∈ Ic,H =]n−,n+[, T (t) is given by (V.33). Consequently, the candidate to uc admits
the representation

uc(x, t) = ∑
n∈Ic,P

cos
(
(2n+1)π

2Hc
x
)
(A0

neω+,ct +B0
neω−,ct)

+ ∑
n∈Ic,H

cos
(
(2n+1)π

2Hc
x
)

eRect(C0
ncos(ωct)+D0

nsin(ωct)) (V.34)

where the constants A0
n, B0

n, C0
n and D0

n are computed using the initial conditions of the IBVP (V.29).

Using the Fourier series of
(

1+
βc

D2,c

)
g and Dg′′ we easily get the algebraic systems

A0
n +B0

n =
(D2,c +βc)ĝ(n)

D2,c

ω+,cA0
n +ω−,cB0

n = Dĝ′′
(n)

and C0
n =

(D2,c +βc)ĝ(n)
D2,c

RecC0
n +ωcD0

n = Dĝ′′
(n),

where the notation f̂ (n)=
2

Hc

∫ Hc

0
f (x)cos

(
(2n+1)π

2Hc
x
)

dx was used. Solving the last linear systems

we get A0
n,B

0
n,C

0
n ,D

0
n given by (V.24), (V.25), (V.26) and (V.27), respectively, that concludes the proof.

We observe that the computed solution is formal because to show that it is in fact solution of the
IBVP (V.18) we need to prove that the series (V.18) defines a function cc in [0,Hc]× [t0, t1] that is
continuous, admits the partial derivatives that arise in the partial differential equation in (V.18) and
satisfies all the identities of this problem.

To obtain a solution in the time interval [t1, t2] we need to define an extension of cc(t1), given in
Theorem 3.0.1, to [0,Hs] such that (V.14) holds. We start by noting that cc(x, t1) can be rewritten in
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the following equivalent form

cc(x, t1) =
∞

∑
n=0

cos
(
(2n+1)π

2Hc
x
)

Cn (V.35)

where

Cn =


A0

neω+,ct1 +B0
neω−,ct1 − βc

D2,c
ĝ(n) n ∈ Ic,P,

eRect1(C0
ncos(ωct1)+D0

nsin(ωct1))−
βc

D2,c
ĝ(n) n ∈ IC,H ,

with ĝ(n) =
2

Hc

∫ Hc

0
g(x)cos

(
(2n+1)π

2Hc
x
)

dx. We take

cc,ext(x) =
Hc

Hs

∞

∑
n=0

cos
(
(2n+1)π

2Hs
x
)

Cn,x ∈ [0,Hs]. (V.36)

The extension cc,ext defined by (V.36) satisfies (V.14) and its Fourier form is convenient to obtain
easily the solution of the IBVP (V.15), with ℓ= s, i = 1, in [0,Hs]× [t1, t2]. In fact, applying Theorem
3.0.1

cs(x, t) = ∑
n∈Is,P

cos
(
(2n+1)π

2Hs
x
)
(A1

neω+,st +B1
neω−,st)

+ ∑
n∈Is,H

cos
(
(2n+1)π

2Hs
x
)

eRest(C1
ncos(ωst)+D1

nsin(ωst))−
βs

D2,s
cc,ext(x, t1)

(V.37)

with Is,P = {n ∈ IN0 : n ≥ n+ or n ≤ n−}, Is,H = {n ∈ IN0 : n− < n < n+},

n± =
1
2

(2Hs
√

αs

π

√
D2,s ±

√
D2,s −D1,s

D1,s
−1
)

, provided that

√
1− D1,s

D2,s
+
√

D1,s

√
D1,s

D2,s

π

2Hs
√

αs
< 1,

γs =

(
(2n+1)π

2Hs

)2

,

ω±,s =
−(αs + γsD1,s)±

√
(αs + γsD1,s)2 −4γsαsD2,s

2
,

Res =−αs + γsD1,s

2
,

ωs =
√

−(αs + γsD1,s)2 +4γsαsD2,s, (V.38)
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and the Fourier coefficients A1
n,B

