

João Carlos dos Reis Frazão

QUANTUM COMMUNICATIONS SYSTEM USING QUBITS

WITH POLARIZATION ENCODING

Dissertação no âmbito do Mestrado Integrado em Engenharia Física no ramo da
Instrumentação

Orientada pelo Professor Doutor Armando Nolasco Pinto
Co-Orientada pela Professora Doutora Maria Helena Almeida Vieira Alberto

 Apresentada ao Departamento de Física da Faculdade de Ciências e
Tecnologias da Universidade de Coimbra

Julho de 2020

i

Acknowledgements

A realização desta dissertação de mestrado contou com importantes apoios e in-

centivos sem os quais não se teria tornado uma realidade e aos quais estarei eterna-

mente grato.

Ao Professor Doutor Armando Nolasco Pinto, pela sua orientação, total disponibl-

idade, apoio, pelas opiniões, critícas e conhecimento que transmitiu ao longo deste

trabalho. A todo o grupo de Comunicações e Tecnologias Ópticas Quânticas do In-

stituto de Telecomunicações, e à Universidade de Aveiro por toda a ajuda na parte

laboratorial desta dissertação.

À professora Doutora Maria Helena Almeida Vieira Alberto, que apesar de não ser

a sua área e de não ter estado presencialmente na realização deste trabalho, mostrou

sempre disponiblidade e interesse em acompanhar o projecto. Agradeço também

toda a dedicação, paciência e correções durante esta última etapa.

Aos meus pais, em especial à minha mãe, que sempre me incentivou a seguir o

caminho que sempre quis. Agradeço toda a paciência, companhia, preocupação e

por ter conseguido dar-me educação escolar, mesmo em tempos difíceis. Obrigado

mãe.

Aos meu colegas de Leiria, em especial ao João Jójó por ter sido sempre uma pessoa

com que posso contar. Sempre me motivou, ajudou e manteve o contacto em todos

os momentos. Obrigado meu mambo.

Aos meus colegas de curso. João Silva, obrigado pelo apoio, dedicação e paciência

para me aturares durante estes últimos cinco anos.

To Byron.

ii

iii

Resumo

Compreende-se criptografia como a prática de princípios e técnicas que permitem

uma comunicação segura, na presença de terceiros. Com o desenvolvimento dos com-

putadores quânticos, a utilização de um algoritmo quântico muito eficiente (algor-

itmo de Shor) para atacar a atual criptografia assimétrica pode transformar-se numa

realidade. Isso comprometeria a segurança dos sistemas atuais e futuras trocas de in-

formações. Nesta dissertação é estudada uma implementação do protocolo quântico

BB84, que utiliza variáveis discretas com codificação na polarização de fotões.

Na primeira parte deste trabalho, foi estudado o recetor já implementado no labor-

atório do Instituto de Telecomunicações de Aveiro. De forma a otimizar o processo

de recolha e processamento de informação, foi desenvolvida uma solução baseada

no Arduino. Conforme foram realizados alguns testes, percebeu-se que seria ne-

cessário adicionar um novo Arduino e uma placa periférica para gerir quatro valores

de tensão de um controlador de polarização. Foram ainda obtidos resultados testes

do Quantum Bit Error Rate (QBER), onde se verifica a estabilidade do sistema.

Por último, de forma a obter ritmos de operação elevados, estudou-se uma solução

baseada em moduladores IQ (In-phase Quadrature). Para se conseguir gerar os seis

estados de polarização nas três bases não ortogonais (base padrão, base diagonal e

base circular) propusemos uma estrutura Dual-IQ. Nesta estrutura, o sinal ótico é

dividido em duas partes iguais, cada uma passando por um modulador IQ. Aqui,

uma diferença de fase é introduzida em cada um dos sinais, e com a ajuda de um

aparelho para a rotação de polarização é possível gerar vários estados de polarização.

Foram realizadas simulações de forma a demonstrar que esta estrutura é capaz de

gerar os seis estados de polarização necessários.

Keywords – Criptografia Quântica, Recetor, Arduino, Transmissor, Modulador

Dual-IQ

iv

v

Abstract

Cryptography can be understood as the practice of principles and techniques, that

allows secure communications, in the presence of unwanted parties. With the devel-

opment of quantum computers, the use of a very efficient quantum algorithm (Shor

algorithm) to attack the current asymmetric cryptography can become a reality.

This would compromise the security of the current systems and future information

exchanges. In this dissertation, an implementation of the BB84 quantum protocol is

studied, which uses polarization encoding on single photons.

In the first part of this work, the already implemented receiver, in the laboratory

of Instituto de Telecomunicações de Aveiro, was studied. To optimize the process of

collecting and processing information, a solution based in the Arduino was developed.

As some tests were carried out, it was perceived that the system needs two Arduinos

and a peripheral board to manage four voltage values of a polarization controller.

The Quantum Bit Error Rate (QBER) tests results were also obtained, where the

stability of the system can be analyzed.

Finally, in order to acquire higher operation rates, a solution based on IQ (In-phase

Quadrature) modulators was studied. To generate the six polarization states, in

the three non-orthogonal bases (standard base, diagonal base and circular base), we

proposed a Dual-IQ structure. In this structure, the optical input signal is divided

into two equal parts, each passing on the IQ modulator. Here, a phase difference

is introduced in each signal, and with the help of a polarization rotator it is pos-

sible to generate several polarization states. Simulations have been performed to

demonstrate that this structure is capable of generating the six required polarization

states.

Keywords – Quantum Cryptography, Receiver, Arduino, Transmitter, Dual-IQ

Modulator

vi

Acronyms

QBER - Quantum Bit Error Rate

IQ - In-Phase Quadrature

RSA - Rivest-Shamir-Adleman

QKD - Quantum Bit Error Rate

DV-QKD - Discrete Variable - Quantum Key Distribution

CV-QKD - Continuous Variable - Quantum Key Distribution

PNS - Photon Number Splitting

I/O - Inputs/Outputs

EPC - Electronic Polarization Controller

PBC - Polarization Beam Combiner

PBS - Polarization Beam Splitter

DAC - Digital to analog converter

APD - Avalanche Photodiode

UART - Universal asynchronous receiver-transmitter

SPI - Serial Peripheral Interface

I2C - Inter-Integrated Circuit

COM - Communication port

QAM - Quadrature Amplitude Modulation

PSK - Phase Shift Keying

BPSK - Binary Phase Shift Keying

QPSK - Quadrature Phase Shift Keying

vii

List of Figures

2.1 Bloch sphere representation. The states |0〉 and |1〉 represent the
standard basis and are located at the top and bottom of the z-axis.
Any other state can be represented on the surface of the sphere. . . 9

2.2 Bloch sphere containing the six polarization states in the respective
axis. 11

2.3 Representation of how the electric field oscillates with respect to the
amplitude of Ex(t), Ey(t) and the phase difference. 14

2.4 Poincaré sphere containing the six polarization states in the respective
axis. 15

2.5 Apparatus to measure the polarization state of a single photon using
two single photon detectors and a polarizing beam splitter [7]. 17

3.1 Block diagram of the initial components in the receiver. Here the clock
signal synchronizes the detectors, and the EPC is adjusted manually.
The PBS splits the light between the detectors according to the basis
selection. 22

3.2 Receiver High level diagram block. The receiver module represents all
the electronics that are going to be needed for the signal processing,
data analysis and for controlling the EPC’s. 23

3.3 Receiver block diagram after the implementation modifications. The
components that are needed for the new implementation are high-
lighted in red: two Arduinos DUE, a computer and an external DAC.
This highlighted area represents my contribution to the work in the
receiver. 25

3.4 ID Quantique single photon detectors 26
3.5 Arduino DUE board . 27
3.6 AD5669 DAC board . 28
3.7 Electronic polarization controller at the laboratory 29
3.8 Bypass board at the laboratory . 29
3.9 Block diagram of the implementation, where the three mains processes

are highlighted. The green area is responsible for the signal processing.
The red area represents the location where the data is going to be
analyzed. Finally, in blue are the components used to control the EPC. 30

viii

3.10 Diagram representing all four possibilities for the coincidence check
block. The arrows are pointed to the digital inputs 26,27,28 where
the detectors and clock are connected. The green error corresponds
to the situation where a signal is sent to the Arduino. The red arrow
means no signal is sent to the Arduino. Depending on the detector
that sends the signal, the Arduino outputs a “0” or a “1” through the
USB to the computer. If both detectors clicked a “2” is sent, and if
none of them clicked a “3” is dispatched. 32

3.11 Block diagram of the communication between the Arduino DUE 1 and
the computer server. After the coincidence check, the Arduino writes
the data in the Serial COM. A program on the computer is going to
be reading this COM and buffering the data. When the buffer is full
the data is sent to the QBER program, via TCP/IP. 33

3.12 High level block diagram of the serial_port_reader_writer.sln script.
The program tries to connect to the Arduino ports to be able to read
and write in the serial COMs. When the connection is made, it burns
the first 10 seconds of data. Then it starts to put the data into a buffer
and sends it to the QBER program through an TCP/IP protocol. A
counter is increasing each time a max length buffer is sent to the
IPTunnel. When it reaches 500, the program writes random values of
voltages to the Arduino Due 2. 34

3.13 High level block diagram of the netxpto_qber_estimation-Server script.
The program takes the first 1000 bits of data from the buffer (that was
sent from the serial_port_reader_writer.sln script) and compares it
with the Alice sequence (this sequence is in a file called binary). If
both sequences matched, the QBER calculations are performed. If
not, we take the first bit that was put in the Bob buffer, and replace
it with a new one, until we have a match. The QBER analysis, also
provides a way to check if synchronism was kept and provides inform-
ation by outputting a file. 35

3.14 Block diagram representing the communication between the computer
and the Arduino DUE 2. The COM receiver program is responsible
to give the voltage values, Vi, to the Arduino. The Arduino starts the
I2C connection with the AD5669 DAC to set the voltages on the EPC. 36

3.15 QBER progression for about half an hour. 37
3.16 QBER progression for about two hours. 37

4.1 QPSK constellation point diagram 41

LIST OF FIGURES ix

4.2 Structure of an IQ modulator, composed by two Mach-Zehnder inter-
ferometers and a phase modulator. 42

4.3 Mach-Zehnder interferometer structure. 43
4.4 Dual-Polarization IQ modulator structure. It is composed by a 50/50

beam splitter, two IQ modulators (one for each polarization) and one
polarization rotator. Can take a maximum of 4 bits per symbol. . . . 45

4.5 Diagram containing the bit and waveforms reshape process. Bit 1
corresponds to the integer 1 and bit 0 to -1. 46

4.6 Program diagram to obtain the phase plot. 47
4.7 Program diagram to calculate the exact phase difference angle. 47
4.8 Program diagram to calculate the stokes parameters and plot the re-

spective Poincaré Sphere. 48
4.9 In-phase and Quadrature signals behavior for the horizontal polar-

ization sequence. The sum of the signals is represented in the last
graphic. 49

4.10 Phase difference and phase graphic for the horizontal state. 49
4.11 Poincaré sphere containing the stokes vector for the horizontal polar-

ization state. 50
4.12 In-phase and Quadrature signals behaviour for the vertical polariza-

tion sequence. The sum of the signals is represented in the last graphic. 51
4.13 Phase difference and phase graphic for the vertical state. 51
4.14 Poincaré sphere containing the stokes vector for the vertical polariza-

tion state. 52
4.15 In-phase and Quadrature signals behaviour for the linear +45◦ polar-

ization sequence. The sum of the signals is represented in the last
graphic. 52

4.16 Phase difference and phase graphic for the linear +45◦ state. 53
4.17 Poincaré sphere containing the stokes vector for the linear +45◦. . . . 53
4.18 In-phase and Quadrature signals behaviour for the linear -45◦ polar-

ization sequence. The sum of the signals is represented in the last
graphic. 54

4.19 Phase difference and phase graphic for the linear -45◦ state. 54
4.20 Poincaré sphere containing the stokes vector for the linear -45◦. . . . 55
4.21 In-phase and Quadrature signals behaviour for the right circular po-

larization sequence. The sum of the signals is represented in the last
graphic. 56

4.22 Phase difference and phase graphic for the right circular state. 56

LIST OF FIGURES x

4.23 Poincaré sphere containing the stokes vector for the right circular
polarization state. 57

4.24 In-phase and Quadrature signals behaviour for the left circular polar-
ization sequence. The sum of the signals is represented the the last
graphic. 57

4.25 Phase difference and phase graphic for the left circular state. 58
4.26 Poincaré sphere containing the stokes vector for the left circular po-

larization state. 58

LIST OF FIGURES xi

List of Tables

2.1 Summarized table including the angles, vectors, and symbol informa-
tion for each polarization state that is necessary for this work. 11

2.2 Summarized table including the amplitudes of Ex(t), Ey(t), phase
difference, stokes vector and symbol information for each polarization
state. 14

2.3 Representative random sequence of data choices to implement the
BB84 protocol. The ⊕ symbol represents the basis with vertical and
horizontal polarization states. The ⊗ represents the basis with linear
+45◦ and linear -45◦ states. 17

4.1 Table containing some QAM forms, depending on the number of bit-
s/symbol . 40

4.2 Summarize phase shifts that can be obtained by applying a 2 bit
sequence to the In-phase and Quadrature wave forms, considering [-
180◦,180◦] . 41

4.3 Summarized table containing a sequence of bits that can generate a
polarization state. Each sequence can induce a different phase shift. 45

xii

Table of Contents

1 Introduction 1
1.1 State of art . 2
1.2 Motivation . 5
1.3 Goals . 5
1.4 Document structure . 6

2 Discrete Variables QKD 7
2.1 Introduction . 7
2.2 Qubit . 7
2.3 Photonic qubits . 9
2.4 Jones formalism . 9
2.5 Stokes parameters . 12
2.6 Single photon measurement . 16
2.7 BB84 protocol . 17
2.8 Some system errors . 19
2.9 Polarization encoding . 20

3 Receiver Optimization 21
3.1 Introduction . 21
3.2 Project definition . 21
3.3 Project decisions . 24
3.4 Technology equipment . 25
3.5 Arduino implementation . 30
3.6 Repository . 30
3.7 Signal acquisition . 31
3.8 Communication with the computer 33
3.9 Electronic polarization controller . 35
3.10 QBER results . 36

4 Transmitter Design Optimization 38
4.1 Introduction . 38
4.2 IQ Modulation . 38
4.3 Quadrature amplitude modulation . 39

xiii

4.4 Phase shift keying . 40
4.5 Quadrature phase shift keying . 40
4.6 IQ modulator . 42

4.6.1 Phase modulator . 42
4.6.2 Mach-Zehnder . 43
4.6.3 Single-mode optical fiber . 44
4.6.4 Dual polarization-IQ modulator 44

4.7 Simulation . 46
4.8 Simulation results . 48

4.8.1 Horizontal polarization . 49
4.8.2 Vertical polarization . 50
4.8.3 Linear + 45◦ . 52
4.8.4 Linear - 45◦ . 54
4.8.5 Right circular polarization . 55
4.8.6 Left circular polarization . 57

5 Conclusions 59
5.1 Future work . 60

A Arduino Code 63

B Simulation code 66

TABLE OF CONTENTS xiv

Chapter 1

Introduction

The importance of cryptography considerably expanded during and after the two

world wars. However, it was the introduction of the Internet that brought the in-

terest of cryptography to the everyday life of common world citizens. Crypto systems

now enable emails, phone, and financial communications to be safe on a daily basis.

