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Resumo

Transferência de estilo com redes neuronais é a versão mais recente do ramo de interpre-

tações artísticas baseadas em imagens. Historicamente, algoritmos de estilização para inter-

pretações não-realistas foram desenvolvidos especificamente em torno de certas primitivas.

Por exemplo, uma interpretação baseada em pinceladas colocava pinceladas virtuais numa

imagem, mas era desenvolvida cuidadosamente para um estilo particular de pincelada e

revelava-se incapaz de simular um estilo arbitrário. Esta limitação inerente de flexibilidade,

estilo e diversidade que alguns algoritmos de interpretações artísticas baseadas em imagens

tinham era equilibrada pela sua capacidade de representar fielmente os estilos artísticos para

os quais eram criados. A procura por novos algoritmos que respondessem a estas limitações

resulta no aparecimento da transferência de estilo com redes neuronais. A introdução de

redes neuronais convolucionais causou uma mudança profunda nesta velha área de investi-

gação, e atraiu a atenção de círculos académicos e industriais.

Esta dissertação tem como objectivo ultrapassar as limitações computacionais do algo-

ritmo clássico de transferência de estilo treinando uma rede geradora para realizar a mesma

tarefa centenas de vezes mais depressa. A continuação lógica de uma transferência de estilo

mais rápida, que é a transferência de estilo em vídeo, é um tópico que será explorado nesta

dissertação devido às suas variadas aplicações em cenários de realidade aumentada e de re-

alidade virtual, e na indústria de animação. Para solucionar o problema de processamento

de vídeo com redes neuronais, duas alternativas são consideradas: utilizar métodos do ramo

de visão por computador para guiar o treino da rede, ou alterar a arquitectura da rede para

aferir informação temporal e espacial ao mesmo tempo.

Palavras-Chave: Redes neuronais convolucionais, VGG, Transferência de es-

tilo com redes neuronais, Rede Convolucional LSTM, Processamento de Vídeo
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Abstract

Neural style transfer is the most recent facet of image-based artistic rendering. Historically,

stylization algorithms for non-photorealistic rendering were designed specifically around cer-

tain primitives. For example, stroke based rendering placed virtual strokes on an image, but

was carefully designed for only one particular style of stroke and not capable of simulating

an arbitrary style. This inherent limitation on flexibility, style and diversity some IB-AR al-

gorithms had was balanced by their capability of faithfully depicting those certain prescribed

styles. The demand for novel algorithms to address these limitations gives birth to the field

of NST. The introduction of convolutional neural networks caused a paradigm shift in this

long standing area of research, and attracted the attention of both academic and industrial

circles.

This dissertation has the goal of enabling classical neural style transfer to overcome

its computational limitations by training a generative network to perform the same task

hundreds of times faster. The logical continuation of faster neural style transfer, video style

transfer, is a topic that will be explored due to its many possible applications in augmented

reality and virtual reality scenarios, and in the animation industry. To solve the task of

video processing with neural networks, two alternatives are considered: using computer

vision methods to guide a network’s training, or changing a networks architecture to take

into account spatial and temporal information at the same time.

Keywords: Convolutional Neural Networks, VGG, Neural Style Transfer,

Convolutional LSTM network, Video Processing
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1 Introduction

Since immemorial times, artistic expression has been a pivotal aspect of mankind’s cultural

life. Paintings, in particular, are the expression of ideas and emotions by way of a two

dimensional visual language with certain aesthetic qualities. Shapes, lines, colours, tones

and textures are some of the constituent parts of this language, and each are applied to

a canvas in a precise manner to produce an harmonious composition of volume, space,

movement and light. Paintings have always had a symbiotic relationship with society’s

paradigm shifts, mirroring changes brought on by technological advances or by emerging

schools of thought and new cultural sensibilities. Therefore, it can be logically concluded

that artificial intelligent systems, recent targets of much attention and publicity both in

academic and in industrial circles, are seen as somewhat useful tools for creative output

tasks.

While the ultimate goal of artificial intelligent systems has been set as their capacity

of reaching, or even exceeding, human performance in certain tasks, the question remains

whether an ill defined problem such as creative production can be mimicked. Art and cre-

ativity are fundamental features inherent in human intelligence, and fundamental signatures

of humankind. It is a way through which we express our sentience; the capacity to feel, per-

ceive, or experience subjectively. Can we create something that is in itself creative? With

recent advances in methodology and technology, we are now able to build systems that can

paint original artwork in a given style.

This thesis is concerned with the use of Convolutional Neural Networks to generate

images resembling the overall appearance of a given style image while preserving its original

semantic content. The remainder of this chapter will delve into the relevancy of this subject,

some of its key concepts, and summarise this thesis main objectives and what has been

accomplished.
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1.1 Generative Modelling

In deep learning, one of the objectives is to find models that represent probability distribu-

tions over data. Discriminative models, whose task is to map (highly) dimensional inputs

to class labels, have been the focus of deep learning until recently. Discriminative modelling

is easier to monitor, and performance can be measured against high-profile classification

methods to determine the best methodology. Generative models received less attention,

comparatively to discriminative models, partly due the inherent difficulty in evaluating its

output.

Generative modelling is finding more practical uses in academia and industry, such as in

the field of reinforcement learning. For artificial intelligence to be comparable to a human’s,

then it needs to transcend the usual discriminative models. According to David Foster [5],

current neuroscientific theory suggests that our perception of reality is not a highly complex

discriminative model operating on our sensory input to produce predictions of what we

are experiencing, but is instead a generative model that is trained from birth to produce

simulations of our surroundings that accurately match the future. Some theories even suggest

that the output from this generative model is what we directly perceive as reality. A deep

understanding of how we can build machines to acquire this ability will be central to our

continued understanding of the workings of the brain and general artificial intelligence.

A generative model is defined as a model which describes how a dataset is generated

in terms of a probabilistic model. To generate new data, one has to sample from this

model. Generative modelling differs from its counterpart, discriminative modelling, by not

requiring labelled data during training. When performing discriminative modelling, each

observation in the training data has a label. Discriminative modeling and supervised learning

are, therefore, synonymous. Generative modeling is (usually) performed with an unlabelled

dataset, though in some cases a labelled dataset can be applied. In mathematical terms,

discriminative modelling estimates p(y|x): the probability of a label y given observation x;

generative modelling estimates p(x): the probability of observing observation x.

A generic framework for generative modelling begins with X, a dataset of observations.

Assuming that the observations have been generated according to some unknown distribution

pdata, then a generative model pmodel tries to mimic pdata. Then, by sampling pmodel, it

is possible to generate observations that appear to have been drawn from pdata. These

observations need to be different from the observations in X; the model shouldn’t simply

reproduce things it has already seen.
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1.2 Image Based Artistic Rendering

Image-based artistic rendering is a field of non-photo realistic rendering (NPR) focusing on

techniques for transforming 2D inputs (images and video) into artistically stylized renderings.

While simulation of artistic media with high fidelity has been historically limited because

it relies on predefined image pairs for training and because it informs only low-level image

features for texture transfers, recent advancements in deep learning showed to alleviate these

limitations by matching content and style statistics via activations of neural network layers,

thus making a generalised style transfer practicable.

In more concise terms, deep learning introduced a major paradigm shift in artistic ren-

dition of images because the layers of deep convolutional neural networks pre-trained to

accurately classify high-level image contents across generalised data sets have implicitly

learned to encode the perceptual and semantic information - style and content statistics -

that can be used to perform a neural style transfer between arbitrary images. The separation

of content from style is considered to be a key factor in neural style transfer, since it allows

us to distinguish between the mechanisms used for capturing the essence of an image - its

semantic information - and the design aspects that drive the aesthetic appeal to stimulate

human senses - the style.

1.3 Texture Synthesis

To comprehend style transfer, style needs to be mathematically defined. Style can be un-

derstood as a texture, and, therefore, texture synthesis is an integral part of style transfer.

This section will provide an historical overview of methods for texture synthesis. Before all

else, it is necessary to introduce a precise definition of texture [35].

In the field of computer graphics, a texture is any common image. In other contexts,

such as computer vision and image processing fields, textures are usually referred to as visual

or tactile surfaces composed of repeating patterns, such as a fabric. This last definition of

texture is more restricted than the notion of texture in graphics. However, since a majority

of natural surfaces consist of repeating elements, this narrower definition of texture is still

powerful enough to describe many surface properties.

A stationary image is one where, given a moving window of a certain size, the observable

portions always appear similar to each other. Textures differ from general images in their

stationarity, as seen in fig. 1.1. Examples of non-stationary textures include textures with
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large-scale irregular structures, or ones that exhibit spatial variance in various attributes,

such as color, local orientation, and local scale.

Figure 1.1: (a) is a general image while (b) is a texture. A movable window with two different
positions are drawn as black squares in (a) and (b), with the corresponding contents shown below.
Different regions of a texture are always perceived to be similar (b1,b2), which is not the case for
a general image (a1,a2). This characteristic is called stationarity.

The quest for a mathematical formulation for texture description has been an important

subject in the fields of computer vision and computer graphics in the past 50 years. In his

seminal paper from 1962 [19], Julesz initiated researches on texture by asking the following

fundamental question:

What features and statistics are characteristic of a texture pattern, so that texture pairs

that share the same features and statistics cannot be told apart by pre-attentive human visual

perception?

If texture images are, loosely speaking, spatially homogeneous and consist of repeated

elements, then Julesz pioneered the statistical characterisation of textures by hypothesising

that histograms of image pixels could be used to partition textures into classes that are pre-

attentively indistinguishable to a human observer. The Julesz conjecture was proven to be

wrong, yet the basic idea to describe a texture by a set of spatial summary statistics forms

the basis of parametric texture modelling. The notion of images with equal pixel histograms

is still applied fruitfully today.
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Simoncelli and Freeman [30] synthesised textures by matching histograms of filter out-

puts. The algorithm modifies an uniform white noise input image to make it look like the

input texture by making use of an invertible image representation known as an image pyra-

mid. The steerable pyramid transform decomposes the image into several spatial frequency

bands and further divides each frequency band into a set of orientation bands. Their work

exploits filter responses to analyse textures, instead of direct pixel-based measurements.

Following that, Portilla and Simoncelli [25] introduce a texture model based on multi-

scale oriented filter responses and use gradient descent to improve synthesised results. They

calculate a statistical description of an image on the responses of a linear filter bank: the

steerable pyramid. Neural Style Transfer is very similar to the model proposed by Portilla

and Simoncelli: to generate a texture from a given source image, features of different sizes

are extracted, spatial summary statistics are calculated on these feature responses in order to

obtain a stationary description of the source image, and a new image with the same stationary

description is generated by performing gradient descent on an uniform white noise image. In

Neural Style Transfer, instead of a linear filter bank and a set of carefully chosen summary

statistics, the feature space is provided by a pre-trained deep neural network and the chosen

spatial summary statistics are the correlations between feature responses in each layer of the

network.

All the approaches described up until now rely on an explicitly defined parametric texture

model in order to synthesise a texture. The model usually consists of a set of statistical

measurements that are taken over the spatial extent of the image, or over the spatial extent

of filter responses to the image. In a parametric model, a texture is uniquely defined by the

outcome of those measurements and every image that produces the same outcome should

be perceived as the same texture. Therefore, new samples of a texture can be generated by

finding an image that produces the same measurement outcomes as the original texture [7].

