

Rúben Filipe Dias Tomás

SOLUTION FOR TEMPORARY PHONE NUMBERS

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Professor João Barata and presented to

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2020

SO
LU

TI
O

N
 F

O
R

 T
EM

P
O

R
A

R
Y

 P
H

O
N

E
N

U
M

B
ER

S
R

ú
b

en
 F

ili
p

e
D

ia
s

To
m

ás

Faculty of Sciences and Technology

Department of Informatics Engineering

Solution for Temporary Phone
Numbers

Rúben Filipe Dias Tomás

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. João Barata and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2020

This page is intentionally left blank.

Acknowledgements

Foremost, I thank WIT Software S.A for this internship opportunity, a great chance to learn
and for professional development. Therefore, I consider myself as a fortunate individual,
as I was provided with a chance to be a part of it.

Bearing this in mind, I am using this opportunity to express great gratitude and special
thanks to Jorge Sousa and João Costa my supervisors at WIT Software who, in spite of
being busy with their duties, took time out to hear, guide and keep me on the correct path
and allowing me to carry out the project.

Next, I would like to express profound gratitude to Professor João Barata, my tutor, for
his guidance, encouragement and useful advice all throughout this internship.

A big thanks to all my friends but especially to those who allowed me to experience the true
academic spirit during this stage of my life, André Clemêncio, André Gouveia, António
Filipe, Cristiano Campos, Christophe Diogo, Luís Amaro, Joel Pires, José Canelha, Pedro
Andrade, Rafael Henriques and Rui Reis.

I also thank my girlfriend, Carolina, for all the encouragement, words of motivation, and
of course, for her guidance during the writing of this document that without her, would
not be the same.

To Jessica, the best sister in the world, that was always there for me, to help and encourage
me to finish this dissertation.

Finally, I would like to thank my parents, who always fought to provide me with the means
and necessary conditions during my academic life. They are the two people who made all
of this possible. It is to you that I dedicate my work. Thank You!

iii

This page is intentionally left blank.

Abstract

Since the beginning, communication has been the key for humankind to evolve. Throughout
the years, the way people communicate with each other has changed drastically, leading
to an exponential growth in the communications industry.

Nowadays, people use their phone numbers for almost everything, since bank transactions,
social networks, selling goods, manage businesses or even in online dating sites. As a result,
a new type of phone number emerged on the market to assure the privacy and commodity
of the users. Temporary phone numbers, as they are called, are numbers that act as an
intermediary between the user’s personal phone and other entities.

WIT Software S.A, aware of the importance of phone numbers in the daily life of consumers,
as well as security and privacy concerns related with communications, intends to know if
there is a place in the market for a value proposition for a system capable of providing
temporary phone numbers.

Regarding this, the purpose of this project is to develop a Minimum Viable Product of
a platform able to provide temporary phone numbers to the users. In this platform, the
users will be able to acquire temporary numbers for communication purposes (calls and
messages), adding a layer of protection and privacy.

The present report intends to describe the whole engineering process that led to the im-
plementation of this particular platform. This includes a representation of the planning
stages of the project, a review of the state of the art, a system and architecture description,
an overview of the development and testing phases, and the conclusions drawn.

Keywords

"Temporary Phone Numbers", "REST API", "Dashboard", "Mobile Application", "CPaaS",
"Twilio", "Virtual Number", "Calls", "Messages", "Platform", "Communications".

v

This page is intentionally left blank.

Resumo

Desde do início, a comunicação tem sido essencial para a evolução da humanidade. Ao
longo dos anos a forma como as pessoas comunicam entre si mudou drasticamente, levando
a um crescimento exponencial na indústria das comunicações.

Nos tempos que correm, as pessoas utilizam os seus números de telefone para quase tudo
desde transações bancárias, redes sociais, compra e venda de itens, gestão de negócios ou
até mesmo em sites/aplicações de encontros. Como resultado, surgiu no mercado um novo
número de telefone para garantir a privacidade e comodidade dos utilizadores. Designados
por Números Temporários, estes números agem como intermediário entre o numero de
telefone pessoal do utilizador e outras entidades.

A WIT Software S.A, estando ciente da importância dos números de telefone para a vida
diária dos consumidores, bem como preocupações de segurança e privacidade relacionadas
com comunicações, pretende saber se há mercado para uma proposta de valor de um
sistema capaz de providenciar números de telefone temporários.

Neste sentido, o propósito deste projeto é desenvolver um Produto Viável Mínimo de uma
plataforma capaz de providenciar números de telefone temporários aos utilizadores. Nesta
plataforma, os utilizadores vão ser capazes de adquirir números temporários para comuni-
cações (chamadas e mensagens), adicionando uma camada de proteção e privacidade.

O presente relatório tem a intenção de descrever todo o processo de engenharia que levou
à implementação desta plataforma em particular. Isto inclui uma representação das fases
de planeamento do projeto, uma revisão do estado da arte, uma descrição do sistema e
da arquitetura, uma analise das fases de desenvolvimento e teste, e a apresentação das
conclusões.

Palavras-Chave

"Números de telefone Temporários", "REST API", "Dashboard", "Aplicação móvel",
"CPaaS","Twilio", "Número Virtual", "Chamadas", "Menssagens", "Plataforma", "Co-
municações".

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 The Institution . 1
1.2 Motivation . 1
1.3 Goals . 3

1.3.1 Internship Goals . 3
1.3.2 Project Goals . 3

1.4 Structure . 4

2 Background Concepts 7
2.1 Phone Numbers . 7

2.1.1 Classification of Phone Numbers: . 7
2.2 Temporary Phone Numbers . 8

2.2.1 Verification and Validation . 9
2.2.2 Communication Process . 9
2.2.3 Recycling . 10
2.2.4 Emergency Calls . 10
2.2.5 Privacy and Tracebility . 11
2.2.6 Binding and Billing . 11

2.3 Service Providers . 12
2.3.1 PBX Providers . 12
2.3.2 CPaaS Providers . 12
2.3.3 Carrier Providers . 13

3 State of the Art 15
3.1 Competitors . 15

3.1.1 Examples of Competitors . 16
3.1.2 Competitors Analysis . 19

3.2 Market Vison . 20
3.2.1 Market Key Elements . 20

4 Methodology and Work Plan 21
4.1 Methodology . 21

4.1.1 Scrum Framework . 21
4.1.2 Scrum Project Adaptation . 23

4.2 Work Plan . 24
4.2.1 First Semester . 24
4.2.2 Second Semester . 25

4.3 Risk Management . 28
4.3.1 Concept of Risk Management . 28
4.3.2 Risks Description . 29
4.3.3 Risks Verified . 30

ix

Chapter 0

5 Requirements Elicitation 33
5.1 User Stories . 33
5.2 Functional Requirements . 34
5.3 Non Functional Requirements . 36
5.4 Constraints . 38

5.4.1 Technical Constraints . 38
5.4.2 Business Constraints . 39
5.4.3 Legal Constraints . 39

6 Solution’s Design 41
6.1 Model C4 . 41
6.2 Architecture . 43

6.2.1 Context View . 43
6.2.2 Containers View . 44
6.2.3 Components View . 46

6.3 Data Model . 49
6.4 Security . 50

6.4.1 Authentication . 50
6.4.2 Authenticity and Non Repudiation 50

7 The WIT Temporary Numbers Platform 53
7.1 Accounts . 53

7.1.1 Account Creation . 54
7.1.2 Account Cancellation . 55

7.2 Temporary Phone Numbers . 56
7.2.1 Purchasing . 57
7.2.2 Canceling . 58
7.2.3 Calling . 58
7.2.4 Messaging . 59

7.3 Statistics . 60
7.4 Management . 61

8 Implementation 63
8.1 API Backend . 63

8.1.1 Structure . 63
8.1.2 Architectural Constraints . 66
8.1.3 Web Security . 67
8.1.4 Exception Handling . 67
8.1.5 Data Management System . 67
8.1.6 Integration with Twilio . 68

8.2 Mobile App . 70
8.2.1 Structure . 70
8.2.2 Navigation . 71
8.2.3 Data Management and Permissions 72
8.2.4 Interface . 72

9 Verification and Validation 83
9.1 Verification . 84

9.1.1 Unit Testing . 84
9.1.2 Integration Testing . 85
9.1.3 Functional Testing . 85

9.2 Validation . 86

x

Contents

10 Conclusions and Future Work 87
10.1 Overview . 87
10.2 Success Evaluation . 88
10.3 Future Work . 88
10.4 Final Considerations . 88

Appendices 97

A Requirements 99
A.1 Functional Requirements . 99
A.2 Non Functional Requirements . 106

B Project Risks 108
B.1 Risks . 108

C Mockups 112
C.1 Mobile Application Mockups . 112
C.2 Dashboard Mockups . 115

D Tests 118
D.1 Functional Tests . 118

xi

This page is intentionally left blank.

Acronyms

CPaaS Communications Platform as a Service.

DAO Data Access Object.

DID Direct Inward Dial.

IMS IP Multimedia Subsystem.

MVP Minimum Viable Product.

PBX Private Branch Exchange.

RCS Long-Term Evolution.

RCS Rich Communication Services.

SIP Session Initiation Protocol.

VOIP Voice Over Internet Protocol.

VoLTE Voice over Long-Term Evolution.

xiii

This page is intentionally left blank.

List of Figures

1.1 Mobile Users by % of Population . 2
1.2 "When is a Mobile used?" . 2

4.1 Scrum life cycle . 22
4.2 Gantt chart for the first semester . 24
4.3 Planned Gantt chart for the second semester 25
4.4 Gantt chart for the work done in the second semester 27
4.5 Risks Matrix . 29
4.6 Risks Matrix of the project . 30

6.1 Notation used with C4 model . 42
6.2 Contextual Diagram of WIT Temporary Numbers Platform 44
6.3 Containers Diagram of WIT Temporary Numbers Platform 46
6.4 Components Diagram of API Backend container 48
6.5 Entity Relationship Diagram . 49
6.6 Diagram of JWT creation and usage . 51

7.1 Diagram of account managing process . 54
7.2 Diagram of account creation process . 55
7.3 Diagram of account cancellation process . 56
7.4 Sequence diagram of purchasing a number 57
7.5 Sequence diagram of canceling a number . 58
7.6 Sequence diagram of calls process . 59
7.7 Sequence diagram of sending and receiving a message 60
7.8 Sequence diagram of the statistics features 61
7.9 Sequence diagram of management features 62

8.1 Spring Boot structure [1] . 64
8.2 Spring Boot flow architecture [1] . 64
8.3 Twilio credentials generated after the Twilio account creation 68
8.4 Example of a HTTP request . 69
8.5 Twilio credentials generated after the Twilio account creation 69
8.6 Acknowledgement message showed in every Regulatory Bundle 69
8.7 Types of navigators chosen . 71
8.8 Navigation diagram . 72
8.9 Phone number insertion screen . 73
8.10 Code verification screen . 73
8.11 Message received containing the OTP code 73
8.12 Account without purchased temporary phone numbers screen 74
8.13 Account with purchased temporary phone numbers screen 74
8.14 Phone number settings screen . 74
8.15 Edit phone number description screen . 75

xv

Chapter 0

8.16 Change phone number plan screen . 75
8.17 Selecting phone number characteristics screen 75
8.18 Example of temporary phone numbers screen 75
8.19 Naming temporary phone number screen . 76
8.20 Choosing a plan screen . 76
8.21 User profile screen . 76
8.22 Dialpad screen . 77
8.23 User profile screen . 77
8.24 Call in progress screen . 77
8.25 Allow access to contacts message screen . 78
8.26 Imported contacts screen . 78
8.27 Message history with no cenversations screen 79
8.28 Message history with conversations screen . 79
8.29 Create new message: select select contact screen 79
8.30 Create new message: write message screen . 79
8.31 Conversation screen . 80
8.32 Calls history screen . 80
8.33 Empty call history screen . 80
8.34 Settings screen . 81

xvi

List of Tables

3.1 Competitors Analysis . 19

4.1 Risk 01 - Project Complexity . 29

5.1 Users Stories. 34
5.2 Functional Requirement 01 - Registration 35
5.3 Quality Attribute scenario 01 - Availability 38
5.4 Project technical constraints . 38
5.5 Project business constraints . 39

6.1 Platform Containers . 44
6.2 Platform Containers Tecnologies . 45
6.3 Communication Protocols . 45
6.4 Data model entities . 49

8.1 Dependencies used on the API Backend implementation 65
8.2 Platform Components . 71

9.1 Functional test case example . 86

A.1 Functional Requirement 01 - Registration 99
A.2 Functional Requirement 02 - Sign In . 100
A.3 Functional Requirement 03 - Show Main Menu 100
A.4 Functional Requirement 04 - Buy Number 101
A.5 Functional Requirement 05 - Make a Call 101
A.6 Functional Requirement 06 - Show calls history 101
A.7 Functional Requirement 07 - Send a Message 102
A.8 Functional Requirement 08 - Messages History 102
A.9 Functional Requirement 09 - Show Contacts 102
A.10 Functional Requirement 10 - Show Settings 103
A.11 Functional Requirement 11 - Add Funds . 103
A.12 Functional Requirement 12 - Cancel a Number 103
A.13 Functional Requirement 13 - Cancel an Account 104
A.14 Functional Requirement 14 - System Overview Menu 104
A.15 Functional Requirement 15 - Managing Menu 104
A.16 Functional Requirement 13 - Add/Remove Funds to/from a User Account . 105
A.17 Functional Requirement 15 - Send a Notification 105
A.18 Functional Requirement 19 - Delete User Account 105
A.19 Quality Attribute scenario 01 - Availability 106
A.20 Quality Attribute scenario 02 - Security . 106
A.21 Quality Attribute scenario 03 - Interoperability 106
A.22 Quality Attribute scenario 04 - Modifiability 106

xvii

Chapter 0

B.1 Risk 02 - Schedules . 108
B.2 Risk 03 - Integration with External Entities 108
B.3 Risk 04 - Technologies Learning . 109
B.4 Risk 05 - Requirements Change . 109
B.5 Risk 06 - Tests . 109
B.6 Risk 07 - Pandemic Situation . 110
B.7 Risk 08 - Project Validation . 110

xviii

Chapter 1

Introduction

This document intends to explain the work done by the author during the one-year intern-
ship that took place at WIT Software, S.A headquartered in Taveiro, Coimbra.

The internship is included in the Master’s degree in Informatics Engineering of the Univer-
sity of Coimbra and is supervised by João Barata, professor at the University of Coimbra,
and by Jorge Sousa, project manager at WIT Software.

This chapter is divided into four sections and intends to demonstrate the overall perspective
of the report. The first section identifies the company where the internship took place.
The second section describes the motivation for the project. Next, section 1.3 exposes
the internship and project goals. Lastly, the fourth section presents the structure of the
remainder document.

1.1. The Institution

WIT [2] is a software company that creates advanced solutions and white-label products
for mobile telecommunications. Founded in March of 2001, WIT was born as a spin-off
company of the University of Coimbra with the goal of creating innovative solutions for the
mobile world. Since 2001, WIT Software specialized in advanced solutions and whitelabel
products for mobile telecommunications companies. Some of the expertise areas are I.P.
Communications and carrier messaging, Rich Communication Services (RCS) technology,
Voice Over Internet Protocol (VOIP), Mobile voip and Voice over Long-Term Evolution
(RCS), IP Multimedia Subsystem (IMS) and Voice over Long-Term Evolution (VoLTE),
and others. The company also expanded across the world with offices in Portugal (Porto,
Leiria and Lisboa), Germany (Dusseldorf), England (Reading) and USA (Menlo Park) [3].

1.2. Motivation

Communication, as we know it today, is the result of years of technological evolution. It
all began in 1876 when Graham Bell invented the telephone. Since then, technological

1

Chapter 1

breakthroughs have allowed new forms of communication and new types of devices to
emerge.

Nowadays, cell phones have a meaningful influence on our lives, no matter where we live.
The infographic presented in figure 1.1 shows staggering statistics about the number of
mobile users by percentage of population. As we can observe, areas like the countries that
once made up the Soviet Union (shown as CIS in the figure) have a percentage of 143%,
which means around one mobile phone and a half per person, and in China and India
together, we can find 30% of the world’s mobile users. This graphic leads us to conclude
that the communications industry is now widespread around the globe.

Figure 1.1: Mobile Users by % of Population [4]

With the expansion and ease of communication, people are starting to get concerned about
their privacy. We use our phone number for almost everything since bank transactions,
social networks, managing businesses, selling goods and even in dating apps/sites. As we
can see in figure 1.2, mobile devices have a strong influence in our everyday lives because,
although mostly used at home (98% of mobile users admit to using them at home), we use
them any and everywhere.

Figure 1.2: "When is a Mobile used?" [5]

New apps and services are emerging on the market [6] to ensure privacy and commodity,
with the promise of providing more than one number in the same device to any part of the
globe.

Acknowledging the expansion of the market, WIT Software SA. is interested in devel-
oping its own solution. This should allow users to buy temporary numbers from any
country/region of the world and use them to communicate with other users with assured

2

Introduction

privacy. WIT Software SA is interested in understanding what can be done differently
from other competitors to offer an Minimum Viable Product (MVP) [7] to the customers.
With that purpose in mind, a prototype must be developed to verify if it suits the market.
Therefore, this internship will comprise in the implementation of a platform capable of
providing temporary numbers and communication services.

In essence, the WIT Temporary Number Platform prototype should offer the users the
possibility of purchasing temporary numbers and use them to communicate without having
to buy another device.

1.3. Goals

This section describes the goals that are expected of the internship and the project. For this
purpose, it was divided into two subsections. The first subsection explains the internship’s
goals and the second describes the goals of the project itself.

1.3.1. Internship Goals

As this internship is the last step of the intern’s academic career and the first real-world
project that he will work on, the author of this thesis is aware that he must consider himself
first as a learner and only then as a contributor. With that in mind, the intern defined
two main goals that are interconnected:

• Personal: from a personal point of view, the intern desires to perfect interpersonal
skills (soft skills) and start to develop a solid work ethic and professional demeanour.

• Professional: from a professional point of view, the author intends to obtain work-
ing knowledge, master technical skills and learn the processes and methodologies
used in the enterprise environment.

During the internship, the intern knows that he must be a proactive person in terms of
using knowledge already acquired during the Master’s degree in Informatics Engineering
or search and use new methods/techniques to solve the issues that may appear throughout
the internship.

1.3.2. Project Goals

As mentioned previously, WIT Software, S.A is conscious of how the voice communications
market is saturated and also of the new ways and ideas that operators can resort to in
order to encourage users to use mobile communications more safely and privately.

Taking the previous points into account, the goal of the intern’s proposal consists of de-
signing and implementing a solution capable of providing temporary phone numbers for
specific operations (e.g. for a user to make an online sale or to use in "dating websites")
and then dispose of the number. Although it is disposable, the numbers provided need
to be associated with a valid user’s phone number until they decide to cancel it. After a

3

Chapter 1

number is disposed of by a user, a recycling process needs to take place before the number
can become available to be purchased by other users once again.

As no software related to this proposal has been developed by WIT, the intern is in charge
of developing an MVP of a platform that allows:

• Buying temporary numbers;

• Receiving and making phone calls using a temporary number;

• Sending and receiving messages using temporary numbers;

• Managing the temporary numbers;

Keeping in mind the situation stated, the solution decided by the intern together with Wit
Software, SA should be composed by three major components:

• Server - The creation of a server is crucial to provide the services (e.g. numbers, calls
and messages). The server will be responsible for providing the services, managing
data structures and handling logic operations.

• Mobile App - In order to use the services provided by the server, an app would be
created with a user-friendly interface. As the target client’s OS of the internship was
not restricted, the intern opted for Android.

• Admin Dashboard - The output expected from this component should be a web-
site where system administrators can manage the platform itself (temporary phone
numbers and users).

Building these three new systems, the Server, the App, and the Dashboard, will allow
creating a solution that can be used in the future to understand what can be done differently
and better in order to achieve a better solution.

At the end of this internship, a final product is not expected to be ready to deliver to a
real customer. However, it is deemed that the output should be able to help the company
define the next steps to be taken in the future.

1.4. Structure

The document structure is explained in this section through a brief description of the
chapters and the appendices.

The chapters are as follows:

• Chapter 1 - Introduction: introduces the project and its goals.

• Chapter 2 - Background Concepts: introduces knowledge needed beforehand.

• Chapter 3 - State of Art: contains a brief description of project concepts, a
competitors analysis and the technologies chosen to implement the solution.

4

Introduction

• Chapter 4 - Methodology and work plan: describes the used methodology
during the internship, the development plan and the risk analysis

• Chapter 5 - Requirements Elicitation: presents the requirements elicitation of
the project.

• Chapter 6 - Solution’s Design: entails the architecture of the solution to be
developed by the intern.

• Chapter 7 - The WIT Temporary Numbers Platform: presents the overall
decisions made by the author to implement the solution.

• Chapter 8 - Implementation andWork Done: describes the work done through-
out the year, the final result and some implementation details

• Chapter 9 - Verification and Validation: explains how the the process of veri-
fication and validation were handled and presents the tests that were performed.

• Chapter 10 - Conclusions and Future Work: exposes the overall conclusions
of the project and presents future work.

In terms of appendices this document is made up by:

• Appendix A - Requirements: details the requirements (functional and non-
functional) established during the elicitation requirements phase.

• Appendix B - Risks: describes the risks encountered during the internship.

• Appendix C - Mockups: illustrates the UI’s that were made based on the defined
use cases.

• Appendix D - Tests: exposes the tests that were performed in the verifica-
tion/validation process.

5

This page is intentionally left blank.

