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Abstract

The increase and improvement in molecular profiling technologies have enabled the

acquisition of large datasets consisting of measurements for many molecular enti-

ties. These datasets allow an understanding of molecular profiles of, for example,

a disease, drug and compounds action, or toxicity. Furthermore, gene expression

profiling experiments usually produce extensive lists of differential expressed genes

that characterize the comparison between the two states in the study, such as dis-

ease versus healthy or treatment versus control. In this study two approaches are

used to interpret these lists, take out relevant and reliable hypotheses and quantify

biological network perturbations: Reverse Causal Reasoning (RCR) and Network

Perturbation Analysis (NPA); towards exploring the full potential of these datasets.

The RCR and NPA methods are implemented and tested on the transcriptome

of benzene-exposed individuals to propose a hypothesis of biological processes al-

terations. Several proposed altered biological mechanisms are in agreement with

literature evidence, meaning that this approach can be a valuable tool for under-

standing mechanisms associated with benzene exposure. While some of them have

not been studied and false positives are a possibility, this approach indicates pos-

sible candidates, that have not been verified by the literature as potential future

directions in research.

vii



List of abbreviations

ALL Acute Lymphoblastic Leukemia

AML Acute Myeloid Leukemia

ANLL Acute Non-Lymphocytic Leukemia

BEL Biological Expression Language

CML Chronic Myeloid Leukemia

CTD Comparative Toxicogenomics Database

DNA Deoxyribonucleic Acid

FDR False Discovery Rate

GO Gene Ontology

GPI Geometric Perturbation Index

GSA Gene Set Analysis

GSEA Gene Set Enrichment Analysis

HGNC HUGO Gene Nomenclature Committee

IARC International Agency for Research on Cancer

INDRA Integrated Network and Dynamical Reasoning Assembler

KEGG Kyoto Encyclopedia of Genes and Genomes

LFDR Local False Discovery Rate

log2FC Logarithmic Fold Change

MSigDB Molecular Signatures Databases

NHL Non-Hodgkin Lymphoma

NLP Natural Language Processing

NPA Network Perturbation Analysis

ORA Over-Representation Analysis

PMBC Peripheral Mono Nuclear Blood Cells

PPM Parts Per Million

RCR Reverse Causal Reasoning

RMA Robust Multi-array Average

RNA Ribonucleic Acid

SD Standard Deviation

SIF Simple Interaction Format

viii



List of Figures

1.1 Structure of Benzene (C6H6). . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Simplified scheme for benzene metabolism (C. McHale et al., 2012). . 4

2.1 Schematic representation of a HYP network. . . . . . . . . . . . . . . 8

2.2 Mapping of the downstream nodes to a HYP network. . . . . . . . . . 9

3.1 Venn diagram of genes that interact with benzene in CTD and genes

in the experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Representation of a part of the biological causal network in Cytoscape. 18

3.3 Venn diagram of genes in the experimental data and genes in the

causal biological network. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 HYP corresponding to angiogenesis biological process. . . . . . . . . 22

3.5 HYP corresponding to histone deacetylation aging biological process. 24

3.6 HYP corresponding to inflammatory response biological process. . . . 25

ix



List of Figures

x



List of Tables

3.1 Summary of the list of expressed genes. . . . . . . . . . . . . . . . . . 16

3.2 Experimental data subset. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Causal network in SIF format. . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Differential expressed genes present both in the causal network and

the experimental data, by state. . . . . . . . . . . . . . . . . . . . . . 19

3.5 List of top-12 bioprocesses with more downstream nodes. . . . . . . . 20

3.6 HYPs with both richness and concordance p-values thresholds of 0.1,

ranked by richness and concordance . . . . . . . . . . . . . . . . . . . 21

3.7 Top 10 HYPs with absolute higher values of Strength. . . . . . . . . . 23

3.8 Top 10 HYPs with absolute higher values of GPI. . . . . . . . . . . . 24

A.1 Benzene queries performed in INDRA. . . . . . . . . . . . . . . . . . 43

xi



List of Tables

xii



Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Methods 7

2.1 Resources and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 RCR: Reverse Causal Reasoning . . . . . . . . . . . . . . . . . 8

2.2.2 NPA: Network Perturbation Amplitude . . . . . . . . . . . . . 11

2.3 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Transcriptomic data . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Biological Causal Network . . . . . . . . . . . . . . . . . . . . 13

3 Results 15

3.1 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Benzene Causal Network . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 RCR and NPA results . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Discussion and Conclusion 27

4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography 31

Appendices 41

xiii



Contents

A Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiv



1

Introduction

1.1 Motivation

The exposure of organisms to some biologically active compounds may have potential

health effects. Some of these effects take years to manifest, at a point that there

is not a way to prevent disease onset. Thus the solution to fight diseases is based

on prevention. In the last years, the amount of available data produced by high-

throughput measurement technologies has increased. These datasets are a valuable

key to an understanding of the molecular profiles of diseases and the way these

compounds influence these. They disclose genome-wide modifications induced by

toxic agents that can provide insight into possible mechanisms of toxicity and the

inference of potential effects that have not been reflected by phenotypic changes.

However, these datasets are not human-readable, so methods to filter and extract

relevant information from extensive lists of differential expressed genes are necessary,

in order to assess the biological impact in a qualitative and quantitative manner.

1.2 Benzene

Benzene, an aromatic hydrocarbon, is a clear, colorless, volatile, and highly flammable

liquid, at room temperature. It is also a ubiquitous chemical in our environment

that is known to cause serious health problems, such as leukemia (Loomis D et al.,

2017).

1



1. Introduction

Figure 1.1: Structure of Benzene (C6H6).

The general population is widely exposed to low-level benzene from tobacco smoke,

vehicle exhaust, gasoline stations, and contaminated water and food. Millions of

workers are daily exposed to benzene in the manufacturing of chemicals, transport,

or construction or others employed at workplaces with exposure to exhaust gases

from motor vehicles (IARC Working Group on the Evaluation of Carcinogenic Risks

to Humans, 2012). Human exposure to benzene is unavoidable and the possible

adverse health effects associated with benzene chronic or acute exposure remain a

matter of great concern (Snyder et al., 2012).

