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Intrusive thoughts and compulsive urges to perform stereotyped behaviours are typical symptoms of obsessive-compulsive disorder.

Emerging evidence suggests a cognitive bias towards habit formation at the expense of goal-directed performance in obsessive-

compulsive disorder. In this study, we test this hypothesis using a novel individualized ecologically valid symptom provocation

design: a live provocation functional magnetic resonance imaging paradigm with synchronous video-recording of behavioural

avoidance responses. By pairing symptom provocation with online avoidance responses on a trial-by-trial basis, we sought to

investigate the neural mechanisms leading to the compulsive avoidance response. In keeping with the model of habit formation in

obsessive-compulsive disorder, we hypothesized that this disorder would be associated with lower activity in regions implicated in

goal-directed behaviours and higher activity in regions implicated in habitual behaviours. Fifteen patients with obsessive-compul-

sive disorder and 15 healthy control volunteers participated in this functional magnetic resonance imaging study. Online stimuli

were individually tailored to achieve effective symptom provocation at neutral, intermediate and strong intensity levels. During the

symptom provocation block, the participant could choose to reject or terminate the provoking stimuli resulting in cessation of the

symptom provocation. We thus separately analysed the neural correlates of symptom provocation, the urge to avoid, rejection and

relief. Strongly symptom-provoking conditions evoked a dichotomous pattern of deactivation/activation in patients, which was not

observed either in control conditions or in healthy subjects: a deactivation of caudate-prefrontal circuits accompanied by hyper-

activation of subthalamic nucleus/putaminal regions. This finding suggests a dissociation between regions engaged in goal-directed

and habitual behaviours. The putaminal hyperactivity during patients’ symptom provocation preceded subsequent deactivation

during avoidance and relief events, indicating a pivotal role of putamen in regulation of behaviour and habit formation in

obsessive-compulsive disorder. Effective connectivity analysis identified the ventromedial prefrontal cortex/orbitofrontal cortex

as the main structure in this circuitry involved in the modulation of compulsivity in obsessive-compulsive disorder. These findings

suggest an imbalance in circuitry underlying habitual and goal-directed action control, which may represent a fundamental mech-

anism underlying compulsivity in obsessive-compulsive disorder. Our results complement current models of symptom generation in

obsessive-compulsive disorder and may enable the development of future therapeutic approaches that aim to alleviate this

imbalance.
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Introduction
A prominent feature of obsessive-compulsive disorder (OCD)

is the propensity to perform compulsive behaviours despite

negative consequences. OCD has been conceptualized as a

disorder of self-control and behavioural inhibition (Milad

and Rauch, 2012; Robbins et al., 2012). Data from symptom

evocation and provocation studies in OCD suggest hyper-

activity of the orbitofrontal, dorsolateral prefrontal (PFC)

and anterior cingulate cortices (ACC), caudate, insula and

amygdala (McGuire et al., 1994; Rauch et al., 1994; Breiter

et al., 1996; Adler et al., 2000; Hendler et al., 2003; Mataix-

Cols et al., 2004; Nakao et al., 2005; Schienle et al., 2005;

Simon et al., 2010, 2013; Baioui et al., 2013). These studies

support a neurobiological model of OCD suggesting an im-

portant role for dysfunctional loops in cortico-striato-tha-

lamo-cortical (CSTC) circuits (Graybiel, 2008; Milad and

Rauch, 2012) as well as the involvement of limbic structures

to the aetiology of this disease (Simon et al., 2010, 2013;

Admon et al., 2012; Stern et al., 2012). Symptom provocation

studies commonly use exposure to words or images related to

the symptoms and ask patients to recognize or recall contexts

related to past symptoms (Mataix-Cols et al., 2004; Nakao

et al., 2005; Schienle et al., 2005; Gilbert et al., 2009; Simon

et al., 2010; Baioui et al., 2013). Some studies used mental

imagery and others exposed patients to direct provocation,

using real sensory stimulation (e.g. tactile exposure to triggers

such as contaminated objects). However, these evocation and

provocation studies have been studied separately from the

compulsive avoidance behaviour. In this study we used a

real-time tailored provocation task paired with online behav-

ioural avoidance responses. Using a clearly defined chain of

symptomatic events on a trial-by-trial basis we aimed to in-

vestigate the common neural correlates of symptom gener-

ation and mechanisms leading to the compulsive avoidance

behaviour.

Studies of OCD point towards hyperactive regions impli-

cated in action monitoring and response conflict such as the

ACC (Menzies et al., 2008; Milad and Rauch, 2012) and a

shift from goal-directed to habitual behaviours implicating

cortico-striatal circuitry (Gillan et al., 2011). Deficits in

error monitoring (Melcher et al., 2008; Page et al., 2009;

Rao et al., 2010; Schlosser et al., 2010), response inhibition

(Bannon et al., 2002; Page et al., 2009; Morein-Zamir

et al., 2013), task switching (Chamberlain et al., 2007)

and reversal learning (Chamberlain et al., 2008) indexed

by cognitive tasks such as Stroop, Go/No Go,

Stop-Signal, Reversal Learning Intra/Extradimensional

Shift tasks, have been consistently shown in OCD. This

behavioural inflexibility, which has been associated with

abnormal activity of a subregion likely within the rostral

part of the dorsal ACC and orbitofrontal cortex (Fitzgerald

et al., 2005, 2010; Maltby et al., 2005), may be closely

related with difficulties to quickly shift between goal-dir-

ected and habitual behaviour strategies (Shenhav et al.,

2013). An incongruent or conflicting stimulus context re-

quires inevitably more cognitive monitoring than a congru-

ent one, which can easily be processed automatically,

because no conflict is involved (Shenhav et al., 2013).

The studies by Gillan and colleagues (2011, 2014) suggest-

ing a bias towards habit formation at the expense of goal-

directed performance in patients with OCD seem to pro-

vide good evidence for this duality between controlled and

automatic processes.