Nowadays it is important to have a method that secures the content of messages

between distant parties, preventing the theft of information by any unauthorized

party. This represents one of the main goals of cryptography, and can be accom-

plished by encrypting the transmitted message, in such way, that no external entity

can decipher it. Throughout this work the two legitimate parties are mentioned as

Alice (transmitter), Bob (receiver), and the eavesdropper as Eve, according to the

established convention. The cryptosystems can be divided in two main branches: the

secret key cryptography (symmetric) and public key cryptography (asymmetric).

In an asymmetric-key cryptography system, Alice encrypts the message utilizing a

public key, and sends it to Bob who possesses the private key [8]. These keys are

both mathematically related, and an eavesdropper intercepting the encrypted mes-

sage cannot decipher it in a reasonable amount of time. The public key cryptosystems

have been successful and popular over the last years. One of the first implemented

protocols is the RSA (Rivest-Shamir-Adleman) encryption, which is built on the

principles of public key exchange and the computationally difficult problem of prime

factorization. For a classical computer, an efficient algorithm for finding the prime

factors of a composite, in a reasonable time, does not exist. Even so, this assump-

tion was challenged in 1995, when Peter Shor proposed a polynomial-time quantum

algorithm for the factoring problem. With the advances in quantum technology’s,

the security of the asymmetric protocols are starting to being threatened by the

1

increasing quantum computational power to break the relation between public and

private keys.

In the secret key cryptography only one key is used to encrypt and decipher a mes-

sage. These cryptosystems use the one-time pad encryption technique, that requires

the use of a one time pre-shared key [8]. In this scheme, each bit in the message is

encrypted by a bit in the key. Alice obtains a scramble text and sends it to Bob,

through an authenticated public channel. Bob deciphers the message by subtracting

the key. Because the bits of the scrambled text are as random as those of the key,

they do not contain any important information. The ciphertex can be considered

unconditionally safe if the key is at least the same size of the message, random, only

used once and if Alice and Bob are able to share it in complete secrecy. However,

the classical ways of sharing the private key are not satisfactory and the problem of

distributing secret keys arises.

Quantum mechanics offers a solution to this problem: If a key can be generated and

transmitted using a quantum system then, in principle, that key can be distributed

securely, without requiring any assumptions of the computational power that an

eavesdropper possesses. This is possible because any measurement on a quantum

system disturbs its state, and unknown quantum states cannot be copied. And so

the quantum key distribution comes into action.

1.1 State of art

Quantum key distribution (QKD) is a method used to exchange encryption keys

between two distant parties, who are communicating through a public channel. The

intrinsic laws of quantum mechanics allows the unconditional security of the QKD

protocols. This security is based on the non-cloning theorem and on the Heisen-

berg uncertainty principle [18]. The non-cloning theorem claims that an unknown

quantum state cannot be copied and therefore the eavesdropper cannot copy qubits

to be measured later. This means when a single photon is measured, its state is

perturbed and the action of an eavesdropper can be detected. For these systems, the

quantum mechanics do not prevent a third party from eavesdropping, but instead

Introduction 2

enables Alice and Bob to detect the presence of Eve in the system [14]. If Eve tries to

take information from the system, discrepancies between Alice’s and Bob’s keys are

going to show in the post-processing techniques, giving them the choice to discard

the keys and repeat the process to generate a new one.

Two standard techniques have been the focus in developing QKD protocols: discrete

variable - quantum key distribution (DV-QKD) and continuous variable - quantum

key distribution (CV-QKD). The first one uses observables that admits discrete

values, based on single photon detection. The latter one uses CV observables of

light field that can be measured by shot-noise limited homodyne detection [18].

Since this work is based on a DV-QKD, a look over the evolution of these protocols

is presented.

The first protocol for quantum cryptography, was proposed in 1984 by Charles H.

Bennett, of IBM and Gilles Brassard, of the University of Montreal, hence the name

BB84, as this protocol is known [8]. In this protocol, Alice sends a single photon

encoded in a specific polarization using two non-orthogonal states for the bit 0 and

two non-orthogonal states for the bit 1 (forming two non-orthogonal bases). Then

Alice sends the encoded single photon to a quantum channel, so that Bob can measure

it according to a determined orientation of polarization. Bob publicly announces the

basis chosen for the measurement, so that him and Alice can keep the bits encoded

with the same bases. On the other hand, if the encoded basis does not match the

basis used for the measurement, they discard the bits. If Eve tries to intercept the

photon sent by Alice, she is going to introduce disturbance in the system, which can

be detected by estimating the discrepancy rate of the sifted keys [14].

In 1992, Charles Bennett suggested that only two non-orthogonal states are really

needed for a quantum key distribution system [18]. Here Alice prepares the informa-

tion between two quantum states that are going to correspond to the bit 0 and 1, in

two different bases. However, such scheme is only secure if the losses along the pro-

cess are very low. When only using two non-orthogonal states, some measurements

yield the value of the bit being sent, whether other measurements are inconclusive.

If she has obtained an inconclusive result, she blocks the signal, while if she has

detected the state, she is able to re-send a correct state to Bob because she knows it

Introduction 3

with certainty. To compensate the blocked photons, she can send a pulse of higher

intensity so that Bob cannot observe any decrease in the expected transmission rate.

The six-state protocol was introduced by Pasquinucci and Nicolas Gisin in 1999.

Instead of using four states, a six state one can better respect the symmetry for

a better key generation rate and tolerance to noise [8]. The six states form three

non-orthogonal bases, reducing the probability that Alice and Bob can match their

sequence. However, the symmetry also reduces the crucial information Eve can gain

for a given error rate, simplifying the security of this protocol. This extra choice of

basis causes the eavesdropper to produce a higher rate of error, when attacking the

single photons, thus becoming easier to detect.

In 2004, Scarani, Acin, Ribordy and Gisin, proposed a new variant of the BB84

at the classical communication channel stage. Since the single-photon sources are

not perfect, there is some probability for a source to emit multiple photons with

identical encoding, in a given run of the protocol. This proves to be a vulnerability

to an eavesdropper who employs the photon number splitting attack (PNS) [18].

The essential idea is that Eve can perform a quantum non-demolition measurement

to determine the number of photons in a run. Then she could steal one of the excess

photons while forwarding the others to Bob. In this way, Bob could not detect the

intruder, while waiting for the Alice basis revelation. A natural way against this

type of attack is to discount the information revealed regarding the basis used in

the prepare/measure stages. The SARG04 does the same initial step of the photon

transmission of the BB84 protocol, where Alice sends one of the four states selected

randomly from the two bases, and Bob does the measurement. However, when Alice

and Bob determine which bits their basis matched, Alice does not directly announce

her basis, but instead a pair of non-orthogonal states, one of which being used to

encode her bit. Since the two states are non-orthogonal, the PNS attack cannot

provide Eve with perfect information on the encoded bit.

Even though there are more QKD protocols, using properties such as Entanglement,

Time bins [4] and the continuous variables, different implementations of the BB84

protocol are still being published in the recent years. The newest implementations

focus on avoiding loopholes, having higher secret key rates (GHz), aiming for longer

Introduction 4

distances (100km -300km), and a straightforward integration into existing infrastruc-

tures of communication networks. And so, implementations using intrinsically stable

loops [[13],[21],[2]] are often being proposed. Another way to implement such pro-

tocol is to use phase modulators, both at the transmitter and receiver side [6], or use

just one in the transmitter with a complex polarization beam splitter (PBS) set up

in the receiver[10]. However, the performance of these set-ups are hard to replicate,

and can be complex/expensive.

1.2 Motivation

Since the quantum technologies are experiencing a rapid growth, when given the

chance to do a dissertation about optimizing the laboratory implementation of a

QKD, in the Instituto de Telecomunicações de Aveiro, I decided to participate in it.

With the development of quantum computation, the security of classical crypto-

graphy will eventually break down in the future. These protocols are known for using

cryptographic keys, to encode and decrypt messages. Nevertheless, these keys are

mathematically related to one another, meaning a high-end computer with enough

power can break the link between them. Another way to implement classical proto-

cols, is to use the same key to encrypt and decrypt a message. Even so, each key

should only be used once and should have the same size of the message that is sent.

This raises the problem of key distribution, since sharing a large set of keys through

a personal meeting is not a viable solution, in general.

Quantum cryptography created a solution for a safe distribution of keys at distance.

However, there still are some technology limitations that slow the process of bringing

quantum key distribution to the real world.

1.3 Goals

The purpose of this is work is to optimize an existing system in IT-Aveiro. Here the

BB84 protocol is used to encode information in the polarization of a single photon.

Introduction 5

To implement this protocol, the system is divided in two parts: the transmitter and

the receiver, linked by a quantum channel (optical fibers).

Since the apparatus is still in the early stages, the current status can be enhanced,

in order to achieve higher key generation rates, low error rates, and stable commu-

nications.

Looking at the receiver, it needs a module capable of receiving information, process

it and then act accordingly to specific instructions. With this set up Bob would be

able to commute between the non-orthogonal bases to do his measurements. The

transmitter needs a new design, in order to encode information, using the polarization

of single photons at the GHz margin.

1.4 Document structure

This document is divided in 5 chapters, being the current one the introduction. The

rest can be summarized here:

• Chapter 2 summarizes the theoretical information needed to understand the

concepts of discrete variables quantum key distribution.

• Chapter 3 describes the process of optimizing the receiver implementation,

using an Arduino based solution.

• Chapter 4 includes the theoretical study of IQ modulation, to understand and

simulate a transmitter solution based on Dual-IQ modulators.

• Chapter 5 summarizes the results obtained in this dissertation and describes

the future work.

Introduction 6

Chapter 2

Discrete Variables QKD

2.1 Introduction

In this chapter concepts related to quantum optics and quantum key distribution are

introduced as background information for the work developed in the dissertation.

This chapter starts with the introduction of the unity of information in the quantum

world, the qubit. One way to encode the qubits is to use the polarization property

of light which can be represented by two formalisms. Then it is explained how these

qubits can be measured and how an eavesdropper can affect the system. Since the

BB84 protocol is being used in the laboratory, a further look in to it is pertained.

Due to the non-ideal world we live in, some technology equipment errors are studied,

as well as two different type of implementations using polarization encoding.

2.2 Qubit

In the classical world, the bit represents the unit of information, and it can only

have two unique states, |0〉 and |1〉 [14]. For example, the state |0〉 can represent

the situation where a system is off and the state |1〉 represents where a system is

on. There are many examples that illustrates this logic, and one can copy, erase and

save data, as long as the information is supported by the classical laws of physics.

However, there are physical states that do not have a classical correspondence. In the

quantum world, the unit of information is the quantum bit, conventionally mentioned

as the qubit. The state of a qubit is a normalized vector in a two-dimensional complex

vector space, with an inner product 〈ψ|ψ〉 = 1. Unlike classical bits, qubtis do not

represent a single state, but instead a linear superposition of the classical states:

7

|ψ〉 = α |0〉+ β |1〉 where α and β are complex numbers that satisfy |α|2 + |β|2 = 1.

The superposition of states relates to the ondulatory nature of particles, that is

not perceptible in the macroscopic world. In a quantum system, any measurement

performed on the qubit, collapses its state into a classical one of |0〉 or |1〉. Thus, the

initial state contains more information than the measured one, and the measurement

destroys the qubit, turning it into a normal bit. It is also impossible to create

an identical copy of an arbitrary unknown quantum state, which is used as a big

advantage in QKD protocols.

Qubit states can be represented graphically by vectors on what is known as a Bloch

sphere. In this representation the states |0〉 and |1〉 are in the poles of the sphere

and any states lying on opposite sides are orthogonal and form a basis. Any point

on the surface of the sphere (vector length of 1) corresponds to a pure state. Since

the coefficients α and β of a general qubit are complex numbers, the equation can

be rewritten as:

|ψ〉 = Aeiγ |0〉+Biδ |1〉 (2.1)

Here A, B, γ and δ are real numbers, and the angle φ = γ−δ can be considered. The

term eiγ can be use as a common factor for both states, and it does not represent a

physical observable effect on the system. Since A2 + B2 = 1, A can be substituted

by cos(θ2) and B by sin(θ2), leaving the equation with the following final form:

|ψ〉 = cos(θ2) |0〉+ eiφ sin(θ2) |1〉 (2.2)

The angles θ and φ are spherical coordinates of a specific point in the unitary radius

sphere, called Bloch Sphere. The basis states |0〉 and |1〉 are in the z axis, more

specifically in the top and bottom. This is known as the z basis or standard basis.

Discrete Variables QKD 8

Figure 2.1: Bloch sphere representation. The states |0〉 and |1〉 represent the
standard basis and are located at the top and bottom of the z-axis. Any other state
can be represented on the surface of the sphere.