Since 1974, in International Agency for Research on Cancer (IARC) Monographs

Volume 29 (IARC, 1974), benzene was classified as having “sufficient evidence that

benzene is carcinogenic to man”. Benzene occupational exposure is linked to a set of

chronic diseases such as Acute Myeloid Leukemia (AML), Acute Non-Lymphocytic

Leukemia (ANLL), Non-Hodgkin Lymphoma (NHL), Chronic Myeloid Leukemia

(CML), and Acute Lymphoblastic Leukemia (ALL). Other studies also reported

data for several other cancers in adults, including cancer of the: lung, nasal cavity,

pharynx, larynx, and related sites; esophagus; stomach; colon, rectum, and anus;

pancreas; kidney; liver and biliary tract; prostate; bladder, brain, and central ner-

vous system; and skin.

At the cell level, there is scientific evidence both in experimental and epidemiological

studies, that benzene exposure, even in low concentrations have a high hemolytic

potential (R. Hosseinzadeh et al., 2016), that can lead to a decrease in white blood

cell count, lymphocytes, platelet counts and B cells (Q. Lan et al., 2004). Regarding

the suppression of components and functions of the immune system, is noted in

subjects exposed to benzene (B. Li et al., 2009, N. Uzma et al., 2010).

It is well established that benzene and/or its metabolites cause chromosomal aber-

rations in the peripheral blood lymphocytes (V. Kašuba et al., 2000, Forni et al.,
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1. Introduction

1979, Smith et al., 2010). These chromosomal rearrangements and mutations are on

the causal pathway to malignancies such as AML and ALL. During the metabolism

of benzene, oxygen radicals are produced and can induce toxic effects. This active

oxygen, known as oxidative stress, can damage cellular DNA, reported in mouse

bone marrow in vivo studies (P. Kolachana et al., 1993). Studies have also shown

that benzene can provoke epigenetic marks including histone modification, DNA

methylation, and microRNA expression (S. Guil et al., 2009). Recent progress in

the field of epigenetics has highlighted the fundamental role of epigenetic mecha-

nisms in ensuring the proper control of key biological processes. It is now known

that both genetic and epigenetic mechanisms are responsible for the establishment

and progression of cancer (M. Esteller et al., 2008).

There are also less-known effects associated with benzene exposure. Other studies

report effects in reproductive dysfunction in female workers, exposure to benzene

could interrupt the function of the hypothalamic-pituitary-ovarian axis and affect

their normal levels of follicle-stimulating hormone, urine pregnandiol-3-glucuronide,

luteinizing hormone, and estrone conjugate (H. Chen et al., 2001, S. R. Reutman

et al., 2002), another study indicated a higher incidence rate of menstrual disorder

in the exposed group (X. Y. Huang et al., 1991). Besides affecting the reproductive

health of females, effects in sperm total count and motility, and an increased inci-

dence of chromosomally defective sperm were also noted in industrial workers (V.

Katukam et al., 2012, F. Marchetti et al., 2012), which means that benzene exposure

can be associated with male infertility.

Benzene metabolism is intrinsically complex (R. Snyder et al., 1996), it first occurs

in the liver and lungs, where it is metabolized to a variety of products that are

transported to the bone marrow where the secondary metabolism occurs (P. Sheets

et al., 2004). The study of the relationship between the metabolism and toxicity

of benzene indicates that several metabolites of benzene play significant roles in

generating benzene toxicity. In Figure 1.2 is represented a very simplified scheme

for benzene metabolism (C. McHale et al., 2012), including pathways and enzymes

that lead to toxicity.

3



1. Introduction

Figure 1.2: Simplified scheme for benzene metabolism (C. McHale et al., 2012).

Benzene is a much-studied chemical in respect of blood components, but its broad

spectrum of incidence in the human body and the role in other chronic disorders is

still unclear. Further research of the mechanisms through which benzene alters gene

expression is needed to better comprehend the toxic potential and to develop appro-

priate preventative measures, particularly for occupationally-exposed subjects. A

disease phenotype is rarely a consequence of an irregularity in a single gene product,

but a reflection of several pathobiological processes that interact in a complex net-

work. Network-based approaches have potential biological and clinical applications,

from the identification of disease genes to better drug targets (A. L. Barabási et al.,

2011). Transcriptomic studies measure gene expression in different conditions (such

as exposed vs unexposed), genes that are differentially regulated between these con-

ditions are of great interest, which can identify biological mechanisms affected by

benzene exposure and also their mutual relationships.

The data sets generated in these gene analysis studies are not easily interpreted due

to a large amount of information. The development of methods that can interpret

these sets of differential expressed genes allows us to identify and quantify changes

in biological mechanisms.

Gene Set Analysis (GSA) summarizes the extensive list of differentially expressed
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1. Introduction

genes in terms of biological relevant sets, based on shared biological or functional

properties as defined by a reference knowledge base. The most well-known knowledge

base sources are gene ontology (GO) based on functional annotation (M. Ashburner

et al., 2000), Kyoto Encyclopedia of Genes and Genomes (KEEG) based on path-

ways (M. Kanehisa et al., 2010), and Molecular Signatures Databases (MSigDB), a

collection of annotated gene sets (A. Liberzon et al., 2011).

The Over-Representation Analysis (ORA) tests the overlap of a predefined group

of genes and the set of differentially expressed genes assuming the hypergeomet-

rical distribution under the null hypothesis (R. Breitling et al., 2004). Gene Set

Enrichment Analysis (GSEA) overtakes two of the major problems of ORA as it

uses a valid sampling procedure and computes over the whole extension of genes (A.

Subramanian et al., 2005).

Neither ORA nor GSEA consider that genes are dependently expressed; genes are

found to be correlated due to mechanisms of co-regulation and co-expression (L.

Geistlinger et al., 2011).

All of these methods consider a high correlation between RNA abundance and pro-

tein expression. However, protein expression levels are highly variable due to trans-

lational and post-translational events such as protein modification or binding. The

output of these methods consists of a list of p-values quantifying the association of

each gene set with the experimentally derived data. The drawback of these methods

is that they do not take into account any direction of regulation and only capture

general biological phenomena (e.g. cell differentiation) without any regard to the

mechanistic details of the process (Chindelevitch et al., 2012).

