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Exprimo a minha profunda gratidão à minha famı́lia, que permitiu que tudo isto
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Resumo

Cerca de 30% dos doentes epiléticos não conseguem obter uma supressão eficaz das

crises a longo prazo após administração de fármacos anticonvulsivantes. Para estes

indiv́ıduos, a previsão de crises foi identificada como uma abordagem promisora, que

utiliza algoritmos de previsão para alertar o paciente atempadamente e permitir que

sejam tomadas medidas preventivas. A determinação do peŕıodo pré-ictal, no qual o

cérebro transita de um estado normal para um de hiperexcitabilidade, é considerado

um passo cŕıtico.

Apesar da abundância de abordagens baseadas no Eletroencefalograma (EEG),

muitas não atingem a aplicabilidade cĺınica à custa de uma capacidade de gen-

eralização insuficiente. Além do mais, vários estudos recentes têm adotado métodos

baseados em Deep Learning que, apesar de atingirem um desempenho significativo

em relação aos classificadores tradicionais, resultam na perda de interpretabilidade

cĺınica, dificultando a sua implementação em dispositivos médicos.

O presente trabalho consistiu no desenvolvimento de um esquema de previsão baseado

em dados de monitorização pré-cirúrgica da base de dados EPILEPSIAE, aplicando

Algoritmos Evolucionários Multi-Objetivo (MOEA) para otimização de modelos.

Nomeadamente, foram experimentadas três implementações diferentes: MOGA,

NSGA-II e um SMS-EMOA modificado. Cada um otimizou um conjunto de mode-

los de previsão espećıficos para cada paciente, procurando gerar um conjunto ótimo

de features computacionalmente leves para treinar um classificador baseado em

Máquinas de Vetores de Suporte (SVM).

Considerando um grupo de 36 doentes com Epilepsia do Lobo Temporal (TLE), a

metodologia proposta alcançou um desempenho estatisticamente significativo para

19%, 30% e 14% considerando o previsor aleatório e 89%, 83% e 86% usando análise

surrogate, respetivamente, para cada MOEA. Foram também obtidos valores geral-

mente baixos para a Taxa de Falsos Positivos por Hora (FPR/h), sendo que um terço

dos doentes apresentou valores abaixo de 0.15, que é um requisito para aplicabili-
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Resumo

dade em contexto real. Estes resultados demonstram a possibilidade de identificar

o peŕıodo pré-ictal e, simultaneamente, manter a interpretabilidade dos modelos,

o que poderá contribuir para aprofundar a compreensão das dinâmicas cerebrais e

melhorar a capacidade preditiva.

Palavras-chave: Epilepsia, Processamento de EEG, Previsão de crises, Algoritmos

evolucionários
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Abstract

An estimated 30% of epileptic patients cannot achieve effective long-term seizure

suppression after antiepileptic drug administration. For these individuals, seizure

prediction has been identified as a promising approach, making use of prediction

algorithms to alert the patient in a timely manner and allow for preventive measures

to be taken. The determination of the pre-ictal period, in which the brain transitions

from a normal state to a seizure, is considered a critical step.

Despite the abundance of approaches based on the Electroencephalogram (EEG)

signal, many fail to achieve real-world applicability on account of insufficient gen-

eralization capability. Moreover, recent studies have began to adopt Deep Learning

methods, which despite attaining remarkable performance when compared to tra-

ditional classifiers, result in a loss of clinical interpretability, hindering their imple-

mentation on medical devices.

This work concerns the development of a prediction scheme based on pre-surgical

monitoring data from the EPILEPSIAE database, employing Multi-Objective Evo-

lutionary Algorithms (MOEAs) for model optimization. Namely, we experimented

with three different implementations: MOGA, NSGA-II and a modified SMS-EMOA.

Each one optimized a set of patient-specific prediction models, aiming to generate

an optimal set of computationally light features to train a Support Vector Machine

(SVM) classifier.

Considering a group of 36 patients suffering from Temporal Lobe Epilepsy (TLE),

the proposed methodology performed above chance for 19%, 30% and 14% con-

sidering the random predictor and 89%, 83% and 86% using surrogate analysis,

respectively, for each MOEA. Generally low False Positive Rate per Hour (FPR/h)

scores were also obtained, with a third of all patients presenting average values lower

than 0.15, which is a requirement for real-life applicability. These results demon-

strate the possibility of identifying the pre-ictal period while maintaining model

interpretability, which may contribute to a better understanding of brain dynamics
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and enhance predictive performance.

Keywords: Epilepsy, EEG processing, Seizure prediction, Evolutionary Algorithms
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1

Introduction

This chapter contains a short overview of the motivation behind this study in

section 1.1, as well as the context surrounding it in section 1.2. The main goals

and expected contributions are discussed in section 1.3. Lastly, the outline of this

document can be found in section 1.4.

1.1 Motivation

Epilepsy is a chronic neurological condition characterized by recurrent seizures.

With a prevalence of more than 3 million patients in Europe alone (and about 1%

of the global population), it is one of the most common diseases of the human brain.

Due to the apparent unpredictable nature of seizure occurrence, patients suffer not

only physical (e.g. risk of trauma), but also social and psychological (e.g. stigma and

discrimination) consequences [52, 60]. Additionally, it is associated with significant

economic implications, including health-care needs and loss of productivity [114].

Although seizure control through antiepileptic drug administration or surgical

intervention has a success rate of 70%, new treatment concepts must be developed for

the remaining group of patients, such as seizure prediction. By laying the basis for

future warning systems or closed-loop intervention devices, it may allow to, respec-

tively, decrease anxiety levels regarding their unpredictability and reduce/suppress

seizure effects, effectively improving the patient’s quality of life [50, 52].

1.2 Context

Since the 1970’s, seizure prediction has been largely based on the Electroen-

cephalogram (EEG) signal dynamics, with increasing advances throughout the years.

The signal has been used to continuously monitor epileptic patients and successfully

evaluate and diagnose Drug-Resistant Epilepsy (DRE). The main goal is to develop

tools which acquire on-line data and raise alarms/warnings some time before each
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seizure, providing time for intervention. After starting with simple thresholding,

modern approaches have adopted machine learning with promising results. Even so,

several questions arise concerning the reliability and validity of previously developed

algorithms [75].

The current approaches face several factors which hamper their real-life im-

plementation. For instance, several of the used databases are comprised of dis-

continuous and/or short-time EEG recordings. Additionally, these require manual

annotation of each seizure as well as contextual information (e.g. sleep, patient

movement), a demanding and complex task which should be performed by experts.

The signal’s morphology and characteristics are also not fully understood.

A particularly significant subject is the determination of the pre-ictal period.

It is described as the time interval preceding the seizure onset where the brain

transitions from a normal state to a seizure, and it defines a critical step in seizure

prediction algorithms. Authors have not reached a consensus regarding an optimal

value for this time interval, with different studies reporting that it not only varies

between patients but also between seizures within each patient [42, 62, 81].

Other issues include the clinical heterogeneity in epilepsy diagnosis, data imbal-

ance (normal brain activity is prevalent), as well as the presence of concept drifts:

considering that most of the data derives from patients in pre-surgical monitoring,

where anticonvulsant medication is suppressed, neurophysiological conditions will

be different and seizures will be more frequent than in everyday life. Other physio-

logical phenomena such as circadian rhythm or stress also contribute to alterations

in brain dynamics [56].

Another core aspect in the current framework is feature selection, not only to

ensure a reliable performance for the prediction algorithm but also to meet the needs

for interpretable results with possible clinical knowledge extrapolation. Once again,

no consensus was reached concerning the optimal group of features or feature types.

Furthermore, many studies employ post-processing methods in order to improve

the prediction performance. These, however, are simply ad hoc solutions with the

purpose of reducing the number of false alarms [11, 102].

Recent machine learning studies have adopted Deep Learning techniques such

as Long Short-Term Memory (LSTMs) and Convolutional Neural Networks (CNNs),

which outperform most traditional classifiers by handling the time property directly.

Despite their ability to perform automatic feature engineering, there is an inevitable

loss of interpretability that severely affects their applicability in a clinical context.

In order to attain a high degree of confidence in new methodologies, these should

be evaluated considering several factors: the duration of the Seizure Occurrence
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Period (SOP) (during which the seizure will occur) and Seizure Prediction Horizon

(SPH) (time for intervention), False Positive Rate per Hour (FPR/h) and sensitivity.

Their direct impact on the patient’s well-being must be taken into account (e.g.,

overly long SOP and SPH may induce overwhelming amounts of stress) and tests

on long-term recordings should be carried out to evaluate real-life applicability.

1.3 Research goals

Regarding the main objective, which is to advance the current EEG seizure

prediction framework, the expected contributions of this thesis are the following:

• Exploitation of the European Epilepsy Database, with the development of a

new prediction approach based on its data. It is the largest epilepsy database,

created as part of the EU-funded EPILEPSIAE project, containing long-term

recordings of 275 patients with extensive clinical metadata.

• Exploitation of several aspects of Evolutionary Algorithms (EAs), such as

fitness function design and multi-objective optimization, and how these might

contribute to seizure prediction as well as understanding the underlying brain

dynamics.

• Contribution towards a new feature construction scheme, aiming to achieve

both satisfactory performance and interpretability.

1.4 Outline

This document is divided into five chapters beyond the introduction.

Chapter 2 presents background information regarding epilepsy, the EEG signal,

seizure prediction concepts and evolutionary computing terminology that will be

referred to throughout this document.

Chapter 3 showcases the state of art concerning EEG-based seizure prediction.

Chapter 4 describes the various methods employed throughout the experimental

work, including signal processing, machine learning and EAs.

Chapter 5 reports not only the results obtained from the machine learning algo-

rithms, but also their statistical validation. A thorough discussion on the obtained

results and other aspects of this thesis is also provided.

Chapter 6 presents a conclusion and addresses future perspectives in this field

of study.
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Background Concepts

This chapter introduces the main concepts needed to follow this document.

Firstly, a brief overview of epilepsy, its clinical definitions and classification is pre-

sented in section 2.1, followed by the characterization of the Electroencephalogram

(EEG) signal and its application in neurophysiology in section 2.2. Section 2.3 in-

troduces all the necessary notions within the field of seizure prediction, while section

2.4 provides insight on the main concepts of evolutionary computing. Lastly, a short

summary is included in section 2.5.

2.1 Epilepsy

2.1.1 Clinical definitions

Epilepsy is defined, according to the International League Against Epilepsy

(ILAE) in 2005, as ”a disorder of the brain characterized by an enduring predisposi-

tion to generate epileptic seizures and by the neurobiological, cognitive, psychological,

and social consequences of this condition”. Additionally, its definition ”requires the

occurrence of at least one epileptic seizure” [38].

An epileptic seizure is defined as ”a transient occurrence of signs and/or symp-

toms due to abnormal excessive or synchronous neuronal activity in the brain” [38].

These conceptual definitions, however, do not cover all the clinical circum-

stances. Hence, the ILAE Task Force proposed an operational definition of the

disease in 2014 [37], which states that epilepsy is a disease of the brain defined by

any of the following conditions:

• at least two unprovoked (or reflex) seizures occurring over 24 hours apart;

• one unprovoked (or reflex) seizure and a probability of further seizures similar

to the general recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next 10 years;

• diagnosis of an epilepsy syndrome.
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In this new, practical definition, the risk of recurrence after a single unprovoked

seizure is given greater consideration, allowing clinicians to initiate treatment after

some initial unprovoked seizures. The term ”unprovoked” indicates absence of a

temporary/reversible factor lowering the threshold and causing a seizure at that

point in time.

It is worth noting that epilepsy is not necessarily a life-long condition, and is

considered to be ”resolved” if a person has been seizure-free for the last 10 years,

with at least the last 5 years off Anti-epileptic drugs (AEDs), or when that person

has passed the age of an age-dependent epilepsy syndrome. However, when epilepsy

is resolved it does not guarantee that it will not return.

2.1.2 Classification

The ILAE Task Force, in addition to its clinical definition, also updated the

classification of epilepsy diagnosis. As seen in figure 2.1, it is presented in three

levels: firstly, the seizure type, then the epilepsy type and thirdly, the epilepsy

syndrome.

GeneralizedFocal Unknown

Combined 
Generalized 
and Focal

Generalized UnknownFocal

Structural

Genetic

Infectious

Metabolic

Immune

Unknown

Figure 2.1: ILAE 2017 framework for classification of epilepsy. *Denotes onset of
seizure. Adapted from: Sheffer et al. [90]
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The new classification also incorporates etiology along each stage, as it often

carries significant treatment implications at each step of the diagnosis. It is divided

into different subgroups according to their potential therapeutic consequences but,

for the sake of simplicity, its influence will not be discussed in this document [90].

Seizure type

The clinician’s first task is to ascertain if an event has the characteristics of

a seizure. When it is proven to be a seizure, its classification begins with the

determination of whether the initial manifestations (onset) of the seizure are focal,

generalized or unknown.

Focal seizures correspond to seizures with clinical or EEG onsets originating

within networks limited to one hemisphere, whereas generalized ones involve bilat-

erally distributed networks, that is, both hemispheres.

Aware Impaired 
Awareness

Focal to Bilateral 
Tonic-Clonic

    Tonic-clonic
    Other motor

 (absence)

    Tonic-clonic
    Other motor

Unclassified 2

ILAE 2017 Classification of Seizure Types Basic Version

Figure 2.2: The basic ILAE 2017 operational classification of seizure types.
1Definitions, other seizure types and descriptors are listed in the accompanying
paper and glossary of terms. 2 Due to inadequate information or inability to place
in other categories. Adapted from: R.S. Fisher et al. [39]

As shown in the figure above, seizure types can be subgrouped as motor or

non-motor, according to behavioral manifestations. This is also valid for seizures of

unknown onset, where the clinician lacks sufficient information to determine if it is

focal or generalized.

Focal seizures can also be classified based on the person’s level of awareness of

self and environment during the seizure, even if immobile. If awareness is retained,

it is classified as Focal Onset Aware (FOA), otherwise, the seizure is categorized as

Focal Onset Impaired Awareness (FOIA). A particular case that should be noted

are Focal to Bilateral Tonic-Clonic (FBTC) seizures [34]: the onset is limited to one
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hemisphere, but rapidly propagates to the other, often resulting in tonic (muscle

stiffness) and clonic (jerking movements) symptoms.

It is worth noting that, depending on the available resources, classification

according to seizure type may be the maximum level possible for diagnosis as there

may be no access to EEG, video and imaging studies [39, 90].

Despite the lack of guidelines provided by the ILAE Task Force, several other

aspects are often registered and analyzed by clinicians. Hence, in practice, it is com-

mon to annotate the patient’s state of vigilance at the time of the seizure (awake,

non-REM stages I-IV, REM) as well as the onset’s localization in terms of hemi-

spheres (left, right, bilateral) and brain lobes (frontal, parietal, occipital, temporal)

[60].

Epilepsy type

The second level of the classification framework identifies the type of epilepsy

that affects the patient and assumes a diagnosis of epilepsy based on the 2014

definition. As illustrated in figure 2.1, epilepsy types can be grouped in four different

categories:

• Focal: includes unifocal and multifocal disorders and seizures that involve one

hemisphere; the most common seizure types include FOA, FOIA, focal motor,

focal non-motor and focal to bilateral tonic-clonic ones, with the interictal

EEG characterized by focal epileptiform discharges.

• Generalized: characterized by generalized spike-wave activity on the EEG,

with seizure types including absence, myoclonic, atonic, tonic and tonic-clonic

ones.

• Combined Generalized and Focal: characterized by having generalized and

focal seizures with the interictal EEG showing generalized spike-wave and

focal epileptiform discharges.

• Unknown: the patient is confirmed to have epilepsy, but the clinician is un-

able to conclude whether the epilepsy type is focal or generalized from the

information available.

As shown, each epilepsy type is associated with a high degree of complexity,

given that each category contains multiple types of seizures [90].

Epilepsy syndrome

The third level of classification is an epilepsy syndrome diagnosis. An epilepsy

syndrome refers to a group of characteristics including seizure types, EEG and imag-
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ing features which tend to occur together. Additionally, others such as age at onset

and remission (where applicable), seizure triggers and diurnal variation are often

considered. However, it should be noted that there is no formal classification of

syndromes by the ILAE [90].

The identification of an epilepsy syndrome is helpful as it provides information

on the underlying causes and which AEDs might be suitable. This is especially

relevant given that several syndromes display seizure aggravation with particular

medications, which can be prevented through appropriate early diagnosis [53].

Temporal Lobe Epilepsy (TLE) represents the most common form of focal

epilepsy, and is divided in two types: Mesial Temporal Lobe Epilepsy (MTLE),

which accounts for over 80% of all TLE cases and neocortical/lateral temporal lobe

epilepsy. This syndrome is characterized by seizures originating in temporal struc-

tures such as the hippocampus or surrounding areas, typically diagnosed in early to

late adolescence. Anti-seizure medication is often ineffective, thus making surgery a

frequent recommendation [35, 95]. It is worth noting that various seizure prediction

studies have focused on TLE patients [11, 16, 30].

Drug-Resistant Epilepsy (DRE)

The ILAE Task Force, in 2009, defined DRE as ”failure of adequate trials of two

tolerated, appropriately chosen and used AED schedules (whether as monotherapies

or in combination) to achieve sustained seizure freedom”. Seizure freedom was also

defined, in the same report, as ”freedom from all types of seizures for 12 months or

three times the preintervention interseizure interval, whichever is longer” [63].

This group of patients is of serious concern, bearing in mind that they are

subjected to the unpredictable nature of seizure occurrence and its physical and

social consequences. They are the focus of seizure prediction approaches (as well as

those with ineffective surgical intervention), which can significantly improve their

quality of life, preventing severe accidents and injuries, which are one of the main

causes of death related to epilepsy [114].

2.2 EEG

2.2.1 Overview

The Electroencephalogram (EEG) measures and records the electrical activity

of the brain in the form of a time series, representing the potential voltage fluctua-

tions in space and time. These electrical potentials arise from summated excitatory
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2. Background Concepts

and inhibitory postsynaptic potentials which are generated primarily by cortical

pyramidal cells [2, 81].

Considering that epileptic seizures occur due to a malfunction in the electro-

physiological system of the brain, causing a sudden, synchronous electrical discharge

in a group of neurons, it is naturally understood why the EEG became the primary

clinical tool used when handling patients suffering from epilepsy [2, 50].

Generally, the potentials captured by the EEG can be categorized into two

types of phenomena: oscillations and transients. Oscillations, in the brain, refer to

rhythmic fluctuations of neurons or populations of neurons. These can be produced

by excitatory/inhibitory networks or interactions between them [23]. They can be

characterized in terms of frequency band activity: delta (0-4Hz), theta (4-8Hz),

alpha (8-13Hz), beta (13-30Hz) and gamma (>30Hz) [11]. It should be noted that

there is no general consensus among authors regarding these bandwidths.

Concerning transients, they can be considered normal or abnormal. Normal

transients include various sleep potentials as well as non-cerebral electrical poten-

tials (e.g. eye blinks, cardiac impulses, muscle activity). Abnormal transients are

subgrouped into epileptiform (e.g. spike and wave complexes, sharp or slow wave

discharges) and non-epileptiform. Epileptiform discharges can be identified during

the inter-ictal stage and often form the basis for diagnosis of epilepsy [81].

Furthermore, besides the aforementioned activity, there can be other, non-

physiological artifacts present in the EEG. These are generated by electromagnetic

fields outside the patient’s body, as is the case with power-line interference (50 or

60Hz), changes in the electrodes’ impedance, and interference from the environment

(movement and medical instrumentation) [112].

EEG Potentials

Oscillations Transients

Delta
(0-4Hz)

Theta
(4-8Hz)

Alpha
(8-13Hz)

Beta
(13-30Hz)

Gamma
(>30Hz) Normal Abnormal

Epileptiform Non-epileptiform

Figure 2.3: Categorization of EEG activity.
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2.2.2 Signal acquisition

The EEG signal is acquired by placing several electrodes either on the scalp

(scalp EEG) or inside the patient’s skull (intracranial EEG (iEEG)). The signal’s

spatial resolution is determined by the number of electrodes used and their respective

localization, while time resolution depends on the sampling frequency.

Scalp EEG

Scalp EEG represents the most common acquisition method, as it is non-

invasive. Electrodes are placed on the patient’s scalp according to the international

10-20 system (as depicted in figure 2.4) and, through the use of an electroconduc-

tive gel, the existing impedance is reduced [6, 23]. The standard set of electrodes

in adults is comprised of 21 electrodes for recording electrical activity and an addi-

tional one for ground reference, when using a referential montage. Bipolar montages

are also commonly used, as explained below [81, 89].

When acquiring the signal, each electrode measures the voltage difference be-

tween the electrode itself and a reference. After acquisition, one can choose to

maintain the original signals or create what is referred to as bipolar montages,

which typically involve the difference between the voltages measured from adjacent

electrodes [81].

Figure 2.4: The international 10-20 system used for electrode placement. Source:
M. Sazgar and M. G. Young, Overview of EEG, Electrode Placement, and Montages
[89]
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iEEG

iEEG is an invasive method, in which electrodes are placed directly on the

exposed surface of the patient’s brain during surgery. A craniotomy (surgical incision

into the skull) is performed and subdural grids or strips with numbered electrodes

are placed on a small region of the cortex, as illustrated by figure 2.5 [6, 81].

For intracranial recordings, there are also different options for a reference elec-

trode: another intracranial electrode, taking the average of all electrodes on the

grid/strip, or an extracranial electrode. Depth electrodes can also be placed in deep

brain structures and have been proven useful in detecting the spread of epileptiform

activity in patients with TLE. However, major risks when placing these should be

considered, such as hemorrhage or infection [23, 36, 81].

Figure 2.5: Illustration of intracranial electrode placement. Grids/strips with
numbered electrodes are placed directly on the surface of the patient’s brain. Source:
J. Watson, Epilepsy. June 2011. [55]

Scalp EEG vs. iEEG

Non-invasive, scalp EEG recordings have a number of limitations when com-

pared to invasive ones, considering that muscle artifacts are more abundant and

they cannot accurately capture part of the activity in the beta and gamma bands.

Moreover, iEEG recordings have a higher signal to noise ratio, since electrodes are

placed closer to the brain structures. However, considering the inherent ethical rea-

sons, increased risk (up to 4%) of infection/hemorrhage and since the method does

not cover wider regions of the brain, invasive recordings bear some shortcomings
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as well [61, 81]. Epilepsy patients in pre-surgical monitoring are only subjected to

intracranial recordings when the seizure localization is inconclusive [36].

Each acquisition technique can be associated with different goals in terms of its

application in seizure prediction. Invasive recordings are preferred for implantable,

closed-loop brain stimulation devices (e.g. the RNS system [98]), despite the afore-

mentioned risk and maintenance requirements such as device migration. For simpler

warning systems, however, scalp recordings, whilst noisy, may be desirable for their

reduced cost and ease of access to the general population [42, 62, 75, 94].

In either case, it is worth noting that the EEG is a complex signal which aims

to approximate the true underlying complexity of the linear and non-linear nature

of the interactions between neurons [75].

2.2.3 Epileptic epoch segmentation

The EEG signal of an epileptic patient can be divided into different periods

in time, relative to the seizure, as shown in figure 2.6. Hence, each seizure episode

consists of a pre-ictal period (preceding the seizure), an ictal period (corresponding

to the seizure), a post-ictal period (following the seizure) and, finally, an inter-ictal

period (between the post- and pre-ictal periods of consecutive seizures).

Ictal IctalPost-ictal Post-ictalPre-ictal Pre-ictalInter-ictal Inter-ictal Inter-ictal Inter-ictal

...

Figure 2.6: Different periods of a seizure episode annotated on an EEG signal:
inter-ictal (green), pre-ictal (yellow), ictal (red) and post-ictal (blue). Data selected
from patient 16202 from the EPILEPSIAE database.

It should be stressed that the pre-ictal period is the most difficult one to de-

termine and is not even annotated by neurophysiologists, as it is associated with a

considerable degree of heterogeneity: its characteristics can vary not only between

patients, but also between seizures [42, 62]. Furthermore, abnormal non-epileptiform

activity contributes to the difficulty of the task and, in some cases, seizures are not

preceded by any specific patterns captured in the EEG [2]. Understanding the un-

derlying dynamics and detecting this complex transition between the inter-ictal and

ictal stages is the fundamental challenge in the field of seizure prediction.
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2.3 Seizure Prediction

2.3.1 Main concepts

The main goal of seizure prediction is to develop tools able to forecast/anticipate

the occurrence of seizures, based on on-line data, and notify the patient in a timely

manner. Thus, in addition to providing an occurrence period, in which the seizure

takes place, the algorithm should allow enough time for the patient to take preventive

measures and avoid harmful consequences. In order to reduce stress levels, the

number of false alarms must be strictly limited [11].

Seizure prediction vs. detection

A parallel, although different research field is seizure detection, whose algo-

rithms aim at an early detection of the beginning (onset) of the seizure. These,

in contrast to seizure prediction algorithms, do not provide time for the patient to

take action, but can aid clinicians in identifying the epileptic focus and selecting

appropriate medication. Both can also be implemented in closed-loop intervention

systems, although prediction is preferable for more timely responses [81, 85].

Seizure onset

Two types of onset can be considered: clinical and electrographic. The former

refers to the moment when the first clinical manifestations of the seizure become

visible, while the latter relates to the first observable changes in the EEG. Given

that symptoms typically become apparent later and may prove difficult to identify

(as is the case of FOIA and non-motor seizures), it is reasonable to annotate the

beginning of the seizure based on the EEG onset [81].

Seizure prediction characteristic

Since its early beginnings in the 1970s, seizure prediction research grew in

interest and started to show promising results. However, by the turn of the century,

evaluation of the developed algorithms did not achieve such optimistic findings [81].

Accordingly, in 2003, a ”seizure prediction characteristic” was suggested by

Winterhalder et al. [113] to assess and compare different seizure prediction method-

ologies, based on statistical, clinical and behavioral considerations. As such, two fun-

damental concepts were introduced: Seizure Occurrence Period (SOP) and Seizure

Prediction Horizon (SPH), illustrated in figure 2.7.
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While the ideal scenario would be to predict the exact moment of the onset,

some uncertainty is to be expected. Hence, the SOP is defined as the period during

which the seizure is presumed to occur. Moreover, to make therapeutic or behavioral

intervention possible, it is essential do define a minimum time interval between the

alarm generated by the prediction method and the beginning of SOP. This time

window indicates the SPH, also known as Intervention Time (IT).

Seizure prediction horizon
(SPH)

Seizure occurrence period
(SOP)

Time

Alarm Onset
!

Figure 2.7: Visual representation of SOP and SPH. Adapted from: Winterhalder
et al. [113]

Both periods must be accounted for when analyzing the prediction: for an alarm

to be considered as true, the seizure onset must appear sometime during the defined

SOP. In other words, if the onset is located outside of the SOP period, even if within

the SPH, it is classified as a false alarm (i.e. false positive).

Time

Alarm Onset

SPH SOP

!

Time

Alarm Onset

SPH SOP

!

Time

Alarm Onset

SPH SOP

!

Figure 2.8: Visual representation of true and false alarms in seizure prediction.
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In literature, SOP values have been found ranging from minutes to hours [81].

This can not only impact the performance of the algorithm but also the patient’s life,

as large time intervals may induce an overwhelming amount of stress/anxiety. Thus,

both SOP and SPH values must be chosen according to their impact on the patient.

For instance, let us consider the following example: if the chosen SOP value spans

6 hours, and a given patient has 4 seizures within a single day, then, technically, no

prediction is being made despite the fact that the algorithm accurately anticipates

all of the seizures.

