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Abstract

The choice of a proper learning rate is paramount for good Artificial Neural Network
training and performance. Currently, a plethora of state of the art automatic methods
exist that make the search for a good learning rate easier, called Learning Rate Optimizers.
While these techniques are effective and have yielded good results over the years, they are
general solution i.e. they do not take into account the characteristics of a specific network.

As a result, the possible benefits of the optimization of learning rate for specific network
topologies remains largely unexplored. Since neural networks are complex systems with
many interdependent components it is not possible for humans to infer how an optimizer
can be specialized for a certain network topology. Nevertheless, heuristic optimization
techniques such as Evolutionary Algorithms can be used to search for custom optimizers
that work well for specific network architectures.

In this work we propose AutoLR, a framework that uses Structured Grammatical Evolution
to evolve learning rate optimizers. Two versions of this system are implemented for different
types of optimizers. Dynamic AutoLR (DLR) is used to evolve static and dynamic learning
rate optimizers. The best evolved dynamic optimizer outperforms the established baseline
and utilizes some techniques found in the literature. Even though DLR achieved good
results the optimizers evolved by this system only take into account the previous learning
rate and current training epoch. In order to overcome these limitations we devised a
new method called Adaptive AutoLR (ALR). This version of the system evolves adaptive
optimizers that have access to more information about training. These optimizers are
able to fine tune a different learning rate for each network weight which makes them
generally more effective. The most notable evolved adaptive optimizer is able to perform
on par with the best state of the art methods, even outperforming them in some scenarios.
Furthermore, the system was able to automatically discover a novel optimizer, ADES. To
the best of our knowledge, no adaptive optimizers present in the literature are similar to
ADES.
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Resumo

A escolha de uma boa taxa de aprendizagem é fulcral para um bom treino e performance de
Redes Neuronais Artificias. Atualmente, existem vários métodos automáticos que facilitam
a busca por uma boa taxa de aprendizagem, e apesar destas técnicas serem eficazes e
produzirem bons resultados ao longo dos anos, estas são soluções generalistas e não tem
em conta as características de uma rede especifica.

Desta forma, os possíveis benefícios de otimizar a taxa de aprendizagem para uma topolo-
gia de rede especifica permanecem inexplorados. Como as redes neuronais artificiais são
sistemas complexos com muitos componentes interdependentes, não é possível para um hu-
mano inferir como é que um otimizador pode ser especializado para uma certa topologia.
Apesar disso, técnicas de otimização heurística como Algoritmos Evolucionários podem
ser utilizados para procurar otimizadores personalizados que funcionem bem para uma
arquitetura de rede neuronal especifica.

Neste trabalho propomos o AutoLR, um sistema que utiliza Evolução Gramatical Estrutu-
rada para evoluir otimizadores de taxas de aprendizagem. Em concreto, são implementadas
duas versões deste sistema para dois tipos de otimizadores. O AutoLR Dinâmico (DLR) é
utilizado para evoluir otimizadores estáticos e dinâmicos. O melhor otimizador dinâmico
evoluído tem melhor performance que o otimizador de controlo estabelecido e utiliza al-
gumas técnicas encontradas na literatura. Apesar de o DLR atingir bons resultados, os
otimizadores evoluídos por este sistema só tem em consideração a taxa de aprendizagem an-
terior e a época de treino atual. De modo a superar estas limitações desenvolvemos um novo
método chamado AutoLR Adaptativo (ALR). Esta versão do sistema evolui otimizadores
adaptativos que têm acesso a mais informação sobre o treino. Estes otimizadores são ca-
pazes de afinar a taxa de aprendizagem para cada peso da rede individualmente, o que os
torna mais eficazes. O otimizador adaptativo evoluído mais notável é capaz de competir
com os melhores métodos do estado da arte, conseguindo até superá-los em alguns casos.
Por último, o sistema foi capaz de descobrir um novo otimizador, ADES. Tanto quanto
sabemos não existem otimizadores adaptativos na literatura que sejam semelhantes ao
ADES.

Palavras-Chave

Redes Neuronais Artificiais; Evolução Gramatical Estruturada; Optimização da Taxa de
Aprendizagem

v



This page is intentionally left blank.



Acknowledgements

To my advisors, Professor Nuno and Professor Penousal, thank you for your continued
guidance and advice. I would not have been able to present a work that I am proud of
were it not for your availability and patience. You have given opportunities that I will
always be grateful for.

Leonardo, Guilherme, Artur and Tiago, thank you for being with me every day in these
trying times. It was your support, company and friendship that kept me happy and
motivated during the endless hours spent in quarantine.

Thank you to my parents for always caring for me and being there for me during all of
my hardships. It is your unconditional support that kept the self doubt and stress away
during the hardest time.

Finally, I want to thank all of the close friends that I have made over the year. There are
too many of you to name but know that I have learned much from all of you and I am very
grateful. Thank you for making me the man I am today.

vii



Chapter 0

viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Context 5
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Learning Rate Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Adaptive Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 AutoLR 17
3.1 Evolutionary Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Optimizer Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Dynamic AutoLR 23
4.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Adaptive AutoLR 35
5.1 CustomOptimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 53
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A ALR Grammar 61

B Gecco Paper 63

ix



This page is intentionally left blank.



Acronyms

Adaptive AutoLR Implementation of the AutoLR framework for adaptive optimizers.
xiii, 35, 39, 41–43

AI Artificial Intelligence. 1, 2

ANN Artificial Neural Network. 1–3, 5–7, 10–12, 18, 24, 26–28, 42, 44

CNN Convolutional Neural Network. xiii, 7, 26–28

DENSER Deep Evolutionary Network Structured Representation. 27, 30, 44, 48, 49

DNN Deep Neural Network. 6, 7

Dynamic AutoLR Implementation of the AutoLR framework for dynamic and static
optimizers. 23, 35, 38–40, 42, 43

EA Evolutionary Algorithm. 2, 8–10, 25, 26

GE Grammatical Evolution. 9, 10, 17

LR Learning Rate. 1, 6, 10, 11

SGE Structured Grammatical Evolution. xiii, 10, 17–19, 27–29, 37, 42

xi



This page is intentionally left blank.



List of Figures

2.1 Graphical depiction of a Artificial Neural Network. . . . . . . . . . . . . . . 5
2.2 Representation of a Convolutional Neural Network [1]. . . . . . . . . . . . . 7
2.3 Example of feature maps after training [2]. . . . . . . . . . . . . . . . . . . . 7

3.1 Sample mapping of an individual in SGE. . . . . . . . . . . . . . . . . . . . 18
3.2 Difference in data used for evolution (fitness function) and benchmark (bench-

mark function). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 CFG for the optimisation of learning rate schedulers. . . . . . . . . . . . . . 24
4.2 Example of a learning rate scheduler. . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Example images from the Fashion-MNIST dataset. . . . . . . . . . . . . . . 26
4.4 Topology of the used CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Box plot showcasing the results of the test scenarios. Whiskers show the

minimum and maximum result. Box size shows the lower and upper quartile.
Mean and median of each population are marked inside each box. . . . . . . 31

4.6 Policy A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Policy B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Phenotype of a momentum optimizer in Adaptive AutoLR, y_func and
z_func are omitted as they are not used. . . . . . . . . . . . . . . . . . . . . 39

5.2 Mean best fitness of all experiments over generation. . . . . . . . . . . . . . 45
5.3 Box plot showcasing the results of scenario 1 scenarios. Whiskers show the

minimum and maximum result. Box size shows the lower and upper quartile.
Mean and median of each population are marked inside each box. Only test
accuracy is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Box plot showcasing the results of scenario 2 scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile.
Mean and median of each population are marked inside each box. Only test
accuracy is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Box plot showcasing the results of scenario 3 scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile.
Mean and median of each population are marked inside each box. Only test
accuracy is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiii



This page is intentionally left blank.



List of Tables

4.1 Experimental parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Data distribution of the Fashion-MNIST dataset used in benchmarking. . . 29
4.3 Accuracy of the evolved policies (A & B) on their evolutionary environment

(1 & 2 respectively) and scenario 3 (representative of an actual use case),
compared with the baseline policy. . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Experimental parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Benchmark scenarios for Adaptive AutoLR. . . . . . . . . . . . . . . . . . . 44
5.3 Data distribution of the Fashion-MNIST dataset used in benchmarking. . . 44
5.4 Data distribution of the CIFAR10 dataset used in benchmarking. . . . . . . 44
5.5 Benchmark results of evolved (ADES, Sign) and standard (Adam, RMSprop,

Nesterov) optimizers in scenario 1. . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Benchmark results of evolved (ADES, Sign) and standard (Adam, RMSprop,

Nesterov) optimizers in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Difference in accuracy between optimizer accuracy in scenario 1 and 2. Ac-

curacy difference = average accuracy in scenario 1 - average accuracy in
scenario 2. Showcases the optimizer’s ability to work in different network
architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 Benchmark results of evolved (ADES, Sign) and Adam optimizers in scenario
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Difference in accuracy between optimizer accuracy in scenario 1 and 3. Ac-
curacy difference = average accuracy in scenario 1 - average accuracy in
scenario 3. Showcases the optimizer’s ability to work in different network
architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xv



This page is intentionally left blank.



Chapter 1

Introduction

The study of Artificial Neural Networks (ANN) is a field in modern Artificial Intelligence
(AI). These systems have become renowned for their impressive results in many difficult
tasks such as computer vision [3, 4], games [5, 6], medicine [7] and natural language pro-
cessing [8, 9]. ANNs are inspired by the functioning of the human brain. Subsequently
they are comprised of small units called neurons (or nodes) that are interconnected. Each
of these connections has an internal value known as a weight. Training is the process
through which the correct weights for a given problem are found. Fine tuning an ANN’s
weights is crucial in order to obtain a consistently useful system and there are several pa-
rameters that regulate the training as a result. One such parameter is the learning rate
(LR).

The learning rate determines the magnitude of the changes that are made to the weights.
As a consequence, choosing an adequate learning rate is paramount for effective training
and desirable results. If the value utilized is too low the network will be unable to make
impactful changes to its weights, making the training process excessively slow. On the
other hand, if the LR is too high the system will make radical changes even in response
to small mistakes, causing inconsistent and unpredictable results. On top of this, research
suggests that the best training results are achieved by adjusting the LR over the course of
the training process [10].

The learning rate is such an important piece in an ANN’s performance that there is exten-
sive research in the optimization of this one parameter. Modern learning rate optimization
solutions (commonly abbreviated to optimizers) are varied in their approach, complexity
and effectiveness. One aspect all of these methods have in common is their generality.
Current learning rate optimization solutions can be applied to any network and problem,
given that they go through a typical training process. This versatility comes up naturally
since there is a large number of network architectures that are used for many different
problems. As a result, the most useful optimizers are the ones that can be used in any
context and still perform well. But this does not mean there is no interest pushing the
limits of performance in specific problems and networks. In fact, research into ANN fre-
quently focuses on techniques that can be used to obtain the best possible performance in
a specific problem domain.

So this raises the question: can we improve our optimizers by specializing them for a certain
ANN?

Since ANNs are comprised of many interdependent components and parameters [11] it is
not possible for a human to accurately assess how a learning rate optimizer can be specified
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for a certain network architecture. As a result, one must rely on an algorithm that will
search for the optimizers best suited to the network. There is a class of algorithm known as
Evolutionary Algorithms (EA) that are fit for this task. These are heuristic optimization
algorithms that utilize procedures inspired by biological evolution (e.g. mutation, natural
selection) to find good solutions to difficult problems in an acceptable time frame. EA
work by testing a large number of solutions and combining the best performing ones in
order to produce progressively better results. In this context, an EA can be used to search
for optimizers that perform well on a specific ANN. The network’s performance with the
evolved optimizer can then be compared to the performance with a state of the art standard
optimizer to assess the benefits of specialization.

In this work we explore the possibilities, benefits and limitations of bringing an evolutionary
approach to the field of learning rate optimization.

1.1 Motivation

There are two prime motivators behind this work.

First, the novelty of evolving learning rate optimizers creates possible topics for future
research. Although the approach used in this work is justified and adequate, other re-
searchers may be able to learn from our results and bring their own ideas to this topic.
Additionally, the results of this work may raise other worthwhile questions that can mo-
tivate further research question such as: 1. Are the evolved optimizers different from the
man made ones? 2. Can we learn something new from the optimizers created through
evolution? 3. Do the evolved solutions show us a way to specialize optimizers without
going through the evolutionary process?.

The potential for future research is a key motivator behind this work.

Additionally, if the evolved optimizers show a significantly better performance than the
current state of the art, the system created may be valuable as a stand alone optimization
tool for AI problems. This is another reason to explore this topic, contributions in learning
rate optimization are valuable beyond the field due to the importance of the learning rate
in neural network performance as a whole.

Our objectives are naturally connected with these motivators. The primary objective of
this work is to answer the question: “is evolving learning rate optimizers for specific
neural network architectures a valid means of improving their performance?” .
This topic is worthwhile for several reasons. The learning rate optimizers we have had
contact with during our research aim to create optimizers that are useful across many
network architectures. This general approach has contributed a lot to the community
but the possible benefits of a system that creates optimizers for specific architectures still
remain unexplored. In this work we are studying the viability of this approach and how it
may contribute to the field of learning rate optimization as a whole.

The use of such an approach also has the possibility of answering an array of secondary
questions. Firstly ‘are evolved learning rate optimizers similar to the manually
designed ones?” . Learning rate optimizers can take many different shapes, it will be
notable if our system is capable of automatically discovering algorithms that are variations
of the ones found in the literature. Such a result is interesting because if this approach is
able to evolve solutions that are widely accepted as high quality it is possible that these
same ideas can be used to find still undiscovered, better methods. This give way to a
second, possibly more interesting question: “do the evolved learning rate optimizers
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only perform well on the network they were evolved in?” . Current learning rate
optimizers are general, i. e. the optimizer is not affected by the architecture of the network
it is used on. It is possible that results suggest that the specific neural network used during
evolution plays an important role in the optimizer generated. While this is not useful per
se it suggests that the creation of a system that can infer specialized optimizers from an
ANN’s characteristics is possible. Such a system would be a valuable contribution to the
field if it could outperform the current general optimizers consistently.

1.2 Contributions

This works resulted in several contribution, which are summarized below.

1. AutoLR, a framework that can evolve learning rate optimizers for specific neural
network architectures. AutoLR allows for the evolution of several types of learning
rate optimizers and this work presents two versions of this system.

2. Dynamic AutoLR (DLR) is an implementation of the framework focused on evolving
learning rate schedulers. This proposal was accepted as a full paper in GECCO 2020,
the premier conference for genetic and evolutionary computation. The full paper is
included in Appendix B.

3. Adaptive AutoLR (ALR), is being presented for the first time in this work. This
version of the system is able to evolve variations of known state of the art adaptive
optimizers as well as new solution of similar efficacy.

4. A new type of adaptive optimizer called Adaptive Evolutionary Squared Optimizer
(ADES) is also proposed. This optimizer is based on some notable individuals evolved
while using ALR. Results suggest that ADES is competitive with known state of the
art optimizers.

The code for all versions of the framework and ADES will be open source at a later date.

1.3 Structure

Chapter 2 of this document provides the necessary Context for the reader to understand
the rest of the work and its relevance in the contemporary landscape of the field. It will
elaborate on the topics of Evolutionary Algorithms and Artificial Neural Networks as well
as present the state of the art approaches to Learning Rate Optimization.

Chapter 3 presents AutoLR, the framework built to run our experiments. This chapter
does a high level description of the system’s components and why they are important to
our hypothesis.

Chapter 4 and 5 describe the two implemented versions of the AutoLR framework: Dy-
namic AutoLR and Adaptive AutoLR respectively. Each chapter presents its version’s
Grammar, Fitness Function and other important implementation details. The reasoning
behind our design decisions are also explained, presenting the benefits and limitations
of our choices and contrasting them with some alternatives. Furthermore these chapters
present the Experimental Setup that was performed with these systems as well as the
Results achieved.
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The last chapter, Chapter 6, relates our results to the hypothesis posed at the start and
draws a Conclusion of the work as a whole. This chapter also looks into possibilities for
Future Work that come from this work.
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Context

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning approach the design of which
draws from the Biological Neural Networks seen in nature in order to create a computing
system that is able to learn. Figure 2.1 shows a graphical depiction of an ANN.

Input Layer Fully Connected
Layer Output Layer

Figure 2.1: Graphical depiction of a Artificial Neural Network.

While these networks can have different architectures (e.g. LSTM [8], ResNet [12]) we
will start by focusing on multi-layer feed-forward models (MFF) [13] as they are the most
simple [14] and relevant to this work. MFFs are comprised by a set of nodes and edges. The
nodes are grouped into separate layers connected sequentially. These layers are flanked by
an input and output layer which are responsible for receiving the data that the network
will process, and yield the result of the network’s calculations respectively. Edges are a
directed connection between two nodes from different layers and are the means through
which information travels through the network. Each node performs an operation (e.g. a

5



Chapter 2

mathematical function) on the values it receives from the previous layer and sends the new
value to all nodes it is connected to in the next layer. Every edge has a weight that scales
the value it carries, i.e. the value a node outputs is always adjusted before it is provided
to the nodes in the next layer.

While we chose to focus on this type of network it should be noted that the ideas presented
here are applicable to any network as long as the back-propagation training algorithm [15]
is used. Back-propagation is the most common training algorithm and a centerpiece of
this work. In order to understand many of our conclusions and insights throughout the
document it is important that the reader has a grasp on this algorithm.

Back-propagation is a class of algorithm that is able to quickly compute the gradient of a
function for a pair of input and output. In other words when given an input, a function
and expected output, back-propagation algorithms are able to calculate the direction in
which the input should be changed in order to approach the expected output (gradient).
These algorithms are utilized in ANNs to quickly assess the changes that should be made
to the weights after each training example. In this context back-propagation is going to
take the network’s expected output and determine how each of the network’s weight should
be changed to approximate this value.