Another approach to a texture generating process is to generate a new texture by resam-

pling either pixels or whole patches of the original texture. These non-parametric resampling

techniques and their numerous extensions and improvements are capable of producing high

quality natural textures very efficiently. However, they do not define an actual model for

natural textures, but rather give a mechanistic procedure for how one can randomise a source

texture without changing its perceptual properties.
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1.4 State of the Art

Neural Style Transfer was defined for the first time in the seminal work of Gatys et. al

[8]. Their algorithm for style transfer will be described in detail in chapter 3. This section

presents an overview of current advances in Neural Style Transfer.

NST revolves around image reconstruction algorithms building from abstract represen-

tations produced by a CNN. Mahendran and Vedaldi [22] iteratively optimise an image with

gradient descent, starting from random noise, until it reaches the desired CNN representa-

tion. Similarly, NST is a computationally slow process. Training a feed forward network

in advance removes this computational burden; the image reconstruction process is sped up

since it can now be done with a single network forward pass. NST can, therefore, be sec-

tioned into two major categories: the optimisation based approach and the neural network

training based approach.

The model training approach was first proposed by Ulyanov et al. [33] and by Johnson et

al. [18]. Even though both methods share the same similar idea, they differ in the network

architecture. Johnson et al.’s design roughly follows the network proposed by Radford et al.

[26], but with residual blocks as well as fractionally strided convolutions. Ulyanov et al. use a

multi-scale architecture as the generator network, and find that the network converges faster

and that stylisation quality greatly improves when batch normalisation layers are replaced

by instance normalisation layers [34]. In both cases, separate generative networks have to

be trained for each particular style image.

To overcome this inflexibility, Dumoulin et al. [4] introduce a new type of normalisation

layer: the conditional instance normalisation layer, based on the instance normalisation layer

[34]. It is proposed that, when a set of style images share similar paint strokes and only

differ in their colour palettes, maintaining the same convolutional parameters and tuning

the parameters in the normalisation layers is all that’s necessary to model those styles.

Therefore, one model can be trained for a set of style images by tying a small number of

parameters in each normalisation layer to each one.

Expanding from fast style transfer, the design of a video style transfer algorithm needs to

consider the smooth transition between adjacent video frames. The first video style transfer

algorithm is proposed by Ruder et al. [28]. It is an image optimisation method that makes

use of optical flow to eliminate temporal artefacts and produce smooth stylised videos. Since

it takes several minutes to process each frame, training a network to stylise a sequence of

frames will improve efficiency, especially for long videos with several hundreds of frames.
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There have been, up until now, two ways of solving the problem of video consistency: the

first one doesn’t use optical flow during test time to guide the stylisation along motion

trajectories; the second one does.

Introducing the first known approach to fast video style transfer, Huang et al. [14] train

a network by passing two consecutive frames from a scene dataset. The network will output

both frames stylised and enforce pixel-wise consistency between them both. Another feed-

forward method was proposed by Gupta et al. [12]: finetuning a pre-trained feed-forward

network with a video dataset and temporal consistency constraint. Gupta et al. train a

network to adapt a previously processed frame to conform to the overall appearance of its

predecessor. What both these approaches have in common is their independence from optical

flow during test time; they belong to the first category.

In the second category, and in the vein of finetuning pre-trained stylisation networks,

Chen et al. [3] propose a flow subnetwork to produce feature flow and incorporate optical

flow information in feature space. This feature flow will be used to wrap feature activations

from the pre-trained network. Meanwhile, Ruder et al. [29] adopt the conventional temporal

consistency constraint guided by optical flow in pixel space - instead of feature space. Their

approach is closer to Huang et al.’s [14] than to Gupta et al.’s [12], since they train a network

instead of finetuning a pre-trained one. However, instead of using a pair of consecutive

frames, Ruder et al. feed the network with an unprocessed frame and the previously stylised

frame wraped with optical flow.

All these four methods were built on a network architecture inspired by Johnson et al.

[18], with small adaptations. For example, Huang et al. [14] propose a residual network

with less filters in each convolutional layer than [18]; Ruder et al. [29] experiment with a

network composed by dilated convolutional layers; and Gupta et al. [12] use a different type

of training algorithm - backpropagation through time.

Their results vary in several key aspects. In the field of optical flow independent methods,

Huang et al. [14] produce temporally coherent results by sacrificing stylisation appearance.

The resulting video frames aren’t a faithfull representation of the source style image, lacking

most of the perceptual details that characterise it. On the other hand, Gupta et al. [12]

achieve images perceptually similar to those produced by an image stylisation network, but

can’t maintain temporal consistency in image regions with little semantic structure (the

floor, the sky or a background wall). Optical flow dependent methods achieve better result,

both in temporal consistency and in faithfulness to the source style image. However, they

incur the cost of optical flow estimation during test time.
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1.5 Objectives and Contributions

The overall objective of this dissertation is to apply the concept of neural style transfer to

frame sequences in a way that is independent of optical flow estimation during test time.To

achieve this aim, an exploratory work on a new model architecture based on LSTM convo-

lutional layers is conducted, and its results compared with two alternative methods. The

first alternative method is an optical flow dependent implementation inspired on the work of

Ruder et al. [29]. The second is an image transformation network inspired by the architecture

and training procedure of Johnson et al. [18] and Ulyanov et al. [34].

The main contributions of this thesis are two generative network architectures to conduct

fast style transfer on images and videos, and their proposed training methods.

1.6 Thesis Structure

This document is organised in seven chapters. The second chapter introduces several con-

cepts related to deep neural networks, such as types of layers and types of optimiser. The

third chapter describes in some detail the image optimisation algorithm for NST. In chapter

4, a training procedure and an architecture for a feed-forward network are presented. In

chapter 5, video style transfer is introduced, along with its key concepts and training pro-

cedure. Two methods of video style transfer are described: one is optical flow dependent

during test time, and the other is not. Chapter 6 will present and summarise the results

obtained from the implementations described in chapters 3, 4 and 5. Chapter 7 addresses

the main conclusions from this thesis and future work.
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2 Deep Neural Networks

A model that maps a set of random variables to samples from a data distribution is a very

complex function, and the state-of-the-art model for learning arbitrary relations is a deep

neural network. Deep feedforward networks are the quintessential deep learning models. A

feedforward network defines a mapping y = f(x; θ) and learns the value of the parameters

θ that result in the best function approximation. Training a feedforward neural network is

the search for suitable parameters θ such that f(x; θ) has desirable properties. The large

number of parameters confers a versatility that allows networks to mimic highly complex

functions. For the task of approximating a generative process, a neural network’s output

should be samples from the data distribution.

The models described in this thesis are built around neural networks, and neural net-

works are composed by non-linear and linear functions. Non-linear functions are normally

applied element-wise and differentiable. Linear functions have adjustable parameters, or

weights, that change the output of the neural network. These functions, modular units

composing the network, are also called layers. Intermediate outputs of each layer are called

features or activations. The differentiability of the entire network is one of its most impor-

tant characteristics and a requirement for learning, since it requires computing the gradients

of complicated functions. In deep learning, the execution of the function is called forward

propagation and computing the gradient (first derivatives) with respect to its input and

weights is called backpropagation, as gradients are propagated from the end of the network

to the input layer.

2.1 Gradient-Based Optimisation

Most deep learning algorithms involve optimisation of some sort. Optimisation refers to

the task of either minimising or maximising some function f(x) by altering x. Optimisation

problems are usually phrased in terms of minimisation, and the function we want to minimise
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is called the objective function or loss function.

Gradient descent, a first-order optimisation technique, finds the local minima of contin-

uous functions

arg min
θ
L(X, θ) (2.1)

where X represents the data, θ are the weights of the network, and L is a loss function.

Gradient descent is an iterative method where, in every iteration, the weights θ are perturbed

slightly to improve the loss function. The update equation is

θnext = θ − α∇θL(x, θ) (2.2)

where ∇θL(X, θ) is the gradient, denoting the multivariate first-order derivatives of

L(X, θ) with respect to θ, and α is the learning rate.

Since gradient descent is dependent on the amount of data, stochastic gradient descent is

used in practice. The idea is to estimate the gradient for a small sample of randomly chosen

training inputs. By averaging over this small sample, a good estimate of the true gradient

is reached. For a batch of N inputs, the update equation is:

θnext = θ − α

N

N∑
i=1
∇θLi(Xi, θ) (2.3)

While the number of iterations required to find the best solution may be higher than

solving 2.1, stochastic optimisation will typically find decent solutions quickly, as the weights

can be updated before even observing the entire dataset. In practice, a small number of

samples, called a mini-batch, is used per iteration.

2.2 Adam Optimisation

Adam, or adaptive moment estimation, is a method for efficient stochastic optimisation that

only requires first-order gradients with little memory requirement. This method computes

individual adaptive learning rates for different parameters from estimates of first and second

moments of the gradients. To estimate the moments, Adam utilises exponential moving
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averages, computed on the gradient evaluated on a current mini-batch:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

(2.4)

Where m and v are moving averages, g is gradient on current mini-batch, and β1 and

β2 are hyper-parameters of the algorithm, with default values of 0.9 and 0.999 respectively.

The vectors of moving averages are initialised with zeros at the first iteration. Since the

moving averages are estimates of the 1st moment (the mean) and the 2nd raw moment (the

uncentered variance) of the gradient, then the following expression should hold true:

E[mt] = E[gt]

E[vt] = E[g2
t ]

(2.5)

However, as these moving averages are initialised as zeros, moment estimates are biased

towards zero, especially during the initial timesteps, and especially when the decay rates

are small (i.e. β1 and β2 are close to 1). This initialisation bias can be easily counteracted,

resulting in bias-corrected estimates:

m̂t = mt

(1− (β1)t)

v̂t = vt
(1− (β2)t)

(2.6)

The moving averages are then used to scale the learning rate individually for each pa-

rameter:

θt = θt−1 − α
m̂t√
v̂t + ε

(2.7)

The method is straightforward to implement, is computationally efficient,has little mem-

ory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for

problems that are large in terms of data and/or parameters. The method is also appropriate

for non-stationary objectives and problems with very noisy and/or sparse gradients.
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2.3 Convolutional Neural Networks

Convolutional neural networks, or CNNs, are a specialised kind of neural network for pro-

cessing data that has a known grid-like topology, such as images. The key breakthrough in

the field of deep learning came in 2012 when a deep convolutional neural network (CNN)

outperformed the state-of-the-art in object recognition in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [20]. Convolutional networks are perhaps the greatest suc-

cess story of biologically inspired artificial intelligence. Though convolutional networks have

been guided by many other fields, some of the key design principles of neural networks were

drawn from neuroscience.

2.3.1 Convolutional Layer

The convolution operation is typically denoted with an asterisk:

s(t) = (x ∗ w)(t) (2.8)

where x, the first argument to the convolution, is often referred to as the input, and w,

the second argument, referred to as the kernel.

However, a convolution, in the context of neural networks, is not the same as the standard

discrete convolution operation as it is usually understood in the mathematical literature.

