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Abstract

Non-covalent interactions have long been known to be responsible for significant
mechanisms in biological structures, and have historically lacked a satisfying or in-
tuitive quantum mechanical description. The recently developed NCI index method
by Johnson et al [1] fills a gap that existed within topological methods for the visu-
alization of non-covalent interactions [2]. Even following its implementation by some
of its original authors on the NCIPLOT software [3, 4], the method itself has not
gained much traction in the Physics community, despite its possible and pertinent
use in visualizing and describing non-covalent interactions in solids, including novel
materials in which this type of interaction is responsible for structural stabilization.
The project described in this document aims to bridge this gap between the method
and its potential users by implementing it on a significantly simple, fast, and easy
to modify Python script which works for several types of systems and takes as input
files of the universally known cube format, which can be output by most major
quantum chemistry and electronic structure codes. The resulting code is tested on
both simple systems and systems of significant interest.

Resumo

Há algum tempo se sabe que interações não-covalentes são responsáveis por
mecanismos significativos em estruturas biológicas e, historicamente, careciam de
uma descrição quântica intuitiva ou satisfatória. O método ‘NCI index’ desen-
volvido recentemente por Johnson et al [1] preenche uma lacuna que existia em
métodos topológicos para a visualização de interações não-covalentes [2]. Mesmo
depois da sua implementação por alguns dos seus autores originais no software NCI-
PLOT [3,4], o método em si não ganhou muita visibilidade na comunidade de F́ısica,
apesar do seu uso posśıvel e pertinente na visualização e descrição de interações não-
covalentes em sólidos, incluindo novos materiais nos quais este tipo de interação é
responsável pela estabilização estrutural. O projeto descrito neste documento visa
preencher esta lacuna entre o método e seus potenciais usuários, implementando-
o num ‘script’ Python significativamente simples, rápido e fácil de modificar, que
funciona para vários tipos de sistemas e toma como ‘input’ ficheiros do formato
universalmente conhecido ‘cube’, que pode ser gerado pela maioria dos principais
códigos de qúımica quântica e estrutura eletrónica. O código resultante é testado
tanto em sistemas simples como sistemas de interesse significativo.
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Chapter 1

Introduction

1.1 Motivation

Non-covalent interactions (NCIs) have been a subject of interest and research
for many years. Despite being responsible for many bonding mechanisms in biolog-
ical systems and other important areas such as materials engineering, and the fact
that many of these interactions have been empirically categorized into Hydrogen
bonds, dipole-dipole interactions, van der Waals interaction, steric crowdings, etc.,
their non-covalent nature makes it hard to establish a rigorous physical description
of them. Unlike covalent interactions, which can now be easily studied from an ab
initio perspective using e.g. the electron localization function (ELF) approach [5],
or orbital-based methods, NCIs are known for being considerably difficult to study
with simple many-body approaches like density functional theory (DFT) methods,
due to the inherent non-locality of the exchange and correlation (XC) effects of the
interactions. This is, however, an effect of the failure of local and semi-local XC
functionals in describing the energy of the interactions, and which are very sensitive
to small changes in Kohn-Sham orbitals and charge density. The charge density
itself is not as dependent on the calculation mode [6] and is typically well described
at a lower level of theory than the one needed for proper energy convergence. With
this in mind, a method for studying NCIs based entirely on charge density, however
it may be computed, is a much needed tool in physical chemistry, and a testament
to the assertion of the Hohenberg-Kohn theorems [7] that all ground state properties
of a quantum mechanical system are functionals of its ground state charge density.

Over the past decade, a new method has been developed by Johnson et al [1] for
studying NCIs named the NCI index analysis, based entirely on the charge density,
and subsequently implemented in the Fortran-based software NCIPLOT [3] which
is currently on version 4 and includes a variety of newly developed tools for NCI
analysis [4]. For NCI calculations on solids, the method has also been implemented
into the Critic software [8, 9]. However, NCIPLOT has two main modes of use,
which are reflected in the types of input used for the analysis:

• NCI index from pro-molecular densities, for which the geometry of the system
is input in xyz format, and the density is built from piece-wise exponential
atomic orbitals centered on atomic positions.

• NCI index from self-consistent field (SCF) calculations, for which the quantum

1



mechanical information of the system is input via a wfn format file resultant
from an SCF calculation.

Although some quantum chemistry codes can output this wfn file type, it is cer-
tainly not common among the Physics community. Furthermore, since the method
of analysis is a real-space method, it seems to make more physical sense to use the
universally known Cube format file as input. There have been programs developed
which interface NCIPLOT with a cube file input, and these are available in the
NCIPLOT website1. However, direct analysis of a cube file should be possible with-
out having to use basis sets as an intermediary, and an analysis of this type is, in
principle, more physically sound.

With this in mind, a plan was made to re-implement the NCI index method in
a Python code which takes cube files as a direct input. Using this language also
makes the code more readily available and easy to use, as no installation is required,
and has the added benefit of making the code much easier to modify according to
the community’s needs. Additionally, by making the data generated by the Python
implementation be output as data and cube files for use with other software, it also
gives the user better control over the results of the analysis. In later stages of the
code development a decision was made to have it interface with the Atomic Sim-
ulation Environment (ASE) [10] Python package, available on Anaconda, in order
to make it easier to analyze densities directly resultant from calculations run with
ASE, as well as use some of the already professionally developed ASE capabilities
for dealing with unit cells and cube file import and export tools.

This implementation has another apparent advantage over the established NCI-
PLOT2 as its real-space nature makes it capable of handling periodic structures with
non-orthogonal unit cells.

1.2 Thesis outline

In Chapter 2 a very basic overview of DFT is done in order to clarify the origin
of the reduced density gradient (RDG), a key quantity in the method being imple-
mented [1]. Although details are scarce in this chapter, adequate bibliographical
references are made. The NCI index method is briefly described and its connections
to the Quantum Theory of Atoms in Molecules (QTAIM) by Richard Bader [11],
specifically to bond critical points (BCPs) and the physical meaning of density
derivatives.

In Chapter 3, an overview is given of the code developed by the author as part of
the project described in this document. Complements to this chapter are referenced
in the text and present in Appendices A, B and C.

In Chapter 4, Kohn-Sham DFT single-point energy and density calculations are
run for several systems of interest in which significant non-covalent interactions are

1https://www.lct.jussieu.fr/pagesperso/contrera/nci-oprograms.html
2As well as many disadvantages, which are briefly mentioned in the Conclusion of the present

document.
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present, using different methods and codes, divided into four groups: simple test
systems, which serve as a way to test the capabilities of the developed code and
to study certain specific aspects of visualization and differences between calculation
methods used; Group XII metal dimers, three geometrically simple systems of in-
terest when studying van der Waals dispersion in relatively heavy metals, and for
which convergence tests are done before using the developed code for NCI analysis;
periodic systems, for which experimental and in some cases optimized structures
were used to compute densities and test the code’s capabilities in these types of sys-
tems; and Bismuth carbide clusters, a potential case of practical application of the
developed code in studying the formation of metal carbide clusters through dimer-
ization of simpler systems.

We conclude in Chapter 5 and provide a few interesting ideas for future work to
be done both on and with the developed code.

1.3 Atomic units

Throughout this document, mainly in the theoretical introduction, (Hartree)
atomic units3 are implied in every expression unless otherwise specified. The follow-
ing is a small exposition of this system of units.

The time independent Schrödinger equation for a (neutral) hydrogen atom, con-
sidering the proton a static point charge at the origin, is[

− ~2

2me

∇2 − e2

4πε0

1

r

]
ψ(r) = E ψ(r) (1.1)

in which ~ is the reduced Plank constant, me the electron mass, e the (norm of the)
electron charge, ε0 the vacuum electric permittivity, ψ(r) the one-particle wave-
function which describes the system and E the corresponding energy. Solving this
eigenvalue/eigenfunction equation, we can obtain the normalized ground state solu-
tion

ψ1s(r) =
1

√
πa

3/2
0

e−r/a0 (1.2)

with

a0 =
4πε0
e2

~2

me

(1.3)

the Bohr radius. The square modulus of ψ1s(r) is the ground state electronic density,
and by multiplying |ψ(r)|2 and 4πr2 we get the ground state radial distribution
density u(r), which can be shown to peak exactly at a0, meaning this is the most
probable distance between the electron and the proton in the ground state of the
hydrogen atom.4 It thus makes sense to use a system of units such that lengths are
measured in a0. Additionally, one can see how equation (1.1) would be simplified
by using me as a unit of mass and e as a unit of charge. To complete a coherent
system of units of mass, charge, length and time, we simply need to define a unit of

3Named after atomic physicist Douglas Hartree [12]
4Not to be confused with the average distance between the two particles in the ground state,

which is (3/2) a0.
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time, or find an equivalent definition. The ground state energy which accompanies
the solution of the wavefunction found is

E0 = −1

2

me

~2

(
e2

4πε0

)2

= −1

2

~2

me

1

a20
(1.4)

We now have a choice between defining the norm of this quantity as the atomic
unit of energy, from which we get ~ =

√
2 atomic units of action; or simply defining

~ as the atomic unit of action, getting E0 = −1/2 atomic units of energy as a result.
The obvious choice falls on setting ~ = 1, and the resultant atomic unit of energy is
typically referred to as an Hartree, for which the symbol Eh is used. Note that this
choice also implies, from equation (1.3),

4πε0 =
mee

2

~2
a0 = 1 a.u. of ‘permittivity’ (1.5)

although the quantity 4πε0 was never directly set to 1 in this unit system; it is only
a consequence of the derived units.

For further characterization of the atomic unit system, let us consider the di-
mensionless fine structure constant

α =
e2

4πε0

1

~c
(1.6)

Note that from equations (1.3) and (1.6) we can write

a0 =
1

α

~
mec

(1.7)

Thus, in atomic units,

c =
1

α

~
mea0

≈ 137 a.u. (1.8)

This allows us to derive an atomic unit of time as

τ =
a0
αc

=
me

~
a20 =

me

~
~2

me

1

Eh
=

~
Eh

(1.9)

which is consistent with the definitions of ~ as the atomic unit of action and Eh as
the atomic unit of energy.

The value in SI units of the four fundamental constants from which all units in
the atomic unit system are derived is presented in Table 1.1, as well as the direct SI
value for the Hartree energy, given its considerable use in the kind of computations
used in this work. For units which can be written in terms of distance and energy
directly, a conversion factor is also shown in Table 1.1 between these and their
corresponding values in Ångström (Å)5 and electron-Volt (eV), commonly used in
experimental setups and measurements.

The remaining three basic units of the SI are the Kelvin (K), mole (mol) and
Candela (Cd), for measuring temperature, amount of substance, and luminous in-
tensity, respectively. The latter has no relevance in the computations in question,
and the first two have no reason to be disregarded. As such, they can be included
in the atomic system of units, though in practice only the Kelvin is used, since the
computations done are based on a relatively low number of particles (100 to 102).

5In honor of Anders Jonas Ångström, 1814 – 1874.
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Table 1.1: Common conversion factors for the atomic unit system. [13]

physical quantity symbol in a.u. value in SI units value in exp. units

action ~ 1.054 571 817×10−34 Js−1 –
charge e 1.602 176 634×10−19 C –

length a0 5.291 772 109 03(80)×10−11 m 0.529 177 Å
mass me 9.109 383 7015(28)×10−31 kg –

energy Eh = ~2
mea20

4.359 744 722 2071(85)×10−18 J 27.211 386 eV

probability density a−30 – 6.748 343 Å−3

5



Chapter 2

Theoretical background

This chapter concerns the theoretical background leading up to the key quantities
which are central to the Non-Covalent Interaction (NCI) index analysis implemented
in this project.

2.1 Basics of Density Functional Theory

2.1.1 Hohenberg-Kohn Theorems

The Hohenberg-Kohn Theorems, originally stated and proved by Hohenberg
and Kohn [7] in 1964, place the complete description of the ground state in the
3-coordinate dependent (and physical observable) electron density ρ(r), as opposed
to the abstract 3N -component wavefunction, by stating that all ground state prop-
erties of a quantum many-body system are functionals of ρ(r).

The first theorem states that the ground state density ρ(r) uniquely determines
the external potential vext(r) up to an additive constant. The second theorem states
that the exact ground state density can be obtained variationally and corresponds
to the exact ground state density. In proving these theorems, Hohenberg and Kohn
make clear the existence of a universal functional1 F [ρ] in such a way that the total
ground state energy can be written as [14]

E[ρ] = F [ρ] +

∫
d3r vext[ρ](r)× ρ(r) (2.1)

The physical meaning of the universal functional is then defined as the part of
the energy of the system that is owed to the electrons’ kinetic energy as well as their
interaction, i.e., the energy that is not owed to the interaction of the particles with
the external potential. Unfortunately no exact form of the F [ρ] functional is known
to date and needs to be approximated for most systems of interest. However, if F [ρ]
was known, the ground state density would be obtained variationally (as stated) by
solving

δ

δρ
F [ρ] + vext(r) = µ (2.2)

where µ is a Lagrange multiplier which physically corresponds to the chemical po-
tential of the system, and was introduced to impose the constraint that the number

1By universal it is meant that the functional is system independent.
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of particles remains the same. ∫
d3r ρ(r) = N (2.3)

2.1.2 Kohn-Sham DFT

In 1965, Kohn and Sham devised a method [15] of approximating the F [ρ] func-
tional by considering a fictitious system of non-interacting electrons associated with
the real system. By construction, this fictitious system, named the Kohn-Sham sys-
tem, has the exact same ground state density and energy as the real system.

Since the electrons are non-interacting in the Kohn-Sham system, the total en-
ergy can be written

E[ρ] = TS[ρ] +

∫
d3r ρ(r)× vS[ρ](r) (2.4)

with TS[ρ] the non-interacting kinetic energy and vS[ρ](r) the Kohn-Sham potential,
which replaces the external potential in the fictitious system by ‘simulating’ the
external potential and the electron-electron interactions. In this system the ground
state wavefunction is a simple Slater determinant of the Kohn-Sham orbitals φi(r)
which satisfy the Schrödinger-like equation[

−1

2
∇2 + vS(r)

]
φi(r) = εi φi(r) (2.5)

The ground state density is built from the Kohn-Sham orbitals as

ρ(r) =
N∑
i=1

|φi(r)|2 (2.6)

In order to find vS(r), we must write

F [ρ] = TS[ρ] + U [ρ] + Exc[ρ] (2.7)

where U [ρ] is the Hartree electrostatic interaction energy

U [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′|
d3r d3r′ (2.8)

and Exc[ρ] is, by definition, the exchange and correlation (XC) energy. This is
the part of F [ρ] which needs to be approximated and for which several function-
als have been developed over many decades with varying degrees of accuracy [14].
This degree of accuracy is usually dependent on the level of locality of the functional.

From here, and after selecting an adequate functional for Exc[ρ] it is possible to
write the set of equations to be solved self-consistently known as the Kohn-Sham
equations: equation (2.5) and

vS[ρ](r) = vext(r) + vH [ρ](r) + vxc[ρ](r) (2.9)

with the Hartree and XC potentials given by

vH [ρ](r) =
δ

δρ
U [ρ] (2.10)

vxc[ρ](r) =
δ

δρ
Exc[ρ] (2.11)
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2.1.3 Jacob’s ladder

Perdew and Schmidt [16] explained the relative accuracy of Exc functionals in
terms of their level of locality by constructing a fictional object they coined Jacob’s
ladder: each step gets us closer to the Heaven of chemical accuracy.2 Although the
ladder as described has five rungs of increasing accuracy (and increasing compu-
tational resources needed to use them), we will focus here only in the first three.
These are

1. the Local Density Approximation (LDA), in which Exc is only dependent on
ρ, i.e., its local value – this functional is exact in systems of spatially constant
density, i.e., the homogeneous electron gas;

2. the Generalized Gradient Approximation (GGA), which adds a dependence
on the density gradient ∇ρ to the Exc;

3. meta-GGA (or mGGA), which adds to Exc a dependence on ∇2ρ, or, equiva-
lently, the kinetic energy density τ(r).

2.1.4 NCI index in DFT

To build GGA functionals, a measure of deviation of the variation of density
from the constant density of the homogeneous electron gas is required. To make
this measure more universal and respect scaling relations, it should be normalized
to the density value. A choice for this measure could then be |∇ρ|/ρ. However, this
measure should be made adimensional for the sake of universality. Noting it has
units of length−1, we can do this by choosing a length scale to multiply it by. Since
this length scale should also be density-dependent, we choose the Fermi wavelength
1/(2kF ) of the homogeneous electron gas of density ρ,

s =
|∇ρ|
2kF ρ

(2.12)

where kF is the radius of the Fermi sphere of the electron gas which, in atomic units,
has the value

kF =
(
3π2ρ

)1/3
(2.13)

Thus, we have, in atomic units, the reduced density gradient (RDG)

s = Cs
|∇ρ|
ρ4/3

, Cs =
1

2 (3π2)1/3
(2.14)

This measure is an active ingredient in building the exchange part of GGA
functionals, as [2]

E(GGA)
x − E(LDA)

x = −
∫
F (s) ρ4/3 d3r (2.15)

with F (s) a spin-dependent function.

2As most if not all other forms of Heaven, it is an arguably unachievable ideal, but one to strive
for.
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2.2 Basic overview of the NCI index method

A more thorough overview of already established NCI index methods, and of
non-covalent interactions in general, is provided in reference [2].