In this case we are calculating the gradient of the loss function. This is possible due to the
chain rule. The chain rule is a formula that can calculate the gradient for variables that
depend on other variables. The output of an ANN depends on the result of the output
layer which in turn depends on the layer before that and so on until the input layer is
reached. The chain rule and back-propagation algorithm can be used together to calculate
the gradient for each weight in a neural network. The gradient is the key to training since
it gives the network a way to improve itself. It must be noted that back-propagation is
only responsible for calculating the gradient. The reason learning rate optimization is so
important is because training effectiveness varies greatly based on what is done with the
gradient once it is calculated.

For an in-depth explanation of back-propagation and chain rule we direct the reader to
Chapter 6.5 in [16].

ANNs can be used to solve tasks of many different types of problems such as classification
[17] and regression [18]. In this work we will be experimenting on supervise learning
classification problems and we will focus on this topic as a result.

In this particular problem the system is tasked with learning a function that can categorize
data instances into their respective classes. To achieve this the network is provided a set
of example and their classifications.

The ANN is then trained using this example set. Training is an iterative process where the
network compares its attempted classifications of a subset of examples with the expected
ones and adjusts its weights to get closer to the correct results. There is a function that
compares the classification and measures how incorrect the network’s output was, this is
known as the loss function. The size of the changes made to the weights is partially given
by the error returned by the loss function (a larger error leads to larger changes). There
is also a numerical parameter that determines magnitude of the adjustments made. This
parameter is called the Learning Rate (LR) and it is one of the main subjects of this
work.

Deep Neural Networks (DNN) are a subset of ANN notable for having multiple hidden
layers between the input and output ones. This added complexity in the network’s topology
allows it to solve harder problems. While it is important to note that increasing the number
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Figure 2.2: Representation of a Convolutional Neural Network [1].

Figure 2.3: Example of feature maps after training [2].

of layers does not solve harder problems per se, there are certain problems that cannot be
solved without the added power of a DNN. DNNs can be further specialized for certain
tasks by selecting the operations used in each layer’s nodes.

A Convolutional Neural Network (CNN) [19] is a type of DNN that is designed to perform
better on image related problems. Using image as an input to a neural network comes
with certain challenges that make the use of a specific architecture desirable. Pixels in an
image only yield valuable visual information when in the context of their neighbours. This
means that having a sequence of fully connected layers would result in many useless edges
as their weights would be attempting to learn the connection between pixels that are not
related (e.g. pixels in separate corners of an image). Ideally, we want our system to be
able to find patterns in small regions and connect those patterns into progressively more
complex shapes. A representation of this type of architecture can be found in Figure 2.2.

CNNs achieve this through the use of their namesake operation, convolution. Convo-
lutional layers break down their input and pass it through a series of filters, each filter
corresponds to a pattern (e.g. a corner). This layer outputs a measure of how well each
region of the input matches the filter (known as a feature map). An example of what
these feature maps look like can be seen in Figure 2.3. The information output by a
sequence of these layers is clearer than the original input meaning that if we feed it into
fully connected layers there will typically be few meaningless weights.

For a more profound explanation of ANN see [20].
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2.2 Evolutionary Algorithms

Evolutionary Algorithms [21] are a type of optimization algorithm inspired by the biological
evolution. These algorithms attempt to emulate its processes to perform metaheuristic op-
timization. This means that EA aim to explore possible solutions in an efficient, stochastic
way, with no guarantee that they will ever find the best possible solution to the problem at
hand. Practically speaking, these implementations are able to find near-optimal solutions
with a fraction of the resources necessary for a deterministic approach, given the right
conditions. An example of a generic evolutionary algorithm can be found in Algorithm 1.

Algorithm 1: Generic Evolutionary Algorithm Implementation
params: population_size, num_generations, crossover_chance, mutation_chance

1 population = generate_initial_population(population_size);
2 generation = 0;
3 while generation < num_generation do
4 new_population = [];
5 new_individual_counter = 0;
6 while new_individual_countar < population_size do
7 new_individual = selection_method();
8 if random() < crossover_chance then
9 parent = selection_method();

10 new_individual = crossover(new_individual, parent);

11 if random() < mutation_chance then
12 new_individual = mutation(new_individual);

13 new_individual.fitness = evaluate(new_individual);
14 new_individual_counter += 1;
15 new_population.append(new_individual);

16 generation += 1;

The optimization starts with the creation of a population of individuals. This first gener-
ation of individuals is typically generated randomly but more sophisticated initialization
methods exist that can be beneficial in certain conditions [22].

Each individual of the population has genetic information that can be translated into a
solution to the problem at hand. The structure of this information must be chosen by the
user and it is called genetic representation (in most EAs, representation is separated
into genotype and phenotype but this distinction will be temporarily omitted for a clearer
explanation). A good choice of representation is characterized by high locality, meaning
that the difference in individuals’ performance should grow larger as their representations
diverge.

An individual’s performance is measured by the fitness function. This function’s design
is another important decision that must be made in the creation of an EA. Its role is to take
an individual and quantitatively evaluate how well it solves the proposed problem. These
fitness values are used for direct comparison so it is important that they are numerical and
varied as it is beneficial that fitness values are shared by the smallest number of individuals
possible.

Following in the footsteps of biology, the next step is to emulate the natural mechanisms
that cause populations to evolve to maximize fitness. In this case the processes we will be
replicating are selection, recombination and mutation.
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Selection is the process through which the individuals that are allowed to reproduce are
chosen. It is desirable that this process is stochastic in nature with some bias towards
the fittest individuals. This means that if only selection is used the average fitness of the
population should increase until it stagnates. It is important that the selection method
used is not too top heavy as this rapidly reduces diversity which will be detrimental to the
operators that follow.

It is important to understand that EA utilize a set of probabilities to determine what occurs
in the evolutionary process. While it is possible that an individual is selected to pass all
of its genetic material (effectively creating a copy of the individual in the next generation)
most of the new generation will be comprised of individuals that are an hybrid between
two chosen individuals. The process that creates these hybrids (or children) is known as
recombination or crossover. The crossover probability is therefore the chance that an
individual in a new generation was created by performing a crossover on two individuals of
the old generation (or parents) chosen with the selection method in use. The function (also
known as an operator) used to perform a crossover must be chosen with the representation
in mind as it will be tasked with creating a child using genetic information from both
parents. These functions are also stochastic, meaning that performing a crossover on the
same couple will not yield the same child every time. The restrictions imposed on the
crossover function are also an important decision, it can be beneficial to allow the creation
of individuals that are not valid solutions to the problem in the hopes that a subset of the
information present in the invalid solution might be useful for the evolutionary process. If
this idea is pursued there must be a penaltymechanism in the fitness function that can rate
these invalid solutions as they cannot be applied to the problem directly. The alternatives
to the penalty system are discarding invalid solutions (replacing the individual until
a valid one is produced) or creating a complementary repair function that can fix the
invalid solutions.

The last changes made to the population before the generation can be evaluated are made
through mutation. The reasoning behind mutation is that as evolution progresses it is
likely that the population can only be improved further through small changes to their
genetic information. Crossover is rarely able to achieve this as most crossover functions
are destructive (meaning that the child is unlike either parent) so a new mechanism is
necessary to make these small adjustments. We can deduce from this that the function
used for mutation takes an individual and makes a small change to its genetic information.
If the operator is allowed to create invalid individuals it is necessary that the system is
prepared to handle them as was the case with the crossover (with the techniques described
above). Finally, mutation is not only applied randomly (using a mutation probability)
but the process itself should be random, meaning that applying the mutation operator on
the same individual should not always produce the same result.

The last mechanism utilized is not inspired directly by biology but it has proved to be a
helpful complement to these algorithms. This mechanism is elitism and it guarantees that
the best n individuals bypass the other mechanisms and are automatically present in the
next generation. This can be beneficial as it guarantees that the best genetic material is
always passed to the next generation but in some situations it can also speed up stagnation
which hurts the end result.

Grammatical Evolution (GE) [23] is a type of EA that has the specific purpose of evolving
a program that performs a certain task. Additionally, GE stands out as its representation
is split into a series of integers (genotype) that is mapped into executable code through a
grammar for evaluation (phenotype). While the use of different structures for genotype and
phenotype is common, the level of separation between these specific structures is enough
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that it is possible to work the genotype in ways that are not possible in the more common
representations of code (such as trees). This means that it is hard to represent a program
in a way that can be effectively manipulated by genetic operators and GE is a solution to
that problem.

This representation is not without issues, however. Since the genotype is not as intimately
connected to the phenotype, this approach suffers from poor locality[24, 25]. SGE [26, 27]
is a variant of GE that uses an altered genotype representation to address this issue. As
opposed to using a single series of integers, SGE uses one such series for each non-terminal
rule in the grammar. This address the issue of the traditional GE representation by
associating parts of the genetic information with specific grammar rules, connecting the
genotype and phenotype without losing the benefits of a numerical representation.

However, these approaches add another layer of decision making, namely in the form of
the grammar design [24]. The grammar used for any GE experiment will define what kind
of programs the engine is able to create and this has many implicit consequences. The
most obvious one is that the grammar provided must be able to generate the program
desired. While this seems trivial it must be understood that not knowing the composition
of the desired program is one of the main motivations to use this type of system in the first
place. This also means, however, that the grammar specificity can be increased as more
knowledge of the problem is available, aiding the search process.

This specific type of EA is suited for this work as the functions we are looking to evolve
are very specific. This means that our domain knowledge is high, there is a strong un-
derstanding of what our desired program is like in advance. As previously mentioned we
can use this knowledge to create a grammar that enhances results by narrowing the search
space. Another advantage in this approach is that it is not difficult to extend grammars to
incorporate new information about the problem. This is valuable in our case as the state
of the art approaches to our problem are varied in the information they use. An in-depth
explanation of these algorithms can be found in [20].

2.3 Learning Rate Optimization

In the context of this work, hyperparameters are the set of parameters that configure
an ANN and its training. The learning rate (LR) is one such parameter and its role
is to scale the changes made to a network’s weights during training. Research suggests
that hyperparameter optimization is an effective way of improving a system’s performance
without increasing complexity [28].

Before we discuss existing approaches to learning rate optimization it is import we first
understand exactly how the learning rate works and why it is important. The term learning
rate is frequently used to describe a value used in several optimization methods. The most
common optimizer is stochastic gradient descent (SGD) and most mentions of the learning
rate refer to its use in SGD.

As was discussed in Section 2.1, when a neural network is being trained its weights are
adjusted in response to the gradient of the loss function. SGD is the most common solution
used to make these adjustments. SGD changes the weights through the formula seen in
Equation 2.1 where:

• wt−1 is the value of the weight before adjustment.

• wt is the weight value after adjustment.
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• lr is the learning rate being used.

• ∇l(wt−1) is the gradient of the loss function for wt−1.

wt = wt−1 − lr ∗ ∇l(wt−1) (2.1)

Equation 2.1: Stochastic Gradient Descent optimizer weight update rule

The learning rate is important in this context because using the gradient directly will
typically cause the network to overshoot the desired adjustment. By using a learning rate
value between 0 and 1 the network is able to make small, directed adjustments to its
weights without over correcting. The learning rate chosen will directly affect the network’s
final performance. Researchers have as a result developed many systems that attempt to
make the most of the learning rate.

The traditional approach is to use a single learning rate for the entire training process.
Under these circumstances all optimizing must be done before training proper even starts.
Oftentimes the programmer must rely on their expertise in order to guess adequate learning
rate values. While automatic solutions to this problem exist they are, to the best of our
knowledge, either comparable to manual optimization [28] or non-trivial in implementation
[29]. Much of the difficulty of finding a convenient solution to this is issue stems from
the fact that hyperparameters are inter-dependent [11]. This means that even if an ideal
learning rate is found there is no guarantee that this value remains optimal (or even usable)
as the other parameters are tweaked.

These nuances make the use of a static learning rate a possible drawback. It is desirable that
the method we are using to determine our learning rate is robust enough that performance
does not dip with every change to the system. In order to increase flexibility we would
ideally have a method to change the LR as training progresses as this means that even if the
initial value is not adequate the system has a chance to correct its course. This strategy will
be referred to as a dynamic learning rate. The most uncomplicated policy for varying
the learning rate can be inferred intuitively. It is expected that as training progresses the
ANN’s performance gradually improves as it gets better at solving the task at hand. If the
system is potentially closer to its objective it seems desirable that it does not stray from
its course. In order to improve, the network requires progressively finer tuning, this can
be achieved with a decaying learning rate (meaning that the LR decreases as learning
progresses). There are some issues that are frequently encountered during training that
make this approach not ideal however. Better performance is rarely and indicator that
the network is closer to a perfect solution. There is a concept known as "local optimum"
which refers to a solution to an optimization problem that is the best but only within a
region smaller that the entire problem space. Using a decaying learning rate leaves the
system susceptible to early stagnation in a local optimum. This is not ideal despite the
fact that a local optimum can be sufficient for most situations as this approach can lead
to early stagnation if applied incorrectly. Despite these limiting factors decaying learning
rates can lead to improvement over static ones as seen in [10].

In order to expand on these ideas we need to apply the concepts of exploration and ex-
ploitation. These refer to the two complementary strategies that can be used in heuristic
optimization. Exploration is the idea of using a mechanism that helps the algorithm explore
solutions that do not seem as promising in an attempt to avoid falling into a local optimum.
The contrasting technique is exploitation, in this strategy we adjust our approach to make
sure the algorithm is able to find the local optimum (once it reaches a promising region).
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Finding a proper balance between these two strategies is crucial for further improvement of
the dynamic learning rate. Smith et. al. propose the use of a cyclical learning rate in [30].
Their approach fluctuates the learning rate between a maximum and a minimum bound.
While the system uses no information about whether or not it is stuck by periodically
increasing the learning rate it is able to explore the search space more effectively. This
technique is consequently less vulnerable to early stagnation than decaying learning rate
policies. This method is, to the best of our knowledge, the most efficient use of dynamic
learning rates.

2.4 Adaptive Optimizers

Further improvements in training effectiveness can still be achieved by utilizing more so-
phisticated optimizers.

So far we have been working with a single value learning rate that affects all weights in
the same way. Not all weights are created equal however. It can be beneficial for different
weights to have their gradient scaled by different factors. Consider the following scenario,
an ANN is being trained for 100 generations with a single value learning rate. One specific
weight of the network reaches a near optimal value within the first 5 generations, but all of
the others are still off the mark. There is no one ideal learning rate in this situation. On
one hand, using a small learning rate will benefit the fine tuning of the node that is already
performing well. A larger learning rate, on the contrary, will allow the sub optimal weights
to find better values. The optimizers we will be discussing are able to adapt changes made
to a weight based on how its gradient evolves. Ruder provides a great overview of all
gradient descent optimizers in [31].

Notation and nomenclature is not consistent throughout the literature. Since later on in
this work we will be comparing the form of these optimizers we establish a notation that
will be used to translate all of these algorithms where:

• wt−1 is the weight value before being updated and wt is the weight value after update.

• The weight update function is always the last equation and it takes the form of
wt = wt−1 − ...

• lr is the learning rate being used.

• ∇l(weight) is the gradient of the loss function for weight. This will commonly appear
as ∇l(wt−1) which is the value of the gradient for the weight before update.

• x, y, z are discrete variables that are updated by their own functions along with the
weights. The meaning of these variables changes from optimizer to optimizer and will
be mentioned in the sections where they appear. When unspecified these variables
are initialized at 0.

• Any hyperparameters will appear with the notation used in the original paper when-
ever possible and they will be explained as well.

2.4.1 Momentum

Momentum optimizers are a variation of SGD proposed by Rumelhart et. al. in [15]. In
this optimizer the changes made to the weight are informed not only by the gradient (as
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done by SGD) but also by the last update. This means that if the optimizer keeps making
changes in the same direction it will build up speed and start making bigger updates. If the
opposite happens and the direction of the gradient keeps changing then the updates will
make gradually smaller. This method was shown to perform better than standard SGD
in [32]. The weight update rule for momentum optimization can be seen in Equation 2.2
where x is the variable that stores the previous update and mom is a value between 0 and
1 used to scale the contribution of the previous change. xt−1 ∗mom is commonly refer to
as the "momentum term".

xt = mom ∗ xt−1 − lr ∗ ∇l(wt−1)

wt = wt−1 + xt
(2.2)

Equation 2.2: Momentum optimizer weight update rule

In 1983, Nesterov proposed an accelerated method of solving convex programming problems
in [33]. While his work did not directly discuss the application of the method to stochastic
gradient descent this approach would later be used by Sutskever et. al. in [34] to create
what would come to be known as Nesterov momentum. Nesterov momentum is different
from the standard implementation as the gradient is calculated for wt−1+mom∗xt−1. This
means the gradient is effectively looking ahead to the value suggested by the momentum
term. The reason this is beneficial is because the momentum term can be slow to change
and cause incorrect changes as a result. With this approach the gradient is able to make
corrections in case there are problems with the direction suggested by the momentum term.

xt = mom ∗ xt−1 − lr ∗ ∇l(wt−1 +mom ∗ xt−1)
wt = wt−1 + xt

(2.3)

Equation 2.3: Nesterov Momentum optimizer weight update rule

2.4.2 Adagrad

Adagrad is an optimizer proposed by Duchi et. al. in [35]. This algorithm explores the
idea of gradually reducing the speed at which each weight is updated based on the changes
made so far. To contrast with the more simple decay policies presented in the previous
section, Adagrad uses the L2 norm of previous gradients as a measure of how much the
weight has been changed. This accumulator increases indefinitely as training progresses.
The learning rate is then divided by this value, meaning that weights that have suffered
more changes will update slower and vice versa. This is desirable for the reasons explained
previously. To reiterate, as training progresses it is expected that the weights will be closer
to their ideal values and it makes sense to decrease the learning rate as a result. This
method is different from a simple decay policy because it is able to measure how much
training has progressed for each weight individually.

Seen in Equation 2.4 is the algorithm for this optimizer where x stores the value of the L2
norm for the current iteration and δ is a non negative value used to initialize x.