The dichotomy between goal-directed and habitual be-

haviours has been extensively studied in rodents

(Dickinson, 1985; Dickinson and Balleine, 1993; Yin

et al., 2006; Balleine et al., 2007; Dias-Ferreira et al.,

2009). According to this dual-system model, different be-

havioural strategies are used to respond to environmental

demands and it is the ability to shift between them that

enables successful decisions (Balleine, 2007). The goal-dir-

ected system encodes actions that are performed to achieve

specific outcomes, whereas the habitual-system drives

action selection based on stimulus-response associations

(Dickinson and Balleine, 1993). The goal-directed system

is vital for responding to permanent changes in the envir-

onment, but it is effortful to sustain its activity because it

demands continuous monitoring of the environment. The

habitual system is more efficient but can lead to behav-

ioural inflexibility in case of over-learned stimulus associ-

ations (Adams, 1982). It has been suggested that rodent

cortico-striatal circuits involving prelimbic cortex (Balleine

and Dickinson, 1998) and dorsomedial (Balleine et al.,

2007) striatum are implicated in goal-directed actions

whereas the dorsolateral striatum (Yin et al., 2006) is

involved in habit formation. Recent studies have high-

lighted the homologies between animal and human physi-

ology of action control (de Wit and Dickinson, 2009;

Tricomi et al., 2009; Balleine and O’Doherty, 2010).

Here we used a novel symptom provocation design focus-

ing on individualized real-time multisensory exposure with

greater ecological validity to provoke compulsive behav-

iours. We measured, on a trial-by-trial basis, patient’s

avoidance responses thus linking the provocation to the

compulsive avoidance behaviour. We compared within

(across neutral and strong conditions) and between subject

(healthy controls versus patients with OCD) provocation at

Novel corticostriatal dichotomy in OCD BRAIN 2015: 138; 798–811 | 799

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/138/3/798/333901 by guest on 04 February 2021



variable levels of intensity, and used baseline control blocks

with silent counting. We then carried out functional con-

nectivity analyses to identify direction of interactions in the

network implicated in impaired response control and habit

formation.

In line with the goal-directed/habitual behaviour dichot-

omy account and with the recent suggestion that compul-

sivity in OCD might arise from excessive avoidance habit

formation that is related to a subjective urge to respond

(Gillan et al., 2014), we hypothesize that OCD would be

associated with a decrease in caudate activity implicated in

goal-directed behaviours and an increase in putaminal ac-

tivity implicated in habitual behaviours. This simple dichot-

omy is well known in the motor and action control

domains in neurological conditions such as Parkinson’s dis-

ease. Hadj-Bouziane et al. (2012) addressed the idea that

goal-directed behaviours are predominantly caudate-de-

pendent whereas habitual responses are primarily puta-

men-dependent, at advanced Parkinson’s disease stages,

where dopamine depletion is greater in the putamen than

in the caudate nucleus. The emergence of habitual re-

sponses was more vulnerable to the disease than the early

phase of learning dominated by goal-directed actions, in

line with the hypothesis. Our symptom provocation para-

digm was designed to capture such imbalances using direct

measures of avoidance responses modelled as compulsive

actions.

Materials and methods

Participants

Fifteen patients with OCD and 15 healthy control subjects
matched for gender, age and years of education [OCD: eight
males/seven females; mean age = 32.3 years, standard deviation
(SD) � 9.02; mean years of education = 13.7, SD � 3.7;
healthy controls: eight males/seven females; mean age = 31.0
years, SD � 8.9; mean years of education = 15.0, SD � 3.4]
participated in this study. Control subjects were recruited
from the community, were unmedicated and had never suf-
fered from a psychiatric illness. Patients with OCD were re-
cruited from the Hospital of University of Coimbra. OCD
diagnoses were established by a psychiatrist and clinical psych-
ologists using the Structured Clinical Interview for the
Diagnosis of DSM IV psychiatric disorders and the Anxiety
Disorders Interview Schedule for DSM-IV (ADIS-IV)
(DiNardo et al., 1994). To assess the severity and characteris-
tics of OCD symptoms, each patient completed the Yale-
Brown Obsessive-Compulsive Scale and the symptom checklist
(Goodman et al., 1989). All patients scored 418 indicating at
least moderate severity (mean score = 26, SD � 6.20).
Depression scores were obtained with the Beck Depression
Inventory (Beck et al., 1961) (mean score = 13.8, SD � 8.7).
Anxiety was measured using the Hamilton Anxiety Rating
Scale (Hamilton, 1959) (mean score = 7.2, SD � 3.51).
Exclusion criteria included the presence of comorbidity with
other Axis I diagnoses, neurological disorders, history of drug,
alcohol addiction and any serious medical condition. Although

five of our patients scored 416 on the Beck Depression
Inventory scale, this was not sufficient, based on the clinical
interview, to establish a diagnosis. Nevertheless, we used this
measure as a covariate in the analysis. All patients had recently
initiated cognitive behavioural therapy, and 14 patients were
on antidepressant and/or anxiolytic medication. A handedness
inventory (Oldfield, 1971) was administered and average lat-
erality quotient was 95. The study was conducted in accord-
ance with the Declaration of Helsinki and was approved by
the Ethics Commissions of the Faculty of Medicine of the
University of Coimbra. Written informed consent was ob-
tained after a detailed explanation of the study and after a
pre-experimental interview to tailor the experimental condi-
tions to each participant.

