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damente à minha famı́lia. Por serem o meu porto de abrigo desde sempre quer nos

bons e nos maus momentos. Pela liberdade que me atribuiram desde sempre na

decisão das minhas escolhas, mas sempre apoiando independentemente do resultado

final. Obrigado por tudo! Estamos a chegar ao fim de uma etapa marcante da minha
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Resumo

As protéınas são indispensáveis para os seres vivos e são a base de quase todos os

processos celulares. No entanto, estas macromoléculas raramente actuam sozinhas,

formando as interações protéına-protéına. Dada a sua importância biológica não

é de surpreender que a sua desregulamentação seja uma das principais causas de

vários estados de doença.

A súbita onda de interesse nesta área de estudo motivou o desenvolvimento de

métodos in silico inovadores. Apesar dos avanços óbvios nos últimos anos, a eficácia

destes métodos computacionais permanece questionável. Ainda não existem evidências

suficientes que apoiem o uso apenas de técnicas in silico para prever interações

protéına-protéına ainda não determinadas experimentalmente. Está provado que

uma das principais razões que leva a esta situação é a inexistência de um conjunto

de dados de interações negativas padrão. Contrariamente à grande abundância de

interações positivas dispońıveis publicamente, os exemplos negativos são frequente-

mente gerados artificialmente, culminando em amostras tendenciosas.

Nesta tese de mestrado, é apresentado um novo conjunto de dados imparciais, que

não restringe em demasia a distribuição das interações negativas. Além do novo

conjunto de dados, são também propostos modelos distintos de aprendizagem pro-

funda como uma ferramenta para prever se duas protéınas individuais são capazes

de interagir uma com a outra, usando exclusivamente as sequências completas de

aminoácidos. Os resultados obtidos indicam firmemente que os modelos propostos

são realmente uma ferramenta valiosa para prever interações protéına-protéına, prin-

cipalmente quando comparados com as abordagens existentes, além de destacarem

ainda que existe espaço para melhorias quando implementados em conjuntos de

dados imparciais.

Palavras-chave: Interação Protéına-Protéına, Conjunto de dados, Aprendizagem

profunda, Rede Neuronal Convolucional, Rede Neuronal Completamente Convolu-

cional.
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Abstract

Proteins are indispensable to the living organisms and are the backbone of almost

all the cellular processes. However, these macromolecules rarely act alone, forming

the protein-protein interactions. Given their biological significance it should come

as no surprise that their deregulation is one of the main causes to several disease

states.

The sudden surge of interest in this field of study motivated the development of

innovative in silico methods. Despite the obvious advances in recent years, the ef-

fectiveness of these computational methods remains questionable. There is still not

enough evidence to support the use of just in silico techniques to predict protein-

protein interactions not yet experimentally determined. It is proved that one of the

primary reasons leading to this situation is the non-existence of a ”gold-standard”

negative interactions dataset. Contrary to the high abundance of publicly available

positive interactions, the negative examples are often artificially generated, culmi-

nating in biased samples.

In this master thesis a new unbiased dataset is presented, that does not overly con-

straint the negative interactions distribution. Beyond the novel dataset, also distinct

deep learning models are proposed as a tool to predict whether two individual pro-

teins are capable of interacting with each other, using exclusively the complete raw

amino acid sequences. The obtained results firmly indicate that the proposed mod-

els are actually a valuable tool to predict protein-protein interactions, principally

when compared with the existing approaches, while also highlighting that there is

still some room for improvement when implemented in unbiased datasets.

Keywords: Protein-Protein Interaction, Datasets, Deep Learning, Convolutional

Neural Networks, Fully Convolutional Neural Networks.
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Introduction

1.1 Background

1.1.1 Proteins

The first appearance of the term protein dates back to 1839. The concept was

first introduced by the chemist Gerhardus Johannes Mulder, during his studies on

the composition of animal substances. However, this term was only later defined

as an actual protein by Jöns Jakob Berzelius [1]. The etymology of the word is

still somewhat uncertain, being ascribed to either the Latin word primarius or the

Greek word proteios [2], which translate to ”primary” and ”first place”, respectively,

a fitting description for the molecule that would come to be recognized as one of the

most important.

Fast forwarding to the present and after immense studies conducted over the years,

proteins are now acknowledged as one of the most essential macromolecules of all

living systems. Their presence ranges from the simplest living beings, the bacteria

and viruses, to the more complex, such as the humans. Proteins are highly elaborate

structures composed by long polypeptide chains, which consist of relatively simple

monomeric units, called amino acids, connected with each other by peptide bonds.

The same set of these 20 simple units, arranged in a vast number of ways, is able to

construct the majority of the proteins in all living systems. Every single amino acid

has, in their composition, a carbon atom bonded to a carboxyl and an amino group.

They differ one from the others in their side chains, which vary in their structure,

electric charge and size. The side chains are the structures that grant the amino

acids distinctive chemical and physical properties. Notwithstanding the 20 common

amino acids, there are also two rare amino acids, found in just a few proteins, but

because they are specific to some species and tremendously uncommon they are

often disregarded [3].

1



1. Introduction

Each individual protein is defined by an unique sequence of amino acids, also des-

ignated as the protein primary structure. The actual sequence is genetically en-

coded and posteriorly translated into proteins. This is achieved during the protein

biosynthesis. Firstly, during the transcription phase, the Ribonucleic Acid (RNA)

polymerase creates the strands of messenger Ribonucleic Acid (mRNA) using, as

template, the strands of the Deoxyribonucleic Acid (DNA) encoding a protein. Once

the mRNA is formed and when it reaches the ribossome, the translation phase oc-

curs and each codon, which is a triplet of mRNA nucleotide bases, is decoded into a

specific amino acid, according to the genetic code. This process is repeated until the

whole protein sequence is obtained and the individual amino acids are connected

with the followings. The binding process of the amino acids requires condensa-

tion reactions between the carboxyl group of the current amino acid and the amino

group of the next, in which a water molecule is removed, forming the peptide bonds.

Notwithstanding the primary structure vital importance, that is not their natural

conformation, as they spontaneously adopt 3 Dimensional (3D) structures. The

3D conformation that a protein assumes is determined by several factors, among

which stand out the specific location of each amino acid in the sequence and the

non-covalent interactions triggered [4].

Proteins are crucial biomolecules due to their execution of a vast number of vital

functions within the cells, from participating in cellular structure to promoting chem-

ical reactions and even controlling immune responses. There is a tight relationship

between a protein function and its structure, as a proteins adopts a spatial arrange-

ment that reflects its biological role. However, proteins are not static structures,

they are dynamic molecules, constantly undergoing subtle to dramatic conforma-

tion changes, that can also be provoked by external factors and unexpectedly may

lead to denaturation and consequently loss of function.

1.1.2 Protein-Protein Interactions

Proteins play vital roles in diverse biological processes, however they rarely act

alone, as they produce elaborate complexes with other proteins that allow them to

perform the function they were designed to [5]. A Protein-Protein Interaction (PPI)

is an intentional and non-generic physical interaction between proteins, originated

from a specific biological context, since the interactions depend of a vast number

of factors such as cell cycle, cell type and environmental conditions [6]. During

this interaction an elaborate complex is formed, as a consequence of the association

of the various polypeptide chains involved. There is not an univocal relationship
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1. Introduction

between the proteins of a complex, they are able to create different complexes, when

interacting with different proteins.

The PPIs are classified into different categories, according to their structural and

functional properties [7]. An interaction can be classified by the lifetime of the

complex formed. It is a permanent interaction, if it is stable and the complex is

maintained for a long time, on the contrary, a transient interaction only occurs in

nature for a brief period of time. Depending on the complex assembly they are

categorized either as hetero-oligomer, when composed by distinct proteins, or as

homo-oligomer, if the individuals proteins are identical. Finally, according to their

stability, if its proteins are capable of existing independently as stable structures,

then the complex is classified as non-obligated. On the other hand, in an obligated

complex its proteins are not capable of creating an independent stable structure on

their own.

Initially, it was wrongly proposed by Fischer [8] that the success and efficiency of the

binding process of proteins was solely dependent on the optimal complementarity of

their structures at the binding sites, resulting in a perfect fit. This concept was later

refuted by the observation that individual proteins adopted dynamic structures that

oscillated when exposed to, for example, different physiological temperatures. Pos-

teriorly, it was even proved that upon complex association both proteins presented

structural changes [9]. There are several physical, chemical and environmental fac-

tors that influence the PPIs, but the main contributers for a successful PPI consist

on the combination of non-covalent contacts, such as hydrogen bonds, ionic bonds,

and van der Waals attractions at specific domains [10]. These domains are consid-

ered to be the functional and structural unit of the proteins, ranging of a few to a

hundred amino acids long. Some proteins are composed by a single domain, while,

the majority, is formed by several domains.

1.2 Motivation

Characterizing and identifying the PPIs is a vital step towards the complete under-

standing of how different cells work, since they are essential molecular interactions

comprising the proteome. Just by using simple connections between proteins the

proteome is capable of representing the network of PPIs of a given organism, clearly

identifying the communication between proteins. Despite the still existing challenges

derived from the inherent bias and its incomplete coverage for most of the living sys-

tems [11], a complete proteome comprehension enables the extraction of interaction

3



1. Introduction

subnetworks that simulate disease pathways and allows for a better understanding

of several disease progressions [12].

Given the PPIs biological significance, it should come as no surprise that their dereg-

ulation is one of the main explanations to several disease states. Cervical cancer,

leukemia and neurodegenerative diseases [13] are some of the most reverberating

examples. Recently, due to the inherent relation of aberrant PPIs and homeostasis

corruption, the study of the these interactions as a target to develop novel therapies

has been rising in popularity [14], but nevertheless, the identification and under-

standing of the whole PPIs must be accomplished before thinking about designing

potential inhibitors and modulators of specific PPIs.

This field of study has been under an explosive development and new laboratory

techniques have been established to try to accurately experimentally identify new

PPIs [15]. Despite all the efforts, the time and cost required to perform many of these

methods is unreasonable, adding to this their coverage of the whole PPI network

is still minimal. The expanding availability of public databases regarding PPIs,

conjugated with the existing inefficient techniques, propelled the development of

robust in silico prediction methods, as a complement to the existing approaches, or

even as independent techniques. Notwithstanding the imminent progress, there are

still limitations, which leads to the continuous publication of innovative approaches.

Once the interaction process is completely unraveled, one of the main applications

achievable in the short run with these techniques, consists in developing the ability

to design new synthetic PPIs, that perform desirable functions, by the modification

of a single protein [16]. In the longer run it is expected to create completely new

proteins from scratch that interact with selected candidates [10], stimulating the use

of proteins as drugs to, for example, inhibit another malfunctioning protein.

1.3 Objectives

Technology has revolutionized our world, and also how investigation is done, paving

the way for an exponential development of several computational methods designed

to predict PPIs. These methods base themselves in the use of distinct protein fea-

tures, ranging from protein structure, domain data, protein sequence, evolutionary

information and several other types of protein data. From all these types of data,

the sequence is the most available and reliable one, due to its current bigger coverage

of the whole proteome [17, 18].

The challenge of predicting PPIs with solely the involved protein sequences is inter-
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1. Introduction

esting and still far from completed, so the main ambition of this masters thesis is to

reliably and efficiently predict PPIs, using a deep learning model that only resorts

to the primary structure of the proteins. The work involved can be broken down

into the following steps:

• Assemble a reliable and not biased dataset of PPIs;

• Assess the reliability of the created dataset when compared with benchmark

datasets;

• Explore deep learning algorithms, more specifically convolutional neural net-

works, to predict PPIs, using, exclusively, amino acids sequences;

• Analyze the influence of distinct model architectures, which contrast in the

type of layers used;

• Apply a hyperparameter tuning technique to identify the best parameters com-

bination;

• Evaluate and compare the proposed models, as well as the existing solutions

for this problem.

1.4 Document Structure

The document is organized in 7 chapters. The chapter 1 is the Introduction in

which some biological background is presented to better comprehend what a PPI is

and how important it is. The chapter 2 is the State of the Art, and it displays

several existing techniques that aim to solve the PPI prediction problem, as well

as their advantages and disadvantages. Chapter 3, Data, describes the methods

integrated to create the PPIs datasets and the strategies used to produce numerical

representations of the proteins sequences. In chapter 4, Model design, a compre-

hensive description of the neural networks architectures considered in this work is

introduced. Chapter 5 is Hyperparameters, in which the several hyperparameters

used to create the Deep Learning (DL) models are briefly described. Chapter 6,

Results and Discussion, displays the results obtained, as well as a thorough expla-

natian and framing of why those results were achieved. Finally, chapter 7 is the

Conclusion, in which the main ideas of the work are accentuated and some plausible

future work approaches, that go beyond the confines of this thesis are suggested.