2.3 Photonic qubits

There are many ways to create and prepare qubits. The polarization of a photon is

one of the most important properties when encoding information in quantum crypto-

graphy. A single photon is an electromagnetic wave, and its polarization corresponds

to the direction of the electric field. Unpolarized radiation occurs when the direction

of the electric field fluctuates randomly in time. Many common light sources pro-

duce unpolarized light such as LED, halogen lamps, sunlight, etc. However, if the

direction of the electric field is well-defined, polarized light can be achieved. One of

the most common sources of polarized light is a laser.

2.4 Jones formalism

The polarization of a photon can be characterized by considering an electromagnetic

plane wave, polarized in the direction êα, propagating in the y direction : ~E =

E0e
i(ky−wt+δ)êα. This wave can be described as the superposition of two plane waves,

polarized in the z and x directions, meaning ~E = ~Ez + ~Ex :

Discrete Variables QKD 9


~Ez = E0z cos(α)ei(ky−wt+δ)ẑ
~Ex = E0x sin(α)ei(ky−wt+δ)x̂

(2.3)

The real components of the ~E vector are:Ez = E0z cos(α) cos(ky − wt+ δz)

Ex = E0x sin(α) cos(ky − wt+ δx)
(2.4)

If δz and δx aren’t equal, the vector ~E = ~Ez êz + ~Exêx direction would not remain

constant. Meaning the tip of vector ~E is going to describe an ellipse, in the perpen-

dicular plane to the polarization direction. Only the phase difference φ = δx− δz has

physical meaning. The following equation can be obtained:

~E = ~Ez + ~Ex (2.5)

~E = E0e
i(ky−wt+δz)[cos(α)êz + sin(α)eiφêx] (2.6)

The polarization of the electromagnetic wave can be characterized by the vector:

ê = cos(α)êz + sin(α)eiφêx (2.7)

Only two parameters, α and φ, are necessary to characterize a polarization state.

And so the photonic qubit can be represented by a point in the Bloch sphere with

spherical coordinates θ and φ with θ = 2α, and φ equal to the phase difference of

the two field components:

|α, φ〉 =

 cos(α)

sin(αeiφ)

 = cos(α) |H〉+ sin(αeiφ) |V 〉 (2.8)

Depending on the α and φ angles, different types of vectors can be obtained, each

representing a polarization state. The table below summarizes the cases of interest

for this work:

Discrete Variables QKD 10

Table 2.1: Summarized table including the angles, vectors, and symbol information
for each polarization state that is necessary for this work.

α φ Vector Jones vector Polarization Symbol

90◦ 0◦ êx

(
0
1

)
Horizontal |H〉

0◦ 0◦ êz

(
1
0

)
Vertical |V 〉

45◦ 0◦ 1√
2(êz + êx) 1√

2

(
1
1

)
Linear + 45 ◦ |D〉

135◦ 180◦ 1√
2(êz − êx) 1√

2

(
1
−1

)
Linear - 45 ◦ |A〉

45◦ 90◦ 1√
2(êz + iêx) 1√

2

(
1
i

)
Right Circular |R〉

45◦ 270◦ 1√
2(êz − iêx) 1√

2

(
1
−i

)
Left Circular |L〉

Figure 2.2: Bloch sphere containing the six polarization states in the respective
axis.

It can be concluded that the |V 〉 and |H〉 orthogonal states make the standard basis

which can be represented by the ⊕ symbol. The |D〉 and |A〉 orthogonal states

form a basis represented by the ⊗ symbol and the |R〉 and |L〉 orthogonal states are

referred as the y-basis, because both are in the y direction in the Bloch sphere.

Discrete Variables QKD 11

2.5 Stokes parameters

In 1852, George Stokes showed that any polarization could be represented by four

measurable quantities, known as the Stokes polarization parameters. Unlike Jones

vectors, the Stokes parameters are real-valued and can represent both full or partially

polarized light [9]. Let us consider two plane waves that are orthogonal to each other

at a point in space (x, y, z). Without losing generality, z = 0:

Ex(t) = E0x(t) cos(ωt+ δx(t))

Ey(t) = E0y(t) cos(ωt+ δy(t))
(2.9)

Where E0x(t) and E0x(t) are the instantaneous amplitudes, ω is the instantaneous

angular frequency, δx(t) and δy(t) are the instantaneous phase factors [1]. By remov-

ing the term ωt, the polarization ellipse equation can be obtained:

E2
x(t)
E2

0x
+
E2
y(t)
E2

0y
− 2Ex(t)Ey(t)

E0xE0y
cos(φ) = sin2(φ) (2.10)

Where φ = δy − δx represents the phase difference. To represent this equation in

terms of the observables of the optical field, the average over the time of observation

must be considered. Since the vibration is so fast, the observation time can be

seen as infinite. However, Ex(t) and Ey(t) are both periodical, and the average of

the previous equation is only over a single oscillation period. The time average is

represented by the angular brackets 〈〉 and so [1] :

〈E2
x(t)〉
E2

0x
+
〈E2

y(t)〉
E2

0y
− 2〈Ex(t)Ey(t)〉

E0xE0y
cos(φ) = sin2(φ) (2.11)

With:

〈Ex(t)Ey(t)〉 = lim
T 7→∞

1
T

∫ T

0
Ex(t)Ey(t)dt (2.12)

Discrete Variables QKD 12

The average values of equation 2.11 can be calculated using 2.9 and 2.12

〈E2
x(t)〉 = 1

2E
2
0x (2.13)

〈E2
y(t)〉 = 1

2E
2
0y (2.14)

〈Ex(t)Ey(t)〉 = 1
2E0xE0y cos(φ) (2.15)

Multiplying equation 2.11 by 4E2
0xE

2
0y and substituting by the average values:

(E2
0x + E2

0y)2 − (E2
0x − E2

0y)2 − (2E0xE0y cos(φ))2 = (2E0xE0y sin(φ))2 (2.16)

And so the S0, S1, S2 and S3, real quantities can be introduced with the following

relations:

S0 = E2
0x + E2

0y (2.17)

S1 = E2
0x − E2

0y (2.18)

S2 = 2E0xE0y cosφ (2.19)

S3 = 2E0xE0y sinφ (2.20)

The stokes parameters have a physical meaning in terms of intensity. The S0 is used

to represent the total intensity of light (polarized and unpolarized). The parameter

S1 describes the difference in intensity between the linearly horizontal polarized light

and the linearly vertical polarized light [1]. The parameter S2 represents the intensity

of linearly polarized in the directions 45◦ to the reference plane. The S3 describes

the preponderance of the right circular polarized light over the left circular polarized

light. The stokes parameters can form a vector that represents a polarization state.

Discrete Variables QKD 13

Table 2.2: Summarized table including the amplitudes of Ex(t), Ey(t), phase dif-
ference, stokes vector and symbol information for each polarization state.

E0x E0y φ Stokes vector Polarization Symbol

1 0 0◦


1
1
0
0

 Horizontal |H〉

0 1 0◦


1
−1
0
0

 Vertical |V 〉

1 1 0◦


1
0
1
0

 Linear + 45◦ |D〉

1 1 180◦


1
0
−1
0

 Linear - 45◦ |A〉

1 1 90◦


1
0
0
1

 Right Circular |R〉

1 1 -90◦


1
0
0
−1

 Left Circular |L〉

Figure 2.3: Representation of how the electric field oscillates with respect to the
amplitude of Ex(t), Ey(t) and the phase difference.

Discrete Variables QKD 14

When the stokes parameters are used as coordinates in a three-dimensional space,

all physically possible states fall within a sphere of radius one. The Poincaré sphere

is a powerful graphical tool that can represent any polarization state as a three-

dimensional point. The origin point is considered as the unpolarized light, and

each point at the surface represents a pure state of polarization. The right circular

and left circular polarization states are represented at the north and south poles

(S3 axis), respectively. Points along the equator represent the linearly polarized

states of varying orientations, with notable cases at the axes with the horizontal,

vertical polarization states (S1 axis) and the linear +45◦ and the linear -45◦ (S2

axis). Other points, with intermediate elliptical states are continuously distributed

between the equator and the poles. The evolution of the state of polarization can

be represented as a continuous point path on the sphere [9]. The graphical Poincaré

sphere description, allows a more intuitive approach to polarization mathematics.

Here the same analogy can be made as the Jones vector where |V 〉 and |H〉 orthogonal

states make the standard basis which can be represented by the ⊕ symbol and the

|D〉 and |A〉 orthogonal states form a basis represented by the ⊗ symbol.

Figure 2.4: Poincaré sphere containing the six polarization states in the respective
axis.

Discrete Variables QKD 15

2.6 Single photon measurement

Photons are traditionally detected by converting their energy into an electrical sig-

nal. One arrangement designed to measure the polarization state of single photon,

is shown in figure 2.5 This system consists of a polarizing beam splitter and two

single photon detectors, D1 and D2. The PBS has the ability to transmit vertically

polarized light, while diverting horizontally polarized light through a 90◦ angle. De-

pending on the initial polarization state, the particle is either deflected up or down.

For example, if the incoming photon is vertically polarized, the photon is going to

be registered in the D1 detector. Similarly, if the incoming photon is horizontally

polarized the D2 detector is going to register the photon. In all other cases we

have to dissect the polarization vector into the vertical and horizontal components,

and check its amplitude probabilities. As mentioned before, the initial state of the

photon with an arbitrary polarization angle, can be written as a superposition of

the two orthogonal polarization states according to equation 2.8. The probability

that the photon is transmitted to D1 is given by cos2(α), and the probability that it

is transmitted to D2 is given by sin2(α). Supposing that Eve was able to intercept

the system with her measurement apparatus, she is going to try to determine α and

then transmit a similar photon to Bob. In each measurement, Eve is able to check

whether detector D1 or D2 registers, with the probabilities previously mentioned.

However, when she tries to deceive Bob, by transmitting a similar photon, she can

only do it in special cases where α = 0◦ and α = 90◦. For all other values, the act of

extracting information about the polarization, leads Eve to transmit her photon with

a different polarization angle to the first one, reveling her presence in the system [7].

When the detectors receive the single photons, they can output an electrical signal.

With a processing unit collecting the data, it is possible to set counters, to see which

detector clicked at any given time. Due to the dark counts associated with them,

both detectors can either click at the same, or not click at all.

Discrete Variables QKD 16

Figure 2.5: Apparatus to measure the polarization state of a single photon using
two single photon detectors and a polarizing beam splitter [7].

2.7 BB84 protocol

In the BB84 protocol, Alice and Bob start their communication by exchanging in-

formation through the quantum channel. Alice sends her encoded qubits through

this channel to Bob, so he can measure them. In the end, Alice and Bob communicate

via a classical channel to check if there was any eavesdropper attacking the system.

The table example 2.3 illustrates how the process of communication is executed.

Table 2.3: Representative random sequence of data choices to implement the BB84
protocol. The ⊕ symbol represents the basis with vertical and horizontal polarization
states. The ⊗ represents the basis with linear +45◦ and linear -45◦ states.

Alice random bit 0 1 1 0 1 0 0 1
Alice random basis ⊕ ⊕ ⊗ ⊕ ⊗ ⊗ ⊗ ⊕

Alice Qubit |0⊕〉 |1⊕〉 |1⊗〉 |0⊕〉 |1⊗〉 |0⊗〉 |0⊗〉 |1⊕〉
Bob random basis ⊕ ⊗ ⊗ ⊗ ⊕ ⊗ ⊕ ⊕

Bob qubit |0⊕〉 ? |1⊗〉 ? ? |0⊗〉 ? |1⊕〉
Basis reconciliation

Sifted key 0 1 0 1

For the first step Alice generates a random bit sequence, for example, 0 1 1 0 1 0 0

1. She then generates a new bit sequence which identifies the basis ⊕ or ⊗. For the

bit sequence, 00101110, the basis sequence is going to be ⊕ ⊕ ⊗ ⊕ ⊗ ⊗ ⊗ ⊕.

Alice encodes her qubits according to the previous sequence, and sends them to Bob

through the quantum channel (optical fibers). In order to read the qubits, Bob does

his measurements in the ⊕ basis or in the ⊗ basis. To do that, he generates a random

bit sequence which is going to identify the basis used to read the qubit. For example,

01110100, means basis ⊕ ⊗ ⊗ ⊗ ⊕ ⊗ ⊕ ⊕. When Bob finishes his measurements,

Discrete Variables QKD 17

he communicates with Alice through the classical channel so they can share the two

random bases bit sequences. Now it is public which cases the two of them coincide.

Nevertheless, an eavesdropper cannot obtain information of the actual bit value.

The public knowledge of the basis sequence does not allow the private key to be

discovered. If there were no errors in the transmitter and receiver side, a mismatch

in Alice and Bob’s sequence would mean that the intruder, Eve, was able to do meas-

urements in the quantum channel. However, the discrepancies in the nearly identical

shared keys, can also be caused by the errors associated to the transmitter and the

receiver equipments. At this point, it is still impossible to distinguish between these

errors and the ones introduced by Eve. To guarantee the security of the system, it

is assumed that all errors are introduced by the eavesdropper. Provided that the

error rate between the keys is lower than a certain threshold (∼ 11%), two further

steps can be implemented to remove the bit errors and eliminate Eve knowledge of

the key.

Information reconciliation is a form of error correction, performed on Alice and Bob’s

keys, to ensure that they are identical. The cascade protocol is used to correct errors

based on a block parity exchanges [20].

Privacy amplification is a method used to eliminate Eve’s information about Alice

and Bob’s key. This information could have been gain by eavesdropping on the

quantum channel during the keys transmission, and on the public channel ,during

the basis reconciliation. At this point Alice and Bob have acquired identical strings,

but they are not completely private. Privacy amplification uses Alice and Bob’s key

to produce a new shorter key, to eliminate all possible information leaks. This can

be done using a universal hash function, chosen at random from a publicly known

set. This function takes as input a binary string of length equal to the key and

outputs a binary string of a chosen shorter length. The amount by which this new

key is shortened, is calculated based on how much information Eve could have gained

about the old key (which is known due to the errors introduced in the system). With

this method it is possible to eliminate the probability of Eve having knowledge of

the new key [18].