Symptom provocation task

We used ANOVA between-group and within-group (provoca-
tion condition) analyses including interaction effects. The
within-group repeated-measures crossover design is considered
an optimal approach to assess the effects of an intervention
within the same population (Hedayat and Yang, 2005) (e.g.
symptom provocation versus neutral provocation). We used
individually tailored stimulation, which has been shown to
be effective for symptom provocation (Baioui et al., 2013).
For patients, the choice of stimuli resulted from a pre-experi-
mental interview between the patient, two members of the
experimental team (P.B. and M.C.B.), a clinician (J.R.) and a
psychotherapist (F.P.), to identify the maximum degree of nat-
ural symptom provocation acceptable to each patient. Thus,
the online stimulation was individually tailored both in the
type of stimuli and the degree of stimulation. For healthy con-
trols, the stimuli included the most salient set of stimuli of the
patients’ database (also likely to perturb healthy subjects due
to their generic intrusive nature), and new ones designed to
cause similar intrusive thoughts (such as contamination fears).
This mixed strategy was preferred because some stimuli iden-
tified to trigger symptoms in patients would not have any
impact in healthy controls.

The experiment consisted of 30-s blocks of provocation of
variable intensity, then 30 s of a silent counting baseline fol-
lowed by a 6-s intertrial interval for the control motor re-
sponse (Fig. 1C). This sequence was repeated 12 times per
session, for a total of four sessions in each participant. The
provocation stimuli were delivered at three intensity levels
(neutral, intermediate or strong) in pseudo-randomized order.
The pseudo-randomization was based on predefined session
lists prescribing an arbitrary order of stimulation by balanced
perturbation of the three intensity levels (four neutral, four
intermediate and four strong provocation blocks) with the re-
striction that no two adjacent stimulation blocks offered the
same intensity level. Thus, a total of 48 blocks of provocation
were delivered to each participant, 16 at each intensity level.
Within a session, the stimuli at each intensity level were held
constant, but between the four sessions, four different stimuli
per intensity level were used to avoid habituation over
sessions.

The silent counting task baseline between the provocation
blocks was intended to allow the patients to shift their focus
of attention away from the previous provocation stimuli. By
engaging in a neutral task, patients were distracted from any
ruminative or obsessive thoughts triggered by previous stimuli.
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In the counting task, participants observed a random sequence
of two numbers (1 and 2) over a 30-s period and were in-
structed to count the number of times the number 1 appeared.
Subjects then reported the answer from one of two options
presented on the screen during the 6-s intertrial interval.

During the provocation blocks, participants were instructed
to spontaneously signal if they were no longer able to tolerate
the provocation stimulus. Using a single hand gesture, partici-
pants would signal to the experimenter to cease the exposure.
The provocation would then cease for a 3-s period of relief, as
described below, after which exposure would return. When the
exposure continued, participants were allowed to reject it
again. Thus, depending on the number and duration of rejec-
tions, the number of provocation events presented within the
30-s provocation blocks would vary between sessions and sub-
jects (for details, see the ‘Results’ section). The timing of these
rejection events was synchronously acquired using a MRI com-
patible video recording system. We explicitly discussed with
the participant before the study to use this hand gesture only
when they were no longer able to tolerate the provocation.
As expected, rejection events did not occur in healthy controls
and in patients during neutral blocks. They occurred mainly in
patients during the strong provocation blocks. In patients,
some of the provocation events in the intermediate condition

had to be relabelled after the exposure. This happened occa-
sionally when a stimulus was rejected during a planned inter-
mediate provocation block. In the subsequent analyses, the
stimulation in that block was labelled as strong to reflect the
real experience of the patient during the provocation. No
strong or neutral blocks were relabelled. Rejection events
therefore indicated that symptom provocation was effective,
and the number of rejections inside a provocation block
indexed how effective the provocation was perceived by the
patient. Given that the number of events and their impact on
the neural response is taken into account in the statistical
model of the event-related analysis, this added additional in-
formation to the block design analysis.

In healthy controls, the three intensity levels were defined
based on the scores collected from a stimulus rating scale.

There were two types of tailored provocation stimuli: tactile
provocation near bore and visual provocation online (Fig. 1A).
In the near-bore provocation, for example, a patient with bio-
logical contamination obsession and washing compulsions
would touch with their left hand three different provocation
stimuli of varying provocation intensity. During these provo-
cations, the patient experienced live provocation with their left
hand while visual stimuli were presented to indicate the level
of provocation while in the scanner. The live provocation for

Figure 1 Experimental paradigm. (A) Examples of the two different modalities used for the symptom provocation task. (1) Online video-

streaming of scenarios from the patients’ homes (remote provocation). Strong blocks were live videos capturing the experimenter disorganizing

the patients’ homes while neutral videos showed the rooms as the patients had left them; (2) The tactile modality in which the experimenter

directly delivered the provoking stimuli to the patient’s hand. In this case, the patient would see an image of a glove that she would touch. The

visual presentation was intended to inform the patient about the type of stimuli delivered to the hand. (B) Contents of the stimulation block. Both

modalities used a video-recording system to record and timestamp the exposure, decision to reject, rejection and relief events within the

stimulation blocks. (C) Task timing. The experiment consisted of 30 s of provocation blocks of variable intensity (SB = stimulation blocks), 30 s of a

baseline-counting task (DB = distractive baseline) and 6 s of response plus baseline block (R + B = response plus baseline). This sequence was

repeated 12 times per run, for a total of four runs in each participant.
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this patient was as follows: neutral: the patient touched clean
and untouched gloves; intermediate: the patient touched
gloves, which had been previously categorized by him/her as
potentially contaminated because they had been used by
known individuals (e.g. the experimenter or the psychotherap-
ist); strong: the patient touched gloves that they believed to be
biologically contaminated because they had been used by in-
dividuals who were ill or by unknown individuals in high risk
jobs (e.g. dentists, nurses). The stimuli were placed in the par-
ticipant’s hand by the experimenter (P.B.) during the scanning
session. A rejection hand gesture was accommodated by re-
moval of the glove from the participant’s hand followed by
the 3-s relief period and concomitant disinfecting of the hand
with an antibacterial wipe.

