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Abstract In this paper, the problem of semantic place cat-
egorization in mobile robotics is addressed by considering a
time-based probabilistic approach called dynamic Bayesian
mixture model (DBMM), which is an improved variation
of the dynamic Bayesian network. More specifically, multi-
class semantic classification is performed by a DBMM
composed of a mixture of heterogeneous base classifiers,
using geometrical features computed from 2D laserscan-
ner data, where the sensor is mounted on-board a moving
robot operating indoors. Besides its capability to combine
different probabilistic classifiers, the DBMM approach also
incorporates time-based (dynamic) inferences in the form of
previous class-conditional probabilities and priors. Extensive
experiments were carried out on publicly available bench-
mark datasets, highlighting the influence of the number of
time-slices and the effect of additive smoothing on the clas-
sification performance of the proposed approach. Reported
results, under different scenarios and conditions, show the
effectiveness and competitive performance of the DBMM.
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1 Introduction

The capability of perceiving and understanding complex,
dynamic and unstructured environments is essential for intel-
ligent robots to be introduced in our daily life. However, a
mobile robot primary depends on the sensory information
fromon-board sensors, such as cameras (mono, stereo), laser-
scanners (2D, 3D) and RGB-D data. Despite the possibility
of different sensory perception, there is still a world of sen-
sory uncertainty to deal with. The ability to build a consistent
map of the environment and to estimate the pose of the robot
is one of the various tasks that can be performed by a robot, as
in Milford (2013) and Posner et al. (2009). In order to build
a map, the sensory information plays an important role to
perceive the environment to construct the map concurrently,
allowing a mobile robot to move along the trajectory while
the data arrives from the sensors. Nevertheless, in the case a
map is provided, approaches based on semantic localisation
can be explored as in McManus et al. (2015).

Most of the maps in mobile robotics are represented as
a combination of metrical and topological data structures
(Werner et al. 2012). For path and task planning, the rep-
resentation of maps has to be simplified and adapted to the
scenario where the robot has to deal with. Maps based on
semantic descriptions are useful, for instance, in graph-based
SLAM (Hong et al. 2015). The capacity of reasoning on sen-
sor data to associate semantics to a specific place of an indoor
environment, such as “corridor” or “office”, provides more
intuitive idea of the mobile robot location in complement
to metric values. The process of semantic place recognition,
or categorization (Jung et al. 2016), incorporated in a map
building process is known as semantic mapping (Shi et al.
2012; Pronobis and Jensfelt 2012; Jung et al. 2014; Shi et al.
2013).
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Robotics and machine vision communities have been
involved for many years in the problem of semantic clas-
sification of places, as summarized in the recent survey of
Kostavelis and Gasteratos (2015), and many solutions were
proposed using different sensors and techniques. Moreover,
existing datasets like in Martinez-Gomez et al. (2015) and
Pronobis et al. (2010), have been an important contribution
to the progress in this field. Regarding camera sensors, the
work of Jung et al. (2014) explores information from a depth-
camera, while a monocular camera is employed in Wu et al.
(2009), Costante et al. (2013), and an omnidirectional one
in Ullah et al. (2008), Yuan et al. (2011). Laserscanners are
used by Shi et al. (2012, 2010), and information from both
sensors is explored in Rogers and Christensen (2012), Shi
et al. (2013). On the other hand, when it comes to pattern
recognition level, both discriminative and generative solu-
tions have been largely used in this research area, namely
Boosting techniques (Mozos 2010), support vector machine
(SVM) (Ullah et al. 2008), Bayesian classifier (Vasudevan
and Siegwart 2008), Naive Bayes classification (Wu et al.
2009), logistic regression (Shi et al. 2010), transfer learning
(Costante et al. 2013), dynamic time warping and bag-of-
words (Yuan et al. 2011), conditional random fields (CRF)
(Rogers and Christensen 2012; Shi et al. 2013), and combi-
nation of techniques e.g., CRF+SVM as in Shi et al. (2012).

In this work, semantic place categorization is addressed
with focus on a probabilistic approach for classification using
2D laserscanner data. The fact of emphasizing laserscan-
ner data is due to three reasons: (1) this is an active sensor
modality which is very robust against illumination changes,
as shown in the results reported in Premebida et al. (2015);
(2) laserscanners are broadly used in robotic applications in
academia and industry (guaranteeing safe navigation); (3)
most of the range-based features can be directly extrapolated
to 3D lasers. The classification algorithm addressed here
follows the principles of a dynamicBayesian network (Miha-
jlovic and Petkovic 2001) but, since its structure incorporates
a mixture of probabilistic models, it is named dynamic
Bayesian mixture models (DBMM) (Faria et al. 2014).