Chapter 2

Background Concepts

The purpose of this chapter is to introduce and contextualize some concepts of the intern-
ship’s topic. Thus, all the information presented helps the reader understand better the
problem being investigated and promotes confidence in the overall quality of analysis and
findings presented further ahead.

2.1. Phone Numbers

A phone number at its most basic level is just a series of digits that can be compared
to a computer’s IP address or even to a street address. The evolution of technology has
brought the possibility of being in touch instantly with other people, hence the combination
of numbers allowed the systems to know who the caller seeks to connect to. This led the
cell phone to become a necessity for many people either for personal or business matters.

In fact, in the last years, we have seen much activity related to the use of our phone
number not only to make communications but also for authentication mechanisms, payment
authorizations, bank transactions authorizations, among others. Since then, companies
have started to acknowledge the usefulness of the phone number beyond communications
[8].

2.1.1. Classification of Phone Numbers:

Modern technology made it possible to create many types of phone numbers. Nowadays,
the variety of phone numbers available on the market is so big that it is possible to classify
them by format (fixed or mobile), per application (for personal or business purposes) [9] or
by location (geographical and non-geographical) [10, 11, 12] . This type of classifications
allows to generalize and group the phone numbers.

Depending on the size, type of device or capabilities, phone number types can be:

• Landline Number: is a regular phone number that relies on physical wires to
enable voice calls. [13] [14]

• Mobile Number: is a telephone number like any other. The difference is that it

7

Chapter 2

is registered to a mobile phone/network, instead of a fixed or VoIP phone/network
[9, 15].

• Internal Number: is a private number that can be dialled by any connected ex-
tension in your phone system. It is possible to route an internal number to any
destination from the user’s account, such as an address contact, or a voicemail box
[16].

• Virtual Number: is used for rapid international communication without being tied
to the SIM card and cable. Virtual phone numbers can be paired with local or toll-
free exchanges, and route calls that originated from the public switched telephone
network (PSTN), voice over Internet protocol (VoIP) networks or cellular phones [9].

• Short Code: is a special 5 or 6 digit phone number that’s shorter than a full
phone number. Short codes are used to send and receive SMS and MMS messages
to and from mobile phones. Short codes are pre-approved by carriers to have a high
throughput. This makes them perfect for sending those high-volume or time-sensitive
messages. [17].

• Toll Free Number: is available in many countries such as the USA, United King-
dom and many others. It is generally free for the caller to call a Toll free number –
as long as they call within their own country. The company that answers the calls
pays the call on behalf of the caller, so it is more expensive to receive calls on toll
free numbers than on other types of numbers [9, 15].

• SIP Number: A Session Initiation Protocol (SIP) number is a virtual Direct Inward
Dial (DID) number that handles local or international calls online. SIP DID numbers
can be used for inbound call routing and outbound SIP trunking services. SIP phone
numbers include features like IVR, call recording, custom caller ID, advanced routing
rules among others [9].

• Local: is a phone number that represents a specific region, city or state, identified
by their 3 digit area code [9].

• National: is a phone number designated to be reachable from the entire country at
the same price anywhere in the country as a local phone call [9, 15]. Unlike local
phone numbers, which are tied to a particular city or region, national phone numbers
are not tied to a particular local area.

2.2. Temporary Phone Numbers

In recent years, consumers have been overwhelmed by telemarketing and spam calls [18],
robocalls [19] and by a binding personal phone number [20]. Hence the need to resort to
a temporary number arises, for the most varied reasons. Temporary numbers have many
benefits to the target audience, such as: [21, 22]

• Security

• Anonymity

• Ease

• Privacy

• Non-Binding

8

Background Concepts

In technological terms, a temporary number is a virtual phone number used temporarily.
Purchased from a service provider (see section 2.3), temporary numbers allow the same
communication services as a regular phone number.

When a call is made or a message is sent to a temporary number, a forwarding process has
to occur. This process consists of rerouting all the communications (calls and SMS) to the
user’s existing phone.

Nowadays, these numbers are provided through a mobile application or an online call
forwarding service. The numbers are usually functional until a specific date or if the
customer decides to cancel it.

2.2.1. Verification and Validation

Currently, the temporary numbers available on the market must comply with many rules
before they can be made available to be purchased by the users. Many countries around
the globe have been increasing their scrutiny of how phone numbers are used and by whom.
The increase of incidents of misuse and abuse of phone numbers is the reason that new
regulations to ensure better control of communications have been implemented.

In order to comply with the new regulations, providers (Carriers, CPaaS’s, PBX’s and
others) are adopting a strategy that involves requesting extra documentation before a user
purchases a temporary number. Through this strategy, the providers can ensure the phone
number is linked to a real person. Thus, in the event of any misconduct, the user linked
to that phone number will be held responsible.

The documentation requested of the users depends mostly on the provider and country. For
personal phone numbers is usually requested: a Government-issued ID, Residence permit
or Passport [23, 24]. For business phone numbers is commonly requested: an excerpt from
the commercial register or a government-issued ID showing tax number.

The temporary phone numbers supplied by the providers such as Carriers, CPaaS’s and
PBX’s must meet the legal requirements before being made public for purchase. On the
other hand, apps must comply with conditions established by providers in order to use
temporary phone numbers from them that will then be made available to consumers.

2.2.2. Communication Process

There are three ways of processing communications using temporary numbers: [25]

• VOIP: Instead of using a phone line, communications made through VOIP run over
an encrypted internet connection. The user’s main phone line is not forwarded, since
only an internet connection is used. A permanent internet connection is required,
and in case of poor wifi connection, the call/text will fail. In those cases, the apps
have the possibility to change between user carrier connection and in-app calling.

• Bridge Dial: With this process, when the user wants to make a call, the app/provider
calls their real number first. When the user answers, the app/provider calls the recip-
ient with the user’s temporary number as caller ID. This means that the user will use
their real number for the connection, but the recipient only will see the temporary
number as caller ID.

9

Chapter 2

• Forwarding: Communications (calls and texts) are redirected through a temporary
number. In this case, when the user wants to make an outgoing call to a person, a call
from the user’s real phone number is initiated/made to the temporary number and
then is redirected from the temporary number to the person they want to contact.
On the other hand, incoming calls received by the temporary phone number are
redirected to the user’s real phone. In this case, the user will see their temporary
phone number as caller ID.

In all of the modes described, the temporary number can be considered as a middle agent
since it adds an extra layer between the caller and the recipient allowing security and
privacy of communications.

2.2.3. Recycling

Phone numbers are limited, so providers have to recycle unused numbers. When a phone
number is not used during a period of time (typically 90 days) it is deactivated in order
to be recycled and tested before being made available once more to be purchased by other
users. With temporary phone numbers, the process is the same. [26, 27, 28].

The process can occur in case of cancellation by the user (the user does not want to use
that number anymore) or cancellation by the provider (the user did not respect the terms
of use or the service requested by the user expired).

2.2.4. Emergency Calls

When it comes to dialling an emergency service, it is required by law that every phone
must allow to call the emergency number independently if it is bound or not to a carrier.

For convenience purposes, instead of repeatedly writing ’emergency number’, this term will
be replaced by ’911’.

In case of temporary numbers, the providers have two options: allow the dialling to an
emergency number using proper mechanisms and ensuring that it meets the requirements
imposed by legislation or simply not allow it. Since it is a sensitive subject, most of the
providers opt to not allow emergency calls to avoid legal problems related to fake calls or
other types of illegalities.

The suppliers that allow emergency calls through temporary numbers use the following
mechanisms: [29, 30, 31, 32]

• Enhanced 911 (E911): The temporary phone number and specified 911 address
are sent to the local emergency centre and emergency operators have access to this
information in order to send help or call back to the user if they need.

• Basic 911: With Basic 911, the local emergency operator that answers the user
call may not see the temporary phone number and the specified 911 address. In this
case, the user must be prepared to provide emergency services with this information.
Until this information is received by the emergency responders, the dispatch of help
or a call back is not possible or if the call is disconnected. However, once the local
emergency centres are capable of receiving the information, the user is automatically
upgraded to the Enhanced 911 service. Even so, the entities that allow emergency

10

Background Concepts

calls force the users to specify a 911 address to ensure the availability of emergencies
services at the location of where that phone number is being used. Then, how the
911 services are provided to the user can differ, depending on user location and the
device (mobile or landline).

• National Emergency Call Center: Service provider owns national emergency
center that in first instace will ask user for name, telephone number and location and
then transfer the call to the local emergency center that is closest to them.

In spite of this, providers may supply this service only in some of the countries where they
act; therefore, these policies may vary according to country.

2.2.5. Privacy and Tracebility

The temporary phone number allows privacy, but there are some exceptions. In case of
any illegal activity, the law enforcement authority can trace and identify who is using or
used a certain temporary phone number.

Another example is if the user is using an app or a provider that provides calls in bridge
dialling mode or for forwarding incoming calls to their real number, so if the user misses a
phone call, it has the potential to hit the user’s voicemail, exposing their identity. One other
example could be through accessing the user’s phone bill, where the calls made/received
through the temporary number appear as calls made from/to the personal to the temporary
number. Lastly, if the user uses a service provided by VOIP, only the data usage will show
up. Messages sent/received through disposable numbers could stay all in-app, allowing no
record elsewhere. [25, 33]

As mentioned before, the temporary phone numbers are not a silver bullet in terms of
privacy, but they allow to add an extra layer of protection between the user and the people
who would contact them, and vice-versa.

2.2.6. Binding and Billing

One of the biggest questions of the users could be "Do I have to sign a binding contract?".
A significant advantage is the possibility of buying a temporary phone number without
having to worry about the binding process. The only process that could be considered as
"binding" is the period during which the user owns a specific phone number. During that
time, the user is responsible for the way they use it. Other than that, no further binding
contracts are needed.

In terms of billing, the patterns seen on the market are diverse but share the same core
concept: the user only pays for the time they desire to use a temporary phone number.
The methods of paying for a service are generally through a subscription per month in
which each number has a set amount of minutes and messages available to use. After the
minutes are spent, users can buy complements or even buy or upgrade to different plans.

11

Chapter 2

2.3. Service Providers

A service provider is "a vendor that provides IT solutions and/or services to end-users and
organizations." [2]

In the context of this internship, a service provider will be an entity that provides virtual
phone numbers and communication services(e.g. calls and messages). Communications
Platform as a Service (CPaaS)’s, Carrier’s and Private Branch Exchange (PBX)’s are
examples of different types of providers. Each one of them provides services and numbers
but with different technologies and mechanisms.

Subsequently are presented the types of providers mentioned earlier as well as some exam-
ples.

2.3.1. PBX Providers

PBX [34] is a system that switches calls between enterprise users on local lines. It is owned
and operated by the enterprise rather than the telephone company. This type of system
offers multiple inbound and outbound lines, call routing, voicemail, and call management
features.

Below are presented some examples of popular PBX providers [35].

Ring Central [36]
RingCentral is a publicly-traded provider of cloud-based commu-
nications. Founded in 1999, RingCentral is considered the leader
in Unified Communications as a Service in terms of revenue and
subscriber seats.

Vonage [37]
Founded in 2001 and headquartered in Holmdel Township, New Jer-
sey, Vonage is a cloud communications provider based on voice over
Internet Protocol.

Atlantech [38]
Founded in 1995, Atlantech Online is one of the oldest telecommu-
nications providers. The company delivers Cloud PBX and Unified
Communications tools on a Broadsoft platform.

2.3.2. CPaaS Providers

CPaaS is a cloud-based delivery model. This model allows companies to add capabilities
such as voice, video and messaging, to business applications in real-time [39]. CPaaS
capabilities are provided by deployed application program interfaces (APIs).

Below are presented some examples of popular CPaaS providers [40].

12

Background Concepts

Twilio [41]
Twilio is a CPaaS founded in 2008 by Jeff Lawson, Evan Cooke, and
John Wolthuis, headquartered in San Francisco, California. Twilio
is a developer platform for communications that provide voice, video
and messaging capabilities through deployed APIs.

Nexmo [42]
Founded in 2010, Nexmo is a unit of Vonage created to deliver com-
munication APIs which enable developers and businesses to improve
and innovate the way they communicate with customers.

Plivo [43]
Founded in 2011 by Michael Ricordeau and Venky Balasubrama-
nian, Plivo started as an open-source telephone project. Plivo is
a voice and messaging platform created to deliver better customer
experiences to businesses.

2.3.3. Carrier Providers

In the context of cellular technology, a Carrier[44] is a wireless service provider that makes
it possible to connect the calls from customers. This provider is authorized by regulatory
agencies to operate telecommunications systems.

Below are presented some examples of carrier providers.

AT&T [45]
Founded on October 5 of 1983, ATT Inc. is an American multina-
tional conglomerate headquartered at Whitacre Tower in Downtown
Dallas, Texas. It is considered one of the largest provider of mobile
telephone services.

Vodafone [46]
Founded in 1982, Vodafone is an English multinational mobile oper-
ator headquartered in London. Vodafone is a successful company of
technology communications through mobile, fixed, broadband, TV
and voice services.

Verizon [47]
Founded in 2000 and headquartered in Basking Ridge, Verizon is
a telecommunications company which offers wireless products and
services.

This chapter presented some of the key concepts related to the internship, and following
will be presented the state of the art.

13

This page is intentionally left blank.

Chapter 3

State of the Art

This chapter, organized into two sections, exposes the current state of the art. The purpose
of this chapter is to present the result of the research done by the intern during the first
semester.

Section 3.1 presents an analysis of the possible competitors of the product to be developed
in WIT. Section 3.2 explains the current state of the market through the identification of
key market elements obtained through the analysis of the competitors.

3.1. Competitors

This section will cover and report an analysis of market applications that allow any user to
purchase and use temporary phone numbers. Through this analysis, the intern identified
the strengths of each application in order to understand which features can add value to
the solution to be developed by WIT.

The author started by defining the criteria for choosing the applications to be tested
because, in a vast market, it is crucial to understand which niche of the market fits the
product best.

The criteria defined were:

1. The application provides temporary numbers;

2. The application allows to make/receive calls;

3. The application allows to send/receive messages;

Given the criteria defined above, the author searched online for applications. These are
shown below, and their analysis is present in subsection 3.1.2.

15

Chapter 3

3.1.1. Examples of Competitors

Hushed
Platforms: Android and iOS
Play Store Rating: 3.7/5 stars (22 900 ratings)
App Store Rating: 4.4/5 stars (485 ratings)
Android Compatibility: Android 5.0 and up
iOS Compatibility: iOS 10.0 or later
Installs: 7, 000, 000+
Link: www.hushed.com

Hushed is a mobile app created by Affinityclick for Android and iOS that allows people
to buy a temporary phone number for short or long term with an encrypted messenger.
Affinityclick is a mobile company focused on the telephony and communication sector.
Founded in 2010 Hushed offers private labelled VOIP services, SIP and DIDs and other
related services [48].

Main Features:

• Calls

• Messages

• Voicemail

• Integrations with slack and dropbox

• Toll-free Numbers

• Do not Disturb

• Quiet Mode

• Start up Screen

Line2
Platforms: Android, iOS, Mac and Windows
Play Store Rating: 3.1/5 stars (13 718 ratings)
App Store Rating: 3.9/5 stars (2100 ratings)
Android Compatibility: Android 5.0 and up
iOS Compatibility: iOS 10.0 or later
Installs: 1, 000, 00+
Link: www.line2.com

Line2 is a mobile application developed by Line2 that is a telecommunications company
founded in San Francisco in 2008 by Peter Sisson. The company is best known for Line2
apps, which provides Wi-Fi support for mobile phones and multiple devices instead of
using the service provider.Line2 is a Virtual PBX phone service that allows companies to
develop and maintain multiple internal phone lines to handle large numbers of external
calls [49].

Main Features:

• Choose the number

• Toll-free number

• Wi-fi calling

• Auto attendant

• Call blocking

• After-hours settings

• Caller ID

• Vanity numbers

• Call screening

• Conference calling

• Call forwarding

16

www.hushed.com
www.line2.com

State of the Art

Cloud Sim

Platforms: Android and iOS
Play Store Rating: 3.7/5 stars (585 ratings)
App Store Rating: 4.0/5 stars (48 ratings)
Android Compatibility: Android 5.0 and up
iOS Compatibility: iOS 10.0 or later
Installs: 1, 000, 00+
Link: www.cloudsimapp.com

Cloud Sim Telecoms Ltd is a company from UK that developed the Cloud SIM mobile
application. Available on Android and iOS Cloud SIM is an application that can make and
receive calls across the world, giving the user full control over his communications [50].

Main Features:

• Extra mobile numbers

• Free chat

• Low cost calls

• Messages

• Extra international numbers

• International numbers

• Personalised voicemail

• Customise Cloud Sim profile

• Decide when you are available

• Free calls

iPLum
Platforms: Android and iOS
Play Store Rating: 3.1/5 stars (13 718 ratings)
App Store Rating: 3.9/5 stars (2100 ratings)
Android Compatibility : Android 5.0 and up
iOS Compatibility : iOS 10.0 or later
Installs: 1, 000, 00+
Link: www.iplum.com

Founded in 2015 by people working in Silicon Valley, iPlum is a mobile application that
provides a separate second phone line for US, Canada or 800 Toll-free numbers. Using the
second line phone users can call or text people around the world.

Main Features:

• Business hours

• Auto text reply

• IVR/Virtual Digital Assistant

• Text Archiving, Backup

• Block spam numbers

• Ringtones

• Signature text

• Call recording

• Call transfer

• Do not disturb

• Could voicemail with email alert

• New number or port the existing
number

17

www.cloudsimapp.com
www.iplum.com

Chapter 3

Sideline
Platforms: Android and iOS
Play Store Rating: 3.2/5 stars (52 289 ratings)
App Store Rating: 4.1/5 stars (4400 ratings)
Android Compatibility : Android 5.0 and up
iOS Compatibility : iOS 10.0 or later
Installs: 1, 000, 000, 0+
Link: www.sideline.com

Sideline is an iOS and Android app that joins a temporary number to the user’s smart-
phone. Developed by Pinger, Inc., a US Telecom provider, Sideline is an app which allows
messages, pics, calls and voicemails. The company was founded in 2006 in San Jose,
California [51, 52].

Main Features:

• Number porting

• Group messaging

• Separate caller ID

• Voicemail to text

• SMS+MMS messaging

• Custom voicemail

• VoIP optional

• Auto-reply

• Branded messages

• Use of carrier minutes

Swapp
Platforms: Android and iOS
Play Store Rating: 3.3/5 stars (71 ratings)
App Store Rating: 2.8/5 stars (43 ratings)
Android Compatibility : Android 5.0 and up
iOS Compatibility : iOS 10.0 or later
Installs: 5000+
Link: www.swapp.pt

Swapp is a mobile application, developed by Meo that provides a temporary phone number
to any person independently of their carrier or subscribed plans. MEO is a mobile and
fixed telecommunications service created in 2007 after the separation of PT Comunicações
and PT Multimédia. [53, 54].

Main Features:

• SMS

• Caller ID

• Calls

• Block numbers

• Voicemail

• Choose the number

• Edit contacts information

• Use of carrier minutes

18

www.sideline.com
www.swapp.pt

State of the Art

3.1.2. Competitors Analysis

During the first months, the intern studied and tested the solutions available on the mar-
ket in order to understand their functioning. For this analysis two devices were used, a
smartphone Xiaomi Mi A1 (with the android operating system) and an iPad (with the
iOS operating system). Table 3.1 represents the result of the analysis made to the major
competitors.

Features Hushed Line2 Cloud Sim iPlum Sideline Swapp

Choose a Number Yes Yes Yes Yes Yes Yes
Cancel a Number Yes Yes Yes Yes Yes Yes
Extend a Number Yes Yes Yes Yes Yes Yes
Send Messages Yes Yes Yes Yes Yes Yes
Message History Yes Yes Yes Yes Yes Yes

Auto-reply Message Yes Yes No Yes Yes No
Group Messages Yes Yes No Yes Yes No
Make a phone call Yes Yes Yes Yes Yes Yes

Calls history Yes Yes Yes Yes Yes Yes
Call Routing Yes No No No No No

Call Forwarding Yes Yes Yes Yes Yes No
Call Recording No No No Yes No No

Caller ID Yes Yes Yes Yes Yes Yes
Send Calls to Voicemail Yes Yes Yes Yes Yes Yes

Voicemail History Yes Yes Yes Yes Yes Yes
Change Voicemail greeting Yes Yes Yes Yes Yes Yes
Record a Voicemail Greeting Yes Yes Yes Yes Yes Yes

Voicemail Transcription No Yes No No Yes No
Import Contacts Yes Yes Yes Yes Yes Yes
Create Contact Yes Yes Yes Yes Yes Yes
Edit Contacts Yes Yes Yes Yes Yes Yes

Block Phone Numbers Yes Yes Yes Yes Yes Yes
Dot not Disturb Yes Yes Yes Yes Yes Yes
Notifications Yes Yes Yes Yes Yes No

Business Hours Yes Yes No No No No
Support Yes Yes Yes Yes Yes Yes

Table 3.1: Competitors Analysis

There are many options available on the market, and they are directed towards providing
communications via Wi-Fi calling or VoIP. The services provided to the user do not vary
much from application to application, as table 3.1 shows. Through this analysis, the intern
was able to understand the basic/standard features to be inserted in the MVP but also to
recognise which ones are less common and can be used to provide a better value proposition.

In chapter 5 are detailed the requirements that resulted from this analysis.