This approach has some limitations due to its irreversible nature. Since the accumulator
is always incremented by the square of the gradient the value of x will never decrease. If a
weight has high gradient at the start of training that will slow its progress down throughout
the rest of the process and this may be detrimental to optimization.

13



Chapter 2

x0 = δ

xt = xt−1 +∇l(wt−1)
2

wt = wt−1 −
lr ∗ ∇l(wt−1)√

xt + ε

(2.4)

Equation 2.4: Adagrad optimizer weight update rule

2.4.3 RMSprop

RMSprop is an unpublished [36] variation of Adagrad that replaces the accumulator used
to scale the learning rate with a moving discounted average. This change means that
the denominator seen in Adagrad no longer grows indefinitely. This retains the benefits
of Adagrad whilst removing the irreversible nature of learning rate decay present in that
optimizer. Seen in Equation 2.5 is the algorithm, the only changes from Equation 2.4 is
that x is now taking on the role of a moving discounted average.

xt = ρxt−1 + (1− ρ)∇l(wt−1)
2

wt = wt−1 −
lr ∗ ∇l(wt−1)√

xt + ε

(2.5)

Equation 2.5: RMSprop optimizer weight update rule

This optimizer can be extended to utilize momentum as well. See Equation 2.6 and Equa-
tion 2.7 for the algorithm using standard and Nesterov momentum respectively. A new
variable y is created to serve as the momentum term along with a decay constant between
0 and 1 ρ that is used to prevent indefinite growth.

xt = ρxt−1 + (1− ρ)∇l(wt−1)
2

yt = mom ∗ yt−1 +
∇l(wt−1)√
xt + ε

wt = wt−1 − lr ∗ yt

(2.6)

Equation 2.6: RMSprop optimizer with momentum weight update rule

2.4.4 Adadelta

Adadelta is another variation of Adagrad that seeks to improve upon it in two ways: avoid
the indefinite reduction of the learning rate (due to the accumulator) and avoid the need
for manual selection of a general learning rate. Much like RMSprop, Adadelta also changes
the accumulator to a moving discounted average. This optimizer also replaces the learning
rate with the moving discounted average of all weight updates.

In order to understand why this is a viable approach we must take a step back and discuss
SGD as a whole. The reason we utilize a learning rate in SGD is because the gradient
changes with every new input. This means that it is not ideal that we follow the gradient
blindly. The learning rate is used so the weights change in the direction of the gradient but
only by a small amount. This gives the opportunity for the new position to be assessed
by the gradient again so corrections can be made. If there was a way to predict when the
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xt = ρxt−1 + (1− ρ)∇l(wt−1)
2

yt = mom ∗ yt−1 +
∇l(wt−1 +mom ∗ yt−1)√

xt + ε

wt = wt−1 − lr ∗ yt

(2.7)

Equation 2.7: RMSprop optimizer with nesterov momentum weight update rule

gradient was going to change, the learning rate would no longer be required. There is a
way to predict this called Newton’s method. While this has been used for neural network
optimization (see [37]) it is not common because the calculations required are too time
consuming.

In Adadelta, Zeiler utilizes the moving discounted average of the weight updates to ap-
proximate Newton’s Method. We recommend that the reader checks the original paper
[38] for a deeper understanding of this approach.

In Equation 2.8 we present the algorithm where x is the moving average of the gradient
squared, y is the weight update calculation and z is the moving average of the weight
updates.

xt = ρxt−1 + (1− ρ)∇l(wt−1)
2

yt = −
√
zt−1√
xt + ε

∗ ∇l(wt−1)

zt = ρzt−1 + (1− ρ)y2t
wt = wt−1 + yt

(2.8)

Equation 2.8: Adadelta optimizer weight update rule

2.4.5 Adam

Adam and its variations are the final optimizers that we will discuss. Adam was proposed
by Kingma et. al. in [39] where it is shown to outperform the other optimizers presented
on a variety of different problems. Adam is yet another variation of Adagrad. What sets
this algorithm apart is that it acknowledges that because the moving averages used are
initialized at zero they are have a bias towards this value. The optimizer then employs
a new term (z seen in Equation 2.9) to correct this bias. Adam also utilizes xt−1√

yt−1
to

calculate a range where it believes the gradient can be trusted and uses this information
to determine the magnitude of updates made to the weights. β1 and β2 are two constants
between 0 and 1 (typically very close to 1) that control the exponential decay rate of the
moving averages (similar to ρ in the previous optimizers).

In the same paper a variation of Adam called Adamax is also proposed. The difference in
this version is that we replace the L2 norm that we have been using since Adagrad with
an infinity norm and adjust the bias correction accordingly. This variation is not tested
in the original paper but [40] concluded that Adamax did not perform significantly better
than Adam.

The algorithms for both optimizers can be seen in Equation 2.9 and Equation 2.10. These
are the efficient versions of these algorithms that are typically implemented, the original
paper [39] features more readable versions that are easier to understand.
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xt = β1xt−1 + (1− β1)∇l(wt−1)

yt = β2yt−1 + (1− β2)∇l(wt−1)
2

zt = lr ∗
√

1− βt2
(1− βt1)

wt = wt−1 − zt ∗
xt√
yt + ε

(2.9)

Equation 2.9: Adam optimizer weight update rule

xt = β1xt−1 + (1− β1)∇l(wt−1)

yt = max(β2yt−1, |∇l(wt−1)|)

zt =
lr

(1− βt1)

wt = wt−1 − zt ∗
xt
yt

(2.10)

Equation 2.10: Adamax optimizer weight update rule

The idea behind Adam’s x term is similar to the ones used in momentum optimizers as this
term is able to accelerate optimization if the gradient goes in the same direction repeatedly.
This led to the creation of Nadam, a modified version of Adam that incorporates Nesterov
Momentum. This was proposed by Dozat [40] and the results showed that while it did not
always outperform Adam it did so by a significant margin when it happened.

xt = β1xt−1 + (1− β1)∇l(wt−1)

yt = β2yt−1 + (1− β2)∇l(wt−1)
2

zt = zt−1 ∗ β1 ∗ (1− 0.5 ∗ 0.960.004∗(t+1))

wt = wt−1 − lr ∗ (1− β1 ∗ (1− 0.5 ∗ 0.960.004∗(t))) ∗
∇l(wt−1)

zt−1
+ zt ∗ xt−1

1−zt√
yt + ε

(2.11)

Equation 2.11: Nadam optimizer weight update rule
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AutoLR

The system built for this work has two versions. Both versions are built on top of a common
framework that we have named AutoLR. This chapter describes this framework including
information that is important if the reader wishes to use it. This framework is comprised
of two sub systems that are each explained in their respective sections. There is also a
third section dedicating to explaining how the system can be used to evolve solutions and
suggestions on how to validate them.

3.1 Evolutionary Engine

Since the novelty of our approach lies in the use of an evolutionary algorithm it should come
as no surprise that the choice of the engine used for the evolutionary process is critical.

In the context of our work, learning rate policies will be executable computer code. This
suggests we should either use Genetic Programming or Grammatical Evolution, since these
are the approaches best suited to evolve actual executable code. The deciding factor was
the fact optimizers of the same type typically share some structure. This lead us to choose
Grammatical Evolution since grammars provide a readable, understandable and easy to
change way to insert said structure into our individuals. This choice allows us to impose
syntactic restrictions on the optimizers. In concrete, we chose Dynamic Structured Gram-
matical Evolution as our evolutionary engine due to its good performance in comparison
to other GE approaches. Another benefit of this approach is that by using an established
engine we do not have to develop specific genetic operators for our use case.

3.1.1 Structured Grammatical Evolution

We must also go over how SGE [26, 27] works as the grammars used down the line were
designed taking into account the inner workings of this system.

As was briefly mentioned in Section 2.2, SGE uses a genotype where each production has
a list of integers in contrast with GE’s single list.

An important consequence of this change is that a certain value in a production’s list is
always interpreted as the same thing. This contrasts with GE where a segment of the
genotype can have different meanings depending on context. Consequently, an individual’s
genotype and phenotype are more closely related in SGE. This property is known as locality
and it is desirable to have a high locality as this means that making small changes to the
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Figure 3.1: Sample mapping of an individual in SGE.

genotype is more likely to only slightly influence the resulting individual. An engine with
low locality has a hard time navigating the problem space since slight adjustments to the
genotype can lead to massive differences in results making the search process erratic.

It is also important to understand how the genetic operators work with this unique geno-
type. The crossover operation picks, for each production, a single parent to inherent from.
This means that, on a production level, genetic material is preserved. Mutation is then re-
sponsible for changes inside the productions, randomly altering values inside a productions
list to other possible options.

Finally it is worth noting that SGE is implemented in the Python programming language
and open source [41]. Since the framework is built around this engine it follows that the
whole system is also built in Python. An additional benefit of this choice is that this
language has vast support for ANN handling through the Tensorflow [42] library.

3.2 Optimizer Evaluator

An optimizer has no value in a vacuum. In order for us to assess whether a certain optimizer
is "good" or "bad" we must provide an environment where it can be used.

As previously stated, the breadth of machine learning problems where learning rate op-
timizers are useful is massive. Since this framework can feasibly be used in any problem
that makes use of an SGD based optimizer it can be applied to all of these problems.

For evolution to progress smoothly, however, a task of high difficulty should be used since
it is important that the better optimizers are in an environment where they can showcase
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their ability. If the problem chosen is too easy there is a risk the results will be overly ho-
mogeneous, meaning that all optimizers are able to achieve indistinguishably good results.

3.3 Evolution

Up until this point we have described the framework we will be using to evolve our opti-
mizers.

3.3.1 Grammar

Since we are using SGE as our engine, the first challenge when setting up any evolutionary
run is designing the grammar. There is no objectively correct grammar for an individual
problem. When creating a grammar we must weigh the benefits and limitations of our
decisions based on our own criteria. As a result it is important to discuss the criteria used
when designing the grammars used for our experiments:

• Reproducibility - Since we will be comparing our solutions with standard optimizers
it is important that our grammar can create individuals that can reproduce at least
an approximation of the optimizers they will be competing with. This also goes in line
with one of our objectives: "Are evolved learning rate optimizers similar in shape
to the manually designed ones?" by giving the algorithm the ability to reproduce
man-made approaches we can gather insights on whether automatic evolution favors
the same ideas as researchers. This also makes the benchmarking phase more fair
since evolved optimizers have access to roughly the same tools as standard ones.

• Dimension - More specifically it is important to be mindful of the dimension of the
search space. As the number of possible individuals the grammar can create increases
so does the time necessary for the evolutionary algorithm to find interesting solutions.
Theoretically this should not be much of a concern but practically speaking this work
(and most others) must meet certain deadlines with access to limited resources and
the grammars used must accommodate this.

• Efficiency - Leaning on the fact that optimizers are functions with a specific task, we
are interested in creating grammars that, more often than not, generate functioning
optimizers. This means we are looking to make the grammars that make the most
out of the resources we have e.g. if we can afford to use 100 constants their values
should all be conceivably useful be for an optimizer.

While the weight of each of these criteria vary from work to work these are the most
important aspects to take into account during grammar design.

3.3.2 Fitness

A crucial part of every evolutionary algorithm is the fitness function. This is the function
that takes an individual solution and quantifies their performance. This is where the
optimizer evaluator previously described is used. It is recommended that not all of the
data available is used in the fitness function. If the evolutionary phase has access to all
available data then it becomes impossible to rate the optimizers generated based on their
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accuracy on data they had no contact with (which is the most important metric to measure
the success of an optimizer.).

Image datasets usually provide a set of test instances that should be used to make the final
assessment of the network’s accuracy. In AutoLR it is desirable that these test instances are
not inserted into the evolutionary process so they can later be used to judge the optimizers.

The exact neural network architecture and setup used to assess the quality of the optimizers
change based on the needs of the user. In our case the architecture and fitness function
will be specified in the chapter dedicated to each version.

3.4 Benchmark

In the context of our work we must be able to draw comparisons between our evolved
optimizers and standard ones. While the common user of the framework may not be
interested in this specific situation it is recommended that the evolved optimizers are
validated in some way.

While the first step in our experiments is always to produce some capable evolved optimiz-
ers through the process of evolution. We must then pick the best solutions produced and
benchmark them against the standard optimizers in an environment that is fair for both
of them.

While an individual’s fitness during training is a good representation of its quality as an
optimizer there is an even more accurate measurement that can be used for our final results.

Because the evolutionary process demands the fitness to be calculated many times this
function typically works on only a subset of the whole data available. This means it is
possible to create an enhanced version of the fitness function that takes longer to run but
gives us a more accurate assessment of the optimizer quality.

This function is called the benchmark function and it is the same across all versions of
AutoLR.

Algorithm 2: Simplified version of the benchmark function used to determine the
average performance of an optimizer
params: network, learning_rate_optimizer, training_data, validation_data,

test_data
1 trained_network ← train(network, learning_rate_optimizer, training_data,

validation_data);
2 fitness_score ← get_test _accuracy(trained_network, test_data);
3 return fitness_score;

This function is different from any of the fitness functions seen later on because the final
accuracy of the network is measured in Fashion-MNIST test data. The training process
also makes use of all 60000 available training instances, under these circumstances the
optimizers are able to display their peak performance under ideal and fair conditions.

After training is concluded the network’s final accuracy is calculated on the aforementioned
10000 test instances. Figure 3.2 shows the difference in how the data is split for evolution
and benchmark.

Naturally we are interested in doing a statistical analysis of our results, consequently both
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Figure 3.2: Difference in data used for evolution (fitness function) and benchmark (bench-
mark function).

evolved and standard optimizers will be benchmark-ed several times and they will be judged
based on their average accuracy and standard deviation.
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Dynamic AutoLR

Dynamic AutoLR (Dynamic AutoLR) is an evolutionary system created to evolve dynamic
and static learning optimizers (also refer to as policies or schedulers). The system is by
definition limited since schedulers are not the most sophisticated approach to the problem.

In the Keras [43] library, LearningRateScheduler is the name of an object class that is able
to produce both static and dynamic learning rate optimizers. Learning rate schedulers are
functions called periodically during training that update the learning rate value. In other
words, we are evolving the initial learning rate and the ensuing variation function. These
functions’ inputs are limited to the learning rate of the previous epoch and the number
of the epoch. Since these inputs do not provide much information about how the training
process is going these functions are typically quite simple.

Nevertheless, Dynamic AutoLR is useful as it allows us to explore the hypothesis without
diving into the more complex problem space of adaptive optimizers. This chapter walks
the reader through the components that comprise this system and explains the decisions
behind their design. This chapter also describes the experiments performed and their
results.

4.1 Grammar

The grammar defines the search space of the learning rate schedulers. We are evolving
if-else systems that yield a new learning rate based on the current learning rate and epoch.
The grammar used is shown in Figure 4.1.

The individuals created by this grammar will typically resolve into a sequence of chained
if-else conditions (created by the logic_expr production) that once evaluated will yield a
learning rate (provided by the terminals in lr_const). This means that the majority of
policies created by the system are dynamic in nature. A notable exception to this is that
the system can resolve the initial expr production into a lr_const, creating a static learning
rate policy.

An if_func is a simple function that does the same as a regular if-then-else construct. Since
the code for this system was written in Python this function was created so all individuals
could be described in a single line that can be read easily by the user. The code for this
function is shown in Algorithm 3.

The conditions used by if_func are generated by logic_expr. This production will com-
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pare one of the input variables (learning_rate, epoch) with the corresponding constants
(lr_const and ep_const, respectively) using one of several logical operators from logic_op.
logic_op includes all logical operators with the exception of equality (==) and inequality
(!=). These operators are too specific and broad respectively, meaning that they have little
impact in the output of any individual that includes them. This makes them unable to
contribute meaningfully to the evolutionary process and they were removed as a result.

The constants chosen for lr_const and ep_const are both 100 values with evenly spaced
between the minimum and maximum value for each of the variables. It should be noted
that these production rules have been abridged in the figure. Only a few of the lowest and
highest possible values are shown so that the range is accurately portrayed whilst keeping
the figure brief. Determining the limits of the interval for the epoch constants was simple.
Our training starts in epoch 1 and ends in epoch 100, since we are also using 100 values
for our constant, we used every possible epoch value (every natural number from 1 to 100)
for ep_const. lr_const values are more complicated as there is an infinite number of valid
learning rates. We keep the values of the learning rate bounded between 0.001 and the 0.1
as all values in this range are suitable for training.

This grammar is capable of creating a large variety of individuals despite its simplicity.
While it is not possible for our trees to exactly recreate the dynamic solution functions
mentioned in Section 2.3 they can reproduce approximated versions that exhibit similar
behaviour.

Algorithm 3: Template of the code used to implement the if_func routine.
params: condition, state1, state2

1 if condition then
2 return state1;
3 else
4 return state2;

<expr> ::= if_func(<logic_expr>, <expr>, <expr>)
|<lr_const>

<logic_expr> ::= learning_rate<logic_op><lr_const>
| epoch<logic_op><ep_const>

<logic_op> ::= < | ≤ | > | ≥
<lr_const> ::= 0.0001 | 0.00110909 | 0.00211818 | 0.00312727 | 0.00413636

. . .

0.09596364 | 0.09697273 | 0.09798182 | 0.09899091 | 0.1
<ep_const> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

. . .

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99| 100

Figure 4.1: CFG for the optimisation of learning rate schedulers.

Figure 4.2 depicts an example of a learning rate scheduler. In this case the ANN will train
using a learning rate of 0.1 for the first 10 epochs as this is when the condition epoch <
10 is met. This learning rate will be used until 10th epoch is reached, at which point the
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learning rate scheduler will automatically decrease the learning rate to 0.05. Following the
same rationale, after the 50th epoch the learning rate to use is 0.01.

condition value if true value if false

if

epoch < 10

condition value if true value if false

if0.1

epoch < 50 0.05 0.01

Figure 4.2: Example of a learning rate scheduler.

