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Abstract—An inherent problem in Software-Defined Network-
ing (SDN) is the Controller Placement Problem, which addresses
how many controllers to deploy in the network, and where to
place them. Several variants of this problem have been addressed
and researched to find the placements that adapt best to different
contexts. In this paper, we address a more complex variant of
this problem, to satisfy QoS requirements and to offer robustness
against disaster-based failures. We address the joint optimization
problem of controller placement and finding a tree subgraph
which can be upgraded to have enhanced availability, in order
to satisfy delay and availability constraints. Additionally, we
consider geodiversity constraints as a way to enhance robustness
to disaster-based failures.

Index Terms—Software-Defined Networking, geodiversity,
availability, controller placement problem, integer linear pro-
gramming

I. INTRODUCTION

Resiliency and availability are gaining great importance in
the context of Software-Defined Networking (SDN). Due to
the decoupling of the data and control planes, SDN offers
network operators simplified network management and rapid
innovation. Therefore, SDN networks are becoming very at-
tractive not only for datacenters [1] and campus networks,
but there is also significant effort to deploy SDN in transport
networks [2].

Hence, SDN networks must provide high end-to-end avail-
ability and resiliency not only against single link/node failures,
but also against disaster-based failures. Since the risk of
natural disasters is increasing, as well as man-made attacks to
communication networks, large scale failures have become a
concern [3]. Geodiverse routing can be used to mitigate the im-
pact of these failures, however at the expense of longer paths,
making it difficult to achieve the required availability levels.

In this work, we address a joint optimization problem which
involves two major subproblems. The first major subproblem
is the Controller Placement Problem (CPP), introduced in [4]

and shown to be NP-hard. This problem tackles the question of
how many controllers and where to place them in the network,
to offer the desired control plane performance given the
context in study. In this paper, we consider constraints for QoS
performance in the SDN networks translated into delay and
availability requirements. To obtain acceptable performance
we consider intercontroller maximum delay constraints and
also maximum delay constraints between the switches and the
controllers that manage them [5], [6], [7], [8], [9].

Single link and node failures are the most common failures,
and these can be mitigated by considering path redundancy
and even controller redundancy [10]. In this paper, we con-
sider controller redundancy to offer protection against single
link and node failures, consequently increasing the end-to-
end availability in the network. However, path and controller
redundancy may not be sufficient to guarantee the level of
availability required for critical services [11]. We therefore,
consider the spine concept proposed in [12], where a high-
availability subgraph is chosen, together with other protection
mechanisms, to guarantee the required availabilities in the
network. Improving the availability of a subset of links of
the network (a spanning tree) was shown [11] to be a cost
effective approach to attain desired target flow availabilities
without modifying the network topology. In [11] the scenario
for link availability upgrade was using strategies to increase
the mean time between failures of each link (e.g., burying an
aerial cable) and/or decreasing the mean time to repair (e.g.,
better maintenance).

In this way, the second major subproblem in our optimiza-
tion problem is the selection of such a subgraph and the
selection of which links should be upgraded and how much.
We consider the availability link upgrade strategy used in [11],
and consider that the required target availability constraints
are guaranteed along the connections between switches and
controllers. Hence, we impose the subgraph to be a tree, since



we aim to minimize the cost of upgrading the links belonging
to the subgraph. The joint optimization CPP and spine design
problem was presented in [13], considering path redundancy
for the control paths – primary and backup paths between the
switches and their controllers.

Finally, we also consider geodiversity routing to mitigate the
impact of disaster-based failures, in this work. Path geodiver-
sity has been proposed as a strategy to enhance robustness
against such failures [14], [15]. In this work, we consider
the path geodiversity strategy proposed in [16], [17], where
each pair of paths are geographically separated by a given
minimum distance. This results in a pair of longer paths,
which is conflicting with the delay and availability constraints
– we assume the delay is proportional to the shortest path
distance [4], [6], and that the availability is given by a distance
dependent expression [11].

In summary, we address the joint controller placement
and availability link upgrade optimization problem for SDN
networks, aiming to minimize the upgrade cost, while delay,
geodiversity and availability requirements are guaranteed. We
assume in-band control. The novelty of this work in compari-
son with [13] is including controller redundancy for protection
against single link and controller failures, and geodiversity for
protection against disaster-based failures. In the computational
results, we compare the path redundancy, controller redun-
dancy and geodiverse solutions in terms of the upgrade cost.
In this work, the spine is initially considered to be a spanning
tree as in [13], but then a pruning process is performed to
eliminate unnecessary links in the final tree.

This paper is organized as follows. In Section II, we discuss
the related work and point out the differences with our work.
In Section III, the CPP is presented considering controller
redundancy and delay constraints. In Section IV, we present
the availability link upgrade model and the constraints for the
target availability guarantees. In Section V, we present the D-
geodiversity concept adopted and the constraints that guarantee
the D-geodiversity for each pair of primary and backup paths.
In Section VI, we define the joint optimization problem. In
Section VII, we present numerical results for sample networks
illustrating the upgrade cost versus the number of controllers
trade-off for path redundancy, controller redundancy and geo-
diversity. Finally, in Section VIII, we present our conclusions.

II. RELATED WORK

In [11], the spine concept was explored for generic back-
bone networks. They consider path redundancy between end
nodes, and show that improving the availability on the primary
path has a more significant impact on the overall availabil-
ity, than improving the availability on the backup paths or
on both paths simultaneously. Furthermore, they present the
incremental link availability model, that we also adopt. They
consider three different cost functions for upgrading the link
availability and we adopt the third function which is more
realistic. An ILP model is proposed where the spine is imposed
to be a spanning tree which we also consider, although we then
prune the spanning tree to remove unnecessary links from

it. The ILP model also accommodates improvement to the
availability of backup paths, but then in the computational
results only improvement to the availability of the primary
paths was considered in accordance to the impact study.

In [18], the spine is adopted and the availability enhance-
ments are considered only for the primary paths. Two objec-
tives are studied: the maximization of the sum of the primary
paths availabilities, and the maximization of the minimization
(max-min) of the primary paths availabilities. An ILP model
is presented and a heuristic approach is also proposed.

In [19], the effect of the spine is also studied in addition
to several protection schemes. Independent random failures
and regional failures modelled using Shared Risk Link Group
(SRLG) are considered.

None of these works, [11], [18] and [19], consider SDN
networks. In [20], the authors address the CPP in SDN
networks to maximize reliability of the control paths, i.e., of
the paths connecting each controller to the set of switches
it manages. They propose a greedy heuristic and a simulated
annealing meta-heuristic as approaches to solve their problem.
We also address the CPP, but we aim to guarantee a target end-
to-end availability.

In [21], the authors consider the CPP with controller redun-
dancy, where each switch connects to a primary controller and
to one or more backup controllers. They propose an ILP model
guaranteeing that the availability of the control paths is at least
a given target value. They also propose a heuristic method for
their problem, and show that each node is required to connect
to 2 or 3 controllers to achieve the target availability.

