CAMPAIGNS PLATFORMS A2P Rita Miguel Fernandes Lemos Fernandes

UNIVERSIDADE P
COIMBRA

=]
=)

UNIVERSIDADE b

COIMBRA

Rita Miguel Fernandes Lemos Fernandes

CAMPAIGNS PLATFORMS A2P

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineer advised by Professor Alberto Cardoso and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering
Under the guidance of Engineer Raul Fonseca along with Engineer Pedro Marques at Wit
Software

June, 2020

This page is intentionally left blank.

Chapter 0

Abstract

Nowadays, devices are part of our daily lives and end up being indispensable in our routine,
and in turn, there are more forms of communication in response to the needs of modern
society.

Application-to-Person (A2P) campaign platforms enable businesses to communicate di-
rectly with consumers by sending promotional messages directly to their mobile messaging
inbox (SMS, Whatsapp or RCS).

With the evolution of technology, nowadays, it is now possible for users to store their
promotional coupons and loyalty cards in the virtual wallets of their devices, which would
be a convenient alternative to physical passes.

The internship consists on development of a prototype A2P campaign platform, which
allows validating mechanisms that enrich these campaigns, ensuring a better experience
in their use. Functions were been developed under this prototype that includes a set of
modules, respectively, SMS campaign engine for link distribution, loyalty module, vouchers,
virtual wallet, profiling, segmentation, analytics, and campaign management module.

Keywords

"A2P" "SMS", "Campaign platforms", "Virtual wallet"

ii

This page is intentionally left blank.

Chapter 0

Resumo

Atualmente, os dispositivos fazem parte do nosso quotidiano e acabam por ser indispen-
saveis na nossa rotina, e, por sua vez, comecam por existir mais formas de comunicagao
como resposta as necessidades da sociedade moderna.

As plataformas de campanhas A2P (Application-to-Person) possibilitam as empresas uma
comunicagao direta com os consumidores, através de envio de mensagens promocionais
directamente para a inbox de messaging do telemével (SMS, Whatsapp ou RCS).

Com a evolugao da tecnologia, hoje em dia, ja é possivel os utilizadores armazenarem os
seus cupoes promocionais e cartoes de fidelidade nas carteiras virtuais dos seus dispositivos,
0 que seria uma alternativa conveniente aos passes fisicos.

O estagio consiste no desenvolvimento de um protétipo de uma plataforma de campanhas
A2P, que permite validar mecanismos que enriquecam estas campanhas, garantido uma
melhor experiéncias na utilizacao das mesmas. Foram desenvolvidas funcionalidades no
ambito deste prototipo que inclui um conjunto de moédulos, respetivamente, motor de
campanhas SMS para a distribui¢ao de links, modulo de loyalty, vouchers, wallet virtual,
profiling, segmentacao, analytics e moédulo de gestao de campanhas.

Palavras-Chave

"A2P", "SMS", "Plataformas de campanhas", " Wallet virtual"

iv

This page is intentionally left blank.

Chapter 0

Acknowledgements

First, I would like to thank Wit Software for the internship opportunity they gave me, and
all the people involved in it in the past ten months.

Especially to my advisor, Raul Fonseca, for all the help available and for having guided me
on the right path during the internship. Other special thanks to my tutor, Pedro Marques,
for all the unconditional support and for the constant assistance in the development of
this project that helped me to evolve at a professional level. I also want to thank all the
employees at Wit Software who, in one way or another, helped me with any doubts that
came up during the internship, I want you to know that I cherish all the time spent.

To my DEI advisor, professor Alberto Cardoso, for all the help in my constant doubts
throughout the year, for having helped me deal with my worst moments and above all for
having taught me that with effort and dedication, we managed to achieve our goals and
that everything is rewarded.

Second, not least, I want to thank my closest friends, who are a fundamental part of my
life, for always being on my side at all times. To Joana, friend and housemate, who gave
me the support I needed in the last few months, especially in this pandemic situation
that we all live in, in the company of each other that was essential to overcome the worst
moments. To Matilde and Ana, the "mine" from Tras-os-Montes, for all the words of
strength and friendship, helped me to overcome this stage with determination. Bruna, a
friend for almost twenty years, for always helping me to face all phases of my life. To
Maria Luis, for all the smiles that drew me and the strength, she gave me. To my friends,
Francisco Quinaz and Joao Costa, who always gave me the strength to continue a phase
that we started together.

Finally, I want to thank my parents, Maria Manuela and Miguel Angelo, who, despite the
distance, was always present at all times. For never letting me fall in my worst moments,
for all the full strength they gave me, without their precious help, this would never have
been possible, and for that, I will always be grateful. To my brother, and best friend,
Eduardo Miguel, who is in another country, was still by my side in everything I needed, a
phone call has never had such a bittersweet feeling.

To all of you, thank you, from the bottom of my heart.

vi

This page is intentionally left blank.

Contents

Introduction

1.1 Comntext
1.1.1 Motivation
1.1.2 Goals

1.2 Document Structure

State of the Art

2.1 Mobile Wallet App
2.1.1 Global Mobile Payment Statistics
2.2 Competitors
2.2.1 Wit Loyalty & Coupons Direct Competitors
2.3 Technologies
2.3.1 Back-end Technologies
2.3.2 Front-end Technologies
2.3.3 Support Tools
Approach
3.1 Methodology
3.1.1 Scrum Roles.
3.1.2 Lifecycle
3.2 Planning oL
3.2.1 First Semester
3.2.2 Second Semester
3.3 Risk Management
3.3.1 Risks Identification
3.3.2 Risks Metrics
Requirements Analysis
4.1 User Stories
4.2 Functional Requirements
4.2.1 Agile Boards
4.3 Non-Functional Requirements

Software Architecture

5.1 Final Architecture High-Level Design
5.1.1 Loyalty & Coupons Backend
5.1.2 Management API Prototyping
5.1.3 Frontend API Prototyping . .

52 Loyalty App
5.2.1 System Context Diagram . .
5.2.2 System Containers Diagram .
5.2.3 Reporting Module

10
10
14
14
15
15

17
17
17
17
18
19
21
23
24
27

29
29
30
32
34

Contents

6 Development and Final Product 49
6.1 Web Application 49
6.1.1 Authentication 49

6.1.2 Home Page 50

6.1.3 List campaigns L Lo e 50

6.1.4 Insert/Update clients and Send SMS to Clients o1

6.1.5 Visualize number of customers using iOS and/or Android devices . . 52

6.1.6 Visualize number of points for each customer per brand and campaign 52
6.1.7 Visualize the five campaigns with the most downloads by customers 53

6.1.8 Visualize number of pass updates per brand 54

6.1.9 Visualize comparison between the number of downloads made by
customers and the SMS sent to customers 95
6.2 Google Pay Interaction 56
6.2.1 Stamp card for Android users 56
6.3 Apple Wallet Interaction 57
6.3.1 Loyalty card for iOSusers 57
7 Software Quality 59
7.1 Functional Testing 59
711 APITests 59
7.1.2 Acceptance Tests 60
7.2 Non-Functional Testing 60
7.2.1 Performance Testing 60
8 Conclusion 65

ix

This page is intentionally left blank.

Acronyms

A2P Application-to-Person. 1, 2, 38

APIT Application Programming Interface. 4, 10, 11, 18, 59
APNs Apple Push Notification service. 41
ELK Elasticsearch Logstash Kibana. 46
FCM Firebase Cloud Messaging. 41
HLD High-Level Design. xiii, 37

JWT JSON Web Token. 43

OTT Over-the-Top. 1

RCS Rich Communications Services. 4
SMS Short Message Service. 1, 4

SoTA State of the Art. 7

UI User Interface. 11

UX User Experience. 59

VPN Virtual Private Network. 15, 61

pal

This page is intentionally left blank.

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Global average SMS openrate oL 2
The loyalty card problem, 3
Consumers show desire for mobile Wallets 4
Global Top Mobile Payment 8
Passes examples from Loopy Loyalty 13
Passes examples from CherryPie 13
The Scrum Framework 18
Gantt Chart First Semester 20
Gantt Chart Second Semester 22
Real Gantt Chart Second Semester 23
Risk Matrix e 27
Agile Board for User Story USO1 32
Agile Board for User Story US02 33
Agile Board for User Story US03 33
System architecture High-Level Design (HLD) 37
Interaction between the client and the server. 38
Loyalty & Coupons View 39
Database tables 40
Apple Push Notification Overview 41
Firebase Cloud Messaging 41
Push Notifications View 42
API flow diagram [30] 43
Context Diagram of Loyalty App 44
Containers Diagram of Loyalty App 45
ELK Representation [34] Lo o 46
Filebeat Integration Lo 47
Authentication in Loyalty App 49
Home Page 50
List campaigns 50
Insert/Update clients and Send SMS to Clients 51
Number of customers using i0OS and/or Android devices 52
Number of points for each customer per brand and campaign 52
Top 5 campaigns with the most downloads 53
Number of pass updates per brand and per day/campaign 54
comparison between the number of downloads and SMS 55
Example of stamp card for Android 56
Example of loyalty card for iOS 57

This page is intentionally left blank.

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.2
4.4
4.6

5.1

7.2
7.4
7.5
7.6
7.7
7.8

© 00 N O O i W N~ =

[S—
= O

[e Sy =
T = W N

Mobile Wallet Apps Analysis 9
Competitors Analysis 12
Back-end Technologies L L 14
Back-end Technologies L 15
Risk 1 - Apple Wallet Study 24
Risk 2 - New Technologies Learning 25
Risk 3 - Google Pay does not exist in Portugal 25
Risk 4 - Integration on the Wit Buzz Platform 26
Risk 5 - APl updates 26
Risk 6 - The COVID-19 pandemic 27
User stories L e 30
Functional Requirements 31
Non-Functional Requirements 34
Information for update process 39
API Tests Result 60
Acceptance Tests Results 0oL 60
Caption 61
View Results SMS Tree 62
SMS Summary Report 62
View results campaigns and clients management tree 63
Campaigns and clients management summary report 64
First Semester Planning 0 oo 71
First Semester Planning oo 72
Second Semester Planning o 0oL 73
Information to send by device L L 75
Responses e 75
Information to send by device L 76
Responses 76
Information to send by device oL 77
Responses 77
Information to send by device o Lo 77
Responses 78
Information to send by device L 78
Download pass 80
Update pass and data client 80
List campaigns L 81
Get all campaigns. oL 81

XV

Chapter 0

16
17
18
19
20
21
22
23
24

25
26
27

Getallbrands 81
Registering a Device to Receive Push Notifications for a Pass 82
Getting the Serial Numbers for Passes Associated with a Device 82
Getting the Latest Versionof a Pass 83
Unregistering a Device L o 83
Upload clients data 84
Get top downloads from passes 84
Get data from SMSlogs 84
Get total number of costumers using iOS and/or Android from downloads

logs . . o e 85
Get number of updates per day from updates logs 85
Get number of updates per campaign from updates logs 85
Get number of downloads performed and sms sent from logs 85

XVi

This page is intentionally left blank.

Chapter 1

Introduction

The present report focuses on the work done by the author at Wit Software, S.A., during
the annual internship in the Master’s degree in Informatics Engineer in the Department of
Informatics Engineer of the University of Coimbra. The work took place at Wit Software,
S.A., under the guidance of Professor Alberto Cardoso of the Department of Informatics
Engineer and Engineer Raul Fonseca along with Engineer Pedro Marques at Wit Software,
S.A.

1.1 Context

One of the primary sources of revenue for telecommunications operators is the Short Mes-
sage Service (SMS). Currently, operators are losing SMS traffic to other Over-the-Top
(OTT) technologies, such as Whatsapp, Facebook, Skype, and Messenger. These tech-
nologies offer better services at a low cost to users. These OTT messaging services have
seen real growth in the past two years. However, SMS has features that beat the alterna-
tives of view rate and open rate, and for this reason, this project aims to develop features
that make their revival. Also, another advantage over OTT services is that an internet
connection is not required to receive messages.

Application-to-Person (A2P) is a term that describes the process of sending text messages
from an application to a device. Companies can use A2P SMS to communicate with their
customers, sending alerts, and carrying out marketing campaigns, among other features.
In the context of A2P campaigns, loyalty features are built, such as virtual loyalty cards,
among others. This loyalty features allow the existence of an interaction between the brand
and the customer so that the customer is satisfied and, consequently, loyal to the brand.
In addition to the customer loyalty features, in the context of the internship, a campaign
analysis block for the brand is also developed.

Chapter 1

Figure 1.1 represents the result of a survey conducted in 2018, with about 992 participants,
where it is possible to observe the performance of the SMS.