Regarding lower/upper bounds for SPH and SOP, there are no standard values.

Nonetheless, considering that intervention systems only require a few seconds to act,

this could indicate a suitable value for SPHmin (albeit, for warning systems, a longer

interval is required). Furthermore, future implanted devices (with drug delivery or

electrical stimulation) may cause adverse side effects over prolonged intervention

times, which could help to determine an appropriate value for SOPmax, in addition

to the aforementioned effect on stress levels [81, 113]. It is worth mentioning that

authors typically choose, in supervised learning approaches, an equal duration for

SOP + SPH as the assumed pre-ictal period, as depicted in figure 2.9.

Time

Alarm Onset

SPH SOP

!

Time

Alarm Onset

SPH SOP

!

Pre-ictal SPH

Pre-ictal SPH

Inter-ictal

Inter-ictal

Figure 2.9: Visual representation of the relationship between SOP, SPH and the
assumed pre-ictal period. Both alarms are correct, and are raised in the first and
last pre-ictal sample, respectively, representing the two extreme cases.

2.3.2 Performance evaluation

In addition to the aforementioned concepts, two performance metrics were de-

fined for seizure prediction: sensitivity and False Positive Rate per Hour (FPR/h).

These follow the notion of true/false alarms as explained previously.

Sensitivity is, therefore, defined as the fraction of correctly predicted seizures,

as described by equation (2.1):
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Sensitivity =
Predicted seizures

All seizures
. (2.1)

By using this definition, sensitivity can be analyzed in a more effective manner,

whereas with the typical definition (equation (2.4), presented below), two accurately

predicted seizures could display different values depending on how many instants of

the time series were labeled correctly.

Regarding FPR/h, it is defined as the ratio between the number of false alarms

and the total duration of the inter-ictal period:

FPR/h =
Nalarms

Interictalduration
, (2.2)

where Nalarms represents the number of false alarms and the Interictalduration can

be computed by equation (2.3):

Interictalduration = Recordingduration −Nseizures × (SOP + SPH). (2.3)

This definition, therefore, avoids the ambiguity of measuring the specificity of

the prediction algorithm, which would be the portion of time, during the inter-ictal

period, where the patient is not under a false alarm (false waiting time) [81, 111].

After analyzing the output of the algorithm and comparing it to clinical anno-

tations on the EEG signal, one may define a confusion matrix as follows:

Table 2.1: Confusion matrix for evaluation of the seizure prediction performance.

Clinical label

Pre-ictal Inter-ictal

O
u
tp

u
t Pre-ictal TP FP

Inter-ictal FN TN

It should be stressed, however, that the previous concepts must not be envi-

sioned as common machine learning metrics, such as the ones expressed below:

Sample Sensitivity =
TP

TP + FN
(2.4)

False Positive Rate = 1− Sample Specificity = 1− TN

TN + FP
. (2.5)
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In summary, seizure prediction can be seen as a binary problem, where the

pre-ictal state corresponds to the positive class. The performance of the algorithm

is assessed using sensitivity (equation (2.1)), to evaluate if seizures are effectively

predicted, and FPR/h (equation (2.2)), which better reflects the impact of the

number of false alarms, as exemplified in figure 2.10.

Time

Alarm Onset
!

Pre-ictal SPHInter-ictal

Time

Alarm Onset
!

Pre-ictal SPHInter-ictal

Time

Alarm Onset
!

Pre-ictal SPHInter-ictal

Alarm
!

Sensitivity = _______________________ 2 correctly predicted seizures
3 total seizures

FPR/h = ______________________ 3 false alarms

Total inter-ictal time

Alarm
!

Figure 2.10: An example of performance assessment, using sensitivity and FPR/h.

It is worth mentioning that, generally, there is a trade-off relationship between

both performance metrics: an increase in sensitivity leads to an increase in FPR/h.

Setting a lower threshold to trigger an alarm increases the number of crossings during

the pre-ictal stage (increasing sensitivity), but the same happens for the inter-ictal

stage (increasing false positives and, thus, FPR/h) [113]. Hence, both metrics should

be evaluated simultaneously, since an excessive number of false alarms may cause

the patient to ignore warnings or it could result in side effects from unnecessary

intervention.
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Optimal metric values

Despite the lack of a standard metric value for FPR/h, a maximum value must

be defined to establish a level of acceptable performance from the clinical point of

view. Therefore, the average seizure incidence could indicate an appropriate range.

Thus, Winterhalder et al. [113] proposed a value of 0.15 for FPR/hmax, which

corresponds to an average incidence of 3.6 seizures per day. This is the case for

patients in pre-surgical monitoring, whose AED intake is decreased resulting in

artificially frequent seizures. These also constituted, at the time, the majority of

available databases of epilepsy recordings.

It should be noted that, under normal circumstances, patients with pharma-

corefractory local epilepsy experience an average of three seizures per month, which

corresponds to 0.0042 seizures per hour. As such, an FPR/hmax of 0.15 would mean

that, even if all seizures can be predicted correctly, 50% would be false alarms during

pre-surgical monitoring and, outside these conditions, the number would escalate to

97%. Hence, this maximum value can only be considered reasonable for patients in

pre-surgical monitoring [81, 113].

2.3.3 Statistical validation

In addition to the previous aspects, statistical validation is another important

issue to consider in the field of seizure prediction. For an algorithm to be considered

valid, it must meet the minimum requirement of performing above chance [11, 81].

Random predictor

Schelter et al. [91, 92] proposed a random predictor based on a homogeneous

Poisson process for the false predictions. In this approach, the probability of raising

an alarm for any single sampling point of a feature extracted from a time series is:

PPoiss =
FP

N
, (2.6)

where FP and N are the number of false alarms and the number of samples, respec-

tively. Considering a time period of duration equal to SOP and that the product of

FPR/hmax and SOP is substantially lower than one (valid when assuming the pa-

tient is not under continuous warning), the probability of raising at least one alarm

within SOP is given by equation (2.7):

P ≈ 1− e−FPR/hmaxW ≈ FPR/hmax × SOP. (2.7)
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This probability P forms the basis for a significance level for assessing whether

the sensitivity S(FPR/hmax, SOP, SPH) is greater than that of a random predictor.

Moreover, this significance level should take into account the fact that more

than one seizure is being analyzed and that the probability of prediction by chance

increases with the number of electrodes used and the degrees of freedom d (e.g. num-

ber of prediction models). Hence, in order to reflect these aspects, the probability

of randomly predicting at least k out of K seizures follows a binomial distribution:

Pbinom,d(k,K,P ) = 1−

[
j≤k∑
1

(
K

j

)
P j(1− P )K−j

]d
. (2.8)

Finally, the critical value σlow taken into account to test for statistical signifi-

cance is given by (2.9) for a significance level α:

σlow =
argmaxk{Pbinom,d(k,K,P ) > α}

K
× 100%. (2.9)

Interestingly, this assessment methodology and its analytic expressions provide

information regarding the minimum number of seizures that the data must contain to

guarantee that a performance above chance level can be demonstrated. Nevertheless,

it operates assuming a homogeneous Poisson distribution for the false predictions,

which might not be the case.

Surrogate data testing

Surrogate time series analysis is another proposed method to evaluate predictive

performance. In this approach, the original seizure onset times are randomly shuffled

in order to generate artificial ones. Afterwards, if the predictive performance of the

algorithm is higher with statistical significance for the original onset times, then it

can be said to outperform a random predictor [9, 11, 81].

Schelter et al. [91] have suggested techniques based on bootstrapping, includ-

ing seizure-time and measure-profile surrogates: the former keeps the inter-seizure-

interval distribution, while the latter keeps the original seizure times unchanged.

This approach offers considerable flexibility in terms of testing different null hy-

potheses by composing suitable sets of assumptions and constraints, although great

care must be taken during its implementation to avoid hidden bias. On this matter,

Andrzejak et al. [8] stress the importance of defining an appropriate null hypothesis

for the conjectures in the chosen methodology.
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Fig. 18.3 Original seizure times and the
surrogate times bootstrapped from the inter-
seizure intervals. The arbitrary onset times
for the surrogates are obtained from a uni-
form distribution and are indicated by the

dashed vertical lines. Note that, by ran-
domly selecting the offset of the starting
point (compared to the original one), the
end point is different from the original one
for all surrogates.

(bootstrapping). These seizure-predictor surrogates are constrained to share spec-
ified properties with the original seizure predictor, but are otherwise random.
This approach offers a greater flexibility than analytical random predictors since
it allows one to test different null hypotheses by composing appropriate sets of
assumptions and constraints. Specifically, a certain assumption about the original
seizure predictor can be translated into a corresponding randomization constraint.
For example, if one assumes that the alarms are raised at a time-independent mean
rate, the predictor surrogates must be constrained to be time-independent, re-
gardless of potential time-dependencies of the original seizure predictor. If alarms
are assumed to be generated by a Poisson process, the predictor surrogate must
have an exponential inter-alarm-interval distribution, regardless of the original
distribution. If no assumptions about a potential time-dependence of the predic-
tor or the inter-alarm-interval distribution are intended, the predictor surrogate
must be constrained to share any time-dependence and the inter-alarm-interval
distribution with the original predictor. Except for these constraints, the surro-
gate seizure predictor must be random. The assessed performance value for the
original predictor is then compared with the predictive performance obtained for
an ensemble of predictor surrogates. If the performance of the original predic-
tor is significantly higher than the performance of the predictor surrogates, the
respective underlying null hypothesis can be rejected, i.e., the prediction algo-
rithm performs better than chance with respect to the assumptions described
above.

Figure 2.11: Original seizure times and the surrogate times bootstrapped from
the inter-seizure intervals. The arbitrary onset times for the surrogates are obtained
from a uniform distribution and are indicated by the dashed vertical lines. Source:
Schelter et al. [91]

2.3.4 Concept drift and data imbalance

Seizure prediction algorithms face a problem found in several machine learning

applications: when training a model from data, the concept of interest may depend

on some hidden context that is not given explicitly in the form of predictive features.

Changes in the hidden context can induce modifications in the target concept, which

is commonly referred to as a concept drift. These changes may also cause shifts in

the underlying data distribution (virtual concept drift), making it necessary to revise

the current model [109].

In the context of epilepsy, this drift is a consequence of changes in brain dynam-

ics due to the patient’s daily routine, stressful situations or medication. The latter is

especially relevant, bearing in mind that, as previously stated, numerous databases

(e.g. EPILEPSIAE [60]) are mostly comprised of patients in pre-surgical monitor-

ing, whose drug intake is reduced. Consequently, as the average seizure incidence

is considerably lower outside this period [113], it may induce significant changes in

the data distribution and impact the performance of the trained models. In partic-

ular, seizures are often absent during the first few hours in these recordings, while

the effect of the AEDs is still wearing off, and become progressively more frequent

thereafter.
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Furthermore, class imbalance is another significant issue in seizure prediction,

given the fact that the inter-ictal period is considerably longer than the pre-ictal

one. As a result of this, the pre-ictal class is severely underrepresented, which

introduces bias in the learning algorithm towards the majority class. Additionally,

when learning from on-line data, the model may not receive positive class instances

for long periods of time, impairing the learner’s ability to adequately learn the pre-

ictal class boundary [47].

Hence, it is desirable to develop robust classifiers that are able to remain stable

and unchanged to irrelevant events (outliers) while being capable of handling changes

(drifts) in concepts over time. Ensemble techniques and the inclusion of exogenous

variables have been found to aid in this regard [47, 109].

2.4 Evolutionary Computing

2.4.1 Overview

Evolutionary computing is a research area within the field of computer sci-

ence, concerned with a class of search algorithms based on the Darwinian principles

of natural selection, drawing inspiration from molecular genetics [32]. These algo-

rithms are designated as Evolutionary Algorithms (EAs), encompassing multiple

variants: evolutionary programming, evolution strategies, genetic algorithms and

genetic programming, which are all population-based metaheuristic methods [13].

Initialization Termination
(if criteria met)

Fitness evaluationPopulation

Offspring Variation 
operators

Parent selection

Replacement

Figure 2.12: Flowchart of the typical evolutionary framework. Adapted from:
Towards Data Science [105]
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This set of algorithms is based on a common framework (figure 2.12), which

can be summarized in the following steps:

• Initialization: an initial population of individuals is created, comprised of a

diverse set of candidate solutions to a given problem.

• Parent selection: each individual is evaluated according to one or more fitness

functions, measuring the quality of the solution (the higher, the better).

• Variation operators: after selecting a group of individuals based on their fitness

scores (parents), these will be used as the basis for the next generation; new

individuals (offspring) are created by altering or combining individuals from

the previous generation.

• Termination: new generations are created until a candidate solution with suf-

ficient fitness is found or a previously set computational limit is reached.

The previous steps describe the evolutionary process, which results in a popula-

tion that should become progressively better adapted to the environment with each

generation. In other words, the algorithm searches for increasingly better solutions

for the problem at hand, navigating through the search space over each iteration.

Essentially, the main goal of EAs is to be applicable to a wide range of problems

and deliver good (not necessarily optimal) solutions within acceptable time. Namely,

instead of iterating through every possible solution, these algorithms explore a set of

solutions which are generated and tested according to one or more fitness functions

tailored to the given problem [12, 32, 33].

2.4.2 Main concepts

Representation

The first step in defining an EA is to connect the context of the problem at

hand and the problem-solving space where evolution will take place. Thus, an object

or solution in the original problem is referred to as phenotype, while its encoding

within the EA is called genotype. The mapping from the phenotypes onto a set of

corresponding genotypes is defined as the representation [33, 88].

Similarly to its biological counterpart, the mapping between the genotype space

and phenotype space should be such that for each genotype there is at most one

corresponding phenotype. In other terms, the same phenotype may be coded by

different genotypes, but a genotype will only correspond to a single phenotype [32].

In order to make it possible to specify, store and evaluate candidate solutions in

a way that can be manipulated by a computer, these can be represented in different
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formats: in binary (as bit-strings), integers, real values, graphs, etc. When choosing

a representation, it is important to choose the one that is best suited for the problem.

Fitness function

After mapping the space of all possible candidate solutions (phenotype space)

to the space where the evolutionary search takes place (genotype space), it is nec-

essary to define the requirements the population should adapt to meet. This is

accomplished by using what is commonly referred to as the fitness function [13, 32].

The fitness function is a function that assigns an heuristic measure of quality

to genotypes. Each solution computed in the genotype space is converted to its

corresponding phenotype, evaluated according to the function and given a fitness

score. This score will allow to distinguish between high-quality and low-quality in-

dividuals, which is essential to manage the population and improve the performance

of later generations [12, 33].

Population

In EAs, the role of the population is to hold the representation of possible

solutions to the problem. It is a multiset of genotypes (where copies of an individual

are possible), which forms the unit of evolution. Each individual is a static object,

that is, it does not change or adapt, it is the population that does [32].

In most applications, the population size is constant, remaining unchanged

throughout the evolutionary search, which produces the limited resources needed to

create competition. The fitness of the population is improved using two types of

operators: selection operators aim to increase the mean quality of solutions in the

population, while variation operators help to create diversity within the population,

promoting novelty [13, 33].

Selection operators

The selection operators work at the population level: parent selection chooses

the individuals which will form the basis for the next generation, while survivor

selection (commonly referred to as replacement) decides which individuals will be

allowed in to the following generation.

Parent selection is typically probabilistic, giving to high-quality individuals a

greater chance of becoming parents than those with lower fitness scores. However,

low-quality individuals have a small but positive probability, to prevent the search

from becoming excessively ”greedy”, that is, to get stuck in a local optimum. Pop-
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ular methods include: fitness proportional selection, in which the probability that

an individual is selected depends on its relative fitness score (i.e. compared to the

rest of the population); ranking, where the population is sorted based on fitness

score and probabilities are assigned according to their rank; tournament selection,

where individuals and their fitness score are compared in groups of randomly chosen

individuals [12, 32, 44].

Survivor selection, on the other hand, is often deterministic and used in a

different stage of the evolutionary cycle, that is, after the offspring is created from

the selected parents. This selection can be made based on age (each individual

only exists for a number of generations) or the individual’s fitness score, for which

there are different approaches, such as replacing the worst individuals or selecting

survivors based on tournaments, among others [32, 96].

Variation operators

The role of variation operators is to create new individuals from old ones, gen-

erating new candidate solutions for the problem. There are two types of operators,

classified according to the number of individuals involved: mutation (single individ-

ual) and recombination (two or more individuals).

Mutation is a unary variation operator, applying a small, random change to

a genotype. It represents the smallest step in the search space of the problem,

creating one child from a single parent. The intensity or magnitude of the mutation

is regulated by parameters such as mutation rate or mutation probability (depending

on the implementation) [32].

Recombination (also known as crossover) creates a new solution by merging

the information contained within two (or more) parent genotypes. It is applied

probabilistically, according to a crossover rate pc: the offspring are created from two

selected parents with probability pc, or by simply copying one of the parents with

probability 1− pc [13, 32].

Both types of variation operators depend on the chosen representation. For in-

stance, when considering a binary representation, the mutation operator allows each

bit to flip with a small probability, while in integer or real-valued representations,

each gene has a probability of changing to another value from its domain or a small

positive or negative value is added to its current value. Crossover operators, usually,

either combine different parts of the parent genotypes (such as n-point crossover,

depicted in figure 2.13) or create a new allele (gene value) that lies between those

of the parents [13, 32, 33].
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1 0 1 1 0 0 1 0 1 1
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Mutation
(bit-flipping)

Recombination
(n-point crossover)

Figure 2.13: An example of mutation and recombination operators in EAs, using
a binary representation.

Multi-Objective Evolutionary Algorithms (MOEAs)

MOEAs differ from their single-objective counterpart by the fact that the qual-

ity of each solution is defined by its fitness in relation to several, possibly conflicting

objectives. Selection is then based on dominance (relative fitness) rather than on

an absolute score. Given two solutions (A and B), with fitness scores (ai and bi)

according to some set of n objective values, one solution is said to dominate the

other if its score is at least as high for all objectives, and is strictly higher for at

least one [32], as expressed in the following equation:

A � B ⇐⇒ ∀i ∈ {1, ..., n}, ai ≥ bi ∧ ∃i ∈ {1, ..., n}, ai > bi. (2.10)

This leads to the concept of the Pareto front (illustrated in figure 2.14), which

is the set of all non-dominated solutions. The quality of each one of these solutions

cannot be increased with respect to any of the objective functions without negatively

affecting one of the others [13, 32].

f1 (x)

f2
 (x

)

Pareto front

Figure 2.14: Illustration of the Pareto front (dashed line), assuming maximization
for two objective functions (f1(x), f2(x)).
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The aim of MOEAs is, therefore, to distribute the population evenly along this

front, in order to find a diverse set of high-quality solutions [22, 32].

Several approaches were suggested to solve multi-objective problems, such as

Fonseca and Fleming’s multi-objective genetic algorithm (MOGA) [41], Srinivas and

Deb’s non-dominated sorting algorithm (NSGA) [97] and Horn et al.’s niched Pareto

genetic algorithm (NPGA) [48]. These have two common characteristics: assigning

fitness based on non-dominated sorting and preserving diversity among solutions of

the same non-dominated front.

These earlier algorithms, despite achieving good performance for a large range

of problems, are heavily dependent on parameter tuning. In order to reduce this

dependency and enhance the convergence properties of MOEAs, elitism was in-

troduced [32]. Notably, the revised NGSA-II algorithm by Deb et al. [28] and

SMS-EMOA by Beume et al. [18] accomplish this in different ways. The former

ranks the non-dominated solutions in different classes (extreme solutions are given

the highest rank) and sorts these within each class according to a distance measure,

while the latter uses a concept called hypervolume, which measures the volume of

the dominated portion of the objective space bounded by a reference point [17].

It is worth mentioning that the search ability of these algorithms is severely

affected when the number of objectives is increased. In particular, various difficulties

may arise: decrease of selection pressure (probability that the most fit individual is

selected as a parent, controlling the rate of convergence) towards the Pareto front,

exponential increase of the number of solutions required to approximate the entire

Pareto front and difficulty of the visualization of solutions (which, in turn, makes

the choice of a final solution more complicated) [54].

2.5 Summary

Epilepsy

Epilepsy is characterized by a considerable heterogeneity regarding types of

seizure, types of epilepsy and epilepsy syndromes. In particular, a seizure can be

described by its initial manifestations/symptoms, awareness and epileptic focus lo-

calization concerning lobes and/or hemispheres. TLE represents the most common

form of focal epilepsy, defined by seizures with a temporal lobe focus. DRE patients,

which do not achieve sustained seizure freedom through medication, represent the

focus of seizure prediction given that they are exposed to the physical and social im-

plications of the disease. This group of patients is often subjected to monitoring for
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weeks/months to evaluate their condition before undertaking surgical interventions,

hence why most databases are comprised of data acquired during this period.

EEG

The EEG measures and records the electrical activity of the brain, representing

the primary physician tool to assess patients suffering from epilepsy. Its potentials

can be categorized in two main types: oscillations and transients. The former refer

to rhythmic patterns (with different frequency bandwidths) while the latter concern

sharp transitions, which may be normal (e.g. eye blinks) or abnormal (which may

be related to epilepsy).

Two acquisition techniques may be used: scalp EEG or iEEG. Despite the

fact that iEEG recordings have a higher signal to noise ratio than the non-invasive

approach, scalp EEG recordings can capture low-frequency activity more accurately.

It is worth noting that iEEG, as an invasive method, presents a considerable risk

(up to 4%) of infection/hemorrhage. In either case, the EEG is an approximation

of the true complexity of brain activity.

Considering that not all of the captured epileptiform activity can anticipate

seizures, accurate predictions require a thorough analysis of all types of EEG activity.

Seizure prediction

For supervised learning approaches, it is essential to divide each seizure episode

into pre-ictal, ictal, post-ictal and inter-ictal. The primary goal of seizure prediction

is to detect the pre-ictal period and correctly anticipate a seizure, providing an

occurrence period (SOP) and intervention time (SPH). However, the fact that this

transitional stage differs between patients and between seizure episodes presents a

major challenge.

The gold standard metrics are sensitivity (percentage of correctly predicted

seizures) and FPR/h. Suitable methodology must concern an adequate SPH du-

ration (long enough for patients to take preventive measures) and evaluate perfor-

mance for a range of SOP values (which should not be overly long as to not induce

stress/anxiety). Furthermore, statistical validation should be conducted where per-

forming above chance is the minimum requirement. Finally, proposed approaches

should handle the presence of concept drifts and data imbalance.
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Evolutionary computing

Evolutionary approaches are population-based metaheuristic search algorithms,

drawing inspiration from the Darwinian principles of natural selection. A population

of candidate solutions is generated and becomes progressively better adapted to

the environment, that is, the algorithm navigates through the search space finding

increasingly better solutions for the given problem. Instead of iterating through

every possible solution, EAs operate in a more flexible way, exploring sets of solutions

based on fitness functions tailored to the problem.

Each solution in the problem space is referred to as phenotype, while its encod-

ing within the EA is called genotype. The mapping between these spaces is called

representation, which can be made using different formats (bit-strings, real values,

etc.). This should be chosen according to the suitability to the problem.

Selection and variation operators are used to improve the fitness (heuristic

measure of quality) of the population: the former aim to increase the mean quality

of the solutions, while the latter help to create diversity. Variation operators include

mutation, that introduces small changes to a single individual, and recombination,

which creates new solutions from two individuals (the parents).

Multi-objective approaches have been proposed with the aim of optimising so-

lutions for problems with conflicting objectives. Instead of measuring quality based

on a single fitness function, solutions are compared on the basis of dominance, that

is, relative fitness to a set of objective functions.

The benefits of adopting EAs become clear when one envisions machine learning

as a search problem. Considering that the main goal is to discover a model which can

approximate an unknown mapping function from inputs to outputs, many decisions

throughout its design narrow down the space of all possible models: choosing which

data to train on, the algorithm’s configuration, etc. By using search algorithms, one

can refine how this space of possible mappings is explored as the model is fit, in order

to take full advantage of the chosen training data. Particularly, adopting MOEAs

enables one to explore different trade-offs and how they influence the classification

model in a more flexible way than standard machine learning training.
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State of the Art

This chapter provides an overview of the current state of the art in seizure

prediction based on the Electroencephalogram (EEG) signal and machine learning.

Firstly, the general framework is presented in section 3.1. Sections 3.2 to 3.5 review

conventionally used techniques and common features, followed by sections 3.6 to 3.8

which examine classification, regularization and performance evaluation methods.

Finally, a summary of the main aspects and a small discussion are provided in

section 3.9.

3.1 Pipeline overview

Current algorithmic seizure prediction methodologies follow, in general, a set

of steps primarily concerning signal processing and machine learning, as illustrated

in the figure below:

Signal acquisition Pre-processing Feature extraction

Feature selection
(and/or dimensionality reduction)

ClassificationRegularization

Performance 
evaluation

Data preparation

Machine learning

Post-processing

Figure 3.1: Color-coded flowchart of the typical seizure prediction framework.
Adapted from: Bou Assi et al. [11].
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Concisely, after collecting the EEG recordings, each step can be described as

follows:

• Pre-processing: enhancing the signal quality, usually through filtering, fol-

lowed by segmentation using sliding window analysis.

• Feature extraction and selection: collecting features from the time series data

and selecting the ones which better discriminate each epileptic state.

• Classification: training machine learning models using the previously selected

set of features.

• Regularization: smoothing the classifier output with post-processing methods.

After the development of the algorithm, its performance is then assessed using

sensitivity, False Positive Rate per Hour (FPR/h) and statistical validation (against

a random predictor or surrogate time series analysis) [11].

Differences in Deep Learning approaches

Recently, with the increase in computational power and available data, more

advanced machine learning models have surfaced, referred to as Deep Learning.

These have become the state of the art in many fields, and seizure prediction is no

exception.

These models are representation learning methods, which when given raw data

can automatically determine the representations needed for detection or classifica-

tion tasks. With multiple layers of representation, complex functions can be learned

and, in the case of classification, certain aspects of the input that are important for

discrimination can be amplified, in addition to suppressing irrelevant variations [69].

In the context of the seizure prediction pipeline, the main modifications in-

troduced by these methods are present in the feature extraction, feature selec-

tion/dimensionality reduction and classification stages. These will be analyzed and

discussed throughout each of the following sections.

3.2 Signal acquisition

Considering that the EEG is a significantly complex signal, the chosen type(s)

of recordings can greatly influence the results. Furthermore, the data set used to

train and evaluate the proposed methodologies can play a major role. Table 3.1

presents an overview of these aspects concerning studies from the past 20 years of

research in EEG seizure prediction.
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Table 3.1: Overview of the signal acquisition characteristics from EEG seizure
prediction studies of the past 20 years.

