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Resumo

Amedição do dispêndio energético associado ao exercício físico é relevante em vários domínios.

No desporto de alto rendimento, permite monitorizar as necessidades energéticas de cada

atleta e gerir o seu esforço físico durante o treino, ajudando na prevenção de lesões e na

obtenção de melhores resultados desportivos. No contexto clínico, pode ajudar na prevenção

do aparecimento de diversas doenças crónicas, tais como diabetes, obesidade e doenças car-

diovasculares.

Os métodos de estimação de dispêndio energético usados em laboratório são os mais bem

aceites pela comunidade científica. No entanto, devido ao seu custo, necessidade de pessoal

qualificado e restrição a ambiente de laboratório, tornam-se pouco práticos. Alternativas

como o uso de acelerómetros ou de cardiofrequencímetros têm maior interesse prático, por

serem mais baratos, menos intrusivos e fornecerem informação em tempo real. Além disso,

este tipo de abordagem pode ser usada em qualquer lugar, durante a realização de qualquer

tipo de exercício físico.

Tendo por base o estudo prévio dos métodos de estimação do dispêndio energético do

corpo humano, pretende-se com esta dissertação de mestrado desenvolver e validar um pro-

tótipo de um medidor vestível de dispêndio energético associado ao exercício físico, baseado

na utilização de diferentes sensores de baixo custo e em métodos de fusão sensorial. Para

efeitos de validação, foram considerados três tipos de exercício físico: corrida, ciclismo indoor

e CrossFit. Consoante o tipo de exercício, são escolhidos o tipo e número de sensores ad-

equados, assim como a sua colocação no corpo. Os sinais produzidos pelos sensores são

posteriormente processados e integrados em modelos matemáticos desenvolvidos para a es-

timação de dispêndio energético. Os resultados das experiências realizadas demonstram que

a solução desenvolvida pode ser considerada uma alternativa mais barata e menos intrusiva

comparativamente aos métodos de referência usados em laboratório.

Palavras-Chave: Dispêndio energético, exercício físico, medidor automático,

sensores, fusão sensorial
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Abstract

The measurement of energy expenditure associated to physical exercise plays an important

role in multiple fields. It can be used to help monitor energy requirements in athletes, in

order to manage their physical effort, maintain energy balance during training and prevent

injuries. It is also used for epidemiological studies and is extremely important in the global

context of non-communicable diseases, such as diabetes, obesity, and cardiovascular diseases.

The most widely accepted methods by the scientific community restrict data collection to

controlled settings. Despite delivering the most accurate results, they are expensive, require

qualified personnel and cannot be executed outside the laboratory environment. Alternative

approaches, such as the use of accelerometers, heart rate monitors or armbands, are more

practical, more economical, easy to use, and less intrusive, providing real-time information.

Furthermore, they can be used anywhere while performing any type of workout.

Based on the review of the different methods used to estimate energy expenditure asso-

ciated to physical exercise, the main goal of this dissertation is to develop and validate a

prototype for a low cost, non-intrusive wearable energy meter, based on the use of different

sensors and sensor fusion methods. For validation purposes, three types of physical exercise

were considered: running, indoor cycling and CrossFit. Depending on the type of exercise

selected, the type and number of appropriate sensors are chosen, as well as their placement

on the body. The sensor signals are subsequently processed and integrated into developed

mathematical models for the estimation of energy expenditure. The results of the experi-

ments carried out demonstrate that the developed prototype can be considered a cheaper

and less intrusive solution compared to the reference methods used in the laboratory.

Keywords: Energy expenditure, physical exercise, energy meter, sensors, sen-

sor fusion
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1 Introduction

Physical activity (PA) assessment approaches are commonly used to estimate energy expen-

diture (EE) in various situations. They can be used to help to monitor energy requirements

in athletes, manage their physical effort, maintain energy balance during training, and pre-

vent injuries. They are also used for epidemiological studies and are extremely important in

the global context of non-communicable diseases, such as cancer, diabetes, or pulmonary and

cardiovascular diseases, allowing the estimation of nutrient requirements for patients during

nutrition support [38]. The prediction of energy metabolic costs can also assist wearable

robotic devices (e.g. powered prostheses and exoskeletons) designed to aid people who suffer

from disabling conditions, such as stroke, amputation or other mobility problems [6].

EE is difficult to measure as it depends on several factors, such as the individual’s physical

and metabolic characteristics, the type of PA involved, or the context in which the activity

is performed. The most widely accepted methods by the scientific community are those

that measure EE directly. Among them is the Doubly Labeled Water (DLW) method [20]

that accurately measures the average metabolic rate over a period of time in a non-intrusive

way, allowing the subjects to execute their normally daily activities. On the other hand,

this is a high-cost method that requires qualified personnel and sample collection, which

requires a long period between samples collection and results output. Alternative approaches

estimate energy costs indirectly by measuring physiological variables correlated with EE

(e.g., heart rate, body parts acceleration, oxygen saturation)[38]. These methods are more

practical as they are more economical, easy to use, less intrusive, providing information in

real-time. Furthermore, they can be used anywhere, while performing any type of workout.

The drawback of these indirect methods is that they require mathematical models and

calibrations customized to the individual’s specific characteristics, type of activity, device

placement and sensitivity, which can challenge the delivery of accurate results.

To choose the most appropriate method for EE estimation, one must carefully analyze

each approach’s strengths and limitations, as well as the context in which the physical
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exercise is performed. It is the aim of this work to perform such analysis, in order to develop

and validate a prototype for a low-cost wearable energy meter of the human body, based

on the use of multiple sensors and sensor fusion methods. The next section reviews some

assessment methods for EE estimation, as well as devices used and mathematical models

for the prediction of energy costs associated to physical exercise, which will support the

approach taken for the prototype development.

1.1 Energy expenditure measurement methods

For better control of the energy intake in high-performance athletes, patients with health

problems or even for the population in general, appropriate dietary plans should be formu-

lated. Therefore, it is extremely important to determine, as accurately as possible, the total

energy spent by those individuals. The assessment can be done by various methods, each of

them having "strengths" and "weaknesses". Some are summarized in table 1.1.

Method Advantages Limitations
Doubly Labeled Water
(DLW)

High accuracy; Allows free-
dom of activity to participants

High cost; Qualified personnel re-
quired; Does not provide real-time
data, neither specific details on the
PA

Direct calorimetry High accuracy High cost; Subject confinement re-
quired for 24h or more

Indirect calorimetry High accuracy; Provides data
on the metabolic fuels being
combusted

High cost; Qualified personnel re-
quired

Accelerometry Non-invasive; Low burden-
some to subjects; Inexpensive;
Can be used anywhere; Pro-
vides real-time data

Inaccurate in predicting EE if used
alone

Heart-Rate Monitoring Low cost; Non-invasive; Ver-
satile; Can be used anywhere;
Provides real-time data

Inaccurate in measuring sedentary
and light activities; Electrical and
magnetic interference from common
electrical devices

Pedometry Inexpensive; Non-invasive;
Provides real-time data

Limited to walking activities; Inac-
curate in estimate distance covered
and EE

Table 1.1: Methods to assess EE: reference methods include the Doubly Labeled Water technique,
direct calorimetry and indirect calorimetry; indirect methods include accelerometry, heart rate
monitoring and pedometry [54].

Among the methods, Doubly Labeled Water is considered the gold standard technique

due to its high accuracy, precision and ability to do assessments within long periods of time

2



(7-14 days) [20] . This approach is applicable to a wide variety of population, including

pregnant women, infants, elderly people and professional athletes [38]. But, due to its high

cost and because it does not provide specific information about the PA (e.g., intensity level),

it is not commonly used.

Another approach to assess EE is through calorimetry techniques. Direct calorimetry

involves measuring directly the metabolic heat that is released by the body [43]. Due to

its high cost and the impossibility of being carried out outside laboratory environments,

it is almost never used in practice. On the other hand, indirect calorimetry is one of the

most used methods to assess EE [68]. This technique estimates metabolic costs through

the measurement of oxygen consumed and carbon dioxide produced, which results from

the human energy metabolism production. This approach commonly serves as a reference

method to assess the accuracy of other assessment techniques [61].

To overcome barriers, such as high cost or intrusiveness, possible solutions involve the

indirect estimation of EE by measuring metrics correlated with it. For the past decades,

accelerometry has gained popularity given its capability of being used for numerous physical

activities. It is an objective, practical, and non-intrusive approach that can be used in either

laboratory settings or free-living environments for various applications such as posture and

movement classification [50] or metabolic cost estimation [12][15]. To improve the accuracy

of physical activity classification or energy expenditure predicting models, accelerometry is

frequently combined with other approaches, namely heart rate monitoring [13][35].

Heart rate monitoring is another example of an indirect, objective, non-invasive, and

inexpensive method to assess EE both in laboratory and free-living environments [41]. This

technique is commonly used to quantify intensity levels of physical activities due to the tight

relation between heart rate and oxygen consumption, being extremely useful for EE estima-

tions. Because heart rate is affected by factors unrelated with PA (e.g., emotional state),

this technique has been used in conjunction with other assessment techniques, especially

accelerometry [13][35].

Pedometry is a popular, inexpensive and non-invasive method commonly used by the

population in general to estimate EE in activities such as walking or running [14]. By mea-

suring the steps taken during motion, distance walked and EE can be estimated. However,

the estimations given by these devices are most of the time erroneous and no information

regarding the PA is provided.

Available devices for energy expenditure measurement, including the ones used in the

methods previously mentioned, are presented in the following section.
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1.2 Devices for energy expenditure measurement

A wide range of devices for direct or indirect energy expenditure measurement are currently

available for different contexts. Some are summarized on table 1.2.

Name Context Data Recorded Commercial Brands
Metabolic Gas
Analyzers

Clinical;
Research

Oxygen consumption, carbon diox-
ide production, EE

Oxycon Mobile, Cosmed

Accelerometers Clinical;
Research;
Elite
sports

Activity counts (amplitude and fre-
quency of acceleration over each
sampling period) and EE

Actigraph, activPal

Heart-Rate
Monitors

Clinical;
Social;
Research

Heart rate and EE Actiheart, Polar

Pedometers Social Steps taken and EE StepWatch-3, Yamax Digi-
Walker

GPS Portable
Devices

Elite
sports

Distance covered, sprint distance,
accelerations, EE, among others

PlayerTek, Stat-
Sports,Catapult

Armbands Clinical;
Research

Skin and near-body temperature,
galvanic skin response and EE

SenseWear

Table 1.2: Devices available for EE estimation. Usage contexts, data recorded and commercial
brands are presented for each tool.

Metabolic gas analyzers are tools used in indirect calorimetry techniques that measure

oxygen consumption and carbon dioxide production to estimate EE. They normally consist

in one or more portable processing units and a mask that covers the nose and mouth of

the user to measure gases exchanges. In general, these tools deliver accurate results but are

expensive and can affect the subject’s natural behaviors while performing a workout [70].

Accelerometers are motion sensors that detect accelerations of body parts. These tools

measure activity counts (i.e. amplitude and frequency of acceleration over each sampling

period) in real-time and translate those counts into metrics of interest, such as EE. They

are typically placed in locations that are close to the center of mass of the body, like the

waist or lower back. Due to their low-cost, non-intrusiveness, simplicity and the inherent

relation between movement and EE, accelerometers have been integrated in many studies

where metabolic cost estimations were required [6][12][15]. In general, these are non-intrusive

and cheap devices but may offer some limitations if not combined with other tools [69].

Heart-rate monitors are inexpensive and non-invasive tools used to estimate EE from

heart rate measurements. They can provide real-time data on the frequency, duration, and

intensity level of the PA executed. Typically worn on the chest (as an emitter) or on the
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wrist (as a receiver), these devices allow comfort to the subject while performing any type

of workout. Like accelerometers, heart-rate monitors can be combined with other devices to

improve accuracy of energy cost estimations [38].

Pedometers are tools that estimate the distance covered and the energy expended by

a person, by measuring the steps taken during the motion [23]. The simplicity and rela-

tively low cost make these devices popular among the general population; also, nowadays

many smartphones offer embedded pedometers thus making this technique almost ubiqui-

tous. However, the estimates given by these devices are most of the time erroneous and

limited information regarding the PA is provided.

GPS portable devices are nowadays used in a variety of physical exercises (e.g., football,

rugby, rowing, triathlon) to predict a variety of metrics including distance covered, sprint

distances, accelerations, EE, among others. The algorithms implemented on these devices

are based on the bio-mechanical equivalence between accelerated/decelerated running on flat

terrain and constant speed running uphill/downhill. Despite being scientifically approved,

the algorithms do not take into consideration several factors, such as jumps, impacts or

backwards running and, therefore, require deeper investigation [21].

Armbands are devices typically worn on the upper arm that capture signals from the

environment to estimate EE using machine learning algorithms. These devices are commonly

used in clinical context because they present high accuracy for light and sedentary activities.

Armbands have also been worn by athletes to predict energy costs during the sporting season.

However, its use in high intensity activities is still controversial, due to its inability to provide

accurate values during high intensity levels. [45].

1.2.1 Choosing a device

The major factors that should be taken into consideration in the choice of a device for EE

estimation are:

• Type of data intended to collect (e.g., heart rate, accelerations);

• Type of PA and its characteristics; this includes intensity levels, duration, frequency,

environment locations (indoor vs outdoor), among others;

• Context in which the PA will be performed, e.g., predicting energy costs of paraplegic

individuals during daily live activities, or estimating the energy expended by profes-

sional athletes during a football match;
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• Product purchase budget;

• Specific limitations that may impact the accuracy of the prediction values (described

in the previous section).

1.3 Models for energy expenditure estimation

Physical activity is a complex, mutable and multidimensional behavior, thus the accurate

measure and quantification of energy expenditure associated to this component can be very

challenging, specially if outside of laboratory environment. It is highly unlikely that a unique,

"one-size-fits-all" model will ever be found that can be generalized for all types of activities

and accurately estimate metabolic costs values. As technology advances, new and more

accurate models are expected to be developed. The next subsections present some models

used for energy expenditure estimation, including some mathematical models.