5



1. Introduction

6



2

State of the art

For the experimental determination of the PPIs the two most widely used high-

throughput techniques are: two-hybrid screening and tandem affinity purification

coupled with mass spectometry. The first approach is considered a binary method,

since it determines the direct interactions between protein pairs, while the latter is

regarded as a co-complex method, because it is able to identify interactions between

larger groups of proteins [6]. The two-hybrid screening technique explores the fact

that the transcription factors of most eukaryotic organisms are capable of being split

into two fragments, the activation domain and the DNA binding domain, but still

can get activated and produce a reporter gene if they are indirectly connected. Each

protein is then connected to one of those fragments, in which the protein connected

to the DNA binding domain is the bait and the other the prey. In case they interact

the transcription of the reporter gene is verified, otherwise it will not happen [19].

The gold standard of co-complex methods, the tandem affinity purification coupled

with mass spectometry, is divided into two separate phases as the name suggests.

During the tandem affinity purification phase, an individual protein, tagged as bait,

is used to fish a group of interacting proteins, the preys. Successively, each one of the

prey proteins fished out is separated and posteriorly identified by mass spectometry.

[20].

However, a big fraction of the results obtained from these large-scale methods are

often noisy and contraditory, because of the high false positive and false negative

interaction rates of some techniques [21]. On top of that, their coverage of the whole

proteome is still fairly limited [22], while being excessively time and cost consuming.

All these drawbacks motivated the development of computational methods to bridge

the gaps of experimental methods, with the ultimate goal of progressing towards a

more accurate and efficient prediction of PPIs. The sudden and recent increase of

interest in this field encouraged the flourishment of several successful computational

approaches. The majority of the existing methods can be grouped as simulation-
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based or machine learning-based approaches [23].

Figure 2.1: Conceptual view of the computational methods to predict PPI.

2.1 Simulation-based methods

Determining the structures of the complexes the proteins adopt when they interact

with each other, along with the association mechanisms involved is fundamental.

The simulation-based techniques make an effort to understand the molecular de-

tails of such interactions, formulating the kinetics of the binding process of the two

proteins at the atomic level. However, the major drawbacks of these methods are

their excessive computational cost and the still existing difficulty of obtaining the

atomic-detailed necessary data.

2.1.1 Molecular dynamics simulation

Molecular dynamics (MD) simulation is a computational approach which aspires to

portray the structure and the association dynamics of the complex formed during

a PPI. Ideally, these simulations are capable of characterizing the process behind

the interaction of two separate proteins, by simulating the dynamic behaviour of

the proteins as a function of time. From an initial structure of the system, acquired

from either experimental or comparative techniques, the simulation of the dynamics

evolution of the proteins is achievable, by integrating the acting forces, also called

8
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force fields, which are responsible for the physical movements of the particles. The

incorporated Newton equations calculate two essential parameters of the constantly

changing position of the particles, the acceleration and velocity. From these, the

movement of the particles is numerically deduced by integration. The time step

used is usually very small, normally in the femtoseconds. The small time step

implemented is one of the limiting factors that hinders the use of these techniques

in large scale experiments, due to their necessary massive number of iterations [24].

The accuracy of these methods is strongly dependent on the precision and detail of

the force fields.

Bastianelli et al. [25] proposed a theory to better comprehend the process behind

a small protein of 33 amino acids long, Psalmopeotoxin I (PcFK1), and its capa-

bility to inhibit the growth of Plasmodium falciparum parasites. The hypothesis

that PcFK1 binds and inhibits subtilisin-like serine protease PfSUB1 was examined.

PfSUB1 is a protease responsible for the maturation of parasite proteins required

for a successful invasion of the host erythrocytes. The premise plausibility was

investigated with the help of MD simulations, more specifically with AMBER 9

software. The PcFK1 binding and inhibition capability was a critical finding, since

the Plasmodium falciparum parasites are the main cause of malaria in humans and

are becoming resistant to multiple drugs.

The MD simulation of a desired system can be accomplished with different levels

of detail. An atomic representation is the one that leads to the best results, as it

is the closest approximation to the actual system, however, if the systems are too

complex or require long simulation times, coarse-grained representation is, usually,

a viable choice [26]. This approach is characterized by using groups of atoms as its

fundamental unit, consequently reducing the number of degrees of freedom, leading

to a lower computational cost. On the other hand the results from this type of rep-

resentation should be meticulously examined and questioned, due to its underlying

simplifications. Ravikumar et al. [27] presented a coarse-grained simulation, based

on available crystal structures of individual proteins, that analyzes five possible

complexes and their conformations stabilities.

In spite of all the MD simulation limitations, derived from the several approxima-

tions implemented, they are one of the only tools that provide insight at an atomic

level, even if limited. The detailed resolution provided by this technique, when com-

bined with other computational approaches may produce, in the future, a powerful

algorithm to predict and better understand the mechanism behind PPIs.

9
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2.1.2 Docking strategy

Docking simulations aim to predict the most stable 3D structure of the complex

formed from two unbonded interacting protein structures. The availability of ac-

curate protein structures is a prerequisite, which can be determined by several ex-

perimental methods, such as x-ray crystallography and nuclear magnetic resonance

spectroscopy.

Figure 2.2: Simple illustration of the docking strategy between two proteins, high-
lighting both the search algorithm as well as the scoring function [28].

Docking strategies are divided into two main phases: the search algorithm and

the scoring functions, similar to Figure 2.2. The search algorithm samples all

possible binding orientations and conformations between the proteins. The sampling

procedure considers the proteins as either rigid, semi-flexible or flexible entities [29].

For the rigid approach both proteins are static structures and only the translational

and rotational variables are taken into consideration, a similar approach to the

lock and key model [9], where the binding affinity is proportional to the geometric

fit of both. Meanwhile, a semi-flexible approach considers one of the proteins as

a flexible entity, allowing for conformational changes, while the flexible sampling

recognizes both proteins as flexible structures, which is a closer representation of

the biological binding process, since proteins are not static entities during binding.

10
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The latter is clearly the most computational demanding approach, due to its higher

number of degrees of freedom involved, which is the consequent price to pay for

such a thorough approach. The scoring function is responsible for assigning a score

to every one of the complexes instantiated during the sampling phase, enabling

the discrimination between correctly and incorrectly docked proteins. The score is

influenced by various factors, from the binding free energy, the force-fields, to even

the shape complementarity of the individual proteins. However, in order to avoid the

huge computational cost of calculating a near perfect scoring function, most of the

docking algorithms are satisfied with simplifications. As far as docking algorithms

goes, ZDock [30] and RosettaDock [31] are some of the most popular ones.

Wass et al. [32] revealed that the docking scores are an effective parameter to deter-

mine whether two proteins interact or not, since the scores generated by interacting

pairs are distinguishable from the scores produced by non-interacting pairs. This was

achievable by comparing the docking process of a protein with its previously known

interactors against the docking of the same protein with non-interacting partners.

Matsuzaki et al. [33] established a prediction model that incorporates a rigid sam-

pling docking technique and takes as input a set of 3D structures of proteins and

predicts, out of all the binary combinations, the ones that integrate possible pairs,

after eliminating the energetically unlikely interactions. For the docking technique

two possible algorithms were explored, ZDock and MEGADOCK, since the main

difference between them is the scoring function incorporated, after all ZDock uses

a more complex, but more time consuming function. In this specific approach, the

prediction model was tested with data from a bacterial chemotaxis signaling path-

way.

Dong et al. [34] analyzed the prediction ability of a docking algorithm by evaluating

all the attainable binary pairs that are created from the high quality structures avail-

able for the Arabidopsis. The top ranked interactions were, posteriorly analyzed in

order to assess which matched the experimentally determined ones available in pub-

lic data sets. The docking algorithm implemented was HEX, which incorporates a

rigid sampling technique. Finally as a validation tool, yeast two-hybrid experiments

were applied in randomly chosen pairs to vindicate the reliability and accuracy of

the top ranked interactions.

The incorporation of structure information to predict PPIs makes a lot of sense,

however the current lack of information and its excessive computational cost makes

these strategies unreliable. Much more so, when integrated in large scale experi-

ments to predict PPIs. This limits the investigators to implement simple strategies,
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predominantly rigid body sampling techniques, which do not perfectly replicate the

biological process, leading to biased results towards proteins with perfect geometric

complementarity.

2.1.3 Template-based modeling

With the intention of decreasing the computational cost of the docking strategies,

template-based approaches were developed. The main difference between the two

techniques is that in a docking strategy both proteins are initially unbonded and

their assembled structure is predicted, through an extensive search of different orien-

tations. Meanwhile, in a template-based approach the unknown complex is derived

from related protein complexes whose structure has already been experimentally

determined [28]. This technique is based on the idea that evolutionary structure

information can be used to model protein-protein complexes, due to the structure

and sequence conservation between complexes, as homologous proteins pairs present

similar binding interfaces.

Figure 2.3: Schematic illustration of the template-based modeling strategy be-
tween two proteins [28].

The general methodology behind this strategy consists on preparing a library of ap-

propriate templates, aligning the target with the templates according to a similarity

12
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measure, refining and finally scoring [28]. This approach depends heavily on the

available templates.

In spite of its lighter computational cost, this technique has seen little to no use

when the goal is to predict PPIs. During the assembling process of this technique

there is a complete disregard towards any energy and flexibility assessment [35].

The recurring lack of efficient full-length complex structure data, as well as the not

straightforward and still to be unveiled correlation between sequence similarity and

folding similarity, leads to suspicious results and a low implementation on large-

scale studies. There are even reports that most of the PPIs are not preserved

by homology, unless ridiculous values of similarity are achieved [36], because after

all the interactions do depend on several factors. Template-based modeling is a

very promising technique, however it is still waiting for advances concerning a more

complete coverage of the proteome and for more confirmations of its reliability.

2.2 Machine learning approaches

New PPIs can be predicted using physical and chemical information of already

experimentally established PPIs. The growth of PPIs data availability led to its im-

plementation in computational algorithms, that forge mathematical models based

on this data, which translate their generalization ability. These methods are able

to extrapolate crucial patterns from the available data, which will assist towards

the complete comprehension of the proteome of an organism, by filling the cur-

rent knowledge gaps. The underlying goal of Machine Learning (ML) is to predict

whether new protein pairs interact or not, based on the analysis of previously identi-

fied PPIs data and, contrary to the techniques previously mentioned, are large-scale

compatible.

Machine learning techniques can be grouped into two categories: supervised and

unsupervised [37]. Supervised learning learns a mathematical function by mapping

an input to a labeled output, this characteristic allows it to predict the output to

different new inputs. On the other hand, unsupervised learning is responsible for

finding hidden patterns in unlabelled data, ideally modeling distinguishable clusters

over the inputs. The data structure of the PPIs currently available, in which almost

every pair of proteins is assigned a binary class that determines whether they interact

or not, leads to the inevitable implementation, for the most part, of supervised

learning algorithms.

The most relevant ML techniques implemented in this area can be divided, according
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to their mapping scheme [38], in: Support Vector Machine (SVM), Random Forest

(RF) and Neural networks.

2.2.1 Random Forest

RF is a an ensemble learning classification algorithm, as it consists of a combination

of individual decision trees. Each decision tree is grown, without pruning, from a

random set of the training data, where several decision splits take place, based on a

random set of features. These 2 random factors force a higher variation and lower

correlation between decision trees. The RF class prediction is dependent on the

output of the decision trees, since it combines the prediction of every single one,

by using the mode, the most voted class by the trees. This technique is deeply

associated with the wisdom of the crowds concept, since a single decision tree is

easily prone to overfit, but a combination of those protect each other from their

individual disadvantages.

Figure 2.4: Schematic representation of the mechanism behind RF.

Chen and Liu [39] proposed a domain-based RF classsifier. In this approach each

protein pair is represented as a fixed size vector with a length equal to the number

of unique domains in the data set. Every single element of the vector represents 3

different possibilities: whether a specific domain does not exist in the protein pair,

only one of the proteins contain it or if it is present in both. Nevertheless the RF

algorithm implemented incorporates a slight twist of the random feature subspace
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selection. Given that each domain is not equally determinant to the pair interac-

tion, a selection probability is assigned to each domain according to its presence on

proteins of the data set considered.

You et al. [40] established a novel technique for protein representation, the Multi-

scale Local Descriptor. The results of this technique were used as the input of a

RF algorithm in PPI prediction problem. This technique extracts features by taking

into consideration that the interactions are materialized in continuous segments with

various lengths in the protein sequence.