4.2 Dataset

When attempting to solve a machine learning problem we must concern ourselves with
key choices such as neural network design and dataset collection/selection. By opting to
tackle a common task, however, we are able to to make use of established architectures
and datasets. This is beneficial since we can skip some of the setup that comes with our
hypothesis, allowing us to focus time and resources on developing a solution.

The most fitting problem found for this work was image classification. Image classification
problems are challenging, which is a necessary attribute for a smooth evolution. There
is also an abundance of past research into this subject, with many networks [44, 45] and
datasets [46, 47] readily available.

Within the space of image classification there are several datasets to choose from. The
dataset used in this work is Fashion-MNIST [47] as we found it to be an accessible
classification problem for our approach. This dataset has the right difficulty to allow
evolution to occur smoothly. Classifying Fashion-MNIST instances is hard enough that
the best individuals are able to set themselves apart whilst being easy enough that genetic
material with some potential does not get mixed in with random search. Instances of
Fashion-MNIST are 28X28 grayscale images. These images can be processed quickly due
to their small size and networks are able to train quickly on this data as a result. This
dataset is composed by 70000 instances and corresponding classifications, 60000 training
and 10000 for testing respectively.

4.3 Fitness

As the main hypothesis implies, we are looking to evolve learning rate optimizers. In this
case we are narrowing the scope to static and dynamic optimizers. This means that we
will be using the EA on a population of learning rate policies. Additionally, our hypothesis
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Figure 4.3: Example images from the Fashion-MNIST dataset.

demands that the fitness of an individual must be some measure of the CNN’s performance
when trained using that specific solution. This is necessary since if the evolutionary process
is not guided properly its results will not address the question we posed.

We designed the function seen in Algorithm 4 in order to best assess the policy’s perfor-
mance.

Algorithm 4: Simplified version of the fitness function used to evaluate a learning rate
policy
params: network, learning_rate_policy, training_data, validation_data, test_data

1 trained_network ← train(network, learning_rate_policy, training_data,
validation_data);

2 fitness_score ← get_test _accuracy(trained_network, test_data);
3 return fitness_score;

To elaborate on the listing above, our fitness function will use 4 components:

• network - The ANN we are evolving for, this network is the same throughout the
entire evolutionary run.

• learning_rate_policy - The solution we want to evaluate, this is the function the
EA is evolving. This implies that this function will be used on multiple policies (one
at a time).

• training/validation/test_data - This is the data of the problem the ANN will
be attempting to solve. As the name implies, training data is used for training.
Validation data is a set of data that is used to assess the quality of training as it
progresses. Test data is a separate set of examples that are used to evaluate the
network’s performance once training is complete.

Moreover, this function has two phases: In line 1 of Algorithm 4 the network is trained
using the evolved policy. Notice that this is the only use of the learning rate policy in the
fitness function, the policy only comes into direct contact with the training and validation
data.
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We could at this point retrieve the best performance the network achieved during training.
We do not take this approach as it is not the most accurate measure of an ANN’s real
effectiveness. The objective of the training is that the network learns a set of weights that
solve the proposed problem. The data used for training is only a sample of all possible
inputs. As training progresses a network might become too attached to the training data
i.e. the network might overfit. Overfitting means that the network has learned everything
about the training data. This is not desirable since training data will often have some noise
(i.e. information that is not important to solve the task) that will be detrimental when
dealing with inputs not included in training. Consequently, we measure the effectiveness
of training by how well the network performs on a second set of data that it has not come
into contact with. We call this second set the test data. This can be seen in line 2 of
Algorithm 4.

Every policy will be evaluated using the same network and training data meaning that
learning rate is the only varying component between individuals. Since all other hyperpa-
rameters are fixed we consider the result of evaluating the trained network’s performance
on the test data to be an adequate measure of the policy’s fitness as it is directly related
to the policy itself.

The actual evaluation of an individual is done by mapping their genotype into a proper
learning rate policy through SGE. This policy is then wrapped in a Keras Learning Rate
Scheduler object and attached to the training process. The 60000 training examples are
split into 3 groups: training, validation, and testing. The training set directly affects the
network’s weights, meaning that the learning process is done in response to the network’s
error on this dataset. The validation data is used as a control mechanism during training.
Once the network has completed a training epoch it is evaluated in the validation set.
This is a good method for detecting overfitting since if the network’s accuracy improves
in training but dips in validation that typically means it is becoming too attached to the
training data. The weights chosen at the end of training are the ones that achieved the
best performance on the validation set.

Finally, the testing data is used after training is complete to obtain a fitness value. The fact
we are restoring the weights that performed best on the validation set implicitly biases the
network towards the validation set which is why we are required to use this third dataset.

4.4 Network Architecture

The network architecture we used was automatically generated using DENSER [48] – a
grammar-based NeuroEvolution approach. The CNN optimised by DENSER was evaluated
using a fixed learning rate strategy, and thus it is likely that better learning policies exist.
The architecture was generated for the CIFAR-10 dataset using a fixed learning rate of
0.01, where the individuals were trained for 10 epochs. The details of how the network was
created are important as they might inform our conclusions later on. The specific topology
of the network is described in Figure 4.4.

4.5 Experimental Setup

As was specified in Chapter 3 we divide the experimental setup into two parts: the evolu-
tionary search (Section 4.5.1); and the longer assessment done after the end of evolution
(Section 4.5.2).

27



Chapter 4

InputLayer

Conv2D

BatchNormalization

Conv2D

Conv2D

Flatten

Dense

Dropout

Dense

Dense

Dense

Dense

Figure 4.4: Topology of the used CNN.

4.5.1 Evolution

The experimental parameters are summarised in Table 4.1. They are organized into five
sections:

• SGE Parameters – parameters of the evolutionary engine.

• Dataset Parameters – number of instances of each of the data partitions.

• Early Stop – the stop condition used to halt the training of the ANN.

• Training Data Augmentation – real time data augmentation parameters.

• Network Training Parameters – parameters used when training the ANN.

The experimental parameters are picked with according to some considerations. Since evo-
lutionary algorithms are very demanding in terms of computation resources, it is paramount
that the parameters used allow us to perform meaningful evolutionary runs that can be
completed in an acceptable time-frame. Additionally, the fitness function operates on a
fraction of the dataset, as training utilizing all 60000 training examples with data augmen-
tation is too time consuming.

The training parameters also take the computational costs into account. Ideally, evolution
would be performed on 100 training epochs with no early stop as we want to optimize
the network’s performance as much as possible. Instead, two sets of experiments were
performed: 1. using 100 epochs and an early stop mechanism; 2. using 20 epochs with no
early stop.

We started by reducing the computational cost through the implementation of an early
stop mechanism. Notwithstanding, we were concerned that the evolutionary process would
exploit this mechanism, which motivated the 20 epochs experiment, where no early stop
is used and the cost is instead reduced by reducing the training epochs.
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SGE Parameter Value
Number of runs 10

Number of generations 50
Number of individuals 5

Tournament size 5
Mutation rate 0.15

Dataset Parameter Value
Training set 7000 instances from the training
Validation set 1500 instances from the training

Test set 1500 instances from the training
Training Data Augmentation Value

Feature-wise Center True
Feature-wise Std. Deviation True

Rotation Range 20
Width Shift Range 0.2
Height Shift Range 0.2
Horizontal Flip True
Early Stop Value
Patience 3
Metric Validation Loss

Condition Stop if Validation Loss does not
improve in 3 consecutive epochs

Network Training Parameter Value
Batch Size 1000
Epochs 100 / 20
Metrics Accuracy

Table 4.1: Experimental parameters.

4.5.2 Benchmark

After evolution is completed further testing must be performed to assess the quality of the
generated policies. Since the test set used during evolution is always the same it is possible
for evolution to make the scheduler biased towards it. This is similar to the problem that
motivated the three way data split used during evolution. The benchmarking function is
similar to the fitness function, the major difference is in the data used (see Table 4.2).
During the evolutionary process we were forced to use only a subset of the training data
as using all 60000 examples was too time consuming.

Dataset Parameter Value
Train set 52500 instances from training data

Validation set 7500 instances from training data
Test set 10000 instances form test data

Table 4.2: Data distribution of the Fashion-MNIST dataset used in benchmarking.

In our benchmark we use all training instances (splitting them into train and validation)
to train the network using the policy we want to evaluate. This network is subsequently
tested using the entirety of the test data (that was not used in any capacity previously) to
obtain an unbiased test accuracy. We will also be tracking each policy’s best validation
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accuracy through this process as these give us additional insights into how well the learned
weights are able to generalize.

We also needed to decide on a policy to serve as a baseline. We chose to use a static
learning rate policy of 0.01. Not only is this the policy used to evolve the topology itself
(in DENSER [48]), it is also the most common out-of-the-box policy [43, 49].

We have three testing scenarios:

• The first scenario is the same as the first evolutionary scenario, training is done
for 100 epochs with the early stop mechanism.

• The second scenario also trains for 100 epochs, but the early stop mechanism
is disabled.

• The third scenario trains for only 20 epochs, with no early stop.

The best policy from the early stop evolution (henceforth referred to as policy A) will be
tested in the first and second scenarios. We considered testing it in the third scenario as
well but observing the validation accuracy during training hinted that this would not be
worthwhile (this policy was performing poorly in epoch 20 for most observed trials). These
two scenarios will allow us to analyse how well a policy evolved using early stop performs
into a scenario without early stop and how that compares to our baseline

The policy resulting from the no early stop evolution (policy B, henceforth) will be tested
in all three scenarios.

Each policy is tested in each scenario five times and the results presented are the average
and standard deviation of those trials.

4.6 Experimental Results

The results of our experimentation can be seen in Figure 4.5 where Figures 4.5a, 4.5b and
4.5c show a box plot for each of the testing scenarios. The table presented in Table 4.3
summarizes the results of our experimentation, showing the actual average and standard
deviation of the accuracy of a given policy in a specific scenario over five runs. As detailed
in Section 4.5.2, each run trains the network using the chosen policy and subsequently tests
its accuracy on the 10000 test instances.

PolicyScenario A B Baseline
Validation 75.09 ± 16.785% 85.87 ± 0.25%1 Test 69.24 ± 24.07% 85.01 ± 0.36%
Validation 85.42 ± 0.87% 85.55 ± 0.38%2 Test 84.82 ± 0.71% 84.39 ± 0.22%
Validation 89.38 ± 0.39% 89.13 ± 0.33% 88.85 ± 0.22%3 Test 88.68 ± 0.22% 86.58 ± 1.47% 87.47 ± 0.37%

Table 4.3: Accuracy of the evolved policies (A & B) on their evolutionary environment (1
& 2 respectively) and scenario 3 (representative of an actual use case), compared with the
baseline policy.
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Figure 4.5: Box plot showcasing the results of the test scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile. Mean and
median of each population are marked inside each box.

4.6.1 Scenario 1

Scenario 1 yields results that are not intuitive given the circumstances. Training in this
scenario can be halted by an early stop mechanism. Since policy A was evolved using this
same kind of training it is to be expected that it would perform well in these conditions.
However, the results show the opposite. Policy A, in fact, performs far worse than the
baseline when early stop is in use. Analysing individual results showed that this policy
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will occasionally trigger the early stop in the first few epochs (this can be observed in the
large standard deviation associate with these trials).

There are several interpretations for the implications this has on the validity of the evolu-
tionary process. On the one hand it can be argued that this demonstrates an issue with
the evolutionary process since the policy is not a consistent solution to the problem it is
supposed to solve. While it is a fact that the policy is an inconsistent solution we do not
believe this implies any problems with the evolution. The fact that this policy can, on
occasion, yield the best performance implies the genetic information of this individual is
useful for the evolutionary process.

4.6.2 Scenario 2

Scenario 2’s results are more in line with our expectations. We can observe that, albeit
only marginally, policy B shows better test accuracy than the baseline when trained under
the parameters it was evolved for. It is noteworthy that policy B does not have superior
accuracy in validation. This suggests that the evolved policy is outperforming the
baseline in its ability to generalize when moved to a different set of data.

4.6.3 Scenario 3

Scenario 3 was designed to test which policy is able to get the most out of the architecture
of the network and it gave the most important set of results. The results show that, under
these conditions, the best accuracy this network achieved was obtained using an
evolved policy for training. On average, policy A performs better than the baseline in
the test set by 1.2% and it obtains these good results more consistently. Another interesting
result is that policy B (that was previously outstanding because of its ability to generalize)
suffers the biggest dip in performance from validation to test in this scenario. Ideally,
both evolved policies would outperform the baseline. There are, however, some possibly
limiting factors. Namely, it is possible that the shorter training duration used in scenario
2 discourages the evolution of policies that translate well into scenario 3. This topic is
discussed further in Section 4.6.4 as we analyse policy B’s shape.

4.6.4 Shape

As discussed in our objectives (Section 1.1), we are interested in analysing the shapes that
our evolved policies take. Namely, in this section we will be analysing the shape of the
previously discussed Policies A and B. These policies can be observed in Figures 4.6 and
4.7. These figures show how the learning rate evolved over time as well as a vertical line
that signals the epoch where the training using this policy stopped.

Observing the shape of policy A (seen in Figure 4.6) led to some interesting insights.
Initially, it seemed that this policy only had the best performance during evolution because
its shape cheats the early stop mechanism. We suspected that by frequently using a high
learning rate it might be possible to create false improvements that trick the system.
To elaborate, it is feasible for a policy to routinely worsen and subsequently improve its
performance on purpose in order to pass the early stop check. We can, in fact, observe that
this policy is able to train for a long time despite the early stop as the vertical line shows.
As a comparison, the baseline policy typically triggers the early stop between epochs 20-30,
which means that policy A is able to train for twice as long.
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Figure 4.6: Policy A
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Figure 4.7: Policy B

Policy B (seen in Figure 4.7) took on a very different shape. Despite the erratic behaviour
shown past epoch 60, this policy is effectively a static learning rate as its training always
ended in epoch 20 (as a reminder, no early stop was used in the evolution of the policy).
While this initially seems disappointing (finding an adequate constant is not something
that requires such a complex system), it is important to understand that, due to the
reduced training duration, there is a possibility that the benefits of using a dynamic policy
in this context are negligible, stifling probability that they show up in evolution. The idea
that the evolution of dynamic methods is suppressed under these circumstances is further
supported by the fact that all twelve of the best policies during the evolution of policy B
were constants. In this context the twelve best policies we are referring to is the set of
policies that were, at some point during evolution, the best policy in all runs.

We have, up until this point, observed two types of evolved functions shapes (within the
individuals that perform well). The first type is constants, these comprise the majority of
the search space so their presence is expected. The second type can be observed in policy
A, we refer to these as oscillator policies. We believe that these policies are approximations
of the policies used in [30]. While it would be disingenuous to claim that we are evolving
cyclical policies, it seems possible that the evolved oscillator policies are effective for the
same reasons as the cyclical ones. It is notable that while many known dynamic policies are
decaying policies we have not observed any evolved policies with a similar shape performing
well.
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Adaptive AutoLR

Adaptive learning rate policies do not follow the basic outline we find in static and dy-
namic approaches. In the previous chapter we were able to take advantage of the Learn-
ingRateScheduler class found in Keras. For this version of the system we will have to create
a customized version of the Optimizer class, we will call this new class CustomOptimizer.
Adaptive AutoLR (Adaptive AutoLR) comes with additional technical challenges due to
the vast difference in complexity between these two components.

In Dynamic AutoLR we were able to reduce the search space by creating a grammar that
produces policies that were approximations of the standard solutions. The same is not
possible in Adaptive AutoLR, Adaptive approaches make use of the gradient of the loss
function to create many different variables with all sorts of meanings. Since these variables
perform many different roles it is also much harder to anticipate the values they will
take. For these reasons we decided that creating a grammar that produced approximations
was not feasible for this problem. This means that Adaptive AutoLR’s search space is
much larger and harder to navigate than Dynamic AutoLR’s. The main consequence of
this is that it is that expectable that Adaptive AutoLR will need to produce many more
individuals during the evolutionary process to achieve a good accuracy. It is therefore
needed to put increased attention into optimizing this version of the system as a result.

5.1 CustomOptimizer

LearningRateScheduler was able to take Python code and execute it directly. This made the
process of designing our grammar straightforward. In CustomOptimizer we are mostly con-
cerned with implementing a single function from its super class, _resource_apply_dense.
This is the function called by the training algorithm to update the network’s weights and
it has two mandatory arguments:

• grad, a Tensor that holds the loss function gradient for the weight being updated.

• var, a Tensor that holds the variable corresponding to the weight being updated.

Both of these are supplied automatically by Keras. This is quite limiting as it means
we are not able to pass our own variables into this function. We chose to adhere to
Keras’ established architecture for Optimizers since this library is extremely optimized for
performance. Instead of changing the inner workings of the training algorithm we opted
to pass variables into the function through attributes in our CustomOptimizer class.
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This function is expected to return an object of the type Operation. The most efficient way
we found to create these objects is using Tensorflow training_ops [50] wrapper that allows
us to run these operations on the lowest level possible. This wrapper comes with some
limitations as it is designed to only execute the adaptive methods found in the literature
meaning that our evolved policies must conform to this.

Our approach to this problem was searching for a training operation that was general
enough that it could be used to replicate several adaptive methods. Through this approach
we found that the majority of adaptive methods can be reproduced through repeated uses
of the operation wrapper for gradient descent.

This wrapper is called resource_apply_gradient_descent and takes the arguments var,
alpha, delta and performs the following operation on them:

vart = vart−1 − (alpha ∗ delta)

While this operation is simple, we are able to reproduce a variety of adaptive methods by
calling it several times.

It must be noted that in order for this approach to work the CustomOptimizer must
save the values of the auxiliary variables (xt, yt zt). For the reasons explained above
we will not be tampering with the resource_apply_dense function’s inputs. This brings
some challenges since we must keep in mind that these variables have a different value
for each weight in the neural network. We chose to address this using dictionaries, one
for each auxiliary variable, that use the name of the weight as a key for the value of the
corresponding auxiliary variable. This is possible because the weight gets passed into the
resource_apply_dense function in the form of the parameter var. var is an object of the
Tensorflow Variable class and it has a unique name we can use as a key in our dictionaries.
This allows us to make the connection between the function’s inputs and our own auxiliary
variables.