This paper, which is an extension of Premebida et al.
(2015), brings contributions to the problem of place clas-
sification in mobile robotics applications as follows: (i) a
general expression for the DBMM in the form of a finite
product of past (time-based) class-conditional probabilities
and priors, allowing a direct interpretation of the number of
time-slices in the DBMM structure; (ii) a-posteriori outputs
are smoothed bymeans of ‘additive smoothing’ incorporated
in the DBMM model with the purpose of mitigating even-
tual close-to-zero class-conditional probabilities; (iii) this
work reports thorough experiments highlighting generaliza-
tion capacities in different scenarios and conditions, which is
particularly important in real-world applications. DBMM is
extensively evaluated in terms of classification performance

on two benchmark databases (detailed in Ullah et al. 2008
and Pronobis et al. 2010 respectively) with laserscanner data
collected from mobile robots navigating in indoor scenarios.

The remainder of this paper is organized as follows. A
brief review of DBN, the mixture models, and the weighting
strategy are given in Sect. 2. A description of the proposed
DBMM method is presented in Sect. 3. Datasets using 2D-
laserscanners are described in Sect. 4. Experimental results
are reported and discussed in Sect. 5, emphasizing the effect
of the number of time-slices and nodes on the DBMM per-
formance, as well as the additive smoothing on the prior
distributions. Finally, Sect. 6 concludes this paper.

2 Preliminaries

This section starts with a brief review of the DBN, followed
by the basic formulations w.r.t. semantic place recogni-
tion problem. The concept of finite mixture models is then
described in the sequel, and this section concludes with the
weighting approach used to combine a finite set of base clas-
sifiers into themixturemodel. The developments described in
this section will serve as a basis for the DBMM formulation
in Sect. 3.

2.1 Brief review of DBN

Adynamic Bayesian network (DBN)1 is a generalization of a
Bayesian network (BN)where temporal relationship between
state-variables in a BN is explicitly modeled. DBNs follow
the same principles of BNs,where the nodes represent a set of
random variables and the arcs (or links) represent the direct
and acyclic dependencies between the nodes. Denoting by
X = {X1, · · · , Xm} the set of m random variables, rep-
resented by the nodes in a BN, a DBN with T time-slices
expresses the dynamic behavior by the time step variable t :

– Previous time-slices: {Xt−1,Xt−2, · · · ,Xt−T }
– Current time step: Xt = {Xt

1, X
t
2, · · · , Xt

n}
– Subsequent time-slices: {Xt+1,Xt+2, · · · ,Xt+T }

The temporal relationships between the nodes, called inter-
slice or temporal arcs, can include the same variable over
time e.g., Xt

i → Xt+1
i , and different variables over time e.g.,

Xt
i → Xt+1

j (Korb and Nicholson 2010). Usually DBNs are
built in a such way that a node at one time-slice affects only
the node ahead i.e., Xt−1

i → Xt
i , however a network with

multiple time-connected arcs can be built. In the case where
the arcs connect only the current time nodeswith the previous

1 Also known, according to Korb and Nicholson (2010), as dynamic
belief network, probabilistic temporal network, or dynamic causal prob-
abilistic network.
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nodes, such condition is said to follow the first-oder Markov
assumption (Korb and Nicholson 2010).

Conditional probabilities are used to model the depen-
dencies between the nodes, both intra (same time step) and
inter-slice relationships (previous and/or subsequent slices).
For example, given a node Xt

i with intra-slice parentsC
t
1 and

Ct
2 and inter-slice parents Xt−1

i and Ct−1
1 , this probabilistic

relationship is expressed as P(Xt
i |Ct

1,C
t
2, X

t−1
i ,Ct−1

1 ).

2.2 Formulation of the problem

Considering a set of nodes C , the evidence about such nodes
X, and for the current time step t , inference is posed as a
Bayesian problem of the form P(Ct |Xt ) ∝ P(Xt |Ct )P(Xt ).
In semantic place recognition, we formulate the problem in
terms of P(Ct , Xt ), where Ct is the set of classes of interest
and Xt denotes evidence obtained from sensor input signals.
Here, Xt enters into the network in the form of a feature vec-
tor, calculated from the raw-input measurement, conditioned
to the parameters � of a given classification/learning model.
The joint probability, with some rigor, is P(Ct , Xt ,�), but,
since � represents non time-varying parameters of a given
supervised classifier trained in advance,� is omitted for sake
of conciseness.