1.3.1 Equation of Weir

Indirect calorimetry is the most commonly used method to assess EE in both laboratory

and field settings, because the portable measurement units used for measuring respiratory

gas exchange allow relative freedom of movements. This technique relies on the fact that

the human body consumes oxygen (O2) and produces carbon dioxide (CO2) to metabolize

energy [36]. By measuring the volume of O2 inspired and CO2 expired, energy expenditure

through indirect calorimetry can be estimated using the equation of Weir [10]:

EE = 3.9V O2 + 1.1V CO2 (1.1)

• EE - energy expenditure, in kilocalories per minute (kcal/min);

• V O2 - volume of consumed oxygen, in litters per minute (L/min);

• V CO2 - volume of carbon dioxide expired, in litters per minute (L/min).

The complete form of this equation also uses urinary losses of nitrogen. However, this

component can be ignored since no significant discrepancies were found between the results

using the complete and simplified formulae [62].
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1.3.2 Burn in Zone model

Burn in Zone is a model developed by S. Muangsrinoon et al. [53] to help people monitoring

their heart rate while performing physical exercise, by establishing a relationship between

the heart rate of the person and the correspondent performance level. This model was

implemented on an Android application for a Huawei Smart Watch and also provides an

estimation of calories burned during the exercise based on the average heart rate.

The Target Heart Rate Zone is shown on table 1.3 and defines the upper and lower

limits of physical activity intensities. Each zone is based on the metabolic systems in the

body that feed the muscles during exercise and separated according to the percentage of

Physical Activity Intensity (PAI). Upper zones (Maximum and Hard) are related to anaerobic

exercises, while lower zones (Moderate, Light and Very Light) are related to aerobic exercises.

Anaerobic exercise is defined as "an intense physical activity of very short duration, fueled

by the energy sources within the contracting muscles and independent of the use of inhaled

oxygen as an energy source", e.g. sprinting, High-intensity Interval Training (HIIT) or power-

lifting [56]. Aerobic exercise is "any activity that uses large muscle groups, can be maintained

continuously and is rhythmic in nature", e.g. cycling, running or swimming [56].

Zone THR(%PAI*MHR) Benefits
Maximum 90-100% of MHR Develops maximum performance and speed;

Hard 80-90% of MHR Increases maximum performance capacity;
Moderate 70-80% of MHR Improves aerobic fitness;
Light 60-70% of MHR Improves basic endurance and fat burning;

Very Light 50-60% of MHR Improves overall health and helps recovery;

Table 1.3: Target Heart Rate Zone.

For each zone, a range of Training Heart Rate (THR) values is defined. THR values,

in beats per minute (bpm) are calculated multiplying the PAI percentage by the Maximum

Heart Rate (MHR). The MHR is calculated using Tanaka’s formula [34]:

MHR = 208− (0.7× age). (1.2)

The Caloric Expenditure (CE), given in kcal/min, is estimated by using the one of models

developed by Keytel et al. [44]. The formula (1.3) is for male individuals and the formula

(1.4) is for female individuals:

CE = (−55.0969 + (0.6309× hr) + (0.1988× w) + (0.2017× a))/4.184, (1.3)
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CE = (−20.4022 + (0.4472× hr)− (0.1263× w) + (0.074× a))/4.184, (1.4)

where hr is the heart rate expressed in bpm, w is the weight expressed in pounds and a is

the age expressed in years.

1.3.3 Machine learning approaches

Many studies in the fields of physiology, sports, and clinical nutrition have been made in

order to obtain estimates of energy costs using wearable sensors during various types of

physical activities. The signals provided by sensors are commonly used as inputs to black-

box algorithms (e.g., multiple linear regression, neural networks, random forests) in order to

predict instantaneous metabolic cost or the Metabolic Equivalent (MET) for a specific task.

Regression models based on simple and multiple linear regression have been commonly

used for the prediction of EE, due to their simplicity and low computational cost. Keytel,

et al. [44] developed multiple linear regression models that estimate EE based on heart rate

and personal information (age, weight, and maximal oxygen consumption). Kimberly A.

Ingraham, et al. [8] have used a multiple linear regression approach to predict instantaneous

energy cost of individuals performing a variety of physical activities using physiological

signals from different wearable sensors. Despite presenting reasonable results, this type of

approach tends to overestimate or underestimate EE values, mainly during exercise intensity

changes.

Neural networks have been also used for EE estimation. Firstbeat Technologies Ltd

developed a model that uses an artificial neural network to estimate EE based on heart rate

[48]. Neural networks have also been used in other configurations, for instance in generalized

regression (Lin et al. [46]) and multilayer perceptron forms (Gjoreski et al. [32]), to predict

EE. These type of models normally present better accuracy when compared to regression

equations, because their estimation errors are significantly lower.

Branched regression models, such as decision trees (Ermes et al. [26]) and random forests

(Ellis et al. [25]), have been developed for improving EE estimates. In general, the use of

this type of models also showed improvement in the overall EE estimation accuracy.

In addition to the previously mentioned models, other approaches, such as Support Vec-

tor Machines or Hidden Markov Models, have been used for activity recognition to help

improving EE estimation [47].
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1.4 Objectives and contributions

The majority of devices currently available on the market for human body EE estimation

present some limitations [38] [45]. The understanding of relationships between several phys-

iological variables (e.g. heart rate, body accelerations) and EE can be the key to figure

out what is missing on commercial tools and consequently minimizing the inaccuracy of the

estimated values. Therefore, the main goal of this dissertation is to understand already

known relations between physiological variables and EE and, if possible, discover new ones

to develop and validate a low-cost wearable energy meter prototype of the human body,

based on the use of multiple sensors and sensor fusion methods. The prototype should be

easy to use, low-cost, non-intrusive, and provide real-time information to the user. The

development of the prototype has been carried out in collaboration with Sports Science ex-

perts affiliated with Faculdade de Ciências do Desporto e Educação Física - Universidade de

Coimbra (FCDEF-UC), both in the design and validation phases of the project.

1.5 Outline of the dissertation

The current document is organized in 5 chapters. After this introduction, chapter 2 presents

some theoretical fundamentals associated to EE. Chapter 3 presents the study design and

describes the EE measurement approach chosen. Chapter 4 describes the hardware and

software implementation for the energy meter prototype. Chapter 5 addresses the main

conclusions drawn from this dissertation and possible future work.
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2 Fundamentals

In this chapter, some theoretical fundamentals related to energy expenditure measurement

are presented. It is described the meaning of energy expenditure, its components and metrics

that affect this variable. Some metrics correlated with energy expenditure and their impact

on energy costs are also explored.

2.1 Terminology

Energy expenditure, physical activity and exercise are terms that describe different concepts.

Energy expenditure can be "considered a process of energy production from energy substrates

(carbohydrates, lipids, proteins and alcohol) combustion, in which there is an oxygen con-

sumption and carbon dioxide production" [66]. During this process, part of the energy is lost

as heat or urine and the remaining is stored in molecules known as adenosine triphosphates

(ATPs). These molecules are responsible for providing the energy required for all muscle

movements, heart beats, nerve signals and chemical reactions inside the human body [18].

According to Caspersen et al. [16], physical activity is defined as "a bodily movement result-

ing from contraction of skeletal muscle that results in an increase in energy expenditure above

resting levels". It can be quantified in terms of intensity (how hard?), duration (how long?),

frequency (how often?) and type (e.g., walking, running, swimming...). Exercise is defined

as a planned, structured, and repetitive movement with the goal of maintain or improve

physical fitness [16]. Although they look similar, these terms have different meanings and

should not be used interchangeably.

Energy expenditure can be expressed in terms of liters of oxygen consumed per minute

(L.min−1), milliliters of oxygen per kilogram of body mass per minute (mL.kg−1.min−1) or

Metabolic Equivalents (METs). MET is a physiological measure that is used to represent

the intensity of the physical exercise, ranging from 0.9 (sleeping) to 23 (running at a very

fast pace). For instance, a physical activity equivalent to 4 METs requires the body to use 4
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times more oxygen compared to a body at rest. For an average man at rest (sitting quietly),

one MET equals approximately 250 mL.min−1 of oxygen consumed, and for an average

woman, 200 mL.min−1. An accurate classification that considers variations in body size

expresses METs in terms of oxygen consumption per unit of body mass, where 1 MET ≈ 3.5

mL.kg−1.min−1. [51]. Lists of energy expenditure estimations that express MET values for

numerous physical activities have been developed and published in a Compendium [22][39].

2.2 Components of total energy expenditure

Total Energy Expenditure (TEE) refers to the total amount of energy expended during a

24h-period [38]. Figure 2.1 presents the components of TEE and some assessment techniques

to quantify those components.

Figure 2.1: Total Energy Expenditure components and measurement approaches (reproduced
from [38]).

TEE is composed by three major components:

• Resting Energy Expenditure (REE): the energy expended by an individual at rest

in a thermo-neutral environment (e.g., energy costs of processes essential for life like

breathing, sleeping, ...). Represents approximately 60-75% of TEE. Major factors that

contribute to variations in REE on individuals include age, gender, body composition,

body size, level of fitness activity and a range of genetic and environmental influences

[58];

• Thermic Effect of Feeding (TEF): the energy required for the food digestion, absorp-

tion, transport and metabolism, storage of nutrients, and elimination of wastes. Rep-

resents approximately 10% of TEE [58];
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• Activity Energy Expenditure (AEE): composed by the Exercise Energy Expenditure

(ExEE) and the Non-exercise Activity Thermogenesis (NEAT). Ranges approximately

from 15% (sedentary people) to 30% (athletes) of TEE. ExEE is the energy expended

above REE and TEF due to muscular activity and physical activity related to sports-

like exercises. NEAT is the energy expended for everything that is not sleeping, eating

or sports-like exercise (e.g., walking to work) [7] [58].

2.3 Factors affecting energy expenditure

The accurate estimation of EE associated to physical exercise is influenced by several factors

[40][38], standing out:

• Individual characteristics. This includes weight, age, gender, body composition,

health, training level, emotional state, among others.

• Physical activity characteristics. Includes type, duration, frequency and intensity.

• Environmental conditions. Many physiological variables (e.g., heart rate) are af-

fected by environmental conditions such as air temperature, altitude, humidity or

barometric pressure, consequently affecting EE.

• The REE component, i.e. the energy required to keep the body functional at rest.

2.4 Metrics related with energy expenditure

The next subsections summarize some metrics related with EE.

2.4.1 Oxygen and carbon dioxide

Oxygen and carbon dioxide are arguably the physiological variables that most strongly cor-

relate with EE. During the process of energy expenditure, the production of energy that

involves the combustion of fuels carbohydrates, proteins, lipids, and alcohol requires the

consumption of oxygen and carbon dioxide production. By measuring the volume of oxygen

consumed and the volume of carbon dioxide produced, EE can be predicted. These gases are

usually measured with portable metabolic analyzers that can be used both under free-living

and laboratory conditions during indirect calorimetry approaches. EE is typically estimated

by using the equation of Weir (see section 1.3.1).
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VO2max

The aerobic fitness of an individual may affect his/her EE during physical exercise. The

aerobic fitness of a person is related to his/her ability to perform moderate to high PA with

large muscle groups for long periods of time [49]. The fitness level of an individual is usually

indicated by his VO2max, i.e., the maximum amount of oxygen utilized by the individual,

typically over two to three minutes, during an intense, maximal effort (ml/kg/min−1). A

variety of methods have been developed to assess VO2max. The most reliable methods

are based on the linear relationship between oxygen uptake (V O2) and power output, and

between V O2 and heart rate during exercise. Non-exercise estimates of VO2max have also

been used, and are based on variables such as age, gender, body max, body composition, or

heart rate. All these methods have advantages and limitations, and some are summarized

in table 2.1.

Test Advantages Limitations
Direct VO2max
laboratory test

The most accurate test, since it
measures maximal oxygen consump-
tion through gas analysis

Expensive, requiring confinement;
Qualified personnel required;
Only suitable for healthy individu-
als;
Motivation to "reach the limits" can
impact the results

Indirect submax-
imal (treadmill,
cycle ergometer,
step test)

Good accuracy;
Cheap;
Safer, has does not require maximal
effort

Controlled protocol required;
Accuracy is dependent on the accu-
racy of the maximal heart rate esti-
mation

Cooper’s 12-min
test / 1.5-mile
test and others

Acceptable accuracy;
Can be performed on the field;
Can be administrated to a large
number of individuals at the same
time

Maximal effort required;
Only applicable for fit and healthy
individuals;
Motivation and pacing can impact
the results

Walking tests
(e.g. UKK 2km
test, Rockport 1
mile test)

Can be performed on the field;
Can be administrated to a large
number of individuals at the same
time;
Safe

Low accuracy, especially for very fit
persons;
Motivation and pacing can impact
the results;
Distance must be measured accu-
rately

Resting heart rate Does not require physical exercise Low accuracy;
Does not have solid physiological
basis

Firstbeat
VO2max real-life
estimation

Good accuracy;
Cheap;
Does not require maximal effort;
Works on freely performed every
day exercise

Exercise conditions should be stan-
dardized (for instance, running sur-
face and wind may affect the result)

Table 2.1: Methods used for VO2max estimation (adapted from [49]).
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2.4.2 Heart rate

A major factor that influences the EE associated with PA is the intensity level. Intensity is

the requirement that an exercise is performed concerning the maximum possible capacity of

the individual at a given moment, and can be evaluated according to biological responses,

such as heart rate (HR). The necessary physiological adaptations to different distances de-

mand different training intensities, and consequently different muscular needs. The identi-

fication of different intensity zones that express different energy consumption requirements

of the muscular and cardio-respiratory systems can be made based on heart rate. Table 2.2

identifies intensity levels based on heart rate for cyclic sports.

Intensity Level Heart Rate (bpm) % Relative to MHR Duration
Low 130-140 30-49 30 min

Medium 141-150 50-59 6-30 min
Sub-maximal 151- 165 60-74 1-6 min
Maximal 165-180 75-85 15-60 sec

Supra-maximal <180 85-100 1-15 sec

Table 2.2: Intensity levels based on heart rate for cyclic sports (adapted from [60]).

Heart rate is one of the most used indirect parameters for EE estimation, because it

is easy to measure, and the relation HR-EE is relatively accurate in steady state condi-

tions. Moreover, heart rate monitoring is a cheap method that can be used under free-living

conditions.

2.4.3 Accelerometry

Accelerometry is frequently used to predict energy costs associated to physical activities.

Because acceleration is proportional to external force, it can reflect intensity and frequency

levels of human body movements. Acceleration is commonly measured by accelerometers,

simple and low-cost sensors that can be distributed over the body without causing significant

restrictions to the subject movements while performing a workout.