Convolution is understood as a operation consisting in many applications of convolution in

parallel [10]. This is because convolution with a single kernel can extract only one kind of

feature, albeit at many spatial locations. Usually, each layer of a CNN will extract many

kinds of features, at many locations. Additionally, the input is usually not just a grid of real

values. Rather, it is a grid of vector-valued observations. For example, a colour image has a

red, green and blue intensity at each pixel. In a multilayer convolutional network, the input

to a given layer is the output of the preceding layer, which usually has the output of many

different convolutions at each position. When working with images, the input and output of

the convolution are 3-D tensors, with one index into the different channels and two indices

into the spatial coordinates of each channel, as seen in fig. 2.1. The output is sometimes

referred to as the feature map.

To downsample the output of the convolution operation, it is possible to sample only

every s pixels in each direction in the output. The convolution stride, s, can be separate

for each direction of motion. To allow for independent control of kernel width and output
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Figure 2.1: Image convolution, with N generic square kernels with three channels.

size, the input to the convolution operation can be padded to make it wider. Without this

feature, the width of the representation shrinks by one pixel less than the kernel width at

each layer. Padding is a tool to prevent the shrinking the spatial extent of the network and

the use of small kernels, since this imposes a limit to the expressive power of the network.

2.3.2 Pooling Layer

In addition to discrete convolutions themselves, pooling operations make up another impor-

tant building block in CNNs. Pooling operations reduce the size of feature maps by using

some function to summarise subregions, such as taking the average or the maximum value.

Pooling works by sliding a window across the input and feeding the content of the window

to a pooling function. In some sense, pooling works very much like a discrete convolution,

but replaces the linear combination described by the kernel with some other function.

2.3.3 Transposed Convolutional Layer

The need for transposed convolutions generally arises from the desire to use a transformation

going in the opposite direction of a normal convolution, i.e., from something that has the
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Figure 2.2: Example of a max pooling layer and a average pooling layer.

shape of the output of some convolution to something that has the shape of its input while

maintaining a connectivity pattern that is compatible with said convolution. For instance,

one might use such a transformation as the decoding layer of a convolutional autoencoder

or to project feature maps to a higher-dimensional space.

Transposed convolutions – also called fractionally strided convolutions or deconvolutions

– work by swapping the forward and backward passes of a convolution. Its has been shown

[24] that deconvolution experiences uneven overlap when the kernel size is not divisible by

the stride. The overlap pattern also forms in two dimensions. The uneven overlap creates

a characteristic checkerboard-like pattern of varying magnitudes. While the network could,

in principle, carefully learn weights to avoid this, ensuring the output is evenly balanced, in

practice neural networks struggle to avoid it completely. To find a balance is difficult and

significantly restricts the possible filters, sacrificing model capacity, especially when there

are multiple channels interacting.

In order to avoid these checkerboard patterns, it is possible to separate out upsampling

to a higher resolution from convolution to compute features. Using nearest-neighbour in-

terpolation or bilinear interpolation, the image might be resized and the result passed to a

convolutional layer. In image generative networks, nearest-neighbour interpolation has been

shown to work better than bilinear interpolation.

2.3.4 Residual Conections

In feedforward networks with many stacked layers, the gradient diminishes dramatically as

it is propagated backward through the network. A small gradient means that the weights

of the initial layers will not be updated effectively with each training session. Since these

initial layers are often crucial to recognising the core elements of the input data, it can

lead to overall inaccuracy of the whole network. As such, this problem is referred to as the
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“vanishing gradients” problem. Different approaches to training feedforward networks have

been studied and applied in an effort to address vanishing gradients, such as pre-training,

better random initial scaling, better optimisation methods, specific architectures, orthogonal

initialisation, etc.

The simplest solution is to use other activation functions, such as ReLU. Residual net-

works [13] are another solution, as they provide residual connections straight to earlier layers.

As seen in Fig. 2.3, the residual connection directly adds the value at the beginning of the

block, x, to the end of the block (F (x) + x). This residual connection doesn’t go through

activation functions that “squashes” the derivatives, resulting in a higher overall derivative

of the block.

Figure 2.3: Generic residual block.

2.3.5 Normalisation Layer

When training deep neural networks, the fact that the distribution of each layer’s inputs

changes during training, as the parameters of the previous layers change, slows down the

training by requiring lower learning rates and careful parameter initialisation. By making

normalisation a part of the model architecture and performing the normalisation for each

training mini-batch, or batch normalisation [16], it becomes possible to use much higher

learning rates and be less careful about initialisation.

Both the input and output of a batch normalisation layer are four dimensional tensors,

referred to as Ib,h,w,c and Ob,h,w,c, respectively. The dimensions correspond to batch b, two

spatial dimensions h and w, and channel c, and respectively. Batch normalisation applies

the same normalisation for all activations in a given channel:

Ob,h,w,c = γc
Ib,h,w,c − µc√

σ2 + ε
+ βc (2.9)
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Figure 2.4: One batch of four feature maps.

Figure 2.5: Batch Normalisation.

Figure 2.6: Instance Normalisation.

Where, µc is the mean activation from all input activations in channel c across all features

b in the entire mini-batch and all spatial h, w locations; and σc is the standard deviation,

calculated in an analogous manner (fig. 2.5). Normalisation is followed by a channel-wise

affine transformation parameterized through γc, βc, which are learned during training.
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In order to combine the effects of instance-specific normalisation and batch normalisation,

[34] proposes to replace the latter by the instance normalisation (also known as “contrast

normalisation”) layer (see fig. 2.6). Different from batch normalisation layers, in instance

normalisation µ and σ are computed across spatial dimensions independently for each channel

and each sample.

2.3.6 Convolutional LSTM Layer

When data is collected during a time interval, it is characterised as a Time Series. A

Recurrent Neural Network architecture is usually deployed in such occasions. In this kind

of architecture, the model passes the previous hidden state to the next step of the sequence,

therefore holding information on previous data the network has seen before and using it to

make decisions. In other words, the data order is extremely important.

The use of convolution LSTMs [36] to simultaneously learn spatial and temporal informa-

tion in videos has gained traction recently. A deep network of convolutional LSTMs allows

the model to access the entire range of temporal information at all spatial scales of the data,

which makes it ideal for video processing. A convolutional LSTM layer contains an internal

cell state ct and calculates a hidden state ht, used as the output for subsequent layers, as

well as for state-to-state transitions. While processing a video sequence, ct and ht can be

viewed as images of appropriate size maintained by the network with relevant information

based on what it has seen in the past.

2.4 VGG

A VGG [31] is a very deep convolutional network (up to 19 weight layers) for large-scale image

classification. In neural style transfer, the feature space is provided by the 16 convolutional

and 5 pooling layers of the VGG-19 network, and the fully connected layers are discarded.

The network’s architecture is based on two fundamental computations:

• Linearly rectified convolution with filters of size 3 × 3 × k where k is the number of

input feature maps. Stride and padding of the convolution is equal to one such that

the output feature map has the same spatial dimensions as the input feature maps.

• Maximum pooling in non-overlapping 2 × 2 regions, which down-samples the feature

maps by a factor of two.
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Figure 2.7: VGG schematic overview. The last two columns (D and E) correspond to the VGG-19
and the VGG-16 versions, typically used in neural style transfer.

These two computations are applied in an alternating manner (see Fig. 2.7). A number of

convolutional layers are followed by a max-pooling layer. After each of the first three pooling

layers, the number of feature maps is doubled. Together with the spatial down-sampling,

this transformation results in a reduction of the total number of feature responses by a factor

of two. Fig. 2.7 provides a schematic overview over the network architecture and the number

of feature maps in each layer. Neural style transfer relies only on the convolutional layers,

so the input images can be arbitrarily large. The first convolutional layer has the same size

as the image and, for the following layers, the ratio between the feature map sizes remains

fixed. Generally, each layer in the network defines a non-linear filter bank, whose complexity

increases with the position of the layer in the network.
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3 Classic Neural Style Transfer

Style transfer concerns the rendering of the semantic content of an image in different styles

[8]. The most important prerequisite of style transfer is to to find image representations that

independently model variations in the semantic image content and the style in which it is

presented. In other words, to generate an arbitrary photograph with the appearance of a

given artwork, it is necessary to separate image semantic information, or content, from style

information, so that they can be recombined and new images be generated.

In neural style transfer, content and style are modelled on deep image representations.

New images are generated by performing a pre-image search (a term sometimes used in

the literature) to match feature representations of a target (or content) image and a source

(or style) image to feature representations of a generated image. The VGG [31] with 19

convolutional layers and without fully connected layers is the network of choice for style

transfer. The first section of this chapter describes how to generate a new image with similar

semantic content as a given target image using feature maps taken from a pre-trained VGG.

In the second section, a model of natural texture generation based on the feature spaces of a

VGG is explained. The third section combines the knowledge of the previous two to introduce

the fulcral algorithm of this thesis: neural style transfer. The final section conciliates the

algorithm with parametric texture models from chapter 1.

3.1 Content Representations

Convolutional Neural Networks trained on object recognition develop a representation of

the image that makes object information increasingly explicit along the processing hierarchy

i.e., the input image is transformed into feature maps representations that codify the actual

content of the image, and not its detailed pixel values.

In [22], the authors reconstruct an image based on features extracted of CNNs in an effort

to understand what information is being retained by its layers. To do so, a representation
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is modelled as a function φ(x) of the image x, so that an approximated inverse φ−1 can be

computed and x reconstructed from φ(x).

In more formal terms, given a representation function φ : RH×W×C → Rd and a represen-

tation φ0 = φ(x0) to be inverted, reconstruction is achieved by finding an image x ∈ RH×W×C

that minimises the objective:

x∗ = arg min
x∈RH×W ×C

l(φ(x), φ0) (3.1)

where the loss l compares the image representation φ(x) to the target one φ0. A typical

loss function l is usually the Euclidean distance:

l(φ(x), φ0) = ‖φ(x)− φ0‖2 (3.2)

Gatys et al [8] demonstrate what information is being contained in each layer of a VGG

network by reconstructing the image only from the feature maps in that layer (see fig. 3.3).

High-level content, meaning objects and their arrangement in the input image, is captured by

higher layers in the network; while lower-level content, the exact pixel values of the original

image, is captured by lower layers. The feature responses in higher layers of the CNN are

refered to as the content representation in Neural Style Transfer literature.

Given an input image ~x and a pre-trained Convolutional Neural Network where each

layer defines a non-linear filter bank, the filter responses to that image are encoded in the

hidden layers of the CNN. A layer l with Nl distinct filters has Nl feature maps, each of

size Ml, where Ml is the height (Hl) times the width (Wl) of the feature map. The filter

responses in a layer l, a 3-D matrix of size Hl×Wl×Nl can be reorganized as a 2-D matrix

F l ∈ RNl×Ml , where F l
ij is the activation of the ith filter at position j in layer l, as seen in

fig. 3.1.

By performing gradient descent on a white noise image, it is possible to find another image

that matches the feature responses of the original image. Let ~p and ~x be the original content

image and the image that is generated, and P l and F l their respective feature representation

in layer l. The squared-error loss between two feature representations, based on 3.2, is

Lcontent(~p, ~x, l) = 1
2

∑
i,j

(F l
ij − P l

ij)2 (3.3)

The gradient with respect to the image ~x can be computed using standard error back-

propagation, so that the initial white noise image ~x can be be iteratively changed until it
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Figure 3.1: Reshaping feature maps by joining both spatial dimensions into one.

generates the same response in a certain layer of the VGG as the original content image ~p.