A simple dynamic network with two nodes X and C , and
considering just the current time step, is modeled by the joint
probability P(Xt ,Ct ). Nevertheless, to solve the problem of
semantic place classification for the instant t , the probability
of interest - given by P(Ct |Xt ) - can be easily obtained by
the Baye’s formula P(Ct |Xt ) = P(Xt |Ct )P(Ct )/P(Xt ),
where the class-conditional probability P(Xt |Ct ) comes
from a probabilistic-based classifier and the a-priori P(Ct )

can be estimated recursively as detailed in Sect. 3.1.

2.3 Mixture models

A mixture model is here understood as a weighted combi-
nation of component probabilities, assumed independently
distributed, that were modeled according to base classi-
fiers (BCs). Considering the set of classes C and the
class-conditional probabilistic outputs from N base classi-
fiers Pi (X |C)i=1,...,N , the general mixture model outputs a
weighted probability P(X |C) as follows:

P(X |C) =
N∑

i=1

wi Pi (X |C), (1)

where N is the number of base classifiers and wi is the
weight associated to a given probabilistic output Pi (X |C)

obtained by a supervised classifier. The weights, that sum to
one

∑
i wi = 1, were estimated by an Entropy-based mea-

sure as confidence level, as explained in the sequel.

2.4 Assigning weights using entropy

There are numerous techniques one can use in the estimation
of a finite set of weights to combine classifiers. Here, we use
Entropy H , from information theory, as a confidence level
to estimate the weights w that will be used to compose the
mixture of classifiers. Considering a training set compris-
ing the normalized likelihoods delivered by the set of base
classifiers, Entropy is computed as follows:

Hi (Pi (·)) = −
m∑

Pi (·) log(Pi (·)), (2)

where, in our case, Pi (·) = Pi (C |�, X) represents the class-
conditional probability given the model � of a i th classifier
and the set of features X ; simply denoted by Pi (C |X). From
the learning stage using a training set, the likelihoods from
the BCs are properly normalized in order to obtain actual
probabilities to be used in (2); the summation operates only
on the set of correctly classified examples, of size m. Know-
ing Hi , the weight wi for each i th classifier is estimated as
being inversely proportional to Entropy as follows:

wi =
1 −

(
Hi∑N
j=1 Hj

)

(N − 1)
, i = {1, ..., N }, N > 1, (3)

where Hi is the value of Entropy resultant from (2). The
denominator in (3) guarantees that

∑N
i=1 wi = 1. This

weighting strategy will smooth the base classifier’s response
by continuously multiplying its classification belief by the
correspondent weight.

3 Dynamic Bayesian mixture models: DBMM

The DBMM is formulated in the same way a DBN except
that the mixture models part is integrated into the network.
In other words, in the DBMM network different base clas-
sifiers are weighted, resulting in a combined expression for
P(X |C) as in (1). For the problem of interest, the DBMM is
formulated in terms of the current time t , and the set of finite
and previous (past) time-slices (t − 1, · · · , t − T ). This sec-
tion ends with a technique, called additive smoothing, used
to prevent the undesirable situation where the prior for some
of the classes tends to be very close to zero.

3.1 The DBMM structure

TheDBMM structure is composed of the mixture probabilis-
tic outputs P(X |C) (1) and the a-priori class probabilities
P(C), on a time basis, as illustrated in Fig. 1. The time-based
order T specifies the number of time slices. The DBMM
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Fig. 1 Illustrative representation of the DBMM approach with T time-slices, where k = t, · · · , t − T . The posterior depends on the priors P(Ck),
the combined probabilities from the base-classifiers P(Xk |Ck), and the normalization β

works according to a finite size sliding “window” approach
of time slices (Faria et al. 2014). Basically, as the inference
process moves forward to the next time step → (t + 1), the
oldest time slice is dropped off the network.

In its simplest form i.e., for one time-slice T = 1, the
structure of a DBMMwith nodes X and C is modeled by the
joint probability given by

P(Xt , Xt−1,Ct ,Ct−1)

= P(Xt |Xt−1,Ct ,Ct−1)P(Xt−1|Ct ,Ct−1)

×P(Ct |Ct−1)P(Ct−1). (4)

More generally, for T time steps, the joint-probability is
expressed as

P(Xt,··· ,t−T ,Ct,··· ,t−T ) =
t−T∏

k=t

P

⎛

⎝Xk |
t−T∧

j=k−1

X j ,

t−T∧

k=t

Ck

⎞

⎠

×
t−T∏

k=t

P

⎛

⎝Ck |
t−T∧

j=k−1

C j

⎞

⎠P(Ct−T ).