Discrete Variables QKD 18

2.8 Some system errors

In a quantum key distribution implementation, Eve is not the only one who intro-

duces errors in the system. Since the technology equipments are not perfect, the

inaccuracies introduced by instruments needs to be accountable, in order to create

an error threshold.

One type of error is the birefringence, and it occurs when the medium in which the

photons are traveling is birefringent. This is going to affect the polarization angle,

forcing it to change as the photon travels from Alice to Bob. In this case, Bob

is going to get the wrong result in his detectors, even though he chose the right

basis for the measurement. This type of error can be calibrated out of the system by

using classical error-correction algorithms [7]. Optical fibers can also introduce losses,

which decays the intensity of the optical beams as they propagate. These propagation

losses depend on the wavelength used. There are three common wavelength bands

used in fibre optic systems: the 850 nm band, which has larger scattering losses;

the 1300 and 1550 nm bands, which have detectors with much higher dark count

rates, and are affected by afterpulsing that restricts the transmission bit rate[7].

The gain/loss needs to analysed, to see which wavelength is better supported in the

system.

Another type of error is the detector dark counts. It happens when the photon

sent by Alice never reaches Bob and the wrong detector randomly registers, due to

thermal noise. This error, has the same effect has the birefringence one, but can also

be calibrated by using classical error analysis on a portion of the sifted bits [7] .

On the transmitter side, it is important that Alice generates only one photon to

encode the information. If she were to send more than one photon at a time, she

could leak information to Eve. For example, if Alice sends light pulses containing

two photons instead of one, and Eve is detecting them with the wrong basis, there is

a 50 % chance that the two photons are going to be registered by both detectors. Eve

would know with certainty that she is using the wrong basis, giving her an advantage,

because the error rate introduced by her would decrease. This problem gets worse

the more photons Alice sends in a light pulse. If there are three photons per pulse,

Discrete Variables QKD 19

Eve can determine both the basis and the bit value, for a significant fraction of the

data pulses [7]. The standard procedure to avoid these problems, is to take a pulsed

laser and attenuate it so that the mean photon number per pulse is very small.

When this value is small, most of the time intervals will contain no photons, a small

fraction will contain one photon, and a very small number will contain more than

one photon.

2.9 Polarization encoding

A typical quantum key distribution system, using the BB84 four state protocol,

utilizes the photon’s polarization to encode the information. The transmitter can

contain four oriented laser diodes, each one emitting short classical photon pulses,

polarized at linear −45◦, horizontal, linear +45◦ and vertical states. [9]. The pulses

are then attenuated, to reduce the average number of photons, and sent to Bob

through the quantum channel. It is important that the pulses remain polarized, so

that Bob can extract the correct information encoded by Alice. When the photons

reach the receiver, they travel through a set of waveplates to recover the initial po-

larization state, compensating the errors introduced by the optical fibers. The pulses

then reach a symmetric beamsplitter, representing the basis choice step. Transmitted

photons are analyzed in the vertical-horizontal basis with a polarizing beamsplitter

and two single photon detectors. The polarization state of the reflected photons is

first rotated by 45 ◦ with the help of a waveplate. The photons are then analyzed

with a second set of polarizing beamsplitters and detectors, implementing the diag-

onal basis. Another set up for polarization encoding is to use one single laser diode

in combination with two active polarization cells, denominated as Pockels cells. At

the transmitter, the modulator is randomly activated for each pulse to rotate the

state of polarization to one of the four states. At the receiver, it randomly rotates

half of the incoming pulses by 45◦, recreating the choice step.

Discrete Variables QKD 20

Chapter 3

Receiver Optimization

3.1 Introduction

The quantum communication system implemented in the laboratory uses the polar-

ization property of light to cipher and transmit information. These types of systems

can use up to three non-orthogonal bases to encode information: standard linear,

diagonal linear and circular polarization’s. Necessarily, the receiver side needs to be

able to commute between the three non-orthogonal bases, so that Bob can choose

one to do his measurements. In this work, an Arduino based solution is proposed,

which is going to optimize the reception procedures.

This chapter starts with the project definition, where the goals and the architecture

of this implementation are explored. Afterwards, the decision process is discussed,

namely the components selection, and how they can be implemented. Next, an

overview of the technology used is presented, to specify the details of the electronic

equipments. The final implementation using Arduinos is then illustrated and ex-

plained. The repository, where all programs are stored, is described, together with

the three processes used to have the system working: Signal processing, Communica-

tion with the upper level protocol and managing the electronic polarization controller

(EPC). Lastly, some QBER results were presented, to check if the receiver module

could remain stable for certain amount of times.

3.2 Project definition

In order to start looking at solutions for the problem proposed in this chapter,

we needed to describe what was already implemented in the laboratory. This is

21

an important step, because one can be familiarized with the system limitations,

performance and what is really necessary to be achieved. Figure 3.1 illustrates the

main components of the receiver in the initial configuration. The clock signal is used

to keep both quantum detectors synchronized. In each clock cycle, the detectors

open their gates and output a voltage signal if a photon was measured, or output

nothing if a photon wasn’t measured. However, this feature was not being used.

In this implementation, Bob needs to manually adjust the electronic polarization

controller, to change the basis for his measurements. Here the state of polarization

is converted, so that the polarization beam splitter can distinguish states with the

help of the single-photon detectors.

Figure 3.1: Block diagram of the initial components in the receiver. Here the clock
signal synchronizes the detectors, and the EPC is adjusted manually. The PBS splits
the light between the detectors according to the basis selection.

To improve the receiver side, the following ideas were prioritized: the system needs an

autonomous module capable of processing the detectors data, communicate with an

upper level protocol, where the error calculations are performed, and act accordingly

on the electronic polarization controller.

The receiver side requires a type of electronics that can be controlled automatically,

and are capable of implementing the ideas mentioned above.

Receiver Optimization 22

Basically, the earlier implementation needs a microcontroller board to interpret the

data directed to the I/O (input/output) peripherals, and analyse it using the central

processor. After the analysis, the board needs to communicate the appropriate

actions through the other I/O peripherals. The module chosen for this work was the

Arduino DUE, because of its clock speed and the wide range of peripherals. Every

time the detectors measure a single photon, they can output a controlled voltage

signal through their gates. This gate opens when the clock signal is in the high state

and closes when the clock signal in the low state. The Arduino reads the voltage

signals, every clock cycle and does a coincidence check. If none of the detectors

clicked, the Arduino is going to send an “3” to the upper level protocol. If both

clicked, the Arduinos sends a “2”, and depending on if one clicked and the other did

not, it sends a “0” or a “1”. The coincidence test information is then forwarded to

the upper level protocol, where the QBER is calculated in real time. This protocol

also sends back to the Arduino a "0", "1" or "2 representing the three set of voltages

to apply on the polarization controller. Each set of voltages represents one of the

three non orthogonal basis, that Bob needs to apply to do his measurements.

Figure 3.2: Receiver High level diagram block. The receiver module represents all
the electronics that are going to be needed for the signal processing, data analysis
and for controlling the EPC’s.

Receiver Optimization 23

3.3 Project decisions

Even though the Arduino DUE is used as the main structure of the receiver module,

it was also necessary to make decisions concerning other types of electronics. First,

the capability of the Arduino, to measure the voltage signals from the quantum

detectors was tested. The Arduino needs to be handled in interruption mode, since

these signals have a low duration of 10 ns or 100 ns. This mode implies that Arduino

interrupts its actions every time a voltage signal is detected on the digital pins.

Each clock cycle, the Arduino is going to check if there is any voltage signal from the

quantum detectors gates. After the respective coincidence check is done, the Arduino

communicates with the upper level protocol. Therefore, the integers 0, 1, 2, or 3 are

going to be sent through the serial port to a computer, via USB connection. The

next step is to have a computer run the calculations and send back the information

needed to act on the electronic polarization controllers. Even so, this step introduces

two new problems regarding the Arduino module. Firstly, the same Arduino cannot

be sending and reading information through the same serial port, because it is going

to lose bits over time. Secondly, the polarization controller needs 4 voltages in order

to be operated, and the Arduino only has two integrated DAC’s (Digital to analog

converter). For the first problem, instead of one Arduino, a second Arduino is added

to the implementation. Arduino DUE 1 is only going to be reading the detectors

data, and sending it to the computer. Arduino DUE 2 is going to be reading the

data from computer, and act on the polarization controller. For the second problem,

an external DAC, compatible with the Arduino DUE, with eight voltage outputs, is

going to be used.

Receiver Optimization 24

Figure 3.3: Receiver block diagram after the implementation modifications. The
components that are needed for the new implementation are highlighted in red: two
Arduinos DUE, a computer and an external DAC. This highlighted area represents
my contribution to the work in the receiver.

3.4 Technology equipment

A further look in each separate electronic device was made:

• Detectors: The photon counting is done by two ID Quantique’s single photon

detectors modules. The core consists of an InGAaS/InP avalanche photodiode

(APD). In order to reduce the dark count probability, the APD is cooled using

a thermoelectric cooler. The APD is operated in the gated mode, where a

voltage pulse is applied to raise the bias beyond the breakdown point. This

type of technology allows a single photon sensitivity up to a wavelength of

1650 nm. The performance of an APD is characterized by the probability for

a photon impinging on the photodiode to be detected. At 1550 nm, which

is the wavelength used transmitter source, a 25% detection efficiency is typ-

ical. In the APD, avalanches can also be triggered by carriers generated in

thermal, tunneling or trapping processes taking place in the junction. These

Receiver Optimization 25

self-triggering effects are called dark counts, and represent the probability as

a function of the detection efficiency at a temperature of 220 K. At 10% de-

tection efficiency, the dark count probability is typically 6× 10−5ns−1 or less.

The main problem limiting the performance are the afterpulses. This spurious

effect arises from trapping of charge carriers during an avalanche by trap levels

inside the high field region of the junction where impact ionization occurs [19]

Figure 3.4: ID Quantique single photon detectors

• Arduino DUE: Arduino represents an open-source platform that consists of

both a physical programmable circuit board, containing a microcontroller, and

an Integrated Development Environment that runs is a computer through a

USB cable. The Arduino model used for this project was the DUE. It has a

microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU.

It also has 54 input/output pins, 12 analog inputs, 4 UARTs (universal asyn-

chronous receiver-transmitter), 84 MHz clock, 2 DAC, a power jack, a SPI

(Serial Peripheral Interface) header, a reset button and an erase button. How-

ever, this model is limited at 3.3V for the maximum voltage that the I/O pins

can tolerate [3].

According to Arduino official manufactures this language is merely a set of

C/C++ functions that can be called from the user’s code. The users sketch

undergoes minor changes and then is passed directly to a C/C++ compiler.

Receiver Optimization 26

However, there’s currently no support for the standard support library needed

for a complete C++ implementation. This imposes a number of restrictions

on the C++ programs that can be compiled. Among them are:

– Some of the C++ related standard functions, classes, and template classes

are available.

– The operators new and delete are not implemented, attempting to use

them will cause the linker to complain about undefined external references.

– Some of the supplied include files are not C++ safe.

– Exceptions are not supported.

– The outputs to the console have to be made through the Arduino serial

monitor using the function Serial.print() instead of making use of cout,

cin or cerr classes.

– Arduino does not recognize objects of type std::initializer_list<T>, which

are a lightweight proxy object that provides access to an array of objects

of type const T, so instead vector containers must be used in order to

initialize the constructors attributes.

Figure 3.5: Arduino DUE board

Receiver Optimization 27

• AD5669 : The AD5669 is a I2C (Inter-Integrated Circuit) high-resolution

digital to analog converter capable of generating a 0-5V voltage output. It

has a 16-Bit resolution and it can tune the output across 65,536 steps. It

is equipped with 8 individual output channels and one floating address line.

The AD5669 is capable of 400 kHz communication speed, making it ideal for

programmable voltage and current source applications. It is compatible with

the Arduino by including the Wire.h library and defining the DAC address

in the program. In the Arduino program we set the correct address of the

AD5669. It also requires two bytes of data for the DAC and a command

byte that controls all the various functions. The clock chosen was 400 kHz, to

achieve maximum speed, and four channels were set to output random voltages.

Using the Wire library functions, the I2C transmission is established in order

to control all four channels accordingly [5].

Figure 3.6: AD5669 DAC board

• Electronic Polarization controller: Polarization controllers are normally

operated by manual/electrical adjustments or with an automatic feedback.

A polarization controller can transform a fixed, known polarization into an

arbitrary one. In the reception side, these are used to compensate the random

polarization drift from the quantum channel and used to choose in which base

the single photons are going to be measured. The ones used in the laboratory

need four voltage inputs in order to operate. Since these are electro-mechanical,

it is possible to get different results when the same voltages are applied in

different occasions.

Receiver Optimization 28

Figure 3.7: Electronic polarization controller at the laboratory

• Bypass board: This custom-made board, takes the signal coming from the

classic detector and divides it to the two single photon detectors and the Ar-

duino. This signal represents the clock and keeps the system synchronized.

Figure 3.8: Bypass board at the laboratory

• Polarizing beam splitter: Polarizing beam splitters use birefringent mater-

ials to split light into two beams of orthogonal states. They are designed to

split polarization states, rather than dissociation by wavelength or intensity.

They are typically manufactured for 0o or 45o angle of incidence with a 90o

separation of the beams, depending on the configuration.

Receiver Optimization 29

3.5 Arduino implementation

In terms of simplification, the implementation can be divided in three steps. The

first one represents the signal acquisition, where the Arduino DUE 1 collects the data

from the detectors and does the coincidence check. The second stage corresponds to

the data analysis, where it is possible to get the QBER reports and the necessary

information to act on the EPC. These calculations are performed by a computer

located in the laboratory. The third and final step, is to set the correct voltages on

the EPC with the help of the Arduino DUE 2 and an external AD5669 DAC.