In other participants, to achieve a realistic and efficient
provocation, we streamed online videos in real-time from the
patients’ homes. For example, for a patient with obsessions for
symmetry, organization and cleanliness, they watched real-time
videos from within their homes in which the experimenter
(P.B.) would disorganize and litter the home. For this proced-
ure, custom Matlab software was used to capture online foot-
age using Internet and synchronous Skype connection. Such
real-time video exposure also allowed online rejection requests.
Rejection hand gestures followed the same design as near bore
provocation. For details about the type of provocation used
for each patient, see Supplementary Table 1. Healthy subjects
underwent the tactile provocation near bore type, because it
was found to be most effective in this group.

The visual stimulation consisted of natural scenes of similar
complexity for all subjects. Visual provocation stimuli always
contained a scene with at most one provoking agent. All visual
stimuli were presented at high contrast levels and had identical
durations.

In summary, participants were exposed to individualized
provocation stimuli of differing intensity (neutral, intermediate
and strong) in a mixed block-event related design in which
individual rejection events were video-recorded and time-
stamped. Rejection events occurred when participants could
no longer tolerate the provocation and modelled the compul-
sive or avoidance behavioural response. This allowed the ana-
lysis of the provocation stimuli, the decision to reject, the
rejection event and the relief period. This design involved in-
tensive patient interviewing and preparation, and it required
strict control for recording artefacts caused by movement
inside the scanner.

Data acquisition

Visual stimuli were presented using Presentation software
(Neurobehavioural Systems) and natural tactile stimuli were
used with simultaneous video recording. Custom Matlab soft-
ware was used for synchronization with remote and local
video recording.

Participants were scanned in a 3 T Siemens Magnetom
TimTrio scanner, at the Portuguese Brain Imaging Network,
using a 12-channel head coil. For each participant, and be-
fore functional runs, 160 anatomical slices were acquired
with the following parameters: one T1-weighted MPRAGE se-
quence, repetition time = 2.3 s, echo time = 2.98 ms, voxel
size = 1 � 1 � 1 mm3, flip angle = 9�, field of view = 256
� 256. To minimize the motion of the subject’s head during
the study, foam padding was used. Functional MRI data were

acquired using blood oxygen level-dependent contrast whole
brain echo planar imaging (EPI). We used two slightly different
protocols: (i) n = 5, repetition time = 3 s, echo time = 39 ms,
voxel size = 2 � 2 � 3 mm3, 3-mm thick slices with no inter-
slice gap, with an in-plane matrix of 128 � 128 voxels, flip
angle = 90�, field of view = 256 � 256, 39 interleaved axial
slices, 295/run; (ii) n = 10, repetition time = 2 s, echo
time = 39 ms, voxel size = 3 � 3 � 4 mm3, 4-mm thick slices
with no interslice gap, with an in-plane matrix of 84 � 84
voxels, flip angle = 90�, field of view = 256 � 256, 29 inter-
leaved axial slices per volume, in a total of 420 volumes per
run. The acquisition protocol was changed to improve con-
nectivity analyses, for which a lower repetition time is
advantageous.

Image processing and data analysis

Analyses were carried out using BrainVoyager QX 2.6 (Brain
Innovation). Preprocessing included intensity inhomogeneity
correction, slice-scan-time correction, temporal high-pass filter-
ing to remove low frequency drifts, realignment, and rigid-
body transformation of data to the first image to correct for
motion. Functional data were coregistered to anatomical data
and subsequently transformed into Talairach space. A spatial
smoothing using a Gaussian filter (full-width at half-maximum
4 mm) was performed. Four sessions were excluded from fur-
ther analysis because of motion artefacts.

Statistical analyses were performed on individual and group
data using a random effects general linear model to implement
a repeated-measures ANOVA. The design matrix was based
on regressors separately created for each type of blocked con-
ditions (baseline and neutral, intermediate and strong provo-
cation) and event onset times derived from video recordings
from each scan session. The time-stamped video-recorded
events were rejection onset time, rejection duration and relief
periods. Additionally, decision to reject was defined as an
event 1 s before initiation of the hand gesture signalling rejec-
tion. In this way, block onset times were predetermined by the
experimental design (Fig. 1C), whereas event onset times were
based on the behavioural response of the participants during
the stimulation (Fig. 1B). To account for haemodynamic delay
and dispersion, each of the predictors was convolved with a
double-gamma haemodynamic response function as imple-
mented in BrainVoyager. Statistical maps were corrected for
multiple comparisons using false discovery rate correction and
the cluster threshold estimator plugin for BrainVoyager QX
(Forman et al., 1995). Each map was first thresholded at
P5 0.05 and then submitted to cluster threshold estimation
based on a Monte Carlo simulation with 1000 iterations,
which yields a value of P50.05 corrected for multiple
comparisons.

Time course analysis was performed with a focus on the
putamen because of its surprising results at the event level,
in patients. We first extracted the time varying blood oxygen
level-dependent response for left and right putamen based on
the clusters found on the statistical general linear model maps
(Contrast: decision to reject4 rejection events). To estimate
the underlying neuronal signal, we deconvolved the haemo-
dynamic response from the blood oxygen level-dependent
signal using the PPI module in SPM8. This procedure also
removes confounds such as the DC component. We then char-
acterized the individual event-related response as the average
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of sequences of estimated neuronal signal time-locked to the
rejection event. The plots show the average neuronal sig-
nal relative to rejection normalized across patients � SEM
(Fig. 4B).