(5)

To obtain the posterior probability, the quantity of interest
here, the product rule can be used as

P(Ct |Ct−1, Xt , Xt−1) = β−1P(Xt |Xt−1,Ct ,Ct−1)

×P(Xt−1|Ct ,Ct−1)P(Ct |Ct−1)P(Ct−1),

(6)

where, for nc classes, the normalization is ensured by β =∑nc
i=1 P(Xt |Xt−1,Ct

i ,C
t−1
i )P(Xt−1|Ct

i ,C
t−1
i )P(Ct

i |Ct−1
i )

P(Ct−1
i ). To make the problem more tractable, two assump-

tions are considered. First, X is considered to be indepen-
dent of previous X -nodes i.e., P(Xt |Xt−1,Ct ,Ct−1) =
P(Xt |Ct ,Ct−1). Secondly, the nodes are not conditionally
dependent of later (future) nodes e.g., P(Xt−2|Ct ,Ct−1,

Ct−2) = P(Xt−2|Ct−2). As consequence, the transition
probabilities between classes reduces to the probability of
the current-time class

P(Ct |Ct−1) = P(Ct−1|Ct )︸ ︷︷ ︸
P(Ct−1)

P(Ct )/P(Ct−1) = P(Ct ),

(7)

as shown for T = 1. Finally, and to reinforce the net-
work “memory”, previous posterior probabilities become
new (current) priors e.g., for T = 2, it is considered that
P(Ct ) ← P(Ct−1|Ct−2, Xt−1, Xt−2).

According to the developments given above, a general
expression for a DBMM with T time-slices can be obtained
as follows

P(Ct |Ct−1,··· ,t−T , Xt,··· ,t−T ) = β
∏t−T

k=t P(Xk |Ck)P(Ck)

(8)

where, for instance, the current prior element takes the
value of the previous posterior i.e., P(Ct ) ← P(Ct−1|
Ct−2,··· ,t−T−1, Xt−1,··· ,t−T−1), and soon. Finally, andknow-
ing that P(Xk |Ck) is actually a mixture of probabilities as
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indicated earlier in (1), the explicit expression for theDBMM
with T time-slices, after dropping the normalization factor
β, assumes the form

P(Ct |Ct−1:t−T , Xt :t−T ) ∝
t−T∏

k=t

(
∑

i

wi Pi (X
k |Ck)

)
P(Ck).

(9)

In summary, the a-posteriori of classes, given the current
and past parent nodes, is proportional to the product of the
weighted conditional probabilities, given by (1), and the pri-
ors. Finally, for T = 0, expressions (8) and (9) define a
DBMM with just the current time step.

3.2 Additive smoothing for the prior probabilities

The structure of the DBMM, described in Sect. 2.2 and sum-
marized in (9), assigns the values of the current-timeposterior
probabilities to the a-priori probabilities that will be used
in the next time-slice. This is an effective technique that
precludes specifying the prior distribution in advance, and
conversely allowing the priors to be estimated sequentially;
this strategy can be referred as ‘conjugate prior’ estimation,
as discussed in Duda et al. (2001). Nevertheless, in such
sequential class estimation problem it may happen that the
probability of a given class become unacceptably close to
zero. This problem can be solved by ‘additive smoothing’,
which is carried out by adding a term (α) to the prior distri-
bution.

The technique used here to avoid close-to-zero values on
priors is called Lidstone smoothing (Chen and Goodman
1996), that consists on adding a term α < 1 to the prior
P(C), expressed by

P̂(Ci ) = P(Ci ) + α

P(Ci ) + α · nc , i = 1, · · · , nc (10)

where P̂(Ci ) is the smoothed prior, nc is the number of
classes, and α is the smoothing parameter. We performed
the experiments in semantic place classification considering
values of α within the interval [0, 0.1]. The value of α has
to be specified to prevent zero-probabilities (α > 0) but also
to maintain the prior distribution over the classes as close
as possible to the distribution before the additive parameter.
This condition is guaranteed by small values, thus we limited
α to be smaller than 0.1.