In [22], the resilient capacitated CPP was addressed consid-
ering multiple controller failures. The authors also consider
switch-controller and intercontroller delays. The capacity of
the controllers are taken into account to meet the traffic load of
the switches. However, the authors do not consider availability
target constraints.

In [23], the capacitated CPP was also addressed, but without
resiliency features. The authors consider heterogeneous con-
trollers with different capacities. The problem is formulated
as an optimization problem in two phases: the first phase is
to select the minimum cost set of controllers to be deloyed
in the network; in the second phase with the selected set of
controllers, they place the controllers in order to minimize
three objectives: the maximum imbalance between unused
controller processing capacity and the maximum switch-
controller and intercontroller delays. They present the ILP
models and propose a greedy heuristic for the first phase, and
an anytime Pareto local search for the second phase.

In [24], the CPP is addressed as a multiobjective optimiza-
tion problem and the authors propose a heuristic for large
networks. While they do consider delay constraints, they do
not consider target availability constraints.

In this paper, we consider that each switch connects to a pri-
mary and a backup controller, and so it is not always possible
to achieve the required end-to-end availability. Therefore, we
adopt the spine approach and jointly optimize the CPP and
spine selection and upgrade.



We presented the joint optimization of the CPP and spine
design problem in [13]. We considered path redundancy (pro-
tection against single link failures) and the high-availability
subgraph was imposed to be a spanning tree Also the in-
cremental availability link upgrade model used in [11] was
considered. Now, we further extend this work to include
controller redundancy and geodiversity to enhance robustness.
We also perform a pruning process to the spanning tree, in
order to remove unnecessary links.

None of these works consider geodiversity to offer resiliency
to large scale failures. In [25], a routing protocol was proposed
to provide multiple geographically diverse paths to end nodes,
in optical networks. This protocol was extended in [26], to
consider path delay and traffic skew constraints.

In [27], the problem of availability link upgrade with
geodiversity constraints has been addressed in the context of
generic optical networks. The authors consider the availability
link upgrade given by a parallel link, which is an alternative
path installed with the same availability as the original link.

In [28], anycast routing was considered where a given
number of anycast nodes were chosen. This arises as a CPP
variant for SDN networks. A pair of D-geodiverse paths was
guaranteed for each source node to two distinct anycast nodes.
The geodiversity concept adopted was that of [17], which
is also the one we adopt in this work. However, delay and
availability guarantees were not considered.

III. CONTROLLER PLACEMENT PROBLEM

The CPP is the problem of how many controllers to place
in the network and where to place them. Due to control
plane performance issues, we assume maximum values for
the delays between the switches and their primary controllers
and between the controllers themselves can be specified. More
precisely, the delays between each switch and its primary
controller (SC delays) cannot exceed Dsc, while the delays
between any two controllers (CC delays) cannot exceed Dcc.
Since the communication between the switches and controllers
are more frequent than between the controllers themselves,
we have that Dsc < Dcc. In the computational results, we
consider that the maximum delay values Dsc, Dcc are given
as percentages of the graph diameter Dg for consistency across
various topologies, as in existing works such as [6], [22], [24],
where the Dg is defined as the longest shortest path between
any two nodes in the graph.

We assume that a given number C of controllers have to be
installed in the network. Consider that the SDN data plane can
be represented by a undirected graph G = (N,E), where N is
the set of nodes and E is the set of edges or links. Each link is
represented by its end nodes {i, j} and has associated a given
delay dij . The delay between any two nodes is given as the
sum of the delays of the links belonging to the shortest path
connecting them. We define the following decision variables:

yi binary variable that is 1 when a controller is placed in
node i ∈ N , and 0 otherwise

Then, the sets of constraints of the CPP relative to the delay
constraints are given by:∑

i∈N
yi = C (1)∑

j∈N :
dij≤Dsc

yj ≥ 1 i ∈ N (2)

yi + yj ≤ 1 i ∈ N, j ∈ N : dij > Dcc (3)
yi ∈ {0, 1} i ∈ N (4)

Constraint (1) guarantees the placement of C controllers.
Constraints (2) guarantee that for each switch, there is at
least one controller distanced at most Dsc from it. Constraints
(3) guarantee that no two controllers can be placed further
than Dcc from each other. Constraints (4) are the variable
domain constraints. In practice, the minimum possible C can
be determined by solving the ILP model:

Minimize C s.t. (1)− (4) (5)

To ensure controller redundancy, we must guarantee anycast
routing for any switch to a pair of controller nodes [28]. We
guarantee that the pair of paths must be node-disjoint without
ensuring geodiversity.

Consider the set of arcs A, where each arc (i, j) represents
the directed link from i to j. Each link is then represented
by the pair of arcs (i, j) and (j, i). For each node i ∈ N ,
consider set V (i) as the set of adjacent nodes to i. Consider
the following additional decision variables and parameters:
tsi binary parameter that is 1 if i = s, and 0 otherwise
asi binary variable that is 1 if the primary controller of switch

s is placed in node i, and 0 otherwise
bsi binary variable that is 1 if the backup controller of switch

s is placed in node i, and 0 otherwise
xsij binary variable that is 1 if the arc (i, j) ∈ A belongs

to the primary path connecting switch s to its primary
controller, and 0 otherwise

usij binary variable that is 1 if the arc (i, j) ∈ A belongs to the
backup path connecting switch s to its backup controller,
and 0 otherwise

The sets of constraints that guarantee node-disjointness
routing with controller redundancy are given by:∑

j∈V (i)

(
xsij − xsji

)
= tsi − asi s ∈ N, i ∈ N (6)

∑
j∈V (i)

(
usij − usji

)
= tsi − bsi s ∈ N, i ∈ N (7)

∑
j∈V (i)

(
xsji + usji

)
≤ 1 s ∈ N, i ∈ N\{s} (8)

∑
{i,j}∈E

dij
(
xsij + xsji

)
≤ Dsc s ∈ N (9)

asi + bsi ≤ yi s ∈ N, i ∈ N\{s} (10)
ass + bss = 2ys s ∈ N (11)∑
i∈N

(asi + bsi ) = 2 s ∈ N (12)



asi , b
s
i ∈ {0, 1} s ∈ N, i ∈ N (13)

xsij , u
s
ij ∈ {0, 1} s ∈ N, (i, j) ∈ A (14)

Constraints (6) are the flow conservation constraints for the
primary path of node s to its primary controller, located at
node i such that asi = 1. Likewise, constraints (7) are the flow
conservation constraints for the backup path of node s to its
backup controller, located at node i such that bsi = 1. Since
the controller placement is not known a priori, the variables
asi and bsi account for the primary and backup controller
placement.