Figure 1.1: Global average SMS open rate
[36]

A2P is a term used to describe a process of sending messages from a software app to a phone.
These types of messages include shipping notifications from online stores, appointment
reminders, promotional and loyalty program notifications, and two-factor authentication
one-time passcodes for account security.

1.1.1 Motivation

Nowadays, as e-commerce evolves, the need to use the mobile phone is increasing more and
more and consequently has made it easier to use various practical things. Virtual wallets
have been replacing traditional wallets, with approximately 85% of smartphone users using
in-store purchases, travel and events.

One of the most significant advantages of using virtual wallets for mobile payments is the
ease and affordability the customer has. In addition to speeding up the entire payment
process, it can help with retaining customers to the brand, thus preventing them from
switching to a competitor.

Often using physical cards becomes a problem because, in addition to the likelihood of
losing them is significant, we also forget about them, or in case of discount cards, we don’t
remember that we have them and can still use them.

Virtual wallet applications have been increasingly used, as they allow the use of various
functionalities. Also, a great advantage is mobility since it is possible to use them on
smartphones and tablets. Through the applications of virtual wallets, it is possible to
make payments or store them and use virtual passes, such as discount coupons, boarding
passes, concert tickets, among others.

Introduction

Also, through the use of these applications, it’s possible to be informed by notification
of the use of discount coupons when they’re within their expiration dates and/or we're
near a store where we can use them. For example, if we have location enabled on our
mobile phone and a specific pass registered into the wallet, this would allow us to send a
notification that you’re close to the stores and thus enjoy the services.

During the internship, we intend to develop features that include loyalty modules, support
for vouchers, and wallet. These features will allow brands to send campaigns through
previously spoken messaging to customers so that they can use the virtual wallet along
with the received passes.

Figure 1.2 shows the top two reasons why the use of physical loyalty cards is a problem -
this statistic is provided by Airship in a 2016 study. [3§]

Figure 1.2: The loyalty card problem
[38]

Figure 1.3 shows what consumers desire for mobile Wallets. These statistics were provided
by Airship, a customer engagement platform, and fielded in 2016. [38]

Chapter 1

Loyalty Cards

Coupons

Order Delivery Update

Mobile Payment via Credit Card

Boarding Passes

ID Cards

Event Tickets

Reminders (Expirations, Balances)

Sales Updates (Notifications for Sales)

Punch Cards

Digital Receipts / Warranty

b

Gift Cards

Figure 1.3: Consumers show desire for mobile Wallets
[38]

1.1.2 Goals

The objective of this project is to develop a set of features that complete an A2P campaign
platform, a campaign management platform for brands.

Project Goals

The main objective of the project is to develop an Application Programming Interface
(API) for managing and distributing virtual passes to strengthen a better customer re-
lationship, offering rewards, and consequently obtaining customer retention for brands.
This internship focus on the creation of promotional campaigns and their distribution
through push notifications, messages via SMS, WhatsApp, and Rich Communications Ser-
vices (RCS), for iOS and Android devices.

The developed API was implemented in such a way that it is possible to integrate into
different applications that allow the use of the developed tools, such as the creation and
management of coupons, among others. Wit Software currently has a team developing a
dashboard that allows brands (main customer) to manage their campaigns and distribute
them among their customers, in addition to having access to the platform activity statistics,
which in the future can be used as application integration.

Introduction

1.2 Document Structure

This document is divided into 8 chapters, including the Introduction and the following;:

e State of the Art: It presents state-of-the-art analysis, which defines the possible
competitors for the product to be developed, as well as comparisons with each other,
including Wit’s solution.

e Approach: It presents the methodology used for project development, defining all
its characteristics and the planning for the two semesters, representing all the changes
made.

¢ Requirements Analysis: It presents an analysis of the requirements identified,
more precisely, user stories, functional, and non-functional requirements.

e Software Architecture: It gives a review of the architecture solution provided, as
well as the high-level architecture designed for the project.

e Development and Final Product: Presents and describes the layouts obtained
during the internship project.

e Software Quality: It describes all the tests adopted to evaluate, measure, and
guarantee the quality of the developed software.

e Conclusion: Provides a conclusion on project development so far, defining what
may have gone wrong and well.

This page is intentionally left blank.

Chapter 2

State of the Art

This chapter will present an analysis of the current market and the applications that
compete against the internship product. State of the art is the first significant phase in
the development of a project to demonstrate research results. The importance of State of
the Art (SoTA) is a research business base.

The survey of the SoTA is a crucial step in the development of a project because it allows
assessing the viability of the project through the analysis of existing solutions, identifying
the strengths and flaws they have, as well as analyzing the saturation level of the project.
Based on this analysis, it is possible to determine the project risk level and its probability
of success.

2.1 Mobile Wallet App

Different virtual wallet apps store payment card information and virtual passes on a mobile
device. These virtual wallets have become a more convenient and affordable way for users
to make in-store payments and virtual service coupons and can be used by merchants
associated with the service provider of their virtual wallet.

These virtual wallets are available in different countries and operating systems; some of
these are:

Apple Wallet [6]

Google Pay [10] G Pay

Wallet Passes [32] al

Pass2U [19] w3

Samsung Pay [23]

WeChat Wallet [33] @

Chapter 2

2.1.1 Global Mobile Payment Statistics

According to a 2019 study, WeChat Pay is the world’s largest mobile payment platform
with over one billion users [1].

Company Active users Latest figures from
WeChat 1 billion+ Tencent (Jan 2019)
Alipay 1 billion+ Alipay (Jan 2019)
Paypal 250 million PayPal (Sep 2018)

Apple Pay 383 million Loup Ventures; QZ (Feb 2019)
Amazon Pay 50 million Evercore IS, Investopedia (May 2018)
Samsung Pay 1 billion+ Statista (Aug 2017)

Google Pay 24 million Statista (Aug 2017)

Figure 2.1: Global Top Mobile Payment
[1]

According to a 2019 study [1], 36.3% of smartphone users are expected to make a mobile
in-store payment at least once every six months.

Analysis

The three most popular apps [27] globally are Apple Wallet, Google Pay, and Sam-
sung Pay. For integration in this project, Apple Wallet and Google Pay will be used,
respectively, for i0OS devices and Android devices.

Below, in table 2.1, we can see a comparative analysis between some existing virtual wallet
applications.

Table 2.1: Mobile Wallet Apps Analysis

=

G Pay

us?® ,

pay

%o

Availability Global 130 countries Global Global 25 countries | 3 countries
Scan to Pay v v v v v v
NFC Tap to Pay v v v X v X
Time Based v v N/A v N/A v
Alerts
GPS Lockscreen v v v v v v
Notifications
Push Messages v v v v v X
Support Blue- v v v v N/A N/A
tooth Beacons
Mobile Payment Apple Pay | Google Pay | Google Pay | Apple Pay, | Samsung Pay WeChat
Google Pay Payment
Pay In-App v v N/A N/A v API for
Apps
Pay In-Store v v N/A N/A v v
, = = = = =
Operating System ‘ i0S "' "' "l l" l"
can>0I1D (a[pinEle]ln] and0ID caN>D0I1D (a[pinEle]ln]
”iOS ”iOS

Iy 9y} jo aj3elsq

Chapter 2

After analyzing the mobile platforms previously presented, Google Pay and Apple Wallet
were chosen to develop the project. Since both applications are installed natively on the
devices and are the most used in Europe and America, they stand out quickly in the
selection for the desirable requirements.

2.2 Competitors

This section presents an analysis of the current market and some services that compete
with Wit solutions. Two types of competitors have been identified. The first are platforms
that contain features that indirectly compete with WitBuzz.

Witbuzz is a web-based platform developed by a team of Wit Software, which allows us to
create campaigns of different categories and send them to a set of selected customers, as well
as observe all user activity on the platform. Campaigns can be engagement, promotion,
retention, survey, gamified ads, and a custom ad. The project developed in the internship
will later be integrated into WitBuzz, an A2P campaign management platform. The second
competitors are the platforms that compete directly with the stage to develop.

Analyzing potential competitors is a smart and essential process because it allows you to
understand the success strategy better, estimate the impact of risks, and understand its
viability.

2.2.1 Wit Loyalty & Coupons Direct Competitors

This subsection presents platforms that compete directly with the project to be developed
in the internship.

PassKit [20] allows us to manage and distribute virtual passes,

such as coupons, loyalty cards, event tickets, boarding passes, and

more. This platform enables users to store any pass in their virtual — eje_ o PaSSKit
wallets. °

Also, PassKit has the advantage of integrating with payment op-
tions, Apple Wallet, and Google Pay, respectively.

Loopy Loyalty is a web application launched by PassKit, to cre-
ate and manage digital stamp cards for Apple Wallet and Google
@ LoopyLoyaIty Pay. Design cards online, send push messages to customers, cap-

ture transaction history, and view customer insights [16].

The CherryPie is one of the solutions created by PassKit that
includes all the tools for campaign management, clients, and mes-

saging [28]. o

CherryPie
Voucherify is a cloud-based platform for managing promotions, porerss “y”"“““y
helping to increase customers for service, and helping them re-
tain. [31]

This Application Programming Interface (API) offers solutions for
% voucherify gift cards, in-cart discounts, coupon discounts, referral, loyalty,
giveway programs and landing pages.

10

State of the Art

Voucherify is an enterprise-ready digital promotion platform, and
the following features are highlight:

e Developer-friendly API: Flexible REST API, SDKs, and webhooks reduce inte-

gration time with the rest of your marketing ecosystem

e Strategic, 24/7 support: The team offers customized onboarding, strategy con-
sulting, technical guidance and round-the-clock support

e Role-based access control: Build custom workflows suited to each individual or
team with fine-grained privileges and custom roles

e Enterprise-grade infrastructure: Launch mission-critical projects with a secure,
GDPR- and CCPA-ready with a robust platform

This competitor is the most outstanding of all, is the most complete in its characteristics
and also provides the necessary tools for a possible integration:

e Well-documented REST API

Quick start guides and sandbox

10 SDKs and User Interface (UI) widgets
Webhooks

Monitoring and logs

Coupontools allow to create and distribute coupons to users.
This platform has digital coupon management, vouchers manage-
ment, distribution, customer engagement and interaction, valida-
tion, data capture, and statistics that enables businesses to expand
and increase sales. [18]

iVend Loyalty is an offer management application that allows
users to accumulate points or purchases that they can enjoy for

/-'\\ _ discount coupons, gifts, or other rewards. [7]
HAiVend Retail

N,

R St Besides, this application gives brands access to their customers’
purchase preference histories and, therefore, can offer them pro-
posals and rewards through notifications.

Although iVend Loyalty is part of an iVend Retail management pack, it works inde-
pendently and can be integrated with other services.

Talon.One is a straightforward integration with a flexible API,
and people can create promotional campaigns that boost their ‘
ROIL. [26] Talon.One

11

¢l

Analysis
The complex analysis is made between the competitors and the Wit solution, thus obtaining the various possible solutions and even later to be able
to integrate the modules with one of the existing APIs.

Below, in table 2.2, we can see the products that we intend to purchase, marking them with a checkmark which is possible to buy in the corresponding
service, and with a red cross mark those which aren’t available.

Wit Loyalty | Voucherify | Talon.One | iVend CherryPie | Couponstools | PassKit | Loopy Loyalty
& Coupons Loyalty
Coupons v v v v v v v v
Loyalty Cards v v v v v v v v
Gift Card Man- | v/ v v v v 4 v 4
agement
Event Tickets v X X v v v v v
Boarding Passes v X X X v v v v
Membership v v v v v v v v
Management
Discount Cards v v v v v v v v
Support for native | v/ X v - v X v v
ios and android
wallets
Integrations and | v/ v v - v v v X
third-party guides
Cross-channel de- | v/ v v - X 4 v v
livery

Table 2.2: Competitors Analysis

Z Jegdery)

State of the Art

Figure 2.2 shows different examples of stamp cards using LoopyLoyalty software.

|

. o |
1 [OJOJeJ6J6] | 0 0 0 O
100000 0000

‘STAMPS REQUIRED UNTIL NEXT REWARD
8

= g
Sl G
I

p—
Figure 2.2: Passes examples from Loopy Loyalty
Figure 2.3 shows different examples of passes types created by CherryPie.

Giift Cards

Lane(raford “"Viko 480

Booking Confirms Insurance Policies

Fwo i s

747719444

wwwwwwwwwwwwwwwww

Figure 2.3: Passes examples from CherryPie
[12]

The difference between Loopy Loyalty and Cherry Pie is the type of pass that both can
create. Loopy Loyalty only develops passes like stamp cards, while Cherry Pie develops
virtual passes of different types, as shown in the figure above.