4 Datasets

In this section, the semantic place labeling datasets named
IDOL2 (hereafter just IDOL) and COLD, which are used in

our experiments, are briefly described (more details are pro-
vided in Pronobis et al. (2010) and Luo et al. (2007). The
first dataset consists of 24 data sequences, collect using two
mobile robots, and is characterized by five semantic-classes;
further details are given in Sect. 4.1. Regarding the second
dataset, actually in this work we have considered one of its
three sub-datasets, namely the Saarb-COLD was used in our
experiments because of two reasons: it has a greater num-
ber of classes than others COLD’s sub-sets, and it provides
laserscanner data while Ljubl-dataset doesn’t.2

4.1 IDOL datasets

The Image Database for rObot Localization (IDOL) (Luo
et al. 2007) comprises 24 sequences with data from amonoc-
ular camera, laserscanner and odometry system, collected
using two mobile robot platforms (a PeopleBot and a Power-
Bot; see http://www.cas.kth.se/IDOL/). Semantic places are
represented by five indoor categories: “1-person office”
(1pO), “2-persons office” (2pO), “Corridor” (CR), “Kitchen”
(KT), and “Printer area” (PR). Each robot was manually
driven through the indoor environments while acquiring data
at 5 fps. The data sequences were collected under varying
illumination conditions and during different time periods.
The total of 24 data sequences are the result of 4 sequences,
per mobile robot, recorded under the 3 weather/illumination
conditions (sunny, cloudy, night). Of these 4 sequences, the
first two were acquired during January and February (with
a time span of 2 weeks), and the remaining two sequences
were recorded during June and July (again, with a time span
of 2 weeks). The time interval between the sequences pairs
is approximately of 6 months. Therefore, the dataset cov-
ers a wide range of variations introduced by illumination
and weather conditions, presence or absence of people, fur-
niture/objects relocated, viewpoint differences, etc. Table 1
summarizes the IDOL dataset where, per each robot, there
are 12 data sequences divided into 3 groups according to the
illumination conditions, with each group having 4 sequences.

4.2 COLD Saarbrücken dataset

The COLD-Saarb sequences were acquired under differ-
ent weather and illumination conditions (designated by
Cloudy, Night, Sunny), and across a time span of two/three
days (Ullah et al. 2008). The Saarb-set has 9 classes:
“Corridor”, “Terminal room”, “Robotic lab”, “1-person
office”, “2-persons office”, “Conference room”, “Printer
area”, “Kitchen”, and “Bath room”. Two paths were fol-
lowed by amobile robot during data acquisition, the Standard
(STD) and the Extended (EXT) paths; moreover, sequences
of the dataset were annotated as portions A and B: the main

2 Freib-dataset has laser data indeed, but with low resolution.
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Table 1 IDOL Database: recording conditions

Cloudy Night Sunny

ID Month ID Month ID Month

RobotA (PowerBot)

1 Feb 5 Feb 9 Feb

2 Feb 6 Feb 10 Feb

3 Jun 7 Jun 11 Jun

4 Jul 8 Jun 12 Jun

RobotB (PeopleBot)

13 Jan 17 Jan 21 Feb

14 Jan 18 Jan 22 Feb

15 Jul 19 Jun 23 Jun

16 Jul 20 Jun 24 Jun

difference is that those parts annotated as “A” do not have
sequences under “Sunny” condition (see Ullah et al. 2008 for
more details). This dataset provides, among mono and omni-
image frames, raw laser scans with FOV=180◦ and 0.5◦ of
resolution i.e., each laser scan has 361 points.

4.3 Laser-based features

In both datasets i.e., IDOL and COLD-Saarbrücken, the
mobile robots used to record data were equipped, besides
other sensors and instruments,with 2D laserscannersmounted
onboard the robots. In the experiments carried out in this
work, only laser-based features were used as basis for
the supervised learning algorithms. In particular, a subset
of 50 components from the geometrical features proposed
in Mozos (2010) (the so called B and P-features) were
employed in our experiments. The aforementioned B&P
features are computed from the raw laser scans, where the
B-features are calculated using the laser-beams and the P-
features are calculated from a polygonal approximation of
the area covered by the laser-scan. The components of the
feature vector used in this work are detailed in Table II of
(Premebida et al. 2015). The reasons for using the B&P fea-
tures are twofold: to allow a fair comparison with previous
works that use laser data and to demonstrate that with a low
complexity feature vector, of only 50 elements, it is possible
to achieve very good performance.

5 Experiments and performance evaluation

In this section the classification performance of the DBMM,
applied on the semantic place labeling datasets described
in Sect. 4, is evaluated in terms of (i) the number of time-
slices, and (ii) the effect of the additive parameter on the
priors. For the IDOL dataset, we also evaluate the influ-

ence of combining (mixture) base-classifiers in the DBMM
structure. The overall classification performance is assessed
by applying Fmeasure = 2 Pr ·Re

Pr+Re , calculated on the testing
part of the datasets, where Pr and Re denote precision and
recall respectively. We primary adopted Fmeasure

3 because
all datasets have unbalanced classes.