Take a single atom for which a map of the charge density is computed, and
subsequently the gradient and reduced density gradient (RDG) from equation (2.14).
For a Slater-type orbital (STO) model density, which is accurate enough in density
tails, we have

ρ(r) = Ae−2αr (2.16)

Computing the RDG, we get

s = Cs
2αρ

ρ4/3
= 2αCs ρ

−1/3 (2.17)

Supposing we can map each point in real-space to a point in a s(ρ) plot, we
get the line described in (2.17). Even if there are several atoms, most points will
follow an identical trend, as most point are part of the density tails of these atoms.
However, in this case, interactions exist between the atoms, and there must be a
point in which the density is finite but its gradient is zero, due to contributions
to the density from several atoms.3 This is visible in the mentioned s(ρ) plot as
a thorough, or inverted peak, which appears for low densities from the main trend
all the way down to near-zero values of the RDG. This is thus a way of identifying
interactions, and the strength of the interaction can be gauged by the value of the
density at these peaks. By plotting an isosurface in real-space of a low RDG value,
we have a way to map these interactions back into real-space and identify them
visually in an intuitive manner.

This does not, however, give us any information on whether the interaction is
bonding or non-bonding. Most topological methods of this type, including Bader’s
QTAIM [11], make use of the laplacian of the density at specific points, named bond
critical points (BCPs), to distinguish between bonding and non-bonding interac-
tions, as this way one can gauge whether there is an inward or outward density
gradient flux, by the divergence theorem.

This does not work for non-covalent interactions, because for inter-nuclear re-
gions, the laplacian is dominated by only the positive principal variation. Some of
the underlying principles from QTAIM present a solution for this problem, and are
used in NCI index. The laplacian of the density is the trace of the density’s Hessian
matrix, i.e., the sum of its eigenvalues. Since the Hessian is a real and symmetric
matrix, it can be diagonalized if written in terms of its eigenvectors, which are the
principal axes of variation. Let λ1 ≤ λ2 ≤ λ3 be the three eigenvalues of the Hessian
matrix of the density. In inter-nuclear regions, the trace of the matrix is dominated
by the positive λ3, λ1 < 0 and λ2 can be either positive or negative. The bonding or
non-bonding nature of the non-covalent interaction can then be inspected from the
sign of the second eigenvalue, that is, the sign of the variation of density (second
derivative) along the principal variational axis perpendicular to both the minimum

3These points of zero gradient are the bond critical points (BCPs) referenced in QTAIM.
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and maximum directional variations. Although this information is hard to accept
at face value from the author’s explanation, analyses using this method on known
systems in section 4.1 hopefully give it the credibility it requires.

Thus, by finding for each point in real space the sign of the median eigenvalue
of the Hessian matrix of density, and substituting ρ in the x-axis of the s(ρ) plot by
the value sgn(λ2)× ρ, bonding and non-bonding interactions (or bonding and non-
bonding contributions to the same interaction) get separated into different sides
of the plot: bonding peaks appear on the negative side and non-bonding peaks
appear on the positive side. To complement the isosurface mapping with this new
information, we color each point of the represented isosurfaces according to sgn(λ2)×
ρ. This way, bonding and non-bonding interactions / contributions have different
colors, and the strength of the interaction can be gauged from the color intensity.
Thus, a qualitative but intuitive analysis of NCIs in structures in real-space is made
possible.

NCI index as an extension of QTAIM

Implementations of QTAIM in real-space quantum chemistry or electronic struc-
ture codes to find and categorize BCPs and separate space into Bader volumes are
typically very computationally demanding, as space needs to be thoroughly divided
into smaller sections until single points are found. [9] If this is done on spatial grids,
interpolation and multigrid methods are required since the specific location of BCPs
may not be in the grid points. On the other hand, the NCI index analysis described
here simply makes use of the value of the density and the norm of its gradient at
every point in the grid, which can be easily computed and which process can even
be vectorized. Because of the continuity of these quantities over real space, the
points surrounding BCPs are easily identified through the RDG isosurfaces: they
have small RDG values and in fact encapsulate a region of space in which the BCP
is located. On the other hand, the isosurface coloring according to sgn(λ2)× ρ is in
itself a way to categorize the BCPs which correspond to non-covalent interactions,
albeit not with the full information which is typical of regular QTAIM (exact eigen-
values of the Hessian matrix at the BCP). The NCI index analysis can then be seen
as a computationally lighter extension of QTAIM.
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Chapter 3

Computational Method

The objective of this chapter is to give a thorough understanding of how the
script developed by the author works in the mentioned NCI index analysis of sev-
eral systems. The code is publicly available1 under the GPL (version 3.0), and at
the time of submission of this document in version 0.3.1. [17] Because of this ac-
cessibility, specific computational aspects related with the programming language –
such as array slicing – will not be discussed here.

With this intent, the first sections will focus on mathematical details of specific
functions of the script, and later sections will include an overview of the analysis
steps as well as a flowchart schematic.

3.1 Inputs

We can categorize the analysis inputs as system-dependent or user-defined. Be-
cause of the script’s dependence on the Atomic Simulation Environment (ASE)
Python package [10], the system dependent inputs can be read from a cube file
exported by any quantum chemistry or electronic structure code that exports this
type of file; or they can be used directly from ASE if the calculation is done using
the ASE interface. The system-dependent inputs are

• density – a 3D array containing the value of the density at every grid point;

• atoms object – the ASE Atoms object of the system being analyzed (contains
information on the simulation box and system geometry);

• origin – a 1D 3-component array with the origin of the cube file, i.e., the
real-space position of the bottom-leftmost grid point (indexed by 0, 0, 0).

All 3 system-dependent inputs can be read from a cube file using the ASE cube-
reading function. The user-defined inputs have to do with the analysis process and
not with the system specifically, and will be referenced during the description of the
analysis.

It is worth mentioning that since the input density can be read directly from
a cube file, it does not matter how exactly it was computed or obtained. Ideally,

1https://gitlab.com/diofalmeida/pynci
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(a) XY - plane view (b) ZX - plane view

Figure 3.1: Schematic representation of the unit cell of graphene for density cal-

culation, with cell vectors a =
(

2.196 î+ 1.268 ĵ
)

Å, b =
(

2.196 î− 1.268 ĵ
)

Å,

c = −20 Å k̂, obtained with the ASE graphical user interface.

the method can be used to analyze real experimental densities obtained via X-ray
crystallography (XRC) or other methods. This means that although the reduced
density gradient arises naturally within the framework of DFT, and the NCI method
itself owes its physical significance to the Hohenberg-Kohn theorems,2 the densities
used are by no means constrained to computations using DFT tools.

3.2 Simulation box / unit cell

The systems analyzed usually fall into one of two categories, or might occasion-
ally display characteristics of the two: (i) molecular or atomic systems, for which
the density is typically computed on a large cuboid grid with zero-value and zero-
gradient border conditions; and (ii) solid systems, for which the density is typically
computed on the primitive unit cell – defined by 3 not necessarily orthogonal vec-
tors a, b and c – with completely periodic border conditions. Systems that exhibit
characteristics of both these situations include but are not limited to 2-dimensional
periodic structures, such as graphene sheets, with zero-value and zero-gradient den-
sity on the two borders which are parallel to the structure. Figure 3.1 presents a
possible unit cell for the computation of electronic density for a graphene sheet.3

The cell parameters of the unit cell are encoded in the atoms object in the form
of the cell matrix, Q, a 3 × 3 matrix whose lines are the real-space components of
the unit cell vectors a, b and c.

Q =

a · î a · ĵ a · k̂
b · î b · ĵ b · k̂
c · î c · ĵ c · k̂

 (3.1)

For molecular systems with cuboid simulation boxes, the cell matrix is diagonal.
Thus, the simulation box of a molecular system with an orthogonal grid can be seen
as an orthogonal unit cell, and will hereby be referenced to as the unit cell of the
system even in non-periodic systems. The border conditions, on the other hand, are

2See section 2.1.1
3It is worth nothing the cell parameters mentioned are not the parameters of the ground state

configuration of graphene and serve only to create a schematic representation.
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encoded separately into the atoms object as a 1-dimensional 3 component array of
Boolean-type values, dictating whether the border conditions are periodic in each
of the unit cell vectors’ directions. The grid in which space is discretized is also
given by the unit cell vectors, meaning it is only an orthogonal grid if the unit cell
vectors are orthogonal. If the shape of the density array is [Na Nb Nc], the grid
point positions in real space are given by

rijk = r000 +
i

Na

a +
j

Nb

b +
k

Nc

c (3.2)

in which r000 is the origin of the grid.

As an example of a cell matrix, consider the possible unit cell for graphene shown
in Figure 3.1. The cell parameters a and b have the same value, the angle between
them is γ = π/3 (60o), and the independent c parameter is chosen adequately so
that the atoms are far enough away from the non-periodic border. The cell matrix
for the represented unit cell is then, in terms of the cell parameters,4

Q =

a
√
3

2
a
2

0
a
√
3

2
−a

2
0

0 0 −c


Although border conditions are handled independently of system type in each

function of the script, a distinction between cuboid and non-cuboid unit cells still
needs to be made for the sake of computing derivatives via finite difference methods.
For this reason, the script takes into consideration whether the unit cell matrix Q is
diagonal or not, and it does this by counting the number of non-zero components of

Q− diag(Q) =

 0 a · ĵ a · k̂
b · î 0 b · k̂
c · î c · ĵ 0

 (3.3)

If Q is diagonal, the system is considered cuboidal, associated with an orthogonal
grid. Then, the spacing in each direction is computed according to

δxα =
Lα
Nα

, α = 1, 2, 3 ≡ a, b, c (3.4)

with L the length of the unit cell in each direction (a = ||a||, etc.) and N the
resolution of the grid in each corresponding direction. Thus, rewriting equation
(3.2) for orthogonal grids,

rijk = r000 + i δx1 î+ j δx2 ĵ + k δx3 k̂ (3.5)

On the other hand, if Q is not diagonal, the system is considered non-cuboidal,
and the associated grid non-orthogonal.5 For these cases, it is common to do calcula-
tions in a system of fractional coordinates, as opposed to real space. Each real-space

4For this system the cell parameter a can be written from the inter-atomic distance d as a = d
√

3.
5The author recognizes the possibility of orthogonal grids associated with non-diagonal cell

matrices, as long as the cell vectors are orthogonal. However, in practice, this is ignorable since:
(i) the cell matrix is automatically diagonal for orthogonal systems and (ii) the way computations
are done yield the same results as if this case was considered.
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position r can be mapped to a corresponding point in the fractional coordinates sys-
tem ε ≡ [ε1 ε2 ε3]

T (and vice-versa) according to its fractional position in relation to
each of the cell vectors.6 The mapping from fractional coordinates to a real space
position is given by

r = r000 + ε1 a + ε2 b + ε3 c (3.6)

which can be presented in terms of components via a matrix relationx1x2
x3

 =

a · î b · î c · î
a · ĵ b · ĵ c · ĵ
a · k̂ b · î c · k̂

ε1ε2
ε3

 ≡ x = QTε (3.7)

with x = r−r000. While it is not immediate to obtain the coordinates of a real-space
position directly from a set of indices in a non-orthogonal grid – see equation (3.2)
– by comparing equations (3.2) and (3.6) the fractional coordinates are trivially

computed as a fraction of integers, ε
(i)
α = i/Nα.

3.3 Derivatives

It is possible to see7 that derivatives on a grid can be approximated by finite dif-
ference expressions through which we compute derivative values in each point using
the values of the derivated function in neighboring points. Thus, in an orthogonal
grid, the gradient of the charge density (3D array) is computed as a 4D array in
which each component is indexed by 4 integers:8

[∇ρ]α

∣∣∣
ijk

=
∂ρ

∂xα

∣∣∣∣
ijk

≈ g
(α)
ijk (3.8)

where α = 1, 2, 3 is the axis along which ρ is being derivated and the indices (ijk)
relate to the grid point position, which directly corresponds to a position in real-
space; and the spacings used are the ones computed in (3.4).

If the grid is non-orthogonal, the derivatives computed via finite difference do
not correspond to the real-space gradient components, since the components aren’t
independent in a non-orthogonal grid, i.e., xα(ijk) does not depend only on one of the
indices.

∂ρ

∂xα
6= g

(α)
ijk (3.9)

However, the grid is technically orthogonal in fractional coordinate space, since
adding or subtracting to an index corresponds to moving only along one of the
fractional coordinates. If we consider ρ as a scalar field in fractional-coordinate-
space,

ρ(ε) ≡ ρ(r = r000 + ε1 a + ε2 b + ε3 c) (3.10)

the ρijk grid is orthogonal in this space, and the grid spacings are simply

δεα =
1

Nα

(3.11)

6εi ∈ [0, 1]∀i
7See Appendix A
8One index for the component and three for the grid point position.
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Thus, the derivatives computed via finite difference – if the spacings defined in
(3.11) are used – are derivatives in fractional coordinate space.

g
(α)
ijk ≈

∂ρ

∂εα

∣∣∣∣
ijk

(3.12)

We require the real-space gradient components in every grid point in order to
compute s by equation (2.14). These real-space gradient components can be ob-
tained directly from the fractional-coordinate space gradient, using the relation
between real-space and fractional coordinates in (3.7). Let us denote ∇ρ as the
real-space gradient, ∇x ρ as the gradient in x-space9 and ∇ε ρ as the gradient in
fractional coordinate space.

Since r and x differ only by a constant vector, ∇ ≡ ∇x. Following a chain-
derivation,

∂ρ

∂xα
=

3∑
β=1

∂εβ
∂xα

∂ρ

∂εβ
(3.13)

From (3.7),
∂εβ
∂xα

=
[
Q−T

]
βα

=
[
Q−1

]
αβ

(3.14)

Then, letting χ = Q−1, we have

∇ρ = χ∇ε ρ (3.15)

Thus, if during the analysis a non-orthogonal grid is detected, matrix χ is com-
puted from Q and is used to compute the real-space gradient from the fractional-
coordinate gradient computed via finite-difference.

The same method can be applied to each component of the Hessian matrix after
being computed in fractional-coordinate space, and before evaluating the sign of the
median eigenvalue. From (3.13),

∂2ρ

∂xα ∂xβ
=

∂

∂xα

(
∂ρ

∂xβ

)
=

3∑
γ=1

∂εγ
∂xα

∂

∂εγ

3∑
θ=1

∂εθ
∂xβ

∂ρ

∂εθ

=
∑
γ, θ

χαγ χβθ
∂2ρ

∂εγ ∂εθ

H
(x)
αβ (ρ) =

∑
γ, θ

χαγ H
(ε)
γθ (ρ)

[
χT
]
θβ

(3.16)

which can be written as a matrix multiplication

H(x) = χH(ε) χT (3.17)

9A translated real-space given by x = r− r000.
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Let us check that the Hessian matrix maintains its symmetry even in fractional
coordinate space. Applying Q to the left of the equation, and QT to the right,

QH(x)QT = QχH(ε) (Qχ)T

⇒ H(ε) = QH(x)QT (3.18)

In terms of components,

H
(ε)
αβ =

∑
γ, θ

Qαγ QβθH
(x)
γθ (3.19)

Since γ and θ are mute summation indices and H
(x)
γθ = H

(x)
θγ by symmetry of

H(x), switching α and β results in the same expression, thus H(ε) is symmetric. This
means even in the case of a non-orthogonal grid, only the 6 independent components
of the Hessian matrix need to be computed. Although this is more efficient in
terms of memory requirements, it presents a problem – the computation of Hessian
components in real space from the Hessian components in fractional-coordinate space
cannot be done directly via the matrix multiplication in (3.17), and we need to
rewrite this process in terms of the 6 independent components only.

Reverting H(ε) to real space using 6 independent components

Let us separate H(ε) into diagonal and non-diagonal components.

H(ε) = HD +HA (3.20)

with
HD
αβ = H(ε)

αα δαβ (3.21)

and

HA =

 0 H
(ε)
12 H

(ε)
13

H
(ε)
12 0 H

(ε)
23

H
(ε)
13 H

(ε)
23 0

 (3.22)

Note that the three independent components of HA can be indexed by only one
integer ranging from 1 to 3, corresponding to the axis along which no derivatives
are being taken. We designate this as the anti-axis corresponding to the matrix
element.

HA =

 0 a3 a2
a3 0 a1
a2 a1 0

 (3.23)

In fact, during the analysis, the grids of the 6 independent components of the
Hessian matrix are stored in memory in a single 4-dimensional array, indexed by 4
integers (similarly to the gradient), h

(α)
ijk , with α ranging from 1 to 6. The first three

α ‘components’ are the 3D arrays which correspond to the 3 diagonal elements of
the Hessian; and the remaining 3 are related to the mentioned anti-axes, following
the relation α = 7 − γ, with γ the anti-axis index. Thus the order in which the
components appear is H11, H22, H33, H12, H13, H23. It is then useful to create an
artificial mapping between integers 1 to 6 and pairs of integers ranging from 1 to 3,
which maps each component’s position in the 4D array to the hessian indices. Let
us designate this mapping

γ −→ p(γ) = (µ, ν) (3.24)
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Table 3.1: Summarization of p(γ) integers mapping.

γ µ ν
1 1 1
2 2 2
3 3 3
4 1 2
5 1 3
6 2 3

This p(γ) mapping is summarized in Table 3.1.