Study Database Patients Electrodes Signals

Daoud et al. (2019) [27] CHB-MIT 8 epileptic 23 (reduced after selection) Scalp EEG

Khan et al. (2018) [57] CHB-MIT, MSSM 28 epileptic 22 Scalp EEG

Truong et al. (2018) [107]
Freiburg, CHB-MIT,

Kaggle (American Epilepsy Society)
28 humans, 2 dogs 6, 22, 16 (respectively) Scalp EEG, iEEG

Tsiouris et al. (2018) [108] CHB-MIT 23 epileptic 18 Scalp EEG

Agarwal et al. (2018) [4] Kaggle (UPenn and Mayo Clinic) 8 epileptic All electrodes iEEG

Chamseddine et al. (2018) [20] Kaggle (American Epilepsy Society) 1 epileptic dog 16 iEEG

Sun et al. (2018) [99] Kaggle (American Epilepsy Society) 2 humans, 5 dogs 16 iEEG

Aggarwal et al. (2017) [5] Personal 10 epileptic, 2 healthy 18 Scalp EEG

Kiral-Korkek et al. (2017) [59] NeuroVista 10 epileptic 16 iEEG

Direito et al. (2017) [30] EPILEPSIAE 216 epileptic

F7, FZ, F8, T5, PZ, T6

6 random

6 in focal region

Scalp EEG, iEEG

Bandarabadi et al. (2015) [16] EPILEPSIAE 24 epileptic
3 in focal region and

3 far from local region
Scalp EEG, iEEG

Bandarabadi et al. (2015) [14] EPILEPSIAE 18 epileptic 2 in focal region Scalp EEG, iEEG

Bou Assi et al. (2015) [10] Kaggle (American Epilepsy Society) 5 epileptic dogs 16 iEEG

Rasekhi et al. (2015) [87] EPILEPSIAE 10 epileptic
3 in focal region and

3 far from local region
Scalp EEG, iEEG

Alvarado-Rojas et al. (2014) [7] EPILEPSIAE 53 epileptic All electrodes iEEG

Teixeira et al. (2014) [104] EPILEPSIAE 278 epileptic

F7, FZ, F8, T5, PZ, T6

6 random

6 in focal region

Scalp EEG, iEEG

Moghim et al. (2014) [74] Freiburg 21 epileptic 6 iEEG

Rabbi et al. (2013) [84] EPILEPSIAE 1 epileptic 2 channels in epileptic region iEEG

Rasekhi et al. (2013) [86] EPILEPSIAE 10 epileptic
3 in focal region and

3 far from local region
Scalp EEG, iEEG

Bandarabadi et al. (2012) [15] EPILEPSIAE 12 epileptic
3 in focal region and

3 far from local region
Scalp EEG, iEEG

Valderrama et al. (2012) [110] EPILEPSIAE 12 epileptic All electrodes Scalp EEG, iEEG, ECG

Teixeira et al. (2012) [103] EPILEPSIAE 10 epileptic
3 in focal region and

3 far from local region
Scalp EEG

Acharya et al. (2012) [1] Bonn 5 epileptic, 5 healthy N.A. iEEG

Direito et al. (2012) [29] EPILEPSIAE 10 epileptic
3 in focal region and

3 far from local region
Scalp EEG

Direito et al. (2011) [31] EPILEPSIAE 3 epileptic
Post-selection based on

feature discriminative power
Scalp EEG

Park et al. (2011) [82] Freiburg 18 epileptic 6 iEEG

Chisci et al. (2010) [21] Freiburg 9 epileptic
3 in focal region and

3 far from local region
iEEG

Mirowski et al. (2009) [73] Freiburg 21 epileptic
3 in focal region and

3 far from local region
iEEG

Adeli et al. (2007) [3] Bonn 5 epileptic, 5 healthy N.A. iEEG

Mormann et al. (2005) [78] Bonn 5 epileptic All electrodes iEEG

Le Van Quyen et al. (2005) [68] Bonn 5 epileptic All electrodes iEEG

D’Alessandro et al. (2003) [26] Personal 4 epileptic All electrodes iEEG

Mormann et al. (2003) [77] Bonn 18 epileptic N.A. iEEG

Mormann et al. (2003) [76] Bonn 10 epileptic N.A. iEEG

Le Van Quyen et al. (2001) [67] Personal 23 epileptic 21 or 27 Scalp EEG, iEEG

Geva et al. (1998) [43] Personal 25 epileptic rats N.A. Scalp EEG

Databases

Several databases have become available, where the ones from the University of

Freiburg [21, 73, 82], the University of Bonn [1, 3, 76–78], the European Database

on Epilepsy (EPILEPSIAE) [7, 14–16, 29–31, 52, 60, 84, 86, 87, 103, 104, 110] and,

more recently, the Children’s Hospital Boston (CHB-MIT) [27, 57, 107, 108] and the

Kaggle American Epilepsy Society [10, 20, 99] databases are the most widely used.
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Notably, the EPILEPSIAE database [60] is significantly larger than the remain-

ing, containing recordings lasting 165 hours (on average) from 275 Drug-Resistant

Epilepsy (DRE) patients in pre-surgical monitoring, in addition to extensive meta-

data which enables stratification. The NeuroVista database curated by Cook et al.

[24] is also worth noting for containing long-term recordings (up to two years) from

15 patients outside of monitoring units, therefore representing real-life data which

should benefit research concerning concept drift and facilitate clinical translation.

With the exception of Teixeira et al. [104], Direito et al. [30] and Alvarado-

Rojas et al. [7], no other studies included more than 30 patients. Additionally, some

studies have included non-epileptic humans [1, 3, 5] or epileptic animals such as dogs

[10, 20, 99, 107] or rats [43]. The vast majority worked on pre-surgical monitoring

data which, as mentioned in section 2.3.4, restricts applicability [42].

Electrode selection

Different approaches have been made regarding electrode selection. While many

studies choose to work with all available electrodes, others choose a number of

electrodes from the focal region and others far from it, or even select only some

from the focal region.

This step leads to different assumptions regarding the seizure generation pro-

cess. By choosing random electrodes, for instance, one assumes that this process

can be captured at any brain location. On the other hand, when choosing electrodes

only from the focal region it is presumed that the activity in this region is enough

to capture the process. When electrodes are chosen from the focal region and others

far from it, the assumption is that it is necessary to relate the information from

the focal region to other regions of the brain. None of these assumptions, thus

far, have proven to be more correct. Hence, choosing all the available electrodes

can be intuitive, considering it contains more information, despite the increase in

computational cost and patient discomfort [75].

Recording type

Both types of recording (scalp EEG and intracranial EEG (iEEG)) have been

considered. Several studies have compared their performance, but no conclusions

could be reached given that results were either statistically non-significant, limited

by the reduced number of subjects or lacked validation.

While iEEG can be considered more suitable for chronic intervention devices

due to its proximity to the brain and reduced number of artifacts, scalp EEG is able
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to provide information regarding general brain state rather than localized data [11].

3.3 Signal pre-processing

Given that the main goal is to develop a tool which is able to receive on-line

data and process it in real-time, the proposed methods must take into account its

real-life feasibility. Therefore, the first step is, typically, data segmentation by sliding

window analysis. Afterwards, in order to enhance signal quality, other steps may

be employed such as filtering and/or artifact removal. Lastly, the pre-ictal period,

Seizure Occurrence Period (SOP) and Seizure Prediction Horizon (SPH) are defined

(although they may be handled later during classification, their range should be

specified before the machine learning stage for the sake of not being influenced by

performance results).

Raw signal Data 
segmentation Filtering

Artifact removalPre-ictal period 
duration choice

SOP and SPH 
duration choice

Data preparation

Machine learning

Post-processing

Figure 3.2: Flowchart of the typical signal processing pipeline in seizure prediction.
Optional steps are represented with a dashed line. Defining the pre-ictal period is
required if a supervised learning approach is used.

In table 3.2 an overview is given concerning signal processing steps in different

studies. Generally, no significant efforts are made in filtering and artifact removal

operations, considering that the EEG signal is complex and not fully understood.

Sliding window analysis is characterized by time length and percentage of overlap

between consecutive windows, with considerable uniformity among studies. Pre-

ictal duration, required for supervised learning approaches (as illustrated in figure

3.2), is an aspect where authors tend to vary. Chosen SOP duration (assumed

as equal to the pre-ictal period duration, as explained next) is heterogeneous and

most studies do not present performance evaluation for the entire range of selected

values. SPH duration is often omitted in most studies, as the vast majority of

authors only consider a minimal time interval of a few seconds which, unless the

goal is to implement it in a closed-loop intervention system, may be unrealistic in

terms of applicability, given that patients may require more reasonable intervention

time to take effective preventive measures before the seizure onset [11, 62].
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Table 3.2: Overview of the signal processing characteristics from EEG seizure
prediction studies of the past 20 years.

Study Sliding Window Filtering
Pre-ictal period

duration (minutes)
SPH duration

(minutes)#

Daoud et al. (2019) [27] N.A. None 60 N.A.

Khan et al. (2018) [57]
1 second

0% overlap
0 - 128Hz band-pass 10 N.A.

Truong et al. (2018) [107]
30 seconds

Overlap N.A.
50 and 60Hz notch
DC (0Hz) removed

30 5

Tsiouris et al. (2018) [108]
5 seconds

0% overlap
None 15, 30, 60, 120 N.A.

Agarwal et al. (2018) [4]
1 second

0% overlap
1 - 47Hz band-pass N.A. N.A.

Chamseddine et al. (2018) [20]
5 seconds

0% overlap
60Hz notch

0 - 190Hz band-pass
60 N.A.

Sun et al. (2018) [99]
30 seconds
0% overlap

Resampling
0.1 - 180Hz band-pass

60 5

Aggarwal et al. (2017) [5]
5 seconds

0% overlap
50Hz notch

0.5 - 50Hz band-pass
60 4 - 10

Kiral-Korkek et al. (2017) [59] N.A. N.A. 15 (before real-time tunability) Minutes to hours

Direito et al. (2017) [30]
5 seconds

0% overlap
50Hz notch 10, 20, 30, 40 1/6

Bandarabadi et al. (2015) [16]
5 seconds

0% overlap
50Hz notch 10, 20, 30, 40 N.A.

Bandarabadi et al. (2015) [14]
8 seconds

50% overlap
50Hz notch 10, 30, 50, 70 N.A.

Bou Assi et al. (2015) [10]
5 seconds

0% overlap
50Hz notch

0.5 - 180Hz band-pass
60 5

Rasekhi et al. (2015) [87]
5 seconds

0% overlap
50Hz notch 10, 20, 30, 40 N.A.

Alvarado-Rojas et al. (2014) [7]
5 seconds

0% overlap
Bands of interest

from 0.5Hz to 140Hz
10, 30, 60 N.A.

Teixeira et al. (2014) [104]
5 seconds

0% overlap
50Hz notch 10, 20, 30, 40 1/6

Moghim et al. (2014) [74]
5 and 9 seconds
Overlap N.A.

Artifact removal
with EEGLAB

5 N.A.

Rabbi et al. (2013) [84]
10 seconds

50% overlap
60Hz notch

0.5 - 100Hz band-pass
15, 30, 45 N.A.

Rasekhi et al. (2013) [86]
5 seconds

0% overlap
50Hz notch 10, 20, 30, 40 N.A.

Bandarabadi et al. (2012) [15]
5 seconds

0% overlap
None 10, 20, 30, 40 N.A.

Valderrama et al. (2012) [110]
5 seconds

0% overlap
N.A. 5, 10, 20, 30, 45, 60 N.A.

Teixeira et al. (2012) [103]
5 seconds

0% overlap
50hz notch 10, 20, 30, 40 N.A.

Acharya et al. (2012) [1]
23.6 seconds
20% overlap

0.5 - 85Hz band-pass∗ N.A. N.A.

Direito et al. (2012) [29]
5 seconds

0% overlap
50Hz notch

Statistically selected
for each patient (2 - 60)

2

Direito et al. (2011) [31]
5 seconds

0% overlap
None 30, 40 N.A.

Park et al. (2011) [82]
20 seconds

50% overlap
Artifact removal

50Hz and 100Hz notch
30 N.A.

Chisci et al. (2010) [21]
2 seconds

0% overlap
50Hz notch 15 N.A.

Mirowski et al. (2009) [73]
5 seconds

Overlap N.A.
50Hz notch

0.5 - 120Hz band-pass
50 N.A.

Adeli et al. (2007) [3] N.A.
50Hz notch

0.5 - 60Hz band-pass∗
N.A. N.A.

Mormann et al. (2005) [78]
17 - 20.5 seconds

0% overlap
0.5 - 85Hz band-pass∗ 5, 30, 120, 240 N.A.

Le Van Quyen et al. (2005) [68]
5 seconds

0% overlap
Bands of interest

from 0.5Hz to 30Hz∗
30 N.A.

D’Alessandro et al. (2003) [26]
10 seconds

25% overlap
60Hz notch

0.1 - 100Hz band-pass
10 10

Mormann et al. (2003) [77]
23.6 seconds
20% overlap

0.5 - 85Hz band-pass∗ N.A. N.A.

Mormann et al. (2003) [76]
23.6 seconds
20% overlap

0.5 - 85Hz band-pass∗ N.A. N.A.

Le Van Quyen et al. (2001) [67]
30 seconds
0% overlap

0.5 - 99Hz band-pass
0.1 - 70Hz band-pass

60 N.A.

Geva et al. (1998) [43]
1 second

0% overlap
50Hz notch

1 - 30Hz band-pass
5 N.A.

∗ Pre-processed data from the University of Bonn.
# N.A. assumes the duration of 1 or 2 sliding windows.
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Data segmentation

With the purpose of simulating an on-line time series scenario, the EEG signal

is segmented and analyzed in short windows to extract features chronologically.

Window length varies between 1 to 30 seconds among the selected studies, while

overlap percentage is commonly 0% or 50%.

The choice of window length and amount of overlap is primarily influenced by

the trade-off between computational cost and execution speed. Considering the num-

ber of electrodes, sampling frequency and recording duration, many authors have

chosen to use a 5-second window with no overlap, which is considered a compromise

between capturing specific patterns and signal stationarity assumptions [11].

Filtering and artifact removal

In general, this step includes the removal of powerline interference (50Hz or

60Hz), band-pass filtering and removal of abnormal transients (considered artifacts).

Signal decomposition into frequency bands of interest or wavelet coefficients may also

be included, since all EEG activity except oscillations is removed.

Both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) time-

domain filters have been widely used. While FIR ones induce a linear phase response

and allow zero-phase distortion, IIR filters have shown to not cause significant ripple

within EEG frequencies of interest [11].

Cut-off frequencies for the band-pass filter differ between authors. Generally,

frequency components below 0.5Hz are eliminated, which are considered breathing

artifacts. Regarding the high-frequency cut-off, after which it can be considered

as noise, some studies have investigated the discriminative ability of low- to high-

gamma activity (as high as 500Hz), such as the one by Alvarado-Rojas et al. [7].

Pre-ictal period, SOP and SPH duration

No optimal or standard pre-ictal period duration has been established so far.

Thus, authors have adopted fixed periods ranging from 5 minutes to 4 hours, or

experimented with different periods [7, 14–16, 29–31, 78, 84, 86, 87, 103, 104, 108,

110]. In particular, Teixeira et al. [104] reported a decrease in FPR/h with no

significant differences in sensitivity for longer periods, although the regularization

method may have contributed to this.

This step significantly contributes to the difficulty in evaluating and comparing

different seizure prediction methodologies. Several authors only state the chosen
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pre-ictal period P used for supervised learning which, as illustrated in figure 2.9,

can be related to the duration of SOP and SPH:

P = SOP + SPH. (3.1)

Since SPH duration is commonly not mentioned, one must assume a minimal

value corresponding to the sliding window length (particularly, the last one before

the seizure onset), as it theoretically maximizes sensitivity. Equation (3.1) can then

be approximated to:

P ≈ SOP for SPH ≈ 0. (3.2)

Additionally, given that most studies only report the optimal values for the op-

timal P , fair comparisons cannot be made between methods when the corresponding

values of P , SOP and SPH differ.

3.4 Feature extraction

Feature extraction constitutes the most heterogeneous step as researchers have

proposed numerous approaches. Nevertheless, no specific type of features has been

determined as optimal.

In general, the extracted features aim to capture three characteristics represen-

tative of seizure activity: an increase in energy (caused by electrical discharge in

the brain), a shift in spectral content from low to high frequencies and an increase

of synchronization in neuronal activity.

Features from the EEG may be extracted on a single or multi-channel basis.

Single-channel analysis is carried out by selecting a given electrode and it is based

primarily in local activity measures, while a multi-channel approach incorporates

information from two or more electrodes. These analyses may be performed, re-

spectively, through univariate and multivariate features [6, 11]. Some authors have

reported increased predictive performance when combining both types [78].

Additionally, features may also be classified as linear or non-linear. Performance

differences between these types have been addressed by several studies [45, 72, 78],

but no conclusion can be drawn due to conflicting results. Nonetheless, non-linear

features may be limited in terms of real-life applicability considering their increased

computational cost [11, 82].

The various features extracted from the EEG can then be grouped according

to their linearity and whether they were computed from one or more channels, as

depicted in figure 3.3.
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Figure 3.3: Categorization of common features used in seizure prediction, accord-
ing to their linearity and whether they are univariate/multivariate.

Table 3.3 presents a summary of linear and non-linear features used in studies

from the past 20 years. In general, linear univariate features are the most commonly

used in the selected set of studies. Regarding multivariate features, authors tend to

mainly choose non-linear measures.

The preference for linear univariate features results from being computationally

lighter and simpler to interpret clinically. Given that multivariate features are, in

general, heavier than univariate ones, they require additional processing power. As

such, authors with enough computational resources for multivariate features are,

usually, able to handle the additional requirements of non-linear multivariate ones,

as the increase in computational cost is relatively small.

It is worth noting that various studies from recent years, which adopt Deep

Learning approaches, have chosen to employ automatic feature engineering methods

using time series data [4, 27, 59]. However, several still perform traditional feature

engineering, primarily with features based on frequency band or wavelet decomposi-

tion, and use these as input for the classification models [4, 20, 57, 73, 99, 107, 108].

In terms of interpretability, traditional features are preferable when compared to

the automatically extracted ones.
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Table 3.3: Overview of univariate and multivariate feature extraction from EEG seizure prediction studies of the past 20 years.

Linear
univariate features

Non-linear
univariate features

Linear
multivariate features

Non-linear
multivariate features

Study
Statistical
moments

Spectral band
related

Wavelets
Linear

modelling
Energy

Hjorth
parameters

Decorrelation
time

Correlation
dimension/sum

Lyapunov
exponent

Dynamic
Similarity Index

Entropy Ratio Correlation
Dynamical

entrainment
Mean Phase
Coherence

Entropy Synchrony

Daoud et al. (2019) [27]
Khan et al. (2018) [57] •

Truong et al. (2018) [107]
Tsiouris et al. (2018) [108] • • • • • •
Agarwal et al. (2018) [4] • •

Chamseddine et al. (2018) [20] •
Sun et al. (2018) [99] •

Aggarwal et al. (2017) [5] •
Kiral-Korkek et al. (2017) [59]

Direito et al. (2017) [30] • • • • • • •
Bandarabadi et al. (2015) [16] • •
Bandarabadi et al. (2015) [14] •

Bou Assi et al. (2015) [10] • • •
Rasekhi et al. (2015) [87] • • • • • • • •

Alvarado-Rojas et al. (2014) [7] •
Teixeira et al. (2014) [104] • • • • • • •
Moghim et al. (2014) [74] • • • • • •
Rabbi et al. (2013) [84] • • •

Rasekhi et al. (2013) [86] • • • • • • •
Bandarabadi et al. (2012) [15] • •
Valderrama et al. (2012) [110] • • • • • •

Teixeira et al. (2012) [103] • • • • • • • •
Acharya et al. (2012) [1] •
Direito et al. (2012) [29] •
Direito et al. (2011) [31] • • • • • • •
Park et al. (2011) [82] •

Chisci et al. (2010) [21] •
Mirowski et al. (2009) [73] • • •

Adeli et al. (2007) [3] • • •
Mormann et al. (2005) [78] • • • • • • • • •

Le Van Quyen et al. (2005) [68] •
D’Alessandro et al. (2003) [26] • • • •

Mormann et al. (2003) [77] •
Mormann et al. (2003) [76] • •

Le Van Quyen et al. (2001) [67] •
Geva et al. (1998) [43] • • •
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In the following sections, a general description of the most common features of

each type is given. For a more in-depth review, please refer to Appendix A.

Linear univariate features

These features correspond to mathematical measures computed from phase/

frequency and amplitude information of the signal, that comply with the linearity

property. Linear feature extraction assumes the quasi-stationarity of the EEG within

each sliding window.

The most widely used features in terms of time-domain analysis of the EEG are

the first four statistical moments (mean, variance, skewness, kurtosis) due to their

simplicity and linearity properties [15, 30, 31, 43, 74, 78, 86, 87, 103, 104, 108, 110].

However, other measures concerning the signal’s dynamics have also been adopted

by several studies. Accumulated energy, for instance, operates under the assumption

that seizure-generation processes lead to an increase in brain activity, as reported

by Rasekhi et al. [86, 87], Valderrama et al. [110], Teixeira et al. [103, 104],

Moghim et al. [74] and D’Alessandro et al. [26]. The three Hjorth parameters

(activity, mobility and complexity) have also been used to capture differences in

signal dynamics between the pre-ictal and inter-ictal stages, as shown in various

studies [10, 30, 78, 86, 87, 103, 104, 110].

Moreover, to evaluate neuronal synchronization, other features have been em-

ployed. Decorrelation time, which corresponds to the first zero-crossing of the auto-

correlation function (see A.8) of the signal, can serve as an indicator of periodicity

in neural activity [10, 30, 31, 78, 86, 87, 103, 104, 108, 110, 110]. Autoregressive

(AR) models have also been used to model the EEG, where their predicted output

is a weighted sum of previous signal values. Authors have used either the modelling

error [30, 31, 86, 87, 103, 104], which has been found to increase due to pre-ictal

changes in brain activity, or the values of modeling coefficients as features [21].

Concerning the spectral dynamics of the EEG, different methods have been

adopted. In particular, under the assumption that seizure-generation processes lead

to changes in the normal rhythmic brain activities [78, 82], several authors have

decomposed the signal into different frequency bands (delta, theta, alpha, beta,

gamma) and computed their relative spectral power [7, 10, 15, 16, 29–31, 74, 78, 82,

86, 87, 103, 104, 108]. This is done by dividing the power in the sub-band and the

total power in the signal, based on the signal’s Power Spectral Density (PSD) (see

A.5). Another common form of analyzing the EEG’s spectral content is to compute

its Discrete Wavelet Transform (DWT), which is able to reflect both frequency and

temporal location properties of the signal [74]. The resulting wavelet coefficients
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have been used by several studies to compute other measures [3, 26, 30, 57, 74, 86,

87, 104, 108, 110] or, in the case of Deep Learning approaches by Khan et al. [57]

and Tsiouris et al. [108], wavelet-transformed EEG signals were used as input for

their models. Additionally, the spectral edge power has been adopted by various

authors which reported a power transfer from low to high frequencies during the

pre-ictal stage [10, 30, 31, 78, 86, 87, 103, 104, 110].

Non-linear univariate features

New features were introduced by dynamical system theory, such as correlation

dimension [3, 74], Lyapunov exponents [3, 74, 78], the dynamical similarity index

[67, 78, 84] and various measures of entropy [1, 26, 103]. Considering that the EEG

is a noisy and non-stationary time series, chaotic measures can aid in interpreting

brain dynamics. Moreover, the sporadic nature of seizures can be inexplicable using

linear concepts as sometimes seizures may result from external inputs which might

not always be present beforehand [50].

Generally, all of these measures aim to capture a significant characteristic of

seizures: an increase of synchronization in neuronal activity. In other words, by

envisioning the brain as a chaotic system, its behavior becomes progressively more

predictable the closer it is to the seizure. Despite their use in multiple studies, it

is worth noting that the predictive power of the correlation dimension [45] and the

Lyapunov exponents [64, 65] has been contested by some authors.

Linear multivariate features

Multivariate features are able to analyze the interactions between different brain

regions in terms of synchronization, by incorporating information from different

electrodes/channels. Brainwave synchronization patterns have been demonstrated

to help differentiate between the inter-ictal and pre-ictal stages [11, 73].

Several multivariate measures have been proposed, such as Rasekhi et al. [87]

who experimented with differences and ratios between different univariate linear

measures for seizure prediction. Bandarabadi et al. [15, 16] have also proposed

multivariate features based on spectral power. However, the most widely used linear

multivariate feature is maximum linear cross-correlation, which quantifies the lag

synchronization between two EEG channels or, in other words, it measures how

identical two signals are in terms of phase and amplitude but shifted in time [75, 76].

Numerous studies have reported drops in synchronization during the pre-ictal stage,

followed by hyper-synchronization during seizures [73, 76, 78, 104, 108].
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Non-linear multivariate features

In addition to linear measures, multivariate non-linear features have been em-

ployed in the seizure prediction field. These also aim to capture synchrony changes

in brain activity with measures based on mutual information and similarity be-

tween electrode channels in the EEG [11]. The two most prominent are mean phase

coherence [5, 16, 78, 84], proposed by Mormann et al. [79] and often compared

to maximum linear cross-correlation, and dynamical entrainment [73], proposed by

Iasemidis et al. [49], which builds upon the concept of the Lyapunov exponents but

applied to multiple channels.

3.5 Feature selection

After extracting a large number of features from the EEG, a high-dimensional

space is created. In order to lighten the computational cost, improve classification

performance and avoid overfitting, various feature selection or reduction methods

have been employed [11].

Generally, feature selection methods operate under the same principle, which is

to maximize relevance by preferring features with high discriminative power, while

minimizing similarity by eliminating redundant measures. Authors have adopted

methods such as maximum Difference Amplitude Distribution histograms (mDAD)

[15, 16], minimum Redundance Maximum Relevance (mRMR) [10, 15, 16, 87] or

ReliefF [74].

An alternate approach to feature selection relies on the use of Evolutionary Al-

gorithms (EAs). This class of algorithms, as described in section 2.4, is a population-

based method for finding sub-optimal solutions within acceptable time [32]. In the

present context, candidate solutions are different sets of features and/or classifier

hyperparameters, which are then selected according to operators based on the prin-

ciples of natural selection, such as mutation and recombination [11]. Studies such as

the ones by Direito et al. [31], Bou Assi et al. [10] and D’Alessandro et al. [26] have

followed this methodology, with different genetic structures and fitness functions.

Additionally, dimensionality reduction methods such as Principal Component

Analysis (PCA) may also be employed [2, 73]. This method transforms high-

dimensional data into a low-dimensional orthogonal feature space, where each new

feature is a principal component perpendicular to each other and ranked by vari-

ance. In Deep Learning approaches, reduction is performed either by convolutional

layers [4, 20, 57, 99, 107] or through autoencoders [27].
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3.6 Classification

Based on the remaining set of features, a chosen classification model can be

trained and applied to detect the pre-ictal period. Numerous models have been

adopted by authors, where Support Vector Machines (SVMs) [1, 4, 10, 14, 15, 21,

30, 31, 73, 74, 82, 87, 103, 104, 110], Convolutional Neural Networks (CNNs) [20,

57, 59, 73, 99, 107] and Long Short-Term Memory (LSTMs) [20, 27, 108] are the

most commonly used.

As stated in section 2.3.4, data imbalance represents a serious issue in seizure

prediction, as the inter-ictal period is significantly longer than the pre-ictal one.

While many authors have addressed this by undersampling (dropping inter-ictal

samples) [10, 16, 30, 86, 104, 110], others have adopted cost-sensitive classification

approaches [82, 107].

It should be noted that, as mentioned in section 3.3, the duration of SOP

and SPH can be handled at the classification stage. In practice, this is done when

labelling the EEG epochs for training/testing the model. As such, the ones labelled

as pre-ictal correspond to the SOP, while the epochs preceding the onset which are

removed for training concern the SPH (in other words, the classifier is not trained

with data belonging to the chosen time interval prior to the seizure).

Partitioning

There is considerable heterogeneity in the chosen partitioning methods, with

no standard procedure. As such, different approaches lead to different assumptions

regarding the seizure-generation process.

For instance, studies which choose a determined number of seizures from the

entire set of patients for training and test on the remaining seizures assume that

seizure-generation is similar between different individuals [14, 15, 26, 76, 77, 110].