The methods present in this study to extract mechanistic insights from the system

response associated with a perturbation, in a qualitative and quantitative manner,

not only rely on experimental measures but also on prior biological knowledge in

the form of cause-and-effect relationships. This a priori knowledge is used in the

form of directed causal graphs since they are a common method to illustrate rela-

tionships in the data and allow to display interactions between biological entities

(A. Gebharter et al., 2014). The causal biological networks are capable of capturing

the relationships between the biological mechanisms, allowing an assessment of the

impact of exposures to active substances (T. M. Thomson et al., 2013).

1.3 Objectives

The aim of this work is to elaborate an approach to study a stimulus-response be-

havior in a qualitative and quantitative sense. The workflow includes building a

5



1. Introduction

biological causal network related to benzene, processing the transcriptomic data,

and implementing two algorithms for analyzing how the human body responds to

benzene occupational exposure. The case-study stimulus used in this study is an

mRNA signature corresponding to in vivo benzene exposure and the response is

the internal biological processes response relating to a given disease end-point. The

undertaken technologies place the measured experimental data in the context of a

derived causal biological network consisting of prior knowledge and apply a set of

algorithms to assess the overall biological response to the given exposure. Addi-

tionally, the results from these models need to be explored and compared to prior

knowledge about the clinical effects of benzene on the human body, in order to

evaluate the efficiency of these methods.

6
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Methods

2.1 Resources and tools

This project is implemented in R 3.6.3 and Python 3.7.6. The numpy (S. Van Der

Walt et al., 2011) and pandas (McKinney, W., 2010) Python libraries were used for

computing operations and for building data structures. Several R packages were

also exploited: ggplot2 (H. Wickham, 2016) for data visualization; affy (Gautier et

al., 2004) in the RNA expression data analysis and causalR (G. Bradley et al., 2017)

for computing RCR methods. The Integrated Network and Dynamical Reasoning

Assembler (INDRA) software (B.M. Gyori et al., 2017), was used to build the causal

networks. It assembles mechanistic information through text mining techniques to

generate several different kinds of predictive and explanatory models.

2.2 Algorithms

Both the following algorithms RCR and NPA have a similar workflow and combine

the same two inputs: experimental data and a biological causal network. These

methods can identify and quantify changes in biological mechanisms considering the

measured genes from the experimental data when applied to a causal network.

There is a common structure for both algorithms, for scoring network models called

HYP. A HYP is a specific type of network consisting of a single upstream node, con-

nected to a set of downstream nodes. Some of these downstream entities could be

genes present in the experimental data, which means it is possible to deduce infor-

mation about the activity of the upstream node. Each edge represents a qualitative

interaction of increases, decreases, or ambiguous. All of the downstream nodes are

assumed to be independent of each other, resembling a qualitative Bayesian network.

7



2. Methods

Figure 2.1: Schematic representation of a HYP network.

In the example in figure 2.1 entity A regulates the expressions of genes X, Y, and

Z following the specific regulation signs ”→” represents a positive regulation and

”−|” represents a negative regulation.

The causal network is composed of several nodes connected by direct edges. To

generate a HYP, a reference node must first be selected within the network. The

selected node will be the upstream node and the downstream nodes will be all the

neighbors connected to it. Next, the causal relationships between the nodes are

set based on the original causal network. An increased edge connecting two nodes

means that the nodes are connected by a ”activates” interaction, in the same way, a

decreasing edge connecting two nodes is derived from a ”inhibits” interaction. When

the same pair of nodes are connected by two different interactions, their relationship

is set as ambiguous.

2.2.1 RCR: Reverse Causal Reasoning

This algorithm identifies biological mechanisms that are statistically significant for

differential measurements in molecular profiling data when applied to a causal net-

work (N. L. Catlett et al., 2013). The methods of this algorithm handle non-

numerical data as input (here, the list of differential expressed genes).

The implementation of RCR is performed with the support of the open-source causal

network analysis platform CausalR.

The reverse causal reasoning is applied to each HYP individually, assigning a di-

rection of increase or decrease. This direction represents the deducted state of

the upstream node, taking into account the states of the downstream nodes. The

8



2. Methods

direction is set based on the majority of the significantly increased or decreased

downstream nodes of the HYP. For each one of the downstream nodes classified as

up- or down-regulated, the interaction with the upstream node determines if the

observed state is consistent with the assigned direction of increase or decrease of the

upstream node.

Figure 2.2: Mapping of the downstream nodes to a HYP network.

For each downstream node is assigned one of the different predictions: correct,

contra, ambiguous and none . In the example in figure 2.2, if the upstream node A

is connected to downstream node X by a causal increase, an increase in X would be

consistent with an increase in A, correct. In the other case, if upstream node A is

connected to downstream node Y by a causal decrease, an increase in Y would be

consistent with a decrease in A, contra. If the downstream node has not a value of

the expression is assigned as none and if, for example, upstream node A is connected

both by a causal increase and causal decrease to downstream node W, it is set as

ambiguous.

Based on the number of correct, contra, ambiguous and none, two evaluating metrics

are calculated for each HYP: concordance and richness. Both statistics are biased in

favor of HYPs with a larger number of downstream nodes because bigger networks

are associated with superior levels of significance than those with few downstream

nodes.

These two metrics work as a filter to identify possible and viable explanations for

the given data.

Concordance

The concordance statistic is calculated as a p-value that represents the coherence

between the defined state of the downstream nodes with the inferred state assigned to

9



2. Methods

the upstream node of the HYP. To compute concordance, only downstream nodes

classified as up or down-regulated are used. Besides, only the nodes classified as

correct or contra are considered.

The concordance is the cumulative probability based on the area under the curve of

a probability distribution function, where:

• k is the number of predictions set as correct,

• n is the number of significant measured downstream nodes,

• p is the probability of achieving a result, in this case the probability of getting

the correct prediction is 0.5, and

• l is the number of downstream nodes set as ambiguous.

The concordance p-value for a given HYP, xi, is the sum of probij for all

j = ki, ki + 1,...,min(nili,m), and can be calculated as:

conci =

min(ni−1,m)∑
j=ki

(
ni − li
j

)
pj(1− p)ni−j−li (2.1)

Richness

The richness statistic is also computed as a p-value, but it represents the enrichment

of the network. It compares the number of downstream nodes classified as up or

down-regulated of the HYP to the total number of significant measured nodes in

the experimental data.