From (3.17) and (3.20), we have

H(x) = χHD χT + χHA χT (3.25)

Computing explicit components of the first term, using (3.21),

χHD χT
]
αβ

=
3∑

η, µ=1

χαη χβµH
(ε)
ηη δηµ

=
3∑

η=1

χαη χβηH
(ε)
ηη (3.26)

Doing the same for the second term of (3.25),

χHA χT
]
αβ

=
3∑

η, µ=1

χαη χβµH
A
ηµ (3.27)

Note that there are only 6 non-zero terms out of the 9 total. This result can be
rewritten evidencing only the non-zero terms by using the mapping of (3.24) as

χHA χT
]
αβ

=
3∑

η=1

(χαµ χβν + χβµ χαν)H
(ε)
µν , (µ, ν) = p(η) (3.28)

Thus, summing equations (3.26) and (3.28), we obtain the components version
of equation (3.25).

H
(x)
αβ =

3∑
η=1

[
χαη χβηH

(ε)
ηη + (χαµ χβν + χβµ χαν)H

(ε)
µν

]
, (µ, ν) = p(η) (3.29)

Finally, considering the ordering of the Hessian components in the 4D array,
which is the same as the ordering of the index pairs in the (3.24) mapping, we can
write all components of a new array h∗ as

h
∗(γ)
ijk =

3∑
η=1

[
χαη χβη h

(η)
ijk + (χαµ χβν + χβµ χαν)h

(7−η)
ijk

]
,

(α, β) = p(γ) ,

(µ, ν) = p(7− η) , ∀ γ = 1, ..., 6 (3.30)
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and then do the substitution h
(γ)
ijk ← h

∗(γ)
ijk . All of these computations are vectorized

in the {ijk} indices. Computationally, the reversion to a real-space Hessian is done
as follows:

1. Compute H(ε) 4D-array h through finite-difference derivatives;

2. Define integer mapping from (3.24) and Table 3.1;

3. Initialize empty 4D-array h∗;

4. For γ = 1 to 6 do:

(a) h∗(γ) = 0;

(b) (α, β) = p(γ);

(c) For η = 1 to 3 do:

i. (µ, ν) = p(7− η);

ii. h∗(γ) ← h∗(γ) + χαη χβη h
(η) + (χαµ χβν + χβµ χαν)h

(7−η)

5. Substitute h← h∗.

3.4 Interpolation

For its efficiency in the particular case of scalar fields over regular grids, a tri-
linear interpolation scheme was chosen to artificially increase the resolution of the
scatterplot when necessary. This is done by interpolating the density, reduced den-
sity gradient and Hessian component arrays before evaluating the median eigenvalue
of the Hessian. Typically, one must solve a system of linear equations involving the
value of the interpolated scalar field at the eight corners of a cuboid10 in which the
point we wish to interpolate the field to is located, in order to find 8 coefficients
of the interpolating function, and then use these to compute the interpolated value
at any point inside the cuboid. This process is then repeated for every cuboid in
the grid. However, in this particular case the points we wish to interpolate the field
to have specific midway positions between the original cuboid corners (which cor-
respond to the points in the original grid). This greatly simplifies the interpolation
process and allows it to be vectorized.

Figure 3.2a presents a schematic representation of the cuboid cell in the original
grid, the corners of which are consecutive grid points. In this interpolation process,
the new grid has half the spacing in each direction, meaning in the refined grid there
are 8 grid points for every point in the original grid:11 1 point which remains unal-
tered, 3 points from the edges of the cuboid which intersect at the original point,

10The interpolation process described in this section is fully generalizable to non-orthogonal
grids, in which case the cell between grid points is not cuboidal. However, instead of dealing with
real-space or fractional-coordinate-space, the interpolation is abstractly done in the (ijk) discrete
index space, and the points to which the interpolation is done are half-integer index points in the
original grid. This means there is no problem in calling the cell a cuboid – in fact, in this space it
is always a cube.

11Borders are conveniently ignored in this explanation but handled accurately in the derived
expressions.
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(a) original cuboid (b) cuboid in the refined grid

Figure 3.2: Schematic representations of the cuboid cell between grid points in the
original grid and corresponding new points in the refined grid.

3 points from the faces of the cuboid which intersect at the original point, and 1
point from the center of the cuboid. These are represented in Figure 3.2b, and form
a cuboid in the refined grid.

Let f(r) be the general scalar field to be interpolated, and {rijk} the original
grid. Then fijk is the value of the field at grid point rijk. Let

{
r∗ijk
}

be the refined

grid, and
{
f ∗ijk
}

be the values of f in the refined grid. We have the following relation
between grids:

rijk = r∗2i, 2j, 2k (3.31)

fijk = f ∗2i, 2j, 2k (3.32)

As such, and for simplification, we will be dealing only with f as opposed to
using both f and f ∗, and the points which are part of the refined grid but not the
original grid are characterized by having at least one half-integer index. We will
differentiate between these as edge points, face points and center points, as detailed
in the discussion leading up to and in Figure 3.2: edge points have only one half-
integer index, face points have two half-integer indices and center points have all
three half-integer indices.

Edge points

If trilinear interpolation is done in only one direction it is simply linear interpo-
lation. This means for edge points the value of f will be a simple arithmetic mean
from the two grid points which share the edge. Letting i be the index related to the
direction of the edge in which the point is, we have

f jk
i+ 1

2

=
1

2

(
f jki + f jki+1

)
(3.33)

where i is under-scripted and j and k are super-scripted to better differentiate
the direction of (linear) interpolation. Equations for the other two directions are
achieved by simple switch of indices between i, j and k. This process is schematically
represented by the gold arrows in Figure 3.3a.
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(a) edge and face points (b) center points

Figure 3.3: Schematic representation of the interpolation to midway points in the
refined grid. Arrows symbolize arithmetic averaging.

Face points

Continuing the line of thought, the process that results in the interpolated value
for the face points is bilinear interpolation. In this case the value at the center of
each face is given by the arithmetic mean of the 4 corners of the face.

fk
i+ 1

2
, j+ 1

2
=

1

4

(
fkij + fki+1, j + fki, j+1 + fki+1, j+1

)
(3.34)

As before, i, j and k can be permuted to achieve the remaining two directional
equations, and we maintain the under/super-script notation. From the usual de-
scription of bilinear interpolation, and explicitly from equation (3.33), this equation
can be written in two other forms:

fk
i+ 1

2
, j+ 1

2
=

1

2

(
fk
i+ 1

2
, j

+ fk
i+ 1

2
, j+1

)
(3.35)

=
1

2

(
fk
i, j+ 1

2
+ fk

i+1, j+ 1
2

)
(3.36)

In each case we choose a direction, linearly interpolate to the edge points in that
direction, and then again linearly interpolate to the face point from the edge points
in the remaining direction. This process is schematically represented by the blue
arrows in Figure 3.3a, in which the first direction chosen was the one pertaining to
the j index.

Center points

In this case the interpolated value is given by the arithmetic mean from the 8
corners of the cuboid.

fi+ 1
2
, j+ 1

2
, k+ 1

2
=

1

8

(
fijk + fi+1, j, k + fi, j+1, k + fi, j, k+1 +

+fi+1, j+1, k + fi+1, j, k+1 + fi, j+1, k+1 + fi+1, j+1, k+1

)
(3.37)

Once again, following consecutive linear interpolations in the three directions,
and taking equations (3.35) and (3.36) into consideration, this can be rewritten in
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three forms:

fi+ 1
2
, j+ 1

2
, k+ 1

2
=

1

2

(
fi+ 1

2
, j+ 1

2
, k + fi+ 1

2
, j+ 1

2
, k+1

)
(3.38)

=
1

2

(
fi+ 1

2
, j, k+ 1

2
+ fi+ 1

2
, j+1, k+ 1

2

)
(3.39)

=
1

2

(
fi, j+ 1

2
, k+ 1

2
+ fi+1, j+ 1

2
, k+ 1

2

)
(3.40)

of which the form in (3.38) is explicitly represented in Figure 3.3b.

Implementation

There are two notes worth mentioning from the discussion on interpolation so
far:

• All the expressions presented are vectorizable in all indices;

• In the expressions that make use of previously interpolated points, the direc-
tions of consecutive linear interpolation can be chosen seemingly at random
without altering the results.

Thus, to avoid doing the same computation twice (e.g. by computing f jk
i+ 1

2

again

when computing fk
i+ 1

2
, j+ 1

2

if we do it by equation (3.34)), the following algorithm

was implemented. Every step is vectorized via numpy arrays.

1. Initialize new array f ∗;

2. Copy all points from original grid by equation (3.32);

3. Linearly interpolate to edge points by equation (3.33) and other equations
derived by index permutation;

4. Linearly interpolate from the obtained edge points to face points by equation
(3.36) and other equations derived by index permutation;

5. Linearly interpolate from the obtained face points to center points by equation
(3.38).

This grid refinement by trilinear interpolation is done in the analysis as many
times as requested by the user via an integer input p such that the spacings of the
final refined grid are given by

δx(new)
α = δx(old)α × 2−p (3.41)

In practice, p should not be chosen greater than 2, keeping in mind that higher
degrees of refinement do not provide more accurate results. The purpose of the
interpolation process is simply to provide a greater point resolution in the 2D and
3D plots that result from the NCI analysis. Border conditions are also taken into
account: if in any of the directions the borders are periodic, the original array is
augmented one layer in that direction by copying the corresponding border before
refinement, and this added layer is removed before outputting the refined array.
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3.5 Algorithm

We can now summarize the steps taken in the analysis. For clarification, this
description is separated into three parts, each one described schematically by a
different section of the flowchart presented in subsection 3.5.4.

3.5.1 Input reading and general derivative calculations

First, the density array is checked for negative values, which have no physical
significance and are likely due to floating point errors in either previous computation
of the density, or its transcription to a cube file.12 The negative values are zeroed,
meaning any element of the array that was non-positive is identically zero after this
step, and all other values remain unaltered. The border conditions in each of the
unit cell directions, as well as the cell matrix, are read from the input Atoms object.

The cell matrix is then checked for orthogonality of the unit cell, as detailed in
the discussion leading up to equation (3.3). If a non-orthogonal unit cell is detected,
the χ matrix is computed as the inverse of the cell matrix, and spacings are com-
puted by equation (3.11). Otherwise (if the cell matrix is diagonal), spacings are
computed by (3.4), and the cell parameters – a, b and c – are extracted from the
diagonal of the cell matrix.

Using the density array, the computed spacings, and the border conditions, the
gradient is computed as a 4D array. In the non-orthogonal cell case, it is then re-
verted to the real-space gradient using the computed χ matrix via equation (3.15).
Then, the reduced density gradient prefactor13 is computed as Cs |∇ρ|. Because of
zero and near-zero density values and the divergence of equation (2.14) for ρ → 0,
the computation of the reduced density gradient is done using a slight positive shift
in density values, and is subsequently (partially) corrected for non-zero values of ρ.
This method is thoroughly described in Appendix B.

A 4D array containing the six independent components of the Hessian matrix
of the density for each grid point is computed via finite-difference, and – for non-
orthogonal unit cells – reverted to real-space Hessian components, following the
steps at the end of section 3.3.

3.5.2 Optional data treatment

At this point in the analysis, all of the arrays computed so far (density, RDG,
Hessian components) can be sliced into smaller arrays pertaining to the real-space
grid points nearing the supposed position of the interaction of interest. This slicing
is done using the input origin, as well as six additional input values in the form
of a 2 × 3 array. If the cell matrix is diagonal, the first line of this extra array
has the real-space coordinates of the new origin, and the second line the real-space
coordinates of the opposite corner of a cuboid which is lined up with the unit cell

12This is speculation on the author’s part, but it seems to be the only explanation for negative
density values, considering a non-relativistic scheme.

13See equation (2.14)
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directions. On the other hand, if the cell matrix is non-diagonal, the elements of
the mentioned array should be in fractional coordinates, and the overall shape of
the new cell is maintained. The code then determines, using the spacings and the
origin, the grid points closer to the input positions, and slices the arrays accordingly.
It also updates the origin for posterior exportation into cube files, as well as the cell
matrix. Although it is not always possible to know a priori which spatial regions
will be associated with NCI, this step should be taken whenever possible for finite
systems, to reduce the size of the files involved as well as the errors associated with
RDG computation at low densities.

The next step is also optional and consists of a grid refinement by trilinear
interpolation for all computed arrays. An optional input parameter p determines
the degree of interpolation as detailed in section 3.4.

3.5.3 2D and 3D plots

We then arrive at the evaluation of the sign of the median eigenvalue of the Hes-
sian matrix for every grid point. This step warranted an original approach, based on
the direct computation of the stationary points of the characteristic polynomial of
the Hessian matrix at every grid point, and is thoroughly described in Appendix C.
The result is a 3D array containing the sign (+1, −1 and possibly 0) of the median
eigenvalue everywhere in the grid. It is then multiplied by the density to create a
new array which corresponds to the x-axis of the scatterplot.

Because we are only interested in non-covalent interactions, and real-space iso-
surfaces of the reduced density gradient may include contributions from regions of
around 1 a.u. density or higher, e.g. from covalent interactions or pseudo-potential
artifacts,14 it becomes necessary to choose two cutoff values for negative and positive
x-axis of the scatterplot, before exporting the necessary cube files for 3D visualiza-
tion. These cutoffs are part of the additional input referenced in section 3.1, and
they do not interfere with the 2D scatterplots, they only limit the region of the
scatterplot that is visible through isosurfaces of the RDG in the 3D representation.
An additional cutoff with the value of 2 is chosen for the RDG to make the exported
cube file lighter, since it is only practical to represent isosurfaces of low values of
the RDG. In practice, the x-axis and RDG arrays computed thus far are copied, the
copies are scanned for values which do not fit the input cutoffs – typically around
10−2 a.u – and in both arrays, elements which correspond to grid points for which
the criteria is not met in either of the arrays are replaced by a None value. The two
arrays are then exported as cube files, using the ASE cube writing function, with
the origin and cell matrix. These exported cube files are meant to be used by a
third-party software (e.g., UCSF Chimera [18], VMD [19]) to plot isosurfaces, along
with the system geometry from e.g. an xyz file created with ASE.

Finally, all grid points are represented in a 2D plot, with coordinates given by the
corresponding elements in the x-axis and RDG arrays, creating a visual representa-
tion of the x-axis v.s. RDG relations in the system being studied, the scatterplot.
Optionally, a pseudo-potential cutoff radius for each element can be specified, so

14This is visible in subfigure 4.6c.

23



that when dealing with pseudo-densities, only grid points which are not close to
nuclei are represented in the scatterplot, eliminating possible pseudo-potential ar-
tifacts. An image is exported focusing on the NCI region of these coordinates –
densities below 7.5 × 10−2 a.u., and RDG below 2. Additionally, all points in the
scatterplot are exported in a text file for posterior use, either with other 2D plotting
software (e.g. Gnuplot [20]), or for a more quantitative analysis which makes use of
these points. Optionally, this text file can be ‘trimmed’, i.e., points corresponding
to densities which are not shown in the mentioned image are not present in the
text file. This makes the exported text file much lighter, but is not recommended
if the export purpose is a quantitative analysis using the point coordinates. For
the two-dimensional plots made within the code, the Matplotlib15 python package
is used.

3.5.4 Flowchart

Although all optional processes are represented, they are not necessarily used.
When interpreting the flowchart, one can assume the output quantities are un-
changed from the input for all optional processes. The numbers represented are
not referencing equations, instead specifying the order of operations in the analy-
sis.

15https://matplotlib.org/
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Chapter 4

Systems and results

This chapter concerns a selection of systems for which charge densities were
computed using different quantum chemistry or electronic structure software, and
which were then analyzed using the developed NCI analysis code. For all cases the
computational single-point calculation method was Kohn-Sham DFT. All softwares
used here make use of the XC functionals as present in LibXC [21,22]. In single-point
calculations, relativistic corrections should always be assumed to be non-existent
(including Spin-Orbit coupling) except in the case of Group XII metal dimers and
Bismuth carbide clusters. All molecular visualization plots which include isosurfaces
were done using the UCSF Chimera software [18]. Schematic representations of
periodic structures which include unit cells were done using the ASE [10] graphical
user interface.

4.1 Simple test systems

The goal of this section is to provide a set of simple test systems for the developed
analysis tool and to study its effectiveness with different QC/ES1 codes and types
of density computations. As such, the structures presented here were not optimized
by the author, and no convergence tests were done for the density calculations: the
spacings, basis sets or cutoff parameters used are based on convergence tests done
on similar systems in the course of work presented here. The system geometries are
part of the set distributed with version 3 of NCIPLOT [3] as example tests. The
author’s justification for this is the statement from reference [6] that most of the
basis of the NCI index characteristics are owed to the geometry of the system, al-
though there are visible differences after self-consistent field (SCF) relaxation. Since
the systems analyzed here are dimers in which the non-covalent interactions present
are relatively well known in empirical terms, it will allow us to identify the types
of non-covalent interactions in later systems through characteristics of their scat-
terplot and isosurface representations of the NCI index analysis. Using the same
geometries also allows us to reproduce to a certain extent the visual results shown in
reference [1]. Lastly, the same analysis is done on a single benzene molecule in order
to showcase the difference between all-electron and pseudo densities in terms of the
NCI index; and the possibility of representing covalent bonds with this method, as
well as a general warning and justification against doing so.

1Quantum Chemistry / Electronic Structure
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(a) scatterplot (b) 3D isosurface

Figure 4.1: NCI index analysis of a water dimer: (a) NCI scatterplot; (b) s = 0.6
isosurface, colored according to sgn(λ2)×ρ following the a blue–white–red color key
of minimum -7×10−2 a.u. and maximum 4×10−2 a.u.