Constraints (8) guarantee the node-disjointness of the pair
of paths, and constraints (9) guarantee that the delays of the
primary paths do not exceed Dsc. Constraints (10) guarantee
that any primary or backup controller must be placed in a
controller node. Constraints (11) guarantee that if node s is
a controller node, then the switch in that node is controlled
by the controller deployed there. Otherwise, constraints (12)
guarantee that the primary and backup controllers of switch s
must be distinct. Constraints (13) and (14) are variable domain
constraints.

IV. SPINE DESIGN PROBLEM

Controller redundancy is capable of increasing switch-
controller (SC) availability significantly. However, considering
only one backup controller cannot always achieve the SC
availabilities required for critical services [21].

Therefore, we assume that a set of links can be selected
to have enhanced availability at a given cost, which can be
achieved in practice by reducing the average time to repair
or reducing the time between failures (eg. by installing more
robust equipment on these links or burying these links or
prioritizing the repair of these links). These set of links form
the spine, which we impose must be a tree.

A. Availability Link Upgrade

We assume each link {i, j} ∈ E has a default availability
which depends on its length, as given by [29] (pages 185-186):

α0
ij = 1− MTTR

MTBFij
(15)

where MTTR = 24h denotes the mean time to repair, and
MTBFij = CaCu · 365 · 24/`ij denotes the mean time
between failures of link {i, j}, with CaCu = 450 km being
the cable cut rate and `ij being the link length.

We consider the incremental availability link upgrade
adopted in [11], where in each increment the link unavail-
ability is decreased by a factor of 0 < ε < 1. Denoting the
default unavailability of link {i, j} by µ0

ij , which is given by
µ0
ij = 1− a0ij we have that µkij = (1 − ε)µk−1ij with k =

1, ..., κ, where κ is the number of upgrade levels considered.
Then, we have that αkij = αk−1ij + ε− εαk−1ij , k = 1, ..., κ.

The cost of upgrading the availability of link {i, j} to level k
is given by:

ckij = −`ij · ln

(
1− αkij
1− α0

ij

)
, k = 1, ..., κ (16)

In this way, the decision variables xsij and usij , introduced in
Section III, are now extended to accommodate another index:
xskij binary variable that is 1 if the arc (i, j) ∈ A belongs to the

primary path connecting switch s to its primary controller,
when link {i, j} is upgraded to level k = 1, ..., κ or not
upgraded (k = 0), and 0 otherwise

uskij binary variable that is 1 if the arc (i, j) ∈ A belongs to the
backup path connecting switch s to its backup controller,
when link {i, j} is upgraded to level k = 1, ..., κ or not
upgraded (k = 0), and 0 otherwise

Therefore, constraints (6)-(9) and (14) now become:∑
j∈V (i)

κ∑
k=0

(
xskij − xskji

)
= tsi − asi s ∈ N, i ∈ N (6′)

∑
j∈V (i)

κ∑
k=0

(
uskij − uskji

)
= tsi − bsi s ∈ N, i ∈ N (7′)

∑
j∈V (i)

κ∑
k=0

(
xskji + uskji

)
≤ 1 s ∈ N, i ∈ N\{s} (8′)

∑
j∈V (i)

κ∑
k=0

dijx
sk
ij ≤ Dsc s ∈ N (9′)

xskij , u
sk
ij ∈ {0, 1} s ∈ N, (i, j) ∈ A, k = 0, ..., κ (14′)

B. Control Path Availability Targets

The end-to-end availability of each control path, given by
the pair of primary and backup paths, is required to be at least
a target value λ . 1. The availability of a pair of node-disjoint
paths is given by Aee = 1− (1−Ap)(1−Ab), where Ap and
Ab denotes the availabilities of the primary and backup paths,
respectively.

The availability of a path is found by the product of the
availabilities of the individual components in the path (i.e.,
the links and nodes in the path). Here we assume the node
availabilities to be one, simplifying the path availability to
the product of the link availabilities. This approach has been
adopted in the wide area network literature [30], with the
argument that node equipment availability is typically higher
than link availability to begin with and node availability can be
further increased through redundancy and hardening methods
to where the unavailability is orders of magnitude higher than
link unavailability.

Since the end-to-end availability Aee is difficult to linearize,
we consider target availabilities for the primary and backup
paths themselves. In this way, we assume that each primary
path must have an availability of at least λp, while each
backup path must have an availability of at least λb, where
1− (1− λp)(1− λb) ≥ λ [11]. With λp and λb, we ensure
that the required control path availability is achieved. Since
the primary paths tend to be shorter than the backup paths,
especially because we impose a maximum value Dsc for the
delay of the primary paths, we assume that λp > λb.

To achieve the required availability of λ, a set of links is
selected that can be upgraded to level k = 1, ..., κ as needed,
which forms the high-availability subgraph or spine. Although



neither the primary nor backup paths are forced on the spine,
they will use the necessary links of the spine to achieve
their target availabilities, while satisfying the geodiversity
separation between them.

The linearized expression of the availability of the primary
path of switch s, assuming κ levels of upgrade, is given by:

log(Asp) =
∑
{i,j}∈E

κ∑
k=0

(
xskij + xskji

)
log
(
αkij
)

(17)

We briefly schematize the proof here. The detailed proof is
given in [13]. The availability of the primary paths of switch s
is given by:

Asp =
∏

(i,j)∈A:

xs0ij=1

α0
ij

∏
(i,j)∈A:

xs1ij=1

α1
ij · · ·

∏
(i,j)∈A:
xsκij =1

ακij

=
∏

(i,j)∈A

κ∏
k=0

[
1− xskij

(
1− αskij

)]
(18)

By applying logarithms, it is possible to linearize the
expression as:

log(Asp) =
∑

(i,j)∈A

κ∑
k=0

log
[
1− xskij (1− αskij )

]
=

∑
(i,j)∈A

κ∑
k=0

xskij log
(
αkij
)

(19)

Consider the following additional decision variables:

zkij binary variable that is 1 if link {i, j} ∈ E is upgraded to
level k = 1, ..., κ, and 0 otherwise

The the set of constraints that account for the link upgrade
are given by:

xs0ij + xs0ji ≤ 1− zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (20)

xskij + xskji ≤ zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (21)

us0ij + us0ji ≤ 1− zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (22)

uskij + uskji ≤ zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (23)
κ∑
k=1

zkij ≤ 1 {i, j} ∈ E (24)

zkij ∈ {0, 1} {i, j} ∈ E, k = 1, ..., κ (25)

Constraints (20) account for the links of the primary paths
that are not upgraded, while constraints (21) account for
the links that are upgraded to level k = 1, ..., κ. Likewise,
constraints (22) account for the links of the backup paths
that are not upgraded, while constraints (23) account for the
links that are upgraded to level k = 1, ..., κ. Constraints (24)
guarantee that each link is upgraded to one and only one level
k > 1, or not upgraded at all (k = 0).