Similarly, as concordance, the richness is a cumulative probability based on the area

under the curve of a probability distribution function, where:

• k is the number of downstream nodes classified as up or down-regulated of the

HYP,

• N is the total number of nodes in the experimental data,

• m is the number of measured genes classified either as up or down-regulated

in the experimental data,

• n is the total number of downstream nodes of the HYP.

The richness p-value for a given HYP, xi, is the sum of probij for all j ≤ ki, where

j = ki, ki + 1,...,min(ni,m) and can be calculated as:

richi =

min(nim)∑
j=ki

(
m

j

)(
N −m
ni − j

)
(
N

ni

) (2.2)

10
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2.2.2 NPA: Network Perturbation Amplitude

This algorithm combines experimental data and a causal network to quantify changes

or perturbation in biological processes, based on the magnitude and direction of

expression changes of the downstream nodes in each HYP (F. Martin et al., 2012).

The methods of this algorithm handles numerical data (here, the expression values

of the differential expressed genes).

In this study, two different NPA scores were computed to evaluate the activity of the

biological process represented in the HYPs: Strength and Geometric Perturbation

Index (GPI). These metrics are designed so that positive values denote the increased

activity of the upstream node in the HYP and in the other way, negative values mean

decreased activity when compared to the control.

The HYP mapping performed in NPA is similar to the one applied in RCR, but

instead of using the ”State” of the gene it takes the real value of the logarithmic

expression. The same way that in RCR, directionality is fundamental for NPA

scoring.

Strength

The Strength is calculated as the weighted mean of the logarithmic differential ex-

pressions of the HYP genes, where:

• βi is the log2FC of the ith gene in the HYP,

• si is the type of interaction between the upstream regulator of the HYP and

the ith gene (+1 for activation and -1 for inhibition), and

• N is the number of nodes in the HYP, present in the transcriptome.

Strength =
1

N

N∑
i=1

si · βi (2.3)

This scoring method is vulnerable to noise because it considers all the measured

downstream genes independently of data quality (here, the p-value for expression),

assuming that noise is evenly distributed.

A positive score for Strength suggests that the upstream node regulator is up-

regulated in the exposed group compared to the unexposed group. A negative

Strength score denotes that the process has a decrease in its activity.

GPI

GPI method is a modified version of the Strength method. GPI is normalized by√
N instead of N. The weighing in GPI adds another factor, the false non-discovery

11
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rate.

The false discovery rate (FDR) described by Y. Benjamini and Y. Hochberg (Y.

Benjamini & Y. Hochberg, 1995) is the expected proportion of type I errors (false

positives). The FDR plays a prominent role in many high-dimensional testing and

model selection procedures. The FDR is obtained from the raw p-values using the

Benjamini-Hochberg multiple testing corrections. The local false non-discovery rate,

fndri is calculated as fndri = 1− fdri. This way genes with low p-values will have

a higher influence in the score than those with a high p-values.

GPI =
1√
N

N∑
i=1

si · fndri · βi (2.4)

A GPI positive score suggests that the upstream regulator process has an increase

in its activity and a negative score suggests that the process is down-regulated.

2.3 Data Overview

2.3.1 Transcriptomic data

Toxicogenomics can help us understanding both the mechanism of toxicity and pre-

dict compound toxicity by using omics data. There are different types of omics

data: genomics, proteomics, transcriptomics, epigenomics, metabolomics, and phar-

macogenomics.

Available omics data regarding benzene exposure in humans is only found in the

context of transcriptomics. The transcriptome is the complete set of all RNAs

transcribed by certain tissue or cell at a specific stage of development or physiological

condition (Z. Wang et al., 2010).

Analyzing the transcripts whose abundance is altered by the experimental conditions

(e.g. exposed vs unexposed) can reveal the mechanisms of disease processes and

the mode of action for toxicity and adverse effects on cellular responses induced

by exposures to chemicals or drugs. A limitation of this microarray technology is

that gene expression microarrays measure changes in mRNA abundance and not of

proteins, thus interpretation of these data must be done with caution.

The volume of omics data is increasing rapidly every year (Y. Perez-Riverol et al.,

2019). Most of these are performed in non-human organisms, yet in this study,

human omics data is used. Different organisms can have very different biological

responses to the same perturbation, thus for a deep understanding of how a com-

pound affects the human system, human omics data can give a better insight of these

12
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compounds toxicity. The use of human omics data needs a careful interpretation

due to the high biological variation between subjects, therefore it is important to

collect meta-data to match comparison groups strongly.

The data used in this study (C. McHale et al., 2009) consist of eight workers exposed

to Benzene (mean air benzene level ± SD = 39.0 ± 25.5 ppm) and eight unexposed

controls (< 0.04 ppm). Two micro-array platforms, Affymetrix and Illumina, are

used in the identification of genes induced by benzene exposure in the Peripheral

Blood Mono Nuclear cells (PBMC).

2.3.2 Biological Causal Network

Causal networks can describe relationships between heterogeneous biological enti-

ties, including protein, genes, chemicals, and biological processes. The nodes are

connected by direct edges representing a type of interaction. These relationships

are supported by literature reference.

The biological causal network can be built using the Natural Language Processing

(NLP) based software INDRA, from a collection of causal relationships existent

in the literature. The resulting causal graph can be queried to suggest molecular

hypotheses that explain the changes in a high-throughput gene expression analysis.

INDRA allows us to use a set of queries, that are searched in a large database, to

extract scientific pieces of evidence, which are then stored as statements. These

statements are converted to causal relationships having the format ”A increases B”.

After that, all these relationships are merged forming a comprehensive biological

network describing the interactions of benzene with other biological entities the

human body.
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Results

3.1 Data processing

To process the data from the McHale et al. study of 2012 a set of steps are made

to build the right input for RCR and NPA methods.

Illumina and Affymetrix plataforms were used for the identification of the genes

present on the collected data. Both platforms yield highly comparable data, espe-

cially for genes predicted to be differentially expressed (M. Barnes et al., 2005). For

the simplification process, only the genes in the Affymetrix platform are considered.