For visual comparison between the isosurface representations of the different sys-
tems to be possible, the same value of s and color key of sgn(λ2)× ρ were used for
all systems, with the exception of the benzene molecule (monomer), which serves a
different purpose.

For all single-point calculations in this section, Kohn-Sham DFT with the LDA
[23–25] functional as implemented in LibXC was used.

4.1.1 Water dimer

One of the most recognizable types of non-covalent bonding interactions is the
Hydrogen bond, or H-bond, the prototypical example of which is the bond between
water molecules in the liquid or solid state. For a system of two water molecules, the
geometry of which suggests hydrogen bonding between them, a single-point energy
calculation was done using GPAW [26,27] in its linear combination of atomic orbitals
(LCAO) mode [28], with a DZP basis set, and a grid spacing of 0.1 Å, in a simulation
box which provides a vacuum of 4 Å in all directions,2 with non-periodic borders.
The all-electron density was output as a cube file, with a grid refinement of 2, which
was read and analyzed by the developed NCI analysis code. The results of this
analysis are shown in Figure 4.1.

Two peak-like structures are immediately visible in the scatterplot, both related
to the H-bond interaction between the water molecules, as evidenced by the iso-
surface in subfigure 4.1b. From left to right these peaks relate to the bonding and
non-bonding contributions. This allows us to gauge the intensity of H-bonds, with
a corresponding density of around 2 — 3×10−2 a.u., in comparison with the weaker

2By vacuum in GPAW it is meant that the borders of the simulation box are distanced from
every atom by at least the distance specified.
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(a) scatterplot (b) 3D isosurface

Figure 4.2: NCI index analysis of a formic acid dimer: (a) NCI scatterplot; (b)
s = 0.6 isosurface, colored according to sgn(λ2)× ρ following the a blue–white–red
color key of minimum -7×10−2 a.u. and maximum 4×10−2 a.u.

van der Waals interactions which, as seen in some of the remaining systems, typically
correspond to densities of around 5×10−3 a.u.

4.1.2 Formic acid dimer

Formic acid is the simplest carboxylic acid. In its vapor phase, as well as when
dissolved in hydrocarbons, formic acid molecules tend to form dimers through Hy-
drogen bonding, and for this reason it does not obey the ideal gas law. [29] For
this dimer system, a single-point spin-unpolarized energy calculation was done us-
ing Octopus [30], with a grid spacing of 0.2 a0 in simulation spheres surrounding
each nucleus with a radius of 4 Å. This is a real-space code which for ground state
calculations solves the Kohn-Sham equations using finite-difference methods in a
regular grid, and makes extensive use of pseudo-potentials. The (pseudo) density
was output as a cube file, which was read and analyzed by the developed NCI anal-
ysis code. The results of this analysis are shown in Figure 4.2.

The same H-bond characteristic peak is present, albeit with a higher intensity,
i.e., associated with a larger density, along with its non-bonding contribution – on
the right side of the plot, nearing 4×10−2 a.u. density. The H-bonds are clearly
identified in the isosurface representation and, similarly to the water dimer in subfig-
ure 4.1b, it is shown to be an interaction between the Hydrogen atom (donor) of one
molecule and the Oxygen atom (acceptor) of the other. Along with the H-bonds, a
new strictly non-bonding interaction is shown both in the scatterplot, on ‘positive’
densities surrounding 10−2 a.u., and in the isosurface representation, in the middle
of the dimer. This interaction is believed to be between all atoms in both molecules,
and is what is commonly referred to as a steric crowding: a repulsive interaction
between the elements of the system which is counterbalanced (in this case) by the
relatively more intense Hydrogen bonds. It is typically described as a ‘non-bonding
overlap’ [1].
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(a) scatterplot (b) detailed scatterplot

(c) 3D isosurface

Figure 4.3: NCI index analysis of a methane dimer: (a) NCI scatterplot; (b) detailed
version of the scatterplot, with zoomed in x axis for densities below 5×10−3 a.u.; (c)
s = 0.6 isosurface, colored according to sgn(λ2)× ρ following the a blue–white–red
color key of minimum -7×10−2 a.u. and maximum 4×10−2 a.u.

4.1.3 Methane dimer

Octopus was again used for this calculation, with a grid spacing of 0.2 Å in
simulation spheres surrounding each nucleus with a radius of 4 Å, and no spin
polarization. The resulting density was output to a cube file which was read and
analyzed by the developed tool. The results of the NCI analysis are shown in Figure
4.3.

Present in the scatterplot are two peaks of very low densities which correspond
to a van der Waals interaction between the two molecules, as can be identified in
the isosurface representation. Typically, van der Waals interactions like this exhibit
very similar bonding and non-bonding contributions in the scatterplots [1], which
suggests that for the specified geometry for the methane dimer, the interaction is
probably slightly attractive, drawing the molecules closer, at this level of theory.
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(a) scatterplot (b) 3D isosurface

Figure 4.4: NCI index analysis of a benzene dimer: (a) NCI scatterplot; (b) s = 0.6
isosurface, colored according to sgn(λ2)×ρ following the a blue–white–red color key
of minimum -7×10−2 a.u. and maximum 4×10−2 a.u.

4.1.4 Benzene dimer

GPAW was used for a single-point calculation on this geometry using its LCAO
mode with a DZP basis set, grid spacing 0.15 Å, and a simulation box with a 5 Å
vacuum in all directions. The all-electron density was output as a cube file, with a
grid refinement of 2, which was read and analyzed by the developed NCI analysis
code. The results of this analysis are shown in Figure 4.4.

A strictly non-bonding interaction is visible in the scatterplot, corresponding to
densities surrounding 2.25×10−2 a.u. It is clear from the isosurface representation
that this is the steric crowding mentioned in the discussion for the formic acid dimer,
and that it is present in the middle of the ring structures of each benzene molecule.
In fact, this type of interaction is very common in ring structures in which covalent
bonding is responsible for stabilization. Though it may seem a minor detail, it is
worth pointing out the ‘pellet’ shape of the steric crowding related isosurface.

On the other hand, a van der Waals dispersion interaction can be seen both in the
scatterplot for low densities, and in the 3D representation as a surface interaction
between the two molecules, presenting both bonding and non-bonding contributions.

4.1.5 Methane – benzene dimer

Although the molecules which make up the dimer studied here are already known
from the previous systems, and the type of interaction also already discussed (van
der Waals dispersion), the way the interaction manifests itself in the isosurface
representation is particularly interesting as it points out both the symmetry of the
benzene molecule and the interaction between the two molecules. For this system
GPAW was again used for a single-point calculation in a 5 Å vacuum simulation box
with a 0.15 Å grid spacing, using its plane waves (PW) mode with an energy cutoff
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(a) scatterplot (b) 3D isosurface

Figure 4.5: NCI index analysis of a methane–benzene dimer: (a) NCI scatterplot; (b)
s = 0.6 isosurface, colored according to sgn(λ2)× ρ following the a blue–white–red
color key of minimum -7×10−2 a.u. and maximum 4×10−2 a.u.

of 500 eV.3 The all-electron density was output as a cube file with a grid refinement
of 2, which was then read by the NCI analysis tool developed. The results of this
analysis are shown in Figure 4.5.

As expected, the ring structure steric crowding is present in the benzene molecule.
A van der Waals dispersion is also clearly visible in both the scatterplot and the
isosurface representation, localized between the molecules. As mentioned, the iso-
surface is in this case somewhat peculiar as it evidences the symmetry of the system
and the interaction. This type of cone-like surface is common in systems of van der
Waals dispersion in which the interaction is ‘between’ one atom of a molecule with
several atoms of the other [1].

4.1.6 Benzene molecule

Using GPAW’s molecule building tool, a single-point calculation was made for
a single benzene molecule with its default GPAW bond lengths (C–C = 1.395 Å;
C–H = 1.087 Å) in a non-periodic simulation box which provides a vacuum of 4 Å
in each direction, roughly 0.15 Å grid spacing, using GPAW’s LCAO mode with a
DZP basis set. Although GPAW internally uses pseudo-potentials, it is capable of
rebuilding the all-electron density for every calculation. Thus, both the all electron
and pseudo densities were output into cube files with a grid refinement of 2. Both
density files were then analyzed using the developed NCI analysis tool, and the
resulting scatterplots are shown in subfigures 4.6a and 4.6b. To further examine
the differences in NCI index results between the types of densities, the range of the
scatterplot was increased to density values up to 0.5 a.u., and plotted on the same

3There is nothing particular about this system in relation to the others already discussed which
would make it a better candidate for a PW calculation. This mode is simply used here as a testa-
ment to the versatility of the NCI analysis method and the low dependence of NCI characteristics
on the calculation mode.
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(a) a.e. scatterplot (b) pseudo scatterplot

(c) scatterplot comparison (d) a.e. 3D isosurface

Figure 4.6: NCI index analysis of a single benzene molecule: (a) NCI scatterplot
from all-electron density; (b) NCI scatterplot from pseudo density; (c) comparison of
scatterplots for both density types at a higher range of density values; (d) s = 0.25
isosurface for the all-electron density, colored according to sgn(λ2)× ρ following the
detailed color key.

graph. This is shown in subfigure 4.6c.

From a visual inspection of the scatterplots for both types of densities, no dif-
ferences can be detected in what is designated the NCI region, density values below
7×10−2 a.u. This is an argument in favor of analyzing densities computed using
pseudo-potentials, even in cases or codes for which the all-electron density is un-
available or unobtainable, keeping in mind that the correct cutoff values have to be
used to avoid pseudo-potential artifacts.

In the scatterplot comparison plot, there are a few relevant aspects to point out:

• In and near the NCI region, there is no visible difference between the all-
electron and pseudo density profiles.

• Outside the NCI region, there are at least two artifacts of pseudo-potential
use, which are apparent covalent interactions at density values around 0.25
a.u. These correspond to minima in the pseudo-density at nuclear positions
caused by the lack of core density.
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• For the bonding side of the plot and for the all-electron density, the dispersion
of points that starts near the end of the NCI region and continues towards
greater densities is an indication that the current implementation of the finite-
difference derivatives in the code is not enough to deal with atomic core density
values. This is the reason why use of the NCI index for studying covalent
interactions is not recommended.4

Another argument in favor of using pseudo-densities is their apparent smooth-
ness, which makes them easier to analyze with finite-difference-based methods.
However, although pseudo-potential artifacts can be accounted for and sometimes
avoided, certain information about the pseudo-potentials used and their generation
is required and not always completely available.

It is also clear from subfigure 4.6c that, if the appropriate cutoff values are used,
it is possible to use the 3D isosurface representation to localize covalent bonds, as
well as NCIs. This was attempted for the benzene molecule studied here, using an
isosurface of s = 0.25 from the all-electron density, and the results are shown in
subfigure 4.6d. As predicted, the covalent bonds are clear in the 3D representation,
along with the expected steric crowding ‘pellet’. It is worth noting the change in
shape of the isosurface between C–H and C–C bonds, and the relative size difference
between the isosurfaces relating to the steric crowding interaction and the much more
intense covalent bonds.

4Besides the fact the electron localization function (ELF) approach [5] is arguably much better
for describing covalent bonding, since it takes into account electron pairing.
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4.2 Group XII metal dimers

Group XII metals, namely Zinc (Zn), Cadmium (Cd) and Mercury (Hg), are
present in a number of structures in which non-covalent interactions involving these
atoms, nicknamed ‘spodium’ bonds, are responsible for its stabilization [31]. These
elements are also commonly studied as a natural progression in which relativistic
contributions become more important with the growth of atomic number. In this
section, the dimer configurations of these elements – two similar atoms interacting –
are studied under the light of the NCI index. As the atomic configurations of these
are all closed-shell systems5, the interaction between the atoms is in the form of van
der Walls dispersion [32]. Since these are heavy elements, one must also consider rel-
ativistic contributions, which were accounted for in the calculations as detailed in the
following subsection. Overall, the geometric simplicity of these systems makes them
an adequate choice for surveying the capabilities of the developed NCI analysis code.

For all systems, the ORCA [33] software was used for single-point calculations
with varying basis sets, and output a cube file with the specified resolution and
dimensions. These were computed so that the sides of the cuboid would be spaced 1
Å from the nuclear positions, and the spacing around 0.1 a.u. in all directions. It is
worth mentioning this is not the simulation box, we simply output only this region
because it is the region of interest. Figure 4.7 contains a schematic representation
of the described cuboid.

1 Å

1 Å

Figure 4.7: Representation of the region in the exported cube file.

4.2.1 Convergence

All single-point energy and density calculations were done using the ORCA soft-
ware. The family of basis sets Sapporo-DKH3-nZP (n = D, T, Q) [34] was chosen,
and was taken from the Basis Set Exchange [35–37]6. This family of basis sets was
specifically built for use with the Douglas-Kroll-Hess method [38] (DKH) for incor-
porating relativistic contributions by extending the Dirac Hamiltonian to systems
of several particles. Additionally, Spin-Orbit coupling was handled using Spin-Orbit
Mean Field (SOMF), as it is implemented in ORCA [39]. The DZP, TZP and QZP
basis sets are for the purpose of convergence analysis considered separately from
their augmented versions aDZP, aTZP and aQZP, which include diffuse functions
that in principle more accurately describe the density in regions far away from the
nuclei. Experimentally measured inter-nuclear distances from reference [32] were
used. Since the property of interest is the NCI index analysis, the convergence tests

5 Zn: [Ar] 4s2 3d10; Cd: [Kr] 5s2 3d10; Hg: [Xe] 6s2 4f14 5d10.
6Available online at https://www.basissetexchange.org/
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are based on visual analysis of the scatterplots obtained for the densities computed
with the different basis sets. No correction was made for superposition of basis func-
tions. The computation method was Kohn-Sham DFT with the meta-GGA strongly
constrained and appropriately normed (SCAN) XC functionals [40], for two main
reasons:

• Lower level functionals like LDA are known to not accurately describe density
tails, creating an artificial damping in inter-nuclear space, and they are also
not ideal for describing regions of space in each the density varies very quickly.
This could cause problems in the systems in question since the NCIs we wish
to analyze are located in a region wish would not be accurately described at
this level, and the massive gradients in core density for these heavy elements
could cause problems in convergence.

• SCAN specifically has been shown to be more adequate than most functionals
of the same level at describing energetics of van der Waals interactions.

Within ORCA, the DFT SCF procedure makes use of an internal grid, which
was chosen to be the most refined possible in the software, to eliminate this as a
possible source of lack of convergence. It is then believed that the convergence of
the results is dependent only on the choice of basis set.

Zinc dimer

RZn
exp = 4.19 Å was used as the inter-nuclear distance. Figure 4.8 presents the

scatterplot results using densities computed with the basis sets specified, zoomed
into the region where non-covalent interactions are represented.

It is possible to see that in each subfamily of basis sets, there is no practical
difference in the scatterplot relative to regions of non-covalent interaction, although
there may be differences in regions closer to nuclear positions. However, there is a
noticeable difference between the inverted peaks predicted by normal and augmented
basis sets, evidenced by a slight shift in the density value for the points of minimum
reduced density gradient. The shift is from lower to greater densities, when going
from normal to augmented basis sets, albeit the relative difference is very small.
This phenomenon is partly expected, since the augmented basis sets contain diffuse
functions which allow for a greater electronic ‘population’ of the inter-atomic region,
in which the interaction is located. However, upon inspection of the basis sets and
results from the remaining dimers, there is reason to believe that this increased
population is not physical, and instead an artifact of the augmented basis sets.

Cadmium dimer

RCd
exp = 4.07 Å was used as the inter-nuclear distance. Figure 4.9 presents the

scatterplot results using densities computed with the basis sets specified, zoomed
into the region where non-covalent interactions are represented.

Similarly to the Zinc case, it is visible that in the subfamily of non-augmented
basis sets, there is no practical difference in the scatterplot relative to regions of non-
covalent interaction, although there may be differences in regions closer to nuclear
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(a) normal basis sets

(b) augmented basis sets

Figure 4.8: Scatterplots obtained using the NCI index analysis from densities com-
puted using different basis sets for the Zinc dimer.

38



(a) normal basis sets

(b) augmented basis sets

Figure 4.9: Scatterplots obtained using the NCI index analysis from densities com-
puted using different basis sets for the Cadmium dimer.
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Figure 4.10: 0.2 a.u. density isosurface for an aQZP calculation on the Cadmium
dimer, obtained using the UCSF Chimera software.

positions. On the other hand, for the augmented basis sets, there is a slight difference
between the results for the aDZP and aTZP basis sets and, more noticeably, a clear
indication of failure of convergence with the aQZP density, even though the SCF
cycle converged. This is further corroborated by an isosurface based analysis of the
aQZP density, for which UCSF Chimera was used: plotting the density isosurface
for 0.2 a.u., which is represented in Figure 4.10, one can distinguish several density
‘cores’,7 which implies that the density does not decrease monotonically starting
from the nuclear positions. Together with the fact that the slight shift in the NCI
peak from aDZP to aTZP is towards lower densities, which is contrary to what one
would expect for a bonded system, and the fact that that we are dealing with closed
shell atoms distanced several Ångström, an argument can be made for dismissing
the use of augmented basis sets in this system.

Regarding the difference between the results predicted by normal vs augmented
basis sets, it is not clear that there is any difference between the prediction of the
normal basis sets and of the aDZP basis set.