Finally, after localizing the brain regions directly involved in
OCD symptomatology, we ran an effective connectivity ana-
lysis by applying the Granger Causality Mapping method
(Roebroeck et al., 2005). The purpose was to get information
about the functional interactions between those brain areas, as
well as information about the direction of these interactions to
infer their causal relationship. As Granger Causality Mapping
requires the specification of seed regions, after which measures
of effective connectivity for all voxels in the brain are calcu-
lated in reference to the time course in the seeded clusters,
several seed regions were individually created. These seeds
were spheres of 3 mm centred at the peaks of activation clus-
ters obtained from the general linear model analysis. The seed
regions were selected based on their direct involvement in
OCD symptomatology observed consistently in our block
and event-related analyses, and consistent with previous stu-
dies in OCD reporting abnormal activation in these regions
(Del Casale et al., 2011; Milad and Rauch, 2012). The result-
ing seed regions were: dorsal ACC [Brodmann area (BA) 24],
ventromedial PFC/orbitofrontal cortex, amygdala, caudate
head, and putamen. Random effect Granger Causality Maps
were first calculated for each individual patient. Statistical
thresholds for these maps were computed using a bootstrap
method (Roebroeck et al., 2005) with corrections for multiple
comparisons based on false discovery rate (q5 0.05)
(Genovese et al., 2002). A mean group Granger Causality
Mapping was then created, using t-tests, yielding effective con-
nectivity information to the seed regions throughout the entire
brain. The obtained granger causality maps pointed up which
areas in the brain are influenced by activity in each seed and
which areas whose activity influences the activation in the
specified seed region.

Results
Patients with OCD performed rejection events during the

strong provocation blocks. As expected, the neutral blocks

did not evoke any rejection response confirming their role

as control conditions, for the within-subject design.

Furthermore, healthy control subjects did not yield rejec-

tion events.

The presence of rejection events in patients allowed us to

divide the 30 s strong rejection blocks into exposure, rejec-

tion events and relief periods. The exposure event was fur-

ther subdivided by separately assessing the 1-s duration

before the rejection event, modelling the decision to

reject. The mean (SD) number of rejection events (sub-

mitted to random effects analysis) was 25.33 (6.20) and

their mean (SD) duration was 2.14 s (1.64). Their coeffi-

cient of variation of 0.24 implies low variability in symp-

tom provocation across subjects. It was expected that some

subjects would exhibit a higher number of rejection epi-

sodes than others, but our patients showed a sufficient

number of rejections for statistical analysis, and across-

subject variability was useful for random-effects analysis.

The mean (SD) duration of the strong exposure conditions

(submitted to the event-related analysis) was 9.56 s (5.83).

Brain activity was modelled both as a function of strong

‘blocks’ containing symptomatic provocation as well as a

function of the real-time presence of effective symptom

evoking stimuli (‘event’-related analysis) (see ‘Materials

and methods’ section). Both approaches yielded converging

results.

We first conducted a random effects block analysis com-

paring patients with OCD and healthy controls. In the

main group effect (irrespective of condition), patients with

OCD showed greater activity in bilateral caudate, right pu-

tamen, right thalamus and right sensory-motor areas (S1/

M1) and lower activity in left parahippocampal gyrus and

hippocampus, cerebellum and parietal areas including pre-

cuneus as compared to healthy controls. In the main provo-

cation effect, strong provocation as compared to neutral

provocation was associated with greater activation in bilat-

eral anterior insula, presupplementary motor area, ACC,

putamen, thalamus, substantia nigra and left subthalamic

nucleus. It was also associated with lower activation in the

bilateral ventromedial PFC, including orbitofrontal cortex,

pregenual cingulate cortex, dorsolateral PFC, posterior cin-

gulate cortex, left parahippocampal gyrus and hippocam-

pus. A significant Group � Provocation interaction was

observed: patients with OCD had enhanced bilateral puta-

men, globus pallidus, thalamus, caudal subregion of dorsal

cingulate cortex (dorsal cingulate cortex in BA 24), insula,

subthalamic nucleus, substantia nigra and presupplemen-

tary motor area and lower activity in bilateral ventromedial

PFC, posterior cingulate and left dorsal caudate for the

strong versus neutral contrast relative to healthy controls

(Fig. 2 and Supplementary Table 2).

We then performed an event-related general linear model

analysis in the OCD group focusing on the strong blocks

separately modelling the following: (i) exposure events

(excluding decision, rejection and relief events); (ii) the de-

cision to reject (modelled as 1 s before the rejection event);

(iii) rejection events modelling the avoidance behavioural

response; and (iv) the relief periods. These separate events

are represented graphically in Fig. 1B. Strong expos-

ure4neutral condition showed a pattern similar to the

one observed with the interaction block analysis: deactiva-

tion of the ventromedial PFC, pregenual ACC, dorsolateral

PFC and the dorsal caudate, and hyperactivation of the

caudal subregion of dorsal cingulate cortex (in BA 24),

thalamus, substantia nigra and presupplementary motor

area. In other words this event-related analysis replicated

into a large extent the OCD-specific pattern found in the

general linear model block analysis. In contrast, the bilat-

eral putamen, subthalamic nucleus, amygdala and insula

activity seen in the general linear model analysis above ap-

peared to be involved only in the decision to rejection, re-

jection and relief phases. During both the decision to reject

and rejection events, patients showed hyperactivation of the

caudal (near to presupplementary motor area) part of

dorsal cingulate cortex, amygdala, subthalamic nucleus,
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thalamus, insula, putamen, globus pallidus and right caud-

ate whereas the ventromedial PFC remained deactivated

(decision to reject + reject events4 neutral condition) (all

P50.05 corrected) (Fig. 3). When these phases were con-

sidered separately, bilateral putaminal hyperactivation was

only found in the decision to reject phase (Fig. 4, left panel

A), deactivating immediately after the stimulus withdrawal

(contrast: decision to reject4 reject event) (P5 0.05 cor-

rected) (Fig. 4A). During relief periods (relief4neutral),

patients showed activation in bilateral amygdala and de-

activation in bilateral caudate and putamen (all P50.05

corrected) (Fig. 4C).

There were no correlations between the imaging results

and the Beck Depression Inventory and anxiety scores, sug-

gesting that these covariates were not explaining our

results.