Pseudocode for the CustomOptimizer implementation of resource_apply_dense can be
found in Algorithm 5, the auxiliary variables are called x, y and z and are stored in dictio-
naries named after (e.g x_dict). Each of them as a respective function that calculates it
(x_func, y_func and z_func). The fourth function is the weight update function re-
ferred to as weight_func in our code. Both the dictionaries and the functions are attributes
of the CustomOptimizer class, making them accessible inside resource_apply_dense.

Algorithm 5: Simplified version of the CustomOptimizer’s implementation of the _re-
source_apply_dense method
params: grad, var

1 x_var ← x_dict[var.name];
2 y_var ← y_dict[var.name];
3 z_var ← z_dict[var.name];
4 resource_apply_gradient_descent(var=x_var, alpha=1.0, delta=_func(x_var,

grad));
5 resource_apply_gradient_descent(var=y_var, alpha=1.0, delta=y_func(x_var,

y_var, grad));
6 resource_apply_gradient_descent(var=z_var, alpha=1.0, delta=z_func(x_var,

y_var, z_var, grad));
7 resource_apply_gradient_descent(var=var, alpha=1.0, delta=weight_func(x_var,

y_var, z_var, grad));

The inputs of each of the auxiliary functions are also worth discussing. It is necessary that
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weight_func has access to all the auxiliary variables (the whole purpose of these variables
is to allow more complex changes to the weight) but the choice of inputs for the other
three functions is not as clear cut. In most adaptive methods the auxiliary methods only
require access to themselves and the gradient. Examining Equation 2.5 shows an adaptive
approach where one of the variables is calculated using the updated value of another. We
are interested in allowing our system to explore as many of the optimizers found in the
literature as possible so we must understand how to meet the requirements demanded by
RMSProp.

Knowing that auxiliary variables can depend on each other we must establish some hier-
archy. This allows us to determine the order of execution of the functions as well as their
inputs. We decided that the order of execution would be x_func followed by y_func fol-
lowed by z_func and finally weight_func. We found an instance of an adaptive approach
that calculated variables after making changes to the weight ([38]). The benefits of al-
lowing the system to evolve these types of approaches were weighed against the increased
search space it pushed onto the evolutionary process and decided not to implement it. We
found no approaches where the third auxiliary variable required access to the others as the
third variable is rarely necessary. Nevertheless we decided the function of the third variable
should have access to the other two as this is consistent with the rest of the architecture
and gives the system room to discover new approaches.

5.2 Grammar

We have established that our individuals will be comprised of four mathematical functions
with varying inputs. This represents a massive problem space that is hard to navigate
since only a small subset of all mathematical functions will be useful as optimizers. In
this section we will explain how our grammar was designed to allow for the creation all
sorts of functions whilst promoting the structures and patterns found in optimizers. The
grammar used can be seen in Appendix A. It must be noted that the grammar presented
is abridged. All const productions show only the first and last 4 values. y_func, z_func
and weight_func are all abbreviated as they employ the same operations as x_func.

The grammar employed for this task has a lot of redundancy by design. In fact, each
auxiliary function has five productions (expr, update, func, terminal and const) and these
productions are almost identical across all functions. The reason we chose to keep them
separate is due to the way crossover works in SGE (detailed in Section 3.1. While all
auxiliary functions have the same role, to allow the weight_func to adapt to training as it
is happening, they do not all accomplish this task in the same way. The most clear reason
for this is that they have access to different information.

If these functions are going to be optimizing towards different things we consider it would
be detrimental for them to share genetic material. By removing redundancy from the
grammar, combining all the const productions for example, we are opening up the pos-
sibility of constants that were useful in the context of one function being transferred to
another. This can negatively impact the evolutionary process and we would not be fully
taking advantage of the engine’s ability to separate the genotype into cohesive segments.

The mathematical operations (seen in the func productions) were all chosen for their
presence in one or more standard optimizers. The most noteworthy operations are those
that would seem redundant. Multiply & negative, power & square; the reason we need
to keep these separate (as opposed to reproducing one using the other) is due to our
constants. The constant values we chose (seen in the const productions) are fine tuned

37



Chapter 5

to the problem at hand and do not include some of the more common constants such
as -1, 0 and 1. Following a similar approach to the one used in Dynamic AutoLR, the
const productions have 100 different values. The key difference is that these values follow
a sigmoid function as opposed to a linear one. We decided to go with this distribution
after analysing the constants typically found in standard adaptive optimizers. While in the
previous version of the system the constants played a role as the learning rate, in adaptive
methods constants are frequently used as decay rates. These decay rates have different
values from learning rates, being either very close to 0 or to 1, leading to the use of the
sigmoid function. This is not to say that adaptive methods do not use learning rates.
Learning rate constants are still present in these methods but, once again, they tend to
take values close to 0 that would not be available if we were to use a linear distribution in
our constants.

The components described so far showcase how the grammar was built in order to reproduce
standard adaptive approaches. The cost of reproducibility is that we are faced with a very
complex search space that will be hard to navigate in a timely fashion. To address this
we developed the remaining productions in a way that will facilitate the discovery of key
components of the typical optimizer.

Looking at our terminal productions it is clear that all auxiliary terminals have been biased
towards using the gradient. If the individual does not make use of the gradient it is not an
proper optimizer. The gradient yields all the information related to training. Without it
the individual is blindly making arbitrary changes to the weights that should never result
in any improvements to network performance. We increase the likelihood of the gradient
being chosen over other terminals since we know all feasible solutions will include it in
some way. Each terminal production is setup so the chance of the gradient being picked is
the same as all other terminals combined.

It must also be noted that the weight_terminal production does not have access to the
gradient. This was not the case initially but early experimentation suggested that the
benefits of using the auxiliary functions are hard for the evolutionary process to find.
What this means is that when we allowed weight_func to use the gradient directly the
system would consistently stagnate with a population of individuals that did not use the
auxiliary functions, thus creating static learning rate optimizers. Our response to this issue
was to force the individuals to use the auxiliary functions to gain access to the gradient by
removing it from weight_terminal. This incentivizes the evolutionary process to explore
solutions that rely on the auxiliary functions. It is also noteworthy that the methods
presented at the start of the chapter are still reproducible without using the gradient in
the weight update function. This can be accomplished by moving the gradient into an
auxiliary variable and removing the adaptive component of the function. This can be seen
in Equation 5.1 where a new variable (yt) is used to accommodate this change.

xt = xt−1 −∇l(wt−1)
2

yt = yt−1 − (yt−1 −∇l(wt−1))

wt = wt−1 − yt ∗
α√
−xt + ε

(5.1)

Equation 5.1: Gradient descent wrapper applied to Adagrad with the gradient removed
from the weight update function

Finally we must discuss the importance of the expr and update productions as separate
entities. As was discussed in the beginning of the chapter all variables are updated using
the following formula: vart = vart−1 − (var_func)
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Initially we believed this would not impact our grammar in any way. This formula natu-
rally leads our functions to exhibit adaptive behaviour as they are forced to use values from
previous iterations to obtain new ones. This might seem desirable but it becomes prob-
lematic when combined with our decision to remove the gradient from the weight_term
production. Under these circumstances the only way for a solution to utilize the gradient
is through a competent adaptive auxiliary function. The problem with this is that while
developing competent adaptive auxiliary functions is our end goal, we cannot expect the
evolutionary process to land on such a function if there is no progression. To elaborate,
only a small subset of all auxiliary functions that utilize the gradient are adequate optimiz-
ers. Figure 5.1 illustrates this point well as we can see that even the most simple standard
adaptive optimizer is quite a complex individual in the context of this framework. This

x_func

1 β

- x

+

α

*

grad

*

grad_func

x

Figure 5.1: Phenotype of a momentum optimizer in Adaptive AutoLR, y_func and z_func
are omitted as they are not used.

problem is addressed by the approach taken in the expr productions. The purpose of this
approach is to make the auxiliary functions assume one of two "modes". This rule can
resolve directly into an update, which in turn will resolve into a mathematical function,
leading to a high chance the function will exhibit adaptive behaviour. Alternatively this
same rule can be resolved by preceding the mathematical function with a sum with the
variable’s current value, which inhibits the adaptive aspect of the function as was observed
in the y variable in Equation 5.1.

5.3 Fitness

The fitness function for Adaptive AutoLR adheres to many of the principles discussed in
Section 4.3 and is quite similar as a result. The large search space used this version of
the system leads to a wide range of individuals that are poor optimizers. This happened
to some extent in Dynamic AutoLR, but since the solutions created in that version were
forced to always return a learning rate from a range of appropriate values, even the worst
solutions could be passable.

Many individuals generated by Adaptive AutoLR are not even real optimizers and cannot
help in the training process whatsoever. These individuals will naturally be abandoned by
the evolutionary process quite quickly but there is a second class of individual that has the
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capacity to ruin evolution if left unchecked.

We are talking specifically about individuals that have two silent auxiliary function, one
function that returns the gradient and a weight update function that applies it directly.
An example can be found in Equation 5.2.

xt = xt−1 − (xt−1 −∇l(wt−1))

= ∇l(wt−1)

yt = ...

zt = ...

wt = wt−1 − xt

(5.2)

Equation 5.2: Example of an individual that can be harmful to the evolutionary process.

There are a few reason that this type of individual can be harmful. The procedure this
solution uses is equivalent to using a static learning rate of 1. As was previously discussed
using a high learning rate such as this one leads to widely inconsistent results. Also this type
of solution is very easy for the evolutionary algorithm to find since the same optimization
can be produced by many different genotypes. Combining these two characteristics we
get a class of individual that is able to, sporadically, achieve decent results and is very
common in our evolutionary process. Early trials done using a similar experimental setup
and fitness as the ones used in Dynamic AutoLR were dominated by this type of individual
and stagnated quickly as a result.

Besides the superficial issue posed by these individuals (that being that their dominance
inhibits the capacity of the system to find adaptive solutions) there is a second, perhaps
more pressing problem with these results. An optimizer that can only occasionally produce
good results is not a useful optimizer. We consider the value of the optimizer is in its ability
to consistently produce good results. If our fitness function’s definition of good does not
match this requirement it is not fit for this purpose.

The solution was to trial each individual several times on each call of the fitness function.
The fitness value returned is the worst test accuracy the individual achieved across all trials.
This approach heavily penalizes inconsistency and demands that optimizers are consistently
good to achieve a good fitness. Additionally, all individuals are reevaluated even if no
changes to their genotype, has been made further preventing unreliable optimizers from
exploiting the system. This is much more in line with our own perception of an individual’s
quality.

In order to further speed up the evolutionary process an additional stop mechanism was
introduced. Since optimizers are now being judged based on their worst performance we
decided that a minimum acceptable score could be established. If an optimizer’s accuracy
is below the minimum established score even once then all subsequent trials are cancelled
and that accuracy is used as fitness. We consider that as long as the minimum established
score is lenient enough this will not harm the evolutionary process. The value used in this
version is 0.8 as this was the accuracy that the harmful individuals struggled to overcome.

The function designed to assess performance can be seen in Algorithm 6.

In order to accommodate this new fitness function the way data is split is also different
from the approach seen in Dynamic AutoLR. The dataset used is Fashion-MNIST, this
choice was explained in Section 4.2. The same concerns are also present. Fashion-MNIST’s
training examples must be split into training, validation and test. The key difference is
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Algorithm 6: Simplified version of the fitness function used to evaluate optimizers in
Adaptive AutoLR
params: network, learning_rate_optimizer, training_data_groups, validation_data,

test_data, trial_number,
1 minimum_acceptable_score ← 0.8;
2 fitness_score ← 1.0;
3 trial_count ← 0;
4 while trial_count < trial_number do
5 trained_network ← train(network, learning_rate_optimizer,

training_data_groups[trial_count], validation_data);
6 trial_test_score ← get_test_accuracy(trained_network, test_data);
7 if trial_test_score < fitness_score then
8 fitness_score ← trial_test_score;

9 if trial_test_score < minimum_acceptable_score then
10 return fitness_score;

11 trial_count ++;

12 return fitness_score;

that now we will separate the training data into several groups, one for each trial. This
guarantees the network goes through a unique training process in each trial increasing the
effectiveness of this approach. It is important, however, that despite this split all the trials
are of similar difficulty. This is why only the training data is different for each trial. The
network is evaluated on the same set of test data in all trials. Additionally, we made sure
the classes are balanced across all the training groups guaranteeing all trials get access to
a representative set of training data. The validation data is also shared by all the trials so
that the early stop condition is the same for all of them in case we decide to use it.

5.4 Limitations

While the system presented is able to reproduce the majority of adaptive optimizers there
are some limitations to the solution presented. Nesterov momentum is the most notable
technique this system is unable to reproduce. As a reminder, Nesterov momentum works
by calculating the gradient for the weight modified by the momentum factor.

The CustomOptimizer class only gets access to the gradient for the current weights of
the network. We found no way to calculate the modified gradient required by Nesterov
momentum without comprising the rest of the system’s structure, so this limitation is
acknowledged and accepted.

Some adaptive optimizers (e.g. Adagrad) present the option of initializing their auxiliary
variables with custom values. This is not possible in Adaptive AutoLR. All auxiliary
variables in the system are initialized as 0. It should be noted that all the auxiliary
variables from standard optimizers presented include 0 in their range of acceptable values.

It should also be addressed that 0 and 1 are constants that are present in many optimizers
but not available in our grammar. These values can be obtained by performing operations
on other operations, so we do not consider this a limitation.
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5.5 Network Architecture

The network architecture used for Adaptive AutoLR can be found in [51]. This architecture
was created for the MNIST dataset but is directly applicable to Fashion-MNIST since the
instances in both of these datasets share the same size. During preliminary testing it was
found that the network used in Dynamic AutoLR was quite slow to train, due to its many
weights and complex architecture. Since efficiently using our resources is very important,
for this system we opted to switch to a simpler architecture that could be trained quicker.

5.6 Experimental Setup

5.6.1 Evolution

SGE Parameter Value
Number of runs 5

Number of generations 1500
Number of individuals 20

Tournament size 5
Mutation rate 0.15

Dataset Parameter Value
Training set 53000 instances from the training

10600 instances per trial
Validation set 3500 instances from the training

Test set 3500 instances from the training
Early Stop Value
Patience 5
Metric Validation Loss

Condition Stop if Validation Loss does not
improve in 5 consecutive epochs

Network Training Parameter Value
Batch Size 1000
Epochs 100
Metrics Accuracy

Table 5.1: Experimental parameters.

The experimental parameters are summarised in Table 5.1. They are organized into four
sections:

• SGE Parameters – parameters of the evolutionary engine.

• Dataset Parameters – number of instances of each of the data partitions.

• Early Stop – the stop condition used to halt the training of the ANN.

• Network Training Parameters – parameters used when training the ANN.

In order for the evolutionary algorithm to effectively navigate the large search space created
by our grammar we found that 1500 generations were necessary. This contrasts greatly
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with the previous version of the system where we were able find interesting individuals
with only 50 generations.

We also found that the evolutionary strategy previously used was not adequate for this new
problem space. Evolutionary strategies increase the selection pressure on the population
making it hard for mediocre individuals to survive. Trials done with the evolutionary
strategy approach were quickly dominated by the harmful individuals seen in Equation 5.2.
To counteract this, the population size (i.e. number of individuals) was increased to 20
whilst maintaining the tournament size of 5. The tournament size is an evolutionary
parameter that determines how many individuals are considered by the selection method.
The selection method picks the best among the individuals considered. Consequently, the
closer the tournament size is to the total population size, the harder it is for sub par
individuals to reproduce.

These two factors naturally led to a big increase in evaluations. Dynamic AutoLR experi-
ments evaluated at most 250 individuals per run. Adaptive AutoLR always calls the fitness
function 30000 times in every run. This might seem unfair to Dynamic AutoLR but we
must remind ourselves that since Adaptive AutoLR deals with a much larger search space,
this difference is necessary. Since we foresaw this increase in evaluations we have already
done most of the optimization necessary through the design of our fitness function and
grammar. The final change made for the sake of optimization was the removal of the data
augmentation used in Dynamic AutoLR since this mechanism was found to significantly
slow down training.

5.6.2 Benchmark

One of the benefits of adaptive methods is that most of them are not very sensitive to
initial conditions. This property means it is much easier to establish baseline optimizers
than it was in Dynamic AutoLR.

In Dynamic AutoLR our options for baseline policies were limited because static and
dynamic optimizers are sensitive to parameterization [30]. This meant it is disingenuous
to claim a standard optimizer was performing up to its potential without going through
hyperparameter optimization. This is why we settled on a policy we knew worked well for
the architecture being used.

Since adaptive optimizers are, by design, more resilient to initial values of hyperparameters,
we consider all of them could feasibly be used as a baseline for our benchmarks. In light
of this, we opted to use Adam as our baseline as we consider it to be the most consistent
optimizer (backed up by the results seen in [31]).

In order to design the scenarios where the optimizers will be benchmarked we must review
what properties we are interested in assessing.

First and foremost we wish to compare the performance of evolved optimizers with standard
ones. While this can be assessed by testing only the evolved optimizers and Adam, we
believe that by including other optimizers we can have a unique insight into the place of
the evolved optimizers among mainstream solutions. The optimizers for this scenario were
chosen as "representatives" of a certain approach in the field:

• Nesterov Momentum - Momentum-based optimizers.

• RMSprop - Use of discounted moving averages as a scaling factor for the learning
rate.
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• Adam - Bias correction.

The other hypothesis we wish to test is “Do the evolved learning rate optimizers only
perform well on the network they were evolved in?”. In order to answer that question
another scenario was created where our optimizers and Adam are utilized to solve Fashion-
MNIST in the previously used DENSER architecture.