The set of constraints that guarantees the target availabilities
for the primary and backup paths are given by:∑

{i,j}∈E

κ∑
k=0

(
xskij + xskji

)
log
(
αkij
)
≥ log(λp) s ∈ N (26)

∑
{i,j}∈E

κ∑
k=0

(
uskij + uskji

)
log
(
αkij
)
≥ log(λb) s ∈ N (27)

Finally, we impose that the set of upgraded links must sit
on a spanning tree subgraph. Consider the following additional
parameter and decision variables:
γ arbitrary node chosen and referred as the root node to

model the spanning tree for the spine
θij binary variable that is 1 if arc (i, j) ∈ A belongs to the

spanning tree, and 0 otherwise
βsij binary variable that is 1 if arc (i, j) ∈ A belongs to the

routing path from node s to root node γ on the spanning
tree, and 0 otherwise

The set of constraints that guarantee that the upgraded links
belong to a spanning tree subgraph are given by:∑

j∈V (i)

(
βsij − βsji

)
= tsi s ∈ N\{γ}, i ∈ N\{γ} (28)

θij ≥ βsij s ∈ N\{γ}, (i, j) ∈ A (29)∑
j∈V (i)

θij = 1− tγi i ∈ N (30)

zkij ≤ θij + θji {i, j} ∈ E, k = 1, ..., κ (31)
θij ∈ {0, 1} (i, j) ∈ A (32)
βsij ∈ {0, 1} s ∈ N\{γ}, (i, j) ∈ A (33)

Constraints (28) guarantee that there is a routing path from
node s to root node γ. Constraints (29) account for the links
belonging to the spanning tree, by making use of the links in
the routing paths to root node γ. Constraints (30) guarantee
that the routing paths form a directed arborescence towards
the root node γ. Constraints (31) guarantee that the upgraded
links belong to the spanning tree.

When the spanning tree is finally selected, we prune the
unnecessary links. The pruning process consists in identifying
any non-upgraded link incident to the leaves, which are the
terminal nodes of the tree. Once identified, these links are
removed and we continue the pruning process, until we obtain
a tree such that all the links connecting to the leaves are
upgraded.

V. D-GEODIVERSITY

Besides the delay and availability constraints, we also
consider geodiversity constraints. For each switch, the pair
of primary and backup paths connecting it to its primary and
backup controllers, respectively, must be D-geodiverse for a
given value D > 0. In this way, we guarantee that a regional
failure with a coverage diameter of at most D, affecting one
of the paths, does not affect the other path.

We adopt the D-geodiverse concept used in [17], which
extends the concept in [16] to include geodiversity for the



links incident to the source and destination nodes. Hence, for
each switch s the pair of node-disjoint primary and backup
paths, must be geographically distanced from each other at
least D. To ensure this separation, each link of the primary
path that is not incident to s must be distanced at least D
from any link of the backup path, and vice-versa. We define
the distance between two links e1, e2 ∈ E as the minimum
geographical distance between any point of e1 and any point
of e2, and denote it by δ(e1, e2); in other words,

δ(e1, e2) = inf
t1∈e1
t2∈e2

δ(t1, t2) (34)

For the pair of links incident to s, the distance between
them is zero, since they share the node s. So, we can ignore
these pairs of links as do many authors, since having a failure
that affects s cannot be protected anyway. However, we prefer
the approach in [17], and consider that for this particular case,
the primary path link incident to s must be distanced at least
D from the opposite node of the backup path link, and vice-
versa. We define the distance between a node n ∈ N and a
link e ∈ E as the minimum geographical distance between the
node and any point of the link:

δ(n, e) = inf
t∈e

δ(n, t) (35)

Denoting the primary and backup path links incident to s
as {s, i} and {s, j}, respectively, and denoting their modified
distance as δ′({s, i}, {s, j}):

δ′({s, i}, {s, j}) = min{δ(i, {s, j}), δ(j, {s, i})} (36)

The D-geodiversity concept is described in detail in [17] for
one pair of paths, and in [28] for anycast routing. We briefly
illustrate the special cases for the links incident to s in Fig. 1.

Fig. 1. Geographical distance between links incident to node s

Assume that the backup path for switch s is given by the
links {s, 4} and {4, 6} having the backup controller placed
in node 6. If the primary path is given by links {s, 3} and
{3, 5} having the primary controller placed in node 5, then
the modified distance between links {s, 3} and {s, 4} is given
by δ′({s, 3}, {s, 4}) = min{δ1, δ2} = δ1.

If the primary path is given by links {s, 2} and {1, 2} having
the primary controller placed in node 1, then the modified dis-
tance between links {s, 2} and {s, 4} is given by the geograph-
ical distance between nodes s and 2: δ′({s, 2}, {s, 4}) = δ3.
In this case, as pointed out in [28], if a failure affects both
the primary and backup path, then it affects node s, and so
it is impossible to protect both paths. Therefore, it is not
worthwhile considering such cases.

We define set Ps as the set of incompatible link pairs in
relation to switch node s. Consider set Ps1 as the set of
incompatible link pairs not sharing node s, i.e., the set of
link pairs {i1, j1}, {i2, j2} such that i1, j1 6= s ∨ i2, j2 6= s
and δ({i1, j1}, {i2, j2}) < D. As in [28], we ignore the
link pairs with common node different from s, since these
are automatically removed by the node-disjoint constraints.
Consider set Ps2 as the set of link pairs sharing a common
node different to s. Consider set Ps3 as the set of incompatible
link pairs incident to s, i.e., the set of link pairs {s, i}, {s, j}
such that δ′({s, i}, {s, j}) < D. Consider set Ps4 as the set of
link pairs incident to s that cannot be protected, i.e., the set link
pairs {s, i}, {s, j} such that δ′({s, i}, {s, j}) = min{`si, `sj}.
Finally, the set Ps of incompatible link pairs of interest is
given by Ps = (Ps1 ∪ Ps3)\(Ps2 ∪ Ps4).

The set of geodiverse constraints, guaranteeing that the
primary and backup paths of switch s are D-geodiverse, is
given by:

κ∑
k=0

xski1j1 + xskj1i1 + uski2j2 + uskj2i2 ≤ 1 (37)

κ∑
k=0

uski1j1 + uskj1i1 + xski2j2 + xskj2i2 ≤ 1

s ∈ N, ({i1, j1}, {i2, j2}) ∈ Ps (38)

By removing set Ps2, the number of constraints (37) and
(38) are reduced significantly, improving computational effi-
ciency when solving the ILP model.

Recall that these constraints, together with (10)-(12), ensure
anycast routing of each switch (except if it is a controller node)
to two distinct controller nodes with geodiversity.

VI. FORMULATION OF THE OPTIMIZATION PROBLEM

We can finally define our optimization problem, which
consists of selecting the controller placements and selecting
the spanning tree such that its links can be upgraded to κ levels
of improved availability. The problem aims at minimizing the
upgrade cost, while guaranteeing that the SC and CC delays
be within delay maximum requirements, that required target
path availabilities are achieved, and that the D-geodiversity
between each pair of primary and backup paths is guaranteed.
The ILP model is given by:

Minimize

κ∑
k=1

ckijz
k
ij (39)

s.t.