Analyzing RNA expression data requires several steps, with numerous potential

methods available for each step, the data processing in this analysis is performed

with the aid of multiple R packages. Raw expression data is analyzed using the

affy and limma (M.E. Ritchie et al., 2015) R packages. The first step is the Robust

Multi-array Average (RMA), which is an algorithm used to generate probe set ex-

pression values (R. A. Irizarry et al., 2003). This algorithm is composed by several

steps: i) background correction, to remove the local artifacts and noise, this way

measurements are not affected by neighboring measurements; ii) quantile normal-

ization, thus data from different arrays can be compared. The second step is the

construction of the gene expression matrix, where each row represents a probe set

and each column represents a sample. Each entry in the matrix represents the ex-

pression value of a particular probe set in a given sample. A linear model is fitted to

the expression data for each probe set. The coefficients of the fitted models describe

the differences between the RNA sources hybridized to the arrays. Multiple statistics

are computed for the linear model, such as t-statistics and F-statistics. Ending with

a conversion of Affymetrix probes into genes using the annotation ”hgu133plus2”

(M. Carlson et al., 2016). Probe sets that map multiple genes are discarded and

when multiple probe sets map the same gene, only one of them is randomly selected.

The initial 22283 probe sets are then mapped to 12402 distinct genes.
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Table 3.1: Summary of the list of expressed genes.

Affymetrix platform (threshold: log2FC = 0.5)

Up-regulated Down-regulated Non-significant

235 102 12065

In table 3.1 it is represented the number of identified genes using the R package

affy, these genes are classified as up-regulated, down-regulated or non-significant,

according to their log2FC values. Logarithmic-Fold Change (log2FC) is a measure

that describes how much a quantity varies between two conditions (here, unexposed

vs exposed). Genes with log2FC values higher than 0.5 are considered up-regulated,

the ones with log2FC values lower than -0.5 are considered down-regulated and the

remaining ones (between -0.5 and 0.5 log2FC values) are labeled as non-significant.

Table 3.2: Experimental data subset.

Gene Symbol log2FC adj.P.Value P.Value State

JUN -1.754 0.063 5.479E-05 -1

CEP97 -0.143 0.753 8.380E-02 0

PLK2 0.937 0.101 1.000E-04 1

...

The table 3.2, constructed after processing the benzene experimental data, display

a subset of 3 from all the 12402 genes available. The columns of the table 3.2

are the ”Gene Symbol”, designated by the HUGO Gene Nomenclature Committee

(HGNC), the ”log2FC”, the ”adj.P.Value”, adjusted p-value or the estimated FDR,

the ”P.value” column contains the p-values corresponding to the t-statistics obtained

with t-student tests. These values are not adjusted for multiple testing. Finally, the

column ”state” corresponds to gene signatures: genes with values of log2FC greater

than 0.5 are labeled with the state ”1” denoting up-regulation, genes with values

lower than -0.5 are labeled with the state ”-1” denoting down-regulation and all the

other are labeled with the state ”0” denoting unchanged.

To verify if the most important genes affected by benzene were captured, a compar-

ison between the experimental data and the Comparative Toxicogenomics Database

(CTD), (http://ctdbase.org/, A. P. Davis et al., 2017) is performed. The CTD

database is a collection of manually curated scientific literature on the molecular

mechanisms. Chemicals in CTD can be associated with genes, phenotypes, and

diseases. Querying in CTD for which genes are known to be somehow affected by

benzene results in 625 referred genes. In figure 3.1, a Venn diagram is represented

showing the intersection of the CTD genes and the experimental genes. The results
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show that not all the genes from CTD are present in the experimental data used

in this project (90 are missing), suggesting that this data is not complete regarding

the benzene effects in the human body.

Figure 3.1: Venn diagram of genes that interact with benzene in CTD and genes
in the experimental data.

3.2 Benzene Causal Network

The set of queries used to build the benzene biological network is represented in

Appendix A, as well as the number of PMIDs, the unique identifier number used

in PubMed (https://pubmed.ncbi.nlm.nih.gov/). The queries used represent the 10

key characteristics that are commonly exhibited by established human carcinogens

(Smith, M. T. et al., 2016). These 10 key characteristics are: i) is electrophilic or can

be metabolically activated, ii) is genotoxic, iii) alters DNA repair or causes genomic

instability, iv) induces epigenetic alterations, v) induces oxidative stress, vi) induces

chronic inflammation, vii) is immunosuppressive, viii) modulates receptor-mediated

effects, ix) causes immortalization, and x) alters cell proliferation, cell death or

nutrient supply.

The 10 key characteristics are grouped in 7 queries and introduced in INDRA soft-

ware, and each one of these queries returns a network. These networks are then

merged and the non-human genes are removed. The merged network has a total of

949 nodes and 1583 edges extracted from 1933 unique PMIDs.

In order to increase the complexity of the network, to a better understanding of

benzene toxicity, more statements describing causal relationships between biological

entities and processes at different levels need to be added. These statements are

obtained using the Biological Expression Language (BEL), having a similar causal
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format as referred above (https://bel.bio/). The set of BEL statements stored at

”Selventa Large Corpus” contain about 80,000 statements, from 16,000 citations.

BEL represents scientific findings from the literature in a computable form.

A neighborhood search is performed in the original network using the PyBEL python

package (C. Hoyt et al., 2018) adding a set of new causal relationships, increasing

the network complexity for 19786 nodes and 48490 edges.

Figure 3.2: Representation of a part of the biological causal network in Cytoscape.

In figure 3.2 is represented a section of the network in Cytoscape software (P. Shan-

non et al., 2003). The different colors represent the type of molecular entity, e.g.

blue represent genes. The only types of interactions present in this network are

”activation” consisting of arrows and ”inhibition” consisting of a line with a trace.

This heterogeneous network has 7137 genes, 249 biological processes, and other types

of entities, such as chemicals. For this study, only genes and biological processes

are truly relevant, from a bioinformatics perspective, since we want to analyze and

study the changes in the expression of the bio-processes related to benzene based

on the gene expression measurements.

The network is then converted to CX file format using Cytoscape, an open-source

software platform capable of visualizing complex networks and integrating them

with any new type of data.

Finally, the enriched causal network is transformed to a Simple Interaction Format

file (SIF), taking the form present in table 3.3.

Table 3.3: Causal network in SIF format.