On the other hand, most studies assume a patient-specific approach, in which the

model is trained and tested for each subject, assuming that seizures are generated

differently for each patient [7, 30, 74, 84, 87, 104]. Additionally, most studies ignore

the order in which seizures occur, assuming nonexistence of a concept drift, while

studies such as the ones by Teixeira et al. [103, 104], Alvarado-Rojas et al. [7] and,

notably, Kiral-Kornek et al. [59] assume there is a time dependence by using earlier

seizures to train and later data to test their models.

At any rate, partitioning should not be performed by selecting random epochs

from the EEG, as it is not a common machine learning problem. Instead, methods
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must be suitable for time series, as each seizure episode represents a chronology of

events. Furthermore, data from the same ictal event should not be used for both

training and testing, since performance will be biased by the fact that the model

was trained with epochs close to the ones used for testing.

Support Vector Machines (SVMs)

SVMs are widely adopted classifiers which are capable of producing non-linear

decision boundaries by employing non-linear kernel functions. They are character-

ized by a good generalization capability and low number of hyperparameters [11, 30].

The algorithm determines an optimal hyperplane (decision boundary) by maxi-

mizing the margin of separation between two classes or, in other words, maximizing

the shortest distance between the decision function and the closest data points of

each class [30, 46]. In cases where data is not linearly separable, the feature space is

implicitly transformed into a higher dimensional space with non-linear kernels [100].

This possibility of linearizing the feature space is, from the perspective of in-

terpretability, the main appeal of adopting SVMs. Despite this, it should be noted

that a high number of features may lead to loss of interpretability. In the context of

seizure prediction, SVMs have been demonstrated to outperform other classification

models in terms of FPR/h [11].

Convolutional Neural Networks (CNNs)

CNNs are Deep Learning models designed to process data that comes in the

form of multiple arrays (e.g. images) and are capable of learning optimal time-

invariant local features from the input. In other words, these networks are able

to build high-level representations and automatically learn features that handle the

time property directly [69, 73].

In terms of architecture, CNNs typically stack various convolutional layers,

which build feature maps with filtering operations using kernels. These are then

followed by pooling layers, that learn features from the resulting maps of the previous

layers, which can then be used by classification layers. Lastly, dropout layers are

often employed to prevent overfitting by setting the output of random units to zero

during training [57].

In the case of seizure prediction, the time series data is converted to a com-

patible format (either raw or using Fast Fourier Transform (FFT)/wavelet decom-

position) to serve as input. These networks can then capture short-term temporal

dependencies in the EEG and automate feature engineering [57, 107].

45



3. State of the Art

Long Short-Term Memory (LSTMs)

LSTMs are a different type of Deep Learning models, based on Recurrent Neu-

ral Networks (RNNs). They introduce the concept of gates, which control what

information needs to be stored in memory and what must be discarded by the algo-

rithm. In other words, it regulates the learning rate so that the network can better

adjust to large sequences of data [108].

For seizure prediction, LSTM networks have an advantage over CNNs, since

they are capable of learning temporal features of brain activity during different

states while maintaining long-time dependencies, which can greatly benefit predic-

tive performance [27, 108].

It should be noted that, despite their advantages such as learning from raw

data and robustness to noise, Deep Learning approaches require large amounts of

data, are prone to overfitting and can be notoriously difficult to interpret [93].

3.7 Regularization

In order to attenuate the number of false alarms raised by the classification

model, regularization methods are employed. Generally, these consist of functions

that account for the signal’s temporal dynamics and smooth the output of the clas-

sifier accordingly [11]. Two methods have been used by several studies: Kalman

filtering [7, 20, 21, 82, 107] and the Firing Power method [15, 16, 20, 30, 86, 87, 104].

Kalman filter

The Kalman filter is based on the state estimation of a linear dynamic system:
sk+1 =

1 τ

0 1

 sn + wn

yn =
[
1 0

]
sn + zn

, (3.3)

where sk is the state of the system, yk the classifier’s predicted output, τ the predic-

tion interval and wk and zk are white noise vectors. An alarm is only raised when

the filter output crosses a given threshold [20, 82].
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Firing Power

The Firing Power method was proposed by Teixeira et al. [102] and employed in

numerous studies. Considering the binary classifier output Ok (Ok = 1 for pre-ictal,

Ok = 0 for inter-ictal) and τ the number of samples in a sliding window (of equal

size to the pre-ictal period), the firing power of sample k is given by (3.4):

FP [n] =

∑n
k=n−τ O [k]

τ
. (3.4)

Simply put, this method quantifies the relative number of samples classified as

pre-ictal and raises an alarm based on a threshold. Despite the number of studies

using Firing Power, no optimal threshold has been identified [11]. It is worth noting

that since the window is the same duration as the pre-ictal period, only a single alarm

may be raised for each seizure and an equally long refractory period is introduced.

In comparison to the previous regularization approach, the Firing Power method

(illustrated below in figure 3.4) demonstrated to be more conservative in raising

alarms, due to a longer memory of classification dynamics and the additional time

constraints [103]. It should be noted that both methods require parameter tuning,

even though it is more straightforward in the case of Firing Power.

Time

Pre-ictal SPHInter-ictal

Time

Alarm Onset
!

Pre-ictal SPHInter-ictal

1 1 1 1 1 1 1

OnsetAlarm
!

Alarm
!

Alarm
!

Before
Firing Power

FP

Time

Pre-ictal SPHInter-ictal

0 1 0 1 0 0 1 1 1 1 1 0

Onset

After
Firing Power

Binary
classifier output

Figure 3.4: Visual representation of the effect of regularization on the classification
output and number of false alarms. Given a certain threshold (dashed line), an
alarm is only raised when enough consecutive epochs are classified as pre-ictal. The
continuous regularized output is represented with a red line.
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3.8 Performance evaluation

Finally, as with any classification problem, the developed methodology is eval-

uated according to a given set of metrics. As presented in section 2.3.2, the gold

standard metrics for seizure prediction algorithms are sensitivity and FPR/h, which

should be reported for a range of SOP and SPH values [113].

While most studies present results in terms of sensitivity, this is not the case for

FPR/h. The latter is presented as specificity by various studies which, as discussed

previously, does not accurately reflect the impact of false alarms. Some have reported

values of FPR/h below 0.15 [15, 16, 21, 57, 73, 87, 104, 108] which, for patients in

pre-surgical monitoring, has been considered reasonable [113]. Rabbi et al. [84]

displayed an FPR/h of 0.46, which was the highest among studies that included the

metric.

It should be noted that, even for studies that evaluate performance with both

sensitivity and FPR/h metrics, a fair comparison cannot be made, considering that

these are rarely presented for different values of SOP and SPH, along with the

differences in patient type and recording duration. Furthermore, most studies do

not conduct statistical validation of their results, either by comparison to a random

predictor or surrogate data testing.

Table 3.4 presents an overview of classification, regularization and performance

evaluation procedures undertaken by studies from the past 20 years, where the

aspects discussed in the previous sections can be seen clearly.
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Table 3.4: Overview of classification, regularization, performance and other related
aspects from EEG seizure prediction studies of the past 20 years.

Study Partitioning Classification Regularization FPR/h
Sensitivity

(%)
Statistical
validation

Daoud et al.
(2019) [27]

Leave-One-Out with seizures CNN, Bi-LSTM N.A. 0.00 99.72 No

Khan et al.
(2018) [57]

K-fold with recordings CNN N.A. 0.14 87.80 Yes

Truong et al.
(2018) [107]

Leave-One-Out with seizures CNN Kalman filter 0.06 - 0.21 75.00 - 81.40 Yes

Tsiouris et al.
(2018) [108]

K-fold with recordings LSTM N.A. 0.02 - 0.11 99.28 - 99.84 No

Agarwal et al.
(2018) [4]

Training: 50% seizures
Testing: remaining seizures

SVM, CNN N.A. N.A. 96.47 No

Chamseddine et al.
(2018) [20]

Training: 80% samples
Testing: remaining samples

LSTM, CNN, GRU
Firing Power,
Kalman filter

N.A. 88.70 No

Sun et al.
(2018) [99]

N.A.
LDA, CNN, RNN,
Linear regression

N.A. N.A. N.A. No

Aggarwal et al.
(2017) [5]

N.A. Thresholding N.A. N.A. 80.00 No

Kiral-Kornek et al.
(2017) [59]

Training: first 2 months
Testing: remaining duration

CNN N.A. N.A.
68.60

(mean)
Yes

Direito et al.
(2017) [30]

Training: 2 - 3 seizures / patient
Testing: remaining seizures

SVM Firing Power 0.20 38.47 Yes

Bandarabadi et al.
(2015) [16]

Training: first 3 seizures / patient
Testing: remaining seizures

SVM Firing Power 0.10 75.80 Yes

Bandarabadi et al.
(2015) [14]

N.A. N.A. N.A. N.A. N.A. Yes

Bou Assi et al.
(2015) [10]

Training: 80% segments
Testing: remaining segments

SVM, ANFIS N.A. N.A. 85.49 No

Rasekhi et al.
(2015) [87]

Training: first 3 seizures / patient
Testing: remaining seizures

SVM Firing Power 0.11 60.90 Yes

Alvarado-Rojas et al.
(2014) [7]

Training: first 4 seizures / patient
and at least 10 hours

Testing: remaining seizures
Thresholding Kalman filter 0.33 68.00 Yes

Teixeira et al.
(2014) [104]

Training: 2 - 3 seizures / patient
Testing: remaining seizures

SVM, ANN Firing Power ≤0.35 >50.00 Yes

Moghim et al.
(2014) [74]

Training: 70% samples / patient
Testing: 30% samples / patient

SVM N.A. N.A. 91.14 No

Rabbi et al.
(2013) [84]

Training: 1 seizure / patient
Testing: 5 seizures / patient

ANFIS N.A. 0.46 80.00 No

Rasekhi et al.
(2013) [86]

Training: first 3 seizures / patient
Testing: remaining seizures

SVM Firing Power 0.15 73.90 No

Bandarabadi et al.
(2012) [15]

Training: 3 seizures
Testing: remaining seizures

SVM Firing Power 0.15 76.09 No

Valderrama et al.
(2012) [110]

Training: 50% seizures
Testing: 50% seizures

SVM N.A. N.A. 94.50 Yes

Teixeira et al.
(2012) [103]

Training: first 3 seizures / patient
Testing: remaining seizures

SVM
Firing Power,
Kalman filter

0.20 77.00 No

Acharya et al.
(2012) [1]

Training: 67% segments
Testing: 33% segments

SVM, KNN,
Decision tree,

Probabilistic NN,
GMM, Naive Bayes,

Fuzzy Sugeno

N.A. N.A.
97.60

(mean)
No

Direito et al.
(2012) [29]

N.A. Hidden Markov model N.A. N.A. 94.59 No

Direito et al.
(2011) [31]

Training: 3 seizures / patient
Testing: remaining seizures

SVM N.A. N.A.
89.54

(best model)
No

Park et al.
(2011) [82]

Leave-One-Out with
1 inter-ictal and 1 pre-ictal

segments
SVM Kalman filter 0.27 97.50 No

Chisci et al.
(2010) [21]

Training: 15 mins before first
2 or 3 seizures, inter-ictal random

Testing: remaining seizures
SVM Kalman filter

0.00
(some patients)

100.00 No

Mirowski et al.
(2009) [73]

Testing: last 1 or 2 seizures and
33% inter-ictal samples

Training: remaining seizures

CNN, SVM,
Logistic regression

N.A.
0.00

(some patients)
100.00

(some patients)
Yes

Adeli et al.
(2007) [3]

N.A. N.A. N.A. N.A. N.A. Yes

Mormann et al.
(2005) [78]

N.A. N.A. N.A. N.A. N.A. Yes

Le Van Quyen et al.
(2005) [68]

N.A.
KNN,

Mahalanobis distance
N.A. N.A. 84.00 No

D’Alessandro et al.
(2003) [26]

Training: 70% seizures
Testing: 30% seizures

Probabilistic NN N.A. 0.28 62.50 No

Mormann et al.
(2003) [77]

Leave-One-Out with
1 patient for testing

Thresholding N.A. N.A. N.A. No

Mormann et al.
(2003) [76]

Leave-One-Out with
1 patient for testing

N.A.
Parameter

optimization
N.A. N.A. Yes

Le Van Quyen et al.
(2001) [67]

N.A. N.A. N.A. N.A. N.A. No

Geva et al.
(1998) [43]

N.A.
Unsupervised fuzzy

clustering
N.A. N.A. N.A. No
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3.9 Summary

Pipeline overview

Generally, after collecting the EEG recordings, the seizure prediction framework

is comprised of pre-processing, feature extraction through sliding window analysis

and feature selection/reduction steps, followed by classification, regularization and

performance evaluation methods.

The main changes introduced by recent studies result from the adoption of Deep

Learning models, which are capable of performing automatic feature engineering

from raw data and handling the time property directly as another dimension of the

feature space. Despite this, these models require larger amounts of data and can

be notoriously difficult to interpret when compared to traditional machine learning

models. It is worth noting that, in both approaches, a higher number of used features

as well as their complexity may severely affect interpretability.

Identified shortcomings

Overall, current seizure prediction methodologies, despite achieving favorable

results, present several issues which should not be overlooked.

One of the clear limitations in the current methodology resides in the fact

that most databases only contain recordings of patients in pre-surgical monitoring,

spanning over a few days. In order to truly understand the behavior of the proposed

prediction tools and make them clinically viable, long-term recordings (comprising

months/years) of data from everyday life are required. Moreover, studies should not

be based on discontinuous data segments or selected epochs [62].

Feature extraction/engineering constitutes the step with the most heterogeneity

in the current state of the art. While many studies present superior performance

using various features with a high degree of complexity, it is achieved at the expense

of interpretability. To make these methodologies a feasible solution, results must be

clinically explainable.

Several studies also disregard the existence of concept drifts, namely in terms

of time dependence between seizures and other aspects which may alter the data

distribution over time (e.g. medication). Additionally, given that the pre-ictal

period is not annotated by physicians, most authors label it by assuming one or more

time lengths. Towards these issues, new prediction models should be adaptable and

extensive search must be carried out regarding the duration of the pre-ictal period.

Another concerning issue is the frequent omission of the FPR/h metric, which
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does not allow for a proper evaluation of the prediction effectiveness and how the

proposed system may impact the patient in terms of stress/anxiety. Furthermore,

given that most studies lack either form of statistical validation and do not present

results for a range of SOP or SPH (the latter of which is often omitted altogether),

a fair comparison between them cannot be made.
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Methodology

This chapter describes the various steps concerning the development of the

proposed methodology for seizure prediction. Section 4.1 presents the problem and

the underlying assumptions, followed by a brief description of the used data in

section 4.2. Sections 4.3 to 4.5 characterize, respectively, the pre-processing pipeline,

algorithm design and the different experimental scenarios. Finally, a brief summary

is given in section 4.6.

4.1 Problem statement

The current study concerns the development of a patient-specific seizure predic-

tion scheme, based on Electroencephalogram (EEG) data. It is targeted at Drug-

Resistant Epilepsy (DRE) patients in pre-surgical monitoring and, in particular,

ones suffering from Temporal Lobe Epilepsy (TLE), which is the most common

form of focal epilepsy [35, 95].

Considering that the used data (described next) concerns patients in pre-surgical

monitoring units, this study may only present a proof of concept for the proposed

prediction system. In order to truly assess its real-life applicability, long-term data

from everyday life must be used [24, 62].

Several decisions regarding data processing and algorithm design throughout

the conducted research were made under the following assumptions:

• seizure-generation processes can be captured by patterns found in the EEG

signal, where the transition to an ictal state is assumed to be gradual and not

influenced by external stimuli (e.g. flickering lights) [25, 78];

• these patterns exist up to 90 minutes before each seizure (maximum pre-ictal

period) and can be identified before the last 10 minutes (SPH);

• seizures are time dependent and concept drifts are present [42, 62, 75];

• seizures separated by less than 4 and a half hours (270 minutes) belong to the

same, dependent cluster of seizures [42, 62, 75];
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• a set of 5 linear univariate features exists which is able to handle concept drift

and detect the seizure-generation patterns [62, 75]

• the pre-ictal period varies between patients [42, 62, 81];

It should be noted that the interseizure interval used to define seizure clusters

was chosen for two main reasons: it must provide enough time to train the prediction

algorithm and, when used as a selection criterion for the data, it should allow to

keep an adequate number of seizures from the available recordings.

4.2 Data description

The EEG data of 36 DRE patients (21 males and 15 females, with ages ranging

from 13 to 67 years), along with its respective metadata, were selected from the

European Database on Epilepsy (EPILEPSIAE) [52, 60]. Overall, 1988.8 hours of

recordings were used, comprising a total of 208 seizure episodes, as presented in

table 4.1 along with their respective clinical classification, pattern description and

vigilance state.

The selection requirements for the group of patients described above were the

following:

• EEG scalp recordings, with a sampling frequency of 256Hz;

• only contain seizures with a focus located on the temporal lobe (i.e. only

patients suffering from TLE);

• only seizures preceded by, at least, 4 and a half hours (270 minutes) of recorded

signal data not containing any ictal events;

• a minimum of 4 seizures per patient which meet the previous criteria, to ensure

that enough are available to train and test the algorithm.

The clinical annotations including seizure type/activity pattern classification

and vigilance state at the time of the seizure were used for patient stratification.
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Table 4.1: Patient information including age, gender and number of seizures which
met the selection criteria.

Patient ID Age Gender
Number

of seizures
Seizure

classification
Seizure

activity pattern
Vigilance at
seizure onset

Recording
duration (h)

402 55 F 5 FOIA, FBTC, FOIA, FBTC, FOIA t, t, t, t, t A, A, A, A, A 41.6
8902 67 F 5 UC, FOIA, FOIA, FOIA, FOIA a, b, a, m, a A, A, A, A, A 34.5
11002 41 M 4 UC, FOIA, FOIA, FOIA ?, s, a, t A, R, A, A 23.7

16202 46 F 7
UC, FBTC, UC,

FOIA, FOIA, FOIA, FOIA
r, ?, r,

r, r, ?, r
A, A, A,

A, A, A, A
46.4

23902 36 M 5 FOA, FOA, FOA, FOA, FOA t, t, t, d, t A, A, A, A, A 45.9

30802 28 M 8
FOA, FOA, FOA,

FOA, FOA, FOA, FOA, FOA
t, t, t,

t, t, t, t, t
R, A, 2,

A, A, R, 2, 2
73.6

32702 62 F 5 FOIA, FOIA, FOIA, FOIA, FOIA t, t, t, r, a A, A, A, A, A 34.2
46702 15 F 5 FOA, FOIA, FOIA, FBTC, FOIA a, a, t, b, t A, 2, A, 2, A 24.9
50802 43 M 5 FOIA, UC, UC, FOIA, FBTC t, t, t, t, t A, 2, 2, 2, A 47.6
53402 39 M 5 FOA, FOA, FOA, FOA, FOIA ?, ?, ?, ?, t A, A, 2, A, A 61.6

55202 17 F 8
FOIA, FOIA, FOA,

UC, UC, FOA, UC, FOIA
t, d, t,

t, t, t, r, r
A, A, A,

A, A, A, A, A
77.3

56402 47 M 4 UC, UC, UC, FBTC t, ?, ?, a A, A, A, A 32.2

58602 32 M 6
FOIA, FOIA, FOIA,
FOIA, FOIA, FOIA

r, t, t,
r, r, t

A, R, A,
A, A, 2

35.3

59102 47 M 5 FOA, FOIA, FOIA, FOIA, FOA ?, t, t, t, t A, A, A, A, A 94.2

60002 55 M 6
FOIA, FOIA, FOIA,

UC, FOIA, FOIA
d, c, t,
t, d, d

1, A, A,
R, R, 1

164.3

64702 51 M 5 FOA, FBTC, FBTC, FBTC, FBTC ?, m, t, t, t A, A, A, A, 2 43.6

75202 13 M 7
FOA, FOA, UC,

FOA, FOA, FOA, FOA
t, t, t,

t, t, ?, t
2, 2, A,

A, A, A, A
64.6

80702 22 F 6
FOIA, FOIA, UC,

FOIA, FBTC, FOIA
b, b, ?,
c, c, c

A, A, A,
A, A, A

41.5

85202 54 F 5 FOIA, FOIA, UC, UC, UC m, c, m, m, m 2, A, A, A, A 32.4
93402 67 M 5 FBTC, FOIA, FOIA, UC, UC t, t, t, t, t 2, 2, 2, 2, 2 66.0

93902 50 M 6
FOA, FOIA, FBTC,

FOIA, FOIA, UC
t, t, d,
d, d, d

A, A, 2,
A, 2, A

32.2

94402 37 F 7
FOA, UC, FOIA,

UC, FOA, UC, FOA
?, d, b,

t, ?, b, ?
A, A, A,

2, A, 2, A
42.3

95202 50 F 7
FBTC, FOIA, FOIA,
FOIA, UC, FOIA, UC

b, b, b,
m, b, b, t

2, 2, 2,
2, 2, 2, 2

102.2

96002 58 M 7
FOIA, FOIA, FOIA,

FOIA, UC, FOIA, FOIA
t, t, t,

d, a, t, a
A, A, A,

A, A, A, A
94.1

98102 36 M 5 FOA, UC, UC, UC, FBTC ?, ?, ?, ?, ? A, A, A, A, A 57.7

98202 39 M 7
FOIA, FOIA, FOIA,

FBTC, FOIA, FOIA, FOIA
t, a, t,

t, t, t, t
A, A, A,

A, A, A, A
47.9

101702 52 M 5 FOIA, FOIA, FOIA, FOIA, FOIA t, t, t, r, r A, A, A, 2, A 35.8

102202 17 M 7
FOA, UC, FOIA,

UC, FOA, FOIA, UC
b, ?, t,
?, t, t, t

2, A, 2,
A, A, 2, A

63.4

104602 17 F 5 FOIA, FBTC, FBTC, FBTC, UC t, a, t, t, d A, 2, 2, 2, 2 27.2
109502 50 M 4 FOIA, FOIA, UC, UC t, t, t, t A, A, A, A 53.9
110602 56 M 5 FOIA, FOIA, FOIA, FOIA, FOA t, t, t, t, t A, A, A, A, A 37.9

112802 52 M 6
UC, FOIA, UC,

FOIA, FOIA, UC
t, t, t,
t, t, t

A, A, A,
A, A, A

123.4

113902 29 F 6
UC, FOIA, FOIA,
FOIA, UC, FOIA

t, d, t,
t, t, t

A, A, 2,
A, 2, A

34.7

114702 22 F 8
FOIA, FOIA, UC,

FOIA, FOIA, FOIA, FOIA, FOIA
t, t, t,

t, d, t, d, t
A, A, A,

A, A, A, A, A
46.0

114902 16 F 7
FOA, FOIA, FOIA,

FBTC, UC, FOIA, FOIA
s, b, s,

t, r, a, t
A, A, A,

2, A, A, A
62.6

123902 25 F 5 FBTC, FBTC, FOIA, FOIA, FOA t, t, t, t, t 2, 2, R, A, A 42.1

Seizure classification: unclassified (UC), Focal Onset Aware (FOA), Focal Onset Impaired Aware-
ness (FOIA), Focal to Bilateral Tonic-Clonic (FBTC); Seizure pattern: unclear (?), rhythmic sharp
waves (s), rhythmic alpha waves (a), rhythmic delta waves (d), rhythmic theta waves (t), rhythmic
beta waves (b), repetitive spiking (r), cessation of inter-ictal activity (c), amplitude depression
(m); Vigilance state at the time of the seizure: awake (A), Non-REM sleep stage I (1), Non-REM
sleep stage II (2), REM sleep stage (R)
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4.3 Pre-processing

After loading the raw signal data, which was originally split into 1 hour seg-

ments, the first step was to find any possible gaps in the recording. Consequently,

all instances of missing data were identified and handled by value imputation, taking

the average between the amplitude values of the samples immediately before and

after each gap. The segments were then compiled differently for each set of seizures:

the 4 hours preceding each onset were extracted for the first three chronological

seizures, on which the algorithm is trained; for the remaining seizures, used for test-

ing, all available recordings preceding it were retrieved, starting from 30 minutes

after the previous ictal event (to account for post-ictal activity) until each onset.

Subsequently, the multi-channel signals were segmented in 5-second non-overlap-

ping windows and filtered using a 50Hz notch filter (to remove power-line interfer-

ence) followed by a fourth-order Butterworth high-pass filter with a cut-off frequency

at 0.5Hz (to remove the DC component and minimize motion artifacts).

Finally, 24 linear univariate features were extracted from each of the 19 EEG

channels (see figure 4.4) within each window. In the time domain, the first four

statistical moments (mean, variance, skewness and kurtosis) and the three Hjorth

parameters (activity, mobility and complexity) were computed, while in the fre-

quency domain the relative spectral power of the delta (0.5-4Hz), theta (4-8Hz),

beta (8-12Hz), alpha (13-30Hz), low gamma (30-79Hz) and high gamma (79-128Hz)

bands was extracted, along with the spectral edge frequency at three different cut-off

percentages (50%, 75% and 90%) and the energy of each wavelet coefficient (D1 to

D8, using the Daubechies 4 mother wavelet). These steps are summarized in figure

4.1 below.

Import data Handle missing data Compile seizure data

Train: 4 hours before onset
Test: all hours before onset

Window segmentation

5 seconds
0% overlap

Digital filtering

Notch: 50Hz
High-pass: 0.5Hz

Feature extraction

Stat. moments
Hjorth parameters
Rel. spectral power
Spectral edge freq.
Wavelet energy

Figure 4.1: Flowchart illustrating the pre-processing pipeline of this study.

56



4. Methodology

4.4 Algorithm design

4.4.1 Overview

The proposed approach for seizure prediction consists in the application of a

Multi-Objective Evolutionary Algorithm (MOEA), where each individual within the

population corresponds to a set of high-level features (constructed from the ones ex-

tracted in the previous stage [106]) and a minimum pre-ictal period (Pmin). In other

words, the algorithm searches for different configurations to build a machine learn-

ing model to anticipate seizures. As described in section 2.4, based on the principles

of evolution, increasingly better solutions are found through each generation.

Algorithm 1 Pseudocode illustrating the evolutionary algorithm’s common steps.

population = randomInitialization(number individuals, number features)
population.evaluate()
generation count = 1
while generation count ≤ max generations do

parents = selectParents(population)
offspring = recombine(parents, crossover rate)
offspring = mutate(offspring, mutation rate)
offspring.evaluate()
population = selectSurvivors(population, offspring)
generation count = generation count + 1

end while

After initializing the population with a set of randomly generated individuals

(as indicated above in algorithm 1), their fitness scores are evaluated. Namely, for

each individual, its high-level features are extracted using a sliding window and the

respective labels (inter-ictal and pre-ictal) are assigned. Then, a linear Support

Vector Machine (SVM) is trained and tested and, from the resulting output, two

performance metrics are computed: sample sensitivity (given by (2.4)) and time

under false alarm (given by (2.5)). These metrics correspond to the first two fitness

functions, in addition to a third objective which takes into account the number of

different electrodes (and their corresponding lobes) within the feature set.

Once every individual’s fitness has been evaluated, parent selection is per-

formed. The selected parents are then recombined or cloned, with a given prob-

ability, producing offspring. Next, the generated offspring is subjected to mutation,

also with a given probability. Finally, a replacement strategy is applied to select

which individuals take part in the following generation.

Three different implementations were used: Fonseca and Fleming’s MOGA [41],
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Deb et al.’s NSGA-II [28] and a modified version of Beume et al.’s SMS-EMOA [18].