13

Chapter 2

2.3 Technologies

This section will describe an analysis of the technologies used for project development,
including the implementation of the Rest API, database, and other tools.

2.3.1 Back-end Technologies

For the development of this project, two back-ends were implemented, and several lan-
guages, frameworks, and libraries were used.

Apache Maven is a project management tool based on the POM (project object model)
that provides a complete project building life cycle. The programming language used was
Java. [13]

Table 2.3: Back-end Technologies

Java The Java™ Programming Language is a general-purpose, con-
current, strongly typed, class-based object-oriented language.
It’s typically compiled to the bytecode instructionset and binary
format defined in the Java Virtual Machine Specification [13]

Maven Apache Maven is a software project management and compre-
hension tool [17]

Spring Boot It is a framework for Java developers that provides a quick and
straightforward way to configure and run web-based applica-
tions [25].

PostgreSQL It is a powerful, open source object-relational database system

Database that uses and extends the SQL language combined with many

features that safely store and scale the most complicated data
workloads [37].

Kibana Dash- | It is a free and open user interface that lets you visualize your

board Elasticsearch data and navigate the Elastic Stack. [14]

Elasticsearch It is a highly scalable open-source full-text search and analytics
engine. [2]

Logstash It is a log aggregator that collects data from various input

sources, executes different transformations and enhancements
and then ships the data to various supported output destina-
tions. 8]

FileBeat It is a log data shipper for local files. Filebeat agent will
be installed on the server, which needs to monitor, and file-
beat monitors all the logs in the log directory and forwards to
Logstash. [15]

14

State of the Art

2.3.2 Front-end Technologies

The Loyalty App Front-end was also developed for interaction with the brand.

Table 2.4: Back-end Technologies

Typescript The TypeScript is a typed superset of JavaScript that compiles
to plain JavaScript. [29]

React A JavaScript library for building user interfaces

CSS A mechanism for adding style to a web document.

Bootstrap Front-end open source toolkit, featuring Sass variables and mix-
ins, responsive grid system, extensive prebuilt components, and
powerful JavaScript plugins [5]

2.3.3 Support Tools

To support the development of the internship project were used some tools, some of which
are used within Wit Software and support the Scrum structure.

Redmine: A web platform for project management that includes tools that allow
checking the status of the project through agile boards after identifying user stories
and functional requirements, in addition to allowing you to create graphics, such as
the Burndown Chart.

IntelliJ IDEA: It is an IDE written in Java that allows you to develop computer
software.

Visual Studio Code: It is a code editor redefined and optimized for creating and
debugging web applications used in the development of the Loyalty App front-end.

Postman: It is a software development tool used to perform API tests.
Ovearleaf: It is an online LateX editor used for this internship report.

GitLab: GitLab is a software repository manager based on git, which allows you to
store the implementation code on Wit’s servers.

Apache Jmeter: JMeter is a tool that performs load tests on static or dynamic
resources.

Forticlient: Simplifies remote user experience with built-in auto-connect and always-
up Virtual Private Network (VPN). [9] features.

15

This page is intentionally left blank.

Chapter 3

Approach

This chapter describes the company’s approach to software development that is followed in
the internship project. Also, the identified risks and the planning of tasks to be performed
during the internship are presented.

3.1 Methodology

This section describes an overview of the methodology used for software development. The
methodology adopted was Scrum, a lightweight, agile, and simple to understand method-
ology, which is a framework where people can solve complex problems while creatively and
productively delivering products with the highest possible value.

3.1.1 Scrum Roles

e Product Owner: The product owner is responsible for maximizing product value,
and the work of the development team, is the sole person responsible for managing
the Product Backlog [11]. In this project, the project owner Engineer Raul Fonseca.

e Scrum Team: The Development Team comprise professionals working to deliver a
potentially usable "Done" product increment at the end of each Sprint [11]. Raul
Fonseca, Pedro Marques, and I are the scrum team in this project.

e Scrum Master: "The Scrum Master is responsible for promoting and supporting
Scrum, helping everyone understand Scrum theory, practices, rules, and values. The
Scrum Master is a servant-leader for the Scrum Team" [11]. In this project, the
scrum master is Pedro Marques.

3.1.2 Lifecycle

The Scrum process focuses mainly on project management, where it assumed that the
team is self-organizing, this methodology based on dividing the project into several goals so
that incrementally the results can be shown regularly to the client. Thus, some problems
are identified at a stage that will not significantly affect project development.

At the beginning of a project, after the Product Owner meets with stakeholders to better
understand the needs, a set of requirements is defined that the project must address,

17

Chapter 3

called Product Backlog. After the Product Backlog is defined, each requirement is given
priority and which ones have the highest value. The priority requirements are then sent
to the Sprint Backlog so that they take part in work cycles called Sprints, in which the
duration of these does not exceed four weeks.

At the beginning of the cycle of each sprint, there is a planning meeting called Sprint Plan-
ning, where the Sprint Backlog and the defined time to complete the sprint are presented.
During the execution, daily meetings are held, from 10 to 15 minutes, to review what was
done the previous day and rectify what will be done next. After completing the sprint, re-
view and retrospective meetings are held. In the Sprint Review, it is made a presentation
of what has already been developed and alignment the elements of the product backlog in
the next sprint. The Sprint Retrospective attends to raise difficulties faced during that
period and find solutions on how to reduce some possible obstacles in the next sprint.

Below in figure 3.1, we can observe the various phases of this methodology. [35]

1 J
20N$)

7 Serym Tes™
Download The Scrum Framework

Figure 3.1: The Scrum Framework
[35]

3.2 Planning

This section presents the planning for both semesters for the completion of the internship.
The plan represents an orientation of the internship proposal. Some of these proposals
have changed, influencing the order of tasks, taking into account their priority.

As seen previously, an API for integration in a native iOS application and a native An-
droid application will be developed, focusing on the iOS app in the first semester and
continuing in the second semester for the Android app.

Since we have adopted a Scrum methodology, the use of Gantt Charts for plain is not
practical, as it is not static sprint tasks are taken directly from the Product Backlog.
Keeping a Gantt Chart up-to-date requires much effort since sprint identification needs
to be well planned and could change regularly. As a representation of the work done in
the first semester and the work done in the second semester, agile boards were created.
Chapter 4 shows the tasks followed by the agile boards for each one.

In appendix 8, we can see the full plan, respectively, the defined sprints, the tasks, and the
dates.

18

Approach

3.2.1 First Semester

For the first semester, the planned tasks were as follows:

e State of the art survey
e Research activities on the main techniques and concepts A2P campaigns
e Requirements analysis

e Identification and design of the functional modules to be prototyped and their archi-
tecture

e Definition of the development plan

e Prototyping the functionality of some of the A2P platform’s internal modules
e Management API prototyping

e Preparation of prototypes for internal demonstrations

e Intermediate internship documentation

The initial plan was subject to minor changes and the first tasks were kept, respectively.
The research needed to achieve state of the art, including an analysis of competitors and
technologies, and requirements gathering to define the stories of the user and functional
and non-functional requirements. Next and focusing only on the iOS branch, an analysis
was made of all the documentation provided by Apple that needs to be respected for the
development of virtual passes, so the client-server architecture was taken into consideration,
thus creating a high-level architecture. After this phase, the development of the necessary
software to complete the defined sprints was started, thus obtaining a final demonstration.

During the internship, sprints planned to create a Gantt chart as a representation of the
work done and their estimated hours. Below in Figure 3.2, we can see the Gantt chart for
the first semester.

19

0c

wa First Semester Gantt chart

State of Art:
@ Reseorch on concepts AZP compalgrs
2 @ Research on exising platorms for virtualpasses

3 @ Research onkey techviques

Requirements Analysis:
& @ User stoies and functonal requirements.

7 @ Nonfunctionsi requirements

Software Architecture solution:
0 @ Technologies Analysis

© Dabase analysis and dagram
2 @ Finalarchitecture HLD

Devopment:
© oaabase
¢ © Daamodel
© Database impiemersaton
4 @ Loyatyand Coupons Sackend APt
5 @ Mansgement AP Proyping
2 @ Fromtend AP Protoypig
21 @ APNs andFCM implemertation

Qun
@ Tes

2 @ Demonstrationtests

Intermediste Internship Report:
Writesate o the art chapter

Write approach methods chapter

Wit software archtecture chapter

Wit requirements anslysis chapier
Firstversion of inermediate internship report

Finiintermediate internship report

OOOOOO6

Writentermedtate ncernship presentation

State of Ar:
@ Research on concepts A2P campalgns.
Research o existng pltforms for ituslpasses.
Research on key techniques

pr— e iremerns Ansys
@ User stories and functional requirements
D o turctonsi requiremens

s N
N vechnoiogies Analysis
@D Dstabase anslysis and diagram

B sl srchtecture D

219

oo
345 6 4 s M WS Y N RN BB M E XD A B 23 45 6 T8 s N u BN KD N 2 nNBE 2 %S nn @5 5678 MN B NN WA 2D N BT B DN

[——

) Development:

Y enegemers 1 Protcig
) frrcens P prooypeg
—

APNS and FCM Implementation

. e

Ls
(N it sate of the ar chapter

Wrie approach methods chapter

Wirie software archtecture chapter

Figure 3.2: Gantt Chart First Semester

Wire requirements analysis chapter
Firstversion of nermediate ind

tipreport
I icniriermedite ntershipreort

Wirie inermediate internshippresentation

¢ Jojder)

Approach

3.2.2 Second Semester

For the second semester, the planned tasks are as follow:

e Continued prototyping of the functionality of some of the A2P platform’s internal
modules;

e Continued prototyping of the management API;
e Frontend API prototyping;

e Prototyping of demonstrative use case;

e Functional tests;

o Usability tests;

e Evaluation of non-functional requirements;

e Final internship documentation.

The tasks defined in the internship proposal, by Wit for the second semester, were duly
changed. These were identified as a continuation of the tasks performed in the previous
semester, but now for the Android branch.

As previously presented, in the second semester, a second version of the modules developed
in the first semester would be extended but now for Android devices, which in turn would
be integrated into a platform that Wit has been growing in recent years, the Wit Buzz
Platform.

During the internship, sprints planned to create a Gantt chart as a representation of the
work done and their estimated hours. Below in Figure 3.3, we can see the Gantt chart for
the second semester.

21

GG

wi Second Semester Gantt Chart

Software Architecture solution
© Techalogies Analyis

2 @ i architecure WLD version2

Oevelopmen:
© Dabase

6 © Dotaoser

7 @ Dotabase implementation

5 @ Loyaly and Coupons Backend AP vrsion 2

5 @ Management APt Proconyping verson 2

10/ @ Frontend AP Protatyping version 2

11/ @ APNS and FCM inplementationversion 2

12 @ Iegraton wih External Loyaty Platorms

13 @ Demonstrative se Case Protoypig

Qun
16 @ Functonai Tests
1 @ UsabiyTess

Final nternship Report:
2 @ Wre Approach Methods Chapeer 2
21/ @ Wre Software Archiecture Chaper v2
2@ Wit Requirements Anlyis Chapier 2
2 @ Firstversionof fnlntershipreport

24 @ Wrte il ernship Presentaton

war 2020 a0 My 2020 Jon 2020

al
N vechnologies Analysis
E———

Fina archteceure HLD version 2

ey Catabase
S oo Mosel
N 0oubsse implementation

(N Management AP Protoyping version 2
O

Frontend AP Procoyping version 2

| Oeviopment:

O vegrtion with External Loyaky Plaforms.
EE———

Demorsiratve Use Case Proanping

» N o
RuncoonaiTests

Usably Tests

r

. e Approsch Methods Chapier v2

D e Recuirements Anaysis Chapeerv2
() irst version of final internship report

Figure 3.3: Gantt Chart Second Semester

(N Wrte finaliternship Preseration

¢ Jojder)

Approach

Although the tasks proposed for the beginning of the semester were maintained and com-
pleted, some crucial changes were made during the remainder of the period. Below, in
Figure 3.4, we can see the management of the real plan followed in the present semester.