3.2 Style Representations

Transferring the style from one image onto another can be interpreted as a problem of texture

transfer, where the objective is to synthesise a texture from a source image while constraining

the texture synthesis in order to preserve the semantic content of a target image. Chapter

1 provides an historical overview of the evolution of parametric texture synthesis models.

To characterise a given texture ~s, it is necessary to pass it through the convolutional

neural network first and extract the activations for each layer l in the network. Since textures

are per definition stationary, a texture model needs to be agnostic to spatial information [7].

A summary statistic that discards the spatial information in the feature maps is given by

the similarities between the responses of different features. These feature similarities are, up

to a constant of proportionality, given by the Gram matrix Gl ∈ RNl×Nl , where Gl
ij is the

inner product between feature map i and j in layer l:

Gl
ij =

∑
k

F l
ikF

l
jk (3.4)

A set of Gram matrices {G1, G2, ..., GL} computed with feature maps extracted from a

set of layers {l1, ..., lL} in the network in response to a given texture provides a stationary

description of the texture, which fully specifies it.

To generate a new texture on the basis of a given image, we use gradient descent from
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Figure 3.2: A Gram matrix as a result of matrix multiplication of feature maps.

a white noise image to find another image that matches the Gram-matrix representation

of the original image. This optimisation is done by minimising the mean-squared distance

between the entries of the Gram matrix of the original image and the Gram matrix of the

image being generated.

If ~x and ~̂x are the original image and the image that is generated, and Gl and Ĝl their

respective Gram-matrix representations in layer l, then the style loss for this layer is:

El(~x, ~̂x) = 1
4N2

l M
2
l

∑
i,j

(Gl
ij − Ĝl

ij)2 (3.5)

And the total style loss:

L(~x, ~̂x) =
L∑
l=0

wlEl (3.6)

where wl are weighting factors of the contribution of each layer to the total loss. The

gradients of L(~x, ~̂x) with respect to the pixels ~̂x can be computed with back-propagation.

As the source image passes through the layers of the VGG network, the receptive field

size associated to each layer increases, which translates to the size of the regions in which

spatial information is preserved increasing as well, as seen in fig. 3.3.

3.3 Style Transfer

To transfer the style of an artwork ~a onto a photograph ~p, a new image is generated to

simultaneously match the content representation of ~p and the style representation of ~a. Style

transfer is then achieved by jointly minimising the distance of the feature representations

of a white noise image from the content representation of the photograph in one layer and

the style representation of the painting defined on a number of layers of the Convolutional
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Neural Network. The total loss function is a linear combination of 3.3 and 3.5:

Ltotal(~p,~a, ~x) = αLcontent(~p, ~x) + βLstyle(~a, ~x) (3.7)

where α and β are the weighting factors for content and style reconstruction, respectively.

Tuning both these parameters can regulate the emphasis on style or content reconstruction in

the final image. A strong emphasis on style will result in images that match the appearance

of the artwork, effectively giving a texturised version of it, but show hardly any of the

photograph’s content. Placing strong emphasis on content, one can clearly identify the

photograph, but the style of the painting is not as well-matched.

Figure 3.3: A content image and a style image pass through a VGG network. Five different
layers with increasing number of filters are chosen to extract feature maps with increasing number
of feature maps. Style representations, as Gram matrices, are used to compute style reconstructions.
The first style image, a (top of the image), was reconstructed with the first of five layers; the second
style image, b, with the first two layers; and so forth until reconstruction style image e, built with
feature maps from all five layers. Content reconstructions computed with feature maps taken from
individual layers. Image taken from [6].
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3.4 Interpreting the Gram Matrix

Following the analysis on style loss function presented in [27], a Gram matrix is statistically

related to neither the mean nor covariance matrices, but instead to the matrix of non-central

second moments. Considering the case of a feature map F withm features, so that F ∈ Rn×m

(as seen in fig 3.2), then the statistics of the features in F can be summarized with a m

dimensional random variable X. If the Gram matrix G(F ) is normalized by the number of

samples, n, then it becomes a sample estimator for the second non-central mixed moments

E[XXT ]:

1
n
G(F ) = E[XXT ] (3.8)

Let the mean feature µ = E[X]; by a general property of covariance matrices, Σ(X) =

E[XXT ]− µµT , where Σ indicates a covariance matrix. Finally,

1
n
G(F ) = E[XXT ] = Σ(X) + µµT (3.9)

It is then established that the classic neural style algortihm uses a pre-trained network

to extract image statistics, and image generation is reduced to a problem of sampling at

random from the set of images that match certain statistics.
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4 Feed Forward Style Transfer

The method introduced by Gatys et al. [8] is a slow, memory consuming optimisation process.

Moving the computational burden to a learning stage can help overcome its limitations. The

works introduced by [18] and [33] introduce the training of a feed-forward convolutional

network to generate multiple samples of the same texture of arbitrary size and to transfer

artistic style from a given image to any other image. The results obtained are of comparable

perceptual quality to [8] and hundreds of time faster, since they require a single evaluation

of the network and do not incur in the cost of backpropagation. However, it is necessary to

train a separate generator network for each style and set of hyperparameters α and β defined

in equation 3.7. The feed-forward network cannot generalise beyond its trained set of style

images, losing the characteristic versatility of the image optimisation approach presented in

chapter 3. On the other hand, once trained, it can synthesize an arbitrary number of images

of arbitrary size in an efficient, feed-forward manner.

In this chapter, a fast generator system for artistic style will be described in detail.

The first section will provide a high-level overview of the system and its associated train-

ing method. The second section will give a low-level overview of the generator network’s

architecture and its constituting layers.

4.1 Proposed Method

The training procedure for this network is most similar to the one proposed in the work

of Johnson et al. [18], with some key differences. For instance, Johnson et al.s’ train a

network with a total variation loss to prevent checkerboard patterns and image noise from

appearing. However, replacing fractionally strided convolutional layers by nearest-neighbour

upsampling layers followed by convolutional layers prevents the use of total variation loss

during training. To improve results, all batch normalisation layers in Johnson et al.’s original

architecture are replaced by instance normalisation layers.
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In addition to the pre-trained VGG network used to define style and loss functions, the

system is also composed by an image transformation network fθ. This second one is a deep

residual convolutional neural network parameterized by weights θ that maps input images x

into output images y: y = fθ(x). For a chosen set of VGG layers, the total content loss and

the total style loss are calculated as seen in chapter 3. Denoting the two sets of loss functions

used to train this network by lci (y, p) and lsj(y, a), where p is the target content image and a is

the target style image, then training a image transformation network by stochastic gradient

descent is akin to minimising a weighted combination of loss functions:

θ∗ = arg min
θ
Ex,p,a[

∑
i=1

λil
c
i (fθ(x), p) +

∑
j=1

λjl
s
j(fθ(x), a)] (4.1)

The image transformation network is trained with the system depicted in Algorithm 1

and Fig. 4.1, consisting of an image dataset and a loss network, the 16 layer VGG. The

feature maps extracted from the VGG come from a previously selected set of style layers

(conv1_2, conv2_2, conv3_3 and conv4_3) and one content layer (conv3_3). Before

beginning training the network, a source style image is passed through the VGG-16. The 4

feature maps produced in the chosen layers are used to compute 4 target Gram matrices that

will be stored and later used in the style reconstruction function 3.5. Training the image

transformation network can be resumed to following the next steps:

Compounding on this algorithm, Fig. 4.1 displays the training system, which can be

summarised in the following steps:

1. Each training iteration begins with an image batch (referred to as Input Content Image

in diagram 4.1) taken from the image dataset and fed through the VGG network and

the image transformation network.

2. The produced batch of feature maps is extracted from the VGG content layer and will

be the target objective of content reconstruction.

3. The batch of images produced by the last layer of the image transformation network

(Output Image in diagram 4.1) are then fed through the VGG in order to extract a

batch of feature maps.

4. Feature maps recovered from style layers will be used to compute Gram matrices; their

distance to target Gram matrices from step 1 measured by the style loss function (eq.

3.6).
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Algorithm 1 Training an Image Transformation Network
1: procedure Trainingfθ
2: b← batch size
3: a← style image
4: for each VGG style layer ls do
5: Gl

s ← batch of Gram matrices from layer ls, image a
6: end for
7: for two epochs on chosen image dataset do
8: TotalLoss← 0
9: p← batch of images of size b from dataset

10: fθ(p)← batch of network outputs for batch p
11: for each VGG content layer lc do
12: F l

c ← batch of feature maps from layer lc, batch p
13: F̂ l

c ← batch of feature maps from layer lc, batch fθ(p)
14: TotalLoss += λlc

b
‖F̂ l

c − F l
c‖2
F

15: end for
16: for each VGG style layer ls do
17: Ĝl

s ← batch of gram matrices from layer ls, batch fθ(p)
18: TotalLoss += λls

4N2
l
M2

l
b
‖Ĝl

s −Gl
s‖2
F

19: end for
20: θ ← ADAM(θ, TotalLoss)
21: end for
22: end procedure

5. Feature maps recovered from the content layer will be measured against the feature

maps from step 3 with content loss function (eq. 3.3).

6. The weight parameters θ of the image transformation network are updated so that the

total loss (eq. 3.7), a linear combination of losses computed in step 5 and step 6, is

minimised.

The image transformation network is trained on the Microsoft COCO dataset [21]; each

one of the 80.000 training images is resized to 256x256; the batch size is 4; training takes

40.000 iterations, roughly two epochs over the training data; optimiser of choice is Adam

with a learning rate of 1× 10−3.

4.2 Proposed Network Architecture

The image transformation network follows architectural guidelines set forth for generative

networks by [24, 18, 34, 26]. Relying on the architecture proposed by Johnson et al. [18],

results are improved by replacing transposed convolutional layers by nearest neighbour up-

sampling followed by a convolutional layer [24], and batch normalisation layers by instance
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Figure 4.1: System overview for image transformation network training.
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normalisation layers [34].

• The network is fully convolutional, and the usual down sampling pooling functions

are replaced by strided convolutions, allowing the network to learn its own spatial

downsampling;

• To combat checkerboard patterning, the deconvolution operation, typically used to

generate a larger image from lower resolution descriptions, is replaced by nearest-

neighbour interpolation followed by a convolutional layer. This was first proposed by

Odena et al. [24];

• The ReLU activation is used in all layers except for the output, which uses Tanh as

an activation function. A bounded activation allows the model to learn more quickly

to saturate and cover the color space;

• Ulyanov et al. [34] introduced an instance normalisation layer. In this network’s

architecture, it follows all non-residual convolutional layers in order to stabilize learning

by normalising each feature map to have zero mean and unit variance;

• The network body is comprised of five residual blocks [13], where style is effectively

applied, just as it was in Johnson et al.’s architecture [18];

• Each convolutional layer is preceded by reflection padding, to avoid border patterns;

• Other than the first and last layers which use 9×9 kernels, all convolutional layers use

3×3 kernels;

A more detailed outlook on network architecture is presented in table 4.1.