2.2.2 Support vector machine

SVM is a classification algorithm capable of transforming the input features space

into a higher-dimensional one, where a linear separating high-dimension surface is

built [41]. This separating surface is the hyper-plane and maximizes the distance

between data points of any class, by simultaneously minimizing the true and em-

pirical error rate. As a golden rule, usually, the bigger the margin between data

points of contrasting classes, the better is the generalization power of the model. In

some cases it is impossible to linearly separate the data points, according to their

classes, in the original input space, thus the high-dimensional mapping that makes

the separation task easier. This mapping process is called the kernel trick, where a

non-linear function, the kernel function, is implemented [42].

Computational methods based on structure information of the protein complexes

are not exclusively docking and template-based algorithms, several SVM techniques

have also incorporated this type of information. Hue et al. [43] proposed a large-

scale compatible SVM model capable of distinguishing between interacting and non-

interacting protein pairs. For every pair, the corresponding structural alignment

algorithms were computed. The SVM model was compared with other eight ML

methods, outperforming every single one of them. A downfall of the model estab-

lished is that during its data generation phase, every protein pair referred as an

interacting one with unknown structures was replaced by a proxy pair of homologs

with determined structures.

As mentioned before, there are various types of protein data available that can be

integrated in SVM models. Chatterjee et al. [44] presented a SVM technique that

assimilates domain information to predict whether two proteins interact or not. The

suggested approach is characterized by not disregarding the fact that a single protein

can be composed by one or more domains, whereas most of the similar approaches

only consider single-domain proteins. From all the domain combinations possible two
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crucial features were calculated: domain frequency value and protein pair interaction

affinity value. The first one is based on the assumption that the higher the number

of times that a domain appears in distinct protein pairs, the higher is the likelihood

of a protein pair containing that domain to interact. The latter is based on a similar

assumption, but considers the occurrence of distinct domain pairs instead of single

domains, since there is a higher chance of two domains to interact if there is a high

frequency of that specific combination in interacting pairs. The multiple domains

considerated in this approach are a huge upgrade, as they are a closer representation

of the protein reality and allow for a smoother implementation in high-throughput

studies of the whole proteome.

Figure 2.5: Basic demonstration of the SVM algorithm.

Bandyopadhyay and Mallick [45] established an innovative selection of features to

represent a protein pair in accordance with their annotated Gene Ontology (GO)

terms. GO is a vocabulary of comprehensive terms that comprises knowledge about

cellular localization, associated molecular functions and participation on biological

processes of a specific protein. Every single term has a different weight, according

to its significance for a PPI. A vector, for every protein pair, with the novel GO

based features representation was computed and provided to a SVM model to train
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it. The performance of the algorithm was tested in several data sets of different

species.

Even evolutionary information has been integrated in PPIs prediction models. Craig

and Liao [46] developed a SVM model based on phylogenetic protein profiles. A phy-

logenetic protein profile is a binary vector that encodes the presence or the absence

of a protein in specific organisms, with, respectively, ones or zeros. Functionally

linked protein tend to either be eliminated or preserved in different species. This

method is based on the assumption that proteins with similar phylogenetic trees,

which portrays the whole picture of the phylogenetic history of a protein in several

genomes, have higher chances of interacting. Every phylogenetic tree can be con-

verted in a distance matrix, using distance metrics and then transformed into fixed

size vectors that once concatenated comprise the proteins pairs.

Most of the types of protein data incorporated in the models presented so far are

scarce, as a consequence of the still incomplete coverage of the whole proteome.

On the other hand, protein sequences are an exception, as a method based solely

on this data may be virtually considered applicable to all proteins. Guo et al. [47]

assumed that the data extracted from proteins sequences is sufficient to predict PPIs.

Proteins are not displayed as continuous sequences in nature, thanks to the several

levels of foldings they can undergo. Due to their folded conformation, binding sites

between interacting proteins may occur in discontinuous segments of the sequence.

The proposed method incorporates SVM and Auto Covariance (AC), which is a

protein representation technique that takes into account information between distant

amino acids in the sequence. To each protein was assigned an AC vector and the

protein pair was represented by the concatenation of both. This study came to

become a reference to any sequence based algorithm, due to its groundbreaking

results at the time and even for its dataset, that is now considered one of the staple

benchmarks.

Shen et al. [48] also presented a SVM algorithm, but now incorporated with a

conjoint triad feature extraction technique that assigned every single one of the 20

amino acids into one of seven classes, which group the amino acids according to their

physicochemical properties. Once the substitution took place, any three continuous

amino acids were considered as a unit and its frequency a feature.

2.2.3 Neural Networks

Typical ML techniques, like the ones mentioned in Sections 2.2.1 and 2.2.2, are

characterized by combining elaborate descriptors algorithms to gather crucial in-
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formation, from raw data. These elaborate techniques end in simple vector repre-

sentations. However, DL, which is a subfield of ML, is computationally capable of

processing data in its raw form and from it discover essential patterns for the clas-

sification task [49]. DL techniques, apart from their classification capability, also

incorporate an automatic features extraction tool, that induce a comprehensive big

demand for training data, in order to accomplish their laborious tasks.

DL methods are based on a layered structure of Artificial Neural Networks (ANN),

which is a computational algorithm inspired by the way the brain of the animals

processes information and therefore presents a theoretically more capable learning

process than the conventional ML methods. The brain is composed by several

neurons, which are the fundamental units of the nervous system and are responsible

for receiving signals, processing them and if needed signalling other neurons. The

neurons are interconnected in elaborate linked networks, through synapses, which

allow for the transmission of signals between neurons [50]. ANNs strive to simulate

the brain organization and learn in a humanlike manner. ANNs are composed by

artificial neurons and the synapses are neither more nor less than just weights that

represent the relative importance and provide connections between the output of

a neuron and the input of another. Similar to the human brain, where different

sections of the brain are responsible for processing different parts of information,

the ANNs comprise several layers that are responsible for distinct processing tasks:

input, hidden and output layers.

Figure 2.6: A representative scheme of an ANN and the mechanism behind a
neuron.
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In an ANN each element of the input is fed to a neuron of the input layer, which are

then connected to the hidden layer. It is important to highlight that a given neuron

may have multiple output and input connections. To each connection a weight is

assigned and the input of a specific neuron can be defined as the weighted sum of

the outputs given by the predecessor connected neurons, as it is demonstrated in

Figure 2.6. Every single neuron has a bias term associated with it and adds it to

the input calculated. Once the weighted sum is calculated and the bias added, the

resulting values of different neurons may vary a lot, so it is necessary to pass the

values through an activation function that is capable of limiting their range and

determining whether a particular neuron is activated or not. The activated neurons

establish connections with the following layer. This process is repeated and in this

manner the data is propagated through the network, in an operation called forward

propagation.

During the training process, along with the input, the output is also fed to the ANN

and the predicted output is compared with the correct one to compute the error.

The amplitude of the error indicates performance-wise how far the ANN still is and

also determines the direction and the magnitude of change needed to reduce the

error. This information is then propagated backwards, in what is called the back-

propagation, and the weights of the connections are adjusted. A cycle of forward

propagation and backpropagation is iteratively performed with various inputs until

the error computed by the neural network is minimum. ANNs can include multi-

ple hidden layers, depending on the complexity of the problem, which allows the

neural network to get deeper and deeper and express more complex features. The

architectures with multiple hidden layers are called deep neural networks [51].

ANNs are the foundation of DL and they motivated the development of distinct

neural networks, according to the various architectures and types of hidden layers

that are implemented. Wang et al. [52] established a deep neural network coupled

with a novel protein representation that is capable of taking in consideration that

proteins are folded structures and their binding sites might depend on spatially

close, but at the same time sequentially distant amino acids in the protein sequences.

They implemented a fully connected neural network and, as the name suggests, it

is characterized by connecting every single neuron of a layer to every neuron of the

following one. Different representations were tested to assess which produced the

best results.

Zhang et al. [53] proposed a model, that, contrary to most of the existing methods,

attempted to incorporate several sequence-based protein representations techniques.
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For each representation technique an individual fully connected neural network was

built and trained. Afterwards, the output of multiple neural networks was aggre-

gated and fed to an ensemble fully connected neural network with 2 hidden layers.

Sun et al. [54] presented a deep neural network model, where an autoencoder is

implemented to extract low-level features from protein sequences. Those features are

later fed to a single output layer to predict PPIs. An autoencoder is an unsupervised

learning algorithm responsible for feature reduction and reconstruction. It comprises

an encoding phase, where the input is compressed into low-dimensional and low-noise

features, followed by a decoding phase, where the original input is restored and the

neural network architecture is symmetrical to the encoding phase. The autoencoder

requires an individual training phase, where the output fed to the model is equal to

the input and it tries to learn efficient ways to encode the data. Once the optimal

parameters are determined and the output is as close as possible to the input, the

feature reduction capability of the encoding phase is taken advantage of and is used

to obtain the more relevant features.

Figure 2.7: A representative scheme of the local receptive field for one neuron

Despite their inherent differences, DL and ML techniques have been combined to

create methods capable of predicting PPIs. Wang et al. [55] established a model that

consists of a Convolution Neural Network (CNN) as the deep feature extractor and

is topped off with an ensemble classifier. a CNN is a special kind of neural network,

inspired in the organization of the animal visual cortex and is able to comprehend

locally correlated data. CNN takes a different approach from fully connected neural

networks, as only a small region of the neurons are connected to one neuron of the

following layer, as illustrated in Figure 2.7. This small region is the local receptive

field for the one neuron it is connected to. The local receptive field is then slid across

the entire input and connected to a different neuron of the following layer, which

makes it capable of perceiving complex patterns using small regions.
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3.1 Main PPI datasets

DL techniques are increasingly cementing their place as the main classification meth-

ods to predict PPIs, due to their revolutionary results coupled with the significant

improvement of computational power, since the training of such algorithms is ex-

tensive and laborious. DL scales with the amount of data available, as more data

is fed to the algorithm, more accurately it learns to distinguish between the desired

classes, naturally increasing its performance. The number of PPI data available

is not considered an obstacle, given that a vast number of PPIs have been experi-

mentally determined and are documented in several databases, such as IntAct [56],

BioGRID [57], DIP [58] and STRING [59].

Several algorithms were developed to predict PPIs, which led to the publication of

several independent PPIs datasets. This high number of distinct datasets hinders

the comparison task between state-of-the-art algorithms, considering that different

algorithms trained in different datasets, develop distinct learning abilities. The per-

formance of a model is also heavily dependent on the quality of the PPIs datasets

incorporated. If the algorithms are built upon low-quality datasets, it is only ex-

pected their predictive capabilities are somewhat debatable, even if they are capable

of achieving groundbreaking results on these low-quality datasets. Park [60] high-

lighted some state-of-the-art algorithms that perform very differently when tested

in separated datasets. Depending on its building process some of the benchmark

datasets present a biased distribution of PPIs [61], which artificially inflates the

performance of the models developed.

Theoretically, the perfect dataset includes experimentally determined interacting

protein pairs, also called positive interaction, as well as experimentally proved non-

interacting protein pairs, the negative interactions. However, databases describing

experimentally determined negative interactions are practically non-existent, given
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that, these are usually considered failed experiments and are then left out of the

public databases. Not disregarding the significance of the positive interactions, but

the negative interactions are also essential, not only to guarantee that the ML algo-

rithms are not misled during their learning phase, but also to avoid the repetition of

experiments to evaluate whether two already tested proteins interact or not, which,

inevitably, accelerates the prediction process by focusing resources on proteins with

higher chances of interacting. Regardless, in order to create a biological representa-

tive and reliable dataset that precisely simulates the scenario of a protein in a cell

and is large-scale compatible, negative interactions have then to be computationally

generated.

There are different computational techniques to generate negative interactions. Tra-

buco et al. [62] established a technique that identifies, using viability analysis, the

negative interactions that might have been tested in two-hybrid screens but not

documented. The process consists on gathering positive interactions derived from

two-hybrid experiments and classifying each protein as viable baits (VB), if a pro-

tein behaves as a bait in at least one interaction, and as viable preys (VP) if it

behaves as a prey in at least one interaction. For the cases where a protein only acts

as a bait in all the interactions it is present in, they do not stop being classified as

VB but are further stratified and subclassified in viable bait only (VBO) proteins, a

similar explanation is used for the viable prey only proteins (VPO). Afterwards any

connection in their graph representation between a VP and a VB that is not already

determined as a positive interaction is then considered a negative interaction. Links

between VBO and VPO are settled as untested and are not integrated in datasets.

Figure 3.1: Demonstration of the positive, negative and untested interactions. The
VBP acronym represents simultaneously a viable prey or a viable bait protein [62].

Although the improvements achieved with this technique, it is also faulty. First
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of all, because of the incompleteness of most proteomes it does not take into ac-

count several possible combinations. Additionally, in BioGrid, which will be the

selected database from which the positive interactions will be collected, there are 18

distinct experimental techniques to identify physical PPIs. From all the available

interactions, only around 10% are determined with two-hybrid experiments, which

subsequently severely limits the generation of negative interactions.