To measure whole-body movement, motion sensors are typically placed as close as possible

to the center of mass of the body. Ideal locations include waist, hip, and lower back. The

sternum can also be considered a valid option since the torso occupies a major mass of

the human body. Besides minimizing discomfort and constraints in body movements, the

placement of motion sensors on these locations can also reduce external vibration and the

gravitational effect that occurs during the execution of the workout. These are also regions
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where it is easy to attach sensors, preventing relative motion between the tool and the body

which can help mitigate noise in the signals acquired. Accelerometers can also be attached to

other locations such as wrists, thighs, calfs or ankles [69]. As for the quantity, no consensus

has yet been reached on the ideal number of sensors to use.

2.4.4 Metabolic heat

Being able to monitor internal body temperature during exercise can be useful if one desires

to evaluate metabolic energy costs. During exercise, the metabolic heat produced within

the body and the consequent increase in body core temperature (operating temperature

of the organism) stimulates physiological mechanisms of heat loss by the human organism.

Excess heat is distributed over body regions by blood circulation and carried by conduction

to the body surface, where, insulated by clothing, is lost to the surroundings by convection,

radiation, and evaporation. Additionally, heat can also be lost by respiration. A summary

of mathematical models developed by Dusan Fiala, et al. [29] to predict heat losses that

occur in the above mentioned mechanisms is presented in appendix B.

2.4.5 Fatigue

The individual’s fatigue level during exercise is a factor to be considered. Metrics such as

blood lactate, blood oxygen saturation (SpO2), and muscle oxygen saturation (SmO2) can

be good indicators to assess fatigue. Electromyography (EMG) is also a technique that can

be used to evaluate the state of fatigue in a muscle.

Lactate

The production of blood lactate is a natural consequence of energy metabolism during intense

efforts and its accumulation leads to the fatigue of the organism. The more intense and

prolonged the exercise, the greater the probability of fatigue, and the measurement of lactate

values can be used for its monitoring. Typically, lactate is assessed by collecting blood

samples. The main disadvantages of this procedure are the inability of providing real-time

values and the discomfort caused to the individual. More recently, non-invasive and flexible

sensors have been developed that can measure lactate concentration through sweat [9][37],

providing much more comfort to the person and the ability to record data in real-time.
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Muscle oxygenation and blood oxygen saturation

During exercise, energy is supplied to the muscles by sugar or oxygen. Oxygen is carried

from the lungs to the rest of the body by a protein in the red blood cells called hemoglobin.

When the red blood cells circulate to the muscles during physical exertion, they become

deoxygenated. Blood oxygen saturation (SpO2) corresponds to the fraction of oxygenated

hemoglobin relative to total hemoglobin (oxygenated and deoxygenated) and is normally

evaluated in percentage. During exercise, normal values range from 95% to 100%. Muscle

oxygen saturation, also known as muscle oxygenation (SmO2) represents the balance between

oxygen delivery and oxygen consumption in the working muscles. Different physiological

responses can be observed during exercise including increasing, steady or decreasing of muscle

oxygen saturation which varies according to the individual’s training level and type of muscle

involved [2].

Electromyography

Another alternative to evaluate local muscle fatigue is by means of electromyography (EMG).

EMG is commonly used for muscle activity detection. However, this technique can also be

utilized to indicate the state of fatigue in the muscles by detecting the electrical potential

generated by muscle cells when these are electrically or neurologically activated. Monitoring

changes in EMG signals (e.g., changes in amplitude) is a common way to evaluate fatigue

levels in the working muscles [17]. The main disadvantage of this approach is that it is only

possible to detect the electrical potential at the surface of the skin if using surface electrodes.

Needles can be used to detect signals inside the muscle, but cause discomfort and its use in

real-life conditions is impracticable.

2.4.6 Electrodermal activity

Electrodermal activity (EDA) is a property of the human body responsible for changes in the

electrical conductance of the skin. These changes occur due to variations in the state of the

skin’s sweat glands. These glands are controlled by the sympathetic nervous system, which is

responsible to stimulate actions, such as increase in heart rate, adrenaline or sweat rate, that

allow the body to respond to stressful situations [19]. Changes in EDA are also associated to

changes in physical workload [59]. Physical activity increases the body temperature, which

leads to an increase in the sweating rate and, consequently, to an increase in EDA.
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It is believed that the emotional state of an individual, namely stress, can have a sig-

nificant impact on his physical performance and consequently on energy expenditure. Con-

sidered a good bio-marker to measure stress [31], EDA can be a useful parameter to assess

emotional state in individuals during sedentary activities, since EDA responses in these sit-

uations are easy to measure and the sensors used to evaluate this variable cause minimal

discomfort. As for activities with moderate or high intensity levels, EDA measures may offer

some limitations, since it can be hard to obtain accurate values.

2.5 Summary

After reviewing the energy expenditure components, it is possible to verify the existence

of several factors and metrics that can affect its determination during physical exercise.

With so many approaches available, a prior analysis should be made in order to choose the

most appropriate metrics to use, considering the context in which the measurement will be

performed.

The next chapter exposes a possible approach for the measurement of energy expenditure

during physical exercise, based on the factors and metrics previously discussed.
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3 Design and Preliminary Validation

of the Energy Expenditure Meter

For the development of the energy expenditure meter prototype, a critical analysis was

carried out beforehand to choose the most suitable design. This chapter begins by describing

the approach taken for energy expenditure measurement according to the conditions imposed

by the three physical exercise use cases that will be introduced in this chapter: running,

indoor cycling and CrossFit. For each exercise, the variables selected, the type, number, and

location of the sensors used to measure those variables are analyzed, followed by a description

of the method used for energy expenditure estimation. Subsequently, the experimental

procedure executed for data acquisition and energy expenditure computation is described.

This description includes the performed validation tests and the respective analysis of the

results obtained. Further validation tests are reported in chapter 4, after the implementation

of the final prototype with the chosen devices and the printed circuit boards designed for

that final prototype.

3.1 Types of physical exercise considered

Three types of physical exercises for energy expenditure measurement will be considered

in the validation of the prototype to be developed: running, indoor cycling, and CrossFit.

These were selected since they present significant differences among themselves, namely

when it comes to locomotion and type of body movements. Before presenting the proposed

energy expenditure approach, a description and analysis of these exercises are presented in

the following subsections.
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3.1.1 Running

In general, running can be considered an aerobic exercise that helps improve one’s physi-

cal and mental health. It requires the individual to be athletic and well trained, being a

strategy often used during body weight management or on the prevention of cardiovascular

diseases. According to the American College of Sports Medicine (ACSM), running speeds

can be defined as approximately 9.5km/h1 (kilometers per hour) or more. Speeds ranging

from approximately 6.5 to 9.5km/h are classified as jogging speeds and speeds slower than

6.5km/h are classified as walking speeds [55]. These speeds were defined for the population

in general, since the demarcation between jogging and running speeds are more related to

the individual’s physical level. A jogging speed for an athlete may represent a running speed

for a common individual. The focus of this work is on jogging and running speeds.

3.1.2 Indoor cycling

Cycling is one of the best exercises for improving one’s health and fitness as it demands effort

from almost all major muscle groups from the body. Therefore, the interest in estimating

caloric expenditure during this type of physical exercise becomes even more relevant. Several

types of cycling include road cycling racing, mountain bike racing, artistic cycling, BMX

racing, indoor cycling, etc. The focus of this work is on indoor cycling, which involves using

a stationary bicycle in a closed environment.

3.1.3 CrossFit

CrossFit is a high intensity, functional training mode consisting of a mix of aerobic exercises

(e.g., rowing, etc.) and body weight exercises (e.g., olympic weightlifting). It is a modality

that increases core strength, cardiovascular and respiratory endurance, agility, flexibility,

among others, and is also a good alternative to lose weight. Unlike regular gym, which

involves slow movements, few repetitions, and the use of machines, exercises included in

CrossFit are very intense, last longer, have less recovery time between them, and do not

include the use of machines [28].

1The American College of Sports Medicine [55] defined the speed values in miles per hour: 4mph or
slower for walking, between 4 and 6mph for jogging and faster than 6mph for running.
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3.2 Proposed approach

Because it is dependent on several factors, the accurate measurement of energy expenditure

related to physical exercise can be very challenging. With this work, it is intended to develop

and validate a prototype for a wearable energy expenditure meter that meets the following

requirements:

• Low-cost, based on the combination of multiple sensors for the measurement of vari-

ables related with EE, and on sensor fusion methods.

• Non-intrusive, to avoid injuries and restrictions on body movements during a workout.

• Easy to use, so it can be utilized anywhere, especially outside the laboratory environ-

ment.

• Provide real-time energy expenditure values.

• Suitable for multiple physical exercises.

The prototype is not intended to estimate energy expenditure for one specific physical

exercise. Instead, it should be developed and adapted according to the type of physical

exercise being executed. In order for it to be as embracing as possible, two modalities with

a greater predominance of aerobic work, running and indoor cycling, and one modality with

a predominance of both aerobic and anaerobic work, CrossFit, were selected. Running and

indoor cycling allow the measurement of energy expenditure in different aerobic modalities

that request different muscle groups, originating different physiological responses. CrossFit

allows the measurement of energy expenditure not only in aerobic, but also in anaerobic

conditions, since it is a type of exercise strongly differentiated from the previous modalities,

involving a variety of body movements at different intensities.

The measurement of energy expenditure in the different physical exercises will be based

on intensity levels, body movements, fatigue, and psycho-physiological data. As they differ

from each other, the acquired information will vary from exercise to exercise, namely on

the type and quantity of signals. Table 3.1 summarizes the main differences between the

use-cases regarding thee characteristics and the signals acquired.

The approach to measure energy expenditure in each of these exercises is described with

more detail in the following sections.
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Physical exercise Characteristics Type of signals
Running Exercise with aerobic work prepon-

derance;
It only involves the use of the body,
with greater demand from lower
body parts;
Dynamic exercise

Intensity: heart rate;
Body movements: accelerometry;
Fatigue: muscle oxygenation;
Psycho-physiological data: electro-
dermal activity

Indoor cycling Exercise with aerobic work pre-
dominance;
Involves the use of a stationary bi-
cycle, with greater demand from
lower body parts;
Static exercise

Intensity: heart rate;
Body movements: accelerometry;
Fatigue: muscle oxygenation and
blood oxygen saturation;
Psycho-physiological data: electro-
dermal activity

CrossFit Aerobic and anaerobic physical ex-
ercise;
It only involves the use of the body,
with full-body muscle demand;
Static and dynamic exercises in-
volved

Intensity: heart rate;
Body movements: accelerometry;
Fatigue: muscle oxygenation;
Psycho-physiological data: electro-
dermal activity

Table 3.1: Chosen use-cases: characteristics and signals acquisition information.

3.2.1 Running

The study of the literature allowed to verify that running is a commonly used physical

exercise for mathematical models validation as it is included in a variety of other physical

exercises, although not always in a constant and rhythmical form. Since it is continuous and

keeps intensity levels approximately constant, makes it easier to obtain accurate predictions.

For the purpose of this work, running was performed on a flat surface with 1% inclination

to simulate the air resistance that would occur in an outdoor environment [42]. Despite

running speeds being defined as 9.5km/h or more, speeds lower than that threshold (classified

as jogging speeds, (6.5 to 9.5 km/h) were also considered, to include energy expenditure

measurements at slow speeds, since these are often performed in warm-up and recovery

exercises during running training.

Intensity assessment

Knowing the intensity level of a physical exercise is crucial if one desires to obtain accurate

estimates of metabolic costs. As mentioned in section 2.4.2, intensity levels can be identified

by heart rate. During moderate physical exercise, linear relationships between heart rate

and energy expenditure have been established, within a range of approximately 90-150 bpm

[44]. Since running is included in this category, heart rate has a significant impact on caloric
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expenditure estimation and its measurement is incorporated in the prototype. To monitor

this component, it was decided to use a heart rate chest strap. The location of the device

on the body is critical for getting good accuracy. The closer the device is to the heart,

the greater the accuracy, hence the choice of the chest strap. Being a non-intrusive tool

also contributed to its inclusion on the prototype. The forehead is also an option, but the

accuracy in this region is questionable and may not offer comfort to an individual while

performing a running workout.

Owing to the fact that heart rate is controlled by the nervous system, variations in heart

rate can also be attributed to changes in emotional state or environmental conditions. To

overcome this barrier, this variable is combined with others (presented next) that are used

in the prediction algorithm for energy expenditure measurement.

Body movements evaluation

Given the relation between acceleration and energy expenditure, accelerometers were in-

cluded in the prototype for the assessment of body movements in running. As there is still

no consensus on the optimal combination of number of accelerometers and ideal locations, an

attempt was made to include a suitable amount of sensors that is the least intrusive possible

and does not cause restrictions on movements during a running workout.

Based on the principle that for whole-body movement detection the sensors should be

placed in locations that are close to the center of mass of the body, one valid option is to

place a sensor in the pelvic region. This is a non-invasive and stable location since it offers

minimal discomfort to the user and prevents significant motion between the sensor and the

body. Another valid option is to attach an accelerometer in the region of the torso, namely

on the sternum, as it occupies a major mass of the body. The placement of the sensor in this

location can be beneficial, for instance, to obtain information regarding respiratory rate.

Considering that major movements during running are executed by legs, accelerometers

should be placed on the thigh and foot, both on one side of the subject (left or right). The

placement of sensors in these regions can be beneficial to obtain information regarding the

steps taken during a workout. The arms are also used for maintaining balance during the

motion, hence motion sensors can be placed on the arm and hand of one side of the subject.
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Metabolic heat

Due to the conditions during which this work was executed and the impossibility of devel-

oping suitable technology in time, the estimation of metabolic heat was discarded2. In order

to obtain body core temperature estimates, it would be necessary to attach temperature

sensors on the skin to measure its surface temperature. This would imply the development

of adequate technology to not damage the sensors and integrated circuits, which would delay

the work already planned. Besides, it was also impracticable to obtain heat loss estimates for

some of the mechanisms mentioned in section 2.4.4 (e.g. evaporation, respiration), without

the use of expensive and intrusive material.