There are several benefits to downsampling and upsampling in a generative network, even

though the input and output are both color images of the same shape, 256 × 256 × 3. In

computational terms, downsampling allows for a deeper network with the same number of

multiply-add operations as a shorter network where downsampling isn’t applied. Another

benefit associated with this practice is the augmentation of receptive field sizes. Without

downsampling, each additional 3 × 3 convolutional layer in a stack model increases the

effective receptive field size by 2. After downsampling by a factor of D, each 3×3 convolution

increases the effective receptive field size by 2D, giving larger effective receptive fields with

the same number of layers. As each pixel in the output image increases its effective receptive
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Layer Details Activation Size
Input 256 x 256 x 3

Convolutional Layer kernel size 9; stride 1; 32 filters 256 x 256 x 32
Convolutional Layer kernel size 3; stride 2; 64 filters 128 x 128 x 64
Convolutional Layer kernel size 3; stride 2; 128 filters 64 x 64 x 128

Residual Block kernel size 3; stride 1; 128 filters 64 x 64 x 128
Residual Block kernel size 3; stride 1; 128 filters 64 x 64 x 128
Residual Block kernel size 3; stride 1; 128 filters 64 x 64 x 128
Residual Block kernel size 3; stride 1; 128 filters 64 x 64 x 128
Residual Block kernel size 3; stride 1; 128 filters 64 x 64 x 128

Upsampling Layer nearest-neighbour; factor of 2 128 x 128 x 128
Convolutional Layer kernel size 3; stride 1; 64 filters 128 x 128 x 64
Upsampling Layer nearest-neighbour; factor of 2 256 x 256 x 64
Convolutional Layer kernel size 3; stride 1; 32 filters 256 x 256 x 32
Convolutional Layer kernel size 9; stride 1; 3 filters 256 x 256 x 3

Table 4.1: Feed-forward network architecture

3 x 3 Conv

Instance Norm

ReLU

3 x 3 Conv

Instance Norm

+

Figure 4.2: Inside the residual block.

field in the input, results will bear higher perceptual quality, since large parts of the output

image will be stylized in a coherent way.

To train very deep networks for image classification, [13] proposes the use of residual

connections. This is also an appealing property for image transformation networks, since

in most cases the output image should share structure with the input image. The residual

block used in the image transformation network is built according to guidelines from [11],

and can be observed in fig. 4.2.
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5 Style Transfer Applied to Video

Building upon the approaches from chapters 3 and 4, style transfer is extended to video

sequences in this chapter. Given an artistic image, we transfer its particular style of painting

to the entire video. Processing each frame of the video independently leads to flickering and

false discontinuities, since the solution of the style transfer task is not stable.

The source of this instability is the Gram matrix style loss; the solution set of the Gram

matrix matching objective is defined as a n-sphere - a generalisation of the three dimensional

sphere to dimensions n ≥ 4 - with radius determined by the trace of the style image’s Gram

matrix [12]. Due to being a non-convex loss function, minor changes in semantic content in

the target image can pull the synthesized image to different solutions of this Gram matrix

matching objective. For a small solution set, different solutions will result in similarly stylized

images (low instability). In the opposite scenario, with a large solution set, different solutions

may result in very different stylized images (high instability).

In an effort to regularise style transfer and to preserve smooth transitions between in-

dividual frames of the video, a temporal loss function [28] and a different network training

method are used. In the first section of this chapter, concepts of computer vision, such as

image warping and optical flow, are introduced. The second section is concerned with the

new temporal loss function; and the third with the practical estimation of optical flow. In

the fourth section, a training method for a video transformation network will be described.

This method, which is optical flow dependent, follows a training procedure inspired from

the work of Ruder et al. [29] and the architecture proposed in chapter 4. The final section

in this chapter presents an alternative approach to the network architecture and training

procedure.

31



5.1 Occlusion and Motion Boundary Detection

Algorithms for estimating motion in video sequences are among the most widely used in

computer vision. The most general (and challenging) version of motion estimation is to

compute an independent estimate of motion at each pixel, which is generally known as

optical flow. Dense optical flow estimation will enable dense motion tracking and to extract

information with fine granularity. This type of information is typically stored in a optical flow

field that relates the positions of all pixels between pairs of consecutive frames. Forward and

backward optical flow fields can be used to detect two types of regions necessary to maintain

temporal consistency in a sequence of frames: occlusions and motion boundaries.

Occlusions occur whenever two or more images are taken of the same scene from slightly

different viewpoints or at slightly different times, and there are points in one image that do

not appear in the other image. More precisely, an occlusion is a set of points that appear

in one image whose corresponding world points are not visible in another image because an

opaque object is blocking the view of those points in the other image.

Optical flow can be simply described as a field that consists of large regions where it

varies smoothly, divided by boundaries where the flow abruptly changes. Motion boundaries

are then defined as the discontinuities of the optical flow between two frames and reveal the

location of occlusion boundaries, which very often correspond to physical object boundaries.

Most state of the art methods for estimating motion boundaries are based on optical flow

gradient analysis [32].

Image warping is a transformation which maps all positions in one image plane to posi-

tions in a second plane. Given a frame It, it should be possible to find the correspondence

between the original position pi = (ui, vi)T of a set of points i = 1, ..., n in It and their

new position qi = (xi, yi)T in the following frame It+1. For each point i both frames have

in common, It+1(qi) = It(pi). Information on how relate the positions of each individual

pixels between frame It and frame It+1 is typically stored in a displacement field. A dis-

placement field is formally a function f used in a mapping function T with the general form

T (p) = p + f(p). This mapping process is also referred to as forward warping, since pixels

are in a sense moved ’forward’ from the coordinate frame of the old image It to the new

image It+1.

The problem with this intuitive approach is that the transformation function is generally

neither injective nor surjective. Due to the discrete nature of pixel images, non-integer values

of the transformation function T have to be rounded. As a result, not every pixel in the
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new image It+1 will be necessarily assigned a value and some pixels can be assigned several

times.

Backward warping, a mapping function where, for every pixel of the new image It+1, a

coordinate in the original image It is computed, is used to eliminate this problem. This

involves the inverse T−1 of the transformation function. In analogy to forward warping, it

is possible that T−1(q) yields a non-integer value.

Figure 5.1: Forward and backward image warping. In the case of foward warping (A), holes can
occur in the warped image, marked in gray. Backward warping (B) eliminates this problem since
intensities at locations that do not coincide with pixel coordinates can be obtained from the original
image using an interpolation scheme.

Extrapolating from some of the concepts presented in the previous two paragraphs, it

can be concluded that each of the points in frame It can be tracked to the next frame It+1

by using the forward optical flow field ot(x, y) := (ut(x, y), vt(x, y)). Analogously, points in

frame It+1 find their correspondence in frame It with the backward optical flow ot+1. In

mathematical notation, the forward flow is:

(xt+1, yt+1)T = (xt, yt)T + (ut(xt, yt), vt(xt, yt))T . (5.1)

As expected, the optical flow is subpixel accurate; xt+1 and yt+1 will usually end up

between grid points, as seen in fig. 5.1 A.

In the specific case of video style transfer, given a pair of consecutive frames, there is a

demand to find out common points between the two images in order to enforce a consistent

appearance between the both of them. Taking frame It+1 as reference, if a given point

(xt+1, yt+1) doesn’t have a correspondent point (xt, yt) in the preceding frame It, then either

it belongs to a disoccluded region, or to a motion boundary region, and temporal consistency

can’t, and shouldn’t, be enforced. Let

(x̂t, ŷt)T = (xt+1, yt+1)T + ot+1(xt+1, yt+1)T (5.2)

33



be a pair of coordinates, with sub-pixel accuracy, in frame It. To infer the forward optical

flow ôt = (ût, v̂t) at this point, bilinear interpolation is used. In a non-disocclusion case, the

backward flow vector ot+1 points in the inverse direction as the forward flow vector ôt, so

the following identities should be true:

ut+1(xt+1, yt+1) = −ût(xt+1 + ut+1, yt+1 + vt+1)

vt+1(xt+1, yt+1) = −v̂t(xt+1 + ut+1, yt+1 + vt+1)
(5.3)

If this consistency requirement is not satisfied, the point is either getting disoccluded

from frame It to frame It+1, or the flow was not correctly estimated. Since there are always

some small estimation errors in the optical flow, Sundaram et al. [32] suggest a tolerance

interval that allows estimation errors to increase linearly with the motion magnitude:

|ôt + ot+1|2 ≥ 0.01(|ôt|2 + |ot+1|2) + 0.5 (5.4)

As for motion boundaries, their location, as estimated by the optical flow gradient, is

given by the next identity:

|∇(ut+1)|2 + |∇(vt+1)|2 > 0.01|ot+1|2 + 0.002 (5.5)

Should both these identities be proven true, then the pixel in question either suffers from

disocclusion in frame It+1 or belongs to a motion boundary region.

5.2 Temporal Consistency Constraint

The total loss function eq. 3.7 introduced in the classic neural style algorithm can be

augmented with a temporal consistency loss Ltemporal to encourage temporally stable results

by penalising the network when its outputs at adjacent time steps significantly vary. The

result is a hybrid loss to capitalise on the content information of an input frame, the style

information of a given style image, and the temporal information of previously stylised

frames.

When styling video sequences, the semantic content in stylised video frames should main-

tain its appearance in a manner consistent with the motion in the input video. A certain

object has to look the same independently of the angle of observation. Optical flow will

allow for object and camera movement in the original video to be faithfully processed, hence
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its usage in Ltemporal. The basis of a temporal loss function comes from equation 5.1. For

all corresponding pixel coordinates in a pair of stylised frames It and It+1, and the forward

optical flow field ot(x, y) := (ut(x, y), vt(x, y)), the following difference should be minimised:

It+1(xt+1, yt+1)− It(xt + ut(xt, yt), yt + vt(xt, yt)) (5.6)

This per-pixel difference is accomplished by warping frame It and by using bilinear in-

terpolation. Bilinear interpolation has been proven to be differentiable [17]. In fact, this

sampling mechanism allows for backpropagation of the loss.

The objective is to warp the stylised result from the previous frame to the current one,

and adaptively fuse both together. In other words, some traceable points/regions from the

previous frame remain unchanged, while some untraceable points/regions need to be stylised

with information from the current frame. This strategy makes sure stylised results along the

motion paths will be as stable as possible.

Due to object and camera motion between frames, some pixels in frame It may become

occluded in frame It+1; likewise some pixels which are occluded in frame It may become

disoccluded in frame It+1. As a result, enforcing the temporal consistency loss between

all pixels in both frames would result in artifacts at motion boundaries. A pre-computed

occlusion mask is therefore necessary to avoid enforcing the temporal consistency loss for

occluded and disoccluded regions and motion boundaries. Let m be a binary per-pixel mask

with the shape of the input image, where it assumes the value 0 in disoccluded regions and

motion boundaries, and 1 elsewhere, or in other words, in every pixel where the represented

world points are seen in both frames; xt be the output of the stylisation network in timestep t;

xt−1 the output of the stylisation network in the preceding timestep t− 1; T tt−1 the warping

transformation function, defined with the pre-computed optical flow field between frames

It−1 and It, applied to xt−1. The formal definition of a temporal loss function, featured

extensively in video processing networks [1, 3, 12, 28, 29], is:

Ltemporal = 1
D
‖mt−1,t � (xt − Tt−1,t(xt−1))‖2

F (5.7)

where D = H ×W × C is the dimensionality of the image.

According to [28], there are two kinds of temporal consistency in videos: long-term

consistency and short-term consistency. Long-term consistency is more appealing since it

produces stable results over larger periods of time, and can even enforce consistency of the

synthesised frames before and after the occlusion. This constraint can be easily enforced
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in optimisation-based methods. Unfortunately, it is quite difficult to incorporate it in feed-

forward networks, due to limited batch size, computation time and cache memory. Therefore,

short-term consistency seems to be more affordable by feed-forward networks in practice.