19

Chapter 3

3.2. Market Vison

Before starting to develop any product, it is essential to understand the current state of the
market and what to expect will happen in near the future. Defining a market vision for new
products can "allow companies to begin to focus on developing and emphasising key non-
technical resources and competences that are linked to achieving success when developing
radically new products in highly uncertain technological and market environments". [55]

Although the internship’s goal is to develop only a functional MVP of a possible solution
for the stated problem, gathering data about strategies and practices used in the current
market by the competitors can be useful to define and implement a better MVP or even
help the company establish a formal market vision. Bearing this in mind, after analysing
the competitors, the author identified not only the main features (mentioned in the section
before) but also some key elements present in them. These fundamental elements can be
useful because they represent the actual strategies used on the market by the providers.
In the subsection below, the key elements identified by the author are explained.

3.2.1. Market Key Elements

• Phone numbers per device: Most providers don’t limit the number of temporary
phone numbers that a user can have. The user is free to have one, two or more phone
numbers as long as they have the funds to maintain them. The temporary numbers
can be cancelled at any moment.

• Types of temporary phone numbers provided: The most common temporary
numbers provided are local, national and mobile. Each phone number can have
restrictions in terms of capabilities (SMS and calls) or location.

• User’s personal information provided: From the apps’ analysis, only a valid Sim
card was found to be necessary to complete the registration, no further documenta-
tion was required. However, due to the new regulations imposed by the governments
more documentation could be requested in the future.

• Geographical availability: Most of the apps offer phone numbers from many coun-
tries around the globe (e.g. Portugal, USA, Spain, Venezuela, Australia and many
more). The communications made between phone numbers of the same region have
no additional cost. Calling or messaging phone numbers from other countries/regions
can have an additional cost.

• Billing mechanisms: From the providers analysed, the billing mechanism is found
to consist in subscriptions of time (week, month or year) with a specified number of
minutes and SMS available to spend.

In this chapter was made the state of the art, were a competitors analysis was done, and
the next chapter will present the methodology used during the internship, as well as the
work plan.

20

Chapter 4

Methodology and Work Plan

In this chapter are documented and explained the overall decisions made by the author
related to project management. The section 4.1 presents the methodology used during
the internship. Subsequently, section 4.2 explains the work plan and work done in two
semesters. Lastly, section 4.3 presents the project risks’s analysis.

4.1. Methodology

Project management is crucial because it establishes the principles and processes to adopt
during project development. Choosing the right methodology is usually a hard task because
the project team should analyse and discuss which methodology is more suited for a project.

Since the methodology preferred by the software development teams at WIT is Scrum,
the intern was warned a priori that this would also be the methodology to use during his
internship.

With that in mind, the subsection 4.1.1 contextualizes the methodology used and the
subsection 4.1.2 explains how the chosen framework was applied to the project.

4.1.1. Scrum Framework

According to the Scrum creators Ken Schwaber and Jeff Sutherland, Scrum "is a frame-
work within which people can address complex adaptive problems, while productively and
creatively delivering products of the highest possible value"[56]. Much like any other
methodology, SCRUM is composed by phases where each one has its specific purpose:

Scrum Phases [57]

• Pregame: is made up by the planning and architecture phases. In planning is
defined the Product Backlog that consists in the functionalities of the project to be
implemented, along with an estimate of its schedule and costs. In the architecture
phase, it is designed how the backlog items will be implemented. Therefore, this
phase includes the designing of the system’s architecture and the high level design.

21

Chapter 4

• Game: occurs the implementation of the functionalities set in the Product Backlog,
always respecting schedules, quality costs and the competition. The implementation
is done in an interactive way trough sprints that are used to evolve the system in
development.

• Postgame: the preparation to lauch the finished product is done, including all the
final documentation.

As aforementioned, these three phases make up how a project that uses this methodology
should be developed. Out of these phases, the Game has the most relevance because it
encompasses the implementation process for the functionalities of a certain product. For
this reason, it comprehends the execution of several cycles. Each life cycle is composed by
roles, artifacts and events. In Figure 4.1 the Scrum process is illustrated.

Figure 4.1: Scrum life cycle [58]

Scrum Roles [56]

• Product Owner: the person responsible for managing the Product Backlog and
responsible for maximizing the value of the product in development.

• Scrum Master: the person responsible for helping everyone involved in the project
understand Scrum theory, practices, rules, and values. The Scrum Master tries to
maximize the value created by the Development Team.

• Development Team: individuals who do the work of implementing the function-
alities of the Product Backlog with the purpose of delivering a potentially releasable
Increment of "Done" product at the end of each Sprint. The regular size of a standard
Development Team is usually seven individuals plus or minus two.

Scrum Artifacts [56]

• Product Backlog: ordered list of features that are known to be needed in the
product, which is never complete. Content additions, removals or updates could
be made to the project, so it is essential to know that the Product Backlog is not
static. Each item from the list could be ranked, meaning that some items must be

22

Methodology and Work Plan

implemented first than others. The Product Owner is responsible for the Product
Backlog.

• Sprint Backlog: the set of Product Backlog items selected for being developed by
the Development Team in the Sprint.

• Increment: list of Product Backlog items developed by the Development Team
during a Sprint. When an item from Product Backlog is developed, it is considered
"Done" and everyone must understand what "Done" means. The definition of "Done"
can vary per Scrum Team.

Scrum Events [56]

• Sprint: period of time of one month or less during which, a Development Team
works to create an Increment. For this internship, sprints of 2 weeks will be used.

• Sprint Planning: period of time in which the Scrum Team defines the work to be
performed during a sprint.

• Daily Scrum: daily meeting of 15 minutes to inspect and plan the next 24 hours
of work. The objective is to ensure that progress is trending toward completing the
work in the Sprint Backlog. Since the team is comprised only by the intern, and the
supervisors are in charge of other projects, these meetings will occur weekly.

• Sprint Review: At the end of each sprint, a Sprint Review is carried out. An
inspection of the Increment is done, and Product Backlog could be adapted if needed.

• Sprint Retrospective: Sprint Retrospective is done for the Development Team to
understand what went well, what could be improved, and what they will commit to
improving in the next sprint.

Understanding all these characteristics, Scrum can be considered a model designed to
"optimize flexibility, creativity and productivity" [59] during the execution of a project.

Although it was mentioned that the intern would follow Scrum methodology, an adaptation
took place because project characteristics (e.g. team size and pandemic situation) made
it clear that following this methodology fully would be impossible. In order to clarify the
adaption made, the subsection below explains all the stages and processes performed based
on the Scrum methodology.

4.1.2. Scrum Project Adaptation

The Scrum Team for this project was composed by Paulo Sousa, Head of New Product
Development at WIT Software as a Product Owner, Jorge Sousa and João Costa as Scrum
Masters and the author as a team member of the Development Team.

The Product Backlog was defined as being composed of all the requirements established
during the first semester. Subsequently, a Sprint Planning took place so that the require-
ments to implement could be defined and then developed during the sprint. Each sprint
had a duration of two weeks, and a Daily Meeting took place between the intern and the
Scrum Master, João Costa, to keep track of the progress done. At the end of each sprint,
a Sprint Review was not supposed to happen; instead, a monthly meeting with the Devel-
opment Team was planned. Due to the pandemic situation and the work overload of the

23

Chapter 4

Product Owner and the Scrum Masters, this was not possible every month. This sequence
of events repeated itself until all the requirements that make up the Product Backlog were
implemented.

Concerning the management of the sprints, the used software was Redmine, in accordance
with the Scrum framework.

4.2. Work Plan

In this section, an overview of the work plan that was followed during the two semesters
of the internship is presented.

4.2.1. First Semester

During the first semester, the so called pregame was made. In this phase of the Scrum
methodology, the intern realized the goal of the project and found the list of functionalities
needed to to correspond to the needs set by WIT. For that purpose, a meeting was made
with the Project Owner.

After deciding the scope of the project and requirements to develop, the intern developed
a standalone application to prove that the provider suggested by the supervisors during
the meetings was viable for this purpose. Then, the next step was for the intern to start
trying to figure out which components would integrate the system and its relations. In this
sense, he proceeded to the specification of the project’s architecture.

During the first semester there were no major problems and the deadline for every task
was met. The Gantt chart below (figure 4.2) shows the task plan for the first semester.

Sep 2019 Oct 2019 Nov 2019 Dec 2010 Jan 2020 Fev 2020

16 23 30 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 3 10 17

100% completeState of the Art
100% completeResearch

100% completeCompetitors Analysis

100% completeTechnologies

100% completeRequirements Elicitation
100% completeUser Stories

100% completeUse Cases

100% completeMockups

100% completeProof of Concept
100% completeJava Standalone application

100% completePlatform Architecture
100% completeComponents Architecture

100% completeDatabase Modeling

Figure 4.2: Gantt chart for the first semester

24

Methodology and Work Plan

4.2.2. Second Semester

During the second semester proceeded the Scrum Game phase. In this phase, the author
began to implement the functionalities of the Product Backlog, always trying to uphold
the schedules.

Although the Scrum methodology generally does not follow a plan generated by a Gantt
diagram, two were created in order to identify the work plan for the semester and the work
done during the semester.

Feb 2020 Mar 2019 Apr 2010 May 2020 Jun 2020 Jul 2020

3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27

API
Sprint 1

Sprint 2

Monthly Meeting

Sprint 3

Sprint 4

Monthly Meeting

Sprint 5

Mobile Application
Sprint 1

Monthly Meeting

Sprint 2

Sprint 3

Monthly Meeting

Dashboard
Sprint 1

Sprint 2

Monthly Meeting

Tests
Functional Tests

Usability Tests

Documentation
Report Writing

Figure 4.3: Planned Gantt chart for the second semester

The Gant diagram presented above shows how the intern planned the work for the second
semester. However, as expected in any agile software development project, the plan is
merely indicative and was adjusted according to the project needs.

One of the first changes occurred during the first week of API development, when the
company decided that the Mobile App should be implemented first. Therefore, the sprints
were adjusted accordingly. The next setback was the pandemic situation (COVID-19),
leading the intern to work remotely from the beginning of March onwards, bringing along
some difficulties related to communication and productivity. Along with this, the lack of
experience of the intern regarding React Native brought out successive delays affecting
the sprints, due to the need to search and learn new concepts and methods to implement
the needed features. This particular issue brought consequences to the whole project as,
by the end of May, it did not uphold all the requirements necessary to be a functional

25

Chapter 4

prototype. At that point, the intern, the supervisors from WIT, and the tutor from DEI,
agreed that the best option was to postpone the final delivery to September so that the
expected functional prototype could be delivered. The agile approach revealed important
benefits in this particular situation, allowing constant adjustments and adaptations to the
work plan.

The postponement of the final delivery resulted in the Admin Dashboard component (Web
Portal) not being implemented since nothing had been developed to date, and there were
no mockups re-created by WIT ’s designers. As the curricular internship ended on June
30, it was decided that the trainee would until then implement the missing features related
to the Mobile Application.

The project’s complexity and the intern’s lack of experience in the technologies also had an
impact in the planning process and in the impossibility to deliver a prototype containing
all the components (API Backend, Mobile Application and Admin Dashboard).

Despite these problems, the trainee always kept high levels of motivation and made a
constant effort to adjust the project over time. Postponing the final delivery to present a
better prototype was a natural step to attain the expectations of WIT and learn as much
as possible during the internship. Figure 4.4 illustrates the main events and processes that
took place during the second semester.

26

M
ethodology

and
W
ork

P
lan

Feb 2020 Mar 2019 Apr 2010 May 2020 Jun 2020 Jul 2020 Aug 2020 Sept 2020

3 10 17 24 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 31 7 14 21 28

Implementation - 1st Phase

100% completeSprint 1 - Mobile App (Authentication Screens)

100% completeSprint 2 - Mobile App (Profile Screens)

100% completeSprint 3 - API (Authentication and User Services)

100% completeSprint 4 - Mobile App (Phone Numbers Screens)

100% completeSprint 5 - API (Profile and Numbers Services)

Monthly Meeting

100% completeSprint 6 - Mobile App & API (Calls Services and Screens)

Documentation

100% completeSprint 7- Mobile APP & API (Calls and Numbers Integration)

100% completeSprint 8- Mobile APP (Restructuring: Expo to Native)

100% completeIntegration Tests

Monthly Meeting

Implementation - 2nd Phase

100% completeSprint 9 Mobile App (Message Screens)

1000% completeSprint 10 - API (Message Services)

100% completeSprint 11- Mobile APP & API (Integration of Messages)

100% completeIntegration Tests

Presentation

Tests

100% completeFunctional Tests

Documentation

100% completeReport Writing

Final Presentation

Figure 4.4: Gantt chart for the work done in the second semester

27

Chapter 4

4.3. Risk Management

This section explains the process of analyzing and defining risks for this internship. First,
the concept and the importance of risk management is explained. Secondly are described
the risks found throughout the internship. Lastly, the verified risks during the internship
are explained.

4.3.1. Concept of Risk Management

Any project is subjected to failure. Since the beginning, a project has a set of risks
attached that if not identified and monitored can have a big impact on project development.
Risk is defined as "an activity or event that may compromise the success of a software
development project"[60]. In order to avoid and minimize these problems, it is necessary
to do risk management. Risk Management is "a methodology or a mechanism, carried out
throughout the development process to identify, manage and control risks evolved before
and during the development process"[61].

Risk management involves the following activities [62]:

• Identification: consists in identifying the factors that can compromise the success
of the project. Risk identification is made throughout the project’s life cycle since
the project is not immutable, and changes can occur.

• Analyzing: involves analyzing how project outcomes and objectives might change
due to the impact of the founded risks. In order to analyse the risks, some attributes
are used. The most common are the probability of its occurrence and the impact of
the risk on the project. To each one of the attributes, metrics need to be defined.

The probability of the occurrence of a risk can have the following values:

– High - probability of happening is higher than 80%.
– Medium - probability of happening is between 30% and 80%.
– Low - probability of happening is below 30%.

The impact of the risk on the project can be represented through the following values:

– High - has a big impact on project schedule or performance. Success goals may
not be achieved.

– Medium - has a significant impact on project schedule or performance. Success
goals may be achieved but with extra effort.

– Low - has no impact on development time or performance. Success goals are
not affected and can be achieved easily.

It is also in this activity that is concluded if a risk can be mitigated or eliminated.

• Planing: consists of creating risk responses to mitigate or eliminate the risks previ-
ously identified. To accomplish that, a plan must be created.

• Monitoring: iterative process that consists of keeping track of existing risks, iden-
tifying new ones, risks reclassification and reporting throughout the project develop-
ment.

28

Methodology and Work Plan

After the identification and evaluation of the risks, it is possible to display the results in
the form of a risk matrix. A risk matrix is "a practical and easy to use tool, which can
help most organizations"[63] in many ways (e.g. prioritizing risks and promoting discussion
between team elements).

A project matrix example is represented in Figure 4.5. It is formed by nine categories,
each one defining a level of danger of the risk. The green colour represents the risks that
are negligible or marginal. Yellow identifies the risks that are neither catastrophic nor
negligible and red represents the risks that are critical or catastrophic.

Figure 4.5: Risks Matrix [64]

4.3.2. Risks Description

In this section, the project’s risks are described. As risk management must be done period-
ically, this section contains all the risk identified during the internship. Each risk was rank
according to its probability of occurrence, the impact on the project and has a mitigation
plan.

Below is presented an example of a risk description, the remainder are in Apendix B.

Project Complexity
ID R01
Date of Identification November

Description

There is nothing implemented, so the intern has to understand
how the platform should be designed, structured, and built.
This is, therefore, a time-consuming task because the author
does not have any knowledge about the internship topic.

Impact High
Probability High

Mitigation Plan
Keep in contact with the supervisors by scheduling meetings to
receive helpful information and feedback on how the platform
must be implemented.

Table 4.1: Risk 01 - Project Complexity

29

Chapter 4

After the risks description, each risk was inserted into the projet’s risks matrix. The result
is displayed in figure 4.6.

Figure 4.6: Risks Matrix of the project

As can be seen from the figure 4.6, the risks fall in the yellow and red zone. This led the
author to conclude that the project has hazardous risks that should be avoided through
good mitigation plans. Constant monitoring should take place in order to eliminate/control
the known risks and identify new ones.

In the subsection below are exposed the risks that have been verified as well the mitigation
actions that took place during the development of the project to reduce their impact.

4.3.3. Risks Verified

During the internship, risk control was carried out in order to ensure that the risks were
identified and mitigated. Notwithstanding this control, some risks occurred, meaning that
the mitigation actions were not enough to prevent delays on the project. Of the risks
identified, the R02, R03, R04 and R06 were the ones that had an impact on the project
development.

Following a timeline, during the first semester, of the risks identified, there was no impact
since the semester was more focused on research and know-how. However, during the
second semester, the situation was reversed. It all began in February with the start of the
solution implementation, when the lack of experience on React Native lead to successive
delays. From the moment the delays began to be noticed by the intern, mitigation actions
established for the risk R04 were put into practice. As a consequence of that, the delays
started to get more noticeable because the intern had to spend time searching and reading
information to solve the issues found during the development. It was at the end of May, one
month before the delivery date that the risk R02 come to be verified. After introspection
and verification of the work done, it was decided to postpone the final delivery to September
due to the fact of the prototype’s current state was not functional.

30

Methodology and Work Plan

In addition to these two, risk R03 was also come about in mid-February after Twilio
(the CPaaS provider) announced that due to legislations, the way of how phone numbers
were provided would change. Since then, it became mandatory to provide the user’s
documentation to acquire phone numbers. In order to discuss how this change would affect
the solution’s actual design, a meeting took place to define the mitigation action to be used.
As a result, it was decided that the intern would provide his personal information in order
to be able to acquire phone numbers for the platform. This decision was made because a
redesign of the current solution was not viable in terms of time and MVP purposes.

This chapter pours over the chosen methodology, summing up the phase of identifying and
treating risks found throughout the project. In the next chapter will be introduced the
requirements elicictation process.

31

This page is intentionally left blank.

Chapter 5

Requirements Elicitation

The requirements elicitation is one of "the most difficult, most error-prone and most com-
munication intensive stages in software development"[65]. According to Raul Sidnei Wa-
zlawick [66] "The process of elicit requirements consists of searching for information about
the tasks that the system must perform, and for the constraints under which the system
must operate". Many techniques can be used such as interviews, brainstorming, prototyp-
ing, and surveys/questionnaires. "The success of an elicitation technique used depends on
the maturity of the analyst, developers, users and the customer involved"[65].

In this section, it is detailed the process of requirements elicitation for the Temporary
Numbers Platform, along with the user stories. A detailed description of the requirements
is available in Appendix A.

5.1. User Stories

One of the techniques used for defining the requirements of a project is by creating user
stories. "User stories are short, simple descriptions of a feature told from the perspective
of the person who desires the new capability, usually a user or customer of the system"[67].
The user story describes the type of user, what they want and why. This type of tool helps
to create a simplified description of the requirement and it can be inserted in the agile
frameworks. The user stories do not replace use cases or other technical requirements.
They typically abide by the following template:

"As a <type of user>, I want to <goal> so that <reason>” [68]

Several meetings were scheduled with the product owner in order to identify the project’s
user stories. During those meetings, the Temporary Numbers Platform major services were
discussed. Table 5.1 presents the user stories defined for the project that resulted from the
meetings with the product owner.

33

Chapter 5

User Stories
ID "As a" "I Want to" "So that I"
US1 User Purchase a number Can communicate with other people
US2 User Make calls Can communicate with other people
US3 User Import my contacts Can communicate with other people
US4 User Send Messages Can communicate with other people

US5 User Subscribe to a Plan with minutes and
SMS Am able to use the service

US6 User Check the minutes and SMS used Manage my minutes and SMS
US7 User Add funds to my account Can subscribe to plans
US8 User See my messages history Be updated
US9 User See my calls history Be updated
US10 User Cancel my account Can uninstall the app
US11 User See my numbers Can know which numbers i own

US12 Admin Cancel a temporary phone number Can ensure that number is not used by
the user

US13 Admin Add/remove money to/from a user bal-
ance Can ensure user balance is up to date

US14 Admin Get statics of the system Can analyze the system behaviour

US15 Admin Send an Alert/Notification Can ensure the user is informed and up-
dated

US16 Admin Re-activate an Account Can ensure the user will be able to use
the service again

US17 Admin Suspend an Account Can ensure the user temporarily can’t
use the account to access the services

US18 Admin Close an Account Permanently Can ensure the user will not use the
account to access the services

Table 5.1: Users Stories.

5.2. Functional Requirements

As aforementioned, expressing requirements in the form of user stories helps us to under-
stand the "raw" user needs. After that, it is necessary to define how the software will
answer those needs. There is no standard template when it comes to describing require-
ments found through user stories, but most of the times, use cases are used. A use case is
"a written description of how users will perform tasks" [69] on the software. Through use
cases, it is possible to describe the behaviour of the system in order to answer those user
"needs".

In order to achieve that, the intern followed WIT’s template for documenting the sys-
tem’s functional behaviour. The template used follows the MoSCoW [70] nomenclature to
prioritize the functionalities to be implemented, which goes as follows:

• Must have: requirements that are critical for the success of the project.

• Should have: requirements that are important, but not mandatory for the success
of the project.

• Could have: requirements that could be implemented to improve the system, but
not mandatory for the success of the project.

• Won’t Have : requirements that will not be included in this version of the project

34

Requirements Elicitation

The description of the requirements is based on Alistair Cockburn’s template [71] with
slight modifications. The fields chosen are:

• Use Case Id: unique identifier of the requirement.

• Primary Actor: who will trigger the requirement

• Description: a brief description of the requirement

• Pre-conditions: conditions that the system needs verified in order to start the use
case

• Main Success Scenario: the steps that will occur if everything goes as expected
(the ideal scenario)

• Extensions: the alternative steps that the system performs when one or more steps
from the main scenario do not go as expected.