Campaigns A2P Internship start end

Software Architecture Solution 29/01/20 05/02/20 [—
Final architecture HLD version 2 20001 0502 [FimaVGRERE

Development - Management API 06/02/20 08/03/20
Loyalty and Coupons Backend APl ve... 06/02 08/03 Loyalty and Coupons Backend API version 2
Management API Prototyping version... 0602 08/03 Management API Prototyping version 2

Development - Loyalty App 09/03/20 28/05/20 [,
Frontend Loyalty App 09/03 14/04 Frontend Loyalty App
Backend Loyalty App 09/03 14/04 Backend Loyalty App

Study of Technologies - Report Modu... 1504 18/04 stud
Implementation - Report Module 1904 28/05 Implementation - Report Module:

Q&A 29/05/20 13/06/20
Functional Tests 2905 03/06
Non Functional Tests 04/06 13/06 Non Function

3]

Final Internship Report 14/06/20 28/06/20
Finish final internship Report 14/06 28/06 Finish final intership

Figure 3.4: Real Gantt Chart Second Semester

The main change was the integration in the Wit Buzz Platform, after better analyzing how
this integration would be done, it was concluded that it would be a very complex integration
and consequently it would require a lot of effort at the User Experience level on the part
of the intern. This effort and focus on UX would mean a significant departure from the
objectives initially defined for the internship. Instead, a reference Web App was developed,
the Loyalty App Platform, where all the defined functionalities were implemented, to carry
out functional and non-functional tests, and finally, get a demo. With the development of
the web app, we were able to prove the correct functioning of the Platform and thus create
more confidence about the success of the future integration of the Loyalty App Platform
with Wit Buzz.

3.3 Risk Management

In a software development project, there is a risk that can be avoided or minimized if
detected early. This section presents an analysis of the risks identified during the project
and the mitigation plans to reduce the impact they may have.

A risk can be defined as a condition that, eventually, can result in a negative effect on the
development of a project. Risk management serves to identify, analyze, plan, and monitor
risks. When this management is done, a reduction in the impact of the project is expected.

For risk management, there are four steps that must be followed:

e Risk Identification: In this phase, the intern looks for factors that may hinder the
development or success of a project.

e Risk Analysis: Once a risk has been identified, it must be analyzed according
to some attributes, respectively, the impact of the risk and the probability of its
occurrence.

The following measures are considered for the impact of risk:

— High It can affect project performance and significantly affect the schedule.
Project success may not be achievable.

— Medium It may slightly affect project performance and schedule. Project suc-
cess can be achieved.

23

Chapter 3

— Low It may have little effect on project performance and schedule. Project
success can be easily achieved.

The following measures are considered for the likelihood of the risk occurring:

— High probability of happening is greater than 70%
— Medium probability of happening is between 30% and 70%
— Low probability of happening is below 30%

e Risk Avoidance and Mitigation: In this phase, the objective is to mitigate or
eliminate the occurrence of risks; for this, it is necessary to establish a mitigation
plan.

e Risk Monitoring: At this stage, risks are monitored by updating them during the
development of the project.

3.3.1 Risks Identification

This subsection represents the risks identified during the internship.

RO1
Apple Wallet Study

The API to develop involves integration with an internal
Apple application, it takes some time to understand how
the application is structured.

Yes

Yes

High

Medium

- Study of existing documentation, provided by Apple.

Table 3.1: Risk 1 - Apple Wallet Study

24

Approach

RO2

New Technologies Learning

The intern had to learn to deal with new technologies that
she was not familiar with (Typescript). Difficulties in using
these technologies can cause delays in the development of
tasks.

Yes

Yes

High

Medium

- Help from the Wit tutor and advisor;
- Train with the resolution of online tutorials on technologies.

Table 3.2: Risk 2 - New Technologies Learning

RO3

Absence of Google Pay

Google Pay App doesn’t exist in Portugal

Yes

Yes
High
High

- Use apk file from Google Pay;
- Contact the Google team to create accounts and provides
some features.

Table 3.3: Risk 3 - Google Pay does not exist in Portugal

25

Chapter 3

RO4

Integration on the Wit Buzz Platform

The integration in the Wit Buzz Platform is very complex
to implement and requires a lot of user experience effort on
the part of the intern. It can lead to delays in project devel-
opment.

Yes

Yes

Low

High

- Development of a web app to carry out tests and obtain
a demonstration, and if necessary for integrations in future
projects;

Table 3.4:

Risk 4 - Integration on the Wit Buzz Platform

RO5

API updates

Changes in APIs (External services) can compromise the ap-
plication

Yes

Yes

High

Low

- Check frequently for possible API updates;

Table 3.5: Risk 5 - API updates

26

Approach

RO6
The COVID-19 pandemic

The appearance of COVID-19 led to a state of emergency in
the country, which forced all Wit employees to leave the office
and work remotely at home for three months. There may be
consequences, such as deadlines, increased difficulties, and
poor health.

Yes

Yes
High
High

- In addition to the dailys between the intern, the tutor, and
the advisor, it was essential to always be available for any
necessary contact. Wit provided all support, from technical
support to health support.

Table 3.6: Risk 6 - The COVID-19 pandemic

3.3.2 Risks Metrics

To better understand the impact on the project, a risk analysis is made through a risk
matrix. A risk matrix represents the probability of an unwanted event and a measure of
the consequence of that event. [42]

i High
a
—
(-
o Risk1(Ro1))
(ah
E r

Probability of risk

Figure 3.5: Risk Matrix

27

This page is intentionally left blank.

Chapter 4

Requirements Analysis

In this chapter, we will analyze the requirements needed for the software development.
The requirements analysis process is presented as one of the most important steps in the
development of a project, allowing to identify the intended objectives and also a way to
evaluate the success of the project.

4.1 User Stories

User stories are a major artifact in agile software development to describe functionality
from the perspective of the end-user. User stories are usually written as "As a <type
of persona>, I want to <action> so that <outcome>". The User Stories are defined to
formalize the functional requirements.

29

Chapter 4

US01| User with | use the iOS Wallet store my loyalty cards and
iOS device coupons, for convenience pur-
poses
US02| User with | receive updates when pass | be able to use it in campaigns
i0OS/Android | is changed and/or events
device
US03| User with | use the android wallet | store my loyalty cards and
Android (Google Pay) coupons, for convenience pur-
device poses
US04 | Brand use the Management API create Loyalty and coupons
campaigns that links to my
existing Loyalty and Coupons
platforms, so I can grow my
business
US05| Brand use the Loyalty App Plat- | visualize all the campaigns ever
form created
US06 | Brand use the Loyalty App Plat- | visualize all the statistical flow
form data reports
US07| Brand use the Loyalty App Plat- | insert new customers
form
US08| Brand use the Loyalty App Plat- | update existing customers
form
US09| Brand use the Loyalty App Plat- | send messages to existing cus-
form tomers with new campaigns and
when they are updated.
Table 4.2: User stories
4.2 Functional Requirements

Functional requirements are statements of how the system should react to specific inputs
and how they should behave in certain situations. These specify a function that the system
must be able to perform. In this subsection, a list of functional requirements is presented,
as well as their prioritization.

To prioritize functional requirements, we used the MoSCoW [41]| method, a prioritization
technique that assesses the importance and/or urgency in solving a task, assigning one of
four categories:

e Must Have: Represent non-negotiable product needs that are mandatory for the
team

30

Requirements Analysis

e Should Have: Represent important initiatives that are not vital, but add significant

value

e Could Have: Nice to have initiatives that will have a small impact it left out

e Will Not Have: Represent initiatives that are not a priority for this specific time

frame

FRO1 User regist a pass for updates Must Have

FRO2 Unregist a pass Must Have

FRO3 Get the serial numbers for passes associated with | Must Have
a device

FR04 Get the latest version of a pass Must Have

FRO5 Send push notifications to device Must Have

FRO6 Create a virtual pass Must Have

FRO7 Download a virtual pass Must Have

FROS8 Update existing virtual pass Must Have

FR09 Brand authentication on the Loyalty App Must Have

FR10 Create campaigns created by the respective au- | Must Have
thenticated brand

FR11 List all campaigns created by the respective au- | Must Have
thenticated brand

FR12 Use of a reporting framework Should Have

FR15 Show main page and main menu Must Have

FR16 Upload customers list Must Have

FR18 Send a text message to the clients Must Have

FR19 Report on the number of customers using iOS | Must Have
and/or Android devices

FR20 Report of the top five campaigns with the most | Must Have
downloads by the client

FR21 Report on the top five clients with the most points | Must Have
per campaign

FR22 Report on the number of pass updates, by the | Must Have
campaign, and by date

FR23 Report on the comparison between the number of | Must Have
downloads made by customers and the SMS sent
to customers, by the campaign, and by date

Table 4.4: Functional Requirements

31

Chapter 4

4.2.1 Agile Boards

As mentioned in the previous chapter, agile boards were created to better manage the
tasks to be carried out. Agile Boards are for teams that plan sprint tasks.

The represented agile boards are divided into five columns, respectively:

e In progress: Tasks that are under development.

Implemented: Tasks already implemented

Ready for QA: Tasks waiting to be tested

In Dev QA: Tasks being tested to ensure quality.

Done: Tasks that are completed by the end of a sprint.

In figure 4.1 we can see the agile board corresponding to the first user story (US01): As a
user with iOS device, I want to use the iOS Wallet to store my loyalty cards and coupons,
for convenience purposes.

In Progress 0 Implemented 0 Ready for QA 0 In Dev QA o Done 7

li i
Regist a pass for updates

Unregist a pass

Get the serial numbers for
passes associated with a device

Create SQL scripts for stored
procedures

Get the latest version of pass

Create SQL scripts to create
tables

Logging implementation

© Add a Card © Add a Card © Add a Card © Add a Card © Add a Card

Figure 4.1: Agile Board for User Story US01

32

Requirements Analysis

In figure 4.2 we can see the agile board corresponding to the second user story (US02): As
a user with i0OS device, I want receive updates when pass is changed.

In Progress 0 Implemented 0 Ready for QA 0 In Dev QA 0 Done 3

No cards in this list yet No cards in this list yet No cards in this list yef No cards in this list yet)
Send push notifications to

device

Integration with Firebase Cloud
Messaging

Logging implementation
st: Cards

© Add a Card © Adda Card © Add a Card © Adda Card © Add a Card

Figure 4.2: Agile Board for User Story US02

In figure 4.3 we can see the agile board corresponding to the third user story (US03): As
a brand, I want to use the WIT Buzz Platform to create Loyalty and coupons campaigns
that link to my existing Loyalty and Coupons plarforms, so I can grow my business.

In Progress 0 Implemented 0 Ready for QA 1 In Dev QA 0 Done B

No cards in this list yet. No cards in this list yet. No cards in this list yet.
Download a virtual pass Create a virtual pass

List: Cards

Create SQL scripts for stored
procedures
ist: Cards

Update existing virtual pass
List: Cards

© Add a Card © Add a Card © Add a Card © Adda Card © Adda Card

Figure 4.3: Agile Board for User Story US03

33

Chapter 4

4.3 Non-Functional Requirements

The following section presents the quality attributes, have been identified two: scalability

and availability.

NFRO1 Scalability

Server maintains responsiveness under | Must Have
heavy usage

NFRO2 Scalability

Server supports a large amount of users | Must Have
uploading data

NFRO03 Availability

System has an acceptable uptime Must Have

NFR04 Security

Apple certificates and Google API Key | Must Have
encrypted

Table 4.6: Non-Functional Requirements

In terms of scalability, the system must be able to handle multiple requests at the same
time, even if the number of users and, consequently, the number of requests increases with-
out impairing performance. Also, the platform is intended to be able to scale horizontally.
In the attribute of availability quality, the system must ensure a minimum operational
level of performance of 99.5%. [22] If users are unable to access the service and interact
over time, it will be unavailable or suffer downtime.

The tables below shows more specifically how the system should react to the previously
mentioned non-functional requirements.

1D

NFRO1

Stimulus Source

Users

Stimulus High number of requests
Artifact Server
Response Server responds to requests successfully

Measure Response

All requests are met with responses. Response times must
less than 3 seconds.

ID

NFRO02

Stimulus Source

Users

Stimulus Users sends data from device
Artifact Database
Response Server stores data

Measure Response

User related data is stored.

34

Requirements Analysis

ID

NFRO3

Stimulus Source

Server or Database

Stimulus Crash or Malfunction
Artifact System

- Informs system owners of a crash.
Response

- System is unavailable.

Measure Response

System repairs respect an uptime of 99.5% (downtime lower
than 3.6 hours/month)

ID

NFRO4

Stimulus Source

System

Stimulus System creates Google passes and Apple passes
Artifact System
Response - Inform system of successful or unsuccessful operation.

Measure Response

Transfers of passes data between system components are en-
crypted

35

This page is intentionally left blank.

Chapter 5

Software Architecture

In this chapter, an analysis of the software architecture, which is a crucial phase before any
development, will be presented. The architecture will define all the modules used to build
a system and how they relate and facilitate decision making and change management.