Fatigue assessment

The fatigue level of the individual is a factor to be considered. Although there are not many

studies that associate fatigue to the estimation of energy expenditure, it is believed that

these may be related. Since the majority of the energy while running is consumed by lower-

body parts, it may be pertinent to assess the state of fatigue in these regions of the body, for

instance in the thigh. For that purpose, the use of a muscle oxygen sensor (Humon Hex 3)

Figure 3.1: Hu-
mon Hex placed
on the vastus ex-
ternus [3].

was recommended by Sports Science experts affiliated with FCDEF-UC.

This tool measures muscle oxygenation on the muscle which is a good

fatigue indicator. It should be placed on the subject’s vastus externus

(quadriceps muscle group) directly on the skin secured by velcro straps

(Figure 3.1).

The use of a pulse oximeter for blood oxygen saturation evaluation

was discarded, due to the high risk of damaging the sensor while exe-

cuting a workout. The use of EMG was also discarded because the only

non-intrusive method of using surface electrodes is only capable of pro-

viding superficial muscle fatigue information. Besides, some studies have

reported that during moderate and high intensity physical exercises, EMG signals are lit-

tle or not affected [33]. Due to the impossibility of acquiring appropriate technology for

measuring lactate in a non-intrusive way, its measurement was also discarded.

2Please take note that this work took place during the Covid-19 pandemic.
3https://humon.io/.
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Psycho-physiological assessment

Since changes in EDA values are associated with variations in physical workload, an EDA

sensor is used. The sensor electrodes apply a low constant voltage to the skin and record the

electrical signal that represents the skin conductance variation. The electrodes are attached

to the fingers or on the lower back.

3.2.2 Indoor cycling

The approach to indoor cycling is similar to the one used on running. Both can be considered

aerobic, continuous, rhythmical and moderate physical exercises, although they develop

different muscle groups that lead to differences in ventilatory responses, blood flow, and

neuromuscular fatigue [52]. Among the existing types of cycling, indoor cycling was chosen

as it is an activity performed in an indoor environment, facilitating the prototype validation

process.

Intensity assessment

Indoor cycling can be considered an aerobic and moderate physical exercise and, for that

reason, intensity levels must be evaluated to increase the accuracy of energy expenditure

predictions. As in running, heart rate is the physiological marker chosen for the assessment

of this component. For heart rate monitoring, a heart rate chest strap is included in the

prototype. This tool was chosen due to its non-intrusiveness and accuracy. Like in the

running approach, this variable is combined with other metrics (presented next) to mitigate

the effects of emotional arousal and environmental conditions.

Body movements evaluation

Accelerometers are used to assess body accelerations during indoor cycling workouts. Since

the majority of the movements come from lower-body members, it is pertinent to place

accelerometers on locations such as thighs, calfs, and feet. Other locations such as sternum,

pelvic region or lower back should not be discarded, as indoor cycling can also involve pedal

standing actions that require the use of upper body parts, namely the torso. In the proposed

approach, accelerometers should be placed on the sternum, pelvis, lower back, thigh, calf

and foot, the last three on the same side of the body.
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Metabolic heat

For the same reasons presented in section 3.2.1, metabolic heat loss estimation was discarded.

Fatigue assessment

During indoor cycling, the majority of the energy is consumed by lower body parts, i.e. by the

legs. To assess local muscle fatigue in these members, a muscle oxygen sensor Humon Hex is

included in the prototype. One of the goals pretended to be achieved with the incorporation

of this sensor is to find eventual relations between fatigue and energy expenditure. The

assessment of blood oxygen saturation is made by placing a pulse oximeter on the index

finger. The use of electromyography and the measurement of blood lactate were not included,

for the reasons previously mentioned (see section 3.2.1).

Psycho-physiological assessment

Similar to the approach designed for running, an EDA sensor is used due to the EDA’s tight

relation with physical workload. The electrodes of the sensor should be attached to the

fingers or on the lower back.

3.2.3 CrossFit

Among the three activities listed, CrossFit is for sure the most challenging one when it comes

to estimating metabolic costs since this type of physical exercise can involve both upper and

lower body movements with multiple levels of intensity. The multitude of exercise types

involved in CrossFit makes it difficult to generalize the calculation of energy expenditure

during this modality. Unlike running or cycling, where the intensity levels stay approxi-

mately constant during the workout, sudden variations can occur while performing CrossFit

workouts (with lifting or intervals) making the accurate measurement of energy expenditure

more challenging.

Most of the algorithms developed so far focus on activities with approximately constant

intensity levels, which may not be satisfactory to estimate values while performing CrossFit.

Therefore, specific algorithms for each type of CrossFit exercise should be developed. The

main challenge of this approach is to develop algorithms for non-steady state situations

without the use of intrusive equipment.
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Intensity assessment

CrossFit intensity levels vary depending on the type of exercise, hence the assessment of

intensity levels through heart rate becomes a priority. The choice of the heart rate monitor

to be used can be a bit delicate. The location that offers more accurate heart rate values is

the chest, but the placement of a sensor in this location may interfere in some movements

and cause discomfort to the subject during particular exercises. On the other hand, placing a

sensor in the arm (e.g., a heart rate armband) or in the pulse (e.g., a heart rate fitness band)

may be a less intrusive choice, but the accuracy of heart rate values can be questionable.

For the purposes of this work, priority was given to obtaining accurate values, hence the use

of a heart rate chest strap was chosen.

Body movements evaluation

CrossFit exercises in general involve the use of almost all body parts. Depending on the type

of exercise, body movements can be executed synchronously or asynchronously by different

members, with different intensities. For that reason, accelerometers can become very useful

to assess body movements during CrossFit. The body parts where the devices are placed

should also be taken into consideration to not affect the subject’s movements or cause any

injuries. In the proposed approach, accelerometers should be placed in two regions of the

torso, including pelvis and sternum; three regions of the upper limbs, including hands, arms,

and forearms; and in three regions of the lower limbs, including thighs, calfs, and feet.

Metabolic heat

For the same reasons presented in section 3.2.1, metabolic heat loss estimation was discarded.

Fatigue assessment

CrossFit exercises require explosive body movements. To reduce the risk of injury, the

tools for the assessment of muscle fatigue must be non-intrusive and should have minimal

interference with any type of movements. To that end, the use of a muscle oxygen sensor

(Humon Hex) is a valid option, as it can be placed not only on the thigh, but also on the arm,

with minimal interference. The pulse oximeter was discarded, because it causes discomfort

to the individual while performing a workout and there is also a high risk of damaging

the sensor. EMG sensors were discarded for the reasons previously mentioned (see section
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3.2.1). Blood lactate measurement was also discarded because it was not possible to acquire

an appropriate sensor for this purpose.

Psycho-physiological assessment

Similar to the previous approaches, an EDA sensor is used due to the relation between EDA

and physical workload. The sensor electrodes should be placed on the lower back, to avoid

injuries.

3.2.4 Energy expenditure estimation method using multiple linear

regression

During the execution of a workout of any type of the previously mentioned exercises, energy

expenditure measurements need to be accurate and computed in a comfortable and portable

way. To meet these requirements, physiological signals provided by the portable devices

mentioned in the previous sections are used, combined and integrated into black-box algo-

rithms to predict energy expenditure. These algorithms weight the input variables in order

to approximate a mathematical model of desired results.

Multiple linear regression models are used to estimate energy expenditure during running

and indoor cycling. These were chosen, because at the time of this work, not enough data

was acquired in order to apply more accurate approaches, for instance, neural networks.

Nevertheless, this type of model delivers accurate results for steady-state conditions, i.e,

when intensity levels stay approximately constant over time, being suitable for running and

indoor cycling workouts. On the other hand, its accuracy for non-steady state conditions

is questionable, which may not be satisfactory for CrossFit exercises. For this use-case, a

reliable alternative would be to use a more accurate model, for instance a neural network or a

random forest. However, these approaches require large amounts of data to deliver accurate

results, which did not allow such implementation, as mentioned before. Therefore, multiple

linear regression models were considered for CrossFit.

At the time of the realization of this work, it was not possible to obtain a reliable

ground-truth. The initially planed ground-truth would be computed using the Weir equa-

tion (formula 1.3) through the analysis of gas exchanges. However, the Covid-19 pandemic

situation did not allow the execution of this approach with the minimum safety and health

conditions. Alternatively, it was suggested by Science Sports experts affiliated with FCDEF-

UC to use the Firsbeat Technologies Ltd. model [48] that uses a neural network to estimate
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energy expenditure based on heart rate. Unfortunately, neither the trained network nor the

dataset used for training the network are publicly available. Therefore, energy expenditure

values estimated by the Keytel et. al model [44] (approach used in the Burn in Zone model

presented in section 1.3.2) were considered as a possible ground-truth and served as the

target data, i.e. the energy expenditure aimed to be predicted. Despite presenting some

limitations for being a linear regression model (for instance, underestimate values during

changes in exercise intensity), this model was chosen because it is based on heart rate, a

metric strongly related to energy expenditure.

Each multiple linear regression model is described by:

ŷ(t) = X(t)b, (3.1)

where ŷ (t) is the energy expenditure at time t (i.e, the ground truth), the vector X(t) =

[1 x1 ... xn] ∈ <n+1 contains an offset term and n sensor signals, and the vector b contains

n+1 regression coefficients.

For the multiple linear regression analysis, the signals were divided into two categories:

physiological signals, including heart rate, muscle oxygenation and electrodermal activity;

and accelerometry signals, which provide information regarding accelerations from different

segments of the body. In total, three five cross-validated multiple linear regression models

were trained, containing: 1) the physiological signals, 2) the accelerometry signals, and 3) the

combined signals (physiological + accelerometry). This distribution was made to discover

which groups of signals have the best predictive capability to estimate energy expenditure.

A five-fold cross-validation was made, in which the dataset was randomly divided into a

training set (80%, containing training data, X̄, and training targets, ȳ) and a testing set

(20%, containing testing data, X ′, and testing targets, y′). For each cross-validation fold,

the regression coefficients b where calculated through training data and training targets:

b = (X̄T X̄)−1X̄T ȳ. (3.2)

The predicted energy expenditure, ŷ′ was calculated by using the regression coefficients

from the test data:

ŷ′ = X ′b. (3.3)

The predicted energy expenditure, ŷ′ ∈ <n, and the ground-truth energy expenditure

(i.e., the testing targets, y′ ∈ <n), where then compared by calculating the root mean square
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error (RMSE):

RMSE =
√

(y′ − ŷ′)2

n
. (3.4)

For each cross-validation fold, the mean absolute error (MAE) was calculated as:

MAE = |y
′ − ŷ′|
n

, (3.5)

At the time of this work, it was only possible to implement a model for running. In

appendix C is presented the procedure for the development of the regression models for

running.

3.2.5 Choice of sensor types and placement

The choice of the type and quantity of sensors, as well as their placement on the individual’s

body, was made in order to develop a non-intrusive prototype which has the ability to provide

accurate information during the execution of each of the previously mentioned physical

exercises. The chosen approach for each of the three activities is summarized in table 3.2.

Physical exercise EE model Sensor Quantity Body location
Running Multiple Heart rate monitor 1 Chest

linear
regression

Accelerometer 5-6 Sternum, pelvis, arm,
hand, thigh and foot

Muscle oximeter 1 Thigh
EDA sensor 1 Fingers or lower back

Indoor cycling Multiple Heart rate monitor 1 Chest
linear
regression

Accelerometer 5-6 Sternum, lower back,
pelvis, thigh, calf and
foot

Muscle oximeter 1 Thigh
Pulse oximeter 1 Index finger
EDA sensor 1 Fingers or lower back

CrossFit Multiple Heart rate monitor 1 Chest
linear
regression

Accelerometer 12-14 Sternum, pelvis,
hands, arms, fore-
arms, thighs, calfs
and feet

Muscle oximeter 1 Thigh
EDA sensor 1 Lower back

Table 3.2: Chosen approach for each of the three physical exercises: EE model, sensors, sensors
quantity, and sensors placement on the body.

The next section describes the development and validation of the energy meter prototype.
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3.3 Development process of the energy meter

The current section summarizes the practical and experimental component in this work. It

presents all the stages and actions performed during the development of the energy meter

prototype, including the experimental procedure performed for its validation.

3.3.1 Methodology

As mentioned in section 3.2, the study was based on three types of physical exercises: run-

ning, indoor cycling and CrossFit. Depending on the type of exercise chosen, the study

variables, the sensors and their distribution over the subject’s body were selected based on

the literature review. From there on, validation tests were performed for data acquisitions.

Data was later processed and used to develop the proposed model. Initially, it was planned

to compare the results obtained by the proposed model with the reference methods, but due

to the situation of the Covid-19 pandemic, such procedure was not possible. Alternatively,

the proposed model was compared with other mathematical models found on the literature.

To improve the accuracy of the model, some adjustments were made, namely regarding the

type of study variables to use, and on the type, number and placement of the sensors on the

subject’s body. The development steps are illustrated by the flowchart shown in figure 3.2.

Figure 3.2: Diagram depicting the steps involved in the energy meter development.

The experimental procedure for the validation of the proposed energy meter prototype

is presented in detail in the following subsections.
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3.3.2 Preliminary work

In an earlier stage of the project, data acquisitions were carried out with a smaller prototype

developed to demonstrate the practicability of the designed solution. This prototype was

never aimed to be an earlier version of the final model, as it was only designed to collect data,

and not to measure energy expenditure. The prototype contained a Kalenji Dual ANT+ /

Bluetooth Smart Runner heart rate monitor belt, and a BITalino (r)evolution Plugged Kit

BT containing a triaxial MEMS accelerometer and a SpO2 Reader (OSL) pulse oximeter

(Figure 3.3). The BITalino (r)evolution Plugged Kit BT is a hardware board equipped with

a micro-controller, UC-E6 cable connectors, and Bluetooth communication that allows the

connection of multiple sensors for real-time data recording.

Figure 3.3: Preliminary setup.

The purpose of the first experiments was to obtain heart rate, body accelerations, and

blood oxygen saturation percentage data from an individual running on a treadmill at differ-

ent speeds, in a controlled environment. The MEMS accelerometer and the pulse oximeter

were connected to the BITalino Kit via UC-E6 cables for real-time data recording. The

MEMS accelerometer was placed on the subject’s waist, the pulse oximeter on the index

finger of the left hand, and the cardio band around the chest (Figure 3.4).
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Figure 3.4: Accelerometer placed on waist and oximeter on the index finger (left). Cardio band
placed on the chest (center). Preliminary experiment execution (right).