Figure 3.9: Block diagram of the implementation, where the three mains processes
are highlighted. The green area is responsible for the signal processing. The red area
represents the location where the data is going to be analyzed. Finally, in blue are
the components used to control the EPC.

3.6 Repository

Due to the intended nature of this work to be open source, a guide to where all the

programs are located is needed. This work was developed in the Netxpto reposit-

ory. Under the Arduino folder, all the necessary tools to run the software side are

Receiver Optimization 30

presented. In the “sdf”, the arduino_real_time_receiver folder can be found. Here

the three main codes are referenced as ardRece, serial_port_reader_writer-Client

and netxpto_qber_estimation-Server. The first one is the Arduino code, that needs

to be opened and uploaded to the Arduino DUE 1 and Arduino DUE 2. It is only

necessary to run one program, because it is possible to code with two Arduino ports

within the same workplace. The second program, is a C++ script that reads data

from Arduino DUE 1, and writes data to the Arduino DUE 2. It also commu-

nicates, via TCP/IP (Transmission Control Protocol/Internet Protocol), with the

netxpto_qber_estimation-Server program. The third one, is continuously receiving

the coincidence check data, and outputs a file report each 8000 bits, with the QBER

results. For the system to be successfully running, all the three programs need to be

running simultaneously. Further detailed explanation is presented in the following

section of this chapter.

3.7 Signal acquisition

As mention before, one Arduino is going to read the signals from the quantum de-

tectors, each clock cycle, while sending this data to the upper level protocol. For

the signal acquisition two options were considered: polling mode or the interrup-

tion mode. Polling proved to be impracticable to implement, since the quantum

detectors output a signal with a maximum width of 100 ns. In contrast, the Ar-

duino function, digitalRead(), needs a minimum time of 523 ns to read a voltage

signal. This proves the impossibility to read two simultaneous signals, and the use

of this function (polling) would lead to the loss of information each cycle. The right

approach is to use an interruption every time a rising edge coming from the single

photon detectors, or the clock signal is caught. To do this, all the receiving signals

are read in the digital input pins of the Arduino DUE board. This type of reading

doesn’t require any signal conditioning, which means the detectors gates are directly

connected to the Arduino. Since the detectors have the feature to control the output

signal voltage, it is important to set it below the 3.3 V Arduino Due threshold.

Receiver Optimization 31

One important note, is that the clock trigger reaches both the detectors and the

Arduino at the same time. In order to detect it, the Arduino does an interruption

when it catches a rising voltage and puts a Boolean to true, meaning it is ready

to take the signals from the two detectors gates. The same applies to the signal

coming from the detectors gates, meaning an interruption function is going to be

triggered if the digital pins detect a rising voltage. Each clock cycle, if the Arduino

has both detectors Booleans to true, the integer 2 is sent to the computer. If both

detectors Booleans are false, the integer 3 is sent to the computer. Depending on if

one detector clicked and the other did not, one Boolean is going to be true and the

other false, and the Arduino is either going to print a 0 or 1.

Figure 3.10: Diagram representing all four possibilities for the coincidence check
block. The arrows are pointed to the digital inputs 26,27,28 where the detectors and
clock are connected. The green error corresponds to the situation where a signal
is sent to the Arduino. The red arrow means no signal is sent to the Arduino.
Depending on the detector that sends the signal, the Arduino outputs a “0” or a
“1” through the USB to the computer. If both detectors clicked a “2” is sent, and if
none of them clicked a “3” is dispatched.

Receiver Optimization 32

3.8 Communication with the computer

The Arduino program has the 26, 27 and 28 pins in the INPUT mode, waiting for an

external signal from the clock or the detectors. Each one of the pins, is attached to

an interruption that takes place when a rising edge is caught. When an interruption

is triggered, the program does a function that puts a Boolean to true. There are

four possible results that are going to be printed in the serial COM (communication

port). Even though, the attachInterrupt() function takes about 2 microseconds to be

completed, this does not represent a problem, because the Arduino saves the register

of another event during an interruption. Each clock cycle, the program does one

print and resets all the Booleans to false. After printing a value of the coincidence

block, the data must be delivered to a computer, so that the QBER can be calculated

in real time.

Figure 3.11: Block diagram of the communication between the Arduino DUE 1
and the computer server. After the coincidence check, the Arduino writes the data
in the Serial COM. A program on the computer is going to be reading this COM and
buffering the data. When the buffer is full the data is sent to the QBER program,
via TCP/IP.

To have this implemented in the system, the Arduino must send the data one by

one to a C++ program on the computer. The serial_port_reader_writer.sln pro-

gram (client side), waits for a connection with the Arduino Serial port, in order

to start receiving the data. Once the communication between the Arduinos and

the computer is established, the program burns the first 10 seconds of information,

because the Arduino tends to send unnecessary bits when it starts writing in the

serial COM. The program puts the receiving information in a buffer, and when it’s

Receiver Optimization 33

full, all the data is sent to the QBER program. This is achieved by a TCP/IP

connection between the program reading the Arduino data and the one that does

the QBER estimations. The size of the buffer is 4000 characters. To always have

the correct values of the QBER, the sequence the Arduino DUE is sending needs to

be synchronized with the sequence from the Alice side (it’s written in a text file).

The netxpto_qber_estimation program runs between two modes, the synchronized

one, and the unsynchronized. After burning the unnecessary data, the first 1000 bits

are checked in the buffer and compared with the transmitter sequence. If they are

different, the program will discard the first bit that entered the sequence and add a

new one (FIFO, first in first out).

This occurs until a match in the sequences is found, and the program will run

normally in the synchronized mode. If, for some reason, the program loses the

synchronization, it will do the same process previously explained. In the two modes

the program always output a file, the midreports, every 8000 bits, with the results

of the QBER block calculations.

Figure 3.12: High level block diagram of the serial_port_reader_writer.sln script.
The program tries to connect to the Arduino ports to be able to read and write in
the serial COMs. When the connection is made, it burns the first 10 seconds of
data. Then it starts to put the data into a buffer and sends it to the QBER program
through an TCP/IP protocol. A counter is increasing each time a max length buffer
is sent to the IPTunnel. When it reaches 500, the program writes random values of
voltages to the Arduino Due 2.

Receiver Optimization 34

Figure 3.13: High level block diagram of the netxpto_qber_estimation-Server
script. The program takes the first 1000 bits of data from the buffer (that was
sent from the serial_port_reader_writer.sln script) and compares it with the Alice
sequence (this sequence is in a file called binary). If both sequences matched, the
QBER calculations are performed. If not, we take the first bit that was put in the Bob
buffer, and replace it with a new one, until we have a match. The QBER analysis,
also provides a way to check if synchronism was kept and provides information by
outputting a file.

3.9 Electronic polarization controller

Bob also needs to control in which basis he is going to measure Alice qubits. To

have the bases commuting between them, the EPC needs a set of four voltages. As

mentioned before, for this step an extra Arduino board coupled with an external DAC

is needed. The Arduino DUE 2 is only focused on receiving data from the computer

and set the voltages on the AD5669 DAC. Since the algorithm for the base selection,

and to compensate the polarization drifts is not developed, only the synchronization

of the communication processes can be tested. However, the Arduino DUE 2, is still

going to receive four random voltage values, every time the counter reaches 500 (the

counter increases each time a full buffer is sent to the QBER program), simulating

the real process. The Arduino communicates with the DAC through an I2C protocol.

In the Arduino code, the wire library needs to be included, in order to use the DAC

functions to begin the transmission, set the clock speed, write the voltage data, and

to end the transmission. The process of sending data through the computer to the

serial COM is also limited by its performance. This means, at certain frequencies

of the clock, the computer might be doing to many internally operations, affecting

Receiver Optimization 35

the synchronization. The speed limit is around 2.5 kHz, which does not represent a

problem at the moment, because the system is working at 500 Hz.

Figure 3.14: Block diagram representing the communication between the computer
and the Arduino DUE 2. The COM receiver program is responsible to give the
voltage values, Vi, to the Arduino. The Arduino starts the I2C connection with the
AD5669 DAC to set the voltages on the EPC.

3.10 QBER results

To check if the system is able to keep the synchronization throughout all the receiver

processes, some QBER results were obtained. The transmitter was working at the

500 Hz speed, and the DAC was not operating on the EPC. However, the upper

level protocol, was still sending random voltage numbers to the Arduino DUE 2,

and consequently to the DAC, simulating the real process. Each 8000 bits, a file

containing the QBER, the number of errors, the number of double clicks, the upper

and lower confidence bounds for 95% confidence level and the number of double/no

clicks is created in real time. By analyzing each file it is possible to obtain the QBER

progression in relation to the elapsed time. In theory, the sequence Alice is sending,

should be the same Bob is getting. However the errors associated to the devices

doesn’t allow the QBER to be the ideally 0%. The QBER values obtained range

from 3 to 6 %, due to the non ideal behaviour of the equipments.

The first test was performed for the 30-minute mark. Here the QBER values don’t

oscillate from high to low values, meaning the receiver module is able to keep the

communications with the Arduinos, the upper level protocol and the DAC synchron-

ized over the 30 minutes check mark.

Receiver Optimization 36

Figure 3.15: QBER progression for about half an hour.

The second test was performed for about 2 hours. Here the QBER values also don’t

oscillate from high to low values, meaning the receiver module is able to keep the

communications with the Arduinos, the upper level protocol and the DAC synchron-

ized for about 2 hours.

Figure 3.16: QBER progression for about two hours.

The results of stability are satisfactory at this stage of the system. With speeds

up to 2.5k kHz the system should be able to reproduce the same results with no

problems.

Receiver Optimization 37

Chapter 4

Transmitter Design Optimization

4.1 Introduction

One important task to implement the BB84 protocol, is to generate and commute

different states of polarization in the transmitter. Along the years, there has been a

strive to improve the implementations of the quantum key distribution protocols. It’s

still necessary to overcome a number of technology limitations, namely, the increase

of key generation rates and reduce the cost/complexity aspect of these systems. In

this chapter a solution is studied, in order to improve the current implementation in

the laboratory, which uses an Electronic polarization controller (EPC) to commute

between different bases. This EPC consists of four individual fiber squeezers: the

first and third have the main axis align with 0◦, and the second and fourth have

the main axis aligned with 45◦. Due to the mechanical nature of the fiber squeezers

and environmental disturbances, there is an instability in the direction of the fiber

squeezers along the time. Moreover, it has a slow response, which does not allow the

transmission of information over 500 bit/s. This chapter is introduced by the study

carried out, based on IQ modulators. Afterwards, a simulation of the solution chosen

is performed, in order to check if the needed polarization’s states can be generated.

4.2 IQ Modulation

To understand how an IQ modulator operates, it is important to learn the theory and

principles behind it. In any event, the designation "IQ" comes from the abbreviation

for In-phase and Quadrature [12]. For instance, these terms cannot be mentioned

individually, because something can only be in phase or out of phase with reference

38

to another signal or an established reference point. These terms refer to two sinus-

oidal waves that have the same frequency and are 90◦ out of phase. The In-phase

signal can either be assigned as the sine or the cosine waveform, as long as, the

Quadrature signal is shifted by 90◦ relative to the In-phase one. The IQ signals are

not modulated by frequency or phase, but instead they are always individually mod-

ulated by amplitude. In IQ modulation, the wave forms are modulated by signals

that can have positive or negative voltage values, and consequently the amplitude

modulation can result in a phase shift. One important note to take is that the I

and Q signals are individually treated and, when the wave forms are added together,

phase modulation can be achieved by simply varying the amplitude of these signals

[11]. For example, multiplying the amplitude of the I signal by 1 and the amplitude

of the Q signal by 0, would result in the waveform of the I signal. Going the other

way around the result would be a 90◦ shift. Multiplying both amplitude signals by 1,

would result in a 45◦ shift when both waves are added together. As mention before

this modulation is not limited by null or positive values, and different results are

possible to be obtained.

4.3 Quadrature amplitude modulation

Quadrature amplitude modulation (QAM) is a form of modulation that utilizes both

amplitude and phase components to reach high spectral efficiencies [15]. A QAM

signal represents two carriers that are shifted in phase by 90◦ and are modulated

by amplitude and phase variations. When using QAM, the constellation points are

usually arranged in a square grid with equal vertical and horizontal spacing. For that

reason, the number of points in the grid is usually a power of 2. Depending on the

multiplicity of the digital signals, m, the resulting QAM is going to have 2m possible

states. By using higher order modulations formats, more points the constellation is

going to have and more bits per symbol can be transmitted. However, points that

are closer to each other are more susceptible to noise and data errors.

Transmitter Design Optimization 39

Table 4.1: Table containing some QAM forms, depending on the number of bit-
s/symbol

Bits/Symbol QAM
m=2 QPSK
m=4 16 QAM
m=6 64 QAM
m=6 256 QAM

4.4 Phase shift keying

Phase shift keying (PSK) can be regarded as a special case of QAM, and corres-

ponds to the digital modulation technique in which the phase of the carrier signal is

changed by varying the sine and cosine inputs at a particular time. PSK can have

a finite number of phases, each assigned to an unique pattern of binary sequences.

Each pattern of bits forms the symbol, and it is represented by the particular phase.

A convenient way to represent PSK schemes is by a constellation diagram. This

shows the points in the complex plane where, the real and imaginary axis are re-

ferred as the In-phase and Quadrature terms, respectively due to their 90◦ difference.

The constellation points chosen are usually positioned with uniform angular spacing

around a circle. They are positioned in this way so that they can all be transmitted

with the same energy.