Before building software architecture, it’s crucial to choose the right technologies for de-
velopment.

5.1 Final Architecture High-Level Design

Figure 5.1 represents all interactions between system components. We can see three dif-
ferent modules, respectively, Management API, Loyalty & Coupons Backend API, and
Frontend API.

Write as Log

Loyalty &
Coupons Backend
Loyalty A
v v A Configure —— [Download
Coupons T
Collect from w Update
. b Write as Log | Updaee
eats | > emestoe | I I
i &
| -_ o Devi
: Send to Coupons vice
‘ m— -
wm logstash
] ,—'"“Q‘JCW
i Send to T Management AP Frontend API
& elasticsearch &
-
L3
| Query Existing API
. kibana

Figure 5.1: System architecture High-Level Design (HLD)

The following subsections describe the structure of the components.

37

Chapter 5

5.1.1 Loyalty & Coupons Backend

In this section, we will describe an analysis of Apple’s existing architecture for the upgrade
of passes by communicating with the built-in Wallet App. The main features will be
analyzed to differentiate what already exists and what has implemented.

Pass updates are an integral part of the Application-to-Person (A2P) campaign strategy
and allow the user to take real-world actions. It’s possible to update a pass when something
in the real world changes, such as the date of an event, the delay of a flight, or even a
brand promotion [39].

Overview of the Communication

Updating a pass requires interaction between the smartphone, Apple servers, and the
API implemented by the author. To make this possible, must follow the documentation
provided by Apple by following steps. 5.2.

Client Server

Registers for updates » Updates list of registrations
Pass type ID Serial number Authentication token

Device library ID Push token

Pass data changes

APNSs < Sends push notification
Pass type ID Pass type ID

Push token

Gets changes >
Pass type ID Device library ID Update tag

Lists changed passes

Update tag
Serial number

Gets pass >
Pass type ID Serial number Authentication token

- Sends pass
Pass data

User deletes a pass or disables updates

Unregisters for updates #» Updates list of registrations
Pass type ID Serial number Authentication token

Device library ID

Figure 5.2: Interaction between the client and the server [39]

38

Software Architecture

Table 5.1: Information for update process [39]

Web service URL Defined in the pass Tells Wallet how to con-
tact the web server

Pass Type Identifier, | Defined both in the pass Together, uniquely iden-

Serial number tify the pass

Device library identi- | Defined in the device Identifies the device and

fier authorizes requests

Authentication token | Defined in the pass Authorizes requests

Push token Defined in the device Allows the server to send
push notifications to the
device

Update tag Server defines Describes state

Figure 5.3 represents a schema of how Apple Wallet interacts with the server and what
was implemented in the backend.

Device Controller)
POST
el -

Add to Wallet

Pass Controller

GET

Pass updated

Figure 5.3: Loyalty & Coupons View

When the user receives and opens their pass through a message or email, it can be added
to the Apple Wallet. After adding to Apple Wallet, it sends a POST request to the server
to register the pass on the phone.

With the pass stored in Wallet, it can be removed, if the user removes it, i.e., the Wallet
sends a DELETE request to the server to unregister the pass on the mobile phone and
consequently delete the database record.

For the user to receive update notifications, the pass needs to be registered, and the
notifications active. After a new update is detected, a push notification is sent, and the
Wallet sends a GET request to the server to obtain the latest version of the pass.

39

Chapter 5

The appendix 8 depicts the detailed description of the REST API implemented in this
module [21].

Database

:

Devices / Passes \\
devicelD: varchar(255) Registrations) passTypelD: varchar(255)

pushToken: varchar(255) authentication_token: varchar{255)
serialNumber: varchar(255) devicelD: varchar(255) format_version: integer
passTypelD: varchar(255) last_updated_tag: bigint
serialMumber: varchar(255) seriEINumbeE varchar(255)
web_serviceURL: varchar(255)
campaignid: varchar(255)
client_name: varchar(255)
client_id: varchar(255)
client_points: varchar{255)
client_number: varchar(9)
change_message: varchar(255)
device_os: varchar(255)

class_id: varchar(255)
object_id: varchar(255)
BuzzCampaigns
campalgnid: varchar(255) \ /
barcode_msg: varchar(255)
barcode_type: varchar(255)
brandid: varchar(255)
brand_image: varchar(255)
brand_name: varchar(255)
campaign_type: varchar(255) |
color: varchar({255) '
language: varchar(255)
start_campaign: date
expiration_campaign: date

- J

Figure 5.4: Database tables

There are two entities, devices and passes, and one relationship, registrations.

Device table: "Its device library identifier identifies a device, and it also has a push
token" [39].

Passes table: "A pass is identified by a pass type ID and serial number. This table
includes a last-update tag (such as a timestamp) for when the pass was last updated and
typically includes whatever data needed to generate the actual pass" [39].

Registrations table: "A registration is a relationship between a device and a pass. It’s
needed to be able to look up information in both directions: to find the passes that a given
device has registered for, and to find the devices that have registered for a given pass.
Registration is a many-to-many relationship: a single device can register for updates to
multiple passes, and a single pass can be registered by multiple devices" [39].

Buzz Campaigns table: This table stores the necessary data for all promotional cam-
paigns created by the brands. A campaign can have multiple associated virtual passes and
also various customers. But only one customer can have a virtual pass for their campaign.

40

Software Architecture

Push Notifications

Apple Push Notification service (APNs) is a service that sends remote notifications
to devices. Remote notifications allow posting information and data to devices. For your
device to receive notifications, they must be enabled even when the app is not running.

Notifications serve to keep the user informed of new updates to the pass that are already
stored in the Apple Wallet. As soon as the pass information is updated, a notification is
sent to the device.

Figure 5.5 shows a delivery path scheme for remote notification.

APNs

T ‘ @ vy aep now
e
Notification

Provider server .
Devices

Figure 5.5: Apple Push Notifications Overview
[24]

Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a Google solution that lets you send messages
across platforms. With FCM, it is possible to send a notification to a device with infor-
mation and data that is available for synchronization. [40]

Yo Cloud Messaging

Figure 5.6: Firebase Cloud Messaging
[40]

It is possible to use FCM instead of APNs for server-to-client communication when in-
tegrating with Apple Wallet. As a backend implementation will be performed for both
platforms (GooglePay and Apple Wallet), the use of FCM becomes more advantageous
so that both components can use the same remote notification service.

Figure 5.7 is a schematic of how Apple Wallet interacts with the server when a pass is
changed.

41

Chapter 5

Registrations Table

I~ Get push tokens

Push
@ Notification
‘@ —_— > Service
)

Send
Change data Database (POSTGRES) notifeaton

'

Loyalty & Coupons Server

t [l]

GET

A4

Apple Wallet

Figure 5.7: Push Notifications View

When a pass is changed, the user is alerted by push notifications. If a pass is not registered
in Apple Wallet, remote notifications cannot be sent.

After you receive the notification, Apple Wallet sends a GET request to the pass serial
number server that has changed at a specified time. The server sends the most recent
update tag with the serial numbers stored in the database. As soon as Apple Wallet
receives the information, it makes a GET request, again, from the server to obtain the
latest version of that pass.

5.1.2 Management API Prototyping

This API component was implemented to communicate with WitBuzz and handle all Wal-
let pass configuration as configuration mechanisms for creating passes to obtain various
available pass templates, creating a virtual pass that does not yet exist in the database,
the coupon update (communication with the WitBuzz Dashboard) and the possibility of
downloading a pass.

The Management API was implemented with the Spring Boot structure in Java language
and consisted of two controllers, respectively Passe Controller, and Apple Wallet Controller.
The Apple Wallet Controller is only intended for communication, as the name says, with
the Apple Wallet App. This communication with the wallet requires an HTTPS connection
to the server.

Passe Controller, is for communication with the Google Pay API. Google Pay API uses
a concept of objects and classes, where an object digitally represents loyalty cards for a
single user, as well as other different types of virtual passes; and a class allows you to
manage common data for all users. That is, a loyalty card that a user may have on the
Google Pay App is represented by a LoyaltyObject that refers to a LoyaltyClass.

Figure 5.8 represents a typical communication flow used to insert a class, save an object,

42

Software Architecture

and update an object to a loyalty card.

Google Pay Web Google Pay API for Your
App Browser Passes Servers Server
1 Define the LoyaltyClass

POST LoyaltyClass

LoyaltyClass inserted

2 Define the LoyaltyObject

Make signed JWT with
whole LoyaltyObject

Render Save to Google Pay button

3 User clicks button
Send JWT
Insert LoyaltyObject if it doesn't exist
Link LoyaltyObject to user

Sync loyalty card
4 GET LoyaltyObject
LoyaltyObject resource
Sync loyalty card Update point balance
PUT/PATCH LoyaltyObject

LoyaltyObject updated

Google Pay Web Google Pay API for Your
App Browser Passes Servers Server

Figure 5.8: API flow diagram [30]

Unlike the Apple Wallet API, the Google Pay API for creating virtual passes generates a
JSON Web Token (JWT) for an object of a specific class. After the customer receives an
SMS to download his virtual pass, that JWT is then generated that will allow the user
to store his loyalty card in the respective virtual wallet. The user is directed to a landing
page that allows saving a LoyaltyClass object, and that object to be saved is rendered on
the landing page based on the JW'T.

To assist the management of virtual passes for Android, a platform, the Google Pay Mer-
chant Center, was used to verify the information of the generated passes.

5.1.3 Frontend API Prototyping

This API component has implemented to communicate with its device for some of the
features available, such as receiving a message /email campaign with the ability to download
to the Wallet App and also receiving notifications of new pass updates.

5.2 Loyalty App

In this section, the description of the architecture of the Loyalty App Platform is made.
The Loyalty App was developed with the objective of obtaining a reference integration that

43

Chapter 5

shows that the platform works as intended. Additionally, it has the advantage of serving as
a demonstration of the present stage. In the initial plan, as mentioned in section 3.2.2, the
integration with the Wit Buzz Platform would be developed, a platform to be developed
by Wit, as this integration was not possible, due to the large UX effort on the part of the
intern, it was then decided to create the Loyalty App Platform that will replace the Wit
Buzz Platform only for the modules needed in the campaign flow.

The Loyalty App is composed of a Back-end and a Front-end, which allows a brand to
carry out various functionalities, such as viewing campaigns previously created, uploading
a list of customers and their own information, and, consequently, sending SMS to your
customers. It is also possible to view some analysis reports on the flow of campaigns.

5.2.1 System Context Diagram

A context diagram is a starting point for representing and documenting a software system
that allows you to define expectations and obtain an overall picture of the system. In figure
5.9, we can see the context diagram of the Loyalty App Platform.

As previously seen in the representation of User Stories, there are two types of users,
respectively, brands and their customers. A brand must authenticate itself in the Loyalty
App and use its features for convenient purposes, such as managing its campaigns and its
customers, through external services and platforms (Apple Wallet and Google Pay).

Authenticated Brand
[Person]

Loyalty App user

Manage clients and campalgns;
Accoss real-time analytics le Pay API

! [Software System]
API used to send virtual

passes and notifications to Android|
users

Loyalty App System

i
[Software System] ! Apple Wallet API
i [Software System]
Allows brands o view information about their
campaigns, customers, and reports AP used to send virtual

passes and notifications to i0S
users

Uses
[

i
Nexmo API
Costumer
[Software System! =
: T Send SMSto- - = = = = = = > [Person]
APl used to send SMS to
- A costumer of the brand

Legend:
[Cortainer: technalogy) [Scftwase Systern] - - - Deseription__ o,
L [technology]
[Persan] Boeriion e i
Description

Figure 5.9: Context Diagram of Loyalty App

The context diagram is also made up of three external APIs, respectively:

e Nexmo SMS API: Nexmo is a paid service that integrates SMS and voice messages
through a simple API.

44

Software Architecture

e Google Pay API: The Google Pay for Passes API allows user interaction through
loyalty cards, gift cards, offers, event tickets, flight boarding passes, and transit
passes. It is used so that users can store their virtual passes on the Google Pay app.
These saved items are stored as objects.

e Apple Wallet API: A REST service protocol is used to communicate with the
server about pass changes and to look for newer versions of these when changed.

5.2.2 System Containers Diagram

After presenting the context diagram and understanding how the system can fit into the
global IT environment, a container diagram is represented. A container is a separately
executable or implementable element that can be used to execute code or store data.
The container diagram shows the high level of the software architecture, where the main
technologies are represented, and how the containers communicate with each other. In
figure 5.10 shows the container diagram of the Loyalty App system.