3.3.3 Experimental procedure

Of the three case studies, running was chosen for the validation the developed prototype. Due

to the Covid-19 pandemic, it was not possible to perform experiments for all the three types

of exercises, mainly due to the lack of time, and the impossibility of accessing the proper

buildings and recruit volunteers to perform the experiments. Therefore, indoor cycling and

CrossFit workouts were excluded. In the experiments described next, it was also not possible

to implement the final version of the prototype that includes developed sensor boards for

accelerometry data acquisition. Instead, an auxiliary tool was used to make up for the

absence of the plates. It should be mentioned that this tool is not part of the developed

prototype.

The experimental procedure is presented next.

Study sample

Twenty healthy subjects, seventeen males and three females with age (mean ± standard

deviation): 21.3 ± 5.4 years, height: 1.74 ± 0.06 m, weight: 70.5 ± 11.0 kg, volunteered

to participate in the experiments. Of the twenty participants, thirteen were athletes, three

were moderately active (exercise three to four times a week), and four were poorly active

(exercise two or less times a week). All participants signed an informed consent authorizing

the collection of data during the experiments.

Protocol

The experiments were performed on a treadmill (Newfit, JS E4002), in a controlled envi-

ronment (see figure 3.5). Subjects were randomly selected to participate in the morning
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or in the afternoon. Before proceeding to the experiments, the participants were asked to

complete a questionnaire regarding personal information (age, gender, height and weight),

eating habits and other consumption, clinical history and physical activity level.

Figure 3.5: Subject running on a treadmill.

The experiments were divided into two categories, according to the person’s physical ac-

tivity level: athlete and non-athlete. The athlete experiment consisted of 2 minutes walking

at 4km/h, 2 minutes running at 6.5km/h, 4 minutes running at 8km/h, 3 minutes running at

9km/h, 6 minutes running at 10km/h, and 3 minutes walking at 4km/h. The non-athlete ex-

periment consisted of 4 minutes walking at 4km/h, 4 minutes running at 6.5km/h, 3 minutes

running at 7.5km/h, 6 minutes running at 8.5km/h, and 3 minutes walking at 4km/h. Data

was acquired between the fifth minute and the seventeenth minute. This time interval was

considered as the "Test". A representation of the speed profiles for athletes and non-athletes

is depicted in figure 3.7. Before starting the experiment, the participant was asked to lie

down for 5 minutes, for resting heart rate data acquisition. The first minute was discarded.

(a) Athlete test. (b) Non-athlete test.

Figure 3.6: Speed variation during the two protocols.
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Appendix E contains a more detailed description of the protocol, as well as the informed

consent and the questionnaire.

Wearable sensor recordings

During data collection, subjects were instrumented with a variety of sensors. Heart rate

(in bpm) was measured using a Polar H7 (Figure 3.7a) heart rate monitor strapped around

the chest. Muscle oxygenation (in percentage) was measured using the muscle oximeter

Humon Hex4 (Figure 3.7b) placed on the thigh secured by velcro straps. EDA (in Siemens)

was measured by placing electrodes in the index and middle fingers of the left hand. For

this purpose, a BITalino Kit (Figure 3.7c) was used. Subjects also wore a Xsens MVN

inertial capture motion suit (Figure 3.7d), containing seventeen motion trackers that measure

accelerations in x, y, and z axes, at 120Hz. The motion trackers were placed on the feet,

lower legs, upper legs, pelvis, shoulders, sternum, head, upper arms, forearms and hands.

(a) Polar H7 heart rate monitor. (b) Humon Hex oximeter.

(c) BITalino Kit containing an EDA sensor. (d) Xsens MVN suit.

Figure 3.7: Sensors used in the experiments.

The setup used in these experiments is presented with more details in chapter 4.

4This sensor was borrowed temporarily by a Sports Science expert affiliated with FCDEF-UC.
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Signal processing

Accelerometer data from each of the three axis was band-pass filtered between 0.2Hz and

20Hz to remove the DC component and to isolate the dynamic component caused by body

motion. The total acceleration was then determined by calculating the magnitude of the

three axes, M =
√
ax(t)2 + ay(t)2 + az(t)2. EDA data was filtered by using a low-pass filter,

with a 1Hz cut-off frequency. All signals were downsampled to 1Hz.

3.3.4 Results

Of the twenty participants, only one did not complete the entire protocol. Due to equipment

malfunction, some signals were also affected. In the sessions of participants 1, 2, 3, 4, and 5,

data from the Xsens MVN suit was acquired with the occurrence of some frequency drops.

In the session of participant 2, data from the Xsens MVN suit was not collected in the last 3

minutes and 9 seconds due to connection problems. The same has occurred for participants

6 (last 6 minutes and 22 seconds), 7 (first minute and 8 seconds) and 14 (entire test). During

the sessions of participants 6, 10 and 15, the heart rate values were underestimated due to

the probable misplacement of the sensor.

Heart rate

Figure 3.8 illustrates the plots of the heart rate measured at rest before the test (3.8a)

and the heart rate during the test (3.8b) for one representative athlete subject. Figure 3.9

illustrates the plots of the heart rate measured at rest before the test (3.9a) and the heart

rate during the test (3.9b) for one representative non-athlete subject.

(a) Heart rate at rest measured before the test. (b) Heart rate during the test.

Figure 3.8: Plots of the heart rate measured before and during the test for a representative athlete
subject.
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(a) Heart rate at rest measured before the test. (b) Heart rate during the test.

Figure 3.9: Plots of the heart rate measured before and during the test for a representative
non-athlete subject.

The heart rate values measured during rest remain approximately constant over time.

The occurrence of small variations can be justified due to the fact that the person was in

a strange environment and knew that was being monitored. Such variations are typically

more visible at rest.

In general, heart rate values increased throughout the test. It is possible to verify that

the increase is significantly higher after a speed change. This happens because the body

requires a higher amount of energy to accommodate new conditions. Muscles need more

oxygen that is brought through the bloodstream, which implies an increase in heart rate.

After approximately 1-2 minutes, the body is adapted to the new conditions, enters steady-

state and the heart rate stabilizes. For the speeds used in the experiments, these variations

are less evident in fit individuals as opposed to untrained individuals.

The heart rate values obtained are higher than expected for the intensities performed.

This happens due to the fact that the MVN suit worn uses velcro straps that were tightly

fastened to various parts of the subject’s body. When compressed, the amount of blood that

circulates in these areas is not enough to satisfy the needs of the muscle, which implies an

increase in heart rate. This increase is more evident at higher intensities.

Muscle oxygenation

Figure 3.10 depicts the muscle oxygenation levels on the thigh of the right leg for both athlete

(3.10a) and non-athlete (3.10c) representative subjects.

The Humon Hex sensor classifies the muscle as being in one of four zones:

• steady-state (green): the oxygen delivery and consumption in the muscle is balanced;
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• approaching limit (orange): the muscle begins consuming more oxygen than what is

being delivered;

• limit (red): the muscle is consuming significantly more oxygen than what is being

delivered;

• recovery (blue): the oxygen delivery is greater than the consumption in the muscle.

(a) SmO2 percentage (athlete). (b) Time percentage at each zone (athlete).

(c) SmO2 percentage (non-athlete). (d) Time percentage at each zone (non-athlete).

Figure 3.10: Plots of muscle oxygenation percentage. On the left, the variations over time during
the test. On the right, the time percentages at each zone.

Muscle oxygenation levels can vary a lot depending on the individual’s fitness level and

type of workout. In the tests performed, there was a decrease in values over time, more

pronounced in untrained individuals. It is possible to verify that after a change in speed, a

decrease in SmO2 occurs, sometimes reaching the limits of the muscle. When those limits

are reached, some recovery attempts are made to try to reach steady-state. These attempts

are more evident in athletes, since an athlete’s body has a greater capacity for recovery as

a result from his training, unlike an untrained individual. The time percentages at each

zone are presented in figures 3.10b e 3.10d. As expected, SmO2 limits were reached more
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frequently and for longer periods in an untrained individual than in an athlete. It is also

possible to observe that SmO2 recoveries were practically non-existent in the untrained

individual, which can be explained by his/her poor fitness and physical activity level.

Electrodermal activity

EDA filtered signals for both athlete (3.11a) and non-athlete (3.11b) representative subjects

are presented in figure 3.11.

(a) EDA (athlete). (b) EDA (non-athlete).

Figure 3.11: Plots of EDA for athlete and non-athlete representative subjects.

The results show that EDA values increase over time, as expected. Typically, this occurs

because the individual’s sweat levels tend to increase as the exercise progresses.

Body accelerations

Magnitude accelerations from different body parts acquired with the Xsens MVN suit are

presented in figure 3.12 for an athlete representative subject. Since no significant differences

are verified between the acceleration values of an athlete and a non-athlete, the plots for a

non-athlete representative were omitted. The plots of figure 3.12 illustrate a time interval of

ten seconds at the highest speed (10km/h), for an easier interpretation.

Analyzing the plots, it is possible to verify a pattern of interval peaks with approximately

constant duration. These peaks correspond to the instants when the foot hits the ground,

allowing to estimate the number of steps taken during the test. This estimate can be easily

made by overlapping the plots corresponding to the right foot and the left foot, where one

step corresponds to the time interval between peaks, as shown in the figure 3.13. Knowing

the speed s, in m/s, and the time interval ∆t between peaks, in seconds (s), it is also possible
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Figure 3.12: Magnitude acceleration of multiple body parts from an athlete representative subject.
Depicted pelvis, right foot, and left foot.

to estimate the length of the step taken (lstep), in meters. For the step marked in figure 3.13

we have:

lstep = ∆t× s⇔ lstep = (501.7− 501.3)× 2.78⇔ lstep = 1.11m (3.6)

Figure 3.13: Depicted the magnitude acceleration of left foot and right foot, from one represen-
tative athlete subject. The time interval between peaks corresponds to one step taken.

40



Energy expenditure

The results of the multiple linear regression models to estimate energy expenditure from

physiological data (heart rate, muscle oxygenation, and EDA), accelerometry data, and the

previous combined, are presented in table 3.3. These models predict energy expenditure

based on the model developed by Keytel et al. [44], since it was not possible to perform

validation tests by using reference methods due to the Covid-19 pandemic that occurred

during the execution of work.

Model
features

Ground-truth
EE (kcal/min)

Estimated EE
(kcal/min)

RMSE
(kcal/min)

MAE
(kcal/min)

Physiological 13.4982 ± 2.5211 13.4983 ± 2.8414 1.0718 ± 0.0142 0.7439 ± 0.0088
Accelerometry 13.4982 ± 2.5211 13.4987 ± 2.0658 1.4474 ± 0.0228 1.0937 ± 0.0119
Combined 13.4982 ± 2.5211 13.4980 ± 2.4381 0.6422 ± 0.0144 0.4782 ± 0.0092

Table 3.3: Ground-truth EE, estimated EE, and error metrics for each multiple linear regression
model (mean ± standard deviation).

The combination of signals led to a slightly better performance on energy expenditure

estimation. The model that combines physiological and accelerometry data had the lowest

RMSE (0.6422 ± 0.0144 kcal/min). On the other hand, the model that only contains ac-

celerometry data had the highest RMSE (1.4474 ± 0.0228 kcal/min). The model containing

only physiological data had a RMSE of 1.0718 ± 0.0142 kcal/min. To emphasize the signals

correlation with ground-truth EE, figure 3.14 presents the processed signals along with the

ground-truth EE, for both athlete (3.14a) and non-athlete (3.14b) representative subjects.

To evaluate the correlation between the considered EE ground-truth and each signal,

Pearson’s correlation coefficients were calculated using the MedCalc5 software (see appendix

C for a mathematical demonstration). The Pearson’s correlation coefficient measures the

linear correlation between two variables, ranging from -1 to 1. A value of -1 indicates a total

linear negative correlation, while a value of 1 indicates a total positive linear correlation. A

value of 0 means that there is no linear correlation between the variables considered. Table

3.4 presents the Pearson’s correlation coefficients between the considered EE ground-truth

and some of the signals acquired.

5https://www.medcalc.org/
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(a) Athlete representative subject.

(b) Non-athlete representative subject.

Figure 3.14: Processed signals from an athlete representative subject 3.14a and a non-athlete
representative subject 3.14b. Depicted, from top to bottom, heart rate, SmO2, EDA, and right
upper leg magnitude acceleration. Left axes refer to the signal, right axes refer to the EE ground-
truth. Muscle oxygenation y axis is inverted due to its negative correlation with EE. The plots of
the right upper leg (RUL) magnitude acceleration show the values resampled to 1Hz, for an easier
interpretation.

Signal HR SmO2 EDA RUL magnitude acceleration
Pearson coefficient 1 -0.6883 0.8526 0.6717

CI95% [1,1] [-0.727,-0.646] [0.831,0.872] [0.627,0.711]

Table 3.4: Pearson’s correlation coefficients with a 95% Confidence Interval (CI) between the
EE ground-truth and some acquired signals: heart rate, SmO2, EDA and right upper leg (RUL)
magnitude acceleration.
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3.4 Summary

The aim of this study was to develop and validate a prototype for a low-cost and non intrusive

wearable energy meter. The developed prototype consisting of multiple sensors was designed

and implemented based on three types of physical exercises, where appropriate sensors are

selected according to the type of exercise performed. The signals acquired are processed

and integrated into a multiple linear regression model that estimates the energy expenditure

associated to the physical exercise performed.

Unfortunately, it was not possible to validate the prototype based on the reference meth-

ods, namely indirect calorimetry, due to the Covid-19 pandemic situation that occurred at

the time of the execution of this work. Alternatively, it was suggested by Science Sports

experts affiliated with FCDEF-UC to validate the developed model based on the one devel-

oped by Firstbeat Technologies Ltd [48], but since neither the trained model nor the dataset

used for training are publicly disclosed, this approach was discarded. Consequently, the

developed model was validated based on Keytel et. al model [44]. This approach presents

some limitations, as this model is sample dependent and only provides accurate values for

steady-state conditions, i.e., when the exercise is performed at a constant intensity level after

one to two minutes of an intensity level change. Unfortunately, given the existing conditions

at the time of the realization of this work, it is believed that this was the most convenient

solution to use.