Mercury dimer

RHg
exp = 3.63 Å was used as the inter-nuclear distance. Figure 4.11 presents the

scatterplot results using densities computed with the basis sets specified, zoomed
into the region where non-covalent interactions are represented.

Contrary to the previous two systems, there is a clear difference between the
peaks predicted by the DZP, TZP and QZP basis sets, with increasing density values.
A possible explanation is the fact that the basis functions of the normal basis sets
for Hg extend further since the atom has a greater number of electrons, as well as
the considerably shorter inter-nuclear distance than the two previous systems. On
the other hand, for the augmented basis sets, the convergence pattern is similar to
the one for Cd2, with very close aDZP and aTZP peaks of decreasing density values,
as well as a clearly unconverged density for the aQZP basis set. An inspection of the
aQZP density via isosurface visualization, similar to the one done for Cd2, reveals
the same non-monotonous density variation: a 0.14 a.u. isosurface is represented in

7Such a phenomenon is not visible in the densities for the aDZP or aTZP basis sets.
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(a) normal basis sets

(b) augmented basis sets

Figure 4.11: Scatterplots obtained using the NCI index analysis from densities com-
puted using different basis sets for the Mercury dimer.
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Figure 4.12: 0.14 a.u. density isosurface for an aQZP calculation on the Mercury
dimer, obtained using the UCSF Chimera software.

Figure 4.12.

Again, and for the same reasons as discussed for the Cadmium dimer, these
results suggest the dismissal of use of augmented basis sets.

Conclusion

For both the Zinc and Cadmium dimers, the NCI index scatterplot seems to be
converged in the spatial region where non-covalent interactions are expected already
at the aDZP level. Although no problems are apparent for the augmented basis sets
in the case of the Zinc dimer, possibly due to the greater inter-nuclear distance and
fewer electrons, a decision was made to disregard them in view of choosing the same
basis set for all three systems.

A closer inspection of the basis sets suggests a possible reason for the unexpected
behavior of the augmented basis sets, particularly aQZP, but is a clear justification
for the dismissal of all augmented basis sets. The family of basis sets used, Sapporo-
DKH3-nZP, is a contracted gaussian-based basis set which was built and tested
specifically for systems in which relativistic effects have a significant contribution to
the energetics and electronic structure of the system. As such, these basis sets are
in principle extremely flexible due to the possibility of expansion and contraction of
orbitals. There is then reason to believe that especially the QZP basis set contains
functions which are diffuse enough for the density to be adequately converged. On
the other hand, the augmented basis sets are identical to the ‘normal’ basis sets
apart from the addition of diffuse gaussian functions. It is likely that this further
addition of diffuse functions to a basis set that is already adequately diffuse leads
to a phenomenon of linear dependence of basis set functions.

The Mercury dimer shows a significant difference between the peaks predicted
by DZP, TZP and QZP. As such, the QZP basis set was selected to run comparable
calculations for all three systems.
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Figure 4.13: Scatterplots obtained with NCI index analysis from QZP densities for
the Zinc, Cadmium and Mercury dimers with experimentally measured inter-nuclear
distances.

4.2.2 Dimer comparison

Redoing the NCI index analysis on the QZP densities, now with a p = 1 grid
refinement,8 for all three dimers, the scatter results are the ones shown in Figure
4.13.

A few things are clear from visualizing the plot:

• For all three dimers, at the corresponding geometries, there is both a bond-
ing and non-bonding contribution, in which the bonding contribution is more
significant.

• The value of density at the NCI region, which is related to the intensity of the
interaction, increases with the increase in atomic number.

• The increase in NCI region density is greater from Cd2 to Hg2 than from
Zn2 to Cd2. This seems to result from several factors: (i) the increase in
number of electrons is nearly double in the Cd → Hg case; (ii) the difference
in inter-nuclear distance is nearly 4 times greater for Cd → Hg; (iii) there
could be relativistic contributions to the interaction in the Hg dimer which
are not present (to the same extent) in the other two. This type of scatterplot
analysis is mostly qualitative and a further study of the atomic and dimer
systems on a deeper level is required before drawing any conclusions on what
the contributing factors are.

An RDG isosurface of 0.8 was plotted for each of the dimers. The results are
shown in Figure 4.14, with the surface points colored according to sgn(λ2) × ρ,

8See section 3.4.
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following the color key in subfigure 4.14d. This relatively high RDG value was
chosen so that the surfaces include points of positive λ2 for all three systems.

As was expected, the interaction region is located in the middle of the inter-
nuclear region, and presents axial symmetry, and the intensity of both the bonding
and non-bonding contributions increased with atomic number. However, there is an
unexpected effect: the region limited by the s = 0.8 isosurface is roughly similar for
Zn2 and Hg2, and slightly larger for Cd2. Several factors can contribute towards this
change in isosurface size, some negatively and some positively, such as the increase
in number of electrons, as well as more intense electron screening, the increase in
atomic number, stronger relativistic effects, etc., as well as those mentioned in the
discussion of the scatterplot results.

All things considered, the main point we wish to highlight at the end of this sec-
tion is this: although the atoms present in the three dimers studied here have similar
outer-electron configurations, there is a significant change in the way they bond non-
covalently in atomic dimers, and these changes are evidenced by the differences in
their scatterplot and isosurface NCI index results.
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(a) Zinc dimer

(b) Cadmium dimer

(c) Mercury dimer

(d) color key

Figure 4.14: s = 0.8 isosurface for all three dimers with QZP densities at experi-
mental inter-nuclear distances, colored according to sgn(λ2) × ρ. Images obtained
using UCSF Chimera.
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4.3 Periodic systems

The study of periodic systems is vital to the industry of materials design, and
some novel materials have shown NCIs as either responsible for structure stabiliza-
tion or simply present [41]. The systems chosen to be analyzed in this section have
been the object of extensive study for decades: graphene (as a single layer), and
graphite in both its thermodynamically stable (Alpha) and unstable (Beta) forms.
These materials exhibit some interesting electronic properties owed to the 2D nature
of graphene, but which are outside the scope of the present project.

4.3.1 Graphene

Graphene is a two-dimensional structure of Carbon atoms arranged in a hon-
eycomb lattice. The primitive unit cell contains two atoms and can be built and
arranged as shown in subfigure 3.1a. Using this unit cell, the cell parameter a can
be computed from the inter-nuclear distance d as a = d

√
3. For energy and density

calculations, however, a 3D unit cell is required. For this reason, the cell is extended
in the direction perpendicular to the 2D structure and non-periodic borders are set
distanced from it. In this case, the value of 20 Åwas chosen as the c cell parameter,
giving the structure a vacuum of 10 Å. This is represented in subfigure 3.1b. Ideally
this vacuum distance should be a target of convergence tests, but it was deemed
sufficient for this unit cell considering the light nature of the Carbon atoms.

Convergence

GPAW was used for all periodic calculations, in its plane waves (PW) mode.
This software uses Kohn-Sham DFT with an augmented plane waves method which
makes use of pseudo-potentials. Despite their use, however, it is capable of rebuilding
the all electron density after the calculation. The GGA Perdew-Burke-Ernzerhof
(PBE) [42, 43] XC functional was used for all calculations, as present in the LibXC
library of functionals. Only the (0, 0, 0) k-point (Γ point) was sampled from the
Brillouin zone. Spin-polarized calculations are the default if any of the atoms has
an intrinsic magnetic moment, i.e., if there are open-shell atoms. Convergence of
results is mostly dependent on two parameters: the plane waves cutoff energy Ecut,
such that, in atomic units,

|G + k|2

2
< Ecut (4.1)

with G the reciprocal lattice vectors and k the plane wave vectors; and the grid
spacing h of the internal grid in which the density is represented for finite-difference
based methods in certain steps of the SCF cycle.9

There is a relation between the two parameters in terms of their convergence
effects in a grid, derived by Briggs et al [44],

h =
π√
2Ecut

Eh

a0 ⇔ Ecut =
1

2

(
π

h/a0

)2

Eh (4.2)

9GPAW makes use of two internal grids, a ‘coarse’ grid of spacing h and a ‘fine’ grid of spacing
h/2.
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Table 4.1: Summary of convergence parameters for graphene.

N h (Å) Ecut (eV)

5 0.491902 77.702456
10 0.245951 310.809825
25 0.098380 1942.561408
50 0.049190 7770.245633

One could think of selecting the grid spacing and using the corresponding cutoff
for plane waves using equation (4.2). This is made impossible by the software, since
it asserts that the possible values of Ecut are limited by the value given by this
equation. Indeed, if a very close cutoff is selected, e.g. 99% of the computed value,
the convergence of the SCF cycle becomes much harder to achieve. However, looking
at the default values for these two parameters, we have h = 0.2 Å and Ecut = 340
eV. The quotient of the default cutoff value and the one computed using equation
(4.2) is roughly 0.36. Therefore, a decision was made to link the cutoff and spacing
parameters for each calculation according to

Ecut =
1

2
E

(computed via 4.2)
cut =

1

4

(
π

h/a0

)2

Eh (4.3)

This way, only one parameter needs to be screened for convergence of results.

To study convergence for graphene, the experimental inter-nuclear distance d =
1.42 Å was used [45], which results in a cell parameter a = 2.46 Å. Four single-
point energy calculations were run, each with a different spacing h = a/N , where
N = 5, 10, 25, 50. For each calculation, both the total energy and all-electron den-
sity grid were output.10 Grid spacings and cutoff energies for each calculation are
shown in Table 4.1.

Energy convergence analysis results are presented in Figure 4.15, in terms of the
cutoff energy value, in logarithmic scale.

The convergence analysis detailed here suggests that for grid spacings below 0.1
Å, energy is converged down to a relative error of less than 10−4.

To analyze the convergence of density, keeping in mind the property of interest is
the NCI index, an NCI index analysis was done for the density from each calculation,
and a visual inspection of the resulting scatterplots was conducted, similarly to the
Group XII dimers in subsection 4.2.1. The results are shown in Figure 4.16, with
each scatterplot being repeated in the subfigure for the following calculation for
direct comparison.

These results suggest that for grid spacings around and below 0.1 Å, the density
in NCI regions is thoroughly converged.

10For the density, the GPAW grid refinement parameter was used with value 2, so that the
returned grid is the ‘fine’ grid with spacing h/2.
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Figure 4.15: Energy convergence analysis of graphene: (a) total energy in terms of
cutoff energy used; (b) relative difference in energy with respect to last calculation,
in logarithmic scale, and grid spacing.
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(c) N = 25 (d) N = 50

Figure 4.16: NCI index convergence analysis for graphene.
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Figure 4.17: Geometry optimization attempt of graphene structure: total energy of
the unit cell in terms of cell parameter a; least squares fit to quadratic curve.

Geometry optimization

The structural stability of graphene is mostly dependent on the covalent bonds
between the Carbon atoms. The energetics of this covalent bonding are sufficiently
described with an XC functional at the level of PBE. Thus, we can attempt to
optimize the structure at the PBE level, so that the final NCI analysis of this
structure may be made at the actual PBE ground-state of graphene. To do this, five
single-point energy calculations were run, each with a different a cell parameter.11

In each calculation the grid spacing is given by h = a/25 and the cutoff energy by
equation (4.3) using this spacing. The five different a parameters were selected as

ai =

(
1−∆ + i

∆

2

)
aexp, i = 0, ..., 4 (4.4)

with ∆ = 7.5 × 10−2 and aexp =
√

3 × 1.42 Å. The resulting energies are shown in
Figure 4.17 with respect to the cell parameter.

We assume there is a minimum in the E(a) curve presented, and that the corre-
sponding a value is near the experimental value. As such, if we expand the E(a) in
a Taylor series near the minimum, it is expected to have the form12

E(a) = E∗ +
κ

2

( a
a∗
− 1
)2

+O
(
(a− a∗)3

)
(4.5)

with a∗ the equilibrium structure cell parameter, E∗ = E(a∗) the equilibrium energy,
and κ some constant related to the curvature of E(a) at a∗. Thus, ignoring terms of
O
(
(a− a∗)3

)
and performing a least squares fit of the E(a) data to this function,

we get the parameters shown in Table 4.2, with a sum of residuals 6.14× 10−3 eV2.

11c was kept constant so the non-periodic border conditions would remain the same throughout.
12Here a∗ was used to be distinguishable from the atomic unit of length, a0.
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Table 4.2: Least squares fit result for geometry optimization of graphene at PBE
level

a∗ (Å) 2.536
κ (eV) 365.738
E∗ (eV) −11.805

This concludes the geometry optimization of graphene at the PBE level.

NCI analysis

Using the optimized cell parameter obtained in the process described above,
another single-point energy calculation was done for graphene, with spacing h =
a∗/25 and Ecut given by (4.3) with this spacing. After SCF convergence, the density
was output with a GPAW grid refinement of 2, and an NCI analysis was done on it.
The resulting scatterplot and isosurface plots are presented in Figure 4.18.

As expected, the interaction is a steric crowding localized exactly at the unit
cell edges (vertices of the 2D unit cell), which corresponds to the center of the ring
structures in graphene. Although the scatterplot peak corresponding to the steric
crowding is similar to that of benzene (see Figure 4.4) as was expected, the shape
of the corresponding RDG isosurface is not: benzene presents ‘pellet’ interactions
whereas in graphene the interaction isosurfaces are ‘peanut’-shaped. It is unclear
whether this change in the isosurface shape is caused by the periodic structure,
the change in inter-nuclear distance between Carbon atoms, other factors, or a
combinations of several.

4.3.2 Graphite – Alpha (hexagonal)

Graphite in its Alpha form (hexagonal) can be viewed as a periodic extension
of graphene into the direction perpendicular to its 2D structure. A possible way to
build the unit cell for α-graphite from the unit cell used for graphene is to copy the
two atoms, place them a certain inter-planar distance dp above the original, move
them one C–C bond length in the inter-nuclear direction – or move the original
atoms and leave the new ones in the same x and y positions as the original – set the
c cell parameter to 2 × dp and set the positions of the original atoms at z = 0 and
the new atoms at z = dp. This unit cell is schematically represented in Figure 4.19.

Geometry optimization attempt

An attempt at structure optimization, similar to the one done for graphene, was
done with this unit cell for α-graphite. As such, nine single-point energy calculations
were done with the same methods as before. The a cell parameter was kept at the
experimental value, the spacing used was h = a/25, and the cutoff computed with
(4.3). Similarly to the graphene optimization, nine values were selected for the c
cell parameter, this time according to

ci =

(
1 + i

∆

4

)
cexp, i = 0, ..., 8 (4.6)
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(a) scatterplot

(b) 3D isosurfaces

Figure 4.18: NCI index analysis of graphene at the optimized PBE structure:
(a) NCI scatterplot; (b) s = 0.5 isosurface for the unit cell, colored according to
sgn(λ2)× ρ following the detailed color key, along with a ρ = 0.1 a.u. isosurface.
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(a) primitive cell (b) extended cell

Figure 4.19: Schematic representation of the unit cell used for α-graphite: (a) prim-
itive unit cell and atoms; (b) one cell extended in each direction. Image obtained
with the ASE GUI.

with ∆ = 0.5, cexp = 2 d
(exp)
p and d

(exp)
p = 3.35 Å [45].13 The resulting energies are

shown in Figure 4.20.

These results seem to suggest there is no minimum in the E(c) curve near the ex-
perimental value, which in turn would suggest the α-graphite structure is not stable
possibly due to electronic repulsion between the graphene layers. This conclusion is
clearly wrong, as α-graphite is a common mineral, but was expected. The stabiliza-
tion of graphite is mainly owed to the weak van der Waals non-covalent interaction
between graphene layers [46], the energetics of which are known to not be accurately
described at the PBE level [40]. We thus decided to use the experimental structure
parameters when computing the density to be used for the NCI index analysis.

NCI analysis

Using the experimental values for the cell parameters referenced above, a single-
point energy calculation was done with the same grid spacing and cutoff. After SCF
convergence, the density was output with a GPAW grid refinement of 2, and an NCI
analysis was done on it. The resulting scatterplot and isosurface plots are presented
in Figure 4.21.

As expected, the van der Waals interaction surface spans the entirety of the plane
in the middle of each graphene layer, and presents both bonding and non-bonding
contributions, which is usually an NCI characteristic of this type of interaction.
It seems important to point out that although in the Figure it looks as though the
isosurface is represented as two ‘sheets’ which appear to originate from the graphene
layers, they are part of a single isosurface which encapsulates a small volume between

13Fractional coordinates of all atoms are kept constant so that the system is scaled accordingly.
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Figure 4.20: Geometry optimization attempt of α-graphite structure: total energy
of the unit cell in terms of cell parameter c; natural cubic splines between data
points.

each graphene layer and extends periodically in the two dimensions parallel with the
graphene layers. The same ‘peanut’-shaped steric crowding isosurfaces that were
present in graphene as visible here as well.

4.3.3 Graphite – Beta (rhombohedral)

The unit cell for graphite in its Beta form was built from the α-graphite unit
cell using the same process as the α-graphite cell from graphene: by copying a pair
of Carbon atoms, moving them one bond length, and adjusting the c cell parameter
and the z position of the new atoms. A schematic representation of this new unit
cell is shown in Figure 4.22.

No attempts were made to optimize its geometry. Instead, the same a param-
eter and inter-planar distance dp were used as for α-graphite, which scaled the c
parameter by 3/2.

NCI analysis

As before, a single-point energy calculation was done with the same grid spacing
and cutoff. After SCF convergence, the density was output with a GPAW grid
refinement of 2, and an NCI analysis was performed. The resulting scatterplot and
isosurface plots are presented in Figure 4.23.