To add more context to the previous scenario, we also decided to test the optimizers on
a different problem. By performing this test we can understand whether our optimizers
are specializing in the architecture, the problem or neither. The dataset chosen for this
scenario was CIFAR10.

CIFAR10 [46] is a common problem addressed by state of the art ANN approaches. The
images in this dataset are 32X32 with 3 color channels. Comparatively speaking, this
dataset is harder than Fashion-MNIST due to the increased complexity of the instances.
This dataset is comprised of 50000 training examples and 10000 test examples. It should
be noted that although the DENSER network, mentioned thus far, was originally evolved
for this dataset we opted not to use it in this scenario in favor of a more conventional
architecture found in the Keras libraries examples [52].

These benchmark scenarios are summarized in Table 5.2.

Scenario Network Architecture Dataset Optimizers
Evolved
Adam

RMSprop1 Keras-MNIST Fashion-MNIST

Nesterov
Evolved2 DENSER Fashion-MNIST Adam
Evolved3 Keras-CIFAR10 CIFAR10 Adam

Table 5.2: Benchmark scenarios for Adaptive AutoLR.

Each scenario is tested with each optimizer five times and the results presented in the next
section are the average and standard deviation across the five tests. The data distribution
used in Fashion-MNIST and CIFAR10 can be seen in Tables 5.3 and 5.4 respectively.

Dataset Parameter Value
Train set 53000 instances from training data

Validation set 7000 instances from training data
Test set 10000 instances form test data

Table 5.3: Data distribution of the Fashion-MNIST dataset used in benchmarking.

Dataset Parameter Value
Train set 43000 instances from training data

Validation set 7000 instances from training data
Test set 10000 instances form test data

Table 5.4: Data distribution of the CIFAR10 dataset used in benchmarking.
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5.7 Experimental Results

5.7.1 Evolved Optimizers

Most of our evolutionary runs followed a similar progression. In the first few generations
individuals belonging to the class seen in Equation 5.2 would take over the population.
This is always followed by a period where the population’s fitness is very erratic. Due
to the measures taken to prevent the dominance of these individuals they are unable
to stabilize their fitness values. This can be observed starting from generation 200 in
Figure 5.2. Eventually in all observed runs the recombination of the harmful individuals
led to more interesting individuals. In Figure 5.2 this can be seen starting from generation
950 where the average fitness becomes much more stable. We observed the evolution of
known standard optimizers such as simple SGD (using evolved learning rate constants),
traditional momentum and even moving average momentum (similar to the one seen in
Adam).
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Figure 5.2: Mean best fitness of all experiments over generation.

Another notable type of new optimizer also frequently appeared during evolution. These
evolved optimizers did not follow any structure observed in the state of the art.
The common aspect among them is they run a moving average of a degree 2 polynomial
function. While there is a precedent for the use of polynomial functions in learning rate
optimization [53, 54, 55] these approaches are not adaptive and make use of much higher
degrees. This type of optimizer is, as far as we know, previously undiscovered and thus
the best optimizer found in this class was selected for benchmarking. We have named this
class of optimizer the Adaptive Evolutionary Squared optimizers (ADES). The phenotype
of the individual selected can be seen in Equation 5.3. A developed, more readable version
of the same individual is also presented in Equation 5.4. These optimizers are hard to
understand from a intuitive standpoint (as is typical with solutions resulting from gram-
matical evolution). While analysis of the properties of this optimizer from a mathematical
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standpoint should be possible such a task is outside the scope of this work.

xt = xt−1 − (xt−1 − (∇l(wt−1) ∗ (xt−1 + 0, 0007674)))

yt = yt−1 − 0, 08922 ∗ (yt−1 + ((yt−1 + 0.999) ∗ (yt−1 +∇l(wt−1))))

zt = zt−1 − (zt−1 +∇l(wt−1))

wt = wt−1 + yt

(5.3)

Equation 5.3: ADES optimizer phenotype

yt = (1− 0, 08922)yt−1

− (0, 08922 ∗ y2t−1 + 0, 0891yt−1∇l(wt−1) + 0, 0891∇l(wt−1))

wt = wt−1 + yt

(5.4)

Equation 5.4: ADES optimizer simplified

However, the best observed optimizer was not a ADES optimizer. The best resulting
optimizer from the evolution only appeared in one evolutionary run. This optimizer is also
distinct as it opts to ignore the value of the gradient with the exception of the sign. We
call this the Sign Optimizer after this unique feature. The phenotype of the individual
selected can be seen in Equation 5.5. A developed, more readable version of the same
individual is also presented in Equation 5.6. Practically speaking this optimizer is actually
quite simple. It simply makes very small adjustments in the direction of the gradient
regardless of its magnitude. Finally it must be noted that this optimizer is not adaptive
i.e. this optimizer uses the same learning rate for all weights in the network.

xt = xt−1 − (xt−1 + xt−1)
xt−1+∇l(wt−1)

yt = yt−1 − (yt−1 +∇l(wt−1))

zt = zt−1 − zt−1

wt = wt−1 + 0.2482 ∗
√
0.0002

( yt√
(−yt)2

)

(5.5)

Equation 5.5: Sign Optimizer phenotype

wt = wt−1 − 0, 0009 ∗ sign(∇l(wt−1)) (5.6)

Equation 5.6: Sign Optimizer simplified

Since this was the best performing optimizer in all evolutionary runs it was also selected
for benchmarking.

5.7.2 Scenario 1

Scenario 1 was devised to see how the two evolved optimizers, ADES and Sign, compare
in terms of performance with the standard approaches. To assess this, the network and
dataset used in evolution were maintained. In this environment the evolved optimizers
should be at their best while the standard adaptive optimizers are in their typical use
case (being used out-of-the-box with no parameter optimization). Three metrics were
used to evaluate the optimizers: Validation Accuracy, Test Accuracy and Generalization
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Rate. While the accuracy metrics are self explanatory Generalization Rate requires further
explanation. Generalization Rate is the quotient of the Test Accuracy over the Validation
Accuracy. This is used as a measure of how well the optimizer is able to generalize (i.e.
avoid overfitting). The results for scenario 1 are presented in Table 5.5 and Figure 5.3.

Optimizers Validation Accuracy Test Accuracy Generalization Rate
ADES 92.35 ± 0.25% 92.33 ± 0.14% 99.99%
Sign 90.22 ± 0.60% 89.94 ± 0.91% 99.69%
Adam 93.13 ± 0.23% 92.70 ± 0.14% 99.54%

RMSprop 92.90 ± 0.15% 92.68 ± 0.11% 99.77%
Nesterov 91.85 ± 0.25% 91.23 ± 0.19% 99.32%

Table 5.5: Benchmark results of evolved (ADES, Sign) and standard (Adam, RMSprop,
Nesterov) optimizers in scenario 1.

Adam Test RMSprop Test Nesterov Test Sign Test ADES Test
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Figure 5.3: Box plot showcasing the results of scenario 1 scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile. Mean and
median of each population are marked inside each box. Only test accuracy is shown.

The evolved ADES optimizer shows a comparable test accuracy with RMSprop and Adam.
It also has the best registered Generalization Rate if only by a small margin. From a
historical perspective, these results suggest that the ADES optimizer’s performance is
somewhere between the momentum-based methods and the discounted average ones.

The Sign optimizer was not able to benefit much from the additional resources provided
during benchmarking. It is not easy to understand why this optimizer was favored by the
evolutionary process over others. A possible explanation is that several mechanisms put
in place to punish the inconsistent individuals ended favouring this overly safe solution.
The most likely culprit it the early stop mechanism. While the mechanism’s patience was
intentionally increased to avoid this sort of situation, it is possible that as long as this
mechanism is present, sub-optimal individuals will thrive during evolution. Unfortunately
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disabling this mechanism increases the time needed for evolution beyond our available
resources ,so experimenting without it was not possible in this work.

In conclusion, this scenario show us that ADES optimizers are able to achieve similar results
to standard adaptive optimizers, even surpassing the Nesterov optimizer by a significant
margin.

5.7.3 Scenario 2

Scenario 2 showcases the evolved optimizers’ capacity to perform in networks different
from the one they were evolved in. As a reminder, this scenario utilized the Fashion-
MNIST dataset and the neural network from DENSER. The metrics used are the same
as in scenario 1. A notable difference is the box plot showing the results of scenario 2
(Figure 5.4) which does not include the ADES optimizer. This optimizer under performed
in this scenario using its values would ruin the scale making comparison between more
meaningful results impossible. The reason behind this under performance is still being
scrutinized.

Optimizers Validation Accuracy Test Accuracy Generalization Rate
ADES 10.01 ± 0.36% 10.00 ± 0.00% 100.04%
Sign 88.04 ± 1.12% 87.71 ± 0.66% 99.64%
Adam 91.59 ± 0.44% 91.09 ± 0.26% 99.46%

Table 5.6: Benchmark results of evolved (ADES, Sign) and standard (Adam, RMSprop,
Nesterov) optimizers in scenario 2.

Adam Test Sign Test
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Figure 5.4: Box plot showcasing the results of scenario 2 scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile. Mean and
median of each population are marked inside each box. Only test accuracy is shown.
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The most interesting result in this scenario is that the ADES optimizer was simply unable
to train this network architecture. This can be observed in Table 5.6. While it is expectable
that the performance of the optimizer decreased when changed to a new network this result
suggests that the ADES approach is incompatible with some component of the DENSER
network.

Some experiments were performed to try to discern what caused this incompatibility. In
these experiments the ADES optimizer was used in several network architectures that
included the more niche aspects of the DENSER topology but we were unable to reproduce
the incompatibility. This is further address in next chapter in Section 6.1.

This incompatibility is the reason why the benchmarks in scenario 3 were performed with
a more standard architecture as opposed to the DENSER one.

The results of Adam and Sign’s performance are in line with expectations. In this case the
isolated accuracy achieved is not particularly interesting. It it more insightful to analyse
how much the evolved optimizer’s performance suffers from being moved to a different
network. This value in isolation does not gives us the full picture, as it is impossible to tell
whether the loss in accuracy is due to the network or the optimizer. Let us instead look
at the loss in performance suffered by Sign in comparison to Adam, shown in Table 5.7.

While this measure only works for direct comparisons it is useful to contrast two optimizers’
ability to work in different network architectures, since the only varying factor between
scenario 1 and 2 is the architecture used.

Optimizers Validation Accuracy Difference Test Accuracy Difference
Sign -2.18% -2.23%
Adam -1.55% -1.62%

Table 5.7: Difference in accuracy between optimizer accuracy in scenario 1 and 2. Accuracy
difference = average accuracy in scenario 1 - average accuracy in scenario 2. Showcases
the optimizer’s ability to work in different network architectures.

In this case the results suggest that Adam is not only the superior optimizer but is also
more robust to changes in architecture as is expected of a general method.

To elaborate, it is expectable that Adam performs better than Sign due to the results from
scenario 1. What the results in Table 5.7 show is that the this gap in performance gets
even bigger when the Sign optimizer is moved outside of its native architecture. While the
increase is not great (Adam only becomes better by 0.6%) it still suggests that the Sign
optimizer is at least partially specialized in the network used in scenario 1.

This is expectable once we consider how the Sign optimizer works. As was discussed in
Section 5.7.1, the Sign optimizer is not adaptive. In fact, this optimizer works in a very
peculiar way as it discards the actual values of the gradient in favor of using only the sign.
The size of weight adjustments made by this optimizer is constant and it is surprising that
this optimizer performs as well as it does. Our assessment is that this constant weight
adjustment value is intimately related to the problem and network being used and the
further removed the optimizer is from these conditions the worse it will perform.

5.7.4 Scenario 3

Scenario 3 yielded the most surprising results. In this scenario the optimizers are moved to
a different network and problem. This should further our understanding of how effective the
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evolved optimizers are as general out-of-the-box optimizers. The results for this scenario
are shown in Table 5.8. Figure 5.5 shows these same results in a box plot. Once again
one optimizer has been omitted as its values damage the scale. In this case it is the Sign
optimizer that is not present.

Optimizers Validation Accuracy Test Accuracy Generalization Rate
ADES 80.06 ± 0.74% 79.60 ± 0.43% 99.44%
Sign 62.89 ± 1.42% 62.11 ± 2.18% 98.75%
Adam 79.37 ± 0.85% 78.70 ± 0.29% 99.17%

Table 5.8: Benchmark results of evolved (ADES, Sign) and Adam optimizers in scenario
3.

Adam Test ADES Test

0.7850

0.7875

0.7900

0.7925

0.7950

0.7975

0.8000

0.8025

Optimizer Performance in Scenario 3
Median
Mean

Figure 5.5: Box plot showcasing the results of scenario 3 scenarios. Whiskers show the
minimum and maximum result. Box size shows the lower and upper quartile. Mean and
median of each population are marked inside each box. Only test accuracy is shown.

There are several interesting insights we can take from these results. Perhaps the most
interesting result is that the evolved ADES optimizer is the best performing optimizer in
this scenario 3. This suggest that a good general optimizer might have been discovered in
the process of evolving optimizers for a specific neural network. While the margin is not
large it must still be acknowledged that an evolved optimizer is out performing a state of
the art standard approach outside of the network it was evolved for. This result is not per
se enough to make substantiated claims about the performance of ADES optimizers but it
does raise two other ideas.

First, the results suggest that ADES optimizers may be useful as a standalone contribution,
separated from AutoLR. Naturally, further research is necessary (specially considering the
results seen in scenario 2), but the fact that this optimizer can be competitive with Adam,
outside of its evolutionary environment, is very interesting. It is important to understand
that the postulated advantage of an evolved optimizer is that it can learn something about
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the network architecture or problem. The fact an evolved optimizer outperformed the state
of the art when we removed this supposed advantage is what makes this such an interesting
result.

This result also adds value to the use of a system such as AutoLR. Even if upon further
inquiry the ADES optimizer is shown to be mediocre, the analysis of this optimizer and
why it works may provide useful insights for the development of better standard optimizers
in the future. This is specially true in the field of adaptive learning rate optimizers, where
we frequently see ideas from weaker methods being retooled to push the state of the art
further.

Returning to the original purpose of this scenario, let us also judge the optimizers based
on the accuracy difference described in the previous section. Table 5.9 shows the accuracy
differences for each of the optimizers when moved from scenario 1 to scenario 3.

Optimizers Validation Accuracy Difference Test Accuracy Difference
ADES -12.29% -12.73%
Sign -27.33% -27.83%
Adam -13.77% -14.00%

Table 5.9: Difference in accuracy between optimizer accuracy in scenario 1 and 3. Accuracy
difference = average accuracy in scenario 1 - average accuracy in scenario 3. Showcases
the optimizer’s ability to work in different network architectures.

Since the ADES optimizer defied expectations with its performance, when moved to a
different network, this is reflected in this metric as well. The ADES optimizer was able
to only lose on average approximately 13% of its test accuracy when moved to a different
network and much harder dataset. This is about 1% better than Adam which should not
be taken lightly when we consider the test set has 10000 examples.

Our assumptions on the nature of the Sign optimizer are also confirmed by these results.
In the previous section we stated the Sign optimizer’s performance should deteriorate when
it is used in contexts that are very different from the one it was evolved in. We can see
that this optimizer suffers a massive lost in accuracy in this scenario. This is in line with
our proposition, since this scenario has nothing in common with the original evolutionary
one (different data, different architecture).
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Conclusion

In this work we wanted to understand whether or not evolving learning rate optimizers for
specific neural network architectures could improve their performance. In order to test this
we created AutoLR, a framework that evolves learning rate optimizers for specific neural
networks. Furthermore two specific versions of this framework were created that focus on
specific types of optimizers.

The first, Dynamic AutoLR was created to evolve static and dynamic optimizers, commonly
known as policies. The system was then used to evolve two policies. When compared with
a widely used and adequate baseline policy both evolved policies were able to improve
upon on it in certain scenarios. Most notably, the network used in this version of the
system achieved its best recorded performance using an evolved policy. This supports our
hypothesis that this evolutionary approach can, in fact, be used to further optimize neural
network performance. It must also be mentioned that the best evolved policy resembled a
man-made policy seen in [30]. This suggests that the system might implicitly be able to
discover the ideas behind the traditional approach. DLR was accepted as a full paper in
GECCO2020 [56], the premier conference for genetic and evolutionary computation. The
paper is included in B.

A second version of the framework called Adaptive AutoLR was then created to evolve
adaptive learning rate optimizers. Since these optimizers are much more complex this
system had an increased focus on making the evolutionary process as efficient as possible.
Throughout the evolutionary process, this system naturally evolved a few of the more
simple standard adaptive optimizers. Once the evolutionary process concluded, we found
two optimizers with unique characteristics unseen in the state of the art. These two
optimizers were then benchmarked against state of the art optimizers. One of the evolved
optimizers, named ADES exhibits very interesting results. A general algorithm for this
class of optimizer can be seen in Equation 6.1.

yt = (1− β1)yt−1 − β1(yt−1 + β2)(yt−1 +∇l(wt−1))

wt = wt−1 + yt
(6.1)

Equation 6.1: General ADES optimizer

In our best observed individual we noticed that β2 ≈ 1. The algorithm can be further
simplified if we assume β2 = 1 as seen in Equation 6.2.

This optimizer is adaptive and unlike anything seen in optimizers presented in the litera-
ture. Despite being unique, its performance was comparable with the standard optimizers.
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yt = (1− β)yt−1 − β(y2t−1 +∇l(wt−1) ∗ (yt−1 + 1))

wt = wt−1 + yt
(6.2)

Equation 6.2: General ADES optimizer simplified

Even more notably, when moved outside of the network and dataset it was evolved in the
optimizer outperformed the standard baseline adaptive optimizer used.

While further testing is required to properly assess the quality of this new class of optimizer
this outcome is promising as it suggests that the optimizer evolved is useful not only in its
specific setting but as a general optimization tool as well.

In conclusion, the tool developed was able to accomplish its task effectively and the results
support our initial hypothesis.