(1)− (4), (6′)− (9′), (10)− (13), (14′),

(20)− (25), (26)− (27), (28)− (33), (37)− (38)

Recall that (1)-(4) are the constraints relative to the controller
placement delays. Constraints (6′)-(9′) and (14′) are relative
to the node-disjoint pair of primary and backup paths, with
extended variables to account for the level of upgrade of the
respective arcs. Constraints (10)-(13) account for the primary
and backup controller placement of each switch, by anycast
routing to two distinct controller nodes (except if the switch



is also a controller node). Constraints (20)-(25) account for
the upgraded links, by relating the extended path variables
xskij and uskij , with the upgraded link variables zkij , where each
link is either not upgraded (k = 0) or upgraded to one and
only one level k = 1, ..., κ. Constraints (26)-(27) guarantee
the target path availabilities. Constraints (28)-(33) are relative
to the spanning tree selection which harbours the upgraded
links. Finally, constraints (37)-(38) guarantee that each pair of
primary and backup paths are D-geodiverse.

The problem of minimizing the cost of upgrading the spine
can be reduced to a problem of minimizing the cost of a
pair of link-disjoint paths, such that their lengths are bounded
(by the path availability target values), which is known to be
NP-complete [11], [31]. Moreover, the CPP is NP-hard and,
therefore, our optimization problem is NP-complete.

Our problem is bi-objective since we want to minimize the
upgrade cost, but also minimize the number of controllers C
to avoid intercontroller communication overhead (which can
result in synchronization issues between the controllers). This
trade-off can be studied, thanks to the discrete nature of C.
We can determine the minimum possible C, only under the
delay constraints, given by the ILP model (1)-(5) presented in
Section III. With this minimum value C, by solving the ILP
model of our optimization problem we determine the minimum
upgrade cost for the minimum number of controllers. By
incrementing C iteratively, we can solve the ILP model again
and obtain the Pareto front for the two objectives. Eventually,
C will be too large for the CC delays to satisfy Dcc, rendering
the problem infeasible.

VII. COMPUTATIONAL RESULTS

For the computational results, we used the spain topology
from [32] and five networks from SNDlib [33]. Their charac-
teristics are summarized in Table I, which shows the number
of nodes, number of links, average node degree and the graph
diameter Dg for each network.

Network #nodes #links avg deg Dg [km]
abilene 12 15 2.5 4706
polska 12 18 3.00 811
spain 14 22 3.14 1034

nobel germany 17 26 3.06 790
janos us 26 42 3.23 4690
nobel eu 28 41 2.93 3365

TABLE I
CHARACTERISTICS OF THE NETWORKS

Recall that the maximum delay values Dsc and Dcc are
given as percentages of Dg . We chose Dsc to be 30%
(0.3Dg) or the tightest possible value above 30% for the given
topology. Similarly, we chose Dcc to be 60% (0.6Dg) or the
tightest possible value above 60% for the given topology. To
obtain a second set of values, we increased each maximum
value by 5%. The different pairs of maximum values Dsc, Dcc

are shown in Table II, for each network.
We considered the geodiversity values to be multiples of 20

km up to 300 km, or until the problem became infeasible for

a given Dmax in this range. The second last column of Table
II shows the Dmax used for each topology. The last column
(Dgeo) will be explained in Section VII-A. For each network,
we computed the link lengths as the geographical distance
between their end nodes over the Earth’s surface [17].

Network Dsc Dcc Dmax [km] Dgeo [km]

abilene 40% 75% 220 220
45% 80% 300 220

polska 35% 70% 140 100
40% 75% 140 100

spain 35% 70% 160 100
40% 75% 220 160

nobel germany 35% 65% 100 20
40% 70% 100 20

janos us 30% 60% 160 160
35% 65% 160 140

nobel eu 30% 60% 260 140
35% 65% 300 –

TABLE II
MAXIMUM DELAY VALUES Dsc AND Dcc , AND GEODIVERSITY MAXIMUM

Dmax AND INDUCED Dgeo VALUES

We implemented our code in C/C++, where we use the
CPLEX 12.9 Callable libraries to solve the ILP model. The
model was solved for the minimum number of controllers C,
and then C was iteratively incremented and the ILP was solved
again, until eventually the problem became infeasible. All
instances were run on an Intel 8-core i7 PC with 64 GB of
RAM, running at 3.6 GHz.

Note that Dsc = 30% and Dcc = 60% is only possible for
the larger networks, janos us and nobel us (larger in terms
of number of nodes and links). For the other networks, we
needed to start with a larger value of Dsc = 35%, while
for the smallest network we needed Dsc = 40%. For Dcc,
it was possible to use 65% for nobel germany, but for the
other networks we needed larger values. So as the network
grows in number of nodes and links, the percentages used in
Dsc and Dcc w.r.t. the graph diameter Dg can be tighter.

Also note that for nobel germany which has the smallest
diameter, a geodiversity of over 100 km is not feasible, for
the considered delays. Polska allows a geodiversity of up to
140 km, while janos us allows up to 160 km for the considered
delays. For abilene, which has a graph diameter comparable
to janos us, we see that for the tighter delay values, we
can go up to 220 km, while relaxing the delays by 5%, we
can go up to 300 km. Similar observations can be made for
spain and nobel eu. Note that although intuitively it makes
sense, that the geodiversity maximum Dmax is dependent on
the graph diameter, we can see from abilene and janos us
that this is not sufficient. As we will see in Section VII-B,
the induced geodiversity depends on the relevant nearest link
pairs not sharing a controller node in the network. In the text
that follows the units of D (km) will often be omitted for
simplicity.

The target path availabilities were chosen to be λp = 0.999
for each primary path, and λb = 0.99 for each backup path, in
all networks. In this way, it was possible achieve an end-to-end



availability of at least λ = 0.99999 (referred to as ‘five-nines’
availability).

A. Upgrade Cost versus Number of Controllers for Path
Redundancy, Controller Redundancy and Geodiversity

In [13], we addressed the joint CPP and spine design
problem with path redundancy. We reported computational
results for polska and nobel germany and use them here for
comparison purposes. Note that when we ignore the geodi-
versity constraints (37)-(38) in our ILP model, our problem
reduces to that with controller redundancy, where each switch
connects to a primary controller and a backup controller via
a pair of node-disjoint paths that meet delay requirements.

We have used an availability improvement factor of ε = 0.5
and κ = 4 levels of availability link upgrade. We note that by
solving our optimization problem for controller redundancy
alone, the solution already provides a certain degree of geodi-
versity. This is shown in the last column Dgeo of Table II.
These values are found as the maximum values of D (in
steps of 20 km) for which the D-geodiverse solutions are
exactly the same as the ones for controller redundancy alone.
Therefore, in Figs. 2-5 the D-geodiverse solutions shown are
for Dgeo < D ≤ Dmax.