As expected, the overall shape and scatterplot description of the van der Waals
interactions between graphene layers are the same as the ones found for graphite in
its Alpha form. There is, however, a noticeable difference in the localization of the
bonding and non-bonding contributions to this interaction for each surface. In α-
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(a) scatterplot

(b) 3D isosurfaces

Figure 4.21: NCI index analysis of α-graphite at the experimental structure: (a) NCI
scatterplot; (b) s = 0.5 isosurface for the unit cell, colored according to sgn(λ2)× ρ
following the detailed color key, along with a ρ = 0.1 a.u. isosurface.
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(a) primitive cell (b) extended cell

Figure 4.22: Schematic representation of the unit cell used for β-graphite: (a) prim-
itive unit cell and atoms; (b) one cell extended in each direction. Image obtained
with the ASE GUI.

graphite, since there are only two different configurations of graphene layers, there
is only one type of inter-layer interaction surface: as visible in Figure 4.21b, the
localized bonding contribution is always directly between the two atoms which are
shown to have the same x and y positions. On the other hand, in β-graphite, since
there are three layer configurations – the stacking is of the type ABCABC – there
are now three different inter-layer interaction surfaces with bonding contributions
localized in different x and y positions in the unit cell, always between two Carbon
atoms which are stacked directly on top of each other in subsequent layers. This
could be a possible reason, or at least a partly contributing factor, for the rarity of
this type of graphite.

The steric crowding interactions, which were not expected to change, do not.
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(a) scatterplot

(b) 3D isosurfaces

Figure 4.23: NCI index analysis of β-graphite at the experimental structure: (a) NCI
scatterplot; (b) s = 0.5 isosurface for the unit cell, colored according to sgn(λ2)× ρ
following the detailed color key, along with a ρ = 0.1 a.u. isosurface.
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4.4 Bismuth carbide clusters

The NCI analysis presented here was done by the author as a contribution to an
article which at the time of writing is being submitted to the Journal of Organometal-
lic Chemistry, in conjunction with Dr. Bruce F. Milne and Dr. Micael J. T. Oliveira,
who were also responsible for the non-NCI-related work presented in the article.

4.4.1 Introduction

Although transition metal cluster-type structures have been subject of some re-
search for a few years [47–50], specifically those of transition metal carbides, being
investigated for applications in areas such as catalysis in chemical production and
fuel cell design [51–53], in recent years interest has turned to the later p-block
metallic elements14 [54,55]. Not only do these elements participate in reactions very
differently from the transition metals, they can also be expected to display unique
properties due to strong relativistic effects owed to the presence of very heavy nuclei.

Relatively early examples of this class of main group metal carbides are the range
of cationic cage-like Bismuth carbide metalcarbohedrons BinC2n

+ which were syn-
thesised using a gas-aggregation source by Yamada and Nakagawa (2009) [56]. The
creation of metal carbides containing such a heavy element is of considerable inter-
est as it provides an opportunity to study the properties of (p-block) metal carbides
taken to the extremes of difference in masses between their metal and carbon con-
stituents. A characterization of the Bismuth carbides thus produced involved mass
spectroscopic analysis of the resulting gas stream combined with DFT calculations
of the relative energies of possible structural isomers. While this permits a tentative
prediction of the species actually produced by the gas-aggregation method, a more
complete spectroscopic analysis would be required in order to positively identify the
cluster/cage geometries.

In the article, we present theoretical calculations of vibrational and optical ab-
sorption spectra for the various structural isomers posited by Yamada and Naka-
gawa. Spectroscopic features that will permit clear characterization of these cluster
types were identified and suggest fundamental differences in the bonding displayed
by these clusters and, in particular, within C2 dicarbon units. Furthermore, analysis
of the properties of the charge density of these clusters support the spectroscopic
observations regarding bonding and help to rationalize the observed relative yield
of clusters of differing masses.

4.4.2 Systems analyzed

The experimental study by Yamada and Nakagawa [56] was done on a group of
synthesized cationic metalcarbohedrons of the form BinC2n

+, with n ranging from
3 to 9. The authors performed DFT calculations to predict low energy structures
corresponding to each of the cluster masses experimentally observed. The geometry
of these systems is shown in Figure 4.24.

14Metallic elements in Groups XIII to XVIII of the periodic table.
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3a 3b

4a 4b

5a 5b

6a 6b

7a 7b

8a 8b

9a 9b

Figure 4.24: Bismuth carbide cations investigated in this work. Large spheres
= Bismuth, small spheres = Carbon. Molecular graphics created using Marvin
(www.chemaxon.com)
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The geometries presented were optimized by Bruce Milne and Micael Oliveira.
Optimizations and vibrational analyses/calculations of infra-red (IR) spectra were
performed at the DFT/B3LYP level [57, 58] using GAMESS-US (11 August 2011
(R1) release) [59]. The polarized triple-ζ Def2-TZVP basis set [60] was used in all
B3LYP calculations. Scalar relativistic effects were included in the B3LYP/Def2-
TZVP calculations through the use of effective core potentials (ECP)15 for Bi atoms
[61]. Spin multiplicities used are the same as those in the article by Yamada and Nak-
agawa [56]. Relative energies for the ‘a’ and ‘b’ forms of each BinC2n

+ cluster were
calculated including a correction for zero-point energy (ZPE). The B3LYP/Def2-
TZVP ZPE was scaled by 0.965 in line with the data contained in the NIST CC-
CBDB database (http://cccbdb.nist.gov/), in order to produce accurate energetics
for the various candidate structures. IR spectra were processed using the Gabedit
software package in order to visualise the calculated vibrational modes and to fit
Lorentzian curves to the energies and intensities calculated with GAMESS-US [62].
The optical absorption cross-sections were calculated using time dependent density
functional theory (TDDFT), [63, 64], in particular, the real-time method as imple-
mented in the Octopus code [65–67] using the PBE XC functional.

For bonding analysis, including NCI index, only four representative structures
of the 14 presented were considered, namely the ones indexed by ‘3a’, ‘4a’, ‘6a’ and
‘8a’. For these systems, spectroscopic analyses indicated several similarities in the
spectra of BinC2n

+ and Bi2nC4n
+ (n = 3, 4).16 The similarities are also apparent in

the geometry of the systems, as each a-2n conformation appears to be ‘made up’ of
two a-n conformations stacked together. All-electron densities were then calculated
with the SCAN meta-GGA functional [40] using the B3LYP/Def2-TZVP geometries.
Scalar relativistic effects were incorporated with the second-order Douglas-Kroll-
Hess (DKH2) method [68–72] and the spin-orbit contribution was calculated using
the one-centre spin-orbit mean field (SOMF(1X)) [39] approach, similarly to the pre-
viously mentioned Group XII metal dimers in section 4.2. Basis sets re-contracted
for use in relativistic calculations were employed (DKH-Def2-TZVP [73] for Carbon
and SARC-DKH-TZVP [74] for Bismuth). Coulomb integrals were approximated
with the resolution of the identity approach using the Def2/J and SARC/J auxiliary
basis sets. [75, 76] Electronic charge densities were output in Gaussian cube format
for analysis with the PyNCI program. All SCAN calculations were performed with
the ORCA software package version 4.2.1. [33].

Covalent bond analysis using the electron localization function (ELF) [5] evi-
denced the strong covalent bonding between Bi and C atoms, and between C atoms
in the same ring structure, but no covalent bonding was detected between any atoms
of one ring with atoms of the other. As such it can be concluded that the interaction
that leads to stabilization of the double ring structures is non-covalent in nature.

4.4.3 NCI analysis

The computed all-electron densities were analyzed with the developed implemen-
tation of the Johnson et al [1] method, the results of which are shown in Figures

15Pseudo-potentials are generally named effective core potentials in the Chemistry community.
16Both the IR and the optical absorption spectra referenced are presented in Appendix D.
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(a) n = 3, full (b) n = 3, right

(c) n = 4, full (d) n = 4, right

Figure 4.25: NCI index analysis of Bismuth carbide clusters: (a,c) scatterplots
comparing BinC2n

+ and Bi2nC4n
+ systems and (b,d) the right side (non-bonding)

of the scatterplots in logarithmic scale for sgn(λ2)× ρ.

4.25 and 4.26. In Figure 4.25, the non-bonding (positive sgn(λ2) × ρ) side of the
scatterplots is shown again separately in logarithmic scale in order to emphasize the
details of peaks pertaining to steric crowding in the center of ring structures.

From both NCI index representations, several types of NCIs are visible:

• Strong non-covalent interactions between the Bi atoms of each ring structure.
These are likely the largest contribution to the stability of the structure.

• Weak van der Waals dispersion with similar bonding and non-bonding contri-
butions between the bicarbon units of each ring structure.

• Non-bonding interactions resulting from steric crowding at the center of each
ring structure, as well as at the center of the double ring structures. We
note that these are significantly less intense than those seen for example in
Benzene17, and are even weaker than the van der Waals interactions seen in
the same structure.

17See section 4.1
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(a) Bi3C6
+ (b) Bi34C8

+

(c) Bi6C12
+ (d) Bi8C16

+

Figure 4.26: NCI index analysis of Bismuth carbide clusters: s = 0.45 isosurface for
several systems, colored according to sgn(λ2) × ρ, following a blue-white-red color
key of minimum -6×10−2 a.u. and maximum of 3×10−2 a.u.
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4.4.4 Discussion

The data obtained in the current work help to rationalize the similarities in the
calculated spectra of certain pairs of complexes such as Bi3C6

+(a) and Bi6C12
+(a)

or Bi4C8
+(a) and Bi8C16

+(a) by showing that in fact the heavier complexes are es-
sentially non-covalent dimers of their lighter counterparts and might therefore be
expected to behave very similarly from the point of view of spectroscopic analysis.
This might also go some way to explain the lack of these heavier complexes in the
product mixture obtained from the gas-aggregation experiments; if these are indeed
dimers bound by non-covalent interactions then it is not unreasonable to expect
them to be less abundant than the corresponding monomer units.

Using conventional approaches for the description of bonding processes in these
systems would be considerably difficult, given that some of the monomer and dimer
configurations have different spin states. However, the conjoint use of ELF and NCI
index for covalent and non-covalent interactions respectively allows us to visually
rationalize the dimerization process through which the more complex structures are
formed in a more intuitive manner.
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Chapter 5

Conclusion

We have succeeded in building an easily usable and fast Python implementation
of Johnson et al ’s NCI index analysis [1]. Its visualization aspects, both two- and
three-dimensional, were successfully tested in several types of systems – molecu-
lar dimers, atomic dimers and periodic structures – with DFT densities computed
using different methods and codes, only from the cube files exported at the end
of SCF calculations. Within the project, several specific problems were found and
solved accordingly, which include, but are likely not limited to: pseudo-potential
artifacts from using pseudo-densities, computation of finite-difference derivatives in
non-orthogonal grids, lack of resolution in scatterplots and isosurface representa-
tions (solved with trilinear interpolation), computation of the RDG in arrays which
include non-positive density values, and computational efficiency when evaluating
the sign of the median eigenvalue of the Hessian matrix of density for every point
in a grid. Furthermore, some of the results obtained with this implementation have
aided the study of metal carbide clusters by supporting the hypothesis proposed by
TDDFT theoretical spectroscopy analyses of a dimerization process through which
more complex structures are built from similar but simpler systems.

Future work

The most recent version of NCIPLOT [4] (2020) includes thoroughly tested tools
for quantitative analysis of non-covalent interactions built upon the visualization
aspects similar to those developed here, by making use of multi-grid methods and
defining NCI volume regions in dimers by splining the scatterplot for monomer ver-
sions of the same systems. It was attempted in this project to extend our analysis
to similar quantitative means, namely by using the Atomic Pseudopotentials En-
gine [77] for atomic calculations from which, in principle, a s(ρ) injective relation
could be derived, to be used in the analysis of atomic dimers. At the time, this effort
has not yielded any usable results. However, the groundwork is set for the develop-
ment of these quantitative tools in this Python implementation. Then, for a more
quantitative analysis, interaction energy calculations based solely on the density
maps, e.g. considering bonding and non-bonding contributions, are an achievable
possibility. A similar attempt was made before by some of the development team of
NCIPLOT [78] and was likely the genesis of the more recent quantitative analysis.
This could in turn facilitate molecular dynamics simulations, as well as geometry
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optimizations in systems for which weak non-covalent interactions are responsible
for stabilization. Examples of this last class include processes of adsorption of simple
molecules onto surfaces, such as graphene.

Although all NCI analyses done here were performed on ground state densities,
in principle there is no reason why they cannot be performed on ‘snapshot’ densities
of time-dependent systems, from e.g. TDDFT calculations or molecular dynamics.
This would allow us, for instance, to study thermal effects on NCIs, or how NCIs
are responsible for long range bonding in large biological systems which exhibit
mechanical folding and unfolding, yielding different conformations. However, for
3D visual representations of these processes using the NCI index analysis, it is
recommended that a process for representing isosurfaces is automated.
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Appendix A

Finite Difference Derivatives

A.1 Introduction

To compute spatial derivatives of the charge density based on its grid values
obtained from previous self-consistent calculations, finite-difference based approxi-
mations were used. The expressions used are shown here for first order (gradient)
and second order (Hessian matrix) derivatives, and the first terms of the approxi-
mation errors are explicitly computed.

A.2 First order derivatives

Let f(x) be a scalar field, and suppose the x coordinate of which it is a function
is discretized in some interval according to

xi = x0 + i δx (A.1)

with δx � 1. We then have a discretization of the values of f given by fi = f(xi).
Expanding f(x) in a Taylor series around x = xi,

1

f(x) =
∞∑
n=0

f (n)(xi)

n!
(x− xi)n (A.2)

Let us define gi = g(xi) as

gi =
fi+1 − fi−1

2 δx
(A.3)

Expanding this definition using (A.2),

gi =
1

2 δx
(f(xi + δx)− f(xi − δx))

=
1

2 δx

∞∑
n=0

f (n)(xi)

n!
[δxn − (−δx)n] (A.4)

1f (n)(xi) ≡ dnf
dxn

∣∣∣
x=xi
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The even terms2 of this expansion are null since (−δx)n = δxn. On the other
hand, for odd terms (−δx)n = −δxn, thus we can write

gi =
1

2 δx

∞∑
n=0

f (2n+1)(xi)

(2n+ 1)!
· 2 δx(2n+1) =

∞∑
n=0

f (2n+1)(xi)

(2n+ 1)!
· δx2n (A.5)

Explicitly writing the first terms of this expansion,

gi = f ′(xi) +
f (3)(xi)

6
δx2 +O

(
δx4

120

)
(A.6)

Thus, equation (A.3) provides an accurate approximation for the first derivative
in x of the scalar field f at grid point xi, using only the value of f at the neigh-
boring grid points. More accurate finite-difference derivatives can be constructed
which make use of a greater number of neighboring points, but this form was found
to be accurate enough for the purpose of this project, both because of relatively low
spacings and spatial third order derivatives of the charge density near non-covalent
interaction regions.

This one-dimensional first derivative can be generalized into partial derivatives
of n independent coordinates. Let f be a scalar field on an n-dimensional space

f = f(x) , x ∈ Rn (A.7)

Discretizing this n-space similarly to (A.1),

x(i)α = x(0)α + i δxα (A.8)

with α = 1, ..., n the component index of x. The discretization of f follows and its
values on the grid are indexed by n indices i, j, k, etc. Let iα be the index pertaining
to component α, e.g. i1 ≡ i, i2 ≡ j, i3 ≡ k, etc. Then we have that the partial
derivative of f(x) with respect to component xα at the point indexed by (ijk...) can
be approximated by

∂f

∂xα

∣∣∣∣
ijk...

≈ gαijk... =
fi1 ..., iα+1, ..., in − fi1, ..., iα−1, ..., in

2 δxα
(A.9)

Taking n = 3 and f the charge density, each grid value of the three spatial first
derivatives was computed thusly, in a vectorized manner.

A.3 Second order derivatives (Hessian matrix)

For simplification of notation, let us consider the n = 3 case from the start. The
Hessian matrix of scalar field f , H(f), is a 9 component3 field indexed by 2 integers
and given by

Hαβ [f(x)] =
∂2f

∂xα∂xβ
(A.10)

2n = 2l with l ∈ N
3Only 6 of which are independent due to its symmetry
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In practice, since a second derivative can be computed as the derivative of a
derivative of f , we can use the expression in (A.9) to compute these from the pre-
viously computed gradient components. There are, however, a couple of reasons as
to why it would be more efficient to derive and use a second derivative expression
rather than computing the gradient of each gradient component:

• Such an approach would compute arrays for 9 components, rather than the
required 6 independent components, needlessly sacrificing memory in the anal-
ysis;

• For specific derivatives, this approach leads to an approximation with greater
associated errors.

For these reasons we will focus on diagonal (α = β) and non-diagonal Hessian
components separately.

A.3.1 Diagonal components

Diagonal components of H(f) are second derivatives in the same spatial coordi-
nate, so we can deal with the one-dimensional case as in the previous section, and
then generalize it to n = 3. Thus, consider f and g discretized in grids as shown in
(A.1) and (A.3).