Brand
[Person]

Loyalty App user

!
Manage clients and campaigns;
Access real-time analytics
]

Makes API calls to

[Ccmalne;;’gggseﬂpland """"" [HTTPS requests] ~ ~ 1
. Reporting Moduls; | _ _ _ = = =Campaign Manager- = 1 :
' Customers creation Provides ai d . | Google Pay AP
' rn.q ; E‘c‘snzl grs;n . : ! Makes API calls to [Software System]
1 reports functionality to brands [HTTP requests]

via the web browser

tmmmmm AP used to send virtual and
Management API . notifications passes to
i
1

[Cnnlaln;r(: .Itava and Spring Android users

Back-end LA
[Container: Java and Spring
Boat MVC]

[JSONHTTPS]

1
'
'
'
i
1
1
'
'
]
1
1
'
'
'
v
Provides virtual passes 1
functionality of the Loyalty functionality via '
App JSONHTTPS API : [Software System]

]

1

1

1

'

'

]

1

1

'

'

'

i

1

1

; Apple Wallet API

Makes APl callsto ~ [LURIECE REEE L RTLTETELD]
[HTTP requests] nolifications passes to I0S

Database
[Container: PostgreSQL] LSRR

i
!

!

!

!

Reads from and writes to
[PostgreSOL] '

'

stores users information, campaigns Makes API calls to

information, virtual passes registered, [HTTPS requests]
'

1
'
i
i
1
1
1
i
i
i
1
1
'
i
i
i
[Provides the back-end
1
i
i
i
1
1
'
i
i
i
1
1
'
: efc.

! Loyalty App System]
| [Software System] '
I

Costumer

[Software System] [Person]

Send SMS to- - - -
A costumer of the
brand

AP used to send SMS
to customers

Legend:
name name
(Container: technology] [Saftwara Systam] [_ - Description_ 3
. [Containr: technology] [technalogy]
Description Deseription
Desciption

Figure 5.10: Containers Diagram of Loyalty App

The system was decomposed into four containers, each in charge of a specific set of func-
tionalities.

e Front-end Loyalty App: This container will provide campaign features such as
viewing these, registering new customers, and viewing statistical reports through the

45

Chapter 5

web browser.

e Back-end Loyalty App: This container describes the back-end functionality of the
Loyalty App reporting module.

e Management API: This container will provide all the functionality for the flow of
virtual passes between customers, from features such as updates and downloads on
passes, among others. In section X, this container is presented in more detail.

e Database: This container, as the name implies, is the database for storing all the
essential content, such as brand information, and consequently your campaigns and
your customers. Some data from customer devices entered into the system is also
stored.

The database was used to store all information about campaigns, customers, records of
virtual passes, and the virtual passes of each customer. PostgreSQL was used, as previously
said, it is an object-relational database management system (ORDBMS) with an emphasis
on extensibility and compliance standards. PostgreSQL can handle workloads ranging from
small single-machine applications to large applications, where it is used simultaneously by
multiple users.

The reporting module consists of Elasticsearch Logstash Kibana (ELK) and Filebeat, which
in turn will obtain data information through log files generated by the management API
and the back-end loyalty app. The logs are generated as the functionalities are released
and, consequently, the filebeat collects the information and sends it to the logstash, and it
sends it to elasticsearch. Through DSL Queries, it is possible to obtain an answer to the
desired analyzes. In the next section, it is possible to have more information about the
reporting module.

5.2.3 Reporting Module

To develop the reporting module, ELK Stack was used. ELK is an acronym that represents
three open-source projects, respectively, Elasticsearch, Logstash, and Kibana.

Kibana

Figure 5.11: ELK Representation [34]

46

Software Architecture

Elasticsearch is a distributed open-source search and analysis engine. It stands out for
its simple REST APIs, speed, and scalability.

Logstash is a server data processing pipeline that consumes data from several sources
simultaneously and transforms and sends them to a "stash," in this case, Elasticsearch.
The logstash consumes, transforms, and sends data dynamically, regardless of format or
complexity.

The Logstash event processing pipeline goes through three phases, respectively, inputs,
filters, and outputs. Inputs will generate events; some can be through files, syslogs, net-
works, and beats. Filters change events, some of which include grok, mutate, drop, clone,
GeolP. Outputs send events elsewhere, some of the most commonly used ones include
elasticsearch, file, graphite, and statsd.

Kibana is an open-source front-end application that allows users to search and view their
data with graphs and tables in Elasticsearch, among other features. The Kibana dashboard
provides real-time analytical visualizations on large volumes of data in support of use cases,
such as [34]:

Log and log analysis

Infrastructure metrics and container monitoring

Application performance monitoring (APM)

Analysis and visualization of geospatial data

Security analysis

e Business analyst

Filebeat is a lightweight sender for collecting and sending log files. The filebeat monitors
the specified log files, collect the log events and sends them to Elasticsearch or Logstash for
indexing. In figure 5.12, it is possible to observe how Filebeat works for the development
of the reports module.

Spooler

fvar/log/.*log

— & ®

Logstash Elasticsearch

111

Filebeat

Figure 5.12: Filebeat Integration

Filebeat consists of two main components, respectively, inputs and harvesters. They work
together to complete files and send event data to the specified output. Inputs are respon-
sible for managing harvesters and finding sources for reading. For this module, the input
type is a log, so the input will find all files in the unit that correspond to the defined paths

47

Chapter 5

and start a harvester for each file. Harvesters are responsible for reading the content of a
single file, which is read and sent to the content for output.

This reporting module is implemented in the Loyalty App (Backend and Frontend) and
also in the Management API, to be able to observe all the selected metrics on the flow of
the modules previously developed, as well as:

e Number of customers using iOS and/or Android devices;

e The number of points for each customer per brand and campaign already created by
the brand, selecting a reach of 5 customers;

e The five campaigns with the most downloads by customers;

e The number of pass updates per brand, with the option to select a campaign for that
brand and a range of days;

e The comparison between the number of downloads made by customers and the SMS
sent to customers, with the option also to select the campaign and an interval of
days.

48

Chapter 6

Development and Final Product

This chapter represents the project developed during the internship period, thus showing
the web application Loyalty App.

6.1 Web Application

This section presents the layouts of the Loyalty App developed with some features on the
flow of campaigns between customers and the reporting module.

6.1.1 Authentication

As previously seen in the definition of User Stories, there are two types of users, the
brand and its customers. The Loyalty App is aimed at brands so that they can manage
their campaigns and their customers. As the Loyalty App was developed for a reference
integration, a simple authentication was implemented where it is possible to access the list
of registered trademarks by selecting one and thus using the web app and its features.

o000

Figure 6.1: Authentication in Loyalty App

49

Chapter 6

6.1.2 Home Page

After the brand authentication, the main page is displayed where we can access the desired
features.

Home omsier

Portugal Toronto

a0 @ 125730

Figure 6.2: Home Page

6.1.3 List campaigns

One of the essential features is the list of campaigns previously created by the brand and
stored in the database with the information of each one. The listing of the campaigns thus
allows the brand to select the desired one to send to its customers.

Home o

Band campuign Bucos Bucode Expiaton
hme Compgaid bame Coor Messsge e Brgmage SanCompign Cempagn Actons

NKE SO SR e CUEMID OR mipsicoesrice mepoen mevosco
200 57000

Choose Pass
NKE SPORTCAMP | STAMP MM GUENID GR hipsondie mmen | uamwuo
1200000 ws2000

Choose Pass
EASTERCANP LOWLTY snm CUENTID QR mpmicsmasonissccmssmicnspoys s omon | mmon
ol 2512k 51200 2000 w5500

Choose Pass.
NKE SNOWCMP WY s D oR sz
w5000

Choose Pass

Figure 6.3: List campaigns

50

Development and Final Product

6.1.4 Insert/Update clients and Send SMS to Clients

As soon as a campaign is selected, the brand can then upload the list of its customers,
in a file with the .csv format, with their information, such as name, ID, mobile phone
number, points or stamps for the virtual pass and a message to send future notifications.
If customers are already registered and stored in the database, this information is updated;
otherwise new customers are inserted and consequently stored in the database. After
uploading the list, it is then possible to send a message to customers with the necessary
information to download the virtual pass in their mobile wallet applications.

000

Home

Import client list

No File Uploaded!
Drag & Drop File
or
Select File
Choose file | No f...sen

Submmit

Send SMS 1o clients

Figure 6.4: Insert/Update clients and Send SMS to Clients

o1

Chapter 6

6.1.5 Visualize number of customers using iOS and/or Android devices

With all the information recorded through log files, such as information about downloads,
sent SMS, and updates, it is possible to obtain an analysis of these data. Through down-
loads made by customers after receiving their messages, we can obtain information on the
number of customers using iOS and/or Android devices. Remember that for iOS devices,
customers use the Apple Wallet app and for Android devices use the Google Pay App.

Home

Number of customers using iOS and Android

Figure 6.5: Number of customers using iOS and/or Android devices

6.1.6 Visualize number of points for each customer per brand and cam-
paign

Through updates made by customers, it is possible to obtain information about the ten
customers who have the most points in their virtual passes for a respective brand campaign.

Please select campaign to continue!

Select a campaign v Enterl

Figure 6.6: Number of points for each customer per brand and campaign

o2

Development and Final Product

6.1.7 Visualize the five campaigns with the most downloads by cus-
tomers

Through the downloads made by the customers for all campaigns created by the brand, it
is possible to obtain the five promotional campaigns that stand out the most, being able
to analyze the one that reaches positively in the customers. Campaigns can be created
according to the brand you want at the time you want, and thus it is possible to know also
when is the best time and what yields the most for your services.

Soe

Home

Top 5 Campaigns

\|

N SUMMER_CAM

EASTER_CAMP
NN SPORT_GAMP
N SNOW CAMP

Figure 6.7: Top 5 campaigns with the most downloads

93

Chapter 6

6.1.8 Visualize number of pass updates per brand

To view the number of updates made to customers’ virtual passes, the update logs for the
authenticated brand is analyzed. It is also possible to filter by campaign or for a selected

period.

Home awwme oo
2020-06-22 -
June 2020
Sun Mon Tue Wed Thu Fri Sat

2020-06-29
July 2020

Sun Mon Tue Wed Thu Fri Sat

@ Your selected dates

Select a campaign!
selectacamsain [

18|

OOEEaaE
oo -

Selext a ca

Number of updates per day

@ Your selected dales

Select a campaign!
wpsign

Number of updates per day

Figure 6.8: Number of pass updates per brand and per day/campaign

o4

Development and Final Product

6.1.9 Visualize comparison between the number of downloads made by
customers and the SMS sent to customers

To obtain an analysis of the number of SMS’s sent and the number of downloads carried
out, the information saved on these for the authenticated brand is considered. This analysis
helps to understand the rejection value of customers about a pass, for example, after 100
messages have been sent to 100 customers, if there are only 50 downloads, it means that
50 customers have rejected that promotional pass. This analysis leads brands to be able
to perceive that campaigns are more or less relevant to their customers. In this research,
it is also possible to filter by campaign or for a selected period.

2020-06-22 - 2020-06-29
June 2020 July 2020

Sun Men Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

14 15 16 17 18 19 20 12 13 14 15 16 17 18
» » EIEICAEEER -
P w owomom ow ow

@ Your selected dates

2
5
b
»

Select a campaign!

sdortacameaign [

Downloads VS SMS

25 = 27 1 20 2 2 23

2 27 2 2 3 &

@ Your selected dates

Select a campaign!

Selecta campaign

Downloads VS SMS

Figure 6.9: comparison between the number of downloads and SMS

95

Chapter 6

6.2 Google Pay Interaction

In this section, we can see different loyalty passes generated for Android devices, which are
eventually stored in the virtual wallet application, respectively, Google Pay App.

6.2.1 Stamp card for Android users

Stamp cards are loyalty cards that can be associated with any campaign for a brand, for
example, and allow you to earn a profit after accumulating several stamps. In figure 6.10,
we can see an example of a stamp card generated through the Management API developed
in the stage, to store in the Google Pay App.

AT
o

STAMP CARD

Hello Rita, collect 10 stamPs and geta
50% discount!

[=] % [=]
[=] e

VALID UNTIL 2020-04-29 23:59:00.0

EXPIRAA

29/04/2020, 23:59

DE
NIKE

i[e
0
A

Figure 6.10: Example of stamp card for Android

o6

Development and Final Product

6.3 Apple Wallet Interaction

In this section, we can see different loyalty passes generated for iOS devices, which are
eventually stored in the virtual wallet application, respectively, Apple Wallet App.