Due to the Covid-19 pandemic situation during the work, it was also not possible to

implement the final version of the prototype in the experiments previously described. The

final version, which is presented in chapter 4, contains developed sensor boards for the

acquisition of accelerometry data. There was a delay in the delivery of these sensor boards

that led to changes in the initially proposed plan. The accelerometry data from these boards

would be used as a feature in the models developed for energy expenditure computation, but

since it was not possible to acquire enough data, the Xsens MVN suit was used instead for

the experiments reported in this chapter. Nevertheless, to demonstrate the practicability of

the developed boards, experiments were made to compare accelerometry data acquire with

the developed boards and with the Xsens MVN suit. These comparative results, as well as

the final version of the prototype are presented in detail in the next chapter.
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4 Implementation of the Final Pro-

totype of the Energy Expenditure

Meter

This chapter describes in detail the final prototype version for the energy expenditure meter.

Initially, an overview of the prototype architecture is presented, followed by a depiction of

the hardware and software implementation. Finally, the embedded system tests carried out

for the validation of the developed prototype are presented.

4.1 Architecture overview

The architecture diagram of the developed setup is shown in figure 4.1.

Figure 4.1: Architecture diagram of the energy meter prototype developed.

The architecture is composed by two modules: the hardware module and the software

module. The hardware module contains the devices that integrate the developed prototype.

The software module incorporates the code developed for data acquisition, data processing,

and computation of energy expenditure. The communications between modules use Blue-

tooth, Radio Frequency Communication (RFCOMM), and Bluetooth Low Energy (BLE)

protocols.
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4.2 Hardware Implementation

4.2.1 BodyEnergyExpenditure prototype

The prototype was built to be as less intrusive as possible to not cause any movement

restrictions and avoid injuries during the execution of the workouts. The hardware setup

(Figure 4.4) consists in one Polar H7 heart rate monitor (Figure 4.2a), one muscle oximeter

(Figure 4.2b), seven designed printed circuit boards (PCBs) (one primary board and six

smaller boards, see Figure 4.2c), and one BITalino (r)evolution Plugged Kit BT (Figure

4.2d), containing an EDA sensor.

(a) Polar H7 heart rate monitor. (b) Humon Hex oximeter.

(c) Designed sensor boards. (d) BITalino (r)evolution Plugged Kit BT.

Figure 4.2: Setup used for the energy meter prototype.

BITalino devices

The BITalino (r)evolution Plugged Kit BT (Figure 4.3) incorporated on the prototype was

used to collect data from an EDA sensor (Figure 4.3b). The EDA sensor is connected to

the BITalino Core BT (Figure 4.3a) through a UC-E6 cable (Figure 4.3c). A 2-lead elec-

trode cable (Figure 4.3d) is used to connect the EDA sensor to the electrodes (Figure 4.3e).

The sampling frequency was set at 100Hz and the data was acquired through Bluetooth.

All of these components were purchased in the course of this dissertation project and are

commercially available. The total cost of this set of components is 130€.
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(a) BITalino Core BT (b) EDA sensor. (c) UC-E6 cable.

(d) 2-lead electrode cable. (e) Electrodes.

Figure 4.3: BITalino (r)evolution Plugged Kit BT. Presented BITalino Core BT (4.3a), EDA
sensor (4.3b), UC-E6 cable (4.3c), 2-lead electrode cable (4.3d), and electrodes (4.3e) (Figures
reproduced from [1]).

Designed PCBs

To acquire accelerometry data, two types of boards were developed: one primary board and

six smaller boards (see Figure 4.4). These were only included in the final version of the

prototype, at an ending stage of the work, which did not allow their use on the experiments

described in section 3.3.3. The electrical schematic diagrams and the board designs of the

designed printed circuit boards (PCBs) are presented in appendix A.

The primary board (Figure 4.4a) was designed to occupy the minimal PCB area possi-

ble. It contains the processing and communication modules, as well as a power unit, and

incorporates one ESP32 micro-controller, one XC6220 voltage regulator, and one TCA9548A

8-channel I2C multiplexer.

The six smaller boards (Figure 4.4b) were also designed to occupy minimal PCB area,

so that they could be easily attached to the individual and used during the workout (e.g.

when running). Each board contains one ICM-20648 MEMS accelerometer sensor [64] and

can be connected to the primary board via a UC-E6 cable. The number of smaller boards

and the locations to place them on the subject’s body vary according to the type of physical

exercise performed, as discussed in sections 3.2.1, 3.2.2, and 3.2.3.
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(a) Primary board. (b) PCB containing a ICM-20648 sensor.

Figure 4.4: Designed PCBs.

When using a single-power supply, the recommended operating voltage of ESP32 is 3.3V,

and its recommended output current is 500 mA or more [27]. Therefore, each primary board

is supplied by a LiPo battery with 3.7V of nominal voltage, regulated down to 3.3V by a

XC6220 voltage regulator. The maximum output current of the XC6220 is 1000mA, which

fulfills ESP32 minimum operational requirements.

To be able to read data from multiple sensors with similar I2C addresses, a TCA9548A

8-channel I2C multiplexer is used. As described in [64], in a generalized I2C interface imple-

mentation, attached devices can act as a master or as a slave. The master device puts the

slave address on the bus, and the slave device with the matching address acknowledges the

master. The ICM-20648 always act as a slave, and communicates with the ESP32 that acts

as the master. Since multiple ICM-20648 sensors were used and it is only possible to assign

two different addresses for each device, the TCA9548A 8-channel I2C multiplexer was used.

This device contains 8 channels and each channel has one ICM-20648 connected. Any of

the channels can be selected according to the programmable control register of the ESP32,

which sends a byte of data to the TCA9548A’s bus register corresponding to the selected

channel, avoiding I2C slave address conflicts [65]. In the case where a slave device has the

same address as the multiplexer, the TCA9548A has tree pins (AD0, AD1, and AD2) that

can be used to change the default address. Such procedure was not required in the prototype

described herein.

All the data read from the sensors of the smaller boards is transmitted to a computer

through Bluetooth using RFCOMM protocol. Initially, data transmission via BLE was

tested. However, there was a significant loss of packets when using this approach. This

occurred because BLE is intended to use less power and only transmits short amounts of

data when required, not being ideal for streaming applications [5].

The total cost of this set of components, including the designed PCBs and the UC-E6

cables that connect each smaller board to the primary board is 250€.
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Heart rate monitor

A Polar H7 heart rate monitor (Figure 4.2a) was provided by a Sports Science expert affiliated

with FCDEF-UC and is included in the prototype for heart rate data acquisition. Data

from this tool was acquired through BLE. This device uses the Generic Attribute Profile

(GATT), a protocol that defines how two BLE devices exchange data with each other using

concepts called Services and Characteristics [5]. Services contain specific chunks of data

called Characteristics. Each service is unique and has an Universal Unique Identifier (UUID)

that can be either 16-bit (defined by the Bluetooth Special Interest Group (SIG)1) or 128-

bit (for custom services). Characteristics encapsulate a single data point which contains

the data to be read and, similar to Services, each Characteristic distinguishes itself via a

pre-defined 16-bit2 or 128-bit UUID [4].

The Services and Characteristics UUIDs of the heart rate monitor were initially unknown.

Therefore, a scanning was performed to obtain the GATT Services and Characteristics com-

patible with the device. The official adopted service for heart rate (Heart Rate Service),

which has a 16-bit UUID equal to 0x180D, was found to be compatible with the heart rate

monitor. Consequently, the official Heart Rate Measurement Characteristic, with a 16-bit

UUID equal to 0x2A37, was compatible with the device, allowing heart rate data acquisition

from the heart rate monitor.

At the time of the purchase, the cost of this sensor was around 45€.

Humon Hex

To acquire muscle oxygenation data, a muscle oxygenation sensor Humon Hex (Figure 4.2b)

is included in the prototype. This sensor was borrowed temporarily by a Sports Science

expert affiliated with FCDEF-UC. At the time of the purchase, the cost of this sensor was

around 250€.

Since this is a BLE device, a scan was performed to discover the Services and Char-

acteristics UUIDs. Unlike the heart rate monitor, there is no official adopted service or

characteristic for muscle oxygenation, which hindered the process of decoding the data.

This was the chosen approach due to the fact that the company responsible for the manu-

facturing and maintenance of this device is no longer active. Fortunately, an online solution

was found that allowed to identify the service and characteristic UUIDs that contained the

1Service UUID: https://www.bluetooth.com/specifications/gatt/services/.
2Characteristic UUIDs: https://www.bluetooth.com/specifications/gatt/characteristics/.
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desired data and how to decode it [11].

To demonstrate the reliability of the SmO2 data obtained, new experiments were made

on a treadmill, in a controlled environment. SmO2 data was acquired using a developed

software (the one used on the experiments described in section 3.3.3) and the MoxZones

mobile application3, a commercial product that is used for SmO2 data collection and analysis.

Five subjects participated in the experiments. The tests were performed on different days,

with a 48-hour interval each. One day data was acquired with the developed software and

on the other day with the Moxzones mobile application. The days were randomly selected

(acquisition with the developed software or with the Moxzones app). The tests were divided

into 3 parts: rest, where the subject remained seated for 2 minutes; 6 minute warm-up (1

minute at 4km/h, 1 minute at 6 km/h, 1 minute at 7km/h, 1 minute at 8km/h, 1 minute at

9km/h, and 1 minute at 4km/h); and 5 minutes running at 10km/h. The results are shown

in figure (4.5) for one representative subject.

(a) Developed software SmO2 data. (b) MoxZones App SmO2 data.

Figure 4.5: Plots of SmO2 data acquired with the developed software and with the MoxZones
App, for one representative subject.

To measure the relationship between SmO2 data acquired with the developed software

and with the MoxZones App, the Intraclass Correlation (ICC) coefficient was calculated. ICC

is a parameter that measures the correlation between two or more measurement samples of

a quantitative variable. The calculation of this coefficient was made using the MedCalc

software4 (see appendix C for a mathematical demonstration).

Samples collected during the warm-up and the 10km/h run were considered. Since the

developed software acquires data at a sample rate of 4Hz, mean values per second were

considered. The ICC coefficient for the representative subject previously mentioned has a

value of 0.9 (95% confidence interval: CI95% = [0.878,0.918]), indicating a strong correlation

between SmO2 data acquired with the developed software and the MoxZones App.
3https://moxzones.com/.
4https://www.medcalc.org/
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4.2.2 Xsens MVN suit

At the time of this work, due to the Covid-19 pandemic, it was not possible to fully carry

out the experiments initially planed, as mentioned in section 3.3.3, due to a delay in the

delivery of the designed PCBs for accelerometry data acquisition. As an alternative, to

capture the participant’s body motion and acceleration data, a Xsens MVN inertial motion

capture suit was used in the experiments presented in section 3.3.3. This suit consists of

two Xbus Masters and seventeen inertial and magnetic measurement units that comprise 3D

gyroscopes, 3D accelerometers and 3D magnetometers. The sensor modules connect to the

Xbus Masters, which provide power, synchronize the sensors sampling and allow wireless

communication with the PC. The sensors were placed on the feet, lower legs, upper legs,

pelvis, shoulders, sternum, head, upper arms, forearms and hands. Since the initial pose

between the sensors and body segments is unknown, a calibration procedure is required, in

which the sensor to body alignment and body dimensions are determined. To perform the

calibration, the foot length and height, in cm, are entered and the subject is asked to stand

still with the arms down next to the legs (Figure 4.6).

Figure 4.6: Xsens MVN inertial motion capture suit consisting of 17 inertial and magnetic sensor
modules. A calibration procedure is required to determine sensor to body alignment and body
dimensions.

The cost of this suite is in the order of 10,000€, which is much higher than the cost of

the designed PCBs (250€).

51



4.2.3 Accelerometry data comparison

Accelerometry data acquired with the accelerometers incorporated in the designed PCBs

was not included in the developed models. Instead, experiments were made to compare the

data acquired with the developed sensor boards and the data acquired with the Xsens MVN

suit. The experiments were performed at an ending stage of the work, which did not allow

to recruit the number of volunteers initially planned (e.g. 20 subjects as in the experiments

reported in section 3.3.3). The only subject who participated in the experiments wore the

Xsens MVN suit in conjunction with the designed PCBs. These were attached to the pelvis

region, left forearm, left hand, left upper leg and left foot. The subject performed the athlete

protocol used in the experiments described in the section 3.3.3. The plots of the signals are

presented in figures 4.7, 4.8, and 4.9.

Figure 4.7: Magnitude of accelerations acquired with the Xsens MVN suit (red) and with the
ICM-20648 sensors incorporated in the designed PCBs (blue). Depicted pelvis region.

Figure 4.8: Magnitude of accelerations acquired with the Xsens MVN suit (red) and with the
ICM-20648 sensors incorporated in the designed PCBs (blue). Depicted, from top to bottom, left
forearm and left hand.
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Figure 4.9: Magnitude of accelerations acquired with the Xsens MVN suit (red) and with the
ICM-20648 sensors incorporated in the designed PCBs (blue). Depicted, from top to bottom, left
upper leg and left foot.

To evaluate the correlation between the accelerometry data acquired with the two setups,

the ICC coefficients were calculated for each body location. Accelerometry data from the

Xsens MVN suit was considered as ground-truth. Data from the sensor boards was down-

sampled to 120Hz, and the samples from both setups were subsequently normalized. The

results are presented in table 4.1, leading to the conclusion that the designed sensor boards

can be considered a viable and much cheaper alternative to the Xsens MVN suit.

Location Pelvis Left forearm Left hand Left upper leg Left foot
ICC coefficient 0.747 0.688 0.726 0.426 0.418

CI95% [0.714,0.777] [0.453,0.822] [0.594,0.815] [0.112,0.709] [0.096,0.689]

Table 4.1: ICC coefficients with a 95% Confidence Interval (CI) between the developed sensor
boards and Xsens MVN suit signals, for each body part.

4.3 Software Implementation

The current section presents the software component of the developed prototype: the pro-

gramming environment, the procedures adopted for data collection and processing, and for

for energy expenditure computation.

4.3.1 Programming environment

In order to acquire data from the all the components of the prototype, a Python API for Linux

was developed. This programming language was chosen to facilitate device synchronization
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between BITalino devices 5 and the remaining components. To program the ESP32 micro-

controller, the Arduino Software IDE was used. This platform supports C/C++ languages

and was used to read data from the sensors on the smaller PCBs and send it to the computer.