Since f ′′(xi) is simply the derivative of f ′(xi), a possible way to approximate it
would be

h̃i =
gi+1 − gi−1

2 δx
(A.11)

Replacing the values of g according to (A.3),

h̃i =
1

2 δx

(
fi+2 − fi

2 δx
− fi − fi−2

2 δx

)
=

fi+2 − 2 fi + fi−2

(2 δx)2
(A.12)

As shall become apparent, this would correspond to the computation of f ′′(xi)
in a grid with the spacing doubled (half the resolution), and thus has a greater error
than if the first neighbors of fi were used instead of fi±2. A better expression can
be derived in one of two ways which are equivalent:

• by considering the first derivatives in virtual midpoints gi±1/2 – even though
these grid points are not defined this is not a problem because the final ex-
pression is independent of them;

• by considering another approximation to the first derivatives – side point –
which have greater associated errors than the central point expression, but
which ultimately cancel out when computing the second derivative.

The reason these two are equivalent is that the different approximations men-
tioned for the first derivatives on the first neighbors are actually accurate central
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point approximations for the virtual midpoints. We will, thus, formally consider the
first alternative. Computing the midpoint first derivatives,

gi+1/2 =
fi+1 − fi

δx
∧ gi−1/2 =

fi − fi−1
δx

(A.13)

Considering the central point derivative of these two points,

hi =
gi+1/2 − gi−1/2

δx
=
fi+1 − 2 fi + fi−1

δx2
(A.14)

which confirms the statement after equation (A.12) about a grid with half the res-
olution.

For a deeper understanding of the associated errors, we can compute the Taylor
series expansion of hi based on the expansions of f around xi in (A.2), similarly to
the expansion for gi in (A.6).

hi =
1

δx2
[f(xi + δx)− 2 f(xi) + f(xi − δx)]

=
1

δx2

[
f(xi)− 2 f(xi) + f(xi) +

∞∑
n=1

f (n)(xi)

n!
(δxn + (−δx)n)

]
(A.15)

It is trivial to see the even terms survive in this case, as opposed to the odd
terms in the gradient computation. Thus,

hi =
1

δx2

∞∑
n=1

f (2n)(xi)

(2n)!
· 2 δx2n

=
∞∑
n=1

f (2n)(xi)

(2n)!/2
δx2(n−1) (A.16)

Explicitly writing the first terms,

hi = f ′′(xi) +
f (4)(xi)

12
δx2 +O

(
δx4

360

)
(A.17)

Thus, equation (A.14) provides an accurate approximation for the second deriva-
tive in x of the scalar field f at grid point xi, using only the value of f at the neigh-
boring grid points. It is once again worth mentioning more accurate finite-difference
derivatives can be constructed which make use of a greater number of neighboring
points, but that this form was found to be accurate enough for the purpose of eval-
uating the sign of the median eigenvalue of the Hessian matrix at every grid point.

The generalization to 3-dimensional spatial derivatives is done trivially in a simi-
lar manner to the gradient in (A.9). Let f be a scalar field in 3-dimensional space, let
i be the index pertaining to component α, and let j and k be the indices pertaining
to the remaining components. At the spatial point indexed by ijk we have4

∂2f

∂x2α

∣∣∣∣
ijk

≈ h
(αα)
ijk =

f jki+1 − 2 f jki + f jki−1
δx2α

(A.18)

4For a clearer notation, the index related to the derivative component is subscripted, and the
indices related to the remaining components are superscripted, in f .
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A.3.2 Non-diagonal components

In this case, because the derivatives are done in different directions, i.e., along
dependencies on different components, we do not run the risk of originating an ex-
pression which depends on not-first neighbors of fijk. We can thus use the central-
point derivative of the previously computed gradient components, although being
careful only to compute the necessary independent ones to avoid needless memory
requirements. It is, however, still useful to compute the overall central point expres-
sion for this case, to prove that it maintains the symmetry of the Hessian matrix,
and to better understand the associated errors with such an approximation.

With this in mind, consider i and j the indices pertaining to the components α
and β along which f is being derivated (α 6= β), and k the remaining component.
Following (A.3), we have

g
(α)
ijk =

fki+1, j − fki−1, j
2 δxα

∧ g
(β)
ijk =

fki, j+1 − fki, j−1
2 δxβ

(A.19)

Since

Hαβ(f) =
∂

∂xα

(
∂f

∂xβ

)
(A.20)

we have

h
(αβ)
ijk =

g
(β)
i+1, jk − g

(β)
i−1, jk

2 δxα

=
1

2 δxα

[
fki+1, j+1 − fki+1, j−1

2 δxβ
−
fki−1, j+1 − fki−1, j−1

2 δxβ

]

h
(αβ)
ijk =

fki+1, j+1 − fki+1, j−1 − fki−1, j+1 + fki−1, j−1
4 δxα δxβ

(A.21)

From (A.20), switching α and β,

h
(βα)
ijk =

g
(α)
i, j+1 − g

(α)
i, j−1

2 δxβ

=
1

2 δxβ

[
fki+1, j+1 − fki−1, j+1

2 δxα
−
fki+1, j−1 − fki−1, j−1

2 δxα

]

h
(βα)
ijk =

fki+1, j+1 − fki−1, j+1 − fki+1, j−1 + fki−1, j−1
4 δxβ δxα

= h
(αβ)
ijk (A.22)

Thus this expression maintains the symmetry of the Hessian matrix, and the
order of α and β are irrelevant.

Error analysis of approximation for non-diagonal components

Since there is more than one dimension involved in the derivative, it is not
possible to use the conventional approach seen in (A.6) and (A.17) of taking the next
terms in the Taylor series expansion of h. This is because, although it is possible to
write a Taylor-series-like expansion of f for multiple coordinates, it does not have a
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(trivial) closed form like for the one-dimensional case, and each group of terms has
to be analyzed individually. Let n be the number of independent coordinates, i.e.,
x ∈ Rn,

f(x0 + δx) = f(x0) +
n∑

α=1

∂f

∂xα
δxα +

1

2

n∑
α,β=1

∂2f

∂xα ∂xβ
δxα δxβ +

+
1

6

n∑
α,β,γ=1

∂3f

∂xα ∂xβ ∂xγ
δxα δxβδxγ + ... (A.23)

We can, however, still find a closed form expansion for f in the neighborhood of
some point x0. To simplify calculations we will first consider the lowest-dimensional
case that can be considered – similarly to the one-dimensional case for first deriva-
tives and diagonal-component second derivatives: that f is dependent only on the
two independent coordinates along which it is being derivated (xα and xβ). Desig-
nate these coordinates x and y, and take5

f z(x, y) = f(x∗) , x∗ : xγ = z, γ 6= α, β (A.24)

In other words, this procedure comes down to fixing the coordinate along which
no derivatives are being taken, and considering f as a function of only x and y along
that plane. For simpler notation, f and f z are used interchangeably for as long as
it is possible to differentiate between them given the context.

The assumption that f is composed of separable functions

f(x, y) = Θ(x) Φ(y) (A.25)

is not general enough. However, if we consider a (possibly infinite) sum of separable
functions

f(x, y) =
P∑
p=1

Θp(x) Φp(y) (A.26)

this form is accurate enough that for any ‘well-behaved’ f we can consider it to be
true – after all, this is technically what the expansion shown in (A.23) is.

From (A.26) we have the general derivative form

∂k+lf

∂xk ∂yl
=

P∑
p=1

Θ(k)
p (x) Φ(l)

p (y) (A.27)

Since they’re single-coordinate dependent, each of the Θp and Φp functions can
be expanded in a Taylor series near x0 and y0 by (A.2). Thus, we can expand f(x, y)
from (A.26) as

f(x0 + δx, y0 + δy) =
P∑
p=1

∞∑
k=0

∞∑
l=0

Θ
(k)
p (x0)

k!

Φ
(l)
p (y0)

l!
δxk δyl (A.28)

5For n = 3, z is the value that the third coordinate (along which no derivatives are done)
takes. We can still consider this definition for general n, in which case z is a set of values that the
remaining coordinates take.
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The sums can be rearranged such that the right side of equation (A.27) is visible
as the sum in index p, then replaced by the left side of the equation.

f(x0 + δx, y0 + δy) =
∞∑
k=0

δxk

k!

∞∑
l=0

δxl

l!

P∑
p=1

Θ(k)
p (x0) Φ(l)

p (y0)

=
∞∑

k,l=0

δxk δyl

k! l!

∂k+lf

∂xk ∂xl

∣∣∣∣
x0, y0

(A.29)

We have thus found a closed form of (A.23) for n = 2.6 The next step is to
redefine the sums presented so that the terms are ordered in powers of δx or δy:
terms of order m are proportional to products of the type δxk δyl if k + l = m. We
can achieve this by switching one of the indices k or l to m = k + l. Replacing l by
m− k, we rewrite (A.29) as

f(x0 + δx, y0 + δy) =
∞∑
m=0

m∑
k=0

δxk δym−k

k! (m− k)!

∂mf

∂xk ∂xm−k

∣∣∣∣
x0, y0

(A.31)

This way the summed terms have a clear ordering, and it is visible that each
term of order m is composed of a sum of m+ 1 ‘sub-terms’.

We are now ready to take (A.21) and expand the f terms in a Taylor-like series,
keeping in mind that

fi±1, j±1 = f(x(i)α ± δxα, x
(j)
β ± δxβ) (A.32)

Thus, from (A.21) and (A.31),

h
(αβ)
ijk =

1

4 δxα δxβ

∞∑
m=0

m∑
k=0

1

k! (m− k)!

∂mf

∂xkα ∂x
m−k
β

∣∣∣∣
ijk

δxkα δx
m−k
β σmk (A.33)

with

σmk ≡ 1− (−1)k − (−1)m−k + (−1)m (A.34)

The value of σmk depends only on the parity of m and k. Looking at the four
individual cases,

• with m odd and k odd, m− k is even and we have σmk = 1 + 1− 1− 1 = 0;

• with m odd and k even, m− k is odd and we have σmk = 1− 1 + 1− 1 = 0;

• with m even and k odd, m− k is odd and we have σmk = 1 + 1 + 1 + 1 = 4;

• with m even and k even, m− k is even and we have σmk = 1− 1− 1 + 1 = 0.

6This form appears to be generalizable to n dimensions as

f(x0 + δx) =

∞∑
{kα}

[
n∏
α=1

δxkαα
kα!

]
∂(

∑n
α=1 kα)f∏n

α=1 ∂x
kα
α

∣∣∣∣
x0

(A.30)

where kα is the index related to component α and each kα is summed from 0 to infinity.
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Thus, the only surviving terms are for even m and odd k, so we can replace
σmk by 4 if we replace the summing indices according to m = 2a and k = 2b + 1,
obtaining

h
(αβ)
ijk =

∞∑
a=1

a−1∑
b=0

1

(2b+ 1)! (2(a− b)− 1)!

∂2af

∂x2b+1
α ∂x

2(a−b)−1
β

∣∣∣∣
ijk

δx2bα δx
2(a−b−1)
β (A.35)

The notation can be simplified if we designate ma = 2a, kb = 2b + 1 and lab =
ma − kb = 2(a − b) − 1 (regaining these indices and their intuitive meaning from
(A.29)), and writing

h
(αβ)
ijk =

∞∑
a=1

a−1∑
b=0

1

kb! lab!

∂maf

∂xkbα ∂x
lab
β

∣∣∣∣
ijk

δxkb−1α δxlab−1β (A.36)

Finally, explicitly writing the first terms of (A.35),

h
(αβ)
ijk =

∂2f

∂xα ∂xβ

∣∣∣∣
ijk

+
1

3!

[
∂4f

∂xα ∂x3β

∣∣∣∣
ijk

δx2β +
∂4f

∂x3α ∂xβ

∣∣∣∣
ijk

δx2α

]
+O

(
δx4

36

)
(A.37)

Thus, equation (A.21) provides an accurate approximation for the second deriva-
tive in xα and xβ of the scalar field f at the grid point indexed by (ijk), using only
the value of f at the neighboring grid points. Once more, it is worth mentioning
more accurate finite-difference derivatives can be constructed which make use of a
greater number of neighboring points, but this form was found to be accurate enough
for the purpose of evaluating the sign of the median eigenvalue of the Hessian matrix
at every grid point.

A.4 Final note on border conditions

All of the expressions discussed in this appendix conveniently ignore the fact that
border points of the grid do not have all nearest neighbors defined. This problem is
addressed by temporarily expanding the grid depending on the border conditions for
each specific border, prior to derivative computations. If the border is periodic, the
grid is expanded one plane across said border by copying the values of the parallel
border.

If, on the other hand, there is no information about the border conditions other
than the fact that it is not periodic, i.e., pbc = False, the grid is expanded such that
the first derivative is approximated by a side-point expression as opposed to central
point. Let us take, as a particular case, the border defined by i = 0. According to
the central-point expression in (A.3), the derivative along component α = 1 would
be computed as

g
(1)
0jk =

f jk1 − f
jk
−1

2 δx
(A.38)

Since we have no information on f jk−1 we wish to compute the derivative as

g
(1)
0jk =

f jk1 − f
jk
0

δx
(A.39)
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which is a central-point approximation for the derivative at a virtual midpoint in-
dexed by (1/2, j, k). We wish to compute all derivatives in the grid in a vectorized
manner, so it becomes important to use the same expression for all points, instead
of a different expression for borders. We can, however, from equations (A.38) and
(A.39), extrapolate what would have to be the value of f jk−1 for both expressions to
yield the same result.

f jk1 − f
jk
−1

2 δx
=
f jk1 − f

jk
0

δx
⇒ f jk−1 = 2f jk0 − f

jk
1 (A.40)

The grid is thus expanded so that f jk−1 has this value, and then the same central-
point expression is used for all points. This method is used for all non-periodic
borders.

73



Appendix B

Discussion on RDG calculation
errors

B.1 Introduction

During the NCI index analysis it is necessary to compute for each grid point the
reduced density gradient s, which is proportional to the norm of the density gradient
and inversely proportional to a positive power of the density ρ. This is a possible
problem e.g. in the following two situations:

• the imported cell includes simulation box borders in which the density is 0;

• occasional floating point errors in the prior computation of the density – or in
its transcription to a cube file – may result in sporadic negative density values,
which need to be zeroed before the NCI index analysis is carried out.

In both situations and in others like these, it becomes necessary to deal with

possible infinite values of s at certain grid points, since s
ρ→0−−→∞. A simple solution

would be to carry out the evaluation of s over a grid point cycle, computing s only
for points with non-zero density. This results in problems of its own, namely,

• this grid cycle evaluation is much slower than the vectorized direct computa-
tion of s at every grid point;

• Nan values of s in the grid later result in complications during other evaluations
done in the code, which would need to be corrected using a similar grid point
cycle, thus propagating the slowness of the method into further parts of the
analysis.

The simplest solution found to solve this issue without creating more problems
was to shift the density at every grid point by a very small positive amount δρ. Note
that this is done only after computing the density gradient, so it does not affect the
s result in any way other than through its dependency on the density. In practice
it creates an artificial bound for large values of s, never reaching infinity but being
large enough for all practical purposes.

The error introduced in s by using this method can be quantified and controlled.
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B.2 Introduced error

Let
ρ′ = ρ+ δρ (B.1)

with δρ a small positive value. For constant |∇ρ|1, the relative error made in com-
puting s with ρ′ instead of ρ is given by

ε =

∣∣∣∣s(ρ′)− s(ρ)

s(ρ)

∣∣∣∣ = 1− s(ρ′)

s(ρ)
(B.2)

since s(ρ) ≥ s(ρ′) if ρ′ ≥ ρ. Substituting the expression for s(ρ) from equation
(2.14), we eventually arrive at

δρ

ρ
= (1− ε)−3/4 − 1 (B.3)

If ε� 1 we can expand

(1− ε)−3/4 = 1 +
3

4
ε+O

(
ε2
)

(B.4)

and finally obtain (ignoring second order terms in ε),

δρ

ρ
' 3

4
ε (B.5)

Expanding the expression in logarithmic form, assuming atomic units for the
density,

log ε ' log δρ− log
3

4
− log ρ (B.6)

To reiterate, this relates the relative error ε in computing s when the density
ρ is shifted slightly by a positive amount δρ, but |∇ρ| is kept constant. Suppose
δρ = 10−16 a.u.. If we choose a certain density value ρ0 and compute the error ε0
associated with it we have

• for ρ < ρ0, ε > ε0;

• for ρ > ρ0, ε < ε0.

Most weak interactions analyzed in the current document have a minimum as-
sociated density greater than ∼ 10−6 a.u.. Choosing ρ0 = 10−6 we have

log ε0 ' −16− log
3

4
+ 6 ∼ −10

Thus for all points with densities greater than ρ0 = 10−6 a.u. the relative error
in s is lower than ε0 ∼ 10−10. Figure B.1 contains a graphical representation of the
relation between the relative error and the density value (in atomic units) for several
values of δρ, from both equations (B.3) and (B.5).2

Obviously closer to ρ = 0 the relative error tends to 1, since (for constant |∇ρ|),
s

ρ→0−−→∞.
1i.e., considering s as a function of (only) ρ.
2−10 was used here as a base value instead of the aforementioned −16 to circumvent floating

point errors that would result in divergences in the high ρ limit of the graph.
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Figure B.1: Relative error ε as a function of density ρ for several values of δρ =
10−10+α a.u., in logarithmic scale. Dashed lines represent the linear relation given
by (B.5), and solid lines represent the real relation as seen in (B.3).