More recently, Zhang et al. [63] proposed two techniques to computationally pro-

duce the negative interactions. The first one is based on sequence similarity, in

which the most dissimilar protein pairs are selected as non-interacting pairs. The

basic assumption behind this technique is that considering a validated PPI between

A and B, then if a protein C is dissimilar to A it has a very low probability of

interacting with B. However, sequence similarity alone is not solid enough to de-

fine a protein pair as interacting or not, because sequentially similar proteins may

adopt completely different structures. There are also evidences [36] that question

the viability of this approach, since PPIs are rarely conserved. The second approach

defined by Zhang et al. [63] defends that the farther the proteins are in a PPI graph

representation, the more likely they are to not interact. This technique is based

on the triadic closure principle, a principle originated from social network analy-

sis, which comprises neighborhood based similarity and states that proteins that

share multiple interactors have a higher chance of interacting, just like individuals

with multiple common friends are very likely to know each other very well and to

get along. Nonetheless, a study [64] demonstrated that this principle fails for most

proteins.

Most of the existing datasets incorporate an easy to understand non co-localization

technique to generate the negative examples, which conceives as a negative inter-

action a random protein pair whose individual proteins are associated with distinct

cellular localization annotations [65]. The technique is founded on the premise that

proteins discovered in different sub-cellular compartments are unlikely to interact,

due to the obvious physical constraints. Nevertheless, this non co-localization ap-

proach can lead to biased representations of the proteome and, consequently, over-

optimistic estimates of the accuracy [66].

Some of the work developed in this master thesis included the exploration of a

novel technique to generate unbiased negative examples, which allows the creation

of an unbiased dataset that closely resembles the distribution of the proteome of an

organism. Contrary to some of the existent approaches that are faced with inherent

limitations and strongly restrict the distribution of the negative interactions on the
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dataset. In order to compare the reliability of the different datasets considered and

their influence on the robustness of the prediction tasks, an unbiased dataset was

built from scratch. Also, two benchmark datasets [67, 68] were analyzed.

3.1.1 Unbiased dataset

A careful and thorough approach was vital to create a brand new dataset, as the

learning potential of a DL and ML techniques is strongly dependent on the quality

of the dataset. In order to build a well grounded, biological representative dataset

not only the negative interactions, but also the positive ones have to be meticulously

chosen, since a fraction of the experimentally determined interactions are reported

false positives [54], as a consequence of errors and bias of some experimental methods

[69].

BioGRID is a database comprised of curated interactions from literature. All the

human multi-validated physical PPIs available in BioGRID were selected. Physi-

cal interactions are obtained through laboratory techniques that are specialized in

determining whether exists a direct physical binding between proteins or not. The

interactions considered for the unbiased dataset were only the multi-validated ones,

which consist of interactions simultaneously published in several publications and

identified by various experimental systems. This multi-validation scan is an essential

step to limit the implementation of possible false positives, since an interaction that

is determined by multiple publications and experimental techniques, shows a higher

coherence and a higher probability of actually being a true positive. In the end a

dataset solely composed by multi-validated PPIs has a extremely low contamination

potential with plausible false positives.

Considering an interacting protein pair composed by a protein A and a protein B

it can simultaneously be documented in several papers, as a result of the different

techniques used to detect it. However, the interaction itself can either be published

as A interacts with B or B interacts with A, according to the way the experimental

technique is set up. This way of documenting the interactions grants directionality

to them. For the classification task the directionality is completely irrelevant and

can be even considered as noise. For this reason duplicate interactions and reciprocal

interactions were identified and removed from the ones gathered from BioGRID.

Beyond the already described techniques to generate negative interactions, along

with the non co-localization technique, another very popular approach consists on

randomly sampling negative protein pairs [66]. However, the whole proteome cov-

erage of the human is still not complete, therefore simply randomly sampling two
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distinct proteins and consider them as a negative interaction if the pair is not already

a positive interaction may lead to the contamination of the negative set with some

potential positive interactions, that have not yet been experimentally determined.

One can say that since the ratio of negative to positive interactions is expected to be

disproportionate, in the hundreds to thousands ratio [70], the actual contamination

is minimal.

Figure 3.2: A simple simulation of the negative sampling method.

Nonetheless, the main goal behind the creation of this unbiased dataset was to build

a biological representative dataset with the smallest contamination percentage pos-

sible. To achieve that, the negative random sampling method was implemented

with a slight twist. The approach consists on identifying the unique proteins from

the multi-validated positive interactions and put them in the set S of proteins. Af-

terwards, two distinct proteins were randomly sampled from S. Finally, the pair

sampled was compared with the multi-validated and not multi-validated positive

interactions and if it was not already labeled as one of them, it was considered

a new negative interaction. By only sampling negative pairs from S, we guaran-

tee that almost every protein considered is present in at least a positive and in a

negative interaction, which contributes to a sparser distribution of the interactions.

This simple twist yielded an even smaller contamination of the negative set, if even

existent, as protein pairs with the slight evidence of potentially being considered
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positives interactions were taken into account and not constituted a negative inter-

action. The process is briefly illustrated in Figure 3.2. This method presents an

unbiased estimate of the true distribution of the negative interactions on the whole

proteome.

Deciphering the number of negative interactions that should be generated, was an-

other concern that had to be clarified. In other words, it consisted in defying if

the dataset should have been balanced or unbalanced to replicate the ratio of neg-

ative to positive interactions of the whole proteome. Notwithstanding what has

just been said the negative interactions are randomly sampled and not experimen-

tally determined, whereas the multi-validated positive interactions can be considered

high-quality data. Additionally, there is still no consensus on the ratio of negative

to positive interactions, then the wisest choice seemed to create a balanced dataset.

In Table 3.1 is presented a synopsis of the unique proteins and PPIs of each type

of interactions.

Table 3.1: Dimensions of the unbiased dataset

Positive data Negative data

Number of unique
proteins

8073 7205

Number of unique
PPIs

36236 36236

3.1.2 Pan et al. dataset

It is a benchmark dataset exclusively composed by human PPIs, whose positive

interactions were obtained from the Human Protein References Database [71] and

all the replicate interactions and self-interactions were identified and removed from

it. Afterwards the negative interactions were computationally generated by the non

co-localization method, where two randomly paired proteins found on distinct sub-

cellular compartments are considered as non-interacting, if that pair is not identified

in the positive data. Fistly, various human proteins were gathered from UniProt

database [72] to produce the negative examples, which comprehended 6 individual

cellular localizations, namely the cytoplasm, nucleus, endoplasmic reticulum, golgi

apparatus, lysosome, and mitochondrion. Proteins with dubious cellular locations,

as well as proteins with multiple locations were filtered out. Moreover, fragment

annotated proteins and fifty or less amino acids long proteins were removed. Finally,

from this set of proteins the negative interactions were created.
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Table 3.2: Dimensions of the Pan et al. dataset

Positive data Negative data

Number of unique
proteins

9476 2184

Number of unique
PPIs

36630 36480

3.1.3 Du et al. dataset

To explore if biased datasets from different organisms actually lead to different

performances a benchmark Saccharomyces cerevisiae PPIs dataset was examined.

The positive data was gathered from the Database of Interacting Proteins [73] and

was further manipulated, where interactions with at least one of the proteins fifty or

less amino acids long were removed. Just as it was described in the previous dataset,

in Section 3.1.2, the selection of negative interactions was also accomplished with

the non co-localization method. The proteins from which the random pairs were

sampled were equally obtained from UniProt, but a more recent version of it. An

approximate ratio of 3:1 negative interactions to positive interactions was initially

obtained with all the negative data generated, however the desired ratio mentioned

by the original work was 1:1, so from the whole negative data an equal amount of

pairs was randomly selected, Table 3.3.

Table 3.3: Dimensions of the Du et al. dataset

Positive data Negative data

Number of unique
proteins

4382 1908

Number of unique
PPIs

17257 17257

3.2 Protein data

As every other sequence-based DL technique, once the protein pairs data is deter-

mined, it is fundamental to map each protein to its respective sequence. For this

task the Uniprot [72] was the database of choice. In Uniprot the protein sequences

are formed by different combinations of 24 characters, which correspond to the stan-

dard 20 amino acids plus 4 different characters for rare and still to determine amino

acids. These special 4 characters are very rarely incorporated in sequences and to
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avoid any possible bias of the classifier towards the presence of these, every protein

with any of these 4 characters was removed.

The main purpose of our model is to integrate the complete raw sequence of amino

acids in the DL model. The DL model itself expects a fixed size input, regardless

of the varying lengths of the protein sequences. A frequent work around to this

problem is assigning a common length, usually the length of the longest sequence,

and pad every sequence to the maximum length. From observing Figure 3.3 it

is easily concluded that the sparse distribution of the sequences length is prone to

create noisy vectors, considering the extreme variation between the sequence lengths.

Adopting the maximum length as the common length could have even led to an

excessive computational cost, as every input of the model would be unnecessarily

big. In this regard, we defined the common length of the vectors as the value

obtained by the 90 percentile of the distribution of the proteins length of the main

datasets [74]. Any protein longer than the determined value was removed from the

dataset, and the remaining ones were zero padded to the determined value. Proteins

smaller than fifty amino acids long were also removed [68, 67].

In Figure 3.3 the common length for every main dataset is demonstrated, as well

as the length of the bigger protein in that specific dataset. The proteins of the

unbiased dataset, Pan et al. dataset and the Du et al. dataset were zero padded to

the respective lengths of 1231, 1141 and 1030.

3.3 Data representation

DL methods expect a fixed size vectorized numeric representation of the data, in or-

der to be able to implement their intrinsic operations on data. Different descriptors

highlight different properties of protein sequences and produce simpler representa-

tions of a protein, by encapsulating vital properties of the sequence. Due to their

aggregative capability, some information is lost, as they often disregard the amino

acids order in the whole sequence. Furthermore, DL techniques have incorporated

features extractors in them, so feeding them the complete protein sequence, where

every amino acid is treated as an individual feature, can be beneficial. They are the

ones that decide, from the original complete input, which amino acids are relevant

for the prediction task and which not. An encoding technique that preserves the raw

input sequence and is capable of transforming categorical data in numerical data is

crucial and may be a game changer. The similarities between the desire to encode

complete proteins sequences and the encoding techniques used in Natural Language
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(a)

(b)

(c)

Figure 3.3: Distribution of the sequence length for the three main datasets con-
sidered. (a) unbiased dataset , (b) Pan et al. and (c) Du et al. dataset.
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Processing inspired the implementation of one-hot encoding.

Table 3.4: Amino acids substitution table

Integer Amino acid Integer Amino acid

1 Cys (C) 11 Val (V)
2 Glu (E) 12 Met (M)
3 Leu (L) 13 His (H)
4 Thr (T) 14 Phe (F)
5 Ile (I) 15 Tyr (Y)
6 Pro (P) 16 Gln (Q)
7 Ala (A) 17 Asn (N)
8 Trp (W) 18 Asp (D)
9 Arg (R) 19 Ser (S)
10 Gly (G) 20 Lys (K)

Before applying the one-hot encoding it was necessary to produce a numerical vector

from the amino acids sequence. That was possible by applying the integer encoding

technique, where every single character of the sequence is transformed in a number

according to Table 3.4. This representation technique alone is insufficient, as it

may lead the DL model to recognize the order or hierarchy between different amino

acids, given the natural ordered relationship between integers. When encoding a

complete protein sequence there is no sense of superiority between amino acids, as

the different amino acids are nominal variables and not ordinal variables. So, to

avoid this scenario, after obtaining an integer sequence, the actual one-hot encoding

technique was implemented, where every integer corresponds to a vector of zeros,

except for the bit representing that amino acid that is set to 1. This encoding

technique has recently been rising in popularity between protein-based DL models

[75, 76, 74].

Figure 3.4: An example of the one-hot encoding technique
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3.4 Datasets Splitting

DL algorithms need training data, in order to constantly update its parameters.

The training data is used to fit the model and learn from it. To evaluate the final

performance an uncorrelated set of data must be fed to the model, which is the

testing data. If that does not happen, a model is tested in data that it already

saw and defined its parameters around, which leads to a biased estimate of the

performance. The ultimate goal, when developing a DL model, is to make it able to

generalize and perform similarly in different sets of new data. When a model is not

capable to develop its generalizability, it performs perfectly on the training data,

but once new data is fed to it its performance rapidly declines, due to overfit.

After the elimination of some proteins, there was a consequent elimination of inter-

actions where at least one of its proteins were not mapped to its respective sequence.

Afterwards, all the datasets presented were split in a training set and testing set,

separately. The resulting main datasets splitting dimensions are described in Table

3.5.

Table 3.5: Number of interactions of the training and testing set for the main
datasets.