4.5 Quadrature phase shift keying

Quadrature phase shift keying (QPSK) uses four points on the constellation diagram

spaced equally around a circle [11]. With four phases, it can encode two bits per

symbol, doubling the data rate compared with a Binary phase shift keying system

(BPSK). BPSK is a two phase modulation scheme, where the binary data, 0 and

1, represents two different phase states in the carrier: 0◦ for a binary 0 and 180◦

for a binary 1. While the data is doubled, QPSK, maintains the same bandwidth

and the bit error rate. A QPSK symbol does not represent a 0 or 1, but instead it

represents two bits-per-symbol: 00, 01, 10 or 11. Considering the IQ signals to have

the following equations:

Transmitter Design Optimization 40

I = A sin(wt) (4.1)

Q = A cos(wt) (4.2)

Binary 0 => A = −1 (4.3)

Binary 1 => A = 1 (4.4)

The following table can be generated:

Table 4.2: Summarize phase shifts that can be obtained by applying a 2 bit sequence
to the In-phase and Quadrature wave forms, considering [-180◦,180◦]

I Data Q Data I waveform Q wave form I+Q Phase
0 0 -sin(ωt) -cos(ωt)

√
2 sin(ωt− 135◦) -135◦

0 1 -sin(ωt) cos(ωt)
√

2 sin(ωt+ 135◦) +135◦
1 0 sin(ωt) -cos(ωt)

√
2 sin(ωt− 45◦) -45◦

1 1 sin(ωt) cos(ωt)
√

2 sin(ωt+ 45◦) +45◦

As well as the constellation point diagram:

Figure 4.1: QPSK constellation point diagram

Even though we are only varying the the amplitudes of the I and Q signals, it is

Transmitter Design Optimization 41

possible to get four different phase outputs, when adding the two signals together.

With this method we do not need to directly vary the phase of the carrier.

4.6 IQ modulator

An IQ modulator is a structure composed of phase modulators and two Mach-

Zehnder interferometers [16]. The incoming radiation is equally split into two arms,

the In-phase (I) and the Quadrature (Q) arm. In both paths, a field amplitude mod-

ulation is performed by operating the Mach-Zehnder interferometers in the push-pull

mode at the minimum transmission point. In the second Mach-Zehnder interfero-

meters, the signal goes through a 90◦ phase shift to form the Quadrature (Q) signal.

This way, any constellation point can be reached in the complex IQ plane after re-

combining the radiation of both branches. The most popular form of modulation

used is the above-mentioned QPSK in which an IQ modulator is used to create 4

symbols (each uniquely located in 2D phase-intensity space).

Figure 4.2: Structure of an IQ modulator, composed by two Mach-Zehnder inter-
ferometers and a phase modulator.

4.6.1 Phase modulator

An electro-optic modulator is a device which can be used for controlling the power,

phase or polarization of light with an electrical control signal[17]. It typically con-

tains two Pockels cells, and additional optical elements such as polarizers. A Pockels

cell is a device consisting of an electro-optical crystal through which light can be

transmitted. The phase delay in the crystal can be modulated by applying an elec-

Transmitter Design Optimization 42

tric voltage. The Pockels cell thus acts as a voltage-controlled waveplate, and the

principle of operation is based on the Pockels effect. Pockels effect is the name

given to the occurrence of birefringence, and to the change in existing birefringence

phenomena in an electric field, linearly proportional to the electric field strength.

These devices can be used in fiber implementations, where the Pockels cell is placed

between two fiber collimators. Since the interest is not to modulate directly the

phase of the laser beam, Pockels cells can also be used for other types of modula-

tion. For instance, the electro-optic phase modulator can be used in one arm of a

Mach-Zehnder interferometer in order to obtain amplitude modulation.

4.6.2 Mach-Zehnder

Mach-Zehnder interferometers are used for controlling the amplitude of an optical

wave. The input waveguide is split up into two waveguide interferometer arms. In

each arm there is a phase modulator, where a voltage is applied to induce a phase

shift in the wave passing through that arm. It can apply phase shifts in both arms,

or only in one of them, where the other will be the reference arm. Then, the two

arms are recombined, and the phase difference between the two waves is converted

to an amplitude modulation. The output is the result of the interference between

the two signals that pass the arms, ranging from constructive (the phase difference

between the two signal is zero) to destructive (the phase difference between the two

signal is 180◦). The Mach-Zehnders are operated in the push-pull operation, where

the polarities of optical phase shifts are opposite to each other so that the optical

output can be amplitude modulated without any parasitic phase modulation.

Figure 4.3: Mach-Zehnder interferometer structure.

Transmitter Design Optimization 43

4.6.3 Single-mode optical fiber

Single-mode fiber, also known as mono-mode fibers ideally only supports one mode

to propagate in it. Single-mode fibers are capable of wide bandwidths and are suited

for telecommunications over 1 kilometer. They are generally used for wavelengths

of 1300 nm to 1550 nm, where the attenuation is low and sources and detectors are

available. In conventional single mode fiber, the fundamental mode consists of two

orthogonal polarization modes. These modes may be chosen arbitrarily between ho-

rizontal and vertical polarization’s, in the x and y direction respectively. The electric

field of light propagating along the fiber is a linear superposition of these two polariz-

ation modes and depends on the polarization of the light at the launching point. And

so a single mode optical fiber can support two quasi-degenerate orthogonal modes.

4.6.4 Dual polarization-IQ modulator

The capacity of coherent transmission can be further doubled by using two ortho-

gonal states of polarization, each using a separate IQ modulator. Dual polarization

states are created by using two IQ modulators in combination with a polarization

rotator and a polarization beam combiner [16]. This technique allows the two ortho-

gonal polarization’s of a laser beam to be combined with QPSK modulation on each

polarization component. The laser beam is split equally to the two Mach-Zehnder

modulators. Both Mach-Zehnders structures are operated by two DAC’s, one for

the In-phase component and the other for the Quadrature component (shifted 90◦

by a phase modulator). The DAC’s act accordingly to one bit of data, meaning that

the system needs a 4 bit sequence to obtain the desirable effect. After the Mach-

Zehnder modulations, in one of the arms there is a 90◦ polarization rotator, so that

each polarization component can be achieved. The two signals are then recombined

forming the desired polarization state. This modulator can operate at transmission

rates over the GHz.

Transmitter Design Optimization 44

Figure 4.4: Dual-Polarization IQ modulator structure. It is composed by a 50/50
beam splitter, two IQ modulators (one for each polarization) and one polarization
rotator. Can take a maximum of 4 bits per symbol.

Considering that the optical input is in the horizontal state the following table can

be made:

Table 4.3: Summarized table containing a sequence of bits that can generate a
polarization state. Each sequence can induce a different phase shift.

Ix bit Qx bit Iy bit Qy bit δx δy δy − δx P. rotator Polarization
0 0 - - -135◦ - 0◦ 90◦ Horizontal

- - 0 0 - -135◦ 0◦ 90◦ Vertical

0 1 0 1 135◦ 135◦ 0◦ 90◦ Linear +45◦

0 0 1 1 -135◦ 45◦ 180◦ 90◦ Linear -45◦

1 0 1 1 -45◦ 45◦ 90◦ 90◦ Right Circular

0 1 1 1 135◦ 45◦ -90◦ 90◦ Left Circular

Transmitter Design Optimization 45

4.7 Simulation

One important task, is to validate the study by performing a simulation capable of

corresponding to the necessary requirements. For this work, the challenge was to

create a Matlab simulation by feeding a 4-bit sequence to the modulator and try to

generate a polarization state represented by the phase plot and the Poincaré sphere.

The first step is to define two binary sequences, one for the X-polarization component

and the other to the Y-polarization. Each sequence is composed of two bits, that

needs to be transformed into the corresponding positive or negative values, for the

amplitude modulation. The sequence reshape takes two bits as input, and transforms

the bit 0 into a negative integer of 1 and the bit 1 to a positive integer of 1. Now

the I and Q data are ready to be processed into the wave forms. For this simulation,

the In-phase component is represented by the sine function and the Quadrature

component by the cosine function. Depending on the frequency chosen, a time vector

can be implemented into the wave forms, creating a signal with amplitude and time

parameters. The I and Q data (1 or -1) is then multiplied by the sine and cosine

functions. After the amplitude modulation, for each polarization component, the

In-phase and Quadrature signals are added together, forming the X and Y signals.

Depending on the input bit sequence, different phases can be obtained, but they

only make sense when comparing the X and Y signals. The respective plots for the

In-phase, Quadrature, X signal and Y signal are then displayed.

Figure 4.5: Diagram containing the bit and waveforms reshape process. Bit 1
corresponds to the integer 1 and bit 0 to -1.

Transmitter Design Optimization 46

To make the phase plot, the gradient of the X and Y signals needs to be calculated.

This function returns the dimensional numerical derivative of the X and Y signals

(both are 1 dimensional vectors). The quiver Matlab function, takes the first two

arguments as the (X, Y), origin of each arrow, and uses the derivative of the X

and Y signals as the relative direction of each arrow. With this, the phase plot

corresponding to a polarization state can be obtained.

Figure 4.6: Program diagram to obtain the phase plot.

In order to get the phase difference angle between the two signals, the DC component

was removed from them. The fast Fourier transform of each signal was calculated,

and by getting the absolute max value for X and Y its possible to use the angle

function. This function returns the phase angle in the [-180◦,180◦] interval. The

phase difference can be calculated by subtracting the angle of Y to the X one.

Figure 4.7: Program diagram to calculate the exact phase difference angle.

Transmitter Design Optimization 47

Lastly, from the X signal, Y signal and the phase difference, the values of S0, S1,

S2, S3 can be obtained using the stokes equations. These values form a vector that

corresponds to a point in the Poincaré sphere.

Figure 4.8: Program diagram to calculate the stokes parameters and plot the
respective Poincaré Sphere.

4.8 Simulation results

The results obtained for this simulation can be divided for each polarization state

from table 4.3. Both the individual behavior of the In-phase/Quadrature signals and

the result from adding them together is represented by the respective amplitude/-

time graphics, for each polarization component (X and Y). The polarization states

are reproduced by the phase difference plots and by the specific stokes vector point

in the Poincaré sphere. It is important to note that the vertical and horizontal po-

larization’s, only need a 2 bit sequence. Meaning, for the horizontal state, only the

Mach-Zehender without the polarization rotator, at its exit, is going to work. To

generate the vertical polarization state, only the Mach-Zehender with the polariza-

tion rotator, at its exit, is going to operate. To generate all other states, the system

works normally to reach both polarization components.

Transmitter Design Optimization 48

4.8.1 Horizontal polarization

Sequence: [00–]

To generate this state, only the X component matters, as the Y component is set

to zero. For the X component, both the In-phase and the Quadrature signals are

multiplied by -1, leading to a -135◦ shift.

Figure 4.9: In-phase and Quadrature signals behavior for the horizontal polariza-
tion sequence. The sum of the signals is represented in the last graphic.

Even though the X signal shifts -135◦, it doesn’t matter because there isn’t another

signal to analyze the phase difference. The component electric field oscillates with

direction to the horizontal x-axis.

Figure 4.10: Phase difference and phase graphic for the horizontal state.

By analyzing the amplitudes of the X and Y signal, it is possible to normalize the

values and obtain the stokes parameters. For this case, only the X signal matters,

Transmitter Design Optimization 49

and the phase difference is considered to be zero. The horizontal polarization is

located at the far positive side of the S1 axis, in the Poincaré Sphere.

Figure 4.11: Poincaré sphere containing the stokes vector for the horizontal polar-
ization state.

4.8.2 Vertical polarization

Sequence: [–00]

To generate this state, only the Y component matters, as the X component is set

to zero. For the Y component, both the In-phase and the Quadrature signals are

multiplied by -1, leading to a -135◦ shift.

Since the plot functions take as inputs (x,y) coordinates, there is no need to simulate

the polarization rotator, because the 90◦ shift is automatically set.

Transmitter Design Optimization 50

Figure 4.12: In-phase and Quadrature signals behaviour for the vertical polariza-
tion sequence. The sum of the signals is represented in the last graphic.

Even though the X signal shifts -135◦, it doesn’t matter because there isn’t another

signal to analyze the phase difference. The component electric field oscillates with

direction to the vertical y-axis.

Figure 4.13: Phase difference and phase graphic for the vertical state.

By analyzing the amplitudes of the X and Y signal, it is possible to normalize the

values and obtain the stokes parameters. For this case, only the Y signal matters,

and the phase difference is considered to be zero. It can be seen that in the Poincaré

sphere the vertical polarization state is in the far negative side of the S1 axis. In this

axis both the horizontal and the vertical form an orthogonal basis, as expected.

Transmitter Design Optimization 51

Figure 4.14: Poincaré sphere containing the stokes vector for the vertical polariz-
ation state.

4.8.3 Linear + 45◦

Sequence: [0101]

To generate this state, both X and Y components are modulated by the same se-

quence. Meaning a phase shift of 135◦ is going to be introduced in both signals.

Figure 4.15: In-phase and Quadrature signals behaviour for the linear +45◦ polar-
ization sequence. The sum of the signals is represented in the last graphic.

Transmitter Design Optimization 52

Because the X and Y signals are shifted by 135◦, no phase difference is introduced

when compared one to another. The component electric field oscillates with a 45◦

between the x and y-axis.

Figure 4.16: Phase difference and phase graphic for the linear +45◦ state.

By analyzing the amplitudes of the X and Y signal, it is possible to normalize the

values and obtain the stokes parameters. For this case, the X and Y amplitude

matters, and the phase difference is considered to be zero. The diagonal polarization

is located at the far positive side of the S2 axis, in the Poincaré Sphere.

Figure 4.17: Poincaré sphere containing the stokes vector for the linear +45◦.

Transmitter Design Optimization 53

4.8.4 Linear - 45◦

Sequence: [0011]

To generate this state, the X and Y components are modulated by a different 2 bit

sequence. Meaning a phase shift of -135◦ is going to be introduced in the X signal,

and a phase shift of 45◦ in the Y signal when the In-phase and Quadrature compon-

ents are added together.

Figure 4.18: In-phase and Quadrature signals behaviour for the linear -45◦ polar-
ization sequence. The sum of the signals is represented in the last graphic.

The phase difference introduced is going to be 180◦. The electric field oscillates with

a -45◦ between the x and y-axis.

Figure 4.19: Phase difference and phase graphic for the linear -45◦ state.

By analysing the amplitudes of the X and Y signal, it is possible to normalize the

Transmitter Design Optimization 54

values and obtain the stokes parameters. For this case, the X and Y amplitude

matters, and the phase difference is considered to be 180◦.

It can be seen that in the Poincaré sphere the linear -45◦ polarization state is in the

opposite side of the S2 axis. In this axis both the linear +45◦ and the linear -45◦

form an orthogonal basis, as expected.