Both parent selection and replacement are accomplished in different ways in each

of these three methods. The evolution process is repeated in each generation until

the designated stopping criteria is met, which was set to a maximum of 50 gener-

ations. The population size was fixed at 100 individuals, with each one holding a

set of 5 high-level features. These parameters were tuned with the aim of keeping

runtime shorter than the considered time length between independent seizures: ap-

proximately 2 hours on a machine equipped with an Intel Core i5-3230M 2.6GHz

processor, 8GB of RAM running on macOS Mojave 10.14.6 and using Python 3.7

on Spyder 4.0.1.

The evolutionary search is run and trained on a set of training seizures (which,

in this study, were the first three seizures of each patient). Once the search is

completed, the Pareto optimal solutions are tested on a different set of seizures,

unknown to the machine learning model, as shown in figure 4.2. Their performance

is then evaluated according to the gold standard metrics for seizure prediction:

seizure sensitivity and False Positive Rate per Hour (FPR/h). Statistical validation

is also performed against a random predictor and by surrogate time series analysis.

Training data Evolutionary search Feature sets

Testing dataPredictionPerformance

First 3
chronological
seizures

All remaining
seizures

Figure 4.2: Flowchart illustrating the main steps in the algorithm.

4.4.2 Representation

Genotype

Each individual represents a set of 5 features as well as a minimum pre-ictal

period (Pmin), as illustrated in figure 4.3. Each feature is composed of 13 different

genes, whose possible values are represented in figure 4.4 and described below:
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• Active feature group: a binary gene that determines which type of feature is

active: concerning the time domain or the frequency domain;

• Active time feature: a binary gene that dictates which time domain feature is

active: a statistical moment or a Hjorth parameter;

• Active frequency feature: a binary gene that specifies which type of frequency

domain feature is active: one related to band division or the spectral edge

frequency;

• Active frequency band feature: a binary gene that determines which type of

feature based on frequency band division is active: the relative spectral power

or wavelet coefficient energy;

• Statistical moment: indicates which of the four statistical moments is used

(mean, variance, skewness or kurtosis);

• Hjorth parameter: indicates which of the three Hjorth parameters is used

(activity, mobility or complexity);

• Frequency band: indicates which band’s relative spectral power is used (delta,

theta, beta, alpha, low gamma or high gamma);

• Wavelet coefficient: indicates which detail coefficient’s energy is used (ranging

from D1 to D8);

• Spectral edge frequency cut-off: indicates which cut-off is used to compute the

spectral edge frequency (50%, 75% or 90%);

• Electrode: dictates which electrode the information is extracted from;

• Window length: dictates the duration of the time-window from which infor-

mation is extracted, where the possible values were 1, 5, 10, 15 or 20 minutes;

• Delay: specifies the duration of the delay (relative to the minimum pre-ictal

period) applied to the aforementioned time-window, ranging from 0 to 30

minutes in 5-minute increments;

• Mathematical operator: specifies which operation (mean, variance or integral)

is applied to the data within the indicated window.

Additionally, there is a single gene for each individual which dictates Pmin,

ranging from 30 to 60 minutes in 5-minute increments. Its value relates to the

Seizure Occurrence Period (SOP) duration as given by (3.1). It is worth noting that,

while figure 4.4 illustrates the genotype using a graph representation, in practice,

each gene is encoded using an integer assigned to the corresponding node.

The design of each graph in the genotype was informed by the order relations

between the values of each gene. The electrode graph follows the 10-20 system,

where neighboring electrodes are neighboring nodes. In the mathematical operator
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Active 
feature Electrode Math.
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Window
length Delay

Feature
(comprised of genes)

Minimum pre-ictal period

Individual
(comprised of a pre-ictal threshold
and a set of 5 high-level features)

Population
(comprised of individuals)

Figure 4.3: Representation of the evolutionary algorithm’s population. Note that
each feature actually contains 13 genes, unlike the current simplified illustration.
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Figure 4.4: Graph representation of each individual’s genotype. Every gene with
the exception of the minimum pre-ictal period (highlighted with a dashed line)
concerns each feature.

gene, since no order relation could be established, all nodes are neighbors of each

other. The statistical moment gene is sorted by ascending order of the moment

order. The Hjorth parameters are sorted by the order of the derivative used to

compute each one (as given by (A.10), (A.11) and (A.12)). The frequency bands

in the relative spectral power gene are sorted by ascending order of frequency. The
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wavelet energy gene is sequenced by increasing level of decomposition. Every other

gene with the exception of the binary genes follow a sequence of increasing numbers

(e.g. the spectral edge frequency gene is sorted by the cut-off percentage).

Phenotype

The genotype-phenotype mapping process is split into two stages: firstly, the

construction of a high-level feature extractor, followed by the determination of the

pre-ictal period.

The decoding process is straightforward with the exception of the genes that

dictate which feature is selected for extraction, as shown by the tree diagram in

figure 4.5. Then, as depicted in figure 4.6, each decoded feature in the individual’s

genotype is organized chronologically according to its delay gene value, such that

the ones with the higher delay duration are placed further back in the timeline.

By using a set of features with time windows that not only span different

lengths but also comprise distinct moments in time, one may capture the chronology

of events leading up to a seizure, effectively handling the time property without

resorting to more complex machine learning models [71].

Once the ”active” features are selected and placed accordingly in the time-

line, the mathematical operators are employed to perform sliding window analysis

on the low-level features extracted in the pre-processing stage. By performing fea-

ture construction, the resulting high-level features may improve the performance

and discriminative ability in comparison to the original set, particularly in high-

dimensional classification problems [106, 115]. Finally, the pre-ictal period duration

is determined by the sum of the individual’s minimum pre-ictal period and the

shortest delay found within its set of features.

Active
feature group

Active
time feature

Active
frequency feature

Active frequency 
band feature

Spectral edge
frequency

Time Frequency

Band division

Statistical 
moment

Hjorth
parameter

Relative
spectral power

Wavelet
energy

Figure 4.5: Tree diagram illustrating how the ”active” feature is decoded from the
values of 4 binary genes.
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Time
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Pre-ictal SPHInter-ictal

Hjorth
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Alpha band 
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Active feature Electrode Math. operator Window length Delay
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Pre-ictal duration = min(Delay) + Pmin = 45 minutes

Figure 4.6: Visual representation of the genotype decoding process. In this ex-
ample, two features are to be extracted from different brain regions and arranged
chronologically. The individual’s minimum pre-ictal period is also presented in red.

4.4.3 Fitness evaluation

The evaluation process of each individual consists of three main steps: high-level

feature extraction, classification model training and performance evaluation.

As described previously, sliding window analysis is performed using a non-

overlapping 30-second window on the decoded set of features. Each window is

also labeled as inter-ictal (0) or pre-ictal (1) according to the determined pre-ictal

duration.

Before constructing the machine learning model, the extracted features require

some processing steps. First, the features are scaled using z-score standardization,

as given by (4.1):

z =
x− µ
σ

, (4.1)

where µ and σ correspond to the mean and standard deviation, respectively. Next,

in order to handle the class imbalance discussed in section 2.3.4, a balanced weight
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was computed for each class i according to (4.2) and assigned to each sample:

Cwi
=

NS

NCNCi

, (4.2)

where NS is the number of training samples, NC is as the number of classes and

NCi
is the number of samples from class Ci. Finally, a Seizure Prediction Horizon

(SPH) was implemented by assigning a null training weight to samples within the

last 10 minutes before the onset.

Subsequently, the processed features are used to train a machine learning clas-

sification model. For this study, a linear SVM classifier (implemented using the

scikit-learn library [83]) was chosen for its relatively fast convergence and ease of

interpretability. Its training phase is carried out iteratively, such that for a set of Ntr

training seizures (a subset of all available N seizures), the classifier begins by train-

ing on the first seizure and validating on the second one and, thereafter, proceeds

to train on all previous seizures and validates on the following one, as indicated in

figure 4.7 below.

Feature
construction

Training or
Prediction PerformanceRegularization

!

#2#1

#1

#3

#2

......

sens(2) + sens(3) + … + sens(N)Mean
Sensitivity

Mean Time
Under False Alarm

N
=

Tf(2) + Tf(3) + … + Tf(N)
N

=

Figure 4.7: Flowchart illustrating the fitness evaluation scheme. For each indi-
vidual, its high-level features are constructed, a classifier is trained iteratively (as
shown above), and its performance is assessed after output regularization (i.e. after
implementing the Firing Power method and a refractory behaviour).

In each iteration of the training phase, the classifier’s output is processed in

two stages. Firstly, the Firing Power method is used to attenuate the number of

false alarms and smooth out the output, using the procedure described in section

3.7. A reasonable threshold of 0.7 was set, such that an alarm is raised when

FP [n] > 0.7. Afterwards, a refractory behavior is also implemented, such that no
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alarms can be raised after SOP+SPH minutes. This is done to approximate the

alarm firing mechanism to a real one: for instance, 2 near-consecutive alarms, for

the same seizure, should only correspond to one alarm, in order to avoid causing

any confusion to the patient regarding SOP and SPH.

It is worth noting that the introduction of a refractory behavior in the classifier

requires a modification of the FPR/h formula (equation (2.2)) when assessing per-

formance in the testing phase. In order to compensate for the number of samples

after each raised alarm which are not analyzed (i.e. during the refractory period),

the total refractory period Trefractory is subtracted from the Interictalduration:

FPR/h =
Nalarms

Interictalduration − Trefractory
. (4.3)

The classifier’s performance is evaluated in each iteration of the training phase,

concerning sample sensitivity (given by (2.4)) and time under false alarm Tf (given

by (2.5)). These two metrics, despite not being part of the standard framework,

were used in the fitness evaluation scheme given that seizure sensitivity, due to

a low number of training seizures, can only take a few different values, which does

not allow to properly differentiate between individuals, and both FPR/h and seizure

sensitivity do not adequately reflect the number of correctly classified samples. Each

metric value is averaged after all the iterations have been run.

Each of the two aforementioned metrics correspond to an objective, where each

of the fitness functions is valued between 0 and 1. Maximization is assumed for

each objective, such that the higher the fitness score the better. For the sample

sensitivity objective, the metric score corresponds directly to the fitness value. In

the case of time under false alarm, its fitness is computed by subtracting the metric

score from 1, since it is meant to minimized (simply put, this equates to maximizing

specificity). Lastly, there is a third objective which takes into account the number of

different electrodes NElectrodes (and corresponding lobes NLobes), whose fitness score

is computed according to (4.4):

FitnessElectrodes = 1− NElectrodes ×NLobes

NFeatures × 5
, (4.4)

where NFeatures is the number of features of the individual (in this case, five). This

objective aims to promote solutions which do not require a large number of electrodes

and focus on a particular region of the brain, potentially sparing the patient from

having to wear a full EEG electrode cap and improving comfort.
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4.4.4 Selection configurations

Once every individual has been evaluated, parents are selected to reproduce

and generate offspring. In this study, considering a population of N individuals, a

group of N
2

parents are selected and recombine until N offspring are produced. The

offspring is then subjected to mutation (with a given probability, just as before for

recombination) and a replacement strategy is put in place to select the N individuals

that will make up the following generation.

As stated previously, several parent and survivor selection schemes exist with

different implications on selection pressure, which individuals are prioritized, etc.

The three multi-objective implementations used in this study are presented next.

MOGA

Firstly, the population is ranked based on dominance: for each individual, its

rank is equal to the number of individuals dominating it plus one (e.g. all non-

dominated individuals are assigned rank 1). Afterwards, a fitness value is assigned

by interpolating from the best individual (rank 1) to the worst (rank n ≤ N), using

a linear function (although others can be used). This fitness value is then averaged

within the individuals of each rank, so that all of them have an equal probability of

being sampled [41].

Furthermore, fitness sharing is implemented within each rank, with the aim of

promoting diversity. The fitness f of each individual is adjusted depending on how

many individuals fall within a certain distance d:

f ′i =
fi∑

j sh(d(i,j))
, (4.5)

where sh(d) is a sharing function given by (4.6):

sh(d) =

1− ( d
σshare

)α if d ≤ σshare,

0 otherwise.
(4.6)

The parameter α controls the shape of the sharing function (where α = 1 is

linear) while σshare indicates the distance required for two individuals to belong to

the same niche. A suitable value for σshare can be found by solving (4.7) considering

q objectives:

Nσq−1share −
∏q

i=1(Mi −mi + σshare)−
∏q

i=1(Mi −mi)

σshare
= 0, (4.7)

where M and m are, respectively, vectors containing the maximum and minimum
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fitness values of each objective found within the non-dominated front.

Considering the previously assigned fitness, parents are selected using Stochas-

tic Universal Sampling (SUS). It functions in a similar fashion to fitness proportion-

ate selection, where highly fit individuals have a bigger chance of being sampled.

However, instead of generating a random number between 0 and 1 multiple times, it

only does so once and then generates equally spaced numbers within that interval,

so that less fit individuals have a more reasonable probability of being chosen [32].

Regarding the replacement strategy, MOGA uses a generational approach com-

bined with the introduction of a small percentage of random immigrants. As such,

(1−δ)N parents are recombined and mutated to produce (1−δ)N offspring, and the

remaining individuals are randomly generated and added to the new generation.

In this study, a percentage of 10% (δ = 0.1) was chosen as found in the literature

[40, 101].

NSGA-II

In this implementation, the ranking process is referred to as non-dominated

sorting. The algorithm iteratively searches for all the non-dominated solutions in

the population that have not been labelled as belonging to a previous front. After

labelling the new front, a front counter is incremented and the process is repeated

until all solutions have been ranked.

Afterwards, the individuals within each rank are sorted according to a measure,

the crowding distance, which corresponds to the average side length of a cuboid

defined by its nearest neighbours in the same front [28]. In essence, the larger the

crowding distance is, the fewer solutions occupy the vicinity of a given individual.

It is computed, for each objective m, in the following manner: sort individuals

according to their fitness score f , assign an infinite value to boundary solutions (so

that they are always selected) and compute the distance measure for the remaining

solutions as given by (4.8). The overall crowding distance is calculated as the sum

of the distance values concerning each objective.

F (i) = F (i) +
f(i+ 1)m − f(i− 1)m

fmaxm − fminm

. (4.8)

For parent selection, the population is ranked using non-dominated sorting and

then, within each rank, individuals are sorted by crowding distance (the higher, the

better). Parents are then chosen using binary tournaments and reproduce until N

offspring are generated.

With respect to the replacement strategy, NSGA-II uses an elitist approach.
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Firstly, after evaluating the newly created offspring, the 2N individuals (current

generation and offspring) are ranked with non-dominated sorting. Then, entire

fronts are added into the new generation, starting from the rank 1 individuals,

followed by rank 2, and so on, until a new set can no longer be accommodated. This

last set of solutions is then sorted according to crowding distance, and the better

ones are chosen to fill out the rest of the new population.

SMS-EMOA (modified)

In the original implementation of the algorithm [18], a single individual is gen-

erated by selecting random parents and applying variation operators. Then, the

population is ranked using non-dominated sorting, just as in NSGA-II. Finally, the

last rank is sorted according to the hypervolume contribution ∆S of each solution.

This is accomplished by first computing the hypervolume indicator S considering

all the individuals belonging to that rank, computing the same measure but without

accounting for the current solution s and then subtracting them, as given by (4.9):

∆S (s,Rv) = S (Rv)−S (Rv \ {s}), (4.9)

where Rv denotes the worst ranked front. In the current study, the hypervolume

indicator is computed using the implementation found in the PyGMO library [19],

which uses dimension-dependent methods described in [80].

For this study, however, a number of modifications were made in order to bet-

ter suit the intended application of the algorithm and adequately explore the search

space within the same number of generations. Hence, after non-dominated sorting,

individuals within each rank are sorted based on the hypervolume contribution ∆S

metric described before. Parents are selected through binary tournaments and re-

produce until N offspring are generated (as opposed to creating just one individual

from two random parents).

After evaluating the 2N individuals in the combined population, these are

ranked with non-dominated sorting and entire fronts are placed into the new gen-

eration until they no longer fit. The last front which cannot fit in its entirety is

then sorted using the ∆S metric and the best individuals are selected to complete

the population. Essentially, this modified version of SMS-EMOA closely resembles

NSGA-II with the exception of the crowding distance, which is replaced by the ∆S

metric, in which solutions located in high curvature regions of the front are valued

relatively higher [18].
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4.4.5 Variation operators

Between parent selection and the replacement strategy, the variation operators

are applied in order to create new individuals, that is, new candidate solutions for

the problem. Recombination merges the information contained within the genotypes

of two parents probabilistically, according to a crossover rate ρc, copying one of the

parents otherwise. Mutation is then applied with a probability ρm (mutation rate)

to the generated offspring, introducing a small, random change to one of the genes.

Mutation

An individual can be mutated in one of two ways: one of its features has one

of its properties altered, or the individual’s minimum pre-ictal period is changed.

Weighted probabilities are employed to ensure that the search space is explored

equally across all genes. First, a random choice must be made between mutating

Pmin or one of the features. The probability of choosing either depends on how

many features the individual has and the number of values each gene can take (both

in terms of period time lengths and feature properties), respectively given by (4.10)

and (4.11):

Pm(period) =
Nperiods

Nperiods +Nfeatures ×Nproperties

, (4.10)

Pm(features) =
Nfeatures ×Nproperties

Nperiods +Nfeatures ×Nproperties

. (4.11)

If the minimum pre-ictal period is chosen, its value is changed to the one im-

mediately above or below it, as illustrated in figure 4.4. Otherwise, one of the

individual’s features is randomly chosen (with equal probability), and a weighted

probability decides which of its properties is mutated according to the number of

values each one can take, as expressed by (4.12):

Pm(propertyi) =
Nvalues−1(propertyi)∑Nproperties

i=1 Nvalues(propertyi)
. (4.12)

Each property can then be changed depending on the connected nodes in the

respective graph:

• All binary genes (active feature group, active time feature, active frequency

feature, active frequency band feature) simply switch to the other possible

value;

• Electrode: switch to one of the neighboring electrodes (e.g. the FP1 electrode

can mutate to FP2, FZ, F3 or F7);
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• Mathematical operator: switch to any of the other two possible values, since

all the nodes are connected;

• Every other gene changes to the value immediately above or below it, since

each of those graphs represent a sequence.

Essentially, once the target gene is chosen, the mutation operator is applied by

changing the current value to one of the neighboring nodes.

Recombination

When two individuals are recombined, they merge genes from each one of their

features and their minimum pre-ictal period. However, prior to recombining each

feature pair, a distance measure is computed between each feature from each parent,

in order to only merge features that are conceptually close to one another. For

instance, it is more sensible to recombine two time domain features than it is to

merge a time domain feature with another from the frequency domain.

The distance between two properties (one from each feature) is obtained by

computing the shortest distance between them (in its respective graph) and dividing

it by the number of possible values that property can take. Then, the distance

D(fi,fj) between two features (one from each parent) is the sum of all the distances

between properties, as expressed by (4.13):

D(fi,fj) =

Nproperties∑
k=1

d(fi(propertyk), fj(propertyk))

Nvalues(propertyi)
. (4.13)

The features of each parent are then sorted according to D(fi,fj). The sorting

is done iteratively, meaning that for each feature from parent 1, the feature with

the lowest distance value from parent 2 is assigned and matched to it. A potential

drawback from this is that after matching that feature to one from parent 1, it can

no longer be reassigned even if a lower D(fi,fj) is found.

Once all the features from both parents have been matched according to the

distance measure, their properties are recombined in the following manner:

• If both parents have the same gene value, the offspring will take that value;

• If the parents have values in neighboring nodes, one of them is randomly

chosen;

• Electrode: first, a random path from all the shortest paths in the electrode

graph starting from one of the parents’ electrodes to the other is selected; then,

a random electrode within that path is chosen (e.g. for parents with electrodes

F3 and F4, the offspring may copy one of them or become CZ or FZ);
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• In every other gene, a value between those of the parents is chosen.

Additionally, the same conditions (except the one specific to the electrode gene)

apply when recombining minimum pre-ictal period (Pmin) genes from two parents.

4.5 Experimental setup

Using the methodology described in the previous section as well as the data

presented in section 4.2, various scenarios will be tested in order to evaluate different

possible configurations of the seizure prediction scheme. Namely, three different

multi-objective implementations (MOGA, NSGA-II and a modified SMS-EMOA),

considering three objectives (sample sensitivity, time under false alarm and the

number of different electrodes/lobes within the feature set), as per figure 4.8 below.

MOGA

NSGA-II

SMS-EMOA
(modified)

100 individuals

50 generations

3 objectives

Crossover rate = 0.70
Mutation rate ≈ 0.04

Crossover rate = 0.90
Mutation rate ≈ 0.07

Crossover rate = 0.90
Mutation rate ≈ 0.07

×15 runs

Figure 4.8: Flowchart illustrating the experimental setup of this study for the
training phase.

Concerning parameter tuning for each implementation, their mutation and

crossover rates were chosen according to the ones suggested by the original au-

thors [28, 40]: ρc = 0.90 and ρm ≈ 0.07 for NSGA-II and the modified SMS-EMOA;

ρc = 0.70 and ρm ≈ 0.04 for MOGA. Considering ` = 14, given that the used geno-

type comprises 14 genes, the mutation rates were computed using (4.14) for both

NSGA-II and the modified SMS-EMOA and (4.15) in the case of MOGA:

ρm =
1

`
, (4.14)

ρm = 1− (αµ)−
1
` , (4.15)

where α = 0.9 and µ = 2, as indicated in [40]. It is worth noting that the modified
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SMS-EMOA has the same parameterization as NSGA-II since, as stated in section

4.4.4, similar selection and replacement strategies are used.

In a real-life context, the algorithm would be executed once on a set of training

seizures and a single minimum pre-ictal period as well as a single set of features

would be chosen to predict future seizures. However, given the academic context and

exploratory nature of this study, 15 runs of the evolutionary search are performed

for each patient and each MOEA variant. In order evaluate the performance range

of each algorithm, multiple solutions within each run will be tested on unseen data

and the mean seizure sensitivity and FPR/h will be presented.

Moreover, a Decision Maker (DM) is implemented to select which individuals

from the set of Pareto-optimal solutions are used in the testing phase. Hence, only

individuals with a sufficiently high fitness score in the first two objectives (sample

sensitivity and time under false alarm) are tested. This restriction is put in place

due to the inclusion of the third objective, which despite finding solutions that

extract information from a low number of electrodes, results in some Pareto-optimal

solutions with inadequate classification performance within the training set.

Trained population Decision Maker

Test on new seizuresStatistical validation

MOGA: ≥ 0.6

NSGA-II: ≥ 0.9

SMS-EMOA: ≥ 0.9

Random predictor

Surrogate analysis
(×30 random label shifts)

(modified)
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Figure 4.9: Flowchart illustrating the experimental setup of this study for the
testing phase.

As shown in figure 4.9, for both elitist variants (NSGA-II and the modified

SMS-EMOA), a minimum fitness threshold for the DM was set to 0.9 considering

that, for every execution, a considerable number of solutions that met the criteria

was always obtained. However, in the case of MOGA, a lower limit of 0.6 was chosen

given that fitness scores were relatively lower than the former. In the event where
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no solutions could be selected within a run, the threshold was decreased further to

0.5 to guarantee that the DM selected at least one individual from that execution.

Concerning statistical validation, the algorithm’s performance will be evaluated

by comparing it against the random predictor (based on a Poisson distribution) as

well as through surrogate time series analysis. The former’s sensitivity was computed

using (2.8) considering d = 1 to validate each model individually and d = Nm for the

average random predictor (to validate the set of Nm patient-specific models). The

SOP and FPR/h of each individual is used for (2.7) when comparing each individual

to a random predictor, and the average of each one is used when validating the

average sensitivity from all the solutions. Furthermore, the product between the

number of solutions and the number of testing seizures is used for the k parameter

in (2.8) in the case of the average random predictor.

Regarding the surrogate predictor, the same prediction pipeline is used for each

of the selected individuals. However, for each tested seizure, the correspondent pre-

ictal labels were randomly shifted in time within the duration of the recording. After

performing random label shifts 30 times, the average sensitivity is computed and

compared against the one obtained for each individual. The average sensitivity from

all selected solutions is also validated against the average of the previous surrogate

sensitivity values.

As stated in section 2.3.3, in order to consider each solution’s performance as

above chance level, it must meet the requirement of beating the random/surrogate

predictor, that is, achieve a higher sensitivity with statistical significance. In this

study, a significance level of α = 0.05 is considered.

Moreover, the ratio of solutions that outperform each of the random or surro-

gate predictors is also statistically validated. This validation is performed using a

procedure inspired by Alvarado-Rojas et al. [7], who used a binomial distribution to

verify if the number of validated patients was statistically significant for the whole

group. Thus, the probability of at least i of I solutions beating the random or

surrogate predictors is given by the following expression:

Pbinom(i,I,α) =
I∑
j=1

(
I

j

)
αj(1− α)(I−j). (4.16)

In this study, the ratio of statistically valid solutions is considered significant if

higher than the ratio obtained by (4.16), considering α = 0.05.

Finally, a phenotype study is conducted at two different levels: for the whole

group and for a specific patient. In the former case, SOP duration will be analyzed

in order to check for any correlation to the observed prediction performance. Con-
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cerning the latter, the phenotypes of the solution set will be examined in terms of

gene prevalence to showcase the possibility of extrapolating clinical knowledge using

the proposed methodology.

4.6 Summary

The proposed methodology for seizure prediction is based on scalp EEG data

from 36 patients undergoing pre-surgical monitoring and suffering from TLE, re-

trieved from the EPILEPSIAE database. In addition to signal data concerning

19 electrodes (following the 10-20 system), extensive metadata including seizure

type/pattern classification and vigilance state was also used for stratification.

The time-series data was segmented using 5-second windows with no overlap.

4 hours preceding each seizure onset are used for training, while the testing set of

seizures includes all available recordings starting from 30 minutes after the previous

ictal event. Signals were filtered using a notch filter at 50Hz as well as a high-

pass filter with a cut-off frequency at 0.5Hz. 24 linear univariate features were

extracted from each channel: four statistical moments, three Hjorth parameters,

relative spectral power (delta, theta, beta, alpha, low and high gamma), spectral

edge frequency (with three different cut-offs) and wavelet coefficient energy (from

D1 to D8, considering the Daubechies 4 mother wavelet).

A multi-objective evolutionary approach is used to perform high-level feature

extraction as well as feature and parameter selection (namely, the chosen minimum

pre-ictal period, which will dictate the duration of SOP). Each individual in the

population represents a possible configuration for a machine learning prediction

algorithm. The evolutionary search is run and trained on a set of training seizures

(first 3 chronological seizures), while the chosen solutions are applied on a set of

testing seizures, unknown to the prediction algorithm.

In each generation, a population of 100 individuals, each representing a set of

5 features and a minimum pre-ictal period, are evaluated. The high-level features

are constructed from the linear univariate features using a 30-second sliding window

with no overlap. The SOP duration is equal to the sum of the individual’s minimum

pre-ictal period and the shortest delay found within its feature set, meaning it can

range from 20 to 80 minutes. Class weights are applied to each sample, and an SPH

is introduced by assigning a null weight to the samples from the last 10 minutes

before the onset. A linear SVM classifier is trained iteratively, accumulating data

from each seizure and testing on the following one. The classification output is

processed using the Firing Power method with a threshold of 0.7 and a refractory
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behaviour is also implemented to produce a more realistic alarm firing mechanism.

Each of the first two evaluated objectives concern a performance metric: sample

sensitivity and time under false alarm. A third objective is introduced to account

for how many different electrodes and lobes are found within the feature set. For

each fitness function, maximization is assumed.