In these figures, we show the upgrade cost versus the
number of controllers for path redundancy (for polska and no-
bel germany only), controller redundancy and D-geodiversity.
We denote path redundancy as PR, controller redundancy as
CR (without geodiversity constraints), and D-geodiversity as
the value of the corresponding D > Dgeo (with controller
redundancy).

We begin by showing the figures for polska and no-
bel germany, since for these networks we have path redun-
dancy to compare with [13]. In Fig. 2, we show the results
for polska network. Note that the orange line (solid line with
circles) is for path redundancy, and is the most costly strategy.
The black line (dotted line with circles) is for controller
redundancy (without geodiversity constraints). From Table II,
we know that this solution induces a geodiversity of 100 km,
meaning that the curve for CR is the same for geodiversity
of D = 20, 40, 60, 80 and 100 km. Moreover, it is possible
to observe that the CR solution induces a geodiversity of 120
km for C ≥ 4, since the curves are identical (the grey dashed
curve coincides with the dotted black line for C ≥ 4.)

Note that for Dsc = 35% and Dcc = 70%, the minimum
number of controllers Cmin is 3 for CR and up to D = 100 km,
while for D = 120 km we have Cmin = 4. Also note that the
maximum number of controllers Cmax that can be deployed
is 8 (top chart). In turn for Dsc = 40% and Dcc = 75%, we
note that by relaxing the maximum delay values we now have
Cmin = 3 also for D = 120 km, and Cmax = 9 (bottom chart).
This is expected since relaxing Dsc and Dcc means that the
controllers can be more spread from each other, making them
closer to the switches. This leads to needing less controllers,
but at the same time being able to deploy more controllers if
desired. In fact, Dsc imposes Cmin to guarantee that there is

Fig. 2. Upgrade cost versus number of controllers for polska network

a controller close enough to each node, while Dcc imposes
Cmax from which having more controllers cannot satisfy Dcc.

We can see that the cost of having 3 controllers for D =
120 km is slightly higher than for D ≤ 100. This is due to
the repositioning of the controllers in order to guarantee the
geodiversity requirement of 120 km, leading to a solution that
requires a more costly upgrading of the spanning tree. In both
charts, we note that D = 140 km given by the green curve
(solid curve with diamonds) shows that Cmin = 4 and that the
cost is higher than the previous options, but still significantly
lower than PR. Furthermore, note that the costs tend to be
lower in the bottom chart, as expected due to the more relaxed
maximum delay values.

Also note that having more than 6 controllers does not
improve the upgrade cost significantly, and may even not
improve the cost at all as seen in the bottom chart of Fig. 2.
Finally, from Table II, we can see that Dmax = 140, meaning
that our problem is infeasible for D = 160 km.

The results for nobel germany are shown in Fig. 3. Recall
from Table II, that CR induces a geodiversity of 20 km. We
will see in Section VII-B, that this induced geodiversity is
imposed by a pair of links in the network. Note that in both
charts CR with only 2 controllers has a higher upgrade cost
than PR, but this is then inverted for C ≥ 3. Intuitively, we
expect path redundancy to be more costly, since the backup
path has to be node-disjoint but still connect to the same



Fig. 3. Upgrade cost versus number of controllers for nobel germany network

controller. This can lead to very long backup paths. Having
the freedom to connect to a second controller, can lead to
shorter backup paths while still being node-disjoint to the
primary path. However, when we only have 2 controllers in
the network, due to the Dsc requirement between switches
and their primary controllers, the 2 controllers may be placed
the furthest possible from each other, without exceeding Dcc.
Since we require controller redundancy, each switch is forced
to connect to the only 2 controllers in the network, making
the backup paths quite long.

Another interesting observation, already reported in [13], is
how the PR curve increases for C = 10 in the top chart, a
tendency not observed for the other curves. This indicates that
having 10 controllers is overcrowding, forcing controllers to be
repositioned due to the Dcc requirement, making the solution
more costly. Although an increase in cost is not observed for
the other curves, we can see in the top chart that having more
than 7 controllers does not improve the cost significantly or
at all, while the same is observed for C ≥ 8 in the bottom
chart. For this network, this is quite clear that the costs for the
more relaxed maximum delay values (bottom chart) are much
lower. We can see as expected that as D increases there is a
tendency for the upgrade cost to increase (for the same number
of controllers). It is interesting to observe that geodiversity can
be less costly than PR: note that geodiversity even for 100 km
is less costly than PR for C ≥ 7 (in both charts).

Fig. 4. Upgrade cost versus number of controllers for spain network

The results for spain are shown in Fig. 4. The solid lines
are for Dsc = 35% and Dcc = 70%, while the dashed
lines are for the more relaxed values. For the former set of
maximum delays, CR induces a geodiversity of 100 km, while
for the more relaxed delay maximums, the controllers are
repisitioned to guarantee a slightly cheaper solution, and now
guaranteeing a geodiversity of 160 km. Unfortunately, due to
space limitations we will not go into detail on this.

We also note that for the tighter delay maximums, it is
impossible to guarantee a geodiversity of 180 km or more,
while the second set of maximum delays allows us to go up
to 220 km, although at a much higher cost. We mention that for
Dsc = 35% and Dcc = 70% the curve for 160 km coincides
with 140 km, and for the more relaxed maximum delays, the
curve for 220 km coincides with 200 km (therefore, omitted
in the figure).

Now, we analyze the US networks, janos us and abilene.
Due to space limitations, we only show the results for janos us
in Fig. 5, since abilene behaves similarly.

Fig. 5. Upgrade cost versus number of controllers for janos us network

The solid line refers to Dsc = 30% and Dcc = 60%, while
the dashed lines refer to the more relaxed delay set. From



Table II, we know that for Dsc = 30% and Dcc = 60%, CR
induces a geodiversity of 160 km and that we cannot guarantee
a geodiversity of 180 km or more – the problem becomes
infeasible. For the second set of delay maximums, we note
that CR can retrieve a much cheaper solution, but now this
solutions induces a geodiversity of only 140 km. Needing to
guarantee D = 160 km, increases the cost close to that of CR
for Dsc = 30% and Dcc = 60% (but still slightly lower).

Also note that since the graph diameter of janos us is
much larger than for the previous networks, we can see an
increase in an order of magnitude in terms of cost. This
is also true for abilene, for which the costs are around the
same values as janos us (which is not surprising, given they
represent networks across the US). In abilene, the CR solution
induces a geodiversity of 220 km, which also happens to be
Dmax for the first set of delay maximums. When relaxing the
delay maximums, we can go up to 300 km (maximum D we
considered). The costs for D = 240 km are much higher than
for D = 220 km, while the costs for D = 260 km coincide
with 240 km.