To acquire data from the Xsens MVN suit, the MVN Studio software was used. For data

processing, MATLAB was the chosen platform. To implement and execute the code of the

algorithms for energy expenditure computation, Google Collaboratory, an online platform

that runs in a cloud and supports machine learning libraries, was used.

4.3.2 Data collection

For the data acquisition process, two personal computers (PCs) were used: one to acquire

data from the BodyEnergyExpenditure prototype and one to acquire data from the Xsens

MVN suit. The system clocks on both PCs were previously synchronized to carry out the

acquisitions.

Heart rate, muscle oxygenation, 3D accelerations (from the designed sensor boards)6 and

skin EDA values were sent simultaneously to one PC. The synchronization between the data

from all sensors was made by registering the timestamp at the start of the test, i.e. on

the fifth minute of the experiment (see figure 3.7 of section 3.3.3). Heart rate and muscle

oxygenation were sent via BLE, at 1Hz and 4Hz, respectively. 3D accelerations were sent

via Bluetooth RFCOMM at 125Hz, and skin EDA was sent via Bluetooth 2.0 at 100Hz. For

each participant, the values were stored into separated CSV files.

Data from the Xsens MVN suit was collected to the other PC using the MVN Studio

software, an easy-to-use graphical user interface for real-time data recording. For each

participant, 3D accelerations were recorded at 120Hz (maximum update rate of the suit)

and stored into CSV files. The synchronization procedure was the same used with the

energy meter prototype.

4.3.3 Data processing: PCB MEMS accelerometer calibration

MEMS accelerometers are sensors characterized by their high accuracy. Typically they are

factory calibrated, but is recommended to calibrate the accelerometers to remove inaccuracies

stemming from manufacturing imperfections, temperature variations, and installation issues

5The open-source code to acquire data from BITalino sensors is written in Python.
63D accelerations from the designed PCBs were only acquired in the experiments described in section

4.2.3.
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[24]. Hence, a simple calibration procedure [63] was made for the MEMS accelerometers in

the designed sensor boards and is described in appendix D.

4.3.4 Energy expenditure computation

To implement the multiple linear regression models for energy expenditure computation, the

Google Colaboratory7 platform was used. Google Colaboratory is a free online notebook

environment that runs entirely in the cloud, containing all the necessary libraries for the

development and execution of Python code, including machine learning algorithms.

The heart rate, accelerometry, muscle oxygenation, and EDA data of the twenty partici-

pants was processed, as described in section 3.3.3, and combined into a single CSV file. This

file was uploaded to the Google Collaboratory cloud and served as the dataset used for the

computation of energy expenditure and other metrics (e.g., RMSE).

4.4 Energy meter testing

During the development of the prototype, several tests were made that allowed validating

its functionalities by detecting errors and existing bugs. This section covers the unitary,

integration, and system tests performed for the verification and validation of the developed

embedded system (HW + SW) for energy expenditure estimation.

4.4.1 Unitary tests

During the development of the embedded system, unitary tests were carried out. The purpose

of these tests was to verify the correct implementation of each unit of the system separately.

As new components were implemented, they were tested with various configurations, in

separate programs, with subsequent observation of the output.

For each module, the following unitary tests were carried out:

• sensor data acquisition;

• sensor data writing into files;

• connection establishment between PC and sensor/component;

• connection closing between PC and sensor/component.
7https://colab.research.google.com/notebooks/intro.ipynb
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4.4.2 Integration tests

Integration tests aim to find integration failures among the units that incorporate the em-

bedded system. For their implementation, the bottom-up strategy was used, which consists

of testing each module individually, and subsequently adding new modules and layers until

the final system is reached.

Initially, each component of the BITalino module was tested individually and in conjunc-

tion with the other BITalino components, but isolated from the other modules. Subsequently,

the Polar H7 band, the Humon Hex, the developed PCBs, and the MVN suit modules were

integrated. For each integration of a new module, the following tests were carried out:

• data acquisition from multiple sensors/components simultaneously;

• data writing from multiple sensors into files;

• connection establishment between PC(s) and multiple sensors/components;

• connection closing between PC(s) and multiple sensors/components.

4.4.3 System tests

The last tests carried out were the system tests, which aimed to ensure that the embedded

system met the requirements initially defined and specified. Among the various types of

system tests, performance tests were performed as follows:

• data acquisition from multiple sensors/components simultaneously during 20 minutes;

• data acquisition from multiple sensors/components simultaneously with different dis-

tances between sensors and PCs.

4.4.4 Summary

The final version of the developed prototype includes a set of low-cost sensors for the acquisi-

tion of signals from metrics related with energy expenditure. It was intended to incorporate

an optimal number of sensors to allow its use anywhere and avoid restrictions to the in-

dividual’s natural movements during the execution of the workout. The tests carried out

for the prototype validation demonstrate that the proposed solution can be considered an

acceptable alternative if one desires to measure energy expenditure associated to physical

exercise.
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5 Conclusions and future work

This dissertation aimed to develop and validate a prototype of a wearable energy expenditure

meter for the human body, based on the use of different sensors and sensor fusion methods.

The development was carried out in collaboration with Sports Science experts affiliated with

FCDEF-UC.

The most reliable methods for measuring energy expenditure are expensive, require a

laboratory environment to be used and specialists to interpret the results, which are not

provided in real-time. For these reasons, they become hard and impractical to use in real-

life situations. The developed prototype presents a cheaper and less intrusive alternative

solution to measure energy expenditure, allowing its use inside and outside the laboratory

environment. However, some limitations should be considered. First, due to the Covid-19

pandemic situation, it was not possible to validate the prototype based on the reference

methods. Secondly, it was not possible to carry out validation tests for indoor cycling and

CrossFit, only for running. Finally, it was also not possible to obtain the final version of the

prototype in time for more extensive experiments to be carried out for its validation with

a representative sample of individuals. Despite the difficulties experienced throughout the

work, it is believed that the main objectives were achieved.

In the future, new types of physical exercise may be added, including team sports. There

are also features that can be added to the developed prototype, namely the inclusion of new

sensors, for instance, to measure lactate through sweat. Some hardware improvements can

also be made. It is recommended to encapsulate the designed sensor boards and the BITalino

units, not only to protect the components, but also to avoid injuries and discomfort to the

subject. Finally, a possible complement to this work is the creation of a virtual reality system

for motion capture and recording in real-time. This would allow coaches or specialists in

individual sports to analyze the technical gestures performed by athletes and simultaneously

know the associated energy cost.
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Appendix A

Schematic and board diagrams

Figure A.1 shows the schematic diagram of the designed PCB for the primary board of the

prototype, including the operating circuit of each module and the connections between them.

Figure A.1: Main board schematic diagram.
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In figure A.2 is illustrated the PCB design of the primary board. Figure A.2a shows all

the connections on both layers without the ground plane layout (dimensions in millimeters).

Figure A.2b illustrates the top layer with the ground plane layout included. Figure A.2c

illustrates the bottom layer with the ground plane layout included.

(a) Primary board layout.

(b) Top layer. (c) Bottom layer.

Figure A.2: Primary board PCB design.
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Figure A.3 shows the schematic diagram of the designed PCB for the smaller board of

the prototype.

Figure A.3: Smaller board schematic diagram.

In figure A.4 is illustrated the PCB design of the smaller board. Figure A.4a shows all

the connections on both layers without the ground plane layout (dimensions in millimeters).

Figure A.4b illustrates the top layer with the ground plane layout included. Figure A.4c

illustrates the bottom layer with the ground plane layout included.

(a) Small board layout.

(b) Top layer. (c) Bottom layer.

Figure A.4: Small board PCB design.
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Appendix B

UTCI-Fiala model of human heat trans-

fer and temperature regulation

This appendix provides a general overview of the Universal Thermal Climate Index (UTCI)

Fiala model for heat transfer and temperature regulation, summarizing the algorithms pub-

lished by Dusan Fiala, et al. [29].

B.1 Body construction

The UTCI-Fiala model consists of 12 spherical or cylindrical body setions: head, face, neck,

shoulders, thorax, abdomen, upper and lower arms, hands, upper and lower legs, and feet

(Figure B.1).

Body elements are built of annular concentric tissue layers (section A-A” in Figure B.1):

brain, lung, bones, muscles, viscera, fat, and skin and are subdivided into a total of 63 spatial

sectors (Figure B.2).

The model represents an average person with a body surface area of 1.85m2, body weight

of 73.4kg, body fat content of 14%, basal metabolism of 87.1 W, basal evaporation rate from

the skin of 18W, cardiac output of 4.9L.min−1, skin blood flow of 0.4L.min−1, and skin

wetness of 6%.
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Figure B.1: Schematic diagram of the UTCI-Fiala model (reproduced from [29]).

Figure B.2: Body geometry parameters.

B.2 Heat exchanges within the tissues

The mechanisms of heat and mass transport within the tissues of the human organism are

modeled using the Bio-Heat Transfer Equation of Pennes [57]. This differential equation
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describes the heat dissipation in a homogeneous, infinite tissue volume and is given by:

k(∂
2T

∂r2 + ω

r

∂T

∂r
) + qm + ρblwblcbl(Tbl,a − T ) = ρc

∂T

∂t
. (B.1)

From left to right, the first term corresponds to the heat-conduction term, i.e., the radial heat

flow from warmer to colder tissue regions, where k is the thermal conductivity (W .m−1.K−1),

T is the tissue temperature (◦C), r is the radius (m) and ω is a geometry factor :ω = 1 for

polar coordinates (e.g., leg) and ω = 2 for spherical coordinates (e.g., head). The second

term expresses the metabolic heat production, in W/m3, and is given by the sum of the

basal value, i.e. the energy needed to maintain processes essential for life during rest, and the

additional heat that is produced during exercise and/or shivering. The third term represents

the heat-convection term, the blood perfusion, where ρbl is the density of blood (kg/m3),

wbl is the blood perfusion rate (s−1), cbl is the heat capacitance of blood (J·kg−1·K−1),

and Tbl,a is the arterial blood temperature (◦C ). The right side of the equation corresponds

to the storage of heat within the tissue mass, where ρ is the tissue density (kg/m3), c is the

tissue heat capacitance (J .kg−1.K−1) and t is the time (s) [30].

B.3 Heat exchange with the environment: boundary

conditions

The metabolic heat that reaches the skin is lost to the environment in different ways including

convection, radiation, and evaporation. The rate of heat exchange varies over the body and

can also be affected by the clothes worn.

The heat flux qsk, passing the surface of a peripheral sector of skin is equivalent to:

qsk = qcnv + qrlw − qrsw + qevp (B.2)

• qsk - heat flux passing the surface of a peripheral sector of skin given in W/m2;

• qcnv - heat exchanged by convection with the ambient air given in W/m2;

• qrlw - heat exchange by radiation with surrounding surfaces given in W/m2;

• qrsw - heat exchanged by irradiation from high-temperature sources given in W/m2;

• qevp - heat exchanged by evaporation of moisture from the skin given in W/m2.
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B.3.1 Convection

The convective heat exchange qcnv(W.m−2) between a body sector of surface temperature

Tbs(K) and ambient air of temperature Ta(K) is given by:

qcnv = hc,mix(Tbs − Ta) (B.3)

The convection coefficients, hc,mix (W.m−2.K−1), are calculated based on the location at the

body (B.3), the temperature difference between the body surface, Tbs (K), and the air, Ta

(K), and the local air speed, va (m/s):

hc,mix =
√
aNat

√
Tbs − Ta + aF or.va + aMix (B.4)

Figure B.3: Environmental heat exchange parameters.

B.3.2 Radiation

To calculate the long-wave portion of the radiative heat exchange (qrlw), the model employs

the concept of (directional) mean surface temperatures of the radiant envelope that encloses

a body sector using the corresponding sector’s view factor:

qrlw = σεbsεenvφbs−env[(Tabs + 273)4 − (Tenv + 273)4] (B.5)

where σ = 5.67.10−8 W.m−2K−4 is the Stefan-Bolzmann constant, εbs and εenv are the surface

emissivity of the body sector (εbs = 0.95 for UTCI clothing) and the radiant envelope (εenv
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= 1.0 for UTCI envelopes), respectively. Tbs and Tenv are the surface temperatures of the

body sector and the environment given in ◦C, respectively. The view factors φbs−env vary

according to the location at the body and can be consulted in Figure B.3.

B.3.3 Irradiation

The irradiation of the body by high-temperature sources (sun, fireplaces, etc.) was also

considered in formula B.2. The short-wave radiation absorbed by a sector surface is given

by:

qrsw = αbsfsIs (B.6)

• qrsw - short-wave radiation given in W.m−2;

• αbs - body surface short-wave absorptivity (depends on the color of the skin or the

color of the covering material);

• fs - body sector’s projected area factor (depends on body posture and solar altitude);

• Is - incident short-wave radiation given in W.m−2.

B.3.4 Evaporation

Evaporation can be defined as the process of losing heat through the conversion of water to

gas. The heat exchanged by evaporation of moisture from a skin sector of area Ask is given

by:

qevp = λH2O
dmsw

Askdt
+ Posk,sat − Psk

Re,sk

(B.7)

• qevp - heat exchanged by evaporation of moisture from the skin given in W.m−2;

• λH2O - vaporization heat of the water, ≈ 2256 kJ.kg−1;

• Ask - skin sector area given in m2;

• dmsw

dt
- rate of sweat production over Ask;

• Posk,sat - saturated vapour pressure within the outer skin given in Pa;

• Psk - water vapor pressure at the skin surface, given in Pa;

• 1
Re,sk

- skin moisture permeability, ≈ 0.003 W.m−2.Pa−1.
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For purposes of temperature regulation, evaporation heat losses through the skin of the

human body can occur by sweat (first term of equation B.7) and moisture diffusion processes

(second term of equation B.7). Studies have demonstrated that, for every mL of water that

evaporates from the body surface, approximately 2.43 kJ of heat is lost and sweating rates

of up to 3.5 L/hour have been reported in trained athletes [67]. Values of sweat rates can

vary according to the type of exercise, environmental conditions and dehydration levels.

B.4 Heat exchanges with the environment: respiration

Although most of the heat is lost through the body surface, there is also a part that is lost by

respiration. The total respiratory heat loss is given by the sum of the latent heat exchange

of respiration, Ersp (equation B.8), with the dry heat loss of respiration, Crsp (equation B.9).