Three different MOEA implementations were used: Fonseca and Fleming’s

MOGA [41], Deb et al.’s NSGA-II [28] and a modified version of Beume et al.’s

SMS-EMOA [18]. After evaluating the population, parents are selected depending

on the chosen method and recombined to produce offspring. The resulting offspring

is then mutated (with a given probability) and a replacement strategy is employed,

also depending on the selected implementation. Once the stopping criteria are met

(a maximum of 50 generations), the Pareto optimal solutions are selected and ap-

plied on the testing set, with their performance evaluated using the gold standard

metrics for seizure prediction: seizure sensitivity and FPR/h. Statistical validation

is also performed against the random predictor and by surrogate time series analysis.

Besides patient stratification, a phenotype study was also conducted.
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Results and Discussion

This chapter presents the results obtained in the training and testing phases

(sections 5.1 and 5.2, respectively) along with their comprehensive analysis. Section

5.3 contains a phenotype study, followed by a brief summary provided in section 5.4.

5.1 Training phase

As mentioned in section 4.5, for each patient, 15 executions of the evolutionary

search were run for each of the three considered Multi-Objective Evolutionary Al-

gorithms (MOEAs). Table 5.1 shows the average fitness scores of the entire set of

Pareto-optimal individuals found within those runs.

Overall, for each of the three objectives, that is, sample sensitivity (Ssamples),

time under false alarm (Tf ) and number of different electrodes/lobes within the

feature set (NE), the following fitness values were obtained: 0.62 ± 0.29, 0.82 ±
0.16 and 0.78 ± 0.19 for MOGA; 0.88 ± 0.16, 0.92 ± 0.10 and 0.86 ± 0.14 for

NSGA-II; 0.88 ± 0.16, 0.93 ± 0.09 and 0.83 ± 0.16 for the modified SMS-EMOA.

Statistically significant differences between them were found for every MOEA except

between NSGA-II and the modified SMS-EMOA in the first objective (see table B.2),

considering a two-tailed t-test with a significance level of α = 0.05.

Focusing on the fitness values of the first two objectives, it can be seen that

prediction performance is generally satisfactory, displaying averages above 0.80 with

the exception of the populations trained with MOGA. This is to be expected consid-

ering that both NSGA-II and the modified SMS-EMOA employ elitist replacement

strategies, which guarantee that the individuals from the best rank are kept for the

next generation. In contrast, MOGA uses a generational replacement method, in

which non-dominated solutions can potentially be lost.

However, the standard deviations are considerably large indicating that, despite

the abundance of high-performing solutions, others which perform worse are also

present. Additionally, it is worth noting the effect of the third objective (NE), since
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the number of different electrodes/lobes in the feature set is not indicative of the

prediction performance, meaning that a given solution may be Pareto-optimal due

to a high fitness score in the last objective at the expense of the first two objectives.

Furthermore, as the number of objectives increases, more individuals tend to lie in

the first non-dominated front, resulting in a decrease of selection pressure [58].

Table 5.1: Fitness scores obtained in the evolutionary algorithm training phase.

MOGA NSGA-II SMS-EMOA (modified)

Patient ID Ssamples Tf NE Ssamples Tf NE Ssamples Tf NE

402 0.59 ± 0.28 0.78 ± 0.18 0.76 ± 0.20 0.89 ± 0.17 0.84 ± 0.14 0.89 ± 0.12 0.90 ± 0.17 0.90 ± 0.13 0.88 ± 0.14
8902 0.67 ± 0.21 0.75 ± 0.07 0.75 ± 0.17 0.81 ± 0.16 0.82 ± 0.09 0.83 ± 0.16 0.80 ± 0.17 0.83 ± 0.10 0.81 ± 0.17
11002 0.69 ± 0.23 0.76 ± 0.22 0.80 ± 0.20 0.95 ± 0.07 0.94 ± 0.13 0.88 ± 0.10 0.95 ± 0.07 0.96 ± 0.09 0.80 ± 0.19
16202 0.49 ± 0.32 0.77 ± 0.19 0.74 ± 0.19 0.85 ± 0.19 0.89 ± 0.13 0.86 ± 0.13 0.83 ± 0.15 0.89 ± 0.10 0.85 ± 0.14
23902 0.71 ± 0.26 0.84 ± 0.15 0.78 ± 0.20 0.92 ± 0.11 0.94 ± 0.06 0.82 ± 0.16 0.94 ± 0.08 0.95 ± 0.06 0.75 ± 0.17
30802 0.42 ± 0.24 0.93 ± 0.11 0.82 ± 0.18 0.90 ± 0.14 0.98 ± 0.06 0.80 ± 0.18 0.83 ± 0.22 0.96 ± 0.07 0.87 ± 0.12
32702 0.67 ± 0.25 0.82 ± 0.14 0.73 ± 0.22 0.90 ± 0.11 0.94 ± 0.06 0.86 ± 0.14 0.90 ± 0.13 0.94 ± 0.08 0.82 ± 0.17
46702 0.57 ± 0.31 0.78 ± 0.17 0.78 ± 0.20 0.81 ± 0.20 0.89 ± 0.11 0.85 ± 0.13 0.74 ± 0.20 0.89 ± 0.12 0.84 ± 0.14
50802 0.88 ± 0.21 0.96 ± 0.06 0.91 ± 0.09 0.99 ± 0.01 0.99 ± 0.01 0.93 ± 0.06 0.99 ± 0.01 1.00 ± 0.00 0.88 ± 0.10
53402 0.75 ± 0.23 0.84 ± 0.17 0.89 ± 0.11 0.94 ± 0.12 0.97 ± 0.04 0.88 ± 0.12 0.94 ± 0.10 0.97 ± 0.05 0.83 ± 0.18
55202 0.72 ± 0.25 0.83 ± 0.12 0.85 ± 0.14 0.91 ± 0.10 0.97 ± 0.05 0.88 ± 0.11 0.89 ± 0.13 0.95 ± 0.07 0.81 ± 0.15
56402 0.69 ± 0.23 0.77 ± 0.16 0.77 ± 0.18 0.91 ± 0.11 0.86 ± 0.11 0.83 ± 0.15 0.88 ± 0.14 0.88 ± 0.10 0.78 ± 0.18
58602 0.55 ± 0.30 0.78 ± 0.18 0.76 ± 0.21 0.90 ± 0.12 0.90 ± 0.11 0.82 ± 0.16 0.91 ± 0.10 0.92 ± 0.10 0.81 ± 0.21
59102 0.74 ± 0.24 0.92 ± 0.12 0.80 ± 0.19 0.99 ± 0.01 1.00 ± 0.02 0.89 ± 0.14 0.99 ± 0.05 0.99 ± 0.01 0.91 ± 0.09
60002 0.65 ± 0.30 0.83 ± 0.15 0.82 ± 0.19 0.87 ± 0.13 0.94 ± 0.07 0.86 ± 0.12 0.92 ± 0.12 0.95 ± 0.05 0.76 ± 0.22
64702 0.75 ± 0.23 0.80 ± 0.15 0.81 ± 0.18 0.95 ± 0.09 0.96 ± 0.06 0.89 ± 0.12 0.93 ± 0.10 0.91 ± 0.08 0.81 ± 0.16
75202 0.52 ± 0.29 0.84 ± 0.16 0.75 ± 0.21 0.88 ± 0.14 0.94 ± 0.07 0.80 ± 0.18 0.90 ± 0.13 0.94 ± 0.08 0.81 ± 0.17
80702 0.63 ± 0.30 0.77 ± 0.15 0.72 ± 0.20 0.80 ± 0.20 0.91 ± 0.10 0.85 ± 0.13 0.86 ± 0.17 0.90 ± 0.11 0.81 ± 0.17
85202 0.41 ± 0.21 0.86 ± 0.12 0.76 ± 0.19 0.81 ± 0.22 0.89 ± 0.13 0.82 ± 0.14 0.83 ± 0.21 0.90 ± 0.12 0.82 ± 0.13
93402 0.68 ± 0.26 0.87 ± 0.14 0.81 ± 0.15 0.94 ± 0.10 0.96 ± 0.07 0.89 ± 0.13 0.96 ± 0.09 0.95 ± 0.08 0.87 ± 0.10
93902 0.57 ± 0.26 0.80 ± 0.18 0.74 ± 0.22 0.80 ± 0.19 0.91 ± 0.11 0.84 ± 0.14 0.82 ± 0.19 0.88 ± 0.13 0.81 ± 0.15
94402 0.69 ± 0.26 0.80 ± 0.18 0.79 ± 0.19 0.89 ± 0.14 0.94 ± 0.08 0.86 ± 0.16 0.90 ± 0.14 0.94 ± 0.07 0.89 ± 0.09
95202 0.62 ± 0.33 0.81 ± 0.15 0.78 ± 0.21 0.84 ± 0.19 0.91 ± 0.10 0.89 ± 0.11 0.85 ± 0.14 0.93 ± 0.06 0.82 ± 0.21
96002 0.73 ± 0.25 0.94 ± 0.06 0.84 ± 0.17 0.96 ± 0.07 0.99 ± 0.01 0.84 ± 0.16 0.98 ± 0.04 0.99 ± 0.01 0.92 ± 0.07
98102 0.55 ± 0.30 0.81 ± 0.15 0.73 ± 0.21 0.77 ± 0.19 0.86 ± 0.11 0.83 ± 0.17 0.82 ± 0.18 0.88 ± 0.11 0.80 ± 0.16
98202 0.30 ± 0.23 0.87 ± 0.10 0.78 ± 0.19 0.76 ± 0.22 0.90 ± 0.12 0.84 ± 0.13 0.77 ± 0.23 0.89 ± 0.12 0.77 ± 0.21
101702 0.62 ± 0.31 0.78 ± 0.16 0.81 ± 0.18 0.92 ± 0.11 0.92 ± 0.08 0.87 ± 0.13 0.94 ± 0.12 0.92 ± 0.10 0.84 ± 0.16
102202 0.56 ± 0.30 0.82 ± 0.15 0.76 ± 0.21 0.84 ± 0.17 0.89 ± 0.09 0.83 ± 0.17 0.83 ± 0.18 0.88 ± 0.09 0.83 ± 0.16
104602 0.67 ± 0.29 0.85 ± 0.14 0.81 ± 0.19 0.94 ± 0.08 0.94 ± 0.08 0.91 ± 0.09 0.91 ± 0.10 0.95 ± 0.06 0.90 ± 0.11
109502 0.69 ± 0.26 0.78 ± 0.18 0.80 ± 0.18 0.96 ± 0.09 0.94 ± 0.10 0.90 ± 0.09 0.9 ± 0.17 0.97 ± 0.06 0.91 ± 0.07
110602 0.56 ± 0.32 0.83 ± 0.16 0.80 ± 0.16 0.94 ± 0.10 0.93 ± 0.10 0.85 ± 0.12 0.93 ± 0.11 0.94 ± 0.08 0.80 ± 0.15
112802 0.61 ± 0.30 0.76 ± 0.17 0.78 ± 0.19 0.78 ± 0.20 0.91 ± 0.08 0.84 ± 0.16 0.84 ± 0.16 0.91 ± 0.08 0.83 ± 0.18
113902 0.67 ± 0.28 0.81 ± 0.17 0.80 ± 0.17 0.86 ± 0.16 0.92 ± 0.08 0.80 ± 0.18 0.85 ± 0.16 0.93 ± 0.08 0.84 ± 0.13
114702 0.72 ± 0.25 0.81 ± 0.16 0.81 ± 0.16 0.96 ± 0.05 0.94 ± 0.08 0.88 ± 0.13 0.95 ± 0.06 0.96 ± 0.07 0.89 ± 0.08
114902 0.60 ± 0.32 0.79 ± 0.14 0.80 ± 0.17 0.89 ± 0.15 0.97 ± 0.05 0.86 ± 0.14 0.91 ± 0.14 0.96 ± 0.05 0.85 ± 0.12
123902 0.63 ± 0.23 0.91 ± 0.13 0.80 ± 0.18 0.93 ± 0.11 0.96 ± 0.05 0.85 ± 0.13 0.90 ± 0.12 0.97 ± 0.06 0.77 ± 0.19

Ssamples: sample sensitivity; Tf : time under false alarm; NE : number of different electrodes/lobes
within the feature set

For the reasons given above, a Decision Maker (DM) was employed to select

Pareto-optimal solutions with high fitness scores for the first two objectives (Ssamples

and Tf ), as described in section 4.5. The threshold values (figure 4.8) were chosen in

accordance with the average fitness values observed for those objectives in each al-

gorithm variant. Table 5.2 shows the fitness scores of the resulting set of individuals,

while figure 5.1 illustrates the decision making process for each MOEA.

By analyzing the 2D scatter plots (selected from the training phase of patient

85202), it becomes even more evident why a DM was implemented. In the case of

MOGA (figures 5.1a and 5.1b), most Pareto-optimal solutions have a low fitness

score in the Ssamples objective, despite an overall high fitness in the Tf objective
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(i.e. solutions display a high specificity at the cost of a low sensitivity). As for

NSGA-II (figures 5.1c and 5.1d) and the modified SMS-EMOA (figures 5.1e and

5.1f), there is a clear tendency for most solutions to belong in the non-dominated

front, even when a low fitness score is obtained in the first two objectives. Hence,

only high-performing solutions (within the training set) were kept for testing.

(a) Patient 85202: MOGA Run #8 (b) Patient 85202: MOGA Run #12

(c) Patient 85202: NSGA-II Run #3 (d) Patient 85202: NSGA-II Run #12

(e) Patient 85202: SMS-EMOA Run #3 (f) Patient 85202: SMS-EMOA Run #9

Figure 5.1: 2D scatter plots representing the fitness scores of two selected runs
from each algorithm variant. Pareto-optimal solutions are represented in red. The
Decision Maker thresholds are illustrated by dashed lines.
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Table 5.2: Fitness scores of the solution set selected by the Decision Maker.

MOGA NSGA-II SMS-EMOA (modified)

Patient ID Ssamples Tf NE Ssamples Tf NE Ssamples Tf NE

402 0.80 ± 0.11 0.72 ± 0.07 0.64 ± 0.24 0.97 ± 0.03 0.98 ± 0.02 0.84 ± 0.15 0.98 ± 0.02 0.99 ± 0.02 0.85 ± 0.15
8902 0.79 ± 0.11 0.74 ± 0.04 0.74 ± 0.17 0.85 ± 0.04 0.86 ± 0.04 0.83 ± 0.13 0.85 ± 0.06 0.85 ± 0.04 0.78 ± 0.18
11002 0.77 ± 0.15 0.83 ± 0.15 0.71 ± 0.25 0.98 ± 0.03 0.99 ± 0.01 0.88 ± 0.1 0.98 ± 0.02 0.98 ± 0.03 0.82 ± 0.15
16202 0.69 ± 0.14 0.71 ± 0.09 0.70 ± 0.20 0.96 ± 0.05 0.97 ± 0.04 0.87 ± 0.11 0.96 ± 0.04 0.94 ± 0.04 0.83 ± 0.15
23902 0.84 ± 0.13 0.82 ± 0.11 0.73 ± 0.21 0.97 ± 0.03 0.96 ± 0.03 0.78 ± 0.18 0.96 ± 0.03 0.97 ± 0.03 0.72 ± 0.17
30802 0.77 ± 0.16 0.88 ± 0.09 0.65 ± 0.24 0.98 ± 0.03 0.99 ± 0.01 0.77 ± 0.19 0.99 ± 0.02 0.98 ± 0.03 0.86 ± 0.15
32702 0.85 ± 0.12 0.76 ± 0.09 0.66 ± 0.25 0.97 ± 0.03 0.96 ± 0.03 0.77 ± 0.16 0.97 ± 0.03 0.98 ± 0.02 0.82 ± 0.13
46702 0.82 ± 0.14 0.75 ± 0.09 0.64 ± 0.23 0.93 ± 0.06 0.94 ± 0.05 0.82 ± 0.12 0.90 ± 0.06 0.91 ± 0.05 0.72 ± 0.14
50802 0.95 ± 0.05 0.96 ± 0.07 0.91 ± 0.09 0.99 ± 0.01 0.99 ± 0.01 0.93 ± 0.06 0.99 ± 0.01 1.00 ± 0.00 0.88 ± 0.10
53402 0.85 ± 0.12 0.85 ± 0.12 0.89 ± 0.09 0.98 ± 0.02 0.97 ± 0.02 0.87 ± 0.13 0.97 ± 0.03 0.98 ± 0.02 0.86 ± 0.12
55202 0.89 ± 0.11 0.77 ± 0.09 0.83 ± 0.15 0.96 ± 0.04 0.98 ± 0.02 0.89 ± 0.10 0.95 ± 0.05 0.97 ± 0.04 0.76 ± 0.15
56402 0.79 ± 0.15 0.76 ± 0.09 0.72 ± 0.20 0.93 ± 0.05 0.95 ± 0.04 0.79 ± 0.15 0.96 ± 0.04 0.93 ± 0.05 0.73 ± 0.15
58602 0.79 ± 0.11 0.78 ± 0.10 0.62 ± 0.19 0.96 ± 0.03 0.97 ± 0.03 0.75 ± 0.19 0.98 ± 0.03 0.96 ± 0.03 0.80 ± 0.17
59102 0.89 ± 0.11 0.92 ± 0.11 0.76 ± 0.21 0.99 ± 0.01 1.00 ± 0.01 0.89 ± 0.14 0.99 ± 0.01 0.99 ± 0.01 0.91 ± 0.09
60002 0.87 ± 0.12 0.76 ± 0.10 0.80 ± 0.20 0.96 ± 0.04 0.96 ± 0.03 0.82 ± 0.11 0.96 ± 0.04 0.96 ± 0.03 0.72 ± 0.19
64702 0.86 ± 0.12 0.79 ± 0.09 0.74 ± 0.20 0.98 ± 0.03 0.98 ± 0.03 0.87 ± 0.13 0.97 ± 0.03 0.94 ± 0.02 0.76 ± 0.18
75202 0.79 ± 0.13 0.78 ± 0.11 0.69 ± 0.22 0.97 ± 0.03 0.96 ± 0.03 0.71 ± 0.21 0.98 ± 0.03 0.97 ± 0.03 0.73 ± 0.17
80702 0.85 ± 0.13 0.74 ± 0.06 0.62 ± 0.20 0.96 ± 0.03 0.96 ± 0.04 0.77 ± 0.12 0.97 ± 0.04 0.94 ± 0.04 0.79 ± 0.14
85202 0.64 ± 0.15 0.76 ± 0.05 0.68 ± 0.21 0.95 ± 0.04 0.97 ± 0.05 0.73 ± 0.12 0.97 ± 0.04 0.97 ± 0.04 0.72 ± 0.11
93402 0.83 ± 0.12 0.85 ± 0.12 0.79 ± 0.15 0.98 ± 0.02 0.99 ± 0.02 0.85 ± 0.14 0.98 ± 0.02 0.99 ± 0.02 0.85 ± 0.09
93902 0.78 ± 0.18 0.74 ± 0.12 0.56 ± 0.24 0.96 ± 0.06 0.94 ± 0.05 0.80 ± 0.16 0.97 ± 0.04 0.93 ± 0.07 0.75 ± 0.19
94402 0.83 ± 0.13 0.78 ± 0.11 0.73 ± 0.19 0.96 ± 0.03 0.97 ± 0.03 0.81 ± 0.19 0.97 ± 0.03 0.97 ± 0.03 0.86 ± 0.11
95202 0.87 ± 0.12 0.74 ± 0.09 0.76 ± 0.20 0.97 ± 0.04 0.96 ± 0.05 0.85 ± 0.12 0.95 ± 0.05 0.92 ± 0.04 0.78 ± 0.22
96002 0.89 ± 0.11 0.92 ± 0.06 0.84 ± 0.18 0.98 ± 0.02 0.99 ± 0.01 0.84 ± 0.17 0.99 ± 0.02 0.99 ± 0.01 0.92 ± 0.07
98102 0.81 ± 0.12 0.75 ± 0.08 0.66 ± 0.20 0.89 ± 0.06 0.88 ± 0.06 0.70 ± 0.21 0.94 ± 0.07 0.94 ± 0.06 0.65 ± 0.16
98202 0.58 ± 0.12 0.78 ± 0.08 0.76 ± 0.20 0.97 ± 0.03 0.97 ± 0.03 0.70 ± 0.12 0.96 ± 0.03 0.96 ± 0.03 0.59 ± 0.21
101702 0.83 ± 0.13 0.75 ± 0.11 0.71 ± 0.21 0.95 ± 0.05 0.96 ± 0.05 0.88 ± 0.11 0.98 ± 0.03 0.97 ± 0.03 0.84 ± 0.15
102202 0.82 ± 0.14 0.76 ± 0.07 0.69 ± 0.21 0.95 ± 0.05 0.92 ± 0.04 0.69 ± 0.21 0.93 ± 0.07 0.89 ± 0.06 0.72 ± 0.17
104602 0.89 ± 0.12 0.80 ± 0.10 0.80 ± 0.18 0.97 ± 0.02 0.98 ± 0.02 0.89 ± 0.10 0.97 ± 0.03 0.96 ± 0.03 0.87 ± 0.14
109502 0.85 ± 0.10 0.79 ± 0.13 0.78 ± 0.19 0.98 ± 0.03 0.99 ± 0.01 0.88 ± 0.10 0.99 ± 0.01 0.98 ± 0.02 0.90 ± 0.07
110602 0.80 ± 0.13 0.80 ± 0.08 0.73 ± 0.17 0.97 ± 0.03 0.98 ± 0.02 0.82 ± 0.13 0.96 ± 0.03 0.98 ± 0.02 0.76 ± 0.15
112802 0.83 ± 0.14 0.73 ± 0.06 0.70 ± 0.19 0.94 ± 0.06 0.91 ± 0.06 0.77 ± 0.16 0.95 ± 0.06 0.93 ± 0.05 0.76 ± 0.23
113902 0.85 ± 0.12 0.78 ± 0.10 0.74 ± 0.18 0.96 ± 0.03 0.95 ± 0.03 0.66 ± 0.19 0.97 ± 0.03 0.95 ± 0.03 0.76 ± 0.13
114702 0.87 ± 0.13 0.77 ± 0.10 0.78 ± 0.17 0.97 ± 0.03 0.98 ± 0.02 0.87 ± 0.14 0.97 ± 0.03 0.98 ± 0.02 0.90 ± 0.06
114902 0.87 ± 0.12 0.74 ± 0.07 0.76 ± 0.19 0.98 ± 0.02 0.97 ± 0.02 0.86 ± 0.13 0.97 ± 0.02 0.98 ± 0.03 0.82 ± 0.11
123902 0.84 ± 0.12 0.83 ± 0.11 0.75 ± 0.21 0.98 ± 0.02 0.97 ± 0.03 0.82 ± 0.14 0.97 ± 0.03 0.99 ± 0.02 0.68 ± 0.21

Ssamples: sample sensitivity; Tf : time under false alarm; NE : number of different electrodes/lobes
within the feature set

Overall, the solution set selected by the DM resulted in a substantial improve-

ment of fitness scores across all patients, objectives and used algorithms, most promi-

nently in the MOGA solution sets. Fitness scores average at 0.83 ± 0.14, 0.79 ± 0.11

and 0.74 ± 0.20 for MOGA, 0.97 ± 0.04, 0.97 ± 0.04 and 0.83 ± 0.16 for NSGA-II

and, finally, 0.97 ± 0.04, 0.97 ± 0.04 and 0.81 ± 0.16 for the modified SMS-EMOA.

Statistically significant differences between them were identified for every MOEA

except between NSGA-II and the modified SMS-EMOA in the first and second ob-

jectives (see table B.3), using a two-tailed t-test with a significance level of α = 0.05.

5.2 Testing phase

Each of the solutions selected by the DM was tested on new set of seizures,

unknown to the machine learning models. Their performance was then assessed in

terms of sensitivity and False Positive Rate per Hour (FPR/h), along with statistical

validation against a random predictor and surrogate analysis, as per section 4.5.
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5.2.1 MOGA

Table 5.3: Seizure prediction performance and statistical validation results ob-
tained for the models optimized with MOGA.

Patient ID Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

402 0.14 ± 0.22 0.14 ± 0.09 0.53 ± 0.12 0.00 0.15 ± 0.09 28.30#

8902 0.25 ± 0.28 0.16 ± 0.09 0.50 ± 0.04* 3.51 0.22 ± 0.07 44.44#

11002 0.16 ± 0.37 0.27 ± 0.18 0.90 ± 0.30* 0.00 0.19 ± 0.12 16.13#

16202 0.11 ± 0.15 0.20 ± 0.11 0.50 ± 0.00* 0.00 0.11 ± 0.06 33.33#

23902 0.08 ± 0.19 0.24 ± 0.10 0.50 ± 0.04* 0.71 0.22 ± 0.10 15.71#

30802 0.34 ± 0.26 0.20 ± 0.08 0.60 ± 0.00* 9.38 0.20 ± 0.06* 68.75#

32702 0.32 ± 0.32 0.29 ± 0.15 0.50 ± 0.06* 8.73# 0.22 ± 0.10* 52.38#

46702 0.27 ± 0.28 0.40 ± 0.17 0.50 ± 0.00 3.08 0.28 ± 0.10 35.38#

50802 0.22 ± 0.25 0.25 ± 0.06 0.50 ± 0.00* 0.00 0.21 ± 0.06 42.31#

53402 0.26 ± 0.30 0.23 ± 0.08 0.50 ± 0.00* 5.81 0.16 ± 0.08* 44.19#

55202 0.32 ± 0.17 0.19 ± 0.05 0.60 ± 0.00* 0.00 0.18 ± 0.04* 54.03#

56402 0.03 ± 0.18 0.26 ± 0.14 0.97 ± 0.16* 0.00 0.18 ± 0.12 3.39
58602 0.06 ± 0.13 0.20 ± 0.09 0.67 ± 0.00* 0.00 0.17 ± 0.07 16.00#

59102 0.13 ± 0.22 0.18 ± 0.06 0.50 ± 0.00 0.00 0.17 ± 0.06 25.74#

60002 0.21 ± 0.20 0.10 ± 0.02 0.67 ± 0.00* 0.00 0.15 ± 0.05* 55.96#

64702 0.09 ± 0.19 0.13 ± 0.09 0.50 ± 0.19* 0.00 0.11 ± 0.09 16.67#

75202 0.29 ± 0.20 0.15 ± 0.06 0.50 ± 0.00* 5.00 0.18 ± 0.07* 61.25#

80702 0.10 ± 0.15 0.19 ± 0.11 0.67 ± 0.00* 0.00 0.17 ± 0.07 24.18#

85202 0.52 ± 0.35 0.30 ± 0.16 0.50 ± 0.00 25.92# 0.20 ± 0.10* 77.78#

93402 0.03 ± 0.12 0.25 ± 0.08 0.50 ± 0.00* 0.00 0.23 ± 0.08 6.45
93902 0.30 ± 0.29 0.16 ± 0.09 0.65 ± 0.10* 7.14 0.16 ± 0.07* 57.14#

94402 0.09 ± 0.14 0.27 ± 0.07 0.50 ± 0.00* 0.00 0.22 ± 0.05 12.00#

95202 0.15 ± 0.17 0.17 ± 0.07 0.50 ± 0.00* 0.00 0.14 ± 0.06 38.20#

96002 0.14 ± 0.16 0.21 ± 0.06 0.50 ± 0.00* 0.00 0.15 ± 0.05 35.56#

98102 0.47 ± 0.30 0.12 ± 0.10 0.59 ± 0.21* 12.00# 0.12 ± 0.10* 77.33#

98202 0.07 ± 0.11 0.29 ± 0.10 0.50 ± 0.00 0.00 0.24 ± 0.08 6.12
101702 0.35 ± 0.30 0.23 ± 0.13 0.50 ± 0.00 7.69 0.19 ± 0.10* 58.24#

102202 0.18 ± 0.19 0.20 ± 0.07 0.50 ± 0.00* 1.39 0.15 ± 0.07 36.11#

104602 0.36 ± 0.36 0.30 ± 0.14 0.50 ± 0.00* 15.24# 0.27 ± 0.08* 51.43#

109502 0.46 ± 0.50 0.17 ± 0.09 1.00 ± 0.00* 0.00 0.14 ± 0.09* 45.74#

110602 0.25 ± 0.33 0.21 ± 0.09 0.49 ± 0.05 9.68# 0.17 ± 0.07* 40.86#

112802 0.06 ± 0.12 0.19 ± 0.05 0.67 ± 0.00* 0.00 0.12 ± 0.06 15.63#

113902 0.31 ± 0.14 0.15 ± 0.13 0.58 ± 0.23* 12.37# 0.13 ± 0.10* 80.41#

114702 0.15 ± 0.16 0.31 ± 0.07 0.60 ± 0.00* 0.00 0.25 ± 0.06 13.82#

114902 0.39 ± 0.22 0.15 ± 0.06 0.50 ± 0.00* 13.26# 0.12 ± 0.06* 84.69#

123902 0.04 ± 0.13 0.10 ± 0.06 0.54 ± 0.16 0.00 0.07 ± 0.06 7.79

* denotes that the average sensitivity obtained is higher than that of the average random predic-
tor or the average surrogate sensitivity with statistical significance; # indicates that the ratio of
individuals that beat the random or surrogate predictors is statistically significant.