The mixture model of the network (denoted hereafter by
BMM) is composed of 3 BCs i.e., N = 3 in (1), where BC1

is a SVM using linear-kernel and usual parameters, BC2 is
a MLP Neural Network with 10 hidden nodes, and BC3 is
another lin-SVM using a margin parameter C = 100. The
implementations use libSVM4 and the Neural Network Tool-
box of Matlab. All BCs are learned using the same training
set, and the outputs are normalized in order to delivery prob-
abilistic estimates.

The experiments are firstly conducted on the IDOL
dataset, seeking to verify the classification performance of
themixturemodel against the base classifiers. In a first exper-
iment, temporal relationship inside the DBMM structure is
not considered i.e., the classification depends only on the
response from the mixture of BCs. Secondly, a series of
experiments using the DBMM for increasing number of T is
carried out and the results are reported in Sect. 5.1. Finally,
Sect. 5.2 brings the experiments on the Saarb-dataset where
different paths and locations are interchanged between train-
ing and testing sets.

5.1 Experiments on IDOL dataset

The experiments performed on IDOL follow, essentially, the
samemethodology described in Pronobis et al. (2010) but,we
opted to conduct the most challenging experiments reported
in Pronobis et al. (2010) (thus, the experiments under stable
illumination conditions were not performed here). In sum-
mary, four experiments are carried out as follows:

1. Exp. 1 (under varying illumination conditions and close
in time), performed separately for each robot.

2. Exp. 2 (under varying illumination conditions and distant
in time), performed separately for each robot.

3. Exp. 3 (recognition across robot platforms, same illumi-
nation conditions).

4. Exp. 4 (recognition across robot platforms, different illu-
mination conditions).

The last two experimental runs (Exp. 3 and 4) were carried
out to assess the generalization performance in very chal-
lenging conditions. Exp. 3 follows similar methodology as
reported in Pronobis et al. (2006), while Exp. 4 is an addi-

3 In this paper the values of Fmeasure are presented in percentage.
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 2 Experiments on IDOL dataset. Sequences ID, between brackets, are from Table 1

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Train � Test Train � Test Train Test Train � Test

{1, 2} {5, 6} {1, 2} {7, 8} {1, 2, 3, 4} {13, 14, 15, 16} {1, 2, 3, 4} {17, · · · , 24}
{1, 2} {9, 10} {1, 2} {11, 12} {5, 6, 7, 8} {17, 18, 19, 20} {5, 6, 7, 8} {13, · · · , 16, 21, · · · , 24}
{3, 4} {7, 8} {3, 4} {5, 6} {9, 10, 11, 12} {21, 22, 23, 24} {9, 10, 11, 12} {13, · · · , 20}
{3, 4} {11, 12} {3, 4} {9, 10}
{5, 6} {1, 2} {5, 6} {3, 4} {13, 14, 15, 16} {1, 2, 3, 4} {13, 14, 15, 16} {5, · · · , 12}
{5, 6} {9, 10} {5, 6} {11, 12} {17, 18, 19, 20} {5, 6, 7, 8} {17, 18, 19, 20} {1, · · · , 4, 9, · · · , 12}
{7, 8} {3, 4} {7, 8} {1, 2} {21, 22, 23, 24} {9, 10, 11, 12} {21, 22, 23, 24} {1, · · · , 8}
{7, 8} {11, 12} {7, 8} {9, 10}
{9, 10} {1, 2} {9, 10} {3, 4}
{9, 10} {5, 6} {9, 10} {7, 8}
{11, 12} {3, 4} {11, 12} {1, 2}
{11, 12} {7, 8} {11, 12} {5, 6}
�means that training and testing sets are interchanged. Exp. 1 and Exp. 2 are here performed for the RobotA

Table 3 Results on IDOL for the BCs and the mixture model, in terms
of Fmeasure

BC1 BC2 BC3 BMM

Exp.1 90.7 92.9 93.0 93.7

Exp.2 87.7 86.1 88.2 88.4

Exp.3 83.7 79.8 82.4 84.7

Exp.4 84.4 80.6 83.5 85.5

F̂measure 86.6 84.9 86.8 88.1

tional experimental case presented here. Table 2 summarizes
these four experiments in terms of training and testing sets.

As described in Sect. 2.3, the class-conditional probability
output of the DBMM is a weighted combination of BCs.
We begin by evaluating the framework with non-sequential
(time) decision (referred as BMM), in order to assess the
effect of the weighting strategy and to compare the results
with the BCs. Classification results achieved by weighting
the BCs, as well as the results from the BCs, are shown in
Table 3. The results indicate the effectiveness of combining
a set of classifiers into the mixture model using the method
described in Sect. 2.4.