1
n,C

1
n ,D

1
n are given by

A1
n =

DD2,s
̂cc,ext(t1)

′′
(n)−ω−,s(D2,s +βs) ̂cc,ext(t1)(n)
D2,s(ω+,s −ω−,s)

,

B1
n =

ω+,s(D2,s +βs) ̂cc,ext(t1)(n)−DD2,s
̂cc,ext(t1)

′′
(n)

D2,s(ω+,s −ω−,s)
,

C1
n =

(D2,s +βs) ̂cc,ext(t1)(s)
D2,s

,

and

D1
n =

DD2,s
̂cc,ext(t1)

′′
(n)−Res(D2,s +βs) ̂cc,ext(t1)(n)

D2,sωs

where ̂cc,ext(t1)(n) =
2

Hs

∫ Hs

0
cc,ext(x, t1)cos

(
(2n+1)π

2Hs
x
)

dx.

To obtain the solution for [0,Hc]× [t2, t3] we apply again the Theorem 3.0.1 with the convenient
adaptations.

4 Conclusion

The main objective of this chapter is the introduction of mathematical models for the drug release
from a polymeric thermoresponsive platform. The polymer is a viscoelastic material where the Young
modulus change with the temperature. The polymer has a lower critical solution temperature (LCST)
and it switches from collapsed state for temperature above the LCST to swollen state for temperatures
lower than the LCST.

To simulate the evolution of the polymeric platform, here it was assumed that the change in
the temperature leads to two different states of the polymeric structure. A hybrid model obtained
splitting the time interval into disjoint subintervals, where the polymeric domain has different lengths,
is constructed where the drug transport is characterized by two sets of different values. An analytic
processes based on Fourier analysis is proposed to construct the solution of this model.

The main theoretical result - Theorem 3.0.1, that allows the construction of a solution of the hybrid
model, can be used to study its qualitative behaviour.

Thermoresponsive polymers are attracting an enormous scientific interest for advanced applica-
tions in drug delivery. Mathematical modelling and simulation of drug delivery, from these materials,
appears as an important co-adjutant in pioneering experimental studies. Though the work included
in this chapter still has an exploratory character, we think that promising numerical simulations can
be obtained by using the Fourier approach presented here. In the near future we plan to develop this
approach as well as the design of FEM/FDM well adapted to the moving boundary value problem.





Chapter VI

Conclusions and Future work

The study of numerical methods for systems of nonlinear differential equations of parabolic type or for
systems defined by a nonlinear elliptic equation coupled with two nonlinear parabolic equations was
the main objective of this work. The motivation underlying the study is the modelling of drug delivery,
from polymeric matrices, enhanced by external stimuli, namely by heat. In several human diseases
like cancer, the traditional treatments lead to very serious side effects. To overcome the limitations
of some classical therapies, like chemotherapy in the cancer treatment, local drug delivery strategies
that require drug carriers have been studied. Liposomes, dendrimers, polymeric nanoparticles, and
lipoprotein drug carriers, among others, have been shown to be very promising. A large number of
experimentalists have also studied new delivery systems, combined with the use of external stimuli, to
enhance the drug release. Most of these new drug delivery systems are still at an experimental stage.
We believe that mathematical modeling and numerical simulation, is an important co-adjutant in such
pioneering experimental studies. As the differential systems studied can be used to describe the drug
release in a target tissue, the numerical simulations can be used to illustrate the behaviour of the drug
concentration in time and space in heat-enhanced delivery.