GeneA Activates ProteinB

ChemicalC Inhibits BioprocessD

Only two types of interactions are considered: ”Activates” and ”Inhibits”. For
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the remaining interactions present in the original network some are relabeled and

others are removed. When the interaction is ”DecreaseAmount” it is converted into

”Inhibits” and ”IncreaseAmount” is converted into ”Activates”. The other types of

interactions are removed, such as ”complex” and ”phosphorylation”.

Considering now the experimental data and the biological causal network, it is im-

portant to know how many genes were present in both inputs. Since it will be these

genes that will contribute to the algorithms computations.

Figure 3.3: Venn diagram of genes in the experimental data and genes in the
causal biological network.

In the figure 3.3, the Venn diagram illustrates the intersection between the two sets,

showing a total of 6109 matching genes that will be used in the methods performed

in this study.

Table 3.4: Differential expressed genes present both in the causal network and the
experimental data, by state.

Up-regulated Down-regulated Non-significant

177 77 5855

In the table 3.4 it is possible to observe how many of the genes, present in the in-

tersection, are considered as up-regulated, down-regulated or non-significant. These

are the 6109 genes that are both present in the outcome of statistical analysis on

the McHale dataset and the biological causal network.

All of the 249 HYPs have a biological process as an upstream node, in the table 3.5

it is represented a list of the 12 HYPs with more downstream nodes. However not

all of the downstream nodes present in each HYP are of interest, so the number of

neigbors are not representative of the real complexity of the HYP.
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Table 3.5: List of top-12 bioprocesses with more downstream nodes.

Bioprocess No. of neighbors

response to hypoxia 1367

response to heat 283

aging 265

myoblast differentiation 158

neuron differentiation 158

replicative cell aging 137

response to oxidative stress 133

angiogenesis 133

response to starvation 116

DNA methylation 102

response to osmotic stress 78

response to UV 77

3.3 RCR and NPA results

For a complete assessment of the biological impact across all the network, RCR and

NPA procedures are applied to all of the 249 HYPs generated from the biological

causal network using the gene expression data for occupational benzene exposure.

Regarding the RCR methodology, of the 249 HYPS studied, 10 met the concordance

and richness p-values significance thresholds of 0.1 (see table 3.6). According to the

paper describing RCR by N. L. Catlett et al., 2013, p-values under 0.1 for both

concordance and richness limits the number of false positives and false negatives

to an acceptable level, in bold are represented the HYPs with even more stringent

thresholds of 0.05.
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Table 3.6: HYPs with both richness and concordance p-values thresholds of 0.1,
ranked by richness and concordance

Name Direction Concordance Richness

neutrophil chemotaxis 1 0.001 0.087

cell fate determination 1 0.002 0.008

histone deacetylation 1 0.005 0.034

stress-induced premature senescence 1 0.008 0.017

mast cell activation -1 0.013 0.043

response to UV -1 0.015 0.046

response to heat -1 0.017 0.000

embryo implantation 1 0.030 0.043

angiogenesis 1 0.042 0.001

response to UV-B -1 0.053 0.001

Of the 10 HYPs that met the significance thresholds, 4 of them are assigned with

direction of ”-1” meaning a decrease in the activity of these mechanisms: mast cell

activation, response to UV, response to heat and response to UV-B. The remaining

biological processes are set with a direction of ”1”, denoting an increase in their

activity: neutrophil chemotaxis, cell fate determination, histone deacetylation, stress-

induced premature senescence, embryo implantation and angiogenesis.

In figure 3.4 it is represented the HYP with the upstream node angiogenesis, coloured

with blue. This sub-network contains 133 downstream nodes, where green repre-

sents genes significantly up-regulated (11), red represents genes significantly down-

regulated (5), grey represents genes with no significant change (98) and black repre-

sents genes not present in the transcriptomic data (19). The two types of interactions

are inhibition (colored with red) and activation (colored with green). It is possible to

visualize inter-dependency between genes. This HYP is classified as having positive

regulation by RCR with a concordance of 0.042 and with a richness of 0.001.
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Figure 3.4: HYP corresponding to angiogenesis biological process.

Respecting the NPA methodology, there were 72 biological processes with a non-zero

value of Strength and GPI. Table 3.7 display the top-10 mechanisms with higher

absolute value of Strength.
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Table 3.7: Top 10 HYPs with absolute higher values of Strength.

Name Strength

mast cell activation -0.955

embryo implantation 0.837

stress-induced premature senescence 0.390

response to UV-A -0.327

actin filament polymerization 0.306

feeding behavior 0.303

response to mechanical stimulus 0.295

neutrophil activation 0.295

histone deacetylation 0.273

cell growth 0.208

Observing table 3.7, a biological mechanism with negative strength values suggest

a decrease in their activity: mast cell activation and response to UV-A. On the

other way, the remaining mechanisms, with positive strength values, denote an in-

crease in their expression: embryo implantation, stress-induced premature senes-

cence, actin filament polymerization, feeding behavior, response to mechanical stim-

ulus, neutrophil activation, histone deacetylation, and cell growth.

Following the same label as figure 3.4, in figure 3.5 represents the HYP with the

upstream node histone deacetylation. It contains 11 downstream nodes of which are:

1 significant up-regulated, 1 significant down-regulated, 5 with no significant change,

and 5 not present in the experimental data. Once more, inter-dependency between

genes is displayed and also self-loops in nodes cyclic AMP and AGT representing

positive feedback. This HYP is classified as having an activity increase by NPA,

with a Strength value of 0.273.
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Figure 3.5: HYP corresponding to histone deacetylation aging biological process.

The table 3.8 display the top-10 mechanisms with higher absolute value of GPI.

Table 3.8: Top 10 HYPs with absolute higher values of GPI.

Name GPI

response to UV -0.522

angiogenesis 0.355

stress-induced premature senescence 0.325

cell fate determination 0.323

embryo implantation 0.317

histone deacetylation 0.315

inflammatory response 0.314

response to UV-B -0.262

response to radiation -0.261

microtubule polymerization -0.258

Observing table 3.8, in a similar way as Strength, a negative value of GPI is asso-

ciated with a reduction of activity of the respecting biological mechanism: response

to UV, response to UV-B, response to radiation and microtubule polymerization.