Finally, we mention that for nobel eu, for Dsc = 30% and
Dcc = 60%, the CR curve goes from a cost of little less than
16000 with Cmin = 4 to a little over 8000 with Cmax = 20.
This solution induces a geodiversity of 140 km. Increasing
D does not incur in a significant cost increase. For the more
relaxed delay maximums, the models reached the time limit of
6 hours without ending, except for D = 300 km, which took
over a little more than 2 hours as can be seen in Table III.

Network Dsc Dcc avg [s] min [s] max [s]

abilene 40% 75% 0.89 0.86 0.94
45% 80% 1.62 0.98 2.19

polska 35% 70% 2.65 0.92 3.18
40% 75% 8.85 5.55 9.68

spain 35% 70% 1.94 1.73 2.46
40% 75% 2.31 1.30 2.78

nobel germany 35% 65% 230.43 20.50 422.60
40% 70% 879.29 129.79 1889.26

janos us 30% 60% 564.53 559.52 568.28
35% 65% 2231.18 1911.92 3503.05

nobel eu 30% 60% 1764.81 1278.73 2267.96
35% 65% – 7574.139 –

TABLE III
AVERAGE, MINIMUM AND MAXIMUM RUNTIMES IN SECONDS, FOR

SOLVING THE ILP MODELS

We also consider the solution times for each instance, which
is the sum of the solution times for solving the ILP model for
the minimum C (see (5)), and then incrementally increasing C
until the problem becomes infeasible. In Table III, we show the
average, minimum and maximum solution times. In general,
the problems tend to be quicker to solve as D increases, and
more difficult to solve as the network increases in number of
nodes and links. Clearly, the ILP is not efficient for larger
networks, as observed with nobel eu.

B. Controller Placement and Tree Subgraph
In this subsection, we analyze the solution of the opti-

mization problem, in terms of controller placement and tree
subgraph, for some of the above instances.

In Fig. 6, the controller placement and tree subgraph are
shown for nobel germany with Dsc = 35% and Dcc = 65%.
The controller nodes are shown as big grey circles, while the
other nodes are represented as small black nodes. The dashed
grey lines represent the links not belonging to the tree. The
links of the tree are in black, where the thinnest links are not
upgraded and the thickest links are upgraded to level κ = 4.
The graphs are shown for C = 6 controllers and for D = 20
(top), D = 60 (middle) and D = 100 (bottom).

Note that as D increases, the controllers tend to be placed
on the nodes of the smallest links, since it is not possible to
guarantee a pair of D-geodiverse paths for such nodes, when
D is large enough – a similar observation is made in [28].

The tree subgraph forms the spine whose links can have
upgraded availability. To achieve the target path availabilities
of λp = 0.999 and λb = 0.99, we can see that for D = 20
which is already guaranteed for controller redundancy alone,
4 links are upgraded to level k = 1, while 3 shorter links are
upgraded to level k = 2 and one short link is upgraded to
level k = 3. The controllers are spread out in the network.
The distance between the pair of links marked by the red
arrow, imposes a geodiversity of exactly 29 km – recall that
the pairs of links belonging to set Ps4 are not included in
the geodiversity constraints. We translated this as 20 km in
Table II, due to the 20 km steps we were considering.

For D = 60, 2 controllers are repositioned. Note that the
same link is upgraded to level k = 3 and its neighbor to level
k = 2, and 4 of the previous links remain upgraded to level
k = 1. In the previous case, two additional short links were
upgraded to level k = 2, while now three additional longer
links are upgraded to level k = 1. Although the cost function
given by (16) leads to an exponential increase in cost when
upgrading to a higher level, the function also increases with the
link lengths. Thus, the longer link lengths although upgraded
to a lower level, result in a more costly solution than that for
D = 20. Moreover, now the geodiversity is imposed to be 74,
given by the link pairs shown by the red arrow.

Therefore, for D = 100, we can see that 2 controllers are
repositioned again. In this case, it is interesting to see that no
link is upgraded for levels higher than k = 2; there are 5 links
upgraded to level k = 1 and 4 links upgraded to level k = 2.
Note that two fairly long links are upgraded to level k = 2,
making this solution more costly, than the previous ones. The
geodiversity now imposed is 101.

In Fig. 7, the solutions for janos us are shown with
Dsc = 35% and Dcc = 65%. The graphs are shown for
C = 10 controllers with D = 80 (top) and D = 160 (bottom).
Doubling the value D from 80 to 160 km, we can see that
some of the controllers were repositioned to nodes of the
shorter links (as observed in Fig. 6). Note that for D = 80:
1 short link is upgraded to k = 4, on the upper right side
of the network; 7 links are upgraded to level k = 3, spread
throughout the network; 6 relatively short links are upgraded
to level k = 2, all except one located from center to the right
side of the network; and two very short links are upgraded to
level k = 1, on the upper right side of the network.



Fig. 6. Controller placement and tree subgraph for nobel germany network
with D = 20 (top), D = 60 (middle) and D = 100 (bottom)

Fig. 7. Controller placement and tree subgraph for janos us network with
D = 80 (top) and D = 160 (bottom)

In comparison, for D = 160 we see that: 1 short link is
upgraded to level k = 4, now on the lower left side of the
network; 5 links are upgrade to level k = 3, instead of 7 links
but with much longer total lengths and spread throughout; 8
relatively short links are upgraded to k = 2 all located from
center to the right side of the network; and 2 links are upgraded
to level k = 1, one to the far lower left side of the network
and one on the upper right side. Note that the geodiversity is
imposed by the link pairs at the top of the network, shown by
the red arrows. For D = 80 km, the imposed geodiversity is
149 km, while for D = 160 km the imposed geodiversity is
178 km.

Note that the networks in Fig. 6 correspond to the curves in
the top chart of Fig. 3, for 6 controllers and the corresponding
D values, which show that the cost increases with D. In turn,
the networks in Fig. 7 correspond to the dashed curves in
Fig. 5, for 10 controllers and the corresponding D values,
which show that the cost for D = 80 is much lower than for
D = 160.

C. Comparing Variations in ε and κ

Besides the results presented above, we also obtained results
for a upgrade factor of ε = 0.4, while maintaining the κ = 4



levels of upgrade, for polska, nobel germany and janos us. In
turn, by maintaining ε = 0.5 we obtained results for κ = 2.
For janos us, we had to use κ = 3, since many instances were
infeasible for only 2 levels of upgrade.

We start by comparing the results for ε = 0.5 and ε = 0.4.
For smaller values of ε, more links may need to be upgraded
to achieve the target path availability levels of λp = 0.999
and λb = 0.99. This may lead to an increase in the upgrade
cost. On the other hand, higher values of ε may lead to un-
necessarily high levels of availability, which may be leveraged
better by lowering ε, consequently reducing the upgrade cost.
We did some preliminary tests by reducing ε even more, but
many instances became infeasible (especially for polska and
janos us).