Table 5.2 represents an example of a functional requirement described as mentioned earlier.
The remainder of the requirements are detailed the Appendix A.

Example

FR01 - Registration
Primary Actor Non Registered User
Description User enters their phone number in order to make the registry
Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has a valid phone number

Post-condition success User registers and can start using the application

Main Success Scenario

1. User inserts his phone number
2. System verifies the inserted number
3. The System sends a verification code (via SMS) to the user
4. The user is redirected to verification screen
5. User inserts the code received
6. The system validates the code
7. User is redirect to the main page

Extensions

2a Number inserted by the user already exists
2a1. User is informed that number is already registered

2b Number inserted is not valid
2b1. Error message is shown

5a. Code inserted does not match
5a1. Error message is shown
5a2. The user tries again
5a3. User presses a button to receive another code

Table 5.2: Functional Requirement 01 - Registration

35

Chapter 5

5.3. Non Functional Requirements

In any software application, non-functional requirements (often called by quality attributes)
are as critical as functional requirements. Nowadays, the current competitive market "de-
mands software product which is not functionally fit but also implements the non-functional
aspects such as: cost, readability, security, maintainability, portability, accuracy" [72].

Although the main internship goal consists in developing an MVP, it is important to
notice that dealing exclusively with functional requirements could not be enough to fulfill
the client demands. Due to that, "there is a need of formally incorporating NFRs into the
software development life cycle and guaranteeing their satisfaction". [72].

Acknowledging the value of NFRs in software development, the intern, along with his
supervisors identified the NFRs that better suit the project. To choose the most critical
quality attributes, the intern assumed a critic point of view and analyzed possible tradeoffs
between them.

The quality attributes defined are: [73, 74]

• Availability: is the ability of a specified system to mask or repair faults such that the
cumulative service outage period does not exceed a required overvalue specified time
interval. In the context of this project, this quality attribute is essential; however,
due to the degree of external dependence entities, it is difficult to establish the degree
of availability of the system.

For MVP purposes there is no need to define and detail that value, but it is worth to
mention that for a real market product, an in-depth analysis of each external entity
must be done (e.g. verifying the availability for each service used) to define a more
precise value of system availability.

• Security: consists of resisting to unauthorized attempts to use/destroy data or ser-
vices while still providing access to people and systems that are authorized. This
quality attribute can be characterized by the following characteristics: confidential-
ity, integrity,and availability (CIA). In addition to these, there are others such as
Authentication, Non Repudiation and Authorization that help to support the CIA.

For this project, the main characteristics that have been taken into account were the
Authentication (responsible for verifying if the identities are truly who they claim
to be), the Authorization (in charge for ensuring if the entity has the privileges
to perform a task) and Confidentiality (responsible for ensuring that the data are
protected from unauthorized access).

This quality attribute was chosen because one of the main goals is to build a system
that is safe and does not put users communication’s privacy at risk.

• Interoperability: is the degree to which two or more systems can exchange infor-
mation via interfaces in a particular context. Not only includes the ability to transfer
data (syntactic Interoperability) but also requires the ability to interpret the data ex-
changed (semantic Interoperability). Therefore, to handle Interoperability, we have
two ways: If we already know the interfaces with which our system will operate, then
we can apply this knowledge directly on our system design; If the external entities
our system will communicate with are not yet ready then we design our system with

36

Requirements Elicitation

a more generic approach so that when they are available in the future, they can be
bound in the life cycle, at build time or runtime.

Since the WIT Temporary Numbers Platform will use external systems with services
already deployed and well documented then the design of the system will take care
of all of this. The main reason that led the author to choose this quality attribute
scenario was the fact that the platform services require capabilities from already
existing systems and if there is no proper exchange of information, then our system
could be compromised.

• Modifiability: is about changes that can occur to the system and how we can
control the cost and risk of making those changes. In order to plan Modifiability the
architect has to consider three questions: "What can change?", "When is the change
made and who makes it?" and at last, "What is the cost of the change?".

This quality attribute was considered critical because, at any time, new features
(e.g. add new temporary phone numbers providers, add video conference calls) could
emerge to aggregate into the solution already developed. Therefore, it is crucial
that the designed solution be prepared to support changes. Through this, it will be
possible to avoid changes’ high costs and better control the impact of these changes
in the system.

A quality attribute requirement "should be unambiguous and testable"[75]. To ensure this
property it is usually used a form to specify it. The form used in this report is based on
the template presented in the book by Paul Clements, Len Bass and Rick Kazman [75].

The form is composed by the following fields:

• Source of Stimulus: is an entity (a human being a computer system, or any
other actuator) that generated the stimulus. The stimulus can be an event to the
performance community, a user operation to the usability community, or an attack
to the security community.

• Stimulus: is a condition that requires an answer when one arrives at a system.

• System Response: consists of the responsibilities that the system (for runtime
qualities) or the developers (for development-time qualities) should perform in re-
sponse to the stimulus.

• System Measures: is the measurement taken when the response occurs, so that
the requirement can be tested.

• Environment Condition(s): is the set of circumstances in which the scenario
takes place. The environment acts as a qualifier on the stimulus.

Through the fields previously mentioned is created a collection of quality attribute scenarios
that characterize the quality attributes defined. These scenarios must be system-specific
to allow the translation of the generic attribute characterizations into requirements. Table
5.3 represents an example of a quality attribute scenario described. The remainder of the
quality attributes scenarios are detailed in Appendix A.

37

Chapter 5

Example:

NFR01 - Availability
Source of Stimulus: Internal to the system
Stimulus A component responds but the response is late.
Environment Condition(s): Normal operation
System Response: The fault is detected and logged.
System Measures: Time to detect the fault.

Table 5.3: Quality Attribute scenario 01 - Availability

5.4. Constraints

In terms of project constraints, people involved in the process (e.g. clients, stakeholders,
developers and others) can impose restrictions on the decisions that are made, as the project
progresses. Constraints play a prominent role in every project development because they
are design decisions with 0 (zero) degrees of freedom. Therefore, three constraint groups
were defined (technical, business and legal). Each group of constraints is explained in the
following subsections bellow.

5.4.1. Technical Constraints

Technical constraints are technical design decisions which have an impact in the design
of the solution. They usually consist of technologies, programming languages, protocols,
standards, among others. The project’s identified technical constraints are described in
the table below.

ID: TC01

Title: REST architectural style
Description: System architecture must follow REST architectural style.
Dependencies: None

ID: TC02
Title: Temporary Numbers Provider

Description: Twilio, a CPaaS provider will be used to supply temporary phone numbers
as well as the communication services associated with them (calls and SMS).

Dependencies: None

Table 5.4: Project technical constraints

38

Requirements Elicitation

5.4.2. Business Constraints

Business constraints are decisions imposed by business considerations that can affect the
achievement of the business goal. Thus, these must be satisfied with the architecture of
the system. As this internship does not expect a real product, the business constraints
presented below were stipulated by Paulo Sousa (Product Owner), Jorge Sousa (Scrum
Master) and João Costa (Scrum Master).

ID: BC01
Title: Schedule

Description: The MVP development and validation must be finished by June. This period
might be extended until the 1st of September.

Dependencies: None

ID: BC02
Title: Temporary Numbers per Device

Description: It should be possible for users of the mobile application to buy/own more
than one temporary phone number in the same device.

Dependencies: None

ID: BC03
Title: Mobile Application Calls
Description: Calls made via the Mobile App must be made natively.
Dependencies: None

Table 5.5: Project business constraints

5.4.3. Legal Constraints

Legal constraints are events or circumstances under which either party’s access to, provision
of, or use of, the system results in a violation of any Law. Therefore, as a response to the
legal compliance of IT systems, system developers must always consider the laws and legal
issues in their system development.

Despite the solution defined in this document serving only as an MVP, it is necessary to
notice that even for this purpose it was required to comply with legislation, namely with
the provision and use of the Twilio’s phone numbers. Therefore, for a real product scenario
one must bear in mind the following aspects:

• User’s Information: This is related to how the system will have to deal with all
users’ information. For legal purposes, if the system is designed only for Europe,
it will have to comply with the Regulation (EU) 2016/679 named as "The General
Data Protection Regulation" (GDPR).

• Temporary Phone Numbers: This is related to how the system will deal with the
supply and use of temporary phone numbers by the users. In case the system uses
an external entity as a supplier (as was used in this internship) then, as a rule, it will
have to fulfill the requirements imposed by that entity. On the other hand, if the
system designed has the mechanisms for creating and supplying temporary numbers
without external dependencies, then a higher set of laws and obligations must be
complied with.

39

Chapter 5

After presenting the process of elicitation of requirements, the next step is to detail the
system architecture developed throughout the internship.

40

Chapter 6

Solution’s Design

Establishing a software architecture is one of the most critical tasks of any project because
"there is no universal standard on good or bad" [76]. The quote "all models are wrong;
some of them are useful" written by George Box, a British statistician expresses the real
meaning of defining a software architecture. It is hard to achieve a simple, complete and
precise architecture, but it is not impossible. A good architecture "implies taking into
consideration all kinds of requirements (performance, security, etc.), the organization of
the system, how the system parts communicate with each other, whether there are some
external dependencies, what the guidelines and implementation technologies are, what risks
to take into consideration, and much more"[77].

This chapter describes the architecture and the overall decisions to implement the WIT
Temporary Numbers Platform through four sections. The first section explains the model
that will be used to document the architecture of the solution. The second section exposes
the solution architecture according to the model of C4. The third section details the
data model for the solution. Lastly, the fourth section, the security mechanisms of the
architecture

6.1. Model C4

In order to define the architecture of the internship solution, the author of this document
opted for using the model created by Simon Brown, the C4 model. According to this
model "a software system is made up of one or more containers, each of which contains
one or more components, which in turn are implemented by one or more code elements"
[78]. This is the reason why the model stands for "Context, Containers, Components and
Code".

Considered as an "abstraction-first" approach to diagramming software architecture and
based on a small set of abstractions, this model allows a more natural level of learning
and use. Nevertheless, before starting to present the system architecture, it is necessary
to contextualise some core concepts that are part of the C4 model to help the reader to
better understand the diagrams presented sections bellow.

41

Chapter 6

The C4 model considers the static structures of a software system in terms of containers,
components and code. The people that use the systems are considered as persons. [78]

• Person: represents human users of a software system (e.g. actors, roles, personas,
among others).

• Container: represents an application or a data store. It is something that needs
to be running in order for the overall software system to work (e.g Server-side web
application, Client-side web application, Mobile app, Database, Shell script).

• Component: is a grouping of related functionalities encapsulated behind a well-
defined interface (e.g. a collection of implementation Java classes).

• Code: one or more code elements (e.g. classes, interfaces, objects, functions).

With the aforementioned static structures, it is possible to create a collection of Context,
Container, Component and (optionally) Code diagrams. Each one of the diagrams has a
specific level of detail as well as the objective. The diagrams could be: [78]

• Level 1 - System Context diagram: is a diagram to start diagramming and
documenting a software system. Drawing a Context diagram will allow seeing the
big picture of the desired system. The detail is not essential on this level, meaning
that the main focus is on identifying the people (actors, roles, personas) and software
systems. This type of diagram is mostly used to show to non-technical people.

• Level 2 - Container diagram: shows the high-level shape of the software archi-
tecture and how responsibilities are distributed across it. A zoom-in into the system
boundary is done, where the main goal is to identify the containers, the technol-
ogy choices and how the containers communicate with one another. It is a simple,
high-level technology focused diagram that is helpful for software developers.

• Level 3 - Component diagram : exposes how a container is made up of a number
of "components", what each of those components are, their responsibilities and the
technology/implementation details. Overall, this type of diagram is more technical
because it decomposes each container in order to uncover the major structural blocks
and their interactions.

• Level 4 - Code: This is an optional level of detail and is often available on-demand
from tooling such as IDEs. This level of detail is not recommended for anything but
the most important or complex components.

In order to draw these diagrams, there is no specific notation to use. Colours and shapes
can be added to supplement the diagrams, either to add additional information or to make
the diagram more aesthetically pleasing. However, the most common and generic way is
presented in figure 6.1.

Figure 6.1: Notation used with C4 model

42

Solution’s Design

6.2. Architecture

In this section, the solution architecture will be detailed through the model described in
the previous section. In order to present everything in a structured way, this section was
subdivided into three subsections, each representing a level of detail of the C4 model. In
each one of these subsections are explained the reasons that led to those decisions.

6.2.1. Context View

The first level of the C4 model requires that users and entities should be identified first,
in order to create the contextual diagram. Therefore, the users that will interact with the
system are the following:

• Registered Users: users that are registered on the platform and can use the services
provided.

• Unregistered Users: users that are not registered on the platform but can access
information about the services provided.

• Administrators: admins that are responsible for managing the platform.

After the users had been identified, it was necessary to determine the entities/services
which the system will interact with. With that purpose, a meeting took place between
the intern and his supervisors, resulting in the sugestion of the integration of a CPaaS
provider (Twilio). To ensure this provider would own all the needed services for the system,
the intern implemented a simple standalone Java application using some of the services
provided by the Twilio Platform (Verify API, Phone Numbers API, Calls API and SMS
API). This proof of concept helped conclude that Twilio had all the necessary services to
be the service provider of the system.

In essence, the Twilio chosen services that will interact with the software system are:

• Twilio Verify API: allows to create OTP code sending services and corresponding
validation.

• Twilio Phone Numbers API: provides the temporary phone numbers.

• Twilio Voice API: allows to make and receive calls through the temporary phone
numbers.

• Twilio SMS API: allows to send and receive messages through the temporary phone
numbers.

After the requirements for the first level had been met, the contextual diagram could be
drawn. Figure 6.2 shows the contextual diagram.

43

Chapter 6

Figure 6.2: Contextual Diagram of WIT Temporary Numbers Platform

6.2.2. Containers View

Once the system context was defined, it was necessary to identify the containers, the
technologies and the communication protocols. With that in mind, the containers identified
were:

Container Description

API Backend RESTful Web Server that is responsible for performing all the
business operations and exposes the services through endpoints.

Mobile APP Client application that allows the users to buy and use temporary
phone numbers.

Admin Dashboard
Client application that allows to manage the platform and gather
statistics. Both operations are made through API Backend re-
quests.

Database
Container that will store all the information related with the
WIT Temporary Numbers Platform (users, calls, messages,
phone numbers).

Table 6.1: Platform Containers

44

Solution’s Design

Followed by the identification of the containers, it was necessary to choose which of the
technologies would be used to implement each one of the containers. The table below
presents the technologies chosen as well as a small description.

Technology Container Description

Spring Boot API Backend

Spring Boot is an open-source Java-based framework de-
veloped by Pivotal Team, used to build stand-alone and
production-ready spring applications. [79] Through Spring
Boot it is possible to reduce development, unit test and in-
tegration test time and increase productivity.

React Native Mobile APP

React Native is an open-source JavaScript framework cre-
ated by Facebook for writing real, natively rendering mobile
applications for iOS and Android. [80] Built on top of Re-
act, the Facebook JavaScript library, React Native differs
mainly in the DOM manipulation. Nowadays, it is a trendy
framework that has broad community support.

React Admin Dashboard

React is an open-source,component-based JavaScript library
used to build user interfaces. [80] It was created by Facebook
in 2012 and is one of the most popular Javascript libraries
used to build apps front-end right now.

PostgresSQL Database

PostgreSQL is a free and open-source relational database
system created by a computer science professor Michael
Stone and his team. [81] Supporting both SQL for relational
and JSON for non-relational queries and backed by an ex-
perienced community of developers, PostgreSQL is one the
best databases available on the market.

Table 6.2: Platform Containers Tecnologies

The choice of protocols had to be made carefully since the information will be exchanged
between containers. Thus, it was necessary to find protocols that are "universal" in the
sense of being compatible with the major technologies used on the market. In addition, it
is also necessary that each protocol used has security mechanisms in order to be unable to
compromise the exchange of information. As a result, the protocols chosen are exposed in
the table below.

Protocol Description

HTTPS

Hypertext transfer protocol secure (HTTPS) is the secure ver-
sion of HTTP, which is the primary protocol used to send data
between a web browser and a website [82]. HTTPS is encrypted
in order to increase security of data transfer.

JSON JSON (JavaScript Object Notation) is a lightweight data-
interchange format for storing and transporting data. [83]

Table 6.3: Communication Protocols

After exposing the containers, the technologies, and the communication protocols to be
used on the implementation phase, the intern did the containers diagram of the WIT
Temporary Numbers Platform. This diagram represents a higher level of the software
system to be developed, allowing to observe which components integrate the system and
their relations.

45

Chapter 6

Figure 6.3: Containers Diagram of WIT Temporary Numbers Platform

6.2.3. Components View

After having defined, in the previous section, the containers that constitute the software
system, it was necessary to zoom-in again, this time on each one of the containers. As the
Mobile Application and Admin Dashboard will only consume the resources (via front-end)
provided by the API Backend, the author did not think it necessary to zoom-in on these
containers. On the other hand, the API Backend container is the core of the software
system due to being there that providing and managing services will be performed. In this
sense, it was necessary to understand which components will form the API Backend.

Essentially, it was necessary to define which components will form the API Backend. For
that purpose, the intern analysed the Spring Boot architecture and subsequently identified
the type of components that will constitute the API Backend container:

• Controllers: are classes that provide access to the application services by exposing
REST endpoints.

46

Solution’s Design

• Services: are class files that are used to write business logic in a different layer,
separated from the controllers class.

• Repositories: are classes that are written for encapsulating storage, retrieval, and
search of data.

To streamline the component identification process, the author decided to represent the
services that the platform will have to provide through modules. Thus, the modules iden-
tified are as follows:

• Temporary Numbers Module: is responsible for getting temporary numbers from
the provider and for providing them to the client’s application.

• Messages Module: is responsible for handling the messages sent and received by
the users through the temporary phone numbers.

• Calls Module: is responsible for handling the calls made and received by the users
through the temporary phone numbers.

• Payment Module: is responsible for handling the payments made by the user and
some admin manipulations (e.g. update user balance).

• Users Module: is responsible for managing the users data stored in the platform.

• Statistics Module: is responsible for gathering systems statistics about the func-
tioning of the system.

Although the payment module was mentioned, for the sake of simplicity, no payment mech-
anism will be implemented or integrated. Instead, each user account will have a specific
amount in their balance to allow the purchase of temporary numbers and subscribing of
plans. In case of a real product, a payment mechanism will have to be implemented, or
third party API integration can be done such as PayPal, Stripes or Noodlio Pay.

After the modules were identified, the intern started making some sketches of the com-
ponent diagram of the API Backend container and the final version is presented in figure
6.4. This diagram is more technical, allowing to uncover the major structural blocks that
compose the container, the technologies and their interactions.

47

C
hapter

6

Figure 6.4: Components Diagram of API Backend container

48

Solution’s Design

6.3. Data Model

The database is one of the primary containers of the system’s architecture because it
is responsible for storing and securing data. Therefore, the WIT Temporary Numbers
Platform will be composed of a data model that only the API Backend can manipulate or
interact with. For this purpose was chosen a relational database (PostgreSQL) because of
its quality in transactions management and the structure allows to link information from
different tables through the use of foreign keys. In order to explain the data model defined,
an entities table was created as well the entity-relationship diagram.

Entity: Description:
Pre-Registrations Stores all the pre-registrations made through the mobile application by the users.
Users Stores all information related to a user’s account’s.

Tokens Stores the user’s refresh and access tokens. Both tokens are used to ensure a user
has access to the appropriate resources .

Phone Numbers Stores all information related to a temporary phone number purchased by a user.

Calls Stores all records of calls made and received by the temporary numbers owned by
the users of the platform.

Messages Stores all records of messages sent and received by the temporary numbers owned
by the users of the platform.

Plans Saves the plans that can be added to the phone numbers purchased by the users.

Table 6.4: Data model entities

Figure 6.5: Entity Relationship Diagram

49

Chapter 6

6.4. Security

Security Architecture is developed to provide guidance during the design of the system.
Thus, Security Architecture is the design of artifacts that describe how the security mech-
anisms are positioned and how they relate to the overall systems architecture. These
mechanisms serve the purpose to maintain the system’s quality attributes such as confi-
dentiality, integrity and availability.

On this project, the most crucial security aspects are the user authentication, as well as
the confidentiality, integrity and authenticity of messages exchanged between the server
and mobile clients. The following subsections explain how these aspects (Authentication,
Authenticity and the Non Repudiation) will be handled.

6.4.1. Authentication

The API Backend will manage the registration and sign-in of the users into the platform.
Both processes are similar in a way that:

1. An OTP code must be sent to the user.

2. The user must insert the OTP code.

3. The API must validate the code inserted by the user.

The OTP code mentioned before is "a code that is valid for only one login session or trans-
action using a mobile phone" [84]. To implement this mechanism, the API will integrate
the Twilio Verify API [85]. This API allows the creation of a user verification service that
sends and verifies OTP codes.

Concluding, a user service verification will be created through the Twilio Verify API to
manage the registration and sign-in of the users.

6.4.2. Authenticity and Non Repudiation

Users and businesses use APIs to use or connect to services. For security purposes, each API
must have an authentication and authorization mechanism to protect the data exchanged
among all parties involved. In order to protect the WIT API Backend, the intern will use
JSON Web Token (JWT) technology. The JWT is "an open standard (RFC 7519) that
defines a compact and self-contained way for securely transmitting information between
parties as a JSON object"[86]. With JWT, it is possible to control API authentication
and the exchange of information between parties, ensuring that the resources are made
available only for the clients that have permission for it.