Averaging across all 36 patients, a sensitivity of 0.21 ± 0.27 and an FPR/h of

0.21 ± 0.12 were obtained. The sensitivity of the random predictors averaged at

0.58 ± 0.16. These were outperformed, on average, by 3.91 ± 5.96% of solutions.

Overall surrogate predictor sensitivity was 0.18 ± 0.09 and 38.43 ± 22.83% were

validated. The average random predictor (whose sensitivity values are presented in

table B.5) was beaten for 28 patients (78%), while the average surrogate predictor

was outperformed for 15 (42%). Although only 7 patients (19%) had a significant
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ratio of validated solutions for the random predictor, 32 out of 36 patients (89%)

had a statistically significant above chance ratio for the surrogate predictor.

5.2.2 NSGA-II

Table 5.4: Seizure prediction performance and statistical validation results ob-
tained for the models optimized with NSGA-II.

Patient ID Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

402 0.03 ± 0.12 0.14 ± 0.06 0.50 ± 0.02* 0.00 0.17 ± 0.07 5.61
8902 0.16 ± 0.23 0.21 ± 0.11 0.50 ± 0.00* 0.00 0.22 ± 0.08 30.32#

11002 0.02 ± 0.13 0.39 ± 0.19 0.94 ± 0.24* 0.00 0.25 ± 0.12 1.83
16202 0.07 ± 0.11 0.12 ± 0.07 0.53 ± 0.14* 0.21 0.10 ± 0.05 28.48#

23902 0.12 ± 0.23 0.22 ± 0.10 0.50 ± 0.06* 1.72 0.24 ± 0.12 18.39#

30802 0.27 ± 0.26 0.21 ± 0.08 0.60 ± 0.00* 1.51 0.20 ± 0.05* 52.85#

32702 0.24 ± 0.31 0.23 ± 0.15 0.50 ± 0.00* 7.07# 0.17 ± 0.09* 40.98#

46702 0.26 ± 0.26 0.31 ± 0.16 0.50 ± 0.00* 1.47 0.23 ± 0.09* 49.56#

50802 0.18 ± 0.24 0.26 ± 0.07 0.50 ± 0.00* 0.00 0.23 ± 0.08 35.44#

53402 0.37 ± 0.30 0.26 ± 0.07 0.50 ± 0.00* 8.78# 0.18 ± 0.07* 64.86#

55202 0.28 ± 0.15 0.24 ± 0.06 0.60 ± 0.00* 0.00 0.20 ± 0.04* 45.30#

56402 0.04 ± 0.18 0.22 ± 0.14 1.00 ± 0.00* 0.00 0.17 ± 0.11 3.57
58602 0.08 ± 0.15 0.21 ± 0.07 0.67 ± 0.00* 0.00 0.19 ± 0.08 6.68#

59102 0.12 ± 0.22 0.19 ± 0.06 0.50 ± 0.00* 0.21 0.18 ± 0.07 24.26#

60002 0.21 ± 0.18 0.10 ± 0.02 0.67 ± 0.00* 0.00 0.16 ± 0.06* 57.62#

64702 0.05 ± 0.15 0.12 ± 0.08 0.56 ± 0.21* 0.00 0.12 ± 0.08 10.13#

75202 0.32 ± 0.22 0.18 ± 0.07 0.50 ± 0.00* 12.28# 0.19 ± 0.08* 58.95#

80702 0.08 ± 0.15 0.16 ± 0.07 0.67 ± 0.00* 0.00 0.14 ± 0.06 19.00#

85202 0.59 ± 0.36 0.30 ± 0.10 0.50 ± 0.00* 37.72# 0.20 ± 0.08* 80.25#

93402 0.07 ± 0.21 0.25 ± 0.12 0.50 ± 0.03* 2.36 0.23 ± 0.09 11.45#

93902 0.34 ± 0.23 0.20 ± 0.13 0.58 ± 0.23* 18.37# 0.16 ± 0.11* 61.68#

94402 0.03 ± 0.09 0.31 ± 0.09 0.50 ± 0.00* 0.00 0.20 ± 0.06 0.96
95202 0.04 ± 0.10 0.14 ± 0.04 0.50 ± 0.00* 0.00 0.13 ± 0.05 8.62#

96002 0.15 ± 0.14 0.21 ± 0.06 0.50 ± 0.00* 0.00 0.15 ± 0.05 40.82#

98102 0.38 ± 0.34 0.14 ± 0.12 0.58 ± 0.19* 11.11# 0.11 ± 0.08* 61.30#

98202 0.02 ± 0.06 0.28 ± 0.12 0.50 ± 0.02* 0.00 0.20 ± 0.06 1.11
101702 0.46 ± 0.28 0.28 ± 0.15 0.50 ± 0.00* 11.66# 0.23 ± 0.10* 71.90#

102202 0.08 ± 0.14 0.16 ± 0.07 0.51 ± 0.06* 0.00 0.12 ± 0.06 21.36#

104602 0.28 ± 0.32 0.22 ± 0.11 0.50 ± 0.04* 8.71# 0.20 ± 0.07* 47.33#

109502 0.16 ± 0.36 0.13 ± 0.08 1.00 ± 0.07* 0.00 0.10 ± 0.08* 15.90#

110602 0.25 ± 0.34 0.18 ± 0.08 0.49 ± 0.08* 13.66# 0.16 ± 0.07* 39.70#

112802 0.05 ± 0.12 0.19 ± 0.06 0.67 ± 0.00* 0.00 0.12 ± 0.06 12.16#

113902 0.28 ± 0.12 0.11 ± 0.16 0.34 ± 0.33* 40.40# 0.10 ± 0.10* 71.88#

114702 0.18 ± 0.18 0.30 ± 0.08 0.60 ± 0.00* 0.25 0.24 ± 0.07 19.47#

114902 0.47 ± 0.16 0.15 ± 0.05 0.50 ± 0.05* 13.13# 0.12 ± 0.05* 98.12#

123902 0.01 ± 0.08 0.10 ± 0.07 0.56 ± 0.16* 0.00 0.08 ± 0.07 2.97

* denotes that the average sensitivity obtained is higher than that of the average random predic-
tor or the average surrogate sensitivity with statistical significance; # indicates that the ratio of
individuals that beat the random or surrogate predictors is statistically significant.

Overall sensitivity was 0.18 ± 0.26, while FPR/h averaged at 0.21 ± 0.12.

The sensitivity of the random predictors averaged at 0.57 ± 0.17 and, on average,

these were outperformed by 5.29 ± 9.67% of solutions. Mean surrogate predictor

sensitivity was 0.18 ± 0.09, with 33.91 ± 25.79% of solutions validated. The average
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random predictor (see table B.5) was outperformed for every patient (100%) and the

average surrogate predictor was beaten for 16 (44%) of them. 11 patients (30%) had

a significant ratio of validated solutions for the random predictor, while 30 (83%)

had a statistically significant ratio for the surrogate predictor.

5.2.3 SMS-EMOA (modified)

Table 5.5: Seizure prediction performance and statistical validation results ob-
tained for the models optimized with the modified SMS-EMOA.

Patient ID Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

402 0.04 ± 0.13 0.14 ± 0.04 0.50 ± 0.00* 0.00 0.16 ± 0.06 7.47#

8902 0.37 ± 0.26 0.17 ± 0.12 0.50 ± 0.00* 4.19 0.22 ± 0.06* 70.06#

11002 0.01 ± 0.10 0.38 ± 0.21 0.88 ± 0.32* 0.00 0.22 ± 0.14 0.95
16202 0.04 ± 0.12 0.16 ± 0.12 0.56 ± 0.11* 0.32 0.10 ± 0.09 9.29#

23902 0.03 ± 0.13 0.22 ± 0.09 0.50 ± 0.02* 0.00 0.18 ± 0.10 6.62#

30802 0.32 ± 0.22 0.21 ± 0.08 0.60 ± 0.00* 0.86 0.23 ± 0.05* 55.68#

32702 0.20 ± 0.25 0.38 ± 0.22 0.50 ± 0.00* 0.65 0.21 ± 0.12 33.40#

46702 0.24 ± 0.25 0.33 ± 0.16 0.50 ± 0.00* 0.00 0.24 ± 0.09 45.41#

50802 0.14 ± 0.22 0.25 ± 0.08 0.50 ± 0.00* 0.00 0.21 ± 0.10 28.09#

53402 0.19 ± 0.25 0.25 ± 0.08 0.50 ± 0.00* 0.61 0.18 ± 0.08 36.50#

55202 0.29 ± 0.11 0.23 ± 0.04 0.60 ± 0.00* 0.00 0.21 ± 0.05* 49.84#

56402 0.06 ± 0.24 0.27 ± 0.10 1.00 ± 0.00* 0.00 0.19 ± 0.09 6.24
58602 0.03 ± 0.09 0.30 ± 0.11 0.64 ± 0.13* 0.00 0.17 ± 0.07 7.91#

59102 0.07 ± 0.17 0.18 ± 0.04 0.50 ± 0.00* 0.00 0.17 ± 0.06 13.32#

60002 0.27 ± 0.24 0.09 ± 0.01 0.67 ± 0.00* 0.00 0.14 ± 0.05* 59.40#

64702 0.25 ± 0.25 0.14 ± 0.06 0.50 ± 0.05* 0.20 0.14 ± 0.10* 49.38#

75202 0.36 ± 0.22 0.15 ± 0.05 0.50 ± 0.00* 14.65# 0.17 ± 0.06* 73.11#

80702 0.07 ± 0.14 0.14 ± 0.06 0.66 ± 0.03* 0.22 0.14 ± 0.06 18.74#

85202 0.42 ± 0.22 0.25 ± 0.10 0.50 ± 0.00* 3.10 0.22 ± 0.07* 78.57#

93402 0.17 ± 0.32 0.24 ± 0.05 0.50 ± 0.00* 9.83# 0.24 ± 0.07 22.61#

93902 0.19 ± 0.18 0.18 ± 0.09 0.66 ± 0.04* 0.59 0.16 ± 0.08* 47.20#

94402 0.14 ± 0.18 0.34 ± 0.14 0.50 ± 0.00* 0.00 0.21 ± 0.06 28.50#

95202 0.07 ± 0.11 0.15 ± 0.06 0.50 ± 0.00* 0.00 0.12 ± 0.06 20.88#

96002 0.11 ± 0.13 0.22 ± 0.07 0.50 ± 0.00* 0.00 0.15 ± 0.06 35.62#

98102 0.45 ± 0.20 0.13 ± 0.10 0.56 ± 0.17* 3.15 0.12 ± 0.08* 86.94#

98202 0.05 ± 0.10 0.32 ± 0.11 0.50 ± 0.01* 0.00 0.23 ± 0.06 1.28
101702 0.73 ± 0.28 0.22 ± 0.12 0.49 ± 0.06* 49.03# 0.19 ± 0.09* 94.88#

102202 0.20 ± 0.18 0.19 ± 0.06 0.50 ± 0.00* 0.00 0.12 ± 0.04* 59.45#

104602 0.35 ± 0.32 0.28 ± 0.14 0.50 ± 0.00* 9.74# 0.24 ± 0.09* 58.74#

109502 0.28 ± 0.45 0.12 ± 0.10 0.96 ± 0.18* 0.00 0.08 ± 0.07* 28.02#

110602 0.05 ± 0.18 0.25 ± 0.10 0.50 ± 0.02* 1.72 0.20 ± 0.08 8.32#

112802 0.00 ± 0.04 0.18 ± 0.05 0.67 ± 0.00* 0.00 0.10 ± 0.04 1.68
113902 0.28 ± 0.13 0.12 ± 0.10 0.52 ± 0.27* 19.15# 0.12 ± 0.10* 67.93#

114702 0.21 ± 0.22 0.36 ± 0.10 0.60 ± 0.00* 0.00 0.24 ± 0.06 36.12#

114902 0.32 ± 0.12 0.13 ± 0.04 0.51 ± 0.05* 1.61 0.11 ± 0.04* 98.24#

123902 0.02 ± 0.09 0.08 ± 0.05 0.56 ± 0.19* 0.00 0.06 ± 0.04 3.38

* denotes that the average sensitivity obtained is higher than that of the average random predic-
tor or the average surrogate sensitivity with statistical significance; # indicates that the ratio of
individuals that beat the random or surrogate predictors is statistically significant.

Sensitivity averaged at 0.18 ± 0.26 and FPR/h at 0.22 ± 0.12. Mean sensitivity

for the random predictors was 0.58 ± 0.16, which were beaten, on average, by 3.32
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± 8.86% of solutions. The surrogate predictor sensitivity averaged at 0.17 ± 0.09

and 37.49 ± 28.25% of solutions were validated. The average random predictor

(see table B.5) was beaten for every patient (100%) while 15 (42%) outperformed

the average surrogate predictor. As for the ratios of solutions above chance, only 5

(14%) were considered statistically significant for the random predictor, whereas 31

(86%) were validated for the surrogate predictor.

5.2.4 Comparative analysis

Concerning the gold standard metrics for seizure prediction, statistically sig-

nificant differences between the three variants were found, except when comparing

NSGA-II with the modified SMS-EMOA in terms of sensitivity and with MOGA in

terms of FPR/h (see table B.4). Nevertheless, the evaluated models for all three of

them generally display a low FPR/h and low sensitivity.

Focusing on FPR/h, it is worth noting the number of patients where, on average,

FPR/h≤ 0.15, which is considered reasonable for patients in pre-surgical monitoring

[113]. Individually, this was observed for 8 patients using models optimized with

MOGA, 10 for NSGA-II and 11 in the case of the modified SMS-EMOA. In total,

the criteria was met for at least one of the MOEAs in 12 out of 36 patients.

With regard to sensitivity, the low scores may be attributed to the reduced

number of seizures available for testing, which is also reflected in the high standard

deviations. For instance, with 2 testing seizures, the prediction models can only

achieve 3 possible sensitivity scores: 0.0, 0.5 or 1.0. It is worth mentioning that

significant correlations were found between the number of testing seizures for each

patient and the standard deviations observed for the sensitivity metric: Pearson

correlation coefficients of ρ = −0.53, ρ = −0.44 and ρ = −0.40 were obtained for

each algorithm variant, respectively.

Additionally, due to computational cost limitations, as mentioned in section 4.1,

the training set of each patient-specific model comprises only 12 hours of recording

(4 hours preceding each of the first 3 seizures), which may prove insufficient. Some

connections were found between fitness scores (in training) and performance (in

testing), namely, for the objective concerning time under false alarm: ρ = −0.12,

ρ = −0.10 and ρ = −0.11, when compared to sensitivity; ρ = 0.10, ρ = 0.17 and

ρ = 0.15, when compared to FPR/h.

Finally, the duration of the Electroencephalogram (EEG) recording displayed

a considerable influence in the prediction performance. This is supported by the

negative correlations found between the duration of the available recordings for
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each patient and the sensitivity (ρ = −0.12, ρ = −0.09 and ρ = −0.08) and FPR/h

(ρ = −0.42, ρ = −0.36 and ρ = −0.40) metrics. However, this is to be expected

given that correctly identifying the pre-ictal period without raising false alarms is a

more challenging task for a higher amount of data.

As for statistical validation, some differences were observed when comparing

each model’s performance to that of the random and surrogate predictors. For

instance, the average random predictor was outperformed for a higher number of

patients than the average surrogate one. This is, however, because the great majority

of the sensitivity scores for the former (included in table B.5) were close to (or

exactly) zero which, in turn, is a result of using the number of testing seizures

multiplied by the number of prediction models for the k parameter in (2.8).

Moreover, in terms of the ratios of above chance models, the surrogate predictor

achieved a significantly higher percentage of validated patients than the random

predictor. The reason for this is that the sensitivity of each random predictor is

frequently higher than that of each model, as its value depends only on the given

Seizure Occurrence Period (SOP), FPR/h and number of testing seizures (given that

the d and α parameters were fixed at 1 and 0.05, respectively). Hence, despite the

increased computational complexity of the surrogate predictor, it is more flexible and

adaptable to the used data (e.g. in terms of the number of seizures and recording

duration), which may provide a more robust validation of the results [8].

Table 5.6: Comparison between the results obtained for each MOEA and those of
other studies concerning TLE patients from the EPILEPSIAE database.

Study
Number of

TLE patients
Sensitivity FPR/h

Validated with
random (%)

Validated with
surrogate (%)

Direito et al. (2017) 130 0.38 0.23 N.A. N.A.
Alvarado-Rojas et al. (2014) 34 0.66 0.33 8.82 N.A.

Teixeira et al. (2014) 190 0.75 0.32 N.A. N.A.
This study (MOGA) 36 0.21 0.21 19.44 88.89

This study (NSGA-II) 36 0.18 0.21 30.56 83.33
This study (modified SMS-EMOA) 36 0.18 0.22 13.89 86.11

Lastly, the results achieved can be compared to previous studies which were

also performed on the EPILEPSIAE database [7, 30, 104]. Table 5.6 summarizes

the performance obtained in each study considering only patients diagnosed with

Temporal Lobe Epilepsy (TLE). Both Direito et al. [30] and Teixeira et al. [104]

use Support Vector Machines (SVMs) (although the latter also employs neural net-

work classifiers), while Alvarado-Rojas et al. [7] chose a simpler threshold classifier.

Direito et al. [30] and Teixeira et al. [104] included a Seizure Prediction Horizon

(SPH), albeit considerably short (10 seconds, in both cases). None of the selected

studies have validated their results against a surrogate predictor.
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The results obtained by Direito et al. [30], despite achieving a superior sensi-

tivity, are similar to the current study in terms of FPR/h. Regarding validation, the

authors only presented the percentage of validated patients for the entire set (11%,

out of 218 patients) and not for the TLE group. Alvarado-Rojas et al. [7] outper-

form the proposed methodology in terms of sensitivity, but report a higher FPR/h

and a lower percentage of patient-specific models above chance level, regardless of

the MOEA used to optimize the models developed in this study. Teixeira et al. [104]

report a significantly higher sensitivity, despite a higher FPR/h. Since only statis-

tically significant differences between both metrics are addressed, no comparisons

concerning validation can be made.

Generally speaking, the methodology developed in the present study has achieved

a lower FPR/h and a higher percentage of patient-specific models above chance level

(concerning the random predictor). Nevertheless, it is clearly outperformed regard-

ing sensitivity. In addition to the aforementioned reasons, it is worth noting that

several parameters such as the sliding window step and the number of high-level

features were chosen based on runtime and were not fine-tuned with regard to test-

ing performance. As a matter of fact, most limiting factors in terms of sensitivity

stem from training time restraints. Moreover, a notably longer SPH (10 minutes)

was adopted, which makes the prediction task more challenging.

A possible improvement may be found, precisely, in the model optimization/

training phase. For instance, seizure prediction performance could be enhanced by

executing an evolutionary search for every new seizure, using data from the previous

N seizures. In other words, the feature set and model parameters could be re-

selected periodically with the availability of new seizure data. Despite the increase

in computational complexity and the need for more testing seizures to properly

evaluate this approach, real-time applicability may be achievable, considering that

MOEA execution time for a maximum of 50 generations was relatively fast (about

2 hours, as detailed in section 4.4.1). Hence, despite the lower sensitivity obtained,

the proposed methodology takes into account the need for algorithmic solutions

applicable in real-time, with minimal computational requirements and high power

efficiency [62].

5.2.5 Patient stratification

With the purpose of assessing whether the overall percentage of prediction

models above chance level could be increased when restricting analysis to a selected

group of patients, various stratification criteria were set. Namely:
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• only patients whose seizures were classified as either Focal Onset Aware (FOA)

or Focal Onset Impaired Awareness (FOIA);

• only patients who displayed rhythmic activity patterns;

• only patients who were awake.

Assuming that seizures with an unknown classification (”UC”) and unclear

patterns (”?”) from table 4.2 comply with the first two criteria (respectively), the

overall values were calculated for each algorithm variant considering each patient

group, as presented in tables 5.7, 5.8 and 5.9.

Table 5.7: Patient stratification results considering models optimized by MOGA.

Stratification Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

FOA/FOIA 0.22 ± 0.28 0.21 ± 0.11 0.58 ± 0.15 4.30 ± 6.28 0.18 ± 0.08 41.46 ± 21.09
Rhythmic patterns 0.18 ± 0.27 0.23 ± 0.12 0.59 ± 0.18 3.03 ± 4.55 0.19 ± 0.10 32.62 ± 21.27

Awake patient 0.20 ± 0.28 0.21 ± 0.11 0.60 ± 0.18 2.16 ± 3.97 0.18 ± 0.09 32.29 ± 19.13

Table 5.8: Patient stratification results considering models optimized by NSGA-II.

Stratification Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

FOA/FOIA 0.20 ± 0.26 0.22 ± 0.12 0.58 ± 0.18 6.44 ± 11.52 0.18 ± 0.09 36.97 ± 23.87
Rhythmic patterns 0.16 ± 0.25 0.22 ± 0.12 0.57 ± 0.19 4.77 ± 9.21 0.18 ± 0.09 28.79 ± 22.78

Awake patient 0.15 ± 0.24 0.20 ± 0.10 0.59 ± 0.17 2.14 ± 4.26 0.17 ± 0.08 25.40 ± 16.30

Table 5.9: Patient stratification results considering models optimized by the mod-
ified SMS-EMOA.

Stratification Sensitivity FPR/h
Random

sensitivity
Solutions beat
random (%)

Surrogate
sensitivity

Solutions beat
surrogate (%)

FOA/FOIA 0.19 ± 0.27 0.22 ± 0.13 0.59 ± 0.18 4.47 ± 11.12 0.18 ± 0.09 40.28 ± 27.25
Rhythmic patterns 0.14 ± 0.24 0.22 ± 0.12 0.58 ± 0.18 2.48 ± 5.26 0.18 ± 0.09 29.23 ± 22.74

Awake patient 0.12 ± 0.24 0.21 ± 0.12 0.60 ± 0.18 0.64 ± 1.24 0.16 ± 0.09 25.81 ± 24.49

Each group is comprised of 21, 23 and 16 patients, respectively, as shown in

table B.6. Tables 5.10 and 5.11 report the percentage of patients whose models

outperform the average random/surrogate predictors along with the percentage of

patients with a significant ratio of models above chance level.

Overall, the only group that achieves an improvement, albeit minor, in mean

sensitivity and/or FPR/h is the one which concerns seizure classification (only FOA

or FOIA). No significant changes were found in the average sensitivity of the random

or surrogate predictors. Conversely, the percentages of validated patients displayed

a substantial increase.
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Table 5.10: Percentage of patients validated considering the average random pre-
dictor and whose ratio of models above chance level is statistically significant.

MOGA NSGA-II SMS-EMOA (modified)

Stratification
Beat average
random (%)

Significant above
chance ratio (%)

Beat average
random (%)

Significant above
chance ratio (%)

Beat average
random (%)

Significant above
chance ratio (%)

FOA/FOIA 80.95 19.05 100.00 33.33 100.00 14.28
Rhythmic patterns 73.91 13.04 100.00 26.09 100.00 17.39

Awake patient 75.00 18.75 100.00 18.75 100.00 0.00

Table 5.11: Percentage of patients validated considering the average surrogate
predictor and whose ratio of models above chance level is statistically significant.

MOGA NSGA-II SMS-EMOA (modified)

Stratification
Beat average
surrogate (%)

Significant above
chance ratio (%)

Beat average
surrogate (%)

Significant above
chance ratio (%)

Beat average
surrogate (%)

Significant above
chance ratio (%)

FOA/FOIA 52.38 100.00 52.38 90.48 47.62 90.48
Rhythmic patterns 34.78 82.60 39.13 73.91 30.43 78.26

Awake patient 31.25 87.50 31.25 81.25 25.00 81.25

Concerning the random predictor, only the seizure classification criterion man-

aged to achieve a higher percentage of patients where the average random predictor

was outperformed for models optimized with MOGA (every patient had already been

validated for the other two algorithms, so no further conclusions could be drawn).

Improvements in terms of the number of significant above chance level ratios were

found for the first group in models optimized with NSGA-II and the modified SMS-

EMOA, as well as in the latter for the second group (only seizures with rhythmic

patterns). As for the surrogate predictor, both validation percentages were only

improved for the first patient group.

The previous results suggest that, for patients who suffer from FOA and/or

FOIA seizures, the current methodology may prove particularly viable. This is

further supported by the positive correlations found between this patient group and

the sensitivity metric: ρ = 0.19, ρ = 0.19 and ρ = 0.17, considering each MOEA

variant, respectively.

5.3 Phenotype analysis

In order to demonstrate the possible benefits of developing interpretable pre-

diction models for clinical knowledge extrapolation, the resulting phenotype was

examined at the group level and, subsequently, for a selected patient. Table 5.12

presents the average SOP found for each patient, while figure 5.2 illustrates the

relative prevalence of each one.
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Table 5.12: Average SOP duration found for each patient in each algorithm variant.