The implementation presented is a kind of compromise between consistency and efficiency.

The feed-forward network is designed to mainly consider short-term relationships (only two

frames), but the long-term consistency is partially achieved by propagating the short-term

ones. Even if the resulting image obtained at a certain timestep will be a composite of the

previous frame combined with features of the current frame, this training loss guarantees

that, as long as a point can be traced along motion trajectories, its overall appearance

remains unchanged. This approximation will suffer from inconsistency before and after the

occlusions, but will prevent flickering artifacts.

Finally, it should be stressed that, unlike the calculations of the content loss and style

loss, the temporal loss is calculated using the output of the stylising network and not the

features maps extracted from of the loss network. It has been shown [14] that using the

higher-level feature maps of the loss network to compute the temporal loss won’t prevent

flickering effects. The main reason is that higher-level feature maps only capture abstract

information.

5.3 Optical Flow Estimation

FlowNet 2.0 [15] is used to obtain the optical flow between consecutive pairs of frames. In

its first iteration, FlowNet was the first ever deep convolutional neural network designed to

directly estimate the optical flow. FlowNet 2.0 shows several improvements to the FlowNet

idea: accuracy that is fully on par with state-of-the-art methods while running orders of

magnitude faster than conventional methods. It also reduces the estimation error by more

than 50% compared to the initial FlowNet. The authors assert the reliability of their method

on a large variety of scenes and applications, highlighting the possible range of applications,

made possible by its very crisp motion boundaries results and its successful retrieval of fine

structures. In fact, since its release, FlowNet 2.0 has become the working horse for all

applications that require accurate and fast optical flow computation, which is why its usage

should not be surprising.
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5.4 Training a Feed-Forward Network

The final form of the hybrid training loss for video style transfer is:

Ltotal(It, a,xt) = αLcontent(It,xt) + βLstyle(a,xt) + γLtemporal(xt, Tt−1,t(xt−1),mt−1,t) (5.8)

where a is the style image, It is the current frame to be stylised, xt is the image transforma-

tion network output, mt−1,t is the binary mask codifying consistency between both frames,

Tt−1,t(xt−1) is the optical flow warping function applied to the previously stylised frame.

To train a style transfer video network is to find the network h parameters θ that minimise

the total loss function:

θ∗ = arg min
θ
EIt,a,xt [Ltotal(It, a,xt)] (5.9)

where xt = hθ(It).

The network architecture is the same used for still images in chapter 4. Before detailing

the training procedure, a brief description of the dataset pre-processing is given.

The training datasets used were the Hollywood2 scene dataset [23] and the Microsoft

Coco image dataset [21]. The latter was already used to train a still image network in

chapter 4; the former is a collection of short videos depicting scenes from films.

From each video, pairs of consecutive frames with sufficient pixel-wise difference between

them are extracted. In total, there are about 40.000 frame sequences in the dataset. For

every frame pair obtained, the forward and backward optical flow fields are obtained with

the FlowNet 2.0, and from there the binary masks are obtained by following equations 5.5

and 5.4. Three parallel datasets result from the original Hollywood2 dataset: a dataset of

pairs of frames, a dataset with the corresponding optical flow fields, and a dataset with the

corresponding binary masks.

To train a video style transfer network h, a pre-trained image transformation network f

is necessary. In each iteration:

1. The first frame of a pair is passed through the pre-trained image transformation net-

work, producing a stylised frame;

2. The resulting stylised frame is warped with the corresponding pre-computed optical

flow, taken from the optical flow dataset;

3. The warped frame is masked with the corresponding mask taken from the mask dataset;

37



4. The warped and masked first frame, the corresponding binary mask and the second

frame in the sequence are concatenated and fed through the video transformation

network;

5. The resulting output, the stylised second frame, has its content and style representa-

tions measured against the original second frame and the source style image, respec-

tively;

6. Temporal loss is calculated between the output of the video transformation network,

the binary mask and the warped and masked first frame fed as input;

7. The weight parameters θ of the video transformation network are updated so that

the total loss 5.8, a linear combination of losses computed in step 5 and step 6, is

minimised.

More precisely, the algorithm is as follows:

Algorithm 2 Training a Video Transformation Network
1: procedure Training hθ
2: b← batch size
3: a← style image
4: f ← a pre-trained image transformation network
5: for each VGG style layer ls do
6: Gl

s ← batch of Gram matrices from layer ls, image a
7: end for
8: for 60.000 iterations do
9: TotalLoss← 0
10: It ← batch of first frames from video dataset
11: f(It)← batch of network outputs for image batch It
12: It+1 ← batch of second frames from video dataset
13: hθ(It+1)← batch of network outputs for image batch It+1
14: for each VGG content layer lc do
15: F l

c ← batch of feature maps from layer lc, batch It+1
16: F̂ l

c ← batch of feature maps from layer lc, batch hθ(It+1)
17: TotalLoss += α

b
‖F̂ l

c − F l
c‖2
F

18: end for
19: for each VGG style layer ls do
20: Ĝl

s ← batch of gram matrices from layer ls, batch hθ(It+1)
21: TotalLoss += β

4N2
l
M2

l
b
‖Ĝl

s −Gl
s‖2
F

22: end for
23: TotalLoss += γ

D
‖mt−1,t � (hθ(It+1)− Tt−1,t(f(It)))‖2

F

24: θ ← ADAM(θ, TotalLoss)
25: end for
26: end procedure
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Figure 5.2: An overview of a training system for a video style transfer network.
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To prevent the propagation of errors, the network is also trained to stylise images rather

than just copying the previous frame. To this end, a mixed training modality [29] is used.

If, during some of training iterations, the first stylised frame is an empty image, and the

corresponding binary mask is set to 0 in every pixel, then the network will learn to stylise an

image without prior information. In other words, the temporal consistency loss is disabled

and the training loss assumes the form 3.7.

The network was trained for 60.000 iterations using ADAM optimizer with a learning

rate of 0.001 and a batch size of 4. At the beginning of every training iteration, there’s a

50% chance the network will receive an image extracted from the Microsoft Coco dataset

without prior information, instead of a frame from the video dataset.

5.5 Convolutional LSTM Architecture

One of the main drawbacks of the method in the previous section is the dependency of optical

flow computation during test time, since the network never learns to associate an input in a

given timestep to inputs from preceding timesteps. To process a video, one needs to compute

dense optical flow fields between frame pairs, creating a computational bottleneck that will

negate some of the advantages introduced by the network training approach. While the usage

of optical flow allows for a consistent appearance between adjacent frames by following pixels’

motion trajectories, a network architecture based on convolutional LSTM layers will combat

flickering effects where they are most prominent: in image regions with less semantic content.

A convolutional LSTM layer will hold on to the pixel value present in the previous frame and

prevent abrupt changes in its value from frame to frame. One of the main drawbacks from

this approach will be its difficulty in correctly applying a style to frame sequences where

abrupt content changes occur. A network consisting of a mixture of convolutional layers

and a convolutional LSTM layer has been used to correct videos processed without temporal

consistency constraints in [9].

Figure 5.3 shows the architecture of the proposed network. The only convolutional LSTM

layer is at the tail end of the residual block line, since that is where the image stylisation is

finalised. The training procedure for this network is the same as the one from the previous

section: a hybrid loss function combining perceptual and temporal terms; and in each time

step, the network learns to generate an output frame xt that is temporally consistent with

respect to xt−1. The current output frame is then fed as the input at the next time step.

Other specifications include: an ADAM optimiser with a learning rate of 0.001, a batch
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size of 4, and 60000 training iterations over a pairs of consecutive frames from the Holly-

wood2 dataset [23]. The training algorithm for training an optical flow dependent video

transformation network is the same for training a LSTM video transformation network.

Figure 5.3: Proposed architecture based on with two streams; the upper one for the current
unprocessed frame, and the bottom one for the previously stylized frame.
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6 Results and Discussion

Quantitative and qualitative evaluations are conducted on the experimental results obtained

from the four different implementations described on the previous three chapters.

6.1 Classical and Fast Style Transfer

In chapter 4, it was stated that a network based style transfer produces results with a

similar perceptual quality to the classical optimisation algorithm. To assess the truth of

this statement, four content and four style images are chosen and compared side-by-side.

The optimisation algorithm uses the VGG-19 network; the fast style transfer algorithm the

VGG-16. The set of style layers selected for the classic algorithm are conv1_2, conv2_2,

conv3_3, conv4_3 and conv5_3; while the content layer is the conv4_3. The optimisa-

tion algorithm took 100 iterations to produce the following results.

Figure 6.1: Style image.

Figure 6.2: Classic.

Figure 6.3: Fast style.
Figure 6.4: Content image.
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Figure 6.5: Classic.

Figure 6.6: Fast style.

Figure 6.7: Classic.

Figure 6.8: Fast style.

Training the network on a GeForce RTX 2080 took approximately 2h20min. Passing an

image through the network took approximately 200ms. Optimising a 1152×1624 image over

100 iterations took approximately 30 minutes, or 20 seconds per iteration. In conclusion, fast

style transfer achieves a speed-up of 150. A quick observation of the selected images allows

us to conclude that fast style transfer is actually better at preserving the original colour

palettes of the source style image. However, a network with this architecture has drawbacks

has well: with approximately 1.6 million parameters in total and a size of 6,3 MB.
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Figure 6.9: Classic.

Figure 6.10: Fast style.

6.2 Instance Normalisation and Batch Normalisation

This section will present the main perceptual differences between an image stylised by a

network trained with instance normalisation layers and the batch normalisation network

implemented by Johnson et al. [18]. Both networks were trained with the same style im-

age, and at the same resolution in order to better compare results. An open-source im-

plementation of Johnson et al.’s article is available at https://github.com/jcjohnson/

fast-neural-style. Results can be observed in fig.6.11. Instance normalisation layers are

shown to be better in preserving image’s semantic content by improving contrast between

objects and maintaining a sense of depth perception in stylised images when compared to

batch normalisation layers.

6.3 Video Style Transfer

A quantitative evaluation of video style transfer is conducted with the MPI Sintel dataset.

The MPI Sintel dataset [2] includes 23 scenes with 20 to 50 frames of resolution 1024× 436

pixels with ground truth optical flow and ground truth binary masks. In this section, results

obtained with a video transformation network (VTN) and a LSTM video transformation

network (LSTM-VTN) will be compared to results obtained from a image transformation

network (ITN) using the MPI dataset. Henceforth, every image will be accompanied with
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Figure 6.11: On the left, an image resulting from Johnson et al.’s architecture, with batch normal-
isation layers and transposed convolutional layers for upsampling. On the right, an image resulting
from an adapted architecture with instance normalisation layers and nearest-neighbour upsampling
layers.

the appropriate acronym identifying what network produced it.

Figure 6.12: Candy, Mosaic and Muse, style images used in this section.

6.4 Optical Flow Dependent Video Network

Firstly, an evaluation of the first solution to video style transfer introduced in chapter 5: the

flow dependent video network.

As difficult as it is to see flickering effects and discontinuities by comparing frames side

by side, they are impossible to miss when those same frames are seen in quick succession.