Figure 4.20: Poincaré sphere containing the stokes vector for the linear -45◦.

4.8.5 Right circular polarization

Sequence: [1011]

To generate this state, the X and Y components are modulated by a different 2 bit

sequence. Meaning a phase shift of -45◦ is going to be introduced in the X signal, and

a phase shift of 45◦ in the Y signal when the In-phase and Quadrature components

are added together.

Transmitter Design Optimization 55

Figure 4.21: In-phase and Quadrature signals behaviour for the right circular
polarization sequence. The sum of the signals is represented in the last graphic.

The phase difference introduced is going to be 90◦. The resulting electric field rotates

in the right-hand sense with respect to the direction of propagation.

Figure 4.22: Phase difference and phase graphic for the right circular state.

By analyzing the amplitudes of the X and Y signal, it is possible to normalize the

values and obtain the stokes parameters. For this case, the X and Y amplitude mat-

ters, and the phase difference is considered to be 90 ◦. The right circular polarization

is located at the far positive side of the S3 axis, in the Poincaré Sphere.

Transmitter Design Optimization 56

Figure 4.23: Poincaré sphere containing the stokes vector for the right circular
polarization state.

4.8.6 Left circular polarization

Sequence: [0111]

To generate this state, the X and Y components are modulated by a different 2 bit

sequence. Meaning a phase shift of 135◦ is going to be introduced in the X signal, and

a phase shift of 45◦ in the Y signal when the In-phase and Quadrature components

are added together.

Figure 4.24: In-phase and Quadrature signals behaviour for the left circular polar-
ization sequence. The sum of the signals is represented the the last graphic.

Transmitter Design Optimization 57

The phase difference introduced is going to be -90◦. The resulting electric field

rotates in the left-hand sense with respect to the direction of propagation.

Figure 4.25: Phase difference and phase graphic for the left circular state.

By analysing the amplitudes of the X and Y signal, it is possible to normalize the

values and obtain the stokes parameters. For this case, the X and Y amplitude mat-

ters, and the phase difference is considered to be -90◦. The left circular polarization

is located at the far negative side of the S3 axis, in the Poincaré Sphere. In this axis,

both the right and left circular states form an orthogonal basis, as expected.

Figure 4.26: Poincaré sphere containing the stokes vector for the left circular
polarization state.

Transmitter Design Optimization 58

Chapter 5

Conclusions

The work accomplished in this dissertation was organized in three steps. The first

one, was to study the fundamentals of DV-QKD protocols and how they can be

implemented. The other two are related to the optimization of the receptor module

and the new design of the transmitter, in order to achieve higher key transmission

rates.

For the receptor, the Arduino solution is capable of reading the detectors electrical

signal, process this information and then send it to an upper level protocol. Even

though the algorithm to set the correct voltages is yet to be completed, the upper level

can send four random voltages to the second Arduino. This Arduino can successfully

set the random voltages into the external DAC, and not lose the synchronization up

to 2.5 kHz speeds. This doesn’t represent a problem, because the transmitter is

currently operating at the 500 Hz margin. The Arduino solution can also operate

for periods of time around the 2-hour mark, without loosing synchronization as seen

in the QBER reports.

The new transmitter design, using IQ modulators, is expected to operate at GHz

rates. However, speed was not the only requirement, because the Dual-IQ modulator

needs to be able to generate the desirable polarization states. From the study, it can

be concluded that a 4 bit sequence can introduce a phase shift to the X and Y

polarization components of an optical input signal. Depending on the sequence,

the vertical, horizontal, linear +45◦, linear −45◦, right circular and left circular

states (forming the three non-orthogonal bases) can theoretically be generated. This

statement is further validated by simulating the steps of this type of modulation.

59

5.1 Future work

This work can be used as future reference to continuing the optimization of the

system implemented in IT-Aveiro laboratory. Using the Arduino layout and the

study performed on the Dual-IQ modulators, the objective of having the system

operating at high speeds and with high stability can be achieved.

For the Arduino implementation, the correct voltage values to apply on the EPC,

based on the different bases, are still unknown. The algorithm in the upper level

protocol, which chooses the voltage values to compensate the random polarization

drifts and commute the bases, still needs to be finished. More tests, regarding the

stability of the Arduino set-up, should be done for longer periods of time, in order

to test its limits. Eventually, the transmitter will be operating at higher speeds,

meaning a solution to solve the 2.5 kHz limitation is going to be needed.

For the transmitter side, it was shown that the new design can generate the desirable

polarization states. Nevertheless, its still needed to study how the Dual-IQ structure

can commute between the different states. It is important to test in the laboratory

if this sequences lead up to the simulation results. To do this, the binary sequences

need to be transformed to voltage values, which for now are still unknown. Simple

tests can be achieved with the help of polarimeter structure and software analysis,

to see the points in the Poincaré sphere, given a 4 bit sequence. If all this can be

accomplished, the last step is to implement the new design in the laboratory system.

Conclusions 60

References

[1] F. optics 4 sale, The derivation of stokes polarization parameters, Last accessed
July 2020, . [Online]. Available: https://www.fiberoptics4sale.com/blogs/
wave-optics/102492742-stokes-polarization-parameters (cit. on pp. 12,
13).

[2] C. Agnesi, M. Avesani, A. Stanco, P. Villoresi and G. Vallone, ‘All-fiber self-
compensating polarization encoder for quantum key distribution’, Mar. 2019
(cit. on p. 5).

[3] Arduino due specs, Last accessed July 2020, . [Online]. Available: https://
store.arduino.cc/arduino-due (cit. on p. 26).

[4] A. Boaron, B. A. Korzh, R. Houlmann, G. Boso, D. Rusca, S. C. Gray, M.-j.
Li, D. Nolan, A. Martin and H. Zbinden, ‘Simple 2.5ghz time-bin quantum key
distribution’, 2018 (cit. on p. 4).

[5] Dac specs, Last accessed July 2020, . [Online]. Available: https://store.ncd.
io/product/ad5669-16-bit-8-channel-digital-to-analog-converter-
i2c-mini-module/ (cit. on p. 28).

[6] A. Duplinskiy, V. Ustimchik, A. Kanapin, V. Kurochkin and Y. Kurochkin,
‘Low loss qkd optical scheme for fast polarization encoding’, Opt. Express,
vol. 25, no. 23, pp. 28 886–28 897, Nov. ts. [Online]. Available: http://www.
opticsexpress.org/abstract.cfm?URI=oe-25-23-28886 (cit. on p. 5).

[7] M. Fox, Quantum optics: an introduction, ser. Oxford Master Series in Atomic,
Optical and Laser Physics. Oxford: Oxford Univ. Press, 2006 (cit. on pp. 16,
17, 19, 20).

[8] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, ‘Quantum cryptography’, Rev.
Mod. Phys., vol. 74, pp. 145–195, 1 Mar. 2002. doi: 10.1103/RevModPhys.74.
145. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.
74.145 (cit. on pp. 1–4).

[9] D. Goldstein, Polarized Light. CRC Press, 2017, isbn: 9781439830413. [Online].
Available: https://books.google.pt/books?id=w6PMBQAAQBAJ (cit. on
pp. 12, 15, 20).

[10] F. Grünenfelder, A. Boaron, D. Rusca, A. Martin and H. Zbinden, ‘Simple and
high-speed polarization-based qkd’, Applied Physics Letters, vol. 112, 2018.
doi: 10.1063/1.5016931 (cit. on p. 5).

[11] N. Instruments, Iq modulation, Last accessed July 2020, . [Online]. Available:
http://www.ni.com/tutorial/4805/en/ (cit. on pp. 39, 40).

61

https://www.fiberoptics4sale.com/blogs/wave-optics/102492742-stokes-polarization-parameters
https://www.fiberoptics4sale.com/blogs/wave-optics/102492742-stokes-polarization-parameters
https://store.arduino.cc/arduino-due
https://store.arduino.cc/arduino-due
https://store.ncd.io/product/ad5669-16-bit-8-channel-digital-to-analog-converter-i2c-mini-module/
https://store.ncd.io/product/ad5669-16-bit-8-channel-digital-to-analog-converter-i2c-mini-module/
https://store.ncd.io/product/ad5669-16-bit-8-channel-digital-to-analog-converter-i2c-mini-module/
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-23-28886
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-23-28886
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://link.aps.org/doi/10.1103/RevModPhys.74.145
https://link.aps.org/doi/10.1103/RevModPhys.74.145
https://books.google.pt/books?id=w6PMBQAAQBAJ
https://doi.org/10.1063/1.5016931
http://www.ni.com/tutorial/4805/en/

[12] Iq modulation, Last accessed July 2020, . [Online]. Available: https://www.
allaboutcircuits.com/textbook/radio-frequency-analysis-design/
radio - frequency - demodulation / understanding - i - q - signals - and -
quadrature-modulation/ (cit. on p. 38).

[13] X. Liu, C. Liao, J. Mi, J. Wang and S. Liu, ‘Intrinsically stable phase-modulated
polarization encoding system for quantum key distribution’, Physics Letters A
- PHYS LETT A, vol. 373, pp. 54–57, Dec. 2008 (cit. on p. 5).

[14] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, 2010. doi:
10.1017/CBO9780511976667 (cit. on pp. 3, 7).

[15] E. notes, Qam, Last accessed July 2020, . [Online]. Available: https : / /
www.electronics-notes.com/articles/radio/modulation/quadrature-
amplitude-modulation-what-is-qam-basics.php (cit. on p. 39).

[16] ntua, Coherent optical dsp, Last accessed July 2020, . [Online]. Available:
https://www.photonics.ntua.gr/OptikaDiktyaEpikoinwnias/Lecture_
4_CoherentOptical_DSP.pdf (cit. on pp. 42, 44).

[17] RP-photonics, Phase modulator, Last accessed July 2020, . [Online]. Available:
https://www.rp-photonics.com/pockels_cells.html (cit. on p. 42).

[18] S. Pirandola, U. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D.
Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. Shaari,
M. Tomamichel, V. Usenko, G. Vallone, P. Villoresi and P. Wallden, ‘Advances
in quantum cryptography’, English, arXiv, 2019 (cit. on pp. 2–4, 18).

[19] I. Quantique, ‘Single-photon detector module’, 2011 (cit. on p. 26).

[20] B. Rijsman, A cascade information reconciliation tutorial, Last accessed July
2020, . [Online]. Available: https : / / hikingandcoding . wordpress . com /
2020/01/15/a-cascade-information-reconciliation-tutorial/ (cit. on
p. 18).

[21] J. Wang, X. Qin, Y. Jiang, X. Wang, L. Chen, F. Zhao, Z. Wei and Z. Zhang,
‘Experimental demonstration of polarization encoding quantum key distribu-
tion system based on intrinsically stable polarization-modulated units’, Opt.
Express, vol. 24, no. 8, pp. 8302–8309, Apr. 2016. [Online]. Available: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8302 (cit. on p. 5).

REFERENCES 62

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-i-q-signals-and-quadrature-modulation/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-i-q-signals-and-quadrature-modulation/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-i-q-signals-and-quadrature-modulation/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-i-q-signals-and-quadrature-modulation/
https://doi.org/10.1017/CBO9780511976667
https://www.electronics-notes.com/articles/radio/modulation/quadrature-amplitude-modulation-what-is-qam-basics.php
https://www.electronics-notes.com/articles/radio/modulation/quadrature-amplitude-modulation-what-is-qam-basics.php
https://www.electronics-notes.com/articles/radio/modulation/quadrature-amplitude-modulation-what-is-qam-basics.php
https://www.photonics.ntua.gr/OptikaDiktyaEpikoinwnias/Lecture_4_CoherentOptical_DSP.pdf
https://www.photonics.ntua.gr/OptikaDiktyaEpikoinwnias/Lecture_4_CoherentOptical_DSP.pdf
https://www.rp-photonics.com/pockels_cells.html
https://hikingandcoding.wordpress.com/2020/01/15/a-cascade-information-reconciliation-tutorial/
https://hikingandcoding.wordpress.com/2020/01/15/a-cascade-information-reconciliation-tutorial/
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8302
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8302

Appendix A
Arduino Code

1 # include <Wire.h>
2

3 const byte interruptPin_Trigger = 26;
4 const byte interruptPin_Detect1 = 27;
5 const byte interruptPin_Detect2 = 28;
6

7 long int countT = 0;
8 int flag1 = 0;
9 int flag2 = 0;

10

11 volatile bool stateT = false;
12 volatile bool state2 = false;
13 volatile bool state3 = false;
14 # define Addr 0x56
15

16

17 void setup () {
18 Wire.begin ();
19 Wire. setClock (4000000) ;
20 Serial .begin (115200) ;
21 pinMode (interruptPin_Trigger , INPUT);
22 pinMode (interruptPin_Detect1 , INPUT);
23 pinMode (interruptPin_Detect2 , INPUT);
24

25 attachInterrupt (digitalPinToInterrupt (interruptPin_Trigger),
triggerFunction , RISING);

26 attachInterrupt (digitalPinToInterrupt (interruptPin_Detect1),
triggerFunction2 , RISING);

27 attachInterrupt (digitalPinToInterrupt (interruptPin_Detect2),
triggerFunction3 , RISING);

28 }
29

30 int incomingByte1 = 0;
31 int incomingByte2 = 0;
32 int incomingByte3 = 0;
33

34 bool state = true;
35 unsigned int dataA [2] = {0x00 , 0x00 };
36 unsigned int dataB [2] = {0x00 , 0x00 };
37 unsigned int dataC [2] = {0x00 , 0x00 };
38 unsigned int dataD [2] = {0x00 , 0x00 };
39

40 void loop () {
41 if (stateT) {
42

43

44 if (state2 && state3) Serial .print("2");

63

45 else if (state2 && ! state3) Serial .print("0");
46 else if (! state2 && state3) Serial .print("1");
47 else if (! state2 && ! state3) Serial .print("3");
48 stateT = false;
49 state2 = false;
50 state3 = false;
51