Regarding the mathematical aspects - the construction of numerical methods and the development
of their theoretical support- we would like to highlight the main points addressed:

• two types of differential systems were considered:

– a system of two nonlinear parabolic equations (I.3)-(I.2);

– a systems defined by a nonlinear elliptic equations and two nonlinear parabolic equations,
(I.6)-(I.8);

• The numerical methods proposed - method (III.32)-(III.33) for problem (I.3)-(I.2); (IV.14)-
(IV.16) for problem (I.6)-(I.8), be viewed simultaneously as finite difference methods or com-
pletely discrete piecewise linear finite element methods.

• The main convergence outputs are defined in the following results: Theorems 4.1.4 and 4.2.5,
Theorem 3.2.1 and Theorems 4.2.1 and 5.2.1. The first result shows that the numerical solutions
obtained by (III.32)-(III.33) converge for the solution of the differential problem (I.3)-(I.2)
with respect to the norm ∥.∥h that is a discrete version of the usual L2 norm. Theorem 3.2.1
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establishes that the solution defined by (IV.14) converges to the solution of (I.6) with respect
to the norm ∥.∥1,h which is a discrete version of the usual norm in H1. This result has an
important role in the establishment of the convergence of the numerical solutions defined by
(IV.15)-(IV.16) to the correspondent continuous solutions in Theorem 4.2.1 and 5.2.1.

• The main convergence results were established assuming that the solutions of the differential
systems are in H3(Ω) which is not a usual assumption in the finite difference analysis.

• The stability of the method (III.32)-(III.33) for problem (I.3)-(I.2) and(IV.14)-(IV.16) for
problem (I.6)-(I.8) was studied. As we were dealing with nonlinear problems, the convergence
estimates established played an important role is the stability analysis.

• The convergence results were numerically illustrated. The numerical experiments included in
this work show the sharpness of the smoothness assumptions.

Regarding the applications of the models studied we present in what follows some possible
medical outcomes.

In Chapter III the heat in the system was assumed to be generated by a source term, that can be
located inside the spatial domain or at its boundary. The numerical experiments included can illustrate
the behaviour of the drug concentration in different scenarios. In Chapter IV the heat is induced by an
electric field generated by an applied potential. The model can be used to simulate iontophoresis and
electroporation, techniques that are used to enhance transdermal drug delivery. A number of protocols,
characterized by different potential intensities and different durations were numerically analyzed. The
results obtained suggest that lower intensity protocols were more effective.

In Chapter V we consider a non-Fickian mathematical model to describe drug release from a
stimuli responsive polymer. Here, the dependence of the Young modulus on the temperature was
considered. Following a semi-analytic approach, we constructed the analytical solution and its
qualitative behaviour was illustrated. The work in this chapter still has an exploratory character. We
plan to develop, in the near future, two different strategies to build robust numerical methods to
simulate drug delivery from thermoresponsive systems: approximations based on the Fourier approach
and the design of FEM/FDM well adapted to the moving boundary value problem.

The systems presented in this thesis represent drug release in vitro, that is in an external medium,
but they don’t consider the properties of this medium. To simulate the drug release from a drug
transporter and its absorption by the target tissue, enhanced by heat, it is necessary to combine all
the actors of the process. Therefore the coupling of the polymeric and target tissue domains needs
to be taken into account. We plan to address the problem in the near future. As human tissues are
viscoelastic materials a viscoelastic version of the systems (I.3)-(I.2) and (I.6)-(I.8) considering the
approach in [20], [21] and [30] will be studied. We believe that the study of in vivo release, by
coupling the drug delivery systems with the living tissues, would represent a step forward a more
complete comprehension of controlled drug delivery.
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Appendix A

1 Functional Spaces

• L2(Ω),L∞(Ω),H1
0 (Ω),Hk(Ω),k ∈ IN are the usual spaces.

• Let consider B a Banach space.