The process behind JWT is the following:[86]

1. The application or client requests authorization from the authorization server with
their credential.

50

Solution’s Design

2. If the authorization is successful, the authorization server returns an access token to
the application.

3. Whenever the application or client wants to access a protected resource from the
API, it uses the access token.

Figure 6.6 resumes how a JWT is obtained and used to access APIs:

Figure 6.6: Diagram of JWT creation and usage [86]

After the architecture of the system to develop has been explained, some of the platform’s
services are going to be presented in more detail.

51

This page is intentionally left blank.

Chapter 7

The WIT Temporary Numbers
Platform

In this chapter, the author describes in detail some of the core services of the WIT Tempo-
rary Numbers Platform. With this approach, the author intends to explain more technically
the processes and mechanisms behind each service provided by the platform. Consequently,
this chapter was divided into four sections. Section 7.1 presents the processes related to
users accounts. Section 7.2 describes how temporary phone numbers will be obtained
and managed. Next, section 7.3, details which processes will be used in order to gather
platform statistics. Lastly, section 7.4 explains the processes related with the platform’s
management.

7.1. Accounts

Each customer of the platform must have an account to access WIT Temporary Num-
bers Platform’s resources (temporary phone numbers). Therefore, an account needs to be
created when the user first signs into the platform.

All the resources purchased by the platform’s users are associated to a Twilio Master
Account that was created to access them. Through this Master Account it is possible
to access all the resources requested by the Temporary Phone Numbers Platform. Since
the Mobile Application is an internal component of the platform, there is no need to
distinguish between used resources. However, for a final product, there may be external
client applications that intend to use the services supplied by the platform, in which case
will make sense to distinguish between resources acquired by the internal mobile application
component and by the external client applications.

With this in mind, it was verified that Twilio allows for that distinction, through the
creation of subaccounts. In this case, each subaccount will represent a client application.

Although each subaccount has its own characteristics, the master account is the one that
manages everything.

In order to illustrate this process, a diagram has been drawn, for further clarification of
this approach. Figure 7.1 presents said diagram.

53

Chapter 7

Figure 7.1: Diagram of account managing process

As can be seen from the previous diagram, this approach allows to achieve the segmentation
of users by the client application. Also, it makes the processes of managing the resources
used and gathering statistics more efficient. It is worth mentioning that using this approach
means that we are dependent on Twilio for client application segmentation on resources
and services usage. This means that, if in the future, a provider change needs to take
place, then a new segmentation mechanism needs to be implemented or integrated.

7.1.1. Account Creation

The registration of new users on the platform is done through two processes. First, it is
necessary to send an OTP code to the user via SMS. Second, the system must validate the
inserted code.

Sending and verifying of OTP codes will be done through the Twilio Verify API. To this
end, a service will be created on the Twilio platform, which will allow the sending and
verifying the OTP codes. The authentication also shares this process.

The service created through the Twilio Verify API allows to define some characteristics
such as the length (4 to 10 digits) and the way of sending the OTP (SMS, voice call or
email). The server of the platform checks the phone number provided by the user, and
Twilio also performs a process in order to see if that number is well-formatted and can
receive SMS’s before a verification code is sent.

In order to illustrate the flow of the account creation process, the sequence diagram is
presented in figure 7.2.

54

The WIT Temporary Numbers Platform

Figure 7.2: Diagram of account creation process

7.1.2. Account Cancellation

In addition to creating an account, a user is free to cancel or delete their account at any
moment. In order to explain the processes, a sequence diagram (figure 7.3) was drawn.

The diagram exposed bellow displays two flows of account cancellation. The two flows are
almost identical, contrasting only in a case of whether a user has phone numbers linked to
their account to make a request to Twilio in order to cancel those phone numbers, or not.
This cancellation is mandatory because those phone numbers need to be recycled before
being made available once more. The process of recycling is handled by Twilio, meaning
that the Wit Temporary Numbers Platform only needs to request the cancellation of the
phone numbers.

Additionally to the cancellation of the numbers, it is also necessary to delete the user’s
information. On the one hand there is a legal responsibility of erasing all the data related
to a user. On the other hand, there is an interest in maintaining the usage records (e.g.

55

Chapter 7

calls, SMS) for matters related to statistics and user preferences. Therefore, this issue
must be analyzed and discussed for the commercial version of the product.

Figure 7.3: Diagram of account cancellation process

7.2. Temporary Phone Numbers

The temporary phone numbers provided by the WIT Temporary Numbers Platform will
be supplied via Twilio Phone Numbers API. In order to be possible to obtain those phone
numbers, it is necessary to create Regulatory Bundles on Twilio due to new changes made
in February of 2020 related to country regulations. By creating Regulatory bundles al-
lows Twilio to provide adequate identity documentation to the local regulators or carriers
avoiding that the temporary phone numbers communications be rejected or disconnected.

In order to create the regulatory bundle, the first step is to indicate if the phone number
will be used for personal or business purposes. Depending on the phone number purpose,
user documentation is then required and needs to be validated by Twilio. Only after the
documentation has been validated and consequently, the bundle has been created, it is
possible to obtain phone numbers and use them.

The changes made by the Twilio platform mean that each user of the WIT Temporary
Numbers platform must provide documentation (e.g. Government-issued id, residence
permit, utility bill) in order associate the phone numbers provided with themselves. This
is a critical aspect that will have to be analyzed for a real product because the end users
may not want to provide this information and if they do not, WIT will have to bear
responsibility, giving this information in order to acquire the temporary phone numbers.

56

The WIT Temporary Numbers Platform

7.2.1. Purchasing

The process of purchasing a temporary number affects three entities (the mobile applica-
tion, the API Backend, and Twilio Numbers API) of the system.

The purchasing process is initiated by the mobile application, where the user, through
the interface, chooses a temporary phone number type according to their preferences (e.g.
mobile phone or local number). During the purchasing process, two distinct moments on
the server-side happen. The first is the arrival of request from the mobile application
asking to provide some phone numbers according to the user preferences. The second is
when the user presses the button to obtain the phone number. In both moments, requests
to Twilio Phone Numbers API are made.

From the moment that the search request is made to the server until the moment that the
request is made to Twilio to acquire the number, two key problems can happen:

• No funds: the user is informed that he does not have enough funds to buy that
phone number.

• Phone number has already been acquired: the user is informed that the pur-
chase order has failed and will have to repeat the purchase phone number process.

Figure 7.4 shows the sequence diagram of purchasing a phone number.

Figure 7.4: Sequence diagram of purchasing a number

57

Chapter 7

7.2.2. Canceling

A number’s cancellation process requires that a request is made to Twilio to cancel the
intended number. This way, the number can be unbound from the user to which it was
associated and advance to the recycling process. Note that Twilio is in charge of the whole
recycling process for the canceled number.

Figure 7.5 represents the sequence of the cancellation process for a phone number.

Figure 7.5: Sequence diagram of canceling a number

7.2.3. Calling

Making a call is one of the most important features of the platform. In order to achieve
this feature, the intern used Twilio’s Voice API. This API allows to use the phone numbers
acquired with the Twilio Phone Numbers API to make and receive calls.

As mentioned in chapter two, there are several methods available to provide communi-
cations through temporary numbers. For this project, the forwarding method is used,
meaning that the temporary phone number acts as a middle agent, redirecting all com-
munications (incoming and outgoing) from and to the user’s respective phone numbers.
Through this method, data from the user’s communications package is used for outgoing
communications. It is worth mentioning that although this method has been chosen, Twilio
provides the possibility to do it through VOIP. In this case, whenever a user wants to make
an outgoing call, Twilio initiates a call to the user himself and only when the user answers,
is the call redirected to the person whom he seeks. This method only requires a stable
internet connection.

The sequence diagram presented on the figure 7.6 explains the process of making a call
using a temporary phone number.

58

The WIT Temporary Numbers Platform

Figure 7.6: Sequence diagram of calls process

7.2.4. Messaging

In addition to calls, the sending of messages is another core feature of the platform. Thus,
to achieve the sending and receiving of messages through the temporary phone number, the
Twilio SMS API is used. The process of sending and receiving messages is fully managed
by the API, ensuring that data from the user’s communications package is not consumed.

The process of sending and receiving messages is shown in figure 7.7 through a sequence
diagram.

59

Chapter 7

Figure 7.7: Sequence diagram of sending and receiving a message

7.3. Statistics

In the development of any software system, it is important to conceive mechanisms that
allow to obtain statistics. These statistics are then used to study the system’s performance,
understand the user’s preferences, system metrics and even find possible purchase patterns.
Some functionalities were defined for this purpose, regarding the gathering and treatment
of the platform’s data for statistical purposes.

These are the types of statistics defined:

• System: Used to obtain system functioning statistics (e.g. number of successful
requests)

• User: Used to obtain user statistics related to the platform’s usage (e.g average
number of calls per month)

• Numbers: Used to understand the statistics regarding the supplied phone numbers
(e.g. most purchased type of number)

• Calls: Used to obtain statistics concerning the calls made and received by the plat-
form’s phone numbers (e.g. average number of calls made per day by the platform)

• Messages: Used to obtain statistics regarding the messages sent and received by
the platform’s phone numbers (e.g. average number of messages sent per day by the
platform)

• Revenue: Used to understand the system’s revenue over time.

• Costs: Used to understand the cost of the operations carried out by external entities.

60

The WIT Temporary Numbers Platform

In order to gather these statistics, the Admin Dashboard (Web portal) will be used, which
will provide a simple interface, and the API Backend will perform the logic operations.

Figure 7.8: Sequence diagram of the statistics features

7.4. Management

One base aspect of any platform is that it possesses management mechanisms. In this case,
this task will be carried out by the system’s administrators through the Admin Dashboard.

Thus, some basic functionalities were designed by the intern so that the system’s admin-
istrators can manage the platform:

61

Chapter 7

• Notify or Alert a Client.

• Add/Remove funds to/from user balance.

• Suspend a user account.

• Close a user account.

The figure 7.9 presents the defined features.

Figure 7.9: Sequence diagram of management features

In this chapter were described in detail some of the core services of WIT’s Temporary
Phone Numbers Platform. Next is presented the process of implementing the designed
solution.

62

Chapter 8

Implementation

This chapter is dedicated to explaining the implementation phase of the project developed
during the internship.

Two main components were implemented: API Backend and Mobile Application. Section
8.1 presents the server side which consists of the API Backend. Next, section 8.2 addresses
the client side which encloses the Mobile Application component.

8.1. API Backend

The API Backend encompasses the whole environment related to the server part of the
platform. It is this component that conducts all the business operations of the platform
and exposes them to the client applications. Therefore, this section intends to shows
the processes, procedures and decisions that were made during the implementation of the
server.

8.1.1. Structure

In order to start developing the server side it was necessary to understand which layers
make up the Spring Boot architecture. The figure 8.1 represents the 4 layers that make
up Spring Boot. The figure demonstrates that each layer of the architecture is directly
communicating with the adjacent layers, due to the workflow. It means each layer is
interdependent with the adjacent layers, so if one layer is changed, the adjacent layers
must be changed as well.

63

Chapter 8

Figure 8.1: Spring Boot structure [1]

A brief description of the layers is given below [1, 87]:

1. Presentation Layer: handles the HTTP requests.

2. Business Layer: comprises of the service classes and uses services provided by data
access layers. Handles all the business logic.

3. Persistence Layer: holds all the storage logic and translates business objects from
and to the database.

4. Database Layer: performs CRUD operations (create, retrieve, update,delete).

After this brief introduction about the architecture used by Spring Boot, it is necessary
to mention that in the presentation layer of the API Backend developed no front end
component was implemented. Instead, an API interface is exposed, containing all the
services provided by the platform. This means that the server only provides the resources
and it is the client side that must parse, treat and display the information to the users.

The figure 8.2 represents the Spring Boot flow architecture.

Figure 8.2: Spring Boot flow architecture [1]

64

Implementation

The HTTP request or web requests are handled by the Controllers in the presentation
layer, the business logic is controlled by the services, and persistence (storage logic) is
handled by the repositories. A controller can handle multiple services, a service can handle
multiple repositories, and a repository can handle multiple databases.

Since the Spring Boot architecture is based on the Spring framework it uses mostly the
features and modules of Spring there is no need for the Data Access Object (DAO) classes.
In order to clarify the flow of the API, this is an exemplification:

1. The mobile application client makes an HTTP request (GET or POST) to the server.

2. The request is forwarded to the controller, and it maps the request and processes it.
It also calls the service logic if needed.

3. The business logic is performed in the service layer, and the logic is performed on
the data from the database that is mapped with the entity class through JPA.

4. A JSON object is returned as a response to the client.

In accordance to what was previously stated, the intern implemented the controllers and
services stated in chapter 6 figure 6.4, as well as:

• JWT Controller and Service: Responsible for exposing the service used to access
the resources (access token).

• Plan Controller and Service: Responsible for exposing the services related to the
plans that can be acquired by the users when purchasing temporary phone numbers.

Regarding the structure exposed above, the dependencies used to initiate the implementa-
tion were:

Dependencies Description

spring-boot-starter-web Used for building RESTful applications, using Spring MVC.
Tomcat is the default embedded container.

spring-boot-devtools Used for fast application restarts, LiveReload, and configu-
rations for enhanced development experience.

spring-boot-stater-jpa Used for persist data in SQL stores with Java Persistence
API using Spring Data and Hibernate.

spring-boot-starter-security Used to customize authentication and access-control in
Spring applications.

org.postgresql
JDBC and R2DBC driver that allows Java programs to con-
nect to a PostgreSQL database using standard, database in-
dependent Java code.

io.jsonwebtoken Used to create and verify JSON Web Tokens (JWT) with
java.

com.twilio.sdk Used to interact with the Twilio API’s.
org.flyway Used for version control for database.

Table 8.1: Dependencies used on the API Backend implementation

The dependencies mentioned above are automatically managed by Spring Boot. It manages
itself and the dependencies are upgraded automatically when a new version is available.

65

Chapter 8

8.1.2. Architectural Constraints

For an application to be considered as RESTful, there are standards that must be followed
and constraints are put on the system. It was decided that the project would follow a
REST architectural pattern therefore, these standards and constraints also apply to the
WIT Temporary Numbers Platform, namely to the API Backend component.

The constraints that are a part of the used architectural style and how they were applied
to the implementation of the API Backend (RESTful Services), are as follows [88, 89]:

• Client Server: This constraint requires a separation between the client and the
server. Through this separation it is possible to improve the clients’ mobility across
platforms and improve scalability. In this project, this separation was put in place
and the server will be in charge of all the business operations whereas the client will
be in charge of providing the frontend (user Interface and User Experience).

• Stateless: This constraint requires that the communication between the server and
the client be done stateless. A stateless communication implies that all of the infor-
mation is kept on the client’s side, and the server will only receive the information
pertaining to each sent request. This constraint was applied to the project and
user-server communication follows this condition, meaning that session state is kept
entirely on the clients’ side and the server only needs to verify if the requests have
the information regarding the request itself.

• Cache: This constraint requires that responses from the server be marked as cacheable
or non-cacheable. This was not implemented, which can mean loss in performance,
but its importance is acknowledged.

• Uniform Interface: This constraint means that the author must define the API
Interface for the resources inside the system which are exposed to the clients through
endpoints, thus uniformizing, as the name implies, the way of interacting with the
server, regardless of device or type of application (Mobile App or website). This
constraint encloses four guidelines, of which the author followed three:

– Resource-Based: Requests identify individual resources (e.g WitApi/accounts).

– Manipulation of Resources Through Representations: Enough informa-
tion is included in every message to describe how to process it, to facilitate the
analysis of the request by the server.

– Self-descriptive Messages: resources are represented for the client and with
them, enough information to alter or eliminate said resource on the server, as
long as there is permission. Example: With the creation of an account, an ID
is associated with the account and with that ID it is possible to buy phone
numbers, delete the account, among other actions.

• Layered System : This constraint allows the use of a layered system architecture,
where each layer can be composed by a server, a proxy or a load balancer but the
client does not know to which one they are connected and which one answered the
request. For the project, this constraint was not verified, meaning that the clients
interact directly with the platform’s main server.

• Code-on-Demand: This constraint is optional, and allows that executable code be
provided to the client. For this project, this constriction was not needed nor followed.

66

Implementation

All these constraints make up a “truly” RESTful API, but the violation of one or more
constraints still allows for the RESTful denomination, it is simply not a “truly” RESTful
API. Following this thought, the web service implemented by the author is simply defined
as RESTful.

8.1.3. Web Security

In terms of web security, it is known that web applications are vulnerable to security threats
since they are exposed to the open world of the internet. Therefore, the access to certain
web pages, files or data must be restricted to authorized personnel only. For this purpose
the intern used the Spring Security, a spring framework "that focuses on providing both
authentication and authorization to Java applications" [90].

In the context of this project, this framework was used for authorization purposes in order
to ensure that requests contain the necessary permissions to be satisfied. This mechanism
was achieved through the use of Spring filters.

A Spring filter is "an object used to intercept the HTTP requests and responses" [91]
meaning that it is possible to perform two operations at two instances: before sending the
request to the controller and before sending the response to the client.

Resuming, the intern implemented a filter that allows to define which URI’s need to be
protected and the ones that are supposed to be available for external entities. The pro-
cess of authorization carried out, is based on checking if the requests follow the Bearer
authentication scheme where a security token is passed (JSON WebToken).

8.1.4. Exception Handling

One of the key procedures that can be implemented in any software product is the exception
handling. This is "to handle the runtime errors so that normal flow of the application can
be maintained"[92].

Since the API Backend will deal with all the requests performed by the clients it is im-
perative to have a mechanism that allows not only the identification of failures without
compromising the system but also to facilitate the process of sending the responses derived
from the exceptions.

This is an important aspect seeing that as the API grows, the degree of consistence needed
within the app grows too and, to avoid the process of creating successive Response Entities
for the responses, an exception handler can be implemented.

For that reason and aware of this problem the author decided to implement an exception
handler in order to centralize the error handling logic. This was an easy task, since Spring
Boot provides different options to do exception handling in apps.

8.1.5. Data Management System

The data management process consists in several tasks, and managing a database involves
designing, implementing and supporting stored data, to maximize its value. Out of several
types of database management systems, the one used was the centralized method, that
assures that the data resides in one system and place, and all clients access data through
that one place.

67

Chapter 8

After defining the type of database management, from the options available on the market
to develop the database, the intern used PostgreSQL (free and open-source relational
database management system)[93] as previously established and through Docker, reducing
the task of installing and running software to two simple commands: docker [94] run and
docker pull. For starters, the intern did a pull on the most recent and stable image of
PostgreSQL and from then on began developing the database model.

To make the database management process more fluid, a GUI (Graphical User Inter-
face) application was used, DBeaver. This GUI is a free “multi-platform database tool
for developers, database administrators, analysts and all people who need to work with
databases”[95]. To make the connection between Docker and DBeaver it was only nec-
essary to provide some parameters of connection such as host, port, user, password and
driver. To integrate with the server it was only needed the addition of the Postgres maven
dependency.

The intern was advised to pay particular attention to was the database migrations process.
In order to do that, the intern used Flyway, an “Apache v2 licensed open-source tool that
makes database migrations easy”[96]. Using migrations, Flyway updates a database to
the next version, and said migrations are written using SQL database-specific syntax.
The integration of this tool with the server was done through the addition of the maven
dependency.

This approach revealed useful, seeing as the intern managed to build the database through
constant versioning.

8.1.6. Integration with Twilio

The platform to be developed, from the beginning of its conception, required the integration
with external entities in order to be able to fulfill the functional requirements defined for
the platform. Thus, this project included the integration of four APIs provided by Twilio
(a CPaaS), namely the Twilio Verify API, Twilio Phone Numbers, Twilio Voice API and,
at last, the Twilio Messages API.

In order to be able to use the resources provided by Twilio’s web service APIs, the user
created an account on the respective platform to which was associated an Account SID and
AUTH TOKEN (represented in figure 8.3). Altough in Twilio’s ecosystem, each product
has its own API, the way of interacting with each one of them is the same, meaning that
they can be used through HTTP or using Twilio’s helper libraries.

Figure 8.3: Twilio credentials generated after the Twilio account creation

With that in mind, the process of authentication carried out by Twilio to access the re-
sources involves the HTTP basic Authentication where the SID Account works as username
and the AUTH TOKEN as the password. This allows to protect the URLs on the server
side, meaning that only the server and Twilio can access them. An example of a request
using the account credentials is as shown below:

68

Implementation

curl -G https://api.twilio.com/2010-04-01/Accounts \
-u ’[YOUR ACCOUNT SID]:[YOUR AUTH TOKEN]’

Figure 8.4: Example of a HTTP request

In addition to the type of authentication used to access the resources, it is also necessary
to explain that Twilio uses Webhooks to asynchronously notify when some events happen,
like receiving an incoming call or receiving an SMS message.

This way, when an event such as the arrival of a message occurs, Twilio makes an HTTP
request (usually a POST or GET) to the API Backend at the URL configured for that
Webhook. This request includes details about the event that was triggered. As the server
recieves the request, it must reply to Twilio with the instructions of the actions to perform.

Considering that the intern must use Webhooks to interact with Twilio, in the case of
calls, it was necessary to define two Webhooks: one for when an incoming call arrives and
another for when there is a state change in a call (e.g. call disconnection, reject call). In
the case of messages, one Bundle was created for when a message is received.

A critical aspect is how the temporary phone numbers are supplied to the platform by
Twilio, because since February 2020, Twilio mandates to provide documentation regarding
the person that will use those numbers. For this purpose, the intern had to create two
Regulatory Bundles, one for each number type in a country. Figure 8.5 presents the two
Bundles created through Twilio console.

Figure 8.5: Twilio credentials generated after the Twilio account creation

Each created Bundle has an acknowledgment section (Figure 8.6) associated to it, that
informs the user about how the documents they provided are used by Twilio.