Unbiased Pan et al. Du et al.
dataset dataset dataset

Training positive data 25365 19860 9756
Training negative data 25365 21821 9744
Testing positive data 10871 8464 4173
Testing negative data 10871 9400 4185
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Model design

4.1 Layers

The layers are the core building blocks of the neural networks and can be interpreted

as the group of neurons operating at a specific depth. The first layer of a DL

model is the input layer and it incorporates the input data, in which every neuron

is assigned an element of the input. The last layer is the output layer and for

binary classification problems it is, generally, simply composed by an individual

neuron. The variability of the neural networks lies in the hidden layers and their

types, which have the inherent goal of minimizing a cost function by learning more

adequate representations of the input. The hidden layers considered in this work are

the convolutional, pooling, fully connected and flatten layers, which will be further

described in the following subsections.

4.1.1 Convolutional layers

These are the core layers of the proposed architectures and from these it is possi-

ble to detect the high-level distinguishing features, due to their ability to capture

the spatial dependencies of the protein sequences. The convolutional layers were

developed to handle images and are inspired by the organization of the visual cor-

tex, in which individual neurons respond to stimulus of limited regions of the visual

field. This restricted area is the local receptive field. The neurons of this layer are

connected only to a local region of the neurons of the previous layer, thence the

inherent local connectivity. The convolutional layers incorporate a set of learnable

filters, and their dimensions define the range of the local receptive field. Every single

one of these filters is slid across the width and height of the whole input and the

dot product between the weights of the filter and the input is computed. The stride

is the parameter that defines the size of the steps a filter is iteratively slid across

the input. Each filter activates to a distinct feature and it is the systematic sliding
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process of one filter across the whole input that leads to the consistent detection of a

specific feature anywhere in the input, this property is referred to as translation in-

variance. The 2 Dimensional (2D) array output, resulting from the filter translation

and the convolution operation is the feature map of a specific feature. Considering

that the convolutional layers integrate a set of filters, they are capable of learning

multiple features in parallel.

Figure 4.1: Illustration of the mechanisms behind the convolutional layer, with a
specific stride, S, and padding, P. For a 3 × 3 × 3 input and two filters of 2 × 2 × 3
dimensions the output obtained, for the displayed stride and no padding is a 2×2×2
output.

The filter and its dimensions are probably the most significant elements of the

convolutional layers. Generally, a convolutional filter is referred to only by its

width and height, however depending on the input the filters also have depth.

Considering a 3D input of dimensions width × height × depth a filter will have

filter size× filter size× depth as its dimensions. The filter size is defined by the
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user and it establishes the area of the local receptive field, on the other hand the

depth of the filter always matches the depth of the input. In Figure 4.1 there is an

example of the convolution operation. Every depth slice of the input convolves with

the corresponding depth slice of the filter and then their output is combined in a

specific feature map.

Another parameter that influences the output of a convolutional layer is the padding.

The padding allows to control the size of the output, since it avoids the inherent

dimensionality reduction of the convolution operation with a specific stride, by zero

padding the input until it is guaranteed that the input and the output have the

same dimensions.

The convolutional layers arranges their neurons in a 3D conformation, defined by

its width, height and depth. The depth is defined by the number of filters that the

layer has. Meanwhile the other two dimensions depend on several parameters. The

output shape of a convolutional layer is computed by the following formula. Where

W represents the width of the input, H the height of the input, K the size of the

filter, P the padding used, S the stride and finally N the number of filters of the

layer.

Output shape =

(
W −K + 2P

S
+ 1,

H −K + 2P

S
+ 1, N

)
(4.1)

According to its output shape a convolutional layer has width × height × depth

neurons. A filter can be interpreted as the set of weights of a specific neuron of

the output. Generally, in a neural network every neuron possesses a distinct set of

weights, which inevitably leads to a large number of parameters produced by a layer

like this. However, in a convolutional layer the neurons placed at the same output

depth have a common filter throughout. This means that every neuron in the same

depth slice use the same filter. This property is called parameter sharing and is

based on the assumption that if a set of weights is useful to detect a specific feature

of the receptive field of a neuron, the same weights are useful to detect the same

feature on another neuron. This property allows for a lower number of parameters

produced and consequently a lower computational cost.

The 2D convolutional layer has been the one described in this section, but as the

main purpose of this work is to establish a model that works with protein sequences,

1 Dimensional (1D) convolutional layers were the ones applied. The main differences

between a 1D and a 2D convolutional layer lies on the input dimensions and the

fact that the first one convolves along one dimension only, while the latter convolves
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(a) (b)

Figure 4.2: Demonstration of the differences between the 1D, (a), and 2D, (b),
convolutional process

along the two dimensions of the input, as illustrated in Figure 4.2. After the one

hot encoding every amino acid is represented by a full length vector, and the 1D

convolution is able to recognize a complete vector as an amino acid and convolve

from there, rather than convolving through fractions of the amino acids like the 2D

convolutional layer.

One can easily say that the characteristic convolution process of the 1D layers is

achievable by defining a filter with proper dimensions, that covers the complete

amino acids, however these layers expect inputs with different dimensions. The 1D

convolution requires 2D inputs, which match the dimension of the protein sequences

after one hot encoding, while the 2D convolution requires 3D inputs. Given the

different inputs it is to be expected that the output shapes of the 1D and a 2D

convolutional layer are also different. For the 1D layer the output shape is now

given by the following formula, in which the output can be interpreted as a stack of

1D data, thence its 2D conformation.

Output shape =

(
W −K + 2P

S
+ 1, N

)
(4.2)

Apart from the output shape, the convolutional process is similar in both layers, as

demonstrated in Figure 4.3. While the 2D layers are more appropriate to handle

images, the 1D convolutional layers are more apt to operate with sequences, as less
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processing has to be done.

Figure 4.3: An illustration of the 1D convolutional operation.

4.1.2 Pooling layers

The pooling layers are responsible for reducing the complexity of the output of the

convolutional layers and even prevent overfitting of the model. This downsamplig

technique allows to reduce the dimensionality of each feature map, while preserving

the most dominant features. This is an essential layer as it progressively reduces

the spatial size of the feature maps, which consequently reduces the number of

parameters and the amount of computation needed. Beyond the downsampling

capabilities, this layer also works as a noise suppressant.

There are several types of pooling layers, depending on the dimensions desired and

the operation implemented to process the reduction. In this master thesis only the

1D max pooling layers were considered. These layers have a pooling window of pre-

defined dimensions that is translated across the whole input. The maximum value

hovered by the pooling window at each position of the translation is preserved, as

it is represented in Figure 4.4.

Figure 4.4: Simple illustration of the mechanisms behind the pooling layer.
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When a pooling layer is implemented they manage separately the different feature

maps. Every single feature map is spatially reduced, but the number of feature

maps is preserved. The dimensionality reduction process of a 1D pooling layer is

completed according to the following formula. In this case the K represents the size

of the pooling-window, which is analogous to the size of the filter of the convolutional

layers.

Output shape =

(
W −K

S
+ 1, N

)
(4.3)

4.1.3 Fully Connected layers

As the name implies in this layers every single neuron connects to every neuron

of the following one. In each neuron all the inputs are multiplied by weights that

prioritize the most important features and are passed through to the following layer.

These layers allow the model to combine the spatial features.

Dropout can be applied to the fully connected layers, which is a regularization tech-

nique and consists on arbitrarily deactivating neurons during training, as demon-

strated in Figure 4.5, making the training process noisy, in an attempt to make the

model more robust, with a stronger generalization power and consequently less prone

to overfit. The droupout forces every neuron to be able to operate independently, by

reducing the dependencies between neurons. In insufficient datasets the model may

be able to learn the statistical noise in the training data, which evidently induces

bad performances when new data is fed to it, thence the use of this technique.

4.1.4 Flatten layers

This is a simple layer, in which no elaborate operation takes place, just a basic

compression of the input by removing all its dimensions except for one, producing

a monodimensional vector, just as portrayed in Figure 4.6.

Figure 4.6: Simple illustration of the flattening process.
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(a)
(b)

Figure 4.5: Schematic representation of the Fully-connected layer, (a), and the
Fully-connected layer with dropout, (b)

4.2 Model architectures

There are different types of neural network architectures that highlight distinct DL

capabilities. In this master thesis 2 unique model architectures were explored: CNN

and Fully Convolutional Neural Network (FCNN).

Nevertheless the distinct architectures proposed, there is an architectural common

aspect between them, which is the branch-like setup, derived from the double input

of a protein pair. A PPI is composed by two proteins that are fed to the model and

then it has to learn how to decide whether the proteins interact or not. A possible

approach to manage the double input inherent in a PPI, and already explored in

several papers [77, 78, 52, 48, 47], consists on concatenating in a single vector the

representation of both proteins, before feeding it to the model. However, this single

input approach may be a little limiting, as the model recognizes both proteins as

being part of the same entity, unable to distinguish where a protein ends and its

partner starts, due to their concatenation and representation in the same vector.

On the other hand a multiple input architecture processes the proteins of an inter-

action as separate entities, in which rather than concatenating the proteins, each

protein representation is separately fed to a stream of layers, so that each separate

network is able to better assimilate the features of a single protein. This approach

has seen some use in various works [79, 68, 80, 63]. Du et al. [68] and Zhang et al.

[63] even compared both techniques and concluded that implementing separated
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networks promoted better performances.

4.2.1 CNN

This is one of the standard architectures of neural networks and its simple architec-

ture is inviting to use. This type of architecture was introduced by LeCun et al. [81]

in 1998, but only more recently has been getting the deserved attention. This neural

network has been the foundation of several other more elaborate architectures. The

CNN is considered as the crown jewel for image classification and recognition [82],

but it has also been applied in natural language processing [83], which works with

sequences, obtaining very interesting results.

Figure 4.7: Schematic representation of the CNN model.

The overall view of the architecture of the model is illustrated in Figure 4.7. The

separate networks derived from each protein are easily identified, where the three

convolutional layers are interspersed with pooling layers. This first block of the

whole model is responsible for extracting the high-level features of the complete

protein sequences, considering that the stacking of convolutional layers hierarchi-

cally decompose the sequence, layer by layer, so that each consecutive layer learns

to detect higher-level features, while at the same time preserves their spatial depen-

dencies. Theoretically the first layers extract low-level features and, as the model

gets deeper and deeper, it starts to apprehend features of higher orders more rele-
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vant for the prediction of PPIs. All the convolutional layers of this architecture were

integrated with padding, so that dimensions of the input match the dimensions of

the output.

At the end of the separate networks both proteins have been filtered and are repre-

sented by their relevant features. The fully connected layers require 1D inputs, due

to their disregard for the spatial structure information, but the output from the 1D

convolutional layers is a 2D representation. This output has then to be submitted

to a flatten layer, so that the protein can be represented by a single dimension long

vector, becoming compatible with the fully connected layers. These two vectors are

then merged into a single one, specific to each interaction, and posteriorly fed to

the final block. The final block is composed by three fully connected layers and

different combinations of the features are tested so that the model learns a function,

that is capable of distinguish between interacting and non-interacting pairs, from

the high-level features detected.

4.2.2 FCNN

With the purpose of creating a homogeneous network, only composed by convolu-

tional layers, Springenberg et al. [84] aspired for simplicity and developed a FCNN.

This type of neural network architecture competed performance-wise with state-of-

the-art models on image classification problems, while seeing no use in studies to

detect relevant features in sequences, at the time of writing this work. Notwith-

standing the significance of the study conducted by Springenberg et al. [84], the

architecture incorporated in this master thesis does not fully match the one used in

the study. They do in fact evaluate the substitution of pooling and fully connected

layers with proper convolutional layers, but integrate a different technique to flatten

the representations. Meanwhile, in this work, to achieve the desired homogeneous

architecture of the FCNN every non-convolutional layer of the previous CNN model

was replaced by a corresponding convolutional layer.

As previously described, the pooling layers perform fixed operations on the feature

maps with the intention of subsampling them. The substitution of these layers

for convolutional layers can be faced as an opportunity for the model to learn the

pooling operation, which increases its expressiveness capacity. The main purpose of

a pooling layer is to accomplish the dimensionality reduction, but this is also easily

achievable just by using convolutional layers with no padding and a stride of two,

instead of the standard stride of one, without any loss in accuracy, as it was detected

in several image recognition benchmarks [84]. The non-existence of padding coupled
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with the increase of the stride forces the filter to translate, during the convolutional

process, across the whole input in bigger steps, ergo the reduction of the dimensions

of the feature maps produced. The implementation of convolutional layers with a

higher stride even decrease the computational time as there is no need to add pooling

operations to the model, since the convolutional layers are capable of subsampling,

while also convolving. The original work advised to use larger stride convolutional

layers once in a while to be able to reduce the size of the feature maps generated.

