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Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily characterized by motor
symptoms such as tremor, rigidity, bradykinesia, stiffness, slowness and impaired equilibrium.

Although the motor symptoms have been the focus in PD, slight cognitive deficits are commonly found
in non-demented and non-depressed PD patients, even in early stages of the disease, which have been
linked to the subsequent development of pathological dementia. Thus, strongly reducing the quality of
life (QoL).

Both levodopa therapy and deep brain stimulation (DBS) have yield controversial results concerning
the cognitive symptoms amelioration in PD patients. That does not seems to be the case with transcranial
direct current stimulation (tDCS), although better stimulation parameters are needed. Therefore we
hypothesize that simultaneously delivering cathodal tDCS (or ctDCS), over the right prefrontal cortex
delivered with anodal tDCS (or atDCS) to left prefrontal cortex could be potentially beneficial for PD
patients, either by mechanisms of homeostatic plasticity and by increases in the extracellular dopamine
levels over the striatum.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order, primarily characterized by motor symptoms such as tremor,
rigidity, bradykinesia, stiffness, slowness and impaired equilibrium
[1]. Etiologically, PD has been associated to dopaminergic (DA)
cells degeneration in the midbrain causing DA depletion in the stri-
atum [2]. This depletion seems to trigger compensatory DA strate-
gies in several areas of the brain that gradually decline with the
progression of the disease [3].

Although the motor symptoms have been the focus in PD, slight
cognitive deficits, are commonly found in non-demented and non-
depressed PD patients, even in early stages of the disease, which
have been linked to subsequent pathological dementia [4]. Thus,
strongly reducing the quality of life (QoL) [5]. Other studies sug-
gested that these cognitive deficits could even be considered as a
mild cognitive impairment (MCI) [6].

These cognitive deficits constitute a heterogeneous profile of
impairments that have been already shown to be present at the time
of diagnosis [7]. Other studies have suggested potential brain alter-
ations [8] that even precede the onset of the cognitive impairments.
Despite this heterogeneity, most of the cognitive deficits in PD are
executive functioning driven [9], involving update or maintenance
of information within working memory (WM). In early stages of
PD, rule shifting, planning, attentional set shifting, WM, feedback
based learning and delayed response inhibition are common cogni-
tive impairments (see [1] for review). Without a global cognitive
impairment, these deficits can be similar to a fronto-striatal dysex-
ecutive syndrome [1], and therefore are thought to be related to spe-
cific under activations in regions of the basal ganglia or prefrontal
cortex (PFC) [10,11]. At later stages of the disease, patients could
exhibit dementia with impairments in semantic fluency, auditory
verbal learning, visuospatial skills, verbal and visual memory, as
well as suffering from hallucinations [1]. Based on animal and com-
putational models, as well as in human cognitive data, Cools [12]
proposed an interesting framework where striatal DA would be re-
lated to the flexible shift between mental representations, whereas
prefrontal DA would be related to the maintenance of such repre-
sentations. Therefore in early stages of PD, patients would reveal
difficulties in the updating of WM, as well as impaired ability to
adapt in tasks that required continuous changes in the S–R
mappings (i.e. set shifting and task switching tasks). Only in poster-
ior phases of the disease progression, ventral striatum dependent
tasks (such as probabilistic reversal learning) would be affected
[13]. This could explain why levodopa (or L-DOPA) has yield both
positive and negative results in terms of cognitive symptoms
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amelioration – reflecting the spatial–temporal progression of DA
depletion, from the dorsal to the ventral striatum [14,15].

Apart from levodopa medication, deep brain stimulation (DBS)
over the subthalamic nucleus (STN) has proven to be effective in
motor symptoms amelioration in this population. However deficits
of speech and gait, as well as cognitive and emotional impairments
have been also reported [16–18]. One possible explanation is that
the bradykinesia induced by the inhibition or disruption of the
excessive flow of information through the STN [19], also disrupts
the normal flow of inputs from other prefrontal, associative and
even limbic areas [20]. Even though recent studies suggest no cog-
nitive decline after DBS (e.g., [21]), they do not seem promising in
terms of cognitive rehabilitation. That seems not to be the case of
transcranial direct current stimulation (tDCS).