Figure 8.6: Acknowledgement message showed in every Regulatory Bundle

After the Bundles were created for mobile and national Portuguese numbers, the intern
was apt to buy temporary phone numbers supplied by Twilio. From that moment forward,
the intern started implementing the functionalities relating to communications that will
be made by those phone numbers, the calls and messages.

69

Chapter 8

8.2. Mobile App

The Mobile Application is the second most important component of the system. In relation
to this module, two implementations were made. The first implementation used Expo (an
open-source platform for making universal native apps for Android, iOS, and the web with
JavaScript and React), due to being a widely used platform for the development of small
projects. However, since Expo did not support native calls, the project had to be exported
to a native version.

This way, this section will present the structure, the approach for navigation between
screens, the obtained interfaces, and the data management and permissions.

8.2.1. Structure

This subsection presents the details of the client-side implementation related to the project,
developed using the React Native framework.

The Mobile Applications structure is composed by four main folders:

• assets: this stores static files (e.g. images used in the application).

• android: this stores the native code (written in java) needed to run the app in an
android platform.

• node_modules: this stores NPM or Yarn installed packages.

• src: this stores the dynamic files.

• ios: this stores the native code (written in Swift).

From these guidelines onwards, the intern had total freedom to structure the code. With
that in mind, the intern created, inside the src folder, the following directories:

• components: where the components created by the intern that will be used by the
layouts are (e.g. custom buttons, flat lists, cards).

• screens: where all the application layouts, which are also divided into different fold-
ers depending on the related requirements are (e.g. profile, messages, calls, dialpad).

• stacks: where the stack Navigators that provide transitions between screens are (e.g.
authentication, home, messages).

Even though React is multiplatfrom, the difference between ios and android functionalities
made the intern focus solely on the android operating system.

Seeing as React Native is already a framework that excels for reusing components, and
as it possesses a very active community, the intern made use of some of the community’s
libraries. Although libraries were used, there was always a need to explore and adapt them
to the project. The libraries the intern used throughout the project are identified in the
following table.

70

Implementation

Library Description
react-native-axios A promise based HTTP client for the browser.
react-native-responsive-screen A component that makes UI elements fully responsive.

react-native-contacts A component that allows to access and manage the device’s
contacts.

react-native-immediate-phone-
call

A component that allows to initiate an immediate phone call
without further user interaction.

react-native-gifted-chat A component that provides chat UI features.
react-native-responsive-fontsize A component that allows for fonts to be fully responsive.
react-native-raw-bottom-sheet A component that allows to create and custom bottom sheets.

react-native-snap-caroussel A swipe component that provides previews and multiple lay-
outs for handling animations.

react-native-progress-wheel A component used to create natively animated circular
progress wheel.

Table 8.2: Platform Components

8.2.2. Navigation

Currently, there are several types of navigation that can be used in the development of a
React Native application. Each one of these types has different objectives and implemen-
tation processes.

The intern had to examine the mockups made by the designers from WIT in order to
understand which types of navigation would be used. The chosen navigation types were:
Stack Navigator and Bottom Navigator, as shown in figure 8.7

Figure 8.7: Types of navigators chosen

The project required that both navigators be used together. This falls into the Nesting
Navigators category, meaning that one navigator is rendered inside the screen of another
navigator. This concept is demonstrated in the following diagram (figure 8.8).

71

Chapter 8

Figure 8.8: Navigation diagram

The implementation process for this concept proved hard, since this type of navigation
affects the application’s behaviour. Each navigator has its own navigation history, each
one has its own options, parameters, nested navigators do not receive parent’s events, and
all of these are traits that interfere with the implementation process.

8.2.3. Data Management and Permissions

Concerning the data, the application will only store the access Token and the refresh Token
that are used to make requests to the server (API Backend).

Regarding the permission, it is necessary that the user provides authorization for the
application to access the contacts and make calls. Only then can they completely use the
functionalities provided by the Mobile Application.

8.2.4. Interface

In this subsection are presented the interfaces that were developed for the Mobile Appli-
cation component. Note that the final design is a result of the mockups (see Appendix
C) done by the intern that were then sent for Wit’s design team to decide on the final
aspect. Then the intern followed and tried to match the design team’s decision. Spiik was
the named decided by the design team for the Mobile App.

The biggest challenges found in this section were regarding the handling of data and nav-
igation management between screens.

In all of the following figures, phone numbers will be censored for privacy purposes, since
the numbers can be recycled and reassigned to other people in the future.

72

Implementation

Authentication

The process of authentication requires first of all that a valid phone number is inserted
(figure 8.9), for a valid OTP code to be sent to the user via SMS. After this code is received
by the user, they must insert it for validation (figure 8.10). If the user does not receive an
OTP code, they may request the resending of it through the "Resend Code" button.

Figure 8.9: Phone number insertion screen Figure 8.10: Code verification screen

The OTP code is sent by the service created in Twilio, using the API Verify. The user
receives a message like the following:

Figure 8.11: Message received containing the OTP code

Profile

After the user manages to finish the authentication process, the app stores the access
token and the refresh token, in order to be able to access the resources supplied by the
API Backend component (through access token) and to refresh the access token (through
refresh token).

The users are automatically redirected to the profile screen after the OTP code has been

73

Chapter 8

validated. In this screen they are shown their profile, containing information regarding
the temporary numbers they possess, as well as some of the characteristics of these phone
numbers, such as the number of calls made from that phone number or the number of
messages sent.

The following pictures show both the display for when the user does not yet have any
purchased numbers (figure 8.12) or display the number(s) they have purchased (figure
8.13)

Figure 8.12: Account without purchased
temporary phone numbers screen

Figure 8.13: Account with purchased
temporary phone numbers screen

In case the user possesses any temporary phone number, they may change the plan or the
description associated with that or any other number they purchased. They can also at
any time erase any purchased temporary phone number. The figure 8.14 shows the bottom
sheet where all these options appear.

Figure 8.14: Phone number settings screen

74

Implementation

The next two images will depict the description change screen (figure 8.15) and the sub-
scribed plan change screen(figure 8.16).

Figure 8.15: Edit phone number description
screen Figure 8.16: Change phone number plan screen

In case of cancellation of a temporary phone number, a new bottom sheet appears, where
the user has to confirm the choice.

Temporary Phone Number Purchase

The purchasing process is made up of four steps. First, the user has to choose the country
of origin of the telephone number they intend to buy and the type of phone number (figure
8.17). Next, a determined amount of numbers is presented (figure 8.18), from which they
can choose. If they do not like any of the options presented, they can request other options.

Figure 8.17: Selecting phone number
characteristics screen

Figure 8.18: Example of temporary phone
numbers screen

75

Chapter 8

Thirdly, they can add a description to the number they intend to acquire (figure 8.19). If
they do not want to add a description, they can skip this step.

Figure 8.19: Naming temporary phone
number screen

Lastly, they must select which plan they would like to associate with the phone number
they intend to acquire (figure 8.20). Each plan has a set number of minutes and messages
available. It is also shown to the user which plans they can get, according to their balance.

After the user selects the plan, they are automatically redirected to their profile, where
the newly acquired phone number will already also appear (figure 8.21).

Figure 8.20: Choosing a plan screen Figure 8.21: User profile screen

76

Implementation

Dialpad

The dialpad (figure 8.22) is a screen in which the user can type in a phone number they
intend to contact. Since the users can have more than one temporary phone number, they
can choose which one to use for which communications (figure 8.23).

Figure 8.22: Dialpad screen Figure 8.23: User profile screen

As soon as the user presses the call button, a native call is initiated from the user’s phone
number to the temporary phone number selected at the top of the screen (figure 8.24).

Figure 8.24: Call in progress screen

77

Chapter 8

Contacts

The user can access their contacts list in the app. For a user to be able to access their
contacts, they have to give authorization for the application to access their contacts (figure
8.25). After this authorization is granted, the contacts are automatically imported and
displayed (figure 8.26).

In this screen, the user can search for the contact they wish to communicate with and use
the call or message buttons to immediately initiate communications.

Figure 8.25: Allow access to contacts message
screen Figure 8.26: Imported contacts screen

Messages

Other than the calls, the user can also send and receive messages through the temporary
phone numbers. For this purpose, when the user accesses the messages tab, they will come
across a screen where their chats are displayed (figure 8.27).

In the context of this project, a chat is a conversation room of sorts between the user and
the other person, where all exchanged messages are shown.

In the first screen is displayed the information of who the conversations are with, as well
as the date of the last message. If there are no conversations, the screen will display a
message encouraging the sending of messages (figure 8.28).

78

Implementation

Figure 8.27: Message history with no
cenversations screen

Figure 8.28: Message history with
conversations screen

Other than accessing the messages history, the user can press the button on the top right
corner to create a new message and be redirected to a menu where their contacts appear
and from which they can choose to who they want to send the message (figure 8.29). After
selecting the message’s recipient, the user is redirected to a screen where they can write
the message they want to send (figure 8.30).

Figure 8.29: Create new message: select select
contact screen

Figure 8.30: Create new message: write
message screen

79

Chapter 8

If the user already has some exchanged messages with the other individual, pressing on
the contact will direct the user to a screen where the conversation, with all the messages
exchanged with that person, is displayed. (figure 8.31)

Figure 8.31: Conversation screen

Calls

Since the purpose of this application is to facilitate communications, it is important to
keep records of them. This way, the user has the possibility of checking all calls made and
received through the temporary phone numbers they possess. In this case, a screen was
created to allow the user to see all the records or filter through the unanswered calls (figure
8.32). If the user has no call records, the screen will appear as in figure 8.33.

Figure 8.32: Calls history screen Figure 8.33: Empty call history screen

80

Implementation

Settings

Through the user’s profile screen, the user can access the settings, where they can logout
or cancel their account. The Terms of Service and Privacy Policy appear on the menu but
were added for aesthetic purposes only. The image 8.34 shows the settings menu.

Figure 8.34: Settings screen

After having described how the system’s components were implemented and demonstrating
their interface (Mobile App only), the author will present how the developed software was
verified and validated, in the next chapter.

81

This page is intentionally left blank.

Chapter 9

Verification and Validation

In the context of building a software product, quality assurance is one of the several phases
that is associated with the process of software engineering. According to Ian Sommerville
[97] , quality assurance is "a planned and systematic pattern of all actions necessary to
provide adequate confidence that an item or product conforms to established technical
requirements". Hence, this phase can occur during or after the implementation phase and
is of high importance since it is where the verification and validation take place. [98]

Despite being seemingly identical, verification and validation are two different processes
that are usually executed by distinctive entities and with different objectives as well, shar-
ing only the fact that both are conducted through tests.

The difference between Verification and Validation is that Verification tries to answer the
question " Have we built the product well?", and Validation tries to answer the question
"Have we built what was expected?".

For a better understanding of these processes, one needs to introduce the concepts of
failure, error, and fault: A failure is an instantaneous event that occurs as a result of
accumulated situations and errors throughout the system execution time and causes un-
expected behaviour. An error consists in an inconsistent state of the computer, usually
due to bad resource management practices, generating the appearance of failures. Lastly,
a fault is an abnormal condition or defect at the component level that can lead to a failure.
[99]

In short, in a development process, it is necessary to identify the faults that are at the origin
of the errors in order to avoid that the system shows failures. If this is not done, there is a
risk of obtaining unexpected behaviours that may lead to the system malfunctioning. This
way, in the context of software engineering, the processes of verification and validation are
used for debugging and investigating the causes for the faults, through testing.

Each test reveals how the software product behaves when faced with a predetermined
condition. Since it is not enough to execute merely one single test, as a rule, a set of tests
is executed with all the previously determined conditions. The final result after each test
allows for a later assessment of if the product has the expected behaviour or not.

Aside from the number of tests, one other quite important factor is the environment in
which the tests are conducted, which, being varying, influence the results. This difference
in behaviour that happens between environments then requires that the verification and
validation steps feature tests that have various perspectives and techniques, with the pur-
pose of maximizing the number of conditions tested. Hence, in terms of taxonomy, there

83

Chapter 9

are two distinctive types of tests that can be performed:

• Dynamic Testing: represents all the tests that depend on execution environments.
Resorts to compiled software and it is through these that failures and errors are
identified.

• Static Testing: represents all the tests that are executed on the artifacts produced
by the implementation process. They do not resort to any type of operation envi-
ronment and are responsible for identifying failures.

According to the distinction made previously, it is noteworthy that the dynamic testing
can be accomplished by any entity (e.g end-user or developer) of the development process,
unlike the static testing that can only be executed by the entities that have technological
knowledge of said artifacts.

Accomplishing all of this, this chapter intends to explain what types of testing the au-
thor carried out so as to be able to identify and validate the MVP he developed during
the internship. For that, the chapter was divided in two sections, the first exposes the
verification process and the second the validation process.

9.1. Verification

Verification is a subphase of the software development process that has the purpose of
making sure that the system is in accord with what was specified [99]. In order to be
able to do so, both static and dynamic testing are used. Of the tests defined by classical
literature [100, 101], the ones chosen for the verification process were unit tests, integration
tests and functional tests.

The unit and integration tests were conducted throughout the MVP’s development, after
the Sprint corresponding to each requirement implemented, whereas the functional tests
were used in the final stage of the project, to show that the requirements predetermined
during the first semester were accomplished or not.

9.1.1. Unit Testing

The unit testing is where tests are written and run by software developers to guarantee
that a section of an application (known as the "unit") meets its design and behaves as
intended. These must be executed continuously all throughout the development time.
During the implementation phase, the intern always resorted to unit testing to ensure
that the components he was implementing worked according to expectations. Although
it is highly recommended to automate unit testing, the intern did it manually. In terms
of strategy used to choose the unit tests, the author opted to follow the Guideline-based
testing strategy, based on guidelines that reflect previous experience of the kind of errors
that programmers often make when developing components.

Some of the guidelines used stemmed from Whittaker’s book [102], such as:

• Choosing inputs that force the system to generate error messages.

84

Verification and Validation

• Forcing invalid outputs to be generated.

• Designing inputs that cause input buffers to overflow.

• Repeating the same input numerous times.

9.1.2. Integration Testing

After the unit tests were conducted, the author proceeded to integration tests. An inte-
gration test is “a level of software testing where individual units are combined and tested
as a group”[103]. This sort of test only begins when the unit tests are seen as finished and
successful. For this next stage, out of three alternatives of execution (Big Bang, Top-down
or Bottom-up), the intern chose to use the Bottom-up, which considers that only when
more specific components are successfully tested, can they be integrated with other broader
components.

Before performing this testing, detailed design documentation where interactions between
each unit are clearly defined is needed. For this reason, the author used the sequence
diagrams drawn up during the system architecture phase.

The steps to integration testing were as follows:

• The Integration Test Strategy that could be adopted was determined. As stated, the
intern chose the Bottom-up strategy.

• The Architecture design of the Application was studied and the Critical Modules
were identified.

• The test cases were created to verify all of the interfaces in detail and test data was
also defined. The intern performed this step in a rather informal manner, without
creating proper documentation.

• The tests were conducted, and when defects were found, they were tracked, corrected
and re-tested, until the integration tests were complete.

This whole procedure revealed quite useful, seeing as it allowed to detect interface-related
errors, as well as that integrated modules worked properly. On the other hand, it was
time-consuming, since it needed to verify and ensure the previously stated advantages.
The integration tests done were not documented, hence they are not in this report.

9.1.3. Functional Testing

Functional testing is a type of software testing that validates the software system against
the functional requirements/specifications. The purpose of Functional tests is to test each
function of the software application, by providing appropriate input and cross checking the
output against the functional requirements list.

Functional testing mainly involves black box testing and is not concerned about the source
code of the application. This type of testing was used to check the user interface, the
API, the database, the client/server communication and other functionalities of the WIT
Temporary Numbers Platform. This was performed during the implementation phase
although it was formally documented only at the end of the internship.

The strategy to define the Functional tests followed these steps:

85

Chapter 9

• Understanding the Software Engineering Requirements.

• Identifying test input (test data).

• Computing the expected outcomes with the selected test input values.

• Executing test cases.

• Comparing of actual and computed expected result.

Table 9.1 represents an example of a functional requirement described as mentioned earlier.
The remainder of the requirements are detailed the Appendix D.

Id Test
Scenario Test Steps Expected Result Result

TC01 Registration 1) Insert valid phone number
2) Insert the OTP received

User is registered into the
plaform

PASS

Table 9.1: Functional test case example

9.2. Validation

For the purpose of validating the final output, acceptance tests are usually used, that have
the purpose of validating if the final users and clients’ requirements are implemented in
the software product made available. This act of validation is fully supported by dynamic
testing and is only conducted by the clients or final users [99].

Since the objective of the internship was to develop a prototype for the internship proposal.
It was established from the beginning that the Scrum Masters and Product Owner would
represent the client. Therefore, monthly meetings were conducted to make it so that the
intern could present the work done and validate it.

Besides the monthly meetings, there was a presentation at the end of the internship (June
30th) for WIT’s Business Development Manager with the purpose of showing the value
proposal developed by the intern during the school year.

From the final meeting, the Business Development Manager showed interest in the solution
developed by the intern, yet it is now up to WIT to decide on the next steps.

Having now explained the processes of verification and validation that took place during
the internship, the next and last chapter will expose the conclusions and future work.

86

Chapter 10

Conclusions and Future Work

At the end of the internship, it is necessary to reflect and review the entire path that
was taken by the intern during the academic year. Therefore, this last chapter contains an
overview of the work done during the internship, some considerations regarding the project
success, what can be done to improve this project in the future and for last, a personal
analysis of the internship.

10.1. Overview

This internship focused on designing and implementing an MVP of a solution capable
of providing temporary phone numbers. The prototype developed in the context of this
internship involved several different aspects such as searching and understanding, learning
of new technologies, integration with Twilio APIs.

The first challenge of the internship came with the fact that no software related to the
internship’s proposal had been implemented at WIT Software, S.A Therefore, there was a
need to search and analyse whats was available on the market in order to start designing
the solution. State of the art had a major importance in this project because it allowed to
understand which features the competitors used in order to start designing the MVP.

After that analysis, there was a need to define which features would compose the prototype.
With that definition, the requirements phase followed, starting by user stories, use cases
definition and the mockups.

An architecture for the solution was designed based on those requirements and the output
didn’t suffer any alterations. This was one of the longest phases of the internship because it
was needed of the intern to understand which components the solution would need, which
technologies, know how communications processes are done, how they flow, among others.

The implementation of the solution only took place in the second semester and despite the
difficulties that arose over time, there was always the objective of validating and verifying
what was implemented through meetings with the supervisors.

Although the intern did not manage to implement everything that was expected, the final
result allowed to have a functional prototype of the desired solution.

87

Chapter 10

10.2. Success Evaluation

With the end of the internship, it was essential to understand if the project was successful.
In the context of software engineering, there is no specific formula that allows to calculate
whether a project has been successful or not. However, there are some metrics that can
be used in order to find it, such as: if the project met business requirements, if it was
delivered and maintained on schedule, if it was delivered and maintained within budget, if
the project delivered the expected business value [104].

From this point of view, it was defined from the start that what was expected was a
functional prototype that was capable of providing and allowing communications through
temporary phone numbers. Following this line of thought, the solution designed by the
intern was made up of three components, and even though not all of the plataform’s
components were implemented, the final result was a functional prototype that allows the
purchase and use of temporary numbers, fulfilling the requirements defined for the mobile
app. Only the platform’s management was left out, which would be done through a Web
Portal (Admin Dashboard). This was agreed on by WIT, prioritizing other parts of the
project.

In sum, the expected outcome of the internship was not fully accomplished. Yet, the
artifacts produced during the internship can be useful for WIT to understand the next
steps to take in the future.

10.3. Future Work

There are opportunities for future work derived from unimplemented requirements, as well
as from the evolution of the MVP. Since the Admin Dashboard was not implemented but
was fully planned, that is the starting point for work to be done in the future to complete
the proposed MVP.

The following steps could be to implement possible improvements to the prototype, some
of which were already identified by the intern together with his supervisors, during the
implementation phase.

Lastly, the MVP should be evaluated by possible external clients and if it proves that this
value proposition has a place in the market, then a transition to the commercial product
should take place.

10.4. Final Considerations

This internship was an extraordinary opportunity for professional and personal improve-
ment. In the face of what was undoubtedly the greatest challenge the intern was ever
posed with, he is pleased to say that the majority of the goals set in the beginning of this

88

Conclusions and Future Work

task were carried out. However, several problems emerged during this unexpected moment
of lockdown. The difficulties were discussed with the project team and actions were de-
signed to minimize its negative impact (e.g. project extension). There is still a feeling of
accomplishment in bringing a project from its creation all the way to its end, overcoming
obstacles and taking every step until it becomes a finished product.

Such a venture required that the author put to use the knowledge acquired over time while
studying and that he learn even more, deepening his understanding in several technologies
and getting acquainted with new ones, and this is sure to be a valuable experience to take
as he makes his way as a software engineer.

The intern had the opportunity to conduct the project at WIT with an extensive degree of
autonomy, in an entirely new product, with the valuable guidance provided by the company
experts.

Overall, it was a rewarding experience that built the author’s confidence in his own abilities,
challenging him and making him evolve in this field of expertise.

89

This page is intentionally left blank.

References

[1] JavaTPoint. Spring boot architecture. https://www.javatpoint.com/
spring-boot-architecture. Accessed on July.

[2] techopedia. Service provider. https://www.techopedia.com/definition/22021/
service-provider. Accessed on December.

[3] Wit-Software SA. Wit Software Bluebook , 2015. Accessed on October.