In Figure 4.8 it is portrayed how the 1D convolutional layers with stride of 2 and

no padding are capable of subsampling the input, similarly to the 1D pooling layers.

On the other hand the convolutinal layers with stride and padding of 1 preserved

the width of the input.

Figure 4.8: Illustration of the subsampling capacity of the convolutional layers,
when an adequate stride, S, and padding, P, is integrated. For simplification reasons
an input of 6×1 is represented and an output of 3×1 is achieved by the subsampling
layers.

The following layers to be replaced are the flatten layers. The latter simply reduce

a matrix to a single vector, then this condensing capability has to be the main

focus of the replacing convolutional layers. If the size of an individual filter is the

same as the size of the input and there is no padding, then, during the convolution,

the filter is not translated across the whole input because it already covers it all,

producing a single output neuron. The input of the replacing convolutional layers is

width× depth, then if the dimensions of the filters integrated match the dimensions

of the input and there is no padding the output of this layer will be, according to

Formula 4.3, 1×number of filters, which obviously flattens the input, as illustrated

in Figure 4.9. Applying convolutional layers to flatten the input is not as destructive
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as the flatten layer, because during the convolutional process the model attempts to

create a representation that incorporates all the spatial and structural information

and compresses all the knowledge of the feature maps on a single neuron, rather

than simply linearly flattening the input.

Figure 4.9: Simple schematic representation of the flattening potential of the
convolutional layers. For 1D stacked 4 × 1 input and three matching filters of 4 × 1
the convolutional process, with the proper stride, S, and padding, P, obtains an
output of 1 × 3,

Once the pooling and the flatten layers are replaced, only the fully connected layers

remain to change. It is no surprise that the fully connected and the convolutional

layers are not that disparate, as their main difference lies on the connectivity of the

neurons between layers. In the first layer the neurons are connected to every neuron

of the previous layer, while in convolutional layers the neurons are connected only

to a small region of the output of the previous layer, determined by the dimensions

of the filters defined. Nevertheless, in the end both layers compute dot products

between the input and their weights, which result in similar operations. Conse-

quently, using a convolutional layer with filters with proper dimensions is in essence

the same as using fully connected layers. The dimensions of the filter just have to

match the dimensions of the output of the previous layers. Since the representa-

tions have already been flattened by the proper convolutional layer the input of the

convolutional layers replacing the fully connected is 1× depth. Incorporating filters

of size 1 attains an output of 1×number of filters, similar to the output of a fully

connected layer. With this approach every feature map, derived from each filter, is

composed by a single neuron. Due to parameter sharing every produced neuron as
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(a)
(b)

Figure 4.10: Demonstration of the similarities between a fully connected layer ,
(a), and a convolutional layer (b). If on the flattened input with 1 × 3 dimensions,
two filters with the same dimensions are applied, with the proper stride, S, and
padding, P, then an output of 1 × 2 is obtained, by a process similar to the one
incorporated on the fully connected layers.

a different set of weights, because there is only one neuron per depth slice of the

output. Every filter is then correctly associated to the weights of the connections of

the fully connected layers.

As demonstrated in Figure 4.10, for the already flattened input the proper filters can

in fact reproduce the mechanism behind the fully connected layers. The elements

of the filters, represented by the colored circles, are equivalent to the the weights

of the connections of the fully connected layers, and, if they are equal, the output

obtained by both layers is similar.

The overall view of the FCNN model is exemplified in Figure 4.11. The separate

networks, derived from the two proteins are again easily identified. Similarly to the

CNN model the convolutional layers were stacked one after the other, in order to

extract the high-level features of the separate protein sequences. In this initial block

the main discrepancy lies in the non-existence of pooling layers. The dimensionality

reduction is achieved with the convolutional layers with stride of two. The represen-

tations obtained in this block are then flattened by the suitable convolutional layers,

just like they are in the CNN model by the flatten layers. The number of filters of

this specific layer is the same of the previous layer, so that it only compresses the

representations of each feature map and does not create new ones.

Following the merging process, the representations are subsequently fed to the final

block of convolutional layers. These convolutional layers are capable of simulating

the fully connected layers of the CNN model, by applying the adequate filters. In

the whole model every convolutional layer, except for the ones with stride of 1 placed

44



4. Model design

in the first block, are implemented with no padding, so that the desired dimensions

can be obtained.

Figure 4.11: Schematic representation of the FCNN model.
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Hyperparameters

5.1 Hyperparameters tuning

A fundamental task when using neural networks consists on describing the reason-

ing behind the implementation of a specific neural network architecture, trying to

contextualize it in the problem. Once this is achieved it is essential to give a metic-

ulous rundown of the various hyperparameters integrated, since the DL models are

structures much more complex than they seem, considering that the tweaking of

various embedded hyperparameters can lead to drastic changes in the performance.

Notwithstanding the large number of parameters of a neural network and the even

larger number of possible combinations of those, only some parameters were opti-

mized, which were the number of filters of the convolutional layers, the number of

neurons of the fully connected layers, the optimizers and their learning rate, the

activation functions and, finally, the operation behind the merging process.

The number of layers of each of the blocks of the models, is without a doubt the

simplest hyperparameter to understand. Although, there is no standard approach

to define the actual number. Generally, the bigger the number, the bigger the com-

putational cost to train the whole model and it does not necessarily result in better

performances. Despite the uncertainty behind the number of layers, every block

of both architectures was established with three convolutional or fully connected

layers, adopting a similar approach to several works [68, 80, 63, 78, 52].

Another essential task consisted on determining the combination of number of filters

implemented in the convolutional layers, as well as the combination of number of

neurons integrated in the fully connected layers. Both these hyperparameters are

essential towards the definition of a model architecture with a reliable distinguishing

power. Several values were given to each and various combinations were tested.

The CNN architecture, contrary to the the FCNN architecture, has pooling layers.
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In the pooling layers the size of the pooling window was set to 2, as well as the

pooling stride that was also fixed at 2. Generally, these are the standard values, as

larger windows are too destructive.

The aim of the DL models, while training, consists on reducing the difference be-

tween the predicted output and the actual output. This difference is computed by

the loss function. Ideally the minimum difference between the outputs is achieved

when the minimum of the loss function is discovered. The prediction of PPIs in

this work is considered a binary classification problem, in which the model has to

decide between two different classes to classify an input. The standard loss function

for these type of problems is the binary cross entropy [63]. It is presented in the

upcoming formula, in which y represents the actual labels and p the predicted ones.

L(y,p) = − 1

n

n∑
i=1

(y(i) ∗ log(p(i)) + (1 − y(i)) ∗ log(1 − p(i))) (5.1)

Now that the loss function is defined, it is necessary to find the values for the

weights of the network that minimize the loss function value, while assuring the

generalization capability of the model. The techniques used to search for the optimal

set of weights are gradient descent optimization algorithms, which aim to compute

the gradient of the loss function, repeatedly evaluate it and update the set of weight

accordingly. These optimizers use the loss function as guidance, to tell themselves

if they are going through the right path to reach the loss function local minimum.

Since the choice of an optimizer is usually dependent on the model and the dataset,

two distinct optimizers were considered during the model conception, the Adam

[85] and RMSprop. The learning rate of the learning process, is an embedded

hyperparamenter of the optimizers. This variable determines how quickly it updates

its weights during the backpropagation of the training phase, as a response to the

computed gradient. Small values, extend the training time, while larger values

shorten it, but do not ensure an optimal convergence of the model performance.

Two different activation functions were also explored, the ReLU [86] and Swish

functions [87]. The activation function is an essential element of the convolutional

and the fully connected layers, as it is able to normalize the output, and determine

which data gets through to the next layer, by activating or deactivating the output

according to the limit implemented by the function. Both the activations considered

are non-linear, which help the model to fit to the complex data. ReLU is the most

widely used activation function, because of its simple computation and ability to
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obtain good performances on state-of-the-art models.

ReLU(x) = max(0,x) (5.2)

However, its basic conformation maps all the negative output values of a neuron to

zero, which is a limitation during the backward phase of the learning process, as a

negative value close to zero is treated the same way as a negative value distant from

zero. Once some neurons achieve the zero value, their gradient also collapses to

zero and no further update of its weights is verified and the learning phase becomes

purposeless, as if the model died. Swish is an activation that aims to solve the

dying ReLU problem [88], due to its non-monotic conformation. In Figure 5.1 the

conformations of both activation functions are graphically illustrated.

Swish(x) = x× 1

(1 + e−x)
(5.3)

Since the activation is problem dependent both functions were evaluated to deter-

mine which contributed the most towards the best performing model.

Figure 5.1: Graphic illustration of the ReLU and the Swish activation function.

When came the time to merge the high-level features vectors of each of the proteins

it was investigated whether an element-wise multiplication was beneficial, due to its

potential to highlight contrasts between vectors, or if the standard concatenation

of the features [68, 63, 78] is the right course of action. The process behind each

technique is illustrated in Figure 5.2, in which it is easily identified that, contrary
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to the concatenation, which produces a vector with double the size of the input, the

element-wise multiplication is capable of preserving the input dimensions, which

consequently leads to a smaller computational burden.

Figure 5.2: Basic representation of the concatenation and element-wise multipli-
cation merging processes

At the end of both models an output layer was inserted. In the CNN model it was

a fully-connected layer with just one neuron, while in the FCNN model it was a

convolutional layer with one filter. Both layers were incorporated with a sigmoid

activation function in order to obtain a probability between 1 and 0, which is easily

translated to whether the input proteins interact or not, respectively.

In spite of all the progress made developing DL algorithms, there is no single model

capable of correctly classifying all data given to it, partly due to the incoherences

between datasets. As mentioned before three distinct datasets, with obvious dif-

ferences between them, were considered for this work. Thanks to their contrasting

individual characteristics, they represent distinct interactions domains and the prop-

erties of the data are uncorrelated, so, evidently, a model trained on these datasets

will fit distinct functions to the data, that emphasize distinct patterns. Also, the

architecture and the parameters of a model highly influence its predictive potential.

Therefore each of the datasets served as a starting point for the two neural networks

architectures considered. As a consequence each architecture presents three models,

one for each dataset, totalizing six different models established and tuned.

During the training phase the hyperparameters that induced the highest accuracy

values in the validation set were noted and are represented in Tables 5.1 and 5.2.

A grid search technique was integrated to explore the combination of parameters

that contributed the most for the optimal model. However, before applying this

technique several combinations of three distinct number of filters and neurons were

randomly chosen, in which each value is integrated in one of the three layers of every

block. It was from these random combinations and a range of values of the others
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hyperparameters that the grid search took place. The implementation was set up

in python 3.7 and Keras [89], a high-level API for developing deep learning models

of TensorFlow [90].

Table 5.1: Parameters of the best performing CNN models

Independent Pan et al. Du et al. dataset
dataset dataset dataset

Filters [128,256,512] [64,256,128] [64,256,128]
Filter size 2 2 2
Neurons [1024,128,256] [256,512,1024] [256,512,1024]

Drop rate 0.1 0.1 0.1
Learning rate 0.001 0.001 0.001

Optimizer Adam Adam RMSprop
Activation function Swish Swish Swish

Merging Concatenation Concatenation Concatenation

Table 5.2: Parameters of the best performing FCNN models

Independent Pan et al. Du et al. dataset
dataset dataset dataset

Filters block 1 [256, 512, 128] [128, 512, 64] [128, 256, 64]
Filters block 2 [64, 128, 512] [512, 64, 128] [256, 128, 64]

Filter size 2 2 2
Learning rate 0.001 0.001 0.001

Optimizer RMSprop Adam RMSprop
Activation function ReLU Swish Swish

Merging Concatenation Concatenation Concatenation
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Results and discussion

6.1 Evaluation metrics

The evaluation metrics are highly dependent on the problem and the properties that

the investigators desire to highlight. The widely used metrics, already implemented

in many others studies of this field were adopted to evaluate the performance of

both architectures on the main datasets. Firstly, the accuracy was assessed and it

indicates the proportion of correct predictions made by the model. The sensitivity

and specificity metrics were also explored, in order to express the proportion of

correctly predicted positives and negative cases, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Sensitivity =
TP

TP + FN
(6.2)

Specificity =
TN

TN + FP
(6.3)

The TP refers to the true positives and TN to the true negatives. While, the FP

represents the false positives, and FN the false negatives.

Beyond the evaluation metrics considered, the confusion matrix and the Area Under

the ROC Curve (AUC) are also computed. The confusion matrix portrays the

actual values of the TP, TN, FP and FN, which allows for a more detailed analysis

of the results. On the other hand, the AUC evaluates how a model is capable of

distinguishing between classes, in which a perfect classifier has a maximum value of

1.
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6.2 Results

6.2.1 Main datasets

To assess the predictive potential of the proposed architectures the FCNN was com-

pared with the more conventional CNN. Nevertheless its high correlation with image

classification problems, the CNN architecture has seen little to no use in PPIs predic-

tion problems. Therefore both architectures are pioneers, as they explore different

approaches to handle the unsolved problem of PPI prediction.