Considering that OCD is a clinically heterogeneous dis-

order, characterized by different symptom dimensions that

Figure 3 Random effects analysis at the event level in the OCD patient group. Hyperactivation of caudal dorsal cingulate cortex,

amygdala, insula, putamen, globus pallidus and right caudate and deactivation of ventromedial prefrontal cortex. Peak deactivation coordinates

(x,y,z): (SAG) left caudal dorsal cingulate cortex, BA 24, (�10,19,30), right caudal dorsal cingulate cortex, BA 24, (2,7,30); (TRA) right amygdala

(23,�8,�9), left amygdala (�22,�3,�10), right ventromedial PFC/orbitofrontal cortex (8,52,�6), left ventromedial PFC/orbitofrontal cortex

(�7,46,�6): (COR) left putamen (�19,�2,6), right putamen (23,1,2), right caudate (17,1,18), right palidum (12,1,6), left palidum (�16,�2,9),

left insula (�34,19,9) right insula (31,13,18). Contrast: decision to reject + reject events4 neutral condition, P5 0.05, corrected for multiple

comparisons using cluster threshold correction, minimum cluster size = 104 voxels. COR = coronal; SAG = sagittal; RFX = random effects;

TRA = transverse; A = anterior; P = posterior; L = left; R = right.

Figure 2 Between-group random effects general linear model analysis. Group � Provocation interaction for the strong4 neutral

provocation contrast. OCD patients showed greater bilateral putamen, globus pallidus, subthalamic nucleus, thalamus, dorsal ACC, insula, pre-

supplementary motor area and substantia nigra relative to healthy controls and lower activity in ventromedial PFC, posterior cingulate and left

dorsal caudate (P5 0.05, corrected for multiple comparisons using cluster threshold correction, minimum cluster size = 35 voxels). See

Supplementary Table 2 for details regarding peak voxel coordinates, cluster size, t and P-values for random-effects analysis. COR = coronal;

SAG = sagittal; RFX = random effects; TRA = transverse.
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may have partially distinct neural correlates (Mataix-Cols

et al., 2007) we followed the factor analytic approach and

methodology based on the Yale-Brown Obsessive-

Compulsive Scale checklist scores used by Katerberg et al.

(2010) to perform a multiple regression analysis to predict

blood oxygen level-dependent responses in the regions of

interest observed in patients. We found that putaminal

hyperactivation was predicted by the contamination/clean-

ing factor (left putamen: P = 0.010; right putamen:

P = 0.023), with a positive correlation (Pearson r = 0.68,

P = 0.008 and Pearson r = 0.54, P = 0.036, respectively);

right caudate head deactivation was predicted by sym-

metry/hoarding factor (P = 0.03), with a trend for negative

correlation (Pearson r = �0.45, P = 0.06); and left insula

hyperactivation was predicted by almost all factors (con-

tamination/cleaning, P = 0.011; doubts, P = 0.012; supersti-

tions/rituals, P = 0.008; and symmetry/hoarding P = 0.005).

Our random effects analysis highlighted hyperactivity

and deactivations of specific networks in response to

strong exposure in the OCD group: (i) deactivation of

ventromedial/orbitofrontal, pregenual frontal cortex and

caudate structures; and (ii) hyperactivation of putamen,

amygdala, insula, subthalamic nucleus and dorsal caudal

cingulate (BA 24) and their neighbouring presupplementary

motor area structures. Given the identification of this di-

chotomous circuitry, we ran a Granger causality analysis

(Roebroeck et al., 2005). We selected seed regions based on

the regions identified in the random-effects analysis to ana-

lyse a data-driven search for causal network activation:

caudate head, ventromedial PFC/orbitofrontal cortex (deac-

tivated areas) putamen, amygdala and the posterior sub-

region of dorsal ACC (BA 24) (hyperactivated areas).

The effective connectivity analysis identified two main

structures causally influencing the circuitry shown in our

provocation paradigm: the ventromedial PFC causally influ-

enced caudate head, amygdala and putamen and the puta-

men causally influenced the caudal part of the ACC, that is

near the presupplementary motor area (Fig. 5A).

Figure 4 Analyses at the event level in the OCD patient group. (A) Left: Hyperactivation of bilateral putamen just before rejection

events in the OCD patient group. Contrast: decision to reject4 reject events, P5 0.05, corrected for multiple comparisons using cluster

threshold correction, minimum cluster size = 17 voxels. Peak activation coordinates (x,y,z): left putamen (�19,4,0), right putamen (20,4,3). Right:

Hypoactivation of bilateral putamen during stimulus withdrawal, P5 0.05, corrected for multiple comparisons using cluster threshold correction,

minimum cluster size = 8 voxels. Peak activation coordinates: left putamen (�19,4,0), right putamen (20,4,3). (B) Estimated neuronal signal from

the putamen (left and right) obtained by haemodynamic deconvolution of the blood oxygen level-dependent response. Zero represents the timing

in which the rejection event started. (C) Activation of amygdala during relief periods. Peak activation coordinates: left amygdala (�25,1,�12) and

right amygdala (17,�5,�9). Deactivation in bilateral caudate and putamen is not shown in this slice. Contrast: relief events4 baseline, FFX

general linear model, P5 0.05 FDR corrected, minimum cluster size = 103 voxels.
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Discussion
In this study we focused on the neural correlates of symp-

tom generation in OCD, by using a novel symptom provo-

cation stimulation task in which subjects were exposed to

individually tailored stimuli in real-time and further paired

with a measure of the avoidance response. We presumed

this avoidance or rejection responses modelled the compul-

sive behaviour and that our task design would allow us to

examine their neural correlates as well as their preceding

and subsequent phases. Our study design thus allowed

the dissociation of neural correlates underlying phases of

exposure, the decision to perform the compulsive action,

rejection and relief.