– C([0, t f ],B) denotes the space of continuous functions b : [0, t f ] −→ B with respect to
norm ∥.∥B

– Ck([0, t f ],B) represents the space of continuous functions b : [0, t f ]−→ B such that its
derivatives up to order k are continuous and

∥b∥Ck([0,t f ],B) = max
[0,t f ]

∥b(k)(t)∥B < ∞ (A.1)

– L2(0, t f ,B) denote the space of Bochner-measurable functions b : (0, t f )−→ B such that

∥b∥L2(0,t f ,B) =

(∫ t f

0
∥b(t)∥2

Bdt
)1/2

< ∞ (A.2)

– L∞(0, t f ,B) represents the space of essentially bounded Bochner measurable functions

∥b∥L∞(0,t f ,B) = ess sup
[0,t f ]

∥b(t)∥B < ∞ (A.3)

– Hk(0, t f ,B) denotes the space of functions b in L2(0, t f ,B) whose distributional time
derivatives up to order k are also in L2(0, t f ,B) and moreover, such that

∥b∥Hk(0,t f ,B) =
k

∑
j=0

∫ t f

0

∣∣∣∣∣∣∣∣d jb
dt j

∣∣∣∣∣∣∣∣2
B

< ∞ (A.4)

• W 1,∞(Ω) denotes the Sobolev space of functions defined in Ω such that

∥w∥W 1,∞(Ω) = max
|α|≤1

esssup
Ω

|Dαw| (A.5)

with α ∈ N0 and Dαw =
∂ |α|w
∂xα

.
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2 Embeddings

Theorem 2.0.1 [1] Let Ω be a domain in IRn. Suppose Ω satisfies the cone condition. Let j ≥ 0 and
m ≥ 1 be integers and let 1 ≤ p < ∞. If either mp > n or m = n and p = 1, then

W j+m,p(Ω) ↪→C j(Ω).

3 Inequalities

Gronwall’s Lemma [29] Let α,β and u be real-valued functions defined on [0, t f ]. Assuming that
β and u are continuous and that the negative part of α is integrable on every closed and bounded
subinterval of [0, t f ]. If β is non-negative and if u satisfies the integral inequality

u(t)≤ α(t)+
∫ t

a
β (s)u(s)ds ∀t ∈ [0, t f ]

then
u(t)≤ α(t)+

∫ t

a
α(s)β (s)e

∫ t
s β (r)drds, t ∈ [0, t f ].

Moreover, if the function α is non-decreasing, then

u(t)≤ α(t)e
∫ t

a β (s)ds, t ∈ [0, t f ].

4 Bramble-Hilbert Results

Lemma 4.0.1 [11] Let Ω be an open subset of RN with a Lipschitz-continuous boundary. For some
integer k ≥ 0 and some number p ∈ [0;1], let λ be a continuous linear form on the space W k+1;p(Ω)

with the property that
∀u ∈ Pk(Ω), λ (u) = 0

where Pk represents the space of polynomials of degree k. Then there exists a constant c(Ω) such
that

∀u ∈W k+1;p(Ω), |λ (u)| ≤ c(Ω)∥λ∥∗W k+1;p(Ω)|u|W k+1;p(Ω), (A.6)

where ∥ · ∥∗W k+1;p(Ω)
denotes the norm in the dual space of W k+1;p(Ω).

Let assume that Ω = (a,b).

Lemma 4.0.2 Let define u∈H3(Ω)∩H1
0 (Ω) and consider the nonuniform grid Ωh = {xi, i= 0, · · · ,N,xi−

xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b}. Then for the functional λ (u) = D−xu(xi)−
∂u
∂x

(
xi− 1

2

)
there

exists a constant C such that

|λ (u)| ≤Chi||u′′′||L1(xi−1,xi).