The models that achieved the highest results on the main datasets for each archi-

tecture are demonstrated in Table 6.1. From those the confusion matrix of the

architectures that achieved the highest accuracy for each dataset are illustrated in

Figure 6.1.

Table 6.1: Results of the best models. The dataset refers to where the model was
trained and tested, according to their training and testing set.

Metrics
Unbiased Pan et al. Du et al.
dataset dataset dataset

CNN model

Accuracy 62.5% 98.2% 90.3%
Sensitivity 64.5% 97.6% 89.0%
Specificity 60.4% 98.8% 91.7%

AUC 62.5% 98.2% 90.3%

FCNN model

Accuracy 60.7% 98.8% 90.8%
Sensitivity 67.3% 98.7% 89.5%
Specificity 53.9% 98.9% 92.2%

AUC 60.7% 98.8% 90.8%

6.2.2 External datasets

Apart from the main three datasets, another four external datasets were used to as-

sess the pratical prediction ability of the best models, when integrated in completely

new datasets. This procedure allows to estimate their generalization capability and

judge whether the models are ready to be implemented in large-scale experiments

or not.

The four datasets included are from: Escherichia coli, Helicobacter pylori, Mus

musculus and Mammalian. Repectively, they have 6944 positive interactions, 1399

positive interactions, 311 positives interactions, and 2049 manually curated from

literature non-interacting proteins pairs in the Mammalian dataset.
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(a)

(b)

(c)

Figure 6.1: Confusion matrix of the best models on the testing set of the considered
datasets. The CNN model in the unbiased dataset (a), FCNN model in the Pan
et al. dataset (b) and FCNN model in the Du et al. dataset (c)
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Figure 6.2: Basic scheme of the ensemble algorithm.

Distinct datasets have different learning models. The three datasets considered

are all part of the PPI prediction problem, but at the same time describe diverse

regions of the PPI domain. Therefore the three best models when presented to

new interactions behave differently, classifying each interaction according to the

knowledge they gathered during the training phase, in which each model was trained

on one of the main datasets. An ensemble algorithm that is able to combine the

output of every model might be an interesting alternative, as it integrates all the

information into a single decision. An ensemble classification algorithm is capable

of taking advantage of several models that possess different regions of competence

and producing an optimal predictive algorithm, avoiding the variance of the single

models. Figure 6.2 portrays a simple scheme of the ensemble technique used.

Table 6.2: Accuracy results of the best models on the external datasets

Ensemble
CNN on FCNN on FCNN on
Unbiased Pan et al. Du et al.
dataset dataset dataset

E. coli 91.5% 52.7% 98.5% 80.8%
H. pylo 91.9% 52.6% 99.6% 81.8%
M. musc 92.9% 58.5% 99.0% 83.3%

Mammalian 25.8% 48.7% 33.6% 18.9%

The best models trained on the main datasets correspond to the CNN model for

the unbiased dataset and the FCNN model for the Pan et al. and the Du et al.

dataset. They were tested on the four external datasets, and then their inputs were

56



6. Results and discussion

combined through the average, which originated the ensemble classifier. In Table

6.2 the results of the three proposed models and the ensemble model are illustrated.

6.3 Discussion

Even though benchmark datasets were used as the starting point, the subsequent

elimination of some interactions, attributable to the padding constraints, results in

the creation of slightly smaller datasets. Nevertheless, the PPIs representation and

distribution of each dataset is similar to its respective benchmark dataset, as the

larger part of the dataset remains the same. Just by itself this simple fact does

not completely invalidate the comparison of the proposed models with the state of

the art techniques, built upon the respective benchmark datasets. It simply hinders

the comparison task, as is is not possible to clearly claim that the models proposed

in this work surpass the already established ones, it is only justifiable to assess

whether their performances are at a similar level or not, which just corroborates the

reliability of the models and validates their predictive potential.

Comparison with existing techniques

The meticulous analysis of the Table 6.3 and Table 6.1 recognizes that the individ-

ual models established in this work are on par with the state of the art algorithms,

as both techniques achieve high results in the benchmark datasets. It is clear that

in some cases the CNN and FCNN models even surpass the state of the art alter-

natives, but again, those differences may be a consequence of the small variances

of the datasets, and not from a performance standpoint. With the results obtained

it is only fair to declare that the models are in fact valid alternatives. These per-

formances legitimize the convolutional layers capabilities to automatically extract

crucial features from the whole sequence and further analyse of them, contradicting

some of the available state of the art algorithms that resort to simple ML techniques.

These findings dispute several studies that solely rely on protein descriptors to ob-

tain valid protein representations, as, it is easily concluded, that working with the

complete raw sequence of amino acids of the proteins is a logical technique and

might even be an interesting replacement to further explore as a substitute to those.

The aggregative capability of the descriptors is their main asset, but at the same

time is also considered as their main disadvantage, as crucial information like the

sequence order is completely overlooked.

The FCNN model produces the better results on benchmark datasets, when com-
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Table 6.3: Accuracy results of some state of the art models built upon one of the
benchmark datasets.

Pan et al. dataset Du et al. dataset

Gui et al. [91] 97.1% -
Wang et al. [92] 97.1% -
Sun et al. [54] 98.1% -
Gui et al. [78] 97.7% -

Wang et al. [93] 98.5% -
Pan et al. [67] 97.9% -

Wang et al. [55] 97.8% -
Zhang et al. [53] - 95.2%
Du et al. [68] - 92.5%
You et al. [40] - 89.2%
Zhou et al. [65] - 88.8%

pared with the CNN model. Every single metric of the FCNN models on the

benchmark datasets excels the respective metrics of the CNN model. However,

when analysing the unbiased dataset, which theoretically should have been a harder

dataset to evaluate, the latter surpasses the FCNN, except for the sensitivity aspect.

The results approve the FCNN architecture as it yields, for the most part, better

performances than the CNN. After all, the homogeneous take on the architectures

is at least intriguing and deserves further examination, as the non-convolutional

layers when replaced may in fact produce more relevant representations of the data.

Nonetheless these results enhance the complexity behind the decision of determin-

ing which model is the best overall, not allowing to define one as the clear best, as

further investigation is required

Another compelling fact derived from the consistent inclusion of the Swish activation

function on the best performing models, as it is portrayed in Table 5.1 and Table

5.2. Notwithstanding further validation, this might be an an indication that in

the near future, neural networks should start to progressively pivot towards the

implementation of this activation function, as a way to contest some of the ReLU

limitations.

The algorithms built upon the Du et al. dataset, produce slightly deviated results,

but nothing too concerning that completely invalidates the established models ca-

pacities. As mentioned in Section 3.1.3, during the conception of this dataset the

number of negative examples generated with the non co-localization technique are

almost three times more than the selected positive interactions. From those negative

interactions an amount equal to the number of positive interactions was randomly
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selected by the authors. All the negative examples were made available by Du et al.

and considering that different papers desire to compare their algorithms with the

original work, they also implemented a random selection from all the negative inter-

actions to obtain a similar dataset. However, the random factor inserted during the

selection phase produces somewhat distinct datasets, thence the variance between

the results.

Impact of the main datasets

Despite the overall excellent results on the benchmark datasets, the same is not ver-

ified in the models trained on the unbiased dataset, as their results are much lower.

The models are fundamentally the same, so, the inconsistency has to come from the

datasets and the way they are built. The main difference between the unbiased and

the benchmark datasets lies in the generation of the negative examples and the se-

lection of the positive interactions. The unbiased dataset was created from scratch,

with the purpose of creating reliable and unbiased data, whereas the latters, fall

back on the standard non co-localization technique to generate the negative exam-

ples. The non co-localization technique oversimplifies the datasets and subsequently

the classification task.

The inherent simplifications embedded in the non co-localization technique do not

take into consideration various possible and recurrent scenarios. Firstly, there are

still a large number of proteins with unknown localization, which evidently limits this

approach [94]. Secondly, two proteins may coexist in the same cellular localization

but not interact, since the determining factors that promote a interaction are much

more complex than the simple co-localization and this technique does not take into

account this type of negative interactions. Additionally, strong evidences support

the fact that there are, not yet experimentally determined, interacting protein pairs

with different cellular localization annotations, caused by miss-annotations of their

cellular localization, as some methods are based on sequence similarity and not on

experimental evidence, or even because the possible localizations of those proteins

are still not completely experimentally determined [95]. Finally, fully described hub

proteins, which have many interacting partners, are confined in different cellular

compartments in different moments of time, leading to presenting multiple cellular

localization annotations [96]. Since they are virtually present in multiple sub-cellular

compartment, following this non-interacting protein pair generation procedure is

severely limiting as it is almost impossible to generate a negative example with one

of these hub proteins. This fact simplifies a lot the succeeding classification task,
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(a) (b)

(c)

Figure 6.3: Distribution of the interactions in each of the PPIs domain of the
three evaluated datasets. (a) unbiased dataset, (b) Pan et al. dataset, (c) Du et al.
dataset. Proteins are represented by the grey nodes, the positive interactions by the
black edges and the negative interactions by the red edges.

given that the classifier learns that pairs where a hub protein is present are almost

exclusively interacting pairs. To add insult to injury in the benchmark datasets, they

explicitly say that the proteins with multiple localization annotations were removed

from the set of proteins from which the negative interactions were sampled.

The complete PPI domain is characterized by presenting a massive number of neg-

ative and some positive interactions. When a domain is so vast and complex a

restricted set of samples is only capable of portraying some of its properties. Hence,

it comes as no surprise that some of the PPIs datasets are biased and only suit-

able for the examples they incorporate and not for the complete PPI domain. The

obervation of Figure 6.3 easily illustrates that the benchmark PPIs datasets are in

fact biased. This figure was created with Cytoscape [97], which is an open source

platform to visualize elaborate networks. The proteins are represented by the grey

dots, whereas the interactions are illustrated by the edges between the grey dots.

These edges are either black lines, if the respective interaction amongst the two con-

nected proteins is a positive interaction or red lines if the connection composed by

the attached proteins is a negative interaction. The network was produced with a

Force-Directed Layout, which is an information visualization algorithm that places

the nodes in a 2D space, according to attractive and repulsive forces. The attractive

forces enhances the connected adjacent nodes, while the repulsive forces tend to

draw non-connected nodes further apart. These forces are iteratively applied until

the graph achieves a mechanical equilibrium state. The resulting network conforma-

tion is capable of exposing its clustered structure with a well-balanced distribution

of the nodes in an organic and aesthetically pleasing way.
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Within the scope of the complete proteome, it is clear that the negative interactions

represent the bigger fraction of the possible pairing combinations, as positive inter-

actions are rare and only occur under special circumstances. Obviously, when the

number of positive interactions is the same as the negative interactions, the negative

interactions should present a distribution at least as sparse as the distribution of

the positive interactions in the proteome space. The observation of Figure 6.3 does

not illustrate such scenario across all datasets. The unbiased dataset, does in fact

portray a sparse distribution of the positive and the negative interactions, however

in the benchmark datasets that is not verified, as the negative interactions are lim-

ited to small areas, due to the restrictions incorporated in the non co-localization

technique. The unmissable biased distribution of the negative interactions is the

main cause of the discrepancy between the results of the proposed models, as the

more restrained the negative interactions are, the better the results. The models

built upon the dataset with the more restricted negative interactions, Pan et al.

dataset, are the ones with the best results, while the models built upon the dataset

with the sparser negative interactions, the unbiased dataset, obtained the worst re-

sults. The proportionality between the restriction of the negative interactions and

the improved performance, further justifies the previous statements.

Beyond the technique used to generate the negative examples, another aspect that

causes a restrained distribution of the negative interactions is the number of unique

proteins from which the negative protein pairs were randomly selected. As expected,

if a fixed number of interactions is desired then, the larger the sampling group,

the sparser the distribution of such interactions will be, because there is a higher

probability to include a larger number of unique proteins in the interactions. In

Table 3.1, Table 3.2 and Table 3.3 this detail is easily verified. Again, the more

restrict datasets are the ones that have a higher discrepancy between the number

of unique proteins that generate the positive interactions and the number of unique

proteins from which the negative interactions are sampled.