In Fig. 8, we show the results for polska network with
Dsc = 35%, Dcc = 70% and κ = 4. The solid lines are for
ε = 0.5, while the dashed lines are for ε = 0.4. Note that for
D ≤ 120, ε = 0.4 is able to achieve the target availabilities,
decreasing the overall upgrade cost. The difference in cost
is greater as C increases. However, for 140-geodiversity, the
opposite occurs: the lower value of ε leads to an increase in
the cost, since many more links need to be upgraded due to
the much longer paths imposed by the required geodiversity,
in order to achieve the target availabilities, when compared to
ε = 0.5. The chart for Dsc = 40% and Dcc = 75% is omitted,
since the observations are similar.

Fig. 8. Upgrade cost versus number of controllers for polska (κ = 4)

In Fig. 9, we show the results for nobel germany with
Dsc = 40%, Dcc = 70% and κ = 4. For better readability,
we only show the results for D = 20, 60 and 100 km. It is
possible to see that ε = 0.4 (dashed lines) always achieves a
cheaper solution, except for C = 2 and D = 20. The chart for
Dsc = 35% and Dcc = 65% is omitted, since the observations
are similar but the differences between ε = 0.5 and ε = 0.4
are less significant.

In Fig. 10, we show the results for janos us, for both pairs
of Dsc, Dcc values. In the top chart, for Dsc = 30% and
Dcc = 60%, recall that controller redundancy alone already
guarantees a geodiversity of 160 km. Furthermore, we can see
that the differences between varying ε from 0.5 to 0.4 are

Fig. 9. Upgrade cost versus number of controllers for nobel germany (κ = 4)

Fig. 10. Upgrade cost versus number of controllers for janos us (κ = 4)

negligible. In the bottom chart for more relaxed delays, we
recall that the controller redundancy guarantees a geodiversity
of 120 km (which is the solid line with circle markers). The
solid line with triangle markers are for D = 160 km. Note
that for ε = 0.4, the dashed line is for controller redundancy
which coincides with the geodiversity of 160 km. This means
that for ε = 0.4, the solution guarantees geodiversity for 160
km. Also note that this curve (dashed line) is very close that



of 160-geodiversity for ε = 0.5.
We now compare the results for κ = 4 versus κ = 2 for

polska and nobel germany and κ = 3 for janos us. In Fig. 11,
we show the results for polska network with Dsc = 35%,
Dcc = 70% and ε = 0.5. Note that the solid grey line with
triangle markers is for D = 120 and is the same for κ = 2 and
κ = 4. In other words, for D = 120 km the optimal solution
only needs 2 levels of upgrade even though more may be
available. Note that the dashed line which is for D = 100
with κ = 2, has a much higher cost than that with κ = 4,
since many more links need to be upgraded to achieve the
target availabilities. This impact attenuates as C increases. We
omitted the curve for D = 140 km, since the problem is
infeasible for κ = 2.

Fig. 11. Upgrade cost versus number of controllers for polska (ε = 0.5)

In Fig.12, we can see that the impact of κ = 2 versus
κ = 4 is mostly negligible, since the optimal solution for
most instances of this network only need up to 2 levels of
link upgrade to achieve the target availabilities.

Fig. 12. Upgrade cost versus number of controllers for nobel germany
(ε = 0.5)

In Fig. 13, we show the results for janos us, for both pairs
of Dsc, Dcc values. In the top chart, for Dsc = 30% and
Dcc = 60%, we can see that varying κ from 4 to 3 has a

Fig. 13. Upgrade cost versus number of controllers for janos us (ε = 0.5)

negligible impact on the upgrade cost, although it is always
slightly higher for κ = 3. Recall that the results for controller
redundancy alone and for geodiversity up to 160 km are the
same. In the bottom chart, for Dsc = 35% and Dcc = 65%,
as observed in Fig. 10 for ε = 0.4, the controller redundancy
alone imposes a geodiversity of 160 km, while for ε = 0.5
controller redundancy alone imposes a geodiversity of 120 km.
The curve for κ = 3 is very similar to that of D = 160 for
κ = 4, although again always slightly more costly.

VIII. CONCLUSIONS

In this paper, we have addressed the joint optimization
of controller placement and spine design, subject to SC and
CC maximum delay constraints, target path availabilities for
the primary and backup paths constraints, constraints that
ensure the spine is a tree subgraph, and finally geodiversity
constraints. We have discussed each group of constraints and
formulated an ILP model. We presented computational results,
comparing path redundancy, controller redundancy and geodi-
versity. We have observed that path redundancy strategy is
generally more costly than the controller redundancy strategy,
and also computationally more expensive to solve. We have
also observed that controller redundancy alone guarantees in
many cases a reasonable degree of geodiversity between the
pair of primary and backup paths.



As the value of D for geodiversity increases, we have ob-
served that the controllers tend to migrate to nodes with shorter
links. This is because the maximum geodiversity possible in
the topology is given by the relevant nearest link pairs, not
sharing a controller node, in the network. Migrating controllers
to the nodes incident to these links, allows to guarantee
larger geodiversity. Necessarily, this is a consequence of the
adopted geodiversity definition and of the set Ps used in
the geodiversity constraints. We have also observed that, as
expected, the upgrade cost increases as D increases, since the
paths tend to be longer. In turn, the upgrade cost tends to
decrease as the number of controllers are increased and also
when the maximum delay values Dsc, Dcc are more relaxed.
Nevertheless, having a large number of controllers has little or
no effect on the upgrade cost, and can even increase the cost.
This is reassuring, since from the perspective of the control
plane, it is desirable to have a small number of controllers to
avoid intercontroller communication overhead.

Moreover, the case studies that we analyzed for the con-
troller placement and tree subgraph, show that it is not always
necessary to upgrade the links to the top levels to achieve the
desired geodiversity and availability. The results for a smaller
ε and a smaller κ range from a significant impact to negligible
impact, depending on the topology.

So, in summary we conclude that: it may be sufficient to
have only controller redundancy since this alone may guaran-
tee geodiversity to some extent; having a few levels of upgrade
may be sufficient without jeopardizing the cost too much,
if the networks are not too small; it is generally cheaper to
have controller redundancy instead of path redundancy alone;
having more than the minimum number of controllers impacts
the cost significantly, but having much more is negligible or
even detrimental in some cases; the fact that we obtain a
set of upgraded links shows that without the spine subgraph,
the target availabilities could never be achieved for controller
redundancy (considering only one backup controller).

Since the ILP model does not scale well for larger networks,
we plan to improve the ILP model by finding a more efficient
formulation (improving the linear relaxation). However, for
large networks, we need to develop an efficient heuristic.
Since the problem is quite complex and because of the
additional geodiverse feature, the most promising approach
may be matheuristics, i.e., combining heuristic methods and
mathematical programming techniques, in order to achieve
good quality suboptimal solutions. Switch and controller avail-
abilities will also be taken into account in the model.
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