6.1 Future Work

As was mentioned in the beginning of this document, this work addresses a topic that can
be tackled in many different ways. Looking at the course of this work we believe several
new opportunities for research were created.

For Dynamic AutoLR there are two extensions we feel could yield interesting results.

The grammar used in this work for this version of the system was quite simple and produced
only approximations. In Adaptive AutoLR, a more complex grammar was used and this
led to unique and interesting individuals. Taking a similar approach in DLR could also
result in new and interesting policies.

DLR was also only used in conjunction with SGD. We found no prior work where schedulers
were used to optimize parameters in adaptive methods. Evolving policies for other hyper
parameters in more complex optimizers also has the potential to yield interesting results
and insights.

For ALR it is possible that evolution could still find other, better individuals. The evo-
lutionary process naturally has diminishing returns as it progresses but we believe that,
since the evolved optimizers still only use a small part of the complexity allowed by the
grammar, there is potential for even more interesting results.

There are also some possibilities when it comes to expanding the grammar. In this work
we created a very low level grammar. Our approach leaves room to insert more high level
terminals into the grammar, such as the moving averages found in most adaptive methods.
It is possible that through this approach the evolutionary process discovers new and better
individuals. It should be noted, however, that this approach should be more resource
intensive since we will be calculating a lot of high level information that might never be
used.

Finally there is a lot of analysis work that needs to be done on ADES optimizers to
understand why they work well and the extent of their usefulness. This was unfortunately
outside the scope of this work but it is important to dive deeper into these optimizers to
understand how much they can contribute to the field on their own.
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<start> ::= x_func, y_func, z_func, weight_func =
lambda shape, x, grad: <x_expr>,
lambda shape, x, y, grad: <y_expr>,
lambda shape, x, y, z, grad: <z_expr>,
lambda shape, x, y, z, grad: <weight_expr>,

<x_expr> ::= add(x, <x_update>) | <x_update>
<x_update> ::= <x_func> | <x_terminal>
<x_func> ::= negative(<x_expr>)

| subtract(<x_expr>, <x_expr>)
| add(<x_expr>, <x_expr>)
| multiply(<x_expr>, <x_expr>)
| pow(<x_expr>, <x_expr>)
| square(<x_expr>)
| divide_no_nan(<x_expr>, <x_expr>)
| add(<x_expr>, <x_expr>) | sqrt(<x_expr>)

<x_terminal> ::= tf.constant(<x_const>, shape=shape, dtype=tf.float32) | x
| grad | grad

<x_const> ::= 4.53978687e-05 | 5.55606489e-05 | 6.79983174e-05 | 8.32200197e-05
...

| 9.99916780e-01 | 9.99932002e-01 | 9.99944439e-01 | 9.99954602e-01
<y_expr> ::= add(y, <y_update>) | <y_update>

<y_update> ::= <y_func> | <y_terminal>
<y_func> ::= negative(<y_expr>) | ... | sqrt(<y_expr>)

<y_terminal> ::= tf.constant(<y_const>, shape=shape, dtype=tf.float32) | x | y
| grad | grad | grad

<y_const> ::= 4.53978687e-05 | 5.55606489e-05 | 6.79983174e-05 | 8.32200197e-05
...

| 9.99916780e-01 | 9.99932002e-01 | 9.99944439e-01 | 9.99954602e-01
<z_expr> ::= add(z, <z_update>) | z

<z_update> ::= <z_func> | <z_terminal>
<z_func> ::= negative(<z_expr>) | ... | sqrt(<z_expr>)

<z_terminal> ::= tf.constant(<z_const>, shape=shape, dtype=tf.float32) | x | y
| z | grad | grad | grad | grad

<z_const> ::= 4.53978687e-05 | 5.55606489e-05 | 6.79983174e-05 | 8.32200197e-05
...

| 9.99916780e-01 | 9.99932002e-01 | 9.99944439e-01 | 9.99954602e-01
<weight_expr> ::= <weight_func> | <weight_terminal>
<weight_func> ::= negative(<weight_expr>) | ... | sqrt(<weight_expr>)

<weight_terminal> ::= tf.constant(<weight_const>, shape=shape, dtype=tf.float32) | x | y | z
<weight_const> ::= 4.53978687e-05 | 5.55606489e-05 | 6.79983174e-05 | 8.32200197e-05

...

| 9.99916780e-01 | 9.99932002e-01 | 9.99944439e-01 | 9.99954602e-01

Equation A.1: CFG for the optimisation of learning rate schedulers.
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ABSTRACT
The choice of a proper learning rate is paramount for good Arti-
ficial Neural Network training and performance. In the past, one
had to rely on experience and trial-and-error to find an adequate
learning rate. Presently, a plethora of state of the art automatic
methods exist that make the search for a good learning rate easier.
While these techniques are effective and have yielded good results
over the years, they are general solutions. This means the opti-
mization of learning rate for specific network topologies remains
largely unexplored. This work presents AutoLR, a framework that
evolves Learning Rate Schedulers for a specific Neural Network
Architecture using Structured Grammatical Evolution. The system
was used to evolve learning rate policies that were compared with a
commonly used baseline value for learning rate. Results show that
training performed using certain evolved policies is more efficient
than the established baseline and suggest that this approach is a
viable means of improving a neural network’s performance.

CCS CONCEPTS
•Computingmethodologies→Genetic programming; Super-
vised learning; Neural networks;

KEYWORDS
Learning Rate Schedulers, Structured Grammatical Evolution
ACM Reference Format:
Pedro Carvalho, Nuno Lourenço, Filipe Assunção, and Penousal Machado.
2020. AutoLR: An Evolutionary Approach to Learning Rate Policies. In
Genetic and Evolutionary Computation Conference (GECCO ’20), July 8–12,
2020, Cancún, Mexico. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3377930.3390158

1 INTRODUCTION
The study of Artificial Neural Networks (ANNs) is a field in modern
Artificial Intelligence (AI). These networks’ defining characteristic
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is that they are able to learn how to perform a certain task when
provided with an appropriate architecture, data and resources. The
networks have a set of internal parameters known as weights
and training is the process through which they are modified so
that the network is able to solve a given problem. Fine-tuning the
weights of ANNs is crucial in order to obtain a consistently useful
system. There are several parameters that regulate training, one
the most important parameters is the learning rate. In fact, and
according to [11, p. 424], if we only have the chance to modify one
hyperparameter, the focus should be on the learning rate.

The learning rate determines the magnitude of the changes that
are made to the weights. Consequently, the choice of an adequate
learning rate is paramount for effective training. When the value
of the learning rate is too small the network will be unable to make
impactful changes to its weights, making the training slow. On
the other hand, if the learning rate is too high the system will
make radical changes even in response to small mistakes, causing
inconsistent and unpredictable behaviour. On top of this, research
suggests that the best training results are achieved by adjusting
the learning rate over the course of the training process [22]. One
way to make these adjustments during training is by updating the
learning rate as training progresses. The functions responsible for
these adjustments are known as learning rate policies. There is
subset of these functions known as learning rate schedulers, i.e.,
functions that are periodically called during training and return a
new learning rate based on multiple training characteristics, such
as the current learning rate or the number of performed iterations.

The main objective of this work is to devise an approach that
is able to evolve learning rate policies for specific neural network
architectures, in order to improve its performance. In concrete, we
developed AutoLR, a system that allows us to study the viability
of this approach and how it may contribute to the field of learning
rate optimization as a whole. Learning rate policies can take many
different shapes [23], and therefore it will be notable if our system
is capable of automatically discovering functions that are variations
of the ones found in the literature. Such a result is interesting
because if this approach is able to evolve solutions that are widely
accepted it is possible that these same ideas can be used to find still
undiscovered, better methods. We are also interested in inspecting
the evolved schedulers, and comparing them with human-designed
schedulers to obtain meaningful insights. The contributions of this
paper are:
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Layer Output Layer

Figure 1: Example of an Artificial Neural Network.

• The proposal of AutoLR, a framework based on SGE that per-
forms automatic optimisation for learning rate schedulers.
• The design, test and analysis of experiments that validate
the use evolutionary algorithms to optimise learning rate
schedulers.
• We show that the evolved policies are competitive and have
characteristics that allow then to thrive in the problems at
hand.

The remainder of the paper is organised as follows. Section 2
introduces the background concepts and surveys the key-works
related to the optimisation of learning rate schedulers. Section 3
describes AutoLR, the methodology proposed for the evolution
of learning rate schedulers. Section 4 details the experimental
setup and discusses the experimental results. Finally, Section 5
summarises the main conclusions of the paper and addresses future
work.

2 RELATEDWORK
This section provides the necessary context for the reader to under-
stand the rest of the paper. Section 2.1 introduces Artificial Neural
Networks; Section 2.2 details Structured Grammatical Evolution;
and Section 2.3 surveys works related to learning rate optimization
and learning rate schedulers.

2.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a machine learning approach
that draws inspiration in the biological neural networks seen in
nature in order to create a computing system that is able to learn.
These systems are comprised by a set of nodes (known as neurons)
and edges (known as synaptic weights). An example of the general
structure of an ANN is depicted in Figure 1.

Although these networks can have different architectures (e.g.,
LSTM [13], ResNet [12]) we will, without loss of generality, focus
on feed-forward ANNs. In these models the nodes are grouped into
separate layers connected sequentially. These layers are flanked
by an input and output layer which are responsible for receiving
the data that the network will process, and yield the result of the
network’s calculations, respectively. Edges are directional connec-
tions between two nodes from different layers and are the means

Figure 2: Example of the architecture of a Convolutional
Neural Network.

through which information travels through the network. Each node
performs an operation (i.e., a mathematical function) on the values
it receives from the previous layer and sends the new value to all
nodes it is connected to in the next layer. Every edge has a weight
that scales the value it carries, i.e., the value that a node outputs is
always adjusted before it is provided to the nodes in the next layer.

These networks can be used to solve tasks of many different
types. The ideas that will be presented in this work can be widely
applied to different types of ANNs. Without loss of generality we
will focus in the optimisation of a learning rate scheduler for a
supervised learning classification problem. In supervised learning
the system is tasked with learning a function that can separate data
instances into their respective classes. To achieve this the network
is provided with a set of labeled instances.

The training of ANNs is an iterative process where the network
compares its attempted classifications of a subset of examples with
the expected ones and adjusts its weights to get closer to the correct
results. There is a function – known as loss function – that compares
the classification and measures how incorrect the network’s output
was. The size of the changes made to the weights is partially given
by the error returned by the loss function (a larger error leads to
larger changes). Another parameter, the Learning Rate (learning
rate), determines the magnitude of the adjustments that are made
to the weights. The learning rate is the main subject of this paper.
For more details on ANNs refer to [9].

Deep Neural Networks (DNNs) are a subset of ANNs notable for
being able to perform representation learning, and consequently
the networks are able to automatically extract the features required
to solve the problem. This is often associated to the need for deeper
architectures, i.e., a greater number of hidden-layers. This allows
the networks to possibly solve solve harder problems. In the current
work we focus on Convolutional Neural Networks (CNNs) [10], a
DNN topology that is known to work well on spatially-related data
(e.g., image). An example of the architecture of CNNs is shown in
Figure 2. Two layer types are commonly used in CNNs: convolu-
tional and pooling layers. More details can be found in [17]

2.2 Structured Grammatical Evolution
In the current work we will perform the optimisation of learning
rate schedulers using SGE. SGE is a variant of GE [19] that uses
an altered genotype representation to address the main limitations
of GE: low locality and high redundancy. In GE the genotype is
encoded as a single list of integers, where each integer encodes
a grammatical expansion possibility. Contrary, in SGE there is a
separate list for each non-terminal symbol; this avoids the need for
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the modulo operation when performing the genotype to phenotype
mapping.

These approaches add another layer of decision making however,
namely in the form of the grammar design [15]. The grammar used
for any GE experiment will define what kind of programs the engine
is able to create and this has many implicit consequences. The
most obvious one is that the provided grammar must encompass
solutions that can solve the problem at hand. While this seems
trivial it must be understood that not knowing the composition
of the desired program is one of the main motivations to use this
type of system in the first place. This also means, however, that
the grammar specificity can be increased as more knowledge of the
problem is available, aiding the search process.

This specific type of EA is suited for this work because the
functions we are looking to evolve are very specific. This means that
our domain knowledge is high, and there is a strong understanding
of what our desired program is like. As previously mentioned we
can use this knowledge to create a grammar that enhances results
by narrowing the search space. An in-depth explanation of these
algorithms can be found in [9, 21].

2.3 Learning Rate Optimization
In the context of this work, hyper-parameters are the set of pa-
rameters that configure an ANN and its training strategy. The
learning rate is one of such parameters and its role is to scale the
changes made to the network weights during training. Research
suggests that hyper-parameter optimization is effective in improv-
ing the system’s performance without adding complexity [5].

2.3.1 Static Learning Rate. The traditional approach is to use a
single learning rate for the entire training process [20]. Under these
circumstances all optimization must be done before training starts.
Oftentimes the programmer must rely on expertise and intuition
in order to guess adequate learning rate values. While automatic
solutions to this problem exist they are, to the best of our knowledge,
either comparable to manual optimization [5] or non-trivial in
implementation [6]. Much of the difficulty of finding a convenient
solution to this issue stems from the fact that hyper-parameters are
inter-dependent [7]. This means that even when an ideal learning
rate is found there is no guarantee that this value remains optimal
(or even usable) as the other parameters are tweaked.

2.3.2 Dynamic Learning Rate. The reasons stated in the previous
section make the use of a static learning rate a possible drawback. It
is desirable that the method we are using to determine our learning
rate is robust enough that performance does not dip with every
change to the system. In order to increase flexibility we would
ideally have a method to change the learning rate as training pro-
gresses, i.e., even if the initial value is not adequate the system
has a chance to correct its course. This strategy will be referred to
as a dynamic learning rate. The most uncomplicated policy for
varying the learning rate can be inferred intuitively. It is expected
that as training progresses the ANN’s performance gradually im-
proves as it gets better at solving the task at hand. If the system is
potentially closer to its objective it seems desirable that it does not
stray from its course. This is to say that, in order to improve, the
network requires progressively finer tuning; this can be achieved
with a decaying learning rate (meaning that the learning rate
decreases as learning progresses). There are some issues that are

frequently encountered during training that make this approach
not ideal however. Better performance is rarely an indicator that the
network is closer to a perfect solution. Using a decaying learning
rate leaves the system susceptible to early stagnation in a local
optimum. This is not ideal despite the fact that a local optimum
is sufficient for most situations as this approach can lead to early
stagnation if applied incorrectly. Despite these limiting factors de-
caying learning rates can lead to improvement over static ones as
seen in [22].

In order to expand on these ideas we need to apply the concepts
of exploration and exploitation. These refer to the two com-
plementary strategies that can be used in heuristic optimization.
Exploration is the idea of using a mechanism that helps the algo-
rithm explore solutions that do not seem as promising in an attempt
to avoid falling into a local optimum. The contrasting technique
is exploitation, in this strategy we adjust our approach to make
sure the algorithm is able to find the local optimum (once it reaches
a promising region). Finding a proper balance between these two
strategies is crucial for further improvement of the dynamic learn-
ing rate. Smith et. al. propose the use of a cyclic learning rate in [23].
Their approach fluctuates the learning rate between a maximum
and a minimum bound.While the system uses no information about
whether or not it is stuck by periodically increasing the learning
rate it is able to explore the search space more effectively. This
technique is consequently less vulnerable to early stagnation than
decaying learning rate policies. This method is, to the best of our
knowledge, the most efficient use of dynamic learning rates.

2.3.3 Adaptive Learning Rate. Further improvements in this
area can still be achieved if the system responsible for assigning the
learning rate has access to information throughout training. This
means that we will now study algorithms that can acknowledge
when training is stagnating as it is happening. From this point
onward we refer to these methods as adaptive learning rates.

These techniques unlock one more option of optimization. So
far we have been working with a single value learning rate but
with this extra information it is desirable to use a vector of values
instead. Consider the following scenario, an ANN is being trained
for 100 generations with a single value adaptive learning rate. One
specific weight of the network reaches a near optimal value within
the first 5 generations, but all of the others are still off the mark.
An adaptive learning rate recognizes this and has to decide what is
the ideal learning rate value for the next generation. On the one
hand, using a small learning rate will benefit the fine tuning of the
node that is already performing well. A larger learning rate, on the
contrary, will allow the sub optimal weights to find better values.
Using vectors of learning rates allows the system to have a learning
rate value for each weight, making the most out of these nuanced
situations [14]. Several algorithms [8, 16, 24] have been built on
this theoretical foundation and these systems are the best learning
rate policies we know of.

3 AUTOLR: EVOLUTION OF LEARNING RATE
SCHEDULERS

AutoLR is a framework created to apply evolutionary algorithms to
learning rate policy optimization. While SGE is used to handle the
evolutionary processes, the system’s novelty comes from using the
algorithm to explore new possibilities in the learning rate policy
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condition value if true value if false

if

epoch < 10

condition value if true value if false

if0.1

epoch < 50 0.05 0.01

Figure 3: Example of a learning rate scheduler.

search space. This is achieved through the design of a grammar
that is able to effectively navigate part of this space and a fitness
function that can accurately measure each policy’s quality.

3.1 Evolved Policies
The scope of this work is limited to evolving learning rate sched-
ulers. We define learning rate schedulers as it is done in the Keras[1]
library. Learning rate schedulers are functions that are called peri-
odically during training (each epoch, in this case) and update the
learning rate value. In other words, we are evolving the initial learn-
ing rate and the ensuing variation function. These functions’ inputs
are comprised of the learning rate of the previous epoch and the
number of performed epochs. This function returns a single learn-
ing rate for all dimensions. Using the terminology established so
far, this means the evolved policies can be either a static or dy-
namic learning rate solution. It is important to define the range
of our solutions as this establishes what conventional techniques
we should be kept in mind during analysis.