Proof: Let v be defined by v(ε) := u(xi−1 + εhi), for ε ∈ [0,1].
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As v(0) = u(xi−1), v(1) = u(xi), vε(1/2) = hiux(xi− 1
2
), we get

λ (u) =
u(xi)−u(xi−1))

hi
−ux(xi− 1

2
)

=
1
hi

(
u(xi)−u(xi−1)−hiux(xi− 1

2
)
)
=

1
hi
(v(1)− v(0)− v′(1/2)) =

1
hi

λ̂ (v)

where λ̂ : W 1,3(Ω)→ IR is a bounded functional that satisfies λ̂ (ε j) = 0, j = 0,1,2. Thus, the
Bramble-Hilbert Lemma 4.0.1 guarantees that:

∃C > 0 : |λ̂ (v)| ≤C||v′′′||L1(Ω)

But as ||v′′′||L1(Ω) = h2
i ||u′′′||L1(xi−1,xi), we get that,

|λ (u)| ≤ 1
hi

Ch2
i ||u′′′||L1(xi−1,xi) =Chi||u′′′||L1(xi−1,xi).

Lemma 4.0.3 Let Ωh be defined by {xi, i = 0, · · · ,N,xi − xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b} and

let u ∈ H2(Ω)∩H1
0 (Ω) and λ (u) =

hi

2
(u(xi)+u(xi−1))−

∫ xi

xi−1

u(x)dx, there exists a constant C such

that

|λ (u)| ≤Ch2
i ||u′′||L1(xi−1,xi).

Proof: Let v be defined by v(ε) := u(xi−1 + εhi), for ε ∈ [0,1].

As v(0) = u(xi−1), v(1) = u(xi), hi
∫ 1

0 v(ε)dε =
∫ xi

xi−1

u(x)dx, for λ (u) we obtain

λ (u) = hi

(
1
2
(u(xi)+u(xi−1))−

∫ xi

xi−1

u(x)dx
)

= hi

(
1
2
(v(1)+ v(0))−

∫ 1

0
v(ε)dε

)
︸ ︷︷ ︸

λ̂ (v)

Then the functional λ̂ : W 1,2(Ω)→ IR defined by λ̂ (v) = 1
2(v(1)+v(0))−

∫ 1
0 v(ε)dε,v ∈W 1,2(Ω)

is bounded and λ̂ (ε j) = 0, j = 0,1. Thus the Bramble-Hilbert Lemma 4.0.1 guarantees that:

∃C > 0 : |λ̂ (v)| ≤C||v′′||L1(Ω)

But as ||v′′||L1(Ω) = hi||u′′||L1(xi−1,xi), we get that,

|λ (u)| ≤ hiChi||u′′||L1(xi−1,xi) =Ch2
i ||u′′||L1(xi−1,xi).
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Lemma 4.0.4 Let Ωh be defined by {xi, i = 0, · · · ,N,xi − xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b} and

let u ∈ H1(Ω)∩H1
0 (Ω) and λ (u) =

hi

2
(u(xi)−u(xi−1))+

∫ x
i− 1

2

xi−1

u(x)dx−
∫ xi

x
i− 1

2

u(x)dx, there exists a

constant C such that

|λ (u)| ≤Chi∥u′∥L1(xi−1,xi).

Proof: Let v be defined by v(ε) := u(xi−1 + εhi), for ε ∈ [0,1].

Then having that v(0) = u(xi−1), v(1) = u(xi), hi

∫ 1
2

0
v(ε)dε =

∫ x
i− 1

2

xi−1

u(x)dx and hi

∫ 1

1
2

v(ε)dε =∫ xi

x
i− 1

2

u(x)dx, we get

λ (u) =
hi

2
(u(xi)−u(xi−1))+

∫ x
i− 1

2

xi−1

u(x)dx−
∫ xi

x
i− 1

2

u(x)dx

= hi

(
1
2
(v(1)− v(0))+

∫ 1
2

0
v(ε)dε −

∫ 1

1
2

v(ε)dε

)
= hiλ̂ (v)