6.3.1 Loyalty card for iOS users

Loyalty cards are loyalty cards that can be associated with any campaign for a brand,
for example, and allow you to accumulate a maximum number of points to earn bonuses
or prizes. In figure 6.11 we can see an example of a loyalty card generated through the
Management API developed in the stage, to store in the Apple Wallet App.

-l [}
VALID UNTIL 2020-04-30 00:59:00.0

Figure 6.11: Example of loyalty card for iOS

o7

This page is intentionally left blank.

Chapter 7

Software Quality

The process of verification and validation of a developed product is one of the most im-
portant and fundamental steps in any software project. It is essential and expected that
the final product would be delivered to the user without bugs and with the best possible
User Experience (UX), with the goal of the customer being able to use it and be satisfied.

This chapter describes all the tests carried out on the final developed solution. The tests
performed were divided into two sections, respectively, functional tests and non-functional
tests.

7.1 Functional Testing

This section is for functional tests to validate and guarantee the quality of the software.
Functional tests are a type of black-box test, focused only on the inputs and outputs of
the software system without the internal knowledge of the implemented code.

7.1.1 API Tests

API is the link between different systems or layers of an application. Generally, applica-
tions consist of three layers, respectively, the service layer (API), the data layer, and a
presentation layer (UI). The API test consists of making requests to a single or multiple
API endpoints and validating your response, whether for performance, security, functional
correction, or just status verification.

Testers are responsible for testing individual features or a set of features in a chain, and
it is considered one of the most important tests during the development of a project. To
perform API tests, it is necessary to send a specific call to the API, compare and record the
results obtained, and expected. If an API does not work efficiently and effectively, it can
never be adopted. Also, if this is interrupted because no errors were detected, there may
be a risk of not only breaking down in a single application but also in a business process
chain.

For this purpose, was used the Postman tool, an easy-to-use platform, with several inte-
grations as support for Swagger formats and with execution, testing, documentation, and
monitoring resources.

99

Chapter 7

Table 7.2 shows the results of tests on the implemented features. The tests were executed
during the development, and at the end of the implementation was made a final test. In
appendix 8, it is possible to see the API tests in more detail.

Passe Controller 30 0 30
Apple Wallet Controller 35 0 35
Loyalty Controller 32 0 32

Table 7.2: API Tests Result

7.1.2 Acceptance Tests

Acceptance tests are formal tests according to the user’s needs, functional requirements,
and business processes to determine whether or not the system meets the acceptance
criteria. All acceptance tests described were performed by the intern.

Below we can see in Table 7.4, the necessary acceptable tests results.

Management API 9 0 9

Web Application 11 0 11

Table 7.4: Acceptance Tests Results

7.2 Non-Functional Testing

Non-functional tests are defined to verify the attributes of the system, such as performance,
usability, reliability, among others. Non-functional tests help to reduce the risk and cost
of production, improve knowledge of the product’s behavior and technologies, and collect
and produce metrics for research.

7.2.1 Performance Testing

The performance testing is a non-functional test performed to obtain responses in terms
of system capacity and to determine system stability under various workloads. This test
measures system quality attributes, such as scalability and reliability. This section presents
a detailed analysis of the performance of some components of the system. To perform the
performance tests were used, Jmeter, an application is open source software, 100% pure
Java application. [3]

60

Software Quality

For each test, were recorded seven important values, respectively [4]:

Load Time: Measure the difference between the time when the request was sent and the
time when the response has been fully received.

Latency: Measure the difference between the time when a request was sent and the time
when a response has started to be received.

Average: The average elapsed time of a set of results.

Min: The lowest elapsed time for the samples with the same label.

Max: The longest elapsed time for the samples with the same label.

Throughput: Is measured in requests per second/minute/hour. The time is calculated
from the start of the first sample to the end of the last sample. The formula is: Throughput
= (number of requests)/(total time).

The following table describes funcionalities selected to perform the server database per-
formance tests, as well as the load time in milliseconds. The tests were performed for 60,
120, 180, 240, 300, and 360 campaigns; and 2000, 4000, 6000, 8000, and 10000 customers,
both divided by 10 and 100 threads.

All of the following tests were performed with a VPN connection on the WIT Software
Intranet.

Server (Virtual Machine):

https://dev.wit-software.com /coupons/
CentOS

2CPU

8GB RAM

Table 7.5 shows the performance results of the listing features required for campaign man-
agement. It is expected that the results for the listing of campaigns will be superior to
that of brands since a brand can have 360 campaigns associated with it.

1) : 10 59 49 102 10.3/sec
List campaigns

100 412 117 687 63.3/sec

2 List brands 10 33 27 39 11.4/sec

100 259 70 576 55.2/sec

Table 7.5: Caption

61

Chapter 7

Table 7.6 and table 7.7 shows the performance results of the functionality for sending SMS
to customers.

A POST request was made to the https://dev.wit-software.com/coupons/v1/send-message/
brandID / campaignID URL, which in turn sends a request to the previously mentioned
Nexmo services, to the https://rest.nexmo.com/sms/json URL with the respective infor-
mation.

10 192 191
2
000 100 292 292
1 Send Messages 4000 10 392 392
100 434 434
6000 10 628 628
100 1035 1035
8000 10 873 873
100 700 700
10 1082 1082
10000
100 637 637

Table 7.6: View Results SMS Tree

9000 10 192 192 192 5.2/sec

100 292 292 292 3.4/sec
1 Send Messages 4000 10 198 84 392 4.5/min

100 434 434 434 2.3 /sec

6000 10 428 428 428 2.3/sec
100 1035 1035 1035 58.0/min

8000 10 873 873 873 1.1/sec
100 700 700 700 1.4/sec

10000 10 1082 1082 1082 55.5/min
100 637 637 637 1.6/sec

Table 7.7: SMS Summary Report

62

Software Quality

A POST request was made to the

https://dev.wit-software.com /coupons/v1/templates/brandID / campaignID / type Pass URL,
to create new campaigns. The tests for the creation of campaigns consisted of the creation
of 600 to 3600 requests divided by 10 threads, executed individually.

A PUT request was made to the
https://dev.wit-software.com/coupons/v1 /templates/brandID / campaignID URL, to cre-
ate new customers, and/or update customer data already registered in the database.

60 10 384062 380679 | 8280
120 10 474334 474037 | 45405
| | Insert campaigns | 180 10 513175 510401 | 63107
in database 240 10 701209 691149 | 80810
300 10 814066 775069 | 98512
360 10 1009910 999423 | 116215
Upload the list of | 500 10 27692 27692 413165
clients to insert 100 27773 27773 413165
and /or update 10 88709 88686 826247
2 : 4000
them in the 100 106342 106341 | 826247
database 6000 10 189341 189341 | 1239229
100 189862 189862 | 1239229
2000 10 295985 205984 | 1652619
100 296680 206677 | 1652619
L0000 10 452494 452494 | 2067310
100 444355 444355 | 2067310

Table 7.8: View results campaigns and clients management tree

Analyzing the results in table 7.8, the functionality with the longest running time is the
insertion of new campaigns, with 909910 milliseconds in just 360 simultaneous connections.
This result was already expected since the amount of information is higher compared to
that of customers.

The response time always will be equal or superior to latency and the larger data is, the
larger difference between response time and latency will be.

When creating campaigns, a bottleneck was detected in the first test for 100 threads in
60 campaigns. A bottleneck appears in any system resource, such as hardware, software,
or bandwidth, that places defining limits on data flow or processing speed. Bottlenecks
affect some quality attributes, such as performance and scalability by limiting the amount
of data throughput or restricting the number of application connections. These problems
can occur at all levels of the system architecture, including the network layer, the Web
server, the application server, and the database server.

63

Chapter 7

Upload the list of
clients to insert
and /or update
them in the
database

9000 10 27692 27692 27692
100 27773 27773 27773
4000 10 88709 88686 826247
100 106342 106342 106342
6000 10 189341 189341 189341
100 189862 189862 189862
8000 10 295985 295985 295985
100 296680 296680 296680
10000 10 452494 452494 452494
100 444355 444355 444355

Table 7.9: Campaigns and clients management summary report

64

Chapter 8

Conclusion

The objective of this internship is to develop functionalities for the management and cre-
ation of virtual passes, for an A2P campaign platform, to guarantee a better experience
in the use of these to users. Regarding the present semester, the functionalities developed
were for the integration of a virtual wallet application on iOS, the Apple Wallet, which
have been completed. For this to happen, it was necessary to research and study all the
documentation provided by Apple and how an implementation would be made that could
be integrated with the internal application.

The analysis of the state of the art, allowed understanding better the entire context of
virtual portfolios, as well as virtual passes, and which functionalities exist in the market
that could compete with the internship project. This analysis has become very important,
as, in the second semester, the integration will be made with an existing application that
allows using resources and adapting them to the context of the project.

After that, user stories were identified, which later helped to identify functional and non-
functional requirements. The analysis of these requirements was quite significant in the
implementation and representation of the project architecture.

Regarding the work of the first semester, it was successfully completed, although some tasks
defined at the beginning of the internship have been modified. All specified requirements
have been completed. Also, it was possible to obtain a final demonstration in real-time,
with 10S devices.

The main personal goal is to take advantage of the internship offered by Wit Software and
the Department of Informatics Engineering to enrich all knowledge of the development of a
real project for the company and to complete the master’s degree in informatics engineering
specialized in software engineering with success.

In the second semester of this internship, the development of the intended prototypes was
continued but now focused on features for integration in the Google Pay mobile application
for Android devices. The same functionalities were developed for both apps (iI0S and
Android) but with different ways of development, ultimately obtaining what was intended.

After completing the tasks involved with virtual wallet applications, a web app, the Loyalty
App, was developed, a reference integration with the aim of showing that all the tasks
defined and completed work as intended. The Loyalty App, in addition, ended up having
the advantage of serving as a demonstration for the project and may also be useful for
future tests on other projects that may have been carried out.

In addition to the Loyalty App, including campaign features, it is also composed of a

65

Chapter 8

reporting module developed with the purpose of visualizing interesting metrics related to
the flow involved in the project and obtaining a conclusion on the relationship between
customers and campaigns.

After the implementation of the project was completed, tests for the functional and non-
functional requirements defined during the internship were successfully carried out, thus
being able to validate the entire implementation.

During the internship, all the results acquired as a Wit Software employee are the result
of a growth and learning process that had its lows as its lows, which led to studying and
witnessing different approaches, such as the architectures involved and the technologies.
In general, consequently, of all the work involved in this project, although some tasks were
initially changed, we can proudly say that it was a mission accomplished!

During the internship, we ended up going through a challenging and complicated phase,
the appearance of COVID-19 that led to a state of emergency worldwide, and that forced
all Wit Software employees to leave their offices and work remotely for three months from
home. Despite these difficult times, Wit Software was available in all kinds of help, from
technical support to psychological support, always safeguarding the health and well-being
of its employees.

Finally, the experience of working on this project with Raul and Pedro was undoubtedly
gratifying, which allowed me to evolve personally as well as professionally, and that led to
a small successful final prototype.

The A2P campaign platform is now a complete module, and although this is a successful
job, there is always some additional work that can be done. As such, the project developed
in the future may be integrated with Wit Buzz, the campaign management platform, and
other features that have been developed by Wit Software.

66

References

1]

2]
3]
4]
[5]
(6]
7]
8]
19]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]
[22]

23]

30 Global Mobile Payment Stats, Trends & Forecasts (2019 Update).
https://www.merchantsavvy.co.uk /mobile-payment-stats-trends,/.

An Overview on Elasticsearch and its usage - Towards Data Science.

Apache JMeter - Apache JMeter™.

Apache JMeter - User’s Manual.

Bootstrap - The most popular HTML, CSS, and JS library in the world.

Como utilizar a app Wallet no iPhone, iPod touch e Apple Watch - Suporte Apple.
Complete Loyalty Program Software | iVend Retail. https://ivend.com/ivend-loyalty /.
ELK — Elasticsearch, Logstash, and Kibana - Z Little - Medium.

Forticlient - Next Generation Endpoint Protection.

Google Pay | Google Developers.

Guia do Scrum TM. Technical report.

Introduction to Mobile Wallet By PassKit. Technical report.

Java Programming Language. https://docs.oracle.com/javase/7/docs/technotes/guides/language//.
Kibana: Explore, Visualize, Discover Data | Elastic.

LOG Centralization: Using Filebeat and Logstash - Tensult Blogs - Medium.

Loopy Loyalty says. ... https://loopyloyalty.com/.

Maven — Welcome to Apache Maven.

Mobile Marketing Software to create Digital Coupons, Vouchers and Loyalty Cards.
https://www.coupontools.com/.