HYPs with positive values of GPI denote an increase in their activity: angiogenesis,
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stress-induced premature senescence, cell fate determination, embryo implantation,

histone deacetylation and inflammatory response.

Following the same label as figure 3.4, figure 3.6 represents the HYP with the up-

stream node inflammatory response. This sub-network is composed of 66 down-

stream nodes of which are 3 significantly up-regulated, 0 significantly down-regulated,

31 with no significant change, and 32 are not present in the transcriptome. This

HYP is classified as having an activity increase by NPA, with a GPI value of 10.687.

Figure 3.6: HYP corresponding to inflammatory response biological process.
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Discussion and Conclusion

4.1 Discussion

In this project, an integrated approach that encompasses the generation of a bio-

logical causal network, differential expression gene analysis, and a combination of

RCR and NPA methods has been developed. The results provide potential biologi-

cal explanations and quantify the activity changes of a set of biological processes in

response to occupational benzene exposure, measured by transcriptomics data.

Similarly to other techniques, RCR and NPA rely on the assumption that changes

in RNA expression are equivalent to changes in the activity of the corresponding

proteins, thus interpretation of results need to be done carefully.

RCR and NPA present the advantage relative to other techniques, by consider-

ing the directionality between the upstream regulator (here, a bio-process) and the

downstream measurable entities (here, genes). HYPs, when compared to gene sets

have the benefit of adding up the contributions of the individual downstream nodes.

RCR is used to identify qualitatively the likelihood of the biological response of net-

work perturbation. NPA offers the possibility to quantify the biological responses

to a given perturbation (here, benzene exposure). The two NPA scoring methods,

Strength and GPI, employ a distinct approach to measure the magnitude of pertur-

bation between two experimental measures for a given HYP. GPI favors small sets of

strongly differentially expressed genes rather than large sets of weakly differentially

expressed ones, on the other hand Strength is unbiased since it does not contain

weighting factors. Thus the two metrics produce different results and they should

be analyzed together to prevent the extraction of conclusions that may be specific

to a particular NPA score.

Applying RCR and NPA methods to all of the present biological processes in the

causal network lead to a wide range of hypothesis, instead of focusing on just one

or a set of processes.
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One of the limitations of this study is the transcriptome not having captured all of

the genes known to be altered by benzene exposure in literature (90 are missing).

This can happen for multiple reasons since the procedure has many steps from the

collection of the micro-array data until the differential expression analysis. The

transcriptome used in this study was extracted from PBMC, a core part of the

immune system (M. Wen et al., 2020). PBMC represents a broad spectrum of

different cell types, that vary a lot between subjects, adding even more variety to

data (L. Wong et al., 2016). Although, they are very likely to be limited in what

they can tell us in gene expression studies, even if they are easy to be obtained and

stored.

For a successful application of this methodology, an accurate and reliable biological

knowledge describing the relationships between all the entities in the network is

fundamental. These relationships are curated every day by specialists, so the more

interactions are uploaded to databases the deeper knowledge we will have about

the benzene role in the human body. Possible interesting biological processes, like

blood coagulation, DNA recombination or metabolic process that, due not having

enough downstream neighbors, can not be evaluated. Furthermore, mechanisms

that are not present in the biological network are not assessed by RCR and NPA,

thus mechanisms that may even be seriously affected by benzene are not captured.

The increase in our knowledge and understanding of the relationships between the

biological entities of the network and sub-networks will increase the scoring results.

The results achieved by this study can give an important clue of what mechanisms

are altered by benzene occupational exposure and the biological response of the hu-

man body to this exposure. Further experiment investigation need to be conducted

to verify the conclusions of this work. The identified and quantified mechanisms by

RCR and NPA can be used to corroborate previous literature findings or to propose

novel-mechanisms for benzene toxicity.

Analyzing all the hypothesis suggested by RCR and NPA is not doable. By overlap-

ping the top-25 results from each metric of RCR and NPA, a list of 5 bioprocesses

is achieved and proceeds to a detailed discussion. This list contains the following

biological processes: stress-induced premature senescence, histone deacetylation, em-

bryo implantation, inflammatory response, and cell fate determination. All of these

biological processes have an inferred increase in their activity. Beyond the list of the

5 biological processes, there are an inferred decrease of mechanisms related to UV

rays such as response to UV, UV-A, UV-B, suggested across all of the results.

The stress-induced premature senescence process is a set of biological mechanisms
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that arrests the proliferation of premalignant cells, but there is also evidence that

contributes to aging (J. Campisi et al., 2007). These processes are invoked by

oxidative stress, DNA damage, oncogene activity or suboptimal culture conditions

(P. R. Coleman et al., 2010, A. Bielak-Zmijewska et al., 2018). Regarding the

processes that elicit a senescence response, benzene induces DNA damage (J. Li et

al., 2018) and promotes oxidative stress through the production of reactive oxygen

species (C. Costa et al., 2016), thus the increase in the activity of this biological

process is consistent with the literature.

The histone deacetylation is the process of removing an acetyl group from the his-

tone structure. By deacetylating the histone tails, the DNA becomes more tightly

wrapped around the histone cores, making it harder for transcription factors to bind

to the DNA. This leads to decreased levels of gene expression and it is known as

gene silencing (A. J. M. De Ruijter et al., 2003). Literature showing deacetylation

in human exposed to benzene was not found. However, according to the study of S.

Qian et al, mice exposed to low concentrations of benzene results in deacetylation,

increased autophagy and haematopoietic toxicity (S. Qian et al., 2019), which is in

concordance with the findings of this work.

The embryo implantation is the stage of pregnancy at which the embryo adheres to

the wall of the uterus. No evidence is found referring the effect of benzene exposure

with mechanisms associated with the implantation of the embryo, suggesting that

this result is most-probably a false positive. However, further investigation needs

to be done, because there are studies reporting that exposure to low-level of ben-

zene could interrupt the function of hypothalamic-pituitary-ovarian axis (H. Chen

et al., 2001). The hypothalamic-pituitary-ovarian axis, that is a tightly regulated

system controlling female reproduction, responsible to select a dominant follicle for

ovulation, meanwhile preparing the endometrium for implantation (S. Mikhael et

al., 2019).