For the ‘dynamic part’, which is of particular interest in
this work, the DBMM is evaluated in terms of the number
of time-slices and as function of the smoothing parameter
α. The impact on the Fmeasure of incorporating time-based
inferences is shown in Fig. 2, for each of the four experi-
ments listed above (Exp. 1,2,3,4), where α varies from 0 to
0.1. The experiments were conducted for T in the interval
[0, · · · , 4]. Notice that when T = 0 the ‘dynamic’ behavior
of the DBMM depends only on the current time step (this is
in accordancewith the convention adopted in Sect. 3.1). In all
cases, and for any α > 0.01, the classification performance

when temporal relationship is taken into account improved
significantly in comparison with the case of non-temporal
integration (indicated by BMM). The plots in Fig. 2 show
that the performance on all the four experiments is improved
when time-slices are taken into consideration.

As expected, performance drops as the additive parame-
ter increases. This happens because the prior distribution
becomes to lose its definiteness due to the uniform “bias”
induced by α. This can be seen as follows: let P(C) =
(0.1, 0.3, 0.01, 0.4, 0.19) be a given prior distribution for
five classes, and let consider the additive term as α =
(0, 0.01, 0.1, 0.25, 0.5), applying normalization to guaran-
tee the total probability mass is unity, Fig. 3 illustrates the
effect of an additive term on a prior distribution.

Regarding the curves presented in Fig. 2, for T = (2, 3, 4)
the classification performance have approximate behavior,
while for T = 1 the response tends to follow the previous
cases but with higher peaks (although for a short period) in
most of the experiments. Finally, for T = 0 theDBMMreach
the peak shortly at α > 0 and then it follows a monotonic
decreasing function with average classification error higher
than the DBMMswith T > 0. Further discussion is provided
in Sect. 5.3.

5.2 Experiments on COLD-Saarb

In Sect. 4.2 the COLD-Saarb dataset is concisely described,
while detailed information can be found in Ullah et al.
(2008). In Premebida et al. (2015), and in accordance with
the experiments carried out in Ullah et al. (2008), exhaustive
experimental results were reported for different conditions
of illumination and portions (“A” and “B”), and separately
for STD and EXT sequences. Additionally, experiments
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Fig. 2 Evolution of the Fmeasure , per values of α and T = [0, · · · , 4],
shown for the four experiments on the IDOL dataset as described in
Sect. 5.1. The legends indicates the DBMM for different values of

time-slices. These curves clearly demonstrate improvement on the per-
formance of the DBMM when the ‘dynamic’ part is considered. Here,
the legend BMM indicates a DBMM without time steps
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Fig. 3 An example of the influence ofα on a given P(C). Distributions
are shown, from left to right, for increasing values of α. Additionally,
standard deviation is provided in the top of each subplot
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Fig. 4 Results on the COLD-Saarb as addressed in Sect. 5.2
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Table 4 Results on IDOL, averaged for the classes

BMM T = 0 T = 1 T = 2 T = 3 T = 4

Exp.1 93.7 95.6 95.7 95.6 95.5 95.4

Exp.2 88.4 92.7 93.4 93.4 93.4 93.2

Exp.3 84.7 90.6 91.6 91.6 91.7 91.6

Exp.4 85.5 90.3 91.0 91.1 91.5 91.3

F̂measure 88.1 92.3 92.9 92.9 93.0 92.9

involving both sequences were also reported. This work con-
centrates on this last experimental part, where Fmeasure is
used to assess classification performance considering STD
vs EXT, alternating between training and testing.

Some of the classes in COLD-Saarb are labeled only for
the EXT path and some only for one of the portions A or
B (more details in Table I of Ullah et al. 2008). Therefore,
for the experiments presented in this section the classes that
are present in both sequences (EXT and STD) have been
considered, they are: “Corridor’ (CR), “Printer area” (PA),
“Bath room/Toilette” (TL), and “Person office” (PO); here,

PO assembles the classes “1-person office” and “2-persons
office”.

Figure 4 shows Fmeasure for the four classes that are all
available in the two paths followed by the robot (sequences
STDandEXT). This experiment explores the situationwhere
the classification method is trained and tested in sequences
whose conditions are substantially different and therefore, it
allows us to study cross-dataset generalization. The results,
approximately proportional to the behavior on the IDOL
dataset, show that when time-slices are integrated into the
system the performance is much better than a solution with-
out dynamic nodes.