Figure 3 depicts an example of a learning rate scheduler. In this
case the ANN will train using a learning rate of 0.1 for the first
10 epochs as this is when the condition epoch < 10 is met. This
learning rate will be used until the 10th epoch is reached, at which
point the learning rate scheduler will automatically decrease the
learning rate to 0.05. Following the same rationale, after the 50th
epoch the learning rate to use is 0.01. The search space that we
consider is detail on the next sub-section.

3.2 Grammar
The grammar (Figure 4) defines the search space of the learning rate
schedulers. The individuals created by this grammar will typically
resolve into a sequence of chained if-else conditions (created by
the logic_expr production) that once evaluated yield a learning
rate (provided by the terminals in lr_const). This means that the
system is creating dynamic learning rate policies most of the time.
A notable exception to this is that the system can resolve the initial
expr production into a lr_const, creating a static learning rate policy.

An if_func is a simple function that does the same as a regular
if-then-else construct. Since the code for this system was written
in Python this function was created so all individuals could be
described in a single line that can be read easily by the user. The
code for this function is shown in Algorithm 1.

<expr> ::= if_func(<logic_expr>, <expr>, <expr>)
| <lr_const>

<logic_expr> ::= learning_rate<logic_op> <lr_const>
| epoch<logic_op> <ep_const>

<logic_op> ::= < | ≤ | > | ≥
<lr_const> ::= 0.0001 | 0.00110909 | 0.00211818 | 0.00312727 |

. . .

0.09596364 | 0.09697273 | 0.09798182 | 0.09899091 |
0.1

<ep_const> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
. . .

91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99| 100

Figure 4: Grammar used for the optimisation of learning
rate schedulers.

The conditions used by if_func are generated by logic_expr. This
production will compare one of the input variables (learning_rate,
epoch) with the corresponding constants (lr_const and ep_const,
respectively) using one of several logical operators from logic_op.
logic_op includes all logical operators with the exception of equality
(==) and inequality (!=). Conditions using these operators are too
specific since they only return a different value for a single constant.
This means that, in the vast majority of situations, conditions using
these operators do not change the policy’s behaviour. This makes
them unable to contribute meaningfully to the evolutionary process.

The constants chosen for lr_const and ep_const are 100 evenly
spaced values between the minimum and maximum value for each
of the variables. It should be noted that these production rules have
been abridged in the figure. Only a few of the lowest and highest
possible values are shown so that the range is accurately portrayed
whilst keeping the figure brief. Our training starts in epoch 1 and
ends in epoch 100, since we are also using 100 values for our con-
stant we used every possible epoch value (every natural number
from 1 to 100) for ep_const. lr_const values are more complicated
as there is an infinite number of valid learning rates. We keep the
values of the learning rate bounded between 0.001 and the 0.1 as
all values in this range are suitable for training.

This grammar is capable of creating a large variety of individ-
uals despite its simplicity. While it is not possible for our trees
to exactly recreate the dynamic solution functions mentioned in
Section 2.3 they can reproduce approximated versions that exhibit
similar behaviour.

3.3 Fitness Function
As the main hypothesis implies we are looking to evolve learning
rate policies. This means that we will be using an EA on a popula-
tion of learning rate policies. Additionally, our hypothesis demands
that an individual’s fitness must be some measure of the network’s
performance when trained using that specific solution. This is nec-
essary since if the evolutionary process is not successful, its results
will not address the question we posed.
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Algorithm 1: Template of the code used to implement the
if_func routine.
params :condition, state1, state2

1 if condition then
2 return state1;
3 else
4 return state2;

We decided that the best way to assess a policy’s performance
was through the function seen in Algorithm 2. That is, we train the
network and assess its performance using the accuracy metric.

Algorithm 2: Simplified version of the fitness function
used to evaluate a learning rate policy
params :network, learning_rate_policy, training_data,

test_data
1 trained_network← train(network, learning_rate_policy,

training_data);
2 fitness_score← get_test _accuracy(trained_network,

test_data);
3 return fitness_score;

To elaborate on the algorithm above, our fitness function will
use 4 components
• network - The ANN we are optimizing the learning rate
scheduler for. This network is the same throughout the entire
evolutionary run.
• learning_rate_policy - An evolved learning rate scheduler
that we want to evaluate.
• training/test_data - This is the data of the problem the
ANN will be attempting to solve. As the name implies, train-
ing data is used for training. Test data is a separate set of ex-
amples that are used to evaluate the network’s performance
once training is complete. In the actual fitness function the
training data is further split into training and validation
(see 4.3) but this distinction will temporarily be omitted for
explanation’s sake.

The evaluation function has two phases. First, the network must
be trained, this is where the policy we are evaluating will affect
the process. The train function returns the network provided with
its weights changed through the training process. We could at
this point also retrieve the best performance the network achieved
during training. We do not take this approach as it is not the most
accurate measure of an ANN’s real effectiveness. The objective of
the training is that the network learns a set of weights that solve the
proposed problem. The data used for training is only a sample of all
possible inputs. As training progresses a network becomes gradually
too attached to the training data, this is known as overfitting.
Overfitting means that the network is to constraint to the training
data, and does not represent the general learning problem. This
happens since data will often have some noise (i.e. information
that is not important to solve the task). It is not desirable for the
network to learn to produce solutions based on this noise as that
will hurt its performance when dealing with inputs not included in

training. Consequently, we measure the effectiveness of training by
how well the network performs on a second set of data that it has
not come into contact with. We call this second set the test data.

Every policy will be evaluated using the same network and train-
ing datameaning that the learning rate scheduler is the only varying
component between individuals. Since all other hyper-parameters
are fixed, and the used datasets are balanced, we consider the result
of evaluating the trained network’s accuracy on the test data to
be an adequate measure of the policy’s fitness.

In the context of our work, learning rate policies are executable
computer code. We will be using the Python language specifically
as it has vast support for ANN handling through the Tensorflow
[3] library. An EA is also needed for our system, we chose to use
GE-based evolutionary engine as it gives us a flexible and readable
means of defining the problem space in the form of grammars. In
particular, we chose SGE [18] for its Python implementation and
superior results over regular GE. Our hypothesis also demands
a mindful choice of network architecture. Since we are looking
for optimization in specific scenarios, we want to avoid generic
architectures. We therefore decided to use a CNN model evolved
specifically for image classification obtained from Deep Evolution-
ary Network Structured Representation (DENSER) [4].

4 EXPERIMENTATION
The objective of this work is to promote the automatic optimisation
of learning rate schedulers for a fixed-topology network. Section 4.1
introduces the topology of the used network; Section 4.2 details the
dataset; Section 4.3 describes the experimental setup; and Section 4.4
analyses and discusses the experimental results.

4.1 Network Architecture
The network architecture we used was automatically generated us-
ing DENSER [4] – a grammar-based NeuroEvolution approach. The
CNN optimised by DENSER was evaluated using a fixed learning
rate strategy, and thus it is likely that better learning policies exist.
The architecture was generated for the CIFAR-10 dataset using a
fixed learning rate of 0.01, where the individuals were trained for
10 epochs. The details of how the network was created are impor-
tant as they might inform our conclusions later on. The specific
topology of the network is described in Figure 5.

4.2 Dataset
We opted to use the Fashion-MNIST instead of the network’s native
CIFAR-10 as it is a dataset where the training is faster. This dataset
is composed by 70000 instances: 60000 for training and 10000 for
testing. Each instance is 28×28 grayscale image, which contrasts
with CIFAR-10’s 32×32 RGB images. We will be scaling our images
into 32×32 RGB as they would not fit the network’s input layer
otherwise. This scaling was performed using the nearest neighbour
method, and to pass from one to three channels we replicate the
single channel three times.

4.3 Experimental Setup
We divide the experimental setup into two parts: the parameters
used for the evolutionary search (Section 4.3.1); and for a longer
training after the end of evolution (Section 4.3.2).
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Figure 5: Topology of the used CNN.

Figure 6: Example images from the Fashion-MNIST dataset.

4.3.1 Evolution. The experimental parameters are summarised
in Table 1. They are organized into five sections:
• SGE Parameters – parameters of the evolutionary engine.
• Dataset Parameters – number of instances of each of the
data partitions.
• Early Stop – the stop condition used to halt the training of
the ANN.
• Training Data Augmentation – real time data augmentation
parameters.
• Network Training Parameters – parameters used when train-
ing the ANN.

Our experimental parameters were picked with some considera-
tions. Since evolutionary algorithms are very demanding in terms of
computation resources it was paramount that the parameters used
allowed us to perform meaningful evolutionary runs that could
be completed in an acceptable time-frame. This motivated the se-
lection of parameters that effectively reproduce an evolutionary

SGE Parameter Value
Number of runs 10

Number of generations 50
Number of individuals 5

Mutation rate 0.15
Dataset Parameter Value

Training set 7000 instances from the training
Validation set 1500 instances from the training

Test set 1500 instances from the training
Training Data Augmentation Value

Feature-wise Center True
Feature-wise Std. Deviation True

Rotation Range 20
Width Shift Range 0.2
Height Shift Range 0.2
Horizontal Flip True
Early Stop Value
Patience 3
Metric Validation Loss

Condition Stop if Validation Loss does not
improve in 3 consecutive epochs

Network Training Parameter Value
Batch Size 1000
Epochs 100 / 20
Metrics Accuracy

Table 1: Experimental parameters.

Dataset Parameter Value
Train set 52500 instances from training data

Validation set 7500 instances from training data
Test set 10000 instances from test data

Table 2: Dataset information for parameters.

strategy. Additionally, the fitness function operates on a fraction of
the dataset as training utilizing all 60000 training examples was too
time consuming. We also picked the training parameters accord-
ingly. Ideally, we would perform evolution on 100 training epochs
with no early stop as we are trying to optimize the network’s per-
formance as much as possible. Instead, we performed two sets of
experiments: (i) using 100 epochs and an early stop mechanism;
(ii) using 20 epochs with no early stop. We started by reducing the
computational cost through the implementation of an early stop
mechanism. Notwithstanding, we were concerned that the evolu-
tionary process would exploit this mechanism, which motivated
the 20 epochs experience, where no early stop is used and the cost
is instead reduced by reducing the training epochs.

4.3.2 Testing. After the evolutionary process is complete we
need to properly assess the quality of the generated policies. The
testing routine is the same as our fitness function, differing only in
the data used (seen in Table 2).

In our testing routine we use all training instances (splitting them
into training and validation) to train the network using the policy
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PolicyScenario A B Baseline
Validation 0.751 ± 0.167 n/a 0.859 ± 0.0031 Test 0.692 ± 0.241 n/a 0.850 ± 0.004
Validation n/a 0.854 ± 0.009 0.856 ± 0.0042 Test n/a 0.848 ± 0.007 0.844 ± 0.002
Validation 0.894 ± 0.004 0.891 ± 0.003 0.888 ± 0.0023 Test 0.887 ± 0.002 0.854 ± 0.009 0.875 ± 0.004

Table 3: Accuracy of the evolved policies (A & B) on their
evolutionary environment (1 & 2 respectively) and scenario
3 (representative of an actual use case), compared with the
baseline policy.

we want to evaluate. This network is subsequently tested using all
test data (that was not used previously) to obtain an unbiased test
accuracy. We will also be tracking each policy’s best validation
accuracy to have additional insight into how well the learned
weights are able to generalize. Finally, we need to decide on a policy
to serve as a baseline. We chose to use a static learning rate policy of
0.01 for three reasons. The fact that the network was evolved using
this learning rate (as was explained in Section 4.1). This assures
us that this is an adequate learning rate for this network making
it a good benchmark for our evolved policies. Additionally, this
particular constant is the most common policy in often used Deep
Learning frameworks [1, 2]. We believe that benchmarking against
such a widely used policy is a proper way to test our hypothesis.
Finally, we had to use a baseline that had similar information to our
evolved methods. The adaptive techniques referred to in Section 2.3,
for example, use the gradient of the loss function to make more
precise adjustments to a per-dimension learning rate. The fact that
these methods have access to additional information means they
are not suitable as benchmarks.

We have three testing scenarios:
• The first scenario (1) is the same as the first evolutionary
scenario, i.e., training is done for 100 epochswith the early
stop mechanism.
• The second scenario (2) trains for only 20 epochs, with
no early stop.
• The third scenario (3) trains for 100 epochs, but the early
stop mechanism is disabled.

The first and second scenarios exist primarily so we can see how
the evolved policies compare with the baseline in the conditions
they were evolved in. Scenario 3 yields the most important results
as its conditions represent the typical use case of a neural network.

In order to make discussion clearer the evolved polices will be
referred to as policy A (for the best policy evolved with the early
stop mechanism) and policy B (for the best policy evolved with no
early stop). These evolved polices were tested in their evolutionary
environments (scenario 1 and 2 for policies A and B respectively)
and in scenario 3. The baseline policy was tested in all 3 scenarios.

4.4 Experimental Results
The table presented in 3 summarizes the results of our experimen-
tation, showing the average and standard deviation of the accuracy
of a given policy in a specific scenario over five runs. As detailed in

Section 4.3.2, each run trains the network using the chosen policy
and subsequently tests its accuracy on the 10000 test instances.

4.4.1 Scenario 1. yields results that are not intuitive given the
circumstances. Training in this scenario can be halted by an early
stop mechanism. Since policy A was evolved using this same kind
of training it is to be expected that it would perform well in these
conditions. However, the results show the opposite. Policy A, in
fact, performs far worse then the baseline when early stop is in
use. Analysing individual results showed that this policy will occa-
sionally trigger the early stop in the first few epochs (this can be
observed in the large standard deviation associate with these trials).
There are several interpretations for the implications this has on
the validity of the evolutionary process. On the one hand it can
be argued that this demonstrates an issue with the evolutionary
process since the policy is not a consistent solution to the problem
it is supposed to solve. While it is a fact that the policy is an incon-
sistent solution we do not believe this implies any problems with
the evolution. The fact that this policy can, on occasion, yield the
best performance implies the genetic information of this individual
is useful for the evolutionary process.

4.4.2 Scenario 2. results are more in line with our expectations.
We can observe that, albeit only marginally, policy B shows better
test accuracy than the baseline when trained under the parameters
it was evolved for. It is noteworthy that policy B does not have
superior accuracy in validation. This suggests that the evolved pol-
icy is outperforming the baseline in its ability to generalize
when moved to a different set of data.

4.4.3 Scenario 3. was designed to test which policy is able to get
the most out of this network’s architecture and it gave the most im-
portant set of results. The results show that, under these conditions,
the best accuracy this network achieved was obtained using
an evolved policy for training. On average, policy A performs
better than the baseline in the test set by 1.2% and it obtains these
good results more consistently. Another interesting result is that
policy B (that was previously outstanding because of its ability to
generalize) suffers the biggest dip in performance from validation
to test in this scenario. Ideally, both evolved policies would out-
perform the baseline. There are, however, some possibly limiting
factors. Namely, it is possible that the shorter training duration used
in scenario 2 discourages the evolution of policies that translate
well into scenario 3. This topic is discussed further in 4.4.4 as we
analyse policy B’s shape.

4.4.4 Shape. As discussed in 1, we are interested in analysing
the shapes that our evolved policies take. Namely, in this section
we will be analysing the shape of the previously discussed Policies
A and B. These policies can be observed in Figures 7 and 8. These
figures show how the learning rate evolved over time as well as a
vertical line that signals the epoch where the training using this
policy stopped.

Observing the shape of policy A (seen in Figure 7) led to some
interesting insights. Initially, it seemed that this policy only had
the best performance during evolution because its shape cheat the
early stop mechanism.We suspected that by frequently using a high
learning rate it might be possible to create false improvements that
trick the system. To elaborate, it is feasible for a policy to routinely
worsen and subsequently improve its performance on purpose in
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Figure 7: Policy A
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Figure 8: Policy B

order to pass the early stop check. We can, in fact, observe that this
policy is able to train for a long time despite the early stop as the
vertical line shows. As a comparison, the baseline policy typically
triggers the early stop between epochs 20-30, which means that
policy A is able to train for twice as long.

Policy B took on a very different shape. Despite the erratic be-
haviour shown past epoch 60, this policy is effectively a static learn-
ing rate as its training always ended in epoch 20 (as a reminder,
no early stop was used in the evolution of the policy). While this
initially seems disappointing (finding an adequate constant is not
something that requires such a complex system), it is important to
understand that, due to the reduced training duration, there is a
possibility that the benefits of using a dynamic policy in this context
are negligible, stifling probability that they show up in evolution.
The idea that the evolution of dynamic methods is suppressed under
these circumstances is further supported by the fact that all twelve
of the best policies during the evolution of policy B were constants.
In this context the twelve best policies we are referring to is the
set of policies that were, at some point during evolution, the best
policy in all runs.

We have, up until this point, observed two types of evolved
functions shapes (within the individuals that perform well). The
first type is constants, these comprise the majority of the search
space so their presence is expected. The second type can be observed
in policy A, we refer to these as oscillator policies. We believe that
these policies are approximations of the policies used in [23]. While
it would be disingenuous to claim that we are evolving cyclical
policies, it seems feasible that the evolved oscillator policies are
effective for the same reasons as the cyclical ones. It is notable that
while many known dynamic policies are decaying policies we have
not observed any well performing evolved policies with a similar
shape.

5 CONCLUSIONS AND FUTUREWORK
In this work we posed the question of whether or not evolving
learning rate policies was a viable way of improving a network
architecture’s performance. To test this, we designed and developed
AutoLR. a framework that optimizes learning rate policies using
SGE. Furthermore, this framework was then utilized to create two
evolved policies. These evolved policies were tested and compared
with a widely used baseline policy. Both of the policies evolved were
able to improve on the established baseline in some capacity. Not
only that, the network’s best recorded performance was achieved
with an evolved policy, suggesting that evolving learning rate
policies for a specific architecture did in fact improve the
network performance. Additionally, some of the evolved policies
resembleman-made policies seen in [23], suggesting that the system
might have implicitly discovered the ideas that make such policies
effective. In the future we would like to expand the range of policies
that can be evolved to enable meaningful comparisons with a wider
array of state of the art methods.
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