Figures 6.17, 6.18 and 6.19 were the result of applying an image transformation network on a

sequence of three consecutive frames. In the lower left corner of each frame, two blue squares

signal areas where flickering is visible; the colors change drastically from one frame to the

next. Figures 6.21, 6.22 and 6.23 were produced with a video transformation network and

no longer present flickering in the lower left corner. This example demonstrates that, even

when the relative position of the camera and the object remains constant during a frame

46



sequence, an ITN will produce flickering effects in the final result simply due to a varying

level of light in the scene [12].

Figures 6.33, 6.34 and 6.35 show three non consecutive frames from a scene where the

character lifts its arm, occluding the background scenario, and, after a while, lowers it again,

disoccluding the background. A direct consequence of using a short term consistency loss

to train the network is the lack of memory regarding areas temporarily occuded. From

fig. 6.33 to fig. 6.35, the background wall completely changed its appearance. This can be

contrasted with fig. 6.29, 6.30 and 6.31, where it can be observed that the wall didn’t change

its overall appearance after being disoccluded. However, it should be once again pointed out

that the sequence of frames stylised with an ITN suffers from heavy flickering effects, even

if it doesn’t appear to in these images. Even with short term temporal consistency related

effects, the videos stylised by a VTN present a smoother transition from frame to frame.

Finally, to conclude a qualitative evaluation of this VTN, we observe the effects of

stylisation on a scene with no camera motion, where the background has little structure,

using a more unstable style image: the mosaic from fig. 6.12. In fig. 6.41, 6.42 and 6.43, it

should be immediately noticeable how changeable the background is from frame to frame,

even though there is no discernible change in its appearance in images 6.37, 6.38 and 6.39. To

facilitate visualisation, areas of interest where the instability is unmistakable were signalled

with a blue square.

A quantitative comparison between the results obtained from a VTN versus from an

ITN can be achieved by computing the difference between a given frame and the preceding,

warped frame (see eq. 5.7). Table 6.1 presents the average values over a scene in the MPI

Sintel dataset, for the three scenes referenced in this section, stylised with the candy and

mosaic style images.

Scene Candy ITN Candy VTN Mosaic ITN Mosaic VTN
Alley 1 55.23 41.93 73.30 53.08
Alley 2 60.55 44.47 74.75 55.05

Ambush 7 62.58 29.49 72.34 40.26

Table 6.1: Average temporal consistency over entire scenes.

Training the network on a GeForce RTX 2080 took approximately 9 hours for a total of

60000 iterations.
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Figure 6.13: Frame 7

Figure 6.14: Frame 8

Figure 6.15: Frame 9

Figure 6.16: Alley 2

Figure 6.17: Frame 7

Figure 6.18: Frame 8

Figure 6.19: Frame 9

Figure 6.20: Alley 2, ITN

Figure 6.21: Frame 7

Figure 6.22: Frame 8

Figure 6.23: Frame 9

Figure 6.24: Alley 2, VTN
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Figure 6.25: Frame 9

Figure 6.26: Frame 20

Figure 6.27: Frame 25

Figure 6.28: Alley 1

Figure 6.29: Frame 9

Figure 6.30: Frame 20

Figure 6.31: Frame 25

Figure 6.32: Alley 1, ITN

Figure 6.33: Frame 9

Figure 6.34: Frame 20

Figure 6.35: Frame 25

Figure 6.36: Alley 1, VTN
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Figure 6.37: Frame 2

Figure 6.38: Frame 3

Figure 6.39: Frame 4

Figure 6.40: Ambush 7

Figure 6.41: Frame 2

Figure 6.42: Frame 3

Figure 6.43: Frame 4

Figure 6.44: Ambush 7, ITN

Figure 6.45: Frame 2

Figure 6.46: Frame 3

Figure 6.47: Frame 4

Figure 6.48: Ambush 7, VTN
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6.5 LSTM Video Network

Figure 6.49 shows a side by side pair of adjacent frames taken from the alley 1 sequence

stylised by an ITN and by a LSTM-VTN. It is patently clear the LSTM approach achieves

a higher degree of short term temporal consistency when compared to independent, frame

to frame stylisation on an ITN; in other words, a LSTM network was trained to preserve as

much as possible from the previously stylised frame and, in return, short term discrepancies

caused by the appearance and disappearance of new stylisation artefacts have been averted.

However, over long frame sequences, error propagation has a tendency to accumulate. This

results in stylisation artefacts moving in the scenery while not being constrained by its

general semantic content disposition. We can observe this in Figure 6.50.

To evaluate in a more impartial manner how difficult it is to balance semantic information

from an unprocessed frame and its stylised antecedent when training a network with convo-

lutional LSTM layers, we measured Structural Similarity Indexes [37] and the mean squared

error for pairs of adjacent frames over four whole sequences: the original, unprocessed one;

and three sequences processed by each of the three networks (ITN, VTN, LSTM-VTN).

The results for the alley 1 and the ambush 7 sequences can be observed in Figures 6.52

and 6.51. A LSTM-VTN discards relevant semantic information, maintaining perceptual

constancy over the entire sequence of frames.

Optical flow dependency at test time for video stylisation networks remains one of the

hardest bottlenecks to overcome. Convolutional LSTM layers have been successfully used to

codify temporal and spatial relations in image sequences, and even to ameliorate consistency

in processed videos. This section presented an analysis of how it would impact a video

stylisation network if we used these layers while training on video frame sequences. Overall,

we conclude that in its present usage, convolutional LSTM layers don’t provide a valid

substitution for optical flow calculations during test time.

Training the network on a GeForce RTX 2080 took approximately 12 hours for a total

of 60000 iterations.
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Figure 6.49: A qualitative comparison of a pair of consecutive frames stylized by two different
networks; the first pair by a LSTM-VTN, the last pair by a ITN. Red rectangle borders point
to areas of interest.
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Figure 6.50: Disconnection between overall semantic image content and stylization effects over
a long frame sequence in LSTM. The top image was processed with the 2nd frame in the alley 1
sequence; the bottom image with the 47th frame in the same sequence.
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Figure 6.51: Mean squared error calculated in adjacent frame pairs over two whole sequences
stylized by 3 different networks. Original refers to the original, unprocessed frame sequence; Optical
Video Net to VTN; Image net to ITN; LSTM Video Net to LSTM-VTN.
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Figure 6.52: Structural Similarity Index calculated in adjacent frame pairs over two whole se-
quences stylized by 3 different networks. Original refers to the original, unprocessed frame sequence;
Optical Video Net to VTN; Image net to ITN; LSTM Video Net to LSTM-VTN.
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7 Conclusions

This dissertation describes the work of adapting a generative feed-forward network, trained

to transform an image, into a network trained to consistently process a sequence of video

frames into a temporally coherent output. This resulted in the development of two versions:

the first one guides a network during training and test time using computer vision algorithms

and is inspired by the training procedure described by Ruder et al. [29]; the second one relies

on the network’s architecture to achieve a spatial and temporal understanding of its inputs

without dependence of optical flow during test time.

Considering several experiments performed with the video transformation network de-

pendent on optical flow during test time, it became clear it learns to associate the warped

previous frame and the binary mask with the temporal loss function, hence why it became

dependent on it during test time. There are precedents for this behaviour of generative

networks in literature: a mask taken as input serving as a spatial guide for the network. It is

also interesting how a problem of temporal consistency in frame sequences is interpreted as

a purely spatial problem by the network when it is given as input the mask and previously

stylised frame. Even if the LSTM-video style network produced less than desirable results,

modifying the network’s architecture in order to learn temporal relations between inputs,

and not just spatial relations, should remain a research topic.

The work of this dissertation was submitted to the Eurographics Conference, and is

attached at the end of this document. Feedback is still pending.

7.1 Future Work

Some of the possible improvements to build on the baseline implementations (image trans-

formation network, video transformation network and LSTM-video transformation network)

developed for this thesis include:

• Investigate the classical style loss function, following the thread left by Julesz conjec-
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ture. Whether or not higher order statistics from VGG feature maps improve style

transfer by accurately representing images with arbitrary patterns should be a point

of research. If style transfer can be interpreted as a domain adaptation problem, like

it has been suggested in recent literature, and the style loss as a probabilistic distance

metric - the Maximum Mean Discrepancy - then it should be possible to take the next

logical step and train a generative network with the Maximum Mean Discrepancy with

a characteristic kernel to lessen the distance between all statistical moments and not

just the first two.

• Another area of interest would be to investigate a solution to the apparent incom-

patibility of training a network with a mixture of convolutional layers and LSTM

convolutional layers using the hybrid, spatial and temporal loss function.

• Virtual reality applications usually require a light-weight application, so the need arises

for a smaller stylisation network to fit the physical constraints of mobile devices.

• While it provides fast solution to the problem of estimating the optical flow between

two images, FlowNet 2.0 will sometimes output blatantly wrong results. More accurate

alternatives, like DeepFlow, run on the CPU and take much longer to produce a result,

creating a bottleneck when the stylisation of a sequence of frames is dependent on

optical flow. Even though overcoming this bottleneck is not directly related to the

task of style transfer, it would certainly improve the implementation of video style

transfer.

• Expand video style transfer to generate videos with dynamic texture patterns that

exhibit stationarity in the temporal domain.
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Abstract
Style transfer has become a very fertile field of research ever since neural networks introduced a paradigm shift into what was
once a computer vision problem. Initially employing an iterative optimisation based approach, neural style transfer suffered a
metamorphosis with the addition of offline training generative networks. As faster stylization became a possibility, so did real-
time video style transfer. However, fast style transfer is inherently unstable and has shown limitations in producing temporally
consistent results. In this paper we propose a recursive architecture to stabilise consecutive pairs of stylized video frames using
a convolutional LSTM layer positioned in the latent space’s tail end on a encoder-decoder architecture in order to encode
spatial and temporal dependencies. This way we train a generative network to learn how to maintain perceptual similarities
between pairs of processed images without resorting to optical flow during test time.

CCS Concepts
• Computing methodologies → Neural networks;

1. Introduction

Rendering a content image in the style of a painting is a area of
research that received a second wind in both academia and indus-
try when convolutional neural networks pre-trained on purely dis-
criminatory tasks where found to convey information relevant to
both style [GEB15] and content [MV15] representations in its fea-
ture activations. Gatys et al. [GEB16] devised an iterative optimi-
sation procedure to gradually change an image into a visually ap-
pealing result. Since this is a time consuming process, Johnson et
al. [JAFF16] propose a new generative network architecture to be
trained on the same loss function as [GEB16]. At test time, one
network forward pass will transform the target image in a stylized
output of comparable quality to [GEB16] but orders of magnitude
faster.

Transferring style to every frame of a given video is one of the
many natural extensions of image style transfer. Both online opti-
misation and offline training based approaches have produced visu-
ally appealing results by circumventing the main obstacle in video
style transfer: maintaining temporal consistency between adjacent
frames and preventing flickering effects from appearing. The work
presented on this paper is focused on proposing and validating an
alternative fast, recurrent style transfer algorithm for videos. While
several solutions have been proposed to tackle the problem of fast
video style transfer, optical flow dependence at test time remains
the most difficult bottleneck to overcome. We propose an adapta-
tion to an existing generative network and an accompanying train-
ing protocol, and evaluate our results in qualitative terms against a
state of the art method dependent on optical flow at test time.