[4] M-STAT. The evolution of telecommunications. https://www.m-stat.gr/
the-evolution-of-telecommunications. Accessed on December.

[5] Frederic Gonzalo. When is a mobile used? http://fredericgonzalo.com/
wp-content/uploads/2012/04/Screen-Shot-2012-04-21-at-3.32.38-PM.png.
Accessed on December.

[6] Jackie Dove. The best apps for a second phone number. https://www.
digitaltrends.com/mobile/best-apps-for-a-second-phone-number/. Accessed
on December.

[7] techopedia. What does minimum viable product (mvp) mean? https://www.
techopedia.com/definition/27809/minimum-viable-product-mvp. Accessed on
December.

[8] Alan Quayle. The growing importance of the phone number beyond the call. http:
//alanquayle.com/2015/04/importance-phone-number-beyond-the-call/. Ac-
cessed on Jun.

[9] FREEZVON. Classification of phone numbers. https://freezvon.com/services/
phone-numbers. Accessed on June.

[10] Microsoft. Different kinds of phone numbers used for call-
ing plans. https://docs.microsoft.com/en-us/microsoftteams/
different-kinds-of-phone-numbers-used-for-calling-plans. Accessed
on May.

[11] Ofcom. Geographic telephone numbers. https://www.ofcom.org.uk/
consultations-and-statements/category-1/geographic-numbers. Accessed on
May.

[12] Ofcom. Non-geographic call services. https://www.ofcom.org.uk/
phones-telecoms-and-internet/information-for-industry/policy/
non-geo-call-services. Accessed on May.

[13] Simple Textin. What is a landline number? https://simpletexting.com/
what-is-a-landline-number/. Accessed on June.

91

https://www.javatpoint.com/spring-boot-architecture
https://www.javatpoint.com/spring-boot-architecture
https://www.techopedia.com/definition/22021/service-provider
https://www.techopedia.com/definition/22021/service-provider
https://www.m-stat.gr/the-evolution-of-telecommunications
https://www.m-stat.gr/the-evolution-of-telecommunications
http://fredericgonzalo.com/wp-content/uploads/2012/04/Screen-Shot-2012-04-21-at-3.32.38-PM.png
http://fredericgonzalo.com/wp-content/uploads/2012/04/Screen-Shot-2012-04-21-at-3.32.38-PM.png
https://www.digitaltrends.com/mobile/best-apps-for-a-second-phone-number/
https://www.digitaltrends.com/mobile/best-apps-for-a-second-phone-number/
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
http://alanquayle.com/2015/04/importance-phone-number-beyond-the-call/
http://alanquayle.com/2015/04/importance-phone-number-beyond-the-call/
https://freezvon.com/services/phone-numbers
https://freezvon.com/services/phone-numbers
https://docs.microsoft.com/en-us/microsoftteams/different-kinds-of-phone-numbers-used-for-calling-plans
https://docs.microsoft.com/en-us/microsoftteams/different-kinds-of-phone-numbers-used-for-calling-plans
https://www.ofcom.org.uk/consultations-and-statements/category-1/geographic-numbers
https://www.ofcom.org.uk/consultations-and-statements/category-1/geographic-numbers
https://www.ofcom.org.uk/phones-telecoms-and-internet/information-for-industry/policy/non-geo-call-services
https://www.ofcom.org.uk/phones-telecoms-and-internet/information-for-industry/policy/non-geo-call-services
https://www.ofcom.org.uk/phones-telecoms-and-internet/information-for-industry/policy/non-geo-call-services
https://simpletexting.com/what-is-a-landline-number/
https://simpletexting.com/what-is-a-landline-number/

Chapter 10

[14] Formulate Information Design. Landline phone numbers
in electronic forms. https://www.formulate.com.au/blog/
landline-phone-numbers-in-electronic-forms/. Accessed on May.

[15] Sonetel. Are there different types of numbers? https://sonetel.com/pt-pt/help/
help-topics/phone-numbers/are-there-different-types-of-phone-numbers/.
Accessed on May.

[16] Dial9 Communications. Internal numbers. https://www.dial9.co.uk/support/
dial-9-connect/numbers/internal-numbers. Accessed on Jun.

[17] Twilio. Short code. https://www.twilio.com/docs/glossary/
what-is-a-short-code. Accessed on June.

[18] Justia. Unwanted telemarketing. https://www.justia.com/consumer/
deceptive-practices-and-fraud/unwanted-telemarketing/. Accessed on
December.

[19] Oag. Overwhelmed by robocalls? https://oag.dc.gov/blog/
overwhelmed-robocalls-here-are-5-tips-help. Accessed on December.

[20] Sean Captain. Stop giving companies your phone
number. https://www.fastcompany.com/90415625/
stop-giving-companies-your-phone-number-do-this-instead. Accessed
on December.

[21] Tech Suport. Benefits of disposable temporary phone
numbers. https://www.davestechsupport.net/blog/
benefits-of-disposable-temporary-phone-numbers/. Accessed on October.

[22] Hushed. What are disposable numbers and how do they benefit us. https://hushed.
com/features/disposable-numbers. Accessed on October.

[23] Twilio. Guidelines. https://www.twilio.com/guidelines/pt/regulatory. Ac-
cessed on June.

[24] Plivo. Local regulations. https://www.plivo.com/docs/numbers/api/
verification/address#delete-an-address. Accessed on June.

[25] Keepsafe Software Zouhair Belkoura, CEO Co-Founder. Can someone find out
your real number if you’re using a burner app number? https://www.quora.com/
Can-someone-find-out-your-real-number-if-youre-using-a-burner-app-number.
Accessed on October.

[26] Telesign. Number deactivation and the recycled phone
number dilemma. https://www.telesign.com/blog/post/
number-deactivation-and-the-recycled-phone-number-dilemma. Accessed
on June.

[27] Twilio. Cancel or release a twilio number. https://support.twilio.com/hc/en-us/
articles/223183028-Cancel-or-release-a-Twilio-numbea. Accessed on Jun.

[28] giffgaff. Why is my phone number deactivated? https://www.giffgaff.com/help/
articles/why-is-my-phone-number-deactivated. Accessed on June.

[29] Twilio. Emergency calling. https://www.twilio.com/docs/sip-trunking/
emergency-calling. Accessed on October.

92

https://www.formulate.com.au/blog/landline-phone-numbers-in-electronic-forms/
https://www.formulate.com.au/blog/landline-phone-numbers-in-electronic-forms/
https://sonetel.com/pt-pt/help/help-topics/phone-numbers/are-there-different-types-of-phone-numbers/
https://sonetel.com/pt-pt/help/help-topics/phone-numbers/are-there-different-types-of-phone-numbers/
https://www.dial9.co.uk/support/dial-9-connect/numbers/internal-numbers
https://www.dial9.co.uk/support/dial-9-connect/numbers/internal-numbers
https://www.twilio.com/docs/glossary/what-is-a-short-code
https://www.twilio.com/docs/glossary/what-is-a-short-code
https://www.justia.com/consumer/deceptive-practices-and-fraud/unwanted-telemarketing/
https://www.justia.com/consumer/deceptive-practices-and-fraud/unwanted-telemarketing/
https://oag.dc.gov/blog/overwhelmed-robocalls-here-are-5-tips-help
https://oag.dc.gov/blog/overwhelmed-robocalls-here-are-5-tips-help
https://www.fastcompany.com/90415625/stop-giving-companies-your-phone-number-do-this-instead
https://www.fastcompany.com/90415625/stop-giving-companies-your-phone-number-do-this-instead
https://www.davestechsupport.net/blog/benefits-of-disposable-temporary-phone-numbers/
https://www.davestechsupport.net/blog/benefits-of-disposable-temporary-phone-numbers/
https://hushed.com/features/disposable-numbers
https://hushed.com/features/disposable-numbers
https://www.twilio.com/guidelines/pt/regulatory
https://www.plivo.com/docs/numbers/api/verification/address#delete-an-address
https://www.plivo.com/docs/numbers/api/verification/address#delete-an-address
https://www.quora.com/Can-someone-find-out-your-real-number-if-youre-using-a-burner-app-number
https://www.quora.com/Can-someone-find-out-your-real-number-if-youre-using-a-burner-app-number
https://www.telesign.com/blog/post/number-deactivation-and-the-recycled-phone-number-dilemma
https://www.telesign.com/blog/post/number-deactivation-and-the-recycled-phone-number-dilemma
https://support.twilio.com/hc/en-us/articles/223183028-Cancel-or-release-a-Twilio-numbea
https://support.twilio.com/hc/en-us/articles/223183028-Cancel-or-release-a-Twilio-numbea
https://www.giffgaff.com/help/articles/why-is-my-phone-number-deactivated
https://www.giffgaff.com/help/articles/why-is-my-phone-number-deactivated
https://www.twilio.com/docs/sip-trunking/emergency-calling
https://www.twilio.com/docs/sip-trunking/emergency-calling

References

[30] Nexmo. Can i call emergency services (e.g. 911,
999, 112). https://help.nexmo.com/hc/en-us/articles/
207424127-Can-I-call-Emergency-Services-e-g-911-999-112-using-Nexmo-E911-.
Accessed on october.

[31] Vonage. Traditional 911 and vonage 911 dialing. https://support.vonage.com/
articles/answer/Traditional-911-and-Vonage-911-Dialing-1110. Accessed on
October.

[32] RingCentral. Ringcentral emergency services policy. https://www.ringcentral.
com/legal/last-update-October-15-2019/emergency-services.html. Accessed
on October.

[33] Mike Chu. Can a burner phone number be traced + 19 steps to get one prop-
erly? https://dataoverhaulers.com/can-a-burner-phone-number-be-traced/.
Accessed on NOvember.

[34] techtarget. Private branch exchange (pbx). https://
searchunifiedcommunications.techtarget.com/definition/
private-branch-exchange. Accessed on October.

[35] Atlantech. Pbx providers. https://www.atlantech.net/blog/
the-5-best-hosted-pbx-providers-for-businesses-of-all-sizes. Accessed
on October.

[36] RingCentral. Ringcentral. https://www.ringcentral.com. Accessed on October.

[37] Wikipedia. Vonage. https://en.wikipedia.org/wiki/Vonage. Accessed on Octo-
ber.

[38] Atlantech. Atlantech. https://www.atlantech.net. Accessed on October.

[39] Techtarget. Cpaas definition. https://searchunifiedcommunications.
techtarget.com/definition/Communications-platform-as-a-service-CPaaS.
Accessed on October.

[40] RadioStudio. The most popular cpaas providers of 2019. https://radiostud.io/
the-most-popular-cpaas-providers. Accessed on October.

[41] Twilio. Twilio. ’https://www.twilio.com. Accessed on October.

[42] Nexmo. Nexmo. https://www.nexmo.com. Accessed on October.

[43] Plivo. Plivo. https://www.plivo.com. Accessed on October.

[44] Talkroute. Diference between carrier and service provider. https://talkroute.
com/carriers-service-providers-whats-the-difference. Accessed on October.

[45] Twilio. Twilio. ’https://www.twilio.com. Accessed on October.

[46] Nexmo. Nexmo. https://www.nexmo.com. Accessed on October.

[47] Plivo. Plivo. https://www.plivo.com. Accessed on October.

[48] AffinityClick. Hushed. https://affinityclick.com/hushed/. Accessed on Octo-
ber.

[49] Wikipedia. Line2. https://en.wikipedia.org/wiki/Line2. Accessed on October.

93

https://help.nexmo.com/hc/en-us/articles/207424127-Can-I-call-Emergency-Services-e-g-911-999-112-using-Nexmo-E911-
https://help.nexmo.com/hc/en-us/articles/207424127-Can-I-call-Emergency-Services-e-g-911-999-112-using-Nexmo-E911-
https://support.vonage.com/articles/answer/Traditional-911-and-Vonage-911-Dialing-1110
https://support.vonage.com/articles/answer/Traditional-911-and-Vonage-911-Dialing-1110
https://www.ringcentral.com/legal/last-update-October-15-2019/emergency-services.html
https://www.ringcentral.com/legal/last-update-October-15-2019/emergency-services.html
https://dataoverhaulers.com/can-a-burner-phone-number-be-traced/
https://searchunifiedcommunications.techtarget.com/definition/private-branch-exchange
https://searchunifiedcommunications.techtarget.com/definition/private-branch-exchange
https://searchunifiedcommunications.techtarget.com/definition/private-branch-exchange
https://www.atlantech.net/blog/the-5-best-hosted-pbx-providers-for-businesses-of-all-sizes
https://www.atlantech.net/blog/the-5-best-hosted-pbx-providers-for-businesses-of-all-sizes
https://www.ringcentral.com
https://en.wikipedia.org/wiki/Vonage
https://www.atlantech.net
https://searchunifiedcommunications.techtarget.com/definition/Communications-platform-as-a-service-CPaaS
https://searchunifiedcommunications.techtarget.com/definition/Communications-platform-as-a-service-CPaaS
https://radiostud.io/the-most-popular-cpaas-providers
https://radiostud.io/the-most-popular-cpaas-providers
'https://www.twilio.com
https://www.nexmo.com
https://www.plivo.com
https://talkroute.com/carriers-service-providers-whats-the-difference
https://talkroute.com/carriers-service-providers-whats-the-difference
'https://www.twilio.com
https://www.nexmo.com
https://www.plivo.com
https://affinityclick.com/hushed/
https://en.wikipedia.org/wiki/Line2

Chapter 10

[50] Cloud SIM. Cloud sim app. https://www.cloudsimapp.com. Accessed on October.

[51] Wikipedia. Pinger. https://en.wikipedia.org/wiki/Pinger. Accessed on Octo-
ber.

[52] Sideline. Sideline. https://www.sideline.com. Accessed on October.

[53] Swapp. Swapp. https://www.swapp.pt. Accessed on October.

[54] Wikipedia. Meo. https://en.wikipedia.org/wiki/Meo_(telecommunication_
service). Accessed on October.

[55] Susan E. Reid and Ulrike de Brentani. Software Architecture in Practice, 2010.
Accessed on June.

[56] Scrum.org. What is scrum? https://www.scrum.org/resources/what-is-scrum.
Accessed on December.

[57] Ken Schwaber. SCRUM Development Process, 1997. Accessed on September.

[58] Scrum.org. Scrum framework. https://s3.amazonaws.com/
scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf. Ac-
cessed on December.

[59] ScrumGuide.org. Scrum guides. https://www.scrumguides.org/scrum-guide.
html. Accessed on December.

[60] Cast. Risk management in software development and software en-
gineering projects. https://www.castsoftware.com/research-labs/
risk-management-in-software-development-and-software-engineering-projects.
Accessed on December.

[61] ProfessionalQA.com. Risk management activities. http://www.professionalqa.
com/risk-management-activity. Accessed on December.

[62] Project Management Institute. Risk analysis and management. https://www.pmi.
org/learning/library/risk-analysis-project-management-7070. Accessed on
December.

[63] Julian Talbot. What’s right with risk matrices? https://www.juliantalbot.com/
post/2018/07/31/whats-right-with-risk-matrices. Accessed on December.

[64] stakeholdermap.com. Risk management risk analysis templates and advice.
https://www.stakeholdermap.com/risk/risk-assessment-matrix-simple-3x3.
html#risk. Accessed on December.

[65] geeksforgeeks.org. Software engineering | requirements elicitation. https://www.
geeksforgeeks.org/software-engineering-requirements-elicitation/. Ac-
cessed on December.

[66] Raul Sidnei Wazlawick. Object-Oriented Analysis and Design for Information Sys-
tems, 2014. Accessed on December.

[67] MOUNTAIN GOAT SOFTWARE. User stories. https://www.
mountaingoatsoftware.com/agile/user-stories. Accessed on December.

[68] Marwan H. Soliman. The skeleton of user stories. https://medium.com/@marwan_
hamdy/the-skeleton-of-user-stories-718c7e78dd83. Accessed on December.

94

https://www.cloudsimapp.com
https://en.wikipedia.org/wiki/Pinger
https://www.sideline.com
https://www.swapp.pt
https://en.wikipedia.org/wiki/Meo_(telecommunication_service)
https://en.wikipedia.org/wiki/Meo_(telecommunication_service)
https://www.scrum.org/resources/what-is-scrum
https://s3.amazonaws.com/scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf
https://s3.amazonaws.com/scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects
https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects
http://www.professionalqa.com/risk-management-activity
http://www.professionalqa.com/risk-management-activity
https://www.pmi.org/learning/library/risk-analysis-project-management-7070
https://www.pmi.org/learning/library/risk-analysis-project-management-7070
https://www.juliantalbot.com/post/2018/07/31/whats-right-with-risk-matrices
https://www.juliantalbot.com/post/2018/07/31/whats-right-with-risk-matrices
https://www.stakeholdermap.com/risk/risk-assessment-matrix-simple-3x3.html#risk
https://www.stakeholdermap.com/risk/risk-assessment-matrix-simple-3x3.html#risk
https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/
https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/
https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
https://medium.com/@marwan_hamdy/the-skeleton-of-user-stories-718c7e78dd83
https://medium.com/@marwan_hamdy/the-skeleton-of-user-stories-718c7e78dd83

References

[69] usability.gov. Use cases. https://www.usability.gov/how-to-and-tools/
methods/use-cases.html. Accessed on December.

[70] Product Plan. Moscow prioritization. https://www.productplan.com/glossary/
moscow-prioritization/. Accessed on December.

[71] http://faculty.washington.edu/. Use case template by alistair cockburn.
http://faculty.washington.edu/jtenenbg/courses/360/f01/project/
usecasetemplate.html. Accessed on December.

[72] Ravi Prakash Gorthi Vikas Bajpai. On Non-Functional Requirements: A Survey,
2012. Accessed on July.

[73] Nikolay Ashanin. Quality attributes in software architecture. https://medium.com/
@nvashanin/quality-attributes-in-software-architecture-3844ea482732.
Accessed on Jun.

[74] Tonya Smyrnova. Software quality attributes and their im-
pact on your business. https://syndicode.com/2019/06/14/
software-quality-attributes-and-their-impact-on-your-business/. Ac-
cessed on Jun.

[75] Paul Clements and Rick Kazman. Market Vision and Market Visioning Competence:
Impact on Early Performance for Radically New, High-Tech Products, 2010. Accessed
on June.

[76] Wen Tao. What makes good software architecture. https://medium.com/
software-engineering-problems/what-makes-up-the-software-20f607da9155.
Accessed on December.

[77] Lea Maya Karam. The importance of good software architecture. https://dzone.
com/articles/the-importance-of-a-good-software-architecture. Accessed on
December.

[78] Simon Brown. The c4 model for visualising software architecture. https://c4model.
com. Accessed on June.

[79] toturialspoint. Spring boot - introduction. https://www.tutorialspoint.com/
spring_boot/spring_boot_introduction.htm. Accessed on August.

[80] CCorner. What and why react. https://www.c-sharpcorner.com/article/
what-and-why-reactjs/. Accessed on Jun.

[81] toturialspoint. Postgresql. https://www.tutorialspoint.com/postgresql/
postgresql_overview.htm. Accessed on Aug.

[82] CloudFlare. What is https? https://www.cloudflare.com/learning/ssl/
what-is-https/. Accessed on Jul.

[83] w3schools. What is json? https://www.w3schools.com/whatis/whatis_json.asp.
Accessed on August.

[84] infobit. Otp (one-time pin) code. https://www.infobip.com/glossary/
otp-one-time-pin-code. Accessed on December.

[85] TwilioDocs. Verify api. https://www.twilio.com/docs/verify/api. Accessed on
December.

95

https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/
http://faculty.washington.edu/jtenenbg/courses/360/f01/project/usecasetemplate.html
http://faculty.washington.edu/jtenenbg/courses/360/f01/project/usecasetemplate.html
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732
https://syndicode.com/2019/06/14/software-quality-attributes-and-their-impact-on-your-business/
https://syndicode.com/2019/06/14/software-quality-attributes-and-their-impact-on-your-business/
https://medium.com/software-engineering-problems/what-makes-up-the-software-20f607da9155
https://medium.com/software-engineering-problems/what-makes-up-the-software-20f607da9155
https://dzone.com/articles/the-importance-of-a-good-software-architecture
https://dzone.com/articles/the-importance-of-a-good-software-architecture
https://c4model.com
https://c4model.com
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.tutorialspoint.com/postgresql/postgresql_overview.htm
https://www.tutorialspoint.com/postgresql/postgresql_overview.htm
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.w3schools.com/whatis/whatis_json.asp
https://www.infobip.com/glossary/otp-one-time-pin-code
https://www.infobip.com/glossary/otp-one-time-pin-code
https://www.twilio.com/docs/verify/api

Chapter

[86] JWT. Introduction to json web tokens. https://jwt.io. Accessed on December.

[87] Toturial and Example. Spring boot architecture. https://www.
tutorialandexample.com/spring-boot-architecture/. Accessed on July.

[88] restfulapi.net. Rest architectural constraints. https://restfulapi.net/
rest-architectural-constraints/. Accessed on August.

[89] GeeksforGeeks. Rest api architectural constraints. https://www.geeksforgeeks.
org/rest-api-architectural-constraints//. Accessed on August.

[90] spring. Spring security. https://spring.io/projects/spring-security. Accessed
on August.

[91] toturialspoint. Spring boot - servlet filter. https://www.tutorialspoint.com/
spring_boot/spring_boot_servlet_filter.htm. Accessed on August.

[92] javaTpoint. Exception handling in java. https://www.javatpoint.com/
exception-handling-in-java. Accessed on August.

[93] PostgreSQL. Postgresql: The world’s most advanced open source relational database.
https://www.postgresql.org/. Accessed on June.

[94] Docker. Docker overview. https://docs.docker.com/get-started/overview/. Ac-
cessed on June.