Then the functional λ̂ :W 1,1(Ω)→ IR defined by λ̂ (v)= 1
2(v(1)−v(0))+

∫ 1
2

0
v(ε)dε−

∫ 1

1
2

v(ε)dε,v∈

W 1,1(Ω) is bounded and λ̂ (ε j) = 0, j = 0. Thus the Bramble-Hilbert Lemma 4.0.1 guarantees that:

∃C > 0 : |λ̂ (v)| ≤C||v′||L1(Ω)

But as ||v′||L1(Ω) = ||u′||L1(xi−1,xi), we get that,

|λ (u)| ≤Chi||u′||L1(xi−1,xi)

Lemma 4.0.5 Let Ωh be defined by {xi, i = 0, · · · ,N,xi − xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b} and

let u ∈ H2(Ω)∩H1
0 (Ω) and λ (u) =

1
2
(u(xi)+u(xi−1))−u(xi− 1

2
), there exists a constant C such that

|λ (u)| ≤Chi∥u′′∥L1(xi−1,xi).

Proof: Let v be defined by v(ε) := u(xi−1 + εhi), for ε ∈ [0,1].
Then as v(0) = u(xi−1), v(1) = u(xi) and v(1

2) = u(xi− 1
2
), we obtain

λ (u) =
1
2
(u(xi)+u(xi−1))−u(xi− 1

2
) = hi

(
1
2
(v(1)+ v(0))− v

(
1
2

))
= λ̂ (v)

Then the functional λ̂ : W 2,1(Ω)→ IR defined by λ̂ (v) = 1
2(v(1)+ v(0))− v

(1
2

)
,v ∈W 1,2(Ω) is

bounded and λ̂ (ε j) = 0, j = 0,1. Thus the Bramble-Hilbert Lemma 4.0.1 guarantees that:

∃C > 0 : |λ̂ (v)| ≤C||v′′||L1(Ω)
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But as ∥v′′∥L1(Ω) = hi∥u′′∥L1(xi−1,xi), we get that,

|λ (u)| ≤Chi∥u′′∥L1(xi−1,xi)

Lemma 4.0.6 Let Ωh be defined by {xi, i = 0, · · · ,N,xi − xi−1 = hi, i = 1, . . . ,N,x0 = a,xN = b}. Let

u ∈ H3(Ω)∩H1
0 (Ω) and λ (u) =

∂u
∂x

(xi)−Dhu(xi) there exists a constant C such that

|λ (u)| ≤C(hi +hi+1)∥u′′′∥L1(xi−1,xi).

Proof: Let v be defined by v(ε) := u(xi−1 + ε(hi +hi+1)), for ε ∈ [0,1].

Considering δ1 =
hi

hi +hi+1
and δ2 =

hi+1

hi
, we have that v(0) = u(xi−1), v(1) = u(xi+1), v(δ1) =

u(xi) and vε(δ1) =
ux(xi)

hi +hi+1
. Consequently,

λ (u) =
1

hi +hi+1

(
(hi +hi+1)ux(xi)−

hi+1

hi
(u(xi)−u(xi−1))−

hi

hi+1
(u(xi+1)−u(xi))

)
=

1
hi +hi+1

(
vε(δ1)−δ2(v(δ1)− v(0))− 1

δ2
(v(1)− v(δ1))

)
=

1
hi +hi+1

λ̂ (v)

where λ̂ : W 1,3(Ω)→ IR is a bounded functional that satisfies λ̂ (ε j) = 0, j = 0,1,2. Thus, the
Bramble-Hilbert Lemma 4.0.1 guarantees that:

∃C > 0 : |λ̂ (v)| ≤ ∥v′′′∥L1(Ω) (A.7)

However, ∥v′′′∥L1(Ω) = (hi +hi+1)
2∥u′′′∥L1(xi−1,xi+1), so

|λ (u)| ≤ C
hi +hi+1

× (hi +hi+1)
2∥u′′′∥L1(xi−1,xi+1) = (hi +hi+1)∥u′′′∥L1(xi−1,xi+1) (A.8)
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