52 incomingByte1 = Serial .read ();
53 incomingByte2 = Serial .read ();
54 incomingByte3 = Serial .read ();
55

56 if (state) {
57 dataA [0] = 0x00;
58 dataA [1] = 0x00;
59

60 dataB [0] = 0x00;
61 dataB [1] = 0x00;
62

63 dataC [0] = 0x00;
64 dataC [1] = 0x00;
65

66 dataD [0] = 0x00;
67 dataD [1] = 0x00;
68 state = false;
69 } else {
70 dataA [0] = 0xff;
71 dataA [1] = 0x00;
72

73 dataB [0] = 0x7f;
74 dataB [1] = 0x00;
75

76 dataC [0] = 0x3f;
77 dataC [1] = 0x00;
78

79 dataD [0] = 0x1f;
80 dataD [1] = 0x00;
81 state = true;
82 }
83

84 // Start I2C transmission
85

86 Wire. beginTransmission (Addr);
87 Wire.write (0 b00100000);
88 Wire.write(dataA [0]);
89 Wire.write(dataA [1]);
90 Wire. endTransmission ();
91

92 Wire. beginTransmission (Addr);
93 Wire.write (0 b00100001);
94 Wire.write(dataB [0]);
95 Wire.write(dataB [1]);
96 Wire. endTransmission ();
97

98 Wire. beginTransmission (Addr);
99 Wire.write (0 b00100010);

100 Wire.write(dataC [0]);
101 Wire.write(dataC [1]);

Arduino Code 64

102 Wire. endTransmission ();
103

104 Wire. beginTransmission (Addr);
105 Wire.write (0 b00100011);
106 Wire.write(dataD [0]);
107 Wire.write(dataD [1]);
108 Wire. endTransmission ();
109

110 }
111

112 }
113 void triggerFunction ()
114 {
115 stateT = true;
116 }
117 void triggerFunction2 ()
118 {
119 state2 = true;
120 }
121 void triggerFunction3 ()
122 {
123 state3 = true;
124 }

Listing A.1: Arduino Code

Arduino Code 65

Appendix B
Simulation code

1 clear all;
2 close all;
3

4 x=[1 ,0];
5 datax =[x];
6 y=[1 ,1];
7 data =[y];
8 brx =10.^6;
9 fx=brx;

10 Tx =1/ brx;
11 tx=Tx /99: Tx /99: Tx;
12

13 figure (1)
14

15 stem(data , ’linewidth ’ ,3), grid on;
16 title(’ Information before Transmiting ’);
17 axis ([0 11 0 1.5]);
18

19 figure (2)
20

21 stem(data , ’linewidth ’ ,3), grid on;
22 title(’ Information before Transmiting ’);
23 axis ([0 11 0 1.5]);
24

25 data_NZRx =2* datax -1;
26 s_p_datax = reshape (data_NZRx ,2, length (datax)/2);
27 x=[];
28 x_in =[];
29 x_qd =[];
30

31 data_NZR =2* data -1;
32 s_p_data = reshape (data_NZR ,2, length (data)/2);
33 br =10.^6;
34 f=br;
35 T=1/ br;
36 t=T/99:T/99:T;
37

38 y=[];
39 y_in =[];
40 y_qd =[];
41

42

43 for(i=1: length (datax)/2)
44 x1= s_p_datax (1,i)*sin (2* pi*fx*tx);
45 x2= s_p_datax (2,i)*cos (2* pi*fx*tx);
46 x_in =[x_in x1];
47 x_qd =[x_qd x2];

66

48 x=[x x1+x2];
49

50 %x_qd=x_qd *0;
51 % x_in=x_in *0;
52 % x=x*0;
53

54 end
55 for(i=1: length (data)/2)
56 y1= s_p_data (1,i)*sin (2* pi*f*t);
57 y2= s_p_data (2,i)*cos (2* pi*f*t) ;
58 y_in =[y_in y1];
59 y_qd =[y_qd y2];
60 y=[y y1+y2];
61

62 % y_qd=y_qd *0;
63 % y_in=y_in *0;
64 % y=y*0;
65 end
66

67 maxX=max(x, [], ’all ’);
68 maxY=max(y, [], ’all ’);
69

70 Tx_sigx =x;
71 ttx=Tx /99: Tx /99:(Tx* length (datax))/2;
72 Tx_sig =y;
73 tt=T/99:T/99:(T* length (data))/2;
74

75 figure (3)
76

77 subplot (3 ,1 ,1);
78 plot(tt ,y_in ,’linewidth ’ ,3), grid on;
79 title(’ Wave form for inphase component of Y polarization ’);
80 xlabel (’time(sec)’);
81 ylabel (’ amplitude (V)’);
82 subplot (3 ,1 ,2);
83 plot(tt ,y_qd ,’linewidth ’ ,3), grid on;
84 title(’ Wave form for Quadrature component of Y polarization ’);
85 xlabel (’time(s)’);
86 ylabel (’ amplitude (V)’);
87 subplot (3 ,1 ,3);
88 plot(tt ,Tx_sig ,’r’,’linewidth ’ ,3), grid on;
89 title(’Sum of inphase and Quadrature phase signal of Y polarization)

’);
90 xlabel (’time(s)’);
91 ylabel (’ amplitude (V)’);
92

93 figure (4)
94

95 subplot (3 ,1 ,1);
96 plot(ttx ,x_in ,’linewidth ’ ,3), grid on;
97 title(’ Wave form for inphase component of X polarization ’);
98 xlabel (’time(s)’);
99 ylabel (’ amplitude (V)’);

100 subplot (3 ,1 ,2);
101 plot(ttx ,x_qd ,’linewidth ’ ,3), grid on;
102 title(’ Wave form for Quadrature component of X polarization ’);
103 xlabel (’time(s)’);

Simulation code 67

104 ylabel (’ amplitude (V)’);
105 subplot (3 ,1 ,3);
106 plot(ttx ,Tx_sigx ,’g’,’linewidth ’ ,3), grid on;
107 title(’Sum of inphase and Quadrature phase signal of X component ’);
108 xlabel (’time(s)’);
109 ylabel (’ amplitude (V)’);
110

111 figure (5)
112 u = gradient (x);
113 v = gradient (y);
114

115 quiver (x, y, u, v)
116 axis ([-2 2 -2 2])
117 xL = xlim;
118 yL = ylim;
119 line ([0 0], yL);
120 line(xL , [0 0]);
121 xlabel (’E0y ’);
122 ylabel (’ E0x ’);
123 grid
124

125 figure (6)
126 thetax =angle(x);
127 thetay =angle(y);
128 thetafinal =thetax - thetay ;
129 stem(ttx , thetafinal /pi)
130 xlabel ’Frequency (Hz)’
131 ylabel ’Phase / \pi’
132 grid
133

134 figure (7)
135 x = x - mean(x);
136 y = y - mean(y);
137

138 X=fft(x);
139 Y=fft(y);
140

141 [mag_x idx_x] = max(abs(X));
142 [mag_y idx_y] = max(abs(Y));
143

144 px = angle(X(idx_x))
145 py = angle(Y(idx_y))
146

147 phase_lag = py -px
148

149 % amplitude_ratio = mag_y/mag_x
150 PhDiff = phase_lag *180/ pi
151

152 plot(tt , Tx_sig , ’r’, ’LineWidth ’, 2)
153

154 grid on
155 hold on
156 plot(tt ,Tx_sigx , ’g’, ’LineWidth ’, 3)
157 xlim ([0 0.000001])
158 ylim ([-1.7 1.7])
159 set(gca , ’FontName ’, ’Times New Roman ’, ’FontSize ’, 14)
160 xlabel (’Time , s’)

Simulation code 68

161 ylabel (’Amplitude , V’)
162 title ([’Phase Difference is ’,num2str (PhDiff),’ \circ ’])
163

164 legend (’Y component ’, ’X component ’)
165

166 figure (8)
167

168 dat_t = 0;
169 dat_0 = round(maxX ^2+ maxY ^2);
170 dat_1 = round(maxX ^2- maxY ^2); % Stokes vector S1
171 dat_2 = round ((2* maxX*maxY*cos(PhDiff *pi /180))); % Stokes vector S2
172 dat_3 = round ((2* maxX*maxY*sin(PhDiff *pi /180))); % Stokes vector S3
173 dat_4 = 1; % DOP
174

175 if dat_0 >0
176 dat_0 = (maxX ^2+ maxY ^2) /(maxX ^2+ maxY ^2);
177 end
178 if dat_1 >0
179 dat_1 = (maxX ^2- maxY ^2) /(maxX ^2- maxY ^2);
180 end
181 if dat_2 >0
182 dat_2 = (2* maxX*maxY*cos(PhDiff *pi /180))/(2* maxX*maxY*cos(PhDiff

*pi /180));
183 end
184 if dat_3 >0
185 dat_3 = (2* maxX*maxY*sin(PhDiff *pi /180))/(2* maxX*maxY*sin(PhDiff

*pi /180)); % Stokes vector S3
186 end
187 if dat_0 <0
188 dat_0 = -(maxX ^2+ maxY ^2) /(maxX ^2+ maxY ^2);
189 end
190 if dat_1 <0
191 dat_1 = -(maxX ^2- maxY ^2) /(maxX ^2- maxY ^2);
192 end
193 if dat_2 <0
194 dat_2 = -(2* maxX*maxY*cos(PhDiff *pi /180))/(2* maxX*maxY*cos(

PhDiff *pi /180));
195 end
196 if dat_3 <0
197 dat_3 = -(2* maxX*maxY*sin(PhDiff *pi /180))/(2* maxX*maxY*sin(

PhDiff *pi /180)); % Stokes vector S3
198 end
199

200 x = dat_1;
201 y = dat_2;
202 z = dat_3;
203 % plot data
204 figure (’Position ’ ,[183 70 500 600]);
205

206 [X,Y,Z] = sphere (20);
207 X = X;
208 Y = Y;
209 Z = Z;
210 Hs = mesh(X,Y,Z,’facecolor ’,’w’,’edgecolor ’ ,[0.5 0.5 0.5]);
211 caxis ([1.0 1.01]) ;
212 alpha (0.70) ;
213 axis equal;

Simulation code 69

214 set(gcf ,’Renderer ’,’opengl ’);
215 hold on;
216

217 Hx = plot3 ([-1.5 1.5] , [0 0], [0 0],’k-’);
218 set(Hx ,’linewidth ’,2,’linestyle ’,’-’,’color ’,’k’);
219 ht_x = text (1.75 ,0 ,0 , ’+S_1 ’,’fontweight ’,’bold ’,’fontsize ’ ,12,’

fontname ’,’arial ’);
220

221 Hy = plot3 ([0 0], [-1.5 1.5] , [0 0],’k-’);
222 set(Hy ,’linewidth ’,2,’linestyle ’,’-’,’color ’,’k’);
223 ht_y = text (0.1 ,1.6 ,0 , ’+S_2 ’,’fontweight ’,’bold ’,’fontsize ’ ,12,’

fontname ’,’arial ’);
224 Hz = plot3 ([0 0], [0 0], [-1.5 1.5] , ’k-’);
225 set(Hz ,’linewidth ’,2,’linestyle ’,’-’,’color ’,’k’);
226 ht_z = text (-0.05 ,0 ,1.35 , ’+S_3 ’,’fontweight ’,’bold ’,’fontsize ’ ,12,’

fontname ’,’arial ’);
227 ht_rcp = text (-0.05 ,0.0 , -1.1 , ’|L>’,’fontweight ’,’bold ’,’fontsize ’

,12,’fontname ’,’arial ’,’color ’,’k’);
228

229 % Draw a bold circle about the equator (2* epsilon = 0)
230 x_e = (-1:.01:1);
231 for i = 1: length (x_e)
232 z_e(i) = 0;
233 y_e_p(i) = +sqrt (1 - x_e(i)^2);
234 y_e_n(i) = -sqrt (1 - x_e(i)^2);
235 end
236 He = plot3(x_e ,y_e_p ,z_e ,’k-’,x_e ,y_e_n ,z_e ,’k-’);
237 set(He ,’linewidth ’,2,’color ’,’k’);
238 % Draw a bold circle about the prime meridian (2* theta = 0, 180)
239 y_pm = (-1:.01:1);
240 for i = 1: length (x_e)
241 x_pm(i) = 0;
242 z_pm_p (i) = +sqrt (1 - y_pm(i)^2);
243 z_pm_n (i) = -sqrt (1 - y_pm(i)^2);
244 end
245 Hpm = plot3(x_pm ,y_pm ,z_pm_p ,’k-’,x_pm ,y_pm ,z_pm_n ,’k-’);
246 set(Hpm ,’linewidth ’,2,’color ’,’k’);
247 % Now plot the polarimetry data
248 H = plot3(x,y,z,’m.’);
249 set(gca ,’fontweight ’,’bold ’,’fontsize ’ ,12,’fontname ’,’arial ’);
250 set(H,’markersize ’ ,25,’markeredgecolor ’,’r’,’markerfacecolor ’,’r’,’

color ’,’r’,’linewidth ’ ,0.5);
251

252 view (135 ,20);

Listing B.1: Matlab simulation

Simulation code 70

	Introduction
	State of art
	Motivation
	Goals
	Document structure

	Discrete Variables QKD
	Introduction
	Qubit
	Photonic qubits
	Jones formalism
	Stokes parameters
	Single photon measurement
	BB84 protocol
	Some system errors
	Polarization encoding

	Receiver Optimization
	Introduction
	Project definition
	Project decisions
	Technology equipment
	Arduino implementation
	Repository
	Signal acquisition
	Communication with the computer
	Electronic polarization controller
	QBER results

	Transmitter Design Optimization
	Introduction
	IQ Modulation
	Quadrature amplitude modulation
	Phase shift keying
	Quadrature phase shift keying
	IQ modulator
	Phase modulator
	Mach-Zehnder
	Single-mode optical fiber
	Dual polarization-IQ modulator

	Simulation
	Simulation results
	Horizontal polarization
	Vertical polarization
	Linear + 45
	Linear - 45
	Right circular polarization
	Left circular polarization

	Conclusions
	Future work

	Arduino Code
	Simulation code