The inflammatory response is a type of response by the immune system to a variety

of factors, including pathogens, damaged cells and toxic compounds. This response

is characterized by redness, swelling, heat, pain, loss of tissue function and also mi-

crocirculatory events such as vascular permeability changes, leukocyte recruitment

and accumulation and inflammatory mediator release (O. Takeuchi et al., 2010, L.

Ferrero-Miliani et al., 2007). Multiple studies report that occupational exposure

to benzene can induce alterations in the immune system biology (McHale et al.,

2008, Mchale et al., 2011), corroborating the high expression of genes related to this

process.
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The cell fate determination mechanism is the process of how a particular cell devel-

ops into a final cell type. These processes include cell proliferation, differentiation,

cellular movement and programmed cell death. Deregulations in processes related to

cell fate determination can result in tumors, since oncogenic mutations can disrupt

the signaling systems that govern a cell fate (F. G. Giancotti, 2014). The increase of

the activity of this bioprocess is consistent with key carcinogen characteristic: ”al-

ters cell proliferation, cell death or nutrient supply”. The study from F. Zolghadr et

al. reports that low doses of benzene lead to an increase in the mesenchymal stem

cells while, higher concentrations of benzene can induce cell death (F. Zolghadr et

al., 2012)., supporting once more the results achieved.

4.2 Conclusion

In this project, a biological causal network is built for benzene, the human tran-

scriptome is processed under two conditions (exposed vs unexposed) and RCR and

NPA algorithms are implemented in a comprehensive workflow. A set of results are

produced by these algorithms, some of them being consistent with literature evi-

dence, proving the efficiency of these methods in capturing reliable mechanisms of

the internal biological response to the given stimulus, benzene exposure. It is possi-

ble to conclude that the developed procedure is capable of answering the following

question: what mechanisms were actually affected by benzene exposure and with

which magnitude?

Further Work

In the future, the network created in this project can be enriched with new inter-

actions allowing a deeper understanding of the benzene role in the body, extending

the spectrum of interactions far beyond carcinogenic mechanisms.

A new type of transcriptome such as dose-dependent can be used to assess the max-

imum levels of benzene exposure to limit and regulate the exposure levels.

Another possible approach is to use other type of measurable entity instead of genes,

for example, proteomics measurements could be used to compute scores for HYPs

that relate the process of interest to changes in protein level. Ideally, a combination

of measurements could eventually lead to better results.

Furthermore, this methodology can be applied to other experiments such as, differ-

ent therapeutic agents, consumer products, exposures, or even disease progress to

better understand the human biology.
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A

Appendix A

Table A.1: Benzene queries performed in INDRA.

Queries Search terms PMIDs

query1 benzene[Title] AND (”pharmacokinetics”[MeSH Terms] OR

”pharmacokinetics”[Subheading] OR ”absorption”[MeSH Terms]

OR ”distribution”[Title] OR ”excretion”[All Fields]) AND

(1900/01/01[PDat] : 2020/03/01[PDat])

501

query2 benzene[Title] AND (”Mutation”[MeSH] OR ”Cytogenetic Anal-

ysis”[MeSH] OR ”Mutagens”[MeSH] OR ”Oncogenes”[MeSH] OR

”Genetic Processes”[MeSH] OR ”genomic instability”[MeSH] OR

chromosom* OR clastogen* OR ”genetic toxicology” OR ”strand

break” OR ”unscheduled DNA synthesis” OR ”DNA damage”

OR ”DNA adducts” OR ”SCE” OR ”chromatid” OR micronu-

cle* OR mutagen* OR ”DNA repair” OR ”UDS” OR ”DNA

fragmentation” OR ”DNA cleavage”) AND (1900/01/01[PDat] :

2020/03/01[PDat])

740

query3 benzene[Title] AND (”rna”[MeSH] OR ”epigenesis, genetic”[MesH]

OR rna OR ”rna, messenger”[MeSH] OR ”rna” OR ”messen-

ger rna” OR mrna OR ”histones”[MeSH] OR histones OR epi-

genetic OR miRNA OR methylation) AND (1900/01/01[PDat] :

2020/03/01[PDat])

255

query4 benzene[Title] AND (”reactive oxygen species”[MeSH Terms] OR

”reactive oxygen species”[All Fields] OR ”oxygen radicals”[All

Fields] OR ”oxidative stress”[MeSH Terms] OR ”oxidative”[All

Fields] OR ”oxidative stress”[All Fields] OR ”free radicals”[All

Fields]) AND (1900/01/01[PDat] : 2020/03/01[PDat])

332

Continued on next page
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A. Appendix A

Table A.1 – Continued from previous page

Queries Search terms PMIDs

query5 benzene[Title] AND (inflamm* OR immun* OR chemokine OR cy-

tokine OR leukocyte OR white blood cell) AND (1900/01/01[PDat]

: 2020/03/01[PDat])

577

query6 benzene[Title] AND (”Hormones, Hormone Substitutes, and

Hormone Antagonists”[MeSH] OR ”Endocrine Disruptors”[MeSH]

OR ”Thyroid Hormones”[MeSH] OR ”Estrogens”[MeSH] OR

”Progesterone”[MeSH] OR ”Receptors, Estrogen”[MeSH]

OR ”Receptors, Androgen”[MeSH] OR ”Receptors, Proges-

terone”[MeSH] OR ”Receptors, Thyroid Hormone”[MeSH]

OR ”Receptors, Aryl Hydrocarbon”[MeSH] OR ”Peroxisome

Proliferator-Activated Receptors”[MeSH] OR ”constitutive an-

drostane receptor”[Supplementary Concept] OR ”farnesoid

X-activated receptor”[Supplementary Concept] OR ”liver X recep-

tor”[Supplementary Concept] OR ”Retinoid X Receptors”[MeSH])

AND (1900/01/01[PDat] : 2020/03/01[PDat])

74

query7 benzene[Title] AND (”Cell Transformation, Neoplastic”[MeSH] OR

”Cell Proliferation”[MeSH] OR apoptosis OR ”necrosis”[MeSH]

OR ”DNA Replication”[MeSH] OR ”Cell Cycle”[MeSH] OR

brdu OR thymidine OR angiogenesis) AND (1900/01/01[PDat] :

2020/03/01[PDat])

240
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