Pass2U | Apple Wallet and Google Pay Pass Solution.

PassKit - Extend your mobile reach with Apple Wallet and Google Pay Passes.
https://passkit.com/.

PassKit Web Service Reference. https://developer.apple.com/library/archive/documentation/PassKi
Quality attributes in Software Architecture - Nikolay Ashanin - Medium.

Samsung Pay | Apps - The Official Samsung Galaxy Site.

67

Chapter

[24] Setting Up a Remote Notification Server | Apple Developer Documentation.
https://developer.apple.com/documentation /usernotifications/setting up a_remote notification _server

[25] Spring. https://spring.io/.

[26] Talon.One: The World’s Most Powerful Promotion Engine. https://www.talon.one/.
[27] The Most Popular Mobile Payment Apps.

[28] The User Guide CherryPie - PassKit.

[29] TypeScript - JavaScript that scales.

[30] Typical API flow | Google Pay for Passes | Google Developers.

[31] Voucherify: Promotion =~ Management Software for Digital Teams.
https://www.voucherify.io/.

[32] Wallet Passes | Passbook® Wallet for Android ™.

[33] WeChat Pay.

[34] What is Kibana? | Elastic.

[35] What is Scrum? https://www.scrum.org/resources/what-is-scrum.
[36] What is the open rate for SMS in 20187 | Esendex Blog.

[37] PostgreSQL: The world’s most advanced open source database.
https://www.postgresql.org/, 2013.

[38] Airship. The State of Mobile Wallet Marketing. Technical report.

[39] Apple. Wallet Developer Guide: Updating a Pass.
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual /PassKit_ PG /U
CH5-SW1, 2018.

[40] Firebase. Firebase Cloud Messaging | Firebase.
https://firebase.google.com/docs/cloud-messaging, 2018.

[41] Product Plan. What is MoSCoW Prioritization? | Overview of the MoSCoW Method.
https://www.productplan.com/glossary/moscow-prioritization/, 2019.

[42] Ravi Chari. What is a risk model? https://www.microtool.de/en/knowledge-
base/what-is-a-risk-matrix/.

68

Appendices

69

This page is intentionally left blank.

Appendix A

This appendix presents the sprints and tasks defined and implemented in the first semester
and those to be implemented in the second semester.

First Semester

Table 1: First Semester Planning

S01 State of art 17/09/2019 -

) 29/09/2019
e Research on concepts A2P campaigns

e Research on existing platforms for vir-
tual passes

e Research on key techniques

S02 Requirement 30/09/2019 -

Analysis 05/10/2019
e User stories and functional require-

ments

e Non-functional requirements

S03 Software architec- 06/10/2019 -
ture solution 15/10,/2019

e Technologies analysis

e Database analysis and diagram

e Final architecture HLD

S04 Development 16/10/2019 -
03,/12/2019
e Database

— Data Model

— Database Implementation
e Loyalty and Coupons Backend API
e Management API Prototyping
e Frontend API Prototyping

e APNs and FCM Implementation

71

Chapter

Table 1: First Semester Planning

S05 Q&A 04/12/2019 -

30/12/2019
o API testing

e Demonstration tests

S06 Intermediate 17/11/2019 -
internship report) 19/01,/2020

e Write state of art chapter

e Write approach methods chapter

o Write software architecture chapter

e Write requirements analysis chapter

e First version of intermediate internship
report

e Finish intermediate internship report

o Write intermediate internship presenta-
tion

72

Second Semester

Table 2: Second Semester Planning

S01 Software architec- 29/01/2020 -

ture solution) . 05/02/2020
e Technologies analysis

e Final architecture HLD version 2

S02 Development - 06/02/2020 -

Management API 08/03/2020
e Loyalty and Coupons Back-end API

version 2

e Management API Prototyping version
2

S03 Development - 09/03/2020 -
Loyalty App e Front-end Loyalty App 28/05/2020

e Back-end Loyalty App

e Study of Technologies - Report Module

e [mplementation - Report Module

S03 | Q&A 29/05/2020 -

13/06/2020
e Functional tests

e Non-Functional tests

S04 Final internship 14/06/2020 -

report 28/06,/2020
e Finish final internship report

73

This page is intentionally left blank.

Appendix B - REST API Documentation Apple Wallet

Devices Register for Updates

Method POST request to
" /{version} /devices/{deviceLibraryldentifier} /registrations/{ pass Typeldentifier} /{ serial Number}"

Description: After installing a pass, the iOS device registers with the server, asking to
receive updates, the server saves the device’s library ID and its push token.

Table 3: Information to send by device

Device library identifier the URL Yes

Push Token JSON pay- | Yes
load

Pass Type Identifier the URL Yes

Serial Number the URL Yes

Authentication Token the header Yes

Responses

Table 4: Responses

If the serial number is already registered | returns HTTP status 200
for this device

If registration succeeds returns HTTP status 201

If the request is not authorized returns HTTP status 401

Otherwise returns the appropriate standard HTTP
status

75

Chapter

Getting the Serial Numbers for Passes Associated with a Device

Method GET request to
" /{version} /devices/{deviceLibraryldentifier} /registrations/{ pass Typeldentifier }{? passes UpdatedSince } —tag"

Description
When a device gets a push notification, it asks your server for the serial numbers of passes
that have changed since a specific point in time.

Table 5: Information to send by device

Device library identifier the URL Yes

Pass Type Identifier (from | the URL Yes
the push notification)

Latest update tag - No

Responses

Table 6: Responses

If there are matching passes returns HTTP status 200 with a JSON dictionary
with the following keys and values:

e lastUpdated (string): The current modifi-
cation tag

e serialNumbers (array of strings): The se-
rial numbers of the matching passes.

If registration succeeds returns HTTP status 201
If the request is not authorized returns HTTP status 401
Otherwise returns the appropriate standard HT'TP status

Getting the Latest Version of a Pass

Method GET request to

" /{version} /passes/{pass Typeldentifier} /{ serial Number}"

Description: The device asks to server for the latest version of each updated pass. To

prove that the request is valid, the device includes the pass’s authorization token.

Table 7: Information to send by device

Pass Type Identifier

the URL Yes

Serial Number

the URL Yes

Authentication Token

the header Yes

Responses

Table 8: Responses

If request is authorized

returns HTTP status 200 with a payload
of the pass data

If the request is not authorized

returns HTTP status 401

Otherwise

returns the appropriate standard HT'TP
status

Unregistering a Device

Method DELETE request to

" /{version} /devices/{deviceLibraryldentifier} /registrations/{ pass Typeldentifier} /{ serial Number}"

Description: The server disassociates the specified device from the pass, and no longer

sends push notifications to this device when the pass changes.

Table 9: Information to send by device

Device library identifier the URL Yes

Push Token JSON pay- | Yes
load

Pass Type Identifier the URL Yes

Serial Number the URL Yes

Authentication Token the header Yes

7

Chapter

Responses

Table 10: Responses

If disassociation succeeds returns HTTP status 200

If the request is not authorized returns HTTP status 401

Otherwise returns the appropriate standard HTTP
status

Logging Errors

Method POST request to
" /{version} /log"

Description: This endpoint is intended to help to debug the web service implementation.
Log messages contain a description of the error in a human-readable format.

Response ‘ Returns HTTP status 200 ‘

Server Sends a Push Notification When Something Changes

Method GET request to
" /{version} /devices/{deviceLibraryldentifier} /registrations/{ pass Typeldentifier }{? passes UpdatedSince } —=tag

"

Description: When a pass needs to be updated, server sends a push notification to inform
devices of the change. Push notifications are sent only to the devices that have registered
for updates for that pass, and only when the pass has changed.

Table 11: Information to send by device

Device library identifier the URL Yes

Pass Type Identifier (from | the URL Yes
the push notification)

Latest update tag - No

78

This page is intentionally left blank.

Chapter

Appendix C - Software Quality

API Tests
The following tests contain the API tests performed to ensure that the API does what

is intended and returns the expected responses. All written tests aimed to analyze and
evaluate the server’s response.

Passe Controller

Path /download /{clientID} /{ campaignID }

+ Type | Conditions Expected Responses

1 GET | - clientID does not correspond to an | Code: 404 - Not Found
existing client id

2 GET |- campaignID does not correspond | Code: 404 - Not Found
to an existing campaign id

3 GET | - device_ OS is Android Code: 202 - Accepted

4 GET | - device_ OS is iOS Code: 202 - Accepted

Message: .pkpass File
Last OK
Result

Table 12: Download pass

Path /v1/templates/{brandID} /{campaignID}

Type | Conditions Expected Responses

1 PUT | - brandID does not correspond to an | Code: 404 - Not Found
existing brand id

2 PUT |- campaignID does not correspond | Code: 404 - Not Found
to an existing campaign id

3 PUT | - template is empty Code: 400 - Bad Request

Last OK

Result

Table 13: Update pass and data client

80

Table 14: List campaigns

Path /v1/templates/list /{brandID}

Type | Conditions Expected Responses

1 GET | - brandID does not correspond to an | Code: 404 - Not Found
existing brand id

2 GET |- campaignID does not correspond | Code: 404 - Not Found
to an existing campaign id

3 GET | - All parameters matches Code: 200 - OK

Message: JSON message
Last
Result

Last
Result

Path /v1/campaigns/{brandID}

Type | Conditions Expected Responses

1 GET | - brandID does not correspond to an | Code: 404 - Not Found
existing brand id

2 GET | - brandID matches an existing brand | Code: 200 - OK

Message: JSON message

Table 15: Get all campaigns

Path /v1/brands

Type | Conditions Expected Responses

1 GET | - There is no brand created Code: 404 - Not Found

2 GET | - There is brands created Code: 200 - OK
Message: JSON message

Last
Result

Table 16: Get all brands

81

Chapter

Apple Wallet Controller

Path /v1/devices/{deviceID} /registrations/{pass TypeID} /{serial Number}

+# Type | Conditions Expected Responses

1 POST | - passTypelD does not correspond to | Code: 400 - Bad Request
an existing pass type identifier

2 POST | - Empty authenticationToken pa- | Code: 401 - Unauthorized
rameter

3 POST | - If serialNumber is already regis- | Code: 200 - OK
tered for this devicelD

4 POST | - If registration succeeds Code: 201 - Created

Last

Result

Table 17: Registering a Device to Receive Push Notifications for a Pass

Last

Result

Path /v1l/devices/{devicelD} /registrations/{pass TypeID}?passesUpdatedSince=tag
+# Type | Conditions Expected Responses

1 GET | - If there are no matching passes Code: 204 - No Content

2 GET | - If there are matching passes Code: 200 - OK

Message: JSON dictio-
nary with lastUpdatedTag
and serialNumbers

Table 18: Getting the Serial Numbers for Passes Associated with a Device

Path /v1/passes/{passTypelD} /{serial Number}

Type | Conditions Expected Responses

1 GET | - passTypelD does not correspond to | Code: 400 - Bad Request
an existing pass type identifier

2 GET |- Empty authenticationToken pa- | Code: 401 - Unauthorized
rameter

3 GET | - If request is authorized Code: 200 - OK

Message: Payload of the
pass data (.pkpass File

Last
Result

Table 19: Getting the Latest Version of a Pass

Path /v1/devices/{deviceID} /registrations/{pass TypeID} /{serial Number}

Type Conditions Expected Responses

1 DELETE | - All parameters doesn’t matches Code: 401 - Unauthorized
DELETE | - All parameters matches Code: 200 - OK

Last
Result

Table 20: Unregistering a Device

83

Chapter 8

Loyalty Controller

Path /uploadFile/{campaignlD }

Type | Conditions Expected Responses

1 POST | - File is empty Code: 400 - Bad Request

2 POST | - All parameters matches Code: 200 - OK
Message: JSON message

Last
Result

Table 21: Upload clients data

Path /logs download /search/{brand_id}

Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last
Result

Table 22: Get top downloads from passes

Path /logs sms/sms/{brand_id}

Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last
Result

Table 23: Get data from SMS logs

84

Path /logs sms/sms/{brand_ id}

Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last
Result

Table 24: Get total number of costumers using iOS and/or Android from downloads logs

Path /logs update/number updates/{brand id}

+# Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last

Result

Table 25: Get number of updates per day from updates logs

Path /logs update/updates/{brand_id}/{campaign id}

Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last
Result

Table 26: Get number of updates per campaign from updates logs

Path /logs _rejection/{brand_id}

Type | Conditions Expected Responses

1 GET | - Request is authorized Code: 200 - OK
Message: JSON message

Last
Result

Table 27: Get number of downloads performed and sms sent from logs

85