5.3 Discussion

Experiments on the IDOL and COLD-Saarb datasets were
primarily conducted to evaluate the DBMM’s performance
with regard to (i) the mixture models and (ii) the number
of time-slices. The first experimental results, summarized
in Table 3, indicate a better performance when combining
classifiers in a DBN framework. The second round of exper-

Fig. 5 Classification results for a short sequence of an indoor scenario,
extracted from IDOL dataset, using laser-based features (see Sect. 4.3)
and the DBMM with increasing number of time slices. The first row
depicts images captured by an onboard camera; the second row shows
the laser scans; the third row provides the results of a DBMM without
time-slices, and the subsequent rows show classification probabilities

for DBMMs with T = 0, 1, 2, 3, 4 respectively. The color bars at the
bottom of the figure indicates the ground-truth label: green indicates
‘kitchen’ (KT), and yellow denotes ‘corridor’ (CR). In this work the
image frames are not used in the classification i.e., they are shown for
illustrative purposes (Color figure online)
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(a) (b) (c) (d) (e) (f) (g)

Fig. 6 Maps showing the classification results obtained by the DBMM approach. The colors encode the categories for each frame along the path:
� - 1pO; � -2pO; � - KT; � -CR; � - PR. These results, for every robot position, were obtained in a testing (unseen) sequence from Exp. 3

iments gave a clear indication of the effect when time-based
nodes (states) are used in the system. As explained in Sect.
3.2, in order to obtain consistent results a term was added to
the prior probabilities. Based on the reported results on both
datasets, provided in Figs. 2 and 4, an ‘optimal’ value of α is
not the same for all values of T neither for all experiments.
However, it is clear that α should be small, 0 < α < 0.05.

The approximate value of α with the highest Fmeasure,
according to the average results in the experiments on IDOL,
are α = (0.002, 0.011, 0.023, 0.028, 0.032). Results of the
DBMM with these values of α and for T = (0, · · · , 4) are
presented in Table 4, where the average performances of the
DBMM with 0 < T ≤ 4 are similar; this allows us to con-
clude that a DBMM with T = 1 is a reasonable choice for
the best network, under the assumption that it will require
less computational effort and lower complexity than for
T > 1.

Figure 5 shows classification results on a part (only 13
frames) of a sequence from the IDOL dataset. The results
illustrate the ‘temporal’ behavior of the DBMM for increas-
ing number of time-slices. The third row shows the results for
the approach without time steps (i.e., BMM), which presents
more variations in the response than the DBMMswith incor-
porated time-slices. Conversely, as the number of time-slices
increases, the sequential response becomes less sensible to
variations on the scene, but the ‘latency’ of the DBMM is
more evident. In the case shown in Fig. 5, from frame 5
to 8 all approaches, except BMM, fail to classify correctly;
frame 4 was successfully classified only by DBMM(T= 4),
while on frame 9 the DBMM(T=2,3,4) did not perform
well.

Finally, Fig. 6 provides results along the path driven by
the robot in one of the testing sequences in IDOL dataset.
The map of the environment is divided in five places: 1©
(1pO: office); 2© (2pO: office); 3© (KT: kitchen); 4© (CR:
corridor); 5© (PR: printer office). As can be seen from Fig.
6(b–g), as the number of slices T increases the classification
response becomes more stable and, therefore, the occurrence

of changing between categories tends to decrease. In terms of
transition errors, from one place to another, the passage from
place 4© to 5© is often a cause of misclassification. Further
classification errors occur in place 1© and 2©, often misclas-
sified as 2pO and KT respectively. These detailed results are
from Exp. 3, which is the most challenging experiment con-
ducted in this paper.

6 Conclusion

We have introduced an effective form of the dynamic
Bayesian network (DBN),modeled as a sequential classifica-
tion network, for the semantic place recognition problem in
the scope ofmobile robotics. Based on the dynamic Bayesian
mixture model (DBMM), introduced by Faria et al. (2014)
and applied to the place classification problem in Premebida
et al. (2015), in this paper we present a general expression of
the DBMM in terms of a finite set of time-slice nodes, also
valid for a DBN,modeled as a product of past-posteriors and
priors probabilities. Extensive experiments using datasets
from publicly available repository were carried out to assess
the performance of the DBMM on semantic place classifica-
tion. Additionally, this paper brings evidence of the impact of
additive smoothing on the DBMM network’s performance.

From the several experimental results reported in this
work, the DBMM demonstrated to be a very promising
approach, with interesting characteristics: (i) DBMM sup-
ports general probabilistic class-conditional models; (ii)
dynamic information in the formofpriors andpast-inferences
can be easily incorporated; (iii) DBMM enables the combi-
nation of a diversity of base-classifiers. In conclusion, from
this study we learned that the proposed method can be suc-
cessfully applied in sequential (time-based)multi-class place
recognition problems, being a very powerful solution to be
followed due its low complexity, faster implementation and
its direct probabilistic interpretation.
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