2. Related Work

2.1. Image Style Transfer

In this section we offer a succinct overlook of Gatys’ et al. [GEB16]
style transfer algorithm. An iterative image synthesis task, it out-
puts a new image In that matches VGG [SZ14] content and style
feature representations to those from a pair of content and style im-
ages (Ic and Is respectively). We obtain In by finding

argmin
In

βLc(In, Ic)+αLs(In, Is)

where α and β are loss function hyperparameters keeping balance
between style and content; Lc and Ls content reconstruction loss
and style reconstruction loss.

Using the VGG-19 [SZ14] pretrained on ImageNet dataset, F l

being a feature map of size H l ×W l ×Cl (height, width, chan-
nel) from layer l, the content reconstruction loss is defined as the
squared-error loss between feature representations,

Lcontent(Ic, In) = ∑
l∈C

1
ClHlWl

∑
i, j
(F l

i j−Pl
i j)

2 (1)

where F l
i j is the activation of the ith filter at position j in layer l

belonging to a set of content layers C. Style reconstruction loss is
defined as:

Lstyle(Is, In) = ∑
l∈S

1
ClHlWl

∑
i, j
(Gl

i j−Gl
i j)

2 (2)

where the Gram matrix for the lth layer is:

Gl
i j = ∑

k
F l

ikF l
jk (3)
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where Gl
i j is the inner product between the vectorised feature map

i and j in layer l.

2.2. Occlusion and Motion Boundary Detection

In Sundaram et al. [SBK10], a pixel in frame fi can be tracked to
the next frame using the optical flow field w := (u,v)T as

(xi+1,yi+1)
T = (xi,yi)

T +(ut(xi,yi),vt(xi,yi))
T (4)

An occlusion is detected by means of a forward and backward con-
sistency check on optical flow. Unless caused by a flow estimation
error, in a image point that doesn’t suffer occlusion between two
frames, the backward flow vector should have the inverse direction
of the forward flow vector. However, to account for margins of er-
ror, Sundaram et al. [SBK10] established that disocclusions occur
where the following inequality is true:

|w̃+ ŵ|2 ≥ 0.01(|w̃|2 + |ŵ|2)+0.5 (5)

where w = (u,v) is the optical flow in the forward direction (from
frame fi to frame fi+1), ŵ = (û, v̂) is the optical flow in the
backward direction (from frame fi+1 to frame fi), and w̃(x,y) =
w((x,y)+ ŵ(x,y)) is the forward flow warped to the second image.
On the other hand, motion boundaries are detected with the follow-
ing inequation:

|∇(u)|2 + |∇(v)|2 > 0.01|ŵ|2 +0.002 (6)

2.3. Online Optimisation Based Video Style Transfer

Ruder et al. [RDB16] improved Gatys et al. [GEB16] seminal neu-
ral style transfer algorithm by introducing a temporal constraint 7 in
its loss function to prevent discrepancies between adjacent frames.
Optical flow is used to guide the temporal constraint along point
trajectories, allowing for regions in the new frame also present in
the previous one to keep a consistent appearance; and for occluded
areas and motion boundaries to be identified [SBK10] and be ex-
cluded from it. The formula for temporal consistency loss between
frames fi and fi+1 can be seen below,

Ltemporal(I
i+1
n ,ω,c) = 1

D

D

∑
k=1

c(Ii+1
n −ω)2 (7)

where c is a pixel-wise binary mask distinguishing between image
pixels seen in both frames and those belonging to occluded regions,
disoccluded regions and motion boundaries; ωi+1

i (Ii
n) is a warping

function using optical flow estimated between both frames; D is the
size of the image.

2.4. Offline Network Based Video Style Transfer

While fast style transfer improves the algorithm’s efficiency, it loses
flexibility on more than one front: a new model has to be trained
for each new style image and for each new pair of content and style
hyperparameters α and β. Furthermore, fast style transfer is unsta-
ble and is bound to create wildly differing results between pairs
of images with almost imperceptible changes in semantic content
between them, resulting in flickering effects when applied indepen-
dently to each frame. Gupta et al. [GJAFF17] have mathematically
demonstrated why fast style transfer is an unstable process, and that

its instability is proportional to the style Gram matrix trace. Since
it is dependent on the input style, there is a demand for a style
blind, universal solution. Gupta et al. [GJAFF17] proposed solu-
tion is to fine tune a pre-trained style transfer feedforward network
on a video dataset consisting of images, ground truth optical flow
and ground truth occlusion masks, in order to maintain temporal
consistency between adjacent frames.

Their model follows the architecture set by [DSK17] and re-
ceives as input at each training step the previous frame, stylized,
and the current frame, unprocessed. Finally, they perform a pixel-
wise comparison between the stylized input frame and the stylized
output frame, the former being backward warped using optical flow
7.

In another solution to fast video style transfer, a new generative
network architecture and a new recurrent training procedure involv-
ing the same temporal loss function as before, Ruder et al. [RDB18]
achieved results comparable to [GJAFF17]. Their method captures
movement in a more precise manner than [GJAFF17], since it uses
optical flow during test time, and retains a higher degree of tem-
poral consistency, especially in image regions with little semantic
structure.

2.5. Broad Spectrum Video Temporal Consistency

Using neural networks for video processing produces inconsistent
results in areas other than style transfer. Tackling this issue, Lai
et al. [WSLY18] train a network to minimise short term and long
term temporal losses, and perceptual losses, reducing the flickering
problem in processed videos while maintaining perceptual similar-
ity between adjacent frames. Their algorithm does not need optical
flow computation at test time due to a convolutional LSTM layer,
positioned in the architecture’s latent space in order to capture spa-
tial and temporal correlations existing in frame pairs.

3. Architecture

Our major contribution is a recurrent generative network architec-
ture based on [DSK17], with two streams - one for the previous
stylized frame and the other for the current pre-processed frame

Figure 1: Proposed architecture based on with two streams; the
upper one for the current unprocessed frame, and the bottom one
for the previously stylized frame.

c© 2020 The Author(s)
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- consisting in two pairs of downsampling layers, one for each
stream, followed by five residual blocks for the latter stream, a
convolutional LSTM layer to merge both streams, and finally two
nearest-neighbour upsampling layers, each followed by a convo-
lutional layer. Instance normalization and ReLu non-linearities are
present after every convolutional layer. After the last residual block,
our convolutional LSTM layer serves to model spatial and temporal
dependencies in pairs of input images. A schematic for our archi-
tecture can be seen in Figure 1.

3.1. Training and Experimental Results

The dataset used for video training was the Hollywood2 video
dataset [MS09], every scene partitioned into five consecutive
frames. For every pair of consecutive frames, we compute their
forward and backward optical flow, and the corresponding binary
consistency masks following 5 and 6. For a sequence of five frames
from a given scene, we run every image through a pre-trained im-
age stylization network and form image tuples consisting of a styl-
ized frame i and an unprocessed, original frame i+1. Our network
learns to stylize our unprocessed frame in a temporal consistent
manner, to avoid undesirable effects from appearing and further
deviations from the previously stylized frame.

Our video network was trained with a loss function result-
ing from the linear combination of 1, 3 and 7: λcontentLcontent +
λstyleLstyle +λtemporalLtemporal , where λcontent , λstyle and λtemporal
are loss weights. The VGG-16 layers used for the content loss
where relu3_3, and for the style loss relu1_2, relu2_2, relu3_3 and
relu4_3. Other specifications include: an ADAM optimizer with a
learning rate of 0.001, a batch size of 4, and 18000 training itera-
tions.

Henceforth, we shall refer to a stylization network trained on
still images, such as [DSK17], by still net; to a stylization network
trained on image sequences presenting optical flow dependency at
test time, such as [RDB18], by optical video net; and to a stylization
network trained on image sequences and presenting a LSTM layer
in its architecture, by LSTM video net. All proceding evaluations
and tests were conducted on the MPI Sintel dataset [BWSB12].

Figure 2 shows a side by side pair of adjacent frames taken from
the alley 1 sequence [BWSB12] stylized by a still net and by a
LSTM video net. It is patently clear our approach achieves a higher
degree of short term temporal consistency when compared to inde-
pendent, frame to frame stylization on a still net; in other words,
our network was trained to preserve as much as possible from the
previously stylized frame and, in return, short term discrepancies
caused by the appearance and disappearance of new stylization
artefacts have been averted. However, over long frame sequences,
error propagation has a tendency to accumulate. This results in styl-
ization artefacts moving in the scenery while not being constrained
by its general semantic content disposition. We can observe this in
Figure 3.

To evaluate in a more impartial manner how difficult it is to bal-
ance semantic information from an unprocessed frame and its styl-
ized antecedent when training a network with convolutional LSTM
layers, we measured Structural Similarity Indexes [ZWS04] and the
mean squared error for pairs of adjacent frames over four whole

Figure 2: A qualitative comparison of a pair of consecutive frames
stylized by two different networks; the first pair by a LSTM video
net, the last pair by a still net. Red rectangle borders point to areas
of interest.

sequences: the original, unprocessed one; and three sequences pro-
cessed by each of the three networks (still net, optical video net,
LSTM video net). The results for the alley 1 and the ambush 7 se-
quences can be observed in Figures 5 and 4. A LSTM video net dis-
cards relevant semantic information, maintaining perceptual con-
stancy over the entire sequence of frames.

3.2. Conclusions

Optical flow dependency at test time for video stylization networks
remains one of the hardest bottlenecks to overcome. Convolutional
LSTM layers have been sucessfully used to codify temporal and
spatial relations in image sequences, and even to ameliorate consis-
tency in processed videos. In this paper we analysed how it would
impact a video stylization network if we used these layers while
training on video frame sequences. Overall, we conclude that in
its present usage, convolutional LSTM layers don’t provide a valid
substitution for optical flow calculations during test time.

c© 2020 The Author(s)
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Figure 3: Disconnection between overall semantic image content
and stylization effects over a long frame sequence in LSTM. The top
image was processed with the 2nd frame in the alley 1 sequence; the
bottom image with the 47th frame in the same sequence.

Figure 4: Mean squared error calculated in adjacent frame pairs
over two whole sequences stylized by 3 different networks.
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Figure B.1: Frame 7

Figure B.2: Frame 8

Figure B.3: Frame 9

Figure B.4: Alley 2
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Figure B.5: Frame 7

Figure B.6: Frame 8

Figure B.7: Frame 9

Figure B.8: Alley 2, ITN
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Figure B.9: Frame 7

Figure B.10: Frame 8

Figure B.11: Frame 9

Figure B.12: Alley 2, VTN
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Figure B.13: Frame 9

Figure B.14: Frame 20

Figure B.15: Frame 25

Figure B.16: Alley 1
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Figure B.17: Frame 9

Figure B.18: Frame 20

Figure B.19: Frame 25

Figure B.20: Alley 1, ITN
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Figure B.21: Frame 9

Figure B.22: Frame 20

Figure B.23: Frame 25

Figure B.24: Alley 1, VTN
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Figure B.25: Frame 2

Figure B.26: Frame 3

Figure B.27: Frame 4

Figure B.28: Ambush 7
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Figure B.29: Frame 2

Figure B.30: Frame 3

Figure B.31: Frame 4

Figure B.32: Ambush 7, ITN
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Figure B.33: Frame 2

Figure B.34: Frame 3

Figure B.35: Frame 4

Figure B.36: Ambush 7, VTN
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