[95] DBeaver. Dbeaver community. https://dbeaver.io/. Accessed on June.

[96] Flyway. Version control for your database. https://flywaydb.org/. Accessed on
June.

[97] Ian Sommerville. Software Engineering, 2011. Accessed on July.

[98] Roger S. Pressman. Software Engineering: A Practitioner’s Approach, 2010. Accessed
on June.

[99] Sérgio Guerreiro. Introdução à Engenharia de Software, 2015. Accessed on June.

[100] Ian Sommerville. Software Engineering, 2010. Accessed on August.

[101] Roger S. Pressman. Software Engineering A Practitioners Approach, 2010. Accessed
on August.

[102] James A. Whittaker. Exploratory Software Testing: Tips, Tricks, Tours, and Tech-
niques to Guide Test Design, 2011. Accessed on June.

[103] softwaretestingfundamentals.com. Integration testing. https://
softwaretestingfundamentals.com/software-testing-levels/. Accessed
on August.

[104] DoIT. What makes a successful project? https://doit.maryland.gov/SDLC/
Documents/What%20Makes%20a%20Successful%20Project.pdf. Accessed on Au-
gust.

96

https://jwt.io
https://www.tutorialandexample.com/spring-boot-architecture/
https://www.tutorialandexample.com/spring-boot-architecture/
https://restfulapi.net/rest-architectural-constraints/
https://restfulapi.net/rest-architectural-constraints/
https://www.geeksforgeeks.org/rest-api-architectural-constraints//
https://www.geeksforgeeks.org/rest-api-architectural-constraints//
https://spring.io/projects/spring-security
https://www.tutorialspoint.com/spring_boot/spring_boot_servlet_filter.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_servlet_filter.htm
https://www.javatpoint.com/exception-handling-in-java
https://www.javatpoint.com/exception-handling-in-java
https://www.postgresql.org/
https://docs.docker.com/get-started/overview/
https://dbeaver.io/
https://flywaydb.org/
https://softwaretestingfundamentals.com/software-testing-levels/
https://softwaretestingfundamentals.com/software-testing-levels/
https://doit.maryland.gov/SDLC/Documents/What%20Makes%20a%20Successful%20Project.pdf
https://doit.maryland.gov/SDLC/Documents/What%20Makes%20a%20Successful%20Project.pdf

Appendices

97

This page is intentionally left blank.

Appendix A

Requirements

A.1. Functional Requirements

In this section are detailed the functional requirements of the two major components of the
system, the mobile application and dashboard, following the notation described in Chapter
5, section 5.2.

FR01 - Registration
Primary Actor Non Registered User
Description User enters his phone number in order to make the registry
Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has a valid phone number

Post-condition success User registers and can start using the application

Main Success Scenario

1. User inserts his phone number
2. System verify the inserted number
3. The System sends a verification code (via SMS) to user
4. The user is redirect to verification screen
5. User inserts the code received
6. The system validates the code
7. User is redirect to the main page

Extensions

2a Number inserted by user already exists
2a1. User is informed that number is already registered

2b Number inserted is not valid
2b1. Error message is shown

5a. Code inserted don’t match
5a1. Error message is shown
5a2. The user tries again
5a3. User presses a button to receive another code

5a. Code inserted don’t match
5a1. Error message is shown
5a2. The user tries again
5a3. User presses a button to receive another code

Table A.1: Functional Requirement 01 - Registration

99

Appendix A

RF02 - Sign In
Primary Actor Registered User
Description User enters his phone number in order sign in
Priority Must have

Pre-conditions User has the application installed
User has access to a internet connection

Post-condition success User signs in and is able to start using the application

Main Success Scenario

1. User inserts his phone number
2. System verify the number
3. System sends a verification code (via SMS) to user
4. User is redirect to verification screen
5. User inserts the code received
6. System validates the code
7. User is redirect to the main page

Extensions

2a Number inserted is not registered
2a1. Error message is shown

2b Number inserted is not valid
2b1. Error message is shown

5a. Code inserted don’t match
5a1. Error message is shown
5a2. The user tries again
5a3. User presses a button to receive another code

5a. Code inserted don’t match
5a1. Error message is shown
5a2. User tries again
5a3. User presses a button to receive another code

Table A.2: Functional Requirement 02 - Sign In

RF03 - Show Main Menu
Primary Actor Registered User
Description User requests the main menu to see the available options.
Priority Must have

Pre-conditions
User has the application installed
User has access to a internet connection
User has to be logged into the app

Post-condition success User is presented the main menu and is able to select any
desired option

Main Success Scenario
1. User can see the numbers that he purchased
2. User presses one of the numbers
3. User is redirected to a new screen

Extensions 1a User does not have any numbers purchased.
1a1. User buys one or more numbers

Table A.3: Functional Requirement 03 - Show Main Menu

100

Requirements

RF04 - Buy a Number
Primary Actor Registered User

Description User asks for the main menu in order to see the available op-
tions

Priority Must have

Pre-conditions
User has the application installed
User has access to a internet connection
User has to be logged into the app

Post-condition success User is able to buy a number

Main Success Scenario

1. User presses the button to buy a number
2. User chooses the country
3. User chooses the type of number (mobile or local)
4. User chooses the plan
5. User reviews the purchase
6. User finishes the process clicking on a button

Extensions 6a User do not have enough balance to make the purchase
6a1. User adds funds and tries again

Table A.4: Functional Requirement 04 - Buy Number

RF05 - Make a Call
Primary Actor Registered User

Description User dials a number through a keypad screen in order to es-
tablish a call with other person

Priority Must have

Pre-conditions

User has the application installed
User has access to an internet connection
User has to be logged into the app
User has minutes available to spend

Post-condition success User makes a call

Main Success Scenario
1. User dials a number
2. User presses the call button
3. A call is initiated

Extensions

2a The number format is not correct
2a1. Error message is shown

2b The user does not have minutes available to spend.
2b1. Error message is shown

Table A.5: Functional Requirement 05 - Make a Call

RF06 - Show Calls History
Primary Actor Registered User

Description The user should be able to see all the call logs from the number
he had chosen in the main menu

Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to call a person

Main Success Scenario
1. User accesses the "Calls" menu
2. User sees the logs
3. User scrolls up and down to see the logs

Extensions 2a User does not see any logs
2a1. User refreshes the page

Table A.6: Functional Requirement 06 - Show calls history

101

Appendix A

RF07 - Send a Message
Primary Actor Registered User
Description The user should be able to write and send a message
Priority Must have

Pre-conditions

User has the application installed
User has access to an internet connection
User has to be logged into the app
User has SMS available to spend

Post-condition success User sends a message

Main Success Scenario

1. User accesses the "Messages" menu
2. User presses a button to write a message
3. User writes a message
4. User presses a button to send the message
5. Message is sent

Extensions 5a User plans do not allow the operation
5a1. Error message is shown

Table A.7: Functional Requirement 07 - Send a Message

RF08 - Messages History
Primary Actor Registered User

Description The user should be capable to see all the call logs from the
number he had chosen in the main menu

Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to call a person

Main Success Scenario
1. User accesses the "Messages" menu
2. User sees the messages history
3. User scroll up and down to see the logs

Extensions 2a User can not see any logs
2a1. User refreshes the page

Table A.8: Functional Requirement 08 - Messages History

RF09 - Show Contacts
Primary Actor Registered User

Description The user should be capable to see all imported contacts in
order to send messages or make calls

Priority Must have

Pre-conditions

User has the application installed
User has access to an internet connection
User has to be logged into the app
User has to give permission to access contacts

Post-condition success User imports his contacts

Main Success Scenario
1. User accesses the "Contacts" menu
2a. User sees his contacts
2b. User imports his contacts to the App

Extensions 2b User does not give the permission needed
2a1. Warning message is shown

Table A.9: Functional Requirement 09 - Show Contacts

102

Requirements

RF010 - Show Settings
Primary Actor Registered User

Description
In the "Settings" menu user should be capable to cancel a num-
ber, delete his account, buy a new number, see the capabilities
of the number we own and the plan which he is subscribed

Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to see the settings menu

Main Success Scenario 1. User accesses the "Settings" menu
2. User settings are shown

Extensions 2a User does not see anything
2a1. User refreshes the page

Table A.10: Functional Requirement 10 - Show Settings

RF11 - Add Funds
Primary Actor Registered User
Description The user should be capable of adding funds to his account
Priority Could have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to add funds into his account

Main Success Scenario

1. User accesses the "Settings" menu
2. User presses the "Add Funds" button
3. User chooses the payment method
4. A confirmation message is shown to the user

Extensions 4a. Confirmation message is not shown
4a1. User tries again

Table A.11: Functional Requirement 11 - Add Funds

RF012 - Cancel a Number
Primary Actor Registered User
Description The user should be capable to cancel temporary numbers
Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to cancel the temporary number

Main Success Scenario

1. User accesses the "Settings" menu
2. User presses the "Cancel Number" button
3. Number is canceled
4. A confirmation message is shown to the user

Extensions 4a. Confirmation message is not shown
4a1. User tries again

Table A.12: Functional Requirement 12 - Cancel a Number

103

Appendix A

RF13 - Cancel an Account
Primary Actor Registered User
Description The user should be capable to cancel his account
Priority Must have

Pre-conditions
User has the application installed
User has access to an internet connection
User has to be logged into the app

Post-condition success User is able to cancel his account

Main Success Scenario

1. User accesses the "Settings" menu
2. User presses the "Cancel Account" button
3. Account is canceled
4. User is redirect to the Sign In/ Registration screen

Extensions 4a. User is not redirected
4a1. User tries again

Table A.13: Functional Requirement 13 - Cancel an Account

RF14 - System Overview Menu
Primary Actor Admin
Description The admin should be able to see statistics about the system
Priority Must have

Pre-conditions Admin has access to an internet connection
Admin has to be logged into the Dashboard

Post-condition success Admin sees the system statistics

Main Success Scenario 1. Admin accesses the "System Overview" menu
2. Admin scrolls up and down to see the system statistics

Extensions 2a Admin does not see anything
2a1. Admin refreshes the page

Table A.14: Functional Requirement 14 - System Overview Menu

RF15 - Managing Menu
Primary Actor Admin

Description
The admin should be able to see a page where he can perform
managing operations (e.g. notify a user, delete a user account,
etc)

Priority Must have

Pre-conditions Admin has access to an internet connection
Admin has to be logged into the Dashboard

Post-condition success Admin sees the managing page

Main Success Scenario 1. Admin accesses the "Manage System" menu
2. Admin uses the managing features provided

Extensions

Table A.15: Functional Requirement 15 - Managing Menu

104

Requirements

RF13 - Add/Remove Funds to/from a User Account
Primary Actor Admin
Description Admin is able to add/remove funds from the user account
Priority Must have

Pre-conditions Admin has access to an internet connection
Admin has to be logged into the Dashboard

Post-condition success The admin adds/removes funds from a user balance

Main Success Scenario
1. Admin accesses the "Manage System" menu
2. Admin inserts the amount to add/remove to user balance
3. User balance is updated

Extensions

Table A.16: Functional Requirement 13 - Add/Remove Funds to/from a User Account

RF15 - Send a Notification/Alert
Primary Actor Admin
Description The admin could send alerts and notifications to the users
Priority Must have

Pre-conditions Admin has access to an internet connection
Admin has to be logged into the Dashboard

Post-condition success Admin sends a notification/alert to a user

Main Success Scenario

1. Admin accesses the "Manage System" menu
2. Admin writes the notification/alert
3. Admin presses a button to send the notification/alert
3. Notification is sent to the user selected

Extensions

Table A.17: Functional Requirement 15 - Send a Notification

RF19 - Delete User Account
Primary Actor Admin
Description The admin can search for an user and then close his account
Priority Must have

Pre-conditions Admin has access to an internet connection
Admin has to be logged into the Dashboard

Post-condition success Admin sends a notification to a user

Main Success Scenario

1. Admin accesses the "Manage System" menu
2. Admin search for the user
3. Admin selects the user
4. Admin presses the button to close user account
5. Account is closed

Extensions

Table A.18: Functional Requirement 19 - Delete User Account

105

Appendix A

A.2. Non Functional Requirements

In this section are detailed the quality attributes scenarios for the quality attributes defined
(Availability, Security , Interoperability and Modifiability) in Chapter 5, section 5.3.

NFR01 - Availability
Source of Stimulus: Internal to the system
Stimulus A component responds but the response late.
Environment Condition(s): Normal operation
System Response: The fault is detected and logged.
Significant Measures: Time to detect the fault.

Table A.19: Quality Attribute scenario 01 - Availability

NFR02 - Security
Source of Stimulus: External to the system - malicious entity

Stimulus An unauthorized user tries to access system ser-
vices, resource or data.

Environment Condition(s): The system is online and fully functional.

System Response:
Transactions are carried out in a fashion such that
services are protected from unauthorized access.
Record the attempts.

Significant Measures: Number of attacks resisted.

Table A.20: Quality Attribute scenario 02 - Security

NFR03 - Interoperability:

Source of Stimulus: The system initiates a request to interoperate with
the CPaaS Provider.

Stimulus: A request to make a call.
Environment Condition(s): Both systems are in runtime.
System Response: The request is is accepted and the call is initiated.
Significant Measures: The percentage of calls correctly processed.

Table A.21: Quality Attribute scenario 03 - Interoperability

NFR04 - Modifiability
Source of Stimulus: End User
Stimulus Wants to add a new CPaaS Provider to the system.
Environment Condition(s): Runtime
System Response: The change is made, tested and deployed.

Significant Measures: Number of system modules afected by the new
modification.

Table A.22: Quality Attribute scenario 04 - Modifiability

106

This page is intentionally left blank.

Appendix B

Project Risks

B.1. Risks

In this section are detailed the project’s risks as described in Chapter 4, section 4.3.

Schedules
ID R02
Date of Identification January

Description
A functional prototype of the platform is expected by July
of 2020. The deadline could be too ambitious to deliver a
prototype containing all the requirements defined.

Impact High
Probability High

Mitigation Plan
Ensure that the tasks assigned to the intern are viable to com-
plete during the estimated time. In last resort delay the deliv-
ery to September.

Table B.1: Risk 02 - Schedules

R3 - Integration with External Entities
ID R03
Date of Identification February

Description

Since the WIT API requires integration with Twilio APIs, the
data will be obtained through requests. The form of how the
requests are made to the external APIs could be changed any
moment by the provider, making the WIT API broken. Also,
changes in legislation could happen, leading provider to make
changes to the way it provides phone numbers.

Impact High
Probability Medium

Mitigation Plan

Read the changelog of Twilio and make the necessary changes
to assure that integration is not compromised. If any change
occurs, arrange a meeting with the Project Owner and Scrum
Masters to decide the actions to set in motion.

Table B.2: Risk 03 - Integration with External Entities

108

Project Risks

R4 - Technologies Learning
ID R04
Date of Identification December

Description

The intern has to deal with new technologies he is not familiar-
ized with (Spring Boot, React, React Native and Twilio API’s)
to build the platform. Difficulties in using these technologies
can cause delays in the execution of the tasks.

Impact High
Probability High

Mitigation Plan Do some tutorials online and ask for help from more experi-
enced colleagues at WIT Software that are available.

Table B.3: Risk 04 - Technologies Learning

Requirements Change
ID R05
Date of Identification February

Description Since the author will use an agile methodology (Scrum), some
requirements may face some changes during the project.

Impact High
Probability Low

Mitigation Plan
Arrange meetings with the Product Owner to avoid possible
misleadings and to assure that the project goes accordingly to
the demands.

Table B.4: Risk 05 - Requirements Change

Tests
ID R06
Date of Identification March

Description

As the trainee is implementing functionalities that integrate
external components, it is necessary to test them and ensure
that they work. Testing the features will, therefore, be a time-
consuming task since external services used required some at-
tention from a legal standpoint.

Impact High
Probability High

Mitigation Plan

Read and understand the documentation of the APIs used. In
case of doubts regarding external services, contact the supplier
to clarify them. Make a script with all test cases for a feature
before start testing.

Table B.5: Risk 06 - Tests

109

Appendix B

Pandemic Situation
ID R07
Date of Identification March

Description

The worldwide pandemic of COVID-19 led the intern to work
remotely. The fact that the intern must be away from the
work environment can affect productivity and communication
during the implementation of the solution.

Impact High
Probability Low

Mitigation Plan
Ensure that the Scrum Master and the respective Product
Owner are aware of the status of the project. Report delays
and problems encountered.

Table B.6: Risk 07 - Pandemic Situation

Project Validation
ID R08
Date of Identification June

Description

A meeting will be held between the Scrum Team and the Busi-
ness Development Director to present the solution designed
and implemented by the intern. The MVP presented may not
correspond to expectations and requirements.

Impact High
Probability Medium

Mitigation Plan
Realize which requirements or expectations are not met and
then arrange a meeting between the Development Team and
the Scrum Masters to decide the actions to be taken.

Table B.7: Risk 08 - Project Validation

110

This page is intentionally left blank.

Appendix C

Mockups

C.1. Mobile Application Mockups

In this section are illustrated the UI’s proposed for the Mobile Application by the intern.

112

Mockups

113

Appendix C

114

Mockups

C.2. Dashboard Mockups

In this section are illustrated the UI’s proposed for the dashboard by the intern.

115

Appendix C

116

This page is intentionally left blank.

Appendix D

Tests

D.1. Functional Tests

In this section are detailed the functional tests that were made for verification purposes,
as stated in Chapter 9, section 9.1.

Id Test Steps Expected Result Result

TC01 Registration 1) Insert valid phone number
2) Insert the OTP received

User registers into the
platform

PASS

TC02 Sign In 1) Insert valid phone number
2) Insert the OTP received

User logs on to the plat-
form

PASS

TC03 Buy Phone
Number

1) Choose the Country
2) Choose Number type
3) Choose a Number
4) Choose a Plan

User buys a Temporary
Phone Number

PASS

TC04
Edit Phone
Number

Description

1) Select the desired Phone
Number in the Profile Menu
2) Press Settings button for the
selected Phone Number
3) Choose the Edit Number De-
scription option
4) Insert desired Description

User changes Phone
Number Description

PASS

TC05 Change Phone
Number Plan

1) Select the desired Phone
Number in the Profile Menu
2) Press Settings button for the
selected Phone Number
3) Choose the Change Plan op-
tion
4) Select desired Plan

User changes the Tem-
porary Phone Number’s
Plan

PASS

TC06 Make a Call

1) Go to Dialpad screen
2) Select Temporary Pnhone
Number to make the call
3) Type in/select desired Num-
ber/Contact
4) Press Call button

User makes a Call PASS

118

Tests

Id Test Steps Expected Result Result

TC07 Send a Message

1) Go to Messages screen
2) Press the NewMessage button
3) Type in/select desired Num-
ber/Contact
4) Type in the Message desired
5) Press the Send button

User sends a Message PASS

TC08 Messages History 1) Access Message screen User views Message His-
tory

PASS

TC09 Conversation
Messages History

1) Access Message screen
2) Select desired Conversation

User views Conversation
Messages History

PASS

TC10 Calls History 1) Access Calls History screen User views Calls History PASS

TC11 Access Contacts 1) Access Contacts screen User views Contacts PASS

TC12
Cancel

Temporary
Phone Number

1) Select the desired Phone
Number in the Profile Menu
2) Press Settings button for the
selected Phone Number
3) Choose the Cancel option
4) Confirm operation

User Cancels Temporary
Phone Number

PASS

TC13 Cancel Account

1) Access the Profile screen
2) Access the Settings button
3) Select the Cancel Account op-
tion

User Cancels 5the Ac-
count

PASS

TC14 Logout
1) Access the Profile screen
2) Access the Settings button
3) Select the Logout option

User Logout PASS

119

	Introduction
	The Institution
	Motivation
	Goals
	Internship Goals
	Project Goals

	Structure

	Background Concepts
	Phone Numbers
	Classification of Phone Numbers:

	Temporary Phone Numbers
	Verification and Validation
	Communication Process
	Recycling
	Emergency Calls
	Privacy and Tracebility
	Binding and Billing

	Service Providers
	PBX Providers
	CPaaS Providers
	Carrier Providers

	State of the Art
	Competitors
	Examples of Competitors
	Competitors Analysis

	Market Vison
	Market Key Elements

	Methodology and Work Plan
	Methodology
	Scrum Framework
	Scrum Project Adaptation

	Work Plan
	First Semester
	Second Semester

	Risk Management
	Concept of Risk Management
	Risks Description
	Risks Verified

	Requirements Elicitation
	User Stories
	Functional Requirements
	Non Functional Requirements
	Constraints
	Technical Constraints
	Business Constraints
	Legal Constraints

	Solution's Design
	Model C4
	Architecture
	Context View
	Containers View
	Components View

	Data Model
	Security
	Authentication
	Authenticity and Non Repudiation

	The WIT Temporary Numbers Platform
	Accounts
	Account Creation
	Account Cancellation

	Temporary Phone Numbers
	Purchasing
	Canceling
	Calling
	Messaging

	Statistics
	Management

	Implementation
	API Backend
	Structure
	Architectural Constraints
	Web Security
	Exception Handling
	Data Management System
	Integration with Twilio

	Mobile App
	Structure
	Navigation
	Data Management and Permissions
	Interface

	Verification and Validation
	Verification
	Unit Testing
	Integration Testing
	Functional Testing

	Validation

	Conclusions and Future Work
	Overview
	Success Evaluation
	Future Work
	Final Considerations

	Appendices
	Requirements
	Functional Requirements
	Non Functional Requirements

	Project Risks
	Risks

	Mockups
	Mobile Application Mockups
	Dashboard Mockups

	Tests
	Functional Tests