SOP duration (minutes)

Patient ID MOGA NSGA-II SMS-EMOA (modified)

402 41.32 ± 8.02 44.71 ± 6.75 40.78 ± 6.63
8902 44.06 ± 6.78 43.03 ± 6.78 45.45 ± 7.46
11002 43.47 ± 7.54 42.85 ± 7.55 37.40 ± 10.37
16202 40.28 ± 7.10 36.25 ± 6.42 39.54 ± 4.76
23902 44.39 ± 7.62 42.32 ± 8.42 43.70 ± 7.27
30802 44.53 ± 6.04 43.04 ± 6.94 43.04 ± 6.06
32702 42.02 ± 9.22 40.98 ± 7.76 39.92 ± 5.79
46702 43.08 ± 7.16 39.10 ± 7.14 42.24 ± 5.35
50802 48.08 ± 4.40 44.40 ± 6.85 44.83 ± 6.75
53402 47.32 ± 6.04 38.92 ± 6.39 43.33 ± 8.51
55202 47.06 ± 5.57 42.93 ± 4.76 44.52 ± 5.50
56402 42.03 ± 8.21 40.99 ± 9.86 38.45 ± 9.96
58602 42.20 ± 6.87 40.12 ± 5.85 42.56 ± 6.88
59102 43.71 ± 5.96 41.55 ± 7.15 40.33 ± 6.61
60002 43.81 ± 7.29 44.05 ± 6.28 41.21 ± 5.98
64702 43.29 ± 9.13 47.97 ± 6.64 47.05 ± 6.23
75202 43.94 ± 8.93 44.23 ± 8.18 44.34 ± 7.57
80702 42.36 ± 7.75 40.36 ± 7.06 42.17 ± 4.07
85202 40.92 ± 5.94 43.35 ± 6.33 43.52 ± 7.18
93402 43.31 ± 6.87 44.68 ± 7.92 44.48 ± 6.80
93902 40.60 ± 11.03 40.37 ± 5.78 36.55 ± 9.42
94402 42.85 ± 6.33 41.66 ± 7.83 40.46 ± 6.69
95202 42.47 ± 6.62 42.62 ± 7.59 44.19 ± 10.39
96002 43.72 ± 6.35 43.56 ± 6.55 38.24 ± 5.06
98102 42.80 ± 9.67 40.17 ± 9.24 32.61 ± 11.60
98202 46.02 ± 6.31 40.50 ± 6.44 41.49 ± 7.20
101702 43.85 ± 6.67 46.01 ± 7.63 38.67 ± 12.40
102202 41.25 ± 8.97 41.36 ± 6.55 38.78 ± 7.53
104602 45.14 ± 6.34 41.74 ± 7.09 41.53 ± 7.91
109502 45.42 ± 6.63 46.80 ± 6.09 46.18 ± 5.42
110602 44.35 ± 6.85 43.73 ± 7.82 37.99 ± 5.99
112802 42.76 ± 6.65 40.39 ± 9.27 43.41 ± 7.49
113902 43.86 ± 7.95 39.41 ± 9.64 40.38 ± 7.89
114702 45.04 ± 6.16 41.31 ± 7.70 41.10 ± 8.52
114902 42.40 ± 8.61 38.38 ± 5.98 40.62 ± 7.59
123902 44.68 ± 7.44 43.28 ± 8.59 45.30 ± 6.49
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Figure 5.2: Histogram of the prevalence (valued between 0 and 1) of each SOP
duration within models optimized by different algorithms.

Averaging across all 36 patients, the mean SOP duration in minutes for each

MOEA was 43.74 ± 7.52, 42.54 ± 7.61 and 41.85 ± 7.86, respectively. Despite all

algorithms presenting statistically significant differences between one another, there

is a clear preference for SOPs between 35 and 50 minutes across all three variants.

Moreover, it is worth noting that neither MOEA displays any preference for

either extreme case (i.e. SOPs of 20 or 80 minutes). Another remarkable aspect lies

in the fact that virtually no models used a SOP longer than 65 minutes, in spite of

the fact that the prediction task becomes less challenging for longer SOPs (at the

cost of patient stress levels, as explained in section 2.3.1).

Next, patient 114902 was selected since its patient-specific models achieved the

highest percentage of models above chance level for all three MOEA variants (con-

cerning the surrogate predictor) at a reasonable sensitivity and FPR/h ≤ 0.15. The

following figures represent the presence of several genes in the resulting phenotypes,

concerning the electrodes/lobes where information was extracted from, the types of

features used as well as the delays and window lengths within the feature set.

As indicated in figures 5.3a and 5.3b, the most common electrodes were Cz,

C3, C4, Fz and Pz for all three variants and, accordingly, the central, frontal and

parietal lobes were the most frequent. Notably, over 70% of all models optimized

with either MOEA contained one or more electrodes placed in the central lobe.

These results may support network theory, which proposes that even focal seizures

stem from abnormal activity in a large-scale functional network extending over lobes

and hemispheres [62]. Hence, although this patient’s epileptic focus is situated in
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(d) Number of unique lobes

Figure 5.3: Histogram of the prevalence (valued between 0 and 1) of different
electrodes/lobes as well as their unique number within each model.

89



5. Results and Discussion

the temporal lobe, pre-ictal changes or patterns may be encountered among the

remaining brain regions.

Moreover, a large proportion of the prediction models did not require more than

2 or 3 electrodes, where the majority was placed in either 1 or 2 lobes, as observed

in figures 5.3c and 5.3d. A probable cause is the inclusion of the third objective

in the evolutionary search, which benefits solutions with low spatial requirements.

Hence, in addition to providing insight on brain phenomena, these models may aid

in terms of signal acquisition and, in particular, patient comfort (e.g. 60% of the

models optimized with NSGA-II only require electrodes placed in a single lobe).

By analyzing figures 5.4a and 5.4b, it can be seen that, with the exception of

models optimized by NSGA-II, time domain features were preferred. In particular,

the Hjorth mobility measure was present in over 20% of all models optimized with

either MOEA. Among features from the frequency domain, the relative spectral

power of the high gamma range and the spectral edge frequency with a cut-off at

75% were the most common.

Despite the preference for time domain features, the vast majority of the mod-

els contained features from both types, as seen in figure 5.5b. Apart from minor

exceptions, every prediction model contained at least three different features within

its set, regardless of the MOEA used to optimize it. Concerning the mathematical

operators (figure 5.5), no clear trends were identified.

Finally, some patterns can be found in figure 5.6 concerning the delay and

window length genes. The duration of each one is commonly around 15 and 10

minutes, respectively. More importantly, however, is their heterogeneity within

each feature set: most models present 3 different delays and 2 to 4 different window

lengths. In other words, most prediction models do not focus on the feature values

within the same time frame, but instead appear to search for seizure-related patterns

in different time periods, hinting at the possibility of capturing a sequence of events

leading up to a seizure.

Overall, these findings allow for clinical interpretation of the prediction models

by providing insight in terms of the seizure-generation processes in two different

ways. First, when assessing the feature sets resulting from the evolutionary search,

whose prevalence may be indicative of key properties found within the EEG. Then,

when analyzing the electrodes from which those features are extracted, which may

shed light on connectivity between brain regions during epileptogenesis.
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(b) Feature type prevalence

1 2 3 4 5
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ev

al
en

ce

MOGA
NSGA-II
SMS-EMOA (modified)

(c) Number of unique features

1 2
Number of feature types

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ev

al
en

ce

MOGA
NSGA-II
SMS-EMOA (modified)

(d) Number of unique feature types

Figure 5.4: Histogram of the prevalence (valued between 0 and 1) of different
features as well as their unique number within each model.
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(b) Number of unique operators

Figure 5.5: Histogram of the prevalence (valued between 0 and 1) of different
mathematical operators as well as their unique number within each model.
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Figure 5.6: Histogram of the prevalence (valued between 0 and 1) of different
delays/window lengths as well as their unique number within each model.
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5.4 Summary

Training performance considering the solution set selected by the DM was gen-

erally satisfactory for each of the three objectives (sample sensitivity, time under

false alarm and number of different electrodes/lobes within the feature set) across

all three MOEAs. Fitness scores averaged at 0.83 ± 0.14, 0.79 ± 0.11 and 0.74 ±
0.20 for MOGA, 0.97 ± 0.04, 0.97 ± 0.04 and 0.83 ± 0.16 for NSGA-II and, finally,

0.97 ± 0.04, 0.97 ± 0.04 and 0.81 ± 0.16 for the modified SMS-EMOA.

In terms of testing performance, the following sensitivity and FPR/h were

achieved: 0.21 ± 0.27 and 0.21 ± 0.12 for MOGA, 0.18 ± 0.26 and 0.21 ± 0.12

for NSGA-II and 0.18 ± 0.26 and 0.22 ± 0.12 for the modified SMS-EMOA. Con-

cerning statistical validation, the random predictor was outperformed for 19%, 30%

and 14%, respectively, and the surrogate predictor was beaten by a significant num-

ber of models for 89%, 83% and 86% of all 36 patients.

Patient stratification results indicated a reasonable increase in validation per-

centage when restricting analysis to patients whose seizures were either classified as

either FOA or FOIA. The remaining groups (rhythmic activity patterns and patients

who were awake prior to the seizure onset) did not achieve any improvement.

By analyzing the resulting phenotypes for each set of models, a clear preference

for SOPs between 35 and 50 minutes was observed for all three MOEA variants.

As for the selected patient, several trends were found concerning gene prevalence.

Firstly, information is extracted mostly from electrodes placed on the central lobe,

with most models requiring a low number of different electrodes and lobes. Then,

the vast majority of the feature sets included 3 or more different features from both

the time and frequency domains. Finally, features tend to analyze different time

frames, possibly capturing the sequence of events preceding the seizure onset.
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6

Conclusion

The present study concerned the development of machine learning models op-

timized by three different Multi-Objective Evolutionary Algorithms (MOEAs) for

seizure prediction based on Electroencephalogram (EEG) data. It can be said that

the established research goals were achieved, namely:

• A considerable percentage of the patient-specific prediction models was sta-

tistically validated considering both random and surrogate predictors, with

generally low False Positive Rate per Hour (FPR/h) values;

• The several hours of available signal data were used to train, test and evaluate

the models, in addition to patient stratification made possible by the extensive

metadata present in the EPILEPSIAE database;

• The application of MOEAs for model optimization not only allowed to explore

the vast search space of possible configurations but also provided the possibility

for clinical knowledge extrapolation from the obtained phenotypes.

Moreover, despite the computational complexity of the training phase, which

had to be restricted to 4 hours of data before each seizure onset, the proposed

methodology is relatively light and straightforward: basic pre-processing steps, fol-

lowed by high-level feature extraction and the application of a linear Support Vector

Machine (SVM) for classification. Considering the relatively short runtime, it may

be possible to build a real-time application adapted to the seizure rate of patients in

pre-surgical monitoring. The majority of the developed models also presented a low

number of required electrodes, a potential improvement regarding power efficiency

and patient comfort.

Nevertheless, when compared to other studies using data from the same database,

the present methodology is outperformed in terms of sensitivity, which may indicate

the need for models with a higher degree of complexity. Furthermore, considering

that data was retrieved from patients in pre-surgical monitoring units, this work

may only serve as a proof of concept for the developed prediction system. In order

to truly assess its applicability in a real-life scenario, long-term data from everyday
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life conditions must be used [42].

Concerning future work, a stronger focus on the pre-processing stage of the cur-

rent pipeline could potentially improve performance. Namely, refined data cleanup

and automated artifact removal procedures may lead to more robust models with

a lower chance of producing false alarms. Another possible modification, given the

observed runtime for the training phase, could be to make the MOEA periodically

search for new configurations (i.e. feature sets and model parameters) with the

availability of incoming seizure data.

Furthermore, employing the same methodology in different datasets would allow

for comparisons to other seizure prediction studies. In particular, long-term data

containing naturally-occurring seizures such as the one curated by Cook et al. [24]

would be highly valuable not only to evaluate recent approaches but also for the

development and validation of novel prediction algorithms, pushing towards a wider

clinical acceptance.
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A

Detailed Description of Common

Features

Linear univariate features

Statistical moments

Statistical moments can be used to describe the amplitude distribution of the

signal. Due to their simplicity and linearity properties, they are the most widely used

features in seizure prediction studies [15, 30, 31, 43, 74, 78, 86, 87, 103, 104, 108, 110].

Table A.1 describes the first four statistical moments, where x represents the

input vector and N the number of samples within a sliding window.

Table A.1: Statistical moments used in feature extraction.

Order Designation Description Formula

1st Mean
Measure of the

average amplitude
µ = 1

N

∑N
i=1 xi(A.1)

2nd Variance
Measure of dispersion

of amplitude around mean.
σ2 = 1

N−1
∑N

i=1(xi − µ)2(A.2)

3rd Skewness
Measure of asymmetry

of amplitude distribution.
χ =

1
N−1

∑N
i=1(xi−µ)3

σ3 (A.3)

4th Kurtosis

Measure of relative

peakedness / flatness

of amplitude distribution.

κ =
1

N−1

∑N
i=1(xi−µ)4

(N−1)σ4 − 3(A.4)

Relative spectral power

EEG activity is comprised of oscillations and transients (figure 2.3), where it is

assumed that seizure-generation processes lead to changes in the normal rhythmic

brain activities [78, 82]. Numerous studies have decomposed the EEG into different
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A. Detailed Description of Common Features

frequency bands (delta, theta, alpha, beta, gamma) and computed their relative

power [7, 10, 15, 16, 29–31, 74, 78, 82, 86, 87, 103, 104, 108].

The relative spectral power of each band can be computed by firstly comput-

ing the Power Spectral Density (PSD) of the signal within a window (assumed

to be short enough to be considered quasi-stationary and long enough to capture

low-frequency brain activity) [16]. In its simplest form, this can be performed by

applying the Fast Fourier Transform (FFT) and averaging the squared coefficients

belonging to the band of interest [30]. The normalized spectral power NPi for a

frequency band i is then computed by dividing the spectral power in the sub-band

(Pi) and the total power in the signal (Ptot):

NPi =
Pi
Ptot

=

∑
i PSD(x)∑

total PSD(x)
. (A.5)

Spectral edge frequency/power

Spectral power in the EEG is primarily concentrated in the lower frequency

range, below 40Hz. The spectral edge frequency (f) corresponds to the frequency

below which 50% of the total power of the signal is located. Thus, the spectral edge

power is a measure of power existing below f [75].

Studies have used this measure and reported a power transfer from low to high

frequencies during the pre-ictal stage [10, 30, 31, 78, 86, 87, 103, 104, 110].

Wavelet coefficients

The Discrete Wavelet Transform (DWT) is a time-frequency domain transform,

alternative to the FFT, which is able to reflect both frequency and temporal location

properties of the signal [74]. Simply put, wavelets provide a time-variant decomposi-

tion adapted to the signal, capable of capturing minor details and sudden changes by

granting a higher frequency resolution for lower frequencies and higher time resolu-

tion for higher frequencies [3]. Wavelet coefficients measure the correlation between

the signal and different translations and scales of a mother wavelet [30].

Several studies have used wavelet decomposition and computed other measures,

such as signal energy, from its coefficients [3, 26, 30, 57, 74, 86, 87, 104, 108, 110].

In particular, Rasekhi et al. [86] highlighted the predictive power of low-frequency

wavelet coefficients, while Bandarabadi et al. [15] developed patient-specific or-

thogonal mother wavelets through genetic algorithm optimization. Deep Learning

approaches by Khan et al. [57] and Tsiouris et al. [108] have also used wavelet-

transformed EEG signals as input for their models.
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Accumulated energy

The first step to calculate accumulated energy is to average all successive values

of energy within a time window of N samples:

Ea =
1

N

N∑
i=1

x2i . (A.6)

Afterwards, for a determined number of consecutive windows (W ), it is possible

to calculate the energy accumulation for epoch k, as indicated in (A.7):

Eack =
1

W

W∑
i=1

Ea + Eack−1
. (A.7)

The underlying assumption of using this measure is that seizure-generation

processes lead to the intensification of brain activity which results in accumulation

of energy, as reported in studies by Rasekhi et al. [86, 87], Valderrama et al. [110],

Teixeira et al. [103, 104], Moghim et al. [74] and D’Alessandro et al. [26].

Decorrelation time

The auto-correlation function of a signal is defined as the correlation between

the signal x(t) and versions time shifted by k samples:

cxxk =

∑N−k
i=1 xixi+k

(N − 1)σ2
. (A.8)

Decorrelation time corresponds to the first zero-crossing of cxxk and is an in-

dicator of signal periodicity [30]. Brain activity changes due to seizure-generation

may be captured by analyzing variations in decorrelation time, as demonstrated in

various studies [10, 30, 31, 78, 86, 87, 103, 104, 108, 110, 110].

Linear modeling

Autoregressive (AR) models can be used to model the EEG, assuming station-

arity of the signal. In AR modeling, the predicted output in each instant t is a

weighted sum of previous p values (p being the order of the model) plus a constant

term c and white noise ε. By considering Yt the predicted value for instant t and
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ari the model parameters, an AR model can be expressed by (A.9):

Yt = c+
P∑
i=1

ariYt−1 + εt. (A.9)

Seizure prediction studies have made use of AR modeling, either based on pre-

diction error [30, 31, 86, 87, 103, 104], which has been found to increase due to

pre-ictal changes in brain activity, or the values of modeling coefficients as features

[21].

Hjorth parameters

Three parameters have been defined by Bo Hjorth for quantitative description of

the EEG: activity, mobility and complexity. Activity is proportional to the variance

of the signal (σ2(x)), while mobility provides an estimate of the mean frequency and

complexity assesses signal bandwidth [75, 86]. These can be defined, respectively,

by the following expressions:

Ha = σ2(x), (A.10)

Hm =

√
σ2(x′)

σ2(x)
, (A.11)

Hc =

√
σ2(x′′)σ2(x)

(σ2(x′))2
, (A.12)

where x’ and x” concern the first and second derivatives of the signal. Differences

in mobility and complexity between the pre-ictal and inter-ictal stages have been

reported [10, 30, 78, 86, 87, 103, 104, 110].

Non-linear univariate features

Correlation dimension/sum

The reconstruction of a state trajectory ~st in a phase plane for a scalar time

series x can be computed by the method of delayed coordinates. Hence, in each

instant t, for an embedded dimension m and a time delay τ :

~st = (xt,xt−τ ,...,xt−(m−1)τ ). (A.13)
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Considering a time series with N samples, each N − (m − 1)τ reconstructed

vectors depicts an instantaneous state of the system in an m-dimensional space

[75]. The sequential plot of the states defines the state space trajectory, which can

illustrate the system’s dynamics [1].

The correlation sum Cs (or correlation integral) estimates the local probability

density in state space, by counting the numbers of vector pairs in it that are closer

than a given hypersphere radius ε. Considering Θ the Heaviside function, W the

Theiler window and M = N − (m− 1)τ :

Cs(ε) =
2

(M −W )(M −W − 1)

M∑
i=1

M∑
j=i+W

Θ(ε− |~sj − ~sk|) (A.14)

From the local slope of the correlation sum, the correlation dimension CD

may be obtained by (A.15) and corresponds to an estimate of the number of active

degrees of freedom of random points within a state space. Studies by Adeli et al. [3]

and Moghim et al. [74] have used it for chaos analysis of the EEG signal dynamics.

However, its predictive power has been contested by Harrison et al. [45].

CD = lim
N→∞

lim
ε→0

ln(Cs(ε))

ln(ε)
. (A.15)

Entropy

Entropy can be used as a measure of regularity and predictability of the EEG

signal fluctuations. Considering that seizures are characterized by an increase of

synchronization in neuronal activity (thus, becoming more predictable) [75], various

entropy measures have been proposed and exploited to detect changes from the

inter-ictal to the pre-ictal stage, such as approximate, sample or spectral entropies

[1, 26, 103].

Dynamical similarity index

The dynamical similarity index ζt was proposed by Le Van Quyen et al. [66] as

a measure of similarity between segments of the EEG, namely, between a reference

inter-ictal segment r and a sliding test window t. Mathematically, it is computed

by (A.16), where Crt is the cross-correlation sum and Crr and Ctt are the auto-
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correlation sums of the reference and test window, respectively.

ζt =
Crt√
CrCt

. (A.16)

This index ranges from zero to one and it can be interpreted as the degree

of stationarity, that is, ζt ≈ 1 when the two segments have the same underlying

dynamics [70]. Shifts to lower values during pre-ictal changes have been reported

and used in seizure prediction studies [67, 78, 84].

Lyapunov exponents

The largest Lyapunov exponent is a measure of a system’s chaotic behavior,

quantifying the exponential divergence of nearby trajectories in state space [75].

In other words, given that system predictability is sensitive regarding the initial

conditions, chaos can be quantified by measuring the increase in distance between

trajectories over time, as given by (A.17):

dt = d0e
Lt, (A.17)

where Lt represents the rate of divergence and an estimate of the largest Lya-

punov exponent. This measure was shown to reduce significantly minutes before

the pre-ictal stage, indicating that brain dynamics become more predictable preced-

ing seizure occurrence [51]. Despite its use in some studies [3, 74, 78], others have

contested its predictive power due to noise present in the EEG signal [64, 65].

Linear multivariate features

Maximum linear cross-correlation

Maximum linear cross-correlation is used to quantify the lag synchronization

between two EEG channels. In other words, it can characterize the condition where

two signals are identical in terms of phase and amplitude but shifted by a time lag

τ [75, 76]. This is done by first computing the linear cross-correlation function Cxy:

Cxy(τ) =

∫ +∞

−∞
sx(t+ τ)sb(t)dt. (A.18)

Afterwards, Cxy is normalized to the interval [0,1] and its maximum value is
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taken, as given by (A.19):

Cmax = max
τ

{∣∣∣∣∣ Cxy(τ)√
Cxx(0)Cyy(0)

∣∣∣∣∣
}
. (A.19)

High values (Cmax ≈ 1) indicate lag synchronization while lower values represent

unsynchronized signals. Significant drops were found during the pre-ictal stage,

followed by hyper-synchronization during seizures, as shown by several studies [73,

76, 78, 104, 108].

Non-linear multivariate features

Mean phase coherence

Mean phase coherence was proposed by Mormann et al. [79] to quantify phase

synchronization between signals from different channels. Considering the phases of

two channels θx and θy and a time series of length N , the measure is defined by

(A.20):

R =

∣∣∣∣∣ 1

N

N∑
j=1

ei(θx(t)−θy(t))

∣∣∣∣∣ . (A.20)

R represents a normalized value between zero and one, where two channels are

fully synchronized when R = 1 and completely unsynchronized for R = 0. It has

been used in numerous studies [5, 16, 78, 84] and compared to maximum linear cross-

correlation by Mormann et al. [76], which reported similar predictive performance

for both measures.

Dynamical entrainment

Iasemidis et al. [49] proposed a measure to quantify the non-linear behavior of

signals from two different channels. It is defined as the statistical difference between

the largest Lyapunov exponents Lmax over a number of l consecutive windows for

two signals, by using the index Txy retrieved from a paired t-test:

Txy =
√
l
|〈Lmax,x − Lmax,y〉|

σxy
. (A.21)

A low value for Txy indicates high entrainment or, in other words, synchronized

activity between two channels [75]. Mirowski et al. [73] adopted this measure.
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B

Supplementary Results

Table B.1: Number of Pareto-optimal individuals before and after employing the
Decision Maker (DM)

Pareto-optimal solutions Selected by the Decision Maker

Patient ID MOGA NSGA-II SMS-EMOA (modified) MOGA NSGA-II SMS-EMOA (modified)

402 239 1323 1101 53 392 522
8902 278 1406 1495 171 221 167
11002 174 1389 1051 62 928 737
16202 251 1232 1291 54 467 312
23902 235 1209 1444 140 696 1012
30802 179 1221 1317 32 859 695
32702 245 1164 1233 126 410 464
46702 279 1378 1446 65 341 196
50802 88 1202 1246 78 1202 1246
53402 151 1131 1078 86 888 822
55202 200 1447 1136 124 872 640
56402 232 1453 1224 118 308 433
58602 240 1379 1143 50 524 354
59102 149 1426 1401 101 1422 1381
60002 214 1398 1368 109 604 564
64702 205 1252 1352 108 908 488
75202 254 1449 1333 80 570 621
80702 270 1325 1217 91 321 459
85202 196 1446 1177 27 395 420
93402 200 1294 1057 124 847 712
93902 200 1237 1467 42 381 339
94402 227 1448 1363 100 628 628
95202 217 1301 1344 89 383 364
96002 134 1419 1111 90 1242 1033
98102 253 1444 1338 75 261 222
98202 213 1452 1348 49 360 392
101702 239 1267 1049 91 669 567
102202 265 1470 1216 72 323 291
104602 206 1448 1248 105 769 606
109502 205 1122 1394 94 805 1010
110602 290 1456 1271 93 864 697
112802 291 1417 1433 96 370 596
113902 225 1444 1426 97 448 449
114702 239 1188 973 123 796 598
114902 253 1124 1015 98 693 684
123902 189 1188 1349 77 809 680
TOTAL 7925 47949 45455 3190 22976 21401
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Table B.2: p-values obtained for the t-test performed to assess whether the differ-
ences between fitness score means are statistically significant, considering all Pareto-
optimal solutions.

MOGA vs. NSGA-II MOGA vs. SMS-EMOA NSGA-II vs. SMS-EMOA

Ssamples 0.00 0.00 1.00
Tf 0.00 0.00 0.00
NE 0.00 0.00 0.00

Table B.3: p-values obtained for the t-test performed to assess whether the dif-
ferences between fitness score means are statistically significant, considering the
solutions selected by the DM.

MOGA vs. NSGA-II MOGA vs. SMS-EMOA NSGA-II vs. SMS-EMOA

Ssamples 0.00 0.00 1.00
Tf 0.00 0.00 1.00
NE 0.00 0.00 0.00

Table B.4: p-values obtained for the t-test performed to assess whether the differ-
ences between test results for each MOEA were statistically significant.

MOGA vs. NSGA-II MOGA vs. SMS-EMOA NSGA-II vs. SMS-EMOA

Sensitivity 0.00 0.00 1.00
FPR/h 1.00 0.00 0.00

Random sensitivity 0.00 1.00 0.00
Solutions beat random (%) 0.00 0.00 0.00

Surrogate sensitivity 1.00 0.00 0.00
Solutions beat surrogate (%) 0.00 0.07 0.00
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Table B.5: Sensitivity values obtained for the average random predictor, that is,
considering the average Seizure Occurrence Period (SOP), average FPR/h and the
total number of models and testing seizures.

Patient ID MOGA NSGA-II SMS-EMOA (modified)

402 0.58 0.00 0.00
8902 0.00 0.00 0.00
11002 0.00 0.00 0.00
16202 0.00 0.00 0.00
23902 0.00 0.00 0.00
30802 0.00 0.00 0.00
32702 0.00 0.00 0.00
46702 0.58 0.00 0.00
50802 0.00 0.00 0.00
53402 0.00 0.00 0.00
55202 0.00 0.00 0.00
56402 0.00 0.00 0.00
58602 0.00 0.00 0.00
59102 0.63 0.00 0.00
60002 0.15 0.00 0.00
64702 0.00 0.00 0.00
75202 0.00 0.00 0.00
80702 0.05 0.00 0.00
85202 0.50 0.00 0.00
93402 0.00 0.00 0.00
93902 0.00 0.00 0.00
94402 0.00 0.00 0.00
95202 0.00 0.00 0.00
96002 0.00 0.00 0.00
98102 0.40 0.00 0.00
98202 0.38 0.00 0.00
101702 0.38 0.00 0.00
102202 0.00 0.00 0.00
104602 0.15 0.00 0.00
109502 0.00 0.00 0.00
110602 0.38 0.00 0.00
112802 0.00 0.00 0.00
113902 0.06 0.00 0.00
114702 0.00 0.00 0.00
114902 0.00 0.00 0.00
123902 0.62 0.00 0.00
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Table B.6: Patient groups for each stratification criterion: seizure classification,
activity patterns and vigilance state.

Patient ID
FOA/FOIA

seizures
Rhythmic
patterns

Awake

402 • •
8902 • •
11002 • •
16202 •
23902 • • •
30802 • •
32702 • •
46702 •
50802 •
53402 • •
55202 • •
56402 • •
58602 •
59102 • • •
60002 •
64702
75202 • •
80702 •
85202 •
93402 •
93902 •
94402 • •
95202
96002 • • •
98102 •
98202 • •
101702 •
102202 • •
104602 •
109502 • • •
110602 • • •
112802 • • •
113902 • •
114702 • • •
114902
123902 •
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