Transcranial direct current stimulation (or simply tDCS) con-
sists of applying weak electrical constant currents to the scalp.
Physiologically, anodal tDCS (or atDCS) causes a membrane depo-
larization, while cathodal tDCS (or cTDCS) seems to hyperpolarize
the neural membrane [22]. Several studies suggest positive effects
on the physical and cognitive rehabilitation of PD patients, in both
motor and non-motor symptoms. Anodal tDCS (atDCS) over M1
was associated with an increase in motor function in the UPDRS
scale [23], as well as increases in WM performance over the PFC
[24]. atDCS is also able to increase performance in tasks that re-
quire continuous changes in the S–R mappings in healthy controls
(HC) [25,26] which are thought to be affected in PD patients. De-
spite the obvious potential of the use of tDCS in PD patients, better
stimulation parameters need to be established, prior to the use of
tDCS as a clinical tool [27].
The hypothesis

We hypothesize that ctDCS over the right prefrontal cortex
simultaneously delivered with atDCS over the left prefrontal cortex
can be able to increase the ability to flexibly shift between mental
representations. This seems somewhat counterintuitive, as the re-
search shows that PD patients seem to have a hypometabolic activ-
ity in the right prefrontal cortex [28]; and thus the logic course of
action would be to use atDCS to increase the cortical activity, as it
has been show that atDCS is able to increase the energy consump-
tion in the brain, with the bonus of reducing neurohormonal stress
[29]. Also, bilateral atDCS (i.e. one anode in each hemisphere) has
been used with success in other patient population (e.g., visual
memory enhancement in Alzheimer disease) [30]. But other stud-
ies have also been finding promising results when delivering
simultaneously atDCS to the left PFC while ctDCS is delivered to
the right one, in both basic cognitive functioning (e.g., [31,32]),
and in clinical symptoms amelioration (e.g., [33]). Additionally,
the use of ctDCS does not imply that the produced effects will be
inhibitory, as there are several studies where ctDCS was found to
be able to increase task performance [34,35].

Also, the hypometabolic activity in the right PFC could impact the
direction of the ctDCS effects, as it has been already shown that a cor-
tical excitability change, due to a ctDCS preconditioning, was able to
render facilitatory and inhibitory stimulation [36]. This example of
homeostatic plasticity was further exemplified using valproate,
where increases in the dosage (i.e. decreases in the cortical excitabil-
ity) interacted positively with and inhibitory stimulation, producing
as an outcome, increases in the cortical excitability [37].

But there is another reason to explore the role of ctDCS in PD
patients. Animal studies have shown that ctDCs, and not atDCS
was able to increase the extracellular levels of DA in the rat stria-
tum [38].

Another important question that remains to be addressed
concerns the tDCS parameterization. From the literature about
cognitive functioning and tDCS, it seems that 2 mA of atDCS is able
to increase performance, but the same does not seem to be true
with 1 mA atDCS [24,39]. Also, 2 mA atDCS over the PFC seems
to be effective in changing connectivity in distinct functional brain
networks of the brain [40,41], thus producing effects in the prox-
imity of the stimulation site, but also in the connected brain re-
gions. Therefore, for now, 2 mA tDCS seems a promising starting
point. Nonetheless in order to increase the effectiveness of tDCS
in clinical interventions, non-invasive closed-loop systems need
to be perfected.

This hypothesis is not without caveats. First of all, the assump-
tion that ctDCS could produce the same outcome in terms of extra-
cellular dopamine in humans, as it produced in rats, needs to be
tested. Also, research shows that effects of atDCS over the human
PFC are more consistently reported than ctDCS (see [22] for
review); and we certainly do not know if ctDCS in this specific pop-
ulation will produce the same hypothesized homeostatic plasticity
outcome. Another potential caveat is that there is some contro-
versy about the role of extracellular dopamine in the striatum
(i.e. detrimental levodopa effects) which seems to increase more
in the depleted striatum when compared to the normal one
[42,43]. A possible way to surpass this was to use De Novo patients,
closely monitoring their response to the tDCS, and only then com-
paring the outcomes with those from patients in advanced stages
of the disease.

Implications and further studies

If future research validates these hypotheses, important impli-
cations may be derived. If proven accurate, tDCS has the potential
of inducing cognitive benefits in tasks where there are no benefits
from levodopa (i.e. extra-dimensional set shifting, task switching
abstract rules, pattern and spatial recognition memory, associative
learning, verbal memory) (see [1] for review). The success of a
combined neurorehabilitation program with tDCS could delay the
introduction of levodopa, thus protecting for undesired side effects,
and contributing for a better quality of life.
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