Both terms are calculated from the pulmonary ventilation as a function of the whole body

metabolism, i.e.,
∫
qmdV (W ):

Ersp = 3.233
∫
qmdV (0.0277− 6.5× 10−5Ta − 4.91× 10−6pa) (B.8)

Crsp = 1.44× 10−3
∫
qmdV (32.6− 0.934Ta − 1.96× 10−4pa) (B.9)

• Ersp - latent heat exchange of respiration given in W ;

• Crsp - dry heat loss of respiration given in W ;

•
∫
qm dV - pulmonary ventilation rate given in W ;

• Ta - ambient air temperature given in ◦C;

• pa - ambient air pressure given in Pa.

The total respiratory heat loss Ersp + Crsp is distributed over body elements of the

pulmonary tract: face, neck and lungs.
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Appendix C

Mathematical Background

C.1 Multiple Linear Regression Models

Multiple linear regression models were selected for the estimation of energy expenditure in

the three physical exercises mentioned in section 3.1. For each multiple linear regression

analysis, the signals were divided into two categories: physiological data and accelerometry

data. Table C.1 summarizes the signals included in the two categories.

Category Signals
Physiological data Heart rate

Muscle oxygenation
Electrodermal activity
Blood oxygenation

Accelerometry data Magnitude of accelerations from multiple body
locations, including pelvis, thoracic back, neck, head,
shoulders, arms, forearms, hands, upper legs, lower

legs, and feet.

Table C.1: Signal categories.

For each physical exercise, three models are proposed: one model containing physiolog-

ical data; one model containing accelerometry data, and one model containing containing

physiological and accelerometry data combined. The features of the proposed models for

running, indoor cycling, and CrossFit are presented in table C.2.
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Physical Exercise Model Signals

Running Physiological data Heart rate

Muscle oxygenation

Electrodermal activity

Accelerometry data Magnitude accelerations

Combined data Heart rate

Muscle oxygenation

Electrodermal activity

Magnitude accelerations

Indoor cycling Physiological data Heart rate

Muscle oxygenation

Electrodermal activity

Blood oxygenation

Accelerometry data Magnitude accelerations

Combined data Heart rate

Muscle oxygenation

Electrodermal activity

Blood oxygenation

Magnitude accelerations

CrossFit Physiological data Heart rate

Blood oxygenation

Accelerometry data Magnitude accelerations

Combined data Heart rate

Muscle oxygenation

Magnitude accelerations

Table C.2: Proposed models for each of the 3 physical exercises: running, indoor cycling, and
CrossFit.

At the time of this work, it was only possible to develop models for running. For this

exercise, the energy expenditure can be estimated by one of the 3 following models:

Physiological data

EE = 0.1524×HR + 0.052× SMO2− 11.5339× EDA+ 13.7666. (C.1)
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• EE: energy expenditure, in kcal/min;

• HR: heart rate, in beats per minute;

• SMO2: muscle oxygenation, in percentage;

• EDA: electrodermal activity, in Siemens.

Accelerometry data

EE = 1.8872×Apelvis− 0.4382×Alower back + 9.7311×Amedium back− 3.8557×Aupper back+

+ 1.1738× Aneck + 0.0798× Ahead − 0.2261× Aright shoulder + 0.4126× Aright upper arm−

0.0674×Aright forearm−0.0727×Aright hand +0.8251×Aleft shoulder−0.2934×Aleft upper arm−

−0.1946×Aleft forearm−0.2345×Aleft hand+0.0695×Aright upper leg−0.0041×Aright lower leg+

+ 0.0903×Aright foot + 0.0903×Aright toe + 0.0614×Aleft upper leg + 0.0823×Aleft lower leg+

+ 0.0003× Aleft foot − 0.0003× Aleft toe − 8.6452× Alower thoracic back + 2.1121. (C.2)

• EE: energy expenditure, in kcal/min;

• Al: Magnitude acceleration from body location l.

Combined data

EE = 0.1429×HR+0.038×SMO2−7.4732×EDA+1.7811×Apelvis−5.3313×Alower back+

+ 4.0916× Amedium back − 1.0710× Aupper back + 0.4060× Aneck + 0.0666× Ahead−

−0.2128×Aright shoulder−0.1079×Aright upper arm−0.0592×Aright forearm−0.0633×Aright hand+

+0.4887×Aleft shoulder−0.0862×Aleft upper arm−0.0748×Aleft forearm−0.0658×Aleft hand+

+ 0.0311×Aright upper leg−0.0137×Aright lower leg−0.0024×Aright foot−0.0024×Aright toe+

− 0.0407× Aleft upper leg + 0.0722× Aleft lower leg + 0.0452× Aleft foot − 0.0452× Aleft toe−

− 5.8942× Alower thoracic back − 11.6983. (C.3)

• EE: energy expenditure, in kcal/min;

• HR: heart rate, in beats per minute;

• SMO2: muscle oxygenation, in percentage;

• EDA: electrodermal activity, in Siemens.
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• Al: Magnitude acceleration from body location l.

C.2 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient is a metric that measures the linear relationship between

two variables, ranging from -1 to 1. The value of -1 expresses a linear negative correlation

between the two variables, the value of 1 expresses a positive linear correlation, and the

value of 0 means that there is no linear correlation between the two variables.

The Pearson’s correlation coefficient ρ is calculated as:

ρ =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2.

√∑N
i=1(yi − ȳ)2

, (C.4)

where x1,x2,...,xN and y1,y2,...,yN are the values from both variables, and x̄ and ȳ are the

means of both variables expressed as:

x̄ = 1
N

N∑
i=1

xi, (C.5)

and

ȳ = 1
N

N∑
i=1

yi. (C.6)

C.3 ICC Coefficient Calculation

The intraclass correlation coefficient (ICC) is a parameter that measures the correlation

between two or more measurement samples of a quantitative variable. ICC values range

from 0 to 1, where a ICC value closer to 1 indicates high similarity between values, while a

ICC value closer to 0 indicates low similarity between values.

Considering a dataset of N paired data values (xn,1,xn,2), for n = 1,...,i, the intraclass

correlation r is expressed as:

r = 1
Ns2

N∑
i=1

(xi,1 − x̄)(xi,2 − x̄), (C.7)

where

x̄ = 1
2N

N∑
i=1

(xi,1 + xi,2) (C.8)
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and

s2 = 1
2N (

N∑
i=1

(xi,1 − x̄)2 +
N∑

i=1
(xi,2 − x̄)2) (C.9)

.
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Appendix D

PCBMEMS Accelerometer Calibration

MEMS accelerometers are typically factory calibrated, avoiding the user to perform any

further calibration for the majority of the available applications. However, to reach a heading

accuracy of bellow 2°, a simple calibration procedure [63] can be made and is hereafter

described.

The relationship between the normalized accelerometer data ax, ay, and az and the raw

accelerometer measurements Arx, Ary, and Arz can be expressed as:


ax

ay

az

 =


ACC11 ACC12 ACC13

ACC21 ACC22 ACC23

ACC31 ACC32 ACC33

 .

Arx

Ary

Arz

+


ACC10

ACC20

ACC30

 . (D.1)

The normalized values can be obtained for any given raw measurements after computing the

12 parameters from ACC10 to ACC33. The calibration is performed by placing the sensor

in 6 stationary positions, in all orthogonal directions, and collecting accelerometer raw data

at each position during a time interval of 5 to 10 seconds.

Equation D.1 can be rewritten as:


ax

ay

az

 =
[
Arx Ary Arz 1

]
.



ACC11 ACC12 ACC13

ACC21 ACC22 ACC23

ACC31 ACC32 ACC33

ACC10 ACC20 ACC30


. (D.2)

Labeling the above matrices:

Ya = Wa.Xa (D.3)

83



• Ya: known normalized earth gravity vector;

• Wa: sensor raw data collected at 6 stationary positions;

• Xa: calibration parameter matrix that needs to be determined.

Considering the ideal values for the 6 stationary positions, the following system is obtained:



0 0 1

0 0 −1

0 1 0

0 −1 0

1 0 0

−1 0 0



=



Arx1 Ary1 Arz1 1

Arx2 Ary2 Arz2 1

Arx3 Ary3 Arz3 1

Arx4 Ary4 Arz4 1

Arx5 Ary5 Arz5 1

Arx6 Ary6 Arz6 1



.



ACC11 ACC12 ACC13

ACC21 ACC22 ACC23

ACC31 ACC32 ACC33

ACC10 ACC20 ACC30


, (D.4)

where Arxn, Aryn, and Arzn are the readings of the 6 stationary positions, with n samples.

The calibration parameter matrix Xa can be determined by the least square method:

Xa = [Wa
T .Wa]−1.Wa

T .Y. (D.5)
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Appendix E

Practical and experimental procedure

E.1 Experimental protocol

E.1.1 Security norms1

The entrance to the test room (ISR Shared Experimental Area) implies the mandatory use

of a social mask and the consequent disinfection of the hands with alcohol gel. During the

execution of the experiments, the windows must be open and all subjects must be present

inside the room, with a maximum of 3. They must remain with the social mask, except for

the participant during the exercise. Once the experiment is over, he must put on the social

mask again. Any equipment used during the experiment must be properly disinfected before

and after use. Between different acquisition periods, the windows must remain open and the

fan turned on for a minimum period of 30 minutes.

E.1.2 Setup

• Xsens MVN inertial motion capture suite;

• BodyEnergyExpenditure prototype (includes a Polar H7 heart rate monitor, a Humon

Hex muscle oximeter, and a BITalino (r)evolution P lugged Kit BT ).

E.1.3 Schedule

Start of the sessions: July 17th 2020.

End of the sessions: July 29th 2020.
1Please take note that the experiments took place during the Covid-19 pandemic.
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E.1.4 Participants

Parameters Athletes (n=13) Non-athletes (n=7) All (n=20)
Female/Male 2/11 1/6 3/17
Age (years) 18.5± 3.0 26.6± 4.9 21.3± 5.4
Weight (kg) 67.8± 8.2 75.5± 14.4 70.5± 8.0
Height (m) 1.73± 0.06 1.74± 0.08 1.74± 0.06

Table E.1: Participant’s characteristics.

E.1.5 Acquisition protocol

Procedures that precede the experiment

• Instructions about the experimental procedure;

• Questionnaire completion;

• Signature of the informed consent where the participant declares that he/she does not

suffer from a disease that makes it impossible to participate in the tests and agrees

with the collection of bio-metric and physiological data;

• Placement of the HR chest strap and heart rate calibration;

• Participant’s instrumentation;

• Review of the experimental procedure.

Estimated time: 30-35min.

Experimental procedure

• MVN Suite calibration;

• Warm-up:

– Athlete: 2 minutes at 4km/h, 2 minutes at 6.5km/h, 1 at minute 8km/h;

– Non-athlete: 4 minutes at 4km/h, 1 minute at 6.5km/h;

• 12 minute test:

– Athlete
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– 3 minutes at 8km/h;

– 3 minutes at 9km/h;

– 6 minutes at 10km/h;

– Non-athlete

– 3 minutes at 6.5km/h;

– 3 minutes at 7.5km/h;

– 6 minutes at 8.5km/h;

• Recovery: 3 minutes at 4km/h.

Estimated time: 30-35min.

Procedures that follow the experiment

• Removal of the devices.

Estimated time: 8-10min.

Equipment disinfection and space ventilation

Estimated time: 25-30min.

E.1.6 Timetable

Figure E.1: Timetable.
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E.2 Authorization and informed consent

The current study aims to develop a prototype for estimating energy expenditure associated

with physical exercise. For validation purposes, collections of physiological signals will be

made at rest and during a 15-minute run. During the execution of the activity, several vari-

ables will be monitored, such as heart rate, accelerations of different parts of the body, muscle

oxygenation and galvanic skin response. The data will be collected using a prototype made

up of several sensors that will be distributed into different parts of the body. Throughout the

experiment, images of the participant will also be collected, which will be kept anonymous,

being only used for academic purposes. Before starting the experiment, a small question-

naire will be filled out regarding the individual’s personal information (age, gender, height

and weight), eating habits and other consumption, clinical history and participant’s physical

activity level. The time for data collection, plus the time required to complete the question-

naire, instrumentation of the participant and collection of the devices, will have a duration

of approximately 1h30min. Participation is voluntary and the participant has the right to

refuse to participate, or to give up at any time.

——————————————————————————————————————

I, , accept / allow

my student to (scratch as appropriate) participate in this study of data collection for the

elaboration of a prototype meter of energy expenditure associated to physical exercise. I

declare, for due legal purposes, that I authorize the capture of physiological signals during

physical activity in laboratory environment, at the Systems and Robotics Institute of the

University of Coimbra. I further expressly state that the said signals may be used in the

context of scientific articles, books, dissertations or other types of material of scientific na-

ture, and only in that context, renouncing any rights or possible compensation that could

result from their use. I also declare that I authorize the anonymous disclosure of the signals

collected in a database that will be exposed to the public.
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E.3 Questionnaire

This questionnaire is part of a master’s thesis in Electrical and Computer Engineering that

aims to develop a prototype for estimating energy expenditure associated to physical exercise.

All data collected in this questionnaire is anonymous and will only be used for academic

purposes.

E.3.1 Personal data

Gender: Male � Female �
Age:

Height: cm

Weight: kg

Nationality:

E.3.2 Eating habits and other consumption

What was your last meal?

Breakfast � Lunch � Snack � Dinner � Other:

Describe your last meal:

How many meals you eat regularly per day?

Do you drink alcohol regularly? Yes � No �
If yes, how often?

Have you consumed alcoholic beverages in the last 24 hours? Yes � No �
Do you consume dietary supplements (vitamins, protein)? Yes � No �
Do you smoke? Yes � No �

E.3.3 Clinical history

Do you have history / suffer from any respiratory disease (asthma, pneumonia, rhinitis)?

Yes � No �
Do you have any family members with history or who suffer from respiratory diseases?

Yes � No �
Do you have history / suffer from any cardiovascular diseases (AVC, arrhythmia)?
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Yes � No �
Do you have any family members with history or who suffer from cardiovascular diseases?

Yes � No �
Do you have history / suffer from any other chronic diseases?

Yes � No �
Do you have any family members with history or who suffer from any other chronic

diseases?

Yes � No �

E.3.4 Fitness level

How often do you practice physical exercise? Select the best option for your case.

� Never

� Rarely

� 1x per week

� 2x per week

� 3x per week

� 4x per week or more

Do you currently practice any federated sport? Yes � No �
If yes, which one?

How many practices per week?
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