We identified a dichotomous pattern of activation/

deactivation during exposure to symptom provocation spe-

cifically in patients with OCD, which was not observed in

healthy controls: (i) decreased activity in ventromedial and

dorsolateral PFC and dorsal caudate; and (ii) hyperactivity

of bilateral putamen, caudal cingulate cortex (BA24),

presupplementary motor area and supplementary motor

area, subthalamic nucleus and limbic regions such as amyg-

dala and insular cortex. Hyperactivity of bilateral putamen

in particular was localized to the decision phase before a

rejection event. Effective connectivity analysis using

Granger Causality Modelling identified two main structures

causally influencing this circuitry shown in OCD symptom

provocation: the ventromedial PFC and the putamen. The

former may underlie the integration of affective meaning

Figure 5 Connectivity analysis and causal model. (A) Connectivity analysis. Granger causality analysis shows that the head of the caudate

(seed region from random effects general linear model analysis) is causally influenced by ventromedial prefrontal cortex (vmPFC) and that the

caudal dorsal cingulate cortex (seed region for analysis) is influenced by the putamen. Putamen and amygdala seed region analyses are not shown

in this figure but are referred to in the Results section. (B) Causal model inspired by integrating functional MRI and causality results: prefrontal

structures (ventromedial prefrontal cortex) gate the modulation of basal ganglia (caudate and putamen) and limbic areas (amygdala). Putamen, by

turn, a structure involved in repetitive and habitual behaviour, gates the activation of structures mediating action monitoring and repeated action

patterns such as the caudal dorsal cingulate cortex and the presupplementary motor area (not shown). GCM = Granger Causality Modelling;

RFX = random effects.
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and behaviour regulation, whereas the latter may be critic-

ally involved in habit formation and repetitive response

selection.

This dichotomous circuitry contrasts with patterns of

fronto-striato-limbic hyperactivation shown in previous

OCD studies, which is likely related to differences in task

nature and design, leading to distinct functional interpret-

ation. For instance, several studies in OCD show increased

activity in frontal areas using different behavioural tasks;

however, these studies focus on testing different cognitive

processes and tasks rather that symptom generation

(Fitzgerald et al., 2005; Maltby et al., 2005; Chamberlain

et al., 2008). Moreover, some symptom evocation and

provocation studies asked patients to imagine, recognize

or recall contexts related to past symptoms using exposure

to images or words (Mataix-Cols et al., 2004; Nakao et al.,

2005; Schienle et al., 2005; Gilbert et al., 2009; Simon

et al., 2010; Baioui et al., 2013) or using real sensory

stimulation (physical objects) (McGuire et al., 1994;

Rauch et al., 1994; Breiter et al., 1996; Adler et al.,
2000; Hendler et al., 2003). However, these previous stu-

dies did not include subject-driven feedback, and were not

designed to address the link between symptom provocation

and compulsive behaviour. This novel feature used in our

task may be one of the main reasons for the identification

of differential involvement of frontal areas known to be

related to executive control and behaviour regulation

(Hare et al., 2009; Roy et al., 2012). Another possible

reason may be related to differences in the efficacy of the

symptom provocation across the studies. A study in chil-

dren (Gilbert et al., 2009) showed a deactivation pattern

similar to that observed in our study although this study

did not assess efficacy of symptom provocation or specific-

ally test avoidance events at the event level.

Our results are consistent with the account that

ventromedial PFC gates activity of regions involved in

goal-oriented behaviour such as the caudate nucleus and

interconnected regions such as the dorsolateral PFC.

Additionally, activation of the putamen, a critical structure

in repetitive, habitual behaviour, leads in turn to overacti-

vation of other structures such as the caudal part of dorsal

ACC known to be involved in conflict monitoring and re-

sponse selection (BA 24) and presupplementary motor area

(Graybiel, 2008; Robbins et al., 2012) (Fig. 5B). These

latter regions may mediate repeated-action patterns and

action control under conflict. Our findings thus dovetail

with animal models of compulsivity (Dias-Ferreira et al.,

2009; Gremel and Costa, 2013) and are corroborated by

human structural connectivity data, suggesting a duality

that predicts differences in the balance between habitual

and goal-directed action control (de Wit et al., 2012;

Meunier et al., 2012). This duality is also present in dis-

eases with impaired action control such as Parkinson’s dis-

ease, with differential effects on goal-directed and habitual

processes (Hadj-Bouziane et al., 2012).

The ventromedial PFC is suggested to be a key structure

in the integration of value-guided stimulation and in

mediating affective behavioural and physiological responses

(Roy et al., 2012). Alternatively, the ventromedial PFC may

also be related to impairments in conditioned fear extinc-

tion. Milad et al. (2013) have recently shown that patients

with OCD show deficits in conditioned fear extinction, par-

ticularly in recalling extinction memory, an effect asso-

ciated with reduced activation in ventromedial PFC

(Milad et al., 2013). Lesions in the ventromedial PFC in

rodents are also associated with increased recovery of fear

a day after extinction training, demonstrating the role of

the ventromedial PFC in consolidation of extinction learn-

ing and consequent inhibition of inappropriate behaviours

(Quirk et al., 2000). Recall of a fearful memory and con-

sequent ventromedial PFC deactivation triggered by the

provocation stimuli may also play a role in the provocation

aspect of our study. Thus, deficits in affective integration of

stimuli that trigger OCD-related fears, which in turn result

in failure to activate the ventromedial PFC/orbitofrontal

cortex and consequent impairment of activity in the net-

work involved in goal-directed behaviours shifting instead

to salient stimuli, might induce pathological habitual

behaviours.