Aditionally, as if the mentioned discrepancy was not already enough, the Pan et al.

dataset also does not assure that the proteins that compose the negative interactions

are the same proteins of the positive interactions. In the Pan et al. dataset, from

all the unique proteins that compose the negative interactions only 58,1% are also

present in the unique proteins that produce the positive interactions. In this case

there are a large number of proteins that only produce one interaction, consequently

the models easily recognize which proteins are associated with negative interactions

and then classifies every interaction with those a negative one, which clearly reduces

the difficulty level of the classification task. However, the same approach can not be
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applied to the other two datasets, as almost all proteins that produce the negative

interactions are also part of at least a positive pair and the models need to actu-

ally decipher from the raw sequence which structural and spatial patterns influence

the PPIs. This comprises another detail that further justifies why the techniques

implemented in the Pan et al. dataset achieve almost perfect performances.

The visual identification of the distributions is a powerful tool to analyze the orga-

nization of the datasets, especially, when coupled with the formulation of plausible

reasons that stimulate the embracement of such distributions. Nevertheless, a more

rigourous examination is essential to justify some of the statements. The degree

distribution is a simple metric commonly used when studying networks. A degree is

the number of connections a particular node has with others. In a protein-protein

network the degree can be interpreted as the number of possible interactions a spe-

cific protein has. With this metric it gets simpler to pinpoint some of the protein

clusters that might be formed. The degree distribution of both the positive and neg-

ative interactions of each of the main datasets was computed and are illustrated in

Figure 6.4. In the unbiased dataset both the positive and the negative interactions

present a similar degree distribution, which legitimizes their equivalent distributions

of the interactions, due to their non-apparent differences.

On the other hand, in the benchmark datasets, there is a clear difference between the

degree distribution of the negative interactions and the positive interactions. The

latter presents an approximate power law curve, in which most of the nodes have low

degrees, not disregarding some exceptions that have a high degree. This indicates

that, predominantly, a specific protein interacts with a small number of proteins,

which motivates the dispersion of the proteins in the PPI domain. Nonetheless, the

negative interactions severely deviate from the power law curve, as there is a high

emergence of nodes with a high degree, represented by the multiple local maximums

of the distributions. Which means that there are several hub proteins that are paired

with other non-interacting proteins. Due to the higher number of hub proteins, the

negative interactions are more constrained in the PPI domain, covering a smaller

area than the positive interactions, thence the biased distribution of the negative

interactions in the benchmark datasets. The degree distributions of the negative

interactions have to be regulated to ensure similar distributions and to propitiate a

good generalization capability [98].

An ideal model perfectly identifies positive as well as negative interactions, which

enables its insertion in experimental techniques as a validation technique or even

as an independent effective one to discover new interactions. If a model aspires to
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Degree distributions, (a) and (b) are, respectively, the negative and
the positive interactions of the unbiased dataset, (c) and (d) also the negative and
positive interactions of Pan et al. dataset and ,finally, (e) and (f) are the negative
interactions and positive interactions of Du et al. dataset.
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be used as a reliable technique it needs to master the distinction of the different

interactions. The accuracy is the evaluation metric that encapsulates this distin-

guishing capability the best. However, in the current spectrum of things the correct

identification of positive interactions is a critical aspect to scrutinize and must re-

ceive the necessary attention, since these comprise the experimentally determined

interactions, whereas the negative interactions are computationally generated and

do not exhibit the same level of credibility. The sensitivity is the metric to resort to

analyze the capacity of the model to classify positive interactions. Strangely enough,

while interpreting the results of Table 6.1, only the models trained on the unbiased

dataset presented a sensitivity value higher than its specificity, which expresses the

capacity of the model to classify negative interactions. Undeniably, these findings

imply that these models have a hard time identifying the negative interactions, when

compared to their ability to identify the positive interactions. Which makes perfect

sense in the context of the problem, as they more easily recognize the reasoning

behind the conception of positive interactions than comprehend the inherent ran-

domness of the negative interactions. The models built upon benchmark datasets

demonstrate the opposite scenario, probably due to the visible spatial restriction of

the negative interactions. This finding, as small as it seems, adds credibility to the

unbiased dataset.

Several published papers solely focus on developing models and novel negative sam-

pling techniques that lead to unprecedented performances, while completely disre-

garding the evaluation of how representative of the proteome their datasets actually

are. On the other hand, in this work the research was revolved around the attempt

to create an unbiased and biologically representative dataset, even if that produced

worse results of the innovative models trained on that dataset. Notwithstanding

further validation, the unbiased dataset as well as the proposed architectures could

be the starting point for new DL approaches to come.

Performance on the external datasets

The results from Table 6.2 clearly indicate that the FCNN models built upon the

benchmark datasets perform well when classifying positive protein interactions, but

when the goal is to classify negative interactions they falter and obtain poor results.

The high results of these models when predicting positive interactions may even be

a consequence of the bias developed during the training phase on the benchmark

datasets, as they predominantly assign to any new input sample the positive label.

Considering that the benchmark datasets have a very restricted set of negative
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interactions this is a plausible reason. Due to their limited distribution, these models

learn that there is a higher likelihood for a new protein pair to be considered a

interacting one, thence the contrasting results on the positive and negative external

datasets.

On the other hand the CNN model, which was trained on the unbiased dataset,

achieves similar ordinary performances when distinguishing the positive and the

negative interactions of the external datasets. The similar performance on both

examples was an expectable outcome, given the equally distributed positive and

negative interactions of the unbiased dataset. However, the level of performance

leaves room for doubting to what extent the PPI prediction problem, based solely

on the sequence, is a resolvable one.

The model based on the unbiased dataset developed a better mechanism to distin-

guish negative interactions, while the models based on the benchmark datasets are

predisposed to classify the positive interactions. An ensemble model that is capa-

ble of integrating the three proposed models was established. The results obtained

with this model are still somewhat questionable due to its higher preponderance to

correctly classify positive interactions, while slightly improving the performance on

the negative interactions of the Mammalian dataset.

Shortcomings

In spite of all the thorough research done, there are some aspects that in the future

could be refined, or even different approaches could be adopted. Starting from the

grid search technique integrated, a larger diversity of hyperparameters could be

explored and even the range of the values of each specific hyperparameter could

be increased. Resulting in a more fastidious search for the best hyperparameters

combinations. However, as six different models were created, derived from the two

architectures explored in the three main datasets, the current approach seemed like

a reasonable compromise between the computational time consumed and the results

attained with the various combinations explored.

One of the main purposes of this thesis work comprises the assessment of whether the

sequential information of the proteins, incorporated in innovative DL models was a

valid alternative to the existing approaches. From the results obtained it is possible

to claim that all the approaches are in fact valid alternatives to the existing ones,

however, as usual in DL implementations, the number of samples used to create the

models can always be increased, allowing the models themselves to learn from more

samples and to better comprehend the distribution of those in the proteome.
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The other main goal consisted in evaluating the reliability of several PPIs datasets.

To compare the existing approaches, an unbiased dataset was created. It was con-

cluded that the benchmark datasets evaluated are in fact skewed, especially the

distribution of the negative interactions. Nonetheless the various papers developed

based on this benchmark datasets, a more in-depth analyses could be included, con-

sisting on the investigation of more established datasets and the works developed in

those, to assess to what extent are all the existing datasets biased representations

of the proteome or not. Not only that, but also a more detailed examination, could

reinforce the inclusion of the unbiased dataset in future works.

The ensemble model introduced is a simple alternative to combine the three models

developed on the main datasets. A wider variety of datasets could be considered,

providing for the creation of more individual models built upon distinct datasets,

which could potentiate a more efficient classification, as more knowledge is inte-

grated in a single ensemble classifier. Not only a bigger variety of models could be

incorporated, but also, during the association phase of the outputs, a more rigorous

association technique could be integrated. Rather than merely using the average of

the outputs, a weighted average could be explored, in which the best models are

more influential towards the classification task of the ensemble classifier.
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Conclusion

In this master thesis a novel unbiased independent dataset and two innovative DL ar-

chitectures were established. The performance of those two innovative architectures

was evaluated on three datasets and four external datasets and during the analyses

of such results a reasonable explanation was given that was capable of interpreting

the discrepancies. The sole comparison of the proposed models with the state of

the art algorithms trained on the benchmark datasets validated our decisions. The

obtained results support the ability of the models to extract valuable features from

complete raw protein sequences, which enhanced the predictive potential. This val-

idation was crucial, as it corroborates that the disparate results with the distinct

datasets were a consequence of the contrasting negative sampling techniques and

not a result of an unsatisfactory model. At the same time, the reliability of the in-

novative FCNN architecture was authenticated and it might develop into a standard

architecture, not disregarding the need for further investigation.

On the other hand, we also concluded that the dataset is a valuable element of a DL

experiment, as the data strongly influences the performance. A model is only as good

as the insights it can extract from the dataset fed to it, we can implement different

algorithms, tweak the parameters however we want, but the final word will come

from the quality of the dataset. Not every dataset is representative of the problem it

was designed to, some datasets are built to provide an easy way to groundbreaking

performances, by implementing strategies that simplify the classification task, while

some datasets are built with the intent to actually create a realistic representation of

the domain of the problem. Obviously, the latter involve much more complex tasks

in order to develop a satisfactory predictive algorithm, which evidently may lead

to worse results. The exclusive analyze of the results of several published papers

can incorrectly lead us to believe that the large-scale PPIs prediction problem is

well addressed and close to be considered a solved problem. However, with the

work developed in this master thesis, the viability of several state of the art PPI
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prediction algorithms built upon biased datasets is questioned. The abilities that

some of these guideline algorithms develop to distinguish between interacting and

non-interacting protein pairs are not suitable to all the unbiased data of the PPI

domain.

In spite of the middle-of-the-road results obtained with the unbiased dataset, it

clearly represents a more biological realistic domain of the PPIs, due to its sparser

conformation, which closer resembles the proteome of an organism. A sequence-

based model, that is on par with the state of the art algorithms trained on biased

benchmark datasets, but is not capable to achieve similar performances on an un-

biased dataset, can only indicate that the PPI prediction problem might be much

harder than it looks. There are several environmental factors that can influence

the success of a PPI in vivo, because they are time and condition dependent, and

those factors are barely taken into consideration during in silico and even in vitro

techniques. Transient interactions, that are temporary and occur dynamically can

be hard to detect in vivo. Aditionally, the concentration of the proteins highly in-

fluences PPIs, as well as the presence of competing proteins, that can prevent the

establishment of specific PPIs. The simplifications integrated coupled with the ob-

tained results in the unbiased dataset makes us wonder how far we really are to be

able to computationally predict, from the amino acids sequence, large-scale PPIs

and even if it is an attainable goal in the near future.

The work developed in this master thesis open the door towards the establishment

of two innovative DL architectures, that integrate the complete protein sequences

as an alternative to the standard protein descriptors. Not only that, but also a

different PPI dataset was built, characterized by its fair distribution of the positive

as well as the negative interactions, contrary to some benchmark datasets.

There are some interesting ideas, that are worth noting as future work propositions

to improve the obtained results. As always, larger and less biased datasets can be

incorporated. Also, with the progressive unveiling of more types of protein data,

as their coverage of the whole proteome gradually increases, much more protein

data can be combined in order to create more polished and informative datasets. It

would give more information to the models to work with and they would not have

to solely rely on the amino acids sequence. In this case the models decide, from all

the diverse information available, which are the more relevant and decisive for the

PPI prediction problem.

Most of the current available ML state of the art algorithms, consider the PPIs

prediction a binary problem, where two proteins either interact or not. Redesigning
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the problem into a regression one, in which every possible interaction is assigned a

probability value that portrays the binding affinity, could be an interesting strat-

egy. Proteins interact with other proteins to different extents, since some pairs

produce stronger interactions, possessing a higher binding affinity. In this scenario,

the model identifies the interactions that have a higher likelihood to occur. Only

determining whether two proteins interact or not is just the first step to understand,

to what degree, that interaction takes place in vivo. Aditionally, the binding sites of

experimentally determined interactions could also be integrated during the model

conception. Forcing the model to play close attention to the regions, that, notably,

are more prone to influence interactions.

It is obvious that not only the positive, but also the negative data play a crucial

role during the training phase, and subsequently performance evaluation. Manually

curate negative interactions from the literature, rather than computationally gen-

erate the negative examples, could contribute to a more solid and robust dataset.

Negatome [99] is a public database that provides this type of information, however

its implementation is limited due to the still insufficient number of interactions. A

more extensive review of the literature is needed in order to be able to implement

the derived datasets in large-scale experiments.

There is a slight possibility that with the current datasets and DL algorithms it is

not possible to viably predict the whole spectrum of PPIs solely with the amino

acids sequence. So, the prediction problem could be simplified. The mechanisms

behind PPI are, in a sense, function-dependent, in which the molecular functions

of the proteins of a pair are associated with their affinity to interact. Therefore,

rather than trying to predict every type of PPI, dividing the dataset according

to the functions annotations of various proteins could be an appealing alternative.

Afterwards, a model specific to every function annotation pair could be created and

only the proteins under those annotations are fed to the model.
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