B.3 Possible partial correction of s for finite ρ

B.3.1 Derivatives

For any function f(x) which has the form f(x) = Axα, we have

f (n)(x) =

[
n−1∏
k=0

(α− k)

]
f(x)

xn
(B.7)

Proof

The result is trivial for n = 1. For n+ 1 given n,

f (n+1)(x) =
d

dx
f (n)(x)

=

[
n−1∏
k=0

(α− k)

](
f ′(x)

xn
− n f(x)

xn+1

)

=

[
n−1∏
k=0

(α− k)

]
(α− n)

f(x)

xn+1

f (n+1)(x) =

[
n∏
k=0

(α− k)

]
f(x)

xn+1
(B.8)

Thus a proof by induction is complete.
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B.3.2 Taylor series expansion

Considering s a function of ρ,

s(n)(ρ) =
s(ρ)

ρn

n−1∏
k=0

(α− k) , α = −4

3
(B.9)

Expanding s(ρ) in a Taylor series around ρ′ = ρ+ δρ,

s(ρ′ − δρ) =
∞∑
n=0

s(n)(ρ′)

n!
(−δρ)n (B.10)

Keeping in mind that if α < 0,

α− k = − (|α|+ k) ⇒
n−1∏
k=0

(α− k) = (−1)n
n−1∏
k=0

(|α|+ k) (B.11)

then from equations (B.9) and (B.10) we have

s(ρ) =
∞∑
n=0

1

n!

s(ρ′)

ρ′n
(−1)n δρn (−1)n

n−1∏
k=0

(
4

3
+ k

)

= s(ρ′)
∞∑
n=0

1

n!

(
δρ

ρ′

)n n−1∏
k=0

(
4

3
+ k

)
(B.12)

For simple visualization of correction factors, we can rewrite (B.12) as

s(ρ) = s(ρ′)

{
1 +

∞∑
n=1

γn η
n

}
(B.13)

with

η =
δρ

ρ′
=

(
1 +

ρ

δρ

)−1
≤ 1 (B.14)

and

γn =
1

n!

n−1∏
k=0

(
4

3
+ k

)
(B.15)

We can set γ0 = 1 and obtain γn+1 from γn as

γn+1

γn
=

n!

(n+ 1)!

∏n
k=0

(
4
3

+ k
)∏n−1

k=0

(
4
3

+ k
) =

n+ 4/3

n+ 1
(B.16)

Convergence

To analyze the convergence of the series presented in equation (B.13), let an =
γn η

n,

an+1

an
=

γn+1

γn

ηn+1

ηn

=
n+ 4/3

n+ 1
η

n→∞−−−→ η+ (B.17)

Thus, the series converges for η < 1, i.e., for finite ρ; and diverges for η = 1,
which was expected from the divergence of s in this case.
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B.3.3 Correction algorithm

In practice, a simple algorithm for the partial correction of s for finite ρ would
go as follows:

• choose correction order n;

• compute η = δρ
ρ′

and define γ, sf = 1;

• for k = 0 to n− 1 do

γ ← γ · k + 4/3

k + 1

sf ← sf + γ · ηk+1

• correct s with
s← s · sf

B.3.4 Final remarks

It is important to note that the partial correction described here has no effect
on the visualization aspect of the analysis – be it in the 2D or 3D plots – but may
be necessary for more accurate quantified results which make use of the scatterplot
points. Specifically, following the analysis in section B.2, we can see that although
the charge density in the NCI regions is very low – typically around 10−6 to 10−2

a.u. – it is still several orders of magnitude above the density shift used, in the order
of 10−16, and as a consequence the introduced error is minimal in the NCI regions.

Alternative shifts and correction

The δρ shift described here is constant in space, being the same for all points in
the grid. However, since we need only shift the density of points with zero density,
it is possible to make the shift dependent on density – though it is recommended
that such a dependence is relatively continuous and smooth – e.g. with

δρ = A exp

{
−
( ρ
D

)2}
(B.18)

with A and D shift parameters.3 Since the derivation of the correction algorithm
done in this appendix is for every grid point independently, there is no change in
the algorithm when dealing with variable shifts, as long as the appropriate η factor
is computed and used. In practice, the smooth dependence of δρ in ρ guarantees
the smoothness of the correction factor as well.

3A defines the order of magnitude of the shift, and D defines the order of magnitude below
which the densities are shifted. In the most recent versions of the code, this was the correction
scheme chosen, and the value 10−16 was used for both shift parameters A and D.
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Appendix C

Evaluating the sign of the median
eigenvalue of a symmetric 3× 3
matrix

C.1 Introduction

One of the steps of a real-space-based NCI index analysis is to compute, for
every grid point, the sign of the median eigenvalue (λ2) of the Hessian matrix of
the electronic density. The 6 independent components of the Hessian matrix can
be computed for each point via finite-difference derivatives. A possible conventional
approach would then be to explicitly build the 3 × 3 matrix for each grid point
and diagonalize it in order to obtain the three eigenvalues, from which λ2 (and its
sign) can be extracted.1 However, this evaluation becomes too computationally ex-
hausting for a relatively dense grid, especially considering that the method involves
computing values which are irrelevant to the analysis in question.

We thus present a more efficient way to obtain the sign of λ2 without explicitly
computing its value (or any of the remaining eigenvalues), using some of the prop-
erties of the characteristic polynomial of 3×3 symmetric matrices, as is the case for
the Hessian matrix.

C.2 Characteristic polynomial

C.2.1 Polynomial coefficients

Let A be a 3× 3 symmetric matrix

A =

a1 b c
b a2 d
c d a3

 (C.1)

1It is worth noting that by conventional the author does not mean standard/common. In fact,
this is not the approach taken by Johnson et al in [3], relying instead on derivatives via Fourier
transforms, obtaining coefficients which directly relate to the eigenvalues and eigenvectors discussed
here. [41]
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with eigenvalues λ1 ≤ λ2 ≤ λ3. We can define the characteristic polynomial of the
matrix as

P (λ) ≡ det
(
A− λ1

)
(C.2)

Computing it explicitly in terms of the 6 independent parameters detailed in
(C.1), and grouping the resulting terms in powers of λ,

P (λ) = −λ3 + λ2 (a1 + a2 + a3)− λ
(
a1a2 + a1a3 + a2a3 − b2 − c2 − d2

)
+a1a2a3 + 2bcd−

(
a1d

2 + a2c
2 + a3b

2
)

(C.3)

Two terms are immediately recognizable in this form – the trace of matrix A

τ = trA = a1 + a2 + a3 (C.4)

and its determinant

∆ = detA = a1a2a3 + 2bcd−
(
a1d

2 + a2c
2 + a3b

2
)

(C.5)

In the same fashion, let us designate the term multiplied by −λ in equation (C.3)
by β:

β ≡ a1a2 + a1a3 + a2a3 − b2 − c2 − d2 (C.6)

We can now rewrite (C.3) as

P (λ) = −λ3 + τλ2 − βλ+ ∆ (C.7)

C.2.2 Relation to eigenvalues

The eigenvalues of A are the roots of P (λ):

P (λi) = 0 i = 1, 2, 3 (C.8)

We can thus write

P (λ) = a (λ− λ1) (λ− λ2) (λ− λ3) (C.9)

Expanding in powers of λ,

P (λ) = a
[
λ3 − (λ1 + λ2 + λ3)λ

2 + (λ1λ2 + λ1λ3 + λ2λ3)λ− λ1λ2λ3
]

(C.10)

Comparing equations (C.7) and (C.10) we arrive at

a = −1

τ = λ1 + λ2 + λ3

β = λ1λ2 + λ1λ3 + λ2λ3

∆ = λ1λ2λ3 (C.11)

which was expected for τ and ∆, since the trace and determinant of a symmetric
matrix are invariant under rotation transformations, including the rotation that
diagonalizes it. This result suggests that the quantity β is also invariant under such
unitary transformations, since its form is the same as in (C.6).
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C.2.3 Monotony of P (λ) and stationary points

Taking the derivative of equation (C.7),

P ′(λ) = −3λ2 + 2τλ− β (C.12)

Solving for the roots of P ′(λ), we expect to obtain the stationary points of the
P (λ) curve. Since it is a quadratic function, the number of (real) solutions can be 0,
1, or 2. As shall become apparent in the following subsections, due to the symmetry
of matrix A and consequence that all eigenvalues are real, the number of stationary
points will be 2 in the most general case, and 1 in the specific case of total eigenvalue
degeneracy.

Solving for the roots of (C.12),

P ′(x) = 0⇒ x =
τ

3
±
√(τ

3

)2
− β

3
(C.13)

Note that both solutions presented are directly computable from the τ , β and ∆
coefficients, which are in turn directly computable from the 6 independent parame-
ters that define matrix A.

No degeneracy

Take the case for which λ1 < λ2 < λ3, i.e. all eigenvalues are different. Since
the dominant term in (C.7) for large |λ| is −λ3, we know that

• P (λ) > 0, for λ < λ1;

• P (λ) < 0, for λ > λ3.

Taking into account that there is an additional (different) root of P (λ) between
λ1 and λ3, we can infer that

• P (λ) < 0, for λ1 < λ < λ2;

• P (λ) > 0, for λ2 < λ < λ3.

which in turn means we must find two stationary points in the ]λ1, λ3[ interval: the
first one is a minimum P (x1) < 0 with x1 ∈ ]λ1, λ2[ the negative sign solution to
equation (C.13); and the second one is a maximum P (x2) > 0 with x2 ∈ ]λ2, λ3[
the positive sign solution to equation (C.13). Thus, it is possible to compute both
solutions to equation (C.13) after which we know λ2 ∈ ]x1, x2[ and is the only root
in this interval.

A graphical example of this case is presented in Figure C.1. We can extend the
ordering of eigenvalues and stationary points to the general case by changing the
inequality signs to include possible equalities:

λ1 ≤ x1 ≤ λ2 ≤ x2 ≤ λ3 (C.14)
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Figure C.1: Characteristic polynomial of a symmetric matrix with eigenvalues -2, 1,
and 3, which result in the parameters τ = 2, β = −5, and ∆ = −6.

Partial degeneracy

Take the case for which two of the eigenvalues are equal to ω and the remaining
one equal to κ 6= ω. From (C.11),

τ = 2ω + κ ∧ β = ω(ω + 2κ) (C.15)

Substituting these into equation (C.13),

x =
2ω + κ± |ω − κ|

3
(C.16)

There are still two possible sets of solutions:

• If λ1 = λ2 = ω and λ3 = κ, then |ω−κ| = κ−ω and the negative sign solution
is x1 = ω = λ1 = λ2;

• Otherwise λ1 = κ and λ2 = λ3 = ω, in which case |ω − κ| = ω − κ and the
positive sign solution is x2 = ω = λ2 = λ3.

In conclusion, if two eigenvalues are equal, they are also equal to the stationary
value2 that would otherwise be between them. This means said stationary value is a
root of P (λ), which is easily verifiable, and that λ2 is equal to any stationary value
that is also a root of P (λ). Two graphical examples of this case are presented in
Figure C.2 – one for each ω, κ distribution of the eigenvalues.

2We here define stationary value as x such that the point (x, P (x)) is a stationary point of the
P (λ) curve, i.e., P ′(x) = 0.
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(a) Eigenvalues -1 (double) and 3, which result in
τ = 1, β = −5, and ∆ = 3.
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(b) Eigenvalues -1 and 2 (double), which result in
τ = 3, β = 0, and ∆ = 4.

Figure C.2: Characteristic polynomials of symmetric matrices with the detailed
degenerate eigenvalues and resulting parameters.

Total degeneracy

Take the case for which all eigenvalues are equal to ω. From (C.11),

τ = 3ω ∧ β = 3ω2 (C.17)

This means (τ
3

)2
− β

3
= ω2 − ω2 = 0 (C.18)

From (C.13), one can see that the stationary values are degenerate in this case,
and equal to the eigenvalues. Thus, it is possible to verify after computing τ and β
that if τ 2/3− β = 0, all eigenvalues are degenerate and simply equal to τ/3.3 It is
worth noting this case is included here out of academic interest, and for the sake of
completeness of the method, since it has no practical application to the analysis at
hand as of yet4 – a totally degenerate Hessian matrix would correspond to a spher-
ically symmetric density from the point of view of the spatial point in which the
matrix is computed, which is only possible at the position of the nucleus of a single
atom system, in which case there are no interactions (noncovalent or otherwise) to
analyze.

We have now verified that equation (C.14) always holds.

C.3 Evaluating the sign of λ2

A priori we have no knowledge of the eigenvalue degeneracy of matrix A. We
can still, however, based on the analysis of the previous section, carefully examine
the obtained coefficients – from equations (C.4) to (C.6) – and evaluate the sign
of the median eigenvalue. The first step is to compute both solutions to equation
(C.13). We know λ2 ∈ [x1, x2], thus,

3The curve thus has the form P (λ) = −(λ− τ/3)3.
4When considering only atomic or molecular systems.
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• if x1 > 0, then sgn(λ2) = 1;

• else if x2 < 0, then sgn(λ2) = −1.

Otherwise x1 ≤ 0 ≤ x2, in which case we need to compute the value of P (x1)
and P (x2), using equation (C.7). If any of the stationary values are roots of P (λ),
then λ2 is equal to said value, thus

• if P (x1) = 0, then sgn(λ2) = sgn(x1);

• else if P (x2) = 0, then sgn(λ2) = sgn(x2).

The sign evaluations are done this way in order to include the possibility of x1
or x2 equal to zero (in which case sgn(λ2) = 0).

If sgn(λ2) has not been found so far, we arrive at the non-degenerate case with
x1 ≤ 0 ≤ x2 and x1 < λ2 < x2. Recall that in this case P (x1) < 0 is a minimum,
P (x2) > 0 is a maximum, and that λ2 is the only root in this interval. Thus,

• if P (0) > 0, then the P (λ) curve crosses zero before λ = 0, thus λ2 < 0;

• if P (0) < 0, then P (λ) only crosses zero after λ = 0, thus λ2 > 0;

• if P (0) = 0, then λ = 0 is the root, and λ2 = 0.

From (C.7) we have P (0) = ∆. Thus, the conditions stated here can be summa-
rized as sgn(λ2) = −sgn(∆).

The total degeneracy case was ignored here for the practical reasons detailed in
the previous section. If, however, it becomes useful to include this case in the pre-
sented analysis, the only recommended addition to the start of the algorithm is an
evaluation of whether τ 2/3− β = 0, in which case λ2 = τ/3, thus sgn(λ2) = sgn(τ).
Nevertheless, note that such an addition is not required, since this case is covered
in the evaluation of P (x1).

The algorithm detailed here is summarized in flowchart form in Figure C.3.

C.4 Conclusion and remarks

We are thus able to evaluate the sign of the median eigenvalue of a symmetric
3 × 3 matrix in every case, without explicitly building the matrix – i.e., by only
having access to its 6 independent components – or computing any of the eigenval-
ues directly. This greatly reduces the computational cost of evaluating sgn(λ2) at
every point in the grid. It is also worth noting that, should the explicit computation
of λ2 become necessary in future versions of the NCI index analysis, this algorithm
provides a simple way to do so without computing any of the other eigenvalues: even
in the case of total non-degeneracy, λ2 is easily computable via a closed interval root
search between x1 and x2, such as regula falsi.

Relating this algorithm explicitly to the real-space-based NCI index, note that
before this step in the analysis, we have computed 6 arrays of the same shape as
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Input: 6 independent parameters of matrix 

Equations
(C.4) to (C.6)

Check if
True
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Equation (C.13)

Check if True

False

Check if True

False

Equation (C.7)

Check if 
True

False

Check if 
True

False

Output: 

Algebraic computation

EvaluationDefinition

(optional)

Figure C.3: Flowchart schematic of the algorithm detailed in the present appendix
to evaluate the sign of the median eigenvalue of a 3× 3 symmetric matrix.
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the input density – related to the 6 independent components of the Hessian at every
grid point – and can easily compute the τ , β and ∆ coefficients at every point by
the definitions presented in equations (C.4) to (C.6), or directly in terms of Hessian
components:

τ = H11 +H22 +H33 (C.19)

β = H11H22 +H11H33 +H22H33 −
(
H2

12 +H2
13 +H2

23

)
(C.20)

∆ = H11H22H33 + 2H12H13H23 −
(
H11H

2
23 +H22H

2
13 +H33H

2
12

)
(C.21)

These calculations are simple algebraic computations and so can be easily done
for every grid point in a vectorized manner, e.g. using numpy arrays. This means the
point-by-point evaluation for each grid point only needs to be done after most of the
calculations, making the process even more efficient. In the current implementation
of this algorithm, we make further use of said vectorization by also computing the
arrays for x1, x2, P (x1) and P (x2) before starting the grid point cycle – even though
some of the components of these arrays may not be necessary, we found that doing
these vectorized pre-calculations is more efficient than computing only the necessary
values during the grid point cycle. Complementing this line of thought, we also pre-
compute four auxiliary Boolean-datatype arrays: two for checking the x1 and x2
relations with 0 for every grid point (if x1 > 0 and if x2 < 0), and two for checking if
P (xi) = 0, i = 1, 2 – thus during the grid point cycle we need only check the value of
the grid point component of these arrays instead of explicitly doing the evaluation,
when required.
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Appendix D

Bismuth carbide clusters
theoretical spectroscopic results

Presented here are the infra-red and optical absorption spectra of the Bismuth
carbide clusters discussed in section 4.4 obtained by Bruce Milne and Micael Oliveira.
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Figure D.1: Theoretical spectroscopic results for Bismuth carbide clusters. Solid
and dashed spectra correspond to ‘a’ and ‘b’ forms respectively
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