We showed an important functional role for the putamen

in OCD with greater bilateral putaminal hyperactivation

during the decision phase, in the course of stimulus expos-

ure, before the rejection event (Fig. 3). Our findings are

consistent with a model in which the provocation stimulus

is encoded as a potential threat or activation of a fearful

memory via a ventromedial PFC-putamen-caudal ACC and

presupplementary motor area network involved in repeti-

tive behaviours. With sufficient exposure, the urge for the

compulsive avoidance behaviour is then mediated via puta-

minal activation, which biases the OCD cognitive system

towards the potential threat stimuli, activating the habitual-

system and producing automatic responses. Previous stu-

dies demonstrated dorsal ACC involvement in conflict

monitoring (Shackman et al., 2011). The dorsal ACC is a

wide structure containing several areas and the subdivisions

that seem to be hyperactive in our paradigm are related to

response selection and conflict monitoring. Accordingly, a

notable meta-analysis that performed a connectivity-based

parcellation of the human cingulate cortex, focusing on its

relations to functional specialization, suggested that a more

anterior part of the dorsal ACC (anterior cingulate sulcus

and paracingulate cortex) monitors action errors and con-

flict whereas a more posterior zone underlies response se-

lection (Beckmann et al., 2009). We found hyperactivity in

mid-cingulate and caudal dorsal cingulate regions that me-

diate both cognitive components in conflict monitoring and

response selection components. Two theories predominate

about the overall function of this region of cortex: ‘conflict

monitoring’ and ‘attention/selection for action’ (Botvinick

et al., 1999). A role for cognitive evaluation seems to be

relevant. This is also consistent with the activation of the

presupplementary motor area, which has a more cognitive

function than the supplementary motor area proper and is

involved in monitoring of action switching (Picard and
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Strick, 2001). This view is supported by the results of

Pardo et al. (1990), who found activation in the presupple-

mentary motor area during the Stroop conflict task

(Pardo et al., 1990). Overall presupplementary motor

area function is more closely related to maintenance of

relevant sensory information than response selection or

production.

As expected, we observed increased activity in paralimbic

regions such as the amygdala (in particular during post-

rejection appraisal) and insular cortex, similar to other stu-

dies on symptom provocation and fear (Shapira et al.,
2003; Schienle et al., 2005; Simon et al., 2010, 2013;

Admon et al., 2012; Stern et al., 2012). These structures

have consistently been associated with emotional process-

ing, especially in detecting and appraising potential threats

(amygdala) (Fiddick, 2011) and pain perception (insula)

(Apkarian et al., 2005; Mutschler et al., 2012).

Interestingly, we found hyperactivity in subthalamic nu-

cleus and substantia nigra during exposure to strong provo-

cation in patients as compared to healthy controls.

Importantly, the subthalamic nucleus has been successfully

targeted for neurosurgical treatment with deep brain stimu-

lation both in Parkinson’s disease (Limousin et al., 1995)

and OCD (Mallet et al., 2008).

There were some limitations to this study. First, the ma-

jority of our patients with OCD were taking selective ser-

otonin reuptake inhibitors and/or anxiolytic medication,

which might potentially influence the neuronal and behav-

ioural responses. However, as we used a within-patient re-

peated-measures design with each subject acting as their

own control, in addition to the between-group analyses,

we could control for confounding variables and within-sub-

ject variability (Hedayat and Yang, 2005). Second, our

study sample size did not allow for splitting into subgroups

to investigate a neuronal differentiation of OCD subtypes.

However, we performed a multiple regression analysis with

the five mean dimensional scores resulting from the Yale-

Brown Obsessive-Compulsive Scale checklist to predict pa-

tients’ blood oxygen level-dependent responses in regions of

interest. This analysis provided additional evidence for cor-

ticostriatal dissociation, with putaminal hyperactivation

being better predicted by the contamination/cleaning

factor. Follow-up investigations further aiming to differen-

tiate neuronal indices symptomatically may therefore be

interesting to pursue in the future and should also address

the direct influence of comorbidities in different OCD

subtypes.

The existence of a dichotomous pattern of deactivation/

hyperactivation may provide evidence for a novel func-

tional parcellation of the neural circuitry involved in

OCD at the event level and possibly other neuropsychiatric

disorders of impulse control and/or compulsive behaviour.

This is consistent with behavioural and anatomical data

from an animal model (Dias-Ferreira et al., 2009; Gremel

and Costa, 2013) and human connectivity findings (de Wit

et al., 2012; Meunier et al., 2012). Our results also put in a

new context previous studies that failed to show activation

of ventromedial PFC/medial orbitofrontal cortex in OCD,

albeit in tasks where nature is not directly related to symp-

tom generation (Rauch et al., 2007). Our results favour the

perspective that this dichotomy may represent a generic

phenomenon, supporting the existence of a circuit under-

lying habitual behaviour that is overactivated in impulse

control disorders. Dias-Ferreira et al. (2009) have proposed

that stress can cause compulsive behaviours in the rat

due to abnormal cortico-striatal activation, and Gremel

and Costa (2013) have shown that inhibition of orbito-

frontal cortex disrupts goal-directed actions, whereas

activation of this structure specifically increases goal-

directed performance. These results are compatible with

our findings.

Our results also support the recent suggestion that dys-

function in the goal-directed response system and increased

reliance on the habitual-response system are fundamental

mechanisms that may underlie the urge to perform compul-

sive acts (Gillan et al., 2011). The ventromedial PFC-

putaminal-dorsal cingulate cortex (BA 24) pathway points

towards abnormal affective integration of stimuli, conflict

monitoring and decision-making, favouring repetitive ac-

tions based on increased error signalling (Botvinick et al.,

2004; Robinson et al., 2013). Cingulotomy has been shown

to significantly reduce OCD (Dougherty et al., 2002;

Richter et al., 2008) in line with this model. Finally, our

findings corroborate results using transcranial magnetic

stimulation on frontal regions and supplementary motor

area and deep brain stimulation focusing on the caudate

nucleus (Bourne et al., 2012; Jaafari et al., 2012). They are

also in agreement with the view that exogenous stimulation

may restore behavioural control from the striatum back to

PFC regions, thereby reversing the state of pathological im-

balance (Mian et al., 2010).

Taken together, our findings may inform the develop-

ment of therapeutic interventions, for instance using tran-

scranial magnetic stimulation, aiming to target regions

specifically involved in action control or repetitive behav-

iour in order to enhance or downregulate the brain activity

that specifically underlies the experienced symptoms.
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